Science.gov

Sample records for nonluminous matter

  1. (-)-Reboxetine inhibits muscle nicotinic acetylcholine receptors by interacting with luminal and non-luminal sites.

    PubMed

    Arias, Hugo R; Ortells, Marcelo O; Feuerbach, Dominik

    2013-11-01

    The interaction of (-)-reboxetine, a non-tricyclic norepinephrine selective reuptake inhibitor, with muscle-type nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that (-)-reboxetine: (a) inhibits (±)-epibatidine-induced Ca(2+) influx in human (h) muscle embryonic (hα1β1γδ) and adult (hα1β1εδ) AChRs in a non-competitive manner and with potencies IC50=3.86±0.49 and 1.92±0.48 μM, respectively, (b) binds to the [(3)H]TCP site with ~13-fold higher affinity when the Torpedo AChR is in the desensitized state compared to the resting state, (c) enhances [(3)H]cytisine binding to the resting but activatableTorpedo AChR but not to the desensitized AChR, suggesting desensitizing properties, (d) overlaps the PCP luminal site located between rings 6' and 13' in the Torpedo but not human muscle AChRs. In silico mutation results indicate that ring 9' is the minimum structural component for (-)-reboxetine binding, and (e) interacts to non-luminal sites located within the transmembrane segments from the Torpedo AChR γ subunit, and at the α1/ε transmembrane interface from the adult muscle AChR. In conclusion, (-)-reboxetine non-competitively inhibits muscle AChRs by binding to the TCP luminal site and by inducing receptor desensitization (maybe by interacting with non-luminal sites), a mechanism that is shared by tricyclic antidepressants. PMID:23917086

  2. Coronaridine congeners inhibit human α3β4 nicotinic acetylcholine receptors by interacting with luminal and non-luminal sites.

    PubMed

    Arias, Hugo R; Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Jozwiak, Krzysztof

    2015-08-01

    To characterize the interaction of coronaridine congeners with human (h) α3β4 nicotinic acetylcholine receptors (AChRs), structural and functional approaches were used. The Ca(2+) influx results established that coronaridine congeners noncompetitively inhibit hα3β4 AChRs with the following potency (IC50's in μM) sequence: (-)-ibogamine (0.62±0.23)∼(+)-catharanthine (0.68±0.10)>(-)-ibogaine (0.95±0.10)>(±)-18-methoxycoronaridine [(±)-18-MC] (1.47±0.21)>(-)-voacangine (2.28±0.33)>(±)-18-methylaminocoronaridine (2.62±0.57 μM)∼(±)-18-hydroxycoronaridine (2.81±0.54)>(-)-noribogaine (6.82±0.78). A good linear correlation (r(2)=0.771) between the calculated IC50 values and their polar surface area was found, suggesting that this is an important structural feature for its activity. The radioligand competition results indicate that (±)-18-MC and (-)-ibogaine partially inhibit [(3)H]imipramine binding by an allosteric mechanism. Molecular docking, molecular dynamics, and in silico mutation results suggest that protonated (-)-18-MC binds to luminal [i.e., β4-Phe255 (phenylalanine/valine ring; position 13'), and α3-Leu250 and β4-Leu251 (leucine ring; position 9')], non-luminal, and intersubunit sites. The pharmacophore model suggests that nitrogens from the ibogamine core as well as methylamino, hydroxyl, and methoxyl moieties at position 18 form hydrogen bonds. Collectively our data indicate that coronaridine congeners inhibit hα3β4 AChRs by blocking the ion channel's lumen and probably by additional negative allosteric mechanisms by interacting with a series of non-luminal sites. PMID:26022277

  3. Dark matter candidates

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1989-01-01

    The types of particles which may provide the nonluminous mass required by big-bang cosmological models are listed and briefly characterized. The observational evidence for the existence of dark matter (outweighing the luminous component by at least a factor of 10) is reviewed; the theoretical arguments favoring mainly nonbaryonic dark matter are summarized; and particular attention is given to weakly interacting massive particles (WIMPs) remaining as relics from the early universe. The WIMPs are classified as thermal relics (heavy stable neutrinos and lighter neutralinos), asymmetric relics (including baryons), nonthermal relics (superheavy magnetic monopoles, axions, and soliton stars), and truly exotic relics (relativistic debris or vacuum energy). Explanations for the current apparent baryon/exotica ratio of about 0.1 in different theoretical scenarios are considered, and the problems of experimental and/or observational dark-matter detection are examined.

  4. Dark matter and triality symmetry of leptons and quarks

    SciTech Connect

    Furui, Sadataka

    2012-11-12

    The radiation in the universe has a mass equivalent of approximately 2% of the luminous matter. Presence of a large amount of non-luminous matter is a problem. In order to solve this puzzle, I use quaternion basis for the leptons, and make an octonion from a combination of two quaternions. With a principle that the electro-magnetic interaction selects one triality and photon couples with a gluon of one triality sector, color-flavor locking becomes natural, and the problem of dark matter may be solved.

  5. Multi-Dimensional Effective Field Theory Analysis for Direct Detection of Dark Matter

    NASA Astrophysics Data System (ADS)

    Rogers, Hannah; SuperCDMS Collaboration

    2016-03-01

    Experiments like the Cryogenic Dark Matter Search (CDMS) attempt to find dark matter (non-luminous matter that makes up approximately 80% of the matter in the universe) through direct detection of interactions between dark matter and a target material. The Effective Field Theory (EFT) approach increases the number of considered interactions between dark matter and the normal, target matter from two (spin independent and spin dependent interactions) to eleven operators with four possible interference terms. These additional operators allow for a more complete analysis of complimentary direct dark matter searches; however, the higher dimensional likelihoods necessary to span an increase in operators requires a clever computational tool such as MultiNest. I present here analyses of published and projected data from CDMS (Si and Ge targets) and LUX (liquid Xe target) assuming operator parameter spaces ranging from 3 - 5 dimensions and folding in information on energy-dependent backgrounds when possible.

  6. Search for pseudoscalar cold dark matter

    SciTech Connect

    van Bibber, K.; Stoeffl, W.; LLNL Collaborators

    1992-05-29

    AH dynamical evidence points to the conclusion that the predominant form of matter in the universe is in a non-luminous form. Furthermore, large scale deviations from uniform Hubble flow, and the recent COBE reports of inhomogeneities in the cosmic microwave background strongly suggest that we live in an exactly closed universe. If this is true, then ordinary baryonic matter could only be a minority component (10% at most) of the missing mass, and that what constitutes the majority of the dark matter must involve new physics. The axion is one of very few well motivated candidates which may comprise the dark matter. Additionally it is a `cold` dark-matter candidate which is preferred by the COBE data. We propose to construct and operate an experiment to search for axions which may constitute the dark matter of our own galaxy. As proposed by Sikivie, dark-matter axions may be detected by their stimulated conversion into monochromatic microwave photons in a tunable high-Q cavity inside a strong magnetic field. Our ability to mount an experiment quickly and take data within one year is due to a confluence of three factors. The first is the availability of a compact high field superconducting magnet and a local industrial partner, Wang NMR, who can make a very thermally efficient and economical cryostat for it. The second is an ongoing joint venture with the Institute for Nuclear Research of the Russian Academy of Sciences to do R&D on metalized precision-formed ceramic microwave cavities for the axion search, and INR has commited to providing all the microwave cavity arrays for this experiment, should this proposal be approved. The third is a commitment of very substantial startup capital monies from MIT for all of the state-of-the-art ultra-low noise microwave electronics, to one of our outstanding young collaborators who is joining their faculty.

