Science.gov

Sample records for nonlinear schroedinger equations

  1. Engineering integrable nonautonomous nonlinear Schroedinger equations

    SciTech Connect

    He Xugang; Zhao Dun; Li Lin; Luo Honggang

    2009-05-15

    We investigate Painleve integrability of a generalized nonautonomous one-dimensional nonlinear Schroedinger (NLS) equation with time- and space-dependent dispersion, nonlinearity, and external potentials. Through the Painleve analysis some explicit requirements on the dispersion, nonlinearity, dissipation/gain, and the external potential as well as the constraint conditions are identified. It provides an explicit way to engineer integrable nonautonomous NLS equations at least in the sense of Painleve integrability. Furthermore analytical solutions of this class of integrable nonautonomous NLS equations can be obtained explicitly from the solutions of the standard NLS equation by a general transformation. The result provides a significant way to control coherently the soliton dynamics in the corresponding nonlinear systems, as that in Bose-Einstein condensate experiments. We analyze explicitly the soliton dynamics under the nonlinearity management and the external potentials and discuss its application in the matter-wave dynamics. Some comparisons with the previous works have also been discussed.

  2. Capillary waves in the subcritical nonlinear Schroedinger equation

    SciTech Connect

    Kozyreff, G.

    2010-01-15

    We expand recent results on the nonlinear Schroedinger equation with cubic-quintic nonlinearity to show that some solutions are described by the Bernoulli equation in the presence of surface tension. As a consequence, capillary waves are predicted and found numerically at the interface between regions of large and low amplitude.

  3. On splitting methods for Schroedinger-Poisson and cubic nonlinear Schroedinger equations

    NASA Astrophysics Data System (ADS)

    Lubich, Christian

    2008-12-01

    We give an error analysis of Strang-type splitting integrators for nonlinear Schroedinger equations. For Schroedinger-Poisson equations with an H^4 -regular solution, a first-order error bound in the H^1 norm is shown and used to derive a second-order error bound in the L_2 norm. For the cubic Schroedinger equation with an H^4 -regular solution, first-order convergence in the H^2 norm is used to obtain second-order convergence in the L_2 norm. Basic tools in the error analysis are Lie-commutator bounds for estimating the local error and H^m -conditional stability for error propagation, where mD1 for the Schroedinger-Poisson system and mD2 for the cubic Schroedinger equation.

  4. Collocation Method for Numerical Solution of Coupled Nonlinear Schroedinger Equation

    SciTech Connect

    Ismail, M. S.

    2010-09-30

    The coupled nonlinear Schroedinger equation models several interesting physical phenomena presents a model equation for optical fiber with linear birefringence. In this paper we use collocation method to solve this equation, we test this method for stability and accuracy. Numerical tests using single soliton and interaction of three solitons are used to test the resulting scheme.

  5. Painleve analysis for a nonlinear Schroedinger equation in three dimensions

    SciTech Connect

    Chowdhury, A.R.; Chanda, P.K.

    1987-09-01

    A Painleve analysis is performed for the nonlinear Schroedinger equation in (2 + 1) dimensions following the methodology of Weiss et al. simplified in the sense of Kruskal. At least for one branch it is found that the required number of arbitrary functions (as demanded by the Cauchy-Kovalevskaya theorem) exists, signalling complete integrability.

  6. Stochasticity in numerical solutions of the nonlinear Schroedinger equation

    NASA Technical Reports Server (NTRS)

    Shen, Mei-Mei; Nicholson, D. R.

    1987-01-01

    The cubically nonlinear Schroedinger equation is an important model of nonlinear phenomena in fluids and plasmas. Numerical solutions in a spatially periodic system commonly involve truncation to a finite number of Fourier modes. These solutions are found to be stochastic in the sense that the largest Liapunov exponent is positive. As the number of modes is increased, the size of this exponent appears to converge to zero, in agreement with the recent demonstration of the integrability of the spatially periodic case.

  7. Intermittency and solitons in the driven dissipative nonlinear Schroedinger equation

    NASA Technical Reports Server (NTRS)

    Moon, H. T.; Goldman, M. V.

    1984-01-01

    The cubic nonlinear Schroedinger equation, in the presence of driving and Landau damping, is studied numerically. As the pump intensity is increased, the system exhibits a transition from intermittency to a two-torus to chaos. The laminar phase of the intermittency is also a two-torus motion which corresponds in physical space to two identical solitons of amplitude determined by a power-balance equation.

  8. Inhomogeneous critical nonlinear Schroedinger equations with a harmonic potential

    SciTech Connect

    Cao Daomin; Han Pigong

    2010-04-15

    In this paper, we study the Cauchy problem of the inhomogeneous nonlinear Schroedinger equation with a harmonic potential: i{partial_derivative}{sub t}u=-div(f(x){nabla}u)+|x|{sup 2}u-k(x)|u|{sup 4/N}u, x is an element of R{sup N}, N{>=}1, which models the remarkable Bose-Einstein condensation. We discuss the existence and nonexistence results and investigate the limiting profile of blow-up solutions with critical mass.

  9. Derivation of an Applied Nonlinear Schroedinger Equation.

    SciTech Connect

    Pitts, Todd Alan; Laine, Mark Richard; Schwarz, Jens; Rambo, Patrick K.; Karelitz, David B.

    2015-01-01

    We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release

  10. Some exact solutions of a system of nonlinear Schroedinger equations in three-dimensional space

    SciTech Connect

    Moskalyuk, S.S.

    1988-02-01

    Interactions that break the symmetry of systems of nonrelativistic Schroedinger equations but preserve their symmetry with respect to one-parameter subgroups of the Schroedinger group are described. Ansatzes for invariant solutions and the corresponding systems of reduced equations in invariant variables for Galileo-invariant Schroedinger equations are found. Exact solutions for the system of nonlinear Schroedinger equations in three-dimensional space for the generalized Hubbard model are obtained.

  11. Some mathematical aspects of the correspondence between the generalized nonlinear Schroedinger equation and the generalized Korteweg-de Vries equation

    SciTech Connect

    Fedele, Renato; De Nicola, Sergio; Grecu, Dan; Visinescu, Anca; Shukla, Padma K.

    2009-11-10

    A review of the recent studies on the correspondence between a wide family of the generalized nonlinear Schroedinger equations and a wide family of the generalized Korteweg-de Vries equations is presented. It was constructed some years ago within the framework of a recently-developed approach based on the Madelung's fluid representation of the generalized nonlinear Schroedinger equation. The present analysis extends the former approach, developed for nonlinear Schroedinger equation with a nonlinear term proportional to a multiplicative operator, to the cases of derivative operators and the ones corresponding to cylindrical nonlinear Schroedinger equations.

  12. The truncation model of the derivative nonlinear Schroedinger equation

    SciTech Connect

    Sanchez-Arriaga, G.; Hada, T.; Nariyuki, Y.

    2009-04-15

    The derivative nonlinear Schroedinger (DNLS) equation is explored using a truncation model with three resonant traveling waves. In the conservative case, the system derives from a time-independent Hamiltonian function with only one degree of freedom and the solutions can be written using elliptic functions. In spite of its low dimensional order, the truncation model preserves some features from the DNLS equation. In particular, the modulational instability criterion fits with the existence of two hyperbolic fixed points joined by a heteroclinic orbit that forces the exchange of energy between the three waves. On the other hand, numerical integrations of the DNLS equation show that the truncation model fails when wave energy is increased or left-hand polarized modulational unstable modes are present. When dissipative and growth terms are added the system exhibits a very complex dynamics including appearance of several attractors, period doubling bifurcations leading to chaos as well as other nonlinear phenomenon. In this case, the validity of the truncation model depends on the strength of the dissipation and the kind of attractor investigated.

  13. Cylindrical nonlinear Schroedinger equation versus cylindrical Korteweg-de Vries equation

    SciTech Connect

    Fedele, Renato; De Nicola, Sergio; Grecu, Dan; Visinescu, Anca; Shukla, Padma K.

    2008-10-15

    A correspondence between the family of cylindrical nonlinear Schroedinger (cNLS) equations and the one of cylindrical Korteweg-de Vries (cKdV) equations is constructed. It associates non stationary solutions of the first family with the ones of the second family. This is done by using a correspondence, recently found, between the families of generalized NLS equation and generalized KdV equation, and their solutions in the form of travelling waves, respectively. In particular, non-stationary soliton-like solutions of the cNLS equation can be associated with non-stationary soliton-like solutions of cKdV equation.

  14. From nonlinear Schroedinger hierarchy to some (2+1)-dimensional nonlinear pseudodifferential equations

    SciTech Connect

    Yang Xiao; Du Dianlou

    2010-08-15

    The Poisson structure on C{sup N}xR{sup N} is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schroedinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.

  15. Damping models in the truncated derivative nonlinear Schroedinger equation

    SciTech Connect

    Sanchez-Arriaga, G.; Sanmartin, J. R.; Elaskar, S. A.

    2007-08-15

    Four-dimensional flow in the phase space of three amplitudes of circularly polarized Alfven waves and one relative phase, resulting from a resonant three-wave truncation of the derivative nonlinear Schroedinger equation, has been analyzed; wave 1 is linearly unstable with growth rate {gamma}, and waves 2 and 3 are stable with damping {gamma}{sub 2} and {gamma}{sub 3}, respectively. The dependence of gross dynamical features on the damping model (as characterized by the relation between damping and wave-vector ratios, {gamma}{sub 2}/{gamma}{sub 3}, k{sub 2}/k{sub 3}), and the polarization of the waves, is discussed; two damping models, Landau ({gamma}{proportional_to}k) and resistive ({gamma}{proportional_to}k{sup 2}), are studied in depth. Very complex dynamics, such as multiple blue sky catastrophes and chaotic attractors arising from Feigenbaum sequences, and explosive bifurcations involving Intermittency-I chaos, are shown to be associated with the existence and loss of stability of certain fixed point P of the flow. Independently of the damping model, P may only exist for {gamma}<2({gamma}{sub 2}+{gamma}{sub 3})/3, as against flow contraction just requiring {gamma}<{gamma}{sub 2}+{gamma}{sub 3}. In the case of right-hand (RH) polarization, point P may exist for all models other than Landau damping; for the resistive model, P may exist for RH polarization only if {gamma}<({gamma}{sub 2}+{gamma}{sub 3})/2.

  16. Nonlinear Schroedinger equation and the Bogolyubov-Whitham method of averaging

    SciTech Connect

    Pavlov, M.V.

    1987-12-01

    An averaging is investigated for the nonlinear Schroedinger equation using the technique of finite-gap averaging. For the single-gap case, the results are given explicitly. Some characteristics of the original equation needed for applied calculations are averaged. Finally, recursion and functional formulas connecting the densities of the integrals of the motion of the Schroedinger equation, the fluxes, and the variational derivatives are given.

  17. Soliton Theory of Two-Dimensional Lattices: The Discrete Nonlinear Schroedinger Equation

    SciTech Connect

    Arevalo, Edward

    2009-06-05

    We theoretically investigate the motion of collective excitations in the two-dimensional nonlinear Schroedinger equation with cubic nonlinearity. The form of these excitations for a broad range of parameters is derived. Their evolution and interaction is numerically studied and the modulation instability is discussed. The case of saturable nonlinearity is revisited.

  18. Integrability of an inhomogeneous nonlinear Schroedinger equation in Bose-Einstein condensates and fiber optics

    SciTech Connect

    Brugarino, Tommaso; Sciacca, Michele

    2010-09-15

    In this paper, we investigate the integrability of an inhomogeneous nonlinear Schroedinger equation, which has several applications in many branches of physics, as in Bose-Einstein condensates and fiber optics. The main issue deals with Painleve property (PP) and Liouville integrability for a nonlinear Schroedinger-type equation. Solutions of the integrable equation are obtained by means of the Darboux transformation. Finally, some applications on fiber optics and Bose-Einstein condensates are proposed (including Bose-Einstein condensates in three-dimensional in cylindrical symmetry).

  19. Study of nonlinear waves described by the cubic Schroedinger equation

    SciTech Connect

    Walstead, A.E.

    1980-03-12

    The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables.

  20. Existence of dark solitons in a class of stationary nonlinear Schroedinger equations with periodically modulated nonlinearity and periodic asymptotics

    SciTech Connect

    Belmonte-Beitia, J.; Cuevas, J.

    2011-03-15

    In this paper, we give a proof of the existence of stationary dark soliton solutions or heteroclinic orbits of nonlinear equations of Schroedinger type with periodic inhomogeneous nonlinearity. The result is illustrated with examples of dark solitons for cubic and photorefractive nonlinearities.

  1. Dynamics of a nonautonomous soliton in a generalized nonlinear Schroedinger equation

    SciTech Connect

    Yang Zhanying; Zhang Tao; Zhao Lichen; Feng Xiaoqiang; Yue Ruihong

    2011-06-15

    We solve a generalized nonautonomous nonlinear Schroedinger equation analytically by performing the Darboux transformation. The precise expressions of the soliton's width, peak, and the trajectory of its wave center are investigated analytically, which symbolize the dynamic behavior of a nonautonomous soliton. These expressions can be conveniently and effectively applied to the management of soliton in many fields.

  2. Stabilization of high-order solutions of the cubic nonlinear Schroedinger equation

    SciTech Connect

    Alexandrescu, Adrian; Montesinos, Gaspar D.; Perez-Garcia, Victor M.

    2007-04-15

    In this paper we consider the stabilization of nonfundamental unstable stationary solutions of the cubic nonlinear Schroedinger equation. Specifically, we study the stabilization of radially symmetric solutions with nodes and asymmetric complex stationary solutions. For the first ones, we find partial stabilization similar to that recently found for vortex solutions while for the later ones stabilization does not seem possible.

  3. Pseudorecurrence and chaos of cubic-quintic nonlinear Schroedinger equation

    SciTech Connect

    Zhou, C.; Lai, C.H.

    1996-12-01

    Recurrence, pseudorecurrence, and chaotic solutions for a continuum Hamiltonian system in which there exist spatial patterns of solitary wave structures are investigated using the nonlinear Schrodinger equation (NSE) with cubic and quintic terms. The theoretical analyses indicate that there may exist Birkhoff`s recurrence for the arbitrary parameter values. The numerical experiments show that there may be Fermi-Pasta-Ulam (FPU) recurrence, pseudorecurrence, and chaos when different initial conditions are chosen. The fact that the system energy is effectively shared by finite Fourier modes suggests that it may be possible to describe the continuum system in terms of some effective degrees of freedom.

  4. Vortex Solutions of the Defocusing Discrete Nonlinear Schroedinger Equation

    SciTech Connect

    Cuevas, J.; Kevrekidis, P. G.; Law, K. J. H.

    2009-09-09

    We consider the existence, stability and dynamical evolution of dark vortex states in the two-dimensional defocusing DNLS equation, a model of interest both to atomic physics and to nonlinear optics. Our considerations are chiefly based on initializing such vortex configurations at the anti-continuum limit of zero coupling between adjacent sites, and continuing them to finite values of the coupling. Discrete defocusing vortices become unstable past a critical coupling strength and, subsequently feature a cascade of alternating stabilization-destabilization windows for any finite lattice.

  5. Bistability and instability of dark-antidark solitons in the cubic-quintic nonlinear Schroedinger equation

    SciTech Connect

    Crosta, M.; Fratalocchi, A.; Trillo, S.

    2011-12-15

    We characterize the full family of soliton solutions sitting over a background plane wave and ruled by the cubic-quintic nonlinear Schroedinger equation in the regime where a quintic focusing term represents a saturation of the cubic defocusing nonlinearity. We discuss the existence and properties of solitons in terms of catastrophe theory and fully characterize bistability and instabilities of the dark-antidark pairs, revealing mechanisms of decay of antidark solitons into dispersive shock waves.

  6. Search for a nonlinear variant of the Schroedinger equation by neutron interferometry

    SciTech Connect

    Shull, C.G.; Atwood, D.K.; Arthur, J.; Horne, M.A.

    1980-03-24

    A slow-neutron interferometer system has been used to test a nonlinear variant of the Schroedinger equation ih partialpsi(r,t)/partialt=(-h/sup 2//2m)del/sup 2/+U(r,t))psi -b ln(a/sup 3/vertical-barpsivertical-bar/sup 2/)psi. If this equation were correct, then, as Shimony has suggested, repositioning an attenuating plate downstream in a neutron beam would produce a phase modification. No measurable phase shift beyond experimental uncertainty was found and an upper limit of 3.4 x 10/sup -13/ eV for the energy constant b was established.

  7. AKNS hierarchy, Darboux transformation and conservation laws of the 1D nonautonomous nonlinear Schroedinger equations

    SciTech Connect

    Zhao Dun; Zhang Yujuan; Lou Weiwei; Luo Honggang

    2011-04-15

    By constructing nonisospectral Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy, we investigate the nonautonomous nonlinear Schroedinger (NLS) equations which have been used to describe the Feshbach resonance management in matter-wave solitons in Bose-Einstein condensate and the dispersion and nonlinearity managements for optical solitons. It is found that these equations are some special cases of a new integrable model of nonlocal nonautonomous NLS equations. Based on the Lax pairs, the Darboux transformation and conservation laws are explored. It is shown that the local external potentials would break down the classical infinite number of conservation laws. The result indicates that the integrability of the nonautonomous NLS systems may be nontrivial in comparison to the conventional concept of integrability in the canonical case.

  8. Switching of bound vector solitons for the coupled nonlinear Schroedinger equations with nonhomogenously stochastic perturbations

    SciTech Connect

    Sun Zhiyuan; Yu Xin; Liu Ying; Gao Yitian

    2012-12-15

    We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schroedinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.

  9. Quasicollapse of oblique solitons of the weakly dissipative derivative nonlinear Schroedinger equation

    SciTech Connect

    Sanchez-Arriaga, G.; Laveder, D.; Passot, T.; Sulem, P. L.

    2010-07-15

    Numerical integrations of the derivative nonlinear Schroedinger equation for Alfven waves, supplemented by a weak dissipative term (originating from diffusion or Landau damping), with initial conditions in the form of a bright soliton with nonvanishing conditions at infinity (oblique soliton), reveal an interesting phenomenon of 'quasicollapse': as the dissipation parameter is reduced, larger amplitudes are reached and smaller scales are created, but on an increasing time scale. This process involves an early bifurcation of the initial soliton toward a breather that is analyzed by means of a numerical inverse scattering technique. This evolution leads to the formation of persistent dark solitons that are only weakly affected when crossed by the decaying breather which has the form of either a localized structure or an extended wave packet.

  10. A Heuristic Fast Method to Solve the Nonlinear Schroedinger Equation in Fiber Bragg Gratings with Arbitrary Shape Input Pulse

    SciTech Connect

    Emami, F.; Hatami, M.; Keshavarz, A. R.; Jafari, A. H.

    2009-08-13

    Using a combination of Runge-Kutta and Jacobi iterative method, we could solve the nonlinear Schroedinger equation describing the pulse propagation in FBGs. By decomposing the electric field to forward and backward components in fiber Bragg grating and utilizing the Fourier series analysis technique, the boundary value problem of a set of coupled equations governing the pulse propagation in FBG changes to an initial condition coupled equations which can be solved by simple Runge-Kutta method.

  11. Supersymmetric quantum mechanics and solitons of the sine-Gordon and nonlinear Schroedinger equations

    SciTech Connect

    Koller, Andrew; Olshanii, Maxim

    2011-12-15

    We present a case demonstrating the connection between supersymmetric quantum mechanics (SUSYQM), reflectionless scattering, and soliton solutions of integrable partial differential equations. We show that the members of a class of reflectionless Hamiltonians, namely, Akulin's Hamiltonians, are connected via supersymmetric chains to a potential-free Hamiltonian, explaining their reflectionless nature. While the reflectionless property in question has been mentioned in the literature for over two decades, the enabling algebraic mechanism was previously unknown. Our results indicate that the multisoliton solutions of the sine-Gordon and nonlinear Schroedinger equations can be systematically generated via the supersymmetric chains connecting Akulin's Hamiltonians. Our findings also explain a well-known but little-understood effect in laser physics: when a two-level atom, initially in the ground state, is subjected to a laser pulse of the form V(t)=(n({h_bar}/2{pi})/{tau})/cosh(t/{tau}), with n being an integer and {tau} being the pulse duration, it remains in the ground state after the pulse has been applied, for any choice of the laser detuning.

  12. Truncation model in the triple-degenerate derivative nonlinear Schroedinger equation

    SciTech Connect

    Sanchez-Arriaga, G.; Hada, T.; Nariyuki, Y.

    2009-04-15

    The triple-degenerate derivative nonlinear Schroedinger (TDNLS) system modified with resistive wave damping and growth is truncated to study the coherent coupling of four waves, three Alfven and one acoustic, near resonance. In the conservative case, the truncation equations derive from a time independent Hamiltonian function with two degrees of freedom. Using a Poincare map analysis, two parameters regimes are explored. In the first regime we check how the modulational instability of the TDNLS system affects to the dynamics of the truncation model, while in the second one the exact triple degenerated case is discussed. In the dissipative case, the truncation model gives rise to a six dimensional flow with five free parameters. Computing some bifurcation diagrams the dependence with the sound to Alfven velocity ratio as well as the Alfven modes involved in the truncation is analyzed. The system exhibits a wealth of dynamics including chaotic attractor, several kinds of bifurcations, and crises. The truncation model was compared to numerical integrations of the TDNLS system.

  13. Analytical spatiotemporal soliton solutions to (3+1)-dimensional cubic-quintic nonlinear Schroedinger equation with distributed coefficients

    SciTech Connect

    Kumar, Hitender; Malik, Anand; Chand, Fakir

    2012-10-15

    We obtain exact spatiotemporal periodic traveling wave solutions to the generalized (3+1)-dimensional cubic-quintic nonlinear Schroedinger equation with spatial distributed coefficients. For restrictive parameters, these periodic wave solutions acquire the form of localized spatial solitons. Such solutions exist under certain conditions, and impose constraints on the functions describing dispersion, nonlinearity, and gain (or loss). We then demonstrate the nonlinear tunneling effects and controllable compression technique of three-dimensional bright and dark solitons when they pass unchanged through the potential barriers and wells affected by special choices of the diffraction and/or the nonlinearity parameters. Direct numerical simulation has been performed to show the stable propagation of bright soliton with 5% white noise perturbation.

