Science.gov

Sample records for nonlinear polarization rotation

  1. Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration

    NASA Astrophysics Data System (ADS)

    Minkovski, N.; Petrov, G. I.; Saltiel, S. M.; Albert, O.; Etchepare, J.

    2004-09-01

    Nonlinear polarization rotation and generation of a polarization component orthogonal to the input beam were observed along fourfold axes of YVO4 and BaF2 crystals. We demonstrate experimentally that in both crystals the angle of rotation is proportional, at low intensities, to the square of the product of the input intensity and the crystal length and is the result of simultaneous action of two third-order processes. This type of nonlinear polarization rotation is driven by the real part of the cubic susceptibility. The recorded energy exchange between the two orthogonal components can exceed 10%. It is to our knowledge the highest energy-conversion efficiency achieved in a single beam nonresonant χ(3) interaction. A simple theoretical model is elaborated to describe the dependence of nonlinear polarization rotation and orthogonal polarization generation on the intensity of the input beam at both low- and high-intensity levels. It reveals the potential contributions from the real and the imaginary parts of the susceptibility tensor. Moreover, this kind of measurement is designed to permit the determination of the magnitude and the sign of the anisotropy of the real part of third-order nonlinearity in crystals with cubic or tetragonal symmetry on the basis of polarization-rotation measurements. The χxxxx(3) component of the third-order susceptibility tensor and its anisotropy sign and amplitude value for BaF2 and YVO4 crystals are estimated and discussed.

  2. Automation of Mode Locking in a Nonlinear Polarization Rotation Fiber Laser through Output Polarization Measurements.

    PubMed

    Olivier, Michel; Gagnon, Marc-Daniel; Habel, Joé

    2016-01-01

    When a laser is mode-locked, it emits a train of ultra-short pulses at a repetition rate determined by the laser cavity length. This article outlines a new and inexpensive procedure to force mode locking in a pre-adjusted nonlinear polarization rotation fiber laser. This procedure is based on the detection of a sudden change in the output polarization state when mode locking occurs. This change is used to command the alignment of the intra-cavity polarization controller in order to find mode-locking conditions. More specifically, the value of the first Stokes parameter varies when the angle of the polarization controller is swept and, moreover, it undergoes an abrupt variation when the laser enters the mode-locked state. Monitoring this abrupt variation provides a practical easy-to-detect signal that can be used to command the alignment of the polarization controller and drive the laser towards mode locking. This monitoring is achieved by feeding a small portion of the signal to a polarization analyzer measuring the first Stokes parameter. A sudden change in the read out of this parameter from the analyzer will occur when the laser enters the mode-locked state. At this moment, the required angle of the polarization controller is kept fixed. The alignment is completed. This procedure provides an alternate way to existing automating procedures that use equipment such as an optical spectrum analyzer, an RF spectrum analyzer, a photodiode connected to an electronic pulse-counter or a nonlinear detecting scheme based on two-photon absorption or second harmonic generation. It is suitable for lasers mode locked by nonlinear polarization rotation. It is relatively easy to implement, it requires inexpensive means, especially at a wavelength of 1550 nm, and it lowers the production and operation costs incurred in comparison to the above-mentioned techniques. PMID:26967924

  3. Fiber laser modelocked by nonlinear polarization rotation in a fiber loop

    NASA Astrophysics Data System (ADS)

    Kuzin, Evgueni A.; Ibarra-Escamilla, Baldeamr; Gomez-Garcia, D. E.; Haus, Joseph W.

    2002-07-01

    We present the experimental demonstration of a new fiber laser configuration based on the nonlinear optical loop mirror with a symmetrical coupler, and highly twisted low- birefringent fiber in the loop. The nonlinear optical loop mirror configuration operates by nonlinear polarization rotation.

  4. Correction for nonlinearity and polarization-dependent sensitivity in the detection system of rotating analyzer ellipsometers.

    PubMed

    Russev, S H

    1989-04-15

    Systematic errors due to nonlinearity and polarization-dependent sensitivity in the detection system of rotating analyzer ellipsometers are described. Post Fourier analysis procedures for detection and correction of these effects are presented. PMID:20548687

  5. Optically controlled microwave phase shifter based on nonlinear polarization rotation in a highly nonlinear fiber.

    PubMed

    Li, Wei; Sun, Wen Hui; Wang, Wen Ting; Zhu, Ning Hua

    2014-06-01

    This Letter reports an optically controlled microwave phase shifter with an ultra-wideband working bandwidth and a full 360° phase shifting range based on nonlinear polarization rotation (NPR) in a highly nonlinear fiber (HNLF). A continuous wave probe light is modulated by a polarization modulator (PolM) that is driven by a microwave signal to be phase shifted. The optical carrier and the first-order sidebands of the probe light experience different phase shifts due to the NPR induced by the control light in the HNLF. An optical bandpass filter is used to realize single-sideband modulation of the probe light by removing one of the first-order sidebands, as well as to reject the control light. After detecting by a photodetector, the phase of the recovered microwave signal is continuously tunable by adjusting the power of the control light. The proposed approach is theoretically analyzed and experimentally verified. A full 360° tunable phase shift is realized over an ultra-wideband frequency range from 8 to 38 GHz when the power of the control light is tuned from 0 to 570 mW. PMID:24876035

  6. Mode-locked fiber laser using the Sagnac interferometer and the nonlinear polarization rotation

    NASA Astrophysics Data System (ADS)

    Ibarra-Escamilla, Baldeamr; Kuzin, Evgueni A.; Haus, Joseph W.; Pottiez, Olivier; Gomez-Garcia, Dario E.; Gutierrez-Zainos, Francisco; Mendoza-Vazquez, Sergio; Grajales-Coutico, Ruben

    2003-07-01

    In figure-eight lasers (F8L) mode locking is achieved through a nonlinear fiber amplifier loop mirror (NALM) or an asymmetrical nonlinear optical loop mirror (NOLM). Recently, we have theoretically shown that the symmetrical NOLM with a twisted fiber is useful for passive mode locking of fiber lasers. In this work we experimentally demonstrate the operation of a F8L based on the symmetrical NOLM with a twisted low-birefringence fiber in the loop. The modelocking operation is achieved by nonlinear polarization rotation. We found that the counter-propagating beams accumulate a differential nonlinear phase shift when they have different As (where As is the Stokes parameter). At the input NOLM, we used a polarizer controller to adjust the clockwise beam to be circularly polarized, As=1. In the loop of the NOLM, we used a quarter-wave retarder to transform the counter-clockwise beam to linear polarization, As=0. The quarter-wave retarder was the only element that we adjust to achieve modelocking. The pulse repetition frequency was 0.8 MHz. The FWHM of the autocorrelation function was 0.7 ps. We used a pump power of 80 mW to get the modelocking operation. The modelocked laser ran in stable operation for hours. Even in this first experiments the laser shown several advantages. The adjustment procedure was straightforward. The laser shows stable operation and exhibits high pulse energy. We achieved stable generation of subpicosecond pulses with milliwatts of average output power.

  7. Quasiequilibrium nonlinearities in Faraday and Kerr rotation from spin-polarized carriers in GaAs

    NASA Astrophysics Data System (ADS)

    Joshua, Arjun; Venkataraman, V.

    2010-01-01

    Semiconductor Bloch equations (SBEs), which microscopically describe optical properties in terms of the dynamics of a Coulomb interacting, spin-unpolarized electron-hole plasma, can be solved in two limits: the coherent and the quasiequilibrium regimes. Recently, Nemec et al. [1] reported circularly polarized pump-probe absorption spectra in the quasiequilibrium regime for carrier spin-polarized bulk GaAs at room temperature, which lacked a suitable microscopic theoretical understanding. We have very recently explained their results by solving the spin-SBEs in the quasiequilibrium regime (spin-Bethe-Salpeter equation), and accounted for spin-dependent mechanisms of optical nonlinearity [2]. Here, we extend our theory to the microscopic calculation of Kerr and Faraday rotation in the quasiequilibrium regime, for which there are no experimental or theoretical results available.

  8. Stable multi-wavelength fiber laser based on a compounded nonlinear polarization rotation effect

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Lou, Shuqin; Ma, Jianli; Su, Wei; Han, Bolin; Shen, Xiao

    2014-11-01

    A stable multi-wavelength polarization-maintaining erbium-doped fiber (PM-EDF) laser with high signal-to-noise ratio (SNR) based on a compounded nonlinear polarization rotation effect (CNPRE) is proposed and demonstrated. In order to effectively reduce homogeneous broadening of EDF and then to the alleviate mode competition, two sandwich configurations formed by a polarization dependent isolator (PDI) or a segment of single-mode fiber sandwiched between two polarization controllers (PC), are introduced into the ring cavity to generate the CNPRE. A home-made asymmetry twin-core fiber (ATCF) is also incorporated in the ring cavity as a comb filter. With only 150 mW pump power, there are up to 45-wavelengths lasing with the approximate amplitude in a 3 dB bandwidth generated at room temperature. The wavelength spacing between the adjacent peaks is 0.29 nm and the highest SNRs reach 41.5 dB by optimizing the state of polarization of PCs. The power fluctuation and wavelength shift for each lasing wavelength are less than 0.05 dB and 0.02 nm, respectively. This indicates that the proposed multi-wavelength fiber laser can be stably operated at room temperature.

  9. Arc-Polarized, Nonlinear Alfven Waves and Rotational Discontinuities: Directions of Propogation?

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Ho, C. M.; Sakurai, R.; Arballo, J. K.; Riley, P.; Balogh, A.

    1996-01-01

    Large amplitude, noncompressive Alfven waves and rotational discontinuities are shown to be arc-polarized. The slowly rotating Alfven wave portion plus the fast rotating discontinuity comprise 360(deg) in phase rotation. The magnetic field vector perturbation lies in a plane. There are two (or more) possible interpretations to the observations.

  10. A mode-locked fibre laser using a Sagnac interferometer and nonlinear polarization rotation

    NASA Astrophysics Data System (ADS)

    Ibarra-Escamilla, B.; Kuzin, E. A.; Gomez-Garcia, D. E.; Gutierrez-Zainos, F.; Mendoza-Vazquez, S.; Haus, J. W.

    2003-09-01

    We analyse the propagation in a nonlinear, birefringent optical fibre with twist. The results show that the polarization evolution is periodic and they are applied to the analysis of a Sagnac interferometer. We give a useful way to visualize the behaviour of the nonlinear optical loop mirror (NOLM) (as a function of birefringence, twist, length, and input polarization) in terms of the Poincaré sphere. We describe a new fibre laser configuration based on the NOLM with a symmetrical coupler, quarter-wave retarder, and highly twisted, birefringent fibre in the loop. We achieved stable generation of subpicosecond pulses with milliwatts of average output power.

  11. Linear and nonlinear Faraday rotations of light polarization in a four-level active-Raman-gain medium

    NASA Astrophysics Data System (ADS)

    Zhu, Chengjie; Deng, L.; Hagley, E. W.

    2013-08-01

    We investigate linear and nonlinear Faraday effects in a room-temperature, coherently driven four-level active-Raman-gain (ARG) medium. By using the multiple-scale method, we derive two nonlinear coupled envelope equations governing the dynamics of left- and right-polarized components of a linearly polarized probe field. Under the weak probe field approximation, we demonstrate a factor of four increase of the Faraday rotation angle by the linear and nonlinear response of the ARG scheme without probe field loss. We further compare this ARG system with an M-type five-state electromagnetically induced transparency (EIT) scheme and demonstrate the superiority of the ARG scheme over the conventional EIT scheme.

  12. A widely tunable wavelength converter based on nonlinear polarization rotation in a carbon-nanotube-deposited D-shaped fiber.

    PubMed

    Chow, K K; Yamashita, S; Song, Y W

    2009-04-27

    We demonstrate widely tunable wavelength conversion based on cross-phase modulation induced nonlinear polarization rotation in a carbon nanotubes (CNTs) deposited D-shaped fiber. A 5-centimeter-long CNT-deposited D-shaped fiber is used as the nonlinear medium for wavelength conversion of a 10 Gb/s non-return-to-zero signal. Wavelength tunable converted signal over 40 nm is obtained with around 2.5-dB power penalty in the bit-error-rate measurements. PMID:19399145

  13. All-optical quantization and coding scheme for ultrafast analog-to-digital conversion exploiting polarization switches based on nonlinear polarization rotation in semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Wen, Huashun; Wang, Hongxiang; Ji, Yuefeng

    2012-08-01

    A novel all-optical quantization and coding scheme for ultrafast analog-to-digital (A/D) conversion exploiting polarization switches (PSWs) based on nonlinear polarization rotation (NPR) in semiconductor optical amplifiers (SOAs) is proposed. In addition, a theoretical model for the polarization switch based on NPR is presented. Through cascading two PSWs, a 2-period transfer function for 3-bit long all-optical quantization and coding is realized numerically for the first time to the authors' knowledge. The effective number of bits (ENOB), the limitation of bandwidth and conversion speed and the scalability are also investigated. The proposed all-optical quantization and coding scheme, combined with existing all-optical sampling techniques, will enable ultrafast A/D conversion at operating speed of hundreds of Gs/s with at least 3 bit resolution, and allows low optical power requirements, photonic integration, and easy scalability.

  14. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  15. Soliton mode locking by nonlinear Faraday rotation

    NASA Astrophysics Data System (ADS)

    Wabnitz, S.; Westin, E.; Frey, R.; Flytzanis, C.

    1996-11-01

    We propose nonlinear Faraday rotation as a mechanism for achieving stable polarization mode locking of a soliton laser. We analyze by perturbation theory and beam-propagation simulations the interplay between bandwidth-limited gain, gain dichroism, and linear and nonlinear Faraday rotation. .

  16. Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation.

    PubMed

    Wang, Xiong; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2014-03-10

    We demonstrate the nanosecond-level pulses in Tm-doped fiber laser generated by passively harmonic mode-locking. Nonlinear polarization rotation performed by two polarization controllers (PCs) is employed to induce the self-starting harmonic mode-locking. The fundamental repetition rate of the laser is 448.8 kHz, decided by the length of the cavity. Bundles of pulses with up to 17 uniform subpulses are generated due to the split of pulse when the pump power increases and the PCs are adjusted. Continuous harmonic mode-locked pulse trains are obtained with 1st to 6th and even more than 15th order when the positions of the PCs are properly fixed and the pump power is scaled up. The widths of all the uniform individual pulses are mostly 3-5 ns, and pulse with width of 304 ns at fundamental repetition rate can also be generated by adjusting the PCs. Hysteresis phenomenon of the passively harmonic mode-locked pulses' repetition frequency versus pump power is observed. The rather wide 3dB spectral bandwidth of the pulse train (25 nm) indicates that they may resemble noise-like pulses. PMID:24663948

  17. Multi-order bunched soliton pulse generation by nonlinear polarization rotation mode-locking erbium-doped fiber lasers with weak or strong polarization-dependent loss

    NASA Astrophysics Data System (ADS)

    Lin, Sheng-Fong; Wang, Huai-Yung; Su, Yu-Chuan; Chi, Yu-Chieh; Lin, Gong-Ru

    2014-10-01

    With the assistance of weak or strong polarization-dependent loss (PDL) in the cavity, nonlinear polarization rotation mode-locking (NPRML) of an erbium-doped fiber laser (EDFL) is demonstrated to show transformation on the soliton from a single to multiple bunched state with nearly one order of magnitude variation on pulsewidth. With the bent intracavity fiber providing the weak PDL, the NPRML shortens the pulsewidth from only 5.3 ps to 4.9 ps and correspondingly broadens the spectral linewidth from 0.43 nm to 0.56 nm when enlarging the pump power from 100 mW to 325 mW. With the use of an inserted polarizer providing strong PDL in an EDFL, the fundamental soliton pulsewidth is significantly compressed to 390 fs, with the spectral linewidth as wide as 7.14 nm. In particular, the parameters of the soliton pulses are nearly unchanged at different pump powers; however, the soliton pulses split to form tightly bunched pulses circulating in the EDFL cavity. There are as many as 18 solitons tightly bunched together at the maximum pump power of up to 325 mW. Such a tightly bunched package can be elucidated by soliton energy quantization and long-range soliton interaction according to the perturbation theory in a passively mode-locked EDFL.

  18. Single-frequency pulsed Brillouin-thulium fiber laser at 2 µm with nonlinear polarization rotation and active phase modulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiong; Lv, Haibin; Zhou, Pu; Wu, Weijun; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2014-10-01

    We present a single-frequency (SF) pulsed fiber laser at 2 µm based on stimulated Brillouin scattering in a thulium-doped fiber laser. The effective feedback of the fiber laser is quite weak to induce pulse operation. Nonlinear polarization rotation and active phase modulation are employed to compress the pulse width and stabilize the pulse train. This SF pulsed Brillouin-thulium fiber laser (BTFL) can generate a stable pulse train with a repetition rate of ˜310 kHz and a pulse width of ˜200 ns. The repetition rate of the pulse train can be adjusted by controlling the cavity length, and the pulse width can be tuned between 200 and 500 ns. The central wavelength locates at 1971.58 nm with an optical signal-to-noise ratio of more than 40 dB, and the linewidth is about 6 MHz. This is the first demonstration of the SF pulsed BTFL as far as we know.

  19. Toroidal rotation driven by the polarization drift.

    PubMed

    McDevitt, C J; Diamond, P H; Gürcan, O D; Hahm, T S

    2009-11-13

    Starting from a phase space conserving gyrokinetic formulation, a systematic derivation of parallel momentum conservation uncovers a novel mechanism by which microturbulence may drive intrinsic rotation. This mechanism, which appears in the gyrokinetic formulation through the parallel nonlinearity, emerges due to charge separation induced by the polarization drift. The derivation and physical discussion of this mechanism will be pursued throughout this Letter. PMID:20365987

  20. Rotational Doppler effect in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2016-08-01

    The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.

  1. Developments in Coherent Perfect Polarization Rotation

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Andrews, James; Zhou, Chaunhong; Baker, Michael

    2015-05-01

    Coherent Perfect Polarization Rotation (CPR) is a useful technique akin to Coherent Perfect Absorption (CPA, also known as the anti-laser) but that results in very high efficiency optical mode conversion. We describe the analysis of recent experimental data from our CPR testbed, the use of CPR in miniaturizing optical isolators and CPR phenomena in non-linear optics. Work supported by the N.S.F. under Grant No. ECCS-1360725.

  2. Nonlinear electrodynamics and CMB polarization

    SciTech Connect

    Cuesta, Herman J. Mosquera; Lambiase, G. E-mail: lambiase@sa.infn.it

    2011-03-01

    Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (−2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ∼ (X/Λ{sup 4}){sup δ−1} X, where X = ¼F{sub αβ}F{sup αβ}, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.

  3. Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation.

    PubMed

    Smirnov, Sergey; Kobtsev, Sergey; Kukarin, Sergey; Ivanenko, Aleksey

    2012-11-19

    We show experimentally and numerically new transient lasing regime between stable single-pulse generation and noise-like generation. We characterize qualitatively all three regimes of single pulse generation per round-trip of all-normal-dispersion fiber lasers mode-locked due to effect of nonlinear polarization evolution. We study spectral and temporal features of pulses produced in all three regimes as well as compressibility of such pulses. Simple criteria are proposed to identify lasing regime in experiment. PMID:23187603

  4. Soliton polarization rotation and switching in type II second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Mollame, Riccardo; Trillo, Stefano; Assanto, Gaetano

    1996-12-01

    We predict that solitary waves of dispersive type II second-harmonic generation may experience large uniform nonlinear polarization rotations. The nonlinear medium followed by a polarization analyzer permits undistorted all-optical switching of pulses controlled by the input polarization.

  5. Specular nonlinear anisotropic polarization effect along fourfold crystal symmetry axes

    NASA Astrophysics Data System (ADS)

    Bungay, A. R.; Popov, S. V.; Zheludev, N. I.; Svirko, Yu. P.

    1995-02-01

    We present what is to our knowledge the first experimental observation of the specular nonlinear anisotropic polarization effect of a pump-induced polarization-plane rotation for normal-incidence reflection from the (001) surface of a cubic crystal. In GaAs, azimuth rotation of the order of 9 \\times 10 -6 rad is seen for a pump intensity of 75 MW cm-2 at 750 nm, from which the anisotropic component of the cubic nonlinearity |Re( chi xxxx-2 chi xxyy- chi xyyx)|=5 \\times 10 -9 esu is found.

  6. Linear polarization of rapidly rotating ultracool dwarfs

    NASA Astrophysics Data System (ADS)

    Miles-Páez, P. A.; Zapatero Osorio, M. R.; Pallé, E.; Peña Ramírez, K.

    2013-08-01

    Aims: We aim to study the near-infrared linear polarization signal of rapidly rotating ultracool dwarfs with spectral types ranging from M7 through T2 and projected rotational velocities of v sin i ≳ 30 km s-1. These dwarfs are believed to have dusty atmospheres and oblate shapes, which is an appropriate scenario to produce measurable linear polarization of the continuum light. Methods: Linear polarimetric images were collected in the J-band for a sample of 18 fast-rotating ultracool dwarfs, of which five were also observed in the Z-band using the Long-slit Intermediate Resolution Infrared Spectrograph (LIRIS) on the Cassegrain focus of the 4.2-m William Herschel Telescope. The measured median uncertainty in the linear polarization degree is ±0.13% for our sample, which allowed us to detect polarization signatures above ~0.39% with a confidence interval of ≥3σ. Results: About 40 ± 15% of the sample is linearly polarized in the Z- and J-bands. All positive detections have linear polarization degrees ranging from 0.4% to 0.8% in both filters independent of spectral type and spectroscopic rotational velocity. However, simple statistics point at the fastest rotators (v sin i ≳ 60 km s-1) having a larger fraction of positive detections and a larger averaged linear polarization degree than the moderately rotating dwarfs (v sin i = 30-60 km s-1). Our data suggest little linear polarimetric variability on short timescales (i.e., observations separated by a few ten rotation periods), and significant variability on long timescales (i.e., hundred to thousand rotation cycles), supporting the presence of long-term weather in ultracool dwarf atmospheres.

  7. Nonlinearity of Pancharatnam's geometric phase in polarizing interferometers.

    PubMed

    Hils, B; Dultz, W; Martienssen, W

    1999-08-01

    Earlier investigations show a time-variable nonlinear shift of the fringe pattern in a polarizing interferometer while rotating a polarizer at the exit. This effect was identified as Pancharatnam's geometrical phase and proposed for applications in interferometry and fast optical switching devices. A heterodyne analysis attributes moving fringes to a frequency difference between the interfering beams; thus changing fringe velocities point to a dynamic frequency development within the period of the uniformly rotating analyzer. This explanation offends the intuition and we undertake an experimental and theoretical investigation of the effect to solve the paradox. We determine, e.g., the complete frequency and mode spectrum of an arbitrary state of polarization P0 behind a rotating linear analyzer and behind a rotating arbitrary linear birefringent plate. We find that, in spite of a fast changing phase in the interferometer, no other (higher) frequency components appear in the spectral distribution of the intensity at the exit than the double of the rotary frequency of the analyzer: phase nonlinearities are compensated for by intensity changes. Only a phase-sensitive detector like an array of photodetectors is able to observe the nonlinearity of Pancharatnam's geometrical phase. A single detector only finds a sinusoidal intensity variation. Our insight into these relations leads us to two new applications of Pancharatnam's phase: supersensitivity of a polarizing double beam interferometer with a video camera acting as a phase detector and external tuning of a Fizeau interferometer. PMID:11970029

  8. Electrically rotating suspended films of polar liquids

    NASA Astrophysics Data System (ADS)

    Shirsavar, R.; Amjadi, A.; Tonddast-Navaei, A.; Ejtehadi, M. R.

    2011-02-01

    Controlled rotation of a suspended soap water film, simply generated by applying an electric field, has been reported recently. The film rotates when the applied electric field exceeds a certain threshold. In this study, we investigate the phenomenon in films made of a number of other liquids with various physical and chemical properties. Our measurements show that the intrinsic electrical dipole moments of the liquid molecules seems to be vital for the corresponding film rotation. All the investigated rotating liquids have a molecular electric dipole moment of above 1 Debye, while weakly polar liquids do not rotate. However, the liquids investigated here cover a wide range of physical parameters (e.g. viscosity, density, conductivity, etc.). So far, no significant correlation has been observed between the electric field thresholds and macroscopic properties of the liquids.

  9. Rotating black string with nonlinear source

    SciTech Connect

    Hendi, S. H.

    2010-09-15

    In this paper, we derive rotating black string solutions in the presence of two kinds of nonlinear electromagnetic fields, so-called Born-Infeld and power Maxwell invariant. Investigation of the solutions show that for the Born-Infeld black string the singularity is timelike and the asymptotic behavior of the solutions is anti-de Sitter, but for power Maxwell invariant solutions, depending on the values of nonlinearity parameter, the singularity may be timelike as well as spacelike and the solutions are not asymptotically anti-de Sitter for all values of the nonlinearity parameter. Next, we calculate the conserved quantities of the solutions by using the counterterm method, and find that these quantities do not depend on the nonlinearity parameter. We also compute the entropy, temperature, the angular velocity, the electric charge, and the electric potential of the solutions, in which the conserved and thermodynamics quantities satisfy the first law of thermodynamics.

  10. Renormalized vacuum polarization of rotating black holes

    NASA Astrophysics Data System (ADS)

    Ferreira, Hugo R. C.

    2015-04-01

    Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.

  11. Polarization Properties of Rotation Powered Pulsars

    NASA Technical Reports Server (NTRS)

    Harding Alice K.

    2009-01-01

    Polarization measurements of rotation-powered pulsars and their nebulae have unique diagnostic potential. The polarization position angle of the pulsar wind nebula, as is know for the Crab pulsar, can tell us the orientation of the spin axis. Phase-resolved polarimetry of pulsars has had enormous diagnostic capability at radio and optical wavelengths and could also be a powerful diagnostic in the X-ray range. Measurement of the polarization properties as a function of pulse phase can therefore provide a multidimensional mapping of the pulsar emission. In the 'rotating vector' model, radiation originating near a magnetic pole is expected to show a characteristic S-shaped swing of the position angle vs. pulse phase. In this case it is possible to determine the magnetic inclination and viewing angles. Radiation originating further from the poles or further above the neutron star surface will have a more complex polarization signature, as a result of relativistic effects of aberration and time-of-flight delays and may also cause depolarization of the signal. I will discuss predicted polarization properties of pulsed emission in polar cap models, where radiation originates near the neutron star surface at the magnetic poles, and in slot gap and outer gap models, where radiation originates over a range of altitudes out to the speed-of-light cylinder.

  12. Nonlinear dynamics of a rotating double pendulum

    NASA Astrophysics Data System (ADS)

    Maiti, Soumyabrata; Roy, Jyotirmoy; Mallik, Asok K.; Bhattacharjee, Jayanta K.

    2016-01-01

    Nonlinear dynamics of a double pendulum rotating at a constant speed about a vertical axis passing through the top hinge is investigated. Transitions of oscillations from chaotic to quasiperiodic and back to chaotic again are observed with increasing speed of rotation. With increasing speed, a pair of new stable equilibrium states, different from the normal vertical one, appear and the quasiperiodic oscillations occur. These oscillations are first centered around the origin, but with increasing rotation speed they cover the origin and the new fixed points. At a still higher speed, more than one pair of fixed points appear and the oscillation again turns chaotic. The onset of chaos is explained in terms of internal resonance. Analytical and numerical results confirm the critical values of the speed parameter at various transitions.

  13. Electromagnetic nonlinear gyrokinetics with polarization drift

    NASA Astrophysics Data System (ADS)

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-08-01

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  14. Electromagnetic nonlinear gyrokinetics with polarization drift

    SciTech Connect

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-08-15

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  15. Polarization dynamics in nonlinear anisotropic fibers

    SciTech Connect

    Komarov, Andrey; Komarov, Konstantin; Meshcheriakov, Dmitry; Amrani, Foued; Sanchez, Francois

    2010-07-15

    We give an extensive study of polarization dynamics in anisotropic fibers exhibiting a third-order index nonlinearity. The study is performed in the framework of the Stokes parameters with the help of the Poincare sphere. Stationary states are determined, and their stability is investigated. The number of fixed points and their stability depend on the respective magnitude of the linear and nonlinear birefringence. A conservation relation analogous to the energy conservation in mechanics allows evidencing a close analogy between the movement of the polarization in the Poincare sphere and the motion of a particle in a potential well. Two distinct potentials are found, leading to the existence of two families of solutions, according to the sign of the total energy of the equivalent mechanical system. The mechanical analogy allows us to fully characterize the solutions and also to determine analytically the associated beat lengths. General analytical solutions are given for the two families in terms of Jacobi's functions. The intensity-dependent transmission of a fiber placed between two crossed polarizers is calculated. Optimal conditions for efficient nonlinear switching compatible with mode-locking applications are determined. The general case of a nonlinear fiber ring with an intracavity polarizer placed between two polarization controllers is also considered.