  7. Sensitivity of HAWC to high-mass dark matter annihilations

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Ayala Solares, H. A.; Barber, A. S.; Baughman, B. M.; Bautista-Elivar, N.; Becerra Gonzalez, J.; Belmont, E.; BenZvi, S. Y.; Berley, D.; Bonilla Rosales, M.; Braun, J.; Caballero-Lopez, R. A.; Caballero-Mora, K. S.; Carramiñana, A.; Castillo, M.; Cotti, U.; Cotzomi, J.; de la Fuente, E.; De León, C.; DeYoung, T.; Diaz Hernandez, R.; Diaz-Cruz, L.; Díaz-Vélez, J. C.; Dingus, B. L.; DuVernois, M. A.; Ellsworth, R. W.; Fiorino, D. W.; Fraija, N.; Galindo, A.; Garfias, F.; González, M. M.; Goodman, J. A.; Grabski, V.; Gussert, M.; Hampel-Arias, Z.; Harding, J. P.; Hui, C. M.; Hüntemeyer, P.; Imran, A.; Iriarte, A.; Karn, P.; Kieda, D.; Kunde, G. J.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linares, E. C.; Linnemann, J. T.; Longo, M.; Luna-Garcia, R.; Marinelli, A.; Martinez, H.; Martinez, O.; Martínez-Castro, J.; Matthews, J. A. J.; McEnery, J.; Mendoza Torres, E.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Noriega-Papaqui, R.; Oceguera-Becerra, T.; Patricelli, B.; Pelayo, R.; Pérez-Pérez, E. G.; Pretz, J.; Rivière, C.; Rosa-González, D.; Ryan, J.; Salazar, H.; Salesa, F.; Sanchez, F. E.; Sandoval, A.; Schneider, M.; Silich, S.; Sinnis, G.; Smith, A. J.; Sparks Woodle, K.; Springer, R. W.; Taboada, I.; Toale, P. A.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yodh, G. B.; Younk, P. W.; Zaborov, D.; Zepeda, A.; Zhou, H.; Abazajian, K. N.; Milagro Collaboration

    2014-12-01

    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19° North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi-TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from nonluminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross sections below thermal. HAWC should also be sensitive to nonthermal cross sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained.

  8. Gamma-ray constraint on the nature of dark matter

    SciTech Connect

    Silk, J.; Bloemen, H.

    1987-02-01

    If even a small component of the Galactic spheroid consists of the weakly interacting majorana fermions that are cold-dark-matter candidate particles for the Galactic halo, there should be a substantial flux of annihilation gamma rays from a source of about 1-deg extent at the Galactic center. COS B observations already constrain the halo cold-dark-matter (CDM) content entrained in the inner spheroid to be less than about 10 percent. A somewhat weaker constraint applies to the CDM believed to be present in the Galactic disk, but still only about 15 percent can be in such particles. Monochromatic line photons of energy 3-10 GeV are also predicted, and future experiments may be capable of improving these limits. Since both theoretical models of galaxy formation in a CDM-dominated universe and mass models for the rotation curve in the inner Galaxy suggest that a substantial fraction of the spheroid component should be nonluminous and incorporate entrained halo CDM, the hypothesis that the halo CDM consists predominantly of weakly interacting fermions such as photinos or heavy majorana mass neutrinos or higgsinos may already be subject to observational test. 30 references.

  9. Searching for dark matter with single phase liquid argon

    NASA Astrophysics Data System (ADS)

    Caldwell, Thomas S., Jr.

    The first hint that we fail to understand the nature of a large fraction of the gravitating matter in the universe came from Fritz Zwicky's measurements of the velocity distribution of the Coma cluster in 1933. Using the Virial theorem, Zwicky found that galaxies in the cluster were orbiting far too fast to remain gravitationally bound when their mass was estimated by the brightness of the visible matter. This led to the postulation that some form of non-luminous dark matter is present in galaxies comprising a large fraction of the galactic mass. The nature of this dark matter remains yet unknown over 80 years after Zwicky's measurements despite the efforts of many experiments. Dark matter is widely believed to be a beyond the Standard Model particle which brings the dark matter problem into the realm of particle physics. Supersymmetry is one widely explored extension of the Standard model, from which particles meeting the constraints on dark matter properties can naturally arise. These particles are generically termed weakly interacting massive particles (WIMPs), and are a currently favored dark matter candidate. A variety of experimental efforts are underway aimed towards direct detection of dark matter through observation of rare scattering of WIMPs in terrestrial detectors. Single phase liquid argon detectors are an appealing WIMP detection technique due to the scintillation properties of liquid argon and the scalability of the single phase approach. The MiniCLEAN dark matter detector is a single phase liquid argon scintillation scintillation detector with a 500 kg active mass. The modular design offers 4pi coverage with 92 optical cassettes, each containing TPB coated acrylic and a cryogenic photomultiplier tube. The MiniCLEAN detector has recently completed construction at SNOLAB. The detector is currently being commissioned, and will soon begin operation with the liquid argon target. Utilizing advanced pulse-shape discrimination techniques, MiniCLEAN will

  10. Direct Dark Matter Search with the XENON100 Experiment

    NASA Astrophysics Data System (ADS)

    Mei, Yuan

    Dark matter, a non-luminous, non-baryonic matter, is thought to constitute 23 % of the matter-energy components in the universe today. Except for its gravitational effects, the existence of dark matter has never been confirmed by any other means and its nature remains unknown. If a hypothetical Weakly Interacting Massive Particle (WIMP) were in thermal equilibrium in the early universe, it could have a relic abundance close to that of dark matter today, which provides a promising particle candidate of dark matter. Minimal Super-Symmetric extensions to the standard model predicts a stable particle with mass in the range 10 GeV/c2 to 1000 GeV/c2, and spin-independent cross-section with ordinary matter nucleon sigmax < 1 x 10--43 cm2. The XENON100 experiment deploys a Dual Phase Liquid Xenon Time Projection Chamber (LXeTPC) of 62 kg liquid xenon as its sensitive volume, to detect scintillation (S1) and ionization (S2) signals from WIMP dark matter particles directly scattering off xenon nuclei. The detector is located underground at Laboratori Nazionali del Gran Sasso (LNGS) in central Italy. 1.4 km of rock (3.7 km water equivalent) reduces the cosmic muon background by a factor of 106. The event-by-event 3D positioning capability of TPC allows volume fiducialization. With the self-shielding power of liquid xenon, as well as a 99 kg liquid xenon active veto, the electromagnetic radiation background is greatly suppressed. By utilizing the difference of (S2/S1) between electronic recoil and nuclear recoil, the expected WIMP signature, a small nuclear recoil energy deposition, could be discriminated from electronic recoil background with high efficiency. XENON100 achieved the lowest background rate (< 2.2 x 10--2 events/kg/day/keV) in the dark matter search region (< 40 keV) among all direct dark matter detectors. With 11.2 days of data, XENON100 already sets the world's best spin-independent WIMP-nucleon cross-section limit of 2.7 x 10--44 cm2 at WIMP mass 50 GeV/c 2

  11. A Direct Dark Matter Search with the MAJORANA Low-Background Broad Energy Germanium Detector

    NASA Astrophysics Data System (ADS)

    Finnerty, Padraic Seamus

    It is well established that a significant portion of our Universe is comprised of invisible, non-luminous matter, commonly referred to as dark matter. The detection and characterization of this missing matter is an active area of research in cosmology and particle astrophysics. A general class of candidates for non-baryonic particle dark matter is weakly interacting massive particles (WIMPs). WIMPs emerge naturally from supersymmetry with predicted masses between 1--1000 GeV. There are many current and near-future experiments that may shed light on the nature of dark matter by directly detecting WIMP-nucleus scattering events. The MAJORANA experiment will use p-type point contact (PPC) germanium detectors as both the source and detector to search for neutrinoless double-beta decay in 76Ge. These detectors have both exceptional energy resolution and low-energy thresholds. The low-energy performance of PPC detectors, due to their low-capacitance point-contact design, makes them suitable for direct dark matter searches. As a part of the research and development efforts for the MAJORANA experiment, a custom Canberra PPC detector has been deployed at the Kimballton Underground Research Facility in Ripplemead, Virginia. This detector has been used to perform a search for low-mass (< 10 GeV) WIMP induced nuclear recoils using a 221.49 live-day exposure. It was found that events originating near the surface of the detector plague the signal region, even after all cuts. For this reason, only an upper limit on WIMP induced nuclear recoils was placed. This limit is inconsistent with several recent claims to have observed light WIMP based dark matter.

  12. A gamma-ray constraint on the nature of dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Bloemen, Hans

    1987-01-01

    If even a small component of the Galactic spheroid consists of the weakly interacting majorana fermions that are cold-dark-matter candidate particles for the Galactic halo, there should be a substantial flux of annihilation gamma rays from a source of about 1-deg extent at the Galactic center. COS B observations already constrain the halo cold-dark-matter (CDM) content entrained in the inner spheroid to be less than about 10 percent. A somewhat weaker constraint applies to the CDM believed to be present in the Galactic disk, but still only about 15 percent can be in such particles. Monochromatic line photons of energy 3-10 GeV are also predicted, and future experiments may be capable of improving these limits. Since both theoretical models of galaxy formation in a CDM-dominated universe and mass models for the rotation curve in the inner Galaxy suggest that a substantial fraction of the spheroid component should be nonluminous and incorporate entrained halo CDM, the hypothesis that the halo CDM consists predominantly of weakly interacting fermions such as photinos or heavy majorana mass neutrinos or higgsinos may already be subject to observational test.