  14. On the relationship between the classical Dicke-Jaynes-Cummings-Gaudin model and the nonlinear Schroedinger equation

    SciTech Connect

    Du, Dianlou; Geng, Xue

    2013-05-15

    In this paper, the relationship between the classical Dicke-Jaynes-Cummings-Gaudin (DJCG) model and the nonlinear Schroedinger (NLS) equation is studied. It is shown that the classical DJCG model is equivalent to a stationary NLS equation. Moreover, the standard NLS equation can be solved by the classical DJCG model and a suitably chosen higher order flow. Further, it is also shown that classical DJCG model can be transformed into the classical Gaudin spin model in an external magnetic field through a deformation of Lax matrix. Finally, the separated variables are constructed on the common level sets of Casimir functions and the generalized action-angle coordinates are introduced via the Hamilton-Jacobi equation.

  15. Green's function-stochastic methods framework for probing nonlinear evolution problems: Burger's equation, the nonlinear Schroedinger's equation, and hydrodynamic organization of near-molecular-scale vorticity

    SciTech Connect

    Keanini, R.G.

    2011-04-15

    Research Highlights: > Systematic approach for physically probing nonlinear and random evolution problems. > Evolution of vortex sheets corresponds to evolution of an Ornstein-Uhlenbeck process. > Organization of near-molecular scale vorticity mediated by hydrodynamic modes. > Framework allows calculation of vorticity evolution within random strain fields. - Abstract: A framework which combines Green's function (GF) methods and techniques from the theory of stochastic processes is proposed for tackling nonlinear evolution problems. The framework, established by a series of easy-to-derive equivalences between Green's function and stochastic representative solutions of linear drift-diffusion problems, provides a flexible structure within which nonlinear evolution problems can be analyzed and physically probed. As a preliminary test bed, two canonical, nonlinear evolution problems - Burgers' equation and the nonlinear Schroedinger's equation - are first treated. In the first case, the framework provides a rigorous, probabilistic derivation of the well known Cole-Hopf ansatz. Likewise, in the second, the machinery allows systematic recovery of a known soliton solution. The framework is then applied to a fairly extensive exploration of physical features underlying evolution of randomly stretched and advected Burger's vortex sheets. Here, the governing vorticity equation corresponds to the Fokker-Planck equation of an Ornstein-Uhlenbeck process, a correspondence that motivates an investigation of sub-sheet vorticity evolution and organization. Under the assumption that weak hydrodynamic fluctuations organize disordered, near-molecular-scale, sub-sheet vorticity, it is shown that these modes consist of two weakly damped counter-propagating cross-sheet acoustic modes, a diffusive cross-sheet shear mode, and a diffusive cross-sheet entropy mode. Once a consistent picture of in-sheet vorticity evolution is established, a number of analytical results, describing the motion

  16. Stable and unstable vector dark solitons of coupled nonlinear Schroedinger equations: Application to two-component Bose-Einstein condensates

    SciTech Connect

    Brazhnyi, V.A.; Konotop, V.V.

    2005-08-01

    The dynamics of vector dark solitons in two-component Bose-Einstein condensates is studied within the framework of coupled one-dimensional nonlinear Schroedinger (NLS) equations. We consider the small-amplitude limit in which the coupled NLS equations are reduced to coupled Korteweg-de Vries (KdV) equations. For a specific choice of the parameters the obtained coupled KdV equations are exactly integrable. We find that there exist two branches of (slow and fast) dark solitons corresponding to the two branches of the sound waves. Slow solitons, corresponding to the lower branch of the acoustic wave, appear to be unstable and transform during the evolution into stable fast solitons (corresponding to the upper branch of the dispersion law). Vector dark solitons of arbitrary depths are studied numerically. It is shown that effectively different parabolic traps, to which the two components are subjected, cause an instability of the solitons, leading to a splitting of their components and subsequent decay. A simple phenomenological theory, describing the oscillations of vector dark solitons in a magnetic trap, is proposed.

  17. A new fourth-order Fourier-Bessel split-step method for the extended nonlinear Schroedinger equation

    SciTech Connect

    Nash, Patrick L.

    2008-01-10

    Fourier split-step techniques are often used to compute soliton-like numerical solutions of the nonlinear Schroedinger equation. Here, a new fourth-order implementation of the Fourier split-step algorithm is described for problems possessing azimuthal symmetry in 3 + 1-dimensions. This implementation is based, in part, on a finite difference approximation {delta}{sub perpendicular} {sup FDA} of 1/r ({partial_derivative})/({partial_derivative}r) r({partial_derivative})/({partial_derivative}r) that possesses an associated exact unitary representation of e{sup i/2{lambda}}{sup {delta}{sub perpendicular}{sup FDA}}. The matrix elements of this unitary matrix are given by special functions known as the associated Bessel functions. Hence the attribute Fourier-Bessel for the method. The Fourier-Bessel algorithm is shown to be unitary and unconditionally stable. The Fourier-Bessel algorithm is employed to simulate the propagation of a periodic series of short laser pulses through a nonlinear medium. This numerical simulation calculates waveform intensity profiles in a sequence of planes that are transverse to the general propagation direction, and labeled by the cylindrical coordinate z. These profiles exhibit a series of isolated pulses that are offset from the time origin by characteristic times, and provide evidence for a physical effect that may be loosely termed normal mode condensation. Normal mode condensation is consistent with experimentally observed pulse filamentation into a packet of short bursts, which may occur as a result of short, intense irradiation of a medium.

  18. Saddle-node bifurcation and modulational instability associated with the pulse propagation of dust ion-acoustic waves in a viscous dusty plasma: A complex nonlinear Schroedinger equation

    SciTech Connect

    Misra, Amar P.; Roy Chowdhury, K.; Roy Chowdhury, A.

    2007-01-15

    Using the standard reductive perturbation technique, a nonlinear Schroedinger equation (NLSE) with complex coefficients is derived in a dusty plasma consisting of positive ions, nonthermal electrons, and charged dust grains. The effect of ion kinematic viscosity is taken into consideration, which makes the coefficients of NLSE complex. By means of a matching approach, the appearance mechanism of static pulses through a saddle-node bifurcation in the complex nonlinear Schroedinger equation is studied analytically. The analytical results are in good agreement with the direct numerical simulation. The modulational instability analysis is carried out for the dust ion-acoustic envelope solitary waves. The important role of the real part of the complex group velocity in the propagation of the one-dimensional wave packets in homogeneous active medium is predicted.

  19. Sharp thresholds of global existence and blowup for a system of Schroedinger equations with combined power-type nonlinearities

    SciTech Connect

    Song Xianfa

    2010-03-15

    In this paper, we consider the Cauchy problem of a nonlinear Schroedinger system. Through establishing a sharp weighted vector-valued Gagliardo-Nirenberg's inequality, we find that the best constant in this inequality can be regarded as the criterion of blowup and global existence of the solutions when p=4/N. And we prove that the solutions of this system will always exist globally if p<4/N. The sharp thresholds for blowup and global existence are also obtained when 4/N{<=}p<4/(N-2){sup +}.

  20. Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schroedinger equation with self-steepening and self-frequency shift

    SciTech Connect

    Alka,; Goyal, Amit; Gupta, Rama; Kumar, C. N.; Raju, Thokala Soloman

    2011-12-15

    We demonstrate that the competing cubic-quintic nonlinearity induces propagating solitonlike dark(bright) solitons and double-kink solitons in the nonlinear Schroedinger equation with self-steepening and self-frequency shift. Parameter domains are delineated in which these optical solitons exist. Also, fractional-transform solitons are explored for this model. It is shown that the nonlinear chirp associated with each of these optical pulses is directly proportional to the intensity of the wave and saturates at some finite value as the retarded time approaches its asymptotic value. We further show that the amplitude of the chirping can be controlled by varying the self-steepening term and self-frequency shift.

  1. Femtosecond pulse propagation in nitrogen: Numerical study of (3+1)-dimensional extended nonlinear Schroedinger equation with shock-term correction

    SciTech Connect

    Ando, Taro; Fujimoto, Masatoshi

    2005-08-01

    We develop an accurate and efficient method for calculating evolution due to the extended nonlinear Schroedinger equation, which describes the propagation behavior of a femtosecond light pulse in a nonlinear medium. Applying Suzuki's exponential operator expansion to the evolution operator based on the finite-differential formulation, we realize the accurate and fast calculation that can be performed without large-scale computing systems even for (3+1)-dimensional problems. To study the correspondence between experiments and calculations, we calculate the propagation behavior of a femtosecond light pulse that is weakly focused in nitrogen gas of various pressures and compare the calculation results to the experimental ones. The calculation results reproduce the relative behavior of the spatial light pattern observed during the propagation. Additionally, the multiple-cone formation and interaction between two collimated pulses in nitrogen gas are also demonstrated as applications of the developed method.

  2. Inequivalence between the Schroedinger equation and the Madelung hydrodynamic equations

    SciTech Connect

    Wallstrom, T.C.

    1994-03-01

    By differentiating the Schroedinger equation and separating the real amd imaginary parts, one obtains the Madelung hydrodynamic equations, which have inspired numerous classical interpretations of quantum mechanics. Such interpretations frequently assume that these equations are equivalent to the Schroedinger equation, and thus provide an alternative basis for quantum mechanics. This paper proves that this is incorrect: to recover the Schroedinger equation, one must add by hand a quantization condition, as in the old quantum theory. The implications for various alternative interpretations of quantum mechanics are discussed.

  3. Nonpolynomial Schroedinger equation for resonantly absorbing gratings

    SciTech Connect

    Shabtay, Lior; Malomed, Boris A.

    2011-02-15

    We derive a nonlinear Schroedinger equation with a radical term, {approx}{radical}(1-|V|{sup 2}), as an asymptotic model of the resonantly absorbing Bragg reflector (RABR), i.e., a periodic set of thin layers of two-level atoms, resonantly interacting with the electromagnetic field and inducing the Bragg reflection. A family of bright solitons is found, which splits into stable and unstable parts, exactly obeying the Vakhitov-Kolokolov criterion. The soliton with the largest amplitude, (|V|){sub max}=1, is a ''quasipeakon,'' i.e., a solution with a discontinuity of the third derivative at the center. Families of exact cnoidal waves, built as periodic chains of quasipeakons, are found too. The ultimate solution belonging to the family of dark solitons, with the background level V=1, is a dark compacton. Those bright solitons that are unstable destroy themselves (if perturbed) attaining the critical amplitude, |V|=1. The dynamics of the wave field around this critical point is studied analytically, revealing a switch of the system into an unstable phase, in terms of the RABR model. Collisions between bright solitons are investigated too. The collisions between fast solitons are quasielastic, while slowly moving ones merge into breathers, which may persist or perish (in the latter case, also by attaining |V|=1).

  4. Hidden Statistics of Schroedinger Equation

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    Work was carried out in determination of the mathematical origin of randomness in quantum mechanics and creating a hidden statistics of Schr dinger equation; i.e., to expose the transitional stochastic process as a "bridge" to the quantum world. The governing equations of hidden statistics would preserve such properties of quantum physics as superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods.

  5. The Schroedinger equation with friction from the quantum trajectory perspective

    SciTech Connect

    Garashchuk, Sophya; Dixit, Vaibhav; Gu Bing; Mazzuca, James

    2013-02-07

    Similarity of equations of motion for the classical and quantum trajectories is used to introduce a friction term dependent on the wavefunction phase into the time-dependent Schroedinger equation. The term describes irreversible energy loss by the quantum system. The force of friction is proportional to the velocity of a quantum trajectory. The resulting Schroedinger equation is nonlinear, conserves wavefunction normalization, and evolves an arbitrary wavefunction into the ground state of the system (of appropriate symmetry if applicable). Decrease in energy is proportional to the average kinetic energy of the quantum trajectory ensemble. Dynamics in the high friction regime is suitable for simple models of reactions proceeding with energy transfer from the system to the environment. Examples of dynamics are given for single and symmetric and asymmetric double well potentials.

  6. Exponential Methods for the Time Integration of Schroedinger Equation

    SciTech Connect

    Cano, B.; Gonzalez-Pachon, A.

    2010-09-30

    We consider exponential methods of second order in time in order to integrate the cubic nonlinear Schroedinger equation. We are interested in taking profit of the special structure of this equation. Therefore, we look at symmetry, symplecticity and approximation of invariants of the proposed methods. That will allow to integrate till long times with reasonable accuracy. Computational efficiency is also our aim. Therefore, we make numerical computations in order to compare the methods considered and so as to conclude that explicit Lawson schemes projected on the norm of the solution are an efficient tool to integrate this equation.

  7. Solving the Schroedinger equation using Smolyak interpolants

    SciTech Connect

    Avila, Gustavo; Carrington, Tucker Jr.

    2013-10-07

    In this paper, we present a new collocation method for solving the Schroedinger equation. Collocation has the advantage that it obviates integrals. All previous collocation methods have, however, the crucial disadvantage that they require solving a generalized eigenvalue problem. By combining Lagrange-like functions with a Smolyak interpolant, we device a collocation method that does not require solving a generalized eigenvalue problem. We exploit the structure of the grid to develop an efficient algorithm for evaluating the matrix-vector products required to compute energy levels and wavefunctions. Energies systematically converge as the number of points and basis functions are increased.

  8. Quasiperiodically forced damped pendula and Schroedinger equations with quasiperiodic potentials - Implications of their equivalence

    NASA Technical Reports Server (NTRS)

    Bondeson, A.; Ott, E.; Antonsen, T. M., Jr.

    1985-01-01

    Certain first-order nonlinear ordinary differential equations exemplified by strongly damped, quasiperiodically driven pendula and Josephson junctions are isomorphic to Schroedinger equations with quasiperiodic potentials. The implications of this equivalence are discussed. In particular, it is shown that the transition to Anderson localization in the Schroedinger problem corresponds to the occurrence of a novel type of strange attractor in the pendulum problem. This transition should be experimentally observable in the frequency spectrum of the pendulum of Josephson junction.

  9. Stable explicit schemes for equations of Schroedinger type

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.

    1989-01-01

    A method for constructing explicit finite-difference schemes which can be used to solve Schroedinger-type partial-differential equations is presented. A forward Euler scheme that is conditionally stable is given by the procedure. The results presented are based on the analysis of the simplest Schroedinger type equation.

  10. Solitons and nonlinear wave equations

    SciTech Connect

    Dodd, Roger K.; Eilbeck, J. Chris; Gibbon, John D.; Morris, Hedley C.

    1982-01-01

    A discussion of the theory and applications of classical solitons is presented with a brief treatment of quantum mechanical effects which occur in particle physics and quantum field theory. The subjects addressed include: solitary waves and solitons, scattering transforms, the Schroedinger equation and the Korteweg-de Vries equation, and the inverse method for the isospectral Schroedinger equation and the general solution of the solvable nonlinear equations. Also considered are: isolation of the Korteweg-de Vries equation in some physical examples, the Zakharov-Shabat/AKNS inverse method, kinks and the sine-Gordon equation, the nonlinear Schroedinger equation and wave resonance interactions, amplitude equations in unstable systems, and numerical studies of solitons. 45 references.

  11. Madelung representation of damped parametric quantum oscillator and exactly solvable Schroedinger-Burgers equations

    SciTech Connect

    Bueyuekasik, Sirin A.; Pashaev, Oktay K.

    2010-12-15

    We construct a Madelung fluid model with time variable parameters as a dissipative quantum fluid and linearize it in terms of Schroedinger equation with time-dependent parameters. It allows us to find exact solutions of the nonlinear Madelung system in terms of solutions of the Schroedinger equation and the corresponding classical linear ordinary differential equation with variable frequency and damping. For the complex velocity field, the Madelung system takes the form of a nonlinear complex Schroedinger-Burgers equation, for which we obtain exact solutions using complex Cole-Hopf transformation. In particular, we give exact results for nonlinear Madelung systems related with Caldirola-Kanai-type dissipative harmonic oscillator. Collapse of the wave function in dissipative models and possible implications for the quantum cosmology are discussed.

  12. Wigner function and Schroedinger equation in phase-space representation

    SciTech Connect

    Chruscinski, Dariusz; Mlodawski, Krzysztof

    2005-05-15

    We discuss a family of quasidistributions (s-ordered Wigner functions of Agarwal and Wolf [Phys. Rev. D 2, 2161 (1970); Phys. Rev. D 2, 2187 (1970); Phys. Rev. D 2, 2206 (1970)]) and its connection to the so-called phase space representation of the Schroedinger equation. It turns out that although Wigner functions satisfy the Schroedinger equation in phase space, they have a completely different interpretation.

  13. Construction of stable explicit finite-difference schemes for Schroedinger type differential equations

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.

    1989-01-01

    A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.

  14. Quantum defect analysis of the eigenvalue spectrum of the Newton-Schroedinger equation

    SciTech Connect

    Greiner, Daniel; Wunner, Guenter

    2006-11-15

    We point out that quantum defect theory is the appropriate framework to explain and understand the behavior of the solutions of the Newton-Schroedinger equation. We find that, beyond ordinary quantum defect theory, the nonlinearity of the equation induces novel features, in particular a strong state dependence of the quantum defects. We show how this can be compensated by a rescaling of the energy unit.

  15. Stochastic Schroedinger equations with general complex Gaussian noises

    SciTech Connect

    Bassi, Angelo

    2003-06-01

    Within the framework of non-Markovian stochastic Schroedinger equations, we generalize the results of [W. T. Strunz, Phys. Lett. A 224, 25 (1996)] to the case of general complex Gaussian noises; we analyze the two important cases of purely real and purely imaginary stochastic processes.

  16. An Explicitly Correlated Wavelet Method for the Electronic Schroedinger Equation

    SciTech Connect

    Bachmayr, Markus

    2010-09-30

    A discretization for an explicitly correlated formulation of the electronic Schroedinger equation based on hyperbolic wavelets and exponential sum approximations of potentials is described, covering mathematical results as well as algorithmic realization, and discussing in particular the potential of methods of this type for parallel computing.

  17. Reformulating the Schroedinger equation as a Shabat-Zakharov system

    SciTech Connect

    Boonserm, Petarpa; Visser, Matt

    2010-02-15

    We reformulate the second-order Schroedinger equation as a set of two coupled first-order differential equations, a so-called 'Shabat-Zakharov system' (sometimes called a 'Zakharov-Shabat' system). There is considerable flexibility in this approach, and we emphasize the utility of introducing an 'auxiliary condition' or 'gauge condition' that is used to cut down the degrees of freedom. Using this formalism, we derive the explicit (but formal) general solution to the Schroedinger equation. The general solution depends on three arbitrarily chosen functions, and a path-ordered exponential matrix. If one considers path ordering to be an 'elementary' process, then this represents complete quadrature, albeit formal, of the second-order linear ordinary differential equation.

  18. A parallel algorithm for solving the 3d Schroedinger equation

    SciTech Connect

    Strickland, Michael; Yager-Elorriaga, David

    2010-08-20

    We describe a parallel algorithm for solving the time-independent 3d Schroedinger equation using the finite difference time domain (FDTD) method. We introduce an optimized parallelization scheme that reduces communication overhead between computational nodes. We demonstrate that the compute time, t, scales inversely with the number of computational nodes as t {proportional_to} (N{sub nodes}){sup -0.95} {sup {+-} 0.04}. This makes it possible to solve the 3d Schroedinger equation on extremely large spatial lattices using a small computing cluster. In addition, we present a new method for precisely determining the energy eigenvalues and wavefunctions of quantum states based on a symmetry constraint on the FDTD initial condition. Finally, we discuss the usage of multi-resolution techniques in order to speed up convergence on extremely large lattices.

  19. Continuous measurement of canonical observables and limit stochastic Schroedinger equations

    SciTech Connect

    Gough, John; Sobolev, Andrei

    2004-03-01

    We derive the stochastic Schroedinger equation for the limit of continuous weak measurement where the observables monitored are canonical position and momentum. To this end we extend an argument due to Smolianov and Truman from the von Neumann model of indirect measurement of position to the Arthurs and Kelly model for simultaneous measurement of position and momentum. We require only unbiasedness of the detector states and an integrability condition sufficient to ensure a central limit effect. Despite taking a weak interaction as opposed to a weak measurement limit, the resulting stochastic wave equation is of the same form as that derived in a recent paper by Scott and Milburn for the specific case of joint Gaussian states.

  20. Soliton stability and collapse in the discrete nonpolynomial Schroedinger equation with dipole-dipole interactions

    SciTech Connect

    Gligoric, Goran; Hadzievski, Ljupco; Maluckov, Aleksandra; Malomed, Boris A.

    2009-05-15

    The stability and collapse of fundamental unstaggered bright solitons in the discrete Schroedinger equation with the nonpolynomial on-site nonlinearity, which models a nearly one-dimensional Bose-Einstein condensate trapped in a deep optical lattice, are studied in the presence of the long-range dipole-dipole (DD) interactions. The cases of both attractive and repulsive contact and DD interaction are considered. The results are summarized in the form of stability-collapse diagrams in the parametric space of the model, which demonstrate that the attractive DD interactions stabilize the solitons and help to prevent the collapse. Mobility of the discrete solitons is briefly considered too.

  1. Efficient and accurate numerical methods for the Klein-Gordon-Schroedinger equations

    SciTech Connect

    Bao, Weizhu . E-mail: bao@math.nus.edu.sg; Yang, Li . E-mail: yangli@nus.edu.sg

    2007-08-10

    In this paper, we present efficient, unconditionally stable and accurate numerical methods for approximations of the Klein-Gordon-Schroedinger (KGS) equations with/without damping terms. The key features of our methods are based on: (i) the application of a time-splitting spectral discretization for a Schroedinger-type equation in KGS (ii) the utilization of Fourier pseudospectral discretization for spatial derivatives in the Klein-Gordon equation in KGS (iii) the adoption of solving the ordinary differential equations (ODEs) in phase space analytically under appropriate chosen transmission conditions between different time intervals or applying Crank-Nicolson/leap-frog for linear/nonlinear terms for time derivatives. The numerical methods are either explicit or implicit but can be solved explicitly, unconditionally stable, and of spectral accuracy in space and second-order accuracy in time. Moreover, they are time reversible and time transverse invariant when there is no damping terms in KGS, conserve (or keep the same decay rate of) the wave energy as that in KGS without (or with a linear) damping term, keep the same dynamics of the mean value of the meson field, and give exact results for the plane-wave solution. Extensive numerical tests are presented to confirm the above properties of our numerical methods for KGS. Finally, the methods are applied to study solitary-wave collisions in one dimension (1D), as well as dynamics of a 2D problem in KGS.