  16. Analytical periodic motions in a parametrically excited, nonlinear rotating blade

    NASA Astrophysics Data System (ADS)

    Wang, F.; Luo, A. C. J.

    2013-09-01

    The stability and bifurcation analyses of periodic motions in a rotating blade subject to a torsional excitation are investigated. For high speed rotations, cubic geometric nonlinearity and gyroscopic effects of the rotating blade are considered. From the Galerkin method, the partial differential equation of the nonlinear rotating blade is simplified to the ordinary differential equations, and periodic motions and stability of the rotating blade are studied by the generalized harmonic balance method. The analytical and numerical results of periodic solutions are compared. The rich dynamics and co-existing periodic solutions of the nonlinear rotating blades are investigated.

  17. Ultra-thin, single-layer polarization rotator

    NASA Astrophysics Data System (ADS)

    Son, T. V.; Truong, V. V.; Do, P. A.; Haché, A.

    2016-08-01

    We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 103 when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  18. Polarization-Rotating Sensors Connected To Optical Fibers

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1992-01-01

    Proposed optoelectronic sensor system includes polarization-rotating sensing elements interrogated by polarized light transmitted to and from sensing elements along optical fibers. Polarization of light altered by combinations of inherent birefringence, stress-induced birefrigence, and Faraday rotation. Advantages include: light weight, fast response, immunity to electromagnetic interference at radio and lower frequencies, and no need to supply electrical power to sensing elements.

  19. Linear and nonlinear magneto-optical rotation on the narrow strontium intercombination line

    NASA Astrophysics Data System (ADS)

    Pandey, K.; Kwong, C. C.; Pramod, M. S.; Wilkowski, D.

    2016-05-01

    In the presence of an external static magnetic field, an atomic gas becomes optically active, showing magneto-optical rotation. In the saturated regime, the coherences among the excited substates give a nonlinear contribution to the rotation of the light polarization. In contrast with the linear magneto-optical rotation, the nonlinear counterpart is insensitive to Doppler broadening. By varying the temperature of a cold strontium gas, we observe both regimes by driving the J =0 →J =1 transition on the intercombination line. For this narrow transition, the sensitivity to the static magnetic field is typically three orders of magnitude larger than for a standard broad alkali-metal transition.

  20. Freely tunable broadband polarization rotator for terahertz waves.

    PubMed

    Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping; Peng, Ru-Wen; Jiang, Shang-Chi; Xu, Di-Hu; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu

    2015-02-18

    A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging. PMID:25545177

  1. Polarization rotator-splitters in standard active silicon photonics platforms.

    PubMed

    Sacher, Wesley D; Barwicz, Tymon; Taylor, Benjamin J F; Poon, Joyce K S

    2014-02-24

    We demonstrate various silicon-on-insulator polarization management structures based on a polarization rotator-splitter that uses a bi-level taper TM0-TE1 mode converter. The designs are fully compatible with standard active silicon photonics platforms with no new levels required and were implemented in the IME baseline and IME-OpSIS silicon photonics processes. We demonstrate a polarization rotator-splitter with polarization crosstalk < -13 dB over a bandwidth of 50 nm. Then, we improve the crosstalk to < -22 dB over a bandwidth of 80 nm by integrating the polarization rotator-splitter with directional coupler polarization filters. Finally, we demonstrate a polarization controller by integrating the polarization rotator-splitters with directional couplers, thermal tuners, and PIN diode phase shifters. PMID:24663698

  2. Edge localized mode rotation and the nonlinear dynamics of filaments

    NASA Astrophysics Data System (ADS)

    Morales, J. A.; Bécoulet, M.; Garbet, X.; Orain, F.; Dif-Pradalier, G.; Hoelzl, M.; Pamela, S.; Huijsmans, G. T. A.; Cahyna, P.; Fil, A.; Nardon, E.; Passeron, C.; Latu, G.

    2016-04-01

    Edge Localized Modes (ELMs) rotating precursors were reported few milliseconds before an ELM crash in several tokamak experiments. Also, the reversal of the filaments rotation at the ELM crash is commonly observed. In this article, we present a mathematical model that reproduces the rotation of the ELM precursors as well as the reversal of the filaments rotation at the ELM crash. Linear ballooning theory is used to establish a formula estimating the rotation velocity of ELM precursors. The linear study together with nonlinear magnetohydrodynamic simulations give an explanation to the rotations observed experimentally. Unstable ballooning modes, localized at the pedestal, grow and rotate in the electron diamagnetic direction in the laboratory reference frame. Approaching the ELM crash, this rotation decreases corresponding to the moment when the magnetic reconnection occurs. During the highly nonlinear ELM crash, the ELM filaments are cut from the main plasma due to the strong sheared mean flow that is nonlinearly generated via the Maxwell stress tensor.

  3. Dynamic rotation and stretch tensors from a dynamic polar decomposition

    NASA Astrophysics Data System (ADS)

    Haller, George

    2016-01-01

    The local rigid-body component of continuum deformation is typically characterized by the rotation tensor, obtained from the polar decomposition of the deformation gradient. Beyond its well-known merits, the polar rotation tensor also has a lesser known dynamical inconsistency: it does not satisfy the fundamental superposition principle of rigid-body rotations over adjacent time intervals. As a consequence, the polar rotation diverts from the observed mean material rotation of fibers in fluids, and introduces a purely kinematic memory effect into computed material rotation. Here we derive a generalized polar decomposition for linear processes that yields a unique, dynamically consistent rotation component, the dynamic rotation tensor, for the deformation gradient. The left dynamic stretch tensor is objective, and shares the principal strain values and axes with its classic polar counterpart. Unlike its classic polar counterpart, however, the dynamic stretch tensor evolves in time without spin. The dynamic rotation tensor further decomposes into a spatially constant mean rotation tensor and a dynamically consistent relative rotation tensor that is objective for planar deformations. We also obtain simple expressions for dynamic analogues of Cauchy's mean rotation angle that characterize a deforming body objectively.

  4. Polarization Rotation by Multilayered Chiral Metamaterial

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Nathan Burford Collaboration

    2013-03-01

    Traditionally, negative permittivity was realized by plasma resonance of the metallic structures, and negative permeability was achieved by a resonant LC circuit. Chiral metamaterial is another route to achieve negative permittivity and permeability, and such structures were investigated at different frequency domains. Recently, it was demonstrated that a two-dimensional lattice of three-dimensional gold spirals can effectively block circular polarized light with the same handedness for a frequency range exceeding one octave. From the point of view of applications, metamaterials must be fabricated easily and cheaply, and one way to achieve this goal is planarization. We designed a multiple-layer quasi-helix PCB structure and had it fabricated. The sample was tested with automated free space microwave material measurement system at X-band. These layers of PCB can be arranged in two different configurations: left-handed or right- handed helix. We found that the polarization plane is rotated in the opposite direction for the left- and right-handed samples, and the measured S-parameters agree with the simulation result relatively well. The authors would like to acknowledge the support from GRFC grant from Southeast Missouri State University.

  5. Freely-tunable broadband polarization rotator for terahertz waves

    NASA Astrophysics Data System (ADS)

    Peng, Ru-Wen; Fan, Ren-Hao; Zhou, Yu; Jiang, Shang-Chi; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu

    It is known that commercially-available terahertz (THz) emitters usually generate linearly polarized waves only along certain directions, but in practice, a polarization rotator that is capable of rotating the polarization of THz waves to any direction is particularly desirable and it will have various important applications. In this work, we demonstrate a freely tunable polarization rotator for broadband THz waves using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized THz wave to any desired direction with nearly perfect conversion efficiency. The device performance has been experimentally demonstrated by both THz transmission spectra and direct imaging. The polarization rotation originates from multi wave interference in the three-layer grating structure based on the scattering-matrix analysis. We can expect that this active broadband polarization rotator has wide applications in analytical chemistry, biology, communication technology, imaging, etc.. Reference: R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and Mu Wang, Advanced Materials 27,1201(2015). Freely-tunable broadband polarization rotator for terahertz waves.

  6. Nonlinear Rayleigh-Taylor instability of rotating inviscid fluids

    NASA Astrophysics Data System (ADS)

    Tao, J. J.; He, X. T.; Ye, W. H.; Busse, F. H.

    2013-01-01

    It is demonstrated theoretically that the nonlinear stage of the Rayleigh-Taylor instability can be retarded at arbitrary Atwood numbers in a rotating system with the axis of rotation normal to the acceleration of the interface between two uniform inviscid fluids. The Coriolis force provides an effective restoring force on the perturbed interface, and the uniform rotation will always decrease the nonlinear saturation amplitude of the interface at any disturbance wavelength.

  7. Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.

    PubMed

    Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C

    2014-01-01

    Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations. PMID:24580333

  8. Apodised aperture using rotation of plane of polarization

    DOEpatents

    Simmons, W.W.; Leppelmeier, G.W.; Johnson, B.C.

    1975-09-01

    An apodised aperture based on the rotation of plane of polarization producing desirable characteristics on a transmitted light beam such as beam profiling in high flux laser amplifier chains is described. The apodised aperture is made with a lossless element by using one or more polarizers and/or analyzers and magneto-optical Faraday means for selectively rotating the plane of polarized radiation over the cross section to effect the desired apodisation. (auth)

  9. Laser scanning by rotating polarization gratings.

    PubMed

    Zhou, Yuan; Fan, Dapeng; Fan, Shixun; Chen, Ying; Liu, Guangcan

    2016-07-01

    Laser beam scanning can be realized using two independently rotating, inline polarization gratings, termed Risley gratings, in a fashion similar to Risley prisms. The analytical formulas of pointing position as well as their inverse solutions are described. On this basis, the beam scanning is investigated and the performance of scanning imaging is evaluated. It is shown that the scanning function in 1D scanning evolves from a sinusoidal to triangular scan and the duty cycle increases rapidly as the ratio of grating period to wavelength is reduced toward 2. The scan pattern in 2D scanning is determined by the ratio k of the gratings' rotatory frequency. In imaging applications, when k tends toward 1 or -1, the scan pattern becomes dense and is inclined to be spiral or rose-like, respectively, which is desirable for the purpose of enhancing spatial resolution. There is a direct trade-off between spatial resolution and frame rate. The spiral and rose scanning enable multiresolution imaging, providing a preview of the scanned area in a fraction of the overall scan time, which is extremely useful for fast, real-time imaging applications. PMID:27409203

  10. Measurement of Small Optical Polarization Rotations

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    When data with and without an optically active sample are acquired simultaneously while one manually rotates the analyser, the graph of the first signal versus the second one is an ellipse whose shape shows the phase shift between the two signals; this shift is twice the optical rotation. There is no need to measure the rotation of the analyser or…

  11. Nonlinear, dispersive, elliptically polarized Alfven wavaes

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Buti, B.; Hada, T.; Pellat, R.

    1988-01-01

    The derivative nonlinear Schroedinger (DNLS) equation is derived by an efficient means that employs Lagrangian variables. An expression for the stationary wave solutions of the DNLS that contains vanishing and nonvanishing and modulated and nonmodulated boundary conditions as subcases is then obtained. The solitary wave solutions for elliptically polarized quasiparallel Alfven waves in the magnetohydrodynamic limit (nonvanishing, unmodulated boundary conditions) are obtained. These converge to the Korteweg-de Vries and the modified Korteweg-de Vries solitons obtained previously for oblique propagation, but are more general. It is shown that there are no envelope solitary waves if the point at infinity is unstable to the modulational instability. The periodic solutions of the DNLS are characterized.

  12. Polarization rotation under two-photon Raman resonance for magnetometry

    SciTech Connect

    Pradhan, S.; Behera, R.; Das, A. K.

    2012-04-23

    The polarization rotation and coherent population trapping signal arising due to two photon process using linearly polarized light are found to be significantly enhanced for a Zeeman degenerate system. The zero crossing of the dispersive profile is found to be shifting proportional to the applied magnetic field, albeit the absorptive profile position remains invariant for a slightly imbalanced orthogonal circular polarization component. It provides an alternative method for precise measurement of vector magnetic field without requirement of a bias field. The use of polarization rotation signal for magnetic field measurement offers added advantage due to improved signal to noise ratio.

  13. On the Rotation of Sunspots and Their Magnetic Polarity

    NASA Astrophysics Data System (ADS)

    Zheng, Jianchuan; Yang, Zhiliang; Guo, Kaiming; Wang, Haimin; Wang, Shuo

    2016-07-01

    The rotation of sunspots of 2 yr in two different solar cycles is studied with the data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory and the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observataory. We choose the α sunspot groups and the relatively large and stable sunspots of complex active regions in our sample. In the year of 2003, the α sunspot groups and the preceding sunspots tend to rotate counterclockwise and have positive magnetic polarity in the northern hemisphere. In the southern hemisphere, the magnetic polarity and rotational tendency of the α sunspot groups and the preceding sunspots are opposite to the northern hemisphere. The average rotational speed of these sunspots in 2003 is about 0.°65 hr‑1. From 2014 January to 2015 February, the α sunspot groups and the preceding sunspots tend to rotate clockwise and have negative magnetic polarity in the northern hemisphere. The patterns of rotation and magnetic polarity of the southern hemisphere are also opposite to those of the northern hemisphere. The average rotational speed of these sunspots in 2014/2015 is about 1.°49 hr‑1. The rotation of the relatively large and stable preceding sunspots and that of the α sunspot groups located in the same hemisphere have opposite rotational direction in 2003 and 2014/2015.

  14. Integrated polarization rotator/converter by stimulated Raman adiabatic passage.

    PubMed

    Xiong, Xiao; Zou, Chang-Ling; Ren, Xi-Feng; Guo, Guang-Can

    2013-07-15

    We proposed a polarization rotator inspired by stimulated Raman adiabatic passage model from quantum optics, which is composed of a signal waveguide and an ancillary waveguide. The two orthogonal modes in signal waveguide and the oblique mode in ancillary waveguide form a Λ-type three-level system. By controlling the width of signal waveguide and the gap between two waveguides, adiabatic conversion between two orthogonal modes can be realized in the signal waveguide. With such adiabatic passage, polarization conversion is completed within 150 μm length, with the efficiencies over 99% for both conversions between horizontal polarization and vertical polarization. In addition, such a polarization rotator is quite robust against fabrication error, allowing a wide range of tolerances for the rotator geometric parameters. Our work is not only significative to photonic simulations of coherent quantum phenomena with engineered photonic waveguides, but also enlightens the practical applications of these phenomena in optical device designs. PMID:23938558

  15. Nonlinear polarization-modulated spectroscopy of bacteriorhodopsin and its analogues

    NASA Astrophysics Data System (ADS)

    Taranenko, V. B.; Bazhenov, V. Yu; Kulikovskaya, O. A.

    1996-09-01

    We report on a novel nonlinear polarization-modulated spectroscopic method for an accurate measurement of the nonlinear change of both real and imaginary parts of the complex refractive index in isotropic materials having either scalar or tensor photoresponse. It is based on a vector two-wave-mixing interaction and heterodyne detection of dynamic change of optical polarization. New data on steady-state and transient nonlinear characteristics of bacteriorhodopsin-based materials (suspensions and polymer films) are obtained using this method.

  16. Finite rotation and nonlinear beam kinematics

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.

    1987-01-01

    Standard means of representing finite rotation in rigid-body kinematics, including orientation angles, Euler parameters, and Rodrigues parameters, are reviewed and compared. General kinematical relations for a beam theory that treats arbitrarily large rotation are then presented. The standard methods of representing finite rotations are applied to these kinematical expressions, and comparison is made among the standard methods and additional methods found in the literature, such as quasi-coordinates and linear combinations of projection angles. The method of Rodrigues parameters is shown to stand out for both its simplicity and generality when applied to beam kinematics, a result that is really missing from the literature.

  17. Cosmic polarization rotation: An astrophysical test of fundamental physics

    NASA Astrophysics Data System (ADS)

    di Serego Alighieri, Sperello

    2015-02-01

    Possible violations of fundamental physical principles, e.g. the Einstein equivalence principle on which all metric theories of gravity are based, including general relativity (GR), would lead to a rotation of the plane of polarization for linearly polarized radiation traveling over cosmological distances, the so-called cosmic polarization rotation (CPR). We review here the astrophysical tests which have been carried out so far to check if CPR exists. These are using the radio and ultraviolet polarization of radio galaxies and the polarization of the cosmic microwave background (both E-mode and B-mode). These tests so far have been negative, leading to upper limits of the order of one degree on any CPR angle, thereby increasing our confidence in those physical principles, including GR. We also discuss future prospects in detecting CPR or improving the constraints on it.

  18. Geometric non-linear hexahedral elements with rotational DOFs

    NASA Astrophysics Data System (ADS)

    Meftah, Kamel; Zouari, Wajdi; Sedira, Lakhdar; Ayad, Rezak

    2016-01-01

    This paper presents an extension of two recently published conforming and non conforming eight-node hexahedral finite elements, presenting rotational degrees of freedom in addition to the classical displacement ones, to analyze geometric nonlinear problems. Their formulations are based on the so-called space fiber rotation concept that considers virtual rotations of a nodal fiber within the element which enhances the displacement vector approximation. To demonstrate the efficiency and accuracy of the proposed finite elements, several beam and shell nonlinear assessment tests are presented and the obtained results are principally compared with the classical first-order and second-order hexahedral elements responses as well as other advanced elements from the literature. In particular, it is shown that the proposed elements allow a correct prediction of the studied structures nonlinear behaviors including snap-through and snap-back instabilities and the accuracy of the non conforming element is close to the classical 20-node hexahedral element.

  19. Nonlinear coupling of left and right handed circularly polarized dispersive Alfvén wave

    SciTech Connect

    Sharma, R. P. Sharma, Swati Gaur, Nidhi

    2014-07-15

    The nonlinear phenomena are of prominent interests in understanding the particle acceleration and transportation in the interplanetary space. The ponderomotive nonlinearity causing the filamentation of the parallel propagating circularly polarized dispersive Alfvén wave having a finite frequency may be one of the mechanisms that contribute to the heating of the plasmas. The contribution will be different of the left (L) handed mode, the right (R) handed mode, and the mix mode. The contribution also depends upon the finite frequency of the circularly polarized waves. In the present paper, we have investigated the effect of the nonlinear coupling of the L and R circularly polarized dispersive Alfvén wave on the localized structures formation and the respective power spectra. The dynamical equations are derived in the presence of the ponderomotive nonlinearity of the L and R pumps and then studied semi-analytically as well as numerically. The ponderomotive nonlinearity accounts for the nonlinear coupling between both the modes. In the presence of the adiabatic response of the density fluctuations, the nonlinear dynamical equations satisfy the modified nonlinear Schrödinger equation. The equations thus obtained are solved in solar wind regime to study the coupling effect on localization and the power spectra. The effect of coupling is also studied on Faraday rotation and ellipticity of the wave caused due to the difference in the localization of the left and the right modes with the distance of propagation.

  20. Nonlinear flap-lag axial equations of a rotating beam

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kvaternik, R. G.

    1977-01-01

    It is possible to identify essentially four approaches by which analysts have established either the linear or nonlinear governing equations of motion for a particular problem related to the dynamics of rotating elastic bodies. The approaches include the effective applied load artifice in combination with a variational principle and the use of Newton's second law, written as D'Alembert's principle, applied to the deformed configuration. A third approach is a variational method in which nonlinear strain-displacement relations and a first-degree displacement field are used. The method introduced by Vigneron (1975) for deriving the linear flap-lag equations of a rotating beam constitutes the fourth approach. The reported investigation shows that all four approaches make use of the geometric nonlinear theory of elasticity. An alternative method for deriving the nonlinear coupled flap-lag-axial equations of motion is also discussed.

  1. Dynamics of elastic nonlinear rotating composite beams with embedded actuators

    NASA Astrophysics Data System (ADS)

    Ghorashi, Mehrdaad

    2009-08-01

    A comprehensive study of the nonlinear dynamics of composite beams is presented. The study consists of static and dynamic solutions with and without active elements. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Numerical solutions for the steady state and transient responses have been obtained. It is shown that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. The effect of perturbing the steady state solution has also been calculated and the results are shown to be compatible with those of the accelerating beam analysis. Next, the coupled flap-lag rigid body dynamics of a rotating articulated beam with hinge offset and subjected to aerodynamic forces is formulated. The solution to this rigid-body problem is then used, together with the finite difference method, in order to produce the nonlinear elasto-dynamic solution of an accelerating articulated beam. Next, the static and dynamic responses of nonlinear composite beams with embedded Anisotropic Piezo-composite Actuators (APA) are presented. The effect of activating actuators at various directions on the steady state force and moments generated in a rotating composite beam has been presented. With similar results for the transient response, this analysis can be used in controlling the response of adaptive rotating beams.

  2. Primordial gravitational waves measurements and anisotropies of CMB polarization rotation

    NASA Astrophysics Data System (ADS)

    Li, Si-Yu; Xia, Jun-Qing; Li, Mingzhe; Li, Hong; Zhang, Xinmin

    2015-12-01

    Searching for the signal of primordial gravitational waves in the B-modes (BB) power spectrum is one of the key scientific aims of the cosmic microwave background (CMB) polarization experiments. However, this could be easily contaminated by several foreground issues, such as the interstellar dust grains and the galactic cyclotron electrons. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recently released polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio r by considering the polarization rotation angle [ α (n ˆ)] which can be separated into a background isotropic part [ α bar ] and a small anisotropic part [ Δα (n ˆ)]. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the "self-calibration" method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including Δα (n ˆ) in the analysis could slightly weaken the constraints on the tensor-to-scalar ratio r, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle could not be taken into account properly in the analysis, the constraints on r will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial gravitational

  3. Nonlinearity in the rotational dynamics of Haidinger's brushes

    NASA Astrophysics Data System (ADS)

    Rothmayer, Mark; Dultz, Wolfgang; Frins, Erna; Zhan, Qiwen; Tierney, Dennis; Schmitzer, Heidrun

    2007-10-01

    Haidinger's brushes are an entoptic effect of the human visual system that enables us to detect polarized light. However, individual perceptions of Haidinger's brushes can vary significantly. We find that the birefringence of the cornea influences the rotational motion and the contrast of Haidinger's brushes and may offer an explanation for individual differences. We have devised an experimental setup to simulate various phase shifts of the cornea and found a switching effect in the rotational dynamics of Haidinger's brushes. In addition, age related macular degeneration reduces the polarization effect of the macula and thus also leads to changes in the brush pattern.

  4. Nonlinear Gyrokinetic Theory With Polarization Drift

    SciTech Connect

    L. Wang and T.S. Hahm

    2010-03-25

    A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the wide-spread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)] .

  5. Ultracompact silicon-on-insulator polarization rotator for polarization-diversified circuits.

    PubMed

    Guan, Hang; Ma, Yangjin; Shi, Ruizhi; Novack, Ari; Tao, Jingcheng; Fang, Qing; Lim, Andy Eu-Jin; Lo, Guo-Qiang; Baehr-Jones, Tom; Hochberg, Michael

    2014-08-15

    We present an ultracompact (15.3 μm long) and high-efficiency silicon-on-insulator polarization rotator designed for polarization-diversified circuits. The rotator is comprised of a bilevel-tapered TM0-to-TE1 mode converter and a novel bent-tapered TE1-to-TE0 mode converter. The rotator has a simulated polarization conversion loss lower than 0.2 dB and a polarization-extinction ratio larger than 25 dB over a wavelength range of 80 nm around 1550 nm. The rotator has a SiO2 top-cladding and can be fabricated in a CMOS-compatible process. PMID:25121853

  6. Polarization Shaping for Unidirectional Rotational Motion of Molecules

    NASA Astrophysics Data System (ADS)

    Karras, G.; Ndong, M.; Hertz, E.; Sugny, D.; Billard, F.; Lavorel, B.; Faucher, O.

    2015-03-01

    Control of the orientation of the angular momentum of linear molecules is demonstrated by means of laser polarization shaping. For this purpose, we combine two orthogonally polarized and partially time-overlapped femtosecond laser pulses so as to produce a spinning linear polarization which in turn induces unidirectional rotation of N2 molecules. The evolution of the rotational response is probed by a third laser beam that can be either linearly or circularly polarized. The physical observable is the frequency shift imparted to the probe beam as a manifestation of the angular Doppler effect. Our experimental results are confirmed by theoretical computations, which allow one to gain a deep physical insight into the laser-molecule interaction.

  7. Polarization shaping for unidirectional rotational motion of molecules.

    PubMed

    Karras, G; Ndong, M; Hertz, E; Sugny, D; Billard, F; Lavorel, B; Faucher, O

    2015-03-13

    Control of the orientation of the angular momentum of linear molecules is demonstrated by means of laser polarization shaping. For this purpose, we combine two orthogonally polarized and partially time-overlapped femtosecond laser pulses so as to produce a spinning linear polarization which in turn induces unidirectional rotation of N2 molecules. The evolution of the rotational response is probed by a third laser beam that can be either linearly or circularly polarized. The physical observable is the frequency shift imparted to the probe beam as a manifestation of the angular Doppler effect. Our experimental results are confirmed by theoretical computations, which allow one to gain a deep physical insight into the laser-molecule interaction. PMID:25815926

  8. Ultrasmall polarization rotation measurements via weak value amplification

    NASA Astrophysics Data System (ADS)

    de Lima Bernardo, Bertúlio; Azevedo, Sérgio; Rosas, Alexandre

    2014-06-01

    We propose a framework to analyze weak measurements based on an angular version of the von Neumann measurement scheme, where the coupling between the system and the meter causes rotation of the measuring variable. We also discuss an experimental application of this theory in which measurements of weak optical activity and reflection-induced polarization rotation could be amplified in nearly two orders of magnitude. It can shed a new light on a great variety of physical chemistry, molecular biology and nanotechnology studies.

  9. Nonlinear r-modes in rapidly rotating relativistic stars.

    PubMed

    Stergioulas, N; Font, J A

    2001-02-12

    The r-mode instability in rotating relativistic stars has been shown recently to have important astrophysical implications, provided that r-modes are not saturated at low amplitudes by nonlinear effects or by dissipative mechanisms. Here, we present the first study of nonlinear r-modes in isentropic, rapidly rotating relativistic stars, via 3D general-relativistic hydrodynamical evolutions. We find that (1) on dynamical time scales, there is no strong nonlinear coupling of r-modes to other modes at amplitudes of order one-the maximum r-mode amplitude is of order unity. (2) r-modes and inertial modes in isentropic stars are predominantly discrete modes. (3) The kinematical drift associated with r-modes appears to be present in our simulations, but confirmation requires more precise initial data. PMID:11178031

  10. Searching for Faraday rotation in cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Ruiz-Granados, B.; Battaner, E.; Florido, E.

    2016-08-01

    We use the Wilkinson Microwave Anisotropy Probe (WMAP) 9th-year foreground reduced data at 33, 41 and 61 GHz to derive a Faraday rotation at map and at angular power spectrum levels taking into account their observational errors. A processing mask provided by WMAP is used to avoid contamination from the disc of our Galaxy and local spurs. We have found a Faraday rotation component at both, map and power spectrum levels. The lack of correlation of the Faraday rotation with Galactic Faraday rotation, synchrotron and dust polarization from our Galaxy or with cosmic microwave background anisotropies or lensing suggests that it could be originated at reionization (ℓ ≲ 12). Even if the detected Faraday rotation signal is weak, the present study could contribute to establish magnetic fields strengths of B0 ˜ 10-8 G at reionization.

  11. Zeno inhibition of polarization rotation in an optically active medium

    NASA Astrophysics Data System (ADS)

    Gonzalo, Isabel; Porras, Miguel A.; Luis, Alfredo

    2015-07-01

    We describe an experiment in which the rotation of the polarization of light propagating in an optically active water solution of D-fructose tends to be inhibited by frequent monitoring whether the polarization remains unchanged. This is an example of the Zeno effect that has remarkable pedagogical interest because of its conceptual simplicity, easy implementation, low cost, and because the same the Zeno effect holds at classical and quantum levels. An added value is the demonstration of the Zeno effect beyond typical idealized assumptions in a practical setting with real polarizers.

  12. Nonlinear electromagnetic gyrokinetic equations for rotating axisymmetric plasmas

    SciTech Connect

    Artun, M.; Tang, W.M.

