Science.gov

Sample records for nonlinear temperature effects

  1. Global non-linear effect of temperature on economic production

    NASA Astrophysics Data System (ADS)

    Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward

    2015-11-01

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  2. Global non-linear effect of temperature on economic production.

    PubMed

    Burke, Marshall; Hsiang, Solomon M; Miguel, Edward

    2015-11-12

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate. PMID:26503051

  3. Temperature-dependent nonlinear Hall effect in macroscopic Si-MOS antidot array

    NASA Astrophysics Data System (ADS)

    Kuntsevich, A. Yu.; Shupletsov, A. V.; Nunuparov, M. S.

    2016-05-01

    By measuring magnetoresistance and the Hall effect in a classically moderate perpendicular magnetic field in a Si-MOSFET-type macroscopic antidot array, we found a nonlinear with field, temperature- and density-dependent Hall resistivity. We argue that this nonlinearity originates from low mobility shells of the antidots with a strong temperature dependence of the resistivity and suggest a qualitative explanation of the phenomenon.

  4. Nonlinear acoustic properties of ex vivo bovine liver and the effects of temperature and denaturation

    NASA Astrophysics Data System (ADS)

    Jackson, E. J.; Coussios, C.-C.; Cleveland, R. O.

    2014-06-01

    Thermal ablation by high intensity focused ultrasound (HIFU) has a great potential for the non-invasive treatment of solid tumours. Due to the high pressure amplitudes involved, nonlinear acoustic effects must be understood and the relevant medium property is the parameter of nonlinearity B/A. Here, B/A was measured in ex vivo bovine liver, over a heating/cooling cycle replicating temperatures reached during HIFU ablation, adapting a finite amplitude insertion technique, which also allowed for measurement of sound-speed and attenuation. The method measures the nonlinear progression of a plane wave through liver and B/A was chosen so that numerical simulations matched the measured waveforms. To create plane-wave conditions, sinusoidal bursts were transmitted by a 100 mm diameter 1.125 MHz unfocused transducer and measured using a 15 mm diameter 2.25 MHz broadband transducer in the near field. Attenuation and sound-speed were calculated using a reflected pulse from the smaller transducer using the larger transducer as the reflecting interface. Results showed that attenuation initially decreased with heating then increased after denaturation, the sound-speed initially increased with temperature and then decreased, and B/A showed an increase with temperature but no significant post-heating change. The B/A data disagree with other reports that show a significant change and we suggest that any nonlinear enhancement in the received ultrasound signal post-treatment is likely due to acoustic cavitation rather than changes in tissue nonlinearity.

  5. Finite element nonlinear flutter and fatigue life of 2-D panels with temperature effects

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Xue, David Y.

    1991-01-01

    A frequency domain method for two-dimensional nonlinear panel flutter with thermal effects obtained from a consistent finite element formulation is presented. The von Karman nonlinear strain-displacement relation is used to account for large deflections, and the quasi-steady first-order piston theory is employed for aerodynamic loading. The finite element frequency domain results are compared with analytical time domain solutions. In a limit-cycle motion, the panel frequency and stress can be determined, thus fatigue life can be predicted. The influence of temperature and dynamic pressure on panel fatigue life is presented. An endurance dynamic pressure can be established at a given temperature from the present method.

  6. The Effect of Temperature Dependent Material Nonlinearities on the Response of Piezoelectric Composite Plates

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1997-01-01

    Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.

  7. Daily temperature and mortality: a study of distributed lag non-linear effect and effect modification in Guangzhou

    PubMed Central

    2012-01-01

    Background Although many studies have documented health effects of ambient temperature, little evidence is available in subtropical or tropical regions, and effect modifiers remain uncertain. We examined the effects of daily mean temperature on mortality and effect modification in the subtropical city of Guangzhou, China. Methods A Poisson regression model combined with distributed lag non-linear model was applied to assess the non-linear and lag patterns of the association between daily mean temperature and mortality from 2003 to 2007 in Guangzhou. The case-only approach was used to determine whether the effect of temperature was modified by individual characteristics, including sex, age, educational attainment and occupation class. Results Hot effect was immediate and limited to the first 5 days, with an overall increase of 15.46% (95% confidence interval: 10.05% to 20.87%) in mortality risk comparing the 99th and the 90th percentile temperature. Cold effect persisted for approximately 12 days, with a 20.39% (11.78% to 29.01%) increase in risk comparing the first and the 10th percentile temperature. The effects were especially remarkable for cardiovascular and respiratory mortality. The effects of both hot and cold temperatures were greater among the elderly. Females suffered more from hot-associated mortality than males. We also found significant effect modification by educational attainment and occupation class. Conclusions There are significant mortality effects of hot and cold temperatures in Guangzhou. The elderly, females and subjects with low socioeconomic status have been identified as especially vulnerable to the effect of ambient temperatures. PMID:22974173

  8. Nonlinear mixed effects modelling for the analysis of longitudinal body core temperature data in healthy volunteers.

    PubMed

    Seng, Kok-Yong; Chen, Ying; Wang, Ting; Ming Chai, Adam Kian; Yuen Fun, David Chiok; Teo, Ya Shi; Sze Tan, Pearl Min; Ang, Wee Hon; Wei Lee, Jason Kai

    2016-04-01

    Many longitudinal studies have collected serial body core temperature (T c) data to understand thermal work strain of workers under various environmental and operational heat stress environments. This provides the opportunity for the development of mathematical models to analyse and forecast temporal T c changes across populations of subjects. Such models can reduce the need for invasive methods that continuously measure T c. This current work sought to develop a nonlinear mixed effects modelling framework to delineate the dynamic changes of T c and its association with a set of covariates of interest (e.g. heart rate, chest skin temperature), and the structure of the variability of T c in various longitudinal studies. Data to train and evaluate the model were derived from two laboratory investigations involving male soldiers who participated in either a 12 (N  =  18) or 15 km (N  =  16) foot march with varied clothing, load and heat acclimatisation status. Model qualification was conducted using nonparametric bootstrap and cross validation procedures. For cross validation, the trajectory of a new subject's T c was simulated via Bayesian maximum a posteriori estimation when using only the baseline T c or using the baseline T c as well as measured T c at the end of every work (march) phase. The final model described T c versus time profiles using a parametric function with its main parameters modelled as a sigmoid hyperbolic function of the load and/or chest skin temperature. Overall, T c predictions corresponded well with the measured data (root mean square deviation: 0.16 °C), and compared favourably with those provided by two recently published Kalman filter models. PMID:26963194

  9. Room temperature nonlinear magnetoelectric effect in lead-free and Nb-doped AlFeO{sub 3} compositions

    SciTech Connect

    Cótica, Luiz F.; Santos, Guilherme M.; Santos, Ivair A.; Freitas, Valdirlei F.; Coelho, Adelino A.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar S.; Garcia, Ducinei; Eiras, José A.

    2015-02-14

    It is still a challenging problem to obtain technologically useful materials displaying strong magnetoelectric coupling at room temperature. In the search for new effects and materials to achieve this kind of coupling, a nonlinear magnetoelectric effect was proposed in the magnetically disordered relaxor ferroelectric materials. In this context, the aluminum iron oxide (AlFeO{sub 3}), a room temperature ferroelectric relaxor and magnetic spin glass compound, emerges as an attractive lead-free magnetoelectric material along with nonlinear magnetoelectric effects. In this work, static, dynamic, and temperature dependent ferroic and magnetoelectric properties in lead-free AlFeO{sub 3} and 2 at. % Nb-doped AlFeO{sub 3} multiferroic magnetoelectric compositions are studied. Pyroelectric and magnetic measurements show changes in ferroelectric and magnetic states close to each other (∼200 K). The magnetoelectric coefficient behavior as a function of H{sub bias} suggests a room temperature nonlinear magnetoelectric coupling in both single-phase and Nb-doped AlFeO{sub 3}-based ceramic compositions.

  10. Nonlinear temperature sensitivity of enzyme kinetics explains canceling effect-a case study on loamy haplic Luvisol.

    PubMed

    Razavi, Bahar S; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-01-01

    The temperature sensitivity of enzymes responsible for organic matter decomposition in soil is crucial for predicting the effects of global warming on the carbon cycle and sequestration. We tested the hypothesis that differences in temperature sensitivity of enzyme kinetic parameters V max and K m will lead to a canceling effect: strong reduction of temperature response of catalytic reactions. Short-term temperature response of V max and K m of three hydrolytic enzymes responsible for decomposition of cellulose (β-glucosidase, cellobiohydrolase) and hemicelluloses (xylanase) were analyzed in situ from 0 to 40°C. The apparent activation energy varied between enzymes from 20.7 to 35.2 kJ mol(-1) corresponding to the Q 10 values of the enzyme activities of 1.4-1.9 (with V max - Q 10 1.0-2.5 and K m - Q 10 0.94-2.3). Temperature response of all tested enzymes fitted well to the Arrhenius equation. Despite that, the fitting of Arrhenius model revealed the non-linear increase of two cellulolytic enzymes activities with two distinct thresholds at 10-15°C and 25-30°C, which were less pronounced for xylanase. The nonlinearity between 10 and 15°C was explained by 30-80% increase in V max . At 25-30°C, however, the abrupt decrease of enzyme-substrate affinity was responsible for non-linear increase of enzyme activities. Our study is the first demonstrating nonlinear response of V max and K m to temperature causing canceling effect, which was most strongly pronounced at low substrate concentrations and at temperatures above 15°C. Under cold climate, however, the regulation of hydrolytic activity by canceling in response to warming is negligible because canceling was never observed below 10°C. The canceling, therefore, can be considered as natural mechanism reducing the effects of global warming on decomposition of soil organics at moderate temperatures. The non-linearity of enzyme responses to warming and the respective thresholds should therefore be investigated for

  11. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change.

    PubMed

    Schlenker, Wolfram; Roberts, Michael J

    2009-09-15

    The United States produces 41% of the world's corn and 38% of the world's soybeans. These crops comprise two of the four largest sources of caloric energy produced and are thus critical for world food supply. We pair a panel of county-level yields for these two crops, plus cotton (a warmer-weather crop), with a new fine-scale weather dataset that incorporates the whole distribution of temperatures within each day and across all days in the growing season. We find that yields increase with temperature up to 29 degrees C for corn, 30 degrees C for soybeans, and 32 degrees C for cotton but that temperatures above these thresholds are very harmful. The slope of the decline above the optimum is significantly steeper than the incline below it. The same nonlinear and asymmetric relationship is found when we isolate either time-series or cross-sectional variations in temperatures and yields. This suggests limited historical adaptation of seed varieties or management practices to warmer temperatures because the cross-section includes farmers' adaptations to warmer climates and the time-series does not. Holding current growing regions fixed, area-weighted average yields are predicted to decrease by 30-46% before the end of the century under the slowest (B1) warming scenario and decrease by 63-82% under the most rapid warming scenario (A1FI) under the Hadley III model. PMID:19717432

  12. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change

    PubMed Central

    Schlenker, Wolfram; Roberts, Michael J.

    2009-01-01

    The United States produces 41% of the world's corn and 38% of the world's soybeans. These crops comprise two of the four largest sources of caloric energy produced and are thus critical for world food supply. We pair a panel of county-level yields for these two crops, plus cotton (a warmer-weather crop), with a new fine-scale weather dataset that incorporates the whole distribution of temperatures within each day and across all days in the growing season. We find that yields increase with temperature up to 29° C for corn, 30° C for soybeans, and 32° C for cotton but that temperatures above these thresholds are very harmful. The slope of the decline above the optimum is significantly steeper than the incline below it. The same nonlinear and asymmetric relationship is found when we isolate either time-series or cross-sectional variations in temperatures and yields. This suggests limited historical adaptation of seed varieties or management practices to warmer temperatures because the cross-section includes farmers' adaptations to warmer climates and the time-series does not. Holding current growing regions fixed, area-weighted average yields are predicted to decrease by 30–46% before the end of the century under the slowest (B1) warming scenario and decrease by 63–82% under the most rapid warming scenario (A1FI) under the Hadley III model. PMID:19717432

  13. The effect of charge separation on nonlinear electrostatic waves in a magnetized dusty plasma with two-temperature ions

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Pillay, S. R.; Singh, S. V.; Reddy, R. V.; Lakhina, G. S.

    2008-09-07

    In view of the observations of parallel (to Earth's magnetic field) spiky electric field structures by the FAST satellite, a theoretical study is conducted using a dusty plasma model comprising Boltzmann distributed hot and cool ions, Boltzmann electrons and a negatively charged cold dust fluid to investigate the existence of similar low frequency nonlinear electrostatic waves in a dusty plasma which could have a similar appearance as the observed waveforms. Charge separation effects are incorporated into our model by the inclusion of Poisson's equation as opposed to assuming quasineutrality. The system of nonlinear equations is then numerically solved. The resulting electric field structure is examined as a function of various plasma parameters such as Mach number, driving electric field amplitude, bulk dust drift speed, particle densities and particle temperatures.

  14. Effect of two-temperature trapped electrons to nonlinear dust-ion-acoustic solitons

    SciTech Connect

    Moslem, Waleed M.; El-Taibany, W.F.

    2005-12-15

    Propagation of three-dimensional dust-ion-acoustic solitons is investigated in a dusty plasma consisting of positive ions, negatively variable-charged dust particles, and two-temperature trapped electrons. We use the reductive perturbation theory to reduce the basic set of fluid equations to one evolution equation called damped modified Kadontsev-Petviashivili equation. Exact solution of this equation is not possible, so we obtain the time evolution solitary wave form approximate solution. It is found that only compressive soliton can propagate in this system. We develop a theoretical estimate condition under which the solitons can propagate. It is found that this condition is satisfied for Saturn's F ring. It is found also that low electron temperature has a role on the behavior of the soliton width, i.e., for lower (higher) range of low electron temperature the soliton width decreases (increases). However, high electron temperature decreases the width. The trapped electrons have no effect on the soliton width. The ratio of free low (high) to trapped low (high) electron temperatures increases the soliton amplitude. Also, the amplitude increases with free low and free high electron temperatures. To investigate the stabilty of the waves, we used a method based on energy consideration to obtain a condition for stable solitons. It is found that this condition depends on dust charge variation, streaming velocity, directional cosine of the wave vector k along the x axis, and temperatures of dust particles, ions, and free electrons.

  15. Understanding the nonlinear dynamics of driven particles in supercooled liquids in terms of an effective temperature

    SciTech Connect

    Schroer, Carsten F. E.; Heuer, Andreas

    2015-12-14

    In active microrheology, the mechanical properties of a material are tested by adding probe particles which are pulled by an external force. In case of supercooled liquids, strong forcing leads to a thinning of the host material which becomes more pronounced as the system approaches the glass transition. In this work, we provide a quantitative theoretical description of this thinning behavior based on the properties of the Potential Energy Landscape (PEL) of a model glass-former. A key role plays the trap-like nature of the PEL. We find that the mechanical properties in the strongly driven system behave the same as in a quiescent system at an enhanced temperature, giving rise to a well-characterized effective temperature. Furthermore, this effective temperature turns out to be independent of the chosen observable and individually shows up in the thermodynamic and dynamic properties of the system. Based on this underlying theoretical understanding, we can estimate its dependence on temperature and force by the PEL-properties of the quiescent system. We furthermore critically discuss the relevance of effective temperatures obtained by scaling relations for the description of out-of-equilibrium situations.

  16. Understanding the nonlinear dynamics of driven particles in supercooled liquids in terms of an effective temperature

    NASA Astrophysics Data System (ADS)

    Schroer, Carsten F. E.; Heuer, Andreas

    2015-12-01

    In active microrheology, the mechanical properties of a material are tested by adding probe particles which are pulled by an external force. In case of supercooled liquids, strong forcing leads to a thinning of the host material which becomes more pronounced as the system approaches the glass transition. In this work, we provide a quantitative theoretical description of this thinning behavior based on the properties of the Potential Energy Landscape (PEL) of a model glass-former. A key role plays the trap-like nature of the PEL. We find that the mechanical properties in the strongly driven system behave the same as in a quiescent system at an enhanced temperature, giving rise to a well-characterized effective temperature. Furthermore, this effective temperature turns out to be independent of the chosen observable and individually shows up in the thermodynamic and dynamic properties of the system. Based on this underlying theoretical understanding, we can estimate its dependence on temperature and force by the PEL-properties of the quiescent system. We furthermore critically discuss the relevance of effective temperatures obtained by scaling relations for the description of out-of-equilibrium situations.

  17. Effect of a novel nonlinearity, viz., electron temperature dependence of electron-ion recombination on electromagnetic wave. Plasma interaction: Nonlinear propagation in the E-layer

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Mishra, Rashmi; Srivastava, Sweta

    2016-03-01

    In this paper, we consider the nonlinearity in the propagation of electromagnetic (e.m.) waves in a plasma caused by the electron temperature dependence of the coefficient of recombination of electrons with ions; specifically, the ionospheric E layer has been investigated. The enhancement in electron temperature by an intense electromagnetic wave causes reduction of the electron-ion recombination coefficient and thereby enhancement of electron density, the electron collision frequency also gets enhanced. The equations for number and energy balance of electrons and the wave equation have been used to predict the dependence of electron density/collision frequency and the nonlinear refractive index and absorption coefficient on αE02 (proportional to wave irradiance). The dependence of the propagation parameters on αE02 has been used to investigate the nonlinear electromagnetic wave propagation in the ionosphere. The study concludes that the electron temperature dependence of the recombination coefficient should be considered in all analyses of nonlinear plasma-e.m. wave interaction.

  18. Nonlinear analysis of explosive growth of collisionless magnetic reconnection in the presence of the effect of finite electron temperature

    NASA Astrophysics Data System (ADS)

    Hirota, Makoto; Hattori, Yuji

    2014-10-01

    Explosive behavior of collisionless magnetic reconnection is investigated by analyzing a two-fluid model that includes the effects of the electron inertia and the electron temperature (or compressibility). By micrifying both the electron skin depth de and the ion-sound gyroradius ρs such that ρs =de < 0 . 01 L (where L is the system size), a direct numerical simulation is performed to enlarge strongly nonlinear regime of a collisionless tearing instability. The nonlinear evolution is shown to be explosive when the inverse of the tearing index 1 /Δ' is smaller than ρs =de , whereas the maximum reconnection speed at the fully reconnected state does not significantly depend on the size of ρs =de . The singular current-vortex sheets are generated in the form of the X shape. In the explosive phase, the expansion of this X shape as well as the magnetic island occurs locally near the reconnection point. By taking an approach similar to the asymptotic matching, the dynamics of the current-vortex sheets is analyzed and the explosive reconnection speed is estimated theoretically. This work is supported by JSPS Grant-in-Aid for Young Scientists(B) (No. 25800308).

  19. Temperature dependent nonlinear metal matrix laminae behavior

    NASA Technical Reports Server (NTRS)

    Barrett, D. J.; Buesking, K. W.

    1986-01-01

    An analytical method is described for computing the nonlinear thermal and mechanical response of laminated plates. The material model focuses upon the behavior of metal matrix materials by relating the nonlinear composite response to plasticity effects in the matrix. The foundation of the analysis is the unidirectional material model which is used to compute the instantaneous properties of the lamina based upon the properties of the fibers and matrix. The unidirectional model assumes that the fibers properties are constant with temperature and assumes that the matrix can be modelled as a temperature dependent, bilinear, kinematically hardening material. An incremental approach is used to compute average stresses in the fibers and matrix caused by arbitrary mechanical and thermal loads. The layer model is incorporated in an incremental laminated plate theory to compute the nonlinear response of laminated metal matrix composites of general orientation and stacking sequence. The report includes comparisons of the method with other analytical approaches and compares theoretical calculations with measured experimental material behavior. A section is included which describes the limitations of the material model.

  20. Nonlinear Mirror Modes in a Plasma with Nonzero Electron Temperature

    SciTech Connect

    Istomin, Ya. N.; Pokhotelov, O. A.; Balikhin, M. A.

    2009-11-10

    The nonlinear theory of magnetic mirror instability (MI) accounting for the nonzero electron temperature effect is developed. Using our previous low-frequency approach to the analysis of this instability but including nonzero electron temperature effect a set of equations describing nonlinear dynamics of mirror modes was derived. In the linear limit a Fourier transform of these equations recovers the linear MI growth rate in which the finite ion Larmor radius and nonzero electron temperature effects are taken into account. When the electron temperature T{sub e} becomes of the same order as the parallel ion temperature T{sub parallel} the growth rate of the mirror instability is reduced by the presence of the parallel electric field. The latter arises because the electrons are dragged by nonresonant ions which are mirror accelerated from regions of high into regions of low parallel magnetic flux. The nonzero electron temperature effect also substantially modifies the mirror mode nonlinear dynamics. It is found that when T{sub e}{approx_equal}T{sub parallel} the transition from the linear to nonlinear regime occurs already for the wave amplitude twice smaller than that inherent to the cold electron temperature limit. The further nonlinear dynamics develops with the explosive formation of the magnetic holes and then ends with the saturated state in the form of solitary structures or cnoidal waves. It is shown that incorporation of nonzero temperature results in a weak decreases of the spatial dimensions of the holes and increase of their depth.

  1. Effects of two-temperature ions, magnetic field, and higher-order nonlinearity on the existence and stability of dust-acoustic solitary waves in Saturn's F ring

    SciTech Connect

    El-Labany, S. K.; Moslem, Waleed M.; Safy, F. M.

    2006-08-15

    Nonlinear propagation of dust-acoustic solitary waves (DASWs) in a strong magnetized dusty plasma comprising warm adiabatic variable-charged dust particles, isothermal electrons, and two-temperature ions is investigated. Applying a reductive perturbation theory, a nonlinear Zakharov-Kuznetsov (ZK) equation for the first-order perturbed potential and a linear inhomogeneous ZK-type equation for the second-order perturbed potential are derived. However, at a certain value of high-temperature ion density, the coefficient of the nonlinear terms of both ZK and ZK-type equations vanishes. Therefore, a new set of expansion physical parameters and stretched coordinates are then used to derive a modified Zakharov-Kuznetsov (mZK) equation for the first-order perturbed potential and a mZK-type equation for the second-order perturbed potential. Stationary solutions of these equations are obtained using a renormalization method. A condition for two-temperature ions assumption is examined for various cosmic dust-laden plasma systems. It is found that this condition is satisfied for Saturn's F ring. The effects of two-temperature ions, magnetic field, and higher-order nonlinearity on the behavior of the DASWs are discussed. To obtain the stability condition of the waves, a method based on energy consideration is used and the condition for stable solitons is derived.

  2. Investigating the Equilibrium Melting Temperature of Polyethylene Using the Non-Linear Hoffman-Weeks Analysis: Effect of Molecular Weight

    NASA Astrophysics Data System (ADS)

    Mohammadi, Hadi; Marand, Herve

    The limiting equilibrium melting temperature for infinite molar mass linear polyethylene, Tmo , has been a point of controversy for about five decades. On one hand, Broadhurst and Flory-Vrij extrapolated melting data for short alkanes to a value of ca. 145oC. On the other hand, Wunderlich proposed a value of 141oC from melting studies of extended-chain PE crystals formed under high pressure. While a difference in Tmo by 4oC might seem superfluous, it has significant implication for the analysis of the temperature and chain length dependences of crystal growth kinetic data. In this work we estimate the equilibrium melting temperatures, Tm for three linear narrow molecular weight distribution polyethylenes using the non-linear Hoffman-Weeks treatment. The resulting Tm values thus obtained are significantly lower than these predicted by the Flory-Vrij treatment and are within experimental uncertainty indistinguishable from those reported by Wunderlich and Hikosaka et al. Our results also suggest that the constant C2 in the expression for the undercooling dependence of the initial lamellar thickness (lg*= C1/ ΔT + C2) increases linearly with chain length.

  3. Nonlinear response and crowding effects in microrheology

    NASA Astrophysics Data System (ADS)

    Ladadwa, I.; Heuer, A.

    2013-01-01

    The mobility of tagged particles in a microrheological setup has been investigated via molecular dynamics simulations of a three-dimensional Lennard-Jones binary mixture. After coupling a small number of particles to a constant external driving force, the drift velocity and other observables of the dragged probe particles are reported in the linear and nonlinear response regime. In the nonlinear regime significant crowding effects are observed, thereby creating stringlike structures. Formation of the strings further enhances the nonlinear effects. A systematic study of these effects' dependence on temperature and total number of driven probe atoms is presented.

  4. Nonlinear polariton effects in naphthalene

    SciTech Connect

    Stevenson, S.H.

    1985-01-01

    Resonant second harmonic generation (SHG) and two-photon excited emission (TPE) were studied in pure, strain-free crystals of naphthalene at frequencies near that of the (0,0) a-exciton in order to probe the relationship between the two signals and to investigate the effect of polariton states on second order nonlinearities in molecular crystals. The strong coupling of the 31473 cm/sup -1/ exciton in naphthalene to the photon field dictates the second-order nonlinear behavior of naphthalene crystals at frequencies near half-resonance. The dynamics of polaritons produced coherently via nonlinear interactions is shown to deviate in a controllable way from the dynamics of the one-photon polaritons produced in a linear experiment. The nature of the excitation remains principally that of an exciton. The necessity of using a strong coupling model to explain orientational dispersion and intensity and lineshape behavior is established. The experimental angular frequency dispersion of the SHG and TPE signals are fit to theoretical polariton dispersion curves. The orientation of the naphthalene optical indicatrix at 31475 cm/sup -1/ is shown to be very nearly the same as that reported for visible light. The temperature dependences of the SHG and TPE signal intensities are successfully predicted from the polariton fusion model by inclusion of temporal damping in the fusion rate expression. The shapes of the SHG and TPE profiles are compared to shapes predicted from the semi-classical theory.

  5. Analysis of nonlinear dynamic response for delaminated fiber-metal laminated beam under unsteady temperature field

    NASA Astrophysics Data System (ADS)

    Fu, Yiming; Chen, Yang; Zhong, Jun

    2014-10-01

    The nonlinear dynamic response problems of fiber-metal laminated beams with delamination are studied in this paper. Basing on the Timoshenko beam theory, and considering geometric nonlinearity, transverse shear deformation, temperature effect and contact effect, the nonlinear governing equations of motion for fiber-metal laminated beams under unsteady temperature field are established, which are solved by the differential quadrature method, Nermark-β method and iterative method. In numerical examples, the effects of delamination length, delamination depth, temperature field, geometric nonlinearity and transverse shear deformation on the nonlinear dynamic response of the glass reinforced aluminum laminated beam with delamination are discussed in details.

  6. The Short-Term Effect of Ambient Temperature on Mortality in Wuhan, China: A Time-Series Study Using a Distributed Lag Non-Linear Model

    PubMed Central

    Zhang, Yunquan; Li, Cunlu; Feng, Renjie; Zhu, Yaohui; Wu, Kai; Tan, Xiaodong; Ma, Lu

    2016-01-01

    Less evidence concerning the association between ambient temperature and mortality is available in developing countries/regions, especially inland areas of China, and few previous studies have compared the predictive ability of different temperature indictors (minimum, mean, and maximum temperature) on mortality. We assessed the effects of temperature on daily mortality from 2003 to 2010 in Jiang’an District of Wuhan, the largest city in central China. Quasi-Poisson generalized linear models combined with both non-threshold and double-threshold distributed lag non-linear models (DLNM) were used to examine the associations between different temperature indictors and cause-specific mortality. We found a U-shaped relationship between temperature and mortality in Wuhan. Double-threshold DLNM with mean temperature performed best in predicting temperature-mortality relationship. Cold effect was delayed, whereas hot effect was acute, both of which lasted for several days. For cold effects over lag 0–21 days, a 1 °C decrease in mean temperature below the cold thresholds was associated with a 2.39% (95% CI: 1.71, 3.08) increase in non-accidental mortality, 3.65% (95% CI: 2.62, 4.69) increase in cardiovascular mortality, 3.87% (95% CI: 1.57, 6.22) increase in respiratory mortality, 3.13% (95% CI: 1.88, 4.38) increase in stroke mortality, and 21.57% (95% CI: 12.59, 31.26) increase in ischemic heart disease (IHD) mortality. For hot effects over lag 0–7 days, a 1 °C increase in mean temperature above the hot thresholds was associated with a 25.18% (95% CI: 18.74, 31.96) increase in non-accidental mortality, 34.10% (95% CI: 25.63, 43.16) increase in cardiovascular mortality, 24.27% (95% CI: 7.55, 43.59) increase in respiratory mortality, 59.1% (95% CI: 41.81, 78.5) increase in stroke mortality, and 17.00% (95% CI: 7.91, 26.87) increase in IHD mortality. This study suggested that both low and high temperature were associated with increased mortality in Wuhan, and that

  7. The Short-Term Effect of Ambient Temperature on Mortality in Wuhan, China: A Time-Series Study Using a Distributed Lag Non-Linear Model.

    PubMed

    Zhang, Yunquan; Li, Cunlu; Feng, Renjie; Zhu, Yaohui; Wu, Kai; Tan, Xiaodong; Ma, Lu

    2016-01-01

    Less evidence concerning the association between ambient temperature and mortality is available in developing countries/regions, especially inland areas of China, and few previous studies have compared the predictive ability of different temperature indictors (minimum, mean, and maximum temperature) on mortality. We assessed the effects of temperature on daily mortality from 2003 to 2010 in Jiang'an District of Wuhan, the largest city in central China. Quasi-Poisson generalized linear models combined with both non-threshold and double-threshold distributed lag non-linear models (DLNM) were used to examine the associations between different temperature indictors and cause-specific mortality. We found a U-shaped relationship between temperature and mortality in Wuhan. Double-threshold DLNM with mean temperature performed best in predicting temperature-mortality relationship. Cold effect was delayed, whereas hot effect was acute, both of which lasted for several days. For cold effects over lag 0-21 days, a 1 °C decrease in mean temperature below the cold thresholds was associated with a 2.39% (95% CI: 1.71, 3.08) increase in non-accidental mortality, 3.65% (95% CI: 2.62, 4.69) increase in cardiovascular mortality, 3.87% (95% CI: 1.57, 6.22) increase in respiratory mortality, 3.13% (95% CI: 1.88, 4.38) increase in stroke mortality, and 21.57% (95% CI: 12.59, 31.26) increase in ischemic heart disease (IHD) mortality. For hot effects over lag 0-7 days, a 1 °C increase in mean temperature above the hot thresholds was associated with a 25.18% (95% CI: 18.74, 31.96) increase in non-accidental mortality, 34.10% (95% CI: 25.63, 43.16) increase in cardiovascular mortality, 24.27% (95% CI: 7.55, 43.59) increase in respiratory mortality, 59.1% (95% CI: 41.81, 78.5) increase in stroke mortality, and 17.00% (95% CI: 7.91, 26.87) increase in IHD mortality. This study suggested that both low and high temperature were associated with increased mortality in Wuhan, and that mean

  8. Evaluating the Effects of Temperature on Mortality in Manila City (Philippines) from 2006-2010 Using a Distributed Lag Nonlinear Model.

    PubMed

    Seposo, Xerxes T; Dang, Tran Ngoc; Honda, Yasushi

    2015-06-01

    The effect of temperature on the risk of mortality has been described in numerous studies of category-specific (e.g., cause-, sex-, age-, and season-specific) mortality in temperate and subtropical countries, with consistent findings of U-, V-, and J-shaped exposure-response functions. In this study, we analyzed the relationship between temperature and mortality in Manila City (Philippines), during 2006-2010 to identify the potential susceptible populations. We collected daily all-cause and cause-specific death counts from the Philippine Statistics Authority-National Statistics Office and the meteorological variables were collected from the Philippine Atmospheric Geophysical and Astronomical Services Administration. Temperature-mortality relationships were modeled using Poisson regression combined with distributed lag nonlinear models, and were used to perform cause-, sex-, age-, and season-specific analyses. The minimum mortality temperature was 30 °C, and increased risks of mortality were observed per 1 °C increase among elderly persons (RR: 1.53, 95% CI: 1.31-1.80), women (RR: 1.47, 95% CI: 1.27-1.69), and for respiratory causes of death (RR: 1.52, 95% CI: 1.23-1.88). Seasonal effect modification was found to greatly affect the risks in the lower temperature range. Thus, the temperature-mortality relationship in Manila City exhibited an increased risk of mortality among elderly persons, women, and for respiratory-causes, with inherent effect modification in the season-specific analysis. The findings of this study may facilitate the development of public health policies to reduce the effects of air temperature on mortality, especially for these high-risk groups. PMID:26086706

  9. Evaluating the Effects of Temperature on Mortality in Manila City (Philippines) from 2006–2010 Using a Distributed Lag Nonlinear Model

    PubMed Central

    Seposo, Xerxes T.; Dang, Tran Ngoc; Honda, Yasushi

    2015-01-01

    The effect of temperature on the risk of mortality has been described in numerous studies of category-specific (e.g., cause-, sex-, age-, and season-specific) mortality in temperate and subtropical countries, with consistent findings of U-, V-, and J-shaped exposure-response functions. In this study, we analyzed the relationship between temperature and mortality in Manila City (Philippines), during 2006–2010 to identify the potential susceptible populations. We collected daily all-cause and cause-specific death counts from the Philippine Statistics Authority-National Statistics Office and the meteorological variables were collected from the Philippine Atmospheric Geophysical and Astronomical Services Administration. Temperature-mortality relationships were modeled using Poisson regression combined with distributed lag nonlinear models, and were used to perform cause-, sex-, age-, and season-specific analyses. The minimum mortality temperature was 30 °C, and increased risks of mortality were observed per 1 °C increase among elderly persons (RR: 1.53, 95% CI: 1.31–1.80), women (RR: 1.47, 95% CI: 1.27–1.69), and for respiratory causes of death (RR: 1.52, 95% CI: 1.23–1.88). Seasonal effect modification was found to greatly affect the risks in the lower temperature range. Thus, the temperature-mortality relationship in Manila City exhibited an increased risk of mortality among elderly persons, women, and for respiratory-causes, with inherent effect modification in the season-specific analysis. The findings of this study may facilitate the development of public health policies to reduce the effects of air temperature on mortality, especially for these high-risk groups. PMID:26086706

  10. A nonlinear high temperature fracture mechanics basis for strainrange partitioning

    NASA Technical Reports Server (NTRS)

    Kitamura, Takayuki; Halford, Gary R.

    1989-01-01

    A direct link was established between Strainrange Partitioning (SRP) and high temperature fracture mechanics by deriving the general SRP inelastic strain range versus cyclic life relationships from high temperature, nonlinear, fracture mechanics considerations. The derived SRP life relationships are in reasonable agreement based on the experience of the SRP behavior of many high temperature alloys. In addition, fracture mechanics has served as a basis for derivation of the Ductility-Normalized SRP life equations, as well as for examination of SRP relations that are applicable to thermal fatigue life prediction. Areas of additional links between nonlinear fracture mechanics and SRP were identified for future exploration. These include effects of multiaxiality as well as low strain, nominally elastic, long life creep fatigue interaction.

  11. Nonlinear analysis of bonded joints with thermal effects

    NASA Technical Reports Server (NTRS)

    Humphreys, E. A.; Herakovich, C. T.

    1977-01-01

    Nonlinear results are presented for adhesive bonded joints. It is shown that adhesive nonlinearities are only significant in the predicted adhesive shear stresses. Adherend nonlinearities and temperature dependent properties are shown to have little effect upon the adhesive stress predictions under mechanical and thermal loadings.

  12. TEMPERATURE SENSITIVITY OF SOIL RESPIRATION AND ITS EFFECTS ON ECOSYSTEM CARBON BUDGET: NONLINEARITY BEGETS SURPRISES. (R827676)

    EPA Science Inventory

    Nonlinearity is a salient feature in all complex systems, and it certainly characterizes biogeochemical cycles in ecosystems across a wide range of scales. Soil carbon emission is a major source of uncertainty in estimating the terrestrial carbon budget at the ecosystem level ...

  13. Nonlinear effects in Thomson backscattering

    NASA Astrophysics Data System (ADS)

    Maroli, C.; Petrillo, V.; Tomassini, P.; Serafini, L.

    2013-03-01

    We analyze the nonlinear classical effects of the X/γ radiation produced by Thomson/Compton sources. We confirm the development of spectral fringes of the radiation on axis, which comports broadening, shift, and deformation of the spectrum. For the nominal parameters of the SPARC-LAB Thomson scattering and of the European Proposal for the gamma source ELI-NP, however, the radiation, when collected in the suitable acceptance angle, does not reveal many differences from that predicted by the linear model and the nonlinear redshift is subdominant with respect to the quantum recoil. An experiment aimed to the study of the nonlinearities is proposed on the SPARC-LAB source.

  14. Effects of positron concentration, ion temperature, and plasma {beta} value on linear and nonlinear two-dimensional magnetosonic waves in electron-positron-ion plasmas

    SciTech Connect

    Mushtaq, A.; Shah, H.A.

    2005-01-01

    Magnetosonic waves are intensively studied due to their importance in space plasmas and also in fusion plasmas where they are used in particle acceleration and heating experiments. This work considers magnetosonic waves propagating obliquely at an angle {theta} to an external magnetic field in an electron-positron-ion plasma, using the effective one-fluid magnetohydrodynamic model. Two separate modes (fast and slow) for the waves are discussed in the linear approximation, and the Kadomstev-Petviashvilli soliton equation is derived by using reductive perturbation scheme for these modes in the nonlinear regime. It is observed that for both the modes the angle {theta}, positron concentration, ion temperature, and plasma {beta}-value affect the propagation properties of solitary waves and behave differently from the simple electron-ion plasmas. Likewise, current density, electric field, and magnetic field for these waves are investigated, for their dependence on the above mentioned parameters.

  15. Role of temperature on nonlinear cardiac dynamics

    NASA Astrophysics Data System (ADS)

    Fenton, Flavio H.; Gizzi, Alessio; Cherubini, Christian; Pomella, Nicola; Filippi, Simonetta

    2013-04-01

    Thermal effects affecting spatiotemporal behavior of cardiac tissue are discussed by relating temperature variations to proarrhythmic dynamics in the heart. By introducing a thermoelectric coupling in a minimal model of cardiac tissue, we are able to reproduce experimentally measured dynamics obtained simultaneously from epicardial and endocardial canine right ventricles at different temperatures. A quantitative description of emergent proarrhythmic properties of restitution, conduction velocity, and alternans regimes as a function of temperature is presented. Complex discordant alternans patterns that enhance tissue dispersion consisting of one wave front and three wave backs are described in both simulations and experiments. Possible implications for model generalization are finally discussed.

  16. Effect of Temperature-Dependent Material Properties on Nonlinear Flexural Response and Thermal Postbuckling of Shear Flexible FGM Beams: A Study Using FEM

    NASA Astrophysics Data System (ADS)

    Anandrao, K. Sanjay; Gupta, R. K.; Ramchandran, P.; Venkateswara Rao, G.

    2014-03-01

    The effect of temperature-dependent material properties on the geometric nonlinear flexural response and thermal postbuckling behavior of shear flexible Functionally Graded Material (FGM) beams is investigated under various thermal and thermo-mechanical environments. The important aspects of the thermal and thermo-mechanical bending and thermal post-buckling of FGM beams are studied. The temperature variation across the thickness is obtained analytically and the finite element method (FEM) is used to predict the transverse deflections and stresses in the flexural analysis and the load-deflection paths for the thermal postbuckling analysis. The through thickness continuous variation of the material properties of the FGM beams is considered using the standard power law distribution. The von-Karman-type strain-displacement relations are used to account for the moderately large deflections. The FGM beams, with the classical hinged and clamped boundary conditions, are analyzed considering the axially immovable ends. The numerical results are provided to clearly bring out the importance of including the temperature dependency of the material properties to evaluate the realistic flexural response and thermal postbuckling behavior of the FGM beams subjected to thermal and thermo-mechanical loadings.

  17. Quantitative methods for stochastic high frequency spatio-temporal and non-linear analysis: Assessing health effects of exposure to extreme ambient temperature

    NASA Astrophysics Data System (ADS)

    Liss, Alexander

    Extreme weather events, such as heat waves and cold spells, cause substantial excess mortality and morbidity in the vulnerable elderly population, and cost billions of dollars. The accurate and reliable assessment of adverse effects of extreme weather events on human health is crucial for environmental scientists, economists, and public health officials to ensure proper protection of vulnerable populations and efficient allocation of scarce resources. However, the methodology for the analysis of large national databases is yet to be developed. The overarching objective of this dissertation is to examine the effect of extreme weather on the elderly population of the Conterminous US (ConUS) with respect to seasonality in temperature in different climatic regions by utilizing heterogeneous high frequency and spatio-temporal resolution data. To achieve these goals the author: 1) incorporated dissimilar stochastic high frequency big data streams and distinct data types into the integrated data base for use in analytical and decision support frameworks; 2) created an automated climate regionalization system based on remote sensing and machine learning to define climate regions for the Conterminous US; 3) systematically surveyed the current state of the art and identified existing gaps in the scientific knowledge; 4) assessed the dose-response relationship of exposure to temperature extremes on human health in relatively homogeneous climate regions using different statistical models, such as parametric and non-parametric, contemporaneous and asynchronous, applied to the same data; 5) assessed seasonal peak timing and synchronization delay of the exposure and the disease within the framework of contemporaneous high frequency harmonic time series analysis and modification of the effect by the regional climate; 6) modeled using hyperbolic functional form non-linear properties of the effect of exposure to extreme temperature on human health. The proposed climate

  18. Nonlinear Constitutive Relations for High Temperature Application, 1984

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Nonlinear constitutive relations for high temperature applications were discussed. The state of the art in nonlinear constitutive modeling of high temperature materials was reviewed and the need for future research and development efforts in this area was identified. Considerable research efforts are urgently needed in the development of nonlinear constitutive relations for high temperature applications prompted by recent advances in high temperature materials technology and new demands on material and component performance. Topics discussed include: constitutive modeling, numerical methods, material testing, and structural applications.

  19. Non-linear effects in a spherical convection experiments with temperature dependent fluid properties: Microgravity experiment and numerical simulations

    NASA Astrophysics Data System (ADS)

    Zaussinger, F.; Futterer, B.; Egbers, C.

    2012-12-01

    Thermal convection is one important driving mechanism of flow in the earth mantle. Setting up a self-gravitating buoyancy in a spherical shell geometry is the limiting factor for laboratory experiments to analyze velocity flow structures and heat transport. The geophysical flow model 'GeoFlow II', which is located at the Columbus module on the ISS, realizes such a central gravity. Under microgravity conditions a central dielectrophoretic force field is applied to a fluid filled spherical annulus. In contrast to the first mission 'GeoFlow I' the electro-hydrodynamical volume expansion coefficient of the working fluid has a strong dependence on the temperature and leads to pattern, which are related to a strong temperature dependent viscosity of the fluid. Even though the oil's viscosity itself is temperature-dependent, too, the maximum of viscosity contrast is only up to 1.5. The optical measurement of the fluid flow is based on the Wollaston shearing interferometry, since the on orbit setup avoids the use of measurement particles. This technique leads to fringe patterns. Simulations with RESPECT and GAIAA tend to verify the experimentally observed patterns by different numerical models.

  20. Characterizing the effect of temperature fluctuation on the incidence of malaria: an epidemiological study in south-west China using the varying coefficient distributed lag non-linear model

    PubMed Central

    2014-01-01

    Background Malaria transmission is strongly determined by the environmental temperature and the environment is rarely constant. Therefore, mosquitoes and parasites are not only exposed to the mean temperature, but also to daily temperature variation. Recently, both theoretical and laboratory work has shown, in addition to mean temperatures, daily fluctuations in temperature can affect essential mosquito and parasite traits that determine malaria transmission intensity. However, so far there is no epidemiological evidence at the population level to this problem. Methods Thirty counties in southwest China were selected, and corresponding weekly malaria cases and weekly meteorological variables were collected from 2004 to 2009. Particularly, maximum, mean and minimum temperatures were collected. The daily temperature fluctuation was measured by the diurnal temperature range (DTR), the difference between the maximum and minimum temperature. The distributed lag non-linear model (MDLNM) was used to study the correlation between weekly malaria incidences and weekly mean temperatures, and the correlation pattern was allowed to vary over different levels of daily temperature fluctuations. Results The overall non-linear patterns for mean temperatures are distinct across different levels of DTR. When under cooler temperature conditions, the larger mean temperature effect on malaria incidences is found in the groups of higher DTR, suggesting that large daily temperature fluctuations act to speed up the malaria incidence in cooler environmental conditions. In contrast, high daily fluctuations under warmer conditions will lead to slow down the mean temperature effect. Furthermore, in the group of highest DTR, 24-25°C or 21-23°C are detected as the optimal temperature for the malaria transmission. Conclusion The environment is rarely constant, and the result highlights the need to consider temperature fluctuations as well as mean temperatures, when trying to understand or

  1. Influence of a nonlinear reference temperature profile on oscillatory Bénard-Marangoni convection.

    PubMed

    Dondlinger, M; Colinet, P; Dauby, P C

    2003-12-01

    We analyze oscillatory instabilities in a fluid layer of infinite horizontal extent, heated from above or cooled from below, taking into account the nonlinearity of the reference temperature profile during the transient state of heat conduction. The linear stability analysis shows that a nonlinear reference temperature profile can have a strong effect on the system, either stabilizing or destabilizing, depending on the relative importance of buoyancy and surface tension forces. For the nonlinear analysis we use a Galerkin-Eckhaus method leading to a finite set of amplitude equations. In the two-dimensional (2D) case, we show the solution of these amplitude equations are standing waves. PMID:14754318

  2. The non-linear relationship between nerve conduction velocity and skin temperature.

    PubMed Central

    Todnem, K; Knudsen, G; Riise, T; Nyland, H; Aarli, J A

    1989-01-01

    Median motor and sensory nerves were examined in 20 healthy subjects. Superficial stimulating and recording electrodes were used, and the nerves were examined at natural skin temperature, after cooling and after heating of the arm. The conduction velocity for the fastest and slow conducting sensory fibres (temperature range 17-37 degrees C), and for the fastest conducting motor fibres (temperature range 19-38 degrees C) increased non-linearly with increase in skin temperature. Similarly, distal motor latencies increased non-linearly with decrease in skin temperature. The effect of temperature was most pronounced in the low temperature range, and change in conduction velocity per degree centigrade was reduced toward higher skin temperature. Sensory nerve response duration increased linearly with decline in skin temperature. Sensory and motor amplitude did not show any significant relation to skin temperature. PMID:2738592

  3. Effect of nonlinear nonlinear coupling to a pure dephasing model

    NASA Astrophysics Data System (ADS)

    Ge, Li; Zhao, Nan

    2015-03-01

    We investigate the influence of the nonlinear coupling to the coherence of a pure dephasing model. The total system consists of a qubit and a Bosonic bath, which are coupled by an interaction HI =g1σz ⊗ x +g2σz ⊗x2 with x =1/√{ 2} (a +a†) . It's shown that no matter how small g2 is, the long time behavior of the coherence is significantly changed by the nonlinear coupling for free induction decay (FID), while the effect of g1 can be neglected as long as g1 is much smaller than the enegy splitting of the qubit. In the case that many-pulse dynamical decoupling control is exerted on the qubit, g2 also modulates the oscillation of the coherence. Our results indicate that the nonlinear coupling must be taken into account for long time dynamics.

  4. A Nonlinear Viscoelastic Model for Ceramics at High Temperatures

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Panoskaltsis, Vassilis P.; Gasparini, Dario A.; Choi, Sung R.

    2002-01-01

    High-temperature creep behavior of ceramics is characterized by nonlinear time-dependent responses, asymmetric behavior in tension and compression, and nucleation and coalescence of voids leading to creep rupture. Moreover, creep rupture experiments show considerable scatter or randomness in fatigue lives of nominally equal specimens. To capture the nonlinear, asymmetric time-dependent behavior, the standard linear viscoelastic solid model is modified. Nonlinearity and asymmetry are introduced in the volumetric components by using a nonlinear function similar to a hyperbolic sine function but modified to model asymmetry. The nonlinear viscoelastic model is implemented in an ABAQUS user material subroutine. To model the random formation and coalescence of voids, each element is assigned a failure strain sampled from a lognormal distribution. An element is deleted when its volumetric strain exceeds its failure strain. Element deletion has been implemented within ABAQUS. Temporal increases in strains produce a sequential loss of elements (a model for void nucleation and growth), which in turn leads to failure. Nonlinear viscoelastic model parameters are determined from uniaxial tensile and compressive creep experiments on silicon nitride. The model is then used to predict the deformation of four-point bending and ball-on-ring specimens. Simulation is used to predict statistical moments of creep rupture lives. Numerical simulation results compare well with results of experiments of four-point bending specimens. The analytical model is intended to be used to predict the creep rupture lives of ceramic parts in arbitrary stress conditions.

  5. Breakdown of nonlinear elasticity in amorphous solids at finite temperatures

    NASA Astrophysics Data System (ADS)

    Procaccia, Itamar; Rainone, Corrado; Shor, Carmel A. B. Z.; Singh, Murari

    2016-06-01

    It is known [H. G. E. Hentschel et al., Phys. Rev. E 83, 061101 (2011), 10.1103/PhysRevE.83.061101] that amorphous solids at zero temperature do not possess a nonlinear elasticity theory: besides the shear modulus, which exists, none of the higher order coefficients exist in the thermodynamic limit. Here we show that the same phenomenon persists up to temperatures comparable to that of the glass transition. The zero-temperature mechanism due to the prevalence of dangerous plastic modes of the Hessian matrix is replaced by anomalous stress fluctuations that lead to the divergence of the variances of the higher order elastic coefficients. The conclusion is that in amorphous solids elasticity can never be decoupled from plasticity: the nonlinear response is very substantially plastic.

  6. Nonlinear nanochannels for room temperature terahertz heterodyne detection

    NASA Astrophysics Data System (ADS)

    Torres, Jeremie; Nouvel, Philippe; Penot, Alexandre; Varani, Luca; Sangaré, Paul; Grimbert, Bertrand; Faucher, Marc; Ducournau, Guillaume; Gaquière, Christophe; Iñiguez-de-la-Torre, Ignacio; Mateos, Javier; Gonzalez, Tomas

    2013-12-01

    The potentialities of AlGaN/GaN nanochannels with broken symmetry (also called self-switching diodes) as direct and heterodyne THz detectors are analyzed. The operation of the devices in the free space heterodyne detection scheme have been measured at room temperature with RF up to 0.32 THz and explained as a result of high-frequency nonlinearities using Monte Carlo simulations. Intermediate-frequency bandwidth of 40 GHz is obtained.

  7. Nonlinear aspects of sea surface temperature in Monterey Bay

    NASA Astrophysics Data System (ADS)

    Breaker, Laurence C.

    2006-04-01

    Nonlinear aspects of sea surface temperature (SST) in Monterey Bay are examined, based on an 85-year record of daily observations from Pacific Grove, California. Oceanic processes that affect the waters of Monterey Bay are described, processes that could contribute to nonlinearity in the record. Exploratory data analysis reveals that the record at Pacific Grove is non-Gaussian and, most likely, nonstationary. A more recent test for stationarity based on a power law approximation to the slope of the power spectrum indicates that the record is stationary for frequencies up to ∼8 cycles per year (∼45 days), but nonstationary at higher frequencies. To examine the record at Pacific Grove for nonlinear behavior, third-order statistics, including the skewness, statistical measures of asymmetry, the bicorrelation, and the bispectrum, were employed. The bicorrelation revealed maxima located approximately 365 days apart, reflecting a nonlinear contribution to the annual cycle. Based on a 365-day moving window, the running skewness is positive almost 80% of the time, reflecting the overall impact of warming influences. The asymmetry is positive approximately 75% of the time, consistent with the asymmetric shape of the mean annual cycle. Based on the skewness and asymmetry, nonlinearities in the record, when they occur, appear to be event-driven with time scales possibly as short as several days, to several years. In many cases, these events are related to warm water intrusions into the bay, and El Niño warming episodes. The power spectrum indicates that the annual cycle is a dominant source of variability in the record and that there is a relatively strong semiannual component as well. To determine whether or not the annual and semiannual cycles are harmonically related, the bispectrum and bicoherence were calculated. The bispectrum is nonzero, providing a strong indication of nonlinearity in the record. The bicoherence indicates that the annual cycle is a major source

  8. Cutoff nonlinearities in the low-temperature vibrations of glasses and crystals

    NASA Astrophysics Data System (ADS)

    Mizuno, Hideyuki; Silbert, Leonardo E.; Sperl, Matthias; Mossa, Stefano; Barrat, Jean-Louis

    2016-04-01

    We present a computer simulation study of glassy and crystalline states using the standard Lennard-Jones interaction potential that is truncated at a finite cutoff distance, as is typical of many computer simulations. We demonstrate that the discontinuity at the cutoff distance in the first derivative of the potential (corresponding to the interparticle force) leads to the appearance of cutoff nonlinearities. These cutoff nonlinearities persist into the very-low-temperature regime thereby affecting low-temperature thermal vibrations, which leads to a breakdown of the harmonic approximation for many eigenmodes, particularly for low-frequency vibrational modes. Furthermore, while expansion nonlinearities which are due to higher order terms in the Taylor expansion of the interaction potential are usually ignored at low temperatures and show up as the temperature increases, cutoff nonlinearities can become most significant at the lowest temperatures. Anharmonic effects readily show up in the elastic moduli which not only depend on the eigenfrequencies, but are crucially sensitive to the eigenvectors of the normal modes. In contrast, those observables that rely mainly on static structural information or just the eigenfrequencies, such as the vibrational density of states, total potential energy, and specific heat, show negligible dependence on the presence of the cutoff. Similar aspects of nonlinear behavior have recently been reported in model granular materials, where the constituent particles interact through finite-range, purely repulsive potentials. These nonlinearities have been ascribed to the nature of the sudden cutoff at contact in the force law. As a consequence, we demonstrate that cutoff nonlinearities emerge as a general feature of ordered and disordered solid state systems interacting through truncated potentials.

  9. A nonlinear model of thermoelectricity with two temperatures: Application to quasicrystalline nanowires

    NASA Astrophysics Data System (ADS)

    Cimmelli, V. A.; Rogolino, P.; Sellitto, A.

    2016-04-01

    A general two temperature nonlinear thermodynamic model to describe thermoelectric effects is introduced. Its compatibility with the second law of thermodynamics is investigated. We specialize the model in the framework of thermomass theory and estimate the maximum efficiency of a one-dimensional thermoelectric generator.

  10. Thermoviscoplastic nonlinear constitutive relationships for structural analysis of high-temperature metal matrix composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Hopkins, Dale A.

    1988-01-01

    A set of thermoviscoplastic nonlinear constitutive relationships (TVP-NCR) developed for application to high-temperature metal matrix composites (HT-MMC) is described. The structural response of a turbine blade, made from fiber-reinforced superalloy HT-MMC and subject to representative loading conditions, is evaluated. Results indicate that this set of TVP-NCR is computationally effective.

  11. Piezoelectric nonlinear nanomechanical temperature and acceleration insensitive clocks

    NASA Astrophysics Data System (ADS)

    Tazzoli, A.; Piazza, G.; Rinaldi, M.; Segovia, J.; Cassella, C.; Otis, B.; Shi, J.; Turner, K.; Burgner, C.; McNaul, K.; Bail, D.; Felmetsger, V.

    2012-06-01

    This work presents the development of high frequency mechanical oscillators based on non-linear laterally vibrating aluminum nitride (AlN) piezoelectric resonators. Our efforts are focused on harnessing non-linear dynamics in resonant mechanical devices to devise frequency sources operating around 1 GHz and capable of outperforming state-of-the-art oscillators in terms of phase noise and size. To this extent, we have identified the thermal and mechanical origin of non-linearities in micro and nanomechanical AlN resonators and developed a theory that describes the optimal operating point for non-linear oscillators. Based on these considerations, we have devised 1 GHz oscillators that exhibit phase noise of < -90 dBc/Hz at 1 kHz offset and < -160 dBc/Hz at 10 MHz offset. In order to attain thermally stable oscillators showing few ppm shifts from - 40 to + 85 °C, we have implemented an embedded ovenization technique that consumes only few mW of power. By means of simple microfabrication techniques, we have included a serpentine heater in the body of the resonator and exploited it to heat it and monitor its temperature without degrading its electromechanical performance. The ovenized devices have resulted in high frequency stability with just few ppm of shift over the temperature range of interest. Finally, few of these oscillators were tested according to military standards for acceleration sensitivity and exhibited a frequency sensitivity lower than 30 ppb/G. These ultra stable oscillators with low jitter and phase noise will ultimately benefit military as well as commercial communication systems.

  12. Nonlinear optical effects during femtosecond photodisruption

    NASA Astrophysics Data System (ADS)

    Poudel, Milan P.; Chen, Jinhai

    2009-11-01

    Several nonlinear effects (i.e., continuum generation, self-focusing, and material damage) were studied during femtosecond photodisruption. Numerical aperture dependence of white-light continuum generation and material damage were determined and a relation between the two effects was shown. We showed the possibility of reducing nonlinear side effects and at the same time ensuring precise cut by using lenses of a suitable numerical aperture for refractive surgery, cell surgery, and tissue dissection. Other side effects associated with optical breakdown in model substance were also discussed.

  13. Nonlinear dielectric effect in supercritical diethyl ether

    NASA Astrophysics Data System (ADS)

    Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J.; Martinez-Garcia, Julio Cesar

    2014-09-01

    Nonlinear dielectric effect (NDE) describes changes of dielectric permittivity induced by a strong electric field in a liquid dielectric. The most classical finding related to this magnitude is the negative sign of NDE in liquid diethyl ether (DEE), recalled by Peter Debye in his Nobel Prize lecture. This article shows that the positive sign of NDE in DEE is also possible, in the supercritical domain. Moreover, NDE on approaching the gas-liquid critical point exhibits a unique critical effect described by the critical exponent ψ ≈ 0.4 close to critical temperature (TC) and ψ ≈ 0.6 remote from TC. This can be linked to the emergence of the mean-field behavior in the immediate vicinity of TC, contrary to the typical pattern observed for critical phenomena. The multi-frequency mode of NDE measurements made it possible to estimate the evolution of lifetime of critical fluctuations. The new way of data analysis made it possible to describe the critical effect without a knowledge of the non-critical background contribution in prior.

  14. Simulation of nonlinear Westervelt equation for the investigation of acoustic streaming and nonlinear propagation effects.

    PubMed

    Solovchuk, Maxim; Sheu, Tony W H; Thiriet, Marc

    2013-11-01

    This study investigates the influence of blood flow on temperature distribution during high-intensity focused ultrasound (HIFU) ablation of liver tumors. A three-dimensional acoustic-thermal-hydrodynamic coupling model is developed to compute the temperature field in the hepatic cancerous region. The model is based on the nonlinear Westervelt equation, bioheat equations for the perfused tissue and blood flow domains. The nonlinear Navier-Stokes equations are employed to describe the flow in large blood vessels. The effect of acoustic streaming is also taken into account in the present HIFU simulation study. A simulation of the Westervelt equation requires a prohibitively large amount of computer resources. Therefore a sixth-order accurate acoustic scheme in three-point stencil was developed for effectively solving the nonlinear wave equation. Results show that focused ultrasound beam with the peak intensity 2470 W/cm(2) can induce acoustic streaming velocities up to 75 cm/s in the vessel with a diameter of 3 mm. The predicted temperature difference for the cases considered with and without acoustic streaming effect is 13.5 °C or 81% on the blood vessel wall for the vein. Tumor necrosis was studied in a region close to major vessels. The theoretical feasibility to safely necrotize the tumors close to major hepatic arteries and veins was shown. PMID:24180802

  15. Nonlinear acoustic effects in multilayer ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Johnson, W. L.; Kim, S. A.; Quinn, T. P.; White, G. S.

    2013-01-01

    Nonlinear resonant acoustics was explored as an approach for nondestructively evaluating the susceptibility of BaTiO3-based multilayer ceramic capacitors to electrical failure during service. The acoustic nonlinearity was characterized through measurements of the dependence of the frequency of a selected dominant mode near 1.16 MHz on driving amplitude, employing direct ferroelectric tone-burst transduction, time-domain signal acquisition, and frequency-domain spectral analysis. Finite-element modeling and consideration of the symmetry of the excitation led to identification of the selected mode as the lowest-order extensional mode. Measurements as a function of the number of thermal treatments (of two types) provided evidence for increases in acoustic nonlinearity arising from thermal-stress-induced material damage. No evidence for further systematic changes in nonlinearity was found after nine heat treatments. Signals and analysis for some samples were complicated by the emergence of a second resonance in the waveforms and an apparent reduction in acoustic nonlinearity as a function of time under DC bias. The second of these effects is suggested as being associated with changes in nonlinear elements of the material (presumably, microcracks) that arise from interactions of internal stresses during domain reorientation.