  2. Fractional Schroedinger equation for a particle moving in a potential well

    SciTech Connect

    Luchko, Yuri

    2013-01-15

    In this paper, the fractional Schroedinger equation that contains the quantum Riesz fractional derivative instead of the Laplace operator is revisited for the case of a particle moving in the infinite potential well. In the recent papers [M. Jeng, S.-L.-Y. Xu, E. Hawkins, and J. M. Schwarz, 'On the nonlocality of the fractional Schroedinger equation,' J. Math. Phys. 51, 062102 (2010)] and [S. S. Bayin, 'On the consistency of the solutions of the space fractional Schroedinger equation,' J. Math. Phys. 53, 042105 (2012)] published in this journal, controversial opinions regarding solutions to the fractional Schroedinger equation for a particle moving in the infinite potential well that were derived by Laskin ['Fractals and quantum mechanics,' Chaos 10, 780-790 (2000)] have been given. In this paper, a thorough mathematical treatment of these matters is provided. The problem under consideration is reformulated in terms of three integral equations with the power kernels. Even if the equations look not very complicated, no solution to these equations in explicit form is known. Still, the obtained equations are used to show that the eigenvalues and eigenfunctions of the fractional Schroedinger equation for a particle moving in the infinite potential well given by Laskin ['Fractals and quantum mechanics,' Chaos 10, 780-790 (2000)] and many other papers by different authors cannot be valid as has been first stated by Jeng et al. ['On the nonlocality of the fractional Schroedinger equation,' J. Math. Phys. 51, 062102 (2010)].

  3. Finite-difference scheme for the numerical solution of the Schroedinger equation

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.; Ramadhani, Issa

    1992-01-01

    A finite-difference scheme for numerical integration of the Schroedinger equation is constructed. Asymptotically (r goes to infinity), the method gives the exact solution correct to terms of order r exp -2.

  4. Extended trigonometric Cherednik algebras and nonstationary Schroedinger equations with delta-potentials

    SciTech Connect

    Hartwig, J. T.; Stokman, J. V.

    2013-02-15

    We realize an extended version of the trigonometric Cherednik algebra as affine Dunkl operators involving Heaviside functions. We use the quadratic Casimir element of the extended trigonometric Cherednik algebra to define an explicit nonstationary Schroedinger equation with delta-potential. We use coordinate Bethe ansatz methods to construct solutions of the nonstationary Schroedinger equation in terms of generalized Bethe wave functions. It is shown that the generalized Bethe wave functions satisfy affine difference Knizhnik-Zamolodchikov equations as functions of the momenta. The relation to the vector valued root system analogs of the quantum Bose gas on the circle with delta-function interactions is indicated.

  5. Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.

    1990-01-01

    A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.

  6. Quantum lattice-gas models for the many-body schroedinger equation

    SciTech Connect

    Boghosian, B.M.; Taylor, W. IV

    1997-08-01

    A general class of discrete unitary models are described whose behavior in the continuum limit corresponds to a many-body Schroedinger equation. On a quantum computer, these models could be used to simulate quantum many-body systems with an exponential speedup over analogous simulations on classical computers. On a classical computer, these models give an explicitly unitary and local prescription for discretizing the Schroedinger equation. It is shown that models of this type can be constructed for an arbitrary number of particles moving in an arbitrary number of dimensions with an arbitrary interparticle interaction.

  7. Nonlinear ordinary difference equations

    NASA Technical Reports Server (NTRS)

    Caughey, T. K.

    1979-01-01

    Future space vehicles will be relatively large and flexible, and active control will be necessary to maintain geometrical configuration. While the stresses and strains in these space vehicles are not expected to be excessively large, their cumulative effects will cause significant geometrical nonlinearities to appear in the equations of motion, in addition to the nonlinearities caused by material properties. Since the only effective tool for the analysis of such large complex structures is the digital computer, it will be necessary to gain a better understanding of the nonlinear ordinary difference equations which result from the time discretization of the semidiscrete equations of motion for such structures.

  8. Numerical algorithms for the direct spectral transform with applications to nonlinear Schroedinger type systems

    SciTech Connect

    Burtsev, S.; Camassa, R.; Timofeyev, I.

    1998-11-20

    The authors implement two different algorithms for computing numerically the direct Zakharov-Shabat eigenvalue problem on the infinite line. The first algorithm replaces the potential in the eigenvalue problem by a piecewise-constant approximation, which allows one to solve analytically the corresponding ordinary differential equation. The resulting algorithm is of second order in the step size. The second algorithm uses the fourth-order Runge-Kutta method. They test and compare the performance of these two algorithms on three exactly solvable potentials. They find that even though the Runge-Kutta method is of higher order, this extra accuracy can be lost because of the additional dependence of its numerical error on the eigenvalue. this limits the usefulness of the Runge-Kutta algorithm to a region inside the unit circle around the origin in the complex plane of the eigenvalues. For the computation of the continuous spectrum density, this limitation is particularly severe, as revealed by the spectral decomposition of the L{sup 2}-norm of a solution to the nonlinear Schroedinger equation. They show that no such limitations exist for the piecewise-constant algorithm. In particular, this scheme converges uniformly for both continuous and discrete spectrum components.

  9. Intertwining relations and Darboux transformations for Schroedinger equations in (n+1) dimensions

    SciTech Connect

    Schulze-Halberg, Axel

    2010-03-15

    We evaluate the intertwining relation for Schroedinger equations in (n+1) dimensions. The conditions for the existence of a Darboux transformation are analyzed and compared to their (1+1) dimensional counterparts. A complete solution of the conditions is given for (2+1) dimensions, and a Darboux transformation is constructed.

  10. Continuous-time random walk as a guide to fractional Schroedinger equation

    SciTech Connect

    Lenzi, E. K.; Ribeiro, H. V.; Mukai, H.; Mendes, R. S.

    2010-09-15

    We argue that the continuous-time random walk approach may be a useful guide to extend the Schroedinger equation in order to incorporate nonlocal effects, avoiding the inconsistencies raised by Jeng et al. [J. Math. Phys. 51, 062102 (2010)]. As an application, we work out a free particle in a half space, obtaining the time dependent solution by considering an arbitrary initial condition.

  11. Physical theories in Galilean space-time and the origin of Schroedinger-like equations

    SciTech Connect

    Musielak, Z.E. Fry, J.L.

    2009-02-15

    A method to develop physical theories of free particles in space-time with the Galilean metric is presented. The method is based on a Principle of Analyticity and a Principle of Relativity, and uses the Galilei group of the metric. The first principle requires that state functions describing the particles are analytic and the second principle demands that dynamical equations for these functions are Galilean invariant. It is shown that the method can be used to formally derive Schroedinger-like equations and to determine modifications of the Galilei group of the metric that are necessary to fullfil the requirements of analyticity and Galilean invariance. The obtained results shed a new light on the origin of Schroedinger's equation of non-relativistic quantum mechanics.

  12. Nonlinear gyrokinetic equations

    SciTech Connect

    Dubin, D.H.E.; Krommes, J.A.; Oberman, C.; Lee, W.W.

    1983-03-01

    Nonlinear gyrokinetic equations are derived from a systematic Hamiltonian theory. The derivation employs Lie transforms and a noncanonical perturbation theory first used by Littlejohn for the simpler problem of asymptotically small gyroradius. For definiteness, we emphasize the limit of electrostatic fluctuations in slab geometry; however, there is a straight-forward generalization to arbitrary field geometry and electromagnetic perturbations. An energy invariant for the nonlinear system is derived, and various of its limits are considered. The weak turbulence theory of the equations is examined. In particular, the wave kinetic equation of Galeev and Sagdeev is derived from an asystematic truncation of the equations, implying that this equation fails to consider all gyrokinetic effects. The equations are simplified for the case of small but finite gyroradius and put in a form suitable for efficient computer simulation. Although it is possible to derive the Terry-Horton and Hasegawa-Mima equations as limiting cases of our theory, several new nonlinear terms absent from conventional theories appear and are discussed.

  13. Nonlinear differential equations

    SciTech Connect

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  14. Spontaneous symmetry breaking in Schroedinger lattices with two nonlinear sites

    SciTech Connect

    Brazhnyi, Valeriy A.; Malomed, Boris A.

    2011-05-15

    We introduce discrete systems in the form of straight (infinite) and ring-shaped chains, with two symmetrically placed nonlinear sites. The systems can be implemented in nonlinear optics (as waveguiding arrays) and Bose-Einstein condensates (by means of an optical lattice). A full set of exact analytical solutions for symmetric, asymmetric, and antisymmetric localized modes is found, and their stability is investigated in a numerical form. The symmetry-breaking bifurcation, through which the asymmetric modes emerge from the symmetric ones, is found to be of the subcritical type. It is transformed into a supercritical bifurcation if the nonlinearity is localized in relatively broad domains around two central sites, and also in the ring of a small size, i.e., in effectively nonlocal settings. The family of antisymmetric modes does not undergo bifurcations and features both stable and unstable portions. The evolution of unstable localized modes is investigated by means of direct simulations. In particular, unstable asymmetric states, which exist in the case of the subcritical bifurcation, give rise to breathers oscillating between the nonlinear sites, thus restoring an effective dynamical symmetry between them.

  15. Nodal sets of solutions of equations involving magnetic Schroedinger operator in three dimensions

    SciTech Connect

    Pan Xingbin

    2007-05-15

    It is well known that the complexity of the nodal set of a function mainly comes from the singular set on which both the function and the gradient vanish. The singular set of a real-valued solution of a linear elliptic equation has been well investigated. For a complex-valued solution of a linear equation involving a magnetic Schroedinger operator, the structure of the nodal set has not been well investigated yet excepted in the two-dimensional case. In this paper we extend the arguments of Garafalo and Lin [Indiana Univ. Math. J. 35, 245-268 (1986)] and of Han [Indiana Univ. Math. J. 43, 983-1002 (1994)] to show that the singular set of such a solution in a three-dimensional domain is countably 1-rectifiable. The functions considered in this paper include the order parameter in the Ginzburg-Landau theory of superconductivity and the eigenfunctions of the magnetic Schroedinger operator.

  16. Lower and upper estimates on the excitation threshold for breathers in discrete nonlinear Schroedinger lattices

    SciTech Connect

    Cuevas, J.; Palmero, F.

    2009-11-15

    We propose analytical lower and upper estimates on the excitation threshold for breathers (in the form of spatially localized and time periodic solutions) in discrete nonlinear Schroedinger (DNLS) lattices with power nonlinearity. The estimation, depending explicitly on the lattice parameters, is derived by a combination of a comparison argument on appropriate lower bounds depending on the frequency of each solution with a simple and justified heuristic argument. The numerical studies verify that the analytical estimates can be of particular usefulness, as a simple analytical detection of the activation energy for breathers in DNLS lattices.

  17. Exact solutions of fractional Schroedinger-like equation with a nonlocal term

    SciTech Connect

    Jiang Xiaoyun; Xu Mingyu; Qi Haitao

    2011-04-15

    We study the time-space fractional Schroedinger equation with a nonlocal potential. By the method of Fourier transform and Laplace transform, the Green function, and hence the wave function, is expressed in terms of H-functions. Graphical analysis demonstrates that the influence of both the space-fractal parameter {alpha} and the nonlocal parameter {nu} on the fractional quantum system is strong. Indeed, the nonlocal potential may act similar to a fractional spatial derivative as well as fractional time derivative.

  18. Some Exact Results for the Schroedinger Wave Equation with a Time Dependent Potential

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2009-01-01

    The time dependent Schroedinger equation with a time dependent delta function potential is solved exactly for many special cases. In all other cases the problem can be reduced to an integral equation of the Volterra type. It is shown that by knowing the wave function at the origin, one may derive the wave function everywhere. Thus, the problem is reduced from a PDE in two variables to an integral equation in one. These results are used to compare adiabatic versus sudden changes in the potential. It is shown that adiabatic changes in the p otential lead to conservation of the normalization of the probability density.

  19. O the Derivation of the Schroedinger Equation from Stochastic Mechanics.

    NASA Astrophysics Data System (ADS)

    Wallstrom, Timothy Clarke

    The thesis is divided into four largely independent chapters. The first three chapters treat mathematical problems in the theory of stochastic mechanics. The fourth chapter deals with stochastic mechanisms as a physical theory and shows that the Schrodinger equation cannot be derived from existing formulations of stochastic mechanics, as had previously been believed. Since the drift coefficients of stochastic mechanical diffusions are undefined on the nodes, or zeros of the density, an important problem has been to show that the sample paths stay away from the nodes. In Chapter 1, it is shown that for a smooth wavefunction, the closest approach to the nodes can be bounded solely in terms of the time -integrated energy. The ergodic properties of stochastic mechanical diffusions are greatly complicated by the tendency of the particles to avoid the nodes. In Chapter 2, it is shown that a sufficient condition for a stationary process to be ergodic is that there exist positive t and c such that for all x and y, p^{t} (x,y) > cp(y), and this result is applied to show that the set of spin-1over2 diffusions is uniformly ergodic. In stochastic mechanics, the Bopp-Haag-Dankel diffusions on IR^3times SO(3) are used to represent particles with spin. Nelson has conjectured that in the limit as the particle's moment of inertia I goes to zero, the projections of the Bopp -Haag-Dankel diffusions onto IR^3 converge to a Markovian limit process. This conjecture is proved for the spin-1over2 case in Chapter 3, and the limit process identified as the diffusion naturally associated with the solution to the regular Pauli equation. In Chapter 4 it is shown that the general solution of the stochastic Newton equation does not correspond to a solution of the Schrodinger equation, and that there are solutions to the Schrodinger equation which do not satisfy the Guerra-Morato Lagrangian variational principle. These observations are shown to apply equally to other existing formulations of

  20. The thermal-wave model: A Schroedinger-like equation for charged particle beam dynamics

    NASA Technical Reports Server (NTRS)

    Fedele, Renato; Miele, G.

    1994-01-01

    We review some results on longitudinal beam dynamics obtained in the framework of the Thermal Wave Model (TWM). In this model, which has recently shown the capability to describe both longitudinal and transverse dynamics of charged particle beams, the beam dynamics is ruled by Schroedinger-like equations for the beam wave functions, whose squared modulus is proportional to the beam density profile. Remarkably, the role of the Planck constant is played by a diffractive constant epsilon, the emittance, which has a thermal nature.

  1. The tunneling solutions of the time-dependent Schroedinger equation for a square-potential barrier

    SciTech Connect

    Elci, A.; Hjalmarson, H. P.

    2009-10-15

    The exact tunneling solutions of the time-dependent Schroedinger equation with a square-potential barrier are derived using the continuous symmetry group G{sub S} for the partial differential equation. The infinitesimal generators and the elements for G{sub S} are represented and derived in the jet space. There exist six classes of wave functions. The representative (canonical) wave functions for the classes are labeled by the eigenvalue sets, whose elements arise partially from the reducibility of a Lie subgroup G{sub LS} of G{sub S} and partially from the separation of variables. Each eigenvalue set provides two or more time scales for the wave function. The ratio of two time scales can act as the duration of an intrinsic clock for the particle motion. The exact solutions of the time-dependent Schroedinger equation presented here can produce tunneling currents that are orders of magnitude larger than those produced by the energy eigenfunctions. The exact solutions show that tunneling current can be quantized under appropriate boundary conditions and tunneling probability can be affected by a transverse acceleration.

  2. Solving Nonlinear Coupled Differential Equations

    NASA Technical Reports Server (NTRS)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  3. A new fundamental model of moving particle for reinterpreting Schroedinger equation

    SciTech Connect

    Umar, Muhamad Darwis

    2012-06-20

    The study of Schroedinger equation based on a hypothesis that every particle must move randomly in a quantum-sized volume has been done. In addition to random motion, every particle can do relative motion through the movement of its quantum-sized volume. On the other way these motions can coincide. In this proposed model, the random motion is one kind of intrinsic properties of the particle. The every change of both speed of randomly intrinsic motion and or the velocity of translational motion of a quantum-sized volume will represent a transition between two states, and the change of speed of randomly intrinsic motion will generate diffusion process or Brownian motion perspectives. Diffusion process can take place in backward and forward processes and will represent a dissipative system. To derive Schroedinger equation from our hypothesis we use time operator introduced by Nelson. From a fundamental analysis, we find out that, naturally, we should view the means of Newton's Law F(vector sign) = ma(vector sign) as no an external force, but it is just to describe both the presence of intrinsic random motion and the change of the particle energy.

  4. Multi-soliton propagation in a generalized inhomogeneous nonlinear Schroedinger-Maxwell-Bloch system with loss/gain driven by an external potential

    SciTech Connect

    Rajan, M. S. Mani; Mahalingam, A.

    2013-04-15

    In this paper, we introduce a system of the nonlinear Schroedinger-Maxwell-Bloch equation with variable coefficients which represents the propagation of optical pulses in an inhomogeneous erbium doped fiber with loss/gain driven by an external potential. The one and two soliton solutions in explicit forms are generated by using the Darboux transformation and the associated Lax pair. We consider the distributed amplification system, and some main features of the solutions are demonstrated graphically. We also consider the concept of soliton propagation in a dispersion managed erbium doped fiber and through symbolic computation, we have carried out our study from an analytic viewpoint.

  5. The zero dispersion limits of nonlinear wave equations

    SciTech Connect

    Tso, T.

    1992-01-01

    In chapter 2 the author uses functional analytic methods and conservation laws to solve the initial-value problem for the Korteweg-de Vries equation, the Benjamin-Bona-Mahony equation, and the nonlinear Schroedinger equation for initial data that satisfy some suitable conditions. In chapter 3 the energy estimates are used to show that the strong convergence of the family of the solutions of the KdV equation obtained in chapter 2 in H[sup 3](R) as [epsilon] [yields] 0; also, it is shown that the strong L[sup 2](R)-limit of the solutions of the BBM equation as [epsilon] [yields] 0 before a critical time. In chapter 4 the author uses the Whitham modulation theory and averaging method to find the 2[pi]-periodic solutions and the modulation equations of the KdV equation, the BBM equation, the Klein-Gordon equation, the NLS equation, the mKdV equation, and the P-system. It is shown that the modulation equations of the KdV equation, the K-G equation, the NLS equation, and the mKdV equation are hyperbolic but those of the BBM equation and the P-system are not hyperbolic. Also, the relations are studied of the KdV equation and the mKdV equation. Finally, the author studies the complex mKdV equation to compare with the NLS equation, and then study the complex gKdV equation.

  6. Split-operator spectral method for solving the time-dependent Schroedinger equation in spherical coordinates

    SciTech Connect

    Hermann, M.R.; Fleck J.A. Jr.

    1988-12-15

    A spectral method previously developed for solving the time-dependent Schroedinger equation in Cartesian coordinates is generalized to spherical polar coordinates. The solution is implemented by repeated application of a unitary evolution operator in symmetrically split form. The wave function is expanded as a Fourier series in the radial coordinate and in terms of Legendre functions in the polar angle. The use of appropriate quadrature sets makes the expansion exact for band-limited functions. The method is appropriate for solving explicitly time-dependent problems, or for determining stationary states by a spectral method. The accuracy of the method is established by computing the Stark shift and lifetime of the 1s state in hydrogen, the low-lying energy levels for hydrogen in a uniform magnetic field, and the 2p-nd dipole transition spectrum for hydrogen.

  7. The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schroedinger equation

    SciTech Connect

    Leung Shingyu; Qian Jianliang

    2010-11-20

    We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schroedinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in . In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.

  8. The fixed hypernode method for the solution of the many body Schroedinger equation

    SciTech Connect

    Pederiva, F; Kalos, M H; Reboredo, F; Bressanini, D; Guclu, D; Colletti, L; Umrigar, C J

    2006-01-24

    We propose a new scheme for an approximate solution of the Schroedinger equation for a many-body interacting system, based on the use of pairs of walkers. Trial wavefunctions for these pairs are combinations of standard symmetric and antisymmetric wavefunctions. The method consists in applying a fixed-node restriction in the enlarged space, and computing the energy of the antisymmetric state from the knowledge of the exact ground state energy for the symmetric state. We made two conjectures: first, that this fixed-hypernode energy is an upper bound to the true fermion energy; second that this bound would necessarily be lower than the usual fixed-node energy using the same antisymmetric trial function. The first conjecture is true, and is proved in this paper. The second is not, and numerical and analytical counterexamples are given. The question of whether the fixed-hypernode energy can be better than the usual bound remains open.

  9. Phase integral approximation for coupled ordinary differential equations of the Schroedinger type

    SciTech Connect

    Skorupski, Andrzej A.

    2008-05-15

    Four generalizations of the phase integral approximation (PIA) to sets of ordinary differential equations of Schroedinger type [u{sub j}{sup ''}(x)+{sigma}{sub k=1}{sup N}R{sub jk}(x)u{sub k}(x)=0, j=1,2,...,N] are described. The recurrence relations for higher order corrections are given in a form valid to arbitrary order and for the matrix R(x)[{identical_to}(R{sub jk}(x))] either Hermitian or non-Hermitian. For Hermitian and negative definite R(x) matrices, a Wronskian conserving PIA theory is formulated, which generalizes Fulling's current conserving theory pertinent to positive definite R(x) matrices. The idea of a modification of the PIA, which is well known for one equation [u{sup ''}(x)+R(x)u(x)=0], is generalized to sets. A simplification of Wronskian or current conserving theories is proposed which in each order eliminates one integration from the formulas for higher order corrections. If the PIA is generated by a nondegenerate eigenvalue of the R(x) matrix, the eliminated integration is the only one present. In that case, the simplified theory becomes fully algorithmic and is generalized to non-Hermitian R(x) matrices. The general theory is illustrated by a few examples automatically generated by using the author's program in MATHEMATICA published in e-print arXiv:0710.5406 [math-ph].

  10. Two routes to the one-dimensional discrete nonpolynomial Schroedinger equation

    SciTech Connect

    Gligoric, G.; Hadzievski, Lj.; Maluckov, A.; Salasnich, L.; Malomed, B. A.