    1994-03-01

    The influence of sheared equilibrium flows on the confinement properties of tokamak plasmas is a topic of much current interest. A proper theoretical foundation for the systematic kinetic analysis of this important problem has been provided here by presented the derivation of a set of nonlinear electromagnetic gyrokinetic equations applicable to low frequency microinstabilities in a rotating axisymmetric plasma. The subsonic rotation velocity considered is in the direction of symmetry with the angular rotation frequency being a function of the equilibrium magnetic flux surface. In accordance with experimental observations, the rotation profile is chosen to scale with the ion temperature. The results obtained represent the shear flow generalization of the earlier analysis by Frieman and Chen where such flows were not taken into account. In order to make it readily applicable to gyrokinetic particle simulations, this set of equations is cast in a phase-space-conserving continuity equation form.

  13. Impact of nonlinear and polarization effects in coherent systems.

    PubMed

    Xie, Chongjin

    2011-12-12

    Coherent detection with digital signal processing (DSP) significantly changes the ways impairments are managed in optical communication systems. In this paper, we review the recent advances in understanding the impact of fiber nonlinearities, polarization-mode dispersion (PMD), and polarization-dependent loss (PDL) in coherent optical communication systems. We first discuss nonlinear transmission performance of three coherent optical communication systems, homogeneous polarization-division-multiplexed (PDM) quadrature-phase-shift-keying (QPSK), hybrid PDM-QPSK and on/off keying (OOK), and PDM 16-ary quadrature-amplitude modulation (QAM) systems. We show that while the dominant nonlinear effects in coherent optical communication systems without optical dispersion compensators (ODCs) are intra-channel nonlinearities, the dominant nonlinear effects in dispersion-managed (DM) systems with inline dispersion compensation fiber (DCF) are different when different modulation formats are used. In DM coherent optical communication systems using modulation formats of constant amplitude, the dominant nonlinear effect is nonlinear polarization scattering induced by cross-polarization modulation (XPolM), whereas when modulation formats of non-constant amplitude are used, the impact of inter-channel cross-phase modulation (XPM) is much larger than XPolM. We then describe the effects of PMD and PDL in coherent systems. We show that although in principle PMD can be completely compensated in a coherent optical receiver, a real coherent receiver has limited tolerance to PMD due to hardware limitations. Two PDL models used to evaluate PDL impairments are discussed. We find that a simple lumped model significantly over-estimates PDL impairments and show that a distributed model has to be used in order to accurately evaluate PDL impairments. Finally, we apply system outage considerations to coherent systems, taking into account the statistics of polarization effects in fiber. PMID

  14. Charged rotating dilaton black strings with logarithmic nonlinear source

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Naeimipour, F.; Zebarjad, S. M.

    2016-03-01

    We find a new class of charged rotating dilaton black string solutions in the presence of logarithmic nonlinear electrodynamics. The dilaton potential is chosen in the form of the Liouville-type. We also present the suitable counterterm which removes the divergences of the action in the presence of dilaton potential. We find the conserved and thermodynamic quantities and check that the first law of thermodynamics holds on the black string horizon. We also address some theoretical implications of the nonlinear black hole/string solutions.

  15. Slowly rotating black holes with nonlinear electrodynamics in five dimensions

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Sepehri Rad, M.

    2014-10-01

    Employing linear order perturbation theory with the rotation parameter as the perturbative parameter, we obtain asymptotically AdS slowly rotating black hole solutions in the Einstein gravity with Born-Infeld (BI) type nonlinear electrodynamics (NED). We start from asymptotically AdS static black hole solutions coupled to BI type NED in five dimensions. Then, we consider the effect of adding a small amount of angular momenta to the seed solutions. Finally, we investigate the geometry and thermodynamic properties of the solutions.

  16. ON THE RELIABILITY OF POLARIZATION ESTIMATION USING ROTATION MEASURE SYNTHESIS

    SciTech Connect

    Macquart, J.-P.; Ekers, R. D.; Johnston-Hollitt, M.

    2012-05-10

    We benchmark the reliability of the rotation measure (RM) synthesis algorithm using the 1005 Centaurus A field sources of Feain et al. The RM synthesis solutions are compared with estimates of the polarization parameters using traditional methods. This analysis provides verification of the reliability of RM synthesis estimates. We show that estimates of the polarization parameters can be made at lower signal-to-noise ratio (S/N) if the range of RMs is bounded, but reliable estimates of individual sources with unusual RMs require unconstrained solutions and higher S/N. We derive from first principles the statistical properties of the polarization amplitude associated with RM synthesis in the presence of noise. The amplitude distribution depends explicitly on the amplitude of the underlying (intrinsic) polarization signal. Hence, it is necessary to model the underlying polarization signal distribution in order to estimate the reliability and errors in polarization parameter estimates. We introduce a Bayesian method to derive the distribution of intrinsic amplitudes based on the distribution of measured amplitudes. The theoretically derived distribution is compared with the empirical data to provide quantitative estimates of the probability that an RM synthesis solution is correct as a function of S/N. We provide quantitative estimates of the probability that any given RM synthesis solution is correct as a function of measured polarized amplitude and the intrinsic polarization amplitude compared to the noise.

  17. Compact polarization rotators for integrated polarization diversity in InP-based waveguides.

    PubMed

    Beggs, Daryl M; Midrio, Michele; Krauss, Thomas F

    2007-08-01

    We present the design, fabrication, and operation of a polarization converter based on angled waveguides in the InP/InGaAsP material system. By combining design elements from mode evolution and birefringent devices, the total device length is kept short (less than 50 microm) and the insertion efficiency high at 81%+/-19%, which corresponds to an insertion loss of 1 dB. Devices operate broadband, i.e., the polarization conversion exceeds 15 dB over a 100 nm wavelength range. A polarization rotator with these specifications is a prime candidate for use in an integrated polarization diversity scheme. PMID:17671575

  18. Compact polarization rotators for integrated polarization diversity in InP-based waveguides

    NASA Astrophysics Data System (ADS)

    Beggs, Daryl M.; Midrio, Michele; Krauss, Thomas F.

    2007-08-01

    We present the design, fabrication, and operation of a polarization converter based on angled waveguides in the InP/InGaAsP material system. By combining design elements from mode evolution and birefringent devices, the total device length is kept short (less than 50μm) and the insertion efficiency high at 81%+/-19%, which corresponds to an insertion loss of 1dB. Devices operate broadband, i.e., the polarization conversion exceeds 15dB over a 100nm wavelength range. A polarization rotator with these specifications is a prime candidate for use in an integrated polarization diversity scheme.

  19. Protein rotational motion in solution measured by polarized fluorescence depletion.

    PubMed Central

    Yoshida, T M; Barisas, B G

    1986-01-01

    A microscope-based system is described for directly measuring protein rotational motion in viscous environments such as cell membranes by polarized fluorescence depletion (PFD). Proteins labeled with fluorophores having a high quantum yield for triplet formation, such as eosin isothiocyanate (EITC), are examined anaerobically in a fluorescence microscope. An acousto-optic modulator generates a several-microsecond pulse of linearly polarized light which produces an orientationally-asymmetric depletion of ground state fluorescence in the sample. When the sample is then probed with light polarized parallel to the excitation pulse, fluorescence recovers over 0-1,000 microseconds as the sum of two exponentials. One exponential corresponds to triplet decay and the other to the rotational relaxation. An exciting pulse perpendicular to the probe beam is then applied. Fluorescence recovery following this pulse is the difference of the same two exponentials. Equations for fluorescence recovery kinetics to be expected in various experimentally significant cases are derived. Least-squares analysis using these equations then permits the triplet lifetime and rotational correlation time to be determined directly from PFD data. Instrumentation for PFD measurements is discussed that permits photobleaching recovery measurements of lateral diffusion coefficients using the same microscope system. With this apparatus, both rotational and translational diffusion coefficients (Dr, Dt) were measured for EITC-labeled bovine serum albumin in glycerol solutions. Values obtained for Dr and Dt are discussed in light of both the PFD models and the experimental system. PMID:3730506

  20. Macroscopic rotation of photon polarization induced by a single spin

    PubMed Central

    Arnold, Christophe; Demory, Justin; Loo, Vivien; Lemaître, Aristide; Sagnes, Isabelle; Glazov, Mikhaïl; Krebs, Olivier; Voisin, Paul; Senellart, Pascale; Lanco, Loïc

    2015-01-01

    Entangling a single spin to the polarization of a single incoming photon, generated by an external source, would open new paradigms in quantum optics such as delayed-photon entanglement, deterministic logic gates or fault-tolerant quantum computing. These perspectives rely on the possibility that a single spin induces a macroscopic rotation of a photon polarization. Such polarization rotations induced by single spins were recently observed, yet limited to a few 10−3 degrees due to poor spin–photon coupling. Here we report the enhancement by three orders of magnitude of the spin–photon interaction, using a cavity quantum electrodynamics device. A single hole spin in a semiconductor quantum dot is deterministically coupled to a micropillar cavity. The cavity-enhanced coupling between the incoming photons and the solid-state spin results in a polarization rotation by ±6° when the spin is optically initialized in the up or down state. These results open the way towards a spin-based quantum network. PMID:25687134

  1. Macroscopic rotation of photon polarization induced by a single spin.

    PubMed

    Arnold, Christophe; Demory, Justin; Loo, Vivien; Lemaître, Aristide; Sagnes, Isabelle; Glazov, Mikhaïl; Krebs, Olivier; Voisin, Paul; Senellart, Pascale; Lanco, Loïc

    2015-01-01

    Entangling a single spin to the polarization of a single incoming photon, generated by an external source, would open new paradigms in quantum optics such as delayed-photon entanglement, deterministic logic gates or fault-tolerant quantum computing. These perspectives rely on the possibility that a single spin induces a macroscopic rotation of a photon polarization. Such polarization rotations induced by single spins were recently observed, yet limited to a few 10(-3) degrees due to poor spin-photon coupling. Here we report the enhancement by three orders of magnitude of the spin-photon interaction, using a cavity quantum electrodynamics device. A single hole spin in a semiconductor quantum dot is deterministically coupled to a micropillar cavity. The cavity-enhanced coupling between the incoming photons and the solid-state spin results in a polarization rotation by ± 6° when the spin is optically initialized in the up or down state. These results open the way towards a spin-based quantum network. PMID:25687134

  2. Applications of ultrafast wavefront rotation in highly nonlinear optics

    NASA Astrophysics Data System (ADS)

    Quéré, F.; Vincenti, H.; Borot, A.; Monchocé, S.; Hammond, T. J.; Taec Kim, Kyung; Wheeler, J. A.; Zhang, Chunmei; Ruchon, T.; Auguste, T.; Hergott, J. F.; Villeneuve, D. M.; Corkum, P. B.; Lopez-Martens, R.

    2014-06-01

    This paper provides an overview of ultrafast wavefront rotation of femtosecond laser pulses and its various applications in highly nonlinear optics, focusing on processes that lead to the generation of high-order harmonics and attosecond pulses. In this context, wavefront rotation can be exploited in different ways, to obtain new light sources for time-resolved studies, called ‘attosecond lighthouses’, to perform time-resolved measurements of nonlinear optical processes, using ‘photonic streaking’, or to track changes in the carrier-envelope relative phase of femtosecond laser pulses. The basic principles are explained qualitatively from different points of view, the experimental evidence obtained so far is summarized, and the perspectives opened by these effects are discussed.

  3. Rotational polarities of sudden impulses in the magnetotail lobe

    NASA Technical Reports Server (NTRS)

    Kawano, H.; Yamamoto, T.; Kokubun, S.; Lepping, R. P.

    1992-01-01

    A sudden impulse (SI) is a sudden change in the magnetic field strength which is caused by a change in the solar wind pressure and is observed throughout the magnetosphere. In this report we have examined the rotations of the magnetic field vectors at times of SIs in the magnetotail lobe, by using IMP 6, 7, and 8 magnetometer data. The following properties have been found: (1) at the time of SI the arrowhead of the magnetic vector tends to rotate in one plane; (2) the plane of rotation tends to include the unperturbed magnetic field vector; (3) the plane of rotation tends to be aligned with the radial direction from the magnetotail axis; and (4) the magnetic vectors have a particular rotational polarity: when the plane of rotation is viewed so that the Sun is to the right of the viewed plane and the magnetotail axis is to the bottom, the arrowhead of the vector tends to rotate counterclockwise in this plane. These magnetic vector properties are consistent with those expected when part of an increase in solar wind lateral pressure squeezes the magnetotail axisymmetrically while moving tailward.

  4. Nonlinear magneto-optical rotation with modulated light in tilted magnetic fields

    SciTech Connect

    Pustelny, S.; Gawlik, W.; Rochester, S. M.; Kimball, D. F. Jackson; Yashchuk, V. V.; Budker, D.

    2006-12-15

    Larmor precession of laser-polarized atoms contained in antirelaxation-coated cells, detected via nonlinear magneto-optical rotation (NMOR), is a promising technique for a new generation of ultrasensitive atomic magnetometers. For magnetic fields directed along the light propagation direction, resonances in NMOR appear when linearly polarized light is frequency or amplitude modulated at twice the Larmor frequency. Because the frequency of these resonances depends on the magnitude but not the direction of the field, they are useful for scalar magnetometry. Additional NMOR resonances at the Larmor frequency appear when the magnetic field is tilted away from the light propagation direction in the plane defined by the light propagation and polarization vectors. These resonances, studied both experimentally and with a density matrix calculation in the present work, offer a convenient method of achieving additional information about a direction of the magnetic field.

  5. Rotation-induced nonlinear wavepackets in internal waves

    SciTech Connect

    Whitfield, A. J. Johnson, E. R.

    2014-05-15

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.

  6. Earth rotation and polar motion - Measurements and implications

    NASA Technical Reports Server (NTRS)

    Dickey, J. O.; Eubanks, T. M.

    1985-01-01

    Several methods used to measure earth rotation and polar motion are discussed. The development of techniques for combining smoothing, and intercomparing geodetic measurements is described. Emphasis is given to measurements obtained since 1980 using VLBI, lunar laser ranging (LLR) and satellite laser ranging (SLR) techniques. The calculation of atmospheric angular momentum (AAM) excitation functions is outlined, and a comparison of AAM excitation functions with variations in the length of day (LOD) and polar motion data is presented. The geophysical implications of geodetic measurements are addressed.

  7. Dual-polarization plasmonic metasurface for nonlinear optics.

    PubMed

    Cala' Lesina, Antonino; Ramunno, Lora; Berini, Pierre

    2015-06-15

    A plasmonic metasurface for the enhancement of nonlinear optical effects is proposed. The metasurface can simultaneously enhance perpendicularly polarized electric fields in the same volume. We illustrate application of the metasurface to the production of Terahertz radiation via the parametric process of difference frequency generation in 4¯3m non-centro symmetric materials, e.g., GaAs, which has a large second-order nonlinear susceptibility. An enhancement over bulk of almost two orders of magnitude near the surface supports the use of the proposed structure for thin-film, surface-based, or chip-based nonlinear optical applications for several crystal classes. PMID:26076284

  8. A nonlinear model for rotationally constrained convection with Ekman pumping

    NASA Astrophysics Data System (ADS)

    Julien, Keith; Aurnou, Jonathan M.; Calkins, Michael A.; Knobloch, Edgar; Marti, Philippe; Stellmach, Stephan; Vasil, Geoffrey M.

    2016-07-01

    It is a well established result of linear theory that the influence of differing mechanical boundary conditions, i.e., stress-free or no-slip, on the primary instability in rotating convection becomes asymptotically small in the limit of rapid rotation. This is accounted for by the diminishing impact of the viscous stresses exerted within Ekman boundary layers and the associated vertical momentum transport by Ekman pumping. By contrast, in the nonlinear regime recent experiments and supporting simulations are now providing evidence that the efficiency of heat transport remains strongly influenced by Ekman pumping in the rapidly rotating limit. In this paper, a reduced model is developed for the case of low Rossby number convection in a plane layer geometry with no-slip upper and lower boundaries held at fixed temperatures. A complete description of the dynamics requires the existence of three distinct regions within the fluid layer: a geostrophically balanced interior where fluid motions are predominately aligned with the axis of rotation, Ekman boundary layers immediately adjacent to the bounding plates, and thermal wind layers driven by Ekman pumping in between. The reduced model uses a classical Ekman pumping parameterization to alleviate the need for spatially resolving the Ekman boundary layers. Results are presented for both linear stability theory and a special class of nonlinear solutions described by a single horizontal spatial wavenumber. It is shown that Ekman pumping allows for significant enhancement in the heat transport relative to that observed in simulations with stress-free boundaries. Without the intermediate thermal wind layer the nonlinear feedback from Ekman pumping would be able to generate a heat transport that diverges to infinity. This layer arrests this blowup resulting in finite heat transport at a significantly enhanced value.

  9. NON-ZEEMAN CIRCULAR POLARIZATION OF MOLECULAR ROTATIONAL SPECTRAL LINES

    SciTech Connect

    Houde, Martin; Jones, Scott; Rajabi, Fereshte; Hezareh, Talayeh

    2013-02-10

    We present measurements of circular polarization from rotational spectral lines of molecular species in Orion KL, most notably {sup 12}CO (J = 2 {yields} 1), obtained at the Caltech Submillimeter Observatory with the Four-Stokes-Parameter Spectral Line Polarimeter. We find levels of polarization of up to 1%-2% in general; for {sup 12}CO (J = 2 {yields} 1) this level is comparable to that of linear polarization also measured for that line. We present a physical model based on resonant scattering in an attempt to explain our observations. We discuss how slight differences in scattering amplitudes for radiation polarized parallel and perpendicular to the ambient magnetic field, responsible for the alignment of the scattering molecules, can lead to the observed circular polarization. We also show that the effect is proportional to the square of the magnitude of the plane of the sky component of the magnetic field and therefore opens up the possibility of measuring this parameter from circular polarization measurements of Zeeman insensitive molecules.

  10. Ultra-wideband and high-efficiency polarization rotator based on metasurface

    NASA Astrophysics Data System (ADS)

    Jia, Yongtao; Liu, Ying; Zhang, Wenbo; Gong, Shuxi

    2016-08-01

    An ultra-wideband and high-efficiency polarization rotator based on a metasurface is proposed in this paper. The unit cell of the proposed polarization rotator consists of two pairs of L-shaped metallic patches printed on a substrate, which is backed by a metallic ground and covered by a superstrate. The superstrate is composed of a dielectric layer and a pair of L-shaped metallic patches printed on the dielectric layer. The proposed polarization rotator can rotate the polarization of linearly polarized electromagnetic (EM) wave to its orthogonal counterpart after reflection when the incident EM wave is y-/x-polarized. Simulated results show that the polarization rotator can perform 90° polarization rotation with very high efficiency at seven different frequencies and achieve a polarization conversion ratio higher than 0.9 in the frequency range of 7.8-34.7 GHz at normal incidence. Good agreement between the experimental results and simulated ones has been obtained.

  11. Nonlinear alternating current susceptibilities of rotating microparticles in electrorheological fluids

    NASA Astrophysics Data System (ADS)

    Yu, Kin Wah; Huang, J. P.; Tian, W. J.

    2006-03-01

    A perturbation approach [1] has been employed to investigate the nonlinear alternating current (AC) responses of the rotating microparticles in electrorheological (ER) fluids under AC or direct current electric fields. The shear flow of ER fluids exerts a torque on the particles and leads to the rotational motion of the particles about their centers [2]. We show that the dynamic effects can play a significant role in the AC responses. Our results can be conveniently interpreted in the dielectric dispersion spectral representation [3], thus offering a convenient method to determine the relaxation time and the rotation velocity of the ER particles by measuring the nonlinear AC responses. [1] G. Q. Gu and K. W. Yu, Phys. Rev. B 46, 4502 (1992); K. W. Yu, P. M. Hui, and D. Stroud, Phys. Rev. B 47, 14150 (1993). [2] Jones T. K. Wan, K. W. Yu, and G. Q. Gu, Phys. Rev. E 62, 6846 (2000). [3] Jun Lei, Jones T. K. Wan, K. W. Yu, and Hong Sun, Phys. Rev. E 64, 012903 (2001).

  12. Nonlinear stability of magnetic islands in a rotating helical plasma

    SciTech Connect

    Nishimura, S.; Toda, S.; Narushima, Y.; Yagi, M.

    2012-12-15

    Coexistence of the forced magnetic reconnection by a resonant magnetic perturbation (RMP) and the curvature-driven tearing mode is investigated in a helical (stellarator) plasma rotated by helical trapped particle-induced neoclassical flows. A set of Rutherford-type equations of rotating magnetic islands and a poloidal flow evolution equation is revisited. Using the model, analytical expressions of criteria of spontaneous shrinkage (self-healing) of magnetic islands and sudden growth of locked magnetic islands (penetration of RMP) are obtained, where nonlinear saturation states of islands show bifurcation structures and hysteresis characteristics. Considering radial profile of poloidal flows across magnetic islands, it is found that the self-healing is driven by neoclassical viscosity even in the absence of micro-turbulence-induced anomalous viscosity. Effects of unfavorable curvature in stellarators are found to modify the critical values. The scalings of criteria are consistent with low-{beta} experiments in the large helical device.

  13. Chaotic behavior in nonlinear polarization dynamics

    SciTech Connect

    David, D.; Holm, D.D.; Tratnik, M.V. )

    1989-01-01

    We analyze the problem of two counterpropagating optical laser beams in a slightly nonlinear medium from the point of view of Hamiltonian systems; the one-beam subproblem is also investigated as a special case. We are interested in these systems as integrable dynamical systems which undergo chaotic behavior under various types of perturbations. The phase space for the two-beam problem is C{sup 2} {times} C{sup 2} when we restricted the the regime of travelling-wave solutions. We use the method of reduction for Hamiltonian systems invariant under one-parameter symmetry groups to demonstrate that the phase space reduces to the two-sphere S{sup 2} and is therefore completely integrable. The phase portraits of the system are classified and we also determine the bifurcations that modify these portraits; some new degenerate bifurcations are presented in this context. Finally, we introduce various physically relevant perturbations and use the Melnikov method to prove that horseshoe chaos and Arnold diffusion occur as consequences of these perturbations. 10 refs., 7 figs., 1 tab.

  14. The role of rotation and polar-cap currents on pulsar radio emission and polarization

    SciTech Connect

    Kumar, D.; Gangadhara, R. T. E-mail: ganga@iiap.res.in

    2013-06-01

    Perturbations such as rotation and polar-cap current (PC-current) have been believed to greatly affect the pulsar radio emission and polarization. The two effects have not been considered simultaneously in the literature; each one of these has been considered separately, and a picture has been deduced by simply superposing them, but such an approach can lead to spurious results. Hence, by considering pulsar rotation and PC-current perturbations together instead of one at a time, we have developed a single particle curvature radiation model, which is expected to be much more realistic. By simulating a set of typical pulse profiles, we have made an attempt to explain most of the observational results of pulsar radio emission and polarization. The model predicts that due to the perturbations the leading side component can become either stronger or weaker than the corresponding trailing one in any given cone, depending on the passage of the sight line and modulation (nonuniform source distribution). Further, we find that the phase delay of the polarization angle inflection point with respect to the core component greatly depends on the viewing geometry. The correlation between the sign reversal of circular polarization and the polarization angle swing in the case of core-dominated pulsars becomes obscure once the perturbations and modulation become significant. However, the correlation between the negative circular polarization and the increasing polarization angle and vice versa is very clear in the case of conal-double pulsars. The 'kinky'-type distortions in polarization angle swing could be due to the incoherent superposition of modulated emission in the presence of strong perturbations.

  15. Ultrashort polarization rotator based on cross-symmetry waveguide

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Dong, Jianji

    2016-05-01

    An ultrashort polarization rotator (PR) based on cross-symmetry waveguide is proposed and discussed. At the operating wavelength of 1 . 55 μ m , the presented PR has a small conversion length of 3 . 3 μ m . The polarization conversion efficiency (PCE) is 99 . 8 % (TE-TM) and 99 . 97 % (TM-TE). The PR can achieve rather high conversion efficiency (> 97 %) over a broad bandwidth (1450 - 1700 nm). The cross-symmetry structure can significantly improve the extinction ratio. The extinction ratio is 27 . 7 dB (TE-TM) and 35 . 9 dB (TM-TE) with the insertion loss of 0 . 28 dB . The fabrication tolerances for the waveguide for both transverse and horizontal directions are also studied.

  16. Global bifurcations of a rotating pendulum with irrational nonlinearity

    NASA Astrophysics Data System (ADS)

    Han, Ning; Cao, Qingjie

    2016-07-01

    In this paper, the authors consider a rotating pendulum under nonlinear perturbation which allows us to study various kinds of bifurcations and limit cycles. This system exhibits smooth or discontinuous dynamics depending on the value of a mechanical parameter. It is shown that the perturbed smooth system undergoes a pitchfork bifurcation, a homo-heteroclinic orbits transition, a single Hopf bifurcation, a double Hopf bifurcation, a pair of homoclinic bifurcations, a Hopf-homoclinic bifurcation and two saddle-node bifurcation of periodic orbits. The number, position and stability of all the oscillating and rotational limit cycles are given as the parameters vary. We find five limit cycles in the smooth case due to two saddle-node bifurcation of periodic orbits existing. Unlike the smooth case, the perturbed discontinuous system has a homoclinic-like bifurcation and without any saddle-node bifurcation of periodic orbits. Additionally, some results obtained herein bear significant similarities to the codimension-two bifurcation of duffing oscillator and SD oscillator, which may be helpful to explore the codimension bifurcation of the cylindrical pendulum system with irrational nonlinearity.

  17. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system

    SciTech Connect

    Cao, Junjie; Jia, Hongzhi

    2015-11-15

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.

  18. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system.

    PubMed

    Cao, Junjie; Jia, Hongzhi

    2015-11-01

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light--incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes--and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method. PMID:26628116

  19. Experiments on nonlinear coastal shelf waves in a rotating annulus

    NASA Astrophysics Data System (ADS)

    Stewart, Andrew; Dellar, Paul; Johnson, Ted

    2010-05-01

    In many coastal regions, the ocean depth increases very rapidly at a 'shelf break' running approximately parallel to the coastline. A shelf break marks the edge of the continental shelf, and separates the deep ocean from the relatively shallow near-coastal ocean. Shelf breaks play an important rôle in steering coastal currents, such as the Aghulas current which flows southwest along the eastern coast of Africa at speeds of up to 1 ms-1. To investigate the effect of shelf breaks in stabilising coastal currents, we have carried out laboratory experiments to generate nonlinear topographic Rossby waves that propagate along a shelf break in the presence of a mean current. Our experiments use an annular channel in a rotating cylindrical tank. We model the shelf break with a tank floor that undergoes a sharp drop at a certain radius Rh. The tank was filled with homogeneous fluid, and set rotating with constant angular velocity until the fluid inside rotated as a solid body. We then induced horizontal perturbations to the fluid, which caused Taylor columns to move inwards and outwards across the shelf. Conservation of potential vorticity forces these columns to acquire relative vorticity as they cross the shelf, which allows waves to propagate around the tank. These waves are known as topographic Rossby shelf waves. The large-scale flow around shelf breaks has been the subject of a series of theoretical investigations. These commonly approximate the sharp drop in the depth by a discontinuity, on the assumption that the horizontal length scale of the flow is much larger than the width of the shelf break. However, the fluid is still assumed to move in columns, as in shallow water theory, even as it crosses the shelf. Our present work aims to consolidate a theoretical model for nonlinear waves propagating along a depth discontinuity in the context of our laboratory experiments. We assume that rotational effects are dominant, and that fluid velocities are small compared with

  20. Nonlinear Magneto-optical Rotation via Alignment-to-Orientation Conversion

    SciTech Connect

    Budker, D.; Kimball, D.F.; Rochester, S.M.; Yashchuk, V.V.

    2000-03-10

    Nonlinear magneto-optical rotation (NMOR) is investigated at highlight powers where the rotation is significantly modified by AC Stark shifts. These shifts are shown to change the overall sign of rotation for closed F-->F+1 transitions as light power is increased. The effect is demonstrated by measurements in rubidium and density matrix calculations. The results are important for applications of nonlinear optical rotation such as sensitive magnetometry.