  16. Nonlinear magnetoelectric effect in composite multiferroics

    NASA Astrophysics Data System (ADS)

    Filippov, D. A.; Laletin, V. M.; Firsova, T. O.

    2014-05-01

    The theoretical and experimental studies of the nonlinear magnetoelectric effect in composite multiferroics in the low-frequency spectral region and in the electromechanical resonance region have been performed. It has been shown that such structures demonstrate a nonlinear magnetoelectric effect, which is quadratic in ac magnetic field strength at weak magnetic fields. In the region of the electromechanical resonance, the resonance excitation of an electric field occurs by means of ac magnetic field at a frequency lower than the resonance frequency by a factor of two. In the low-frequency spectral region, there is a difference of amplitude values of two neighboring voltage maxima due to the superposition of signals from the linear and nonlinear effects, and the difference is proportional to the dc magnetic field strength in weak fields. The results of the experimental study of the two-layer permendur-lead zirconate titanate structure are presented.

  17. Weakly nonlinear ion waves in striated electron temperatures

    NASA Astrophysics Data System (ADS)

    Guio, P.; Pécseli, H. L.

    2016-04-01

    The existence of low-frequency waveguide modes of electrostatic ion acoustic waves is demonstrated in magnetized plasmas for cases where the electron temperature is striated along magnetic field lines. For low frequencies, the temperature striation acts as waveguide that supports a trapped mode. For conditions where the ion cyclotron frequency is below the ion plasma frequency we find a dispersion relation having also a radiative frequency band, where waves can escape from the striation. Arguments for the formation and propagation of an equivalent of electrostatic shocks are presented and demonstrated numerically for these conditions. The shock represents here a balance between an external energy input maintained by ion injection and a dissipation mechanism in the form of energy leakage of the harmonics generated by nonlinear wave steepening. This is a reversible form for energy loss that can replace the time-irreversible losses in a standard Burgers equation.

  18. Stratification effects on nonlinear elastic surface waves

    NASA Astrophysics Data System (ADS)

    Parker, D. F.

    1988-01-01

    On a homogeneous elastic half-space, linear surface waves are nondispersive. In each direction, waves having any profile travel without distortion. Nonlinearity causes intermodulation between the various wavelengths so that the signal distorts. Even when nonlinearity is small, sinusoidal profiles do not remain approximately sinusoidal. The absence of dispersion means that profiles suffer cumulative distortion, until the surface slope and strain become locally unbounded. Although this behaviour is typical of many signals, there are some signals for which intermodulation is constructive. These signals can travel coherently over large distances. For seismological applications, it is important to study the effects due to stratification. Dependence of the material constants on depth modifies the nonlinear evolution equations previously derived for homogeneous media. It has a smaller effect on higher frequencies than on lower frequencies. An approximate theory for short wavelength (high frequency) signals is introduced. Calculations show that when nonlinearity is no more important than dispersion, initially sinusoidal profiles propagate with surface slope remaining finite. When dispersion is small compared to nonlinearity, certain sharp peaked profiles can travel large distances while suffering little distortion.

  19. Studies of nonlinear electrodynamics of high-temperature superconductors

    SciTech Connect

    Lam, Quan-Chiu H.

    1991-08-01

    Nonlinear electrodynamics of high-{Tc} superconductors are studied both theoretically and experimentally. For powdered samples, a novel model is presented in which the metallographically observed superconducting grains in the powder are modeled as superconducting current loops of various areas with weak links. Surprising harmonic generation behavior in an arc field, H{sub 1} cos({omega}t), is predicted by the model; the power at high harmonics show sharp dips almost periodic in a superposing dc magnetic field, revealing flux quantization in the prototype loops in the model. Such oscillation of the harmonic power in dc magnetic field P{sub nf}(H{sub dc}), is indeed experimentally observed in powdered YBa{sub 2}Cu{sub 3}O{sub 7}. Other experimental aspects also agree with model predictions. For bulk sintered cylindrical samples, a generalized critical state model is presented. In this model, the nonlinear electrodynamics are due to flux-pinning, somewhat similar to low-temperature type-II superconductors, but with a more generalized critical current densities' dependence on magnetic field -- J{sub c}(H){approximately}H{sub local}{sup -{beta}}, with {beta} being an adjustable parameter. Experiments in ac and dc magnetic fields on a sintered cylindrical rod of YBa{sub 2}Cu{sub 3}O{sub 7} yield unambiguous evidence of independent inter- and intragranular contributions to the complex harmonic permeability {tilde {mu}}{sub n} = {mu}{prime}{sub n} -i{mu}{double prime}{sub n}. Temperature- dependence measurements reveal that, while the intragranular supercurrents disappear at {Tc}{ge}91.2 K, the intergranular supercurrents disappear at T{ge}86.6 K. This result is, to our knowledge, the first clear measurement of the phase-locking temperature of the 3-D matrix formed by YBa{sub 2}Cu{sub 3}O{sub 7} grains, which are in electrical contact with one another through weak links.

  20. Studies of nonlinear electrodynamics of high-temperature superconductors

    SciTech Connect

    Lam, Quan-Chiu H.

    1991-08-01

    Nonlinear electrodynamics of high-{Tc} superconductors are studied both theoretically and experimentally. For powdered samples, a novel model is presented in which the metallographically observed superconducting grains in the powder are modeled as superconducting current loops of various areas with weak links. Surprising harmonic generation behavior in an arc field, H{sub 1} cos({omega}t), is predicted by the model; the power at high harmonics show sharp dips almost periodic in a superposing dc magnetic field, revealing flux quantization in the prototype loops in the model. Such oscillation of the harmonic power in dc magnetic field P{sub nf}(H{sub dc}), is indeed experimentally observed in powdered YBa{sub 2}Cu{sub 3}O{sub 7}. Other experimental aspects also agree with model predictions. For bulk sintered cylindrical samples, a generalized critical state model is presented. In this model, the nonlinear electrodynamics are due to flux-pinning, somewhat similar to low-temperature type-II superconductors, but with a more generalized critical current densities` dependence on magnetic field -- J{sub c}(H){approximately}H{sub local}{sup -{beta}}, with {beta} being an adjustable parameter. Experiments in ac and dc magnetic fields on a sintered cylindrical rod of YBa{sub 2}Cu{sub 3}O{sub 7} yield unambiguous evidence of independent inter- and intragranular contributions to the complex harmonic permeability {tilde {mu}}{sub n} = {mu}{prime}{sub n} -i{mu}{double_prime}{sub n}. Temperature- dependence measurements reveal that, while the intragranular supercurrents disappear at {Tc}{ge}91.2 K, the intergranular supercurrents disappear at T{ge}86.6 K. This result is, to our knowledge, the first clear measurement of the phase-locking temperature of the 3-D matrix formed by YBa{sub 2}Cu{sub 3}O{sub 7} grains, which are in electrical contact with one another through weak links.

  1. Rotational Doppler effect in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2016-08-01

    The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.

  2. Nonlinearity of radiation health effects.

    PubMed Central

    Pollycove, M

    1998-01-01

    The prime concern of radiation protection policy since 1959 has been to protect DNA from damage. In 1994 the United Nations Scientific Community on the Effects of Atomic Radiation focused on biosystem response to radiation with its report Adaptive Responses to Radiation of Cells and Organisms. The 1995 National Council on Radiation Protection and Measurements report Principles and Application of Collective Dose in Radiation Protection states that because no human data provides direct support for the linear nonthreshold hypothesis (LNT), confidence in LNT is based on the biophysical concept that the passage of a single charged particle could cause damage to DNA that would result in cancer. Several statistically significant epidemiologic studies contradict the validity of this concept by showing risk decrements, i.e., hormesis, of cancer mortality and mortality from all causes in populations exposed to low-dose radiation. Unrepaired low-dose radiation damage to DNA is negligible compared to metabolic damage. The DNA damage-control biosystem is physiologically operative on both metabolic and radiation damage and effected predominantly by free radicals. The DNA damage-control biosystem is suppressed by high dose and stimulated by low-dose radiation. The hormetic effect of low-dose radiation may be explained by its increase of biosystem efficiency. Improved DNA damage control reduces persistent mis- or unrepaired DNA damage i.e., the number of mutations that accumulate during a lifetime. This progressive accumulation of gene mutations in stem cells is associated with decreasing DNA damage control, aging, and malignancy. Recognition of the positive health effects produced by adaptive responses to low-dose radiation would result in a realistic assessment of the environmental risk of radiation. Images Figure 1 Figure 3 Figure 5 Figure 6 Figure 8 Figure 10 PMID:9539031

  3. Nonlinear and edge effects in a thermoacoustic refrigerator

    NASA Astrophysics Data System (ADS)

    Blanc-Benon, Philippe; Marx, David

    2006-05-01

    In the present work, the full compressible Navier-Stokes equations are solved numerically, and the flow and heat transfer around a 2-D stack plate immerged in an acoustic standing wave are computed. Distortion of the waveform temperature are found and are explained using the results of a former nonlinear analysis. The temperature difference between the ends of the plate is investigated and compared to linear theory. The effects of the acoustic Mach number and geometrical parameters on refrigerator performance are investigated.Results reported here may explain a part of the difference between theoretical predictions and experimental results.

  4. Ranking scientific publications: the effect of nonlinearity

    NASA Astrophysics Data System (ADS)

    Yao, Liyang; Wei, Tian; Zeng, An; Fan, Ying; di, Zengru

    2014-10-01

    Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected.

  5. Ranking scientific publications: the effect of nonlinearity

    PubMed Central

    Yao, Liyang; Wei, Tian; Zeng, An; Fan, Ying; Di, Zengru

    2014-01-01

    Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected. PMID:25322852

  6. Nonlinear Talbot effect of rogue waves

    NASA Astrophysics Data System (ADS)

    Zhang, Yiqi; Belić, Milivoj R.; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng

    2014-03-01

    Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schrödinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a π-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.

  7. Non-linear saturation mechanism of electron temperature gradient modes

    SciTech Connect

    Tokluoglu, E. K.; Sokolov, V.; Sen, A. K.

    2012-10-15

    The electron temperature gradient (ETG) mode is a very plausible candidate to explain the large electron particle transport and thermal conduction. Production and identification of slab ETG modes and measurement electron transport have been already reported [X. Wei, V. Sokolov, and A. K. Sen, Phys. Plasmas 17, 042108 (2010); V. Sokolov and A. K. Sen, Phys. Rev. Lett. (2011)]. Now, we develop a theoretical model of non-linear saturation mechanism of ETG mode based on the three wave coupling of an unstable high frequency ETG mode with a damped ETG radial harmonic and a damped ion acoustic (IA) mode. Bicoherence analysis of Columbia linear machine (CLM) data show coupling between ETG modes ({approx}2.4 MHz) and a low frequency mode ({approx}50 kHz). The large damping drive of the ETG radial harmonic accompanied by the smaller but finite damping of the IA mode presents an energy sink for the unstable ETG mode, thus causing saturation. This model predicts a saturation level of {approx}10% and agrees with the observed levels of ETG modes in the CLM.

  8. Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence

    SciTech Connect

    E. A. Belli; Hammett, G. W.; Dorland, W.

    2008-08-01

    The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ-1.5 or κ-2.0, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.

  9. Nonlinear analysis for high-temperature multilayered fiber composite structures. M.S. Thesis; [turbine blades

    NASA Technical Reports Server (NTRS)

    Hopkins, D. A.

    1984-01-01

    A unique upward-integrated top-down-structured approach is presented for nonlinear analysis of high-temperature multilayered fiber composite structures. Based on this approach, a special purpose computer code was developed (nonlinear COBSTRAN) which is specifically tailored for the nonlinear analysis of tungsten-fiber-reinforced superalloy (TFRS) composite turbine blade/vane components of gas turbine engines. Special features of this computational capability include accounting of; micro- and macro-heterogeneity, nonlinear (stess-temperature-time dependent) and anisotropic material behavior, and fiber degradation. A demonstration problem is presented to mainfest the utility of the upward-integrated top-down-structured approach, in general, and to illustrate the present capability represented by the nonlinear COBSTRAN code. Preliminary results indicate that nonlinear COBSTRAN provides the means for relating the local nonlinear and anisotropic material behavior of the composite constituents to the global response of the turbine blade/vane structure.

  10. Effective higher-order nonlinear coefficients of composites with weakly nonlinear media

    NASA Astrophysics Data System (ADS)

    Natenapit, Mayuree; Thongboonrithi, Chaivej

    2010-05-01

    The field equations, based on the third-order perturbation expansion of electrostatic potential, are derived, and our general formulae for higher-order effective nonlinear coefficients based on the energy definition, are presented and applied to dielectric composites consisting of dilute linear cylindrical inclusions randomly dispersed in a weakly nonlinear host media. The effective nonlinear coefficients are determined up to the ninth order. In addition, the results are also compared to those obtained using the average field method and likely to provide more accurate predictions of effective higher-order nonlinear responses.

  11. Thermoviscoplastic nonlinear constitutive relationships for structural analysis of high temperature metal matrix composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Hopkins, D. A.

    1985-01-01

    A set of thermoviscoplastic nonlinear constitutive relationships (1VP-NCR) is presented. The set was developed for application to high temperature metal matrix composites (HT-MMC) and is applicable to thermal and mechanical properties. Formulation of the TVP-NCR is based at the micromechanics level. The TVP-NCR are of simple form and readily integrated into nonlinear composite structural analysis. It is shown that the set of TVP-NCR is computationally effective. The set directly predicts complex materials behavior at all levels of the composite simulation, from the constituent materials, through the several levels of composite mechanics, and up to the global response of complex HT-MMC structural components.

  12. Temperature dependent nonlinear metal matrix laminae behavior. Final technical report, December 1984-November 1985

    SciTech Connect

    Barrett, D.J.; Buesking, K.W.

    1986-09-01

    An analytical method is described for computing the nonlinear thermal and mechanical response of laminated plates. The material model focuses upon the behavior of metal matrix materials by relating the nonlinear composite response to plasticity effects in the matrix. The foundation of the analysis is the unidirectional material model which is used to compute the instantaneous properties of the lamina based upon the properties of the fibers and matrix. The unidirectional model assumes that the fibers properties are constant with temperature and assumes that the matrix can be modelled as a temperature dependent, bilinear, kinematically hardening material. An incremental approach is used to compute average stresses in the fibers and matrix caused by arbitrary mechanical and thermal loads. The layer model is incorporated in an incremental laminated plate theory to compute the nonlinear response of laminated metal matrix composites of general orientation and stacking sequence. The report includes comparisons of the method with other analytical approaches and compares theoretical calculations with measured experimental material behavior. A section is included which describes the limitations of the material model.

  13. Non-linear analysis of PESA-Lo electrostatic analyzer data and solar wind temperature anisotropies

    NASA Astrophysics Data System (ADS)

    Djordjevic, B. Z.; Maruca, B.; Bale, S. D.; Wilson, L. B., III; Larson, D. E.

    2015-12-01

    In this study, non-linear fitting techniques are applied to ion measurements from the Wind spacecraft's PESA-Lo electrostatic analyzer. Previous studies have relied primarily on moments-analyses, which, although satisfactory for simple distributions and density calculations, often return unreasonable values for higher order moments (e.g., temperature) and fail to account for non-thermal effects (e.g., temperature anisotropy and beams) and multiple ion-species. A Levenberg-Marquadt non-linear algorithm is applied to the PESA-Lo data in order to calculate the characteristic parameters of the proton, alpha-particle, and beam distributions. This analysis is augmented with calibration data from the WIND Faraday cups and magnetic-field data from WIND/MFI. Preliminary results from this non-linear analysis indicate that it indeed provides higher-quality ion parameters than the existing moments-analysis. When this analysis is complete, the set of bulk-parameter values will be suitable for studies of microinstabilities in the solar wind and of possible correlation between magnetic field fluctuations and non-thermal properties of the ion distributions. Applications of thermodynamic principles, such as the Boltzmann H-theorem, will allow for further characterization of the non-thermal properties of the solar wind.

  14. Wave-particle interaction and the nonlinear saturation of the electron temperature gradient mode

    NASA Astrophysics Data System (ADS)

    Vadlamani, Srinath; Parker, Scott E.; Chen, Yang; Howard, James E.

    2004-11-01

    It has been proposed that the electron temperature gradient (ETG) driven turbulence is responsible for experimentally relevant electron thermal transport in tokamak plasmas. Significant transport levels are possible by the creation of radially elongated vortices or ``streamers" [1,2], which are sustained by the nonlinear saturation of the instability and are not susceptible to shear flow destruction, as is the case with the ion temperature gradient (ITG) mode. We present a dynamical system to explore the dependence of saturation level due to E × B and E_\\| motion, as well as the effect of radial elongation. With this model, we can predict the nonlinear saturation level of the ETG streamers. We compare our theoretical predictions with a 2D shear-less slab gyrokinetic electron code that includes the E_\\| nonlinearity. [1]F. Jenko, W. Dorland, M Kotschenreuther, and B.N. Rogers, Phys. Plasmas 7, 1904 (2000). [2]C. Holland, and P.H. Diamond, Phys. Plasmas 9, 3857 (2002). [3]W. M. Manheimer, Phys. Fluids 14, 579 (1971). [4]R. A. Smith, John A. Krommes, and W. W. Lee, Phys. Fluids 28, 1069 (1985).

  15. Nonlinear optical parameters of nonparabolic semiconductor plasmas: Influence of energy dependent effective mass

    SciTech Connect

    Daulatabadkar, Pragya Ghosh, S.

    2015-07-31

    An investigation is carried out in III-V compound semiconductor when a strong transverse magnetic field is applied. By considering the heating effect of carriers, an analytical investigation is made for n-InSb in which the nonlinearity arises due to dependence of effective mass on electronic temperature. At optical frequencies the temperature dependence part of momentum transfer collision frequency is assumed to be negligibly small. The linear and nonlinear parts of optical parameters are evaluated through the first and third order susceptibility of InSb sample. The analysis reveals that the nonlinear part of refractive index increases with intensity which leads to self-focusing of the beam. Thus by adjusting the doping concentration pump frequency and intensity, one may achieve desired nonlinearity in the crystal. Hence n - InSb sample establishes its potentials as candidate material for fabrication of cubic nonlinear devices.

  16. Effective Temperature of Mutations

    NASA Astrophysics Data System (ADS)

    Derényi, Imre; Szöllősi, Gergely J.

    2015-02-01

    Biological macromolecules experience two seemingly very different types of noise acting on different time scales: (i) point mutations corresponding to changes in molecular sequence and (ii) thermal fluctuations. Examining the secondary structures of a large number of microRNA precursor sequences and model lattice proteins, we show that the effects of single point mutations are statistically indistinguishable from those of an increase in temperature by a few tens of kelvins. The existence of such an effective mutational temperature establishes a quantitative connection between robustness to genetic (mutational) and environmental (thermal) perturbations.

  17. Nonlinear dynamic response and active control of fiber metal laminated plates with piezoelectric actuators and sensors in unsteady temperature field

    NASA Astrophysics Data System (ADS)

    Shao, Xuefei; Fu, Yiming; Chen, Yang

    2015-05-01

    Based on the higher order shear deformation theory and the geometric nonlinear theory, the nonlinear motion equations, to which the effects of the positive and negative piezoelectric and the thermal are introduced by piezoelectric fiber metal laminated (FML) plates in an unsteady temperature, are established by Hamilton’s variational principle. Then, the control algorithm of negative-velocity feedback is applied to realize the vibration control of the piezoelectric FML plates. During the solving process, firstly, the formal functions of the displacements that fulfilled the boundary conditions are proposed. Then, heat conduction equations and nonlinear differential equations are dealt with using the differential quadrature (DQ) and Galerkin methods, respectively. On the basis of the previous processing, the time domain is dispersed by the Newmark-β method. Finally, the whole problem can be investigated by the iterative method. In the numerical examples, the influence of the applied voltage, the temperature loading and geometric parameters on the nonlinear dynamic response of the piezoelectric FML plates is analyzed. Meanwhile, the effect of feedback control gain and the position of the piezoelectric layer, the initial deflection and the external temperature on the active control effect of the piezoelectric layers has been studied. The model development and the research results can serve as a basis for nonlinear vibration analysis of the FML structures.

  18. Nonvolatile Memory Based on Nonlinear Magnetoelectric Effects

    NASA Astrophysics Data System (ADS)

    Shen, Jianxin; Cong, Junzhuang; Chai, Yisheng; Shang, Dashan; Shen, Shipeng; Zhai, Kun; Tian, Ying; Sun, Young

    2016-08-01

    The magnetoelectric effects in multiferroics have a great potential in creating next-generation memory devices. We use an alternative concept of nonvolatile memory based, on a type of nonlinear magnetoelectric effects showing a butterfly-shaped hysteresis loop. The principle is to utilize the states of the magnetoelectric coefficient, instead of magnetization, electric polarization, or resistance, to store binary information. Our experiments in a device made of the PMN-PT/Terfenol-D multiferroic heterostructure clearly demonstrate that the sign of the magnetoelectric coefficient can be repeatedly switched between positive and negative by applying electric fields, confirming the feasibility of this principle. This kind of nonvolatile memory has outstanding practical virtues such as simple structure, easy operation in writing and reading, low power, fast speed, and diverse materials available.

  19. On nonlinear effects in fracture mechanics.

    NASA Technical Reports Server (NTRS)

    Liebowitz, H.; Eftis, J.

    1971-01-01

    Linear elastic treatment of fracture is considered applicable for net section stress up to about 0.8 the uniaxial tensile yield stress. Crack front plastic yield is still small enough to be viewed and treated as a small perturbation to the local crack front elastic stress field. Assuming these same circumstances and adopting the same point of view, an approach is presented for incorporating the nonlinear effects of small scale crack front plastic yield and slow crack extension in determination of the energy release rate and fracture toughness. Deviation from linearity of the load-displacement record in a fracture toughness test offers a quantifiable measure of these effects and is used to calculate the energy release rate. Fracture toughness values for one-eight inch thick 7075-T6 center cracked aluminum sheet are compared with uncorrected values and with values obtained by the Irwin method of plasticity correction.

  20. Effect of Nonlinear Joints on Space Deployable Truss Structures

    NASA Astrophysics Data System (ADS)

    Guo, Hongwei; Deng, Zhongquan; Wu, Xiang; Liu, Rongqiang

    2012-07-01

    Joints nonlinearities with characteristics of freeplay and hysteresis are analyzed by describing joint nonlinear force-displacement based on describing function method. The nonlinear dynamic responses of the one- DOF system with joints under different exciting force levels are presented in the charts. The influence of the characterizing parameters, e.g., gaps, slipping forces of the joints on nonlinearities is analyzed. The nonlinear effects of freeplay and hysteresis present that the dynamic responses switch from one resonance frequency to another frequency when amplitude exceed the demarcation values. The hysteresis nonlinearity contributes nonlinear damping to the system. Dynamic responses of the modular beam-like deployable joint- dominated truss structure are tested under different sinusoidal exciting force levels which show obvious nonlinear behaviors. The nonlinear dynamic behaviors of the truss structure contributed by the joints shows a shift to lower resonance frequency and higher amplitude with the exciting force increases. The nonlinearity of the joints in the tested structure is identified to meet with the hysteresis nonlinearity. The experiment validates that describing method is an effective tool to model the joint nonlinearities.

  1. Generalized Effective Radiance Temperature

    NASA Astrophysics Data System (ADS)

    Yuan, Z.

    2015-12-01

    Radiance temperature is one of the most important and widely used concepts in radiation thermometry. The usual definition of radiance temperature does not strictly apply for complex situations, such as when surrounding radiation is non-negligible or when corrections are applied to measurements made using an inappropriate emissivity setting. A novel concept, generalized effective radiance temperature (GERT), that adopts a graybody as the reference radiator is proposed in this study to express and explain the actual measurands that exist extensively in practical radiation thermometry applications; for example, a measurement result by a spectral-band radiation thermometer whose instrumental emissivity setting is less than 1. An effective wavelength approach has been developed to elucidate the relationship between a thermometer-dependent temperature (reading from an actual spectral-band radiation thermometer) and the object-side parameter GERT. The characteristics of GERT and the effective wavelength of a GERT measurement are discussed. Choosing an arbitrary emissivity setting to correct for the emissivity of a real target is equivalent to using this value as the emissivity of the reference graybody of the GERT. The GERT can be used in calibrations of both sources and thermometers.

  2. The Propagation of Nonlinear Pressure Waves Through Regions of Non-Uniform Temperature

    NASA Astrophysics Data System (ADS)

    Dizinno, Nicholas; Vradis, George; Otugen, Volkan

    2006-11-01

    A numerical study of wave propagation through gases with non-uniform temperature distributions will be presented. The aim of this study is to determine the impact of temperature gradients on high-intensity pressure waves of various initial wave forms. Emphasis is paid to wave reflection and transmission. Ultimately, the performance of thermal barriers in attenuating nonlinear waves is evaluated. The concept of using regions of hot gas inside an ambient environment has potential in aeroacoustic applications, such as jet screech mitigation. This analysis considers the one-dimensional compressible unsteady Euler's equations with an ideal gas state equation. The domain is composed of two regions with uniform and equal gas properties separated by a third region with higher gas temperature (lower density). Pressure is uniform throughout the domain. We introduce various high-intensity wave forms into this medium. Our investigation studies how the shape and extent of the thermal zone affect transmission and reflection of the wave. This is done for a range of wave and thermal field parameters. A Fourier analysis will study the frequency content of the incident, transmitted and reflected waves. These results will help determine the effectiveness of using thermal barriers for nonlinear wave attenuation.

  3. Nonlinear effects of anthropogenic aerosol and urban land surface forcing on spring climate in eastern China

    NASA Astrophysics Data System (ADS)

    Deng, Jiechun; Xu, Haiming; Zhang, Leying

    2016-05-01

    Anthropogenic aerosols and urban land cover change induce opposite thermal effects on the atmosphere near surface as well as in the troposphere. One can think of these anthropogenic effects as composed of two parts: the individual effect due to an individual anthropogenic forcing and the nonlinear effects resulting from the coexistence of two forcing factors. In this study, we explored the role of such nonlinear effects in affecting East Asian climate, as well as individual forcing effects, using the Community Atmosphere Model version 5.1 coupled with the Community Land Model version 4. Atmospheric responses were simulated by including anthropogenic aerosol emission only, urban cover only, or the combination of the two, over eastern China. Results showed that nonlinear responses were different from any effects by an individual forcing or the linear combination of individual responses. The nonlinear interaction could generate cold horizontal temperature advection to cool the troposphere, which induced anomalous subsidence along the Yangtze River Valley (YRV). This anomalous vertical motion, together with a weakened low-level southwesterly, favored below-normal (above-normal) rainfall over the YRV (southern China), shifting the spring rain belt southward. The resultant diabatic cooling, in turn, amplified the anomalous descent and further decreased tropospheric temperature over the YRV, forming a positive feedback loop to maintain the nonlinear effects. Consequently, the nonlinear effects acted to reduce the climate anomalies from a simple linear combination of two individual effects and played an important role in regional responses to one anthropogenic forcing when the other is prescribed.

  4. Thermal effects on mass detection sensitivity of carbon nanotube resonators in nonlinear oscillation regime

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Keun; Yang, Hyun-Ik; Kim, Chang-Wan

    2015-11-01

    A mass sensor using a nano-resonator has high detection sensitivity, and mass sensitivity is higher with smaller resonators. Therefore, carbon nanotubes (CNTs) are the ultimate materials for these applications and have been actively studied. In particular, CNT-based nanomechanical devices may experience high temperatures that lead to thermal expansion and residual stress in devices, which affects the device reliability. In this letter, to demonstrate the influence of the temperature change (i.e., thermal effect) on the mass detection sensitivity of CNT-based mass sensor, dynamic analysis is carried out for a CNT resonator with thermal effects in both linear and nonlinear oscillation regimes. Based on the continuum mechanics model, the analytical solution method with an assumed deflection eigenmode is applied to solve the nonlinear differential equation which involves the von Karman nonlinear strain-displacement relation and the additional axial force associated with thermal effects. A thermal effect on the fundamental resonance behavior and resonance frequency shift due to adsorbed mas, i.e., mass detection sensitivity, is examined in high-temperature environment. Results indicate a valid improvement of fundamental resonance frequency by using nonlinear oscillation in a thermal environment. In both linear and nonlinear oscillation regimes, the mass detection sensitivity becomes worse due to the increasing of temperature in a high-temperature environment. The thermal effect on the detection sensitivity is less effective in the nonlinear oscillation regime. It is concluded that a temperature change of a mass sensor with a CNT-based resonator can be utilized to enhance the detection sensitivity depending on the CNT length, linear/nonlinear oscillation behaviors, and the thermal environment.

  5. Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.

    1990-01-01

    A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.

  6. Numerical instabilities encountered in non-linear temperature analysis of radiation shield for SP-100 reactor

    NASA Astrophysics Data System (ADS)

    Barattino, William J.; El-Genk, Mohamed S.; McDaniel, Patrick J.

    The finite element method using Simplex elements and Newton-Raphson iteration has been shown to be quite accurate for solving nonlinear, nonhomogeneous, steady-state heat conduction problems, with radiative boundary conditions. However, at high values of internal heat generation, a bifurcation solution results in which the temperature at the radiative boundary oscillates between two values, neither of which is the exact solution. The introduction of a relaxation parameter in the radiative heat transfer coefficient was effective in eliminating the oscillatory behavior of the radiative surface temperature. A nodal decomposition was performed on the basic Newton-Raphson system of equations which led to a qualitative understanding of how the engineering parameters of the heat transfer-governing equation affected the oscillations. A method for determining the optimum relaxation parameter to ensure convergence and maximize the convergence rate was proposed.

  7. Influence of temperature on the dielectric nonlinearity of BaTiO3-based multi-layer ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Yoon, Seok-Hyun; Kim, Mi-Yang

    2016-06-01

    Temperature dependence of the dielectric nonlinearity was investigated for the BaTiO3 multilayer ceramic capacitor. The decrease in temperature caused a significant increase in the degree of dielectric nonlinearity. The Preisach analysis shows that such effect corresponds to a decrease in reversible and a significant increase in irreversible domain wall contribution to polarization. The magnitude of spontaneous polarization (PS) was increased with decreasing temperature. It can be associated with phase transition from pseudo-cubic to monoclinic and its resultant change in the polar direction, which was observed through transmission electron microscopy. These results demonstrate that the increase in PS with the decrease in temperature inhibits domain wall motion in low driving field as it is anticipated to increase the degree of intergranular constraints during domain wall motion. But it results in a more steep increase in the dielectric constants beyond the threshold field where domain wall motion can occur.

  8. Rapid assessment of nonlinear optical propagation effects in dielectrics.

    PubMed

    del Hoyo, J; de la Cruz, A Ruiz; Grace, E; Ferrer, A; Siegel, J; Pasquazi, A; Assanto, G; Solis, J

    2015-01-01

    Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process. PMID:25564243

  9. Rapid assessment of nonlinear optical propagation effects in dielectrics

    PubMed Central

    Hoyo, J. del; de la Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.

    2015-01-01

    Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process. PMID:25564243

  10. The effect of system nonlinearities on system noise statistics

    NASA Technical Reports Server (NTRS)

    Robinson, L. H., Jr.

    1971-01-01

    The effects are studied of nonlinearities in a baseline communications system on the system noise amplitude statistics. So that a meaningful identification of system nonlinearities can be made, the baseline system is assumed to transmit a single biphase-modulated signal through a relay satellite to the receiving equipment. The significant nonlinearities thus identified include square-law or product devices (e.g., in the carrier reference recovery loops in the receivers), bandpass limiters, and traveling wave tube amplifiers.

  11. The Effects of Nonlinear Damping on Post-flutter Behavior Using Geometrically Nonlinear Reduced Order Modeling

    NASA Astrophysics Data System (ADS)

    Song, Pengchao

    Recent studies of the occurrence of post-flutter limit cycle oscillations (LCO) of the F-16 have provided good support to the long-standing hypothesis that this phenomenon involves a nonlinear structural damping. A potential mechanism for the appearance of nonlinearity in the damping are the nonlinear geometric effects that arise when the deformations become large enough to exceed the linear regime. In this light, the focus of this investigation is first on extending nonlinear reduced order modeling (ROM) methods to include viscoelasticity which is introduced here through a linear Kelvin-Voigt model in the undeformed configuration. Proceeding with a Galerkin approach, the ROM governing equations of motion are obtained and are found to be of a generalized van der Pol-Duffing form with parameters depending on the structure and the chosen basis functions. An identification approach of the nonlinear damping parameters is next proposed which is applicable to structures modeled within commercial finite element software. The effects of this nonlinear damping mechanism on the post-flutter response is next analyzed on the Goland wing through time-marching of the aeroelastic equations comprising a rational fraction approximation of the linear aerodynamic forces. It is indeed found that the nonlinearity in the damping can stabilize the unstable aerodynamics and lead to finite amplitude limit cycle oscillations even when the stiffness related nonlinear geometric effects are neglected. The incorporation of these latter effects in the model is found to further decrease the amplitude of LCO even though the dominant bending motions do not seem to stiffen as the level of displacements is increased in static analyses.

  12. Nonlinear effective pressure law for permeability

    NASA Astrophysics Data System (ADS)

    Li, M.; Xiao, W.-L.; Bernabé, Y.; Zhao, J.-Z.

    2014-01-01

    The permeability k of porous rocks is known to vary with confining pressure pc and pore fluid pressure pf. But it is, in principle, possible to replace the two-variable function k(pf, pc) by a function k(peff) of a single variable, peff(pf, pc), called the effective pressure. Our goal in this paper is to establish an experimental method for determining a possibly nonlinear, effective pressure law (EPL) for permeability, i.e., find the function κs(pf, pc) such that the effective pressure is given by peff = pc - κs(pf, pc) pf. We applied this method to a set of 26 sandstone cores from various hydrocarbon reservoirs in China. We found that κs greatly varied, from sample to sample, in magnitude and range, sometimes even reaching theoretically prohibited values (i.e., greater than 1 or lower than porosity). One interesting feature of κs(pf, pc) is that it could be approximately described in all rocks but one as a decreasing function κs(pc - pf) of Terzaghi's differential pressure. We also investigated the dependence of permeability on peff for each of our samples. Three models from the literature, i.e., exponential (E), power law (P), and the Walsh model (W), were tested. The (W) model was more likely to fit the experimental data of cores with a high pressure dependence of permeability whereas (E) occurred more frequently in low-pressure-sensitive rocks. Finally, we made various types of two- and three-dimensional microstructural observations that generally supported the trend mentioned above.

  13. Temperature dependence of nonlinear optical properties in Li doped nano-carbon bowl material

    NASA Astrophysics Data System (ADS)

    Li, Wei-qi; Zhou, Xin; Chang, Ying; Quan Tian, Wei; Sun, Xiu-Dong

    2013-04-01

    The mechanism for change of nonlinear optical (NLO) properties with temperature is proposed for a nonlinear optical material, Li doped curved nano-carbon bowl. Four stable conformations of Li doped corannulene were located and their electronic properties were investigated in detail. The NLO response of those Li doped conformations varies with relative position of doping agent on the curved carbon surface of corannulene. Conversion among those Li doped conformations, which could be controlled by temperature, changes the NLO response of bulk material. Thus, conformation change of alkali metal doped carbon nano-material with temperature rationalizes the variation of NLO properties of those materials.

  14. An alternative approach to characterize nonlinear site effects

    USGS Publications Warehouse

    Zhang, R.R.; Hartzell, S.; Liang, J.; Hu, Y.

    2005-01-01

    This paper examines the rationale of a method of nonstationary processing and analysis, referred to as the Hilbert-Huang transform (HHT), for its application to a recording-based approach in quantifying influences of soil nonlinearity in site response. In particular, this paper first summarizes symptoms of soil nonlinearity shown in earthquake recordings, reviews the Fourier-based approach to characterizing nonlinearity, and offers justifications for the HHT in addressing nonlinearity issues. This study then uses the HHT method to analyze synthetic data and recordings from the 1964 Niigata and 2001 Nisqually earthquakes. In doing so, the HHT-based site response is defined as the ratio of marginal Hilbert amplitude spectra, alternative to the Fourier-based response that is the ratio of Fourier amplitude spectra. With the Fourier-based approach in studies of site response as a reference, this study shows that the alternative HHT-based approach is effective in characterizing soil nonlinearity and nonlinear site response.

  15. A Novel Effective Approach for Solving Fractional Nonlinear PDEs

    PubMed Central

    Aminikhah, Hossein; Malekzadeh, Nasrin; Rezazadeh, Hadi

    2014-01-01

    The present work introduces an effective modification of homotopy perturbation method for the solution of nonlinear time-fractional biological population model and a system of three nonlinear time-fractional partial differential equations. In this approach, the solution is considered a series expansion that converges to the nonlinear problem. The new approximate analytical procedure depends only on two iteratives. The analytical approximations to the solution are reliable and confirm the ability of the new homotopy perturbation method as an easy device for computing the solution of nonlinear equations.

  16. Nonlinear effects in a plain journal bearing. I - Analytical study. II - Results

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Braun, M. J.; Hu, Y.

    1991-01-01

    In the first part of this work, a numerical model is presented which couples the variable-property Reynolds equation with a rotor-dynamics model for the calculation of a plain journal bearing's nonlinear characteristics when working with a cryogenic fluid, LOX. The effects of load on the linear/nonlinear plain journal bearing characteristics are analyzed and presented in a parametric form. The second part of this work presents numerical results obtained for specific parametric-study input variables (lubricant inlet temperature, external load, angular rotational speed, and axial misalignment). Attention is given to the interrelations between pressure profiles and bearing linear and nonlinear characteristics.

  17. Nonlinear dynamical effects on reaction rates in thermally fluctuating environments.

    PubMed

    Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2010-07-21

    A framework to calculate the rate constants of condensed phase chemical reactions of manybody systems is presented without relying on the concept of transition state. The theory is based on a framework we developed recently adopting a multidimensional underdamped Langevin equation in the region of a rank-one saddle. The theory provides a reaction coordinate expressed as an analytical nonlinear functional of the position coordinates and velocities of the system (solute), the friction constants, and the random force of the environment (solvent). Up to moderately high temperature, the sign of the reaction coordinate can determine the final destination of the reaction in a thermally fluctuating media, irrespective of what values the other (nonreactive) coordinates may take. In this paper, it is shown that the reaction probability is analytically derived as the probability of the reaction coordinate being positive, and that the integration with the Boltzmann distribution of the initial conditions leads to the exact reaction rate constant when the local equilibrium holds and the quantum effect is negligible. Because of analytical nature of the theory taking into account all nonlinear effects and their combination with fluctuation and dissipation, the theory naturally provides us with the firm mathematical foundation of the origin of the reactivity of the reaction in a fluctuating media. PMID:20544104

  18. Nonlinear effects in new magnetic pickup coils for JET

    SciTech Connect

    Quercia, A.; Pomaro, N.; Visone, C.

    2006-10-15

    In the framework of the JET magnetic diagnostic enhancement, a set of pickup coils (UC subsystem) wound on metallic Inconel registered 600 former was manufactured. For cross-validation purposes, two different calibration methods were used. A discrepancy in the range of 3% was observed, which can be explained when considering the dependence of the calibration coefficients on the field strength, which in turn is mostly due to the nonlinear behavior of the Inconel former. For this reason a specimen of Inconel was analyzed by means of a magnetometer, which showed a nonlinear and hysteretic behavior occurring at low field level (below 5 mT). The calibration coefficients are also measured at low field (0.1-2 mT) and so are affected by such peculiar ferromagnetic behavior. Moreover, the ferromagnetic behavior might be sensitive to mechanical and thermal treatments performed during probe manufacturing and testing. Therefore the achievable accuracy for the calibration of coils wound on Inconel formers is limited by the following effects: (i) the field level in operation can be completely different from the field used in the calibration procedure; (ii) measurements of the magnetic properties on Inconel specimens cannot be extrapolated to the former, because of unpredictable effects of mechanical and thermal treatments made on the coil; (iii) residual magnetization; and (iv) temperature variations during operation.

  19. Nonlinear dielectric response of glasses at low temperature

    SciTech Connect

    Rogge, S.; Natelson, D.; Tigner, B.; Osheroff, D.D.

    1997-05-01

    We have measured the dielectric response of amorphous insulators in the audio frequency range at temperatures between 500 {mu}K and 400 mK. We compare the measured superlinear behavior with a model incorporating higher order terms at low frequencies. Temperature independent dielectric response at low fields and low temperatures has also been observed which may indicate a low energy cutoff in the two-level system distribution of order 1 mK in some materials. We also find anomalously high sensitivity of the dielectric response to rf noise. {copyright} {ital 1997} {ital The American Physical Society}

  20. The effect of nonlinear traveling waves on rotating machinery

    NASA Astrophysics Data System (ADS)

    Jauregui-Correa, Juan Carlos

    2013-08-01

    The effect of the housing stiffness on nonlinear traveling waves is presented in this work. It was found that the housing controls the synchronization of nonlinear elements and it allows nonlinear waves to travel through the structure. This phenomenon was observed in a gearbox with a soft housing, and the phenomenon was reproduced with a lump-mass dynamic model. The model included a pair of gears, the rolling bearings and the housing. The model considered all the nonlinear effects. Numerical and experimental results were analyzed with a time-frequency method using the Morlet wavelet function. A compound effect was observed when the nonlinear waves travel between the gears and the bearings: the waves increased the dynamic load amplitude and add another periodic load.

  1. A Nonlinear Mixed Effects Model for Latent Variables

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.

    2009-01-01

    The nonlinear mixed effects model for continuous repeated measures data has become an increasingly popular and versatile tool for investigating nonlinear longitudinal change in observed variables. In practice, for each individual subject, multiple measurements are obtained on a single response variable over time or condition. This structure can be…

  2. Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet

    PubMed Central

    2012-01-01

    In this work, we study the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in the presence of thermal radiation, included in the energy equation, and variable wall temperature. A similarity transformation was used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. An efficient numerical shooting technique with a fourth-order Runge-Kutta scheme was used to obtain the solution of the boundary value problem. The variations of dimensionless surface temperature, as well as flow and heat-transfer characteristics with the governing dimensionless parameters of the problem, which include the nanoparticle volume fraction ϕ, the nonlinearly stretching sheet parameter n, the thermal radiation parameter NR, and the viscous dissipation parameter Ec, were graphed and tabulated. Excellent validation of the present numerical results has been achieved with the earlier nonlinearly stretching sheet problem of Cortell for local Nusselt number without taking the effect of nanoparticles. PMID:22520273

  3. Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating

    NASA Astrophysics Data System (ADS)

    Nafari, F.; Ghoranneviss, M.

    2016-08-01

    In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperature for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.

  4. Nonlinear effects on composite laminate thermal expansion

    NASA Technical Reports Server (NTRS)

    Hashin, Z.; Rosen, B. W.; Pipes, R. B.

    1979-01-01

    Analyses of Graphite/Polyimide laminates shown that the thermomechanical strains cannot be separated into mechanical strain and free thermal expansion strain. Elastic properties and thermal expansion coefficients of unidirectional Graphite/Polyimide specimens were measured as a function of temperature to provide inputs for the analysis. The + or - 45 degrees symmetric Graphite/Polyimide laminates were tested to obtain free thermal expansion coefficients and thermal expansion coefficients under various uniaxial loads. The experimental results demonstrated the effects predicted by the analysis, namely dependence of thermal expansion coefficients on load, and anisotropy of thermal expansion under load. The significance of time dependence on thermal expansion was demonstrated by comparison of measured laminate free expansion coefficients with and without 15 day delay at intermediate temperature.

  5. Electron scattering and nonlinear trapping by oblique whistler waves: The critical wave intensity for nonlinear effects

    SciTech Connect

    Artemyev, A. V. Vasiliev, A. A.; Mourenas, D.; Krasnoselskikh, V. V.

    2014-10-15

    In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.

  6. Nonlinear Ion Harmonics in the Paul Trap with Added Octopole Field: Theoretical Characterization and New Insight into Nonlinear Resonance Effect

    NASA Astrophysics Data System (ADS)

    Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu

    2016-02-01

    The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.

  7. Nonlinear Ion Harmonics in the Paul Trap with Added Octopole Field: Theoretical Characterization and New Insight into Nonlinear Resonance Effect.

    PubMed

    Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu

    2016-02-01

    The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition. PMID:26497312

  8. Topological nature of nonlinear optical effects in solids

    PubMed Central

    Morimoto, Takahiro; Nagaosa, Naoto

    2016-01-01

    There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials. PMID:27386523

  9. Topological nature of nonlinear optical effects in solids.

    PubMed

    Morimoto, Takahiro; Nagaosa, Naoto

    2016-05-01

    There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials. PMID:27386523

  10. Linear and nonlinear dynamics of electron temperature gradient mode in non-Maxwellian plasmas

    SciTech Connect

    Zakir, U.; Qamar, A.; Haque, Q.

    2013-05-15

    The effect of non-Maxwellian distributed ions on electron temperature gradient mode is investigated. The linear dispersion relation of η{sub e}−mode is obtained which shows that the behavior of this mode changes in the presence of superthermal ions. The growth rate of η{sub e}−mode driven linear instability is found and is observed to modify due to nonthermal ions. However, it is found that this leaves the electron energy transport coefficient unchanged. In the nonlinear regime, a dipolar vortex solution is derived which indicates that the dynamic behavior of the vortices changes with the inclusion of kappa distributed ions. The importance of present study with respect to space and laboratory plasmas is also pointed out.

  11. Nonlinear temperature sensitivity of enzyme kinetics explains canceling effect—a case study on loamy haplic Luvisol

    PubMed Central

    Razavi, Bahar S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-01-01

    The temperature sensitivity of enzymes responsible for organic matter decomposition in soil is crucial for predicting the effects of global warming on the carbon cycle and sequestration. We tested the hypothesis that differences in temperature sensitivity of enzyme kinetic parameters Vmax and Km will lead to a canceling effect: strong reduction of temperature response of catalytic reactions. Short-term temperature response of Vmax and Km of three hydrolytic enzymes responsible for decomposition of cellulose (β-glucosidase, cellobiohydrolase) and hemicelluloses (xylanase) were analyzed in situ from 0 to 40°C. The apparent activation energy varied between enzymes from 20.7 to 35.2 kJ mol−1 corresponding to the Q10 values of the enzyme activities of 1.4–1.9 (with Vmax-Q10 1.0–2.5 and Km-Q10 0.94–2.3). Temperature response of all tested enzymes fitted well to the Arrhenius equation. Despite that, the fitting of Arrhenius model revealed the non-linear increase of two cellulolytic enzymes activities with two distinct thresholds at 10–15°C and 25–30°C, which were less pronounced for xylanase. The nonlinearity between 10 and 15°C was explained by 30–80% increase in Vmax. At 25–30°C, however, the abrupt decrease of enzyme-substrate affinity was responsible for non-linear increase of enzyme activities. Our study is the first demonstrating nonlinear response of Vmax and Km to temperature causing canceling effect, which was most strongly pronounced at low substrate concentrations and at temperatures above 15°C. Under cold climate, however, the regulation of hydrolytic activity by canceling in response to warming is negligible because canceling was never observed below 10°C. The canceling, therefore, can be considered as natural mechanism reducing the effects of global warming on decomposition of soil organics at moderate temperatures. The non-linearity of enzyme responses to warming and the respective thresholds should therefore be investigated for

  12. Higher-order nonlinear effects in a Josephson parametric amplifier

    NASA Astrophysics Data System (ADS)

    Kochetov, Bogdan A.; Fedorov, Arkady

    2015-12-01

    Nonlinearity of the current-phase relationship of a Josephson junction is the key resource for a Josephson parametric amplifier (JPA) as well as for a Josephson traveling-wave parametric amplifier, the only devices in which the quantum limit for added noise has so far been approached at microwave frequencies. A standard approach to describe JPA takes into account only the lowest order (cubic) nonlinearity resulting in a Duffing-like oscillator equation of motion or in a Kerr-type nonlinearity term in the Hamiltonian. In this paper we derive the quantum expression for the gain of JPA including all orders of the Josephson junction nonlinearity in the linear response regime. We then analyze gain saturation effect for stronger signals within a semiclassical approach. Our results reveal nonlinear effects of higher orders and their implications for operation of a JPA.

  13. Spectral and temperature features of coherent picosecond nonlinear response of HTSCs at low excitation levels

    SciTech Connect

    Bobyrev, Yu V; Petnikova, V M; Rudenko, K V; Shuvalov, V V

    2008-02-28

    It is shown that for the appropriate choice of the spectral measurement range (the choice of the coincidence point for the pumping component frequencies in the methods of biharmonic pumping and degenerate four-photon spectroscopy), the spectral and temperature features of the picosecond nonlinear response of high-temperature super-conductors (HTSCs) caused by interband transitions in the electronic spectrum with a metastable energy gap are stable with respect to the excitation level. The character of these features is determined by the resonance component of the total nonlinear response, which is formed at initial HTSC temperatures below the phase transition point (when the energy gap appears in the electronic spectrum). (nonlinear optical phenomena)

  14. Nanoscale nonlinear radio frequency properties of bulk Nb: Origins of extrinsic nonlinear effects

    NASA Astrophysics Data System (ADS)

    Tai, Tamin; Ghamsari, B. G.; Bieler, T.; Anlage, Steven M.

    2015-10-01

    The performance of niobium-based superconducting radio frequency (SRF) particle-accelerator cavities can be sensitive to localized defects that give rise to quenches at high accelerating gradients. In order to identify these material defects on bulk Nb surfaces at their operating frequency and temperature, a wide-bandwidth microwave microscope with localized and strong RF magnetic fields is developed by integrating a magnetic write head into the near-field microwave microscope to enable mapping of the local electrodynamic response in the multi-GHz frequency regime at cryogenic temperatures. This magnetic writer demonstrates a localized and strong RF magnetic field on bulk Nb surface with Bsurface>102 mT and submicron resolution. By measuring the nonlinear response of the superconductor, nonlinearity coming from the nanoscale weak-link Josephson junctions due to the contaminated surface in the cavity-fabrication process is demonstrated.

  15. Nonlinear studies of m = 1 modes in high-temperature plasmas

    SciTech Connect

    Aydemir, A.Y.

    1992-07-01

    Nonlinear evolution of the m = 1 mode is examined in high-temperature plasmas where the mode is in the semi-collisional or collisionless regime. Unlike the resistive m = 1 mode, both the semi-collisional mode, with a very weak resistivity dependence, and the collisionless mode, driven by finite electron inertia, can be robustly unstable in today`s large tokamaks. And unlike the finite-{Delta}{prime}(m {ge} 2) tearing modes, the nonlinear evolution of which is collisional, both the semi-collisional and collisionless m = 1 modes exhibit nonlinearly enhanced growth rates that far exceed their linear values, thus making their nonlinear evolution collisionless; this accelerated growth of a collisionless m = 1 mode may explain the fast sawtooth-crashes observed in large tokamaks.

  16. Nonlinear studies of m = 1 modes in high-temperature plasmas

    SciTech Connect

    Aydemir, A.Y.

    1992-07-01

    Nonlinear evolution of the m = 1 mode is examined in high-temperature plasmas where the mode is in the semi-collisional or collisionless regime. Unlike the resistive m = 1 mode, both the semi-collisional mode, with a very weak resistivity dependence, and the collisionless mode, driven by finite electron inertia, can be robustly unstable in today's large tokamaks. And unlike the finite-{Delta}{prime}(m {ge} 2) tearing modes, the nonlinear evolution of which is collisional, both the semi-collisional and collisionless m = 1 modes exhibit nonlinearly enhanced growth rates that far exceed their linear values, thus making their nonlinear evolution collisionless; this accelerated growth of a collisionless m = 1 mode may explain the fast sawtooth-crashes observed in large tokamaks.

  17. On the nonlinear nature of the turbulent α-effect

    NASA Astrophysics Data System (ADS)

    Cattaneo, Fausto; Hughes, David W.; Thelen, Jean-Claude

    Galactic magnetic fields are, typically, modelled by mean-field dynamos involving the α-effect. Here we consider, very briefly, some of the issues involving the nonlinear dependence of α on the mean field.

  18. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various frequencies.

    PubMed

    Maraghechi, Borna; Hasani, Mojtaba H; Kolios, Michael C; Tavakkoli, Jahan

    2016-05-01

    Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz. PMID:27250143

  19. Nonlinear response of summer temperature to Holocene insolation forcing in Alaska.

    PubMed

    Clegg, Benjamin F; Kelly, Ryan; Clarke, Gina H; Walker, Ian R; Hu, Feng Sheng

    2011-11-29

    Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate "surprises" with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000-5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ∼10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land-atmosphere-ocean feedbacks. PMID:22084085

  20. Temperature dependence and the dispersion of nonlinear optical properties of chromophore-containing polyimide thin films

    SciTech Connect

    Gorkovenko, A. I.; Plekhanov, A. I.; Simanchuk, A. E.; Yakimanskiy, A. V.; Nosova, G. I.; Solovskaya, N. A.; Smirnov, N. N.

    2014-12-14

    Detailed investigations of the quadratic nonlinear response of a series of new polyimides with covalently attached chromophore DR13 are performed by the Maker fringes method in the range of fundamental wavelength from 850 to 1450 nm. Polymer films with thickness of 100–400 nm were spin-coated on glass substrates and corona poled. For these materials, the maximum values of the second harmonic generation coefficients d{sub 33} are 80–120 pm/V. A red shift of the nonlinear response dispersion with respect to the linear absorption spectrum was observed for the DR13 chromophore. The temperature dependences of linear absorption and nonlinear coefficients d{sub 33} for studied structures are observed. It was found that the temperature changes of the absorption spectra lead to appreciable contribution to the value of the nonlinear coefficient d{sub 33}. The demonstrated high temperature stability (up to 120 °C) of chromophore-containing polyimide thin films makes it possible to eliminate the degradation of their nonlinear optical properties in the future applications of such structures.

  1. Beam-Plasma Interaction and Nonlinear Effects

    SciTech Connect

    Yoon, Peter H.

    2009-11-10

    This paper presents a survey of perturbative nonlinear plasma theory known as the weak turbulence theory. After the basic concepts and methodology of the weak turbulence theory are outlined in sufficient detail, numerical solutions of the weak turbulence theory obtained in the context of the beam-plasma interaction are compared against particle-in-cell (PIC) numerical simulations. It is demonstrated that theory and PIC simulation are in excellent agreement.

  2. Non-linear effects in bunch compressor of TARLA

    NASA Astrophysics Data System (ADS)

    Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin

    2016-03-01

    Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.

  3. Effect of Nozzle Nonlinearities upon Nonlinear Stability of Liquid Propellant Rocket Motors

    NASA Technical Reports Server (NTRS)

    Padmanabhan, M. S.; Powell, E. A.; Zinn, B. T.

    1975-01-01

    A three dimensional, nonlinear nozzle admittance relation is developed by solving the wave equation describing finite amplitude oscillatory flow inside the subsonic portion of a choked, slowly convergent axisymmetric nozzle. This nonlinear nozzle admittance relation is then used as a boundary condition in the analysis of nonlinear combustion instability in a cylindrical liquid rocket combustor. In both nozzle and chamber analyses solutions are obtained using the Galerkin method with a series expansion consisting of the first tangential, second tangential, and first radial modes. Using Crocco's time lag model to describe the distributed unsteady combustion process, combustion instability calculations are presented for different values of the following parameters: (1) time lag, (2) interaction index, (3) steady-state Mach number at the nozzle entrance, and (4) chamber length-to-diameter ratio. In each case, limit cycle pressure amplitudes and waveforms are shown for both linear and nonlinear nozzle admittance conditions. These results show that when the amplitudes of the second tangential and first radial modes are considerably smaller than the amplitude of the first tangential mode the inclusion of nozzle nonlinearities has no significant effect on the limiting amplitude and pressure waveforms.

  4. Nonlinear dynamics of homeothermic temperature control in skunk cabbage, Symplocarpus foetidus

    NASA Astrophysics Data System (ADS)

    Ito, Takanori; Ito, Kikukatsu

    2005-11-01

    Certain primitive plants undergo orchestrated temperature control during flowering. Skunk cabbage, Symplocarpus foetidus, has been demonstrated to maintain an internal temperature of around 20 °C even when the ambient temperature drops below freezing. However, it is not clear whether a unique algorithm controls the homeothermic behavior of S. foetidus, or whether such an algorithm might exhibit linear or nonlinear thermoregulatory dynamics. Here we report the underlying dynamics of temperature control in S. foetidus using nonlinear forecasting, attractor and correlation dimension analyses. It was shown that thermoregulation in S. foetidus was governed by low-dimensional chaotic dynamics, the geometry of which showed a strange attractor named the “Zazen attractor.” Our data suggest that the chaotic thermoregulation in S. foetidus is inherent and that it is an adaptive response to the natural environment.

  5. Temperature-induced optical bistability with Kerr-nonlinear blackbody reservoir

    NASA Astrophysics Data System (ADS)

    Joshi, Amitabh; Sharaby, Yasser A.; Hassan, Shoukry S.

    2016-01-01

    We investigate both absorptive- and dispersive optical bistability (OB) phenomena for a homogeneously broadened two-level atomic medium interacting with a single mode of the ring cavity in the presence of the Kerr-nonlinear blackbody reservoir. We predict the temperature-induced switching phenomenon with near resonance conditions, as well as lower cooperativity parameter to observe OB due to such reservoir.

  6. Nonlinear Analysis for High-temperature Composites: Turbine Blades/vanes

    NASA Technical Reports Server (NTRS)

    Hopkins, D. A.; Chamis, C. C.

    1984-01-01

    An integrated approach to nonlinear analysis of high-temperature composites in turbine blade/vane applications is presented. The overall strategy of this approach and the key elements comprising this approach are summarized. Preliminary results for a tungsten-fiber-reinforced superalloy (TFRS) composite are discussed.

  7. Quasiparticle properties of the nonlinear Holstein model at finite doping and temperature

    NASA Astrophysics Data System (ADS)

    Li, Shaozhi; Nowadnick, E. A.; Johnston, S.

    2015-08-01

    We use determinant quantum Monte Carlo to study the single-particle properties of quasiparticles and phonons in a variant of the two-dimensional Holstein model that includes an additional nonlinear electron-phonon (e-ph) interaction. We find that a small positive nonlinear interaction reduces the effective coupling between the electrons and the lattice, suppresses charge-density-wave (CDW) correlations, and hardens the effective phonon frequency. Conversely, a small negative nonlinear interaction can enhance the e-ph coupling resulting in heavier quasiparticles, an increased tendency towards a CDW phase at all fillings, and a softened phonon frequency. An effective linear model with a renormalized interaction strength and phonon frequency can qualitatively capture this physics; however, the quantitative effects of the nonlinearity on both the electronic and phononic degrees of freedom cannot be captured by such a model. These results are significant for typical nonlinear coupling strengths found in real materials, indicating that nonlinearity can have an important influence on the physics of many e-ph coupled systems.

  8. Non-Linear Effects in Knowledge Production

    NASA Astrophysics Data System (ADS)

    Purica, Ionut

    2007-04-01

    The generation of technological knowledge is paramount to our present development; the production of technological knowledge is governed by the same Cobb Douglas type model, with the means of research and the intelligence level replacing capital, respectively labor. We are exploring the basic behavior of present days' economies that are producing technological knowledge, along with the `usual' industrial production and determine a basic behavior that turns out to be a `Henon attractor'. Measures are introduced for the gain of technological knowledge and for the information of technological sequences that are based respectively on the underlying multi-valued modal logic of the technological research and on nonlinear thermodynamic considerations.