  13. When matter matters

    SciTech Connect

    Easson, Damien A.; Sawicki, Ignacy; Vikman, Alexander E-mail: ignacy.sawicki@uni-heidelberg.de

    2013-07-01

    We study a recently proposed scenario for the early universe:Subluminal Galilean Genesis. We prove that without any other matter present in the spatially flat Friedmann universe, the perturbations of the Galileon scalar field propagate with a speed at most equal to the speed of light. This proof applies to all cosmological solutions — to the whole phase space. However, in a more realistic situation, when one includes any matter which is not directly coupled to the Galileon, there always exists a region of phase space where these perturbations propagate superluminally, indeed with arbitrarily high speed. We illustrate our analytic proof with numerical computations. We discuss the implications of this result for the possible UV completion of the model.

  14. Particulate Matter

    MedlinePlus

    ... Technology Laws & Regulations About EPA Contact Us Particulate Matter (PM) You are here: EPA Home Air & Radiation Six Common Pollutants Particulate Matter Announcements March 13, 2013 - An updated “Strategies ...

  15. The Cryogenic Dark Matter Search (CDMS-II) Experiment: First Results from the Soudan Mine

    SciTech Connect

    Chang, Clarence Leeder

    2004-09-01

    There is an abundance of evidence that the majority of the mass of the universe is in the form of non-baryonic non-luminous matter that was non-relativistic at the time when matter began to dominate the energy density. Weakly Interacting Massive Particles, or WIMPs, are attractive cold dark matter candidates because they would have a relic abundance today of {approx}0.1 which is consistent with precision cosmological measurements. WIMPs are also well motivated theoretically. Many minimal supersymmetric extensions of the Standard Model have WIMPs in the form of the lightest supersymmetric partner, typically taken to be the neutralino. The CDMS II experiment searches for WIMPs via their elastic scattering off of nuclei. The experiment uses Ge and Si ZIP detectors, operated at <50 mK, which simultaneously measure the ionization and athermal phonons produced by the scattering of an external particle. The dominant background for the experiment comes from electromagnetic interactions taking place very close to the detector surface. Analysis of the phonon signal from these interactions makes it possible to discriminate them from interactions caused by WIMPs. This thesis presents the details of an important aspect of the phonon pulse shape analysis known as the ''Lookup Table Correction''. The Lookup Table Correction is a position dependent calibration of the ZIP phonon response which improves the rejection of events scattering near the detector surface. The CDMS collaboration has recently commissioned its experimental installation at the Soudan Mine. This thesis presents an analysis of the data from the first WIMP search at the Soudan Mine. The results of this analysis set the world's lowest exclusion limit making the CDMS II experiment at Soudan the most sensitive WIMP search to this date.

  16. Dark Matters

    ScienceCinema

    Joseph Silk

    2010-01-08

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  17. Dark Matters

    SciTech Connect

    Joseph Silk

    2009-09-23

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  18. Dark matters

    NASA Astrophysics Data System (ADS)

    Steigman, Gary

    The observational evidence for dark matter in the universe is reviewed. Constraints on the baryon density from primordial nucleosynthesis are presented and compared to the dynamical estimates of the mass on various scales. Baryons can account for the observed luminous mass as well as some, perhaps most, of the 'observed' dark mass. However if, as inflation/naturalness suggest, the total density of the universe is equal to the critical density, then nonbaryonic dark matter is required. The assets and liabilities of, as well as the candidates for, hot and cold dark matter are outlined. At present, there is no completely satisfactory candidate for nonbaryonic dark matter.

  19. Dark Matter

    SciTech Connect

    Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.

    2008-07-02

    One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter.

  20. An Investigation of Backgrounds in the DEAP-3600 Dark Matter Direct Detection Experiment

    NASA Astrophysics Data System (ADS)

    Veloce, Laurelle Maria

    Astronomical and cosmological observations reveal that the majority of the matter in our universe is made of an unknown, non-luminous substance called dark matter. Many experimental attempts are underway to directly detect particle dark matter, which is very difficult to measure due to the expected low interaction rate with normal matter. DEAP-3600 is a direct dark matter search experiment located two kilometres underground at SNOLAB, in Sudbury, Ontario. DEAP-3600 will make use of liquid argon as the detector material, which scintillates as charged particles pass through. The work presented here is an investigation of expected background sources in the DEAP detector. Because DEAP-3600 is a noble liquid-based experiment, a thin film of [1,1,4,4]-tetraphenyl-[1,3]-butadiene (TPB) is coated on the detector walls to shift the scintillation peak from the UV to visible regime for detection. However, alphas passing through TPB produce scintillation signals which can mimic recoil events. Because scintillation properties can change with temperature, we have conducted an investigation of alpha-induced TPB scintillation at temperatures ranging from 300 K to 3.4 K. We were able to characterize the light yield and decay times, and demonstrated that these background events should be distinguishable from true recoil events in liquid argon, thus enabling DEAP-3600 to achieve higher dark matter sensitivity. Additionally, we investigate the performance of the liquid argon purification systems, specifically the activated charcoal used for radon filtration. Previous measurements with the DEAP prototype experiment have demonstrated the necessity of removing radon from the argon prior to filling the detector, due to the release of contaminates from the argon storage systems. Charcoal radon filters are extremely efficient, however, if the emanation rate of the charcoal is too high, there is the possibility of re-contamination. We performed a measurement of the radon emanation rate of a

  1. SABRE: A search for dark matter and a test of the DAMA/LIBRA annual-modulation result using thallium-doped sodium-iodide scintillation detectors

    NASA Astrophysics Data System (ADS)

    Shields, Emily Kathryn

    Ample evidence has been gathered demonstrating that the majority of the mass in the universe is composed of non-luminous, non-baryonic matter. Though the evidence for dark matter is unassailable, its nature and properties remain unknown. A broad effort has been undertaken by the physics community to detect dark-matter particles through direct-detection techniques. For over a decade, the DAMA/LIBRA experiment has observed a highly significant (9.3sigma) modulation in the scintillation event rate in their highly pure NaI(Tl) detectors, which they use as the basis of a claim for the discovery of dark-matter particles. However, the dark-matter interpretation of the DAMA/LIBRA modulation remains unverified. While there have been some recent hints of dark matter in the form of a light Weakly-Interacting Massive Particle (WIMP) from the CoGeNT and CDMS-Si experiments, when assuming a WIMP dark-matter model, several other experiments, including the LUX and XENON noble-liquid experiments, the KIMS CsI(Tl) experiment, and several bubble chamber experiments, conflict with DAMA/LIBRA. However, these experiments use different dark-matter targets and cannot be compared with DAMA/LIBRA in a model-independent way. The uncertainty surrounding the dark-matter model, astrophysical model, and nuclear-physics effects makes it necessary for a new NaI(Tl) experiment to directly test the DAMA/LIBRA result. The Sodium-iodide with Active Background REjection (SABRE) experiment seeks to provide a much-needed model-independent test of the DAMA/LIBRA modulation by developing highly pure crystal detectors with very low radioactivity and deploying them in an active veto detector that can reject key backgrounds in a dark-matter measurement. This work focuses on the efforts put forward by the SABRE collaboration in developing low-background, low-threshold crystal detectors, designing and fabricating a liquid-scintillator veto detector, and simulating the predicted background spectrum for a dark-matter

  2. Changes Matter!

    ERIC Educational Resources Information Center

    Lott, Kimberly; Jensen, Anitra

    2012-01-01

    Being able to distinguish between physical and chemical changes of matter is a foundational chemistry concept that at first seems like a simple elementary concept to teach, but students often have misconceptions that hinder their understanding. These misconceptions are seen among elementary students, but these ideas are perpetuated throughout…

  3. Performance Matters

    ERIC Educational Resources Information Center

    Miller-Day, Michelle

    2008-01-01

    After being told in an end-of-year job review that performances are not considered valuable research outcomes, the author argues in this essay that performance matters. This essay makes a case for recognizing performance ethnographies as research, pedagogy, and active service and concludes with guidelines for performance ethnographers who are…

  4. Mindset matters

    NASA Astrophysics Data System (ADS)

    Cato, John

    2011-01-01

    We all love those students who just refuse to quit. At sometime during their lives, they adopted a philosophy that they were going to do the best they could, and they recognized that accomplishing their dreams was simply a matter of doing the necessary work in order to be successful. But we also have had those students who didn't even seem to try, and there was very little we could do to get them going. They coasted along, made poor grades, and always seemed to indicate that they weren't going to try. They were "smart," they never needed to study, and they certainly weren't about to start now no matter what was said to them. Better yet, their struggles weren't their fault, but rather due to "bad teaching." I thought that was just the way it was going to be.