  1. All-optical polarization control and noise cleaning based on a nonlinear lossless polarizer

    NASA Astrophysics Data System (ADS)

    Barozzi, Matteo; Vannucci, Armando; Picchi, Giorgio

    2015-01-01

    We propose an all-optical fiber-based device able to accomplish both polarization control and OSNR enhancement of an amplitude modulated optical signal, affected by unpolarized additive white Gaussian noise, at the same time. The proposed noise cleaning device is made of a nonlinear lossless polarizer (NLP), that performs polarization control, followed by an ideal polarizing filter that removes the orthogonally polarized half of additive noise. The NLP transforms every input signal polarization into a unique, well defined output polarization (without any loss of signal energy) and its task is to impose a signal polarization aligned with the transparent eigenstate of the polarizing filter. In order to effectively control the polarization of the modulated signal, we show that two different NLP configurations (with counter- or co-propagating pump laser) are needed, as a function of the signal polarization coherence time. The NLP is designed so that polarization attraction is effective only on the "noiseless" (i.e., information-bearing) component of the signal and not on noise, that remains unpolarized at the NLP output. Hence, the proposed device is able to discriminate signal power (that is preserved) from in-band noise power (that is partly suppressed). Since signal repolarization is detrimental if applied to polarization-multiplexed formats, the noise cleaner application is limited here to "legacy" links, with 10 Gb/s OOK modulation, still representing the most common format in deployed networks. By employing the appropriate NLP configurations, we obtain an OSNR gain close to 3dB. Furthermore, we show how the achievable OSNR gain can be estimated theoretically.

  2. Continuum estimates of rotational dielectric friction and polar solvation

    SciTech Connect

    Maroncelli, M.

    1997-01-01

    Dynamical solvation data recently obtained with the probe solute coumarin 153 are used to test the reliability of dielectric continuum models for estimating dielectric friction effects. In particular, the predictions of the Nee{endash}Zwanzig theory of rotational dielectric friction are examined in some detail. The analysis undertaken here uncovers an error made in virtually all previous applications of the Nee{endash}Zwanzig formalism. The error involves neglect of the solvent{close_quote}s electronic polarizability when calculating dielectric friction constants. In highly polar solvents the effect of this neglect is shown to be minor, so that the results of past studies should not be appreciably altered. However, in weakly polar and especially in nondipolar solvents, the proper inclusion of electronic polarizability terms is essential. The equivalence between the Nee{endash}Zwanzig theory of dielectric friction and more general continuum treatments of polar solvation dynamics is also demonstrated. This equivalence enables the use of solvation data to test the reliability of the Nee{endash}Zwanzig description of electrical interactions between a solute and solvent that form the core of this and related continuum theories of dielectric friction. Comparisons to experimental data show that, with the important exception of nondipolar solvents, such continuum treatments provide reasonably accurate ({plus_minus}40{percent}) predictors of time-dependent solvation and/or dielectric friction. {copyright} {ital 1997 American Institute of Physics.}

  3. RoboPol: optical polarization-plane rotations and flaring activity in blazars

    NASA Astrophysics Data System (ADS)

    Blinov, D.; Pavlidou, V.; Papadakis, I. E.; Hovatta, T.; Pearson, T. J.; Liodakis, I.; Panopoulou, G. V.; Angelakis, E.; Baloković, M.; Das, H.; Khodade, P.; Kiehlmann, S.; King, O. G.; Kus, A.; Kylafis, N.; Mahabal, A.; Marecki, A.; Modi, D.; Myserlis, I.; Paleologou, E.; Papamastorakis, I.; Pazderska, B.; Pazderski, E.; Rajarshi, C.; Ramaprakash, A.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Zensus, J. A.

    2016-04-01

    We present measurements of rotations of the optical polarization of blazars during the second year of operation of RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events, and we analyse the large set of rotation events discovered in two years of observation. We investigate patterns of variability in the polarization parameters and total flux density during the rotation events and compare them to the behaviour in a non-rotating state. We have searched for possible correlations between average parameters of the polarization-plane rotations and average parameters of polarization, with the following results: (1) there is no statistical association of the rotations with contemporaneous optical flares; (2) the average fractional polarization during the rotations tends to be lower than that in a non-rotating state; (3) the average fractional polarization during rotations is correlated with the rotation rate of the polarization plane in the jet rest frame; (4) it is likely that distributions of amplitudes and durations of the rotations have physical upper bounds, so arbitrarily long rotations are not realized in nature.

  4. Laser Oscillator Incorporating a Wedged Polarization Rotator and a Porro Prism as Cavity Mirror

    NASA Technical Reports Server (NTRS)

    Li, Steven

    2011-01-01

    A laser cavity was designed and implemented by using a wedged polarization rotator and a Porro prism in order to reduce the parts count, and to improve the laser reliability. In this invention, a z-cut quartz polarization rotator is used to compensate the wavelength retardance introduced by the Porro prism. The polarization rotator rotates the polarization of the linear polarized beam with a designed angle that is independent of the orientation of the rotator. This unique property was used to combine the retardance compensation and a Risley prism to a single optical component: a wedged polarization rotator. This greatly simplifies the laser alignment procedure and reduces the number of the laser optical components.

  5. Nonlinear electronic polarization and optical response in borophosphate BPO4

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Liu, Qiong; Han, Shujuan; Iitaka, Toshiaki; Su, Haibin; Tohyama, Takami; Jiang, Huaidong; Dong, Yongjun; Yang, Bin; Zhang, Fangfang; Yang, Zhihua; Pan, Shilie

    2016-06-01

    The electronic structure, nonlinear electronic polarization induced by a static external electric field, and frequency dependent second-harmonic susceptibility tensor of the borophosphate BPO4 are studied by a first-principles calculation based on density-functional theory. Our calculated results show that the borophosphate BPO4 has a large band gap ˜10.4 eV, which is larger than the band gap of the widely used nonlinear optical crystal KBe2BO3F2 . However, BPO4 also has a nonlinear coefficient d36=0.92 pm/V at static limit, which also is larger than the nonlinear coefficient d11=0.47 pm/V of KBe2BO3F2 . The unexpected larger nonlinear coefficient of BPO4 can be interpreted by the relatively strong s -p hybridization in BPO4, which can enhance the inter-band Berry connections, while the O 2 p orbitals dominating valence bands in KBe2BO3F2 are very flat, resulting from weak s -p hybridization.

  6. Nonlinear electrodynamics and thermodynamic geometry of rotating dilaton black branes

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Naeimipour, F.; Zebarjad, S. M.

    2016-07-01

    We construct a new class of rotating dilaton solutions in the presence of logarithmic nonlinear electrodynamics. These solutions represent black branes with flat horizon and contain k=[(n-1)/2] rotation parameters in n-dimensional spacetime where [ x] is the integer part of x. We study the causal structure of the spacetime and calculate thermodynamic and conserved quantities and show that these quantities satisfy the first law of thermodynamics on the black brane horizon, { dM}={ TdS}+{{{sum _{i=1}k}}}Ω id{J}i+{ Ud}{Q}. Then, we study geometrical approach towards thermodynamics by choosing an appropriate geometrical metric. We show that the singularity of the Ricci scalar coincides exactly with the phase transition points. We observe that our system encounters two types of phase transitions depending on the metric parameters. For the first one the heat capacity is zero and for the second one the heat capacity diverges. In the first kind of phase transition, the brane has a transition from an unstable non-physical to a stable physical state. In the second type of phase transition the brane moves from a stable to an unstable state. Finally, we comment on the dynamical stability of the obtained solutions under perturbations in four dimensions.

  7. Nonlinear Accelerator with Transverse Motion Integrable in Normalized Polar Coordinates

    SciTech Connect

    Nagaitsev, S.; Kharkov, Y.; Morozov, I.A.; Zolkin, T.V.; /Chicago U.

    2012-05-01

    Several families of nonlinear accelerator lattices with integrable transverse motion were suggested recently. One of the requirements for the existence of two analytic invariants is a special longitudinal coordinate dependence of fields. This paper presents the particle motion analysis when a problem becomes integrable in the normalized polar coordinates. This case is distinguished from the others: it yields an exact analytical solution and has a uniform longitudinal coordinate dependence of the fields (since the corresponding nonlinear potential is invariant under the transformation from the Cartesian to the normalized coordinates). A number of interesting features are revealed: while the frequency of radial oscillations is independent of the amplitude, the spread of angular frequencies in a beam is absolute. A corresponding spread of frequencies of oscillations in the Cartesian coordinates is evaluated via the simulation of transverse Schottky noise.

  8. Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM

    NASA Astrophysics Data System (ADS)

    Shafiei, Navvab; Kazemi, Mohammad; Ghadiri, Majid

    2016-08-01

    This study is concerned with the small-scale effect on the nonlinear flapwise bending vibration of rotating cantilever and propped cantilever nanobeams. Euler-Bernoulli beam theory is used to model the nanobeam with nonlinearity. Nonlinear strain-displacement relations are employed to account for geometric nonlinearity of the system. The axial forces are modeled as the true spatial and thermal variations due to the rotation. Hamilton's principle is used to derive the nonlinear governing equation and nonlocal nonlinear boundary conditions based on Eringen's nonlocal elasticity theory. Finally, the differential quadrature method is used in conjunction with the direct iterative method to derive the nonlinear vibration frequencies of the nanobeam. The effects of the angular velocity, nonlocal small-scale parameter, temperature change and nonlinear amplitude on nonlinear vibration of the rotary nanobeam are discussed. The results of this work can be used in nanosensors, nanomotors, nanoturbines and NEMS applications.

  9. Nonlinear Dynamics of Rotating Multi-Component Pair Plasmas and e-p-i Plasmas

    NASA Astrophysics Data System (ADS)

    Kourakis, Ioannis; Moslem, Waleed M.; Abdelsalam, Usama M.; Sabry, Refaat; Shukla, Padma Kant

    The propagation of small amplitude stationary profile nonlinear electrostatic excitations in a pair plasma is investigated, mainly drawing inspiration from experiments on fullerene pair-ion plasmas. Two distinct pair ion species are considered of opposite polarity and same mass, in addition to a massive charged background species, which is assumed to be stationary, given the frequency scale of interest. In the pair-ion context, the third species is thought of as a background defect (e.g. charged dust) component. On the other hand, the model also applies formally to electron-positron-ion (e-p-i) plasmas, if one neglects electron-positron annihilation. A two-fluid plasma model is employed, incorporating both Lorentz and Coriolis forces, thus taking into account the interplay between the gyroscopic (Larmor) frequency ωc and the (intrinsic) plasma rotation frequency Ω0. By employing a multi-dimensional reductive perturbation technique, a Zakharov-Kuznetsov (ZK) type equation is derived for the evolution of the electric potential perturbation. Assuming an arbitrary direction of propagation, with respect to the magnetic field, we derive the exact form of nonlinear solutions, and study their characteristics. A parametric analysis is carried out, as regards the effect of the dusty plasma composition (background number density), species temperature(s) and the relative strength of rotation to Larmor frequencies. It is shown that the Larmor and mechanical rotation affect the pulse dynamics via a parallel-to-transverse mode coupling diffusion term, which in fact diverges at ωc → ±2Ω0. Pulses collapse at this limit, as nonlinearity fails to balance dispersion. The analysis is complemented by investigating critical plasma compositions, in fact near-symmetric (T- ≈ T+) “pure” (n- ≈ n+) pair plasmas, i.e. when the concentration of the 3rd background species is negligible, case in which the (quadratic) nonlinearity vanishes, so one needs to resort to higher order

  10. Effect of Transverse Magnetic Fields on Cold-Atom Nonlinear Magneto-Optical Rotation

    NASA Astrophysics Data System (ADS)

    Meyer, David; Kunz, Paul; Fatemi, Fredrik; Quraishi, Qudsia

    2016-05-01

    We investigate nonlinear magneto-optical rotation (NMOR) in cold atoms in the presence of a transverse magnetic field where alignment-to-orientation conversion (AOC) dominates. The AOC mechanism, which relies on AC-Stark shifts generated by a strong, off-resonant probe beam, significantly alters the NMOR resonance. When an additional magnetic field is present, parallel to the electric field of the light, a nested feature within this NMOR resonance manifests. Unlike similar features observed with lower optical power in warm vapors, attributed to optical pumping through nearby hyperfine levels, this feature is due solely to the AOC mechanism. Using numerical simulations, a perturbative solution, and experimental observations we characterize the feature with respect to optical power, optical polarization, magnetic field strength, and magnetic field direction. These results shed further light on the AOC mechanism common to NMOR-based experiments and we demonstrate a potential application to measure transverse DC magnetic fields and spatial gradients.

  11. New Constraints on Cosmic Polarization Rotation from B-Mode Polarization in the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    di Serego Alighieri, Sperello; Ni, Wei-Tou; Pan, Wei-Ping

    2014-09-01

    SPTpol, POLARBEAR, and BICEP2 have recently measured the cosmic microwave background (CMB) B-mode polarization in various sky regions of several tens of square degrees and obtained BB power spectra in the multipole range 20-3000, detecting the components due to gravitational lensing and to inflationary gravitational waves. We analyze jointly the results of these three experiments and propose modifications to their analyses of the spectra to include in the model, in addition to the gravitational lensing and the inflationary gravitational wave components, and also the effects induced by the cosmic polarization rotation (CPR), if it exists within current upper limits. Although in principle our analysis would also lead to new constraints on CPR, in practice these can only be given on its fluctuations langδα2rang, since constraints on its mean angle are inhibited by the derotation which is applied by current CMB polarization experiments, in order to cope with the insufficient calibration of the polarization angle. The combined data fits from all three experiments (with 29% CPR-SPTpol correlation, depending on the theoretical model) gives the constraint langδα2rang1/2 < 27.3 mrad (1.°56), with r = 0.194 ± 0.033. These results show that the present data are consistent with no CPR detection and the constraint on CPR fluctuation is about 1.°5. This method of constraining the CPR is new, is complementary to previous tests, which use the radio and optical/UV polarization of radio galaxies and the CMB E-mode polarization, and adds a new constraint for the sky areas observed by SPTpol, POLARBEAR, and BICEP2.

  12. New constraints on cosmic polarization rotation from B-mode polarization in the cosmic microwave background

    SciTech Connect

    Alighieri, Sperello di Serego; Ni, Wei-Tou; Pan, Wei-Ping E-mail: weitou@gmail.com

    2014-09-01

    SPTpol, POLARBEAR, and BICEP2 have recently measured the cosmic microwave background (CMB) B-mode polarization in various sky regions of several tens of square degrees and obtained BB power spectra in the multipole range 20-3000, detecting the components due to gravitational lensing and to inflationary gravitational waves. We analyze jointly the results of these three experiments and propose modifications to their analyses of the spectra to include in the model, in addition to the gravitational lensing and the inflationary gravitational wave components, and also the effects induced by the cosmic polarization rotation (CPR), if it exists within current upper limits. Although in principle our analysis would also lead to new constraints on CPR, in practice these can only be given on its fluctuations (δα{sup 2}), since constraints on its mean angle are inhibited by the derotation which is applied by current CMB polarization experiments, in order to cope with the insufficient calibration of the polarization angle. The combined data fits from all three experiments (with 29% CPR-SPTpol correlation, depending on the theoretical model) gives the constraint (δα{sup 2}){sup 1/2} < 27.3 mrad (1.°56), with r = 0.194 ± 0.033. These results show that the present data are consistent with no CPR detection and the constraint on CPR fluctuation is about 1.°5. This method of constraining the CPR is new, is complementary to previous tests, which use the radio and optical/UV polarization of radio galaxies and the CMB E-mode polarization, and adds a new constraint for the sky areas observed by SPTpol, POLARBEAR, and BICEP2.

  13. Rotational inertia of continents: A proposed link between polar wandering and plate tectonics

    USGS Publications Warehouse

    Kane, M.F.

    1972-01-01

    A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.

  14. Nonlinear magnetoconvection in a rapidly rotating sphere and Taylor's constraint

    NASA Astrophysics Data System (ADS)

    Fearn, D. R.; Proctor, M. R. E.; Sellar, C. C.

    We investigate thermally driven convection in a rapidly rotating sphere in the presence of a prescribed azimuthal magnetic field B1. Earlier work has looked at the linear problem. Here, we include the most important nonlinear effect; the geostrophic flow VG(s)1. This is determined through the standard condition that leads to Taylor's (1963) constraint in the limit of vanishing viscosity. The present work therefore follows on from earlier work on both kinematic α- and αω-dynamos and magnetoconvection. Examples of the latter have so far been restricted to plane-layer, duct and cylindrical geometries. The present work uses a spherical geometry and makes a further step towards physical realism in that the contributions from both the axisymmetric and non-axisymmetric components of the magnetic field to the Taylor integral are included. (The earlier magnetoconvection work only included the non-axisymmetric contributions while the kinematic dynamo calculations involved only the axisymmetric contributions). The problem is solved by integrating the governing partial differential equations forward in time. Ekman states [where the amplitude of the non-axisymmetric convection is controlled by the Ekman boundary layer and is O(E¼), where E is the Ekman number] are found for values of the modified Rayleigh number ? both above and (in at least one example) slightly below the critical value ? c (in the absence of any differential rotation). The latter behaviour implies that the convective instability can be subcritical and this can be understood on the basis of the linear result that, for small amplitudes, a differential rotation can act to decrease ? c. (The reasons for this and the conditions under which this happens are not yet well understood, but are currently under investigation.) Two further main features have emerged from our calculations: the non-axisymmetric contribution to the Taylor integral typically dominates the axisymmetric contribution, and a complicated time

  15. A technique for measuring vertically and horizontally polarized microwave brightness temperatures using electronic polarization-basis rotation

    NASA Technical Reports Server (NTRS)

    Gasiewski, Albin J.

    1992-01-01

    This technique for electronically rotating the polarization basis of an orthogonal-linear polarization radiometer is based on the measurement of the first three feedhorn Stokes parameters, along with the subsequent transformation of this measured Stokes vector into a rotated coordinate frame. The technique requires an accurate measurement of the cross-correlation between the two orthogonal feedhorn modes, for which an innovative polarized calibration load was developed. The experimental portion of this investigation consisted of a proof of concept demonstration of the technique of electronic polarization basis rotation (EPBR) using a ground based 90-GHz dual orthogonal-linear polarization radiometer. Practical calibration algorithms for ground-, aircraft-, and space-based instruments were identified and tested. The theoretical effort consisted of radiative transfer modeling using the planar-stratified numerical model described in Gasiewski and Staelin (1990).

  16. Evolution of the polarization of the He-Ne-laser radiation in a rotating insulator

    NASA Astrophysics Data System (ADS)

    Gladyshev, V. O.; Portnov, D. I.

    2015-04-01

    The propagation of the polarized coherent radiation of a He-Ne laser in a rotating insulator is experimentally studied. The reversible transient process of the rotation of the polarization plane and variations in the degree of ellipticity, depolarization, and deflection of the laser beam with a relaxation time of τ = 102-103 s are observed at an insulator rotation frequency of f = 2-250 Hz.

  17. Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids

    SciTech Connect

    Morgen, M M

    1997-05-01

    We develop a polarization-sensitive femtosecond pump probe technique, Raman induced polarization spectroscopy (RIPS), to study coherent rotation in molecular fluids. By observing the collisional dephasing of the coherently prepared rotational states, we are able to extract information concerning the effects of molecular interactions on the rotational motion. The technique is quite sensitive because of the zero background detection method, and is also versatile due to its nonresonant nature.

  18. Optical polarization plane rotation for the blazar PG 1553+113

    NASA Astrophysics Data System (ADS)

    Blinov, D.; Casadi, C.

    2016-09-01

    We report about RoboPol observations of the ongoing rotation of the optical polarization angle for the blazar PG 1553+113 (RA=15h55m43s; Dec=+11d11m24s). The rotation began around August, 19. So far the total amplitude of the rotation is ~130 degrees with an average rate of ~8 deg/day.

  19. Realization of a compact polarization splitter-rotator on silicon.

    PubMed

    Dai, Daoxin; Wu, Hao

    2016-05-15

    A novel compact polarization splitter-rotator (PSR) is proposed and realized with silicon-on-insulator nanowires. The present PSR consists of an adiabatic taper, an asymmetric directional coupler (ADC), and a multimode interference (MMI) mode filter. The adiabatic taper enables an efficient mode conversion from the launched TM0 mode to the TE1 mode in a wide waveguide, which is then coupled to the TE0 mode of a narrow waveguide through the ADC. Meanwhile, the launched TE0 mode does not have mode conversion and outputs from the through port directly. The MMI mode filter is cascaded at the through port to filter out the residual power of the TE1 mode so that the extinction ratio of the PSR is improved greatly. The total length of the PSR is ∼70  μm and the fabricated PSR has an extinction ratio of ∼20  dB over a broadband ranging from 1547 to 1597 nm. PMID:27176999

  20. Dual-channel chaos synchronization and communication based on unidirectionally coupled VCSELs with polarization-rotated optical feedback and polarization-rotated optical injection.

    PubMed

    Liu, Jiao; Wu, Zheng-Mao; Xia, Guang-Qiong

    2009-07-20

    A novel dual-channel chaotic synchronization configuration is proposed. This system is constructed on the basis of two unidirectionally coupled vertical-cavity surface-emitting lasers (VCSELs), where a VCSEL subjected to polarization-rotated optical feedback is used as a transmitter and the other VCSEL subjected to polarization-rotated optical injection is used as a receiver. The synchronization and communication performances of such a system are numerically investigated. The results show that, similar to polarization-preserved coupled system with polarization-preserved optical feedback at the T-VCSEL port and polarization-preserved optical injection at the R-VCSEL port, such polarization-rotated coupled system can also realize complete synchronization between each pair of linear polarization (LP) modes and the total output of T-VCSEL and R-VCSEL. Compared with the polarization-preserved coupled system, this proposed system has higher tolerance to mismatched parameters. Furthermore, the average intensities of two orthogonal LP modes are almost the same so that this framework may be used to realize dual-channel chaos communication. Under the additive chaos modulation (ACM) encryption scheme, the encoded messages can be successfully extracted for both of orthogonal LP modes. PMID:19654666

  1. A near-transparent 90∘ polarization rotator with an array of L-shaped holes inside a glass cube

    NASA Astrophysics Data System (ADS)

    Liao, Yan-Lin; Zhao, Yan; Lu, He-Ping

    2016-07-01

    We report a near-transparent 90∘ polarization rotator by using a single-layer microstructure. The co-polarization light has been suppressed by using destructive interference. At the same time, the transmission of cross-polarization light has been improved with inference effect between surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs). This efficient polarization rotation mechanism may be very useful in designing polarization rotators.

  2. Rotation of the polarization vector from distant radio galaxies in the perturbed FRW metric

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Sankha Subhra

    2016-06-01

    Analysis of the correlation between the angular positions of distant radio galaxies on the sky and the orientations of their polarization vectors with respect to their major axes indicates a dipolar anisotropy in the large scale. We consider a single mode of large-scale scalar perturbation to the FRW metric. Using Newman-Penrose formalism, we calculate the rotation of the galaxy major axis with respect to the polarization vector as the elliptic image and the polarization vector are carried through the perturbed spacetime. The dependence of the rotation on the polar angular coordinate of the galaxy is qualitatively similar to the claimed dipole pattern.

  3. Differential rotation of the unstable nonlinear r -modes

    NASA Astrophysics Data System (ADS)

    Friedman, John L.; Lindblom, Lee; Lockitch, Keith H.

    2016-01-01

    At second order in perturbation theory, the r -modes of uniformly rotating stars include an axisymmetric part that can be identified with differential rotation of the background star. If one does not include radiation reaction, the differential rotation is constant in time and has been computed by Sá. It has a gauge dependence associated with the family of time-independent perturbations that add differential rotation to the unperturbed equilibrium star: For stars with a barotropic equation of state, one can add to the time-independent second-order solution arbitrary differential rotation that is stratified on cylinders (that is a function of distance ϖ to the axis of rotation). We show here that the gravitational radiation-reaction force that drives the r -mode instability removes this gauge freedom; the exponentially growing differential rotation of the unstable second-order r -mode is unique. We derive a general expression for this rotation law for Newtonian models and evaluate it explicitly for slowly rotating models with polytropic equations of state.

  4. Parallel processing for nonlinear dynamics simulations of structures including rotating bladed-disk assemblies

    NASA Technical Reports Server (NTRS)

    Hsieh, Shang-Hsien

    1993-01-01

    The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system.

  5. The effect of nonlinear traveling waves on rotating machinery

    NASA Astrophysics Data System (ADS)

    Jauregui-Correa, Juan Carlos

    2013-08-01

    The effect of the housing stiffness on nonlinear traveling waves is presented in this work. It was found that the housing controls the synchronization of nonlinear elements and it allows nonlinear waves to travel through the structure. This phenomenon was observed in a gearbox with a soft housing, and the phenomenon was reproduced with a lump-mass dynamic model. The model included a pair of gears, the rolling bearings and the housing. The model considered all the nonlinear effects. Numerical and experimental results were analyzed with a time-frequency method using the Morlet wavelet function. A compound effect was observed when the nonlinear waves travel between the gears and the bearings: the waves increased the dynamic load amplitude and add another periodic load.

  6. Progress Towards the Detection of Faraday Rotation on Spin Polarized 3He

    NASA Astrophysics Data System (ADS)

    Abney, Josh; Broering, Mark; Korsch, Wolfgang

    2016-03-01

    Off-resonance Faraday rotation can offer a new method to monitor the nuclear spin polarization of a dense 3He target and gain access to new information about the magnetic polarizability of the 3He nucleus. The interaction of the polarization state of light with the nuclear spin of the helium atom is very weak and has never been detected. A sensitive triple modulation technique has been developed which can detect the expected rotation angle on the order of 100 nrad. Once a Faraday rotation signal is observed, the next step is to separate the magnetic and electric contributions to the rotation by utilizing their different frequency dependencies. Recent studies involved optimizing several parameters which impact 3He target polarization. Progress towards detecting nuclear spin optical rotation on 3He will be reported. This research is supported by DOE Grant DE-FG02-99ER41101.

  7. Nonlinear evolution of resistive wall mode in a cylindrical tokamak with poloidal rotation

    SciTech Connect

    Sato, M.; Nakajima, N.

    2006-10-15

    Nonlinear simulations of resistive wall modes (RWMs) with a Doppler shift dominant equilibrium poloidal rotation have been carried out by using reduced magnetohydrodynamic equations in a low beta cylindrical tokamak, where the core plasma is surrounded by a cold plasma with a high resistivity. When the equilibrium poloidal rotation frequency is small and the Doppler shift is predominant, the wall mode becomes unstable, which is one of the RWMs nearly locked to the resistive wall. Since the slowing down torque increases with equilibrium poloidal rotation frequency and the poloidal rotation decreases to almost zero near the plasma surface before the saturation, the nonlinear saturation level does not depend on either the equilibrium poloidal rotation frequency or the density of the cold plasma. When the equilibrium poloidal rotation frequency becomes larger than a critical value, the plasma mode rotating to the resistive wall becomes unstable. When the cold plasma has the same density as that in the core plasma, neither the centrifugal force nor the Coriolis force has any effect. In such a case, as the equilibrium poloidal rotation frequency increases, the magnetic flux is so hard to diffuse into the resistive wall that the slowing down torque decreases and the rotation tends to survive in the nonlinear phase, which makes the saturation level decrease.

  8. Capillary compressor of femtosecond laser pulses with nonlinear rotation of polarisation ellipse

    SciTech Connect

    Konyashchenko, Aleksandr V; Kostryukov, P V; Losev, Leonid L; Tenyakov, S Yu

    2012-03-31

    The process of nonlinear rotation of the polarisation ellipse of laser radiation, occurring simultaneously with the broadening of the pulse spectrum due to nonlinear self-phase modulation in a gas-filled capillary, is studied. It is shown that the maximal rotation of the polarisation ellipse is experienced by the spectral components, shifted towards the short-wavelength side with respect to the central wavelength of the initial laser pulse. Using the effect of polarisation ellipse rotation, an eightfold increase in the energy contrast ratio of a 28-fs light pulse, obtained by compression of the radiation pulse from an ytterbium laser with the duration 290 fs, is implemented.

  9. [Comparison of correction methods for nonlinear optic path difference of reflecting rotating Fourier transform spectrometer].