  9. Can we detect a nonlinear response to temperature in European plant phenology?

    NASA Astrophysics Data System (ADS)

    Jochner, Susanne; Sparks, Tim H.; Laube, Julia; Menzel, Annette

    2016-03-01

    Over a large temperature range, the statistical association between spring phenology and temperature is often regarded and treated as a linear function. There are suggestions that a sigmoidal relationship with definite upper and lower limits to leaf unfolding and flowering onset dates might be more realistic. We utilised European plant phenological records provided by the European phenology database PEP725 and gridded monthly mean temperature data for 1951-2012 calculated from the ENSEMBLES data set E-OBS (version 7.0). We analysed 568,456 observations of ten spring flowering or leafing phenophases derived from 3657 stations in 22 European countries in order to detect possible nonlinear responses to temperature. Linear response rates averaged for all stations ranged between -7.7 (flowering of hazel) and -2.7 days °C-1 (leaf unfolding of beech and oak). A lower sensitivity at the cooler end of the temperature range was detected for most phenophases. However, a similar lower sensitivity at the warmer end was not that evident. For only ˜14 % of the station time series (where a comparison between linear and nonlinear model was possible), nonlinear models described the relationship significantly better than linear models. Although in most cases simple linear models might be still sufficient to predict future changes, this linear relationship between phenology and temperature might not be appropriate when incorporating phenological data of very cold (and possibly very warm) environments. For these cases, extrapolations on the basis of linear models would introduce uncertainty in expected ecosystem changes.

  10. Relativistic effects on nonlinear lower hybrid oscillations in cold plasma

    SciTech Connect

    Maity, Chandan; Chakrabarti, Nikhil

    2011-04-15

    Nonlinear lower hybrid mode in a quasineutral magnetized plasma is analyzed in one space dimension using Lagrangian coordinates. In a cold fluid, we treat electron fluid relativistically, whereas ion fluid nonrelativistically. The homotopy perturbation method is employed to obtain the nonlinear solution which also finds the frequency-amplitude relationship for the lower hybrid mode. The solution indicates that the amplitude of oscillation increases due to the weak relativistic effects. The appearance of density spikes is not ruled out in a magnetized plasma.

  11. Analysis of contributions of nonlinear material constants to temperature-induced velocity shifts of quartz surface acoustic wave resonators.

    PubMed

    Zhang, Haifeng; Kosinski, John A; Zuo, Lei

    2016-09-01

    In this paper, we examine the significance of the various higher-order effects regarding calculating temperature behavior from a set of material constants and their temperature coefficients. Temperature-induced velocity shifts have been calculated for quartz surface acoustic wave (SAW) resonators and the contributions of different groups of nonlinear material constants (third-order elastic constants (TOE), third-order piezoelectric constants (TOP), third-order dielectric constants (TOD) and electrostrictive constants (EL)) to the temperature-induced velocity shifts have been analyzed. The analytical methodology has been verified through the comparison of experimental and analytical results for quartz resonators. In general, the third-order elastic constants were found to contribute most significantly to the temperature-induced shifts in the SAW velocity. The contributions from the third-order dielectric constants and electrostrictive constants were found to be negligible. For some specific cases, the third-order piezoelectric constants were found to make a significant contribution to the temperature-induced shifts. The significance of each third-order elastic constant as a contributor to the temperature-velocity effect was analyzed by applying a 10% variation to each of the third-order elastic constants separately. Additionally, we have considered the issues arising from the commonly used thermoelastic expansions that provide a good but not exact description of the temperature effects on frequency in piezoelectric resonators as these commonly used expansions do not include the effects of higher-order material constants. PMID:27392205

  12. Nonlinear d--ta-f Simulation Studies of Intense Charged Particle Beams with Large Temperature Anisotropy

    SciTech Connect

    Edward A. Startsev; Ronald C. Davidson; Hong Qin

    2002-05-07

    In this paper, a 3-D nonlinear perturbative particle simulation code (BEST) [H. Qin, R.C. Davidson and W.W. Lee, Physical Review Special Topics on Accelerators and Beams 3 (2000) 084401] is used to systematically study the stability properties of intense nonneutral charged particle beams with large temperature anisotropy (T{sub {perpendicular}b} >> T{sub {parallel}b}). The most unstable modes are identified, and their eigen frequencies, radial mode structure, and nonlinear dynamics are determined for axisymmetric perturbations with {partial_derivative}/{partial_derivative}{theta} = 0.

  13. Linear and nonlinear Zeno effects in an optical coupler

    SciTech Connect

    Abdullaev, F. Kh.; Konotop, V. V.; Shchesnovich, V. S.

    2011-04-15

    It is shown that, in a simple coupler where one of the waveguides is subject to controlled losses of the electric field, it is possible to observe an optical analog of the linear and nonlinear quantum Zeno effects. The phenomenon consists in a counterintuitive enhancement of transparency of the coupler with an increase of the dissipation and represents an optical analog of the quantum Zeno effect. Experimental realization of the phenomenon based on the use of chalcogenide glasses is proposed. The system allows for observation of the crossover between the linear and nonlinear Zeno effects, as well as the effective manipulation of light transmission through the coupler.

  14. Nonlinear electrostatic waves in a magnetized dusty plasma with two-temperature ions

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Pillay, S. R.; Singh, S. V.; Reddy, R. V.; Lakhina, G. S.

    2008-09-07

    Nonlinear low frequency electrostatic waves which arise from the coupling between two linear modes, viz., the dust-acoustic and dust-cyclotron waves, are studied in a magnetized dusty plasma comprising Boltzmann electrons, a negatively charged warm dust fluid, and two ion species of different temperatures with both species having isothermal Boltzmann distributions. The fluid equations for the dust are combined with the quasineutrality condition to obtain a single equation which governs the nonlinear evolution of the electric field for wave propagation oblique to an external magnetic field. The numerically obtained solutions for the electric field are found to have sinusoidal waveforms for small values of the initial driver electric field amplitudes and Mach numbers, whereas, spiky structures are found to be supported for larger values. Furthermore, the periods of the waveforms are found to depend on various plasma parameters such as hot and cool ion number densities and temperatures, dust drift speed and dust temperature.

  15. Functional Nonlinear Mixed Effects Models For Longitudinal Image Data

    PubMed Central

    Luo, Xinchao; Zhu, Lixing; Kong, Linglong; Zhu, Hongtu

    2015-01-01

    Motivated by studying large-scale longitudinal image data, we propose a novel functional nonlinear mixed effects modeling (FN-MEM) framework to model the nonlinear spatial-temporal growth patterns of brain structure and function and their association with covariates of interest (e.g., time or diagnostic status). Our FNMEM explicitly quantifies a random nonlinear association map of individual trajectories. We develop an efficient estimation method to estimate the nonlinear growth function and the covariance operator of the spatial-temporal process. We propose a global test and a simultaneous confidence band for some specific growth patterns. We conduct Monte Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply FNMEM to investigate the spatial-temporal dynamics of white-matter fiber skeletons in a national database for autism research. Our FNMEM may provide a valuable tool for charting the developmental trajectories of various neuropsychiatric and neurodegenerative disorders. PMID:26213453

  16. Materials and characterization using acoustic nonlinearity parameters and harmonic generation - Effects of crystalline and amorphous structures

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    1990-01-01

    The effects of material structure on the nonlinearity parameters are reviewed. Problems discussed include definition of nonlinearity parameters, square-law nonlinearity and collinear beam-mixing, structure dependence of the nonlinearity parameters, negative nonlinearity parameters, and implications for materials characterization.

  17. Nonlinear magneto-electric effects in ferromagnetic-piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Burdin, D. A.; Chashin, D. V.; Ekonomov, N. A.; Fetisov, L. Y.; Fetisov, Y. K.; Sreenivasulu, G.; Srinivasan, G.

    2014-05-01

    Theory and results of a systematic study on the nature of nonlinear magnetoelectric (ME) interactions in layered ferromagnetic and ferroelectric composites are discussed. The model that considers the nonlinearity associated with magnetostriction of the ferromagnet is to result in (i) a dc component and (ii) frequency doubling when the composite is subjected to an ac magnetic field. In the presence of two ac magnetic fields of different frequencies, nonlinear effects give rise to generation of ME voltages at the sum and difference of the fields frequencies. The efficiencies of nonlinear ME interactions are shown to be a function of the second derivative of the magnetostriction with respect to the bias magnetic field. The predictions of the model are compared with data for bilayers of lead zirconate titanate (PZT) and ferromagnetic layers with wide variations in saturation magnetostrictions and saturation magnetic fields, i.e., an amorphous ferromagnetic (AF) alloy, Ni, or permendur. Under linear excitation conditions an enhancement in the ME voltage is measured when the ac magnetic field is applied at the acoustic mode frequencies. Under nonlinear excitation conditions the mechanical deformation and the ME response occur at twice the excitation frequency and the AF-PZT composite shows a much higher nonlinear ME effects. In addition, the AF-PZT shows an efficient frequency mixing than the samples with Ni or permendur when subjected to two ac magnetic fields. The frequency mixing is shown to be of importance for magnetic field sensor applications.

  18. Nonlinear Peltier effect and thermoconductance in nanowires

    SciTech Connect

    Bogachek, E.N.; Scherbakov, A.G.; Landman, U.

    1999-10-01

    A theoretical analysis of thermal transport in nanowires, in field-free conditions and under influence of applied magnetic fields, is presented. It is shown that in the nonlinear regime (finite applied voltage) new peaks in the Peltier coefficient appear leading to violation of Onsager{close_quote}s relation between the Peltier and thermopower coefficients. Oscillations of the Peltier coefficient in a magnetic field are demonstrated. The thermoconductance has a steplike quantized structure similar to the electroconductance and it exhibits deviations from the Wiedemann-Franz law. The strong dependence of the thermoconductance on the applied magnetic field leads to the possibility of magnetic blockade of thermal transport in wires with a small number of conducting channels. Possible control of thermal transport in nanowires through external parameters, that is applied through finite voltages and magnetic fields, is discussed. {copyright} {ital 1999} {ital The American Physical Society}

  19. Impact of nonlinear and polarization effects in coherent systems.

    PubMed

    Xie, Chongjin

    2011-12-12

    Coherent detection with digital signal processing (DSP) significantly changes the ways impairments are managed in optical communication systems. In this paper, we review the recent advances in understanding the impact of fiber nonlinearities, polarization-mode dispersion (PMD), and polarization-dependent loss (PDL) in coherent optical communication systems. We first discuss nonlinear transmission performance of three coherent optical communication systems, homogeneous polarization-division-multiplexed (PDM) quadrature-phase-shift-keying (QPSK), hybrid PDM-QPSK and on/off keying (OOK), and PDM 16-ary quadrature-amplitude modulation (QAM) systems. We show that while the dominant nonlinear effects in coherent optical communication systems without optical dispersion compensators (ODCs) are intra-channel nonlinearities, the dominant nonlinear effects in dispersion-managed (DM) systems with inline dispersion compensation fiber (DCF) are different when different modulation formats are used. In DM coherent optical communication systems using modulation formats of constant amplitude, the dominant nonlinear effect is nonlinear polarization scattering induced by cross-polarization modulation (XPolM), whereas when modulation formats of non-constant amplitude are used, the impact of inter-channel cross-phase modulation (XPM) is much larger than XPolM. We then describe the effects of PMD and PDL in coherent systems. We show that although in principle PMD can be completely compensated in a coherent optical receiver, a real coherent receiver has limited tolerance to PMD due to hardware limitations. Two PDL models used to evaluate PDL impairments are discussed. We find that a simple lumped model significantly over-estimates PDL impairments and show that a distributed model has to be used in order to accurately evaluate PDL impairments. Finally, we apply system outage considerations to coherent systems, taking into account the statistics of polarization effects in fiber. PMID

  20. Nonlinear effects at high flux-flow electric fields.

    PubMed

    Huebener, R P

    2009-06-24

    Ohm's law with the linear relation between resistive voltage and electric current is strictly valid only in the limit of infinitesimally small voltages. On the other hand, at finite electric voltages nonlinearities in the electric resistance can develop due to the energy picked up by the charge carriers in the electric field. This can lead to important effects both in the case of semiconductors and of superconductors, where the energy rise of the charge carriers or the quasiparticles can become relatively large. In this paper we limit our discussion to the flux-flow voltage in the mixed state of a type-II superconductor. At sufficiently low temperatures the energy dependence of the quasiparticle density of states and, hence, of the quasiparticle scattering rate can cause distinct nonlinear effects in the flux-flow resistance. The recent advances in thin-film sample preparation provided new opportunities for observing nonlinear effects of the latter kind. PMID:21828432

  1. Quasiparticle properties of the nonlinear Holstein model at finite doping and temperature

    NASA Astrophysics Data System (ADS)

    Li, Shaozhi; Nowadnick, Beth; Johnston, Steven

    Models with linear electron-phonon (e-ph) interactions often predict the formation of small polarons with large lattice displacements. This directly violates the approximations made in deriving the linear model, which implies that one should consider higher order terms in the interaction. Previously we have shown that even small positive nonlinear e-ph interactions dramatically suppress charge-density-wave formation and s-wave superconductivity relative to the linear model [EPL. 109, 27007 (2015)]. In this talk, we present a determinant quantum Monte Carlo study of thesingle-particle properties of quasiparticles and phonons in a two-dimensional Holstein model that includes an additional nonlinear e-ph interaction. We show that a small positive nonlinear e-ph interaction reduces the effective coupling between electrons and phonons and hardens the effective phonon frequency. Conversely, a small negative nonlinear interaction can enhance e-ph coupling resulting in heavier quasiparticles. In addition, we find that an effective linear model fails to simultaneously capture the quantitative effects of the nonlinearity of both the electronic and phononic degrees of freedom, even though it can qualitatively reproduce properties.

  2. Surface effect on the nonlinear forced vibration of cantilevered nanobeams

    NASA Astrophysics Data System (ADS)

    Dai, H. L.; Zhao, D. M.; Zou, J. J.; Wang, L.

    2016-06-01

    The nonlinear forced vibration behavior of a cantilevered nanobeam is investigated in this paper, essentially considering the effect due to the surface elastic layer. The governing equation of motion for the nano-cantilever is derived, with consideration of the geometrical nonlinearity and the effects of additional flexural rigidity and residual stress of the surface layer. Then, the nonlinear partial differential equation (PDE) is discretized into a set of nonlinear ordinary differential equations (ODEs) by means of the Galerkin's technique. It is observed that surface effects on the natural frequency of the nanobeam is of significance, especially for the case when the aspect ratio of the nanobeam is large. The nonlinear resonant dynamics of the nanobeam system is evaluated by varying the excitation frequency around the fundamental resonance, showing that the nanobeam would display hardening-type behavior and hence the frequency-response curves bend to the right in the presence of positive residual surface stress. However, with the negative residual surface stress, this hardening-type behavior can be shifted to a softening-type one which becomes even more evident with increase of the aspect ratio parameter. It is also demonstrated that the combined effects of the residual stress and aspect ratio on the maximum amplitude of the nanobeam may be pronounced.

  3. Nonlinear response of summer temperature to Holocene insolation forcing in Alaska

    PubMed Central

    Clegg, Benjamin F.; Kelly, Ryan; Clarke, Gina H.; Walker, Ian R.; Hu, Feng Sheng

    2011-01-01

    Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate “surprises” with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000–5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ∼10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land–atmosphere–ocean feedbacks. PMID:22084085

  4. Solvent effects on the nonlinear optical responses of anil derivatives

    NASA Astrophysics Data System (ADS)

    Plaquet, Aurélie; Bogdan, Elena; Antonov, Liudmil; Rodriguez, Vincent; Ducasse, Laurent; Champagne, Benoıît; Castet, Frédéric

    2015-01-01

    This contribution addresses the solvent effects on the second-order nonlinear optical responses of three representative anil derivatives, and in particular on their variations upon switching between the enol-imine and keto-amine forms. The impact of solute-solvent interactions is investigated by means of ab initio and DFT calculations in which solvent effects are included through the polarizable continuum model. In addition, for one of the compounds, Hyper-Rayleigh Scattering experiments and ab initio calculations are combined to highlight the impact of the solvent-induced equilibrium displacement. These studies show that the global solvent effect on the nonlinear optical responses originates from both the displacement of the tautomeric equilibrium and from the modification of the second-order nonlinear optical response of the individual tautomeric forms.

  5. Nonlinear neural mapping analysis of the adverse effects of drugs.

    PubMed

    Domine, D; Guillon, C; Devillers, J; Lacroix, R; Lacroix, J; Doré, J C

    1998-01-01

    Numerous drugs have been identified as presenting adverse effects towards the driving of vehicles. A large set of these drugs was compiled and classified into ten categories. Nonlinear neural mapping (N2M) was used to derive a typology of these molecules and also to link their adverse effects to therapeutic categories and structural information. PMID:9517012

  6. Evidence for Nonlinear Coupling of Solar and ENSO Signals in Indian Temperatures During the Past Century

    NASA Astrophysics Data System (ADS)

    Tiwari, R. K.; Rajesh, Rekapalli; Padmavathi, B.

    2015-02-01

    Significant fluctuations have been observed in Indian temperatures during past century. In order to identify the statistical periodicities in the maximum and minimum temperature data of different Indian zones, we have spectrally and statistically analyzed the homogeneous regional temperature series from the Western Himalayas, the Northern West, the North Central, the North East (NE), the West Coast, the East Coast, and the Interior Peninsula for the period of 107 years spanning over 1901-2007 using the multitaper method (MTM) and singular spectrum analysis (SSA) methods. The first SSA reconstructed the principal component of all the data sets representing a nonlinear trend (indicating a monotonic rise in temperature probably due to greenhouse gases and other forcing) that varies from region to region. We have reconstructed the temperature time series using the second to tenth oscillatory principal components of all the eight regions and computed their power spectral density using MTM. Our analyses indicate that there is a strong spectral power in the period range of 2-7 years and 53 years, which are matched respectively with the known El Niño-Southern oscillation (ENSO) periods and ocean circulation cycles. Further, the spectral analysis also revealed a statistically significant but riven cycle in a period range of 9.8-13 years corresponding to the Schwabe cycle in all Indiaian maximum and minimum temperature records and almost all the zonal records except in the NE data. In some of the cases, the 22 year double sunspot (Hale cycle) cycle was also identified here. Invariably the splitting of spectral peaks corresponding to solar signal indicated nonlinear characteristics of the data and; therefore, even small variations in the solar output may help in catalyzing the coupled El Niño-atmospheric ENSO cycles by altering the solar heat input to the oceans. We, therefore, conclude that the Indian temperature variability is probably driven by the nonlinear coupling of

  7. Competition between the tensor light shift and nonlinear Zeeman effect

    SciTech Connect

    Chalupczak, W.; Wojciechowski, A.; Pustelny, S.; Gawlik, W.

    2010-08-15

    Many precision measurements (e.g., in spectroscopy, atomic clocks, quantum-information processing, etc.) suffer from systematic errors introduced by the light shift. In our experimental configuration, however, the tensor light shift plays a positive role enabling the observation of spectral features otherwise masked by the cancellation of the transition amplitudes and creating resonances at a frequency unperturbed either by laser power or beam inhomogeneity. These phenomena occur thanks to the special relation between the nonlinear Zeeman and light shift effects. The interplay between these two perturbations is systematically studied and the cancellation of the nonlinear Zeeman effect by the tensor light shift is demonstrated.

  8. Nonlinear effects generation in non-adiabatically tapered fibres

    NASA Astrophysics Data System (ADS)

    Palací, Jesús; Mas, Sara; Monzón-Hernández, David; Martí, Javier

    2015-12-01

    Nonlinear effects are observed in a non-adiabatically tapered optical fibre. The designed structure allows for the introduction of self-phase modulation, which is observed through pulse breaking and spectral broadening, in approximately a centimetre of propagation using a commercial telecom laser. These devices are simple to fabricate and suitable to generate and control a variety of nonlinear effects in practical applications because they do not experience short-term degradation as previously reported approaches. Experimental and theoretical results are obtained, showing a good agreement.

  9. Nonlinear diffusion-wave equation for a gas in a regenerator subject to temperature gradient

    NASA Astrophysics Data System (ADS)

    Sugimoto, N.

    2015-10-01

    This paper derives an approximate equation for propagation of nonlinear thermoacoustic waves in a gas-filled, circular pore subject to temperature gradient. The pore radius is assumed to be much smaller than a thickness of thermoviscous diffusion layer, and the narrow-tube approximation is used in the sense that a typical axial length associated with temperature gradient is much longer than the radius. Introducing three small parameters, one being the ratio of the pore radius to the thickness of thermoviscous diffusion layer, another the ratio of a typical speed of thermoacoustic waves to an adiabatic sound speed and the other the ratio of a typical magnitude of pressure disturbance to a uniform pressure in a quiescent state, a system of fluid dynamical equations for an ideal gas is reduced asymptotically to a nonlinear diffusion-wave equation by using boundary conditions on a pore wall. Discussion on a temporal mean of an excess pressure due to periodic oscillations is included.

  10. Double diffusive natural convection in solar ponds with nonlinear temperature and salinity profiles

    SciTech Connect

    Kirkpatrick, A.T.; Gordon, R.F.; Johnson, D.H.

    1986-08-01

    A solar pond can be used as a thermal energy source provided that convective instabilities do not occur. This paper experimentally examines the stability of a fluid layer with nonlinear salinity and temperature profiles. A nonlinear salt profile was set up in a fluid layer, and the water was heated by a solar radiation simulator. Three stability experiments were conducted. Instabilities occurred at the location of the weakest salinity gradient, and were confined to a thin region, as predicted by theory. A local length scale was used to produce a stability parameter, the ratio of thermal to solute Rayleigh numbers. It is shown that for nonconstant solute and temperature gradients, the appropriate length scale is based on the radius of curvature of the salinity distribution. With this choice of a length scale, good agreement was found between theory and experiment for the onset of an instability.

  11. Observation of the nonlinear meissner effect in YBCO thin films: evidence for a D-wave order parameter in the bulk of the cuprate superconductors.

    PubMed

    Oates, D E; Park, S-H; Koren, G

    2004-11-01

    We present experimental evidence for the observation of the nonlinear Meissner effect in high-quality epitaxial yttrium barium copper oxide thin films by measuring their intermodulation distortion at microwave frequencies versus temperature. Most of the films measured show a characteristic increase in nonlinearity at low temperatures as predicted by the nonlinear Meissner effect. We could measure the nonlinear Meissner effect because intermodulation distortion measurements are an extremely sensitive method that can detect changes in the penetration depth of the order of 1 part in 10(5). PMID:15600869

  12. The hysteresis-free negative capacitance field effect transistors using non-linear poly capacitance

    NASA Astrophysics Data System (ADS)

    Fan, S.-T.; Yan, J.-Y.; Lai, D.-C.; Liu, C. W.

    2016-08-01

    A gate structure design for negative capacitance field effect transistors (NCFETs) is proposed. The hysteresis loop in current-voltage performances is eliminated by the nonlinear C-V dependence of polysilicon in the gate dielectrics. Design considerations and optimizations to achieve the low SS and hysteresis-free transfer were elaborated. The effects of gate-to-source/drain overlap, channel length scaling, interface trap states and temperature impact on SS are also investigated.

  13. Quantum Effects in the Nonlinear Response of Graphene Plasmons.

    PubMed

    Cox, Joel D; Silveiro, Iván; García de Abajo, F Javier

    2016-02-23

    The ability of graphene to support long-lived, electrically tunable plasmons that interact strongly with light, combined with its highly nonlinear optical response, has generated great expectations for application of the atomically thin material to nanophotonic devices. These expectations are mainly reinforced by classical analyses performed using the response derived from extended graphene, neglecting finite-size and nonlocal effects that become important when the carbon layer is structured on the nanometer scale in actual device designs. Here we show that finite-size effects produce large contributions that increase the nonlinear response of nanostructured graphene to significantly higher levels than those predicted by classical theories. We base our analysis on a quantum-mechanical description of graphene using tight-binding electronic states combined with the random-phase approximation. While classical and quantum descriptions agree well for the linear response when either the plasmon energy is below the Fermi energy or the size of the structure exceeds a few tens of nanometers, this is not always the case for the nonlinear response, and in particular, third-order Kerr-type nonlinearities are generally underestimated by the classical theory. Our results reveal the complex quantum nature of the optical response in nanostructured graphene, while further supporting the exceptional potential of this material for nonlinear nanophotonic devices. PMID:26718484

  14. Pulsed currents carried by whistlers. VI. Nonlinear effects

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    1996-07-01

    In a large magnetized laboratory plasma (n≂1011 cm-3, kTe≥1 eV, B0≥10 G, 1 m × 2.5 m), current pulses in excess of the Langmuir limit (150 A, 0.2 μs) are drawn to electrodes in a parameter regime characterized by electron magnetohydrodynamics (ωci≪ω≪ωce). The transient plasma current is transported by low-frequency whistlers forming wave packets with topologies of three-dimensional vortices. The generalized vorticity, Ω, is shown to be frozen into the electron fluid drifting with velocity v, satisfying ∂Ω/∂t≂∇×(v×Ω). The nonlinearity in v×Ω is negligible since v and Ω(r,t) are found to be nearly parallel. However, large currents associated with v≥(2kTe/me)1/2 lead to strong electron heating which modifies the damping of whistlers in collisional plasmas. Heating in a flux tube provides a filament of high Spitzer conductivity, which permits a nearly collisionless propagation of whistler pulses. This filamentation effect is not associated with density modifications as in modulational instabilities, but arises from conductivity modifications. The companion paper [Stenzel and Urrutia, Phys. Plasmas 3, 2599 (1996)] shows that, after the decay of the transient wave magnetic field, magnetic helicity remains in the plasma due to temperature-gradient driven currents.

  15. Influence of nanoscale temperature rises on photoacoustic generation: Discrimination between optical absorbers based on thermal nonlinearity at high frequency

    PubMed Central

    Simandoux, Olivier; Prost, Amaury; Gateau, Jérôme; Bossy, Emmanuel

    2014-01-01

    In this work, we experimentally investigate thermal-based nonlinear photoacoustic generation as a mean to discriminate between different types of absorbing particles. The photoacoustic generation from solutions of dye molecules and gold nanospheres (same optical densities) was detected using a high frequency ultrasound transducer (20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence for an equilibrium temperature around 4 °C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. The photoacoustic amplitude was also studied as a function of the equilibrium temperature from 2 °C to 20 °C. While the photoacoustic amplitude from the dye molecules vanished around 4 °C, the photoacoustic amplitude from the gold nanospheres remained significant over the whole temperature range. Our preliminary results suggest that in the context of high frequency photoacoustic imaging, nanoparticles may be discriminated from molecular absorbers based on nanoscale temperature rises. PMID:25893167

  16. Non-linear temperature variation of resistivity in graphene/silicate glass nanocomposite

    NASA Astrophysics Data System (ADS)

    Mitra, Sreemanta; Singha, Achintya; Chakravorty, Dipankar

    2013-09-01

    Graphene/glass nanocomposite was synthesized by gelation of the glass in a solution with dispersed graphene sheets. Electrical transport measurements were carried out on pellets formed by cold pressing of composite powders. Resistivity showed a nonlinear increase as a function of temperature in the range 300-400 K. This has been explained as arising due to the phonon spectra of the glass affecting the movement of electrons in graphene. Raman studies confirmed the presence of phonons in the silicate glass phase. The dielectric relaxation spectra of the composites at different temperatures are consistent with the above mechanism of the electron-glass phonon interaction.

  17. A Nonlinear Generalized Thermoelasticity Model of Temperature-Dependent Materials Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Abbas, Ibrahim A.; Youssef, Hamdy M.

    2012-07-01

    In this article, a general finite element method (FEM) is proposed to analyze transient phenomena in a thermoelastic model in the context of the theory of generalized thermoelasticity with one relaxation time. The exact solution of the nonlinear model of the thermal shock problem of a generalized thermoelastic half-space of temperature-dependent materials exists only for very special and simple initial- and boundary problems. In view of calculating general problems, a numerical solution technique is to be used. For this reason, the FEM is chosen. The results for the temperature increment, the stress components, and the displacement component are illustrated graphically with some comparisons.

  18. Tunable, Room Temperature CMOS-Compatible THz Emitters Based on Nonlinear Mixing in Microdisk Resonators

    NASA Astrophysics Data System (ADS)

    Sinha, Raju; Karabiyik, Mustafa; Ahmadivand, Arash; Al-Amin, Chowdhury; Vabbina, Phani Kiran; Shur, Michael; Pala, Nezih

    2016-03-01

    We propose and investigate in detail a novel tunable, compact, room temperature terahertz (THz) emitter using individual microdisk resonators for both optical and THz waves with the capability of radiating THz field in 0.5-10 THz range with tuning frequency resolution of 0.05 THz. Enhanced THz generation is achieved by employing a nonlinear optical disk resonator with a high value of second-order nonlinearity ( χ (2)) in order to facilitate the difference-frequency generation (DFG) via nonlinear mixing with the choice of two appropriate input infrared optical waves. Efficient coupling of infrared waves from bus to the nonlinear disk is ensured by satisfying critical coupling condition. Phase matching condition for efficient DFG process is also met by employing modal phase matching technique. Our simulations show that THz output power can be reached up to milliwatt (mW) level with high optical to THz conversion efficiency. The proposed source is Silicon on Insulator (SoI) technology compatible enabling the monolithic integration with Si complementary metal-oxide-semiconductor (CMOS) electronics including plasmonic THz detectors.

  19. Specular nonlinear anisotropic polarization effect along fourfold crystal symmetry axes

    NASA Astrophysics Data System (ADS)

    Bungay, A. R.; Popov, S. V.; Zheludev, N. I.; Svirko, Yu. P.

    1995-02-01

    We present what is to our knowledge the first experimental observation of the specular nonlinear anisotropic polarization effect of a pump-induced polarization-plane rotation for normal-incidence reflection from the (001) surface of a cubic crystal. In GaAs, azimuth rotation of the order of 9 \\times 10 -6 rad is seen for a pump intensity of 75 MW cm-2 at 750 nm, from which the anisotropic component of the cubic nonlinearity |Re( chi xxxx-2 chi xxyy- chi xyyx)|=5 \\times 10 -9 esu is found.

  20. Nonlinear effects in interference of bose-einstein condensates

    PubMed

    Liu; Wu; Niu

    2000-03-13

    Nonlinear effects in the interference of Bose-Einstein condensates are studied using exact solutions of the one-dimensional nonlinear Schrodinger equation, which is applicable when the lateral motion is confined or negligible. With the inverse scattering method, the interference pattern is studied as a scattering problem with the linear Schrodinger equation, whose potential is profiled by the initial density distribution of the condensates. Our theory not only provides an analytical framework for quantitative predictions for the one-dimensional case, it also gives an intuitive understanding of some mysterious features of the interference patterns observed in experiments and numerical simulations. PMID:11018868

  1. Nonlinear effects and Joule heating in I-V curves in manganites

    NASA Astrophysics Data System (ADS)

    Mercone, Silvana; Frésard, Raymond; Caignaert, Vincent; Martin, Christine; Saurel, Damien; Simon, Charles; André, Gilles; Monod, Philippe; Fauth, François

    2005-07-01

    We study the influence of the Joule effect on the nonlinear behavior of the transport I-V curves in polycrystalline samples of the manganite Pr0.8Ca0.2MnO3 by using the crystalline unit-cell parameters as an internal thermometer in x-ray and neutron diffractions. We develop a simple analytical model to estimate the temperature profile in the samples. Under the actual experimental conditions we show that the internal temperature gradient or the difference between the temperature of the sample and that of the thermal bath is at the origin of the nonlinearity observed in the I-V curves. Consequences on other compounds with colossal magnetoresistance are also discussed.

  2. Propagation of nonlinear coherent structures in a collisional magnetoplasma with nonthermal electrons and finite ion temperature

    SciTech Connect

    Masood, W.; Rizvi, H.; Imtiaz, N.

    2012-01-15

    Nonlinear electrostatic waves in dissipative magnetized electron-ion (e-i) plasmas are investigated employing the two fluid model. In this regard, Zakharov Kuznetsov Burgers (ZKB) equation is derived using the small amplitude perturbation expansion method. It is observed that the nonthermal electron population, obliqueness, ion thermal effects, and kinematic viscosity significantly alter the structure of obliquely propagating nonlinear ion acoustic shock waves in dissipative e-i magnetoplasmas. It is observed that the system can admit both compressive and rarefactive shocks. The condition for the formation of both types of shocks is also given. The present study may be useful to understand the nonlinear propagation characteristics of electrostatic shock structures in space environments where the nonthermal electrons have been observed by various satellite missions such as Voyager and Freja.

  3. Effective-medium theory for weakly nonlinear composites

    NASA Astrophysics Data System (ADS)

    Zeng, X. C.; Bergman, D. J.; Hui, P. M.; Stroud, D.

    1988-11-01

    We propose an approximate general method for calculating the effective dielectric function of a random composite in which there is a weakly nonlinear relation between electric displacement and electric field of the form D=ɛE+χ||E||2E, where ɛ and χ are position dependent. In a two phase-comopsite, to first order in the nonlinear coefficients χ1 and χ2, the effective nonlinear dielectric susceptibility is found to be χe=0, where ɛ(0)e is the effective dielectric constant in the linear limit (χi=0,i=1,2) and ɛi and pi are the dielectric function and volume fraction of the ith component. The approximation is applied to a calculation of χe in the Maxwell-Garnett approximation (MGA) and the effective-medium approximation. For low concentrations of nonlinear inclusions in a linear host medium, our MGA reduces to the results of Stroud and Hui. An exact calculation of χe is carried out for the Hashin-Shtrikman microgeometry and compared to our MG approximation.

  4. Nonlinear optical effects in chalcogenide photoresists

    NASA Astrophysics Data System (ADS)

    Rosenblum, G.; Sfez, B. G.; Kotler, Z.; Lyubin, V.; Klebanov, M.

    1999-11-01

    Both the "after-pulse effect" and the dynamic characteristics of photostructural transformations induced in glassy As0.5Se0.5 films by pulsed 532 nm excitation have been studied. The after-pulse effect investigation demonstrated more than a 103 times increase of the photosensitivity in case of pulsed excitation. Dynamic characteristics showed a dual time scale behavior and different intensity dependence of transient and long time scale signals. The obtained data indicate that the strong increase of photosensitivity following short intense pulsed light excitation is due to a two-photon effect that aids the process of structural rearrangement.

  5. Nonlinear temperature dependence of glue-induced birefringence in polarization maintaining FBG sensors

    NASA Astrophysics Data System (ADS)

    Hopf, Barbara; Koch, Alexander W.; Roths, Johannes

    2016-05-01

    Glue-induced stresses decrease the accuracy of surface-mounted fiber Bragg gratings (FBG). Significant temperature dependent glue-induced birefringence was verified when a thermally cured epoxy-based bonding technique had been used. Determining the peak separation of two azimuthally aligned FBGs in PM fibers combined with a polarization resolved measurement set-up in a temperature range between -30°C and 150°C revealed high glue-induced stresses at low temperatures. Peak separations of about 60 pm and a nonlinear temperature dependence of the glue-induced birefringence due to stress relaxation processes and a visco-elastic behavior of the used adhesive have been shown.

  6. Effect of dynamical friction on nonlinear energetic particle modes

    SciTech Connect

    Lilley, M. K.; Breizman, B. N.; Sharapov, S. E.

    2010-09-15

    A fully nonlinear model is developed for the bump-on-tail instability including the effects of dynamical friction (drag) and velocity space diffusion on the energetic particles driving the wave. The results show that drag provides a destabilizing effect on the nonlinear evolution of waves. Specifically, in the early nonlinear phase of the instability, the drag facilitates the explosive scenario of the wave evolution, leading to the creation of phase space holes and clumps that move away from the original eigenfrequency. Later in time, the electric field associated with a hole is found to be enhanced by the drag, whereas for a clump it is reduced. This leads to an asymmetry of the frequency evolution between holes and clumps. The combined effect of drag and diffusion produces a diverse range of nonlinear behaviors including hooked frequency chirping, undulating, and steady state regimes. An analytical model is presented, which explains the aforementioned diversity. A continuous production of hole-clump pairs in the absence of collisions is also observed.

  7. The Association between Ambient Temperature and Childhood Hand, Foot, and Mouth Disease in Chengdu, China: A Distributed Lag Non-linear Analysis

    PubMed Central

    Yin, Fei; Zhang, Tao; Liu, Lei; Lv, Qiang; Li, Xiaosong

    2016-01-01

    Hand, foot and mouth disease (HFMD) has recently been recognized as a critical challenge to disease control and public health response in China. This study aimed to quantify the association between temperature and HFMD in Chengdu. Daily HFMD cases and meteorological variables in Chengdu between January 2010 and December 2013 were obtained to construct the time series. A distributed lag non-linear model was performed to investigate the temporal lagged association of daily temperature with age- and gender-specific HFMD. A total of 76,403 HFMD cases aged 0–14 years were reported in Chengdu during the study period, and a bimodal seasonal pattern was observed. The temperature-HFMD relationships were non-linear in all age and gender groups, with the first peak at 14.0–14.1 °C and the second peak at 23.1–23.2 °C. The high temperatures had acute and short-term effects and declined quickly over time, while the effects in low temperature ranges were persistent over longer lag periods. Males and children aged <1 year were more vulnerable to temperature variations. Temperature played an important role in HFMD incidence with non-linear and delayed effects. The success of HFMD intervention strategies could benefit from giving more consideration to local climatic conditions. PMID:27248051

  8. The Association between Ambient Temperature and Childhood Hand, Foot, and Mouth Disease in Chengdu, China: A Distributed Lag Non-linear Analysis.

    PubMed

    Yin, Fei; Zhang, Tao; Liu, Lei; Lv, Qiang; Li, Xiaosong

    2016-01-01

    Hand, foot and mouth disease (HFMD) has recently been recognized as a critical challenge to disease control and public health response in China. This study aimed to quantify the association between temperature and HFMD in Chengdu. Daily HFMD cases and meteorological variables in Chengdu between January 2010 and December 2013 were obtained to construct the time series. A distributed lag non-linear model was performed to investigate the temporal lagged association of daily temperature with age- and gender-specific HFMD. A total of 76,403 HFMD cases aged 0-14 years were reported in Chengdu during the study period, and a bimodal seasonal pattern was observed. The temperature-HFMD relationships were non-linear in all age and gender groups, with the first peak at 14.0-14.1 °C and the second peak at 23.1-23.2 °C. The high temperatures had acute and short-term effects and declined quickly over time, while the effects in low temperature ranges were persistent over longer lag periods. Males and children aged <1 year were more vulnerable to temperature variations. Temperature played an important role in HFMD incidence with non-linear and delayed effects. The success of HFMD intervention strategies could benefit from giving more consideration to local climatic conditions. PMID:27248051

  9. Reference-free fatigue crack detection using nonlinear ultrasonic modulation under various temperature and loading conditions

    NASA Astrophysics Data System (ADS)

    Lim, Hyung Jin; Sohn, Hoon; DeSimio, Martin P.; Brown, Kevin

    2014-04-01

    This study presents a reference-free fatigue crack detection technique using nonlinear ultrasonic modulation. When low frequency (LF) and high frequency (HF) inputs generated by two surface-mounted lead zirconate titanate (PZT) transducers are applied to a structure, the presence of a fatigue crack can provide a mechanism for nonlinear ultrasonic modulation and create spectral sidebands around the frequency of the HF signal. The crack-induced spectral sidebands are isolated using a combination of linear response subtraction (LRS), synchronous demodulation (SD) and continuous wavelet transform (CWT) filtering. Then, a sequential outlier analysis is performed on the extracted sidebands to identify the crack presence without referring any baseline data obtained from the intact condition of the structure. Finally, the robustness of the proposed technique is demonstrated using actual test data obtained from simple aluminum plate and complex aircraft fitting-lug specimens under varying temperature and loading variations.

  10. New non-linear photovoltaic effect in uniform bipolar semiconductor

    SciTech Connect

    Volovichev, I.

    2014-11-21

    A linear theory of the new non-linear photovoltaic effect in the closed circuit consisting of a non-uniformly illuminated uniform bipolar semiconductor with neutral impurities is developed. The non-uniform photo-excitation of impurities results in the position-dependant current carrier mobility that breaks the semiconductor homogeneity and induces the photo-electromotive force (emf). As both the electron (or hole) mobility gradient and the current carrier generation rate depend on the light intensity, the photo-emf and the short-circuit current prove to be non-linear functions of the incident light intensity at an arbitrarily low illumination. The influence of the sample size on the photovoltaic effect magnitude is studied. Physical relations and distinctions between the considered effect and the Dember and bulk photovoltaic effects are also discussed.

  11. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.

    2016-01-01

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  12. Tunable Room Temperature THz Sources Based on Nonlinear Mixing in a Hybrid Optical and THz Micro-Ring Resonator

    NASA Astrophysics Data System (ADS)

    Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K.; Güney, Durdu Ö.; Pala, Nezih

    2015-03-01

    We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5-10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ(2)) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields.

  13. Tunable Room Temperature THz Sources Based on Nonlinear Mixing in a Hybrid Optical and THz Micro-Ring Resonator

    PubMed Central

    Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K.; Güney, Durdu Ö.; Pala, Nezih

    2015-01-01

    We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5–10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ(2)) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields. PMID:25800287

  14. Tunable room temperature THz sources based on nonlinear mixing in a hybrid optical and THz micro-ring resonator.

    PubMed

    Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K; Güney, Durdu Ö; Pala, Nezih

    2015-01-01

    We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5-10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ((2))) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields. PMID:25800287

  15. Extremely Large Magnetoresistance at Low Magnetic Field by Coupling the Nonlinear Transport Effect and the Anomalous Hall Effect.

    PubMed

    Luo, Zhaochu; Xiong, Chengyue; Zhang, Xu; Guo, Zhen-Gang; Cai, Jianwang; Zhang, Xiaozhong

    2016-04-01

    The anomalous Hall effect of a magnetic material is coupled to the nonlinear transport effect of a semiconductor material in a simple structure to achieve a large geometric magnetoresistance (MR) based on a diode-assisted mechanism. An extremely large MR (>10(4) %) at low magnetic fields (1 mT) is observed at room temperature. This MR device shows potential for use as a logic gate for the four basic Boolean logic operations. PMID:26857904

  16. Nonlinearity of resistive impurity effects on van der Pauw measurements

    SciTech Connect

    Koon, D. W.

    2006-09-15

    The dependence of van der Pauw resistivity measurements on local macroscopic inhomogeneities is shown to be nonlinear. A resistor grid network models a square laminar specimen, enabling the investigation of both positive and negative local perturbations in resistivity. The effect of inhomogeneity is measured both experimentally, for an 11x11 grid, and computationally, for both 11x11 and 101x101 grids. The maximum 'shortlike' perturbation produces 3.1{+-}0.2 times the effect predicted by the linear approximation, regardless of its position within the specimen, while all 'openlike' perturbations produce a smaller effect than predicted. An empirical nonlinear correction for f(x,y) is presented which provides excellent fit over the entire range of both positive and negative perturbations for the entire specimen.

  17. Tunable optics derived from nonlinear acoustic effects

    NASA Astrophysics Data System (ADS)

    Higginson, Keith A.; Costolo, Michael A.; Rietman, Edward A.; Ritter, Joseph M.; Lipkens, Bart

    2004-05-01

    Gradient index lenses were formed in a liquid-filled cavity supporting an ultrasonic standing wave. The constructed devices acted as diverging lenses or axicon lenses, depending on whether the center or edge region is interrogated. The focal length of the diverging lens was controllable with the frequency and amplitude of applied ultrasound from -100 mm to negative infinity. Experiments and models suggest that the primary process contributing to lensing is the steady-state density component of the finite-amplitude standing wave; sound amplitudes up to 150 MPa were calculated in glycerin, corresponding to a maximum contrast in the refractive on the order of 0.1%. This amplitude was also sufficient to move high index nanometer-scale particles via an acoustic radiation force and thereby create larger refractive index gradients. The segregation of suspended nanoparticles was found to enhance the lensing effects that occurred in the pure fluids. Concepts are also explored to manipulate the particle distribution in order to create converging lenses and/or other desirable optical components.

  18. Pulsed currents carried by whistlers. VI. Nonlinear effects

    SciTech Connect

    Urrutia, J.M.; Stenzel, R.L.

    1996-07-01

    In a large magnetized laboratory plasma ({ital n}{approx_equal}10{sup 11} cm{sup {minus}3}, {ital kT}{sub {ital e}}{ge}1 eV, {ital B}{sub 0}{ge}10 G, 1 m {times} 2.5 m), current pulses in excess of the Langmuir limit (150 A, 0.2 {mu}s) are drawn to electrodes in a parameter regime characterized by electron magnetohydrodynamics ({omega}{sub {ital ci}}{lt}{omega}{lt}{omega}{sub {ital ce}}). The transient plasma current is transported by low-frequency whistlers forming wave packets with topologies of three-dimensional vortices. The generalized vorticity, {bold {Omega}}, is shown to be frozen into the electron fluid drifting with velocity {ital v}, satisfying {partial_derivative}{bold {Omega}}/{partial_derivative}{ital t}{approx_equal}{nabla}{times}({ital v}{times}{bold {Omega}}). The nonlinearity in {ital v}{times}{bold {Omega}} is negligible since {ital v} and {bold {Omega}}({ital r},{ital t}) are found to be nearly parallel. However, large currents associated with {ital v}{ge}(2{ital kT}{sub {ital e}}/{ital m}{sub {ital e}}){sup 1/2} lead to strong electron heating which modifies the damping of whistlers in collisional plasmas. Heating in a flux tube provides a filament of high Spitzer conductivity, which permits a nearly collisionless propagation of whistler pulses. This filamentation effect is {ital not} associated with density modifications as in modulational instabilities, but arises from conductivity modifications. The companion paper [Stenzel and Urrutia, Phys. Plasmas {bold 3}, 2599 (1996)] shows that, after the decay of the transient wave magnetic field, magnetic helicity remains in the plasma due to temperature-gradient driven currents. {copyright} {ital 1996 American Institute of Physics.}

  19. Dissipative effects in nonlinear Klein-Gordon dynamics

    NASA Astrophysics Data System (ADS)

    Plastino, A. R.; Tsallis, C.

    2016-03-01

    We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that admits exact time-dependent solutions of the power-law form e_qi(kx-wt) , involving the q-exponential function naturally arising within the nonextensive thermostatistics (e_qz \\equiv [1+(1-q)z]1/(1-q) , with e_1^z=ez ). These basic solutions behave like free particles, complying, for all values of q, with the de Broglie-Einstein relations p=\\hbar k , E=\\hbar ω and satisfying a dispersion law corresponding to the relativistic energy-momentum relation E2 = c^2p2 + m^2c4 . The dissipative effects explored here are described by an evolution equation that can be regarded as a nonlinear generalization of the celebrated telegraph equation, unifying within one single theoretical framework the nonlinear Klein-Gordon equation, a nonlinear Schrödinger equation, and the power-law diffusion (porous-media) equation. The associated dynamics exhibits physically appealing traveling solutions of the q-plane wave form with a complex frequency ω and a q-Gaussian square modulus profile.

  20. Ion scale nonlinear interaction triggered by disparate scale electron temperature gradient mode

    NASA Astrophysics Data System (ADS)

    Moon, Chanho; Kobayashi, Tatsuya; Itoh, Kimitaka; Hatakeyama, Rikizo; Kaneko, Toshiro

    2015-05-01

    We have observed that the disparate scale nonlinear interactions between the high-frequency (˜0.4 MHz) electron temperature gradient (ETG) mode and the ion-scale low-frequency fluctuations (˜kHz) were enhanced when the amplitude of the ETG mode exceeded a certain threshold. The dynamics of nonlinear coupling between the ETG mode and the drift wave (DW) mode has already been reported [C. Moon, T. Kaneko, and R. Hatakeyama, Phys. Rev. Lett. (2013)]. Here, we have newly observed that another low-frequency fluctuation with f ≃ 3.6 kHz, i.e., the flute mode, was enhanced, corresponding to the saturation of the DW mode growth. Specifically, the bicoherence between the flute mode and the DW mode reaches a significant level when the ∇Te/Te strength exceeded 0.54 cm-1. Thus, it is shown that the ETG mode energy was transferred to the DW mode, and then the energy was ultimately transferred to the flute mode, which was triggered by the disparate scale nonlinear interactions between the ETG and ion-scale low-frequency modes.

  1. Ion scale nonlinear interaction triggered by disparate scale electron temperature gradient mode

    SciTech Connect

    Moon, Chanho; Kobayashi, Tatsuya; Itoh, Kimitaka; Hatakeyama, Rikizo; Kaneko, Toshiro

    2015-05-15

    We have observed that the disparate scale nonlinear interactions between the high-frequency (∼0.4 MHz) electron temperature gradient (ETG) mode and the ion-scale low-frequency fluctuations (∼kHz) were enhanced when the amplitude of the ETG mode exceeded a certain threshold. The dynamics of nonlinear coupling between the ETG mode and the drift wave (DW) mode has already been reported [C. Moon, T. Kaneko, and R. Hatakeyama, Phys. Rev. Lett. (2013)]. Here, we have newly observed that another low-frequency fluctuation with f ≃ 3.6 kHz, i.e., the flute mode, was enhanced, corresponding to the saturation of the DW mode growth. Specifically, the bicoherence between the flute mode and the DW mode reaches a significant level when the ∇T{sub e}/T{sub e} strength exceeded 0.54 cm{sup −1}. Thus, it is shown that the ETG mode energy was transferred to the DW mode, and then the energy was ultimately transferred to the flute mode, which was triggered by the disparate scale nonlinear interactions between the ETG and ion-scale low-frequency modes.

  2. Medium-Range Ordering in Liquids Appearing in Nonlinear Dielectric Effect Studies

    NASA Astrophysics Data System (ADS)

    Zioło, Jerzy; Rzoska, Sylwester J.; Drozd-Rzoska, Aleksandra

    Results of nonlinear dielectric effect (NDE) studies in supercooling epoxy resin EPON 5, nitrobenzene and menthol are presented. In each case on cooling a non-exponential decay of the NDE response after switching-off the strong electric field was found. The obtained "nonlinear" relaxation time is more than 106 times longer than the structural relaxation time (alpha relaxation) detected from "linear" broad band dielectric spectroscopy. For EPON 5 it is shown that for the whole tested range of temperatures the NDE relaxation time can be well parameterized by the Vogel-Fulcher-Tamman relation. For higher temperatures the NDE decay time can also be portrayed by the critical-like dependence, with the power exponent y=1.

  3. Nonlinear analysis of magnetization dynamics excited by spin Hall effect

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro

    2015-03-01

    We investigate the possibility of exciting self-oscillation in a perpendicular ferromagnet by the spin Hall effect on the basis of a nonlinear analysis of the Landau-Lifshitz-Gilbert (LLG) equation. In the self-oscillation state, the energy supplied by the spin torque during a precession on a constant energy curve should equal the dissipation due to damping. Also, the current to balance the spin torque and the damping torque in the self-oscillation state should be larger than the critical current to destabilize the initial state. We find that these conditions in the spin Hall system are not satisfied by deriving analytical solutions of the energy supplied by the spin transfer effect and the dissipation due to the damping from the nonlinear LLG equation. This indicates that the self-oscillation of a perpendicular ferromagnet cannot be excited solely by the spin Hall torque.

  4. Low-Intensity Nonlinear Spectral Effects in Compton Scattering

    SciTech Connect

    Hartemann, F V; Albert, F; Siders, C W; Barty, C P

    2010-02-23

    Nonlinear effects are known to occur in Compton scattering light sources, when the laser normalized 4-potential, A = e{radical}-A{sub {mu}}A{sup {mu}}/m{sub 0}c approaches unity. In this letter, it is shown that nonlinear spectral features can appear at arbitrarily low values of A, if the fractional bandwidth of the laser pulse, {Delta}{phi}{sup -1}, is sufficiently small to satisfy A{sup 2} {Delta}{phi} {approx_equal} 1. A three dimensional analysis, based on a local plane-wave, slow-varying envelope approximation, enables the study of these effects for realistic interactions between an electron beam and a laser pulse, and their influence on high-precision Compton scattering light sources.

  5. Spin Hall effect of light in inhomogeneous nonlinear medium

    NASA Astrophysics Data System (ADS)

    Li, Hehe; Li, Xinzhong

    2016-01-01

    In this paper, we investigate the spin Hall effect of a polarized Gaussian beam (GB) in a smoothly inhomogeneous isotropic and nonlinear medium using the method of the eikonal-based complex geometrical optics which describes the phase front and cross-section of a light beam using the quadratic expansion of a complex-valued eikonal. The linear complex-valued eikonal terms are introduced to describe the polarization-dependent transverse shifts of the beam in inhomogeneous nonlinear medium which is called the spin Hall effect of beam. We know that the spin Hall effect of beam is affected by the nonlinearity of medium and include two parts, one originates from the coupling between the spin angular momentum and the extrinsic orbital angular momentum due to the curve trajectory of the center of gravity of the polarized GB and the other from the coupling between the spin angular momentum and the intrinsic orbital angular momentum due to the rotation of the beam with respect to the central ray.

  6. Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium

    PubMed Central

    Sun, Xiankai; Zhang, Xufeng; Schuck, Carsten; Tang, Hong X.

    2013-01-01

    Photonic nanocavities are a key component in many applications because of their capability of trapping and storing photons and enhancing interactions of light with various functional materials and structures. The maximal number of photons that can be stored in silicon photonic cavities is limited by the free-carrier and thermo-optic effects at room temperature. To reduce such effects, we performed the first experimental study of optical nonlinearities in ultrahigh-Q silicon disk nanocavities at cryogenic temperatures in a superfluid helium environment. At elevated input power, the cavity transmission spectra exhibit distinct blue-shifted bistability behavior when temperature crosses the liquid helium lambda point. At even lower temperatures, the spectra restore to symmetric Lorentzian shapes. Under this condition, we obtain a large intracavity photon number of about 40,000, which is limited ultimately by the local helium phase transition. These new discoveries are explained by theoretical calculations and numerical simulations. PMID:23486445

  7. Absence of nonlinear Meissner effect in YBa2Cu3O6.95

    NASA Astrophysics Data System (ADS)

    Carrington, A.; Giannetta, R. W.; Kim, J. T.; Giapintzakis, J.

    1999-06-01

    We present measurements of the field and temperature dependence of the penetration depth (λ) in high purity, untwinned single crystals of YBa2Cu3O6.95 in all three crystallographic directions. The temperature dependence of λ is linear down to low temperatures, showing that our crystals are extremely clean. Both the magnitude and temperature dependence of the field dependent correction to λ, however, are considerably different from that predicted from the theory of the nonlinear Meissner effect for a d-wave superconductor (Yip-Sauls theory). Our results suggest that the Yip-Sauls effect is either absent or is unobservably small in the Meissner state of YBa2Cu3O6.95.

  8. Haematite natural crystals: non-linear initial susceptibility at low temperature

    NASA Astrophysics Data System (ADS)

    Guerrero-Suarez, S.; Martín-Hernández, F.

    2016-06-01

    Several works have reported that haematite has non-linear initial susceptibility at room temperature, like pyrrhotite or titanomagnetite, but there is no explanation for the observed behaviours yet. This study sets out to determine which physical property (grain size, foreign cations content and domain walls displacements) controls the initial susceptibility. The performed measurements include microprobe analysis to determine magnetic phases different to haematite; initial susceptibility (300 K); hysteresis loops, SIRM and backfield curves at 77 and 300 K to calculate magnetic parameters and minor loops at 77 K, to analyse initial susceptibility and magnetization behaviours below Morin transition. The magnetic moment study at low temperature is completed with measurements of zero field cooled-field cooled and AC susceptibility in a range from 5 to 300 K. The minor loops show that the non-linearity of initial susceptibility is closely related to Barkhausen jumps. Because of initial magnetic susceptibility is controlled by domain structure it is difficult to establish a mathematical model to separate magnetic subfabrics in haematite-bearing rocks.

  9. Non-Gaussian microwave background fluctuations from nonlinear gravitational effects

    NASA Technical Reports Server (NTRS)

    Salopek, D. S.; Kunstatter, G. (Editor)

    1991-01-01

    Whether the statistics of primordial fluctuations for structure formation are Gaussian or otherwise may be determined if the Cosmic Background Explorer (COBE) Satellite makes a detection of the cosmic microwave-background temperature anisotropy delta T(sub CMB)/T(sub CMB). Non-Gaussian fluctuations may be generated in the chaotic inflationary model if two scalar fields interact nonlinearly with gravity. Theoretical contour maps are calculated for the resulting Sachs-Wolfe temperature fluctuations at large angular scales (greater than 3 degrees). In the long-wavelength approximation, one can confidently determine the nonlinear evolution of quantum noise with gravity during the inflationary epoch because: (1) different spatial points are no longer in causal contact; and (2) quantum gravity corrections are typically small-- it is sufficient to model the system using classical random fields. If the potential for two scalar fields V(phi sub 1, phi sub 2) possesses a sharp feature, then non-Gaussian fluctuations may arise. An explicit model is given where cold spots in delta T(sub CMB)/T(sub CMB) maps are suppressed as compared to the Gaussian case. The fluctuations are essentially scale-invariant.

  10. A study of temperature-related non-linearity at the metal-silicon interface

    NASA Astrophysics Data System (ADS)

    Gammon, P. M.; Donchev, E.; Pérez-Tomás, A.; Shah, V. A.; Pang, J. S.; Petrov, P. K.; Jennings, M. R.; Fisher, C. A.; Mawby, P. A.; Leadley, D. R.; McN. Alford, N.

    2012-12-01

    In this paper, we investigate the temperature dependencies of metal-semiconductor interfaces in an effort to better reproduce the current-voltage-temperature (IVT) characteristics of any Schottky diode, regardless of homogeneity. Four silicon Schottky diodes were fabricated for this work, each displaying different degrees of inhomogeneity; a relatively homogeneous NiV/Si diode, a Ti/Si and Cr/Si diode with double bumps at only the lowest temperatures, and a Nb/Si diode displaying extensive non-linearity. The 77-300 K IVT responses are modelled using a semi-automated implementation of Tung's electron transport model, and each of the diodes are well reproduced. However, in achieving this, it is revealed that each of the three key fitting parameters within the model display a significant temperature dependency. In analysing these dependencies, we reveal how a rise in thermal energy "activates" exponentially more interfacial patches, the activation rate being dependent on the carrier concentration at the patch saddle point (the patch's maximum barrier height), which in turn is linked to the relative homogeneity of each diode. Finally, in a review of Tung's model, problems in the divergence of the current paths at low temperature are explained to be inherent due to the simplification of an interface that will contain competing defects and inhomogeneities.

  11. Effects on non-linearities on aircraft poststall motion

    SciTech Connect

    Rohacs, J.; Thomasson, P.; Mosehilde, E.

    1994-12-31

    The poststall maneuverability controlled by thrust vectoring has become one of the important aspects of new fighter development projects. In simplified case, the motion of aircraft can be described by 6DOF nonlinear system. The lecture deals with the longitudinal motion of poststall maneuverable aircraft. The investigation made about the effects of non-linearities in aerodynamic coefficients having considerable non-linearities and hysteresisis an the poststall motions. There were used some different models of aerodynamic coefficients. The results of investigation have shown that the poststall domain of vectored aircraft can be divided into five different pHs in field of thrust - pitch vector angle, and the chaotic motions of aircraft can be found at the different frequencies of thrust deflection. There were defined an unstable right domain with an unstable oscillation and a field of overpulling at poststall motion. The certain frequency chaotic attractors were got at frequencies of Oxitation between the 0.15 and 0.65 rad/sec. The pitching moment derivatives had the big influence on the chaotic motions, while the lift coefficient derivatives bad the reasonable effects, only.

  12. Nonlinear effects for a cylindrical gravitational two-soliton

    NASA Astrophysics Data System (ADS)

    Tomizawa, Shinya; Mishima, Takashi

    2015-06-01

    Using a cylindrical soliton solution to the four-dimensional vacuum Einstein equation, we study the nonlinear effects of gravitational waves, such as Faraday rotation and the time-shift phenomenon. In a previous work, we analyzed the single-soliton solution constructed using Pomeransky's improved inverse scattering method. In this work, we construct a new two-soliton solution with complex-conjugate poles, by which we can avoid the light-cone singularities that are unavoidable in a single-soliton case. In particular, we compute the amplitudes of nonlinear gravitational waves and the time dependence of the polarizations. Furthermore, we consider the time-shift phenomenon for soliton waves, which means that a wave packet can propagate at a velocity slower than light.