    2009-12-15

    The Bose-Einstein condensate (BEC), confined in a combination of the cigar-shaped trap and axial optical lattice, is studied in the framework of two models described by two versions of the one-dimensional (1D) discrete nonpolynomial Schroedinger equation (NPSE). Both models are derived from the three-dimensional Gross-Pitaevskii equation (3D GPE). To produce 'model 1' (which was derived in recent works), the 3D GPE is first reduced to the 1D continual NPSE, which is subsequently discretized. 'Model 2,' which was not considered before, is derived by first discretizing the 3D GPE, which is followed by the reduction in the dimension. The two models seem very different; in particular, model 1 is represented by a single discrete equation for the 1D wave function, while model 2 includes an additional equation for the transverse width. Nevertheless, numerical analyses show similar behaviors of fundamental unstaggered solitons in both systems, as concerns their existence region and stability limits. Both models admit the collapse of the localized modes, reproducing the fundamental property of the self-attractive BEC confined in tight traps. Thus, we conclude that the fundamental properties of discrete solitons predicted for the strongly trapped self-attracting BEC are reliable, as the two distinct models produce them in a nearly identical form. However, a difference between the models is found too, as strongly pinned (very narrow) discrete solitons, which were previously found in model 1, are not generated by model 2--in fact, in agreement with the continual 1D NPSE, which does not have such solutions either. In that respect, the newly derived model provides for a more accurate approximation for the trapped BEC.

  11. Bound, virtual, and resonance S-matrix poles from the Schroedinger equation

    SciTech Connect

    Mukhamedzhanov, A. M.; Goldberg, V. Z.; Irgaziev, B. F.; Qazi, I.; Orlov, Yu. V.

    2010-05-15

    A general method, which we call the potential S-matrix pole method, is developed for obtaining the S-matrix pole parameters for bound, virtual, and resonant states based on numerical solutions of the Schroedinger equation. This method is well known for bound states. In this work we generalize it for resonant and virtual states, although the corresponding solutions increase exponentially when r->infinity. Concrete calculations are performed for the 1{sup +} ground state of {sup 14}N, the resonance {sup 15}F states (1/2{sup +}, 5/2{sup +}), low-lying states of {sup 11}Be and {sup 11}N, and the subthreshold resonance in the proton-proton system. We also demonstrate that in the case of broad resonances, their energy and width can be found from the fitting the experimental phase shifts using the analytical expression for the elastic-scattering S matrix. We compare the S-matrix pole and the R matrix methods for broad resonances in the {sup 14}O-p and in {sup 26}Mg-n systems.

  12. A Family of Symmetric Linear Multistep Methods for the Numerical Solution of the Schroedinger Equation and Related Problems

    SciTech Connect

    Anastassi, Z. A.; Simos, T. E.

    2010-09-30

    We develop a new family of explicit symmetric linear multistep methods for the efficient numerical solution of the Schroedinger equation and related problems with oscillatory solution. The new methods are trigonometrically fitted and have improved intervals of periodicity as compared to the corresponding classical method with constant coefficients and other methods from the literature. We also apply the methods along with other known methods to real periodic problems, in order to measure their efficiency.

  13. Two-dimensional stationary Schroedinger equation via the {partial_derivative}-dressing method: New exactly solvable potentials, wave functions, and their physical interpretation

    SciTech Connect

    Dubrovsky, V. G.; Topovsky, A. V.; Basalaev, M. Yu.

    2010-09-15

    The classes of exactly solvable multiline soliton potentials and corresponding wave functions of two-dimensional stationary Schroedinger equation via {partial_derivative}-dressing method are constructed and their physical interpretation is discussed.

  14. Duffing's Equation and Nonlinear Resonance

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2003-01-01

    The phenomenon of nonlinear resonance (sometimes called the "jump phenomenon") is examined and second-order van der Pol plane analysis is employed to indicate that this phenomenon is not a feature of the equation, but rather the result of accumulated round-off error, truncation error and algorithm error that distorts the true bounded solution onto…

  15. Linear superposition in nonlinear equations.

    PubMed

    Khare, Avinash; Sukhatme, Uday

    2002-06-17

    Several nonlinear systems such as the Korteweg-de Vries (KdV) and modified KdV equations and lambda phi(4) theory possess periodic traveling wave solutions involving Jacobi elliptic functions. We show that suitable linear combinations of these known periodic solutions yield many additional solutions with different periods and velocities. This linear superposition procedure works by virtue of some remarkable new identities involving elliptic functions. PMID:12059300

  16. Nonlinear SCHRÖDINGER-PAULI Equations

    NASA Astrophysics Data System (ADS)

    Ng, Wei Khim; Parwani, Rajesh R.

    2011-11-01

    We obtain novel nonlinear Schrüdinger-Pauli equations through a formal non-relativistic limit of appropriately constructed nonlinear Dirac equations. This procedure automatically provides a physical regularisation of potential singularities brought forward by the nonlinear terms and suggests how to regularise previous equations studied in the literature. The enhancement of contributions coming from the regularised singularities suggests that the obtained equations might be useful for future precision tests of quantum nonlinearity.

  17. Using preconditioned adaptive step size Runge-Kutta methods for solving the time-dependent Schroedinger equation

    SciTech Connect

    Tremblay, Jean Christophe; Carrington, Tucker Jr.

    2004-12-15

    If the Hamiltonian is time dependent it is common to solve the time-dependent Schroedinger equation by dividing the propagation interval into slices and using an (e.g., split operator, Chebyshev, Lanczos) approximate matrix exponential within each slice. We show that a preconditioned adaptive step size Runge-Kutta method can be much more efficient. For a chirped laser pulse designed to favor the dissociation of HF the preconditioned adaptive step size Runge-Kutta method is about an order of magnitude more efficient than the time sliced method.

  18. Weak chaos in the disordered nonlinear Schroedinger chain: Destruction of Anderson localization by Arnold diffusion

    SciTech Connect

    Basko, D.M.

    2011-07-15

    Research Highlights: > In a one-dimensional disordered chain of oscillators all normal modes are localized. > Nonlinearity leads to chaotic dynamics. > Chaos is concentrated on rare chaotic spots. > Chaotic spots drive energy exchange between oscillators. > Macroscopic transport coefficients are obtained. - Abstract: The subject of this study is the long-time equilibration dynamics of a strongly disordered one-dimensional chain of coupled weakly anharmonic classical oscillators. It is shown that chaos in this system has a very particular spatial structure: it can be viewed as a dilute gas of chaotic spots. Each chaotic spot corresponds to a stochastic pump which drives the Arnold diffusion of the oscillators surrounding it, thus leading to their relaxation and thermalization. The most important mechanism of equilibration at long distances is provided by random migration of the chaotic spots along the chain, which bears analogy with variable-range hopping of electrons in strongly disordered solids. The corresponding macroscopic transport equations are obtained.

  19. Analytical solutions of the Schroedinger equation for a two-dimensional exciton in magnetic field of arbitrary strength

    SciTech Connect

    Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang

    2013-05-15

    The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schroedinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for various physical analyses and the method used here could also be applied to other atomic systems.

  20. Finite difference method for solving the Schroedinger equation with band nonparabolicity in mid-infrared quantum cascade lasers

    SciTech Connect

    Cooper, J. D.; Valavanis, A.; Ikonic, Z.; Harrison, P.; Cunningham, J. E.

    2010-12-01

    The nonparabolic Schroedinger equation for electrons in quantum cascade lasers (QCLs) is a cubic eigenvalue problem (EVP) which cannot be solved directly. While a method for linearizing this cubic EVP has been proposed in principle for quantum dots [Hwang et al., Math. Comput. Modell., 40, 519 (2004)] it was deemed too computationally expensive because of the three-dimensional geometry under consideration. We adapt this linearization approach to the one-dimensional geometry of QCLs, and arrive at a direct and exact solution to the cubic EVP. The method is then compared with the well established shooting method, and it is shown to be more accurate and reliable for calculating the bandstructure of mid-infrared QCLs.

  1. About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation

    SciTech Connect

    Dubrovsky, V. G.; Topovsky, A. V.

    2013-03-15

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.

  2. Schroedinger's hope

    NASA Astrophysics Data System (ADS)

    Stroud, Carlos

    1993-07-01

    Recent work at the University of Rochester that was supported by the Army Research Office through the University Research Initiative Program was featured in a recent book Taming the Atom by Hans Christian von Baeyer. An excerpt from that book is presented that shows that the work in Rochester is the realization of Erwin Schroedinger's hope in the earliest days of quantum theory that a solution to his equation could be found in the form of a localized wave packet moving along the elliptical orbit predicted by classical theory. In a series of calculations and experiments the group in Rochester was shown that a short laser pulse can be used to excite such a wave packet state and that as the wave packet moves many times around the orbit it undergoes a complicated time evolution in which it spreads all the way around the orbit, and then repeatedly relocalizes in the form of a single wave packet or a series of identical sub-wave packets equally spaced around the orbit. This work sheds new light on the boundary between microscopic quantum systems and macroscopic classical systems.

  3. Spurious Solutions Of Nonlinear Differential Equations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1992-01-01

    Report utilizes nonlinear-dynamics approach to investigate possible sources of errors and slow convergence and non-convergence of steady-state numerical solutions when using time-dependent approach for problems containing nonlinear source terms. Emphasizes implications for development of algorithms in CFD and computational sciences in general. Main fundamental conclusion of study is that qualitative features of nonlinear differential equations cannot be adequately represented by finite-difference method and vice versa.

  4. Dimensional interpolation for nonlinear filters

    NASA Astrophysics Data System (ADS)

    Daum, Fred

    2005-09-01

    Dimensional interpolation has been used successfully by physicists and chemists to solve the Schroedinger equation for atoms and complex molecules. The same basic idea can be used to solve the Fokker-Planck equation for nonlinear filters. In particular, it is well known (by physicists) that two Schroedinger equations are equivalent to two Fokker-Planck equations. Moreover, we can avoid the Schroedinger equation altogether and use dimensional interpolation directly on the Fokker-Planck equation. Dimensional interpolation sounds like a crazy idea, but it works. We will attempt to make this paper accessible to normal engineers who do not have quantum mechanics for breakfast.

  5. Nonlinear quantum equations: Classical field theory

    SciTech Connect

    Rego-Monteiro, M. A.; Nobre, F. D.

    2013-10-15

    An exact classical field theory for nonlinear quantum equations is presented herein. It has been applied recently to a nonlinear Schrödinger equation, and it is shown herein to hold also for a nonlinear generalization of the Klein-Gordon equation. These generalizations were carried by introducing nonlinear terms, characterized by exponents depending on an index q, in such a way that the standard, linear equations, are recovered in the limit q→ 1. The main characteristic of this field theory consists on the fact that besides the usual Ψ(x(vector sign),t), a new field Φ(x(vector sign),t) needs to be introduced in the Lagrangian, as well. The field Φ(x(vector sign),t), which is defined by means of an additional equation, becomes Ψ{sup *}(x(vector sign),t) only when q→ 1. The solutions for the fields Ψ(x(vector sign),t) and Φ(x(vector sign),t) are found herein, being expressed in terms of a q-plane wave; moreover, both field equations lead to the relation E{sup 2}=p{sup 2}c{sup 2}+m{sup 2}c{sup 4}, for all values of q. The fact that such a classical field theory works well for two very distinct nonlinear quantum equations, namely, the Schrödinger and Klein-Gordon ones, suggests that this procedure should be appropriate for a wider class nonlinear equations. It is shown that the standard global gauge invariance is broken as a consequence of the nonlinearity.

  6. Extended Trial Equation Method for Nonlinear Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Gepreel, Khaled A.; Nofal, Taher A.

    2015-04-01

    The main objective of this paper is to use the extended trial equation method to construct a series of some new solutions for some nonlinear partial differential equations (PDEs) in mathematical physics. We will construct the solutions in many different functions such as hyperbolic function solutions, trigonometric function solutions, Jacobi elliptic function solutions, and rational functional solutions for the nonlinear PDEs when the balance number is a real number via the Zhiber-Shabat nonlinear differential equation. The balance number of this method is not constant as we shown in other methods, but it is changed by changing the trial equation derivative definition. This method allowed us to construct many new types of solutions. It is shown by using the Maple software package that all obtained solutions satisfy the original PDEs.

  7. Multigrid techniques for nonlinear eigenvalue probems: Solutions of a nonlinear Schroedinger eigenvalue problem in 2D and 3D

    NASA Technical Reports Server (NTRS)

    Costiner, Sorin; Taasan, Shlomo

    1994-01-01

    This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.

  8. Markovian master equation for nonlinear systems

    NASA Astrophysics Data System (ADS)

    de los Santos-Sánchez, O.; Récamier, J.; Jáuregui, R.

    2015-06-01

    Within the f-deformed oscillator formalism, we derive a Markovian master equation for the description of the damped dynamics of nonlinear systems that interact with their environment. The applicability of this treatment to the particular case of a Morse-like oscillator interacting with a thermal field is illustrated, and the decay of quantum coherence in such a system is analyzed in terms of the evolution on phase space of its nonlinear coherent states via the Wigner function.

  9. Algorithms For Integrating Nonlinear Differential Equations

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Walker, K. P.

    1994-01-01

    Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.

  10. The non-linear MSW equation

    NASA Astrophysics Data System (ADS)

    Thomson, Mark J.; McKellar, Bruce H. J.

    1991-04-01

    A simple, non-linear generalization of the MSW equation is presented and its analytic solution is outlined. The orbits of the polarization vector are shown to be periodic, and to lie on a sphere. Their non-trivial flow patterns fall into two topological categories, the more complex of which can become chaotic if perturbed.

  11. Quantum nonlinear Schrodinger equation on a lattice

    SciTech Connect

    Bogolyubov, N.M.; Korepin, V.E.

    1986-09-01

    A local Hamiltonian is constructed for the nonlinear Schrodinger equation on a lattice in both the classical and the quantum variants. This Hamiltonian is an explicit elementary function of the local Bose fields. The lattice model possesses the same structure of the action-angle variables as the continuous model.

  12. Solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity.

    PubMed

    Cooper, Fred; Khare, Avinash; Mihaila, Bogdan; Saxena, Avadh

    2010-09-01

    We consider the nonlinear Dirac equations (NLDE's) in 1+1 dimension with scalar-scalar self interaction g{2}/k+1(ΨΨ){k+1} , as well as a vector-vector self interaction g{2}/k+1(Ψγ{μ}ΨΨγ{μ}Ψ){1/2(k+1)} . We find the exact analytic form for solitary waves for arbitrary k and find that they are a generalization of the exact solutions for the nonlinear Schrödinger equation (NLSE) and reduce to these solutions in a well defined nonrelativistic limit. We perform the nonrelativistic reduction and find the 1/2m correction to the NLSE, valid when |ω-m|<2m , where ω is the frequency of the solitary wave in the rest frame. We discuss the stability and blowup of solitary waves assuming the modified NLSE is valid and find that they should be stable for k<2 . PMID:21230200

  13. Taming the nonlinearity of the Einstein equation.

    PubMed

    Harte, Abraham I

    2014-12-31

    Many of the technical complications associated with the general theory of relativity ultimately stem from the nonlinearity of Einstein's equation. It is shown here that an appropriate choice of dynamical variables may be used to eliminate all such nonlinearities beyond a particular order: Both Landau-Lifshitz and tetrad formulations of Einstein's equation are obtained that involve only finite products of the unknowns and their derivatives. Considerable additional simplifications arise in physically interesting cases where metrics become approximately Kerr or, e.g., plane waves, suggesting that the variables described here can be used to efficiently reformulate perturbation theory in a variety of contexts. In all cases, these variables are shown to have simple geometrical interpretations that directly relate the local causal structure associated with the metric of interest to the causal structure associated with a prescribed background. A new method to search for exact solutions is outlined as well. PMID:25615299

  14. Explicit integration of Friedmann's equation with nonlinear equations of state

    NASA Astrophysics Data System (ADS)

    Chen, Shouxin; Gibbons, Gary W.; Yang, Yisong

    2015-05-01

    In this paper we study the integrability of the Friedmann equations, when the equation of state for the perfect-fluid universe is nonlinear, in the light of the Chebyshev theorem. A series of important, yet not previously touched, problems will be worked out which include the generalized Chaplygin gas, two-term energy density, trinomial Friedmann, Born-Infeld, two-fluid models, and Chern-Simons modified gravity theory models. With the explicit integration, we are able to understand exactly the roles of the physical parameters in various models play in the cosmological evolution which may also offer clues to a profound understanding of the problems in general settings. For example, in the Chaplygin gas universe, a few integrable cases lead us to derive a universal formula for the asymptotic exponential growth rate of the scale factor, of an explicit form, whether the Friedmann equation is integrable or not, which reveals the coupled roles played by various physical sectors and it is seen that, as far as there is a tiny presence of nonlinear matter, conventional linear matter makes contribution to the dark matter, which becomes significant near the phantom divide line. The Friedmann equations also arise in areas of physics not directly related to cosmology. We provide some examples ranging from geometric optics and central orbits to soap films and the shape of glaciated valleys to which our results may be applied.

  15. Solving Nonlinear Euler Equations with Arbitrary Accuracy

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2005-01-01

    A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.

  16. Forces Associated with Nonlinear Nonholonomic Constraint Equations

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Hodges, Dewey H.

    2010-01-01

    A concise method has been formulated for identifying a set of forces needed to constrain the behavior of a mechanical system, modeled as a set of particles and rigid bodies, when it is subject to motion constraints described by nonholonomic equations that are inherently nonlinear in velocity. An expression in vector form is obtained for each force; a direction is determined, together with the point of application. This result is a consequence of expressing constraint equations in terms of dot products of vectors rather than in the usual way, which is entirely in terms of scalars and matrices. The constraint forces in vector form are used together with two new analytical approaches for deriving equations governing motion of a system subject to such constraints. If constraint forces are of interest they can be brought into evidence in explicit dynamical equations by employing the well-known nonholonomic partial velocities associated with Kane's method; if they are not of interest, equations can be formed instead with the aid of vectors introduced here as nonholonomic partial accelerations. When the analyst requires only the latter, smaller set of equations, they can be formed directly; it is not necessary to expend the labor to form the former, larger set first and subsequently perform matrix multiplications.

  17. Dark soliton solutions of (N+1)-dimensional nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Demiray, Seyma Tuluce; Bulut, Hasan

    2016-06-01

    In this study, we investigate exact solutions of (N+1)-dimensional double sinh-Gordon equation and (N+1)-dimensional generalized Boussinesq equation by using generalized Kudryashov method. (N+1)-dimensional double sinh-Gordon equation and (N+1)-dimensional generalized Boussinesq equation can be returned to nonlinear ordinary differential equation by suitable transformation. Then, generalized Kudryashov method has been used to seek exact solutions of the (N+1)-dimensional double sinh-Gordon equation and (N+1)-dimensional generalized Boussinesq equation. Also, we obtain dark soliton solutions for these (N+1)-dimensional nonlinear evolution equations. Finally, we denote that this method can be applied to solve other nonlinear evolution equations.

  18. Using the scalable nonlinear equations solvers package

    SciTech Connect

    Gropp, W.D.; McInnes, L.C.; Smith, B.F.

    1995-02-01

    SNES (Scalable Nonlinear Equations Solvers) is a software package for the numerical solution of large-scale systems of nonlinear equations on both uniprocessors and parallel architectures. SNES also contains a component for the solution of unconstrained minimization problems, called SUMS (Scalable Unconstrained Minimization Solvers). Newton-like methods, which are known for their efficiency and robustness, constitute the core of the package. As part of the multilevel PETSc library, SNES incorporates many features and options from other parts of PETSc. In keeping with the spirit of the PETSc library, the nonlinear solution routines are data-structure-neutral, making them flexible and easily extensible. This users guide contains a detailed description of uniprocessor usage of SNES, with some added comments regarding multiprocessor usage. At this time the parallel version is undergoing refinement and extension, as we work toward a common interface for the uniprocessor and parallel cases. Thus, forthcoming versions of the software will contain additional features, and changes to parallel interface may result at any time. The new parallel version will employ the MPI (Message Passing Interface) standard for interprocessor communication. Since most of these details will be hidden, users will need to perform only minimal message-passing programming.

  19. The beam equation with nonlinear memory

    NASA Astrophysics Data System (ADS)

    D'Abbicco, Marcello; Lucente, Sandra

    2016-06-01

    In this paper, we study the critical exponent for the beam equation with nonlinear memory, i.e., {u_{tt}+Δ^2u = F(t, u)}, where F = intlimits0tf(t - s)N(u)(s, x) {d}s, quad N(u)≈ |u|^p. For suitable f and p, we prove the existence of local-in-time solutions and small data global solutions to the Cauchy problem, in homogeneous and nonhomogeneous Sobolev spaces. In some cases, we prove that the local solution cannot be extended to a global one. We also consider the limit case of power nonlinearity, i.e., {F = N(u)}.

  20. Exact and explicit solitary wave solutions to some nonlinear equations

    SciTech Connect

    Jiefang Zhang

    1996-08-01

    Exact and explicit solitary wave solutions are obtained for some physically interesting nonlinear evolutions and wave equations in physics and other fields by using a special transformation. These equations include the KdV-Burgers equation, the MKdV-Burgers equation, the combined KdV-MKdV equation, the Newell-Whitehead equation, the dissipative {Phi}{sup 4}-model equation, the generalized Fisher equation, and the elastic-medium wave equation.

  1. FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Ibragimov, N. H.; Torrisi, M.; Tracinà, R.

    2010-11-01

    In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.

  2. Solution spectrum of nonlinear diffusion equations

    SciTech Connect

    Ulmer, W.

    1992-08-01

    The stationary version of the nonlinear diffusion equation -{partial_derivative}c/{partial_derivative}t+D{Delta}c=A{sub 1}c-A{sub 2}c{sup 2} can be solved with the ansatz c={summation}{sub p=1}{sup {infinity}} A{sub p}(cosh kx){sup -p}, inducing a band structure with regard to the ratio {lambda}{sub 1}/{lambda}{sub 2}. The resulting solution manifold can be related to an equilibrium of fluxes of nonequilibrium thermodynamics. The modification of this ansatz yielding the expansion c={summation}{sub p,q=1}{sup infinity}A{sub pa}(cosh kx){sup -p}[(cosh {alpha}t){sup -q-1} sinh {alpha}t+b(cosh {alpha}t){sup -q}] represents a solution spectrum of the time-dependent nonlinear equations, and the stationary version can be found from the asymptotic behaviour of the expansion. The solutions can be associated with reactive processes such as active transport phenomena and control circuit problems is discussed. There are also applications to cellular kinetics of clonogenic cell assays and spheriods. 33 refs., 1 tab.

  3. Deriving average soliton equations with a perturbative method

    SciTech Connect

    Ballantyne, G.J.; Gough, P.T.; Taylor, D.P. )

    1995-01-01

    The method of multiple scales is applied to periodically amplified, lossy media described by either the nonlinear Schroedinger (NLS) equation or the Korteweg--de Vries (KdV) equation. An existing result for the NLS equation, derived in the context of nonlinear optical communications, is confirmed. The method is then applied to the KdV equation and the result is confirmed numerically.