  5. Dark matter.

    PubMed

    Peebles, P James E

    2015-10-01

    The evidence for the dark matter (DM) of the hot big bang cosmology is about as good as it gets in natural science. The exploration of its nature is now led by direct and indirect detection experiments, to be complemented by advances in the full range of cosmological tests, including judicious consideration of the rich phenomenology of galaxies. The results may confirm ideas about DM already under discussion. If we are lucky, we also will be surprised once again. PMID:24794526

  6. Dark matter

    PubMed Central

    Peebles, P. James E.

    2015-01-01

    The evidence for the dark matter (DM) of the hot big bang cosmology is about as good as it gets in natural science. The exploration of its nature is now led by direct and indirect detection experiments, to be complemented by advances in the full range of cosmological tests, including judicious consideration of the rich phenomenology of galaxies. The results may confirm ideas about DM already under discussion. If we are lucky, we also will be surprised once again. PMID:24794526

  7. A Search for Low-Mass Dark Matter with the Cryogenic Dark Matter Search and the Development of Highly Multiplexed Phonon-Mediated Particle Detectors

    NASA Astrophysics Data System (ADS)

    Moore, David Craig

    2012-06-01

    A wide variety of astrophysical observations indicate that approximately 85% of the matter in the universe is nonbaryonic and nonluminous. Understanding the nature of this "dark matter" is one of the most important outstanding questions in cosmology. Weakly Interacting Massive Particles (WIMPs) are a leading candidate for dark matter since they would be thermally produced in the early universe in the correct abundance to account for the observed relic density of dark matter. If WIMPs account for the dark matter, then rare interactions from relic WIMPs should be observable in terrestrial detectors. Recently, unexplained excess events in the DAMA/LIBRA, CoGeNT, and CRESST-II experiments have been interpreted as evidence of scattering from WIMPs with masses ˜10 GeV and spin-independent scattering cross sections of 10--41--10 --40 cm2. The Cryogenic Dark Matter Search (CDMS II) attempts to identify WIMP interactions using an array of cryogenic germanium and silicon particle detectors located at the Soudan Underground Laboratory in northern Minnesota. In this dissertation, data taken by CDMS II are reanalyzed using a 2 keV recoil energy threshold to increase the sensitivity to WIMPs with masses ˜10 GeV. These data disfavor an explanation for the DAMA/LIBRA, CoGeNT, and CRESST-II results in terms of spin-independent elastic scattering of WIMPs with masses ≲ 12 GeV, under standard assumptions. At the time of publication, they provided the strongest constraints on spin-independent elastic scattering from 5--9 GeV, ruling out previously unexplored parameter space. To detect WIMPs or exclude the remaining parameter space favored by the most popular models will ultimately require detectors with target masses ≳ 1 ton, requiring an increase in mass by more than two orders of magnitude over CDMS II. For cryogenic detectors such as CDMS, scaling to such large target masses will require individual detector elements to be fabricated more quickly and cheaply, while maintaining

  8. A search for low-mass dark matter with the cryogenic dark matter search and the development of highly multiplexed phonon-mediated particle detectors

    SciTech Connect

    Moore, David Craig

    2012-01-01

    A wide variety of astrophysical observations indicate that approximately 85% of the matter in the universe is nonbaryonic and nonluminous. Understanding the nature of this "dark matter" is one of the most important outstanding questions in cosmology. Weakly Interacting Massive Particles (WIMPs) are a leading candidate for dark matter since they would be thermally produced in the early universe in the correct abundance to account for the observed relic density of dark matter. If WIMPs account for the dark matter, then rare interactions from relic WIMPs should be observable in terrestrial detectors. Recently, unexplained excess events in the DAMA/LIBRA, CoGeNT, and CRESST-II experiments have been interpreted as evidence of scattering from WIMPs with masses ~10 GeV and spin-independent scattering cross sections of 10-41-10-40 cm2. The Cryogenic Dark Matter Search (CDMS II) attempts to identify WIMP interactions using an array of cryogenic germanium and silicon particle detectors located at the Soudan Underground Laboratory in northern Minnesota. In this dissertation, data taken by CDMS II are reanalyzed using a 2 keV recoil energy threshold to increase the sensitivity to WIMPs with masses ~10 GeV. These data disfavor an explanation for the DAMA/LIBRA, CoGeNT, and CRESST-II results in terms of spin-independent elastic scattering of WIMPs with masses ≲12 GeV, under standard assumptions. At the time of publication, they provided the strongest constraints on spin-independent elastic scattering from 5-9 GeV, ruling out previously unexplored parameter space. To detect WIMPs or exclude the remaining parameter space favored by the most popular models will ultimately require detectors with target masses ≳1 ton, requiring an increase in mass by more than two orders of magnitude over CDMS II. For cryogenic detectors such as CDMS, scaling to such large target masses will require individual detector elements to be fabricated more quickly and cheaply, while

  9. Conducting Compositions of Matter

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    1999-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  10. Conducting compositions of matter

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    2000-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  11. Matter and twin matter in bimetric MOND

    NASA Astrophysics Data System (ADS)

    Milgrom, Mordehai

    2010-06-01

    Bimetric MOND (BIMOND) theories, propounded recently, predict peculiar gravitational interactions between matter and twin matter (TM). TM is the hypothetical matter that might couple directly only to the second metric of the theory, as standard matter couples only to the first. Considerations of cosmology in the BIMOND framework suggest that such TM might exist and copy matter in its attributes. Here, I investigate the indirect interactions that BIMOND theories predict between local, non-relativistic mass concentrations of matter and TM. The most salient result is that in the deep-MOND regime of the matter-TM symmetric theories, TM behaves as if it has a negative gravitational mass relative to matter (active and passive, with the inertial mass still positive). To wit, interaction within each sector is attractive MOND gravity, but between matter and TM it is repulsive MOND gravity. Using the space-conformal invariance of the theory in the deep-MOND regime, I derive various exact results; e.g. the repulsive force between a matter and TM point masses (space-conformal theories are a natural framework for masses of opposite signs). In the high-acceleration regime, the interaction depends on a parameter, (the strength of the Einstein-Hilbert action for matter). For the favoured value , matter and TM do not interact in this regime, for they attract and for they repel each other. Such interactions may have substantial ramifications for all aspects of structure formation, such as matter distribution, peculiar velocities and effects on the cosmic microwave background. The repulsive interactions probably lead to segregation of matter and TM structures, leading, in turn, to intermeshing of the respective cosmic webs, with high-density nodes of one sector residing in the voids of the other (possibly conducing to efficient evacuation of the voids). Weak gravitational lensing by TM seems the best way to detect it or constrain its attributes. In the MOND regime, a TM body acts on

  12. States of Matter

    NASA Video Gallery

    NASA scientists and engineers utilize the basic principles of the states of matter on a daily basis. The states and properties of matter are very important to the design and construction of NASA sp...

  13. Asymmetric dark matter

    SciTech Connect

    Kumar, Jason

    2014-06-24

    We review the theoretical framework underlying models of asymmetric dark matter, describe astrophysical constraints which arise from observations of neutron stars, and discuss the prospects for detecting asymmetric dark matter.

  14. Mind Over Matter: Methamphetamine

    MedlinePlus

    ... Term(s): Teachers / NIDA Teaching Guide / Mind Over Matter Teaching Guide and Series / Methamphetamine Print Mind Over Matter: Methamphetamine (Meth) Order Free Publication in: English Spanish Download PDF 739.54 KB Methamphetamine comes in ...

  15. Mind Over Matter: Cocaine

    MedlinePlus

    ... Term(s): Teachers / NIDA Teaching Guide / Mind Over Matter Teaching Guide and Series / Cocaine Print Mind Over Matter: Cocaine Order Free Publication in: English Spanish Download PDF 806.08 KB Cocaine is made ...

  16. Nonthermal Supermassive Dark Matter

    NASA Technical Reports Server (NTRS)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  17. Dark matter and sterility

    NASA Astrophysics Data System (ADS)

    Smith, Peter F.

    2014-10-01

    In reply to Louise Mayor's dark-matter flow-chart "What's the matter?" (July pp30-31), which summarized the most likely candidates for galactic dark matter, and to Jon Cartwright's feature "A fourth type of neutrino" on the possibility of "sterile" neutrinos (August pp24-28).