  13. Preliminary Evaluation of Nonlinear Effects on TCA Flutter

    NASA Technical Reports Server (NTRS)

    Arslan, Alan E.; Hartwich, Peter M.; Baker, Myles L.

    1998-01-01

    The objective of this study is to investigate the effect of nonlinear aerodynamics, especially at high angles-of-attack with leading-edge separation, on the TCA flutter properties at transonic speeds. In order to achieve that objective, flutter simulations with Navier-Stokes CFD must be performed. To this end, time-marching Navier-Stokes solutions are computed for the TCA wing/body configuration at high angles-of-attack in transonic flight regimes. The approach is to perform non-linear flutter calculations on the TCA at two angles-of-attack, the first one being a case with attached flow (a=2.8 degrees) and the second one being a high angle-of-attack case with a wing leading edge vortex (a=12.11 degrees). Comparisons of the resulting histories and frequency damping information for both angles-of-attack will evaluate the impact of high-alpha aerodynamics on flutter.

  14. Thermal conductivities of one-dimensional anharmonic/nonlinear lattices: renormalized phonons and effective phonon theory

    NASA Astrophysics Data System (ADS)

    Li, Nianbei; Li, Baowen

    2012-12-01

    Heat transport in low-dimensional systems has attracted enormous attention from both theoretical and experimental aspects due to its significance to the perception of fundamental energy transport theory and its potential applications in the emerging field of phononics: manipulating heat flow with electronic anologs. We consider the heat conduction of one-dimensional nonlinear lattice models. The energy carriers responsible for the heat transport have been identified as the renormalized phonons. Within the framework of renormalized phonons, a phenomenological theory, effective phonon theory, has been developed to explain the heat transport in general one-dimensional nonlinear lattices. With the help of numerical simulations, it has been verified that this effective phonon theory is able to predict the scaling exponents of temperature-dependent thermal conductivities quantitatively and consistently.

  15. Effective photochromic nonlinearity of dried blue-membrane bacteriorhodopsin films

    NASA Astrophysics Data System (ADS)

    Tallent, Jack; Song, Q. Wang; Li, Zengfa; Stuart, Jeff; Birge, R. R.

    1996-09-01

    We report the effective nonlinearity for photochromic conversion in a blue-membrane bacteriorhodopsin film hosted in a dry polyvinyl alcohol matrix. The shift in absorption maximum on photoconversion in this film is larger than that of the same material in hydrated form, thus offering a larger modulation of the refractive index. The photoexcited index modulation is stable for several months, which provides for holographic data recording and long-term photochromic data storage. The effective index modulation is experimentally measured and is in good agreement with the theoretical predictions based on the Kramers-Kronig transformation.

  16. Nonlinear Electron Transport Effects in a Chiral Carbon Nanotube

    SciTech Connect

    Yevtushenko, O.M.; Slepyan, G.Y.; Maksimenko, S.A.; Lakhtakia, A.; Romanov, D.A.

    1997-08-01

    We present a novel, general, semiclassical theory of electron transport in a carbon nanotube exposed to an external electric field. The charge carriers are treated in the framework of the simplified tight-binding model. Simultaneous exposure to rapidly oscillating (ac) and constant (dc) electric fields is considered to exemplify our theory. Nonlinear and chiral effects are found, and their interaction is delineated. We predict the effect of an ac electric field on the magnitude and the direction of the total time-averaged current. {copyright} {ital 1997} {ital The American Physical Society}

  17. Temperature effects in photodynamic processes

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, Vladimir A.; Avetisyan, Hasmik A.; Mathevosyan, Margarita B.; Elbakyan, Egishe G.

    2005-04-01

    Photodynamic activity of several dyes on Drosophila melanogaster at different temperatures (15-35°C) inside of test-tubes was investigated. Both phototoxic sensitizers (chlorin e6, methylene blue, etc. -group A) and non active compounds (hemoglobin, brilliant green, pyronine, etc.-group B) were used. Dyes of 10-5-10-3 M concentration were added to the food for drosophila 24 hours before irradiation. Solar radiation, narrow-band halogen lamps, LEDs and laser were used as a photo-stimulator. Irradiation parameters: I <= 45mW/cm2 and 0.2temperatures applied percentage of survived insects was approximately 100%. In the darkness with the use of all dyes observations also indicated no damage to the insects. At the temperatures up to 25°C when using dyes of group B insects were not affected at all, while with the dyes of group A findings showed dose-dependent insect mortality. At high temperatures (30-35°C) when using group B dyes flies were losing their mobility and in the case of group A dyes the drosophila"s survival value sharply dropped. Combination of dyes from A group with some dyes from B group leads to the partial disappearance of photodynamic effect. This, probably, is concerned with the toxic photoproduct suppression by the inactive dye. Experimental model of drosophila allows to investigate photosensitization impact within wide temperature range, to find out the processes, when using combination of dyes, as well as to study photodynamic effect on reproductive functions of insects.

  18. Effects of nonlinear reservoir compaction on casing behavior

    SciTech Connect

    Chia, Y.P.; Bradley, D.A.

    1988-08-01

    Depletion of overpressured, undercompacted reservoirs can cause large reservoir pressure drops and sediment compaction, which may result in casing deformation and well failure. To predict soil and casing deformation during depletion, a finite-element model was developed. Nonlinear elastic and plastic behavior of the soils and slippage along the wellbore boundary are major advancements in this study. This axisymmetric model is composed of casing wall, cement column, slippage interface, and sediments from 11,400 to 13,200 ft (3475 to 4025 m) in depth with a radius of 3,400 ft (1035 m). This study features a process of concurrent fluid flow, nonlinear elastic and plastic soil deformation, slippage from the wellbore boundary, and casing deformation. The modeling results show that the decline in near-wellbore reservoir pressure during depletion causes vertical compaction in both the sand reservoirs and the confining shale formations. Slippage next to the wellbore decreases the axial shear load placed on the casing by the sediments. Nonlinear elastic and plastic soils show a greater tendency for casing deformation with depletion than do linear elastic soils. Axial strains in the casing above the yield strain eventually developed as near-wellbore reservoir pressure was allowed to decline to a minimum. Because this effect is quantified, the production rate may be held to a safe maximum so that the operating limits of the casing are not exceeded. Criteria are given to improve both completion design and production rate specification.

  19. Role of annealing temperatures on structure polymorphism, linear and nonlinear optical properties of nanostructure lead dioxide thin films

    NASA Astrophysics Data System (ADS)

    Zeyada, H. M.; Makhlouf, M. M.

    2016-04-01

    The powder of as synthesized lead dioxide (PbO2) has polycrystalline structure β-PbO2 phase of tetragonal crystal system. It becomes nanocrystallites α-PbO2 phase with orthorhombic crystal system upon thermal deposition to form thin films. Annealing temperatures increase nanocrystallites size from 28 to 46 nm. The optical properties of α-PbO2 phase were calculated from absolute values of transmittance and reflectance at nearly normal incidence of light by spectrophotometer measurements. The refractive and extinction indices were determined and showed a response to annealing temperatures. The absorption coefficient of α-PbO2 films is >106 cm-1 in UV region of spectra. Analysis of the absorption coefficient spectra near optical edge showed indirect allowed transition. Annealing temperature decreases the value of indirect energy gap for α-PbO2 films. The dispersion parameters such as single oscillator energy, dispersion energy, dielectric constant at high frequency and lattice dielectric constant were calculated and its variations with annealing temperatures are reported. The nonlinear refractive index (n2), third-order nonlinear susceptibility (χ(3)) and nonlinear absorption coefficient (βc) were determined. It was found that χ(3), n2 and β increase with increasing photon energy and decrease with increasing annealing temperature. The pristine film of α-PbO2 has higher values of nonlinear optical constants than for annealed films; therefore it is suitable for applications in manufacturing nonlinear optical devices.

  20. A low temperature nonlinear optical rotational anisotropy spectrometer for the determination of crystallographic and electronic symmetries

    SciTech Connect

    Torchinsky, Darius H.; Hsieh, David; Chu, Hao; Qi, Tongfei; Cao, Gang

    2014-08-15

    Nonlinear optical generation from a crystalline material can reveal the symmetries of both its lattice structure and underlying ordered electronic phases and can therefore be exploited as a complementary technique to diffraction based scattering probes. Although this technique has been successfully used to study the lattice and magnetic structures of systems such as semiconductor surfaces, multiferroic crystals, magnetic thin films, and multilayers, challenging technical requirements have prevented its application to the plethora of complex electronic phases found in strongly correlated electron systems. These requirements include an ability to probe small bulk single crystals at the μm length scale, a need for sensitivity to the entire nonlinear optical susceptibility tensor, oblique light incidence reflection geometry, and incident light frequency tunability among others. These measurements are further complicated by the need for extreme sample environments such as ultra low temperatures, high magnetic fields, or high pressures. In this review we present a novel experimental construction using a rotating light scattering plane that meets all the aforementioned requirements. We demonstrate the efficacy of our scheme by making symmetry measurements on a μm scale facet of a small bulk single crystal of Sr{sub 2}IrO{sub 4} using optical second and third harmonic generation.

  1. Hematite natural crystals: non-linear initial susceptibility at low temperature

    NASA Astrophysics Data System (ADS)

    Guerrero Suarez, S.; Martín-Hernández, F.

    2016-04-01

    Several works have reported that hematite has non-linear initial susceptibility at room temperature, like pyrrhotite or titanomagnetite, but there is no explanation for the observed behaviours yet. This study sets out to determine which physical property (grain-size, foreign cations content, domain walls displacements) controls the initial susceptibility. The performed measurements include microprobe analysis to determine magnetic phases different to hematite; initial susceptibility (300 K); hysteresis loops, SIRM and backfield curves at 77 K and 300 K to calculate magnetic parameters and minor loops at 77 K, to analyze initial susceptiblity and magnetization behaviours below Morin transition. The magnetic moment study at low temperatura is completed with measurements of Zero Field Cooled- Field Cooled (ZFC-FC) and AC-susceptibility in a range from 5-300 K. The minor loops show that the non-linearity of initial susceptibility is closely related to Barkhausen jumps. Because of initial magnetic susceptibility is controlled by domain structure it is difficult to establish a mathematical model to separate magnetic subfabrics in hematite-bearing rocks.

  2. An Effective Schema for Solving Some Nonlinear Partial Differential Equation Arising In Nonlinear Physics

    NASA Astrophysics Data System (ADS)

    Baskonus, Haci Mehmet; Bulut, Hasan

    2015-10-01

    In this paper, a new computational algorithm called the "Improved Bernoulli sub-equation function method" has been proposed. This algorithm is based on the Bernoulli Sub-ODE method. Firstly, the nonlinear evaluation equations used for representing various physical phenomena are converted into ordinary differential equations by using various wave transformations. In this way, nonlinearity is preserved and represent nonlinear physical problems. The nonlinearity of physical problems together with the derivations is seen as the secret key to solve the general structure of problems. The proposed analytical schema, which is newly submitted to the literature, has been expressed comprehensively in this paper. The analytical solutions, application results, and comparisons are presented by plotting the two and three dimensional surfaces of analytical solutions obtained by using the methods proposed for some important nonlinear physical problems. Finally, a conclusion has been presented by mentioning the important discoveries in this study.

  3. Nonlinear effects of stretch on the flame front propagation

    SciTech Connect

    Halter, F.; Tahtouh, T.; Mounaim-Rousselle, C.

    2010-10-15

    In all experimental configurations, the flames are affected by stretch (curvature and/or strain rate). To obtain the unstretched flame speed, independent of the experimental configuration, the measured flame speed needs to be corrected. Usually, a linear relationship linking the flame speed to stretch is used. However, this linear relation is the result of several assumptions, which may be incorrected. The present study aims at evaluating the error in the laminar burning speed evaluation induced by using the traditional linear methodology. Experiments were performed in a closed vessel at atmospheric pressure for two different mixtures: methane/air and iso-octane/air. The initial temperatures were respectively 300 K and 400 K for methane and iso-octane. Both methodologies (linear and nonlinear) are applied and results in terms of laminar speed and burned gas Markstein length are compared. Methane and iso-octane were chosen because they present opposite evolutions in their Markstein length when the equivalence ratio is increased. The error induced by the linear methodology is evaluated, taking the nonlinear methodology as the reference. It is observed that the use of the linear methodology starts to induce substantial errors after an equivalence ratio of 1.1 for methane/air mixtures and before an equivalence ratio of 1 for iso-octane/air mixtures. One solution to increase the accuracy of the linear methodology for these critical cases consists in reducing the number of points used in the linear methodology by increasing the initial flame radius used. (author)

  4. Clinical Trials: Spline Modeling is Wonderful for Nonlinear Effects.

    PubMed

    Cleophas, Ton J

    2016-01-01

    Traditionally, nonlinear relationships like the smooth shapes of airplanes, boats, and motor cars were constructed from scale models using stretched thin wooden strips, otherwise called splines. In the past decades, mechanical spline methods have been replaced with their mathematical counterparts. The objective of the study was to study whether spline modeling can adequately assess the relationships between exposure and outcome variables in a clinical trial and also to study whether it can detect patterns in a trial that are relevant but go unobserved with simpler regression models. A clinical trial assessing the effect of quantity of care on quality of care was used as an example. Spline curves consistent of 4 or 5 cubic functions were applied. SPSS statistical software was used for analysis. The spline curves of our data outperformed the traditional curves because (1) unlike the traditional curves, they did not miss the top quality of care given in either subgroup, (2) unlike the traditional curves, they, rightly, did not produce sinusoidal patterns, and (3) unlike the traditional curves, they provided a virtually 100% match of the original values. We conclude that (1) spline modeling can adequately assess the relationships between exposure and outcome variables in a clinical trial; (2) spline modeling can detect patterns in a trial that are relevant but may go unobserved with simpler regression models; (3) in clinical research, spline modeling has great potential given the presence of many nonlinear effects in this field of research and given its sophisticated mathematical refinement to fit any nonlinear effect in the mostly accurate way; and (4) spline modeling should enable to improve making predictions from clinical research for the benefit of health decisions and health care. We hope that this brief introduction to spline modeling will stimulate clinical investigators to start using this wonderful method. PMID:23689089

  5. Recent progress of room temperature THz sources based on nonlinear frequency mixing in quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Razeghi, M.; Lu, Q. Y.; Bandyopadhyay, N.; Slivken, S.; Bai, Y.

    2014-05-01

    We present the recent development of high performance compact THz sources based on intracavity nonlinear frequency mixing in mid-infrared quantum cascade lasers. Significant performance improvements of our THz sources in the spectral purity, frequency coverage as well as THz power are achieved by systematic optimizing the device's active region, waveguide, phase matching scheme, and chip bonding strategy. Room temperature single-mode operation in a wide THz spectral range of 1-4.6 THz is demonstrated from our Čerenkov phase-matched THz sources with dual-period DFB gratings. High THz power up to 215 μW at 3.5 THz is demonstrated via epi-down mounting of our THz device. The THz power is later scaled up to mW level by increased the mid-IR power and conversion efficiency. The rapid development renders this type of THz sources promising local oscillators for many astronomical and medical applications.

  6. Supersonic flow past oscillating airfoils including nonlinear thickness effects

    NASA Technical Reports Server (NTRS)

    Van Dyke, Milton D

    1954-01-01

    A solution to second order in thickness is derived for harmonically oscillating two-dimensional airfoils in supersonic flow. For slow oscillations of an arbitrary profile, the result is found as a series including the third power of frequency. For arbitrary frequencies, the method of solution for any specific profile is indicated, and the explicit solution derived for a single wedge. Nonlinear thickness effects are found generally to reduce the torsional damping, and so enlarge the range of Mach numbers within which torsional instability is possible.

  7. Longitudinal emittance growth due to nonlinear space charge effect

    NASA Astrophysics Data System (ADS)

    Lau, Y. Y.; Yu, Simon S.; Barnard, John J.; Seidl, Peter A.

    2012-03-01

    Emittance posts limits on the key requirements of final pulse length and spot size on target in heavy ion fusion drivers. In this paper, we show studies on the effect of nonlinear space charge on longitudinal emittance growth in the drift compression section. We perform simulations, using the 3D PIC code WARP, for a high current beam under conditions of bends and longitudinal compression. The linear growth rate for longitudinal emittance turns out to depend only on the peak line charge density, and is independent of pulse length, velocity tilt, and/or the pipe and beam size. This surprisingly simple result is confirmed by simulations and analytic calculations.

  8. Nanoscale nonlinear effects in Erbium-implanted Yttrium Orthosilicate

    NASA Astrophysics Data System (ADS)

    Kukharchyk, Nadezhda; Shvarkov, Stepan; Probst, Sebastian; Xia, Kangwei; Becker, Hans-Werner; Pal, Shovon; Markmann, Sergej; Kolesov, Roman; Siyushev, Petr; Wrachtrup, Jörg; Ludwig, Arne; Ustinov, Alexey V.; Wieck, Andreas D.; Bushev, Pavel

    2016-09-01

    Doping of substrates at desired locations is a key technology for spin-based quantum memory devices. Focused ion beam implantation is well-suited for this task due to its high spacial resolution. In this work, we investigate ion-beam implanted erbium ensembles in Yttrium Orthosilicate crystals by means of confocal photoluminescence spectroscopy. The sample temperature and the post-implantation annealing step strongly reverberate in the properties of the implanted ions. We find that hot implantation leads to a higher activation rate of the ions. At high enough fluences, the relation between the fluence and final concentration of ions becomes non-linear. Two models are developed explaining the observed behaviour.

  9. Binary homogeneous nucleation: Temperature and relative humidity fluctuations and non-linearity

    SciTech Connect

    Easter, R.C.; Peters, L.K.

    1993-01-01

    This report discusses binary homogeneous nucleation involving H{sub 2}SO{sub 4} and water vapor is thought to be the primary mechanism for new particle formation in the marine boundary layer. Temperature, relative humidity, and partial pressure of H{sub 2}SO{sub 4} vapor are the most important parameters in fixing the binary homogeneous nucleation rate in the H{sub 2}SO{sub 4}/H{sub 2}O system. The combination of thermodynamic calculations and laboratory experiments indicates that this rate varies roughly as the tenth power of the saturation ratio of H{sub 2}SO{sub 4} vapor. Furthermore, the vapor pressure of H{sub 2}SO{sub 4} is a function of temperature, and similar dependencies of the binary homogeneous nucleation rate on relative humidity can be noted as well. These factors thus introduce strong non-linearities into the system, and fluctuations of temperature, relative humidity, and H{sub 2}SO{sub 4} vapor concentrations about mean values may strongly influence the nucleation rate measured in the atmosphere.

  10. Observation of tunable nonlinear effects in an analogue of superconducting composite right/left hand filter.

    PubMed

    Liu, Haiwen; Lei, Jiuhuai; Jiang, Hao; Guan, Xuehui; Ji, Laiyun; Ma, Zhewang

    2015-01-01

    Artificial structures with negative permittivity or permeability have attracted significant attention in the science community because they provide a pathway for obtaining exotic electromagnetic properties not found in natural materials. At the moment, the great challenge of these artificial structures in microwave frequency exhibits a relatively large loss. It is well-known that superconducting thin films have extremely low surface resistance. Hence, it is a good candidate to resolve this constraint. Besides, the reported artificial structures with negative permittivity or permeability are mainly focusing on linear regime of wave propagation. However, any future effort in creating tunable structures would require knowledge of nonlinear properties. In this work, a tunable superconducting filter with composite right/left-hand transmission property is proposed and fabricated. Its nonlinear effects on temperature and power are studied by theoretical analysis and experiments. PMID:26442447

  11. Observation of tunable nonlinear effects in an analogue of superconducting composite right/left hand filter

    PubMed Central

    Liu, Haiwen; Lei, Jiuhuai; Jiang, Hao; Guan, Xuehui; Ji, Laiyun; Ma, Zhewang

    2015-01-01

    Artificial structures with negative permittivity or permeability have attracted significant attention in the science community because they provide a pathway for obtaining exotic electromagnetic properties not found in natural materials. At the moment, the great challenge of these artificial structures in microwave frequency exhibits a relatively large loss. It is well-known that superconducting thin films have extremely low surface resistance. Hence, it is a good candidate to resolve this constraint. Besides, the reported artificial structures with negative permittivity or permeability are mainly focusing on linear regime of wave propagation. However, any future effort in creating tunable structures would require knowledge of nonlinear properties. In this work, a tunable superconducting filter with composite right/left-hand transmission property is proposed and fabricated. Its nonlinear effects on temperature and power are studied by theoretical analysis and experiments. PMID:26442447

  12. Nonlinear dynamics induced anomalous Hall effect in topological insulators

    PubMed Central

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-01

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223

  13. Nonlinear cosmological consistency relations and effective matter stresses

    SciTech Connect

    Ballesteros, Guillermo; Hollenstein, Lukas; Jain, Rajeev Kumar; Kunz, Martin E-mail: lukas.hollenstein@unige.ch E-mail: martin.kunz@unige.ch

    2012-05-01

    We propose a fully nonlinear framework to construct consistency relations for testing generic cosmological scenarios using the evolution of large scale structure. It is based on the covariant approach in combination with a frame that is purely given by the metric, the normal frame. As an example, we apply this framework to the ΛCDM model, by extending the usual first order conditions on the metric potentials to second order, where the two potentials start to differ from each other. We argue that working in the normal frame is not only a practical choice but also helps with the physical interpretation of nonlinear dynamics. In this frame, effective pressures and anisotropic stresses appear at second order in perturbation theory, even for ''pressureless'' dust. We quantify their effect and compare them, for illustration, to the pressure of a generic clustering dark energy fluid and the anisotropic stress in the DGP model. Besides, we also discuss the effect of a mismatch of the potentials on the determination of galaxy bias.

  14. Nonlinear dynamics induced anomalous Hall effect in topological insulators

    NASA Astrophysics Data System (ADS)

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-01

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.

  15. Nonlinear dynamics induced anomalous Hall effect in topological insulators.

    PubMed

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-01

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223

  16. Eliminating Nonlinear Acoustical Effects From Thermoacoustic Refrigeration Systems

    NASA Astrophysics Data System (ADS)

    Garrett, Steven L.; Smith, Robert W. M.; Poese, Matthew E.

    2006-05-01

    Nonlinear acoustical effects dissipate energy that degrades thermoacoustic refrigerator performance. The largest of these effects occur in acoustic resonators and include shock formation; turbulence and boundary layer disruption; and entry/exit (minor) losses induced by changes in resonator cross-sectional area. Effects such as these also make the creation of accurate performance models more complicated. Suppression of shock formation by intentional introduction of resonator anharmonicity has been common practice for the past two decades. Recent attempts to increase cooling power density by increasing pressure amplitudes has required reduction of turbulence and minor loss by using an new acousto-mechanical resonator topology. The hybrid resonator still stores potential energy in the compressibility of the gaseous working fluid, but stores kinetic energy in the moving (solid) mass of the motor and piston. This talk will first present nonlinear acoustical loss measurements obtained in a "conventional" double-Helmholtz resonator geometry (TRITON) that dissipated four kilowatts of acoustic power. We will then describe the performance of the new "bellows bounce" resonator configuration and "vibromechanical multiplier" used in the first successful implementation of this approach that created an ice cream freezer produced at Penn State for Ben & Jerry's.

  17. On the nonlinear stability of a quasi-two-dimensional drift kinetic model for ion temperature gradient turbulence

    SciTech Connect

    Plunk, G. G.

    2015-04-15

    We study a quasi-two-dimensional electrostatic drift kinetic system as a model for near-marginal ion temperature gradient driven turbulence. A proof is given for the nonlinear stability of this system under conditions of linear stability. This proof is achieved using a transformation that diagonalizes the linear dynamics and also commutes with nonlinear E × B advection. For the case when linear instability is present, a corollary is found that forbids nonlinear energy transfer between appropriately defined sets of stable and unstable modes. It is speculated that this may explain the preservation of linear eigenmodes in nonlinear gyrokinetic simulations. Based on this property, a dimensionally reduced (∞×∞→1) system is derived that may be useful for understanding dynamics around the critical gradient of Dimits.

  18. Saturating refractive nonlinearities and optical bistability in ZnSe/CdZnSe MQWs at room temperature

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Shen, De Z.; Zhang, Jiying; Wang, Shumei; Yang, Baojun; Yu, Guangyou

    1998-08-01

    The excitonic nonlinear refractive index was calculated by using Kramers-Kronig relation and the saturating absorption of ZnSe/CdZnSe multiple quantum wells (MQWs) was studied under different pump intensities. The maximum nonlinear refractive index change is about -6.19 X 10-3. Excitonic optical bistability in ZnSe/CdZnSe MQWs is investigated at room temperature. The result indicates that the threshold and contrast ratio for the optical bistability in ZnSe/CdZnSe MQWs are about 210Kw/cm2 and 2:1, respectively. On the basis of the excitonic nonlinear theories and excitonic absorption spectra in the ZnSe/CdZnSe MQWs, we attribute the major nonlinear mechanism of the optical bistability in the ZnSe/CdZnSe MQWs to the phase space filling of excitonic states and excitonic band broadening due to exciton-exciton interactions.

  19. Thermopiezoelectric and Nonlinear Electromechanical Effects in Quantum Dots and Nanowires

    NASA Astrophysics Data System (ADS)

    Patil, Sunil; Bahrami-Samani, M.; Melnik, R. V. N.; Toropova, M.; Zu, Jean

    2010-01-01

    We report thermopiezoelectric (TPE) and nonlinear electromechanical (NEM) effects in quantum dots (QD) and nanowires (NW) analyzed with a model based on coupled thermal, electric and mechanical balance equations. Several representative examples of low dimensional semiconductor structures (LDSNs) are studied. We focus mainly on GaN/AlN QDs and CdTe/ZnTe NWs which we analyze for different geometries. GaN/AlN nano systems are observed to be more sensitive to thermopiezoelectric effects than those of CdTe/ZnTe. Furthermore, noticeable qualitative and quantitative variations in electromechanical fields are observed as a consequence of taking into account NEM effects, in particular in GaN/AlN QDs.

  20. Asymmetric nonlinear response of the quantized Hall effect

    NASA Astrophysics Data System (ADS)

    Siddiki, A.; Horas, J.; Kupidura, D.; Wegscheider, W.; Ludwig, S.

    2010-11-01

    An asymmetric breakdown of the integer quantized Hall effect (IQHE) is investigated. This rectification effect is observed as a function of the current value and its direction in conjunction with an asymmetric lateral confinement potential defining the Hall bar. Our electrostatic definition of the Hall bar via Schottky gates allows a systematic control of the steepness of the confinement potential at the edges of the Hall bar. A softer edge (flatter confinement potential) results in more stable Hall plateaus, i.e. a breakdown at a larger current density. For one soft and one hard edge, the breakdown current depends on its direction, resembling rectification. This nonlinear magneto-transport effect confirms the predictions of an emerging screening theory of the IQHE.

  1. Nonlinear effects of consumer density on multiple ecosystem processes.

    PubMed

    Klemmer, Amanda J; Wissinger, Scott A; Greig, Hamish S; Ostrofsky, Milton L

    2012-07-01

    1. In the face of human-induced declines in the abundance of common species, ecologists have become interested in quantifying how changes in density affect rates of biophysical processes, hence ecosystem function. We manipulated the density of a dominant detritivore (the cased caddisfly, Limnephilus externus) in subalpine ponds to measure effects on the release of detritus-bound nutrients and energy. 2. Detritus decay rates (k, mass loss) increased threefold, and the loss of nitrogen (N) and phosphorus (P) from detrital substrates doubled across a range of historically observed caddisfly densities. Ammonium and total soluble phosphorus concentrations in the water column also increased with caddisfly density on some dates. Decay rates, nutrient release and the change in total detritivore biomass all exhibited threshold or declining responses at the highest densities. 3. We attributed these threshold responses in biophysical processes to intraspecific competition for limiting resources manifested at the population level, as density-dependent per-capita consumption, growth, development and case : body size in caddisflies was observed. Moreover, caddisflies increasingly grazed on algae at high densities, presumably in response to limiting detrital resources. 4. These results provide evidence that changes in population size of a common species will have nonlinear, threshold effects on the rates of biophysical processes at the ecosystem level. Given the ubiquity of negative density dependence in nature, nonlinear consumer density-ecosystem function relationships should be common across species and ecosystems. PMID:22339437

  2. Linear and nonlinear effects in detonation wave structure formation

    NASA Astrophysics Data System (ADS)

    Borisov, S. P.; Kudryavtsev, A. N.

    2016-06-01

    The role of linear and nonlinear effects in the process of formation of detonation wave structure is investigated using linear stability analysis and direct numerical simulation. A simple model with a one-step irreversible chemical reaction is considered. For linear stability computations, both the local iterative shooting procedure and the global Chebyshev pseudospectral method are employed. Numerical simulations of 1D pulsating instability are performed using a shock fitting approach based on a 5th order upwind-biased compact-difference discretization and a shock acceleration equation deduced from the Rankine-Hugoniot conditions. A shock capturing WENO scheme of the 5th order is used to simulate propagation of detonation wave in a plane channel. It is shown that the linear analysis predicts correctly the mode dominating on early stages of flow evolution and the size of detonation cells which emerge during these stages. Later, however, when a developed self-reproducing cellular structure forms, the cell size is approximately doubled due to nonlinear effects.

  3. Dielectric Decrement Effects on Nonlinear Electrophoresis of Ideally Polarizable Particles

    NASA Astrophysics Data System (ADS)

    Moran, Jeffrey L.; Chan, Wai Hong Ronald; Buie, Cullen R.; Figliuzzi, Bruno

    2014-11-01

    We present numerical simulations of nonlinear electrophoresis of ideally polarizable particles that specifically include the effects of a spatially non-uniform dielectric permittivity near the particle surface. Models for this dielectric decrement phenomenon have been developed by several authors, including Ben-Yaakov et al. [J. Phys.: Condens. Matter 2009] Hatlo et al. [EPL 2012], and Zhao & Zhai [JFM 2013]. We extend this work to ideally polarizable particles and include the effects of surface conduction and advective transport in the electric double layer. By numerically solving for the coupled velocity field, electric potential, and ionic concentration distributions in the bulk solution surrounding the particle, we demonstrate that the dielectric decrement model predicts ionic saturation around the particle and thus physical implications that resemble those resulting from the steric model developed by Kilic et al. [PRE 2007], albeit with differences that reflect the nonlinearity of the modified Poisson-Boltzmann equation. In addition, we develop a generalized condensed layer model that approximates both the steric and dielectric decrement models in the limits of strong electric fields and negligible surface conduction to obtain more physical insights into these models. We demonstrate that the mobility in both models asymptotically scales as the square root of the electric field at high fields, recovering the result of Bazant et al. [Adv. Colloid Interface Sci. 2009].

  4. Effects of model sensitivity and nonlinearity on nonlinear regression of ground water flow

    USGS Publications Warehouse

    Yager, R.M.

    2004-01-01

    Nonlinear regression is increasingly applied to the calibration of hydrologic models through the use of perturbation methods to compute the Jacobian or sensitivity matrix required by the Gauss-Newton optimization method. Sensitivities obtained by perturbation methods can be less accurate than those obtained by direct differentiation, however, and concern has arisen that the optimal parameter values and the associated parameter covariance matrix computed by perturbation could also be less accurate. Sensitivities computed by both perturbation and direct differentiation were applied in nonlinear regression calibration of seven ground water flow models. The two methods gave virtually identical optimum parameter values and covariances for the three models that were relatively linear and two of the models that were relatively nonlinear, but gave widely differing results for two other nonlinear models. The perturbation method performed better than direct differentiation in some regressions with the nonlinear models, apparently because approximate sensitivities computed for an interval yielded better search directions than did more accurately computed sensitivities for a point. The method selected to avoid overshooting minima on the error surface when updating parameter values with the Gauss-Newton procedure appears for nonlinear models to be more important than the method of sensitivity calculation in controlling regression convergence.

  5. Quantifying Temperature Effects on Fall Chinook Salmon

    SciTech Connect

    Jager, Yetta

    2011-11-01

    The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

  6. A Bayesian nonlinear mixed-effects disease progression model

    PubMed Central

    Kim, Seongho; Jang, Hyejeong; Wu, Dongfeng; Abrams, Judith

    2016-01-01

    A nonlinear mixed-effects approach is developed for disease progression models that incorporate variation in age in a Bayesian framework. We further generalize the probability model for sensitivity to depend on age at diagnosis, time spent in the preclinical state and sojourn time. The developed models are then applied to the Johns Hopkins Lung Project data and the Health Insurance Plan for Greater New York data using Bayesian Markov chain Monte Carlo and are compared with the estimation method that does not consider random-effects from age. Using the developed models, we obtain not only age-specific individual-level distributions, but also population-level distributions of sensitivity, sojourn time and transition probability. PMID:26798562

  7. Negative refraction, gain and nonlinear effects in hyperbolic metamaterials.

    PubMed

    Argyropoulos, Christos; Estakhri, Nasim Mohammadi; Monticone, Francesco; Alù, Andrea

    2013-06-17

    The negative refraction and evanescent-wave canalization effects supported by a layered metamaterial structure obtained by alternating dielectric and plasmonic layers is theoretically analyzed. By using a transmission-line analysis, we formulate a way to rapidly analyze the negative refraction operation for given available materials over a broad range of frequencies and design parameters, and we apply it to broaden the bandwidth of negative refraction. Our analytical model is also applied to explore the possibility of employing active layers for loss compensation. Nonlinear dielectrics can also be considered within this approach, and they are explored in order to add tunability to the optical response, realizing positive-to-zero-to-negative refraction at the same frequency, as a function of the input intensity. Our findings may lead to a better physical understanding and improvement of the performance of negative refraction and subwavelength imaging in layered metamaterials, paving the way towards the design of gain-assisted hyperlenses and tunable nonlinear imaging devices. PMID:23787691

  8. Study of the solution thermal conductivity effect on nonlinear refraction of colloidal gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sarkhosh, L.; Mansour, N.

    2015-06-01

    In nanoparticle colloidal systems, the thermal nonlinearity is affected by the thermal parameters of the surrounding solution. Having a low temperature gradient rate solution may be a key factor in producing high thermal nonlinear properties in colloids. In this manuscript, the effect of the thermal conductivity of the surrounding liquid environment on the thermal nonlinear refraction of gold nanoparticles (AuNPs) synthesized by laser ablation of a gold target in different solutions is investigated. Gold nanoparticles colloids have been fabricated by the nanosecond pulsed laser ablation of a pure gold plate in different liquid environments with a thermal conductivity range of 0.14-0.60 W mK-1 including cyclohexanone, castor oil, dimethyl sulfoxide, ethylene glycol, glycerin and water. The AuNPs colloids exhibit a UV-Vis absorption spectrum with a surface plasmon absorption peak at about 540  ±  20 nm. The thermal nonlinear optical responses of the gold colloids are measured using the Z-scan technique under low power CW laser irradiation at 532 nm near the surface plasmon peak of the nanoparticles. Our results show that the nonlinear refractive index of the nanoparticle colloids is considerably affected by the thermal conductivity of liquid medium. The largest nonlinear refractive index of -3.1  ×  10-7 cm2 W-1 is obtained for AuNP in cyclohexanone with the lowest thermal conductivity of 0.14 W mK-1 whereas the lowest one of -0.1  ×  10-7 cm2 W-1 is obtained for AuNP in water with the highest thermal conductivity of 0.60 W mK-1. This study shows that the nonlinear refractive index value of colloids can be controlled by the thermal conductivity of the used liquid’s environment. This allows us to design low threshold optical limiters by choosing a solution with low thermal conductivity for colloidal nanoparticles.

  9. Efficient second-harmonic generation of a broadband radiation by control of the temperature distribution along a nonlinear crystal.

    PubMed

    Regelskis, K; Želudevičius, J; Gavrilin, N; Račiukaitis, G

    2012-12-17

    We demonstrate an efficient technique for the second harmonic generation (SHG) of the broadband radiation based on the temperature gradient along a nonlinear crystal. The characteristics of Type I non-critical phase-matched SHG of broadband radiation in the LiB(3)O(5) (LBO) crystal with the temperature gradient imposed along the crystal were investigated both numerically and experimentally. The frequency doubling efficiency of the broadband pulsed fiber laser radiation as high as 68% has been demonstrated. PMID:23263092

  10. Temperature Effects and Compensation-Control Methods

    PubMed Central

    Xia, Dunzhu; Chen, Shuling; Wang, Shourong; Li, Hongsheng

    2009-01-01

    In the analysis of the effects of temperature on the performance of microgyroscopes, it is found that the resonant frequency of the microgyroscope decreases linearly as the temperature increases, and the quality factor changes drastically at low temperatures. Moreover, the zero bias changes greatly with temperature variations. To reduce the temperature effects on the microgyroscope, temperature compensation-control methods are proposed. In the first place, a BP (Back Propagation) neural network and polynomial fitting are utilized for building the temperature model of the microgyroscope. Considering the simplicity and real-time requirements, piecewise polynomial fitting is applied in the temperature compensation system. Then, an integral-separated PID (Proportion Integration Differentiation) control algorithm is adopted in the temperature control system, which can stabilize the temperature inside the microgyrocope in pursuing its optimal performance. Experimental results reveal that the combination of microgyroscope temperature compensation and control methods is both realizable and effective in a miniaturized microgyroscope prototype. PMID:22408509

  11. Spurious effects of analog-to-digital conversion nonlinearities on radar range-Doppler maps

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.; Dubbert, D. F.; Tise, B. L.

    2015-05-01

    High-performance radar operation, particularly Ground Moving Target Indicator (GMTI) radar modes, are very sensitive to anomalous effects of system nonlinearities. System nonlinearities generate harmonic spurs that at best degrade, and at worst generate false target detections. One significant source of nonlinear behavior is the Analog to Digital Converter (ADC). One measure of its undesired nonlinearity is its Integral Nonlinearity (INL) specification. We examine in this paper the relationship of INL to radar performance; in particular its manifestation in a range-Doppler map or image.

  12. Effects of Wave Nonlinearity on Wave Attenuation by Vegetation

    NASA Astrophysics Data System (ADS)

    Wu, W. C.; Cox, D. T.

    2014-12-01

    The need to explore sustainable approaches to maintain coastal ecological systems has been widely recognized for decades and is increasingly important due to global climate change and patterns in coastal population growth. Submerged aquatic vegetation and emergent vegetation in estuaries and shorelines can provide ecosystem services, including wave-energy reduction and erosion control. Idealized models of wave-vegetation interaction often assume rigid, vertically uniform vegetation under the action of waves described by linear wave theory. A physical model experiment was conducted to investigate the effects of wave nonlinearity on the attenuation of random waves propagating through a stand of uniform, emergent vegetation in constant water depth. The experimental conditions spanned a relative water depth from near shallow to near deep water waves (0.45 < kh <1.49) and wave steepness from linear to nonlinear conditions (0.03 < ak < 0.18). The wave height to water depth ratios were in the range 0.12 < Hs/h < 0.34, and the Ursell parameter was in the range 2 < Ur < 68. Frictional losses from the side wall and friction were measured and removed from the wave attenuation in the vegetated cases to isolate the impact of vegetation. The normalized wave height attenuation decay for each case was fit to the decay equation of Dalrymple et al. (1984) to determine the damping factor, which was then used to calculate the bulk drag coefficients CD. This paper shows that the damping factor is dependent on the wave steepness ak across the range of relative water depths from shallow to deep water and that the damping factor can increase by a factor of two when the value of ak approximately doubles. In turn, this causes the drag coefficient CD to decrease on average by 23%. The drag coefficient can be modeled using the Keulegan-Carpenter number using the horizontal orbital wave velocity estimate from linear wave theory as the characteristic velocity scale. Alternatively, the Ursell

  13. Nonlinear model for thermal effects in free-electron lasers

    SciTech Connect

    Peter, E. Endler, A. Rizzato, F. B.

    2014-11-15

    In the present work, we extend results of a previous paper [Peter et al., Phys. Plasmas 20, 12 3104 (2013)] and develop a semi-analytical model to account for thermal effects on the nonlinear dynamics of the electron beam in free-electron lasers. We relax the condition of a cold electron beam but still use the concept of compressibility, now associated with a warm beam model, to evaluate the time scale for saturation and the peak laser intensity in high-gain regimes. Although vanishing compressibilites and the associated divergent densities are absent in warm models, a series of discontinuities in the electron density precede the saturation process. We show that full wave-particle simulations agree well with the predictions of the model.

  14. Dispersion and nonlinear effects in OFDM-RoF system

    NASA Astrophysics Data System (ADS)

    Alhasson, Bader H.; Bloul, Albe M.; Matin, M.

    2010-08-01

    The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.

  15. Nonlinear effects in the correlation of tracks and covariance propagation

    NASA Astrophysics Data System (ADS)

    Sabol, C.; Hill, K.; Alfriend, K.; Sukut, T.

    2013-03-01

    Even though there are methods for the nonlinear propagation of the covariance the propagation of the covariance in current operational programs is based on the state transition matrix of the 1st variational equations, thus it is a linear propagation. If the measurement errors are zero mean Gaussian, the orbit errors, statistically represented by the covariance, are Gaussian. When the orbit errors become too large they are no longer Gaussian and not represented by the covariance. One use of the covariance is the association of uncorrelated tracks (UCTs). A UCT is an object tracked by a space surveillance system that does not correlate to another object in the space object data base. For an object to be entered into the data base three or more tracks must be correlated. Associating UCTs is a major challenge for a space surveillance system since every object entered into the space object catalog begins as a UCT. It has been proved that if the orbit errors are Gaussian, the error ellipsoid represented by the covariance is the optimum association volume. When the time between tracks becomes large, hours or even days, the orbit errors can become large and are no longer Gaussian, and this has a negative effect on the association of UCTs. This paper further investigates the nonlinear effects on the accuracy of the covariance for use in correlation. The use of the best coordinate system and the unscented Kalman Filter (UKF) for providing a more accurate covariance are investigated along with assessing how these approaches would result in the ability to correlate tracks that are further separated in time.

  16. Finite ion temperature effects on scrape-off layer turbulence

    NASA Astrophysics Data System (ADS)

    Mosetto, Annamaria; Halpern, Federico D.; Jolliet, Sébastien; Loizu, Joaquim; Ricci, Paolo

    2015-01-01

    Ion temperature has been measured to be of the same order, or higher, than the electron temperature in the scrape-off layer (SOL) of tokamak machines, questioning its importance in determining the SOL turbulent dynamics. Here, we present a detailed analysis of finite ion temperature effects on the linear SOL instabilities, such as the resistive and inertial branches of drift waves and ballooning modes, and a discussion of the properties of the ion temperature gradient (ITG) instability in the SOL, identifying the η i = L n / L Ti threshold necessary to drive the mode unstable. The non-linear analysis of the SOL turbulent regimes by means of the gradient removal theory is performed, revealing that the ITG plays a negligible role in limited SOL discharges, since the ion temperature gradient is generally below the threshold for driving the mode unstable. It follows that the resistive ballooning mode is the prevailing turbulence regime for typical limited SOL parameters. The theoretical estimates are confirmed by non-linear flux-driven simulations of SOL plasma dynamics.

  17. Finite ion temperature effects on scrape-off layer turbulence

    SciTech Connect

    Mosetto, Annamaria Halpern, Federico D.; Jolliet, Sébastien; Loizu, Joaquim; Ricci, Paolo

    2015-01-15

    Ion temperature has been measured to be of the same order, or higher, than the electron temperature in the scrape-off layer (SOL) of tokamak machines, questioning its importance in determining the SOL turbulent dynamics. Here, we present a detailed analysis of finite ion temperature effects on the linear SOL instabilities, such as the resistive and inertial branches of drift waves and ballooning modes, and a discussion of the properties of the ion temperature gradient (ITG) instability in the SOL, identifying the η{sub i}=L{sub n}/L{sub T{sub i}} threshold necessary to drive the mode unstable. The non-linear analysis of the SOL turbulent regimes by means of the gradient removal theory is performed, revealing that the ITG plays a negligible role in limited SOL discharges, since the ion temperature gradient is generally below the threshold for driving the mode unstable. It follows that the resistive ballooning mode is the prevailing turbulence regime for typical limited SOL parameters. The theoretical estimates are confirmed by non-linear flux-driven simulations of SOL plasma dynamics.

  18. Nonlinear time series techniques to characterize wind and temperature intermittency above a crop canopy.

    NASA Astrophysics Data System (ADS)

    Moratiel, Ruben; Duran, Jose M.; Tarquis, Ana Maria

    2010-05-01

    One important problem for understanding the vegetation-atmosphere interactions in an agricultural field is the turbulent exchange of scalar and momentum in the atmospheric boundary layer - above and within the crop canopy. Air temperature time series within and above canopies reveal ramp patterns associated with coherent eddies that are responsible for most of the vertical transport of sensible heat. Van Atta (1977) used a simple step-change ramp model to analyze the coherent part of air temperature structure functions. However, some works reveal that even without linearization his model cannot account for the observed decrease of the cubic structure function for small time lag (Wenjun Chen et al., 2004). Using considerations of scale effect and spatial variability of temperature and wind , the theory of multifractal processes, conservative or not, is introduced as a strategy for characterizing structure functions of temperature and vertical wind velocity at different scales of observation. We will show that kurtosis and phase coherence index characterize the intermittent nature of both series measured by a micrometeorological tower at different scenarios above the crop canopy. References Van Atta, C.W. (1977). Effect of coherent structures on structure functions of temperature in the atmospheric boundary later. Arch. Of Mech. 29, 161-171. Wenjun Chen, Novak, M.D., Black, T.A. and Xuhui Lee (2004). Coherent eddies and temperature structure functions for three contrasting surfaces. Part I: Ramp model with finite microfront time. Boundary-Layer Meteorology, 84(1), 99-124.

  19. Research and development program for non-linear structural modeling with advanced time-temperature dependent constitutive relationships

    NASA Technical Reports Server (NTRS)

    Walker, K. P.

    1981-01-01

    Results of a 20-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are reported. The program included: (1) the evaluation of a number of viscoplastic constitutive models in the published literature; (2) incorporation of three of the most appropriate constitutive models into the MARC nonlinear finite element program; (3) calibration of the three constitutive models against experimental data using Hastelloy-X material; and (4) application of the most appropriate constitutive model to a three dimensional finite element analysis of a cylindrical combustor liner louver test specimen to establish the capability of the viscoplastic model to predict component structural response.

  20. Higher order nonlinear equations for the dust-acoustic waves in a dusty plasma with two temperature-ions and nonextensive electrons

    SciTech Connect

    Emamuddin, M.; Yasmin, S.; Mamun, A. A.

    2013-04-15

    The nonlinear propagation of dust-acoustic waves in a dusty plasma whose constituents are negatively charged dust, Maxwellian ions with two distinct temperatures, and electrons following q-nonextensive distribution, is investigated by deriving a number of nonlinear equations, namely, the Korteweg-de-Vries (K-dV), the modified Korteweg-de-Vries (mK-dV), and the Gardner equations. The basic characteristics of the hump (positive potential) and dip (negative potential) shaped dust-acoustic (DA) Gardner solitons are found to exist beyond the K-dV limit. The effects of two temperature ions and electron nonextensivity on the basic features of DA K-dV, mK-dV, and Gardner solitons are also examined. It has been observed that the DA Gardner solitons exhibit negative (positive) solitons for qq{sub c}) (where q{sub c} is the critical value of the nonextensive parameter q). The implications of our results in understanding the localized nonlinear electrostatic perturbations existing in stellar polytropes, quark-gluon plasma, protoneutron stars, etc. (where ions with different temperatures and nonextensive electrons exist) are also briefly addressed.

  1. Investigation of the room-temperature solid-state reactions leading to ZnS nanotubes and the third-order nonlinear optical properties of the nanotubes obtained

    NASA Astrophysics Data System (ADS)

    Zhou, Tao-Yu; Song, Ying-Lin; Hong, Jian-Ming; Xin, Xin-Quan

    2005-04-01

    The room-temperature solid-state reactions occurring in the preparation of nanotubes of zinc sulfide are further investigated by x-ray powder diffractometry (XRD) and infra-red (IR) spectrometry measurements, and the nanotube ZnS product obtained is measured by Z-scan technology to investigate the third-order nonlinear optical (NLO) properties. The XRD result suggests that the reactions leading to the formation of the nanotubules have occurred through reaction-controlled to growth-controlled procedures, and the IR result indicates that the procedures involve a coordination effect of the additive DABCO as ligand on the reactant. The result of NLO measurements shows that the nanotube ZnS products obtained have the behaviours of the third-order nonlinear optical properties of both NLO absorption and NLO refraction with self-focusing effects.

  2. Self-modulation of nonlinear waves in a weakly magnetized relativistic electron-positron plasma with temperature.

    PubMed

    Asenjo, Felipe A; Borotto, Felix A; Chian, Abraham C-L; Muñoz, Víctor; Valdivia, J Alejandro; Rempel, Erico L

    2012-04-01

    We develop a nonlinear theory for self-modulation of a circularly polarized electromagnetic wave in a relativistic hot weakly magnetized electron-positron plasma. The case of parallel propagation along an ambient magnetic field is considered. A nonlinear Schrödinger equation is derived for the complex wave amplitude of a self-modulated wave packet. We show that the maximum growth rate of the modulational instability decreases as the temperature of the pair plasma increases. Depending on the initial conditions, the unstable wave envelope can evolve nonlinearly to either periodic wave trains or solitary waves. This theory has application to high-energy astrophysics and high-power laser physics. PMID:22680585

  3. Nonlinear optical effects in colloidal carbon nanohorns—a new optical limiting material

    NASA Astrophysics Data System (ADS)

    Dengler, Stefanie; Muller, Olivier; Hege, Cordula; Eberle, Bernd

    2016-09-01

    Many carbon based nanomaterials exhibit nonlinear optical response over a large wavelength range when irradiated with intense laser light what makes them promising candidates for optical limiting purposes. Besides nonlinear absorption some of these well studied nanostructures like carbon nanotubes or carbon black owe their prominent limiting efficiency particularly to induced nonlinear scattering. In this paper, our investigations on carbon nanohorns are presented—a new and very promising nonlinear optical material. It offers excellent properties like a low optical limiting threshold and a high nonlinear attenuation when tested with nanosecond laser pulses at wavelengths of 532 nm or 1064 nm. At moderate irradiation levels near the nonlinear threshold our measurements performed on colloidal carbon nanohorns reveal broadband nonlinear absorption as the dominant optical limiting effect. Towards higher irradiation levels significant nonlinear scattering takes place as a secondary process. In contrast to 532 nm, at 1064 nm nonlinear scattering is less strong even at high irradiation levels and the nonlinear response is dominated by nonlinear absorption.

  4. Nonlinear bending-torsional vibration and stability of rotating, pretwisted, preconed blades including Coriolis effects

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.

    1986-01-01

    The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by comparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.

  5. Nonlinear vibration and stability of rotating, pretwisted, preconed blades including Coriolis effects

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.

    1987-01-01

    The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by conparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.

  6. Imaging the anisotropic nonlinear meissner effect in nodal YBa2 Cu3 O7-δ thin-film superconductors.

    PubMed

    Zhuravel, Alexander P; Ghamsari, B G; Kurter, C; Jung, P; Remillard, S; Abrahams, J; Lukashenko, A V; Ustinov, Alexey V; Anlage, Steven M

    2013-02-22

    We have directly imaged the anisotropic nonlinear Meissner effect in an unconventional superconductor through the nonlinear electrodynamic response of both (bulk) gap nodes and (surface) Andreev bound states. A superconducting thin film is patterned into a compact self-resonant spiral structure, excited near resonance in the radio-frequency range, and scanned with a focused laser beam perturbation. At low temperatures, direction-dependent nonlinearities in the reactive and resistive properties of the resonator create photoresponse that maps out the directions of nodes, or of bound states associated with these nodes, on the Fermi surface of the superconductor. The method is demonstrated on the nodal superconductor YBa2Cu3O7-δ and the results are consistent with theoretical predictions for the bulk and surface contributions. PMID:23473189

  7. Explanation of the Inverse Doppler Effect Observed in Nonlinear Transmission Lines

    SciTech Connect

    Kozyrev, Alexander B.; Weide, Daniel W. van der

    2005-05-27

    The theory of the inverse Doppler effect recently observed in magnetic nonlinear transmission lines is developed. We explain the crucial role of the backward spatial harmonic in the occurrence of an inverse Doppler effect and draw analogies of the magnetic nonlinear transmission line to the backward wave oscillator.

  8. Modal contributions and effects of spurious poles in nonlinear subspace identification

    NASA Astrophysics Data System (ADS)

    Marchesiello, S.; Fasana, A.; Garibaldi, L.

    2016-06-01

    Stabilisation diagrams have become a standard tool in the linear system identification, due to the capability of reducing the user interaction during the parameter extraction process. Their use in the presence of nonlinearity was recently introduced and it was demonstrated to be effective even in presence of non-smooth nonlinearities and high modal density. However, some variability of the identification results was reported, in particular concerning the quantification of the nonlinear effects, because of the presence of spurious modes, due to an over-estimation of the system order. In this paper the impact of spurious poles on the nonlinear subspace identification is investigated and some modal decoupling tools are introduced, which make it possible to identify modal contributions of physical poles on the nonlinear dynamics. An experimental identification is then conducted on a multi-degree-of-freedom system with a local nonlinearity and the significant improvements of the estimates obtained by the proposed approach are highlighted.

  9. Quantum noise effects with Kerr-nonlinearity enhancement in coupled gain-loss waveguides

    NASA Astrophysics Data System (ADS)

    He, Bing; Yan, Shu-Bin; Wang, Jing; Xiao, Min

    2015-05-01

    It is generally difficult to study the dynamical properties of a quantum system with both inherent quantum noises and nonperturbative nonlinearity. Due to the possibly drastic intensity increase of an input coherent light in gain-loss waveguide couplers with parity-time (PT ) symmetry, the Kerr effect from a nonlinearity added into the system can be greatly enhanced and is expected to create macroscopic entangled states of the output light fields with huge photon numbers. Meanwhile, quantum noises also coexist with the amplification and dissipation of the light fields. Under the interplay between the quantum noises and nonlinearity, the quantum dynamical behaviors of the systems become rather complicated. However, the important quantum noise effects have been mostly neglected in previous studies about nonlinear PT -symmetric systems. Here we present a solution to this nonperturbative quantum nonlinear problem, showing the real-time evolution of the system observables. The enhanced Kerr nonlinearity is found to give rise to a previously unknown decoherence effect that is irrelevant to the quantum noises and imposes a limit on the emergence of macroscopic nonclassicality. In contrast to what happens in linear systems, the quantum noises exert significant impact on the system dynamics and can create nonclassical light field states in conjunction with the enhanced Kerr nonlinearity. This study on the noise involved in quantum nonlinear dynamics of coupled gain-loss waveguides can help to better understand the quantum noise effects in many nonlinear systems.

  10. Characterizing the relationship between temperature and mortality in tropical and subtropical cities: a distributed lag non-linear model analysis in Hue, Viet Nam, 2009–2013

    PubMed Central

    Dang, Tran Ngoc; Seposo, Xerxes T.; Duc, Nguyen Huu Chau; Thang, Tran Binh; An, Do Dang; Hang, Lai Thi Minh; Long, Tran Thanh; Loan, Bui Thi Hong; Honda, Yasushi

    2016-01-01

    Background The relationship between temperature and mortality has been found to be U-, V-, or J-shaped in developed temperate countries; however, in developing tropical/subtropical cities, it remains unclear. Objectives Our goal was to investigate the relationship between temperature and mortality in Hue, a subtropical city in Viet Nam. Design We collected daily mortality data from the Vietnamese A6 mortality reporting system for 6,214 deceased persons between 2009 and 2013. A distributed lag non-linear model was used to examine the temperature effects on all-cause and cause-specific mortality by assuming negative binomial distribution for count data. We developed an objective-oriented model selection with four steps following the Akaike information criterion (AIC) rule (i.e. a smaller AIC value indicates a better model). Results High temperature-related mortality was more strongly associated with short lags, whereas low temperature-related mortality was more strongly associated with long lags. The low temperatures increased risk in all-category mortality compared to high temperatures. We observed elevated temperature-mortality risk in vulnerable groups: elderly people (high temperature effect, relative risk [RR]=1.42, 95% confidence interval [CI]=1.11–1.83; low temperature effect, RR=2.0, 95% CI=1.13–3.52), females (low temperature effect, RR=2.19, 95% CI=1.14–4.21), people with respiratory disease (high temperature effect, RR=2.45, 95% CI=0.91–6.63), and those with cardiovascular disease (high temperature effect, RR=1.6, 95% CI=1.15–2.22; low temperature effect, RR=1.99, 95% CI=0.92–4.28). Conclusions In Hue, the temperature significantly increased the risk of mortality, especially in vulnerable groups (i.e. elderly, female, people with respiratory and cardiovascular diseases). These findings may provide a foundation for developing adequate policies to address the effects of temperature on health in Hue City. PMID:26781954

  11. Temperature Dependence Of Single-Event Effects

    NASA Technical Reports Server (NTRS)

    Coss, James R.; Nichols, Donald K.; Smith, Lawrence S.; Huebner, Mark A.; Soli, George A.

    1990-01-01

    Report describes experimental study of effects of temperature on vulnerability of integrated-circuit memories and other electronic logic devices to single-event effects - spurious bit flips or latch-up in logic state caused by impacts of energetic ions. Involved analysis of data on 14 different device types. In most cases examined, vulnerability to these effects increased or remain constant with temperature.

  12. Effects of nonlinear damping in flexible space structures

    NASA Technical Reports Server (NTRS)

    Hu, Anren; Taylor, Lawrence W.

    1988-01-01

    The classical Krylov-Bogoliubov "averaging" technique is used to study a class of nonlinear damping models, for which the damping force is proportional to the product of positive integer or fractional power of absolute values of displacement and that of velocity. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on damping ratio, but also on the initial amplitude, the time to measure the response, frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce energy of the system as well as to pass energy to higher modes. Experimental evidence such as in Spacecraft Control Laboratory Experiment seems to support the need for nonlinear models.

  13. Nonlinear viscoelastic characterization of polycarbonate

    NASA Technical Reports Server (NTRS)

    Caplan, E. S.; Brinson, H. F.

    1982-01-01

    Uniaxial tensile creep and recovery data from polycarbonate at six temperatures and six stress levels are analyzed for nonlinear viscoelastic constitutive modeling. A theory to account for combined effects of two or more accelerating factors is presented.

  14. Nonlinear dynamics of wind waves: multifractal phase/time effects

    NASA Astrophysics Data System (ADS)

    Mellen, R. H.; Leykin, I. A.

    In addition to the bispectral coherence method, phase/time analysis of analytic signals is another promising avenue for the investigation of phase effects in wind waves. Frequency spectra of phase fluctuations obtained from both sea and laboratory experiments follow an F-β power law over several decades, suggesting that a fractal description is appropriate. However, many similar natural phenomena have been shown to be multifractal. Universal multifractals are quantified by two additional parameters: the Lévy index 0 < α < 2 for the type of multifractal and the co-dimension 0 < C1 < 1 for intermittence. The three parameters are a full statistical measure the nonlinear dynamics. Analysis of laboratory flume data is reported here and the results indicate that the phase fluctuations are 'hard multifractal' (α > 1). The actual estimate is close to the limiting value α = 2, which is consistent with Kolmogorov's lognormal model for turbulent fluctuations. Implications for radar and sonar backscattering from the sea surface are briefly considered.

  15. Nonlinear fluctuation effects in dynamics of freely suspended films

    NASA Astrophysics Data System (ADS)

    Kats, E. I.; Lebedev, V. V.

    2015-03-01

    Long-scale dynamic fluctuation phenomena in freely suspended films is analyzed. We consider isotropic films that, say, can be pulled from bulk smectic-A liquid crystals. The key feature of such objects is possibility of bending deformations of the film. The bending (also known as flexular) mode turns out to be anomalously weakly attenuated. In the harmonic approximation there is no viscous-like damping of the bending mode, proportional to q2 (q is the wave vector of the mode), since it is forbidden by the rotational symmetry. Therefore, the bending mode is strongly affected by nonlinear dynamic fluctuation effects. We calculate the dominant fluctuation contributions to the damping of the bending mode due to its coupling to the inplane viscous mode, which restores the viscous-like q2 damping of the bending mode. Our calculations are performed in the framework of the perturbation theory where the coupling of the modes is assumed to be small, then the bending mode damping is relatively weak. We discuss our results in the context of existing experiments and numeric simulations of the freely suspended films and propose possible experimental observations of our predictions.