  4. Radiation boundary conditions for the numerical solution of the three-dimensional time-dependent Schroedinger equation with a localized interaction

    SciTech Connect

    Heinen, M.; Kull, H.-J.

    2009-05-15

    Exact radiation boundary conditions on the surface of a sphere are presented for the single-particle time-dependent Schroedinger equation with a localized interaction. With these boundary conditions, numerical computations of spatially unbounded outgoing wave solutions can be restricted to the finite volume of a sphere. The boundary conditions are expressed in terms of the free-particle Green's function for the outside region. The Green's function is analytically calculated by an expansion in spherical harmonics and by the method of Laplace transformation. For each harmonic number a discrete boundary condition between the function values at adjacent radial grid points is obtained. The numerical method is applied to quantum tunneling through a spherically symmetric potential barrier with different angular-momentum quantum numbers l. Calculations for l=0 are compared to exact theoretical results.

  5. Simulating the Euclidean time Schroedinger equations using an Intel iPSC/860 hypercube: Application to the t-J model of high-{Tc} superconductivity

    SciTech Connect

    Kovarik, M.D.; Barnes, T. |

    1993-10-01

    We describe a Monte Carlo simulation of a dynamical fermion problem in two spatial dimensions on an Intel iPSC/860 hypercube. The problem studied is the determination of the dispersion relation of a dynamical hole in the t-J model of the high temperature superconductors. Since this problem involves the motion of many fermions in more than one spatial dimensions, it is representative of the class of systems that suffer from the ``minus sign problem`` of dynamical fermions which has made Monte Carlo simulation very difficult. We demonstrate that for small values of the hole hopping parameter one can extract the entire hole dispersion relation using the GRW Monte Carlo algorithm, which is a simulation of the Euclidean time Schroedinger equation, and present results on 4 {times} 4 and 6 {times} 6 lattices. Generalization to physical hopping parameter values wig only require use of an improved trial wavefunction for importance sampling.

  6. Nonlinear scattering term in the gyrokinetic Vlasov equation

    SciTech Connect

    Wang, Shaojie

    2013-08-15

    Nonlinear scattering term is found from the nonlinear gyrokinetic equation by decoupling the perturbed gyrocenter motion from the unperturbed motion. The gyro-center distribution function is determined by the well-understood unperturbed motion, with the effects of fields perturbation included in the nonlinear scattering term, which explicitly reveals the nonlinear stochastic dissipation on the time scale longer than the wave correlation time.

  7. Complex PT-symmetric nonlinear Schrödinger equation and Burgers equation.

    PubMed

    Yan, Zhenya

    2013-04-28

    The complex -symmetric nonlinear wave models have drawn much attention in recent years since the complex -symmetric extensions of the Korteweg-de Vries (KdV) equation were presented in 2007. In this review, we focus on the study of the complex -symmetric nonlinear Schrödinger equation and Burgers equation. First of all, we briefly introduce the basic property of complex symmetry. We then report on exact solutions of one- and two-dimensional nonlinear Schrödinger equations (known as the Gross-Pitaevskii equation in Bose-Einstein condensates) with several complex -symmetric potentials. Finally, some complex -symmetric extension principles are used to generate some complex -symmetric nonlinear wave equations starting from both -symmetric (e.g. the KdV equation) and non- -symmetric (e.g. the Burgers equation) nonlinear wave equations. In particular, we discuss exact solutions of some representative ones of the complex -symmetric Burgers equation in detail. PMID:23509385

  8. Forced nonlinear Schrödinger equation with arbitrary nonlinearity

    NASA Astrophysics Data System (ADS)

    Cooper, Fred; Khare, Avinash; Quintero, Niurka R.; Mertens, Franz G.; Saxena, Avadh

    2012-04-01

    We consider the nonlinear Schrödinger equation (NLSE) in 1+1 dimension with scalar-scalar self-interaction (g2)/(κ+1)(ψψ)κ+1 in the presence of the external forcing terms of the form re-i(kx+θ)-δψ. We find new exact solutions for this problem and show that the solitary wave momentum is conserved in a moving frame where vk=2k. These new exact solutions reduce to the constant phase solutions of the unforced problem when r→0. In particular we study the behavior of solitary wave solutions in the presence of these external forces in a variational approximation which allows the position, momentum, width, and phase of these waves to vary in time. We show that the stationary solutions of the variational equations include a solution close to the exact one and we study small oscillations around all the stationary solutions. We postulate that the dynamical condition for instability is that dp(t)/dq˙(t)<0, where p(t) is the normalized canonical momentum p(t)=(1)/(M(t))(∂L)/(∂q˙), and q˙(t) is the solitary wave velocity. Here M(t)=∫dxψ(x,t)ψ(x,t). Stability is also studied using a “phase portrait” of the soliton, where its dynamics is represented by two-dimensional projections of its trajectory in the four-dimensional space of collective coordinates. The criterion for stability of a soliton is that its trajectory is a closed single curve with a positive sense of rotation around a fixed point. We investigate the accuracy of our variational approximation and these criteria using numerical simulations of the NLSE. We find that our criteria work quite well when the magnitude of the forcing term is small compared to the amplitude of the unforced solitary wave. In this regime the variational approximation captures quite well the behavior of the solitary wave.

  9. Forced nonlinear Schrödinger equation with arbitrary nonlinearity.

    PubMed

    Cooper, Fred; Khare, Avinash; Quintero, Niurka R; Mertens, Franz G; Saxena, Avadh

    2012-04-01

    We consider the nonlinear Schrödinger equation (NLSE) in 1+1 dimension with scalar-scalar self-interaction g(2)/κ+1(ψ*ψ)(κ+1) in the presence of the external forcing terms of the form re(-i(kx+θ))-δψ. We find new exact solutions for this problem and show that the solitary wave momentum is conserved in a moving frame where v(k)=2k. These new exact solutions reduce to the constant phase solutions of the unforced problem when r→0. In particular we study the behavior of solitary wave solutions in the presence of these external forces in a variational approximation which allows the position, momentum, width, and phase of these waves to vary in time. We show that the stationary solutions of the variational equations include a solution close to the exact one and we study small oscillations around all the stationary solutions. We postulate that the dynamical condition for instability is that dp(t)/dq ̇(t)<0, where p(t) is the normalized canonical momentum p(t)=1/M(t)∂L/∂q ̇, and q ̇(t) is the solitary wave velocity. Here M(t)=∫dxψ*(x,t)ψ(x,t). Stability is also studied using a "phase portrait" of the soliton, where its dynamics is represented by two-dimensional projections of its trajectory in the four-dimensional space of collective coordinates. The criterion for stability of a soliton is that its trajectory is a closed single curve with a positive sense of rotation around a fixed point. We investigate the accuracy of our variational approximation and these criteria using numerical simulations of the NLSE. We find that our criteria work quite well when the magnitude of the forcing term is small compared to the amplitude of the unforced solitary wave. In this regime the variational approximation captures quite well the behavior of the solitary wave. PMID:22680598

  10. Exact Travelling Wave Solutions of the Nonlinear Evolution Equations by Auxiliary Equation Method

    NASA Astrophysics Data System (ADS)

    Kaplan, Melike; Akbulut, Arzu; Bekir, Ahmet

    2015-10-01

    The auxiliary equation method presents wide applicability to handling nonlinear wave equations. In this article, we establish new exact travelling wave solutions of the nonlinear Zoomeron equation, coupled Higgs equation, and equal width wave equation. The travelling wave solutions are expressed by the hyperbolic functions, trigonometric functions, and rational functions. It is shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering. Throughout the article, all calculations are made with the aid of the Maple packet program.

  11. Exact traveling wave solutions for system of nonlinear evolution equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H

    2016-01-01

    In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis. PMID:27347461

  12. Stochastic differential equations for non-linear hydrodynamics

    NASA Astrophysics Data System (ADS)

    Español, Pep

    1998-02-01

    We formulate the stochastic differential equations for non-linear hydrodynamic fluctuations. The equations incorporate the random forces through a random stres tensor and random heat flux as in the Landau and Lifshitz theory. However, the equations are non-linear and the random forces are non-Gaussian. We provide explicit expressions for these random quantities in terms of the well-defined increments of the Wienner process.

  13. Analytic solutions of a general nonlinear functional equations near resonance

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Zhang, Weinian

    2006-05-01

    Existence of analytic solutions of a general class of nonlinear functional equations is discussed. This general class includes some specific functional equations studied recently. Moreover, we can generalize this problem to finding analytic solutions of a general class of iterative equations.

  14. NA Nonlinear Equation-of-state Inversion

    NASA Astrophysics Data System (ADS)

    Jackson, I.; Kennett, B. L.

    2008-12-01

    A fully non-linear inversion scheme is introduced for the determination of the parameters controlling the equation-of-state and elasticity of mineral phases using the thermodynamically consistent finite-strain formulation introduced by Stixrude & Lithgow-Bertelloni (2005). This inversion exploits a directed search in an eight-dimensional parameter space using the Neighbourhood Algorithm (NA) of Sambridge (1999) to search for the minimum of an objective function representing the misfit to multiple data sets that constrain different aspects of the mineral behaviour. No derivatives are employed and the progress towards the minimum builds on the accumulated information on the character of the parameter space acquired as the inversion progresses. When only a limited range of experimental information is available there is a strong possibility of multiple minima in the objective function, which can pose problems for conventional iterative least-squares or other gradient methods. The addition of many different styles of data tends to produce a better defined minimum. The influence of different data types can be readily assessed by allowing differential weighting. The new procedure is illustrated by application to MgO, for which extensive experimental data are available. These include the variation of relative volume V with temperature T and pressure P from both static and shock-compression experiments, acoustic measurements of compressional and shear (and hence bulk) moduli, and calorimetric determinations of entropy as a function of temperature at atmospheric pressure. Preliminary NA modeling highlighted tensions between marginally incompatible subsets of data. We therefore excluded one-atmosphere V(T) data for T ≥ 1800 K for which the quasi-harmonic approximation is inadequate (Wu et al., 2008) along with elastic moduli derived from Brillouin spectroscopy under conditions (P ≥ 14 GPa) where significant departures from hydrostatic conditions are expected. With these

  15. Nonlinear modes of the tensor Dirac equation and CPT violation

    NASA Technical Reports Server (NTRS)

    Reifler, Frank J.; Morris, Randall D.

    1993-01-01

    Recently, it has been shown that Dirac's bispinor equation can be expressed, in an equivalent tensor form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was also shown that the free tensor Dirac equation is a completely integrable Hamiltonian system with Lie algebra type Poisson brackets, from which Fermi quantization can be derived directly without using bispinors. The Yang-Mills equation for a finite coupling constant is investigated. It is shown that the nonlinear Yang-Mills equation has exact plane wave solutions in one-to-one correspondence with the plane wave solutions of Dirac's bispinor equation. The theory of nonlinear dispersive waves is applied to establish the existence of wave packets. The CPT violation of these nonlinear wave packets, which could lead to new observable effects consistent with current experimental bounds, is investigated.

  16. Painlevé equations--nonlinear special functions

    NASA Astrophysics Data System (ADS)

    Clarkson, Peter A.

    2003-04-01

    The six Painlevé equations (PI-PVI) were first discovered about a hundred years ago by Painlevé and his colleagues in an investigation of nonlinear second-order ordinary differential equations. Recently, there has been considerable interest in the Painlevé equations primarily due to the fact that they arise as reductions of the soliton equations which are solvable by inverse scattering. Consequently, the Painlevé equations can be regarded as completely integrable equations and possess solutions which can be expressed in terms of solutions of linear integral equations, despite being nonlinear equations. Although first discovered from strictly mathematical considerations, the Painlevé equations have arisen in a variety of important physical applications including statistical mechanics, plasma physics, nonlinear waves, quantum gravity, quantum field theory, general relativity, nonlinear optics and fibre optics. The Painlevé equations may be thought of a nonlinear analogues of the classical special functions. They possess hierarchies of rational solutions and one-parameter families of solutions expressible in terms of the classical special functions, for special values of the parameters. Further the Painlevé equations admit symmetries under affine Weyl groups which are related to the associated Bäcklund transformations. In this paper, I discuss some of the remarkable properties which the Painlevé equations possess including connection formulae, Bäcklund transformations associated discrete equations, and hierarchies of exact solutions. In particular, the second Painlevé equation PII is used to illustrate these properties and some of the applications of PII are also discussed.

  17. An integrable shallow water equation with linear and nonlinear dispersion.

    PubMed

    Dullin, H R; Gottwald, G A; Holm, D D

    2001-11-01

    We use asymptotic analysis and a near-identity normal form transformation from water wave theory to derive a 1+1 unidirectional nonlinear wave equation that combines the linear dispersion of the Korteweg-deVries (KdV) equation with the nonlinear/nonlocal dispersion of the Camassa-Holm (CH) equation. This equation is one order more accurate in asymptotic approximation beyond KdV, yet it still preserves complete integrability via the inverse scattering transform method. Its traveling wave solutions contain both the KdV solitons and the CH peakons as limiting cases. PMID:11690414

  18. Nonlinear ordinary differential equations: A discussion on symmetries and singularities

    NASA Astrophysics Data System (ADS)

    Paliathanasis, Andronikos; Leach, P. G. L.

    2016-06-01

    Two essential methods, the symmetry analysis and the singularity analysis, for the study of the integrability of nonlinear ordinary differential equations is the purpose of this work. The main similarities and the differences of these two different methods are discussed.

  19. Oscillation theorems for second order nonlinear forced differential equations.

    PubMed

    Salhin, Ambarka A; Din, Ummul Khair Salma; Ahmad, Rokiah Rozita; Noorani, Mohd Salmi Md

    2014-01-01

    In this paper, a class of second order forced nonlinear differential equation is considered and several new oscillation theorems are obtained. Our results generalize and improve those known ones in the literature. PMID:25077054

  20. Late-time attractor for the cubic nonlinear wave equation

    SciTech Connect

    Szpak, Nikodem

    2010-08-15

    We apply our recently developed scaling technique for obtaining late-time asymptotics to the cubic nonlinear wave equation and explain the appearance and approach to the two-parameter attractor found recently by Bizon and Zenginoglu.

  1. Multivariate Padé Approximations For Solving Nonlinear Diffusion Equations

    NASA Astrophysics Data System (ADS)

    Turut, V.

    2015-11-01

    In this paper, multivariate Padé approximation is applied to power series solutions of nonlinear diffusion equations. As it is seen from tables, multivariate Padé approximation (MPA) gives reliable solutions and numerical results.

  2. Invariant tori for a class of nonlinear evolution equations

    SciTech Connect

    Kolesov, A Yu; Rozov, N Kh

    2013-06-30

    The paper looks at quite a wide class of nonlinear evolution equations in a Banach space, including the typical boundary value problems for the main wave equations in mathematical physics (the telegraph equation, the equation of a vibrating beam, various equations from the elastic stability and so on). For this class of equations a unified approach to the bifurcation of invariant tori of arbitrary finite dimension is put forward. Namely, the problem of the birth of such tori from the zero equilibrium is investigated under the assumption that in the stability problem for this equilibrium the situation arises close to an infinite-dimensional degeneracy. Bibliography: 28 titles.

  3. Lattice Boltzmann model for generalized nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Lai, Huilin; Ma, Changfeng

    2011-10-01

    In this paper, a lattice Boltzmann model is developed to solve a class of the nonlinear wave equations. Through selecting equilibrium distribution function and an amending function properly, the governing evolution equation can be recovered correctly according to our proposed scheme, in which the Chapman-Enskog expansion is employed. We validate the algorithm on some problems where analytic solutions are available, including the second-order telegraph equation, the nonlinear Klein-Gordon equation, and the damped, driven sine-Gordon equation. It is found that the numerical results agree well with the analytic solutions, which indicates that the present algorithm is very effective and can be used to solve more general nonlinear problems.

  4. Nonlinear Kramers equation associated with nonextensive statistical mechanics.

    PubMed

    Mendes, G A; Ribeiro, M S; Mendes, R S; Lenzi, E K; Nobre, F D

    2015-05-01

    Stationary and time-dependent solutions of a nonlinear Kramers equation, as well as its associated nonlinear Fokker-Planck equations, are investigated within the context of Tsallis nonextensive statistical mechanics. Since no general analytical time-dependent solutions are found for such a nonlinear Kramers equation, an ansatz is considered and the corresponding asymptotic behavior is studied and compared with those known for the standard linear Kramers equation. The H-theorem is analyzed for this equation and its connection with Tsallis entropy is investigated. An application is discussed, namely the motion of Hydra cells in two-dimensional cellular aggregates, for which previous measurements have verified q-Gaussian distributions for velocity components and superdiffusion. The present analysis is in quantitative agreement with these experimental results. PMID:26066118

  5. Solutions to Class of Linear and Nonlinear Fractional Differential Equations

    NASA Astrophysics Data System (ADS)

    Abdel-Salam, Emad A.-B.; Hassan, Gamal F.

    2016-02-01

    In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional KdV equation, the space-time fractional RLW equation, the space-time fractional Boussinesq equation, and the (3+1)-space-time fractional ZK equation. The solutions are expressed in terms of fractional hyperbolic and fractional trigonometric functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The analytical solution of homogenous linear FDEs with constant coefficients are obtained by using the series and the Mittag–Leffler function methods. The obtained results recover the well-know solutions when α = 1.

  6. Solutions to Class of Linear and Nonlinear Fractional Differential Equations

    NASA Astrophysics Data System (ADS)

    Emad A-B., Abdel-Salam; Gamal, F. Hassan

    2016-02-01

    In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional KdV equation, the space-time fractional RLW equation, the space-time fractional Boussinesq equation, and the (3+1)-space-time fractional ZK equation. The solutions are expressed in terms of fractional hyperbolic and fractional trigonometric functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The analytical solution of homogenous linear FDEs with constant coefficients are obtained by using the series and the Mittag-Leffler function methods. The obtained results recover the well-know solutions when α = 1.

  7. Nonlinear flap-lag axial equations of a rotating beam

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kvaternik, R. G.

    1977-01-01

    It is possible to identify essentially four approaches by which analysts have established either the linear or nonlinear governing equations of motion for a particular problem related to the dynamics of rotating elastic bodies. The approaches include the effective applied load artifice in combination with a variational principle and the use of Newton's second law, written as D'Alembert's principle, applied to the deformed configuration. A third approach is a variational method in which nonlinear strain-displacement relations and a first-degree displacement field are used. The method introduced by Vigneron (1975) for deriving the linear flap-lag equations of a rotating beam constitutes the fourth approach. The reported investigation shows that all four approaches make use of the geometric nonlinear theory of elasticity. An alternative method for deriving the nonlinear coupled flap-lag-axial equations of motion is also discussed.

  8. Entropy and convexity for nonlinear partial differential equations

    PubMed Central

    Ball, John M.; Chen, Gui-Qiang G.

    2013-01-01

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue. PMID:24249768

  9. Balancing single- and multi-reference correlation in the chemiluminescent reaction of dioxetanone using the anti-Hermitian contracted Schroedinger equation

    SciTech Connect

    Greenman, Loren; Mazziotti, David A.

    2011-05-07

    Direct computation of energies and two-electron reduced density matrices (2-RDMs) from the anti-Hermitian contracted Schroedinger equation (ACSE) [D. A. Mazziotti, Phys. Rev. Lett. 97, 143002 (2006)], it is shown, recovers both single- and multi-reference electron correlation in the chemiluminescent reaction of dioxetanone especially in the vicinity of the conical intersection where strong correlation is important. Dioxetanone, the light-producing moiety of firefly luciferin, efficiently converts chemical energy into light by accessing its excited-state surface via a conical intersection. Our previous active-space 2-RDM study of dioxetanone [L. Greenman and D. A. Mazziotti, J. Chem. Phys. 133, 164110 (2010)] concluded that correlating 16 electrons in 13 (active) orbitals is required for realistic surfaces without correlating the remaining (inactive) orbitals. In this paper we pursue two complementary goals: (i) to correlate the inactive orbitals in 2-RDMs along dioxetanone's reaction coordinate and compare these results with those from multireference second-order perturbation theory (MRPT2) and (ii) to assess the size of the active space--the number of correlated electrons and orbitals--required by both MRPT2 and ACSE for accurate energies and surfaces. While MRPT2 recovers very different amounts of correlation with (4,4) and (16,13) active spaces, the ACSE obtains a similar amount of correlation energy with either active space. Nevertheless, subtle differences in excitation energies near the conical intersection suggest that the (16,13) active space is necessary to determine both energetic details and properties. Strong electron correlation is further assessed through several RDM-based metrics including (i) total and relative energies, (ii) the von Neumann entropy based on the 1-electron RDM, as well as the (iii) infinity and (iv) squared Frobenius norms based on the cumulant 2-RDM.

  10. The numerical dynamic for highly nonlinear partial differential equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1992-01-01

    Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.

  11. The Jeffcott equations in nonlinear rotordynamics

    NASA Technical Reports Server (NTRS)

    Zalik, R. A.

    1987-01-01

    The Jeffcott equations are a system of coupled differential equations representing the behavior of a rotating shaft. This is a simple model which allows investigation of the basic dynamic behavior of rotating machinery. Nolinearities can be introduced by taking into consideration deadband, side force, and rubbing, among others. The properties of the solutions of the Jeffcott equations with deadband are studied. In particular, it is shown how bounds for the solution of these equations can be obtained from bounds for the solutions of the linearized equations. By studying the behavior of the Fourier transforms of the solutions, we are also able to predict the onset of destructive vibrations. These conclusions are verified by means of numerical solutions of the equations, and of power spectrum density (PSD) plots. This study offers insight into a possible detection method to determine pump stability margins during flight and hot fire tests, and was motivated by the need to explain a phenomenon observed in the development phase of the cryogenic pumps of the Space Shuttle, during hot fire ground testing; namely, the appearance of vibrations at frequencies that could not be accounted for by means of linear models.

  12. Relations between nonlinear Riccati equations and other equations in fundamental physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-10-01

    Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract "quantizations" such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown.

  13. Generalized nonlinear Proca equation and its free-particle solutions

    NASA Astrophysics Data System (ADS)

    Nobre, F. D.; Plastino, A. R.

    2016-06-01

    We introduce a nonlinear extension of Proca's field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schrödinger, Dirac, and Klein-Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q → 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ ^{μ }(ěc {x},t), involves an additional field Φ ^{μ }(ěc {x},t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E2 = p2c2 + m2c4 for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed.