    PubMed

    Jing, Juan-Juan; Zhou, Jin-Song; Xiangli, Bin; Lü, Qun-Bo; Wei, Ru-Yi

    2010-06-01

    The principle of reflecting rotating Fourier transform spectrometer was introduced in the present paper. The nonlinear problem of optical path difference (OPD) of rotating Fourier transform spectrometer universally exists, produced by the rotation of rotating mirror. The nonlinear OPD will lead to fictitious recovery spectrum, so it is necessary to compensate the nonlinear OPD. Three methods of correction for the nonlinear OPD were described and compared in this paper, namely NUFFT method, OPD replace method and interferograms fitting method. The result indicates that NUFFT was the best method for the compensation of nonlinear OPD, OPD replace method was better, its precision was almost the same as NUFFT method, and their relative error are superior to 0.13%, but the computation efficiency of OPD replace method is slower than NUFFT method, while the precision and computation efficiency of interferograms fitting method are not so satisfied, because the interferograms are rapid fluctuant especially around the zero optical path difference, so it is unsuitable for polynomial fitting, and because this method needs piecewise fitting, its computation efficiency is the slowest, thus the NUFFT method is the most suited method for the nonlinear OPD compensation of reflecting rotating Fourier transform spectrometer. PMID:20707175

  10. Progress Towards the Detection of Faraday Rotation on Spin Polarized 3He

    NASA Astrophysics Data System (ADS)

    Abney, Joshua; Broering, Mark; Korsch, Wolfgang

    2016-05-01

    Off-resonance Faraday rotation can offer a method to measure the nuclear spin optical rotation of the 3 He nucleus and gain access to new information about the atomic polarizability of the Helium atom. The interaction of the polarization state of light with the nuclear spin of the helium atom is very weak and has never been detected. A sensitive triple modulation technique has been developed which can detect the expected rotation angle on the order of 100 nrad. Once a Faraday rotation signal is observed, the next step is to separate the magnetic and electric contributions to the rotation by utilizing their different frequency dependencies. Recent studies involved optimizing several parameters which impact 3 He target polarization. Progress towards detecting nuclear spin optical rotation on 3 He will be reported. This research is supported by DOE Grant DE-FG02-99ER41101.

  11. Polar flagella rotation in Vibrio parahaemolyticus confers resistance to bacteriophage infection.

    PubMed

    Zhang, Hui; Li, Lu; Zhao, Zhe; Peng, Daxin; Zhou, Xiaohui

    2016-01-01

    Bacteriophage has been recognized as a novel approach to treat bacterial infectious diseases. However, phage resistance may reduce the efficacy of phage therapy. Here, we described a mechanism of bacterial resistance to phage infections. In Gram-negative enteric pathogen Vibrio parahaemolyticus, we found that polar flagella can reduce the phage infectivity. Deletion of polar flagella, but not the lateral flagella, can dramatically promote the adsorption of phage to the bacteria and enhances the phage infectivity to V. parahaemolyticus, indicating that polar flagella play an inhibitory role in the phage infection. Notably, it is the rotation, not the physical presence, of polar flagella that inhibits the phage infection of V. parahaemolyticus. Strikingly, phage dramatically reduces the virulence of V. parahaemolyticus only when polar flagella were absent both in vitro and in vivo. These results indicated that polar flagella rotation is a previously unidentified mechanism that confers bacteriophage resistance. PMID:27189325

  12. Polar flagella rotation in Vibrio parahaemolyticus confers resistance to bacteriophage infection

    PubMed Central

    Zhang, Hui; Li, Lu; Zhao, Zhe; Peng, Daxin; Zhou, Xiaohui

    2016-01-01

    Bacteriophage has been recognized as a novel approach to treat bacterial infectious diseases. However, phage resistance may reduce the efficacy of phage therapy. Here, we described a mechanism of bacterial resistance to phage infections. In Gram-negative enteric pathogen Vibrio parahaemolyticus, we found that polar flagella can reduce the phage infectivity. Deletion of polar flagella, but not the lateral flagella, can dramatically promote the adsorption of phage to the bacteria and enhances the phage infectivity to V. parahaemolyticus, indicating that polar flagella play an inhibitory role in the phage infection. Notably, it is the rotation, not the physical presence, of polar flagella that inhibits the phage infection of V. parahaemolyticus. Strikingly, phage dramatically reduces the virulence of V. parahaemolyticus only when polar flagella were absent both in vitro and in vivo. These results indicated that polar flagella rotation is a previously unidentified mechanism that confers bacteriophage resistance. PMID:27189325

  13. Nonlinear bending-torsional vibration and stability of rotating, pretwisted, preconed blades including Coriolis effects

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.

    1986-01-01

    The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by comparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.

  14. Nonlinear vibration and stability of rotating, pretwisted, preconed blades including Coriolis effects

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.

    1987-01-01

    The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by conparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.

  15. Long-Lived Hole Spin/Valley Polarization Probed by Kerr Rotation in Monolayer WSe2.

    PubMed

    Song, Xinlin; Xie, Saien; Kang, Kibum; Park, Jiwoong; Sih, Vanessa

    2016-08-10

    Time-resolved Kerr rotation and photoluminescence measurements are performed on MOCVD-grown monolayer tungsten diselenide (WSe2). We observe a surprisingly long-lived Kerr rotation signal (∼80 ns) at 10 K, which is attributed to spin/valley polarization of the resident holes. This polarization is robust to transverse magnetic field (up to 0.3 T). Wavelength-dependent measurements reveal that only excitation near the free exciton energy generates this long-lived spin/valley polarization. PMID:27466727

  16. Interesting polarization-independent SERS detection performance induced by the rotation symmetry of multiparticle nanostructures.

    PubMed

    Feng, Chao; Zhao, Yan; Jiang, Yijian

    2016-01-29

    In this work, on the basis of finite difference time domain simulations and group theory, by employing regular nanosphere trimers as the main examples, we analyse and discuss the polarization-independent surface enhanced Raman scattering (SERS) phenomenon arising from the rotation symmetry of coined metallic nanomultimers. The results demonstrate why the rotationally symmetrical nanomultimers can show polarization-independent SERS performance. Because of the dramatically hybridized polarization-independent SERS performance over the whole 360° range, rotationally symmetrical coined metal nanomultimers, such as regular trimers, regular triangular tetramers and regular pentamers, are reliable and reproducible SERS substrates, which have the potential for convenient and flexible practical SERS detection without the need for optimally incident polarization outside the laboratory setting. PMID:26655083

  17. Interesting polarization-independent SERS detection performance induced by the rotation symmetry of multiparticle nanostructures

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Zhao, Yan; Jiang, Yijian

    2016-01-01

    In this work, on the basis of finite difference time domain simulations and group theory, by employing regular nanosphere trimers as the main examples, we analyse and discuss the polarization-independent surface enhanced Raman scattering (SERS) phenomenon arising from the rotation symmetry of coined metallic nanomultimers. The results demonstrate why the rotationally symmetrical nanomultimers can show polarization-independent SERS performance. Because of the dramatically hybridized polarization-independent SERS performance over the whole 360° range, rotationally symmetrical coined metal nanomultimers, such as regular trimers, regular triangular tetramers and regular pentamers, are reliable and reproducible SERS substrates, which have the potential for convenient and flexible practical SERS detection without the need for optimally incident polarization outside the laboratory setting.

  18. High average power harmonic mode-locking of a Raman fiber laser based on nonlinear polarization evolution

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhao, C. J.; Gao, Y. X.; Fan, D. Y.

    2016-03-01

    We experimentally demonstrate the operation of a stable harmonically mode-locked Raman fiber laser based on the nonlinear polarization rotation technique. A maximum average output power of up to 235 mW is achieved at the repetition rate of 466.2 MHz, corresponding to the 1665th order harmonic mode-locking. The temporal width of the mode-locked pulse train is 450 ps. The experimental results should shed some light on the design of wavelength versatile ultrashort lasers with high repetition rate and average output power.

  19. Atomic Sensors using Nonlinear Magneto-Optical Rotation in the Strongly Saturated Regime

    NASA Astrophysics Data System (ADS)

    Kunz, Paul; Meyer, David; Quraishi, Qudsia; Fatemi, Fredrik

    2016-05-01

    We report on two separate atomic sensor experiments that rely on narrow spectral features associated with nonlinear magneto-optical rotation (NMOR). The first experiment uses a cold cloud of rubidium to investigate a ``twist'' feature nested within the standard dispersive-shaped NMOR curve. Though similar features have been observed previously in warm vapor, in this case the mechanism responsible is different. Here it is due to the combination of Zeeman and AC Stark shifts leading to complex evolutions of the atomic angular momentum, namely alignment-to-orientation conversion (AOC). This twist can be used as a rapid measure of transverse magnetic fields since its width scales linearly with the magnitude of the magnetic field directed along the optical polarization. We demonstrate applications of this feature both as a measure of background DC magnetic fields and also magnetic field gradients imaged with a CCD camera. Separately, in the second experiment we have begun investigations of NMOR in Rydberg levels for the purpose of measuring microwave electric field amplitudes. This has the potential to significantly enhance the signal-to-noise ratio over previous absorption-based techniques.

  20. Self-Calibration of BICEP1 Three-Year Data and Constraints on Astrophysical Polarization Rotation

    NASA Technical Reports Server (NTRS)

    Kaufman, J. P.; Miller, N. J.; Shimon, M.; Barkats, D.; Bischoff, C.; Buder, I.; Keating, B. G.; Kovac, J. M.; Ade, P. A. R.; Aikin, R.; Battle, J. O.; Bierman, E. M.; Bock, J. J.; Chiang, H. C.; Dowell, C. D.; Duband, L.; Filippini, J.; Hivon, E. F.; Holzapfel, W. L.; Hristov, V. V.; Jones, W. C.; Kernasovskiy, S. S.; Kuo, C. L.; Leitch, E. M.; Mason, P. V.

    2014-01-01

    Cosmic microwave background (CMB) polarimeters aspire to measure the faint B-mode signature predicted to arise from inflationary gravitational waves. They also have the potential to constrain cosmic birefringence, rotation of the polarization of the CMB arising from parity-violating physics, which would produce nonzero expectation values for the CMB's temperature to B-mode correlation (TB) and E-mode to B-mode correlation (EB) spectra. However, instrumental systematic effects can also cause these TB and EB correlations to be nonzero. In particular, an overall miscalibration of the polarization orientation of the detectors produces TB and EB spectra which are degenerate with isotropic cosmological birefringence, while also introducing a small but predictable bias on the BB spectrum. We find that BICEP1 three-year spectra, which use our standard calibration of detector polarization angles from a dielectric sheet, are consistent with a polarization rotation of alpha = -2.77deg +/- 0.86deg (statistical) +/- 1.3deg (systematic). We have revised the estimate of systematic error on the polarization rotation angle from the two-year analysis by comparing multiple calibration methods. We also account for the (negligible) impact of measured beam systematic effects. We investigate the polarization rotation for the BICEP1 100 GHz and 150 GHz bands separately to investigate theoretical models that produce frequency-dependent cosmic birefringence. We find no evidence in the data supporting either of these models or Faraday rotation of the CMB polarization by the Milky Way galaxy's magnetic field. If we assume that there is no cosmic birefringence, we can use the TB and EB spectra to calibrate detector polarization orientations, thus reducing bias of the cosmological B-mode spectrum from leaked E-modes due to possible polarization orientation miscalibration. After applying this "self-calibration" process, we find that the upper limit on the tensor-to-scalar ratio decreases

  1. Nonlinear Beam Kinematics by Decomposition of the Rotation Tensor

    NASA Technical Reports Server (NTRS)

    Danielson, D. A.; Hodges, D. H.

    1987-01-01

    A simple matrix expression is obtained for the strain components of a beam in which the displacements and rotations are large. The only restrictions are on the magnitudes of the strain and of the local rotation, a newly-identified kinematical quantity. The local rotation is defined as the change of orientation of material elements relative to the change of orientation of the beam reference triad. The vectors and tensors in the theory are resolved along orthogonal triads of base vectors centered along the undeformed and deformed beam reference axes, so Cartesian tensor notation is used. Although a curvilinear coordinate system is natural to the beam problem, the complications usually associated with its use are circumvented. Local rotations appear explicitly in the resulting strain expressions, facilitating the treatment of beams with both open and closed cross sections in applications of the theory. The theory is used to obtain the kinematical relations for coupled bending, torsion extension, shear deformation, and warping of an initially curved and twisted beam.

  2. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces.

    PubMed

    Tong, Lianming; Miljković, Vladimir D; Käll, Mikael

    2010-01-01

    We demonstrate optical alignment and rotation of individual plasmonic nanostructures with lengths from tens of nanometers to several micrometers using a single beam of linearly polarized near-infrared laser light. Silver nanorods and dimers of gold nanoparticles align parallel to the laser polarization because of the high long-axis dipole polarizability. Silver nanowires, in contrast, spontaneously turn perpendicular to the incident polarization and predominantly attach at the wire ends, in agreement with electrodynamics simulations. Wires, rods, and dimers all rotate if the incident polarization is turned. In the case of nanowires, we demonstrate spinning at an angular frequency of approximately 1 Hz due to transfer of spin angular momentum from circularly polarized light. PMID:20030391

  3. Nonlinear equations for dynamics of pretwisted beams undergoing small strains and large rotations

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.

    1985-01-01

    Nonlinear beam kinematics are developed and applied to the dynamic analysis of a pretwisted, rotating beam element. The common practice of assuming moderate rotations caused by structural deformation in geometric nonlinear analyses of rotating beams was abandoned in the present analysis. The kinematic relations that described the orientation of the cross section during deformation are simplified by systematically ignoring the extensional strain compared to unity in those relations. Open cross section effects such as warping rigidity and dynamics are ignored, but other influences of warp are retained. The beam cross section is not allowed to deform in its own plane. Various means of implementation are discussed, including a finite element formulation. Numerical results obtained for nonlinear static problems show remarkable agreement with experiment.

  4. Birefringence and polarization rotator induced by electromagnetically induced transparency in rare earth ion-doped crystals

    NASA Astrophysics Data System (ADS)

    Li, Zhixiang; Liu, Jianji; Yu, Ping; Zhang, Guoquan

    2016-05-01

    The birefringence induced by the electromagnetically induced transparency effect in a {Pr}^{3+}:{Y}_2 {SiO}_5 crystal was studied by using a balanced polarimeter technique. The results show that it is possible to control the polarization state of the output probe beam by adjusting the experimental conditions. Particularly, the coherently prepared {Pr}^{3+}:{Y}_2 {SiO}_5 crystal can serve as a polarization rotator for a linearly polarized input probe beam at the two-photon resonant condition. Such coherent control on the polarization of light should be useful for polarization-based classical and quantum information processing such as all-optical switching, polarization preserving light pulse memory and polarization qubits based on rare earth ion-doped solids.

  5. Fiber looped phase conjugation of polarization multiplexed signals for pre-compensation of fiber nonlinearity effect.

    PubMed

    Pelusi, Mark D

    2013-09-01

    Compensation of nonlinear distortion of polarization-multiplexed (PolMux) signals in optical fiber is evaluated experimentally using all-optical signal pre-distortion and fiber loop phase-conjugation at the transmitter. An improved bit error rate is shown for high baud rate, 80 Gb/s RZ-DPSK PolMux signals before transmission in a 728 km long dispersion-managed fiber link employing a direct detection receiver. The partial compensation of nonlinear distortion for both single channel and 3 × 80 Gb/s WDM PolMux signals is observed, despite the impact from the inter-polarization nonlinearity and the associated polarization scattering. Evidence of the limited compensation of inter-polarization nonlinearity is shown. PMID:24104017

  6. Rotation of the cosmic microwave background polarization from weak gravitational lensing.

    PubMed

    Dai, Liang

    2014-01-31

    When a cosmic microwave background (CMB) photon travels from the surface of last scatter through spacetime metric perturbations, the polarization vector may rotate about its direction of propagation. This gravitational rotation is distinct from, and occurs in addition to, the lensing deflection of the photon trajectory. This rotation can be sourced by linear vector or tensor metric perturbations and is fully coherent with the curl deflection field. Therefore, lensing corrections to the CMB polarization power spectra as well as the temperature-polarization cross correlations due to nonscalar perturbations are modified. The rotation does not affect lensing by linear scalar perturbations, but needs to be included when calculations go to higher orders. We present complete results for weak lensing of the full-sky CMB power spectra by general linear metric perturbations, taking into account both deflection of the photon trajectory and rotation of the polarization. For the case of lensing by gravitational waves, we show that the B modes induced by the rotation largely cancel those induced by the curl component of deflection. PMID:24580435

  7. Polarization of Directly Imaged Young Giant Planets as a Probe of Mass, Rotation, and Clouds

    NASA Technical Reports Server (NTRS)

    Marley, Mark Scott; Sengupta, Sujan

    2012-01-01

    Young, hot gas giant planets at large separations from their primaries have been directly imaged around several nearby stars. More such planets will likely be detected by ongoing and new imaging surveys with instruments such as the Gemini Planet Imager (GPI). Efforts continue to model the spectra of these planets in order to constrain their masses, effective temperatures, composition, and cloud structure. One potential tool for analyzing these objects, which has received relatively less attention, is polarization. Linear polarization of gas giant exoplanets can arise from the combined influences of light scattering by atmospheric dust and a rotationally distorted shape. The oblateness of gas giant planet increases of course with rotation rate and for fixed rotation also rises with decreasing gravity. Thus young, lower mass gas giant planets with youthful inflated radii could easily have oblateness greater than that of Saturn s 10%. We find that polarizations of over 1% may easily be produced in the near-infrared in such cases. This magnitude of polarization may be measurable by GPI and other instruments. Thus if detected, polarization of a young Jupiter places constraints on the combination of its gravity, rotation rate, and degree of cloudiness. We will present results of our multiple scattering analysis coupled with a self-consistent dusty atmospheric models to demonstrate the range of polarizations that might be expected from resolved exoplanets and the range of parameter space that such observations may inform.

  8. Transient response of nonlinear magneto-optic rotation in a paraffin-coated Rb vapor cell

    NASA Astrophysics Data System (ADS)

    Momeen, M. Ummal; Rangarajan, G.; Natarajan, Vasant

    2010-01-01

    We study resonant nonlinear magneto-optic rotation (NMOR) in a paraffin-coated Rb vapor cell as the magnetic field is swept. At low sweep rates, the nonlinear rotation appears as a narrow resonance signal with a linewidth of about “300 μG” (2π×420 Hz). At high sweep rates, the signal shows transient response with an oscillatory decay. The decay time constant is of order 100 ms. The behavior is different for transitions starting from the lower or the upper hyperfine level of the ground state because of optical pumping effects.

  9. Nonlinear magnetic vortex dynamics in a circular nanodot excited by spin-polarized current

    PubMed Central

    2014-01-01

    We investigate analytically and numerically nonlinear vortex spin torque oscillator dynamics in a circular magnetic nanodot induced by a spin-polarized current perpendicular to the dot plane. We use a generalized nonlinear Thiele equation including spin-torque term by Slonczewski for describing the nanosize vortex core transient and steady orbit motions and analyze nonlinear contributions to all forces in this equation. Blue shift of the nano-oscillator frequency increasing the current is explained by a combination of the exchange, magnetostatic, and Zeeman energy contributions to the frequency nonlinear coefficient. Applicability and limitations of the standard nonlinear nano-oscillator model are discussed. PMID:25147490

  10. Differential Rotation and Magnetic Polarity Patterns on AB Doradus

    NASA Astrophysics Data System (ADS)

    Donati, J.-F.; Collier Cameron, A.; Hussain, G. A. J.; Semel, M.

    We report new Zeeman-Doppler imaging observations of the rapidly rotating young K0 dwarf AB Doradus, obtained with the Anglo-Australian Telescope in 1996 December. We show simultaneous brightness and magnetic images of the stellar photosphere, reconstructed at three different epochs over the course of a seven-night observing run. Latitude-by-latitude cross-correlation of the resulting images confirms the form and amplitude of the surface differential pattern found in the previous year's observations by Donati & Cameron (1997), with the pole rotating slower than the equator by about one part in 220. We also present dynamic spectra showing the distribution of H alpha-absorbing clouds in the stellar corona at the same epoch.

  11. Demanding response time requirements on coherent receivers due to fast polarization rotations caused by lightning events.

    PubMed

    Krummrich, Peter M; Ronnenberg, David; Schairer, Wolfgang; Wienold, Daniel; Jenau, Frank; Herrmann, Maximilian

    2016-05-30

    Lightning events can cause fast polarization rotations and phase changes in optical transmission fibers due to strong electrical currents and magnetic fields. Whereas these are unlikely to affect legacy transmission systems with direct detection, different mechanisms have to be considered in systems with local oscillator based coherent receivers and digital signal processing. A theoretical analysis reveals that lightning events can result in polarization rotations with speeds as fast as a few hundred kRad/s. We discuss possible mechanisms how such lightning events can affect coherent receivers with digital signal processing. In experimental investigations with a high current pulse generator and transponder prototypes, we observed post FEC errors after polarization rotation events which can be expected from lightning strikes. PMID:27410158

  12. Analysis of the polarization rotation effect in the inversely tapered spot size converter.

    PubMed

    Jia, Lianxi; Zhou, Haifeng; Liow, Tsung-Yang; Song, Junfeng; Huang, Ying; Tu, Xiaoguang; Luo, Xianshu; Li, Chao; Fang, Qing; Yu, Mingbin; Lo, Guoqiang

    2015-10-19

    Inversely tapered spot size converter (SSC) is widely used to connect silicon waveguide with fiber in silicon photonics. However, the tapered structure may cause polarization rotation and further generate interference fluctuation in the transmission spectrum even of a straight waveguide. We analyzed the light propagation in a straight waveguide with SSC at the both ends with coupling matrix and transmission matrix methods. The analysis results matched with the phenomena we observed in the transmission spectrum. Combining the analysis with the measurement results, we calculated the polarization rotation efficiency of the SSC in different samples and analyzed the origin of the polarization rotation effect. Finally, we discussed the influence of the effect to the DP-QPSK signal and proposed several methods to release the impact. PMID:26480439

  13. Rotations of molecular photoelectron angular distributions with intense ultrashort circularly polarized attosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Chelkowski, Szczepan; Bandrauk, André D.

    2013-04-01

    Molecular photoelectron angular distributions (MPADs) by intense (I0 ⩾ 1014 W/cm2) circularly polarized ultrashort, few cycle (attosecond) ultraviolet laser pulses are presented from numerical solutions of time dependent Schrödinger equations. For the aligned molecular ion H_2^+, the MPADs exhibit rotations with respect to the polarization and molecular symmetry axes which are determined by the symmetry of the initial electronics states. It is also found that the rotation angle of MPADs is insensitive to the pulse intensity. We attribute these effects to the asymmetry between the parallel and perpendicular (to the molecular axis) polarization photoionization. Influence of the molecular alignment and ionizing pulse ellipticity on the rotation of MPADs is also shown to allow control of the nonsymmetric ionization.

  14. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    SciTech Connect

    Wang, Fenggong Grinberg, Ilya; Rappe, Andrew M.

    2014-04-14

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.

  15. Cross polarization with long delayed contact in rotating solids

    NASA Astrophysics Data System (ADS)

    Ding, Shangwu; McDowell, Charles A.

    1996-06-01

    The cross polarization NMR spectra and cross relaxation rates of polycrystalline hexamethylbenzene and adamantane were obtained by employing a long delay before contact for samples spinning at, and off, the magic angle with respect to the static magnetic field. The results are compared with those obtained by using the conventional cross polarization pulse sequence. The results support the memory effect explanation of origin of the SPEDA spectra in contrast with the assumptions that the high resolution SPEDA spectra arising either, from the nearly isotropic motion of a very small fraction, or a pool of highly thermo-activated molecules, or from special spin pairs within the crystallites which are orientated at the magic angle with respect to the static magnetic field.

  16. Detectability of deterministic non-linear processes in Earth rotation time-series-II. Dynamics

    NASA Astrophysics Data System (ADS)

    Frede, V.; Mazzega, P.

    1999-05-01

    We investigate the possibility of detecting non-linear low-dimensional deterministic processes in the time-series of the length of day (LOD) and polar motion components (PMX, PMY), filtered to keep the period range [ ~ 1 day-100 days]. After each time-series has been embedded in a pseudo-phase space with dimension D_E*=5 or 6 (see Frede & Mazzega 1999, hereafter referred to as Paper I) we extract the geometric and dynamical characteristics of the reconstructed orbit. Using a local false neighbours algorithm and an analysis of the data local covariance matrix eigenspectrum, we find a local dimension D_L=5 for the three EOP series. The principal Lyapunov exponents averaged over the ~ 27 years of observation (1970-1997) are positive. This result unambiguously indicates the chaotic nature of the Earth's rotational dynamical regime in this period range of fluctuations. As a consequence, some theoretical prediction horizons cannot be exceeded by any tentative forecast of the EOP evolution. Horizons of 11.3 days for LOD, 8.7 days for PMX and 8.1 days for PMY are found, beyond which prediction errors will be of the order of the s of the filtered EOP series, say 0.12 ms, 2.30 mas (milliarcsecond) and 1.57 mas respectively. From the Lyapunov spectra we estimate the Lyapunov dimension D_Lyap, which is an upper bound for the corresponding attractor dimension D_A. We find D_Lyap(LOD)=4.48, D_Lyap(PMX)=4.90 and D_Lyap(PMY)=4.97. These determinations are in broad agreement with those of the attractor dimensions obtained from correlation integrals, i.e. D_A(LOD)=4.5-5.5, D_A(PMX)=3.5-4.5, D_A(PMY)=4-5. We finally show that the Earth's rotational state experiences large changes in stability. Indeed, the local prediction horizons, as deduced from the local Lyapunov exponents, occasionally drop to about 3.3 days for LOD in the years 1982-1984, 2.6 days for PMX in 1972-1973 and 2.6 days for PMY in 1996-1997. Some of these momentary stability perturbations of the Earth's rotation are

  17. Cross-polarized wave generation by effective cubic nonlinear optical interaction.

    PubMed

    Petrov, G I; Albert, O; Etchepare, J; Saltiel, S M

    2001-03-15

    A new cubic nonlinear optical effect in which a linearly polarized wave propagating in a single quadratic medium is converted into a wave that is cross polarized to the input wave is observed in BBO crystal. The effect is explained by cascading of two different second-order processes: second-harmonic generation and difference frequency mixing. PMID:18040322

  18. Polarization rotation and coupling between silicon waveguide and hybrid plasmonic waveguide

    PubMed Central

    Kim, Sangsik; Qi, Minghao

    2015-01-01

    We present a polarization rotation and coupling scheme that rotates a TE0 mode in a silicon waveguide and simultaneously couples the rotated mode to a hybrid plasmonic (HP0) waveguide mode. Such a polarization rotation can be realized with a partially etched asymmetric hybrid plasmonic waveguide consisting of a silicon strip waveguide, a thin oxide spacer, and a metal cap made from copper, gold, silver or aluminum. Two implementations, one with and one without the tapering of the metal cap are presented, and different taper shapes (linear and exponential) are also analyzed. The devices have large 3 dB conversion bandwidths (over 200 nm at near infrared) and short length (< 5 μm), and achieve a maximum coupling factor of ∼ 78% with a linearly tapered silver metal cap. PMID:25969038

  19. Second-harmonic generation polarization microscopy by rotation of excitation light

    NASA Astrophysics Data System (ADS)

    Fwu, Peter Tramyeon; Chou, Chen-Kuan; Chen, Wei-Liang; Dong, Chen-Yuan

    2007-02-01

    When imaging anisotropic samples with a laser scanning optical microscope, the results are often affected by the polarization of the excitation light source. Quantifying the polarization dependence of biological fibrous material such as muscle and collagen allows us to gain molecular information at length scale below the resolution of optical microscopes. One problem associated with rotating the direction of linearly polarized excitation light for an epi-illuminated laser scanning microscope is due to the reflective properties of the main dichroic mirror. Depending on the direction of the incident polarization, the dichroic mirror can induce different amount of phase retardation, thus altering the desired output polarization. In this work, we theoretically determined the needed combination of wave plates and their angular positions to compensate for the effect of the dichroic mirror, thus achieving any arbitrary linear polarization angle for the excitation incident on sample.

  20. Real-time image difference detection using a polarization rotation spacial light modulator

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Liu, Hua-Kuang (Inventor)

    1990-01-01

    An image difference detection system is described, of the type wherein two created image representations such as transparencies representing the images to be compared lie coplanar, while light passes through the two transparencies and is formed into coincident images at the image plane for comparison. The two transparencies are formed by portions of a polarization rotation spacial light modulator display such as a multi-pixel liquid crystal display or a magneto optical rotation type. In a system where light passing through the two transparencies is polarized in transverse directions to enable the use of a Wollaston prism to bring the images into coincidence, a liquid crystal display can be used which is devoid of polarizing sheets that would interfere with transverse polarizing of the light passing through the two transparencies.

  1. Real-time image difference detection using a polarization rotation spacial light modulator

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Liu, Hua-Kuang (Inventor)

    1988-01-01

    An image difference detection system is described, of the type wherein two created image representations such as transparencies representing the images to be compared lie coplanar, while light passes through the two transparencies and is formed into coincident images at the image plane for comparison. The two transparencies are formed by portions of a polarization-rotation spatial light modulator display such as a multi-pixel liquid crystal display or a magnetooptical rotation type display. In a system where light passing through the two transparencies is polarized in transverse directions to enable the use of a Wollaston prism to bring the images into coincidence, a liquid crystal display can be used which is devoid of polarizing sheets that would interfere with transverse polarizing of the light passing through the two transparencies.