  16. Stochastic nonlinear mixed effects: a metformin case study.

    PubMed

    Matzuka, Brett; Chittenden, Jason; Monteleone, Jonathan; Tran, Hien

    2016-02-01

    In nonlinear mixed effect (NLME) modeling, the intra-individual variability is a collection of errors due to assay sensitivity, dosing, sampling, as well as model misspecification. Utilizing stochastic differential equations (SDE) within the NLME framework allows the decoupling of the measurement errors from the model misspecification. This leads the SDE approach to be a novel tool for model refinement. Using Metformin clinical pharmacokinetic (PK) data, the process of model development through the use of SDEs in population PK modeling was done to study the dynamics of absorption rate. A base model was constructed and then refined by using the system noise terms of the SDEs to track model parameters and model misspecification. This provides the unique advantage of making no underlying assumptions about the structural model for the absorption process while quantifying insufficiencies in the current model. This article focuses on implementing the extended Kalman filter and unscented Kalman filter in an NLME framework for parameter estimation and model development, comparing the methodologies, and illustrating their challenges and utility. The Kalman filter algorithms were successfully implemented in NLME models using MATLAB with run time differences between the ODE and SDE methods comparable to the differences found by Kakhi for their stochastic deconvolution. PMID:26585899

  17. Nonlinear effects in a model of a thermoacoustic refrigerator driven by a loudspeaker

    NASA Astrophysics Data System (ADS)

    Fan, Li; Chen, Zhe; Zhu, Jun-jie; Ding, Jin; Xia, Jie; Zhang, Shu-yi; Zhang, Hui; Ge, Huan

    2015-03-01

    It is known that acoustic nonlinear effects in thermoacoustic refrigerators are unfavorable to the performance because they transfer the acoustic energy of the fundamental wave to harmonic waves, while only the former is useful for refrigeration. To study the nonlinear effects in loudspeaker-drive thermoacoustic refrigerators, we measure the acoustic performance in a coupling system composed of a resonant pipe driven by an electrodynamic loudspeaker via an inverse horn. It is found that the nonlinear effects increase both the acoustic pressure of fundamental wave in the resonant pipe and the electroacoustic transfer efficiency of the system. Then, a theoretical model is established to study the nonlinear effects in the coupling system, in which the nonlinearities arising from the loudspeaker, inverse horn, and resonant pipe are taken into account, and the simulated results are used to explain the experimental phenomena.

  18. Nonlinear response time-dependent density functional theory combined with the effective fragment potential method

    SciTech Connect

    Zahariev, Federico; Gordon, Mark S.

    2014-05-14

    This work presents an extension of the linear response TDDFT/EFP method to the nonlinear-response regime together with the implementation of nonlinear-response TDDFT/EFP in the quantum-chemistry computer package GAMESS. Included in the new method is the ability to calculate the two-photon absorption cross section and to incorporate solvent effects via the EFP method. The nonlinear-response TDDFT/EFP method is able to make correct qualitative predictions for both gas phase values and aqueous solvent shifts of several important nonlinear properties.

  19. Effect of the counter cation on the third order nonlinearity in anionic Au dithiolene complexes

    NASA Astrophysics Data System (ADS)

    Iliopoulos, K.; El-Ghayoury, A.; Derkowska, B.; Ranganathan, A.; Batail, P.; Gindre, D.; Sahraoui, B.

    2012-12-01

    In this work, we present the third order nonlinear optical investigation of two gold complexes, which differ by the nature of the counter cations. The impact of the different design in the architecture through a set of hydrogen bonds in the case of Au-Mel of the systems on the nonlinearity has been studied by means of the Z-scan setup under 532 nm, 30 ps laser excitation, allowing for the determination of the nonlinear absorption and refraction of the samples. Significant modification of the nonlinear optical response between the two metal complexes has been found suggesting a clear effect of the counter cation.

  20. Nonlinear regression method for estimating neutral wind and temperature from Fabry-Perot interferometer data.

    PubMed

    Harding, Brian J; Gehrels, Thomas W; Makela, Jonathan J

    2014-02-01

    The Earth's thermosphere plays a critical role in driving electrodynamic processes in the ionosphere and in transferring solar energy to the atmosphere, yet measurements of thermospheric state parameters, such as wind and temperature, are sparse. One of the most popular techniques for measuring these parameters is to use a Fabry-Perot interferometer to monitor the Doppler width and breadth of naturally occurring airglow emissions in the thermosphere. In this work, we present a technique for estimating upper-atmospheric winds and temperatures from images of Fabry-Perot fringes captured by a CCD detector. We estimate instrument parameters from fringe patterns of a frequency-stabilized laser, and we use these parameters to estimate winds and temperatures from airglow fringe patterns. A unique feature of this technique is the model used for the laser and airglow fringe patterns, which fits all fringes simultaneously and attempts to model the effects of optical defects. This technique yields accurate estimates for winds, temperatures, and the associated uncertainties in these parameters, as we show with a Monte Carlo simulation. PMID:24514183

  1. Nonlinear elastic effects in phase field crystal and amplitude equations: Comparison to ab initio simulations of bcc metals and graphene

    NASA Astrophysics Data System (ADS)

    Hüter, Claas; Friák, Martin; Weikamp, Marc; Neugebauer, Jörg; Goldenfeld, Nigel; Svendsen, Bob; Spatschek, Robert

    2016-06-01

    We investigate nonlinear elastic deformations in the phase field crystal model and derived amplitude equation formulations. Two sources of nonlinearity are found, one of them is based on geometric nonlinearity expressed through a finite strain tensor. This strain tensor is based on the inverse right Cauchy-Green deformation tensor and correctly describes the strain dependence of the stiffness for anisotropic and isotropic behavior. In isotropic one- and two-dimensional situations, the elastic energy can be expressed equivalently through the left deformation tensor. The predicted isotropic low-temperature nonlinear elastic effects are directly related to the Birch-Murnaghan equation of state with bulk modulus derivative K'=4 for bcc. A two-dimensional generalization suggests K2D '=5 . These predictions are in agreement with ab initio results for large strain bulk deformations of various bcc elements and graphene. Physical nonlinearity arises if the strain dependence of the density wave amplitudes is taken into account and leads to elastic weakening. For anisotropic deformation, the magnitudes of the amplitudes depend on their relative orientation to the applied strain.

  2. Effects of temperature on mortality in Hong Kong: a time series analysis

    NASA Astrophysics Data System (ADS)

    Yi, Wen; Chan, Albert P. C.

    2015-07-01

    Although interest in assessing the impacts of hot temperature and mortality in Hong Kong has increased, less evidence on the effect of cold temperature on mortality is available. We examined both the effects of heat and cold temperatures on daily mortality in Hong Kong for the last decade (2002-2011). A quasi-Poisson model combined with a distributed lag non-linear model was used to assess the non-linear and delayed effects of temperatures on cause-specific and age-specific mortality. Non-linear effects of temperature on mortality were identified. The relative risk of non-accidental mortality associated with cold temperature (11.1 °C, 1st percentile of temperature) relative to 19.4 °C (25th percentile of temperature) was 1.17 (95 % confidence interval (CI): 1.04, 1.29) for lags 0-13. The relative risk of non-accidental mortality associated with high temperature (31.5 °C, 99th percentile of temperature) relative to 27.8 °C (75th percentile of temperature) was 1.09 (95 % CI: 1.03, 1.17) for lags 0-3. In Hong Kong, extreme cold and hot temperatures increased the risk of mortality. The effect of cold lasted longer and greater than that of heat. People older than 75 years were the most vulnerable group to cold temperature, while people aged 65-74 were the most vulnerable group to hot temperature. Our findings may have implications for developing intervention strategies for extreme cold and hot temperatures.

  3. Effects of temperature on mortality in Hong Kong: a time series analysis.

    PubMed

    Yi, Wen; Chan, Albert P C

    2015-07-01

    Although interest in assessing the impacts of hot temperature and mortality in Hong Kong has increased, less evidence on the effect of cold temperature on mortality is available. We examined both the effects of heat and cold temperatures on daily mortality in Hong Kong for the last decade (2002-2011). A quasi-Poisson model combined with a distributed lag non-linear model was used to assess the non-linear and delayed effects of temperatures on cause-specific and age-specific mortality. Non-linear effects of temperature on mortality were identified. The relative risk of non-accidental mortality associated with cold temperature (11.1 °C, 1st percentile of temperature) relative to 19.4 °C (25th percentile of temperature) was 1.17 (95% confidence interval (CI): 1.04, 1.29) for lags 0-13. The relative risk of non-accidental mortality associated with high temperature (31.5 °C, 99th percentile of temperature) relative to 27.8 °C (75th percentile of temperature) was 1.09 (95% CI: 1.03, 1.17) for lags 0-3. In Hong Kong, extreme cold and hot temperatures increased the risk of mortality. The effect of cold lasted longer and greater than that of heat. People older than 75 years were the most vulnerable group to cold temperature, while people aged 65-74 were the most vulnerable group to hot temperature. Our findings may have implications for developing intervention strategies for extreme cold and hot temperatures. PMID:25179530

  4. Finite Element Based Stress Analysis of Graphite Component in High Temperature Gas Cooled Reactor Core Using Linear and Nonlinear Irradiation Creep Models

    SciTech Connect

    Mohanty, Subhasish; Majumdar, Saurindranath

    2015-01-01

    Irradiation creep plays a major role in the structural integrity of the graphite components in high temperature gas cooled reactors. Finite element procedures combined with a suitable irradiation creep model can be used to simulate the time-integrated structural integrity of complex shapes, such as the reactor core graphite reflector and fuel bricks. In the present work a comparative study was undertaken to understand the effect of linear and nonlinear irradiation creep on results of finite element based stress analysis. Numerical results were generated through finite element simulations of a typical graphite reflector.

  5. Compensating for dispersion and the nonlinear Kerr effect without phase conjugation.

    PubMed

    Paré, C; Villeneuve, A; Bélanger, P A; Doran, N J

    1996-04-01

    We propose the use of a dispersive medium with a negative nonlinear refractive-index coefficient as a way to compensate for the dispersion and the nonlinear effects resulting from pulse propagation in an optical fiber. The undoing of pulse interaction might allow for increased bit rates. PMID:19865438

  6. Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable

    ERIC Educational Resources Information Center

    du Toit, Stephen H. C.; Cudeck, Robert

    2009-01-01

    A method is presented for marginal maximum likelihood estimation of the nonlinear random coefficient model when the response function has some linear parameters. This is done by writing the marginal distribution of the repeated measures as a conditional distribution of the response given the nonlinear random effects. The resulting distribution…

  7. Finite sample effect in temperature gradient focusing.

    PubMed

    Lin, Hao; Shackman, Jonathan G; Ross, David

    2008-06-01

    Temperature gradient focusing (TGF) is a new and promising equilibrium gradient focusing method which can provide high concentration factors for improved detection limits in combination with high-resolution separation. In this technique, temperature-dependent buffer chemistry is employed to generate a gradient in the analyte electrophoretic velocity. By the application of a convective counter-flow, a zero-velocity point is created within a microchannel, at which location the ionic analytes accumulate or focus. In general, the analyte concentration is small when compared with buffer ion concentrations, such that the focusing mechanism works in the ideal, linearized regime. However, this presumption may at times be violated due to significant sample concentration growth or the use of a low-concentration buffer. Under these situations the sample concentration becomes non-negligible and can induce strong nonlinear interactions with buffer ions, which eventually lead to peak shifting and distortion, and the loss of detectability and resolution. In this work we combine theory, simulation, and experimental data to present a detailed study on nonlinear sample-buffer interactions in TGF. One of the key results is the derivation of a generalized Kohlrausch regulating function (KRF) that is valid for systems in which the electrophoretic mobilities are not constant but vary spatially. This generalized KRF greatly facilitates analysis, allowing reduction of the problem to a single equation describing sample concentration evolution, and is applicable to other problems with heterogeneous electrophoretic mobilities. Using this sample evolution equation we have derived an understanding of the nonlinear peak deformation phenomenon observed experimentally in TGF. We have used numerical simulations to validate our theory and to quantitatively predict TGF. Our simulation results demonstrate excellent agreement with experimental data, and also indicate that the proper inclusion of

  8. Computing alignment and orientation of non-linear molecules at room temperatures using random phase wave functions

    NASA Astrophysics Data System (ADS)

    Kallush, Shimshon; Fleischer, Sharly; Ultrafast terahertz molecular dynamics Collaboration

    2015-05-01

    Quantum simulation of large open systems is a hard task that demands huge computation and memory costs. The rotational dynamics of non-linear molecules at high-temperature under external fields is such an example. At room temperature, the initial density matrix populates ~ 104 rotational states, and the whole coupled Hilbert space can reach ~ 106 states. Simulation by neither the direct density matrix nor the full basis set of populated wavefunctions is impossible. We employ the random phase wave function method to represent the initial state and compute several time dependent and independent observables such as the orientation and the alignment of the molecules. The error of the method was found to scale as N- 1 / 2, where N is the number of wave function realizations employed. Scaling vs. the temperature was computed for weak and strong fields. As expected, the convergence of the method increase rapidly with the temperature and the field intensity.

  9. Intrinsic nonlinear effects of dipole magnets in small rings

    NASA Astrophysics Data System (ADS)

    Xu, H. S.; Huang, W. H.; Tang, C. X.; Lee, S. Y.

    2016-06-01

    We find that dynamic aperture depends significantly on the bending radii of dipole magnets when designing a small storage ring for Tsinghua Thomson scattering X-ray source (TTX) mainly because of the nonlinearity of the dipole field. In this paper, we present systematic studies on the intrinsic-geometric nonlinearity of dipole magnets. The Hamiltonian approach is used to determine the expressions of the geometric nonlinear potential and the corresponding third-order resonance strengths. Simulations are conducted to study these resonances. Our analysis results agree well with the tracking results at the third-order resonances 3 νx=ℓ and νx±2 νz=ℓ , where ℓ 's are the integer multiple of the number of superperiods.

  10. Effective temperatures of A and F stars

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1982-01-01

    Effective temperatures of late A and early F stars are determined from the observed fluxes in the visual at 1900 A and 1420 A. The observed ratios are compared with those calculated by Kurucz (1979). A correction of the theoretical fluxes at 1900 A brings the effective temperatures obtained from different ratios into reasonable agreement. The effective temperatures determined in this way for late A stars agree well with those obtained from the optical region. For F stars, however, the effective temperatures obtained from the UV are found to be higher than those obtained from the optical region if radiative equilibrium models are used for the comparison. It is thought that this discrepancy may derive from the effects of temperature, pressure, and absorption coefficient inhomogeneities caused by convection.

  11. Spectral investigation of nonlinear local field effects in Ag nanoparticles

    SciTech Connect

    Sato, Rodrigo Takeda, Yoshihiko; Ohnuma, Masato; Oyoshi, Keiji

    2015-03-21

    The capability of Ag nanoparticles to modulate their optical resonance condition, by optical nonlinearity, without an external feedback system was experimentally demonstrated. These optical nonlinearities were studied in the vicinity of the localized surface plasmon resonance (LSPR), using femtosecond pump-and-probe spectroscopy with a white-light continuum probe. Transient transmission changes ΔT/T exhibited strong photon energy and particle size dependence and showed a complex and non-monotonic change with increasing pump light intensity. Peak position and change of sign redshift with increasing pump light intensity demonstrate the modulation of the LSPR. These features are discussed in terms of the intrinsic feedback via local field enhancement.

  12. Temperature Effects in Varactors and Multipliers

    NASA Technical Reports Server (NTRS)

    East, J.; Mehdi, Imran

    2001-01-01

    Varactor diode multipliers are a critical part of many THz measurement systems. The power and efficiencies of these devices limit the available power for THz sources. Varactor operation is determined by the physics of the varactor device and a careful doping profile design is needed to optimize the performance. Higher doped devices are limited by junction breakdown and lower doped structures are limited by current saturation. Higher doped structures typically have higher efficiencies and lower doped structures typically have higher powers at the same operating frequency and impedance level. However, the device material properties are also a function of the operating temperature. Recent experimental evidence has shown that the power output of a multiplier can be improved by cooling the device. We have used a particle Monte Carlo simulation to investigate the temperature dependent velocity vs. electric field in GaAs. This information was then included in a nonlinear device circuit simulator to predict multiplier performance for various temperatures and device designs. This paper will describe the results of this analysis of temperature dependent multiplier operation.

  13. Effects of Combined Loads on the Nonlinear Response and Residual Strength of Damaged Stiffened Shells

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.; Rankin, Charles C.

    1996-01-01

    The results of an analytical study of the nonlinear response of stiffened fuselage shells with long cracks are presented. The shells are modeled with a hierarchical modeling strategy and analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for various combinations of internal pressure and mechanical loads, and the effects of crack orientation on the shell response are described. The effects of combined loading conditions and the effects of varying structural parameters on the stress-intensity factors associated with a crack are presented.

  14. Effects due to nonlinear modification of driven current on tearing mode stabilization

    NASA Astrophysics Data System (ADS)

    Dong, Ge; Reiman, Allan; Fisch, Nathaniel

    2015-11-01

    Neoclassical tearing modes (NTMs) can be destabilized by a helical perturbation in the boostrap current, and can result in large magnetic islands which are detrimental to confinement in toroidal plasma devices. NTM stability properties and dynamics can be strongly affected by current drive in various scenarios. The modified Rutherford equation is generally used to calculate the contributions from the current drive, without considering the self- consistent change in the driven current associated with the nonlinear effects. In this study, we evaluated the importance of such nonlinear effects as the effect of the change in Te on the current drive efficiency, and the nonlinear interaction of the current drive and the electric field.

  15. Nonlinear magnetodielectric effect in double-perovskite Gd2NiMnO6

    NASA Astrophysics Data System (ADS)

    Oh, S. H.; Choi, H. Y.; Moon, J. Y.; Kim, M. K.; Jo, Y.; Lee, N.; Choi, Y. J.

    2015-11-01

    Magnetic and dielectric properties of the double perovskite Gd2NiMnO6 were investigated. Ferromagnetic order of alternating Ni2+ and Mn4+ spins arises below {{T}\\text{C}}=134 K and an additional order of Gd3+ spins occurs at {{T}\\text{Gd}}=33 K. The formation of short-range ferromagnetic clusters accompanied by a Griffiths phase-like feature below {{T}\\text{G}}=230 K is also suggested. Under the low enough dielectric loss at low temperature regime excluding the influence of the extrinsic effect, a highly nonlinear variation of the dielectric constant was achieved in application of the magnetic fields. Our finding offers an efficient approach to accomplish intrinsically coupled functionality utilizing both magnetic and dielectric quantities.

  16. Correlation of microwave nonlinearity and magnetic pinning in high-temperature superconductor thin film band-pass filters

    NASA Astrophysics Data System (ADS)

    Zhao, Hua; Wang, Xiang; Wu, Judy Z.

    2008-08-01

    Third-order intermodulation has been studied in two-pole X-band microstrip filters made of three high-temperature superconductors (HTS), including HgBa2CaCu2O6+δ (Hg-1212), Tl2Ba2CaCu2Oy (Tl-2212) and YBa2Cu3O7-δ (YBCO) at >=77 K. In addition, the dc critical current density Jc was investigated in these three types of HTS films in the same temperature range. Interestingly, the dc Jc and the rf critical current density JIP3 derived from the third-order intercept (IP3) have a similar dependence on the reduced temperature, suggesting that the magnetic vortex depinning in HTS materials dominates the microwave nonlinearity at elevated temperatures. This observation agrees with the recent theoretical discussion on the origin of the microwave nonlinearity. Disagreement between Jc and JIP3, however, has been observed in the trilayer YBCO/CeO2/YBCO filters. Although magnetic flux pinning and hence Jc were improved by the insertion of a 20 nm thin CeO2 layer, the reduced JIP3 is attributed to the high power loss from the extra interfaces between YBCO and CeO2.

  17. Measurements of core electron temperature and density fluctuations in DIII-D and comparison to nonlinear gyrokinetic simulations

    SciTech Connect

    White, A. E.; Schmitz, L.; Peebles, W. A.; Carter, T. A.; Doyle, E. J.; Rhodes, T. L.; Wang, G.; McKee, G. R.; Shafer, M. W.; Holland, C.; Tynan, G. R.; Austin, M. E.; Burrell, K. H.; Candy, J.; DeBoo, J. C.; Prater, R.; Staebler, G. M.; Waltz, R. E.; Makowski, M. A.

    2008-05-15

    For the first time, profiles (0.3<{rho}<0.9) of electron temperature and density fluctuations in a tokamak have been measured simultaneously and the results compared to nonlinear gyrokinetic simulations. Electron temperature and density fluctuations measured in neutral beam-heated, sawtooth-free low confinement mode (L-mode) plasmas in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] are found to be similar in frequency and normalized amplitude, with amplitude increasing with radius. The measured radial profile of two fluctuation fields allows for a new and rigorous comparison with gyrokinetic results. Nonlinear gyrokinetic flux-tube simulations predict that electron temperature and density fluctuations have similar normalized amplitudes in L-mode. At {rho}=0.5, simulation results match experimental heat diffusivities and density fluctuation amplitude, but overestimate electron temperature fluctuation amplitude and particle diffusivity. In contrast, simulations at {rho}=0.75 do not match either the experimentally derived transport properties or the measured fluctuation levels.

  18. Quantitative comparison of electron temperature fluctuations to nonlinear gyrokinetic simulations in C-Mod Ohmic L-mode discharges

    NASA Astrophysics Data System (ADS)

    Sung, C.; White, A. E.; Mikkelsen, D. R.; Greenwald, M.; Holland, C.; Howard, N. T.; Churchill, R.; Theiler, C.

    2016-04-01

    Long wavelength turbulent electron temperature fluctuations (kyρs < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (kyρs ≲ 1.7) performed at r/a ˜ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the "Transport Shortfall" [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].

  19. Effect of cantilever nonlinearity in nanoscale tensile testing

    NASA Astrophysics Data System (ADS)

    Ding, Weiqiang; Guo, Zaoyang; Ruoff, Rodney S.

    2007-02-01

    Microcantilevers are widely used in micro-/nanoscale mechanics studies. The nonlinear response of a cantilever at large deflection is sometimes overlooked. A general study of cantilever beam nonlinearity under a variety of loading conditions was performed with analytical and finite element analyses. Analytical equations for the applied load and the cantilever deflection were obtained. The cantilever nonlinearity was found to increase with increasing cantilever deflection and/or angle of loading. Tensile tests were performed on templated carbon nanotubes (TCNTs) with a custom-made nanomanipulator inside a scanning electron microscope. Atomic force microscope (AFM) cantilevers were used to load the TCNTs and sense the force. During the tests the AFM cantilevers were loaded to relatively large deflections with nonvertical loads applied at the AFM tip. Based on the slope and the loading angle measurements, the breaking forces of the TCNTs were obtained through numerical integration of the analytical equations. A comparison was made between the load results obtained from linear and nonlinear analyses. The linear analysis was found to underestimate the applied load by up to 15%.

  20. Generalized mean-field or master equation for nonlinear cavities with transverse effects.

    PubMed

    Dunlop, A M; Firth, W J; Heatley, D R; Wright, E M

    1996-06-01

    We present a general form of master equation for nonlinear-optical cavities that can be described by an ABCD matrix. It includes as special cases some previous models of spatiotemporal effects in lasers. PMID:19876153

  1. Surface-enhanced nonlinear optical effects and detection of adsorbed molecular monolayers

    SciTech Connect

    Shen, Y.R.; Chen, C.K.; Heinz, T.F.; Ricard, D.

    1981-01-01

    The observation of a number of surface-enhanced nonlinear optical effects is discussed. The feasibility of using second-harmonic generation to detect the adsorption of molecular monolayers on a metal surface in an electrolytic solution is shown.

  2. Global variation in the effects of ambient temperature on mortality: a systematic evaluation

    PubMed Central

    Guo, Yuming; Gasparrini, Antonio; Armstrong, Ben; Li, Shanshan; Tawatsupa, Benjawan; Tobias, Aurelio; Lavigne, Eric; de Sousa Zanotti Stagliorio Coelho, Micheline; Leone, Michela; Pan, Xiaochuan; Tong, Shilu; Tian, Linwei; Kim, Ho; Hashizume, Masahiro; Honda, Yasushi; Guo, Yue-Liang Leon; Wu, Chang-Fu; Punnasiri, Kornwipa; Yi, Seung-Muk; Michelozzi, Paola; Saldiva, Paulo Hilario Nascimento; Williams, Gail

    2014-01-01

    Background Studies have examined the effects of temperature on mortality in a single city, country or region. However, less evidence is available on the variation in the associations between temperature and mortality in multiple countries, analyzed simultaneously. Methods We obtained daily data on temperature and mortality in 306 communities from 12 countries/regions (Australia, Brazil, Thailand, China, Taiwan, Korea, Japan, Italy, Spain, United Kingdom, United States and Canada). Two-stage analyses were used to assess the non-linear and delayed relationship between temperature and mortality. In the first stage, a Poisson regression allowing over-dispersion with distributed lag non-linear model was used to estimate the community-specific temperature-mortality relationship. In the second stage, a multivariate meta-analysis was used to pool the non-linear and delayed effects of ambient temperature at the national level, in each country. Results The temperatures associated with the lowest mortality were around the 75th percentile of temperature in all the countries/regions, ranging from 66th (Taiwan) to 80th (UK) percentiles. The estimated effects of cold and hot temperatures on mortality varied by community and country. Meta-analysis results show that both cold and hot temperatures increased the risk of mortality in all the countries/regions. Cold effects were delayed and lasted for many days, while hot effects appeared quickly and did not last long. Conclusions People have some ability to adapt to their local climate type, but both cold and hot temperatures are still associated with the risk of mortality. Public health strategies to alleviate the impact of ambient temperatures are important, in particular in the context of climate change. PMID:25166878

  3. Nonlinear optical properties and optical power limiting effect of Giemsa dye

    NASA Astrophysics Data System (ADS)

    Al-Saidi, Imad Al-Deen Hussein A.; Abdulkareem, Saif Al-Deen

    2016-08-01

    The nonlinear optical properties of Giemsa dye in chloroform solution for different concentrations and dye mixed with poly(methylmethacrylate) (PMMA) as a dye-doped polymer film were investigated using continuous wave (CW) low power solid-state laser (SSL) operating at wavelength of 532 nm as an excitation source. Using the single beam z-scan technique, the nonlinear refractive index (n2), the nonlinear absorption coefficient (β), and the third-order nonlinear optical susceptibility (χ(3)) of Giemsa dye were measured. The measurements reveal that both n2 and β are dependent on the dye concentration. The obtained results indicate that the Giemsa dye exhibits positive nonlinear saturable absorption (SA) and negative refraction nonlinearity, manifestation of self-defocusing effect. Optical power limiting characteristics of the Giemsa dye at different concentrations in solution and polymer film were studied. The observed large third-order optical nonlinearity of Giemsa dye confirms that Giemsa dye is a promising nonlinear material for the optical power limiting and photonic devices applications.

  4. Nonlinear optical enhancement induced by synergistic effect of graphene nanosheets and CdS nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhu, Baohua; Wang, Fangfang; Cao, Yawan; Wang, Chong; Wang, Ji; Gu, Yuzong

    2016-06-01

    CdS nanocrystals are attached on graphene nanosheets and their nonlinear optical properties are investigated by picosecond Z-scan technique at 532 nm. We found that synergistic effect between the graphene and CdS makes a major enhancement on the nonlinear optical absorption of graphene/CdS nanohybrid in comparison with cooperative effect, and the synergistic improvement is restricted by nonradiative defects in hybrid. The synergistic mechanism involving the local field theory and charge transfer evolution is proposed.

  5. The effect of problem perturbations on nonlinear dynamical systems and their reduced order models

    SciTech Connect

    Serban, R; Homescu, C; Petzold, L

    2005-03-03

    Reduced order models are used extensively in many areas of science and engineering for simulation, design, and control. Reduction techniques for nonlinear dynamical systems produce models that depend strongly on the nominal set of parameters for which the reduction is carried out. In this paper we address the following two questions: 'What is the effect of perturbations in the problem parameters on the output functional of a nonlinear dynamical system?' and 'To what extent does the reduced order model capture this effect?'

  6. Electrodynamic stabilization conditions for high-temperature superconducting composites with different types of current-voltage characteristic nonlinearity

    NASA Astrophysics Data System (ADS)

    Arkharov, A. M.; Lavrov, N. A.; Romanovskii, V. R.

    2014-06-01

    The current instability is studied in high-temperature superconducting current-carrying elements with I- V characteristics described by power or exponential equations. Stability analysis of the macroscopic states is carried out in terms of a stationary zero-dimensional model. In linear temperature approximation criteria are derived that allow one to find the maximum allowable values of the induced current, induced electric field intensity, and overheating of the superconductor. A condition is formulated for the complete thermal stabilization of the superconducting composite with regard to the nonlinearity of its I- V characteristic. It is shown that both subcritical and supercritical stable states may arise. In the latter case, the current and electric field intensity are higher than the preset critical parameters of the superconductor. Conditions for these states depending on the properties of the matrix, superconductor's critical current, fill factor, and nonlinearity of the I- V characteristic are discussed. The obtained results considerably augment the class of allowable states for high-temperature superconductors: it is demonstrated that there exist stable resistive conditions from which superconductors cannot pass to the normal state even if the parameters of these conditions are supercritical.

  7. Linear and nonlinear finite-element analysis of laminated composite structures at high temperatures

    SciTech Connect

    Wilt, T.E.

    1992-01-01

    A simple robust finite element which can effectively model the multilayer composite material is developed. This will include thermal gradient capabilities necessary for a complete thermomechanical analysis. In order to integrate the numerically stiff rate-dependent viscoplastic equations, efficient, stable numerical algorithms are developed. In addition, consistent viscoplastic/plastic tangent matrices are also formulated. The finite element is formulated based upon a generalized mixed variational principle with independently assumed displacements and layer-number independent strains. A unique scheme utilizing nodal temperatures is used to model a linear thermal gradient through the thickness of the composite. The numerical-integration algorithms are formulated in the context of a fully implicit backward Euler scheme. The consistent tangent matrices arise directly from the formulation. The multi-layer composite finite element demonstrates good performance in terms of static displacement and stress predictions, and dynamic response.

  8. Effects of nonlinearity on cell-ECM interactions

    PubMed Central

    Wen, Qi; Janmey, Paul A.

    2014-01-01

    Filamentous biopolymers such as F-actin, vimentin, fibrin and collagen that form networks within the cytoskeleton or the extracellular matrix have unusual rheological properties not present in most synthetic soft materials that are used as cell substrates or scaffolds for tissue engineering. Gels formed by purified filamentous biopolymers are often strain stiffening, with an elastic modulus that can increase an order of magnitude at moderate strains that are relevant to cell and tissue deformation in vivo. This review summarizes some experimental studies of nonlinear rheology in biopolymer gels, discusses possible molecular mechanisms that account for strain stiffening, and explores the possible relevance of non-linear rheology to the interactions between cell and extracellular matrices. PMID:23748051

  9. Effect of motor dynamics on nonlinear feedback robot arm control

    NASA Technical Reports Server (NTRS)

    Tarn, Tzyh-Jong; Li, Zuofeng; Bejczy, Antal K.; Yun, Xiaoping

    1991-01-01

    A nonlinear feedback robot controller that incorporates the robot manipulator dynamics and the robot joint motor dynamics is proposed. The manipulator dynamics and the motor dynamics are coupled to obtain a third-order-dynamic model, and differential geometric control theory is applied to produce a linearized and decoupled robot controller. The derived robot controller operates in the robot task space, thus eliminating the need for decomposition of motion commands into robot joint space commands. Computer simulations are performed to verify the feasibility of the proposed robot controller. The controller is further experimentally evaluated on the PUMA 560 robot arm. The experiments show that the proposed controller produces good trajectory tracking performances and is robust in the presence of model inaccuracies. Compared with a nonlinear feedback robot controller based on the manipulator dynamics only, the proposed robot controller yields conspicuously improved performance.

  10. Collisional effects on nonlinear ion drag force for small grains

    SciTech Connect

    Hutchinson, I. H.; Haakonsen, C. B.

    2013-08-15

    The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.

  11. Temporal laser-pulse-shape effects in nonlinear Thomson scattering

    NASA Astrophysics Data System (ADS)

    Kharin, V. Yu.; Seipt, D.; Rykovanov, S. G.

    2016-06-01

    The influence of the laser-pulse temporal shape on the nonlinear Thomson scattering on-axis photon spectrum is analyzed in detail. Using the classical description, analytical expressions for the temporal and spectral structure of the scattered radiation are obtained for the case of symmetric laser-pulse shapes. The possibility of reconstructing the incident laser pulse from the scattered spectrum averaged over interference fringes in the case of high peak intensity and symmetric laser-pulse shape is discussed.

  12. Effect of nonlinear electromechanical interaction upon wind power generator behavior

    NASA Astrophysics Data System (ADS)

    Selyutskiy, Yury D.; Klimina, Liubov A.

    2014-12-01

    A mathematical model is developed for describing a small horizontal axis wind turbine with electric generator, such that the electromechanical interaction is non-linear in current. Dependence of steady regimes of the system upon parameters of the model is studied. In particular, it is shown that increase of wind speed causes qualitative restructuring of the set of steady regimes, which leads to considerable change in behavior of the wind power generator. The proposed model is verified against data obtained in experiments.

  13. Hubble space telescope: Pointing error effects on nonlinear ball joints

    NASA Technical Reports Server (NTRS)

    Farmer, J. E.; Grissett, F. R.

    1985-01-01

    The Hubble Space Telescope pointing error produced by optical benches mounted on free ball joints is examined. Spacecraft cable connections are assumed to produce translational and rotational damping and restoring forces which act through the optical bench center of mass. The nonlinear dynamics are modeled and then implemented using an existing computer program for simulating the vehicle dynamics and pointing control system algorithm. Results are presented for the test case which indicate acceptable performance.

  14. Effects of randomness, dissipation and interaction on solitons of the cubic nonlinear Schrodinger equation and related nonlinear wave models

    NASA Astrophysics Data System (ADS)

    Nguyen, Quan Minh

    2011-12-01

    We investigate the propagation of solitons of the perturbed nonlinear Schrodinger equation (NLSE) via asymptotic perturbation techniques and numerical simulations. The dissertation consists of several inter-related projects [22, 98, 103, 108, 109] that are focused on the effects of nonlinear processes and randomness on dynamics of pulses of light in optical waveguides. We particularly consider two of the most important nonlinear processes affecting pulse dynamics in multichannel optical waveguides: weak cubic loss and delayed Raman response. In the presence of weak cubic loss [98], we obtain the analytic expressions for the amplitude and frequency shifts in a single two-soliton collision and show that the impact of a fast three-soliton collision is given by the sum of the two-soliton interactions. Furthermore, we show that amplitude dynamics in an N-channel waveguide system is described by a Lotka-Volterra model for N competing species. We find the conditions on the time slot width and the soliton's equilibrium amplitude value under which the transmission is stable. The predictions of the reduced Lotka-Volterra model are confirmed by numerical solution of a coupled-NLSE model, which takes into account intra-pulse and inter-pulse effects due to cubic nonlinearity and cubic loss. These results uncover an interesting analogy between the dynamics of energy exchange in pulse collisions and population dynamics in Lotka-Volterra models. In the presence of delayed Raman response [103,108,109], we show that the dynamics of pulse amplitudes in an N-channel transmission system in differential phase shift keying (DPSK) scheme is described by an N-dimensional predator-prey model. We find the equilibrium states with non-zero amplitudes and prove their stability by obtaining the Lyapunov function. We then show that stable transmission can be achieved by a proper choice of the frequency profile of linear amplifier gain. We also investigate the impact of Raman self- and collsion

  15. Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides

    NASA Astrophysics Data System (ADS)

    Lysenko, Oleg; Bache, Morten; Malureanu, Radu; Lavrinenko, Andrei

    2016-04-01

    This paper is devoted to experimental and theoretical studies of nonlinear propagation of a long-range surface plasmon polariton (LRSPP) in gold strip waveguides. The plasmonic waveguides are fabricated in house, and contain a gold layer, tantalum pentoxide adhesion layers, and silicon dioxide cladding. The optical characterization was performed using a high power picosecond laser at 1064 nm. The experiments reveal two nonlinear optical effects: nonlinear power transmission and spectral broadening of the LRSPP mode in the waveguides. Both nonlinear optical effects depend on the gold layer thickness. The theoretical model of these effects is based on the third-order susceptibility of the constituent materials. The linear and nonlinear parameters of the LRSPP mode are obtained, and the nonlinear Schrödinger equation is solved. The dispersion length is much larger than the waveguides length, and the chromatic dispersion does not affect the propagation of the plasmonic mode. We find that the third-order susceptibility of the gold layer has a dominant contribution to the effective third-order susceptibility of the LRSPP mode. The real part of the effective third-order susceptibility leads to the observed spectral broadening through the self-phase modulation effect, and its imaginary part determines the nonlinear absorption parameter and leads to the observed nonlinear power transmission. The experimental values of the third-order susceptibility of the gold layers are obtained. They indicate an effective enhancement of the third-order susceptibility for the gold layers, comparing to the bulk gold values. This enhancement is explained in terms of the change of the electrons motion.

  16. Enhanced temperature sensing based on sub-threshold nonlinear spectra of one-dimensional photonic crystal with a Kerr defect layer

    SciTech Connect

    Zhang, Juan E-mail: ywang@siom.ac.cn; Zhang, Rongjun; Wang, Yang E-mail: ywang@siom.ac.cn

    2014-11-14

    A new method to achieve highly sensitive temperature sensing is proposed based on the nonlinear spectral properties of a one-dimensional photonic crystal (1DPC) composed of temperature-sensitive materials with a Kerr defect layer. The sensitivity can be two orders of magnitude higher than that of the corresponding linear 1DPC structure. The sensitivity and measuring range can be precisely tuned. These properties favor the fabrication of a versatile temperature sensor with switchable fine and coarse tuning functions. This principle of nonlinear temperature sensing can also be extended to other kinds of spectrum-based sensors to obtain higher performance.

  17. Effects of temperature variation on MOSFET dosimetry.

    PubMed

    Cheung, Tsang; Butson, Martin J; Yu, Peter K N

    2004-07-01

    This note investigates temperature effects on dosimetry using a metal oxide semiconductor field effect transistor (MOSFET) for radiotherapy x-ray treatment. This was performed by analysing the dose response and threshold voltage outputs for MOSFET dosimeters as a function of ambient temperature. Results have shown that the clinical semiconductor dosimetry system (CSDS) MOSFET provides stable dose measurements with temperatures varying from 15 degrees C up to 40 degrees C. Thus standard irradiations performed at room temperature can be directly compared to in vivo dose assessments performed at near body temperature without a temperature correction function. The MOSFET dosimeter threshold voltage varies with temperature and this level is dependent on the dose history of the MOSFET dosimeter. However, the variation can be accounted for in the measurement method. For accurate dosimetry, the detector should be placed for approximately 60 s on a patient to allow thermal equilibrium before measurements are taken with the final reading performed whilst still attached to the patient or conversely left for approximately 120 s after removal from the patient if initial readout was measured at room temperature to allow temperature equilibrium to be established. PMID:15285264

  18. Variable effects of temperature on insect herbivory

    PubMed Central

    Burkepile, Deron E.; Parker, John D.

    2014-01-01

    Rising temperatures can influence the top-down control of plant biomass by increasing herbivore metabolic demands. Unfortunately, we know relatively little about the effects of temperature on herbivory rates for most insect herbivores in a given community. Evolutionary history, adaptation to local environments, and dietary factors may lead to variable thermal response curves across different species. Here we characterized the effect of temperature on herbivory rates for 21 herbivore-plant pairs, encompassing 14 herbivore and 12 plant species. We show that overall consumption rates increase with temperature between 20 and 30 °C but do not increase further with increasing temperature. However, there is substantial variation in thermal responses among individual herbivore-plant pairs at the highest temperatures. Over one third of the herbivore-plant pairs showed declining consumption rates at high temperatures, while an approximately equal number showed increasing consumption rates. Such variation existed even within herbivore species, as some species exhibited idiosyncratic thermal response curves on different host plants. Thus, rising temperatures, particularly with respect to climate change, may have highly variable effects on plant-herbivore interactions and, ultimately, top-down control of plant biomass. PMID:24860701

  19. Stable multi-wavelength fiber laser based on a compounded nonlinear polarization rotation effect

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Lou, Shuqin; Ma, Jianli; Su, Wei; Han, Bolin; Shen, Xiao

    2014-11-01

    A stable multi-wavelength polarization-maintaining erbium-doped fiber (PM-EDF) laser with high signal-to-noise ratio (SNR) based on a compounded nonlinear polarization rotation effect (CNPRE) is proposed and demonstrated. In order to effectively reduce homogeneous broadening of EDF and then to the alleviate mode competition, two sandwich configurations formed by a polarization dependent isolator (PDI) or a segment of single-mode fiber sandwiched between two polarization controllers (PC), are introduced into the ring cavity to generate the CNPRE. A home-made asymmetry twin-core fiber (ATCF) is also incorporated in the ring cavity as a comb filter. With only 150 mW pump power, there are up to 45-wavelengths lasing with the approximate amplitude in a 3 dB bandwidth generated at room temperature. The wavelength spacing between the adjacent peaks is 0.29 nm and the highest SNRs reach 41.5 dB by optimizing the state of polarization of PCs. The power fluctuation and wavelength shift for each lasing wavelength are less than 0.05 dB and 0.02 nm, respectively. This indicates that the proposed multi-wavelength fiber laser can be stably operated at room temperature.

  20. Noise-induced transitions and resonant effects in nonlinear systems

    NASA Astrophysics Data System (ADS)

    Zaikin, Alexei

    2003-02-01

    Our every-day experience is connected with different acoustical noise or music. Usually noise plays the role of nuisance in any communication and destroys any order in a system. Similar optical effects are known: strong snowing or raining decreases quality of a vision. In contrast to these situations noisy stimuli can also play a positive constructive role, e.g. a driver can be more concentrated in a presence of quiet music. Transmission processes in neural systems are of especial interest from this point of view: excitation or information will be transmitted only in the case if a signal overcomes a threshold. Dr. Alexei Zaikin from the Potsdam University studies noise-induced phenomena in nonlinear systems from a theoretical point of view. Especially he is interested in the processes, in which noise influences the behaviour of a system twice: if the intensity of noise is over a threshold, it induces some regular structure that will be synchronized with the behaviour of neighbour elements. To obtain such a system with a threshold one needs one more noise source. Dr. Zaikin has analyzed further examples of such doubly stochastic effects and developed a concept of these new phenomena. These theoretical findings are important, because such processes can play a crucial role in neurophysics, technical communication devices and living sciences. Unsere alltägliche Erfahrung ist mit verschiedenen akustischen Einfluessen wie Lärm, aber auch Musik verbunden. Jeder weiss, wie Lärm stören kann und Kommunikation behindert oder gar unterbindet. Ähnliche optische Effekte sind bekannt: starkes Schneetreiben oder Regengüsse verschlechtern die Sicht und lassen uns Umrisse nur noch schemenhaft erkennen. Jedoch koennen ähnliche Stimuli auch sehr positive Auswirkungen haben: Autofahrer fahren bei leiser Musik konzentrierter -- die Behauptung von Schulkindern, nur bei dröhnenden Bässen die Mathehausaufgaben richtig rechnen zu können, ist allerdings nicht wissenschaftlich

  1. Effect of Viscous Dissipation and Thermal Radiation on Heat Transfer over a Non-Linearly Stretching Sheet Through Porous Medium

    NASA Astrophysics Data System (ADS)

    Nandeppanavar, M. M.; Siddalingappa, M. N.

    2013-06-01

    In this present paper, we have discussed the effects of viscous dissipation and thermal radiation on heat transfer over a non-linear stretching sheet through a porous medium. Usual similarity transformations are considered to convert the non-linear partial differential equation of motion and heat transfer into ODE's. Solutions of motion and heat transfer are obtained by the Runge-Kutta integration scheme with most efficient shooting technique. The graphical results are presented to interpret various physical parameters of interest. It is found that the velocity profile decreases with an increase of the porous parameter asymptotically. The temperature field decreases with an increase in the parametric values of the Prandtl number and thermal radiation while with an increase in parameters of the Eckert number and porous parameter, the temperature field increases in both PST (power law surface temperature) and PHF (power law heat flux) cases. The numerical values of the non-dimensional wall temperature gradient and wall temperature are tabulated and discussed.

  2. Nonlinear flap-lag-extensional vibrations of rotating, pretwisted, preconed beams including Coriolis effects

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1985-01-01

    The effects of pretwist, precone, setting angle, Coriolis forces and second degree geometric nonlinearities on the natural frequencies, steady state deflections and mode shapes of rotating, torsionally rigid, cantilevered beams were studied. The governing coupled equations of flap lag extensional motion are derived including the effects of large precone and retaining geometric nonlinearities up to second degree. The Galerkin method, with nonrotating normal modes, is used for the solution of both steady state nonlinear equations and linear perturbation equations. Parametric indicating the individual and collective effects of pretwist, precone, Coriolis forces and second degree geometric nonlinearities on the steady state deflection, natural frequencies and mode shapes of rotating blades are presented. It is indicated that the second degree geometric nonlinear terms, which vanish for zero precone, can produce frequency changes of engineering significance. Further confirmation of the validity of including those generated by MSC NASTRAN. It is indicated that the linear and nonlinear Coriolis effects must be included in analyzing thick blades. The Coriolis effects are significant on the first flatwise and the first edgewise modes.

  3. Nonlinear acoustic landmine detection: comparison of off-target soil background and on-target soil-mine nonlinear effects

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.; Sabatier, James M.; Pauls, Kathleen E.; Genis, Sean A.

    2006-05-01

    When airborne sound at two primary tones, f I, f II (closely spaced near a resonance) excites the soil surface over a buried landmine, soil wave motion interacts with the landmine generating a scattered surface profile which can be measured over the "target." Profiles at the primaries f I, f II, and nonlinearly generated combination frequencies f I-(f II-f I) and f II+(f II-f I) , 2f I-(f II-f I), f I+f II and 2f II+(f II-f I) (among others) have been measured for a VS 2.2 plastic, inert, anti-tank landmine, buried at 3.6 cm in sifted loess soil and in a gravel road bed. [M.S. Korman and J.M. Sabatier, J. Acoust. Soc. Am. 116, 3354-3369 (2004)]. It is observed that the "on target" to "off target" contrast ratio for the sum frequency component can be ~20 dB higher than for either primary. The vibration interaction between the top-plate interface of a buried plastic landmine and the soil above it appears to exhibit many characteristics of the mesoscopic/nanoscale nonlinear effects that are observed in geomaterials like sandstone. Near resonance, the bending (softening) of a family of increasing amplitude tuning curves, involving the vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding frequency. Tuning curve experiments are performed both on and off the mine in an effort to understand the nonlinearities in each case.

  4. Nonlinear Hall effect and multichannel conduction in LaTiO3/SrTiO3 superlattices

    SciTech Connect

    Kim, Jun Sung; Seo, Sung Seok A; Chisholm, Matthew F; Kremer, Reinhard; Habermeier, Hanns-Ulrich; Keimer, Bernhard; Lee, Ho Nyung

    2010-01-01

    We report magnetotransport properties of heterointerfaces between the Mott insulator LaTiO{sub 3} and the band insulator SrTiO{sub 3} in a delta-doping geometry. At low temperatures, we have found a strong nonlinearity in the magnetic field dependence of the Hall resistivity, which can be effectively controlled by varying the temperature and the electric field. We attribute this effect to multichannel conduction of interfacial charges generated by an electronic reconstruction. In particular, the formation of a highly mobile conduction channel revealed by our data is explained by the greatly increased dielectric permeability of SrTiO{sub 3} at low temperatures and its electric field dependence reflects the spatial distribution of the quasi-two-dimensional electron gas.

  5. A Non-linear Temperature-Time Program for Non-isothermal Kinetic Measurements

    NASA Astrophysics Data System (ADS)

    Sohn, Hong Yong

    2016-04-01

    A new temperature-time program for non-isothermal measurements of chemical reaction rates has been developed. The major advantages of the proposed temperature-time function are twofold: Firstly, the analysis of kinetic information in the high temperature range of the measurement is improved over the conventional linear temperature program by slowing the rate of temperature increase in the high temperature range and secondly, the new temperature program greatly facilitates the data analysis by providing a closed-form solution of the temperature integral and allows a convenient way to obtain the kinetic parameters by eliminating the need for the approximate evaluation of the temperature integral. The procedures for applying the new temperature-time program to the analysis of experimental data are demonstrated in terms of the determination of the kinetic parameters based on the selection of a suitable conversion function in the rate equation as well as the direct determination of activation energy at different conversion extents without the need for a conversion function. The rate analysis based on the new temperature program is robust and does not appear to be sensitive to errors in experimental measurements.

  6. Effects of nonlinear damping on random response of beams to acoustic loading

    NASA Technical Reports Server (NTRS)

    Mei, C.; Prasad, C. B.

    1986-01-01

    Effects of both nonlinear damping and large-deflection are included in the theoretical analysis in an attempt to explain the experimental phenomena of aircraft panels excited at high sound pressure levels; that is the broadening of the strain response peak and the increase of the modal frequency. Two nonlinear damping models are considered in the analysis using a single-mode approach. Mean square maximum deflection, mean square maximum strain, and spectral density function of maximum strain for simply supported and clamped beams are obtained. It is demonstrated that nonlinear damping contributes significantly to the broadening of the response peak and to the mean square maximum deflection and strain.

  7. Vacuum Rabi splitting effect in nanomechanical QED system with nonlinear resonator

    NASA Astrophysics Data System (ADS)

    Zhao, MingYue; Gao, YiBo

    2016-08-01

    Considering the intrinsic nonlinearity in a nanomechanical resonator coupled to a charge qubit, vacuum Rabi splitting effect is studied in a nanomechanical QED (qubit-resonator) system. A driven nonlinear Jaynes-Cummings model describes the dynamics of this qubit-resonator system. Using quantum regression theorem and master equation approach, we have calculated the two-time correlation spectrum analytically. In the weak driving limit, these analytical results clarify the influence of the driving strength and nonlinearity parameter on the correlation spectrum. Also, numerical calculations confirm these analytical results.

  8. The effect of higher order harmonics on second order nonlinear phenomena

    NASA Astrophysics Data System (ADS)

    Shahverdi, Amin; Borji, Amir

    2015-05-01

    A new method which is a combination of the harmonic balance and finite difference techniques (HBFD) is proposed for complete time-harmonic solution of the nonlinear wave equation. All interactions between different harmonics up to an arbitrary order can be incorporated. The effect of higher order harmonics on two important nonlinear optical phenomena, namely, the second harmonic generation (SHG) and frequency mixing is investigated by this method and the results are compared with well-known analytical solutions. The method is quite general and can be used to study wave propagation in all nonlinear media.

  9. Effects of geometric nonlinearities on the response of optimized box beam structures

    NASA Technical Reports Server (NTRS)

    Ragon, S.; Gurdal, Z.

    1993-01-01

    The present minimum-mass designs for a two-spar rectangular box beam were derived on the basis of linear-buckling FEM analysis constraints. In order to ascertain the effects of any geometric nonlinearities on these designs, each was subjected to a geometrically nonlinear FEM analysis. In all cases, the structure collapses below the design load, and does so in a mode which differs from that of linear theory. This discrepancy is attributable to such nonlinear panel-interaction mechanisms as rib-crusing loads. The optimized design is highly sensitive to crushing loads, relative to the nonoptimal design.

  10. Study of non-linear Hall effect in nitrogen-grown ZnO microstructure and the effect of H{sup +}-implantation

    SciTech Connect

    Kumar, Yogesh Bern, Francis; Barzola-Quiquia, Jose; Lorite, Israel; Esquinazi, Pablo

    2015-07-13

    We report magnetotransport studies on microstructured ZnO film grown by pulsed laser deposition in N{sub 2} atmosphere on a-plane Al{sub 2}O{sub 3} substrates and the effect of low energy H{sup +}-implantation. Non-linearity has been found in the magnetic field dependent Hall resistance, which decreases with temperature. We explain this effect with a two-band model assuming the conduction through two different parallel channels having different types of charge carriers. Reduced non-linearity after H{sup +}-implantation in the grown film is due to the shallow-donor effect of hydrogen giving rise to an increment in the electron density, reducing the effect of the other channel.

  11. Two-dimensional linear and nonlinear Talbot effect from rogue waves

    NASA Astrophysics Data System (ADS)

    Zhang, Yiqi; Belić, Milivoj R.; Petrović, Milan S.; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Lu, Keqing; Zhang, Yanpeng

    2015-03-01

    We introduce two-dimensional (2D) linear and nonlinear Talbot effects. They are produced by propagating periodic 2D diffraction patterns and can be visualized as 3D stacks of Talbot carpets. The nonlinear Talbot effect originates from 2D rogue waves and forms in a bulk 3D nonlinear medium. The recurrences of an input rogue wave are observed at the Talbot length and at the half-Talbot length, with a π phase shift; no other recurrences are observed. Differing from the nonlinear Talbot effect, the linear effect displays the usual fractional Talbot images as well. We also find that the smaller the period of incident rogue waves, the shorter the Talbot length. Increasing the beam intensity increases the Talbot length, but above a threshold this leads to a catastrophic self-focusing phenomenon which destroys the effect. We also find that the Talbot recurrence can be viewed as a self-Fourier transform of the initial periodic beam that is automatically performed during propagation. In particular, linear Talbot effect can be viewed as a fractional self-Fourier transform, whereas the nonlinear Talbot effect can be viewed as the regular self-Fourier transform. Numerical simulations demonstrate that the rogue-wave initial condition is sufficient but not necessary for the observation of the effect. It may also be observed from other periodic inputs, provided they are set on a finite background. The 2D effect may find utility in the production of 3D photonic crystals.

  12. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems.

    PubMed

    Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F

    2016-08-01

    Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. PMID:26648483

  13. Dispersion and nonlinear effects in the 2011 Tohoku-Oki earthquake tsunami

    NASA Astrophysics Data System (ADS)

    Saito, Tatsuhiko; Inazu, Daisuke; Miyoshi, Takayuki; Hino, Ryota

    2014-08-01

    This study reveals the roles of the wave dispersion and nonlinear effects for the 2011 Tohoku-Oki earthquake tsunami. We conducted tsunami simulations based on the nonlinear dispersive equations with a high-resolution source model. The simulations successfully reproduced the waveforms recorded in the offshore, deep sea, and focal areas. The calculated inundation area coincided well with the actual inundation for the Sendai Plain, which was the widest inundation area during this event. By conducting sets of simulations with different tsunami equations, we obtained the followings insights into the wave dispersion, nonlinear effects, and energy dissipation for this event. Although the wave dispersion was neglected in most studies, the maximum amplitude was significantly overestimated in the deep sea if the dispersion was not included. The waveform observed at the station with the largest tsunami height (˜2 m) among the deep-ocean stations also verified the necessity of the dispersion. It is well known that the nonlinear effects play an important role for the propagation of a tsunami into bays and harbors. Additionally, nonlinear effects need to be considered to accurately model later waves, even for offshore stations. In particular, including nonlinear terms rather than the inundation was more important when precisely modeling the waves reflected from the coast.

  14. Fully nonlinear Goertler vortices in constricted channel flows and their effect on the onset of separation

    NASA Technical Reports Server (NTRS)

    Denier, James P.; Hall, Philip

    1992-01-01

    The development of fully nonlinear Goertler vortices in high Reynolds number flow in a symmetrically constricted channel is investigated. Attention is restricted to the case of 'strongly' constricted channels considered by Smith and Daniels (1981) for which the scaled constriction height is asymptotically large. Such flows are known to develop a Goldstein singularity and subsequently become separated at some downstream station past the point of maximum channel constriction. It is shown that these flows can support fully nonlinear Goertler vortices, of the form elucidated by Hall and Lakin (1988), for constrictions which have an appreciable region of local concave curvature upstream of the position at which separation occurs. The effect on the onset of separation due to the nonlinear Goertler modes is discussed. A brief discussion of other possible nonlinear states which may also have a dramatic effect in delaying (or promoting) separation is given.

  15. Temperature effect on DNA molecular wires

    NASA Astrophysics Data System (ADS)

    Bui, Christopher Minh

    The demand of technology and information today has further pushed the fabrication process of nanotechnology, yet there are limits and obstacles set by the primary laws of physics. Therefore, researchers are pursuing alternative technologies. Deoxyribonucleic acids (DNA) molecular wire is one advantageous option due to its unique characteristics including self-assembly and naturally small; size. This thesis reports the temperature effect on the electrical properties of a double-stranded ?-DNA molecular wire. The data will help expand the DNA wire application and functionality. Thus, the data supports the charge hopping theory on DNA electrical conductivity. Diverse amount of literatures has demonstrated that DNA experiences a biochemical alteration when exposed under different temperature conditions. This change will also cause a change in the electrical properties. In this research, DNA will hang between two gold covered microelectrodes with a distance of 10 to 12 microns. The microelectrodes are fabricated through negative lithography techniques. Then, the samples were exposed to a numerous range of temperature from 25°C to 180°C and went through varying cycles of heating and cooling. The experimental results revealed that the DNA experienced a hysteresis like behavior where the impedance differed between the heating and cooling phase. The impedance of the DNA molecular wire increased when exposed to higher temperature. Furthermore, the impedance stops increasing after a certain amount of heat cycles before the DNA structure failed. The biology and thermodynamics of the DNA wire was analyzed due to the temperature hysteresis effect. The melting temperature and the bond dissociation temperature were evaluated to determine the cause of the impedance trends. The studies and analysis of the temperature effect provided certain insights towards the charge hopping transport mechanism. The thesis concludes with possible applications relating to the temperature effect of

  16. Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation

    SciTech Connect

    Wang, Gaozhong; Zhang, Saifeng E-mail: jwang@siom.ac.cn; Cheng, Xin; Dong, Ningning; Zhang, Long; Wang, Jun E-mail: jwang@siom.ac.cn; Umran, Fadhil A.; Coghlan, Darragh; Blau, Werner J.; Cheng, Ya

    2014-04-07

    Spatial self-phase modulation (SSPM) was observed directly when a focused He-Ne laser beam at 633 nm went through liquid-phase-exfoliated graphene dispersions. The diffraction pattern of SSPM was found to be distorted rapidly right after the incident beam horizontally passing through the dispersions, while no distortion for the vertically incident geometry. We show that the distortion is originated mainly from the non-axis-symmetrical thermal convections of the graphene nanosheets induced by laser heating, and the relative change of nonlinear refractive index can be determined by the ratio of the distortion angle to the half-cone angle. Therefore, the effective nonlinear refractive index of graphene dispersions can be tuned by changing the incident intensity and the temperature of the dispersions.

  17. Nonlinear acoustic landmine detection: Comparison of ``off target'' soil background and ``on target'' soil-mine nonlinear effects

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.

    2005-09-01

    When airborne sound at two primary tones, f1, f2 (closely spaced near a resonance) excites the soil surface over a buried landmine, soil wave motion interacts with the landmine generating a scattered surface profile which can be measured over the ``target.'' Profiles at f1, f2, and f1-(f2-f1), f2+(f2-f1), 2f1-(f2-f1), f1+f2 and 2f2+(f2-f1) (among others) are measured for a VS 1.6 plastic, inert, anti-tank landmine, buried at 3.6 cm in sifted loess soil. It is observed that the ``on target'' to ``off target'' contrast ratio for the sum frequency component can be ~20 dB higher than for either primary. The vibration interaction between the top-plate interface of a buried plastic landmine and the soil above it appears to exhibit many characteristics of the mesoscopic/nanoscale nonlinear effects that are observed in geomaterials like sandstone. Near resonance, the bending (softening) of a family of increasing amplitude tuning curves, involving the vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding frequency. Tuning curve experiments along with two-tone tests are performed both on and off the mine in an effort to understand the nonlinearities in each case. [Work supported by U.S. Army RDECOM CERDEC, NVESD.