  14. Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations

    PubMed Central

    Baranwal, Vipul K.; Pandey, Ram K.

    2014-01-01

    We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ0, γ1, γ2,… and auxiliary functions H0(x), H1(x), H2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.

  15. An iterative method for systems of nonlinear hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Scroggs, Jeffrey S.

    1989-01-01

    An iterative algorithm for the efficient solution of systems of nonlinear hyperbolic equations is presented. Parallelism is evident at several levels. In the formation of the iteration, the equations are decoupled, thereby providing large grain parallelism. Parallelism may also be exploited within the solves for each equation. Convergence of the interation is established via a bounding function argument. Experimental results in two-dimensions are presented.

  16. Liapunov functions for non-linear difference equation stability analysis.

    NASA Technical Reports Server (NTRS)

    Park, K. E.; Kinnen, E.

    1972-01-01

    Liapunov functions to determine the stability of non-linear autonomous difference equations can be developed through the use of auxiliary exact difference equations. For this purpose definitions are introduced for the gradient of an implicit function of a discrete variable, a principal sum, a definite sum and an exact difference equation, and a theorem for exactness of a difference form is proved. Examples illustrate the procedure.

  17. Nonlinear Resonance and Duffing's Spring Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2006-01-01

    This note discusses the boundary in the frequency--amplitude plane for boundedness of solutions to the forced spring Duffing type equation. For fixed initial conditions and fixed parameter [epsilon] results are reported of a systematic numerical investigation on the global stability of solutions to the initial value problem as the parameters F and…

  18. Nonlinear Resonance and Duffing's Spring Equation II

    ERIC Educational Resources Information Center

    Fay, T. H.; Joubert, Stephan V.

    2007-01-01

    The paper discusses the boundary in the frequency-amplitude plane for boundedness of solutions to the forced spring Duffing type equation x[umlaut] + x + [epsilon]x[cubed] = F cos[omega]t. For fixed initial conditions and for representative fixed values of the parameter [epsilon], the results are reported of a systematic numerical investigation…

  19. Non-Linear Spring Equations and Stability

    ERIC Educational Resources Information Center

    Fay, Temple H.; Joubert, Stephan V.

    2009-01-01

    We discuss the boundary in the Poincare phase plane for boundedness of solutions to spring model equations of the form [second derivative of]x + x + epsilonx[superscript 2] = Fcoswt and the [second derivative of]x + x + epsilonx[superscript 3] = Fcoswt and report the results of a systematic numerical investigation on the global stability of…

  20. A Procedure to Construct Conservation Laws of Nonlinear Evolution Equations

    NASA Astrophysics Data System (ADS)

    Yaşar, Emrullah; San, Sait

    2016-05-01

    In this article, we established abundant local conservation laws to some nonlinear evolution equations by a new combined approach, which is a union of multiplier and Ibragimov's new conservation theorem method. One can conclude that the solutions of the adjoint equations corresponding to the new conservation theorem can be obtained via multiplier functions. Many new families of conservation laws of the Pochammer-Chree (PC) equation and the Kaup-Boussinesq type of coupled KdV system are successfully obtained. The combined method presents a wider applicability for handling the conservation laws of nonlinear wave equations. The conserved vectors obtained here can be important for the explanation of some practical physical problems, reductions, and solutions of the underlying equations.

  1. An Effective Schema for Solving Some Nonlinear Partial Differential Equation Arising In Nonlinear Physics

    NASA Astrophysics Data System (ADS)

    Baskonus, Haci Mehmet; Bulut, Hasan

    2015-10-01

    In this paper, a new computational algorithm called the "Improved Bernoulli sub-equation function method" has been proposed. This algorithm is based on the Bernoulli Sub-ODE method. Firstly, the nonlinear evaluation equations used for representing various physical phenomena are converted into ordinary differential equations by using various wave transformations. In this way, nonlinearity is preserved and represent nonlinear physical problems. The nonlinearity of physical problems together with the derivations is seen as the secret key to solve the general structure of problems. The proposed analytical schema, which is newly submitted to the literature, has been expressed comprehensively in this paper. The analytical solutions, application results, and comparisons are presented by plotting the two and three dimensional surfaces of analytical solutions obtained by using the methods proposed for some important nonlinear physical problems. Finally, a conclusion has been presented by mentioning the important discoveries in this study.

  2. Evolution equation for non-linear cosmological perturbations

    SciTech Connect

    Brustein, Ram; Riotto, Antonio E-mail: Antonio.Riotto@cern.ch

    2011-11-01

    We present a novel approach, based entirely on the gravitational potential, for studying the evolution of non-linear cosmological matter perturbations. Starting from the perturbed Einstein equations, we integrate out the non-relativistic degrees of freedom of the cosmic fluid and obtain a single closed equation for the gravitational potential. We then verify the validity of the new equation by comparing its approximate solutions to known results in the theory of non-linear cosmological perturbations. First, we show explicitly that the perturbative solution of our equation matches the standard perturbative solutions. Next, using the mean field approximation to the equation, we show that its solution reproduces in a simple way the exponential suppression of the non-linear propagator on small scales due to the velocity dispersion. Our approach can therefore reproduce the main features of the renormalized perturbation theory and (time)-renormalization group approaches to the study of non-linear cosmological perturbations, with some possibly important differences. We conclude by a preliminary discussion of the nature of the full solutions of the equation and their significance.

  3. Localized Nonlinear Waves in Systems with Time- and Space-Modulated Nonlinearities

    SciTech Connect

    Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym; Konotop, Vladimir V.

    2008-04-25

    Using similarity transformations we construct explicit nontrivial solutions of nonlinear Schroedinger equations with potentials and nonlinearities depending both on time and on the spatial coordinates. We present the general theory and use it to calculate explicitly nontrivial solutions such as periodic (breathers), resonant, or quasiperiodically oscillating solitons. Some implications to the field of matter waves are also discussed.

  4. Algebraic calculation of stroboscopic maps of ordinary, nonlinear differential equations

    SciTech Connect

    Wackerbauer, R. ); Huebler, A. . Center for Complex Systems Research); Mayer-Kress, G. California Univ., Santa Cruz, CA . Dept. of Mathematics)

    1991-07-25

    The relation between the parameters of a differential equation and corresponding discrete maps are becoming increasingly important in the study of nonlinear dynamical systems. Maps are well adopted for numerical computation and several universal properties of them are known. Therefore some perturbation methods have been proposed to deduce them for physical systems, which can be modeled by an ordinary differential equation (ODE) with a small nonlinearity. A new iterative, rigorous algebraic method for the calculation of the coefficients of a Taylor expansion of a stroboscopic map from ODE's with not necessarily small nonlinearities is presented. It is shown analytically that most of the coefficients are small for a small integration time and grow slowly in the course of time if the flow vector field of the ODE is polynomial and if the ODE has fixed point in the origin. Approximations of different orders respectively of the rest term are investigated for several nonlinear systems. 31 refs., 16 figs.

  5. A Jacobi collocation approximation for nonlinear coupled viscous Burgers' equation

    NASA Astrophysics Data System (ADS)

    Doha, Eid; Bhrawy, Ali; Abdelkawy, Mohamed; Hafez, Ramy

    2014-02-01

    This article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers' equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers' equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.

  6. Biological multi-rogue waves in discrete nonlinear Schrödinger equation with saturable nonlinearities

    NASA Astrophysics Data System (ADS)

    Tchinang Tchameu, J. D.; Togueu Motcheyo, A. B.; Tchawoua, C.

    2016-09-01

    The discrete multi-rogue waves (DMRW) as solution of the discrete nonlinear Schrödinger (DNLS) equation with saturable nonlinearities is studied numerically. These biological rogue waves represent the complex probability amplitude of finding an amide-I vibrational quantum at a site. We observe that the growth in the higher order saturable nonlinearity implies the formation of DMRW including an increase in the short-living DMRW and a decrease in amplitude of the long-living DMRW.

  7. The Buoyancy Budget With a Nonlinear Equation of State

    NASA Astrophysics Data System (ADS)

    Hieronymus, M. H.; Nycander, J.

    2012-12-01

    There has been a number of studies focusing on different aspects of having a nonlinear equation of state for seawater. Amongst other things it has been shown that the nonlinear equation of state has implications for the oceanic energy budget and that nonlinear processes can be a significant source of dense water production. This presentation will focus on the oceanic buoyancy budget. The nonlinear equation of state of seawater can introduce a sink or source of buoyancy when water parcels of unequal salinities and temperatures are mixed. A common example is the process known as cabbeling, which is responsible for forming a water mass that is denser than the original constituents in a mixture of two water masses with equal densities but different salinities and temperatures. This presentation will contain quantitative estimates of these nonlinear effects on the buoyancy budget of the global ocean. Because of these nonlinear effects there is a net sink of buoyancy in the oceans interior and the size of this sink can be determined from the buoyancy fluxes at the ocean boundaries. These boundary buoyancy fluxes are calculated using two surface heat flux climatologies one based on in situ measurements, the other on a reanalysis and in both cases using a nonlinear equation of state. The presentation also treats the buoyancy budget in the State of the art ocean model Nucleus for European Modelling of the Ocean (NEMO) and the results from NEMO are seen to be in good agreement with the buoyancy budgets based on the heat flux climatologies. Using the ocean model is a good complement to the surface flux climatologies, because in NEMO the buoyancy fluxes can be evaluated at all vertical model levels. This means that the vertical distribution of the buoyancy sink can be looked into. The results from NEMO shows that in large parts of the ocean the nonlinear buoyancy sink is the largest contribution to the buoyancy budget.

  8. Nonlinear generalized master equations and accounting for initial correlations

    NASA Astrophysics Data System (ADS)

    Los, V. F.

    2009-08-01

    We develop a new method based on using a time-dependent operator (generally not a projection operator) converting a distribution function (statistical operator) of a total system into the relevant form that allows deriving new exact nonlinear generalized master equations (GMEs). The derived inhomogeneous nonlinear GME is a generalization of the linear Nakajima-Zwanzig GME and can be viewed as an alternative to the BBGKY chain. It is suitable for obtaining both nonlinear and linear evolution equations. As in the conventional linear GME, there is an inhomogeneous term comprising all multiparticle initial correlations. To include the initial correlations into consideration, we convert the obtained inhomogeneous nonlinear GME into the homogenous form by the previously suggested method. We use no conventional approximation like the random phase approximation (RPA) or the Bogoliubov principle of weakening of initial correlations. The obtained exact homogeneous nonlinear GME describes all evolution stages of the (sub)system of interest and treats initial correlations on an equal footing with collisions via the modified memory kernel. As an application, we obtain a new homogeneous nonlinear equation retaining initial correlations for a one-particle distribution function of the spatially inhomogeneous nonideal gas of classical particles. In contrast to existing approaches, this equation holds for all time scales and takes the influence of pair collisions and initial correlations on the dissipative and nondissipative characteristics of the system into account consistently with the adopted approximation (linear in the gas density). We show that on the kinetic time scale, the time-reversible terms resulting from the initial correlations vanish (if the particle dynamics are endowed with the mixing property) and this equation can be converted into the Vlasov-Landau and Boltzmann equations without any additional commonly used approximations. The entire process of transition can

  9. Decay and stability for nonlinear hyperbolic equations

    NASA Astrophysics Data System (ADS)

    Marcati, Pierangelo

    This paper deals with the asymptotic stability of the null solution of a semilinear partial differential equation. The La Salle Invariance Principle has been used to obtain the stability results. The first result is given under quite general hypotheses assuming only the precompactness of the orbits and the local existence. In the second part, under some restrictions, sufficient conditions for precompactness of the orbits and decay of solutions are given. An existence and uniqueness theorem is proved in the Appendix. Some examples are given.

  10. From nonlinear Schrödinger hierarchy to some (2+1)-dimensional nonlinear pseudodifferential equations

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Du, Dianlou

    2010-08-01

    The Poisson structure on CN×RN is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schrödinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.

  11. Convergence of Galerkin approximations for operator Riccati equations: A nonlinear evolution equation approach

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1988-01-01

    An approximation and convergence theory was developed for Galerkin approximations to infinite dimensional operator Riccati differential equations formulated in the space of Hilbert-Schmidt operators on a separable Hilbert space. The Riccati equation was treated as a nonlinear evolution equation with dynamics described by a nonlinear monotone perturbation of a strongly coercive linear operator. A generic approximation result was proven for quasi-autonomous nonlinear evolution system involving accretive operators which was then used to demonstrate the Hilbert-Schmidt norm convergence of Galerkin approximations to the solution of the Riccati equation. The application of the results was illustrated in the context of a linear quadratic optimal control problem for a one dimensional heat equation.

  12. On the Dirichlet problem for a nonlinear elliptic equation

    NASA Astrophysics Data System (ADS)

    Egorov, Yu V.

    2015-04-01

    We prove the existence of an infinite set of solutions to the Dirichlet problem for a nonlinear elliptic equation of the second order. Such a problem for a nonlinear elliptic equation with Laplace operator was studied earlier by Krasnosel'skii, Bahri, Berestycki, Lions, Rabinowitz, Struwe and others. We study the spectrum of this problem and prove the weak convergence to 0 of the sequence of normed eigenfunctions. Moreover, we obtain some estimates for the 'Fourier coefficients' of functions in W^1p,0(Ω). This allows us to improve the preceding results. Bibliography: 8 titles.

  13. Multiply scaled constrained nonlinear equation solvers. [for nonlinear heat conduction problems

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Krishna, Lala

    1986-01-01

    To improve the numerical stability of nonlinear equation solvers, a partitioned multiply scaled constraint scheme is developed. This scheme enables hierarchical levels of control for nonlinear equation solvers. To complement the procedure, partitioned convergence checks are established along with self-adaptive partitioning schemes. Overall, such procedures greatly enhance the numerical stability of the original solvers. To demonstrate and motivate the development of the scheme, the problem of nonlinear heat conduction is considered. In this context the main emphasis is given to successive substitution-type schemes. To verify the improved numerical characteristics associated with partitioned multiply scaled solvers, results are presented for several benchmark examples.

  14. Conservation laws of inviscid Burgers equation with nonlinear damping

    NASA Astrophysics Data System (ADS)

    Abdulwahhab, Muhammad Alim

    2014-06-01

    In this paper, the new conservation theorem presented in Ibragimov (2007) [14] is used to find conservation laws of the inviscid Burgers equation with nonlinear damping ut+g(u)ux+λh(u)=0. We show that this equation is both quasi self-adjoint and self-adjoint, and use these concepts to simplify conserved quantities for various choices of g(u) and h(u).

  15. Optimization of a finite difference method for nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Chen, Miaochao

    2013-07-01

    Wave equations have important fluid dynamics background, which are extensively used in many fields, such as aviation, meteorology, maritime, water conservancy, etc. This paper is devoted to the explicit difference method for nonlinear wave equations. Firstly, a three-level and explicit difference scheme is derived. It is shown that the explicit difference scheme is uniquely solvable and convergent. Moreover, a numerical experiment is conducted to illustrate the theoretical results of the presented method.

  16. Maximum Likelihood Estimation of Nonlinear Structural Equation Models.

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Zhu, Hong-Tu

    2002-01-01

    Developed an EM type algorithm for maximum likelihood estimation of a general nonlinear structural equation model in which the E-step is completed by a Metropolis-Hastings algorithm. Illustrated the methodology with results from a simulation study and two real examples using data from previous studies. (SLD)

  17. Model Comparison of Nonlinear Structural Equation Models with Fixed Covariates.

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan

    2003-01-01

    Proposed a new nonlinear structural equation model with fixed covariates to deal with some complicated substantive theory and developed a Bayesian path sampling procedure for model comparison. Illustrated the approach with an illustrative example using data from an international study. (SLD)

  18. Local Influence Analysis of Nonlinear Structural Equation Models

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Tang, Nian-Sheng

    2004-01-01

    By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis…

  19. Topological horseshoes in travelling waves of discretized nonlinear wave equations

    SciTech Connect

    Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming

    2014-04-15

    Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.

  20. Tensor methods for large sparse systems of nonlinear equations

    SciTech Connect

    Bouaricha, A.; Schnabel, R.B.

    1996-12-31

    This paper introduces censor methods for solving, large sparse systems of nonlinear equations. Tensor methods for nonlinear equations were developed in the context of solving small to medium- sized dense problems. They base each iteration on a quadratic model of the nonlinear equations. where the second-order term is selected so that the model requires no more derivative or function information per iteration than standard linear model-based methods, and hardly more storage or arithmetic operations per iteration. Computational experiments on small to medium-sized problems have shown censor methods to be considerably more efficient than standard Newton-based methods, with a particularly large advantage on singular problems. This paper considers the extension of this approach to solve large sparse problems. The key issue that must be considered is how to make efficient use of sparsity in forming and solving the censor model problem at each iteration. Accomplishing this turns out to require an entirely new way of solving the tensor model that successfully exploits the sparsity of the Jacobian, whether the Jacobian is nonsingular or singular. We develop such an approach and, based upon it, an efficient tensor method for solving large sparse systems of nonlinear equations. Test results indicate that this tensor method is significantly more efficient and robust than an efficient sparse Newton-based method. in terms of iterations, function evaluations. and execution time.

  1. Bounded and periodic solutions of nonlinear functional differential equations

    SciTech Connect

    Slyusarchuk, Vasilii E

    2012-05-31

    Conditions for the existence of bounded and periodic solutions of the nonlinear functional differential equation d{sup m}x(t)/dt{sup m} + (Fx)(t) = h(t), t element of R, are presented, involving local linear approximations to the operator F. Bibliography: 23 titles.

  2. An Efficient Numerical Approach for Nonlinear Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Otten, Dustin; Vedula, Prakash

    2009-03-01

    Fokker-Planck equations which are nonlinear with respect to their probability densities that occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, classical fermions and bosons can be challenging to solve numerically. To address some underlying challenges in obtaining numerical solutions, we propose a quadrature based moment method for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations. In this approach the distribution function is represented as a collection of Dirac delta functions with corresponding quadrature weights and locations, that are in turn determined from constraints based on evolution of generalized moments. Properties of the distribution function can be obtained by solution of transport equations for quadrature weights and locations. We will apply this computational approach to study a wide range of problems, including the Desai-Zwanzig Model (for nonlinear muscular contraction) and multivariate nonlinear Fokker-Planck equations describing classical fermions and bosons, and will also demonstrate good agreement with results obtained from Monte Carlo and other standard numerical methods.

  3. Forced oscillations of nonlinear damped equation of suspended string

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masaru; Nagai, Tohru; Matsukane, Katsuya

    2008-06-01

    We shall study the existence of time-periodic solutions of nonlinear damped equation of suspended string to which a periodic nonlinear force works. We shall be conterned with weak, strong and classical time-periodic solutions and also the regularity of the solutions. To formulate our results, we shall take suitable weighted Sobolev-type spaces introduced by [M. Yamaguchi, Almost periodic oscillations of suspended string under quasiperiodic linear force, J. Math. Anal. Appl. 303 (2) (2005) 643-660; M. Yamaguchi, Infinitely many time-periodic solutions of nonlinear equation of suspended string, Funkcial. Ekvac., in press]. We shall study properties of the function spaces and show inequalities on the function spaces. To show our results we shall apply the Schauder fixed point theorem and the fixed point continuation theorem in the function spaces.

  4. Optimal analytic method for the nonlinear Hasegawa-Mima equation

    NASA Astrophysics Data System (ADS)

    Baxter, Mathew; Van Gorder, Robert A.; Vajravelu, Kuppalapalle

    2014-05-01

    The Hasegawa-Mima equation is a nonlinear partial differential equation that describes the electric potential due to a drift wave in a plasma. In the present paper, we apply the method of homotopy analysis to a slightly more general Hasegawa-Mima equation, which accounts for hyper-viscous damping or viscous dissipation. First, we outline the method for the general initial/boundary value problem over a compact rectangular spatial domain. We use a two-stage method, where both the convergence control parameter and the auxiliary linear operator are optimally selected to minimize the residual error due to the approximation. To do the latter, we consider a family of operators parameterized by a constant which gives the decay rate of the solutions. After outlining the general method, we consider a number of concrete examples in order to demonstrate the utility of this approach. The results enable us to study properties of the initial/boundary value problem for the generalized Hasegawa-Mima equation. In several cases considered, we are able to obtain solutions with extremely small residual errors after relatively few iterations are computed (residual errors on the order of 10-15 are found in multiple cases after only three iterations). The results demonstrate that selecting a parameterized auxiliary linear operator can be extremely useful for minimizing residual errors when used concurrently with the optimal homotopy analysis method, suggesting that this approach can prove useful for a number of nonlinear partial differential equations arising in physics and nonlinear mechanics.

  5. Shock-wave structure using nonlinear model Boltzmann equations.

    NASA Technical Reports Server (NTRS)

    Segal, B. M.; Ferziger, J. H.

    1972-01-01

    The structure of strong plane shock waves in a perfect monatomic gas was studied using four nonlinear models of the Boltzmann equation. The models involved the use of a simplified collision operator with velocity-independent collision frequency, in place of the complicated Boltzmann collision operator. The models employed were the BGK and ellipsoidal models developed by earlier authors, and the polynomial and trimodal gain function models developed during the work. An exact set of moment equations was derived for the density, velocity, temperature, viscous stress, and heat flux within the shock. This set was reduced to a pair of coupled nonlinear integral equations and solved using specially adapted numerical techniques. A new and simple Gauss-Seidel iteration was developed during the work and found to be as efficient as the best earlier iteration methods.

  6. Transformation matrices between non-linear and linear differential equations

    NASA Technical Reports Server (NTRS)

    Sartain, R. L.

    1983-01-01

    In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.

  7. Phase space lattices and integrable nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Tracy, Eugene; Zobin, Nahum

    2003-10-01

    Nonlinear wave equations in fluids and plasmas that are integrable by Inverse Scattering Theory (IST), such as the Korteweg-deVries and nonlinear Schrodinger equations, are known to be infinite-dimensional Hamiltonian systems [1]. These are of interest physically because they predict new phenomena not present in linear wave theories, such as solitons and rogue waves. The IST method provides solutions of these equations in terms of a special class of functions called Riemann theta functions. The usual approach to the theory of theta functions tends to obscure the underlying phase space structure. A theory due to Mumford and Igusa [2], however shows that the theta functions arise naturally in the study of phase space lattices. We will describe this theory, as well as potential applications to nonlinear signal processing and the statistical theory of nonlinear waves. 1] , S. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, Theory of solitons: the inverse scattering method (Consultants Bureau, New York, 1984). 2] D. Mumford, Tata lectures on theta, Vols. I-III (Birkhauser); J. Igusa, Theta functions (Springer-Verlag, New York, 1972).