  2. Modification of chirped laser pulses via delayed rotational nonlinearity

    NASA Astrophysics Data System (ADS)

    Romanov, D. A.; Odhner, J. H.; Levis, R. J.

    2016-03-01

    To interpret single-shot measurements of rotational revival patterns in molecular gases excited by an ultrashort laser pulse, an analytical description of the probe pulse modulation by the impulsively excited medium is developed. A femtosecond pump laser pulse prepares a rotational wavepacket in a gas-phase sample, and the resulting periodic revivals are mapped into the frequency domain by using a substantially chirped continuum probe pulse. Since the standard approximate descriptions of probe pulse propagation are inapplicable (such as the slowly varying envelope approximation and the slowly evolving wave approximation), we propose an approach capable of incorporating both the substantial chirp of the pulse and the temporal dispersion of the medium response. Theory is presented for the case where the frequency change of the probe during the probe pulse duration is comparable with the carrier frequency. Analytical expressions are obtained for the probe signal modulation over the pump-probe interaction region and for the resulting heterodyned transient birefringence spectra. The approach is illustrated using the case of nitrogen gas.

  3. Magneto-optical polarization rotation in a ladder-type atomic system for tunable offset locking

    NASA Astrophysics Data System (ADS)

    Parniak, Michał; Leszczyński, Adam; Wasilewski, Wojciech

    2016-04-01

    We demonstrate an easily tunable locking scheme for stabilizing frequency-sum of two lasers on a two-photon ladder transition based on polarization rotation in warm rubidium vapors induced by magnetic field and circularly polarized drive field. Unprecedented tunability of the two-photon offset frequency is due to strong splitting and shifting of magnetic states in external field. In our experimental setup, we achieve two-photon detuning of up to 700 MHz.

  4. Fast passage dynamic nuclear polarization on rotating solids

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, Frederic; Akbey, Ümit; Hovav, Yonatan; Vega, Shimon; Oschkinat, Hartmut; Feintuch, Akiva

    2012-11-01

    Magic Angle Spinning (MAS) Dynamic Nuclear Polarization (DNP) has proven to be a very powerful way to improve the signal to noise ratio of NMR experiments on solids. The experiments have in general been interpreted considering the Solid-Effect (SE) and Cross-Effect (CE) DNP mechanisms while ignoring the influence of sample spinning. In this paper, we show experimental data of MAS-DNP enhancements of 1H and 13C in proline and SH3 protein in glass forming water/glycerol solvent containing TOTAPOL. We also introduce a theoretical model that aims at explaining how the nuclear polarization is built in MAS-DNP experiments. By using Liouville space based simulations to include relaxation on two simple spin models, {electron-nucleus} and {electron-electron-nucleus}, we explain how the basic MAS-SE-DNP and MAS-CE-DNP processes work. The importance of fast energy passages and short level anti-crossing is emphasized and the differences between static DNP and MAS-DNP is explained. During a single rotor cycle the enhancement in the {electron-electron-nucleus} system arises from MAS-CE-DNP involving at least three kinds of two-level fast passages: an electron-electron dipolar anti-crossing, a single quantum electron MW encounter and an anti-crossing at the CE condition inducing nuclear polarization in- or decrements. Numerical, powder-averaged, simulations were performed in order to check the influence of the experimental parameters on the enhancement efficiencies. In particular we show that the spinning frequency dependence of the theoretical MAS-CE-DNP enhancement compares favorably with the experimental 1H and 13C MAS-DNP enhancements of proline and SH3.

  5. Nonlinear resonance of the rotating circular plate under static loads in magnetic field

    NASA Astrophysics Data System (ADS)

    Hu, Yuda; Wang, Tong

    2015-11-01

    The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.

  6. Nonlinear stability of overcompresive shock waves in a rotationally invariant system of viscous conservation laws

    NASA Astrophysics Data System (ADS)

    Freistühler, Heinrich; Liu, Tai-Ping

    1993-04-01

    This paper proves that certain non-classical shock waves in a rotationally invariant system of viscous conservation laws posses nonlinear large-time stability against sufficiently small perturbations. The result applies to small intermediate magnetohydrodynamic shocks in the presence of dissipation.

  7. Magnetic-Field-Induced Rotation of Polarized Light Emission from Monolayer WS2

    NASA Astrophysics Data System (ADS)

    Schmidt, Robert; Arora, Ashish; Plechinger, Gerd; Nagler, Philipp; Granados del Águila, Andrés; Ballottin, Mariana V.; Christianen, Peter C. M.; Michaelis de Vasconcellos, Steffen; Schüller, Christian; Korn, Tobias; Bratschitsch, Rudolf

    2016-08-01

    We control the linear polarization of emission from the coherently emitting K+ and K- valleys (valley coherence) in monolayer WS2 with an out-of-plane magnetic field of up to 25 T. The magnetic-field-induced valley Zeeman splitting causes a rotation of the emission polarization with respect to the excitation by up to 35° and reduces the polarization degree by up to 16%. We explain both of these phenomena with a model based on two noninteracting coherent two-level systems. We deduce that the coherent light emission from the valleys decays with a time constant of τc=260 fs .

  8. Non-linear evolution of tidally forced inertial waves in rotating fluid bodies

    NASA Astrophysics Data System (ADS)

    Favier, B.; Barker, A. J.; Baruteau, C.; Ogilvie, G. I.

    2014-03-01

    We perform one of the first studies into the non-linear evolution of tidally excited inertial waves in a uniformly rotating fluid body, exploring a simplified model of the fluid envelope of a planet (or the convective envelope of a solar-type star) subject to the gravitational tidal perturbations of an orbiting companion. Our model contains a perfectly rigid spherical core, which is surrounded by an envelope of incompressible uniform density fluid. The corresponding linear problem was studied in previous papers which this work extends into the non-linear regime, at moderate Ekman numbers (the ratio of viscous to Coriolis accelerations). By performing high-resolution numerical simulations, using a combination of pseudo-spectral and spectral element methods, we investigate the effects of non-linearities, which lead to time-dependence of the flow and the corresponding dissipation rate. Angular momentum is deposited non-uniformly, leading to the generation of significant differential rotation in the initially uniformly rotating fluid, i.e. the body does not evolve towards synchronism as a simple solid body rotator. This differential rotation modifies the properties of tidally excited inertial waves, changes the dissipative properties of the flow and eventually becomes unstable to a secondary shear instability provided that the Ekman number is sufficiently small. Our main result is that the inclusion of non-linearities eventually modifies the flow and the resulting dissipation from what linear calculations would predict, which has important implications for tidal dissipation in fluid bodies. We finally discuss some limitations of our simplified model, and propose avenues for future research to better understand the tidal evolution of rotating planets and stars.

  9. Nonlinear flap-lag-extensional vibrations of rotating, pretwisted, preconed beams including Coriolis effects

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1985-01-01

    The effects of pretwist, precone, setting angle, Coriolis forces and second degree geometric nonlinearities on the natural frequencies, steady state deflections and mode shapes of rotating, torsionally rigid, cantilevered beams were studied. The governing coupled equations of flap lag extensional motion are derived including the effects of large precone and retaining geometric nonlinearities up to second degree. The Galerkin method, with nonrotating normal modes, is used for the solution of both steady state nonlinear equations and linear perturbation equations. Parametric indicating the individual and collective effects of pretwist, precone, Coriolis forces and second degree geometric nonlinearities on the steady state deflection, natural frequencies and mode shapes of rotating blades are presented. It is indicated that the second degree geometric nonlinear terms, which vanish for zero precone, can produce frequency changes of engineering significance. Further confirmation of the validity of including those generated by MSC NASTRAN. It is indicated that the linear and nonlinear Coriolis effects must be included in analyzing thick blades. The Coriolis effects are significant on the first flatwise and the first edgewise modes.

  10. Demonstration of integrated polarization rotator based on an asymmetric silicon waveguide with a trench

    NASA Astrophysics Data System (ADS)

    Kim, Yudeuk; Kim, Dong Wook; Lee, Moon-Hyeok; Lee, Min Hee; Yoo, Dong Eun; Kim, Ki Nam; Jeon, Sang Chul; Kim, Kyong Hon

    2016-09-01

    An integrated polarization rotator is demonstrated experimentally by forming a strip waveguide with an asymmetric trench on a silicon-on-insulator wafer. The trench is located asymmetrically in the strip waveguide. It induces the evolution of an orthogonal polarization mode upon a linearly polarized beam input, and thus causes polarization rotation. The device is fabricated using a conventional complementary metal oxide semiconductor process with a single dry etching step. The fabricated device shows a maximum transverse electric (TE)-to-transverse magnetic (TM) polarization conversion efficiency of 21.3 dB and an insertion loss of ‑0.95 dB at a 1550 nm wavelength with a device length of 67 μm. The device exhibits a polarization conversion efficiency and insertion loss of 21.1 dB and ‑2.12 dB, respectively, for the TM-to-TE polarization conversion. The optimum parameters for the waveguide size and trench size are investigated by performing numerical simulations, and by demonstrating experimental fabrication and measurement.

  11. Rotation of the optical polarization plane for the blazar 4C +38.41

    NASA Astrophysics Data System (ADS)

    Panopoulou, G. V.; Maragkakis, G. M.; Xexakis, K.

    2016-08-01

    We report on the ongoing rotation of the optical polarization angle (R-band) seen in the monitored blazar 4C +38.41 (RA=16:35:15.5, DEC=38:08:05, J2000) as recorded within the framework of the RoboPol program.

  12. The rotation of scissioning nucleus considered trajectory calculations for ternary fission induced by cold polarized neutrons

    NASA Astrophysics Data System (ADS)

    Guseva, I.; Gusev, Yu.

    2009-10-01

    On the base of modified trajectory calculations the shift of angular distribution of α-particles accompanied the reaction 235U(n,f) induced by cold polarized neutrons is evaluated. It was supposed that angular distribution shift is caused by the rotation of nuclear system before scission. The orientation of a rotation motion is determined by the neutron spin polarization along and opposite to the beam direction. For the first time the estimation was done in the frame of trajectory calculations assuming the rotation motion of scissioning nucleus [1]. The result of the calculation is in a good agreement with experimental data of paper [2], where this new phenomenon was named as ROT-effect.

  13. Differential Polarization Nonlinear Optical Microscopy with Adaptive Optics Controlled Multiplexed Beams

    PubMed Central

    Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus

    2013-01-01

    Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures. PMID:24022688

  14. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect

    NASA Astrophysics Data System (ADS)

    Lu, Xiancong; Wu, Ziwen; Zhang, Wuhong; Chen, Lixiang

    2014-05-01

    The law of angular momentum conservation is naturally linked to the rotational symmetry of the involved system. Here we demonstrate theoretically how to break the rotational symmetry of a uniaxial crystal via the electro-optic Pockels effect. By numerical method based on asymptotic expansion, we discover the 3D structure of polarization singularities in terms of C lines and L surfaces embedded in the emerging light. We visualize the controllable dynamics evolution of polarization singularities when undergoing the Pockels effect, which behaves just like the binary fission of a prokaryotic cell, i.e., the splitting of C points and fission of L lines are animated in analogy with the cleavage of nucleus and division of cytoplasm. We reveal the connection of polarization singularity dynamics with the accompanying generation of orbital angular momentum sidebands. It is unexpected that although the total angular momentum of light is not conserved, the total topological index of C points is conserved.

  15. Circular Polarizations of Gravitational Waves from Core-Collapse Supernovae: A Clear Indication of Rapid Rotation.

    PubMed

    Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi

    2016-04-15

    We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse. PMID:27127951

  16. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    DOEpatents

    Duncan, Paul G.

    2002-01-01

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  17. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect.

    PubMed

    Lu, Xiancong; Wu, Ziwen; Zhang, Wuhong; Chen, Lixiang

    2014-01-01

    The law of angular momentum conservation is naturally linked to the rotational symmetry of the involved system. Here we demonstrate theoretically how to break the rotational symmetry of a uniaxial crystal via the electro-optic Pockels effect. By numerical method based on asymptotic expansion, we discover the 3D structure of polarization singularities in terms of C lines and L surfaces embedded in the emerging light. We visualize the controllable dynamics evolution of polarization singularities when undergoing the Pockels effect, which behaves just like the binary fission of a prokaryotic cell, i.e., the splitting of C points and fission of L lines are animated in analogy with the cleavage of nucleus and division of cytoplasm. We reveal the connection of polarization singularity dynamics with the accompanying generation of orbital angular momentum sidebands. It is unexpected that although the total angular momentum of light is not conserved, the total topological index of C points is conserved. PMID:24784778

  18. Circular Polarizations of Gravitational Waves from Core-Collapse Supernovae: A Clear Indication of Rapid Rotation

    NASA Astrophysics Data System (ADS)

    Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi

    2016-04-01

    We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse.

  19. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect

    PubMed Central

    Lu, Xiancong; Wu, Ziwen; Zhang, Wuhong; Chen, Lixiang

    2014-01-01

    The law of angular momentum conservation is naturally linked to the rotational symmetry of the involved system. Here we demonstrate theoretically how to break the rotational symmetry of a uniaxial crystal via the electro-optic Pockels effect. By numerical method based on asymptotic expansion, we discover the 3D structure of polarization singularities in terms of C lines and L surfaces embedded in the emerging light. We visualize the controllable dynamics evolution of polarization singularities when undergoing the Pockels effect, which behaves just like the binary fission of a prokaryotic cell, i.e., the splitting of C points and fission of L lines are animated in analogy with the cleavage of nucleus and division of cytoplasm. We reveal the connection of polarization singularity dynamics with the accompanying generation of orbital angular momentum sidebands. It is unexpected that although the total angular momentum of light is not conserved, the total topological index of C points is conserved. PMID:24784778

  20. Self-calibration of BICEP1 three-year data and constraints on astrophysical polarization rotation

    NASA Astrophysics Data System (ADS)

    Kaufman, J. P.; Miller, N. J.; Shimon, M.; Barkats, D.; Bischoff, C.; Buder, I.; Keating, B. G.; Kovac, J. M.; Ade, P. A. R.; Aikin, R.; Battle, J. O.; Bierman, E. M.; Bock, J. J.; Chiang, H. C.; Dowell, C. D.; Duband, L.; Filippini, J.; Hivon, E. F.; Holzapfel, W. L.; Hristov, V. V.; Jones, W. C.; Kernasovskiy, S. S.; Kuo, C. L.; Leitch, E. M.; Mason, P. V.; Matsumura, T.; Nguyen, H. T.; Ponthieu, N.; Pryke, C.; Richter, S.; Rocha, G.; Sheehy, C.; Su, M.; Takahashi, Y. D.; Tolan, J. E.; Yoon, K. W.

    2014-03-01

    Cosmic microwave background (CMB) polarimeters aspire to measure the faint B-mode signature predicted to arise from inflationary gravitational waves. They also have the potential to constrain cosmic birefringence, rotation of the polarization of the CMB arising from parity-violating physics, which would produce nonzero expectation values for the CMB's temperature to B-mode correlation (TB) and E-mode to B-mode correlation (EB) spectra. However, instrumental systematic effects can also cause these TB and EB correlations to be nonzero. In particular, an overall miscalibration of the polarization orientation of the detectors produces TB and EB spectra which are degenerate with isotropic cosmological birefringence, while also introducing a small but predictable bias on the BB spectrum. We find that Bicep1 three-year spectra, which use our standard calibration of detector polarization angles from a dielectric sheet, are consistent with a polarization rotation of α =-2.77°±0.86°(statistical)±1.3°(systematic). We have revised the estimate of systematic error on the polarization rotation angle from the two-year analysis by comparing multiple calibration methods. We also account for the (negligible) impact of measured beam systematic effects. We investigate the polarization rotation for the Bicep1 100 GHz and 150 GHz bands separately to investigate theoretical models that produce frequency-dependent cosmic birefringence. We find no evidence in the data supporting either of these models or Faraday rotation of the CMB polarization by the Milky Way galaxy's magnetic field. If we assume that there is no cosmic birefringence, we can use the TB and EB spectra to calibrate detector polarization orientations, thus reducing bias of the cosmological B-mode spectrum from leaked E-modes due to possible polarization orientation miscalibration. After applying this "self-calibration" process, we find that the upper limit on the tensor-to-scalar ratio decreases slightly, from r<0

  1. High-Frequency Dynamic Nuclear Polarization in the Nuclear Rotating Frame

    NASA Astrophysics Data System (ADS)

    Farrar, C. T.; Hall, D. A.; Gerfen, G. J.; Rosay, M.; Ardenkjær-Larsen, J.-H.; Griffin, R. G.

    2000-05-01

    A proton dynamic nuclear polarization (DNP) NMR signal enhancement (ɛ) close to thermal equilibrium, ɛ = 0.89, has been obtained at high field (B0 = 5 T, νepr = 139.5 GHz) using 15 mM trityl radical in a 40:60 water/glycerol frozen solution at 11 K. The electron-nuclear polarization transfer is performed in the nuclear rotating frame with microwave irradiation during a nuclear spin-lock pulse. The growth of the signal enhancement is governed by the rotating frame nuclear spin-lattice relaxation time (T1ρ), which is four orders of magnitude shorter than the nuclear spin-lattice relaxation time (T1n). Due to the rapid polarization transfer in the nuclear rotating frame the experiment can be recycled at a rate of 1/T1ρ and is not limited by the much slower lab frame nuclear spin-lattice relaxation rate (1/T1n). The increased repetition rate allowed in the nuclear rotating frame provides an effective enhancement per unit time1/2 of ɛt = 197. The nuclear rotating frame-DNP experiment does not require high microwave power; significant signal enhancements were obtained with a low-power (20 mW) Gunn diode microwave source and no microwave resonant structure. The symmetric trityl radical used as the polarization source is water-soluble and has a narrow EPR linewidth of 10 G at 139.5 GHz making it an ideal polarization source for high-field DNP/NMR studies of biological systems.

  2. Polarized dependence of nonlinear susceptibility in a single layer graphene system in infrared region

    NASA Astrophysics Data System (ADS)

    Solookinejad, G.

    2016-09-01

    In this study, the linear and nonlinear susceptibility of a single-layer graphene nanostructure driven by a weak probe light and an elliptical polarized coupling field is discussed theoretically. The Landau levels of graphene can be separated in infrared or terahertz regions under the strong magnetic field. Therefore, by using the density matrix formalism in quantum optic, the linear and nonlinear susceptibility of the medium can be derived. It is demonstrated that by adjusting the elliptical parameter, one can manipulate the linear and nonlinear absorption as well as Kerr nonlinearity of the medium. It is realized that the enhanced Kerr nonlinearity can be possible with zero linear absorption and nonlinear amplification at some values of elliptical parameter. Our results may be having potential applications in quantum information science based on Nano scales devices.

  3. Design of polarization rotators in TE-TM mode conversion optical isolator with Ce:YIG guiding layer

    NASA Astrophysics Data System (ADS)

    Okada, Yukihiro; Tamura, Daisuke; Kobayashi, Kouya; Yokoi, Hideki

    2015-09-01

    An optical isolator with a (CeY)3Fe5O12 guiding layer employing TE-TM mode conversion was investigated. The optical isolator consisted of a nonreciprocal polarization rotator and a reciprocal polarization rotator. The reciprocal polarization rotator was realized by inserting a polyimide half-wave plate into a groove in the magnetooptic waveguide. Propagation distances required for the nonreciprocal polarization rotator were calculated at a wavelength of 1.55 µm. Diffraction loss due to the insertion of the half-wave plate was also calculated. The reciprocal polarization rotator integrated with a spot-size converter was proposed for suppressing the diffraction loss. By introducing the spot-size converter for an input facet and an output facet of the half-wave plate, a calculated total insertion loss was reduced to 0.22 dB.

  4. A fully nonlinear, mixed spectral and finite difference model for thermally driven, rotating flows

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; Lu, Huei-Iin; Butler, Karen A.

    1992-01-01

    Finite difference in time and the meridional plane, in conjunction with a spectral technique in the azimuthal direction, are used to approximate the Navier-Stokes equations in a model that can simulate a variety of thermally driven rotating flows in cylindrical and spherical geometries. Axisymmetric flow, linearized waves relative to a fixed or changing axisymmetric flow, nonlinear waves without wave-wave interaction, and fully nonlinear 3D flow, can in this way be calculated. A reexamination is conducted of the steady baroclinic wave case previously treated by Williams (1971) and Quon (1976).

  5. Understanding rotation profile structures in ECH-heated plasmas using nonlinear gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Brian, B.; Ethier, S.; Chen, J.; Startsev, E.; Diamond, P. H.; Lu, Z.

    2015-11-01

    A non-diffusive momentum flux connecting edge momentum sources/sinks and core plasma flow is required to establish the off-axis peaked ion rotation profile typically observed in ECH-heated DIII-D plasmas without explicit external momentum input. The understanding of the formation of such profile structures provides an outstanding opportunity to test the physics of turbulence driving intrinsic rotation, and validate first-principles-based gyrokinetic simulation models. Nonlinear, global gyrokinetic simulations of DIII-D ECH plasmas indicate a substantial ITG fluctuation-induced residual stress generated around the region of peaked toroidal rotation, along with a diffusive momentum flux. The residual stress profile shows an anti-gradient, dipole structure, which is critical for accounting for the formation of the peaked rotation profile. It is showed that both turbulence intensity gradient and zonal flow ExB shear contribute to the generation of k// asymmetry needed for residual stress generation. By balancing the simulated residual stress and the momentum diffusion, a rotation profile is calculated. In general, the radial structure of core rotation profile is largely determined by the residual stress profile, while the amplitude of core rotation depends on the edge toroidal rotation velocity, which is determined by edge physics and used as a boundary condition in our model. The calculated core rotation profile is consistent with the experimental measurements. Also discussed is the modification of turbulence-generated Reynolds stress on poloidal rotation in those plasmas. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.

  6. Non-linear vacuum polarization in strong fields

    SciTech Connect

    Gyulassy, M.

    1981-07-01

    The Wichmann-Kroll formalism for calculating the vacuum polarization density to first order in ..cap alpha.. but to all orders in Z..cap alpha.. is derived. The most essential quantity is shown to be the electrons Green's function in these calculations. The method of constructing that Green's function in the field of finite radius nuclei is then presented.

  7. Polarization Analysis of Nonlinear Harmonic Radiation in a Crossed-Planar Undulator

    SciTech Connect

    Geng, H.; Ding, Y.; Huang, Z.; /SLAC

    2009-06-23

    There is growing interest in producing intense, coherent x-ray radiation with an adjustable and arbitrary polarization state. The crossed-planar undulator, which was first proposed by Kim, could achieve rapid polarization control in synchrotron radiation sources and free electron lasers (FELs) through the manipulation of a phase shifter. Recently, a statistical analysis shows that a polarization degree of over 80% is obtainable for a Self-Amplified Spontaneous Emission (SASE) FEL near saturation. In such a scheme, nonlinear harmonic radiation is also generated in each undulator and the polarization of the radiation is controllable in the same manner. In this paper, we study the degree of polarization achievable at the third harmonic in a crossed-planar undulator. We also propose a method for generating second harmonic radiation with arbitrary polarization.

  8. Time-resolved nonlinear polarization spectroscopy for measuring transient absorption and refraction in isotropic materials

    NASA Astrophysics Data System (ADS)

    Taranenko, Victor B.; Bazhenov, Vladimir Y.; Kulikovskaya, Olga A.

    1995-11-01

    A novel time-resolved nonlinear spectroscopic technique is described, which is based on stroboscopic registration of optical polarization transformation taking place at a vector incoherent two-wave mixing interaction in a modified Mach-Zehnder interferometer. It allows an accurate measuring of the dynamics of excitation and relaxation for real and imaginary parts of complex nonlinearity tensor components. The technique is demonstrated for measuring the light-induced change of transient absorption (delta) (alpha) e(t), (delta) (alpha) o(t) and refraction (delta) ne(t), (delta) no(t) for bacteriorhodopsin- based film pumped by linearly polarized laser pulses.

  9. Polarized fluorescence photobleaching recovery for measuring rotational diffusion in solutions and membranes.

    PubMed Central

    Velez, M; Axelrod, D

    1988-01-01

    A variation of fluorescence photobleaching recovery (FPR) suitable for measuring the rate of rotational molecular diffusion in solution and cell membranes is presented in theory and experimental practice for epi-illumination microscopy. In this technique, a brief flash of polarized laser light creates an anisotropic distribution of unbleached fluorophores which relaxes by rotational diffusion, leading to a time-dependent postbleach fluorescence. Polarized FPR (PFPR) is applicable to any time scales from seconds to microseconds. However, at fast (microsecond) time scales, a partial recovery independent of molecular orientation tends to obscure rotational effects. The theory here presents a method for overcoming this reversible photobleaching, and includes explicit results for practical geometries, fast wobble of fluorophores, and arbitrary bleaching depth. This variation of a polarized luminescence "pump-and-probe" technique is compared with prior ones and with "pump-only" time-resolved luminescence anisotropy decay methods. The technique is experimentally verified on small latex beads with a variety of diameters, common fluorophore labels, and solvent viscosities. Preliminary measurements on a protein (acetylcholine receptor) in the membrane of nondeoxygenated cells in live culture (rat myotubes) show a difference in rotational diffusion between clustered and nonclustered receptors. In most experiments, signal averaging, high laser power, and automated sample translation must be employed to achieve adequate statistical accuracy. PMID:3382712

  10. Evaluation of polarization rotation in the scattering responses from individual semiconducting oxide nanorods

    PubMed Central

    Choi, Daniel S.; Singh, Manpreet; Zhou, Hebing; Milchak, Marissa; Monahan, Brian; Hahm, Jong-in

    2016-01-01

    We investigate the interaction of visible light with the solid matters of semiconducting oxide nanorods (NRs) of zinc oxide (ZnO), indium tin oxide (ITO), and zinc tin oxide (ZTO) at the single nanomaterial level. We subsequently identify an intriguing, material-dependent phenomenon of optical rotation in the electric field oscillation direction of the scattered light by systematically controlling the wavelength and polarization direction of the incident light, the NR tilt angle, and the analyzer angle. This polarization rotation effect in the scattered light is repeatedly observed from the chemically pure and highly crystalline ZnO NRs, but absent on the chemically doped NR variants of ITO and ZTO under all measurement circumstances. We further elucidate that the phenomenon of polarization rotation detected from single ZnO NRs is affected by the NR tilt angle, while the phenomenon itself occurs irrespective of the wavelength and incident polarization direction of the visible light. Combined with the widespread optical and optoelectronic use of the semiconducting oxide nanomaterials, these efforts may provide much warranted fundamental bases to tailor material-specific, single nanomaterial-driven, optically modulating functionalities which, in turn, can be beneficial for the realization of high-performance integrated photonic circuits and miniaturized bio-optical sensing devices. PMID:27158560

  11. Evaluation of polarization rotation in the scattering responses from individual semiconducting oxide nanorods

    NASA Astrophysics Data System (ADS)

    Choi, Daniel S.; Singh, Manpreet; Zhou, Hebing; Milchak, Marissa; Monahan, Brian; Hahm, Jong-in

    2016-04-01

    We investigate the interaction of visible light with the solid matters of semiconducting oxide nanorods (NRs) of zinc oxide (ZnO), indium tin oxide (ITO), and zinc tin oxide (ZTO) at the single nanomaterial level. We subsequently identify an intriguing, material-dependent phenomenon of optical rotation in the electric field oscillation direction of the scattered light by systematically controlling the wavelength and polarization direction of the incident light, the NR tilt angle, and the analyzer angle. This polarization rotation effect in the scattered light is repeatedly observed from the chemically pure and highly crystalline ZnO NRs, but absent on the chemically doped NR variants of ITO and ZTO under all measurement circumstances. We further elucidate that the phenomenon of polarization rotation detected from single ZnO NRs is affected by the NR tilt angle, while the phenomenon itself occurs irrespective of the wavelength and incident polarization direction of the visible light. Combined with the widespread optical and optoelectronic use of the semiconducting oxide nanomaterials, these efforts may provide much warranted fundamental bases to tailor material-specific, single nanomaterial-driven, optically modulating functionalities which, in turn, can be beneficial for the realization of high-performance integrated photonic circuits and miniaturized bio-optical sensing devices.