  18. Nonlinear Radiation Heat Transfer Effects in the Natural Convective Boundary Layer Flow of Nanofluid Past a Vertical Plate: A Numerical Study

    PubMed Central

    Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir

    2014-01-01

    The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge–Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter. PMID:25251242

  19. Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: a numerical study.

    PubMed

    Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir

    2014-01-01

    The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge-Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter. PMID:25251242

  20. Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow generation

    NASA Astrophysics Data System (ADS)

    Todo, Y.; Berk, H. L.; Breizman, B. N.

    2010-08-01

    Nonlinear magnetohydrodynamic (MHD) effects on Alfvén eigenmode evolution were investigated via hybrid simulations of an MHD fluid interacting with energetic particles. The investigation focused on the evolution of an n = 4 toroidal Alfvén eigenmode (TAE) which is destabilized by energetic particles in a tokamak. In addition to fully nonlinear code, a linear-MHD code was used for comparison. The only nonlinearity in that linear code is from the energetic-particle dynamics. No significant difference was found in the results of the two codes for low saturation levels, δB/B ~ 10-3. In contrast, when the TAE saturation level predicted by the linear code is δB/B ~ 10-2, the saturation amplitude in the fully nonlinear simulation was reduced by a factor of 2 due to the generation of zonal (n = 0) and higher-n (n >= 8) modes. This reduction is attributed to the increased dissipation arising from the nonlinearly generated modes. The fully nonlinear simulations also show that geodesic acoustic mode is excited by the MHD nonlinearity after the TAE mode saturation.

  1. Cyclic and low temperature effects on microcircuits

    NASA Technical Reports Server (NTRS)

    Weissflug, V. A.; Sisul, E. V.

    1977-01-01

    Cyclic temperature and low temperature operating life tests, and pre-/post-life device evaluations were used to determine the degrading effects of thermal environments on microcircuit reliability. Low power transistor-transistor-logic gates and linear devices were included in each test group. Device metallization systems included aluminum metallization/aluminum wire, aluminum metallization/gold wire, and gold metallization/gold wire. Fewer than 2% electrical failures were observed during the cyclic and low temperature life tests and the post-life evaluations revealed approximately 2% bond pull failures. Reconstruction of aluminum die metallization was observed in all devices and the severity of the reconstruction appeared to be directly related to the magnitude of the temperature excursion. All types of bonds except the gold/gold bonds were weakened by exposure to repeated cyclic temperature stress.

  2. Collisional Effects on Nonlinear Ion Drag Force for Small Grains

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.; Haakonsen, C. B.

    2013-10-01

    Ion drag force arising from plasma flow past an embedded grain in a plasma is a vital part of dusty plasma dynamics. Ion-neutral collisions are often significant for experimental dusty plasmas. They are here included self-consistently in properly nonlinear comprehensive drag calculations, for the first time. The ion drag on a spherical grain is calculated using particle in cell codes SCEPTIC and COPTIC. Using ion velocity ``drift'' distribution appropriate for flow driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality level. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if nonlinear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided. Partially supported by NSF/DOE Grant DE-FG02-06ER54982 and Science Graduate Fellowship Program DE-AC05-06OR23100.

  3. Primarily nonlinear effects observed in a driven asymmetrical vibrating wire

    NASA Astrophysics Data System (ADS)

    Hanson, Roger J.; Macomber, H. Kent; Morrison, Andrew C.; Boucher, Matthew A.

    2005-01-01

    The purpose of the work reported here is to further experimentally explore the wide variety of behaviors exhibited by driven vibrating wires, primarily in the nonlinear regime. When the wire is driven near a resonant frequency, it is found that most such behaviors are significantly affected by the splitting of the resonant frequency and by the existence of a ``characteristic'' axis associated with each split frequency. It is shown that frequency splitting decreases with increasing wire tension and can be altered by twisting. Two methods are described for determining the orientation of characteristic axes. Evidence is provided, with a possible explanation, that each axis has the same orientation everywhere along the wire. Frequency response data exhibiting nonlinear generation of transverse motion perpendicular to the driving direction, hysteresis, linear generation of perpendicular motion (sometimes tubular), and generation of motion at harmonics of the driving frequency are exhibited and discussed. Also reported under seemingly unchanging conditions are abrupt large changes in the harmonic content of the motion that sometimes involve large subharmonics and harmonics thereof. Slow transitions from one stable state of vibration to another and quasiperiodic motions are also exhibited. Possible musical significance is discussed. .

  4. Nonlinear effects for the Taylor column for a hemisphere

    NASA Technical Reports Server (NTRS)

    Crisalli, A. J.; Walker, J. D. A.

    1976-01-01

    When a flow is forced past an obstacle in a rapidly rotating fluid, a Taylor column forms. This is defined by a set of vertical detached shear layers circumscribing the obstacle which provide the smooth transition from an external inviscid potential flow to a stagnant core above the obstacle. For a hemispherical object, the main adjustment takes place in an external E to the 1/4 power layer and an internal E to the 2/7 power layer; here, the nonlinear flow in these layers is investigated. The problem in the E to the 1/4 power layer is identical to a problem occurring in magnetohydrodynamic flow; in addition, some features of the magnetohydrodynamic problem have been resolved. Numerical solutions are obtained for the steady nonlinear external E to the 1/4 power layer flow up to the point where unsteady flow separation from the Taylor column is imminent. The response of the internal E to the 2/7 power layer to the flow in the E to the 1/4 power layer is calculated, and the results suggest that the internal shear layer is unlikely to play any significant role in the separation process

  5. Comparison of inelastic and quasielastic scattering effects on nonlinear electron transport in quantum wires

    NASA Astrophysics Data System (ADS)

    Huang, Danhong; Gumbs, Godfrey

    2010-05-01

    When impurity and phonon scattering coexist, the Boltzmann equation has been solved accurately for nonlinear electron transport in a quantum wire. Based on the calculated nonequilibrium distribution of electrons in momentum space, the scattering effects on both the nondifferential (for a fixed dc field) and differential (for a fixed temperature) mobilities of electrons as functions of temperature and dc field have been demonstrated. The nondifferential mobility of electrons is switched from a linearly increasing function of temperature to a paraboliclike temperature dependence as the quantum wire is tuned from an impurity-dominated system to a phonon-dominated one, as described by Fang et al. [Phys. Rev. B 78, 205403 (2008)]. In addition, a maximum has been obtained in the dc field dependence of the differential mobility of electrons. The low-field differential mobility is dominated by the impurity scattering, whereas the high-field differential mobility is limited by the phonon scattering as described by Hauser et al. [Semicond. Sci. Technol. 9, 951 (1994)]. Once a quantum wire is dominated by quasielastic scattering, the peak of the momentum-space distribution function becomes sharpened and both tails of the equilibrium electron distribution centered at the Fermi edges are raised by the dc field after a redistribution of the electrons is fulfilled in a symmetric way in the low-field regime. If a quantum wire is dominated by inelastic scattering, on the other hand, the peak of the momentum-space distribution function is unchanged while both shoulders centered at the Fermi edges shift leftward correspondingly with increasing dc field through an asymmetric redistribution of the electrons even in low-field regime as described by Wirner et al. [Phys. Rev. Lett. 70, 2609 (1993)].

  6. Proper orthogonal decomposition method for analysis of nonlinear panel flutter with thermal effects in supersonic flow

    NASA Astrophysics Data System (ADS)

    Xie, Dan; Xu, Min; Dai, Honghua; Dowell, Earl H.

    2015-02-01

    The proper orthogonal decomposition (POD) method for analysis of nonlinear panel flutter subjected to supersonic flow is presented. Optimal POD modes are extracted from a chaotic Galerkin mode responses. The aeroelastic equations of motion are constructed using von Karman plate theory, first-order piston theory and quasi-steady thermal stress theory. A simply-supported plate with thermal loads from a uniformly distributed temperature is considered. Many types of panel behaviors, including stable flat, dynamically stable buckled, limit cycle oscillation, nonharmonic periodic motion, quasi-periodic motion and chaotic motion are observed. Our primary focus is on chaos and the route to chaos. It is found that a sudden transition from the buckled state to chaos occurs. Time history, phase portrait, Poincaré map, bifurcation diagram and Lyapunov exponent are employed to study chaos. The POD chaotic results obtained are compared with the traditional Galerkin solutions. It is shown that the POD method can obtain accurate chaotic solutions, using fewer modes and less computational effort than the Galerkin mode approach; additionally, the POD method converges faster in the analysis of chaotic transients. Effects of length-to-width ratios and thermal loads are presented. It is found that a smaller width for fixed length will produce more stable flutter response, while the thermal loads degrade the flutter boundary and result in a more complex evolution of dynamic motions. The numerical simulations show that the robustness of the POD modes depends on the dynamic pressure but not on temperature.

  7. High temperature Hall-effect apparatus

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, A.; Chmielewski, A.; Parker, J.; Zoltan, A.

    1984-01-01

    A high-temperature Hall-effect apparatus is described which allows measurements up to temperatures greater than 1200 K using the van der Pauw method. The apparatus was designed for measurements on refractory materials having high charge carrier concentrations and generally low mobilities. Pressure contacts are applied to the samples. Consequently, special contacting methods, peculiar to a specific sample material, are not required. The apparatus has been semiautomated to facilitate measurements. Results are presented on n- and p-type silicon.

  8. Temperature effect on plasmons in bilayer graphene

    SciTech Connect

    Patel, Digish K. Sharma, A. C.; Ashraf, S. S. Z.; Ambavale, S. K.

    2015-06-24

    We have theoretically investigated the plasmon dispersion and damping rate of doped bilayer graphene (BLG) at finite temperatures within the random phase approximation. Our computed results on plasmon dispersion show that plasmon frequency enhances with increasing temperatures in contrast to single layer graphene where it is suppressed. This can be attributed to the fact that the dynamic response of the electron gas or screening in bilayer graphene is different from that of single layer graphene. Further the temperature effect on damping rate is also discussed.

  9. Temperature effects in dip-tube manometry

    SciTech Connect

    Keisch, B; Suda, S

    1980-01-01

    A simple mathematical treatment of the temperature dependence of manometric data for dip-tubes is described. It is shown that the pressure probe measurement is a function of the mass, temperature, and liquid level heights below and above the effective tip of the probe. The resulting equations explain why, for example, high- and low-level probes exhibit temperature sensitivity that is opposite in sign to one another. The derived equations are successful in the prediction of actual data obtained for two differently-shaped vessels containing two different liquids.

  10. The relative effects of cavitation and nonlinear ultrasound propagation on HIFU lesion dynamics in a tissue phantom

    NASA Astrophysics Data System (ADS)

    Khokhlova, Vera A.; Bailey, Michael R.; Reed, Justin; Kaczkowski, Peter J.

    2001-05-01

    The relative importance of the effects of acoustic nonlinearity and cavitation in HIFU lesion production is studied experimentally and theoretically in a polyacrylamide gel. A 2-MHz transducer of 40-mm diameter and 45-mm focal length was operated at different regimes of power, and in cw or duty-cycle regimes with equal mean intensity. Elevated static pressure was applied to suppress bubbles, increase boiling temperature, and thus to isolate the effect of acoustic nonlinearity in the enhancement of lesion production. Experimental data were compared with the results of simulations performed using a KZK acoustic model combined with the bioheat equation and thermal dose formulation. Boiling and the typical tadpole-shaped lesion shifting towards the transducer were observed under standard atmospheric pressure. No boiling was detected and a symmetric thermal lesion formed in the case of overpressure. A delay in lesion inception time was registered with overpressure, which was hypothesized to be due to suppressed microbubble dynamics. The effect of acoustic nonlinearity was revealed as a substantial decrease in the lesion inception time and an increase in the lesion size for high-amplitude waves under both standard and overpressure conditions. [Work supported by ONRIFO, NASA/NSBRI, NIH Fogarty, and CRDF grants.

  11. Self-Action of Second Harmonic Generation and Longitudinal Temperature Gradient in Nonlinear-Optical Crystals

    NASA Astrophysics Data System (ADS)

    Baranov, A. I.; Konyashkin, A. V.; Ryabushkin, O. A.

    2015-09-01

    Model of second harmonic generation with thermal self-action was developed. Second harmonic generation temperature phase matching curves were measured and calculated for periodically polled lithium niobate crystal. Both experimental and calculated data show asymmetrical shift of temperature tuning curves with pump power.

  12. Nonlinear effect on the East Asian summer monsoon due to two coexisting anthropogenic forcing factors in eastern China: an AGCM study

    NASA Astrophysics Data System (ADS)

    Deng, Jiechun; Xu, Haiming

    2016-06-01

    Two anthropogenic forcing factors dominate in eastern China: aerosols and urban land cover. Usually, aerosols induce surface cooling while urban land cover causes surface warming. It is important to explore whether or not a nonlinear effect may result from the coexistence of these two opposing effects, and to what extent such nonlinear effect may become significant in affecting the climate change in East Asia. In this study, the Community Atmosphere Model version 5.1 (CAM5.1) coupled with the Community Land Model version 4 (CLM4) is employed to investigate the nonlinear effect on the East Asian summer monsoon due to the coexistence of aerosols and urban land cover. The anthropogenic forcing can be studied by including only aerosol emissions, only urban land cover, or a combination of the two in eastern China. The nonlinear effect obtained in CAM5.1 is evident in eastern China to offset the urbanization effect. Large-scale atmospheric response produces anomalous upward motion and increases total cloud amount and precipitation. This increased total cloud amount and its associated negative shortwave cloud forcing in turn significantly decrease surface air temperature and cool the troposphere, especially in northern China, resulting in a reduced land-sea thermal contrast, which acts to weaken the prevailing southwesterly wind over the Yangtze River Valley and southwestern China and to enhance the wind over the northern South China Sea. The nonlinear effect also indirectly excites strong convection over southern China, leading to a pronounced increase in summer precipitation.

  13. Outdoor Temperature, Heart Rate and Blood Pressure in Chinese Adults: Effect Modification by Individual Characteristics

    PubMed Central

    Madaniyazi, Lina; Zhou, Yong; Li, Shanshan; Williams, Gail; Jaakkola, Jouni J.K.; Liang, Xin; Liu, Yan; Wu, Shouling; Guo, Yuming

    2016-01-01

    We collected data from Kailuan cohort study from 2006 to 2011 to examine whether short-term effects of ambient temperature on heart rate (HR) and blood pressure (BP) are non-linear or linear, and their potential modifying factors. The HR, BP and individual information, including basic characteristics, life style, socio-economic characteristics and other characteristics, were collected for each participant. Daily mean temperature and relative humidity were collected. A regression model was used to evaluate associations of temperature with HR and BP, with a non-linear function for temperature. We also stratified the analyses in different groups divided by individual characteristics. 47,591 residents were recruited. The relationships of temperature with HR and BP were “V” shaped with thresholds ranging from 22 °C to 28 °C. Both cold and hot effects were observed on HR and BP. The differences of effect estimates were observed among the strata of individual characteristics. The effect estimate of temperature was higher among older people. The cold effect estimate was higher among people with lower Body Mass Index. However, the differences of effect estimates among other groups were inconsistent. These findings suggest both cold and hot temperatures may have short-term impacts on HR and BP. The individual characteristics could modify these relationships. PMID:26876040

  14. Canceling effect leads temperature insensitivity of hydrolytic enzymes in soil

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many macromolecules abundant in soil such as cellulose, hemicelluloses and proteins (Allison et al., 2010; Chen et al., 2012). The temperature sensitivity of enzymes responsible for organic matter decomposition is the most crucial parameter for prediction of the effects of global warming on carbon cycle. Temperature responses of biological systems are often expressed as a Q10 functions; The Q10 describes how the rate of a chemical reaction changes with a temperature increase for 10 °C The aim of this study was to test how the canceling effect will change with variation in temperature interval, during short-term incubation. We additionally investigated, whether canceling effect occurs in a broad range of concentrations (low to high) and whether it is similar for the set of hydrolytic enzymes within broad range of temperatures. To this end, we performed soil incubation over a temperature range of 0-40°C (with 5°C steps). We determined the activities of three enzymes involved in plant residue decomposition: β-glucosidase and cellobiohydrolase, which are commonly measured as enzymes responsible for degrading cellulose (Chen et al., 2012), and xylanase, which degrades xylooligosaccharides (short xylene chain) in to xylose, thus being responsible for breaking down hemicelluloses (German et al., 2011). Michaelis-Menten kinetics measured at each temperature allowed to calculate Q10 values not only for the whole reaction rates, but specifically for maximal reaction rate (Vmax) and substrate affinity (Km). Subsequently, the canceling effect - simultaneous increase of Vmax and Km with temperature was analyzed within 10 and 5 degree of temperature increase. Three temperature ranges (below 10, between 15 and 25, and above 30 °C) clearly showed non-linear but stepwise increase of temperature sensitivity of all three enzymes and allowed to conclude for predominance of psychrophilic, mesophilic and thermophilic

  15. Effects of interhemisphere transport on plasma temperatures at low latitudes.

    NASA Technical Reports Server (NTRS)

    Bailey, G. J.; Moffett, R. J.; Hanson, W. B.; Sanatani, S.

    1973-01-01

    The thermal balance of the equatorial plasma between 300 and 800 km is examined. Steady state nighttime calculations are made for O+, H+, and electrons. The following features are included: collisional heat transfer between ions, electrons, and neutrals; ion and electron thermal conduction along the field lines; curvature of the field lines; nonlinear advection due to field-aligned ion and electron motions; and convective compression or expansion due to field-aligned and E x B motions. The ion velocities necessary to calculate the effects of convection are obtained from the work of Moffett and Hanson, who include a meridional wind across the magnetic equator in their calculations. It is shown that field-aligned interhemisphere plasma flows appreciably affect the plasma temperatures.

  16. Temperature Induced Syllable Breaking Unveils Nonlinearly Interacting Timescales in Birdsong Motor Pathway

    PubMed Central

    Goldin, Matías A.; Alonso, Leandro M.; Alliende, Jorge A.; Goller, Franz; Mindlin, Gabriel B.

    2013-01-01

    The nature of telencephalic control over premotor and motor circuits is debated. Hypotheses range from complete usurping of downstream circuitry to highly interactive mechanisms of control. We show theoretically and experimentally, that telencephalic song motor control in canaries is consistent with a highly interactive strategy. As predicted from a theoretical model of respiratory control, mild cooling of a forebrain nucleus (HVC) led to song stretching, but further cooling caused progressive restructuring of song, consistent with the hypothesis that respiratory gestures are subharmonic responses to a timescale present in the output of HVC. This interaction between a life-sustaining motor function (respiration) and telencephalic song motor control suggests a more general mechanism of how nonlinear integration of evolutionarily new brain structures into existing circuitry gives rise to diverse, new behavior. PMID:23818988

  17. Nonlinear refractive index measurements and self-action effects in Roselle-Hibiscus Sabdariffa solutions

    NASA Astrophysics Data System (ADS)

    Henari, F. Z.; Al-Saie, A.

    2006-12-01

    We report the observation of self-action phenomena, such as self-focusing, self-defocusing, self-phase modulation and beam fanning in Roselle-Hibiscus Sabdariffa solutions. This material is found to be a new type of natural nonlinear media, and the nonlinear reflective index coefficient has been determined using a Z-scan technique and by measuring the critical power for the self-trapping effect. Z-scan measurements show that this material has a large negative nonlinear refractive index, n 2 = 1 × 10-4 esu. A comparison between the experimental n 2 values and the calculated thermal value for n 2 suggests that the major contribution to nonlinear response is of thermal origin.

  18. Effect of nonlinear chirped Gaussian laser pulse on plasma wake field generation

    SciTech Connect

    Afhami, Saeedeh; Eslami, Esmaeil

    2014-08-15

    An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wake field which can accelerate charged particles up to GeV energies within a compact space compared to the conventional accelerator devices. In this paper, the effect of different kinds of nonlinear chirped Gaussian laser pulse on wake field generation is investigated. The numerical analysis of our results depicts that the excitation of plasma wave with large and highly amplitude can be accomplished by nonlinear chirped pulses. The maximum amplitude of excited wake in nonlinear chirped pulse is approximately three times more than that of linear chirped pulse. In order to achieve high wake field generation, chirp parameters and functions should be set to optimal values.

  19. Interplay of diffraction and nonlinear effects in the propagation of ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Korpa, C. L.; Tóth, Gy; Hebling, J.

    2016-02-01

    We investigate the interplay of diffraction and nonlinear effects during the propagation of very short light pulses. Adapting the factorization approach to the problem at hand by keeping the transverse-derivative terms apart from the residual nonlinear contributions we derive an unidirectional propagation equation which is valid for weak dispersion and reduces to the slowly-evolving-wave-approximation in the case of paraxial rays. A comparison of the numerical simulation results for the two equations shows pronounced differences when self-focusing plays an important role. We devote special attention to modelling the propagation of ultrashort terahertz pulses taking into account diffraction as well as Kerr-type and second-order nonlinearities. Comparing the measured and simulated wave forms we deduce the value of the nonlinear refractive index of lithium niobate in the terahertz region to be three orders of magnitude larger than in the visible part of the spectrum.

  20. Effects of Analog-to-Digital Converter Nonlinearities on Radar Range-Doppler Maps.

    SciTech Connect

    Doerry, Armin Walter; Dubbert, Dale F.; Tise, Bertice L.

    2014-07-01

    Radar operation, particularly Ground Moving Target Indicator (GMTI) radar modes, are very sensitive to anomalous effects of system nonlinearities. These throw off harmonic spurs that are sometimes detected as false alarms. One significant source of nonlinear behavior is the Analog to Digital Converter (ADC). One measure of its undesired nonlinearity is its Integral Nonlinearity (INL) specification. We examine in this report the rela tionship of INL to GMTI performance. - 4 - Acknowledgements This report is the result of a n unfunded Research and Development effort . Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidia ry of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  1. Effect of Storage Temperature on Allograft Bone

    PubMed Central

    Fölsch, Christian; Mittelmeier, Wolfram; Bilderbeek, Uwe; Timmesfeld, Nina; von Garrel, Thomas; Peter Matter, Hans

    2012-01-01

    Background The recommendations for storage temperature of allogeneic bone are varying between −20 °C and −70 °C and down to −80 °C. The necessary temperature of storage is not exactly defined by scientific data, and the effect of different storage temperatures onto the biomechanical and the biological behavior is discussed controversially. Methods The historical development of storage temperature of bone banks is described. A survey on literature concerning the biomechanical and biological properties of allograft bone depending on the procurement and storage temperature is given as well as on national and international regulations on storage conditions of bone banks (European Council, American Association of Tissue Banks (AATB), European Association of Tissue Banks (EATB)). Results Short-term storage up to 6 months is recommended with −20 °C and −40 °C for a longer period (AATB), and EATB recommends storage at −40 °C and even −80 °C while the regulations of the German German Medical Association (Bundesärztekammer) from 2001 recommend storage at −70 °C. Duration of storage at −20 °C can be maintained at least for 2 years. The potential risk of proteolysis with higher storage temperatures remains, but a definite impairment of bone ingrowth due to a storage at −20 °C was not shown in clinical use, and no adverse biomechanical effects of storage at −20 °C could be proven. Conclusion Biomechanical studies showed no clinically relevant impairment of biomechanical properties of cancellous bone due to different storage temperatures. Sterilization procedures bear the advantage of inactivating enzymatic activity though reducing the risk of proteolysis. In those cases a storage temperature of −20 °C can be recommended for at least a period of 2 years, and the risk of undesired effects seems to be low for native unprocessed bone. PMID:22896765

  2. A strategy to eliminate all nonlinear effects in constant-voltage hot-wire anemometry

    NASA Astrophysics Data System (ADS)

    Berson, Arganthaël; Blanc-Benon, Philippe; Comte-Bellot, Geneviève

    2009-04-01

    A constant-voltage anemometer is subject to nonlinear effects when the operating hot wire is exposed to large velocity fluctuations in the incident flow. This results in the generation of undesirable higher harmonics, just as in the two classic systems, constant-current and constant-temperature anemometers, for which no attempts are normally made to correct the nonlinearities. The present investigation shows that these undesirable higher harmonics can be suppressed in the case of a constant-voltage anemometer. A new approach to process experimental data is proposed. It is based on three explicit equations established and solved with all terms included, i.e., without linearization. These are (1) the first-order differential equation that describes the electronic circuit of a constant-voltage anemometer—this equation permits to deduce the instantaneous resistance of the hot wire from the output voltage of the anemometer; (2) the first-order differential equation that expresses the thermal lag behavior of the hot wire when used in a constant-voltage mode—this equation permits to restore the instantaneous resistance that an ideal wire would have without thermal inertia in the same flow conditions; and (3) the algebraic relation that expresses the heat-transfer law of an ideal wire, according to King's law, a look-up table, or a polynomial fit—this relation permits to deduce the instantaneous flow velocity from the instantaneous resistance of the ideal wire. The proposed method is easily implemented on a personal computer and permits odd turbulence moments, such as skewness factors, to be obtained satisfactorily.

  3. Kinetic Effects on the Stability Properties of Field-reversed Configurations: II. Nonlinear Evolution

    SciTech Connect

    Elena V. Belova; Ronald C. Davidson; Hantao Ji; Masaaki Yamada

    2003-11-25

    Results of three-dimensional hybrid simulations of the field-reversed configuration (FRC) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs. A wide range of ''bar s'' values is considered, where the ''bar s'' is the FRC kinetic parameter, which measures the number of ion gyroradii in the configuration. The linear and nonlinear stability of MHD modes with toroidal mode numbers n greater than or equal to 1 is investigated, including the effects of ion rotation, finite electron pressure, and weak toroidal field. Low-''bar s'' simulations show nonlinear saturation of the n = 1 tilt mode. The n greater than or equal to 2 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to ion spin-up in the toroidal direction. Large-''bar s'' simulations show no saturation of the tilt mode, and there is a slow nonlinear evolution of the instability after the initial fast linear growth. Overall, the hybrid simulations demonstrate the importance of nonlinear effects, which are responsible for the saturation of instabilities in low-''bar s'' configurations, and also for the increase in FRC life-time compared to MHD models in high-''bar s'' configurations.

  4. Oscillatory flow in jet pumps: nonlinear effects and minor losses.

    PubMed

    Petculescu, A; Wilen, L A

    2003-03-01

    A nonresonant, lumped-element technique is used to investigate the behavior of tapered cylindrical flow constrictions (jet pumps) in the nonlinear oscillatory flow regime. The array of samples studied spans a wide range of inlet curvature radii and taper angles. By measuring the rectified steady pressure component developed across a jet pump as well as the acoustic impedance, the minor loss coefficients for flow into and out of the narrow end of the jet pump are determined. These coefficients are found to be relatively insensitive to all but the smallest curvature radii (i.e., sharp edges). For fixed radius of curvature, the inflow minor loss coefficient increases with increasing taper angle while the outflow coefficient remains relatively constant. For all of the samples, the steady flow minor loss coefficients are also measured and compared to their oscillatory flow counterparts. The agreement is good, confirming the so-called Iguchi hypothesis. PMID:12656363

  5. Nonlinear effects of dark energy clustering beyond the acoustic scales

    SciTech Connect

    Anselmi, Stefano; Sefusatti, Emiliano E-mail: dlopez_n@ictp.it

    2014-07-01

    We extend the resummation method of Anselmi and Pietroni (2012) to compute the total density power spectrum in models of quintessence characterized by a vanishing speed of sound. For standard ΛCDM cosmologies, this resummation scheme allows predictions with an accuracy at the few percent level beyond the range of scales where acoustic oscillations are present, therefore comparable to other, common numerical tools. In addition, our theoretical approach indicates an approximate but valuable and simple relation between the power spectra for standard quintessence models and models where scalar field perturbations appear at all scales. This, in turn, provides an educated guess for the prediction of nonlinear growth in models with generic speed of sound, particularly valuable since no numerical results are yet available.

  6. Effects of obliqueness and strong electrostatic interaction on linear and nonlinear propagation of dust-acoustic waves in a magnetized strongly coupled dusty plasma

    SciTech Connect

    Shahmansouri, M.; Mamun, A. A.

    2014-03-15

    Linear and nonlinear propagation of dust-acoustic waves in a magnetized strongly coupled dusty plasma is theoretically investigated. The normal mode analysis (reductive perturbation method) is employed to investigate the role of ambient/external magnetic field, obliqueness, and effective electrostatic dust-temperature in modifying the properties of linear (nonlinear) dust-acoustic waves propagating in such a strongly coupled dusty plasma. The effective electrostatic dust-temperature, which arises from strong electrostatic interactions among highly charged dust, is considered as a dynamical variable. The linear dispersion relation (describing the linear propagation characteristics) for the obliquely propagating dust-acoustic waves is derived and analyzed. On the other hand, the Korteweg-de Vries equation describing the nonlinear propagation of the dust-acoustic waves (particularly, propagation of dust-acoustic solitary waves) is derived and solved. It is shown that the combined effects of obliqueness, magnitude of the ambient/external magnetic field, and effective electrostatic dust-temperature significantly modify the basic properties of linear and nonlinear dust-acoustic waves. The results of this work are compared with those observed by some laboratory experiments.

  7. Linear and nonlinear effects of dominant drivers on the trends in global and regional land carbon uptake: 1959 to 2013

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanze; Rayner, Peter J.; Wang, Ying-Ping; Silver, Jeremy D.; Lu, Xingjie; Pak, Bernard; Zheng, Xiaogu

    2016-02-01

    Changes in atmospheric CO2 levels, surface temperature, or precipitation have been identified to have significantly contributed to the estimated increase in the terrestrial carbon uptake rate over the last few decades; however, those analyses did not consider the interactions. Using the Australian community land surface model (Community Atmosphere Biosphere Land Exchange), we performed factorial experiments to quantify the importance of external drivers (climate drivers and atmospheric CO2) and their interactions on annual terrestrial carbon uptake (FL), excluding land use change and fires, from 1959 to 2013. Our model simulations show a trend of 0.025 ± 0.015 Pg C yr-2 (or ~1.5% yr-1) in global FL for 1959-2013, which is largely attributed to the positive influences of the increased atmospheric CO2 (0.050 ± 0.001 Pg C yr-2) and negative influences of changes in climate (-0.026 ± 0.014 Pg C yr-2). Globally, the contribution of the nonlinear effects of dominant drivers to the simulated trend in FL is small (<10%) but can be significant regionally (>35%), particularly in the boreal forests and semiarid regions. The interactions between temperature and CO2 or temperature and precipitation can dominate the simulated trend in parts of Europe, southeastern North America, southern China, and some semiarid regions. This modeling result suggests that the effects of nonlinear interactions of drivers on the trend of land carbon uptake should be considered in future studies.

  8. Nonlinear radiative heat transfer and Hall effects on a viscous fluid in a semi-porous curved channel

    NASA Astrophysics Data System (ADS)

    Abbas, Z.; Naveed, M.; Sajid, M.

    2015-10-01

    In this paper, effects of Hall currents and nonlinear radiative heat transfer in a viscous fluid passing through a semi-porous curved channel coiled in a circle of radius R are analyzed. A curvilinear coordinate system is used to develop the mathematical model of the considered problem in the form partial differential equations. Similarity solutions of the governing boundary value problems are obtained numerically using shooting method. The results are also validated with the well-known finite difference technique known as the Keller-Box method. The analysis of the involved pertinent parameters on the velocity and temperature distributions is presented through graphs and tables.

  9. Breaking the acoustic diffraction limit via nonlinear effect and thermal confinement for potential deep-tissue high-resolution imaging

    PubMed Central

    Yuan, Baohong; Pei, Yanbo; Kandukuri, Jayanth

    2013-01-01

    Our recently developed ultrasound-switchable fluorescence (USF) imaging technique showed that it was feasible to conduct high-resolution fluorescence imaging in a centimeter-deep turbid medium. Because the spatial resolution of this technique highly depends on the ultrasound-induced temperature focal size (UTFS), minimization of UTFS becomes important for further improving the spatial resolution USF technique. In this study, we found that UTFS can be significantly reduced below the diffraction-limited acoustic intensity focal size via nonlinear acoustic effects and thermal confinement by appropriately controlling ultrasound power and exposure time, which can be potentially used for deep-tissue high-resolution imaging. PMID:23479498

  10. Nonlinear radiative heat transfer and Hall effects on a viscous fluid in a semi-porous curved channel

    SciTech Connect

    Abbas, Z.; Naveed, M.; Sajid, M.

    2015-10-15

    In this paper, effects of Hall currents and nonlinear radiative heat transfer in a viscous fluid passing through a semi-porous curved channel coiled in a circle of radius R are analyzed. A curvilinear coordinate system is used to develop the mathematical model of the considered problem in the form partial differential equations. Similarity solutions of the governing boundary value problems are obtained numerically using shooting method. The results are also validated with the well-known finite difference technique known as the Keller-Box method. The analysis of the involved pertinent parameters on the velocity and temperature distributions is presented through graphs and tables.

  11. Investigation on substituent effect in novel azo-naphthol dyes containing polymethacrylates for nonlinear optical studies

    NASA Astrophysics Data System (ADS)

    Shalini Rosalyn, P. Delphia; Senthil, S.; Kannan, P.; Vinitha, G.; Ramalingam, A.

    2007-09-01

    A novel structurally isomeric and free-radically polymerizable methacrylates bearing azo-naphthol group in the side chain spaced away from the backbone by a hexamethylene spacer and substituted in 4-position with electron-withdrawing and donating substituent were synthesized for NLO applications. These polymers were characterized by UV, IR, 1H-NMR and 13C-NMR spectroscopy. The photoisomerization properties of all the polymers were studied. The glass transition temperature and thermal stability of the polymers were investigated by DSC and TGA, respectively. The third-order nonlinear optical properties of the polymer film were measured by the Z-scan technique using Ar-ion laser and exhibits negative optical nonlinearity. The results revealed that these polymers possess potential applications in nonlinear optics.

  12. Effects of Cyclic and Monotonic Deformations on Nonlinear Ultrasonic Response of Austenitic Stainless Steel: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfeng; Xuan, Fu-Zhen; Xiang, Yanxun; Zhao, Peng

    2016-05-01

    The effect of plastic deformations on the nonlinear ultrasonic response in austenite stainless steel was investigated under the tensile, asymmetric cyclic, and symmetric cyclic loadings. Nonlinear ultrasonic wave measurement was performed on the interrupted specimens. Results show that cyclic and monotonic plastic deformations lead to the significantly different acoustic nonlinear response. The increase of dislocation density and martensite transformation causes the increase of acoustic nonlinearity. By contrast, the well-developed cell structures decrease the acoustic nonlinear response. Under the asymmetric cyclic loading condition, the lightly decrease of acoustic nonlinearity is caused by the development of cell structures, while the slight increase of acoustic nonlinearity should be attributed to the increase of martensite transformation. Comparatively, the severe increase of acoustic nonlinearity during the first stage under symmetric cyclic loading is ascribed to the fast generation of dislocation structures and martensite transformation.

  13. A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature

    NASA Astrophysics Data System (ADS)

    Jha, Sanjeev Kumar; Mariethoz, Gregoire; Evans, Jason; McCabe, Matthew F.; Sharma, Ashish

    2015-08-01

    A geostatistical framework is proposed to downscale daily precipitation and temperature. The methodology is based on multiple-point geostatistics (MPS), where a multivariate training image is used to represent the spatial relationship between daily precipitation and daily temperature over several years. Here the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 and 10 km resolution for a 20 year period ranging from 1985 to 2004. The data are used to predict downscaled climate variables for the year 2005. The result, for each downscaled pixel, is daily time series of precipitation and temperature that are spatially dependent. Comparison of predicted precipitation and temperature against a reference data set indicates that both the seasonal average climate response together with the temporal variability are well reproduced. The explicit inclusion of time dependence is explored by considering the climate properties of the previous day as an additional variable. Comparison of simulations with and without inclusion of time dependence shows that the temporal dependence only slightly improves the daily prediction because the temporal variability is already well represented in the conditioning data. Overall, the study shows that the multiple-point geostatistics approach is an efficient tool to be used for statistical downscaling to obtain local-scale estimates of precipitation and temperature from General Circulation Models.

  14. Effects of temperature changes on groundwater ecosystems

    NASA Astrophysics Data System (ADS)

    Griebler, Christian; Kellermann, Claudia; Schreglmann, Kathrin; Lueders, Tillmann; Brielmann, Heike; Schmidt, Susanne; Kuntz, David; Walker-Hertkorn, Simone

    2014-05-01

    The use of groundwater as a carrier of thermal energy is becoming more and more important as a sustainable source of heating and cooling. At the same time, the present understanding of the effects of aquifer thermal usage on geochemical and biological aquifer ecosystem functions is extremely limited. Recently we started to assess the effects of temperature changes in groundwater on the ecological integrity of aquifers. In a field study, we have monitored hydrogeochemical, microbial, and faunal parameters in groundwater of an oligotrophic aquifer in the vicinity of an active thermal discharge facility. The observed seasonal variability of abiotic and biotic parameters between wells was considerable. Yet, due to the energy-limited conditions no significant temperature impacts on bacterial or faunal abundances and on bacterial productivity were observed. In contrast, the diversity of aquifer bacterial communities and invertebrate fauna was either positively or negatively affected by temperature, respectively. In follow-up laboratory experiments temperature effects were systematically evaluated with respect to energy limitation (e.g. establishment of unlimited growth conditions), geochemistry (e.g. dynamics of DOC and nutrients), microbiology (e.g. survival of pathogens), and fauna (temperature preference and tolerance). First, with increased nutrient and organic carbon concentrations even small temperature changes revealed microbiological dynamics. Second, considerable amounts of adsorbed DOC were mobilized from sediments of different origin with an increase in temperatures. No evidence was obtained for growth of pathogenic bacteria and extended survival of viruses at elevated temperatures. Invertebrates clearly preferred natural thermal conditions (10-12°C), where their highest frequency of appearance was measured in a temperature gradient. Short-term incubations (48h) of invertebrates in temperature dose-response tests resulted in LT50 (lethal temperature) values

  15. Surface roughness effects on equilibrium temperature.

    NASA Technical Reports Server (NTRS)

    Houchens, A. F.; Hering, R. G.

    1972-01-01

    An analysis is presented for evaluation of equilibrium temperature distribution on radiatively adiabatic, adjoint planes which are uniformly irradiated by a collimated solar flux. The analysis employs a semigrey spectral model. Radiation properties for surface emitted radiation are obtained from the expressions of electromagnetic theory for smooth surfaces. Rough surface properties for solar radiation are given by the Beckmann bidirectional reflectance model. Numerical solutions to the governing equations yield equilibrium temperature distributions for a range of the influencing parameters. Surface roughness has little influence on equilibrium temperature for materials with high values for solar absorptance. However, for low or intermediate values of solar absorptance, roughness effects on the spatial distribution of reflected solar radiation can significantly alter equilibrium temperature particularly at surface elements where radiant interaction is small.

  16. Discrete breathers in graphane: Effect of temperature

    NASA Astrophysics Data System (ADS)

    Baimova, J. A.; Murzaev, R. T.; Lobzenko, I. P.; Dmitriev, S. V.; Zhou, Kun

    2016-05-01

    The discrete breathers in graphane in thermodynamic equilibrium in the temperature range 50-600 K are studied by molecular dynamics simulation. A discrete breather is a hydrogen atom vibrating along the normal to a sheet of graphane at a high amplitude. As was found earlier, the lifetime of a discrete breather at zero temperature corresponds to several tens of thousands of vibrations. The effect of temperature on the decay time of discrete breathers and the probability of their detachment from a sheet of graphane are studied in this work. It is shown that closely spaced breathers can exchange energy with each other at zero temperature. The data obtained suggest that thermally activated discrete breathers can be involved in the dehydrogenation of graphane, which is important for hydrogen energetics.

  17. Dynamics of glass-forming liquids. XX. Third harmonic experiments of non-linear dielectric effects versus a phenomenological model

    NASA Astrophysics Data System (ADS)

    Kim, Pyeongeun; Young-Gonzales, Amanda R.; Richert, Ranko

    2016-08-01

    We have re-measured the third harmonic non-linear dielectric response of supercooled glycerol using zero-bias sinusoidal electric fields, with the aim of comparing the resulting susceptibilities with a phenomenological model of non-linear dielectric responses. In the absence of known chemical effects in this liquid, the present model accounts for three sources of non-linear behavior: dielectric saturation, field induced entropy reduction, and energy absorption from the time dependent field. Using parameters obtained from static high field results, the present model reproduces the characteristic features observed in the third harmonic susceptibility spectra: a low frequency plateau originating from dielectric saturation and a peak positioned below the loss peak frequency whose amplitude increases with decreasing temperature. Semi-quantitative agreement is achieved between experiment and the present model, which does not involve spatial scales or dynamical correlations explicitly. By calculating the three contributions separately, the model reveals that the entropy effect is the main source of the "hump" feature of this third harmonic response.

  18. Thermal Effect in Opal Below Room Temperature

    PubMed Central

    Buerger, Martin J.; Shoemaker, Gerald L.

    1972-01-01

    Opal, once believed to be amorphous silica, was shown by Levin and Ott (1932, J. Amer. Chem. Soc. 54, 828-829) to give an x-ray powder pattern of the high-temperature form of cristobalite. The early explanation of this anomalous existence of a phase below its high-low transition temperature is now known to be untenable. One of us suggested that the tiny sizes of the component cristobalite crystals might explain the anomaly; if so, the transition might be expected below ambient temperatures. The record of a du Pont 900 Thermoanalyzer indeed revealed heat effects in opal below ambient temperatures, with an exotherm having a maximum at about -40° on cooling and an endotherm that began about -50° on heating. This was not a latent-heat effect due to the high-low transition of cristobalite, however, for the low-cristobalite pattern persisted to below -50°. Opal normally contains 4-9% water, which is tenaciously held; water loss is nearly linear with temperatures up to about 422°, when water loss is abruptly complete. Water-free opal does not display the thermal effect, but the same opal rehydrated does display it. Water is housed in minute voids, judged to be a few hundred Ångströms across, between minute particles of cristobalite. This water behaves differently from water in bulk, for its begins to melt at about -50°. PMID:16592025

  19. Nonlinear Delta-f Particle Simulations of Collective Effects in High Intensity Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Qin, Hong; Davidson, Ronald C.; Startsev, Edward A.

    2004-11-01

    A wide range of collective effects in high intensity charged particle beams have been numerically studied using the nonlinear delta-f particle simulation method implemented in the Beam Equilibrium Stability and Transport (BEST) code. For the electron-ion two-stream instability in high intensity accelerators and storage rings, the secondary electron yield effects are self-consistently studied by coupling the secondary electron yield library CMEE with the instability simulations. Progress has also been made in applying the delta-f particle simulation method to bunched beams, and a three-dimensional equilibrium solver has been implemented. With the help of recently developed parallel diagnostic techniques, we are able to characterize the chaotic particle dynamics under the influences of collective instabilities as well as three-dimensional equilibrium fields. To further extend the application areas of the delta-f particle simulation method, 2D domain decomposition is being developed using the Message Passing Interface, and three-dimensional equilibria with anisotropic temperature in the transverse and longitudinal directions are being investigated. References: [1] R. C. Davidson and H. Qin, An Introduction to the Physics of Intense Charged Particle Beams in High Energy Accelerators, World Scientific (2001). [2] H. Qin, Physics of Plasmas 10, 2078 (2003). [3] H. Qin, E. A. Startsev, and R. C. Davidson, Physical Review Special Topics on Accelerators and Beams 6, 014401 (2003).

  20. Nonlinear system identification of frictional effects in a beam with a bolted joint connection

    NASA Astrophysics Data System (ADS)

    Eriten, Melih; Kurt, Mehmet; Luo, Guanyang; Michael McFarland, D.; Bergman, Lawrence A.; Vakakis, Alexander F.

    2013-08-01

    We perform nonlinear system identification (NSI) of the effects of frictional connections in the dynamics of a bolted beam assembly. The methodology utilized in this work combines experimental measurements with slow-flow dynamic analysis and empirical mode decomposition, and reconstructs the dynamics through reduced-order models. These are in the form of single-degree-of-freedom linear oscillators (termed intrinsic modal oscillators—IMOs) with forcing terms derived directly from the experimental measurements through slow-flow analysis. The derived reduced order models are capable of reproducing the measured dynamics, whereas the forcing terms provide important information about nonlinear damping effects. The NSI methodology is applied to model nonlinear friction effects in a bolted beam assembly. A 'monolithic' beam with identical geometric and material properties is also tested for comparison. Three different forcing (energy) levels were considered in the tests in order to study the energy-dependencies of the damping nonlinearities induced in the beam from the bolted joint. In all cases, the NSI methodology employed was successful in identifying the damping nonlinearities, their spatial distributions and their effects of the vibration modes of the structural component.

  1. Effect of nonlinear soil-structure interaction on seismic response of low-rise SMRF buildings

    NASA Astrophysics Data System (ADS)

    Raychowdhury, Prishati; Singh, Poonam

    2012-12-01

    The nonlinear behavior of a soil-foundation system may alter the seismic response of a structure by providing additional fl exibility to the system and dissipating hysteretic energy at the soil-foundation interface. However, the current design practice is still reluctant to consider the nonlinearity of the soil-foundation system, primarily due to lack of reliable modeling techniques. This study is motivated towards evaluating the effect of nonlinear soil-structure interaction (SSI) on the seismic responses of low-rise steel moment resisting frame (SMRF) structures. In order to achieve this, a Winklerbased approach is adopted, where the soil beneath the foundation is assumed to be a system of closely-spaced, independent, nonlinear spring elements. Static pushover analysis and nonlinear dynamic analyses are performed on a 3-story SMRF building and the performance of the structure is evaluated through a variety of force and displacement demand parameters. It is observed that incorporation of nonlinear SSI leads to an increase in story displacement demand and a significant reduction in base moment, base shear and inter-story drift demands, indicating the importance of its consideration towards achieving an economic, yet safe seismic design.

  2. Effects of chilling temperatures on photosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmental stress is an inescapable reality for most plants growing in natural settings. Conditions of sub or supra-optimal temperatures, water deficit, water logging, salinity, and pollution can have dramatic effects on plant growth and development, and in agricultural settings, yield. In cotton...

  3. Cepheid temperature and the Blazhko effect

    NASA Technical Reports Server (NTRS)

    Teays, Terry

    1995-01-01

    Two separate research projects were covered under this contract. The first project was to study the temperatures of Cepheid variable stars, while the second was a study of the Blazhko effect in RR Larae, both of them using IUE data. They will be reported on separately, in what follows.

  4. Nonlinear dynamics of the tearing mode with two-fluid and curvature effects in tokamaks

    SciTech Connect

    Meshcheriakov, Dmytro; Maget, Patrick; Garbet, Xavier; Lütjens, Hinrich; Beyer, Peter

    2014-01-15

    Curvature and diamagnetic effects are both known to have an influence on tearing mode dynamics. In this paper, we investigate the impact of these effects on the nonlinear stability and saturation of a (2, 1) island using non-linear two-fluid MHD simulations and we apply our results to Tore Supra experiments, where its behavior is not well understood from the single fluid MHD model. Simulations show that a metastable state induced by diamagnetic effect exists for this mode and that it also produces a reduction of the saturated island size, in presence of toroidal curvature. The mode is found to be nonlinearly destabilized by a seed island and it saturates at a macroscopic level causing a significant confinement degradation. The interpretation of dual states, with either no island on q = 2 or a large one, observed on discharges with high non inductive current source on Tore Supra, is revisited.

  5. The role of nonlinear effects in the propagation of noise from high-power jet aircraft.

    PubMed

    Gee, Kent L; Sparrow, Victor W; James, Michael M; Downing, J Micah; Hobbs, Christopher M; Gabrielson, Thomas B; Atchley, Anthony A

    2008-06-01

    To address the question of the role of nonlinear effects in the propagation of noise radiated by high-power jet aircraft, extensive measurements were made of the F-22A Raptor during static engine run-ups. Data were acquired at low-, intermediate-, and high-thrust engine settings with microphones located 23-305 m from the aircraft along several angles. Comparisons between the results of a generalized-Burgers-equation-based nonlinear propagation model and the measurements yield favorable agreement, whereas application of a linear propagation model results in spectral predictions that are much too low at high frequencies. The results and analysis show that significant nonlinear propagation effects occur for even intermediate-thrust engine conditions and at angles well away from the peak radiation angle. This suggests that these effects are likely to be common in the propagation of noise radiated by high-power aircraft. PMID:18537360

  6. Cross-polarized wave generation by effective cubic nonlinear optical interaction.

    PubMed

    Petrov, G I; Albert, O; Etchepare, J; Saltiel, S M

    2001-03-15

    A new cubic nonlinear optical effect in which a linearly polarized wave propagating in a single quadratic medium is converted into a wave that is cross polarized to the input wave is observed in BBO crystal. The effect is explained by cascading of two different second-order processes: second-harmonic generation and difference frequency mixing. PMID:18040322

  7. Nonlinear effects in propagation of radiation of X-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Nosik, V. L.

    2016-05-01

    Nonlinear effects accompanying the propagation of high-intensity beams of X-ray free-electron lasers are considered. It is shown that the X-ray wave field in the crystal significantly changes due to the formation of "hollow" atomic shells as a result of the photoelectric effect.

  8. Nonlinear Aeroelastic Analysis of the HIAD TPS Coupon in the NASA 8' High Temperature Tunnel: Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Scott, Robert C,; Dowell, Earl H.

    2014-01-01

    The purpose of this work is to develop a set of theoretical and experimental techniques to characterize the aeroelasticity of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A square TPS coupon experiences trailing edge oscillatory behavior during experimental testing in the 8' High Temperature Tunnel (HTT), which may indicate the presence of aeroelastic flutter. Several theoretical aeroelastic models have been developed, each corresponding to a different experimental test configuration. Von Karman large deflection theory is used for the plate-like components of the TPS, along with piston theory for the aerodynamics. The constraints between the individual TPS layers and the presence of a unidirectional foundation at the back of the coupon are included by developing the necessary energy expressions and using the Rayleigh Ritz method to derive the nonlinear equations of motion. Free vibrations and limit cycle oscillations are computed and the frequencies and amplitudes are compared with accelerometer and photogrammetry data from the experiments.

  9. Effect of irradiation on nonlinear optical recirculation cavity performance

    NASA Astrophysics Data System (ADS)

    Saitta, M.; Tikhoplav, R.; Jovanovic, I.

    2012-02-01

    In applications such as the production of hydrogen ions for accelerators in spallation neutron sources, charge stripping of hydrogen ions using high-power lasers represents an attractive technical approach. The use of laser-ion interaction in conjunction with a laser recirculation cavity holds promise for improved efficiency, but the high-radiation environment raises concerns about the longevity of the key components of such a system, especially the nonlinear crystal used for frequency conversion. We present the results of an in-reactor irradiation experiment in which a sample beta-barium borate crystal has been irradiated with fast neutrons and gamma-rays, accompanied with the Monte Carlo analysis of the irradiation dose and its comparison with typical conditions at the Spallation Neutron Source at Oak Ridge National Laboratory. The results suggest that our design of the laser recirculation cavity exhibits a radiation hardness consistent with maintaining enhancement factors of the order of 10 over >10 years, but a more detailed experimental study is needed to investigate the radiation hardness of cavity designs exhibiting greater enhancement factors.

  10. Nonlinear topographic effects in two-layer flows

    NASA Astrophysics Data System (ADS)

    Baines, Peter; Johnson, Edward

    2016-02-01

    We consider the nature of non-linear flow of a two-layer fluid with a rigid lid over a long obstacle, such that the flow may be assumed to be hydrostatic. Such flows can generate hydraulic jumps upstream, and the model uses a new model of internal hydraulic jumps, which results in corrections to flows that have been computed using earlier models of jumps that are now known to be incorrect. The model covers the whole range of ratios of the densities of the two fluids, and is not restricted to the Boussinesq limit. The results are presented in terms of flow types in various regions of a Froude number-obstacle height (F0 – Hm) diagram, in which the Froude number F0 is based on the initial flow conditions. When compared with single-layer flow, and some previous results with two layers, some surprising and novel patterns emerge on these diagrams. Specifically, in parts of the diagram where the flow may be supercritical (F0 > 1), there are regions where hysteresis may occur, implying that the flow may have two and sometimes three multiple flow states for the same conditions (i.e. values of F0 and Hm).

  11. Effective phonocardiogram segmentation using time statistics and nonlinear prediction

    NASA Astrophysics Data System (ADS)

    Sridharan, Rajeswari; Janet, J.

    2010-02-01

    In the fields of image processing, signal processing and recognition, image Segmentation is an efficient method for segmenting the phonocardiograph signals (PCG) is offered. Primarily, inter-beat segmentation is approved and carried out by means of DII lead of the ECG recording for identifying the happenings of the very first heart sound (S1). Then, the intra-beat segmentation is attained by the use of recurrence time statistics (RTS), and that is very sensitive to variations of the renovated attractor in a state space derived from nonlinear dynamic analysis. Apart from this if the segmentation with RTS is unsuccessful, a special segmentation is proposed using threshold that is extracted from the high frequency rate decomposition and the feature extraction of the disorder is classified based on the murmur sounds. In the Inter-beat segmentation process the accuracy was 100% of the over all PCG recording. Taking into account a different level of PCG beats were strongly concerned by different types of cardiac murmurs and intra-beat segmentation are give up for an accurate result.

  12. Effect of temperature change on anammox activity.

    PubMed

    Lotti, T; Kleerebezem, R; van Loosdrecht, M C M

    2015-01-01

    Autotrophic nitrogen removal appears as a prerequisite for the implementation of energy autarchic municipal wastewater treatment plants. Whilst the application of anammox-related technologies in the side-stream is at present state of the art, the feasibility of this energy-efficient process in main-stream conditions is still under investigation. Lower operating temperatures and ammonium concentrations, together with a demand for high and stable nitrogen removal efficiency, represent the main challenges to overcome for this appealing new frontier of the wastewater treatment field. In this study, we report the short-term effect of temperature on the maximum biomass specific activity of anaerobic ammonium oxidizing (anammox) bacteria as evaluated by means of batch tests. The experiments were performed on anammox biomass sampled from two full-scale reactors and two lab-scale reactors, all characterized by different reactor configurations and operating conditions. The results indicate that for the anammox conversion, the temperature dependency cannot be accurately modeled by one single Arrhenius coefficient (i.e., θ) as typically applied for other biological processes. The temperature effect is increasing at lower temperatures. Adaptation of anammox bacteria after long-term cultivation at 20 and 10°C was observed. Implications for modeling and process design are finally discussed. PMID:25042674

  13. The Effect of Temperature on Umami Taste.

    PubMed

    Green, Barry G; Alvarado, Cynthia; Andrew, Kendra; Nachtigal, Danielle

    2016-07-01

    The effect of temperature on umami taste has not been previously studied in humans. Reported here are 3 experiments in which umami taste was measured for monopotassium glutamate (MPG) and monosodium glutamate (MSG) at solution temperatures between 10 and 37 °C. Experiment 1 showed that for subjects sensitive to MPG on the tongue tip, 1) cooling reduced umami intensity whether sampled with the tongue tip or in the whole mouth, but 2) had no effect on the rate of umami adaptation on the tongue tip. Experiment 2 showed that temperature had similar effects on the umami taste of MSG and MPG on the tongue tip but not in the whole mouth, and that contrary to umami taste, cooling to 10 °C increased rather than decreased the salty taste of both stimuli. Experiment 3 was designed to investigate the contribution of the hT1R1-hT1R3 glutamate receptor to the cooling effect on umami taste by using the T1R3 inhibitor lactisole. However, lactisole failed to block the umami taste of MPG at any temperature, which supports prior evidence that lactisole does not block umami taste for all ligands of the hT1R1-hT1R3 receptor. We conclude that temperature can affect sensitivity to the umami and salty tastes of glutamates, but in opposite directions, and that the magnitude of these effects can vary across stimuli and modes of tasting (i.e., whole mouth vs. tongue tip exposures). PMID:27102813

  14. Numerical investigation of nonlinear propagation distortion effects in helicopter rotor noise.

    PubMed

    Menounou, Penelope; Vitsas, Panagiotis A

    2009-10-01

    The effect of nonlinear propagation distortion on helicopter rotor noise is presented based on measured data for low-speed descent and numerical calculations that predict the noise level away from the helicopter with and without nonlinear effects. It is shown that for some frequency bands the difference between linear and nonlinear calculations can be as high as 7 dB. Blade vortex interaction (BVI) noise, the dominant noise contributor during descent, is mainly examined. It is shown that advancing side BVI noise is affected by nonlinear distortion, while retreating side BVI noise is not. Based on signal characteristics at source, two quantities are derived. The first quantity (termed polarity) is based on the pressure gradient of the source signal and can be used to determine whether a BVI signal will evolve as an advancing or a retreating side signal. The second quantity (termed weighted rise time) is a measure of the impulsiveness of the BVI signal and can be used to determine at which frequency nonlinear effects start to appear. Finally, polarity and weighted rise time are shown to be applicable in cases of BVI noise generated from different blade tips, as well as in cases of non-BVI noise. PMID:19813785

  15. Nernst effect in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Yayu

    This thesis presents a study of the Nernst effect in high temperature superconductors. The vortex Nernst measurements have been carried out on various high Tc cuprates to high magnetic fields. These results provide vital information about the properties and relations of the pseudogap phase and superconducting phase in high Tc superconductors. Our first finding is the existence of vortex-like excitations at temperatures much higher than Tc0, the zero filed transition temperature, in the underdoped cuprates. This result suggests that in the putative normal state of cuprates, although bulk Meissner effect is absent and resistivity looks normal, the amplitude of the Cooper pairing is still sizable. The transition at Tc0 is driven by the loss of long range phase coherence rather than the disappearance of superconducting condensate. The high field Nernst effect offers a reliable way to determine the upper critical field Hc2 of high Tc cuprates and many unusual properties are uncovered. For cuprates with relatively large hole density (x > 0.15), we found that H c2 is almost temperature independent for T < Tc0. This is in strong contrast to the Hc2 - T relation of conventional superconductors. Moreover, using a scaling analysis, we have demonstrated that H c2 increases with decreasing hole density x in this doping range, implying a stronger pairing potential at lower doping. In the severely underdoped regime (x < 0.12), some new features become apparent and they imply that the vortex Nernst signal is comprised of two distinct contributions. The first is from coherent regions with long range phase coherence and relatively low upper critical field, more like the superconducting phase; the second is from phase incoherent regions with much larger field scales, indicative of the pseudogap phase. As temperature rises, the superconducting phase gives weight to the pseudogap phase. Moreover, the upper critical field Hc2 of the superconducting phase scales with the onset

  16. Nonlinear damage effect in graphene synthesis by C-cluster ion implantation

    SciTech Connect

    Zhang Rui; Zhang Zaodi; Wang Zesong; Wang Shixu; Wang Wei; Fu Dejun; Liu Jiarui

    2012-07-02

    We present few-layer graphene synthesis by negative carbon cluster ion implantation with C{sub 1}, C{sub 2}, and C{sub 4} at energies below 20 keV. The small C-clusters were produced by a source of negative ion by cesium sputtering with medium beam current. We show that the nonlinear effect in cluster-induced damage is favorable for graphene precipitation compared with monomer carbon ions. The nonlinear damage effect in cluster ion implantation shows positive impact on disorder reduction, film uniformity, and the surface smoothness in graphene synthesis.

  17. Effective pulse recompression after nonlinear spectral broadening in picosecond Yb-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Zaytsev, A. K.; Wang, C.-L.; Lin, C.-H.; You, Y.-J.; Tsai, F.-H.; Pan, C.-L.

    2012-02-01

    We report the performance of a picosecond master-oscillator power amplifier (MOPA) system based on a diode-pumped solid-state (DPSS) seed laser and Yb-doped fiber amplifier. An average power of 28 W at ˜200 MHz repetition rate is achieved by using only one amplification stage. We found that positive nonlinear phase shift induced by nonlinear effect in the active fiber can be effectively compensated by a grating pair. A pulse duration of ˜1.6 ps is shown after recompression.