  18. The physics of strange matter

    SciTech Connect

    Olinto, A.V. |

    1991-12-01

    Strange matter may be the ground state of matter. We review the phenomenology and astrophysical implications of strange matter, and discuss the possible ways for testing the strange matter hypothesis.

  19. Big Questions: Dark Matter

    ScienceCinema

    Lincoln, Don

    2014-08-07

    Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

  20. Big Questions: Dark Matter

    SciTech Connect

    Lincoln, Don

    2013-12-05

    Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

  1. Teachers Matter. Yes. Schools Matter. Yes. Districts Matter--Really?

    ERIC Educational Resources Information Center

    Chenoweth, Karin

    2015-01-01

    School districts shape the conditions in which schools operate and as such can support or undermine school success and thus student success. All of which is to say that school districts matter. This article looks at the success of two districts whose low-income and minority students beat the odds in academic achievement. Lessons from these…

  2. Ghost dark matter

    SciTech Connect

    Furukawa, Tomonori; Yokoyama, Shuichiro; Ichiki, Kiyotomo; Sugiyama, Naoshi; Mukohyama, Shinji E-mail: shu@a.phys.nagoya-u.ac.jp E-mail: naoshi@a.phys.nagoya-u.ac.jp

    2010-05-01

    We revisit ghost dark matter, the possibility that ghost condensation may serve as an alternative to dark matter. In particular, we investigate the Friedmann-Robertson-Walker (FRW) background evolution and the large-scale structure (LSS) in the ΛGDM universe, i.e. a late-time universe dominated by a cosmological constant and ghost dark matter. The FRW background of the ΛGDM universe is indistinguishable from that of the standard ΛCDM universe if M∼>1eV, where M is the scale of spontaneous Lorentz breaking. From the LSS we find a stronger bound: M∼>10eV. For smaller M, ghost dark matter would have non-negligible sound speed after the matter-radiation equality, and thus the matter power spectrum would significantly differ from observation. These bounds are compatible with the phenomenological upper bound M∼<100GeV known in the literature.

  3. Neutrinos and dark matter

    SciTech Connect

    Ibarra, Alejandro

    2015-07-15

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  4. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  5. Dark Matter 2013

    NASA Astrophysics Data System (ADS)

    Schumann, Marc

    2014-10-01

    This article reviews the status of the exciting and fastly evolving field of dark matter research as of summer 2013, when it was discussed at the International Cosmic Ray Conference (ICRC) 2013 in Rio de Janeiro. It focuses on the three main avenues to detect weakly interacting massive particle (WIMP) dark matter: direct detection, indirect detection, and collider searches. The article is based on the dark matter rapporteur talk summarizing the presentations given at the conference, filling some gaps for completeness.

  6. The Dark Matter Problem

    NASA Astrophysics Data System (ADS)

    Sanders, Robert H.

    2014-02-01

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters revisited: missing mass found; 8. CDM confronts galaxy rotation curves; 9. The new cosmology: dark matter is not enough; 10. An alternative to dark matter: Modified Newtonian Dynamics; 11. Seeing dark matter: the theory and practice of detection; 12. Reflections: a personal point of view; Appendix; References; Index.

  7. Cosmology with Mimetic Matter

    SciTech Connect

    Chamseddine, Ali H.; Mukhanov, Viatcheslav; Vikman, Alexander E-mail: viatcheslav.Mukhanov@lmu.de

    2014-06-01

    We consider minimal extensions of the recently proposed Mimetic Dark Matter and show that by introducing a potential for the mimetic non-dynamical scalar field we can mimic nearly any gravitational properties of the normal matter. In particular, the mimetic matter can provide us with inflaton, quintessence and even can lead to a bouncing nonsingular universe. We also investigate the behaviour of cosmological perturbations due to a mimetic matter. We demonstrate that simple mimetic inflation can produce red-tilted scalar perturbations which are largely enhanced over gravity waves.

  8. Dark matter and cosmology

    SciTech Connect

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  9. Dark matter and cosmology

    SciTech Connect

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  10. Condensate dark matter stars

    SciTech Connect

    Li, X.Y.; Harko, T.; Cheng, K.S. E-mail: harko@hkucc.hku.hk

    2012-06-01

    We investigate the structure and stability properties of compact astrophysical objects that may be formed from the Bose-Einstein condensation of dark matter. Once the critical temperature of a boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Therefore we model the dark matter inside the star as a Bose-Einstein condensate. In the condensate dark matter star model, the dark matter equation of state can be described by a polytropic equation of state, with polytropic index equal to one. We derive the basic general relativistic equations describing the equilibrium structure of the condensate dark matter star with spherically symmetric static geometry. The structure equations of the condensate dark matter stars are studied numerically. The critical mass and radius of the dark matter star are given by M{sub crit} ≈ 2(l{sub a}/1fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2}M{sub s}un and R{sub crit} ≈ 1.1 × 10{sup 6}(l{sub a}/1 fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2} cm respectively, where l{sub a} and m{sub χ} are the scattering length and the mass of dark matter particle, respectively.

  11. Why Metabolic Syndrome Matters

    MedlinePlus

    ... Pressure Tools & Resources Stroke More Why Metabolic Syndrome Matters Updated:Jul 24,2014 Metabolic syndrome may be ... Syndrome • Home • About Metabolic Syndrome • Why Metabolic Syndrome Matters • Your Risk for Metabolic Syndrome • Symptoms & Diagnosis • Prevention & ...

  12. Matter in transition

    NASA Astrophysics Data System (ADS)

    Anderson, Lara B.; Gray, James; Raghuram, Nikhil; Taylor, Washington

    2016-04-01

    We explore a novel type of transition in certain 6D and 4D quantum field theories, in which the matter content of the theory changes while the gauge group and other parts of the spectrum remain invariant. Such transitions can occur, for example, for SU(6) and SU(7) gauge groups, where matter fields in a three-index antisymmetric representation and the fundamental representation are exchanged in the transition for matter in the two-index antisymmetric representation. These matter transitions are realized by passing through superconformal theories at the transition point. We explore these transitions in dual F-theory and heterotic descriptions, where a number of novel features arise. For example, in the heterotic description the relevant 6D SU(7) theories are described by bundles on K3 surfaces where the geometry of the K3 is constrained in addition to the bundle structure. On the F-theory side, non-standard representations such as the three-index antisymmetric representation of SU( N) require Weierstrass models that cannot be realized from the standard SU( N) Tate form. We also briefly describe some other situations, with groups such as Sp(3), SO(12), and SU(3), where analogous matter transitions can occur between different representations. For SU(3), in particular, we find a matter transition between adjoint matter and matter in the symmetric representation, giving an explicit Weierstrass model for the F-theory description of the symmetric representation that complements another recent analogous construction.

  13. Language (Policy) Matters!

    ERIC Educational Resources Information Center

    Kozleski, E. B.; Mulligan, E.; Hernandez-Saca, D.

    2011-01-01

    Public education has a vital role in ensuring that this and subsequent generations are successful in a global, multilingual economy. In this What Matters brief, we examine how teachers, students, parents, and communities in our nation's schools can create rich opportunities for students to learn. Language (Policy) Matters! includes information and…

  14. Dark matter possibilities

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2015-04-01

    In my research I observe signals that penetrate dense matter and I hypothesize that they are due to waves in dark matter. Since they readily penetrate thick matter I hypothesize that they are due to small dark matter particles instead of the usual hypothesized Wimps. For example I observed signals that penetrate my local hill at near 77 m/s. In addition the solar cycle appears to be due to to dark matter oscillating in the sun producing standing waves that have to due with planet placement and stability of the solar system. Dozens of experiments, over the past 20 years, confirm the penetrating waves. Examples of the experiments are presented on my website darkmatterwaves.com and US patent number 8,669,917 B1.

  15. Complex Dark Matter

    SciTech Connect

    Lincoln, Don

    2015-04-16

    After a century of study, scientists have come to the realization that the ordinary matter made of atoms is a minority in the universe. In order to explain observations, it appears that there exists a new and undiscovered kind of matter, called dark matter, that is five times more prevalent than ordinary matter. The evidence for this new matter’s existence is very strong, but scientists know only a little about its nature. In today’s video, Fermilab’s Dr. Don Lincoln talks about an exciting and unconventional idea, specifically that dark matter might have a very complex set of structures and interactions. While this idea is entirely speculative, it is an interesting hypothesis and one that scientists are investigating.