  12. Study of non-linear energy response of POLAR plastic scintillators to electrons

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Xiao, Hualin; Yu, Boxiang; Orsi, Silvio; Wu, Bobing; Hu, Wei; Zhang, Xuan

    2015-10-01

    The POLAR experiment is a joint Chinese-European project conceived for a precise measurement of gamma ray polarization and optimized for the detection of the prompt emission of Gamma-Ray Bursts (GRBs) in the energy range 50-500 keV. POLAR is a novel compact space-borne Compton polarimeter consisting of 1600 low-Z plastic scintillator bars (EJ-248M), read out by 25 flat-panel multi-anode photomultiplier tubes. In the paper, we first present a dedicated experiment to study the non-linear energy response of EJ-248M plastic scintillator bars to electrons and the detailed data analysis. Second we obtained the Birks' constant of EJ-248M plastic scintillator as kB = 0.143 mm / MeV by least squares fitting. Finally we used Geant4 simulation to study the influence of non-linear energy response on the performance of POLAR, through which it was found that non-linear energy response will lead to a significant decrease in statistics and result in larger uncertainty in polarization measurement. The paper presents a general solution to the study of non-linear energy response of plastic scintillators to electrons.

  13. Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Zhao, Shuang-Shuang; Sun, Bao-Ping; Zhang, Wen-Ming

    2014-09-01

    Hopf bifurcation and chaos of a nonlinear electromechanical coupling relative rotation system are studied in this paper. Considering the energy in air-gap field of AC motor, the dynamical equation of nonlinear electromechanical coupling relative rotation system is deduced by using the dissipation Lagrange equation. Choosing the electromagnetic stiffness as a bifurcation parameter, the necessary and sufficient conditions of Hopf bifurcation are given, and the bifurcation characteristics are studied. The mechanism and conditions of system parameters for chaotic motions are investigated rigorously based on the Silnikov method, and the homoclinic orbit is found by using the undetermined coefficient method. Therefore, Smale horseshoe chaos occurs when electromagnetic stiffness changes. Numerical simulations are also given, which confirm the analytical results.

  14. Dependence of Stellar Magnetic Activity Cycles on Rotational Period in a Nonlinear Solar-type Dynamo

    NASA Astrophysics Data System (ADS)

    Pipin, V. V.; Kosovichev, A. G.

    2016-06-01

    We study the turbulent generation of large-scale magnetic fields using nonlinear dynamo models for solar-type stars in the range of rotational periods from 14 to 30 days. Our models take into account nonlinear effects of dynamical quenching of magnetic helicity, and escape of magnetic field from the dynamo region due to magnetic buoyancy. The results show that the observed correlation between the period of rotation and the duration of activity cycles can be explained in the framework of a distributed dynamo model with a dynamical magnetic feedback acting on the turbulent generation from either magnetic buoyancy or magnetic helicity. We discuss implications of our findings for the understanding of dynamo processes operating in solar-like stars.

  15. Nonlinear polarization interaction in bacteriorhodopsin films with anisotropically saturating absorption

    NASA Astrophysics Data System (ADS)

    Korchemskaya, Elena Y.; Soskin, Marat S.; Stepanchikov, Dmitriy A.; Druzhko, Anna B.; Dyukova, Tatyana V.

    1996-06-01

    The effect of protein and matrix modifications on the photoanisotropic properties is studied for developing the concept of impact upon the main optical properties of the dynamic optical material based on bacteriorhodopsin (BR) both interaction of transmembrane protein--chromophore complex BR with matrix and interaction of protein opsin with chromophore retinal. Also possibility of the application of BR-films for the light polarization modulator is proposed.

  16. Earth rotation and polar motion from laser ranging to the moon and artificial satellites

    NASA Technical Reports Server (NTRS)

    Aardoom, L.

    1978-01-01

    Earth-based laser ranging to artificial satellites and to the moon is considered as a technique for monitoring the Earth's polar motion and diurnal rotation. The kinematics of Earth rotation as related to laser ranging is outlined. The current status of laser ranging as regards its measuring capabilities is reviewed. The relative merits of artificial satellite and lunar laser ranging are pointed out. It appears that multistation combined artificial satellite and lunar laser ranging is likely to ultimately meet a 0.002 arcseconds in pole position and 0.1 msec in UT1 daily precision requirement.

  17. Z-scan characterization of optical nonlinearities of an imperfect sample profits from radially polarized beams

    NASA Astrophysics Data System (ADS)

    Gu, Bing; Liu, Dahui; Wu, Jia-Lu; He, Jun; Cui, Yiping

    2014-12-01

    We present the Z-scan technique using azimuthal-variant vector beams for characterizing the nonlinear refractive index of an isotropic nonlinear medium. Compared with the conventional Z-scan measurements, the reliability of the vector beam Z-scan is improved because the focused azimuthal-variant vector beam exhibits a uniform-intensity focal ring instead of a focal spot. Experimentally, our investigation demonstrates that the Z-scan using radially polarized beams is a preferable technique for characterizing the optical nonlinearity of an imperfect sample.

  18. Slowly rotating dilatonic black holes with exponential form of nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Sheykhi, A.; Sepehri Rad, M.; Matsuno, K.

    2015-10-01

    The generalization of the four-dimensional Kerr-Newman black holes to include the nonlinear electrodynamics has been one of the famous problems in black hole physics. In this paper, we address the effects of the small rotation parameter on the exact black hole solutions of Einstein-dilaton gravity coupled to the exponential nonlinear electrodynamics. We find a new stationary black hole solutions of this theory, in the limit of small angular momentum, and in the presence of Liouville-type potential for the dilaton field and an arbitrary value of the dilaton coupling constant. We compute the angular momentum and the gyromagnetic ratio of these rotating dilaton black holes. Interestingly enough, we find that the nonlinearity of the electrodynamics do not affect the angular momentum and the gyromagnetic ratio of the spacetime, while in contrast, the dilaton field can modify the angular momentum as well as the gyromagnetic ratio of the rotating black holes. We find the gyromagnetic ratio as , where is the coupling constant of the dilaton and the electrodynamic fields. For , we arrive at , which is the gyromagnetic ratio of the Kerr-Newman black holes in four dimensions.

  19. Rotationally invariant pattern recognition by use of linear and nonlinear cascaded filters

    NASA Astrophysics Data System (ADS)

    Wu, Ning; Alcock, Robin D.; Halliwell, Neil A.; Coupland, Jeremy M.

    2005-07-01

    We discuss the merits of using single-layer (linear and nonlinear) and multiple-layer (nonlinear) filters for rotationally invariant and noise-tolerant pattern recognition. The capability of each approach is considered with reference to a two-class, rotation-invariant, character recognition problem. The minimum average correlation energy (MACE) filter is a linear filter that is generally accepted to be optimal for detecting signals that are free from noise. Here it is found that an optimized MACE filter cannot differentiate between the characters E and F in a rotation-invariant manner. We have found, however, that this task is possible when a single optimized linear filter is used to achieve the required response when a nonlinear threshold function is included after the filter. We show that this structure can be cascaded to form a multiple-layer, cascaded filter and that the capability of such a system is enhanced by its increased noise tolerance in the character recognition problem. Finally, we show the capability of a two-layer cascade as a means to detect different species of bacteria in images obtained from a phase-contrast microscope.

  20. Rotationally invariant pattern recognition by use of linear and nonlinear cascaded filters.

    PubMed

    Wu, Ning; Alcock, Robin D; Halliwell, Neil A; Coupland, Jeremy M

    2005-07-10

    We discuss the merits of using single-layer (linear and nonlinear) and multiple-layer (nonlinear) filters for rotationally invariant and noise-tolerant pattern recognition. The capability of each approach is considered with reference to a two-class, rotation-invariant, character recognition problem. The minimum average correlation energy (MACE) filter is a linear filter that is generally accepted to be optimal for detecting signals that are free from noise. Here it is found that an optimized MACE filter cannot differentiate between the characters E and F in a rotation-invariant manner. We have found, however, that this task is possible when a single optimized linear filter is used to achieve the required response when a nonlinear threshold function is included after the filter. We show that this structure can be cascaded to form a multiple-layer, cascaded filter and that the capability of such a system is enhanced by its increased noise tolerance in the character recognition problem. Finally, we show the capability of a two-layer cascade as a means to detect different species of bacteria in images obtained from a phase-contrast microscope. PMID:16045219

  1. Nonlinear evolution of r-modes: The role of differential rotation

    SciTech Connect

    Sa, Paulo M.; Tome, Brigitte

    2005-02-15

    Recent work has shown that differential rotation, producing large scale drifts of fluid elements along stellar latitudes, is an unavoidable feature of r-modes in the nonlinear theory. We investigate the role of this differential rotation in the evolution of the l=2 r-mode instability of a newly born, hot, rapidly-rotating neutron star. It is shown that the amplitude of the r-mode saturates a few hundred seconds after the mode instability sets in. The saturation amplitude depends on the amount of differential rotation at the time the instability becomes active and can take values much smaller than unity. It is also shown that, independently of the saturation amplitude of the mode, the star spins down to rotation rates that are comparable to the inferred initial rotation rates of the fastest pulsars associated with supernova remnants. Finally, it is shown that, when the drift of fluid elements at the time the instability sets in is significant, most of the initial angular momentum of the star is transferred to the r-mode and, consequently, almost none is carried away by gravitational-radiation.

  2. Evolution of nonlinear ion-acoustic solitary wave propagation in rotating plasma

    SciTech Connect

    Das, G. C.; Nag, Apratim

    2006-08-15

    A simple unmagnetized plasma rotating around an axis at an angle {theta} with the propagation direction of the acoustic mode has been taken. The nonlinear wave mode has been derived as an equivalent Sagdeev potential equation. A special procedure, known as the tanh method, has been developed to study the nonlinear wave propagation in plasma dynamics. Further, under small amplitude approximation, the nonlinear plasma acoustic mode has been exploited to study the evolution of soliton propagation in the plasma. The main emphasis has been given to the interaction of Coriolis force on the changes of coherent structure of the soliton. The solitary wave solution finds the different nature of solitons called compressive and rarefactive solitons as well as its explosions or collapses along with soliton dynamics and these have been showing exciting observations in exhibiting a narrow wave packet with the generation of high electric pressure and the growth of high energy which, in turn, yields the phenomena of radiating soliton in dynamics.

  3. Nonlinear flap-lag-axial equations of a rotating beam with arbitrary precone angle

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.; White, W. F., Jr.; Kaza, K. R. V.

    1978-01-01

    In an attempt both to unify and extend the analytical basis of several aspects of the dynamic behavior of flexible rotating beams, the second-degree nonlinear equations of motion for the coupled flapwise bending, lagwise bending, and axial extension of an untwisted, torsionally rigid, nonuniform, rotating beam having an arbitrary angle of precone with the plane perpendicular to the axis of rotation are derived using Hamilton's principle. The derivation of the equations is based on the geometric nonlinear theory of elasticity and the resulting equations are consistent with the assumption that the strains are negligible compared to unity. No restrictions are imposed on the relative displacements or angular rotations of the cross sections of the beam other than those implied by the assumption of small strains. Illustrative numerical results, obtained by using an integrating matrix as the basis for the method of solution, are presented both for the purpose of validating the present method of solution and indicating the range of applicability of the equations of motion and the method of solution.

  4. An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 2: shells

    NASA Astrophysics Data System (ADS)

    Campello, E. M. B.; Pimenta, P. M.; Wriggers, P.

    2011-08-01

    Following the approach developed for rods in Part 1 of this paper (Pimenta et al. in Comput. Mech. 42:715-732, 2008), this work presents a fully conserving algorithm for the integration of the equations of motion in nonlinear shell dynamics. We begin with a re-parameterization of the rotation field in terms of the so-called Rodrigues rotation vector, allowing for an extremely simple update of the rotational variables within the scheme. The weak form is constructed via non-orthogonal projection, the time-collocation of which ensures exact conservation of momentum and total energy in the absence of external forces. Appealing is the fact that general hyperelastic materials (and not only materials with quadratic potentials) are permitted in a totally consistent way. Spatial discretization is performed using the finite element method and the robust performance of the scheme is demonstrated by means of numerical examples.

  5. Alpha models for rotating Navier-Stokes equations in geophysics with nonlinear dispersive regularization

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Sik

    Three dimensional (3D) Navier-Stokes-alpha equations are considered for uniformly rotating geophysical fluid flows (large Coriolis parameter f = 2O). The Navier-Stokes-alpha equations are a nonlinear dispersive regularization of usual Navier-Stokes equations obtained by Lagrangian averaging. The focus is on the existence and global regularity of solutions of the 3D rotating Navier-Stokes-alpha equations and the uniform convergence of these solutions to those of the original 3D rotating Navier-Stokes equations for large Coriolis parameters f as alpha → 0. Methods are based on fast singular oscillating limits and results are obtained for periodic boundary conditions for all domain aspect ratios, including the case of three wave resonances which yields nonlinear "2½-dimensional" limit resonant equations for f → 0. The existence and global regularity of solutions of limit resonant equations is established, uniformly in alpha. Bootstrapping from global regularity of the limit equations, the existence of a regular solution of the full 3D rotating Navier-Stokes-alpha equations for large f for an infinite time is established. Then, the uniform convergence of a regular solution of the 3D rotating Navier-Stokes-alpha equations (alpha ≠ 0) to the one of the original 3D rotating NavierStokes equations (alpha = 0) for f large but fixed as alpha → 0 follows; this implies "shadowing" of trajectories of the limit dynamical systems by those of the perturbed alpha-dynamical systems. All the estimates are uniform in alpha, in contrast with previous estimates in the literature which blow up as alpha → 0. Finally, the existence of global attractors as well as exponential attractors is established for large f and the estimates are uniform in alpha.

  6. Polarization Rotation and Circular Dichroism Near the Potassium D2 Lines

    NASA Astrophysics Data System (ADS)

    Conover, Charles; Thiha, Htet; Dahnke, Jennifer

    2010-03-01

    We have experimentally measured the Faraday rotation and the differential absorption of the two circular polarizations for light tuned near the D2 line in potassium (766.7 nm). In particular we have explored the vapor temperature and magnetic field dependence of the frequency of the zero crossings of the lineshapes from the circular analyzer and the balanced polarimeter used in the measurements. These signals are routinely used as frequency references for laser locking and we discuss the sensitivity to experimental parameters.

  7. Nonlinear Drift-Kinetic Equation in the Presence of a Circularly Polarized Wave

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Equations of the single particle motion and nonlinear kinetic equation for plasma in the presence of a circularly polarized wave of arbitrary frequency in the drift approximation are presented. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account.

  8. Nonlinear Drift-Kinetic Equation in the Presence of a Circularly Polarized Wave

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Equations of the single particle motion and nonlinear kinetic equation for plasma in the presence of a circularly polarized wave of arbitrary frequency in the drift approximation are presented. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account. The time dependent part of the ponderomotive force is discussed.

  9. The dynamics of plus end polarization and microtubule assembly during Xenopus cortical rotation.

    PubMed

    Olson, David J; Oh, Denise; Houston, Douglas W

    2015-05-15

    The self-organization of dorsally-directed microtubules during cortical rotation in the Xenopus egg is essential for dorsal axis formation. The mechanisms controlling this process have been problematic to analyze, owing to difficulties in visualizing microtubules in living egg. Also, the order of events occurring at the onset of cortical rotation have not been satisfactorily visualized in vivo and have been inferred from staged fixed samples. To address these issues, we have characterized the dynamics of total microtubule and plus end behavior continuously throughout cortical rotation, as well as in oocytes and unfertilized eggs. Here, we show that the nascent microtubule network forms in the cortex but associates with the deep cytoplasm at the start of rotation. Importantly, plus ends remain cortical and become increasingly more numerous and active prior to rotation, with dorsal polarization occurring rapidly after the onset of rotation. Additionally, we show that vegetally localized Trim36 is required to attenuate dynamic plus end growth, suggesting that vegetal factors are needed to locally coordinate growth in the cortex. PMID:25753733

  10. Large amplitude nonlinear structures in the nighttime polar mesosphere

    NASA Astrophysics Data System (ADS)

    Maharaj, Shimul K.; Bharuthram, Ramashwar; Singh Lakhina, Gurbax; Muralikrishna, Polinaya; Singh, Satyavir

    2016-07-01

    The existence of large amplitude potential structures will be investigated for a plasma composed of negative ions, positive ions, electrons and an additional fourth component of charged (usually positive) nano-sized ions in an attempt to model the plasma composition in the nighttime polar mesosphere (˜80 - 90 km altitude) [1]. The fourth ionic component becomes positively charged if there is a high enough concentration of negative ions which are sufficiently heavy. The positive charge on the fourth component can be explained by the capture of currents, and is not a result of photo-emission and secondary electron emission processes. Consequently, if the negative ions are much lighter, then the fourth ion component will become negatively charged. The charged ion species will be treated as inertial species which are cold or adiabatic, whilst the electrons will be considered to be Boltzmann-distributed (isothermal). Taking into consideration not only the dynamics of the heaviest species (dust-acoustic) but also the lighter ions (ion-acoustic), the theoretical study will use the Sagdeev pseudo-potential formalism to explore the existence of arbitrary amplitude solitons and double layer potential structures. [1] Observations of positively charged nanoparticles in the nighttime polar mesosphere, M. Rapp, J. Hedin, I. Strelnikova, M. Friederich, J. Gumbel, and F.˜J. Lübken, Geophys. Res. Letters. 32, L23821, doi:10.1029/2005GL024676 (2005).

  11. Rotation measure synthesis study and polarized properties of PSR J1745-2900 at 7 mm

    NASA Astrophysics Data System (ADS)

    Kravchenko, E. V.; Cotton, W. D.; Yusef-Zadeh, F.; Kovalev, Y. Y.

    2016-06-01

    We present results of interferometric polarization observations of the recently discovered magnetar J1745-2900 in the vicinity of the Galactic Centre. The observations were made with the Karl G. Jansky Very Large Array (VLA) on 2014 February 21 in the range 40-48 GHz. The full polarization mode and A configuration of the array were used. The average total and linearly polarized flux density of the pulsar amounts to 2.3 ± 0.31 and 1.5 ± 0.2 mJy beam-1, respectively. Analysis shows a rotation measure (RM) of (-67 ± 3) × 103 rad m-2, which is in good agreement with previous measurements at longer wavelengths. These high-frequency observations are sensitive to RM values of up to ˜2 × 107 rad m-2. However, application of the Faraday RM synthesis technique did not reveal other significant RM components in the pulsar emission. This supports an external nature of a single thin Faraday-rotating screen which should be located close to the Galactic Centre. The Faraday-corrected intrinsic electric vector position angle is 16 ± 9 deg east of north, and coincides with the position angle of the pulsar's transverse velocity. All measurements of the pulsar's RM value to date, including the one presented here, well agree within errors, which points towards a steady nature of the Faraday-rotating medium.

  12. Digital Beam Steering Device Based on Decoupled Birefringent Prism Deflector and Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Pishnyak, Oleg; Kreminska, Lyubov; Laventovich, Oleg D.; Pouch, John J.; Miranda, Felix A.; Winker, Bruce K.

    2004-01-01

    We describe digital beam deflectors (DBDs) based on liquid crystals. Each stage of the device comprises a polarization rotator and a birefringent prism deflector. The birefringent prism deflects the beam by an angle that depends on polarization of the incident beam. The prism can be made of the uniaxial smectic A (SmA) liquid crystal (LC) or a solid crystal such as yttrium orthovanadate (YVO4). SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Rotation of linear polarization is achieved by an electrically switched twisted nematic (TN) cell. A DBD composed of N rotator-deflector pairs steers the beam into 2(sup N) directions. As an example, we describe a four-stage DBD deflecting normally incident laser beam within the range of +/- 56 mrad with 8 mrad steps. Redirection of the beam is achieved by switching the TN cells.

  13. Polarization rotator of arbitrary angle based on simple slot-array

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Cao, Xiaohang; Yu, Junsheng; Chen, Xiaodong; Yao, Yuan; Qi, Limei; Chen, Zhijiao; Zhou, Jun

    2015-12-01

    A novel polarization rotator of arbitrary angle was proposed and realized based on simple slot arrays. To achieve the rotation of an arbitrary angle α, the slots on the first layer have to be at an angle of α to the slots on the second layer. Consequently, 90° rotation can be realized using two perpendicularly oriented slot arrays, which overturns the conventional notion of that perpendicular slot arrays are not possible to pass electromagnetic wave. In addition, such structure provides the same bandwidth comparing to its counterpart utilized for frequency selective surface (FSS). Furthermore, such structure is much easier to be fabricated compared to the substrate integrated waveguide (SIW) array. Moreover, low insertion loss can be achieved based on metallic material.

  14. Renormalized vacuum polarization on rotating warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Ferreira, Hugo R. C.; Louko, Jorma

    2015-01-01

    We compute the renormalized vacuum polarization of a massive scalar field in the Hartle-Hawking state on (2 +1 )-dimensional rotating, spacelike stretched black hole solutions to topologically massive gravity, surrounded by a Dirichlet mirror that makes the state well defined. The Feynman propagator is written as a mode sum on the complex Riemannian section of the spacetime, and a Hadamard renormalization procedure is implemented by matching to a mode sum on the complex Riemannian section of a rotating Minkowski spacetime. No analytic continuation in the angular momentum parameter is invoked. Selected numerical results are given, demonstrating the numerical efficacy of the method. We anticipate that this method can be extended to wider classes of rotating black hole spacetimes, in particular to the Kerr spacetime in four dimensions.

  15. VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor.

    PubMed

    Guo, Tuan; Liu, Fu; Du, Fa; Zhang, Zhaochuan; Li, Chunjie; Guan, Bai-Ou; Albert, Jacques

    2013-08-12

    A compact fiber-optic vector rotation sensor in which a short section of polarization-maintaining (PM) fiber stub containing a straight fiber Bragg grating (FBG) is spliced to another single mode fiber without any lateral offset is proposed and experimentally demonstrated. Due to the intrinsic birefringence of the PM fiber, two well-defined resonances (i.e. orthogonally polarized FBG core modes) with wavelength separation of 0.5 nm have been achieved in reflection, and they exhibit a high sensitivity to fiber rotation. Both the orientation and the angle of rotation can be determined unambiguously via simple power detection of the relative amplitudes of the orthogonal core reflections. Meanwhile, instead of using a broadband source (BBS), the sensor is powered by a commercial vertical cavity surface emitting laser (VCSEL) with the laser wavelength matched to the PM-FBG core modes, which enables the sensor to work at much higher power levels (~15 dB better than BBS). This improves the signal-to-noise ratio considerably (~50 dB), and makes a demodulation filter unnecessary. Vector rotation measurement with a sensitivity of 0.09 dB/deg has been achieved via cost-effective single detector real time power measurement, and the unwanted power fluctuations and temperature perturbations can be effectively referenced out. PMID:23938824

  16. Rotating-frame perspective on high-order-harmonic generation of circularly polarized light

    NASA Astrophysics Data System (ADS)

    Reich, Daniel M.; Madsen, Lars Bojer

    2016-04-01

    We employ a rotating frame of reference to elucidate high-order-harmonic generation of circularly polarized light by bicircular driving fields. In particular, we show how the experimentally observed circular components of the high-order-harmonic spectrum can be directly related to the corresponding quantities in the rotating frame. Supported by numerical simulations of the time-dependent Schrödinger equation, we deduce an optimal strategy for maximizing the cutoff in the high-order-harmonic plateau while keeping the two circular components of the emitted light spectrally distinct. Moreover, we show how the rotating-frame picture can be more generally employed for elliptical drivers. Finally, we point out how circular and elliptical driving fields show a near-duality to static electric and magnetic fields in a rotating-frame description. This demonstrates how high-order-harmonic generation of circularly polarized light under static electromagnetic fields can be emulated in practice even at static field strengths beyond current experimental capabilities.

  17. SCIENTIFIC VERIFICATION OF FARADAY ROTATION MODULATORS: DETECTION OF DIFFUSE POLARIZED GALACTIC EMISSION

    SciTech Connect

    Moyerman, S.; Bierman, E.; Kaufman, J.; Keating, B. G.; Ade, P. A. R.; Aiken, R.; Hristov, V. V.; Jones, W. C.; Mason, P. V.; Barkats, D.; Bischoff, C.; Kovac, J. M.; Bock, J. J.; Dowell, C. D.; Chiang, H. C.; Duband, L.; Hivon, E. F.; Holzapfel, W. L.; Kuo, C. L.; Leitch, E. M.; and others

    2013-03-01

    The design and performance of a wide bandwidth linear polarization modulator based on the Faraday effect is described. Faraday Rotation Modulators (FRMs) are solid-state polarization switches that are capable of modulation up to 10 kHz. Six FRMs were utilized during the 2006 observing season in the Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment; three FRMs were used at each of BICEP's 100 and 150 GHz frequency bands. The technology was verified through high signal-to-noise detection of Galactic polarization using two of the six FRMs during four observing runs in 2006. The features exhibit strong agreement with BICEP's measurements of the Galaxy using non-FRM pixels and with the Galactic polarization models. This marks the first detection of high signal-to-noise mm-wave celestial polarization using fast, active optical modulation. The performance of the FRMs during periods when they were not modulated was also analyzed and compared to results from BICEP's 43 pixels without FRMs.

  18. The effect of Thompson and Troian's nonlinear slip condition on Couette flows between concentric rotating cylinders

    NASA Astrophysics Data System (ADS)

    Power, H.; Soavi, J.; Kantachuvesiri, P.; Nieto, C.

    2015-10-01

    In this work, a detailed study of the effect of the Thompson and Troian's nonlinear slip condition on the flow behaviour of a Newtonian incompressible fluid between two concentric rotating cylinders (Couette flow) is considered. In Thompson and Troian's nonlinear condition, the slip length on the Navier slip condition is considered to be a function of the tangential shear rate at the solid surface instead of being a constant. The resulting formulation presents an apparent singularity on the slip length when a critical shear rate is approached. By considering this type of nonlinear slip condition, it is possible to predict complex characteristics of the flow field not previously reported in the literature, and to show the effect of nonlinear slip on the inverted velocity profiles previously observed in the linear slip case. Particular attention is given to the behaviour of the flow field near the critical shear rate. In such a limit, it is found that the flow field tends to slip flow with a finite slip length. Consequently, previous critique on the singular behaviour of Thompson and Troian's nonlinear model is not valid in the present case.

  19. Rotatable spin-polarized electron source for inverse-photoemission experiments

    SciTech Connect

    Stolwijk, S. D. Wortelen, H.; Schmidt, A. B.; Donath, M.

    2014-01-15

    We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111) highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces.

  20. Magnetic-Field-Induced Rotation of Polarized Light Emission from Monolayer WS_{2}.

    PubMed

    Schmidt, Robert; Arora, Ashish; Plechinger, Gerd; Nagler, Philipp; Granados Del Águila, Andrés; Ballottin, Mariana V; Christianen, Peter C M; Michaelis de Vasconcellos, Steffen; Schüller, Christian; Korn, Tobias; Bratschitsch, Rudolf

    2016-08-12

    We control the linear polarization of emission from the coherently emitting K^{+} and K^{-} valleys (valley coherence) in monolayer WS_{2} with an out-of-plane magnetic field of up to 25 T. The magnetic-field-induced valley Zeeman splitting causes a rotation of the emission polarization with respect to the excitation by up to 35° and reduces the polarization degree by up to 16%. We explain both of these phenomena with a model based on two noninteracting coherent two-level systems. We deduce that the coherent light emission from the valleys decays with a time constant of τ_{c}=260  fs. PMID:27563997

  1. Optimal Vibration Estimation of a Non-Linear Flexible Beam Mounted on a Rotating Compliant Hub

    NASA Astrophysics Data System (ADS)

    El-Sinawi, A.; Hamdan, M. N.

    2003-01-01

    To eliminate the need for sensor placement on rotating flexible beams such as turbine blades, helicopter rotors and like applications, a new approach has been developed based on the linear quadratic estimator (LQE) technique for estimating the vibration of any point on the span of a rotating flexible beam mounted on a compliant hub ( plant) in the presence of process and measurements noise. A non-linear model of the plant is utilized in this study to mimic the actual plant behavior. The corresponding plant dynamics of the LQE are in the form of a reduced order linear model constructed from the eigenvalues and eigenfuctions of a finite element dynamic model of the plant formulated in the state space. A virtual hub deflection (that mimics the actual measurement of the vertical hub deflection needed by the estimation process) is generated by the non-linear model of the plant. The LQE reconstructs the states of the plant, including transverse deflection of the beam at any point, from the measurements of the vertical deflection of the hub, assuming that it is the most accessible state for measurement. Estimated beam tip deflection obtained by the proposed technique is then compared to the tip deflection generated by the non-linear model and the results show good agreement.