  8. An adaptive grid algorithm for one-dimensional nonlinear equations

    NASA Technical Reports Server (NTRS)

    Gutierrez, William E.; Hills, Richard G.

    1990-01-01

    Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and

  9. Schroedinger's Wave Structure of Matter (WSM)

    NASA Astrophysics Data System (ADS)

    Wolff, Milo; Haselhurst, Geoff

    2009-10-01

    The puzzling electron is due to the belief that it is a discrete particle. Einstein deduced this structure was impossible since Nature does not allow the discrete particle. Clifford (1876) rejected discrete matter and suggested structures in `space'. Schroedinger, (1937) also eliminated discrete particles writing: What we observe as material bodies and forces are nothing but shapes and variations in the structure of space. Particles are just schaumkommen (appearances). He rejected wave-particle duality. Schroedinger's concept was developed by Milo Wolff and Geoff Haselhurst (SpaceAndMotion.com) using the Scalar Wave Equation to find spherical wave solutions in a 3D quantum space. This WSM, the origin of all the Natural Laws, contains all the electron's properties including the Schroedinger Equation. The origin of Newton's Law F=ma is no longer a puzzle; It originates from Mach's principle of inertia (1883) that depends on the space medium and the WSM. Carver Mead (1999) at CalTech used the WSM to design Intel micro-chips correcting errors of Maxwell's magnetic Equations. Applications of the WSM also describe matter at molecular dimensions: alloys, catalysts, biology and medicine, molecular computers and memories. See ``Schroedinger's Universe'' - at Amazon.com

  10. The Universe according to Schroedinger and Milo

    NASA Astrophysics Data System (ADS)

    Wolff, Milo

    2009-10-01

    The puzzling electron is due to the belief that it is a discrete particle. Schroedinger, (1937) eliminated discrete particles writing: What we observe as material bodies and forces are nothing but shapes and variations in the structure of space. Particles are just schaumkommen (appearances). Thus he rejected wave-particle duality. Schroedinger's concept was developed by Milo Wolff using a Scalar Wave Equation in 3D quantum space to find wave solutions. The resulting Wave Structure of Matter (WSM) contains all the electron's properties including the Schroedinger Equation. Further, Newton's Law F=ma is no longer a puzzle; It originates from Mach's principle of inertia (1883) that depends on the space medium and the WSM. These the origin of all the Natural Laws. Carver Mead (1999) at CalTech used the WSM to design Intel micro-chips and to correct errors of Maxwell's Equations. Applications of the WSM describe matter at molecular dimensions: Industrial alloys, catalysts, biology and medicine, molecular computers and memories. See book ``Schroedinger's Universe'' - at Amazon.com. Pioneers of the WSM are growing rapidly. Some are: SpaceAndMotion.com, QuantumMatter.com, treeincarnation.com/audio/milowolff.htm, daugerresearch.com/orbitals/index.shtml, glafreniere.com/matter.html =A new Universe.

  11. Travelling Waves for the Nonlinear Schrödinger Equation with General Nonlinearity in Dimension Two

    NASA Astrophysics Data System (ADS)

    Chiron, David; Scheid, Claire

    2016-02-01

    We investigate numerically the two-dimensional travelling waves of the nonlinear Schrödinger equation for a general nonlinearity and with nonzero condition at infinity. In particular, we are interested in the energy-momentum diagrams. We propose a numerical strategy based on the variational structure of the equation. The key point is to characterize the saddle points of the action as minimizers of another functional that allows us to use a gradient flow. We combine this approach with a continuation method in speed in order to obtain the full range of velocities. Through various examples, we show that even though the nonlinearity has the same behaviour as the well-known Gross-Pitaevskii nonlinearity, the qualitative properties of the travelling waves may be extremely different. For instance, we observe cusps, a modified KP-I asymptotic in the transonic limit, various multiplicity results and "one-dimensional spreading" phenomena.

  12. Recent extensions to the OMNI language to allow nonlinear equation and an interface to a nonlinear solver

    SciTech Connect

    Golush, W.G.

    1994-12-31

    Nonlinear equations are expressed using a new OMNI statement FORM NLE. This allows OMNI Constructs, Classes, Tables, and New Variables to be used in nonlinear equations. The interface passes the nonlinear equations and symbolic derivatives to a general nonlinear solver. After optimization, the row and column activities of the solution are written to an OMNI Standard Solution File. Reports are written from this file using the OMNI FORM LINE report writer. The interface will be illustrated with an example of a nonlinear model written in OMNI and solved using the MINOS nonlinear solver.

  13. Multi-soliton rational solutions for some nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Osman, Mohamed S.

    2016-01-01

    The Korteweg-de Vries equation (KdV) and the (2+ 1)-dimensional Nizhnik-Novikov-Veselov system (NNV) are presented. Multi-soliton rational solutions of these equations are obtained via the generalized unified method. The analysis emphasizes the power of this method and its capability of handling completely (or partially) integrable equations. Compared with Hirota's method and the inverse scattering method, the proposed method gives more general exact multi-wave solutions without much additional effort. The results show that, by virtue of symbolic computation, the generalized unified method may provide us with a straightforward and effective mathematical tool for seeking multi-soliton rational solutions for solving many nonlinear evolution equations arising in different branches of sciences.

  14. Numerical solution of control problems governed by nonlinear differential equations

    SciTech Connect

    Heinkenschloss, M.

    1994-12-31

    In this presentation the author investigates an iterative method for the solution of optimal control problems. These problems are formulated as constrained optimization problems with constraints arising from the state equation and in the form of bound constraints on the control. The method for the solution of these problems uses the special structure of the problem arising from the bound constraint and the state equation. It is derived from SQP methods and projected Newton methods and combines the advantages of both methods. The bound constraint is satisfied by all iterates using a projection, the nonlinear state equation is satisfied in the limit. Only a linearized state equation has to be solved in every iteration. The solution of the linearized problems are done using multilevel methods and GMRES.

  15. Modified non-linear Burgers' equations and cosmic ray shocks

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Webb, G. M.; Mckenzie, J. F.

    1988-01-01

    A reductive perturbation scheme is used to derive a generalized non-linear Burgers' equation, which includes the effects of dispersion, in the long wavelength regime for the two-fluid hydrodynamical model used to describe cosmic ray acceleration by the first-order Fermi process in astrophysical shocks. The generalized Burger's equation is derived for both relativistic and non-relativistic cosmic ray shocks, and describes the time evolution of weak shocks in the theory of diffusive shock acceleration. The inclusion of dispersive effects modifies the phase velocity of the shock obtained from the lower order non-linear Burger's equation through the introduction of higher order terms from the long wavelength dispersion equation. The travelling wave solution of the generalized Burgers' equation for a single shock shows that larger cosmic ray pressures result in broader shock transitions. The results for relativistic shocks show a steepening of the shock as the shock speed approaches the relativistic cosmic ray sound speed. The dependence of the shock speed on the cosmic ray pressure is also discussed.

  16. Solving nonlinear evolution equation system using two different methods

    NASA Astrophysics Data System (ADS)

    Kaplan, Melike; Bekir, Ahmet; Ozer, Mehmet N.

    2015-12-01

    This paper deals with constructing more general exact solutions of the coupled Higgs equation by using the (G0/G, 1/G)-expansion and (1/G0)-expansion methods. The obtained solutions are expressed by three types of functions: hyperbolic, trigonometric and rational functions with free parameters. It has been shown that the suggested methods are productive and will be used to solve nonlinear partial differential equations in applied mathematics and engineering. Throughout the paper, all the calculations are made with the aid of the Maple software.

  17. Numerical study of fractional nonlinear Schrödinger equations.

    PubMed

    Klein, Christian; Sparber, Christof; Markowich, Peter

    2014-12-01

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation. PMID:25484604

  18. Quadratic nonlinear Klein-Gordon equation in one dimension

    NASA Astrophysics Data System (ADS)

    Hayashi, Nakao; Naumkin, Pavel I.

    2012-10-01

    We study the initial value problem for the quadratic nonlinear Klein-Gordon equation vtt + v - vxx = λv2, t ∈ R, x ∈ R, with initial conditions v(0, x) = v0(x), vt(0, x) = v1(x), x ∈ R, where v0 and v1 are real-valued functions, λ ∈ R. Using the method of normal forms of Shatah ["Normal forms and quadratic nonlinear Klein-Gordon equations," Commun. Pure Appl. Math. 38, 685-696 (1985)], we obtain a sharp asymptotic behavior of small solutions without the condition of a compact support on the initial data, which was assumed in the previous work of J.-M. Delort ["Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi-linéaire á données petites en dimension 1," Ann. Sci. Ec. Normale Super. 34(4), 1-61 (2001)].

  19. Numerical study of fractional nonlinear Schrödinger equations

    PubMed Central

    Klein, Christian; Sparber, Christof; Markowich, Peter

    2014-01-01

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation. PMID:25484604

  20. Unitary qubit extremely parallelized algorithms for coupled nonlinear Schrodinger equations

    NASA Astrophysics Data System (ADS)

    Oganesov, Armen; Flint, Chris; Vahala, George; Vahala, Linda; Yepez, Jeffrey; Soe, Min

    2015-11-01

    The nonlinear Schrodinger equation (NLS) is a ubiquitous equation occurring in plasma physics, nonlinear optics and in Bose Einstein condensates. Viewed from the BEC standpoint of phase transitions, the wave function is the order parameter and topological defects in that manifold are simply the vortices, which for a scalar NLS have quantized circulation. In multi-species NLS the topological nature of the vortices are radically different with some classes of vortices no longer having quantized circulation as in classical turbulence. Moreover, some of the vortex equivalence classes need no longer be Abelian. This strongly effects the permitted vortex reconnections. The effect of these structures on the spectral properties of the ensuing turbulence will be investigated. Our 3D algorithm is based on a novel unitary qubit lattice scheme that is ideally parallelized - tested up to 780 000 cores on Mira. This scheme is mesoscopic (like lattice Boltzmann), but fully unitary (unlike LB). Supported by NSF, DoD.

  1. Parallel iterative methods for sparse linear and nonlinear equations

    NASA Technical Reports Server (NTRS)

    Saad, Youcef

    1989-01-01

    As three-dimensional models are gaining importance, iterative methods will become almost mandatory. Among these, preconditioned Krylov subspace methods have been viewed as the most efficient and reliable, when solving linear as well as nonlinear systems of equations. There has been several different approaches taken to adapt iterative methods for supercomputers. Some of these approaches are discussed and the methods that deal more specifically with general unstructured sparse matrices, such as those arising from finite element methods, are emphasized.

  2. Fast neural solution of a nonlinear wave equation

    NASA Technical Reports Server (NTRS)

    Toomarian, Nikzad; Barhen, Jacob

    1992-01-01

    A neural algorithm for rapidly simulating a certain class of nonlinear wave phenomena using analog VLSI neural hardware is presented and applied to the Korteweg-de Vries partial differential equation. The corresponding neural architecture is obtained from a pseudospectral representation of the spatial dependence, along with a leap-frog scheme for the temporal evolution. Numerical simulations demonstrated the robustness of the proposed approach.

  3. Approximate solutions for non-linear iterative fractional differential equations

    NASA Astrophysics Data System (ADS)

    Damag, Faten H.; Kiliçman, Adem; Ibrahim, Rabha W.

    2016-06-01

    This paper establishes approximate solution for non-linear iterative fractional differential equations: d/γv (s ) d sγ =ℵ (s ,v ,v (v )), where γ ∈ (0, 1], s ∈ I := [0, 1]. Our method is based on some convergence tools for analytic solution in a connected region. We show that the suggested solution is unique and convergent by some well known geometric functions.

  4. Nonlinear Generalized Hydrodynamic Wave Equations in Strongly Coupled Dusty Plasmas

    SciTech Connect

    Veeresha, B. M.; Sen, A.; Kaw, P. K.

    2008-09-07

    A set of nonlinear equations for the study of low frequency waves in a strongly coupled dusty plasma medium is derived using the phenomenological generalized hydrodynamic (GH) model and is used to study the modulational stability of dust acoustic waves to parallel perturbations. Dust compressibility contributions arising from strong Coulomb coupling effects are found to introduce significant modifications in the threshold and range of the instability domain.

  5. Vibrational Schroedinger Cats

    NASA Technical Reports Server (NTRS)

    Kis, Z.; Janszky, J.; Vinogradov, An. V.; Kobayashi, T.

    1996-01-01

    The optical Schroedinger cat states are simple realizations of quantum states having nonclassical features. It is shown that vibrational analogues of such states can be realized in an experiment of double pulse excitation of vibrionic transitions. To track the evolution of the vibrational wave packet we derive a non-unitary time evolution operator so that calculations are made in a quasi Heisenberg picture.

  6. Stationary nonlinear Alfven waves and solitons

    NASA Technical Reports Server (NTRS)

    Hada, T.; Kennel, C. F.; Buti, B.

    1989-01-01

    Stationary solutions of the derivative nonlinear Schroedinger equation are discussed and classified by using a pseudopotential formulation. The solutions consist of a rich family of nonlinear Alfven waves and solitons with parallel and oblique propagation directions. Expressions for the envelope and the phase of nonlinear waves with periodic envelope modulation, and 'hyperbolic' and 'algebraic' solitons are given. The propagation angle for the slightly modulated elliptic, periodic waves and for oblique solitons is evaluated.

  7. Symmetries and reductions of order for certain nonlinear third- and second-order differential equations with arbitrary nonlinearity

    NASA Astrophysics Data System (ADS)

    Tamizhmani, K. M.; Krishnakumar, K.; Leach, P. G. L.

    2015-11-01

    We examine the reductions of the order of certain third- and second-order nonlinear equations with arbitrary nonlinearity through their symmetries and some appropriate transformations. We use the folding transformation which enables one to change from a nonlinearity with an arbitrary exponent to a nonlinearity with a specific numerical exponent.

  8. Improved algorithm for solving nonlinear parabolized stability equations

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng

    2016-08-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).

  9. Rogue wave solutions for a generalized nonautonomous nonlinear equation in a nonlinear inhomogeneous fiber

    NASA Astrophysics Data System (ADS)

    Xie, Xi-Yang; Tian, Bo; Wang, Yu-Feng; Sun, Ya; Jiang, Yan

    2015-11-01

    In this paper, we investigate a generalized nonautonomous nonlinear equation which describes the ultrashort optical pulse propagating in a nonlinear inhomogeneous fiber. By virtue of the generalized Darboux transformation, the first- and second-order rogue-wave solutions for the generalized nonautonomous nonlinear equation are obtained, under some variable-coefficient constraints. Properties of the first- and second-order rogue waves are graphically presented and analyzed: When the coefficients are all chosen as the constants, we can observe the some functions, the shapes of wave crests and troughs for the first- and second-order rogue waves change. Oscillating behaviors of the first- and second-order rogue waves are observed when the coefficients are the trigonometric functions.

  10. Nonlinear electrostatic oscillations in a sharp plasma interface

    SciTech Connect

    Haas, F.; Shukla, P. K.

    2009-11-10

    We revisit a generalized nonlinear Schroedinger equation derived by Stenflo and Gradov, describing electrostatic oscillations in a sharp plasma interface. A Madelung decomposition is used to deduce a Sagdeev potential associated to an autonomous one-dimensional Hamiltonian system, whose solutions are all periodic. A conservation law preventing singularities (under suitable boundary conditions and initial wave profile) is derived. In the particular case where some of the nonlinearities can be neglected, the model is shown to be equivalent to the free-particle Schroedinger equation.

  11. Nonlinear electromagnetic gyrokinetic equations for rotating axisymmetric plasmas

    SciTech Connect

    Artun, M.; Tang, W.M.

    1994-03-01

    The influence of sheared equilibrium flows on the confinement properties of tokamak plasmas is a topic of much current interest. A proper theoretical foundation for the systematic kinetic analysis of this important problem has been provided here by presented the derivation of a set of nonlinear electromagnetic gyrokinetic equations applicable to low frequency microinstabilities in a rotating axisymmetric plasma. The subsonic rotation velocity considered is in the direction of symmetry with the angular rotation frequency being a function of the equilibrium magnetic flux surface. In accordance with experimental observations, the rotation profile is chosen to scale with the ion temperature. The results obtained represent the shear flow generalization of the earlier analysis by Frieman and Chen where such flows were not taken into account. In order to make it readily applicable to gyrokinetic particle simulations, this set of equations is cast in a phase-space-conserving continuity equation form.

  12. Equations for Nonlinear MHD Convection in Shearless Magnetic Systems

    SciTech Connect

    Pastukhov, V.P.

    2005-07-15

    A closed set of reduced dynamic equations is derived that describe nonlinear low-frequency flute MHD convection and resulting nondiffusive transport processes in weakly dissipative plasmas with closed or open magnetic field lines. The equations obtained make it possible to self-consistently simulate transport processes and the establishment of the self-consistent plasma temperature and density profiles for a large class of axisymmetric nonparaxial shearless magnetic devices: levitated dipole configurations, mirror systems, compact tori, etc. Reduced equations that are suitable for modeling the long-term evolution of the plasma on time scales comparable to the plasma lifetime are derived by the method of the adiabatic separation of fast and slow motions.

  13. Multipulses of Nonlinearly Coupled Schrödinger Equations

    NASA Astrophysics Data System (ADS)

    Yew, Alice C.

    2001-06-01

    The capacity of coupled nonlinear Schrödinger (NLS) equations to support multipulse solutions (multibump solitary-waves) is investigated. A detailed analysis is undertaken for a system of quadratically coupled equations that describe the phenomena of second harmonic generation and parametric wave interaction in non-centrosymmetric optical materials. Utilising the framework of homoclinic bifurcation theory, and employing a Lyapunov-Schmidt reduction method developed by Hale, Lin, and Sandstede, a novel mechanism for the generation of multipulses is identified, which arises from a resonant semi-simple eigenvalue configuration of the linearised steady-state equations. Conditions for the existence of multipulses, as well as a description of their geometry, are derived from the analysis.

  14. Simulation of nonlinear Westervelt equation for the investigation of acoustic streaming and nonlinear propagation effects.

    PubMed

    Solovchuk, Maxim; Sheu, Tony W H; Thiriet, Marc

    2013-11-01

    This study investigates the influence of blood flow on temperature distribution during high-intensity focused ultrasound (HIFU) ablation of liver tumors. A three-dimensional acoustic-thermal-hydrodynamic coupling model is developed to compute the temperature field in the hepatic cancerous region. The model is based on the nonlinear Westervelt equation, bioheat equations for the perfused tissue and blood flow domains. The nonlinear Navier-Stokes equations are employed to describe the flow in large blood vessels. The effect of acoustic streaming is also taken into account in the present HIFU simulation study. A simulation of the Westervelt equation requires a prohibitively large amount of computer resources. Therefore a sixth-order accurate acoustic scheme in three-point stencil was developed for effectively solving the nonlinear wave equation. Results show that focused ultrasound beam with the peak intensity 2470 W/cm(2) can induce acoustic streaming velocities up to 75 cm/s in the vessel with a diameter of 3 mm. The predicted temperature difference for the cases considered with and without acoustic streaming effect is 13.5 °C or 81% on the blood vessel wall for the vein. Tumor necrosis was studied in a region close to major vessels. The theoretical feasibility to safely necrotize the tumors close to major hepatic arteries and veins was shown. PMID:24180802

  15. The method of patches for solving stiff nonlinear differential equations

    NASA Astrophysics Data System (ADS)

    Brydon, David Van George, Jr.

    1998-12-01

    This dissertation describes a new method for solving very stiff sets of ordinary differential equations. The basic idea is to replace the original nonlinear equations with a set of equally stiff equations that are piecewise linear, and therefore can be solved exactly. We demonstrate the value of the method on small systems of equations for which some other methods are inefficient or produce spurious solutions, estimate error bounds, and discuss extensions of the method to larger systems of equations and to partial differential equations. Putzer's method is developed in a novel way for efficient and accurate solution of dx/dt = Ax+b. The physical problem of interest is spatial pattern formation in open reaction-diffusion chemical systems, as studied in the experiments of Kyoung Lee, Harry Swinney, et al. I develop a new experiment model that agrees reasonably well with experimental results. I solve the model, applying the new method to the two-variable Gaspar- Showalter chemical kinetics in two space dimensions. Because of time and computer limitations, only preliminary pattern-formation results are achieved and reported.

  16. Nonlinear evolution of Alfven waves in a finite beta plasma

    SciTech Connect

    Som, B.K. ); Dasgupta, B.; Patel, V.L. ); Gupta, M.R. )

    1989-12-01

    A general form of the derivative nonlinear Schroedinger (DNLS) equation, describing the nonlinear evolution of Alfven waves propagating parallel to the magnetic field, is derived by using two-fluid equations with electron and ion pressure tensors obtained from Braginskii (in {ital Reviews} {ital of} {ital Plasma Physics} (Consultants Bureau, New York, 1965), Vol. 1, p. 218). This equation is a mixed version of the nonlinear Schroedinger (NLS) equation and the DNLS, as it contains an additional cubic nonlinear term that is of the same order as the derivative of the nonlinear terms, a term containing the product of a quadratic term, and a first-order derivative. It incorporates the effects of finite beta, which is an important characteristic of space and laboratory plasmas.

  17. Theoretical and numerical studies of nonlinear shell equations

    NASA Astrophysics Data System (ADS)

    Hermann, M.; Kaiser, D.; Schröder, M.

    1999-07-01

    We study the solution field M of a parameter dependent nonlinear two-point boundary value problem presented by Troger and Steindl [H. Troger, A. Steindl, Nonlinear Stability and Bifurcation Theory, Springer, Wien, New York, 1991]. This problem models the buckling of a thin-walled spherical shell under a uniform external static pressure. The boundary value problem is formulated as an abstract operator equation T( x, λ)=0 in appropriate Banach spaces. By exploiting the equivariance of T, we obtain detailed informations about the structure of M. These theoretical results are used to compute efficiently interesting parts of M with numerical standard techniques. Bifurcation diagrams, a stability diagram and pictures of deformed shells are presented.