  16. Dark matter universe.

    PubMed

    Bahcall, Neta A

    2015-10-01

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  17. Dark matter universe

    NASA Astrophysics Data System (ADS)

    Bahcall, Neta A.

    2015-10-01

    Most of the mass in the universe is in the form of dark matter-a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations-from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology-a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)-fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  18. Exothermic dark matter

    SciTech Connect

    Graham, Peter W.; Saraswat, Prashant; Harnik, Roni; Rajendran, Surjeet

    2010-09-15

    We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, and XENON10. The dark matter consists of at least two light states with mass {approx}few GeV and splittings {approx}5 keV. It is natural for the heavier states to be cosmologically long-lived and to make up an O(1) fraction of the dark matter. Direct detection rates are dominated by the exothermic reactions in which an excited dark matter state downscatters off of a nucleus, becoming a lower energy state. In contrast to (endothermic) inelastic dark matter, the most sensitive experiments for exothermic dark matter are those with light nuclei and low threshold energies. Interestingly, this model can also naturally account for the observed low-energy events at CoGeNT. The only significant constraint on the model arises from the DAMA/LIBRA unmodulated spectrum but it can be tested in the near future by a low-threshold analysis of CDMS-Si and possibly other experiments including CRESST, COUPP, and XENON100.

  19. Composite millicharged dark matter

    NASA Astrophysics Data System (ADS)

    Kouvaris, Chris

    2013-07-01

    We study a composite millicharged dark matter model. The dark matter is in the form of pionlike objects emerging from a higher scale QCD-like theory. We present two distinct possibilities with interesting phenomenological consequences based on the choice of the parameters. In the first one, the dark matter is produced nonthermally, and it could potentially account for the 130 GeV Fermi photon line via decays of the “dark pions.” We estimate the self-interaction cross section, which might play an important role both in changing the dark matter halo profile at the center of the galaxy and in making the dark matter warmer. In the second version the dark matter is produced via the freeze-in mechanism. Finally we impose all possible astrophysical, cosmological and experimental constraints. We study in detail generic constraints on millicharged dark matter that can arise from anomalous isotope searches of different elements and we show why constraints based on direct searches from underground detectors are not generally valid.

  20. Dark matter universe

    PubMed Central

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  1. Dense neutron star matter

    SciTech Connect

    Stone, J. R.

    2014-05-02

    The microscopic composition and properties of matter at super-saturation densities have been a subject of intense investigation for decades. The scarcity of experimental and observational data has lead to the necessary reliance on theoretical models. However, there remains great uncertainty in these models, which, of necessity, have to go beyond the over-simple assumption that high-density matter consists only of nucleons and leptons. Heavy strange baryons, mesons and quark matter in different forms and phases have to be included to fulfill basic requirements of fundamental laws of physics.

  2. Dense neutron star matter

    NASA Astrophysics Data System (ADS)

    Stone, J. R.

    2014-05-01

    The microscopic composition and properties of matter at super-saturation densities have been a subject of intense investigation for decades. The scarcity of experimental and observational data has lead to the necessary reliance on theoretical models. However, there remains great uncertainty in these models, which, of necessity, have to go beyond the over-simple assumption that high-density matter consists only of nucleons and leptons. Heavy strange baryons, mesons and quark matter in different forms and phases have to be included to fulfill basic requirements of fundamental laws of physics.

  3. Inflatable Dark Matter.

    PubMed

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model. PMID:26849584

  4. Xenophobic dark matter

    NASA Astrophysics Data System (ADS)

    Feng, Jonathan L.; Kumar, Jason; Sanford, David

    2013-07-01

    We consider models of xenophobic dark matter, in which isospin-violating dark matter-nucleon interactions significantly degrade the response of xenon direct detection experiments. For models of near-maximal xenophobia, with neutron-to-proton coupling ratio fn/fp≈-0.64, and dark matter mass near 8 GeV, the regions of interest for CoGeNT and CDMS-Si and the region of interest identified by Collar and Fields in CDMS-Ge data can be brought into agreement. This model may be tested in future direct, indirect, and collider searches. Interestingly, because the natural isotope abundance of xenon implies that xenophobia has its limits, we find that this xenophobic model may be probed in the near future by xenon experiments. Near-future data from the LHC and Fermi-LAT may also provide interesting alternative probes of xenophobic dark matter.

  5. The Study of Matter.

    ERIC Educational Resources Information Center

    Campbell, Peter

    2000-01-01

    Reviews the booklet "The Study of Matter" produced by the Institute of Physics as part of their Shaping the Future series. This booklet is designed for teachers of chemistry, physics, design and technology, and biology. (Author/CCM)

  6. Tunguska dark matter ball

    NASA Astrophysics Data System (ADS)

    Froggatt, C. D.; Nielsen, H. B.

    2015-04-01

    It is suggested that the Tunguska event in June 1908 was due to a cm-large ball of a condensate of bound states of 6 top and 6 antitop quarks containing highly compressed ordinary matter. Such balls are supposed to make up the dark matter as we earlier proposed. The expected rate of impact of this kind of dark matter ball with the earth seems to crudely match a time scale of 200 years between the impacts. The main explosion of the Tunguska event is explained in our picture as material coming out from deep within the earth, where it has been heated and compressed by the ball penetrating to a depth of several thousand km. Thus the effect has some similarity with volcanic activity as suggested by Kundt. We discuss the possible identification of kimberlite pipes with earlier Tunguska-like events. A discussion of how the dark matter balls may have formed in the early universe is also given.

  7. The XENON100 Dark Matter Experiment: Design, Construction, Calibration and 2010 Search Results with Improved Measurement of the Scintillation Response of Liquid Xenon to Low-Energy Nuclear Recoils

    NASA Astrophysics Data System (ADS)

    Plante, Guillaume

    An impressive array of astrophysical observations suggest that 83% of the matter in the universe is in a form of non-luminous, cold, collisionless, non-baryonic dark matter. Several extensions of the Standard Model of particle physics aimed at solving the hierarchy problem predict stable weakly interacting massive particles (WIMPs) that could naturally have the right cosmological relic abundance today to compose most of the dark matter if their interactions with normal matter are on the order of a weak scale cross section. These candidates also have the added benefit that their properties and interaction rates can be computed in a well defined particle physics model. A considerable experimental effort is currently under way to uncover the nature of dark matter. One method of detecting WIMP dark matter is to look for its interactions in terrestrial detectors where it is expected to scatter off nuclei. In 2007, the XENON10 experiment took the lead over the most sensitive direct detection dark matter search in operation, the CDMS II experiment, by probing spin-independent WIMP-nucleon interaction cross sections down to sigmachi N ˜ 5 x 10-44 cm 2 at 30 GeV/c2. Liquefied noble gas detectors are now among the technologies at the forefront of direct detection experiments. Liquid xenon (LXe), in particular, is a well suited target for WIMP direct detection. It is easily scalable to larger target masses, allows discrimination between nuclear recoils and electronic recoils, and has an excellent stopping power to shield against external backgrounds. A particle losing energy in LXe creates both ionization electrons and scintillation light. In a dual-phase LXe time projection chamber (TPC) the ionization electrons are drifted and extracted into the gas phase where they are accelerated to amplify the charge signal into a proportional scintillation signal. These two signals allow the three-dimensional localization of events with millimeter precision and the ability to

  8. The Local Dark Matter

    SciTech Connect

    Helfer, H.L.

    2005-10-21

    The observations of the extended rotation curves of some galaxies provide important constraints upon the nature of the local dark matter present in the halos of these galaxies. Using these constraints, one can show that the halo dark matter cannot be some population of conventional astronomical objects and (most probably) cannot be a population of exotic non-interacting particles. We suggest that the halos can be regarded as large spatial fluctuations in a classic scalar field.

  9. Elastically Decoupling Dark Matter

    NASA Astrophysics Data System (ADS)

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-01

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10-3- 1 fb range.