  2. Nonlinear modeling of a rotational MR damper via an enhanced Bouc-Wen model

    NASA Astrophysics Data System (ADS)

    Miah, Mohammad S.; Chatzi, Eleni N.; Dertimanis, Vasilis K.; Weber, Felix

    2015-10-01

    The coupling of magnetorheological (MR) dampers with semi-active control schemes has proven to be an effective and failsafe approach for vibration mitigation of low-damped structures. However, due to the nonlinearities inherently relating to such damping devices, the characterization of the associated nonlinear phenomena is still a challenging task. Herein, an enhanced phenomenological modeling approach is proposed for the description of a rotational-type MR damper, which comprises a modified Bouc-Wen model coupled with an appropriately selected sigmoid function. In a first step, parameter optimization is performed on the basis of individual models in an effort to approximate the experimentally observed response for varying current levels and actuator force characteristics. In a second step, based on the previously identified parameters, a generalized best-fit model is proposed by performing a regression analysis. Finally, model validation is carried out via implementation on different sets of experimental data. The proposed model indeed renders an improved representation of the actually observed nonlinear behavior of the tested rotational MR damper.

  3. On the nonlinear interfacial instability of rotating core-annular flow

    NASA Technical Reports Server (NTRS)

    Coward, Aidrian V.; Hall, Philip

    1993-01-01

    The interfacial stability of rotating core-annular flows is investigated. The linear and nonlinear effects are considered for the case when the annular region is very thin. Both asymptotic and numerical methods are used to solve the flow in the core and film regions which are coupled by a difference in viscosity and density. The long-term behavior of the fluid-fluid interface is determined by deriving its nonlinear evolution in the form of a modified Kuramoto-Sivashinsky equation. We obtain a generalization of this equation to three dimensions. The flows considered are applicable to a wide array of physical problems where liquid films are used to lubricate higher or lower viscosity core fluids, for which a concentric arrangement is desired. Linearized solutions show that the effects of density and viscosity stratification are crucial to the stability of the interface. Rotation generally destabilizes non-axisymmetric disturbances to the interface, whereas the centripetal forces tend to stabilize flows in which the film contains the heavier fluid. Nonlinear affects allow finite amplitude helically travelling waves to exist when the fluids have different viscosities.

  4. Nonlinear Exact Solutions of the 2-Dimensional Rotational Euler Equations for the Incompressible Fluid

    NASA Astrophysics Data System (ADS)

    An, Hong-Li; Yang, Jin-Jing; Yuen, Man-Wai

    2015-05-01

    In this paper, the Clarkson-Kruskal direct approach is employed to investigate the exact solutions of the 2-dimensional rotational Euler equations for the incompressible fluid. The application of the method leads to a system of completely solvable ordinary differential equations. Several special cases are discussed and novel nonlinear exact solutions with respect to variables x and y are obtained. It is of interest to notice that the pressure p is obtained by the second kind of curvilinear integral and the coefficients of the nonlinear solutions are solitary wave type functions like tanh(kt/2) and sech (kt/2) due to the rotational parameter k ≠ 0. Such phenomenon never appear in the classical Euler equations wherein the Coriolis force arising from the gravity and Earth's rotation is ignored. Finally, illustrative numerical figures are attached to show the behaviors that the exact solutions may exhibit. Supported by the National Natural Science Foundation of China under Grant No. 11301269, Jiangsu Provincial Natural Science Foundation of China under Grant No. BK20130665, the Fundamental Research Funds KJ2013036 for the Central Universities, Student Research Training under Grant No. 1423A02 of Nanjing Agricultural University, and the Research Grant RG21/2013-2014R from the Hong Kong Institute of Education

  5. Analysis of a polarization-independent nonlinear cross-slot waveguide with Fourier Modal Method (FMM)

    NASA Astrophysics Data System (ADS)

    Paul, Somnath; Tervo, Jani; Honakanen, Seppo

    2014-05-01

    We propose the Fourier Modal Method (FMM) as a convenient numerical tool for the design and analysis of nonlinear optical waveguides. The scope of this work includes the design of a polarization-independent nonlinear cross-slot waveguide for telecommunication applications at the wavelength of 1550 nm. The FMM method has been implemented, obeying the proper Fourier factorization rules, within a MATLABTM environment. The influence of the modal field intensity on the transverse refractive index distribution due to the optical Kerr effect is modeled with FMM for a propagation invariant scheme of the waveguide. The waveguide is geometrically optimized for an enhanced nonlinear light matter interaction. A silicon-inorganic hybrid material platform based on hydrogenated amorphous silicon (a-Si:H) and amorphous titanium dioxide (TiO2) is considered for the mentioned waveguide. With the optimized design of the waveguide, the achieved value of the nonlinear waveguide parameter (γ) is 4.678 × 104 W-1Km-1.

  6. ROTATIONAL VARIABILITY OF EARTH'S POLAR REGIONS: IMPLICATIONS FOR DETECTING SNOWBALL PLANETS

    SciTech Connect

    Cowan, Nicolas B.; Robinson, Tyler; Agol, Eric; Meadows, Victoria S.; Shields, Aomawa L.; Livengood, Timothy A.; Deming, Drake; A'Hearn, Michael F.; Wellnitz, Dennis D.; Charbonneau, David; Lisse, Carey M.

    2011-04-10

    We have obtained the first time-resolved, disk-integrated observations of Earth's poles with the Deep Impact spacecraft as part of the EPOXI mission of opportunity. These data mimic what we will see when we point next-generation space telescopes at nearby exoplanets. We use principal component analysis (PCA) and rotational light curve inversion to characterize color inhomogeneities and map their spatial distribution from these unusual vantage points, as a complement to the equatorial views presented by Cowan et al. in 2009. We also perform the same PCA on a suite of simulated rotational multi-band light curves from NASA's Virtual Planetary Laboratory three-dimensional spectral Earth model. This numerical experiment allows us to understand what sorts of surface features PCA can robustly identify. We find that the EPOXI polar observations have similar broadband colors as the equatorial Earth, but with 20%-30% greater apparent albedo. This is because the polar observations are most sensitive to mid-latitudes, which tend to be more cloudy than the equatorial latitudes emphasized by the original EPOXI Earth observations. The cloudiness of the mid-latitudes also manifests itself in the form of increased variability at short wavelengths in the polar observations and as a dominant gray eigencolor in the south polar observation. We construct a simple reflectance model for a snowball Earth. By construction, our model has a higher Bond albedo than the modern Earth; its surface albedo is so high that Rayleigh scattering does not noticeably affect its spectrum. The rotational color variations occur at short wavelengths due to the large contrast between glacier ice and bare land in those wavebands. Thus, we find that both the broadband colors and diurnal color variations of such a planet would be easily distinguishable from the modern-day Earth, regardless of viewing angle.

  7. Rotational Variability of Earth's Polar Regions: Implications for Detecting Snowball Planets

    NASA Astrophysics Data System (ADS)

    Cowan, Nicolas B.; Robinson, Tyler; Livengood, Timothy A.; Deming, Drake; Agol, Eric; A'Hearn, Michael F.; Charbonneau, David; Lisse, Carey M.; Meadows, Victoria S.; Seager, Sara; Shields, Aomawa L.; Wellnitz, Dennis D.

    2011-04-01

    We have obtained the first time-resolved, disk-integrated observations of Earth's poles with the Deep Impact spacecraft as part of the EPOXI mission of opportunity. These data mimic what we will see when we point next-generation space telescopes at nearby exoplanets. We use principal component analysis (PCA) and rotational light curve inversion to characterize color inhomogeneities and map their spatial distribution from these unusual vantage points, as a complement to the equatorial views presented by Cowan et al. in 2009. We also perform the same PCA on a suite of simulated rotational multi-band light curves from NASA's Virtual Planetary Laboratory three-dimensional spectral Earth model. This numerical experiment allows us to understand what sorts of surface features PCA can robustly identify. We find that the EPOXI polar observations have similar broadband colors as the equatorial Earth, but with 20%-30% greater apparent albedo. This is because the polar observations are most sensitive to mid-latitudes, which tend to be more cloudy than the equatorial latitudes emphasized by the original EPOXI Earth observations. The cloudiness of the mid-latitudes also manifests itself in the form of increased variability at short wavelengths in the polar observations and as a dominant gray eigencolor in the south polar observation. We construct a simple reflectance model for a snowball Earth. By construction, our model has a higher Bond albedo than the modern Earth; its surface albedo is so high that Rayleigh scattering does not noticeably affect its spectrum. The rotational color variations occur at short wavelengths due to the large contrast between glacier ice and bare land in those wavebands. Thus, we find that both the broadband colors and diurnal color variations of such a planet would be easily distinguishable from the modern-day Earth, regardless of viewing angle.

  8. Polarization rotator based on augmented low-index-guiding waveguide on silicon nitride/silicon-on-insulator platform.

    PubMed

    Sun, X; Alam, M Z; Aitchison, J S; Mojahedi, M

    2016-07-15

    Using a newly proposed augmented low-index-guiding scheme with silicon nitride/silicon dual-core waveguide, we have designed, fabricated, and characterized a transverse electric (TE) to transverse magnetic (TM) and TM-to-TE compact polarization rotator. The polarization rotation is realized in an asymmetric directional coupler. The measured peak conversion efficiencies for the TE-to-TM and TM-to-TE rotations are approximately 97%. The measured polarization extinction ratio for the TE-to-TM rotation is greater than 20 dB over 50-nm bandwidth, while for the TM-to-TE rotation it is greater than 15 dB over the C-band. PMID:27420502

  9. Mode-evolution-based polarization rotator-splitter design via simple fabrication process.

    PubMed

    Yuan, Wangqing; Kojima, Keisuke; Wang, Bingnan; Koike-Akino, Toshiaki; Parsons, Kieran; Nishikawa, Satoshi; Yagyu, Eiji

    2012-04-23

    A mode-evolution-based polarization rotator-splitter built on InP substrate is proposed by combining a mode converter and an adiabatic asymmetric Y-coupler. The mode converter, consisting of a bi-level taper and a width taper, effectively converts the fundamental TM mode into the second order TE mode without changing the polarization of the fundamental TE mode. The following adiabatic asymmetric Y-coupler splits the fundamental and the second order TE modes and also converts the second order TE mode into the fundamental TE mode. A shallow etched structure is proposed for the width taper to enhance the polarization conversion efficiency. The device has a total length of 1350 µm, a polarization extinction ratio over 25 dB and an insertion loss below 0.5 dB both for TE and TM modes, over the wavelength range from 1528 to 1612 nm covering all C + L band. Because the device is designed based on mode evolution principle, it has a large fabrication tolerance. The insertion loss remains below 1 dB and the polarization extinction ratio remains over 17 dB with respect to a width variation of +/- 0.12 µm at the wavelength of 1570 nm, or +/- 0.08 µm over the entire C + L band. PMID:22535107

  10. a Geometrically Non-Linear Model of Rotating Shafts with Internal Resonance and Self-Excited Vibration

    NASA Astrophysics Data System (ADS)

    Łuczko, J.

    2002-08-01

    A geometrically non-linear model of the rotating shaft is introduced, which includes Kárman non-linearity, non-linear curvature effects, large displacements and rotations as well as gyroscopic effects. Through applying Timoshenko-type assumptions, the shear effects are also included in the model. Convenient matrix descriptions are used in order to facilitate the analysis based on Galerkin and continuation methods. The model is used to analyze the phenomenon of internal resonance. The influence of some of the system's parameters on the amplitude and frequency of self-excited vibration is investigated.

  11. Ultrafast Rotation of Light Fields Applied to Highly Non-Linear Optics

    NASA Astrophysics Data System (ADS)

    Quéré, Fabien

    2014-05-01

    Femtosecond laser beams can exhibit spatio-temporal couplings (STC), i.e. a temporal dependence of their spatial properties, or vice versa. Although these couplings have long been considered as detrimental for high-intensity and ultrafast experiments, moderate and controlled STC provide a powerful means of controlling high-intensity laser-matter interactions. This talk will first explain the basics of a particular STC, where the propagation direction of laser light rotates in time on the femtosecond time scale. Laser pulses with such ultrafast wavefront rotation can be used to generate attosecond pulses of light through non-linear optical processes. We show that these pulses, periodically generated in each laser cycle, can then be emitted in spatially separated beamlets. This effects provides a new type of light sources called attosecond lighthouses, and can be exploited for ultrafast measurements with femtosecond resolution, in a scheme called photonic streaking.

  12. Energy harvester for rotating environments using offset pendulum and nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Roundy, Shad; Tola, Jeffry

    2014-10-01

    We present an energy harvester for environments that rotate through the Earth’s gravitational field. Example applications include shafts connected to motors, axles, propellers, fans, and wheels or tires. Our approach uses the unique dynamics of an offset pendulum along with a nonlinear bistable restoring spring to improve the operational bandwidth of the system. Depending on the speed of the rotating environment, the system can act as a bistable oscillator, monostable stiffening oscillator, or linear oscillator. We apply our approach to a tire pressure monitoring system mounted on a car rim. Simulation and experimental test results show that the prototype generator is capable of directly powering an RF transmission every 60 s or less over a speed range of 10 to 155 kph.

  13. General relativistic x ray (UV) polarization rotations as a quantitative test for black holes

    NASA Technical Reports Server (NTRS)

    Stark, Richard F.

    1989-01-01

    It is now 11 years since a potentially easily observable and quantitative test for black holes using general relativistic polarization rotations was proposed (Stark and Connors 1977, and Connors and Stark 1977). General relativistic rotations of the x ray polarization plane of 10 to 100 degrees with x ray energy (between 1 and 100 keV) are predicted for black hole x ray binaries. (Classically, by symmetry, there is no rotation.) Unfortunately, x ray polarimetry has not been taken sufficiently seriously during this period, and this test has not yet been performed. A similar (though probably less clean) effect is expected in the UV for supermassive black holes in some quasars active galactic nuclei. Summarizing: (1) a quantitative test (proposed in 1977) for black holes exists; (2) x ray polarimetry of galactic x ray binaries sensitive to at least 1/2 percent between 1 keV and 100 keV is needed (polarimetry in the UV of quasars and AGN will also be of interest); and (3) proportional counters using timerise discrimination were shown in laboratory experiments able to perform x ray polarimetry and this and other methods need to be developed.

  14. Investigation of microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    SciTech Connect

    Budker, D.; Hollberg, L.; Kimball, D.F.; Kitching, J.; Pustclny, S.; Robinson, H.G.; Yashchuk, V.V.

    2004-06-04

    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between the components of the ground-state hyperfine structure for {sup 85}Rb and {sup 87}Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, which may be useful for atomic clocks and magnetometers.

  15. Microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    SciTech Connect

    Budker, D.; Hollberg, L.; Kitching, J.; Kimball, D.F.; Pustelny, S.; Yashchuk, V.V.

    2005-01-01

    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between ground-state hyperfine components of {sup 85}Rb and {sup 87}Rb atoms contained in vapor cells with alkane antirelaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a 40-year period we demonstrate the long-term stability of coated cells, an important property for atomic clocks and magnetometers.

  16. Microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    SciTech Connect

    Budker, Dmitry; Hollberg. Leo; Kimball, Derek F.; Kitching J.; Pustelny Szymon; Yashchuk, Valeriy V.

    2004-08-12

    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between ground-state hyperfine components of {sup 85}Rb and {sup 87}Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, an important property for atomic clocks and magnetometers.

  17. Magnetic Dilaton Rotating Strings in the Presence of Exponential Nonlinear Electrodynamics

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Mahmoudi, Z.

    2016-09-01

    In this paper, we construct a new class of four-dimensional spinning magnetic dilaton string solutions which produces a longitudinal nonlinear electromagnetic field. The Lagrangian of the matter field has the exponential form. We study the physical properties of the solution in ample details. Geometrical, causal and geodisical structures of the solutions are investigated, separately. We confirm that the spacetime is both null and geodesically complete. We find that these solutions have no curvature singularity and no horizon, but have a conic geometry. We investigate the effects of variation of charge and the intensity of the dilaton field, on the deficit angle. Due to the presence of the dilaton field, the asymptotic behavior of the solutions are neither flat nor (anti-) de Sitter [(A)dS]. Furthermore, we extend our study to the higher dimensions and obtain the ( n+1)-dimensional magnetic rotating dilaton strings with k≤[ n/2] rotation parameters and calculate conserved quantities of the solutions. Although these solutions are not asymptotically (A)dS, we use counterterm method to calculate conserved quantities. We also calculate electric charge and show that the net electric charge of the spinning string is proportional to the rotating parameter and the electric field only exists when the rotation parameter does not vanish.

  18. Magnetic Dilaton Rotating Strings in the Presence of Exponential Nonlinear Electrodynamics

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Mahmoudi, Z.

    2016-04-01

    In this paper, we construct a new class of four-dimensional spinning magnetic dilaton string solutions which produces a longitudinal nonlinear electromagnetic field. The Lagrangian of the matter field has the exponential form. We study the physical properties of the solution in ample details. Geometrical, causal and geodisical structures of the solutions are investigated, separately. We confirm that the spacetime is both null and geodesically complete. We find that these solutions have no curvature singularity and no horizon, but have a conic geometry. We investigate the effects of variation of charge and the intensity of the dilaton field, on the deficit angle. Due to the presence of the dilaton field, the asymptotic behavior of the solutions are neither flat nor (anti-) de Sitter [(A)dS]. Furthermore, we extend our study to the higher dimensions and obtain the (n+1)-dimensional magnetic rotating dilaton strings with k≤[n/2] rotation parameters and calculate conserved quantities of the solutions. Although these solutions are not asymptotically (A)dS, we use counterterm method to calculate conserved quantities. We also calculate electric charge and show that the net electric charge of the spinning string is proportional to the rotating parameter and the electric field only exists when the rotation parameter does not vanish.

  19. In-line polarization rotator based on the quantum-optical analogy.

    PubMed

    Chen, Lei; Qu, Ke-Nan; Shen, Heng; Zhang, Wei-Gang; Chou, Keng C; Liu, Qian; Yan, Tie-Yi; Wang, Biao; Wang, Song

    2016-05-01

    An in-line polarization rotator (PR) is proposed based on the quantum-optical analogy (QOA). The proposed PR possesses an auxiliary E7 liquid crystal (LC) waveguide in the vicinity of the single-mode fiber (SMF) core. Because of the matched core size, the PR demonstrates good compatibility with the established backbone networks which are composed of conventional SMFs. With optimized parameters for the auxiliary waveguide, the PR offers a near 100% polarization conversion efficiency at the 1550 nm band with a bandwidth of ∼30  nm, a length of ∼4625.9  μm with a large tolerance of ∼550  μm, and a tolerance of the input light polarization angle and rotation angle of the E7 LC of ∼π/30 and ∼π/36  rad, respectively. The performance was verified by the full-vector finite-element method. The proposed PR can be easily fabricated based on the existing photonics crystal fiber manufacturing process, making it a potentially inexpensive device for applications in modern communication systems. Moreover, the QOA, compared with the previous supermode-theory design method, allows a designer to consider several waveguides separately. Therefore, various unique characteristics can be met simultaneously which is consistent with the trend of modern fiber design. PMID:27128087

  20. Realization of Hadamard, Pauli-X and rotation gate for polarization-encoded qubits on chip

    NASA Astrophysics Data System (ADS)

    Heilmann, Rene; Graefe, Markus; Nolte, Stefan; Szameit, Alexander

    2014-05-01

    The implementation of quantum operations in photonic devices plays a central role towards quantum computing, as light is a logical choice when low decoherence and stability is of interest. Particular interest is thereby given to polarization-encoded photonic qubits on chip that are superior in terms of stability and size. However, to date waveguide-based modulating polarization states was beyond technological capabilities, preventing from the implementation of universal quantum computing algorithms on chip. In our work we close this gap and present integrated Hadamard, Pauli-X and rotation gates of high fidelity for photonic polarization qubits by employing a reorientation of the birefringent waveguide's optical axis. To this end, we employ laser-written waveguides and use several of their unique features. Due to the impact of an artificial stress field created by an additional defect close to the waveguide, its optical axis is rotated. Further on, by adjusting the length of the defect, the retardation between ordinary and extraordinary field components is precisely tunable including half-wave plate and quarter-wave plate operations. A theoretical treatment as well as characterization of the implemented gates by classical and quantum light are presented.

  1. Triaxial Earth's rotation: Chandler wobble, free core nutation and diurnal polar motion (Abstract)

    NASA Astrophysics Data System (ADS)

    Sun, R.; Shen, W.-B.

    2015-08-01

    In this study, we formulate two-layered triaxial Earth rotation theory, focusing on the influence of the triaxiality on the Chandler wobble (CW), free core nutation (FCN) and diurnal polar motion. We estimate the frequencies of the normal modes CW and FCN, and results show that though the influence of two-layer triaxiality on the CW and FCN frequencies are very small, there appear some new natures. The response of the Earth's polar motion to the excitation consists of two parts. One is in response to the same frequency excitation and the other is in response to the opposite frequency excitation. For an Earth model with triaxial mantle and core, both of these two parts have four resonant frequencies rather than two that are suggested by rotational symmetric Earth model. However, due to the small strength of these new resonances, the effects of these resonances are only significant when the excitation frequencies are very near to these resonance frequencies. In addition, compared to the biaxial case, the influences of the triaxiality on the prograde and retrograde diurnal polar motions excited by ocean tide component K1 are estimated as - 1.4 μas and - 0.9 μas respectively, which should be taken into account in theory. This study is supported by National 973 Project China (grant No. 2013CB733305), NSFC (grant Nos. 41174011, 41210006, 41128003, 41021061).

  2. Inducing self-rotation of cells with natural and artificial melanin in a linearly polarized alternating current electric field

    PubMed Central

    Ouyang, Mengxing; Ki Cheung, Wing; Liang, Wenfeng; Mai, John D.; Keung Liu, Wing; Jung Li, Wen

    2013-01-01

    The phenomenon of self-rotation observed in naturally and artificially pigmented cells under an applied linearly polarized alternating current (non-rotating) electrical field has been investigated. The repeatable and controllable rotation speeds of the cells were quantified and their dependence on dielectrophoretic parameters such as frequency, voltage, and waveform was studied. Moreover, the rotation behavior of the pigmented cells with different melanin content was compared to quantify the correlation between self-rotation and the presence of melanin. Most importantly, macrophages, which did not originally rotate in the applied non-rotating electric field, began to exhibit self-rotation that was very similar to that of the pigmented cells, after ingesting foreign particles (e.g., synthetic melanin or latex beads). We envision the discovery presented in this paper will enable the development of a rapid, non-intrusive, and automated process to obtain the electrical conductivities and permittivities of cellular membrane and cytoplasm in the near future. PMID:24404075

  3. Polarization rotator-splitters and controllers in a Si3N4-on-SOI integrated photonics platform.

    PubMed

    Sacher, Wesley D; Huang, Ying; Ding, Liang; Barwicz, Tymon; Mikkelsen, Jared C; Taylor, Benjamin J F; Lo, Guo-Qiang; Poon, Joyce K S

    2014-05-01

    We demonstrate novel polarization management devices in a custom-designed silicon nitride (Si(3)N(4)) on silicon-on-insulator (SOI) integrated photonics platform. In the platform, Si(3)N(4) waveguides are defined atop silicon waveguides. A broadband polarization rotator-splitter using a TM0-TE1 mode converter in a composite Si(3)N(4)-silicon waveguide is demonstrated. The polarization crosstalk, insertion loss, and polarization dependent loss are less than -19 dB, 1.5 dB, and 1.0 dB, respectively, over a bandwidth of 80 nm. A polarization controller composed of polarization rotator-splitters, multimode interference couplers, and thin film heaters is also demonstrated. PMID:24921814

  4. Polarization maintaining highly nonlinear photonic crystal fiber with closely lying two zero dispersion wavelengths

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Rabiul; Anower, Md. Shamim; Hasan, Md. Imran

    2016-05-01

    A simple hexagonal photonic crystal fiber is proposed to simultaneously achieve ultrahigh birefringence, large nonlinear coefficient, and two zero dispersion wavelengths (ZDWs). The finite element method with circular perfectly matched layer boundary condition is used to simulate the designed structure. Simulation results show that it is possible to achieve two closely lying ZDWs of 1.08 and 1.29 μm for x-polarization with 0.88 and 1.20 μm for y-polarization modes, respectively. In addition, an ultrahigh birefringence of 3.15×10-2 and a high nonlinear coefficient of 58 W-1 km-1 are also obtained at the excitation wavelength of 1.55 μm. The proposed fiber can have important applications in supercontinuum generation, parametric amplification, four-wave mixing, and optical sensors design.

  5. New Atmospheric and Oceanic Angular Momentum Datasets for Predictions of Earth Rotation/Polar Motion

    NASA Astrophysics Data System (ADS)

    Salstein, D. A.; Stamatakos, N.

    2014-12-01

    We are reviewing the state of the art in available datasets for both atmospheric angular momentum (AAM) and oceanic angular momentum (OAM) for the purposes of analysis and prediction of both polar motion and length of day series. Both analyses and forecasts of these quantities have been used separately and in combination to aid in short and medium range predictions of Earth rotation parameters. The AAM and OAM combination, with the possible addition of hydrospheric angular momentum can form a proxy index for the Earth rotation parameters themselves due to the conservation of angular momentum in the Earth system. Such a combination of angular momentum of the geophysical fluids has helped in forecasts within periods up to about 10 days, due to the dynamic models, and together with extended statistical predictions of Earth rotation parameters out even as far as 90 days, according to Dill et al. (2013). We assess other dataset combinations that can be used in such analysis and prediction efforts for the Earth rotation parameters, and demonstrate the corresponding skill levels in doing so.

  6. Photonic crystal fiber polarization rotator based on the topological Zeeman effect.

    PubMed

    Chen, Lei; Zhang, Wei-Gang; Yan, Tie-Yi; Wang, Li; Sieg, Jonathan; Wang, Biao; Zhou, Quan; Zhang, Li-Yu

    2015-08-01

    A photonic crystal fiber polarization rotator (PR) is proposed based on the topological Zeeman effect. The proposed PR is achieved by permanently twisting a segment of sixfold symmetric photonic crystal fiber with a matched length, and under the optimized parameters, the PR can offer an almost 100% polarization conversion ratio in the wavelength of 1.55-μm band (∼200  nm bandwidth) and a compact length of about 157 μm based on the numerical simulation result of the full-vector finite-element method. The proposed in-line PCF PR can be easily fabricated based on state-of-art PCF manufacturing, and it is a potential inexpensive candidate in the application of modern communication systems. PMID:26258329

  7. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave

    PubMed Central

    Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan

    2015-01-01

    We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications. PMID:26244284

  8. Evaluation of diseased coronary arterial branches by polar representations of thallium-201 rotational myocardial imaging

    SciTech Connect

    Iino, T.; Toyosaki, N.; Katsuki, T.; Noda, T.; Natsume, T.; Yaginuma, T.; Hosoda, S.; Furuse, M.

    1987-09-01

    The perfusion territories in polar representations of stress Tl-201 rotational myocardial imaging in patients with angina pectoris who had one diseased coronary segment were analyzed. The lesions proximal or distal to the first major septal perforator in left anterior descending arteries were detected by the presence or absence of defects at the base of the anterior septum. Right coronary artery lesions were detected by the presence of defects at the basal posterior septum, in contrast to the preservation of myocardial uptake at this portion in lesions of the left circumflex artery. The specific defect patterns were detected in cases with lesions at the first diagonal, obtuse marginal, and posterolateral branches. Recognition of these defects in the polar maps allows detailed detection of diseased coronary arterial branches.

  9. Vector carrier frequency by interfering the kth harmonic of two rulings rotated polarly

    NASA Astrophysics Data System (ADS)

    Meneses-Fabian, Cruz; Kantun-Montiel, Rosaura; Lemus-Alonso, Gildardo-Pablo

    2015-03-01

    This paper presents a method for introducing carrier fringes inclined at any angle into an interferogram. The setup is built on a 4f optical system consisting of two apertures in the input plane and a Ronchi ruling in the Fourier plane. Additionally, a Ronchi ruling rotated on polar direction is placed at each aperture and two passband filters are placed in the Fourier plane for filtering the kth harmonic of their spectra. We demonstrated that the magnitude and direction of the vector carrier frequency depend on the grating period at the input plane, the polar angles, and the kth harmonic, which gives this method the ability to modulate its magnitude only, or its direction only, or both in a wide range. The theoretical model and experimental results are shown in this paper.

  10. Reconstruction of polar magnetic field from single axis tomography of Faraday rotation in plasmas

    SciTech Connect

    Flacco, A.; Rax, J.-M.; Malka, V.

    2012-10-15

    An integral back-transform has been developed to retrieve the polar magnetic component in a cylindrically symmetric plasma from a single projection. The formula is derived from parallel forward Radon transform (Abel transform) of a source-free vector field. Two numerical schemes are proposed to solve the backward transform. These schemes have been tested successfully with predefined plasma parameters. The practical application to the analysis of experimental Faraday rotation measurements is also presented, leading to the reconstruction of the transverse profile of the magnetic field.