  18. On the nonlinear Schrodinger equation with nonzero boundary conditions

    NASA Astrophysics Data System (ADS)

    Fagerstrom, Emily

    This thesis is concerned with the study of the nonlinear Schrodinger (NLS) equation, which is important both from a physical and a mathematical point of view. In physics, it is a universal model for the evolutions of weakly nonlinear dispersive wave trains. As such it appears in many physical contexts, such as optics, acoustics, plasmas, biology, etc. Mathematically, it is a completely integrable, infinite-dimensional Hamiltonian system, and possesses a surprisingly rich structure. This equation has been extensively studied in the last 50 years, but many important questions are still open. In particular, this thesis contains the following original contributions: NLS with real spectral singularities. First, the focusing NLS equation is considered with decaying initial conditions. This situation has been studied extensively before, but the assumption is almost always made that the scattering coefficients have no real zeros, and thus the scattering data had no poles on the real axis. However, it is easy to produce example potentials with this behavior. For example, by modifying parameters in Satsuma-Yajima's sech potential, or by choosing a "box" potential with a particular area, one can obtain corresponding scattering entries with real zeros. The inverse scattering transform can be implemented by formulating the modified Jost eigenfunctions and the scattering data as a Riemann Hilbert problem. But it can also be formulated by using integral kernels. Doing so produces the Gelf'and-Levitan-Marchenko (GLM) equations. Solving these integral equations requires integrating an expression containing the reflection coefficient over the real axis. Under the usual assumption, the reflection coefficient has no poles on the real axis. In general, the integration contour cannot be deformed to avoid poles, because the reflection coefficient may not admit analytic extension off the real axis. Here it is shown that the GLM equations may be (uniquely) solved using a principal value

  19. Superposition of elliptic functions as solutions for a large number of nonlinear equations

    SciTech Connect

    Khare, Avinash; Saxena, Avadh

    2014-03-15

    For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ{sup 4}, the discrete MKdV as well as for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn{sup 2}(x, m), it also admits solutions in terms of dn {sup 2}(x,m)±√(m) cn (x,m) dn (x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations.

  20. Stochastic Computational Approach for Complex Nonlinear Ordinary Differential Equations

    NASA Astrophysics Data System (ADS)

    Junaid, Ali Khan; Muhammad, Asif Zahoor Raja; Ijaz Mansoor, Qureshi

    2011-02-01

    We present an evolutionary computational approach for the solution of nonlinear ordinary differential equations (NLODEs). The mathematical modeling is performed by a feed-forward artificial neural network that defines an unsupervised error. The training of these networks is achieved by a hybrid intelligent algorithm, a combination of global search with genetic algorithm and local search by pattern search technique. The applicability of this approach ranges from single order NLODEs, to systems of coupled differential equations. We illustrate the method by solving a variety of model problems and present comparisons with solutions obtained by exact methods and classical numerical methods. The solution is provided on a continuous finite time interval unlike the other numerical techniques with comparable accuracy. With the advent of neuroprocessors and digital signal processors the method becomes particularly interesting due to the expected essential gains in the execution speed.

  1. Difference equation state approximations for nonlinear hereditary control problems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1984-01-01

    Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems. Previously announced in STAR as N83-33589

  2. Difference equation state approximations for nonlinear hereditary control problems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1982-01-01

    Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems.

  3. New variable separation solutions for the generalized nonlinear diffusion equations

    NASA Astrophysics Data System (ADS)

    Fei-Yu, Ji; Shun-Li, Zhang

    2016-03-01

    The functionally generalized variable separation of the generalized nonlinear diffusion equations ut = A(u,ux)uxx + B(u,ux) is studied by using the conditional Lie-Bäcklund symmetry method. The variant forms of the considered equations, which admit the corresponding conditional Lie-Bäcklund symmetries, are characterized. To construct functionally generalized separable solutions, several concrete examples defined on the exponential and trigonometric invariant subspaces are provided. Project supported by the National Natural Science Foundation of China (Grant Nos. 11371293, 11401458, and 11501438), the National Natural Science Foundation of China, Tian Yuan Special Foundation (Grant No. 11426169), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2015JQ1014).

  4. Nonlinear stability of oscillatory pulses in the parametric nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Chang, Paul A. C.; Promislow, Keith

    2007-03-01

    We extend the renormalization group method, developed for the study of pulse interaction in damped wave equations, to the study of oscillatory motion of supercritical pulses in the parametrically forced nonlinear Schrödinger equation (PNLS). We construct a global manifold which asymptotically attracts the flow into an {\\cal O}(r^4) neighbourhood in the H1 norm, where r is the amplitude of the internal oscillations. The oscillatory and translational dynamics of the pulses are rigorously recovered as a finite-dimensional flow on the manifold. The normal form for the projected dynamics of the oscillatory pulse shows that it is created in a supercritical Poincaré-Hopf bifurcation.

  5. A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations

    PubMed Central

    Güner, Özkan; Cevikel, Adem C.

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972

  6. Band-gap boundaries and fundamental solitons in complex two-dimensional nonlinear lattices

    SciTech Connect

    Ablowitz, Mark J.; Antar, Nalan; Bakirtas, Ilkay; Ilan, Boaz

    2010-03-15

    Nonlinear Schroedinger (NLS) equation with external potentials (lattices) possessing crystal and quasicrystal structures are studied. The fundamental solitons and band gaps are computed using a spectral fixed-point numerical scheme. Nonlinear and linear stability properties of the fundamental solitons are investigated by direct simulations and the linear stability properties of the fundamental solitons are confirmed by analysis the linearized eigenvalue problem.

  7. Nonlinear periodic waves solutions of the nonlinear self-dual network equations

    SciTech Connect

    Laptev, Denis V. Bogdan, Mikhail M.

    2014-04-15

    The new classes of periodic solutions of nonlinear self-dual network equations describing the breather and soliton lattices, expressed in terms of the Jacobi elliptic functions have been obtained. The dependences of the frequencies on energy have been found. Numerical simulations of soliton lattice demonstrate their stability in the ideal lattice and the breather lattice instability in the dissipative lattice. However, the lifetime of such structures in the dissipative lattice can be extended through the application of ac driving terms.

  8. Schroedinger's Wave Structure of Matter (WSM)

    NASA Astrophysics Data System (ADS)

    Wolff, Milo

    2009-05-01

    The puzzling electron is due to the belief that it is a discrete particle. Einstein deduced this structure impossible since Nature does not match the discrete particle. Clifford (1876) rejected discrete matter and suggested structures in `space'. Schroedinger, (1937) also eliminated discrete particles writing: What we observe as material bodies and forces are nothing but shapes and variations in the structure of space. Particles are just schaumkommen (appearances). He rejected wave-particle duality. Schroedinger's concept was developed by Milo Wolff and Geoff Haselhurst (http://www.SpaceAndMotion.com) using the Scalar Wave Equation to find spherical wave solutions in a 3D quantum space. This WSM is the origin of all the Natural Laws; thus it contains all the electron's properties including the Schroedinger Equation. The origin of Newton's Law F=ma is no longer a puzzle; it is shown to originate from Mach's principle of inertia (1883) that depends on the space medium. Carver Mead (1999) applied the WSM to design Intel micro-chips correcting errors of Maxwell's magnetic Equations. Applications of the WSM describe matter at molecular dimensions: alloys, catalysts, the mechanisms of biology and medicine, molecular computers and memories. See http://www.amazon.com/Schro at Amazon.com.

  9. Charged anisotropic matter with linear or nonlinear equation of state

    SciTech Connect

    Varela, Victor; Rahaman, Farook; Ray, Saibal; Chakraborty, Koushik; Kalam, Mehedi

    2010-08-15

    Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplifications achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua's method to include pressure anisotropy and linear or nonlinear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (10{sup 19}C) and maximum electric field intensities are very large (10{sup 23}-10{sup 24} statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.

  10. New Solutions of Three Nonlinear Space- and Time-Fractional Partial Differential Equations in Mathematical Physics

    NASA Astrophysics Data System (ADS)

    Yao, Ruo-Xia; Wang, Wei; Chen, Ting-Hua

    2014-11-01

    Motivated by the widely used ansätz method and starting from the modified Riemann—Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper.

  11. Nonlinear Dirac equation in two-spinor form: Separation in static RW space-time. Nonlinear Dirac equation in RW space-time

    NASA Astrophysics Data System (ADS)

    Zecca, Antonio

    2016-02-01

    The Dirac equation with nonlinear terms induced by torsion is studied in Robertson-Walker (RW) space-time. An extension of a separation method of the equation, based on the Newman-Penrose formalism and previously applied to the nonlinear case, is considered. Accordingly the angular dependence of the Dirac spinor solution is separated, under a special assumption, in the general time-dependent RW metric. In the case of static RW metric the time dependence of the Dirac spinor factors out and one is left with a pair of two coupled nonlinear radial equations. The radial equations are disentangled by a suitable substitution of the spinor solution. The problem amounts then to the solution of a single second-order highly nonlinear differential equation. Some elementary considerations are done on the asymptotic behavior of the solution of the equation.

  12. Numerical solution of the nonlinear Helmholtz equation using nonorthogonal expansions

    SciTech Connect

    Fibich, G. . E-mail: fibich@math.tau.ac.il; Tsynkov, S. . E-mail: tsynkov@math.ncsu.edu

    2005-11-20

    In [J. Comput. Phys. 171 (2001) 632-677] we developed a fourth-order numerical method for solving the nonlinear Helmholtz equation which governs the propagation of time-harmonic laser beams in media with a Kerr-type nonlinearity. A key element of the algorithm was a new nonlocal two-way artificial boundary condition (ABC), set in the direction of beam propagation. This two-way ABC provided for reflectionless propagation of the outgoing waves while also fully transmitting the given incoming beam at the boundaries of the computational domain. Altogether, the algorithm of [J. Comput. Phys. 171 (2001) 632-677] has allowed for a direct simulation of nonlinear self-focusing without neglecting nonparaxial effects and backscattering. To the best of our knowledge, this capacity has never been achieved previously in nonlinear optics. In the current paper, we propose an improved version of the algorithm. The principal innovation is that instead of using the Dirichlet boundary conditions in the direction orthogonal to that of the laser beam propagation, we now introduce Sommerfeld-type local radiation boundary conditions, which are constructed directly in the discrete framework. Numerically, implementation of the Sommerfeld conditions requires evaluation of eigenvalues and eigenvectors for a non-Hermitian matrix. Subsequently, the separation of variables, which is a key building block of the aforementioned nonlocal ABC, is implemented through an expansion with respect to the nonorthogonal basis of the eigenvectors. Numerical simulations show that the new algorithm offers a considerable improvement in its numerical performance, as well as in the range of physical phenomena that it is capable of simulating.

  13. Numerical solution of the nonlinear Schrödinger equation with wave operator on unbounded domains.

    PubMed

    Li, Hongwei; Wu, Xiaonan; Zhang, Jiwei

    2014-09-01

    In this paper, we generalize the unified approach proposed in Zhang et al. [J. Zhang, Z. Xu, and X. Wu, Phys. Rev. E 78, 026709 (2008)] to design the nonlinear local absorbing boundary conditions (LABCs) for the nonlinear Schrödinger equation with wave operator on unbounded domains. In fact, based on the methodology underlying the unified approach, we first split the original equation into two parts-the linear equation and the nonlinear equation-then achieve a one-way operator to approximate the linear equation to make the wave outgoing, and finally combine the one-way operator with the nonlinear equation to achieve the nonlinear LABCs. The stability of the equation with the nonlinear LABCs is also analyzed by introducing some auxiliary variables, and some numerical examples are presented to verify the accuracy and effectiveness of our proposed method. PMID:25314566

  14. On the dynamics of approximating schemes for dissipative nonlinear equations

    NASA Technical Reports Server (NTRS)

    Jones, Donald A.

    1993-01-01

    Since one can rarely write down the analytical solutions to nonlinear dissipative partial differential equations (PDE's), it is important to understand whether, and in what sense, the behavior of approximating schemes to these equations reflects the true dynamics of the original equations. Further, because standard error estimates between approximations of the true solutions coming from spectral methods - finite difference or finite element schemes, for example - and the exact solutions grow exponentially in time, this analysis provides little value in understanding the infinite time behavior of a given approximating scheme. The notion of the global attractor has been useful in quantifying the infinite time behavior of dissipative PDEs, such as the Navier-Stokes equations. Loosely speaking, the global attractor is all that remains of a sufficiently large bounded set in phase space mapped infinitely forward in time under the evolution of the PDE. Though the attractor has been shown to have some nice properties - it is compact, connected, and finite dimensional, for example - it is in general quite complicated. Nevertheless, the global attractor gives a way to understand how the infinite time behavior of approximating schemes such as the ones coming from a finite difference, finite element, or spectral method relates to that of the original PDE. Indeed, one can often show that such approximations also have a global attractor. We therefore only need to understand how the structure of the attractor for the PDE behaves under approximation. This is by no means a trivial task. Several interesting results have been obtained in this direction. However, we will not go into the details. We mention here that approximations generally lose information about the system no matter how accurate they are. There are examples that show certain parts of the attractor may be lost by arbitrary small perturbations of the original equations.

  15. Symmetry analysis and exact solutions for nonlinear equations in mathematical physics

    NASA Astrophysics Data System (ADS)

    Fushchich, Vil'gel'm. I.; Shtelen', Vladimir M.; Serov, Nikolai I.

    The book provides an overview of the current status of theoretical-algebraic methods in relation to linear and nonlinear multidimensional equations in mathematical and theoretical physics that are invariant with respect to the Poincare and Galilean groups and the wider Lie groups. Particular attention is given to the construction, in explicit form, of wide classes of accurate solutions to specific nonlinear partial differential equations, such as nonlinear wave equations for scalar, spinor, and vector fields, Young-Mills equations, and nonlinear quantum electrodynamic equations. A group-theory approach is used to analyze the classical three-body problem.

  16. Fully Electromagnetic Nonlinear Gyrokinetic Equations for Tokamak Edge Turbulence

    SciTech Connect

    Hahm, T. S.; Wang, Lu; Madsen, J.

    2008-08-01

    An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E Χ B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Our generalized ordering takes ρi<< ρθ¡ ~ LE ~ Lp << R (here ρi is the thermal ion Larmor radius and ρθ¡ = B/Bθ] ρi), as typically observed in the tokamak H-mode edge, with LE and Lp being the radial electric field and pressure gradient lengths. We take κ perpendicular to ρi ~ 1 for generality, and keep the relative fluctuation amplitudes eδφ /Τi ~ δΒ / Β up to the second order. Extending the electrostatic theory in the presence of high E Χ B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pull-back transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation.

  17. A new method for parameter estimation in nonlinear dynamical equations

    NASA Astrophysics Data System (ADS)

    Wang, Liu; He, Wen-Ping; Liao, Le-Jian; Wan, Shi-Quan; He, Tao

    2015-01-01

    Parameter estimation is an important scientific problem in various fields such as chaos control, chaos synchronization and other mathematical models. In this paper, a new method for parameter estimation in nonlinear dynamical equations is proposed based on evolutionary modelling (EM). This will be achieved by utilizing the following characteristics of EM which includes self-organizing, adaptive and self-learning features which are inspired by biological natural selection, and mutation and genetic inheritance. The performance of the new method is demonstrated by using various numerical tests on the classic chaos model—Lorenz equation (Lorenz 1963). The results indicate that the new method can be used for fast and effective parameter estimation irrespective of whether partial parameters or all parameters are unknown in the Lorenz equation. Moreover, the new method has a good convergence rate. Noises are inevitable in observational data. The influence of observational noises on the performance of the presented method has been investigated. The results indicate that the strong noises, such as signal noise ratio (SNR) of 10 dB, have a larger influence on parameter estimation than the relatively weak noises. However, it is found that the precision of the parameter estimation remains acceptable for the relatively weak noises, e.g. SNR is 20 or 30 dB. It indicates that the presented method also has some anti-noise performance.

  18. Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2006-01-01

    In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…

  19. Exact Multisoliton Solutions of General Nonlinear Schrödinger Equation with Derivative

    PubMed Central

    Li, Qi; Duan, Qiu-yuan; Zhang, Jian-bing

    2014-01-01

    Multisoliton solutions are derived for a general nonlinear Schrödinger equation with derivative by using Hirota's approach. The dynamics of one-soliton solution and two-soliton interactions are also illustrated. The considered equation can reduce to nonlinear Schrödinger equation with derivative as well as the solutions. PMID:25013858

  20. Stability of solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity.

    PubMed

    Shao, Sihong; Quintero, Niurka R; Mertens, Franz G; Cooper, Fred; Khare, Avinash; Saxena, Avadh

    2014-09-01

    We consider the nonlinear Dirac equation in 1 + 1 dimension with scalar-scalar self interaction g(2)/κ+1(̅ΨΨ)(κ+1) and with mass m. Using the exact analytic form for rest frame solitary waves of the form Ψ(x,t)=ψ(x)e(-iωt) for arbitrary κ, we discuss the validity of various approaches to understanding stability that were successful for the nonlinear Schrödinger equation. In particular we study the validity of a version of Derrick's theorem and the criterion of Bogolubsky as well as the Vakhitov-Kolokolov criterion, and find that these criteria yield inconsistent results. Therefore, we study the stability by numerical simulations using a recently developed fourth-order operator splitting integration method. For different ranges of κ we map out the stability regimes in ω. We find that all stable nonlinear Dirac solitary waves have a one-hump profile, but not all one-hump waves are stable, while all waves with two humps are unstable. We also find that the time t(c), it takes for the instability to set in, is an exponentially increasing function of ω and t(c) decreases monotonically with increasing κ. PMID:25314512

  1. Code System for Solving Nonlinear Systems of Equations via the Gauss-Newton Method.

    Energy Science and Technology Software Center (ESTSC)

    1981-08-31

    Version 00 REGN solves nonlinear systems of numerical equations in difficult cases: high nonlinearity, poor initial approximations, a large number of unknowns, ill condition or degeneracy of a problem.

  2. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  3. Numerical Simulations of Light Bullets, Using the Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  4. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  5. Nongauge bright soliton of the nonlinear Schrödinger (NLS) equation and a family of generalized NLS equations

    NASA Astrophysics Data System (ADS)

    Reyes, M. A.; Gutiérrez-Ruiz, D.; Mancas, S. C.; Rosu, H. C.

    2016-01-01

    We present an approach to the bright soliton solution of the nonlinear Schrödinger (NLS) equation from the standpoint of introducing a constant potential term in the equation. We discuss a “nongauge” bright soliton for which both the envelope and the phase depend only on the traveling variable. We also construct a family of generalized NLS equations with solitonic sechp solutions in the traveling variable and find an exact equivalence with other nonlinear equations, such as the Korteveg-de Vries (KdV) and Benjamin-Bona-Mahony (BBM) equations when p = 2.

  6. A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations

    PubMed Central

    Islam, Md. Shafiqul; Khan, Kamruzzaman; Akbar, M. Ali; Mastroberardino, Antonio

    2014-01-01

    The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin–Bona–Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering. PMID:26064530

  7. A globalization procedure for solving nonlinear systems of equations

    NASA Astrophysics Data System (ADS)

    Shi, Yixun

    1996-09-01

    A new globalization procedure for solving a nonlinear system of equationsF(x)D0 is proposed based on the idea of combining Newton step and the steepest descent step WITHIN each iteration. Starting with an arbitrary initial point, the procedure converges either to a solution of the system or to a local minimizer off(x)D1/2F(x)TF(x). Each iteration is chosen to be as close to a Newton step as possible and could be the Newton step itself. Asymptotically the Newton step will be taken in each iteration and thus the convergence is quadratic. Numerical experiments yield positive results. Further generalizations of this procedure are also discussed in this paper.

  8. Canonical equations of Hamilton for the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Liang, Guo; Guo, Qi; Ren, Zhanmei

    2015-09-01

    We define two different systems of mathematical physics: the second order differential system (SODS) and the first order differential system (FODS). The Newton's second law of motion and the nonlinear Schrödinger equation (NLSE) are the exemplary SODS and FODS, respectively. We obtain a new kind of canonical equations of Hamilton (CEH), which exhibit some kind of symmetry in form and are formally different from the conventional CEH without symmetry [H. Goldstein, C. Poole, J. Safko, Classical Mechanics, third ed., Addison- Wesley, 2001]. We also prove that the number of the CEHs is equal to the number of the generalized coordinates for the FODS, but twice the number of the generalized coordinates for the SODS. We show that the FODS can only be expressed by the new CEH, but not introduced by the conventional CEH, while the SODS can be done by both the new and the conventional CEHs. As an example, we prove that the nonlinear Schrödinger equation can be expressed with the new CEH in a consistent way.

  9. Green functions and Langevin equations for nonlinear diffusion equations: A comment on ‘Markov processes, Hurst exponents, and nonlinear diffusion equations’ by Bassler et al.

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    2008-02-01

    We discuss two central claims made in the study by Bassler et al. [K.E. Bassler, G.H. Gunaratne, J.L. McCauley, Physica A 369 (2006) 343]. Bassler et al. claimed that Green functions and Langevin equations cannot be defined for nonlinear diffusion equations. In addition, they claimed that nonlinear diffusion equations are linear partial differential equations disguised as nonlinear ones. We review bottom-up and top-down approaches that have been used in the literature to derive Green functions for nonlinear diffusion equations and, in doing so, show that the first claim needs to be revised. We show that the second claim as well needs to be revised. To this end, we point out similarities and differences between non-autonomous linear Fokker-Planck equations and autonomous nonlinear Fokker-Planck equations. In this context, we raise the question whether Bassler et al.’s approach to financial markets is physically plausible because it necessitates the introduction of external traders and causes. Such external entities can easily be eliminated when taking self-organization principles and concepts of nonextensive thermostatistics into account and modeling financial processes by means of nonlinear Fokker-Planck equations.

  10. Controlled Nonlinear Stochastic Delay Equations: Part I: Modeling and Approximations

    SciTech Connect

    Kushner, Harold J.

    2012-08-15

    This two-part paper deals with 'foundational' issues that have not been previously considered in the modeling and numerical optimization of nonlinear stochastic delay systems. There are new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. There are two basic and interconnected themes for these models. The first, dealt with in this part, concerns the definition of admissible control. The classical definition of an admissible control as a nonanticipative relaxed control is inadequate for these models and needs to be extended. This is needed for the convergence proofs of numerical approximations for optimal controls as well as to have a well-defined model. It is shown that the new classes of admissible controls do not enlarge the range of the value functions, is closed (together with the associated paths) under weak convergence, and is approximatable by ordinary controls. The second theme, dealt with in Part II, concerns transportation equation representations, and their role in the development of numerical algorithms with much reduced memory and computational requirements.