  10. Elastically Decoupling Dark Matter.

    PubMed

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-01

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range. PMID:27314712

  11. Matter in transition

    DOE PAGESBeta

    Anderson, Lara B.; Gray, James; Raghuram, Nikhil; Taylor, Washington

    2016-04-13

    In this study, we explore a novel type of transition in certain 6D and 4D quantum field theories, in which the matter content of the theory changes while the gauge group and other parts of the spectrum remain invariant. Such transitions can occur, for example, for SU(6) and SU(7) gauge groups, where matter fields in a three-index antisymmetric representation and the fundamental representation are exchanged in the transition for matter in the two-index antisymmetric representation. These matter transitions are realized by passing through superconformal theories at the transition point. We explore these transitions in dual F-theory and heterotic descriptions, wheremore » a number of novel features arise. For example, in the heterotic description the relevant 6D SU(7) theories are described by bundles on K3 surfaces where the geometry of the K3 is constrained in addition to the bundle structure. On the F-theory side, non-standard representations such as the three-index antisymmetric representation of SU(N) require Weierstrass models that cannot be realized from the standard SU(N) Tate form. We also briefly describe some other situations, with groups such as Sp(3), SO(12), and SU(3), where analogous matter transitions can occur between different representations. For SU(3), in particular, we find a matter transition between adjoint matter and matter in the symmetric representation, giving an explicit Weierstrass model for the F-theory description of the symmetric representation that complements another recent analogous construction.« less

  12. Dense cold matter

    SciTech Connect

    Stavinskiy, A. V.

    2015-07-15

    The possibility of studying matter at densities on the order of or higher than the neutron-star density in laboratory experiments is considered. For this, it is proposed to employ a rare kinematical trigger in collisions of relativistic ions. The expected properties of matter under such unusual conditions and a program for investigations into it are discussed, and a design of experimental setup for such investigations is proposed.

  13. Dark matter: theoretical perspectives.

    PubMed Central

    Turner, M S

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the "standard model" of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for "new physics." The compelling candidates are a very light axion (10(-6)-10(-4) eV), a light neutrino (20-90 eV), and a heavy neutralino (10 GeV-2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. PMID:11607395

  14. Dark matter: Theoretical perspectives

    SciTech Connect

    Turner, M.S. . Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL )

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  15. Dark matter: Theoretical perspectives

    SciTech Connect

    Turner, M.S. |

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  16. Cold quark matter

    SciTech Connect

    Kurkela, Aleksi; Romatschke, Paul; Vuorinen, Aleksi

    2010-05-15

    We perform an O({alpha}{sub s}{sup 2}) perturbative calculation of the equation of state of cold but dense QCD matter with two massless and one massive quark flavor, finding that perturbation theory converges reasonably well for quark chemical potentials above 1 GeV. Using a running coupling constant and strange quark mass, and allowing for further nonperturbative effects, our results point to a narrow range where absolutely stable strange quark matter may exist. Absent stable strange quark matter, our findings suggest that quark matter in (slowly rotating) compact star cores becomes confined to hadrons only slightly above the density of atomic nuclei. Finally, we show that equations of state including quark matter lead to hybrid star masses up to M{approx}2M{sub {center_dot},} in agreement with current observations. For strange stars, we find maximal masses of M{approx}2.75M{sub {center_dot}}and conclude that confirmed observations of compact stars with M>2M{sub {center_dot}}would strongly favor the existence of stable strange quark matter.

  17. soil organic matter fractionation

    NASA Astrophysics Data System (ADS)

    Osat, Maryam; Heidari, Ahmad

    2010-05-01

    Carbon is essential for plant growth, due to its effects on other soil properties like aggregation. Knowledge of dynamics of organic matter in different locations in the soil matrix can provide valuable information which affects carbon sequestration and soil the other soil properties. Extraction of soil organic matter (SOM) fractions has been a long standing approach to elucidating the roles of soil organic matter in soil processes. Several kind fractionation methods are used and all provide information on soil organic matter function. Physical fractionation capture the effects on SOM dynamics of the spatial arrangement of primary and secondary organomineral particles in soil while chemical fractionation can not consider the spatial arrangement but their organic fractions are suitable for advanced chemical characterization. Three method of physical separation of soil have been used, sieving, sedimentation and densitometry. The distribution of organic matter within physical fractions of the soil can be assessed by sieving. Sieving separates soil particles based strictly on size. The study area is located on north central Iran, between 35° 41'- 36° 01' N and 50° 42'- 51° 14' E. Mean annual precipitation about 243.8 mm and mean annual air temperature is about 14.95 °C. The soil moisture and temperature regime vary between aridic-thermic in lower altitudes to xeric-mesic in upper altitudes. More than 36 surface soil samples (0-20 cm) were collected according to land-use map units. After preliminary analyzing of samples 10 samples were selected for further analyses in five size fractions and three different time intervals in September, January and April 2008. Fractionation carried out by dry sieving in five classes, 1-2 mm, 0.5-1 mm, 270 μm-0.5mm, 53-270 μm and <53 μm. Organic matter and C/N ratio were determined for all fractions at different time intervals. Chemical fractionation of organic matter also carried out according to Tan (2003), also Mineralogical

  18. Asymmetric condensed dark matter

    NASA Astrophysics Data System (ADS)

    Aguirre, Anthony; Diez-Tejedor, Alberto

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  19. Entropy, matter, and cosmology.

    PubMed

    Prigogine, I; Géhéniau, J

    1986-09-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary "C" field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747

  20. Entropy, matter, and cosmology

    PubMed Central

    Prigogine, I.; Géhéniau, J.

    1986-01-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary “C” field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747

  1. Imperfect Dark Matter

    NASA Astrophysics Data System (ADS)

    Mirzagholi, Leila; Vikman, Alexander

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  2. Quirky composite dark matter

    NASA Astrophysics Data System (ADS)

    Kribs, Graham D.; Roy, Tuhin S.; Terning, John; Zurek, Kathryn M.

    2010-05-01

    We propose a new dark matter candidate, “quirky dark matter,” that is a scalar baryonic bound state of a new non-Abelian force that becomes strong below the electroweak scale. The bound state is made of chiral quirks: new fermions that transform under both the new strong force as well as in a chiral representation of the electroweak group, acquiring mass from the Higgs mechanism. Electric charge neutrality of the lightest baryon requires approximately degenerate quirk masses which also causes the charge radius of the bound state to be negligible. The abundance is determined by an asymmetry that is linked to the baryon and lepton numbers of the universe through electroweak sphalerons. Dark matter elastic scattering with nuclei proceeds through Higgs exchange as well as an electromagnetic polarizability operator which is just now being tested in direct detection experiments. A novel method to search for quirky dark matter is to look for a gamma-ray “dark line” spectroscopic feature in galaxy clusters that result from the quirky Lyman-alpha or quirky hyperfine transitions. Colliders are expected to dominantly produce quirky mesons, not quirky baryons, consequently large missing energy is not the primary collider signal of the physics associated with quirky dark matter.

  3. Vectorlike sneutrino dark matter

    NASA Astrophysics Data System (ADS)

    Tang, Yi-Lei; Zhu, Shou-hua

    2016-05-01

    In this paper, we discuss the minimal supersymmetric standard model (MSSM) extended with one vectorlike lepton doublet L -L ¯ and one right-handed neutrino N . The neutral vecotorlike sneutrino can be a candidate of dark matter. To avoid the interaction with the nucleons by exchanging a Z boson, the mass splitting between the real part and the imaginary part of the sneutrino field is needed. Compared with the MSSM sneutrino dark matter, the mass splitting between the vectorlike sneutrino field can be more naturally acquired without large A terms and constraints on the neutralino masses. We have also calculated the relic density and the elastic scattering cross sections with the nucleons in the cases that the dark matter particles coannihilate with or without the MSSM slepton doublets. The elastic scattering cross sections with the nucleons are well below the LUX bounds. In the case that the dark matter coannihilates with all the MSSM slepton doublets, the mass of the dark matter can be as light as 370 GeV.