  18. High temperature environmental effects on metals

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.; Lowell, C. E.; Stearns, C. A.

    1977-01-01

    The gas turbine engine was used as an example to predict high temperature environmental attack on metals. Environmental attack in a gas turbine engine derives from high temperature, combustion products of the air and fuel burned, and impurities. Of all the modes of attack associated with impurity effects, hot corrosion was the most complicated mechanistically. Solutions to the hot corrosion problem were sought semi-empirically in: (1) improved alloys or ceramics; (2) protective surface coating; (3) use of additives to the engine environment; and (4) air/fuel cleanup to eliminate harmful impurities.

  19. Surface temperature effect on subsonic stall.

    NASA Technical Reports Server (NTRS)

    Macha, J. M.; Norton, D. J.; Young, J. C.

    1972-01-01

    Results of an analytical and experimental study of boundary layer flow over an aerodynamic surface rejecting heat to a cool environment. This occurs following reentry of a Space Shuttle vehicle. Analytical studies revealed that a surface to freestream temperature ratio, greater than unity tended to destabilize the boundary layer, hastening transition and separation. Therefore, heat transfer accentuated the effect of an adverse pressure gradient. Wind tunnel tests of a 0012-64 NACA airfoil showed that the stall angle was significantly reduced while drag tended to increase for freestream temperature ratios up to 2.2.

  20. Modeling of periodic great earthquakes on the San Andreas fault: Effects of nonlinear crustal rheology

    NASA Technical Reports Server (NTRS)

    Reches, Ze'ev; Schubert, Gerald; Anderson, Charles

    1994-01-01

    We analyze the cycle of great earthquakes along the San Andreas fault with a finite element numerical model of deformation in a crust with a nonlinear viscoelastic rheology. The viscous component of deformation has an effective viscosity that depends exponentially on the inverse absolute temperature and nonlinearity on the shear stress; the elastic deformation is linear. Crustal thickness and temperature are constrained by seismic and heat flow data for California. The models are for anti plane strain in a 25-km-thick crustal layer having a very long, vertical strike-slip fault; the crustal block extends 250 km to either side of the fault. During the earthquake cycle that lasts 160 years, a constant plate velocity v(sub p)/2 = 17.5 mm yr is applied to the base of the crust and to the vertical end of the crustal block 250 km away from the fault. The upper half of the fault is locked during the interseismic period, while its lower half slips at the constant plate velocity. The locked part of the fault is moved abruptly 2.8 m every 160 years to simulate great earthquakes. The results are sensitive to crustal rheology. Models with quartzite-like rheology display profound transient stages in the velocity, displacement, and stress fields. The predicted transient zone extends about 3-4 times the crustal thickness on each side of the fault, significantly wider than the zone of deformation in elastic models. Models with diabase-like rheology behave similarly to elastic models and exhibit no transient stages. The model predictions are compared with geodetic observations of fault-parallel velocities in northern and central California and local rates of shear strain along the San Andreas fault. The observations are best fit by models which are 10-100 times less viscous than a quartzite-like rheology. Since the lower crust in California is composed of intermediate to mafic rocks, the present result suggests that the in situ viscosity of the crustal rock is orders of magnitude

  1. Assessment of the temperature effect on childhood diarrhea using satellite imagery

    PubMed Central

    Xu, Zhiwei; Liu, Yang; Ma, Zongwei; (Sam) Toloo, Ghasem; Hu, Wenbiao; Tong, Shilu

    2014-01-01

    A quasi-Poisson generalized linear model combined with a distributed lag non-linear model was used to quantify the main effect of temperature on emergency department visits (EDVs) for childhood diarrhea in Brisbane from 2001 to 2010. Residual of the model was checked to examine whether there was an added effect due to heat waves. The change over time in temperature-diarrhea relation was also assessed. Both low and high temperatures had significant impact on childhood diarrhea. Heat waves had an added effect on childhood diarrhea, and this effect increased with intensity and duration of heat waves. There was a decreasing trend in the main effect of heat on childhood diarrhea in Brisbane across the study period. Brisbane children appeared to have gradually adapted to mild heat, but they are still very sensitive to persistent extreme heat. Development of future heat alert systems should take the change in temperature-diarrhea relation over time into account. PMID:24953087

  2. Nonlinear theory for laminated and thick plates and shells including the effects of transverse shearing

    NASA Technical Reports Server (NTRS)

    Stein, M.

    1985-01-01

    Nonlinear strain displacement relations for three-dimensional elasticity are determined in orthogonal curvilinear coordinates. To develop a two-dimensional theory, the displacements are expressed by trigonometric series representation through-the-thickness. The nonlinear strain-displacement relations are expanded into series which contain all first and second degree terms. In the series for the displacements only the first few terms are retained. Insertion of the expansions into the three-dimensional virtual work expression leads to nonlinear equations of equilibrium for laminated and thick plates and shells that include the effects of transverse shearing. Equations of equilibrium and buckling equations are derived for flat plates and cylindrical shells. The shell equations reduce to conventional transverse shearing shell equations when the effects of the trigonometric terms are omitted and to classical shell equations when the trigonometric terms are omitted and the shell is assumed to be thin.

  3. High temperature environmental effects on metals

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.; Lowell, C. E.; Stearns, C. A.

    1977-01-01

    The current status of knowledge and ability to predict high-temperature environmental attack of metals is reviewed with particular reference to the gas turbine engine. Environmental attack is caused by high temperatures, combustion products, and impurities. A schematic representation of life-limiting factors of turbine components shows that environmental attack can lead to very early failures. Attention is given to high-temperature oxidation with prevailing modes of oxidation attack, and to hot corrosion and other impurity effects. Erosion attack results from the direct mechanical removal of component material by impact of hard substances like ash, sand, or dirt. Solutions to hot-corrosion problems can be found semiempirically by using improved alloys or ceramics, protective surface coatings, additives to the engine environment, and air/fuel cleanup to eliminate detrimental impurities.

  4. Nationwide variation in the effects of temperature on infectious gastroenteritis incidence in Japan

    PubMed Central

    Onozuka, Daisuke; Hagihara, Akihito

    2015-01-01

    Although several studies have investigated the effects of temperature on the incidence of infectious gastrointestinal disease in a single city or region, few have investigated variations in this association using nationwide data. We obtained weekly data, gathered between 2000 and 2012, pertaining to infectious gastroenteritis cases and weather variability in all 47 Japanese prefectures. A two-stage analysis was used to assess the nonlinear and delayed relationship between temperature and morbidity. In the first stage, a Poisson regression allowing for overdispersion in a distributed lag nonlinear model was used to estimate the prefecture-specific effects of temperature on morbidity. In the second stage, a multivariate meta-analysis was applied to pool estimates at the national level. The pooled overall relative risk (RR) was highest in the 59.9th percentile of temperature (RR, 1.08; 95% CI: 1.01, 1.15). Meta-analysis results also indicated that the estimated pooled RR at lower temperatures (25th percentile) began immediately but did not persist, whereas an identical estimate at a higher temperature (75th percentile) was delayed but persisted for several weeks. Our results suggest that public health strategies aimed at controlling temperature-related infectious gastroenteritis may be more effective when tailored according to region-specific weather conditions. PMID:26255569

  5. Nationwide variation in the effects of temperature on infectious gastroenteritis incidence in Japan

    NASA Astrophysics Data System (ADS)

    Onozuka, Daisuke; Hagihara, Akihito

    2015-08-01

    Although several studies have investigated the effects of temperature on the incidence of infectious gastrointestinal disease in a single city or region, few have investigated variations in this association using nationwide data. We obtained weekly data, gathered between 2000 and 2012, pertaining to infectious gastroenteritis cases and weather variability in all 47 Japanese prefectures. A two-stage analysis was used to assess the nonlinear and delayed relationship between temperature and morbidity. In the first stage, a Poisson regression allowing for overdispersion in a distributed lag nonlinear model was used to estimate the prefecture-specific effects of temperature on morbidity. In the second stage, a multivariate meta-analysis was applied to pool estimates at the national level. The pooled overall relative risk (RR) was highest in the 59.9th percentile of temperature (RR, 1.08; 95% CI: 1.01, 1.15). Meta-analysis results also indicated that the estimated pooled RR at lower temperatures (25th percentile) began immediately but did not persist, whereas an identical estimate at a higher temperature (75th percentile) was delayed but persisted for several weeks. Our results suggest that public health strategies aimed at controlling temperature-related infectious gastroenteritis may be more effective when tailored according to region-specific weather conditions.

  6. The effect of Thompson and Troian's nonlinear slip condition on Couette flows between concentric rotating cylinders

    NASA Astrophysics Data System (ADS)

    Power, H.; Soavi, J.; Kantachuvesiri, P.; Nieto, C.

    2015-10-01

    In this work, a detailed study of the effect of the Thompson and Troian's nonlinear slip condition on the flow behaviour of a Newtonian incompressible fluid between two concentric rotating cylinders (Couette flow) is considered. In Thompson and Troian's nonlinear condition, the slip length on the Navier slip condition is considered to be a function of the tangential shear rate at the solid surface instead of being a constant. The resulting formulation presents an apparent singularity on the slip length when a critical shear rate is approached. By considering this type of nonlinear slip condition, it is possible to predict complex characteristics of the flow field not previously reported in the literature, and to show the effect of nonlinear slip on the inverted velocity profiles previously observed in the linear slip case. Particular attention is given to the behaviour of the flow field near the critical shear rate. In such a limit, it is found that the flow field tends to slip flow with a finite slip length. Consequently, previous critique on the singular behaviour of Thompson and Troian's nonlinear model is not valid in the present case.

  7. Joint nonlinearity effects in the design of a flexible truss structure control system

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1986-01-01

    Nonlinear effects are introduced in the dynamics of large space truss structures by the connecting joints which are designed with rather important tolerances to facilitate the assembly of the structures in space. The purpose was to develop means to investigate the nonlinear dynamics of the structures, particularly the limit cycles that might occur when active control is applied to the structures. An analytical method was sought and derived to predict the occurrence of limit cycles and to determine their stability. This method is mainly based on the quasi-linearization of every joint using describing functions. This approach was proven successful when simple dynamical systems were tested. Its applicability to larger systems depends on the amount of computations it requires, and estimates of the computational task tend to indicate that the number of individual sources of nonlinearity should be limited. Alternate analytical approaches, which do not account for every single nonlinearity, or the simulation of a simplified model of the dynamical system should, therefore, be investigated to determine a more effective way to predict limit cycles in large dynamical systems with an important number of distributed nonlinearities.

  8. Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay

    NASA Astrophysics Data System (ADS)

    Yu, Su Young; Choi, Han Suk; Lee, Seung Keon; Park, Kyu-Sik; Kim, Do Kyun

    2015-06-01

    In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.

  9. The effects of anisotropic and non-linear thermoremanent magnetizations on Thellier-type paleointensity data

    NASA Astrophysics Data System (ADS)

    Paterson, Greig A.

    2013-05-01

    Numerous non-ideal factors can influence paleointensity data, but the detection of these factors remains problematic and new approaches to understanding how paleointensity data behave are needed. In this study, a recently developed stochastic model of single domain (SD) paleointensity behaviour is expanded to investigate the effects that anisotropic and non-linear thermoremanent magnetizations (TRMs) have on the paleointensity results and the parameters used to select data. The model results indicate that before applying any form of correction these non-ideal factors can produce results that are self-consistent, but highly inaccurate. The methods that are currently used to correct for anisotropic and non-linear TRMs are effective and greatly increase the likelihood of obtaining accurate results. The corrections, however, do not restore the results to those of ideal SD samples measured with the same laboratory-to-ancient field ratio, but the data are restored to those of ideal SD samples with the equivalent laboratory-to-ancient magnetization ratios (MLab/MAnc). The simulations indicate that non-linear and anisotropic TRM have no or only a weak influence on the parameters commonly used to select paleointensity data, which means that these non-ideal factors are effectively undetectable. These new models suggest that the paleointensity behaviour of thermally/chemically stable SD samples, whether they are ideally behaved, anisotropy or non-linear TRM corrected, is near universal and depends only on MLab/MAnc and the choice of paleointensity protocol (i.e. Coe-type versus Thellier). Given the high self-consistency and highly inaccurate results that anisotropic and non-linear TRM can yield, it is essential to test for such effects and all Thellier-type paleointensity studies must include tests for anisotropic and non-linear TRM to assert the reliability of the data obtained.

  10. Stimulated Raman scattering spectroscopy and χ(3)-nonlinear lasing effects in single crystals of aragonite (orthorhombic CaCO3)

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Rhee, H.; Lux, O.; Eichler, H. J.; Koltashev, V. V.; Kleinschrodt, R.; Bohatý, L.; Becker, P.

    2012-04-01

    The present work gives a brief review of the nonlinear χ(2)- and χ(3)-lasing properties of SRS-active natural crystals (minerals) known so far. This compilation complements new results of a detailed investigation of Raman induced χ(3)-effects in aragonite single crystals (orthorhombic CaCO3) under single- and dual-wavelength picosecond excitation in the UV, visible and near-IR spectral ranges. The studied effects at room and cryogenic temperatures comprise Stokes and anti-Stokes combs of almost two octaves bandwidth, THG, SFG, as well as cascaded and cross-cascaded χ(3) leftrightarrow χ(3) interactions. All recorded lasing χ(3)-components were identified and attributed to three observed SRS-promoting vibration modes ωSRS1 ≈ 1087 cm-1, ωSRS2 ≈ 152 cm-1, and ωSRS3 ≈ 205 cm-1 (at room temperature) of aragonite. Stimulated Raman scattering (SRS) investigations of minerals so far enrich the arsenal of SRS-active crystals, which can be applied to solve fundamental and applied tasks of modern laser physics and nonlinear optics.

  11. Nonlinear photoresponse of field effect transistors terahertz detectors at high irradiation intensities

    SciTech Connect

    But, D. B.; Drexler, C.; Ganichev, S. D.; Sakhno, M. V.; Sizov, F. F.; Dyakonova, N.; Drachenko, O.; Gutin, A.; Knap, W.

    2014-04-28

    Terahertz power dependence of the photoresponse of field effect transistors, operating at frequencies from 0.1 to 3 THz for incident radiation power density up to 100 kW/cm{sup 2} was studied for Si metal–oxide–semiconductor field-effect transistors and InGaAs high electron mobility transistors. The photoresponse increased linearly with increasing radiation intensity up to the kW/cm{sup 2} range. Nonlinearity followed by saturation of the photoresponse was observed for all investigated field effect transistors for intensities above several kW/cm{sup 2}. The observed photoresponse nonlinearity is explained by nonlinearity and saturation of the transistor channel current. A theoretical model of terahertz field effect transistor photoresponse at high intensity was developed. The model explains quantitative experimental data both in linear and nonlinear regions. Our results show that dynamic range of field effect transistors is very high and can extend over more than six orders of magnitudes of power densities (from ∼0.5 mW/cm{sup 2} to ∼5 kW/cm{sup 2})

  12. Suppression of intrachannel nonlinear effects in high-speed WDM systems

    NASA Astrophysics Data System (ADS)

    Djordjevic, Ivan B.; Vasic, Bane

    2006-10-01

    High-speed optical transmission systems operating at 40 Gb/s or higher are severely limited by intrachannel nonlinearities such as intrachannel four-wave mixing (IFWM) and intrachannel cross-phase modulation (IXPM). Approaches to deal with intrachannel nonlinearities may be classified into three broad categories: modulation formats, constrained (or line) coding, and equalization techniques. The IFWM is a phase-sensitive effect, and the aim of the first approach is to remove the phase short-term coherence of the pulses emitted in a given neighborhood. The role of constrained coding is to avoid those waveforms in the transmitted signal that are most likely to be received incorrectly. In this paper we describe two alternative techniques for suppression of intrachannel nolinearities: (i) constrained coding techniques, and (ii) combined nonlinear ISI cancellation and error control. Three different constrained coding techniques will be presented: (a) the use of constrained encoding itself, (b) combined constrained and error control coding and (c) deliberate error insertion. The nonlinear ISI cancellation scheme employs the maximum a posteriori probability (MAP) symbol decoding based on Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm, while the forward error correction is based on low-density parity-check (LDPC) codes. The nonlinear ISI channel is modeled by a finite state machine (FSM) whose transition and output functions describe the dependency of the channel statistics and the ISI on transmitted patterns. The BCJR algorithm operates on a trellis of the corresponding FSM, and creates the soft information (detected bit likelihoods) used in the iterative decoder. To improve the BER performance of nonlinear BCJR equalizer further, a noise-predictive BCJR equalizer is introduced. The main feature of these schemes is that they can operate in the regime of very strong intrachannel nonlinearities where FEC schemes such as turbo or LDPC codes are not designed to operate.

  13. Collisional effects in weakly collisional plasmas: nonlinear electrostatic waves and recurrence phenomena

    NASA Astrophysics Data System (ADS)

    Camporeale, E.; Pezzi, O.; Valentini, F.

    2015-12-01

    The longstanding problem of collisions in plasmas is a very fascinating and huge topic in plasma physics. The 'natural' operator that describes the Coulombian interactions between charged particles is the Landau (LAN) integral operator. The LAN operator is a nonlinear, integro-differential and Fokker-Planck type operator which satisfies the H theorem for the entropy growth. Due to its nonlinear nature and multi-dimensionality, any approach to the solution of the Landau integral is almost prohibitive. Therefore collisions are usually modeled by simplified collisional operators. Here collisional effects are modeled by i) the one-dimensional Lenard-Bernstein (LB) operator and ii) the three-dimensional Dougherty (DG) operator. In the first case i), by focusing on a 1D-1V phase space, we study recurrence effects in a weakly collisional plasma, being collisions modeled by the LB operator. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through a Eulerian collisional Vlasov-Poisson code. Despite being routinely used, an artificial collisionality is not in general a viable way of preventing recurrence in numerical simulations. Moreover, recursive phenomena affect both the linear exponential growth and the nonlinear saturation of a linear instability by producing a fake growth in the electric field, thus showing that, although the filamentation is usually associated with low amplitude fluctuations contexts, it can occur also in nonlinear phenomena. On the other hand ii), the effects of electron-electron collisions on the propagation of nonlinear electrostatic waves are shown by means of Eulerian simulations in a 1D-3V (one dimension in physical space, three dimensions in velocity space) phase space. The nonlinear regime of the symmetric

  14. Temperature Effects on Agrobacterium Phytochrome Agp1

    PubMed Central

    Njimona, Ibrahim; Lamparter, Tilman

    2011-01-01

    Phytochromes are widely distributed biliprotein photoreceptors with a conserved N-terminal chromophore-binding domain. Most phytochromes bear a light-regulated C-terminal His kinase or His kinase-like region. We investigated the effects of light and temperature on the His kinase activity of the phytochrome Agp1 from Agrobacterium tumefaciens. As in earlier studies, the phosphorylation activity of the holoprotein after far-red irradiation (where the red-light absorbing Pr form dominates) was stronger than that of the holoprotein after red irradiation (where the far red-absorbing Pfr form dominates). Phosphorylation activities of the apoprotein, far red-irradiated holoprotein, and red-irradiated holoprotein decreased when the temperature increased from 25°C to 35°C; at 40°C, almost no kinase activity was detected. The activity of a holoprotein sample incubated at 40°C was nearly completely restored when the temperature returned to 25°C. UV/visible spectroscopy indicated that the protein was not denatured up to 45°C. At 50°C, however, Pfr denatured faster than the dark-adapted sample containing the Pr form of Agp1. The Pr visible spectrum was unaffected by temperatures of 20–45°C, whereas irradiated samples exhibited a clear temperature effect in the 30–40°C range in which prolonged irradiation resulted in the photoconversion of Pfr into a new spectral species termed Prx. Pfr to Prx photoconversion was dependent on the His-kinase module of Agp1; normal photoconversion occurred at 40°C in the mutant Agp1-M15, which lacks the C-terminal His-kinase module, and in a domain-swap mutant in which the His-kinase module of Agp1 is replaced by the His-kinase/response regulator module of the other A. tumefaciens phytochrome, Agp2. The temperature-dependent kinase activity and spectral properties in the physiological temperature range suggest that Agp1 serves as an integrated light and temperature sensor in A. tumefaciens. PMID:22043299

  15. A nonlinear analysis of the effect of heat transfer on capillary jet instability

    NASA Astrophysics Data System (ADS)

    Pillai, Dipin S.; Narayanan, Prasanth; Pushpavanam, S.; Sundararajan, T.; Jasmin Sudha, A.; Chellapandi, P.

    2012-12-01

    Breakup of slender liquid jets under isothermal conditions has been studied extensively. In this work, we investigate the breakup of a viscous jet emanating from an orifice in the presence of convective heat transfer. We study the case where heat is transferred from the jet to the ambient fluid. The temperature varies axially and both viscosity and surface tension are taken to be temperature dependent. Marangoni stresses caused by a thermally induced surface tension gradient are included here. A numerical model based on a one-dimensional slender jet approximation of the equations of motion and heat transfer is used. This results in three coupled nonlinear partial differential equations, which are solved using the method of lines. The advantages of using this approximation lie in (i) its computational elegance and (ii) the physical insight that it provides. We compare the model predictions of both spatial and temporal stability analysis with experiments of a jet of molten Woods metal in water. Molten Woods metal emanating from various orifice diameters (1-10 mm) into water under the action of gravity is analysed for drop sizes and these are compared with the numerical predictions. The presence of heat transfer is found to shorten the breakup length of the jet. This is attributed to the increase in surface tension induced by the heat loss from jet to the ambient. It is found that including the effect of temperature dependence of viscosity and surface tension, however, does not affect the drop size. A critical dimensionless number (Π1 ˜ 10) is found to exist beyond which the breakup is dominated by Marangoni stresses. Below this critical number, the jet breaks up due to the combined effects of the capillary force and the Marangoni stresses. It is shown that including the effect of gravity is necessary to predict the drop size accurately. The results of this work have implications in evaluating safety strategies in the event of a core disruptive accident in a nuclear

  16. Seismic response of structures: from non-stationary to non-linear effects

    NASA Astrophysics Data System (ADS)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Mucciarelli, Marco; Smith, Tobias

    2013-04-01

    The need for an effective seismic protection of buildings, and all the problems related to their management and maintenance over time, have led to a growing interest associated to develop of new integrated techniques for structural health monitoring and for damage detection and location during both ambient vibration and seismic events. It is well known that the occurrence of damage on any kind of structure is able to modify its dynamic characteristics. Indeed, the main parameters affected by the changes in stiffness characteristics are: periods of vibration, mode shapes and all the related equivalent viscous damping factors. With the aim to evaluate structural dynamic characteristics, their variation over time and after earthquakes, several Non Destructive Evaluation (NDE) methods have been proposed in the last years. Most of these are based on simplified relationship that provide the maximum inter-story drift evaluated combining structural variations in terms of: peak ground acceleration and/or structural eigenfrequencies and/or equivalent viscous damping factors related the main modes of the monitored structure. The NDE methods can be classified into four different levels. The progress of the level increases the quality and the number of the information. The most popular are certainly Level I methods being simple in implementation and economic in management. These kinds of methods are mainly based on the fast variation (less than 1 minute) of the structural fundamental frequency and the related variation of the equivalent viscous damping factor. Generally, it is possible to distinguish two types of variations: the long term variations, which may also be linked to external factors (temperature change, water content in the foundation soils, etc.) and short period variations (for example, due to seismic events), where apparent frequencies variations could occurred due to non-stationary phenomena (particular combination of input and structural response). In these

  17. Experimental study of non-linear effects in a typical shear lap joint configuration

    NASA Astrophysics Data System (ADS)

    Hartwigsen, C. J.; Song, Y.; McFarland, D. M.; Bergman, L. A.; Vakakis, A. F.

    2004-10-01

    Although mechanical joints are integral parts of most practical structures, their modelling and their effects on structural dynamics are not yet fully understood. This represents a serious impediment to accurate modelling of the dynamics and to the development of reduced-order, finite element models capable of describing the effects of mechanical joints on the dynamics. In this work we provide an experimental study to quantify the non-linear effects of a typical shear lap joint on the dynamics of two structures: a beam with a bolted joint in its center; and a frame with a bolted joint in one of its members. Both structures are subjected to a variety of dynamical tests to determine the non-linear effects of the joints. The tests reveal several important influences on the effective stiffness and damping of the lap joints. The possibility of using Iwan models to represent the experimentally observed joint effects is discussed.

  18. Nonlinear Waves in Reaction Diffusion Systems: The Effect of Transport Memory

    SciTech Connect

    HURD,ALAN J.; KENKRE,V.M.; MANNE,K.K.

    1999-11-04

    Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wavefronts in reaction diffusion systems. We obtain new results such as the possibility of spatial oscillations in the wavefront shape for certain values of the system parameters and high enough wavefront speeds. We also generalize earlier known results concerning the minimum wavefront speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piece-wise linear representation of the nonlinearity.

  19. Studies of non-linear optical effects for agile beam steering

    NASA Astrophysics Data System (ADS)

    Vachss, F.; McMichael, I.; Yeh, P.

    1993-11-01

    The objective of this program is the demonstration of a new technique for massless beam steering of high energy laser radiation. Using the effect of nonlinear electrostriction in acousto-optic devices, we show large improvements in diffraction efficiency and resolution. These results are obtained through the development of a novel geometry for acousto-optic beam steering and of a prototype device designed to take advantage of this geometry. Theoretical and experimental results of this effort establish the validity of large aperture, high frequency nonlinear acousto-optic beam steering. The results are found to be applicable to steering of high power laser beams.

  20. Effect of Solvent on Nonlinear Refractive Index of 2-(2‧-HYDROXYPHENYL) Benzoxazole

    NASA Astrophysics Data System (ADS)

    ZHANG, GUILAN; XIONG, FEIBING; ZHANG, BAO; TANG, GUOQING; CHEN, WENJU; WANG, LIANYING; BAI, YUBAI

    Nonlinear refractive indexes n2 of 2-(2‧-hydroxyphenyl) benzoxazole (HBO) in three species of solvent (cyclohexane, ethanol and dimethyl sulfoxide) have been determined by using the Z-scan technique. The experimental results show that the n2 of HBO is strongly dependent on the polarity of the solvent. Through the study on the absorption and fluorescence spectra of HBO in different solvents, we regard that the principal origin of the nonlinear refractive index of HBO is not the thermal effect because of absorption of incident light but the excited state intramolecular proton transfer of HBO under the incident light.

  1. Nonlinear effects in the energy loss of a slow dipole in a free-electron gas

    SciTech Connect

    Alducin, M.; Juaristi, J.I.

    2002-11-01

    We analyze beyond linear-response theory the energy loss of a slow dipole moving inside a free-electron gas. The energy loss is obtained from a nonlinear treatment of the scattering of electrons at the dipole-induced potential. This potential and the total electronic density are calculated with density-functional theory. We focus on the interference effects, i.e., the difference between the energy loss of a dipole and that of the isolated charges forming it. Comparison of our results to those obtained in linear-response theory shows that a nonlinear treatment of the screening is required to accurately describe the energy loss of slow dipoles.

  2. Nonlinear Interaction of Elliptical Laser Beam with Collisional Plasma: Effect of Linear Absorption

    NASA Astrophysics Data System (ADS)

    Keshav, Walia; Sarabjit, Kaur

    2016-01-01

    In the present work, nonlinear interaction of elliptical laser beam with collisional plasma is studied by using paraxial ray approximation. Nonlinear differential equations for the beam width parameters of semi-major axis and semi-minor axis of elliptical laser beam have been set up and solved numerically to study the variation of beam width parameters with normalized distance of propagation. Effects of variation in absorption coefficient and plasma density on the beam width parameters are also analyzed. It is observed from the analysis that extent of self-focusing of beam increases with increase/decrease in plasma density/absorption coefficient.

  3. Predicting the phonon spectra of coupled nonlinear chains using effective phonon theory

    NASA Astrophysics Data System (ADS)

    Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang

    2016-06-01

    In general one-dimensional nonlinear lattices, extensive studies have discovered the existence of renormalized phonons due to nonlinear interactions and found these renormalized phonons, as the energy carriers, are responsible for heat transport. Within the framework of renormalized phonons, a generic form of renormalized phonon spectrum has been derived and effective phonon theory (EPT) has been developed to explain the heat transport in general 1D nonlinear lattices. Our attention is dedicated to generalizing the EPT for two-layer nonlinear lattices and deriving the analytic expression of phonon spectra. By calculating the phonon spectra of different coupled models with EPT, it is found that the phonon dispersion relation is in good agreement with the result obtained from the spectral energy density method. It is demonstrated that the EPT of a coupled system can predict the phonon spectra of two-layer nonlinear lattices well. Thus, this finding may shed light on the prediction of heat conduction behavior in a coupled system, qualitatively, and provide a useful guide for designing thermal devices.

  4. Numerical studies of independent control of electron density and gas temperature via nonlinear coupling in dual-frequency atmospheric pressure dielectric barrier discharge plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Z. L.; Nie, Q. Y.; Wang, Z. B.; Gao, X. T.; Kong, F. R.; Sun, Y. F.; Jiang, B. H.

    2016-07-01

    Dielectric barrier discharges (DBDs) provide a promising technology of generating non-equilibrium cold plasmas in atmospheric pressure gases. For both application-focused and fundamental studies, it is important to explore the strategy and the mechanism for enabling effective independent tuning of key plasma parameters in a DBD system. In this paper, we report numerical studies of effects of dual-frequency excitation on atmospheric DBDs, and modulation as well as separate tuning mechanism, with emphasis on dual-frequency coupling to the key plasma parameters and discharge evolution. With an appropriately applied low frequency to the original high frequency, the numerical calculation demonstrates that a strong nonlinear coupling between two frequencies governs the process of ionization and energy deposition into plasma, and thus raises the electron density significantly (e.g., three times in this case) in comparisons with a single frequency driven DBD system. Nevertheless, the gas temperature, which is mainly determined by the high frequency discharge, barely changes. This method then enables a possible approach of controlling both averaged electron density and gas temperature independently.

  5. The nonlinear effect of two-color light on bacterial viability

    NASA Astrophysics Data System (ADS)

    Lukyanovich, P. A.; Zon, B. A.; Grabovich, M. Yu; Shchelukhina, E. V.; Danilova, I. I.; Orlova, M. V.; Sapeltseva, I. O.; Sinugina, D. I.

    2016-01-01

    A bacterial (Escherichia coli) viability nonlinear effect is found experimentally after continuous irradiation by composite red and blue light. The dependence of bacterial viability on irradiance at equal specific doses is interpreted as possible two-photon absorption causing DNA damage that is similar to damage from the absorption of UV quanta.

  6. Generalized mean-field or master equation for nonlinear cavities with transverse effects

    SciTech Connect

    Dunlop, A.M.; Firth, W.J.; Heatley, D.R.; Wright, E.

    1996-06-01

    We present a general form of master equation for nonlinear-optical cavities that can be described by an {ital ABCD}matrix. It includes as special cases some previous models of spatiotemporal effects in lasers. {copyright} {ital 1996 Optical Society of America.}

  7. CONSEQUENCES OF NON-LINEAR DENSITY EFFECTS ON BUOYANCY AND PLUME BEHAVIOR

    EPA Science Inventory

    Aquatic plumes, as turbulent streams, grow by entraining ambient water. Buoyant plumes rise and dense ones sink, but, non-linear kinetic effects can reverse the buoyant force in mid-phenomenon. The class of nascent-density plumes begin as buoyant, upwardly accelerating plumes tha...

  8. IS THE DOSE-RESPONSE LINEAR OR NONLINEAR FOR GENOTOXIC EFFECTS?

    EPA Science Inventory

    IS THE DOSE-RESPONSE LINEAR OR NONLINEAR FOR GENOTOXIC EFFECTS?
    Preston, RJ. Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

    For considerations of cancer risk assessment from exposure to environmenta...

  9. Effects of focusing on third-order nonlinear processes in isotropic media. [laser beam interactions

    NASA Technical Reports Server (NTRS)

    Bjorklund, G. C.

    1975-01-01

    Third-order nonlinear processes in isotropic media have been successfully used for tripling the efficiency of high-power laser radiation for the production of tunable and fixed-frequency coherent vacuum UV radiation and for up-conversion of IR radiation. The effects of focusing on two processes of this type are studied theoretically and experimentally.

  10. Advanced Nonlinear Latent Variable Modeling: Distribution Analytic LMS and QML Estimators of Interaction and Quadratic Effects

    ERIC Educational Resources Information Center

    Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G.

    2011-01-01

    Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…

  11. Introduction to the Treatment of Non-Linear Effects Using a Gravitational Pendulum

    ERIC Educational Resources Information Center

    Weltner, Klaus; Esperidiao, Antonio Sergio C.; Miranda, Paulo

    2004-01-01

    We show that the treatment of pendulum movement, other than the linear approximation,may be an instructive experimentally based introduction to the physics of non-linear effects. Firstly the natural frequency of a gravitational pendulum is measured as function of its amplitude. Secondly forced oscillations of a gravitational pendulum are…

  12. Temperature and Concentration Stratification Effects in Mixed Convection Flow of an Oldroyd-B Fluid with Thermal Radiation and Chemical Reaction.

    PubMed

    Hayat, Tasawar; Muhammad, Taseer; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2015-01-01

    This research addresses the mixed convection flow of an Oldroyd-B fluid in a doubly stratified surface. Both temperature and concentration stratification effects are considered. Thermal radiation and chemical reaction effects are accounted. The governing nonlinear boundary layer equations are converted to coupled nonlinear ordinary differential equations using appropriate transformations. Resulting nonlinear systems are solved for the convergent series solutions. Graphs are plotted to examine the impacts of physical parameters on the non-dimensional temperature and concentration distributions. The local Nusselt number and the local Sherwood number are computed and analyzed numerically. PMID:26102200

  13. Temperature and Concentration Stratification Effects in Mixed Convection Flow of an Oldroyd-B Fluid with Thermal Radiation and Chemical Reaction

    PubMed Central

    Hayat, Tasawar; Muhammad, Taseer; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2015-01-01

    This research addresses the mixed convection flow of an Oldroyd-B fluid in a doubly stratified surface. Both temperature and concentration stratification effects are considered. Thermal radiation and chemical reaction effects are accounted. The governing nonlinear boundary layer equations are converted to coupled nonlinear ordinary differential equations using appropriate transformations. Resulting nonlinear systems are solved for the convergent series solutions. Graphs are plotted to examine the impacts of physical parameters on the non-dimensional temperature and concentration distributions. The local Nusselt number and the local Sherwood number are computed and analyzed numerically. PMID:26102200

  14. Review of radio-frequency, non-linear effects on the ionosphere

    NASA Astrophysics Data System (ADS)

    Gordon, William E.; Duncan, Lewis M.

    1988-06-01

    The nonlinear effects of powerful radio waves on the ionosphere are reviewed. The history of such effects beginning in the early 1930s are retold, highlighting important events up to the late 1960s. A phenomenological treatment is then given to ohmic heating, parametric instabilities, self-focusing, and kilometric-scale irregularities, meter-scale irregularities, and a collection of recently discovered effects. The benefits that international cooperation would provide for this research are discussed, giving a list of future research challenges.

  15. The nonlinear effect in relativistic Compton scattering for an intense circularly polarized laser

    NASA Astrophysics Data System (ADS)

    Luo, W.; Zhuo, H. B.; Ma, Y. Y.; Zhu, Z. C.; Fan, G. T.; Xu, W.; Song, Y. M.

    2014-07-01

    Compton scattering between an intense laser pulse and a relativistic electron beam offers a promising development path toward high-energy, high-brightness x- and gamma-ray sources. Increasing laser peak power to obtain intense x- and gamma rays causes nonlinear Compton scattering to occur. To predict high-order harmonic radiation properties, we upgrade a Monte Carlo laser-Compton scattering simulation code (MCLCSS) by taking into account the nonlinear effect for the relativistic Compton scattering process. The energy spectra and angular and harmonic intensity distributions of the scattered photons are investigated using nonlinear Compton scattering of an intense circularly polarized laser. It is found that the laser parameter {{a}_{0}}\\equiv e{\\rm{A}}\\;{{m}_{e}}{{c}^{-2}} plays an important role in the generation of high-order harmonic radiation. Our study also suggests that the high-energy tails of the second and higher harmonics will stray from the backscattering region.

  16. The Effect of Basis Selection on Thermal-Acoustic Random Response Prediction Using Nonlinear Modal Simulation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Przekop, Adam

    2004-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for prediction of geometrically nonlinear response due to combined thermal-acoustic loadings. As with any such method, the accuracy of the solution is dictated by the selection of the modal basis, through which the nonlinear modal stiffness is determined. In this study, a suite of available bases are considered including (i) bending modes only; (ii) coupled bending and companion modes; (iii) uncoupled bending and companion modes; and (iv) bending and membrane modes. Comparison of these solutions with numerical simulation in physical degrees-of-freedom indicates that inclusion of any membrane mode variants (ii - iv) in the basis affects the bending displacement and stress response predictions. The most significant effect is on the membrane displacement, where it is shown that only the type (iv) basis accurately predicts its behavior. Results are presented for beam and plate structures in the thermally pre-buckled regime.

  17. Nonlinear effects of inertial Alfvén wave in low beta plasmas

    SciTech Connect

    Rinawa, M. L. Gaur, Nidhi Sharma, R. P.

    2015-02-15

    This paper is devoted to the study of the nonlinear interaction and propagation of high frequency pump inertial Alfvén wave (IAW) with comparatively low frequency IAW with emphasis on nonlinear effects and applications within space plasma and astrophysics for low β-plasma (β≪m{sub e}/m{sub i}). We have developed a set of dimensionless equations in the presence of ponderomotive nonlinearity due to high frequency pump IAW in the dynamics of comparatively low frequency IAW. Stability analysis and numerical simulation have been carried out for the coupled system comprising of pump IAW and low frequency IAW to study the localization and turbulent spectra, applicable to auroral region. The result reveals that localized structures become more complex and intense in nature at the quasi steady state. From the obtained result, we found that the present model may be useful to study the turbulent fluctuations in accordance with the observations of FAST/THEMIS spacecraft.

  18. High-temperature Mössbauer-effect measurements with a precision furnace

    NASA Astrophysics Data System (ADS)

    Kolk, B.; Bleloch, A.; Hall, D. B.; Zheng, Y.; Patton-Hall, K. E.

    1985-08-01

    A furnace system is presented for Mössbauer-effect spectroscopy at temperatures up to 1200 K with a temperature stability better than 0.03 K. This system allows the study of samples at high temperatures in an external magnetic field of a few kG with a homogeneity of better than 1%. Our measurements show that a few degrees above the Curie temperature TC, such an external field induces a considerable hyperfine field at 57Fe nuclei in iron. In addition, the magnetic hyperfine field and the isomer shift of 57Fe in metallic iron are measured over a temperature range of 300 to 1100 K. It is shown that a relatively small nonlinear behavior of the Mössbauer velocity drive system may result in a pseudodiscontinuity in the isomer shift δ near the Curie temperature, explaining the anomalous behavior observed for δ of iron and of some iron alloys in this region.

  19. The lagged effect of cold temperature and wind chill on cardiorespiratory mortality in Scotland

    PubMed Central

    Carder, M; McNamee, R; Beverland, I; Elton, R; Cohen, G; Boyd, J; Agius, R

    2005-01-01

    Aims: To investigate the lagged effects of cold temperature on cardiorespiratory mortality and to determine whether "wind chill" is a better predictor of these effects than "dry bulb" temperature. Methods: Generalised linear Poisson regression models were used to investigate the relation between mortality and "dry bulb" and "wind chill" temperatures in the three largest Scottish cities (Glasgow, Edinburgh, and Aberdeen) between January 1981 and December 2001. Effects of temperature on mortality (lags up to one month) were quantified. Analyses were conducted for the whole year and by season (cool and warm seasons). Main results: Temperature was a significant predictor of mortality with the strongest association observed between temperature and respiratory mortality. There was a non-linear association between mortality and temperature. Mortality increased as temperatures fell throughout the range, but the rate of increase was steeper at temperatures below 11°C. The association between temperature and mortality persisted at lag periods beyond two weeks but the effect size generally decreased with increasing lag. For temperatures below 11°C, a 1°C drop in the daytime mean temperature on any one day was associated with an increase in mortality of 2.9% (95% CI 2.5 to 3.4), 3.4% (95% CI 2.6 to 4.1), 4.8% (95% CI 3.5 to 6.2) and 1.7% (95% CI 1.0 to 2.4) over the following month for all cause, cardiovascular, respiratory, and "other" cause mortality respectively. The effect of temperature on mortality was not observed to be significantly modified by season. There was little indication that "wind chill" temperature was a better predictor of mortality than "dry bulb" temperature. Conclusions: Exposure to cold temperature is an important public health problem in Scotland, particularly for those dying from respiratory disease. PMID:16169916

  20. Distributed strain monitoring for bridges: temperature effects

    NASA Astrophysics Data System (ADS)

    Regier, Ryan; Hoult, Neil A.

    2014-03-01

    To better manage infrastructure assets as they reach the end of their service lives, quantitative data is required to better assess structural behavior and allow for more informed decision making. Distributed fiber optic strain sensors are one sensing technology that could provide comprehensive data for use in structural assessments as these systems potentially allow for strain to be measured with the same accuracy and gage lengths as conventional strain sensors. However, as with many sensor technologies, temperature can play an important role in terms of both the structure's and sensor's performance. To investigate this issue a fiber optic distributed strain sensor system was installed on a section of a two span reinforced concrete bridge on the TransCanada Highway. Strain data was acquired several times a day as well as over the course of several months to explore the effects of changing temperature on the data. The results show that the strain measurements are affected by the bridge behavior as a whole. The strain measurements due to temperature are compared to strain measurements that were taken during a load test on the bridge. The results show that even a small change in temperature can produce crack width and strain changes similar to those due to a fully loaded transport truck. Future directions for research in this area are outlined.

  1. Probing hysteretic elasticity in weakly nonlinear materials

    SciTech Connect

    Johnson, Paul A; Haupert, Sylvain; Renaud, Guillaume; Riviere, Jacques; Talmant, Maryline; Laugier, Pascal

    2010-12-07

    Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.

  2. Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature

    SciTech Connect

    Rudd, R E; Broughton, J Q

    2005-05-30

    Coarse-grained molecular dynamics (CGMD) is a technique developed as a concurrent multiscale model that couples conventional molecular dynamics (MD) to a more coarse-grained description of the periphery. The coarse-grained regions are modeled on a mesh in a formulation that generalizes conventional finite element modeling (FEM) of continuum elasticity. CGMD is derived solely from the MD model, however, and has no continuum parameters. As a result, it provides a coupling that is smooth and provides control of errors that arise at the coupling between the atomistic and coarse-grained regions. In this article, we elaborate on the formulation of CGMD, describing in detail how CGMD is applied to anharmonic solids and finite temperature simulations. As tests of CGMD, we present in detail the calculation of the phonon spectra for solid argon and tantalum in 3D, demonstrating how CGMD provides a better description of the elastic waves than that provided by FEM. We also present elastic wave scattering calculations that show the elastic wave scattering is more benign in CGMD than FEM. We also discuss the dependence of scattering on the properties of the mesh. We introduce a rigid approximation to CGMD that eliminates internal relaxation, similar to the Quasicontinuum technique, and compare it to the full CGMD.

  3. Effects of time ordering in quantum nonlinear optics

    NASA Astrophysics Data System (ADS)

    Quesada, Nicolás; Sipe, J. E.

    2014-12-01

    We study time-ordering corrections to the description of spontaneous parametric down-conversion (SPDC), four-wave mixing (SFWM), and frequency conversion using the Magnus expansion. Analytic approximations to the evolution operator that are unitary are obtained. They are Gaussian preserving, and allow us to understand order-by-order the effects of time ordering. We show that the corrections due to time ordering vanish exactly if the phase-matching function is sufficiently broad. The calculation of the effects of time ordering on the joint spectral amplitude of the photons generated in SPDC and SFWM are reduced to quadrature.

  4. The Effect of Crack Orientation on the Nonlinear Interaction of a P-wave with an S-wave

    DOE PAGESBeta

    TenCate, J. A.; Malcolm, A. E.; Feng, X.; Fehler, M. C.

    2016-06-06

    Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presencemore » and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.« less

  5. The effect of crack orientation on the nonlinear interaction of a P wave with an S wave

    NASA Astrophysics Data System (ADS)

    TenCate, J. A.; Malcolm, A. E.; Feng, X.; Fehler, M. C.

    2016-06-01

    Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presence and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.

  6. Effect of background plasma nonlinearities on dissipation processes in plasmas

    NASA Astrophysics Data System (ADS)

    Nekrasov, F. M.; Elfimov, A. G.; de Azevedo, C. A.; de Assis, A. S.

    1999-01-01

    The Coulomb collision effect on the bounce-resonance dissipation is considered for toroidal magnetized plasmas. The solution of the Vlasov equation with a simplified Fokker-Planck collision operator is presented. The parallel components of the dielectric tensor are obtained. A collisionless limit of wave dissipation is found.

  7. Fluctuations and effective temperatures in coarsening

    NASA Astrophysics Data System (ADS)

    Corberi, Federico; Cugliandolo, Leticia F.

    2009-05-01

    We study dynamic fluctuations in non-disordered finite dimensional ferromagnetic systems quenched to the critical point and the low temperature phase. We investigate the fluctuations of two two-time quantities, called χ and C, the averages of which yield the self-linear response and correlation functions. We introduce a restricted average of the χs, summing over all configurations with a given value of C. We find that the restricted average langχrangC obeys a scaling form, and that the slope of the scaling function approaches the universal value X_\\infty of the limiting effective temperature in the long time limit and for C\\to 0 . Our results tend to confirm the expectation that time-reparameterization invariance is not realized in coarsening systems at criticality. Finally, we discuss possible experimental tests of our proposal.

  8. On the interaction of a sound pulse with the shear layer of an axisymmetric jet. Part 3: Nonlinear effects

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Maestrello, L.; Turkel, E.

    1985-01-01

    The fluctuating field of a jet excited by transient mass injection is simulated numerically. The model is developed by expanding the state vector as a mean state plus a fluctuating state. Nonlinear terms are not neglected, and the effect of nonlinearity was studied. A high order numerical method is used to compute the solution. The results show a significant spectral broadening in the flow field due to the nonlinearity. In addition, large scale structures are broken down into smaller scales.

  9. Confinement Effects with Films of Nonlinear Poly-styrene

    NASA Astrophysics Data System (ADS)

    Foster, Mark; He, Qiming; Narayanan, Suresh; Wu, David

    2015-03-01

    The surface fluctuations of annealed melt films of 6k cyclic polystyrene (CPS), its linear analog, and a long-branched chain were measured using X-ray photon correlation spectroscopy (XPCS) for films of various thicknesses. The surface fluctuations of the 6k linear PS melt films 17 nm and thicker and the 6k cyclic melt films 28 nm and thicker can be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized only by the bulk viscosity. When a film of CPS is 24 nm or thinner, the behavior can no longer be captured using the HCT with bulk viscosity. The surface fluctuations behave as though the film has an effective viscosity higher than the bulk value. The thickness at which confinement effects are seen for the 6k CPS chains is larger than that for the linear analogs. Confinement effects for long-branched chains appear at even larger thicknesses relative to Rg. Acknowledgements: Use of the Advanced Photon Source at Argonne National Laboratory was supported by the DOE's Office of Science under Contract DE-AC02-06-CH11357. This work was supported by NSF Grants CBET-0730692 and CBET-0731319.

  10. Heterointerface effects on the nonlinear optical rectification in a laser-dressed graded quantum well

    NASA Astrophysics Data System (ADS)

    Niculescu, Ecaterina C.; Eseanu, Nicoleta; Radu, Adrian

    2013-05-01

    An investigation of the laser radiation effects on the nonlinear optical rectification in an AlGaAs inverse parabolic quantum well with asymmetrical barriers is performed within the effective mass approximation, taking into account the dielectric mismatch between the semiconductor and the surrounding medium. Using the accurate dressing effect for the confinement potential and electrostatic self-energy due to the image-charges, we prove that: (i) a spatially dependent effective mass in the laser-dressing parameter definition is required for precise calculations of the energy levels; (ii) the dielectric confinement provides a potential mechanism for controlling electronic states and optical properties of quantum wells. In addition, the laser dependence of the energy where the optical rectification reaches its maximum can be adjusted by external electric fields. The joint action of the intense high-frequency laser and static electric fields may provide tuning of the nonlinear properties in this type of dielectrically modulated heterostructures.

  11. The real evidence of effects from source to freefield as base for nonlinear seismology

    NASA Astrophysics Data System (ADS)

    Marmureanu, Gheorghe; Marmureanu, Alexandru; Ortanza Cioflan, Carmen-; -Florinela Manea, Elena

    2014-05-01

    Authors developed in last time the concept of "Nonlinear Seismology-The Seismology of the XXI Century". Prof. P. M. Shearer, California Univ. in last book:(i) Strong ground accelerations from large earthquakes can produce a non-linear response in shallow soils; (ii) The shaking from large earthquakes cannot be predicted by simple scaling of records from small earthquakes; (iii) This is an active area of research in strong motion and engineering seismology. Aki: Nonlinear amplification at sediments sites appears to be more pervasive than seismologists used to think. Any attempt at seismic zonation must take into account the local site condition and this nonlinear amplification (Tectonophysics, 218, 93-111, 1993). The difficulty to seismologists in demonstrating the nonlinear site effects has been due to the effect being overshadowed by the overall patterns of shock generation and propagation. In other words, the seismological detection of the nonlinear site effects requires a simultaneous understanding and splitting up (if it is possible…and if it is necessary!) the effects of earthquake source, propagation path and local geological site conditions. To see the actual influence of nonlinearity of the whole system (seismic source-path propagation-local geological structure) the authors used to study the free field response spectra which are the last in this chain and they are the ones who are taken into account in seismic design of all structures. Soils from last part of this system(source-freefield) exhibit a strong nonlinear behaviour under cyclic loading conditions and although have many common mechanical properties require the use of different models to describe behavior differences. Sands typically have low rheological properties and can be modeled with an acceptable linear elastic model and clays which frequently presents significant changes over time can be modeled by a nonlinear viscoelastic model The real evidence of site effects from source to freefield

  12. Surface mediated nonlinear optic effects in liquid crystals

    NASA Astrophysics Data System (ADS)

    Merlin, Jessica M.

    Liquid crystals have become a significant part of technology, mainly through their use in the display industry. This is due in part to the fact that the optical properties of liquid crystals are easily manipulated electronically. It has been recognized that the optical properties liquid crystals may also be controlled using light. Because of this, there are other various applications being explored for liquid crystals in photorefraction, optical limiting and switching, and in spatial light modulators. Although, the photorefractive effect was reported in liquid crystals over 10 years ago, there is still controversy over the exact mechanism for the reorientation of the liquid crystal director. This difficulty may be due in part to the fact that it is difficult to characterize the effect using photorefractive measurements and figures of merit. The optical and electronic control of liquid crystals will be studied here using a Friedericksz transition measurement in a twist cell geometry. This type of apparatus was chosen because it leads to a more direct demonstration of the surface effect. Namely, by studying changes in the Friedericksz transition threshold in a twist cell, a more direct observation of changes in the internal field may be observed. First a brief introduction to liquid crystals and their role in technology will be presented. This will be followed by a more rigorous discussion of the physics of liquid crystals and a review of the important literature. The experimental apparatus and the materials and cell geometry used will be described followed by the results of those measurements. Finally, the results will be considered in terms of a model involving interfacial charge and discussed in the context of previous work.

  13. Nonlinear effects in Paul traps operated in the second stability region: analytical analysis and numerical verification.

    PubMed

    Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Suming; Nie, Zongxiu

    2014-11-01

    Paul trap working in the second stability region has long been recognized as a possible approach for achieving high-resolution mass spectrometry (MS), which however is still far away from the experimental implementations because of the narrow working area and inefficient ion trapping. Full understanding of the ion motional behavior is helpful for solving the problem. In this article, the ion motion in a superimposed octopole field, which was characterized by the nonlinear Mathieu equation, was solved analytically using Poincare-Lighthill-Kuo (PLK) method. This method equivalently described the nonlinear disturbance by an effective quadrupole field with perturbed Mathieu parameters, a(u) and q(u), which would bring huge convenience in the studies of nonlinear ion dynamics and was, therefore, used for rapid evaluation of the nonlinear effects of ion motion. Fourth-order Runge-Kutta method (4th R-K) indicated the error of PLK for characterizing the frequency shift of ion motion was within 15%. PMID:25183226

  14. Nonlinear effect of debonding of wafer type piezoelectric actuator on the behaviour of Lamb wave

    NASA Astrophysics Data System (ADS)

    Yelve, Nitesh P.; Mitra, Mira; Mujumdar, P. M.

    2014-03-01

    In Lamb wave based techniques for damage detection, Piezoelectric Wafer (PW) transducers are often used for actuating Lamb wave. They offer advantages such as portability and, cost effectiveness. However, because of prolonged use, excessive voltage supply, or improper bonding onto the host structure, these PW actuators may get partially debonded from the host structure. In this paper, the nonlinear effect of this debonding on the behavior of Lamb wave manifested in the form of higher harmonics, is studied both experimentally and through Finite Element (FE) simulation. Augmented Lagrangian algorithm is used in FE simulation to solve the contact problem at the breathing debond. Three higher harmonics are observed in the experiments and also in the FE simulation. Morlet wavelet transform is implemented in the study for time-frequency analysis and the results are reported in the paper. Nonlinearity parameter β obtained from fundamental and second harmonics in the experiments and the simulation, is found to be increasing with increase in the debonding area. This shows that actuator debonding produces contact nonlinearity and thereby induces higher harmonics in the Lamb wave. Therefore, in damage detection using Lamb wave based nonlinear techniques, the higher harmonics produced may get influenced by the false higher harmonics produced by actuator debonding, leading to incorrect results. Also these false higher harmonics resulting from actuator debonding may show illusory presence of defect in a pristine material, if bonding of the actuator is not taken care of properly.

  15. Nonlinear Pedagogy: An Effective Approach to Cater for Individual Differences in Learning a Sports Skill

    PubMed Central

    Lee, Miriam Chang Yi; Chow, Jia Yi; Komar, John; Tan, Clara Wee Keat; Button, Chris

    2014-01-01

    Learning a sports skill is a complex process in which practitioners are challenged to cater for individual differences. The main purpose of this study was to explore the effectiveness of a Nonlinear Pedagogy approach for learning a sports skill. Twenty-four 10-year-old females participated in a 4-week intervention involving either a Nonlinear Pedagogy (i.e.,manipulation of task constraints including equipment and rules) or a Linear Pedagogy (i.e., prescriptive, repetitive drills) approach to learn a tennis forehand stroke. Performance accuracy scores, movement criterion scores and kinematic data were measured during pre-intervention, post-intervention and retention tests. While both groups showed improvements in performance accuracy scores over time, the Nonlinear Pedagogy group displayed a greater number of movement clusters at post-test indicating the presence of degeneracy (i.e., many ways to achieve the same outcome). The results suggest that degeneracy is effective for learning a sports skill facilitated by a Nonlinear Pedagogy approach. These findings challenge the common misconception that there must be only one ideal movement solution for a task and thus have implications for coaches and educators when designing instructions for skill acquisition. PMID:25140822

  16. Comparing Smoothing Techniques for Fitting the Nonlinear Effect of Covariate in Cox Models

    PubMed Central

    Roshani, Daem; Ghaderi, Ebrahim

    2016-01-01

    Background and Objective: Cox model is a popular model in survival analysis, which assumes linearity of the covariate on the log hazard function, While continuous covariates can affect the hazard through more complicated nonlinear functional forms and therefore, Cox models with continuous covariates are prone to misspecification due to not fitting the correct functional form for continuous covariates. In this study, a smooth nonlinear covariate effect would be approximated by different spline functions. Material and Methods: We applied three flexible nonparametric smoothing techniques for nonlinear covariate effect in the Cox models: penalized splines, restricted cubic splines and natural splines. Akaike information criterion (AIC) and degrees of freedom were used to smoothing parameter selection in penalized splines model. The ability of nonparametric methods was evaluated to recover the true functional form of linear, quadratic and nonlinear functions, using different simulated sample sizes. Data analysis was carried out using R 2.11.0 software and significant levels were considered 0.05. Results: Based on AIC, the penalized spline method had consistently lower mean square error compared to others to selection of smoothed parameter. The same result was obtained with real data. Conclusion: Penalized spline smoothing method, with AIC to smoothing parameter selection, was more accurate in evaluate of relation between covariate and log hazard function than other methods. PMID:27041809

  17. Diffraction Interference Induced Superfocusing in Nonlinear Talbot Effect

    PubMed Central

    Liu, Dongmei; Zhang, Yong; Wen, Jianming; Chen, Zhenhua; Wei, Dunzhao; Hu, Xiaopeng; Zhao, Gang; Zhu, S. N.; Xiao, Min

    2014-01-01

    We report a simple, novel subdiffraction method, i.e. diffraction interference induced superfocusing in second-harmonic (SH) Talbot effect, to achieve focusing size of less than λSH/4 (or λpump/8) without involving evanescent waves or subwavelength apertures. By tailoring point spread functions with Fresnel diffraction interference, we observe periodic SH subdiffracted spots over a hundred of micrometers away from the sample. Our demonstration is the first experimental realization of the Toraldo di Francia's proposal pioneered 62 years ago for superresolution imaging. PMID:25138077

  18. Nonlinear Plasma Effects in Natural and Artificial Aurora

    SciTech Connect

    Mishin, E. V.

    2011-01-04

    This report describes common features of natural ('Enhanced') aurora and 'artificial aurora'(AA) created by electron beams injected from sounding rockets. These features cannot be explained solely by col-lisional degradation of energetic electrons, thereby pointing to collisionless plasma effects. The fundamental role in electron beam-ionosphere interactions belongs to Langmuir turbulence. Its development in the (weakly-ionized) ionosphere is significantly affected by electron-neutral collisions, so that the heating and acceleration of plasma electrons proceed more efficiently than in collisionless plasmas. As a result, a narrow layer of enhanced auroral glow/ionization is formed above the standard collisional peak.

  19. Study of statis and dynamic stress effects in nonlinear solids

    NASA Technical Reports Server (NTRS)

    Namkung, M.

    1985-01-01

    As the basic physical principles behind the low-field magnetoacoustic interactions have been unfolded, a new step in the present research had to be taken. First, the stress measurements began in samples obtained in real railroad wheel and rail materials. Second, the effect of texture, which is the prime obstacle of conventional NDE techniques, has been investigated. The first stage shows experimental results on these subjects again confirmed that the present technique is most suited for nondestructive stress characterization in steel components. The stress effects on the magnetoacoustic interaction obtained in a sample made from railroad rail which were very similar to those obtained previously in 1045 steel. These results being somewhat different from the results with low (1020) and high (1095) carbon steels, there seemed to be certain range of medium carbon steels having the same characteristics. Also, as expected from the model, the stress information obtained by this technique has been confirmed to be least affected by the presence of texture.

  20. Nonlinear simulations of particle source effects on edge localized mode

    SciTech Connect

    Huang, J.; Tang, C. J.; Chen, S. Y.; Wang, Z. H.

    2015-12-15

    The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.

  1. Nonlinear simulations of particle source effects on edge localized mode

    NASA Astrophysics Data System (ADS)

    Huang, J.; Chen, S. Y.; Wang, Z. H.; Tang, C. J.

    2015-12-01

    The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.

  2. Room-temperature nonlinear transport phenomena in low-dimensional Ni-Nb-Zr-H glassy alloys and its device

    SciTech Connect

    Fukuhara, Mikio; Yoshida, Hajime

    2014-05-15

    We report the room-temperature switching and Coulomb blockade effects in three–terminal glassy alloy field effect transistor (GAFET), using the millimeter sized glassy alloy. By applying dc and ac voltages to a gate electrode, GAFET can be switched from a metallic conducting state to an insulating state with Coulomb oscillation at a period of 14 μV at room temperature. The transistor showed the three-dimensional Coulomb diamond structure. The fabrication of a low-energy controllable device throws a new light on cluster electronics without wiring.

  3. Nonequilibrium Brownian Motion beyond the Effective Temperature

    PubMed Central

    Gnoli, Andrea; Puglisi, Andrea; Sarracino, Alessandro; Vulpiani, Angelo

    2014-01-01

    The condition of thermal equilibrium simplifies the theoretical treatment of fluctuations as found in the celebrated Einstein’s relation between mobility and diffusivity for Brownian motion. Several recent theories relax the hypothesis of thermal equilibrium resulting in at least two main scenarios. With well separated timescales, as in aging glassy systems, equilibrium Fluctuation-Dissipation Theorem applies at each scale with its own “effective” temperature. With mixed timescales, as for example in active or granular fluids or in turbulence, temperature is no more well-defined, the dynamical nature of fluctuations fully emerges and a Generalized Fluctuation-Dissipation Theorem (GFDT) applies. Here, we study experimentally the mixed timescale regime by studying fluctuations and linear response in the Brownian motion of a rotating intruder immersed in a vibro-fluidized granular medium. Increasing the packing fraction, the system is moved from a dilute single-timescale regime toward a denser multiple-timescale stage. Einstein’s relation holds in the former and is violated in the latter. The violation cannot be explained in terms of effective temperatures, while the GFDT is able to impute it to the emergence of a strong coupling between the intruder and the surrounding fluid. Direct experimental measurements confirm the development of spatial correlations in the system when the density is increased. PMID:24714671

  4. A Theoretical Method for Characterizing Nonlinear Effects in Paul Traps with Added Octopole Field.

    PubMed

    Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Chen, Suming; Nie, Zongxiu

    2015-08-01

    In comparison with numerical methods, theoretical characterizations of ion motion in the nonlinear Paul traps always suffer from low accuracy and little applicability. To overcome the difficulties, the theoretical harmonic balance (HB) method was developed, and was validated by the numerical fourth-order Runge-Kutta (4th RK) method. Using the HB method, analytical ion trajectory and ion motion frequency in the superimposed octopole field, ε, were obtained by solving the nonlinear Mathieu equation (NME). The obtained accuracy of the HB method was comparable with that of the 4th RK method at the Mathieu parameter, q = 0.6, and the applicable q values could be extended to the entire first stability region with satisfactory accuracy. Two sorts of nonlinear effects of ion motion were studied, including ion frequency shift, Δβ, and ion amplitude variation, Δ(C(2n)/C0) (n ≠ 0). New phenomena regarding Δβ were observed, although extensive studies have been performed based on the pseudo-potential well (PW) model. For instance, the |Δβ| at ε = 0.1 and ε = -0.1 were found to be different, but they were the same in the PW model. This is the first time the nonlinear effects regarding Δ(C(2n)/C0) (n ≠ 0) are studied, and the associated study has been a challenge for both theoretical and numerical methods. The nonlinear effects of Δ(C(2n)/C0) (n ≠ 0) and Δβ were found to share some similarities at q < 0.6: both of them were proportional to ε, and the square of the initial ion displacement, z(0)(2). PMID:25924875

  5. A nonlinear model for magnetocapacitance effect in PZT-ring/Terfenol-D-strip magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Zhang, Juanjuan; Wen, Jianbiao; Gao, Yuanwen

    2016-06-01

    In previous works, most of them employ a linear constitutive model to describe magnetocapacitance (MC) effect in magnetoelectric (ME) composites, which lead to deficiency in their theoretical results. In view of this, based on a nonlinear magnetostrictive constitutive relation and a linear piezoelectric constitutive relation, we establish a nonlinear model for MC effect in PZT-ring/Terfenol-D-strip ME composites. The numerical results in this paper coincide better with experimental data than that of a linear model, thus, it's essential to utilize a nonlinear constitutive model for predicting MC effect in ME composites. Then the influences of external magnetic fields, pre-stresses, frequencies, and geometric sizes on the MC effect are discussed, respectively. The results show that the external magnetic field is responsible for the resonance frequency shift. And the resonance frequency is sensitive to the ratio of outer and inner radius of the PZT ring. Moreover, some other piezoelectric materials are employed in this model and the corresponding MC effects are calculated, and we find that different type of piezoelectric materials affect the MC effect obviously. The proposed model is more accurate for multifunction devices designing.

  6. Nonlinear Hall effect as a signature of electronic phase separation in the semimetallic ferromagnet EuB(6).

    PubMed

    Zhang, Xiaohang; Yu, Liuqi; von Molnár, Stephan; Fisk, Zachary; Xiong, Peng

    2009-09-01

    This work reports a study of the nonlinear Hall effect (HE) in the semimetallic ferromagnet EuB(6). A distinct switch in its Hall resistivity slope is observed in the paramagnetic phase, which occurs at a single critical magnetization over a wide temperature range. The observation is interpreted as the point of percolation for entities of a more conducting and magnetically ordered phase in a less ordered background. With an increasing applied magnetic field, the conducting regions either increase in number or expand beyond the percolation limit, hence increasing the global conductivity and effective carrier density. An empirical two-component model provides excellent scaling and a quantitative fit to the HE data and may be applicable to other correlated electron systems. PMID:19792332

  7. Nonlinear effects in spin relaxation of cavity polaritons

    SciTech Connect

    Solnyshkov, D. D.; Shelykh, I. A. Glazov, M. M.; Malpuech, G.; Amand, T.; Renucci, P.; Marie, X.; Kavokin, A. V.

    2007-09-15

    We present the general kinetic formalism for the description of spin and energy relaxation of the cavity polaritons in the framework of the Born-Markov approximation. All essential mechanisms of polariton redistribution in reciprocal space together with the final state bosonic stimulation are taken into account from our point of view. The developed theory is applied to describe our experimental results on the polarization dynamics obtained in the polariton parametric amplifier geometry (pumping at the so-called magic angle). Under circular pumping, we show that the spin relaxation time is strongly dependent on the detuning between the exciton and cavity mode energies mainly because of the influence of the detuning on the coupling strength between the photon-like part of the exciton-polariton lower dispersion branch and the reservoir of uncoupled exciton states. In the negative detuning case we find a very long spin relaxation time of about 300 ps. In the case of excitation by a linearly polarized light, we have experimentally confirmed that the anisotropy of the polariton-polariton interaction is responsible for the build-up of the cross-linear polarization of the signal. In the spontaneous regime the polarization degree of the signal is -8% but it can reach -65% in the stimulated regime. The long-living linear polarization observed at zero detuning indicates that the reservoir is formed by excitons localized at the anisotropic islands oriented along the crystallographic axes. Finally, under elliptical pumping, we have directly measured in the time domain and modeled the effect of self-induced Larmor precession, i.e., the rotation of the linear polarization of a state about an effective magnetic field proportional to the projection of the total spin of exciton-polaritons in the cavity on its growth axis.

  8. Bifurcations in a low-order nonlinear model of tropical Pacific sea surface temperatures derived from observational data.

    PubMed

    Hong, Mei; Zhang, Ren; Wang, Hui-Zan; Ge, Jing-jing; Pan, Ao-Da

    2013-06-01

    Aiming at tackling the difficulty in exactly constituting the sea surface temperature (SST) dynamical model, the paper introduces the dynamical system reconstruction idea and establishes the nonlinear dynamical model of SST field based on 1963-2010 monthly average Hadley SST data. Time coefficients series after empirical orthogonal functions decomposition are taken as the dynamical model variables and Genetic Algorithms is used to optimize and retrieve the model parameters. The stability of the equilibrium in the reconstructed model is analyzed and dynamical actions such as bifurcation and mutation are discussed. Also the activity configuration and aberrance mechanism of the SST field are developed upon the actual activity characteristics of the SST field in the Tropical Pacific Ocean in that year. Results reveal that the bifurcation action of the SST field system from one stable high-value equilibrium to another stable low-value equilibrium accords with the La Niña process while the mutation action of the SST field system from two stable equilibriums to another stable equilibrium accords with the El Niño process. PMID:23822469

  9. Sweeprate and temperature effects on crackling noise

    NASA Astrophysics Data System (ADS)

    White, Robert Allen

    Crackling noise, defined as separate bursts characterized by power law behavior of the frequency histograms over many decades, is observed in many driven systems far from equilibrium. Examples of such systems pepper a remarkable range of length and energy scales from jerky domain wall motion of disordered magnets, to the sometimes devastating crackling of the earth to the bursty release of energy in the photosphere of the sun dwarfing that of our most horrible WMD. Typically, crackling noise is modeled in the infinitely slow driving rate limit at zero temperature. In this dissertation I investigate the effects of relaxing these limits. First I consider the crackling system at zero temperature and finite sweeprate. I discuss how the temporal overlap of power law bursts can account for a wide range of scaling behavior and provide a criterion for sweeprate controlled exponents based on exponents obtained in the infinitely slowly driven limit. I also discuss scaling arguments for hitherto unexplained results in the power spectrum of crackling response in disordered magnets, commonly referred to as Barkhausen noise. Scaling arguments and numerical results are compared to Barkhausen noise measurements in two materials representing distinct adiabatically driven universality classes. Relaxation of the zero temperature constraint cannot be done without considering finite sweeprates due to global relaxation timescales that arise at finite temperatures. We investigate the connection between sweeprate and thermal fluctuations in the far from equilibrium limit typical of crackling systems. Again, using scaling arguments and numerical simulations of the random field Ising model near a disorder-induced critical point we analyze interesting crossover phenomena in the power spectra which are also observed in Barkhausen noise but have yet to be explained.

  10. Effects of squeezed-film damping on the optomechanical nonlinearity in dual-nanoweb fiber

    NASA Astrophysics Data System (ADS)

    Koehler, J. R.; Butsch, A.; Euser, T. G.; Noskov, R. E.; St. J. Russell, P.

    2013-11-01

    The freely-suspended glass membranes in a dual-nanoweb fiber, driven at resonance by intensity-modulated light, exhibit a giant optomechanical nonlinearity. We experimentally investigate the effect of squeezed-film damping by exploring the pressure dependence of resonant frequency and mechanical quality factor. As a consequence of the unusually narrow slot between the nanowebs (22 μm by 550 nm), the gas-spring effect causes a pressure-dependent frequency shift that is ˜15 times greater than typically measured in micro-electro-mechanical devices. When evacuated, the dual-nanoweb fiber yields a quality factor of ˜3 600 and a resonant optomechanical nonlinear coefficient that is ˜60 000 times larger than the Kerr effect.

  11. Effects of parity-time symmetry in nonlinear Klein-Gordon models and their stationary kinks.

    PubMed

    Demirkaya, A; Frantzeskakis, D J; Kevrekidis, P G; Saxena, A; Stefanov, A

    2013-08-01

    In this work, we introduce some basic principles of PT-symmetric Klein-Gordon nonlinear field theories. By formulating a particular antisymmetric gain and loss profile, we illustrate that the stationary states of the model do not change. However, the stability critically depends on the gain and loss profile. For a symmetrically placed solitary wave (in either the continuum model or a discrete analog of the nonlinear Klein-Gordon type), there is no effect on the steady state spectrum. However, for asymmetrically placed solutions, there exists a measurable effect of which a perturbative mathematical characterization is offered. It is generally found that asymmetry towards the lossy side leads towards stability, while towards the gain side produces instability. Furthermore, a host of finite size effects, which disappear in the infinite domain limit, are illustrated in connection to the continuous spectrum of the problem. PMID:24032958

  12. Optical authentication based on moiré effect of nonlinear gratings in phase space

    NASA Astrophysics Data System (ADS)

    Liao, Meihua; He, Wenqi; Wu, Jiachen; Lu, Dajiang; Liu, Xiaoli; Peng, Xiang

    2015-12-01

    An optical authentication scheme based on the moiré effect of nonlinear gratings in phase space is proposed. According to the phase function relationship of the moiré effect in phase space, an arbitrary authentication image can be encoded into two nonlinear gratings which serve as the authentication lock (AL) and the authentication key (AK). The AL is stored in the authentication system while the AK is assigned to the authorized user. The authentication procedure can be performed using an optoelectronic approach, while the design process is accomplished by a digital approach. Furthermore, this optical authentication scheme can be extended for multiple users with different security levels. The proposed scheme can not only verify the legality of a user identity, but can also discriminate and control the security levels of legal users. Theoretical analysis and simulation experiments are provided to verify the feasibility and effectiveness of the proposed scheme.

  13. Nonlinearity Effects of Lateral Density Diffusion Coefficient on Gain-Guided VCSEL Performance

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. In this paper, we apply a hydrodynamic model developed from the semiconductor Bloch equations to numerically study the effects of nonlinearity in the diffusion coefficient on single mode operation and direct modulation of a gain-guided InGaAs/GaAs multiple quantum well laser, operating not too far from threshold. We found that a small diffusion coefficient is advantageous for lowering the threshold current and increasing the modulation bandwidth. Most importantly, the effects of nonlinearity in the coefficient can be approximately reproduced by replacing the coefficient with an effective constant diffusion coefficient, which corresponds roughly to the half height density of the density distribution.

  14. Polarization effect on the relativistic nonlinear dynamics of an intense laser beam propagating in a hot magnetoactive plasma.

    PubMed

    Sepehri Javan, N; Adli, F

    2013-10-01

    Nonlinear dynamics of an intense circularly polarized laser beam interacting with a hot magnetized plasma is investigated. Using a relativistic fluid model, a modified nonlinear Schrödinger equation is derived based on a quasineutral approximation, which is valid for hot plasma. Using a three-dimensional model, spatial-temporal development of the laser pulse is investigated. The occurrence of some nonlinear phenomena such as self-focusing, self-modulation, light trapping, and filamentation of the laser pulse is discussed. Also the effect of polarization and external magnetic field on the nonlinear evolution of these phenomena is studied. PMID:24229288

  15. Correction for nonlinear photon counting effects in lidar systems

    NASA Technical Reports Server (NTRS)

    Donovan, D. P.; Whiteway, J. A.; Carswell, A. I.

    1992-01-01

    Photomultiplier tubes (PMT's) employed in the photon counting (PC) mode of operation are widely used as detectors in lidar systems. In our laboratory, we have developed a versatile Nd:YAG lidar which is used for measurement of both the middle atmosphere and the troposphere. With this system, we encounter a very wide range of signal levels ranging from the extremely weak signals from the top of the mesosphere to the very strong returns from low level clouds. Although the system is capable of operating the PMT's in either the analog detection or photon counting mode, we find that often when we use photon counting we have portions of our lidar return which contain very useful information but are not within the linear operating regime of the PC system. We report the results of our efforts to explore the extent to which such high intensity PC signals can be quantitatively analyzed. In particular, a useful model relating the mean 'true' count rate and the observed count rate is presented and it's application to our system demonstrated. This model takes into account the variation in height of the PMT output pulses and the effect of the pulse height discrimination threshold.

  16. Beam-shape effects in nonlinear Compton and Thomson scattering

    SciTech Connect

    Heinzl, T.; Seipt, D.; Kaempfer, B.

    2010-02-15

    We discuss intensity effects in collisions between beams of optical photons from a high-power laser and relativistic electrons. Our main focus is on the modifications of the emission spectra due to realistic finite-beam geometries. By carefully analyzing the classical limit we precisely quantify the distinction between strong-field QED Compton scattering and classical Thomson scattering. A purely classical, but fully covariant, calculation of the bremsstrahlung emitted by an electron in a plane-wave laser field yields radiation into harmonics, as expected. This result is generalized to pulses of finite duration and explains the appearance of line broadening and harmonic substructure as an interference phenomenon. The ensuing numerical treatment confirms that strong focusing of the laser leads to a broad continuum while higher harmonics become visible only at moderate focusing, and hence lower intensity. We present a scaling law for the backscattered photon spectral density which facilitates averaging over electron beam phase space. Finally, we propose a set of realistic parameters such that the observation of intensity-induced spectral red shift, higher harmonics, and their substructure becomes feasible.

  17. High Strain-Rate and Temperature Effects on the Response of Composites

    NASA Technical Reports Server (NTRS)

    Gilat, Amos

    2004-01-01

    The objective of the research is to expand the experimental study of the effect of strain rate on mechanical response (deformation and failure) of epoxy resins and carbon fibers/epoxy matrix composites, to include elevated temperature tests. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, strain rate and temperature dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into the development and testing of the epoxy resin at elevated temperatures. Two types of epoxy resins were tested in shear at high strain rates of about 700 per second and elevated temperatures of 50 and 80 C. The results show that the temperature significantly affects the response of epoxy.

  18. Extremely large magnetoresistance and magnetic logic by coupling semiconductor nonlinear transport effect and anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaozhong; Luo, Zhaochu

    Size limitation of silicon FET hinders the further scaling down of silicon based CPU. To solve this problem, spin based magnetic logic devices were proposed but almost all of them could not be realized experimentally except for NOT logic operation. A magnetic field controlled reconfigurable semiconductor logic using InSb was reported. However, InSb is very expensive and not compatible with the silicon technology. Based on our Si based magnetoresistance (MR) device, we developed a Si based reconfigurable magnetic logic device, which could do all four Boolean logic operations including AND, OR, NOR and NAND. By coupling nonlinear transport effect of semiconductor and anomalous Hall effect of magnetic material, we propose a PMA material based MR device with a remarkable non local MR of >20000 % at ~1 mT. Based on this MR device, we further developed a PMA material based magnetic logic device which could do all four Boolean logic operations. This makes it possible that magnetic material does both memory and logic. This may result in a memory-logic integrated system leading to a non von Neumann computer

  19. Non-linear density-dependent effects of an intertidal ecosystem engineer.

    PubMed

    Harley, Christopher D G; O'Riley, Jaclyn L

    2011-06-01

    Ecosystem engineering is an important process in a variety of ecosystems. However, the relationship between engineer density and engineering impact remains poorly understood. We used experiments and a mathematical model to examine the role of engineer density in a rocky intertidal community in northern California. In this system, the whelk Nucella ostrina preys on barnacles (Balanus glandula and Chthamalus dalli), leaving empty barnacle tests as a resource (favorable microhabitat) for other species. Field experiments demonstrated that N. ostrina predation increased the availability of empty tests of both barnacle species, reduced the density of the competitively dominant B. glandula, and indirectly increased the density of the competitively inferior C. dalli. Empty barnacle tests altered microhabitat humidity, but not temperature, and presumably provided a refuge from wave action. The herbivorous snail Littorina plena was positively associated with empty test availability in both observational comparisons and experimental manipulations of empty test availability, and L. plena density was elevated in areas with foraging N. ostrina. To explore the effects of variation in N. ostrina predation, we constructed a demographic matrix model for barnacles in which we varied predation intensity. The model predicted that number of available empty tests increases with predation intensity to a point, but declines when predation pressure was strong enough to severely reduce adult barnacle densities. The modeled number of available empty tests therefore peaked at an intermediate level of N. ostrina predation. Non-linear relationships between engineer density and engineer impact may be a generally important attribute of systems in which engineers influence the population dynamics of the species that they manipulate. PMID:21170751

  20. Nonlinear model of a distribution transformer appropriate for evaluating the effects of unbalanced loads

    NASA Astrophysics Data System (ADS)

    Toman, Matej; Štumberger, Gorazd; Štumberger, Bojan; Dolinar, Drago

    Power packages for calculation of power system transients are often used when studying and designing electromagnetic power systems. An accurate model of a distribution transformer is needed in order to obtain realistic values from these calculations. This transformer model must be derived in such a way that it is applicable when calculating those operating conditions appearing in practice. Operation conditions where transformers are loaded with nonlinear and unbalanced loads are especially challenging. The purpose of this work is to derive a three-phase transformer model that is appropriate for evaluating the effects of nonlinear and unbalanced loads. A lumped parameter model instead of a finite element (FE) model is considered in order to ensure that the model can be used in power packages for the calculation of power system transients. The transformer model is obtained by coupling electric and magnetic equivalent circuits. The magnetic equivalent circuit contains only three nonlinear reluctances, which represent nonlinear behaviour of the transformer. They are calculated by the inverse Jiles-Atherton (J-A) hysteresis model, while parameters of hysteresis are identified using differential evolution (DE). This considerably improves the accuracy of the derived transformer model. Although the obtained transformer model is simple, the simulation results show good agreement between measured and calculated results.

  1. Impact of scale dependent bias and nonlinear structure growth on the integrated Sachs-Wolfe effect: Angular power spectra

    SciTech Connect

    Smith, Robert E.; Hernandez-Monteagudo, Carlos; Seljak, Uros

    2009-09-15

    We investigate the impact of nonlinear evolution of the gravitational potentials in the {lambda}CDM model on the integrated Sachs-Wolfe (ISW) contribution to the cosmic microwave background (CMB) temperature power spectrum, and on the cross-power spectrum of the CMB and a set of biased tracers of the mass. We use an ensemble of N-body simulations to directly follow the potentials and compare the results to analytic PT methods. The predictions from the PT match the results to high precision for k<0.2h Mpc{sup -1}. We compute the nonlinear corrections to the angular power spectrum and find them to be <10% of linear theory for l<100. These corrections are swamped by the cosmic variance. On scales l>100 the departures are more significant; however, the CMB signal is more than a factor 10{sup 3} larger at this scale. Nonlinear ISW effects therefore play no role in shaping the CMB power spectrum for l<1500. We analyze the CMB-density tracer cross spectrum using simulations and renormalized bias PT, and find good agreement. The usual assumption is that nonlinear evolution enhances the growth of structure and counteracts the linear ISW on small scales, leading to a change in sign of the CMB large-scale structure cross spectrum at small scales. However, PT analysis suggests that this trend reverses at late times when the logarithmic growth rate f=dlnD/dlna<0.5 or {omega}{sub m}(z)<0.3. Numerical results confirm these expectations and we find no sign change in ISW large-scale structure cross power for low redshifts. Corrections due to nonlinearity and scale dependence of the bias are found to be <10% for l<100, and are therefore below the signal to noise of the current and future measurements. Finally, we estimate the cross-correlation coefficient between the CMB and halos and show that it can be made to match that for the dark matter and CMB to within 5% for thin redshift shells, thus mitigating the need to model bias evolution.

  2. Estimation of Contextual Effects through Nonlinear Multilevel Latent Variable Modeling with a Metropolis-Hastings Robbins-Monro Algorithm

    ERIC Educational Resources Information Center

    Yang, Ji Seung

    2012-01-01

    Nonlinear multilevel latent variable modeling has been suggested as an alternative to traditional hierarchical linear modeling to more properly handle measurement error and sampling error issues in contextual effects modeling. However, a nonlinear multilevel latent variable model requires significant computational effort because the estimation…

  3. Effect of Climate Change on Soil Temperature in Swedish Boreal Forests

    PubMed Central

    Jungqvist, Gunnar; Oni, Stephen K.; Teutschbein, Claudia; Futter, Martyn N.

    2014-01-01

    Complex non-linear relationships exist between air and soil temperature responses to climate change. Despite its influence on hydrological and biogeochemical processes, soil temperature has received less attention in climate impact studies. Here we present and apply an empirical soil temperature model to four forest sites along a climatic gradient of Sweden. Future air and soil temperature were projected using an ensemble of regional climate models. Annual average air and soil temperatures were projected to increase, but complex dynamics were projected on a seasonal scale. Future changes in winter soil temperature were strongly dependent on projected snow cover. At the northernmost site, winter soil temperatures changed very little due to insulating effects of snow cover but southern sites with little or no snow cover showed the largest projected winter soil warming. Projected soil warming was greatest in the spring (up to 4°C) in the north, suggesting earlier snowmelt, extension of growing season length and possible northward shifts in the boreal biome. This showed that the projected effects of climate change on soil temperature in snow dominated regions are complex and general assumptions of future soil temperature responses to climate change based on air temperature alone are inadequate and should be avoided in boreal regions. PMID:24747938

  4. Quantitative assessment of reactive oxygen species generation by cavitation incepted efficiently using nonlinear propagation effect

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Yoshizawa, Shin; Umemura, Shin-ichiro

    2015-10-01

    Sonodynamic treatment is a treatment method that uses chemical bio-effect of cavitation bubbles. Reactive oxygen species that can kill cancerous tissue is induced by such chemical effect of cavitation bubbles and it is important to generate them efficiently for effective sonodynamic treatment. Cavitation cloud can be formed by an effect of nonlinear propagation and focus and in this study, it was experimentally investigated if cavitation cloud was useful for efficient generation of reactive oxygen species. As a result, it was demonstrated that cavitation cloud would be useful for efficient generation of reactive oxygen species.

  5. Enhancement of Optical Nonlinearities in Composite Media and Structures via Local Fields and Electromagnetic Coupling Effects

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2002-01-01

    This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.

  6. Effect of Coolant Temperature and Mass Flow on Film Cooling of Turbine Blades

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Gaugler, Raymond E.

    1997-01-01

    A three-dimensional Navier Stokes code has been used to study the effect of coolant temperature, and coolant to mainstream mass flow ratio on the adiabatic effectiveness of a film-cooled turbine blade. The blade chosen is the VKI rotor with six rows of cooling holes including three rows on the shower head. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. Generally, the adiabatic effectiveness is lower for a higher coolant temperature due to nonlinear effects via the compressibility of air. However, over the suction side of shower-head holes, the effectiveness is higher for a higher coolant temperature than that for a lower coolant temperature when the coolant to mainstream mass flow ratio is 5% or more. For a fixed coolant temperature, the effectiveness passes through a minima on the suction side of shower-head holes as the coolant to mainstream mass flow, ratio increases, while on the pressure side of shower-head holes, the effectiveness decreases with increase in coolant mass flow due to coolant jet lift-off. In all cases, the adiabatic effectiveness is highly three-dimensional.

  7. Linear and nonlinear effect of sheared plasma flow on resistive tearing modes

    SciTech Connect

    Hu, Qiming Hu, Xiwei; Yu, Q.

    2014-12-15

    The effect of sheared plasma flow on the m/n = 2/1 tearing mode is studied numerically (m and n are the poloidal and toroidal mode numbers). It is found that in the linear phase the plasma flow with a weak or moderate shear plays a stabilizing effect on tearing mode. However, the mode is driven to be more unstable by sufficiently strong sheared flow when approaching the shear Alfvén resonance (AR). In the nonlinear phase, a moderate (strong) sheared flow leads to a smaller (larger) saturated island width. The stabilization of tearing modes by moderate shear plasma flow is enhanced for a larger plasma viscosity and a lower Alfvén velocity. It is also found that in the nonlinear phase AR accelerates the plasma rotation around the 2/1 rational surface but decelerates it at the AR location, and the radial location satisfying AR spreads inwards towards the magnetic axis.

  8. Nonlinear Resonant Oscillations of Gas in Optimized Acoustical Resonators and the Effect of Central Blockage

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Finkbeiner, Joshua; Raman, Ganesh; Daniels, Christopher; Steinetz, Bruce M.

    2003-01-01

    Optimizing resonator shapes for maximizing the ratio of maximum to minimum gas pressure at an end of the resonator is investigated numerically. It is well known that the resonant frequencies and the nonlinear standing waveform in an acoustical resonator strongly depend on the resonator geometry. A quasi-Newton type scheme was used to find optimized axisymmetric resonator shapes achieving the maximum pressure compression ratio with an acceleration of constant amplitude. The acoustical field was solved using a one-dimensional model, and the resonance frequency shift and hysteresis effects were obtained through an automation scheme based on continuation method. Results are presented for optimizing three types of geometry: a cone, a horn-cone and a half cosine-shape. For each type, different optimized shapes were found when starting with different initial guesses. Further, the one-dimensional model was modified to study the effect of an axisymmetric central blockage on the nonlinear standing wave.

  9. Two schemes for characterization and detection of the squeezed light: dynamical Casimir effect and nonlinear materials

    NASA Astrophysics Data System (ADS)

    Lotfipour, H.; Allameh, Z.; Roknizadeh, R.; Heydari, H.

    2016-03-01

    Using two different schemes, a non-classical-squeezed state of light is detected and characterized. In the first scheme, in a one-dimensional cavity with a moving mirror (non-stationary Casimir effect) in the principal mode, we study the photon generation rate for two modes (squeezed and coherent state) of a driving field. Since the cavity with the moving mirror (similar to an optomechanical system) can be considered an analogue to a Kerr-like medium, in the second scheme, the probability amplitude for multi-photon absorption in a nonlinear (Kerr) medium will be quantum mechanically calculated. It is shown that because of the presence of nonlinear effects, the responses of these two systems to the squeezed versus coherent state are considerably distinguishable. The drastic difference between the results of these two states of light can be viewed as a proposal for detecting non-classical states.

  10. Nonlinear Resonant Oscillations of Gas in Optimized Acoustical Resonators and the Effect of Central Blockage

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Finkbeiner, Joshua; Raman, Ganesh; Daniels, Christopher; Steinetz, Bruce M.

    2003-01-01

    Optimizing resonator shapes for maximizing the ratio of maximum to minimum gas pressure at an end of the resonator is investigated numerically. It is well known that the resonant frequencies and the nonlinear standing waveform in an acoustical resonator strongly depend on the resonator geometry. A quasi-Newton type scheme was used to find optimized axisymmetric resonator shapes achieving the maximum pressure compression ratio with an acceleration of constant amplitude. The acoustical field was solved using a one-dimensional model, and the resonance frequency shift and hysteresis effects were obtained through an automation scheme based on continuation method. Results are presented for optimizing three types of geometry: a cone, a horn-cone and a half cosine- shape. For each type, different optimized shapes were found when starting with different initial guesses. Further, the one-dimensional model was modified to study the effect of an axisymmetric central blockage on the nonlinear standing wave.

  11. Effect of dehydrogenation/hydrogenation on the linear and nonlinear optical properties of Li@porphyrins.

    PubMed

    Wu, Heng-Qing; Sun, Shi-Ling; Zhong, Rong-Lin; Xu, Hong-Liang; Su, Zhong-Min

    2012-11-01

    In the present work, Li@porphyrins and their derivatives were designed in order to explore the effect of dehydrogenation/hydrogenation on linear and nonlinear optical properties. Their stable structures were obtained by the M06-2X method. Moreover, the M06-2X method showed that dehydrogenation/hydrogenation has greatly influences polarizabilities (α₀ values) and hyperpolarizabilities (β(tot) and γ(tot) values): α₀ values ranged from 331 to 389 au, β(tot) values from 0 to 2465 au, and γ(tot) values from -21.2 × 10⁴ to 21.4 × 10⁴ au. This new knowledge of the effect of dehydrogenation/hydrogenation on nonlinear optical properties may prove beneficial to the design and development of high-performance porphyrin materials. PMID:22722697

  12. Berry curvature induced nonlinear Hall effect in time-reversal invariant materials

    NASA Astrophysics Data System (ADS)

    Sodemann, Inti; Fu, Liang

    2015-03-01

    It is well-known that a non-vanishing Hall conductivity requires time-reversal symmetry breaking. However, in this work, we demonstrate that a Hall-like transverse current can occur in second-order response to an external electric field in a wide class of time-reversal invariant and inversion breaking materials. This nonlinear Hall effect arises from the dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when the system is in a current-carrying state. We show that the nonlinear Hall coefficient is a rank-two pseudo-tensor, whose form is determined by point group symmetry. We will describe the optimal conditions and candidate materials to observe this effect. IS is supported by the Pappalardo Fellowship in Physics. LF is supported by DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526.

  13. Temperature Dependence of Crystal Structure and THz Absorption Spectra of Organic Nonlinear Optical Stilbazolium Material for High-Output THz-Wave Generation

    NASA Astrophysics Data System (ADS)

    Matsukawa, Takeshi; Hoshina, Hiromichi; Hoshikawa, Akinori; Otani, Chiko; Ishigaki, Toru

    2016-06-01

    A stilbazolium material comprising 4-dimethylamino- N'-methyl-4'-stilbazolium tosylate (DAST), which has a large nonlinear optical susceptibility, was studied for application in terahertz (THz)-wave generation. The temperature-dependent structure of the DAST crystal was measured by using powder X-ray diffraction from -100 to 200 °C, indicating a volume expansion of 4.6 %. The lattice constants show anisotropic thermal expansion. Also, the temperature dependence of THz absorption spectra was measured by terahertz time-domain spectroscopy (THz-TDS) in the temperature range varying from -80 to 88.1 °C. A strong absorption peak was found at around 1 THz, shifting slightly toward a lower frequency with increasing temperature. The temperature dependence of the THz spectra was compared with that of X-ray diffraction. The shifting of THz-vibrational frequencies of the DAST crystal suggests that the change in its lattice structure is temperature dependent.

  14. Risk Prediction for Prostate Cancer Recurrence Through Regularized Estimation with Simultaneous Adjustment for Nonlinear Clinical Effects*

    PubMed Central

    Long, Qi; Chung, Matthias; Moreno, Carlos S.; Johnson, Brent A.

    2011-01-01

    In biomedical studies, it is of substantial interest to develop risk prediction scores using high-dimensional data such as gene expression data for clinical endpoints that are subject to censoring. In the presence of well-established clinical risk factors, investigators often prefer a procedure that also adjusts for these clinical variables. While accelerated failure time (AFT) models are a useful tool for the analysis of censored outcome data, it assumes that covariate effects on the logarithm of time-to-event are linear, which is often unrealistic in practice. We propose to build risk prediction scores through regularized rank estimation in partly linear AFT models, where high-dimensional data such as gene expression data are modeled linearly and important clinical variables are modeled nonlinearly using penalized regression splines. We show through simulation studies that our model has better operating characteristics compared to several existing models. In particular, we show that there is a non-negligible effect on prediction as well as feature selection when nonlinear clinical effects are misspecified as linear. This work is motivated by a recent prostate cancer study, where investigators collected gene expression data along with established prognostic clinical variables and the primary endpoint is time to prostate cancer recurrence. We analyzed the prostate cancer data and evaluated prediction performance of several models based on the extended c statistic for censored data, showing that 1) the relationship between the clinical variable, prostate specific antigen, and the prostate cancer recurrence is likely nonlinear, i.e., the time to recurrence decreases as PSA increases and it starts to level off when PSA becomes greater than 11; 2) correct specification of this nonlinear effect improves performance in prediction and feature selection; and 3) addition of gene expression data does not seem to further improve the performance of the resultant risk

  15. The effects of anisotropy on the nonlinear behavior of bridged cracks in long strips

    NASA Technical Reports Server (NTRS)

    Ballarini, R.; Luo, H. A.

    1994-01-01

    A model which can be used to predict the two-dimensional nonlinear behavior of bridged cracks in orthotropic strips is presented. The results obtained using a singular integral equation formulation which incorporates the anisotropy rigorously show that, although the effects of anisotropy are significant, the nondimensional quantities employed by Cox and Marshall can generate nearly universal results (R-curves, for example) for different levels of relative anisotropy. The role of composite constituent properties in the behavior of bridged cracks is clarified.

  16. Effect of transverse ponderomotive nonlinearity on the propagation of ultrashort laser pulses in a plasma channel

    SciTech Connect

    Upadhyay, Ajay K.; Singh, Ram Gopal; Singh, Vijay; Jha, Pallavi

    2008-12-15

    The present study deals with the propagation of an ultrashort narrow laser beam in a parabolic plasma channel. The effect of transverse ponderomotive nonlinearity on the propagation characteristics of the laser beam is analyzed. Using the variational technique, coupled equations describing the evolution of pulse length and spot size are obtained. The variation of intensity, of mismatched and matched laser pulses, with propagation distance is graphically depicted.

  17. Kinetic equations for a density matrix describing nonlinear effects in spectral line wings

    SciTech Connect

    Parkhomenko, A. I. Shalagin, A. M.

    2011-11-15

    Kinetic quantum equations are derived for a density matrix with collision integrals describing nonlinear effects in spectra line wings. These equations take into account the earlier established inequality of the spectral densities of Einstein coefficients for absorption and stimulated radiation emission by a two-level quantum system in the far wing of a spectral line in the case of frequent collisions. The relationship of the absorption and stimulated emission probabilities with the characteristics of radiation and an elementary scattering event is found.

  18. Nonlinear spectroscopic effects in quantum gases induced by atom-atom interactions

    SciTech Connect

    Safonov, A. I. Safonova, I. I.; Yasnikov, I. S.

    2013-05-15

    We consider nonlinear spectroscopic effects-interaction-enhanced double resonance and spectrum instability-that appear in ultracold quantum gases owing to collisional frequency shift of atomic transitions and, consequently, due to the dependence of the frequencies on the population of various internal states of the particles. Special emphasis is put to two simplest cases, (a) the gas of two-level atoms and (b) double resonance in a gas of three-level bosons, in which the probe transition frequency remains constant.

  19. The effect of ambient temperature on diabetes mortality in China: A multi-city time series study.

    PubMed

    Yang, Jun; Yin, Peng; Zhou, Maigeng; Ou, Chun-Quan; Li, Mengmeng; Liu, Yunning; Gao, Jinghong; Chen, Bin; Liu, Jiangmei; Bai, Li; Liu, Qiyong

    2016-02-01

    Few multi-city studies have been conducted to investigate the acute health effects of low and high temperatures on diabetes mortality worldwide. We aimed to examine effects of ambient temperatures on city-/gender-/age-/education-specific diabetes mortality in nine Chinese cities using a two-stage analysis. Distributed lag non-linear model was first applied to estimate the city-specific non-linear and delayed effects of temperatures on diabetes mortality. Pooled effects of temperatures on diabetes mortality were then obtained using meta-analysis, based on restricted maximum likelihood. We found that heat effects were generally acute and followed by a period of mortality displacement, while cold effects could last for over two weeks. The pooled relative risks of extreme high (99th percentile of temperature) and high temperature (90th percentile of temperature) were 1.29 (95%CI: 1.11-1.47) and 1.11 (1.03-1.19) over lag 0-21 days, compared with the 75th percentile of temperature. In contrast, the pooled relative risks over lag 0-21 days were 1.44 (1.25-1.66) for extreme low (1st percentile of temperature) and 1.20 (1.12-1.30) for low temperature (10th percentile of temperature), compared to 25th percentile of temperature. The estimate of heat effects was relatively higher among females than that among males, with opposite trend for cold effects, and the estimates of heat and cold effects were particularly higher among the elderly and those with low education, although the differences between these subgroups were not statistically significant (P>0.05). These findings have important public health implications for protecting diabetes patients from adverse ambient temperatures. PMID:26580729

  20. Elevated temperature effects on fatigue and fracture

    SciTech Connect

    Piascik, R.S.; Gangloff, R.P.; Saxena, A.

    1997-12-31

    The intent of this meeting was to reinforce the recent merger of ASTM Committees E09 on Fatigue and E24 on Fracture Mechanics, forming Committee E08 on Fatigue and Fracture. This special technical publication highlights a topical subset of the meeting, that is, research on the critical effect of temperature on the fatigue and fracture of structural materials. Papers highlighted: Integration of damage evolution, from the distributed form to that focused at a crack tip; High-resolution experimental probes of fatigue and fracture processes; Measurement and modeling of the important role of time in microstructural degradation, damage evolution, and crack growth; Models that provide quantitative predictions and are tested by high-quality experimentation; and Performance of next-generation structural metals and composites, characterized within a framework useful in component life prediction. Papers have been processed separately for inclusion on the data base.

  1. Nonlinear hybrid simulation of internal kink with beam ion effects in DIII-D

    SciTech Connect

    Shen, Wei; Sheng, Zheng-Mao; Fu, G. Y.; Tobias, Benjamin; Zeeland, Michael Van; Wang, Feng

    2015-04-15

    In DIII-D sawteething plasmas, long-lived (1,1) kink modes are often observed between sawtooth crashes. The saturated kink modes have two distinct frequencies. The mode with higher frequency transits to a fishbone-like mode with sufficient on-axis neutral beam power. In this work, hybrid simulations with the global kinetic-magnetohydrodynamic (MHD) hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of the n = 1 mode with effects of energetic beam ions for a typical DIII-D discharge where both saturated kink mode and fishbone were observed. Linear simulation results show that the n = 1 internal kink mode is unstable in MHD limit. However, with kinetic effects of beam ions, a fishbone-like mode is excited with mode frequency about a few kHz depending on beam pressure profile. The mode frequency is higher at higher beam power and/or narrower radial profile consistent with the experimental observation. Nonlinear simulations have been performed to investigate mode saturation as well as energetic particle transport. The nonlinear MHD simulations show that the unstable kink mode becomes a saturated kink mode after a sawtooth crash. With beam ion effects, the fishbone-like mode can also transit to a saturated kink mode with a small but finite mode frequency. These results are consistent with the experimental observation of saturated kink mode between sawtooth crashes.

  2. Q-switched laser in an SMS cavity for inhibiting nonlinear effects.

    PubMed

    Zhou, Jiaqi; Lu, Yi; He, Bing; Gu, Xijia

    2015-07-01

    In the design of high-power Q-switched fiber lasers, nonlinear effects often become barriers that prevent the scale up of pulse energy and peak power. New designs and components that could inhibit or suppress nonlinear effects are in high demand, particularly in all-fiber configurations. In this paper, we demonstrated a Q-switched Yb-doped fiber laser in a single-mode multimode single-mode (SMS) structure to inhibit fiber nonlinear effects. The laser-generated Q-switched pulses with a peak power close to 1 kW (pulse width and energy of 100 ns and 92 μJ, respectively). The output spectrum of this laser was compared with that of a Q-switched Yb-doped fiber laser built in a conventional configuration with similar output peak power. The results showed, for the first time to our knowledge, that the SMS Q-switched laser completely inhibited the stimulated Raman scattering and significantly reduced self-phase modulation. PMID:26193155

  3. Effects of non-uniform heat source and magnetic field on the flow and heat transfer over a nonlinearly stretching sheet with suction

    NASA Astrophysics Data System (ADS)

    Isa, Siti Suzilliana Putri Mohamed; Arifin, Norihan Md; Bachok@Lati, Norfifah; Ali, Fadzilah Md.; Nazar, Roslinda Mohd

    2015-05-01

    A theoretical study has been presented to describe the flow and heat transfer in the boundary layers on a nonlinearly stretching sheet with a variable wall temperature and suction, in the presence of magnetic field and non-uniform heat source. The governing partial differential equations are converted into ordinary differential equations by similarity transformation, which is then solved numerically using the shooting method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented through graphs and table for several sets of values of the parameters. The effects of the parameters on the flow and heat transfer characteristics are thoroughly examined.

  4. 3. QUANTUM DOTS AND WELLS, MESOSCOPIC NETWORKS: Nonlinear effects in dense two-dimensional exciton polariton system

    NASA Astrophysics Data System (ADS)

    Kulakovskii, V. D.; Tartakovskii, A. I.; Krizhanovskii, D. N.; Skolnick, M. S.

    2001-10-01

    The interaction between quantum well excitons and cavity photons in semiconductor microcavities in the strong coupling regime results in mixed 2D exciton-photon states, called exciton polaritons. The behavior of a dense polariton system is of particular interest due to the fact that these particles have integer spin and, hence, obey Bose-Einstein statistics. Drastic nonlinearities have been observed both in the low polariton (LP) emission intensity and polarization in the case of the resonant excitation into the LP branch under condition that 2hslashω(kex) = hslashω(k = 0) + hslashω(2kex). The experiments have shown a very strong final state stimulation of a two polariton scattering due to the bosonic nature of the polaritons. The filling of k = 0 LP state significantly exceeding 1 has been realized under continuous excitation at T = 1:8 K. The dependence of the effect on the polarization of photoexcited light and temperature is discussed.

  5. Temperature Distribution in a Gaussian End-Pumped Nonlinear KTP Crystal: the Temperature Dependence of Thermal Conductivity and Radiation Boundary Condition

    NASA Astrophysics Data System (ADS)

    Sabaeian, Mohammad; Jalil-Abadi, Fatemeh Sedaghat; Rezaee, Mostafa Mohammad; Motazedian, Alireza; Shahzadeh, Mohammadreza

    2015-02-01

    The presence of a temperature-dependent thermal conductivity and the heat radiation boundary condition in the diffusion-type heat equation driven by a Gaussian source make it impossible to find an analytical solution for temperature distribution in the solid-state laser media. In this work, a temperature distribution for a solid-state end-pumped KTP (KTiOPO4) crystal under a Gaussian continuous wave as a heat source is reported. More precisely, the effects of considering the temperature-dependent nature of the thermal conductivity of the KTP crystal and the heat radiation from the end faces of the crystal, in addition to heat convection, which are usually ignored, were studied. It was shown that considering the temperature dependence of thermal conductivity leads to significantly different results compared to constant thermal conductivity case. In addition, it was shown that the radiation can be influential for crystals with large surfaces from which the radiation can occur. Making the crystal thinner, the radiation impact becomes negligible and can be ignored.

  6. Effect of interdiffusion on nonlinear intraband light absorption in Gaussian-shaped double quantum rings

    NASA Astrophysics Data System (ADS)

    Aziz-Aghchegala, V. L.; Mughnetsyan, V. N.; Kirakosyan, A. A.

    2015-06-01

    The effect of interdiffusion on electronic states and nonlinear light absorption in Gaussian-shaped double quantum rings is studied. The confining potential, electron energy spectrum, wave functions and absorption coefficient are obtained for different values of diffusion parameter. The effect of the variation of Gaussian parameters is considered as well. The selection rules for the intraband transitions in the cases of the light polarization parallel and perpendicular to the quantum rings' axis are obtained. It is shown that the interdiffusion can be used as an effective tool for the purposeful manipulation of the electric and optical properties of the considered structure.

  7. Nonlinear side effects of fs pulses inside corneal tissue during photodisruption

    NASA Astrophysics Data System (ADS)

    Heisterkamp, A.; Ripken, T.; Mamom, T.; Drommer, W.; Welling, H.; Ertmer, W.; Lubatschowski, H.

    In order to evaluate the potential for refractive surgery, fs laser pulses of 150-fs pulse duration were used to process corneal tissue of dead and living animal eyes. By focusing the laser radiation down to spot sizes of several microns, very precise cuts could be achieved inside the treated cornea, accompanied with minimum collateral damage to the tissue by thermal or mechanical effects. During histo-pathological analysis by light and transmission electron microscopy considerable side effects of fs photodisruption were found. Due to the high intensities at the focal region several nonlinear effects occurred. Self-focusing, photodissociation, UV-light production were observed, leading to streak formation inside the cornea.

  8. A New Method for Determining the Non-Linear Effective Pressure

    NASA Astrophysics Data System (ADS)

    Xiao, W.; Li, L.; Bernabe, Y.; Zhao, J.; Li, M.

    2014-12-01

    The physical properties (for example, permeability k) of linear elastic materials usually obey a simple effective pressure law (EPL), peff= pc-αpf (peff: effective pressure; pc: confining pressure; pf: pore fluid pressure), where α is a constant, often taken to be equal to 1 in the well-known Terzaghi' law, peff=pc-pf. However, non-linear EPL's, peff=pc-αs(pf, pc)pf, where the secant coefficient αs(pf, pc) is a function of pc and pf, should be expected in non-linear elastic rocks [Robin, 1978] and have been previously reported for permeability in low-permeability sandstones [Li et al, 2009, 2014]. A new method for experimentally determining non-linear EPL's for permeability was tested on low-permeability sandstones from reservoirs in China. The permeability of these low-permeability sandstones was measured while simultaneously cycling pf and pc (with 0 ≤ pf < pc). Based on the analysis of the experimental data using the Response Surface Method [Box and Draper, 1987], a contour map of permeability was drawn in the plane [pf, pc], from which the secant coefficient αs(pf, pc) and the effective pressure peff(pf, pc) were calculated. We found that αs(pf, pc) varied in the entire theoretically allowed range, φ ≤ αs(pf, pc) ≤ 1, where φ is the porosity. It is most interesting that αs(pf, pc) could be approximately described as a decreasing function αs(pc-pf) of Terzaghi's differential pressure. Moreover, the non-linear EPL determined using the new method allowed a better estimation of the pressure dependence of permeability, k(peff), than classic Terzaghi' law, k(pc-pf).

  9. Nonlinear effects in infrared action spectroscopy of silicon and vanadium oxide clusters: experiment and kinetic modeling.

    PubMed

    Calvo, Florent; Li, Yejun; Kiawi, Denis M; Bakker, Joost M; Parneix, Pascal; Janssens, Ewald

    2015-10-21

    For structural assignment of gas phase compounds, infrared action spectra are usually compared to computed linear absorption spectra. However, action spectroscopy is highly nonlinear owing to the necessary transfer of the excitation energy and its subsequent redistribution leading to statistical ionization or dissociation. Here, we examine by joint experiment and dedicated modeling how such nonlinear effects affect the spectroscopic features in the case of selected inorganic clusters. Vibrational spectra of neutral silicon clusters are recorded by tunable IR-UV two-color ionization while IR spectra for cationic vanadium oxide clusters are obtained by IR multiphoton absorption followed by dissociation of the bare cluster or of its complex with Xe. Our kinetic modeling accounts for vibrational anharmonicities, for the laser interaction through photon absorption and stimulated emission rates, as well as for the relevant ionization or dissociation rates, all based on input parameters from quantum chemical calculations. Comparison of the measured and calculated spectra indicates an overall agreement as far as trends are concerned, except for the photodissociation of the V3O7(+)-Xe messenger complex, for which anharmonicities are too large and poorly captured by the perturbative anharmonic model. In all systems studied, nonlinear effects are essentially manifested by variations in the intensities as well as spectral broadenings. Differences in some band positions originate from inaccuracies of the quantum chemical data rather than specific nonlinear effects. The simulations further yield information on the average number of photons absorbed, which is otherwise unaccessible information: several to several tens of photons need to be absorbed to observe a band through dissociation, while three to five photons can be sufficient for detection of a band via IR-UV ionization. PMID:26208251

  10. The effect of plasma shaping on turbulent transport and ExB shear quenching in nonlinear gyrokinetic simulations

    SciTech Connect

    Kinsey, J. E.; Waltz, R. E.; Candy, J.

    2007-10-15

    Nonlinear gyrokinetic simulations with kinetic electron dynamics are used to study the effects of plasma shaping on turbulent transport and ExB shear in toroidal geometry including the presence of kinetic electrons using the GYRO code. Over 120 simulations comprised of systematic scans were performed around several reference cases in the local, electrostatic, collisionless limit. Using a parameterized local equilibrium model for shaped geometry, the GYRO simulations show that elongation {kappa} (and its gradient) stabilizes the energy transport from ion temperature gradient (ITG) and trapped electron mode (TEM) instabilities at fixed midplane minor radius. For scans around a reference set of parameters, the GYRO ion energy diffusivity, in gyro-Bohm units, approximately follows a {kappa}{sup -1} scaling which is qualitatively similar to recent experimental energy confinement scalings. Most of the {kappa} scaling is due to the shear in the elongation rather than the local {kappa} itself. The {kappa} scaling for the electrons is found to vary and can be stronger or weaker than {kappa}{sup -1} depending on the wavenumber where the transport peaks. The {kappa} scaling is weaker when the energy diffusivity peaks at low wavenumbers and is stronger when the peak occurs at high wavenumbers. The simulations also demonstrate a nonlinear upshift in the critical temperature gradient as the elongation increases due to an increase in the residual zonal flow amplitude. Triangularity is found to be slightly destabilizing and its effect is strongest for highly elongated plasmas. Finally, we find less ExB shear is needed to quench the transport at high elongation and low aspect ratio. A new linear ExB shear quench rule, valid for shaped tokamak geometry, is presented.

  11. The effects of high temperature on cardiovascular admissions in the most populous tropical city in Vietnam.

    PubMed

    Phung, Dung; Guo, Yuming; Thai, Phong; Rutherford, Shannon; Wang, Xiaoming; Nguyen, Minh; Do, Cuong Manh; Nguyen, Nga Huy; Alam, Noore; Chu, Cordia

    2016-01-01

    This study examined the short-term effects of temperature on cardiovascular hospital admissions (CHA) in the largest tropical city in Southern Vietnam. We applied Poisson time-series regression models with Distributed Lag Non-Linear Model (DLNM) to examine the temperature-CHA association while adjusting for seasonal and long-term trends, day of the week, holidays, and humidity. The threshold temperature and added effects of heat waves were also evaluated. The exposure-response curve of temperature-CHA reveals a J-shape relationship with a threshold temperature of 29.6 °C. The delayed effects temperature-CHA lasted for a week (0-5 days). The overall risk of CHA increased 12.9% (RR, 1.129; 95%CI, 0.972-1.311) during heatwave events, which were defined as temperature ≥ the 99th percentile for ≥2 consecutive days. The modification roles of gender and age were inconsistent and non-significant in this study. An additional prevention program that reduces the risk of cardiovascular disease in relation to high temperatures should be developed. PMID:26092390

  12. Characterizing the Effective Bandwidth of Nonlinear Vibratory Energy Harvesters Possessing Multiple Stable Equilibria

    NASA Astrophysics Data System (ADS)

    Panyam Mohan Ram, Meghashyam

    In the last few years, advances in micro-fabrication technologies have lead to the development of low-power electronic devices spanning critical fields related to sensing, data transmission, and medical implants. Unfortunately, effective utilization of these devices is currently hindered by their reliance on batteries. In many of these applications, batteries may not be a viable choice as they have a fixed storage capacity and need to be constantly replaced or recharged. In light of such challenges, several novel concepts for micro-power generation have been recently introduced to harness, otherwise, wasted ambient energy from the environment and maintain these low-power devices. Vibratory energy harvesting is one such concept which has received significant attention in recent years. While linear vibratory energy harvesters have been well studied in the literature and their performance metrics have been established, recent research has focused on deliberate introduction of stiffness nonlinearities into the design of these devices. It has been shown that, nonlinear energy harvesters have a wider steady-state frequency bandwidth as compared to their linear counterparts, leading to the premise that they can used to improve performance, and decrease sensitivity to variations in the design and excitation parameters. This dissertation aims to investigate this premise by developing an analytical framework to study the influence of stiffness nonlinearities on the performance and effective bandwidth of nonlinear vibratory energy harvesters. To achieve this goal, the dissertation is divided into three parts. The first part investigates the performance of bi-stable energy harvesters possessing a symmetric quartic potential energy function under harmonic excitations and carries out a detailed analysis to define their effective frequency bandwidth. The second part investigates the relative performance of mono- and bi-stable energy harvesters under optimal electric loading

  13. Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China

    PubMed Central

    Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan

    2015-01-01

    Objective: Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. Methods: We collected data from Beijing and Shanghai, China, during 2007–2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. Results: For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0–27, while the hot effects reached the strongest at lag 0–14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. Conclusion: People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days. PMID:26703637

  14. Competitive coexistence and competitive exclusion for a nonlinear community with delay effect and impulsive birth

    NASA Astrophysics Data System (ADS)

    Liu, Yanping; Zhang, Feng; Wei, Jianzhou

    2016-12-01

    By constructing a population model of multi-species competition, a community with nonlinear interaction relationship is investigated, in which the species' response delay and environmental fluctuation effects (i.e., seasonal fluctuation of resource supplies and species' reproductive activities) on population are considered. Firstly, the conditions about competitive coexistence (i.e., persistence of all species) and competitive exclusion (i.e., only partial of species, but not all, keep persistence) of the community are established, and the underlying ecological mechanism of these results are analyzed. Secondly, by some illustrative examples, the interactive effects of nonlinear competition, species' response delay and environmental fluctuation on the structure of community are explored. It is demonstrated that small response delay and slight deviation of nonlinear competition indexes from 1 have little impact on the coexistence of community, but acute changes have distinct negative influence on community coexistence. This reveals to us that parameter perturbations of natural communities should keep in an appropriate range, which is of great significance in conservation and restoration biology.

  15. Electrorheological Source of Nonlinear Dielectric Effects in Molecular Glass-Forming Liquids.

    PubMed

    Samanta, Subarna; Richert, Ranko

    2016-08-11

    We have measured the dielectric relaxation spectra of eight glass-forming liquids in the presence of electric direct current (dc)-bias fields ranging from 100 to 500 kV/cm. For every sample, we observe two distinct field-induced effects: a reduction in the relaxation amplitude and an increase in the primary structural relaxation time that is associated with viscous flow. Whereas amplitude change is typical of the well-known dielectric saturation, the field-induced increase in viscosity is a source of nonlinear behavior that has been recognized only recently. We find that this electrorheological behavior occurs in all polar liquids of this study, and its magnitude is correlated with the field-induced change in thermodynamic entropy. It constitutes a significant source of nonlinear dielectric behavior, which occurs for both dc and alternating current fields. PMID:27404019

  16. Enhancement of optical pulse extinction-ratio using the nonlinear Kerr effect for phase-OTDR.

    PubMed

    Baker, Chams; Vanus, Benoit; Wuilpart, Marc; Chen, Liang; Bao, Xiaoyi

    2016-08-22

    We present a novel approach for the generation of high extinction-ratio square pulses based on self-phase modulation of sinusoidally modulated optical signals (SMOS). A SMOS in a nonlinear medium experiences self-phase modulation induced by the nonlinear Kerr effect leading to the generation of distinct sidebands. A small variation in the peak power of the SMOS leads to a large variation in the power of the sidebands. Impressing a square pulse on the SMOS and filtering a sideband component results in a higher extinction-ratio square pulse. The advantage of high extinction-ratio pulses is demonstrated by a reduced background noise level in the Rayleigh backscattering traces of a phase-OTDR vibration measurement system. PMID:27557220

  17. Effects of geometrical order on the linear and nonlinear optical properties of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew David

    This dissertation describes experimental and computational studies of the effects of ordered arrangement on the linear and nonlinear optical properties of metal nanoparticles. The principal result is that second-harmonic light may be generated and observed from nanoparticle gratings having maximum in-plane symmetry, provided that one looks at non-normal observation angles. These measurements are made possible by a custom-built variable-angle microscope, and enable a variety of studies of the second-order nonlinear response of nanoparticles that were not previously feasible. In addition, the surface plasmon resonance of metal nanoparticles is studied by linear spectroscopy. A comparison of experimental data with computational modeling shows that under normal ambient conditions, Ag nanoparticles tarnish by a sulfidation reaction more readily than bulk silver, and that even a very thin surface layer of corroded material (Ag2S) considerably redshifts and weakens the localized surface plasmon resonance of a nanoparticle.

  18. Nonlinear dynamics of long-wave Marangoni convection in a binary mixture with the Soret effect

    NASA Astrophysics Data System (ADS)

    Morozov, M.; Oron, A.; Nepomnyashchy, A. A.

    2013-05-01

    We investigate the nonlinear dynamics of long-wave Marangoni convection in a 2D binary-liquid layer heated from below. Free surface deformations and the Soret effect are taken into account. We employ the set of evolution equations derived in earlier work in the case of small Galileo and Lewis numbers and solve it numerically with periodic boundary conditions. We validate our numerical solution by comparison between the results obtained via two different numerical methods, as well as by comparison with the prior analytical results. We study the transitions between the nonlinear regimes emerging at finite supercriticality values and find a rich variety of patterns. In a sufficiently large computational domain, we observe multistability of waves chaotic in time and spatially replicated periodic and quasiperiodic solutions. For sufficiently high values of the Marangoni number, we also observe a breakdown of model equations.

  19. Non-linear effects in the support motion of an elastically mounted slider crank mechanism

    NASA Astrophysics Data System (ADS)

    Davidson, I.

    1983-01-01

    A study is made of an in-line slider crank mechanism in which the sliding mass is elastically supported. The ratio of crank length to connecting rod length is not assumed small and relatively large displacements of the support are allowed. Ordinary and parametric non-linear terms are thus retained in the equations of motion. It is shown that the presence of parametric terms gives rise to additional conditions for resonance in the support motion. Approximate solutions are obtained for the fundamental and half subharmonic steady state responses and the effect of the non-linear and parametric terms examined. The stability of the steady state responses is considered and it is shown that instability is associated with a negative slope of the amplitude frequency characteristic.

  20. Effect of joint damping and joint nonlinearity on the dynamics of space structures

    NASA Technical Reports Server (NTRS)

    Bowden, Mary; Dugundji, John

    1988-01-01

    Analyses of the effect of linear joint characteristics on the vibrations of a free-free, three-joint beam model show that increasing joint damping increases resonant frequencies and increases modal damping but only to the point where the joint gets 'locked up' by damping. This behavior is different from that predicted by modeling joint damping as proportional damping. Nonlinear analyses of the three-joint model with cubic springs at the joints show all the classical single DOF nonlinear response behavior at each resonance of the multiple DOF system: nondoubling of response for a doubling of forcing amplitude, multiple solutions, jump behavior, and resonant frequency shifts. These properties can be concisely quantified by characteristic backbone curves, which show the locus of resonant peaks for increasing forcing amplitude.