  4. Estrone degradation: does organic matter (quality), matter?

    PubMed

    Tan, David T; Temme, Hanna R; Arnold, William A; Novak, Paige J

    2015-01-01

    Understanding the parameters that drive E1 degradation is necessary to improve existing wastewater treatment systems and evaluate potential treatment options. Organic matter quality could be an important parameter. Microbial communities grown from activated sludge seeds using different dissolved organic matter sources were tested for E1 degradation rates. Synthetic wastewater was aged, filter-sterilized, and used as a carbon and energy source to determine if recalcitrant organic carbon enhances E1 degradation. Higher E1 degradation was observed by biomass grown on 8 d old synthetic wastewater compared to biomass grown on fresh synthetic wastewater (P = 0.033) despite much lower concentrations of bacteria. Minimal or no E1 degradation was observed in biomass grown on 2 d old synthetic wastewater. Organic carbon analyses suggest that products of cell lysis or microbial products released under starvation stress stimulate E1 degradation. Additional water sources were also tested: lake water, river water, and effluents from a municipal wastewater treatement plant and a treatment wetland. E1 degradation was only observed in biomass grown in treatment effluent. Nitrogen, dissolved organic carbon, and trace element concentrations were not causative factors for E1 degradation. In both experiments, spectrophotometric analyses reveal degradation of E1 is associated with microbially derived organic carbon but not general recalcitrance. PMID:25454582

  5. Axion dark matter searches

    SciTech Connect

    Stern, Ian P.; Collaboration: ADMX Collaboration; ADMX-HF Collaboration

    2014-06-24

    Nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  6. Resonant SIMP dark matter

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Min; Lee, Hyun Min

    2016-07-01

    We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1)D. After the U(1)D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3 → 2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  7. Axion dark matter searches

    DOE PAGESBeta

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axionsmore » at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.« less

  8. Asymmetric twin Dark Matter

    SciTech Connect

    Farina, Marco

    2015-11-09

    We study a natural implementation of Asymmetric Dark Matter in Twin Higgs models. The mirroring of the Standard Model strong sector suggests that a twin baryon with mass around 5 GeV is a natural Dark Matter candidate once a twin baryon number asymmetry comparable to the SM asymmetry is generated. We explore twin baryon Dark Matter in two different scenarios, one with minimal content in the twin sector and one with a complete copy of the SM, including a light twin photon. The essential requirements for successful thermal history are presented, and in doing so we address some of the cosmological issues common to many Twin Higgs models. The required interactions we introduce predict signatures at direct detection experiments and at the LHC.

  9. Inflation and shadow matter

    NASA Technical Reports Server (NTRS)

    Krauss, L. M.; Guth, A. H.; Spergel, D. N.; Field, G. B.; Press, W. H.

    1986-01-01

    The possible production of shadow matter during the period of cosmic inflation is considered. The superstring theory of Gross et al. (1985), which results in a gauge group E8 x E8, could, at low energies, result in the existence of two sectors: an observed sector associated with all familiar particles and interactions, and a hidden one whose particles couple only through gravitational interactions with ordinary matter. It is demonstrated here that if, in the early universe, an inflationary phase is associated with the breaking of one of the symmetries in the E8 x E8 theory, this strongly constrains the physics of both sectors if shadow matter is to be the missing mass in the universe.

  10. Axion dark matter searches

    SciTech Connect

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  11. Signatures of dark matter

    NASA Astrophysics Data System (ADS)

    Baltz, Edward Anthony

    It is well known that most of the mass in the universe remains unobserved save for its gravitational effect on luminous matter. The nature of this ``dark matter'' remains a mystery. From measurements of the primordial deuterium abundance, the theory of big bang nucleosynthesis predicts that there are not enough baryons to account for the amount of dark matter observed, thus the missing mass must take an exotic form. Several promising candidates have been proposed. In this work I will describe my research along two main lines of inquiry into the dark matter puzzle. The first possibility is that the dark matter is exotic massive particles, such as those predicted by supersymmetric extensions to the standard model of particle physics. Such particles are generically called WIMPs, for weakly interacting massive particles. Focusing on the so-called neutralino in supersymmetric models, I discuss the possible signatures of such particles, including their direct detection via nuclear recoil experiments and their indirect detection via annihilations in the halos of galaxies, producing high energy antiprotons, positrons and gamma rays. I also discuss signatures of the possible slow decays of such particles. The second possibility is that there is a population of black holes formed in the early universe. Any dark objects in galactic halos, black holes included, are called MACHOs, for massive compact halo objects. Such objects can be detected by their gravitational microlensing effects. Several possibilities for sources of baryonic dark matter are also interesting for gravitational microlensing. These include brown dwarf stars and old, cool white dwarf stars. I discuss the theory of gravitational microlensing, focusing on the technique of pixel microlensing. I make predictions for several planned microlensing experiments with ground based and space based telescopes. Furthermore, I discuss binary lenses in the context of pixel microlensing. Finally, I develop a new technique for

  12. Interacting warm dark matter

    SciTech Connect

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo E-mail: guillermo.palma@usach.cl E-mail: avelino@fisica.ugto.mx

    2013-05-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ{sub m}{sup α}ρ{sub e}{sup β} form, where ρ{sub m} and ρ{sub e} are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w{sub m} and w{sub e} of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used.

  13. Dark matter detection

    NASA Astrophysics Data System (ADS)

    Baudis, Laura

    2016-08-01

    More than 80 years after its first postulation in modern form, the existence and distribution of dark matter in our Universe is well established. Dark matter is the gravitational glue that holds together galaxies, galaxy clusters and structures on the largest cosmological scales, and an essential component to explain the observed fluctuations in the cosmic microwave background. Yet its existence is inferred indirectly, through its gravitational influence on luminous matter, and its nature is not known. A viable hypothesis is that dark matter is made of new, elementary particles, with allowed masses and interaction strengths spanning a wide range. Two well-motivated classes of candidates are axions and weakly interacting massive particles (WIMPs), and experimental efforts have now reached sensitivities that allow them to test this hypothesis. Axions, produced non-thermally in the early Universe, can be detected by exploiting their predicted couplings to photons and electrons. WIMPs can be detected directly by looking for their collisions with atomic nuclei ultra-low background detectors, or indirectly, through the observation of their annihilation products such as neutrinos, gamma rays, positrons and antiprotons over the astrophysical background. A complementary method is the production of dark matter particles at colliders such as the Large Hadron Collider, where they could be observed indirectly via missing transverse energy, or via associated particle production. I will review the main experimental efforts to search for dark matter particles, and the existing constraints on the interaction cross sections. I will also discuss future experiments, their complementarity and their ability to measure the properties of these particles.

  14. Teaching of subject matter.

    PubMed

    Mayer, Richard E

    2004-01-01

    Psychology of subject matter refers to the scientific study of learning and instruction within school subjects. The growing research literature on teaching and learning of school subjects represents one of educational psychology's most productive accomplishments of the past two decades. The purpose of this chapter is to examine representative advances in the psychology of subject matter, including how people learn to read words, comprehend printed passages, write compositions, solve arithmetic word problems, and understand how scientific systems work. The introduction provides a historical overview of how to promote transfer and is followed by reviews of representative research in learning and teaching of reading fluency, reading comprehension, writing, mathematics, and science. PMID:14744232

  15. Education Matters, September 2011

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2011-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Lights, Camera, Action! Should Video Cameras Be Put in…

  16. Education Matters, April 2011

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2011-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Doing the Right Thing: Educator Ethics in an Age of…

  17. Education Matters, November 2010

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2010-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Teacher Assessment (Mary Sanchez); (2) Our Economics…

  18. Transforming Training. Families Matter.

    ERIC Educational Resources Information Center

    Morgan, Gwen

    The Families Matter series of papers from the Harvard Family Research Project advances the concept of family-centered child care, advocating an approach to early childhood education that addresses the development of the child and family together. Grounded in family support principles, which build on family strengths and work from a community's…

  19. Credentialing Caregivers. Families Matter.

    ERIC Educational Resources Information Center

    Dean, Christiana

    The Families Matter series of papers from the Harvard Family Research Project advances the concept of family-centered child care, advocating an approach to early childhood education that addresses the development of the child and family together. Grounded in family support principles, which build on family strengths and work from a community's…

  20. Education Matters, September 2010

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2010-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) You Speak Out: 2010 AAE Member Survey; (2) Five Ways to…

  1. Inflatable dark matter

    DOE PAGESBeta

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel

    2016-01-22

    Here, we describe a general scenario, dubbed “inflatable dark matter,” in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levelsmore » without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ~MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.« less

  2. Education Matters, March 2009

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2009-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) The Desperate Need for an Education Stimulus: An…

  3. Education Matters, October 2009

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2009-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Does Demography Dictate Destiny? The Radical Success of…

  4. Education Matters, July 2007

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2007-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) How to Avoid Burnout (Kate Johanns); and (2) Union Loses…

  5. Education Matters, February 2008

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2008-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Misread: Why Congress Isn't Giving Her the Best Reading…

  6. Accountability for What Matters

    ERIC Educational Resources Information Center

    Rothman, Robert

    2016-01-01

    For more than a decade, states have evaluated school performance largely through a single measure--test scores--and rated schools on whether they improved students' performance in reading or math. The idea was to focus schools' attention on the outcomes that mattered most and to focus states' attention on the schools that needed the most help in…

  7. Education Matters, September 2009

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2009-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) National Standards Gain Steam: Governors' Support Rooted…

  8. Education Matters, May 2011

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2011-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Balancing Act: Achieving a Harmony between Your Work…

  9. Education Matters, August 2011

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2011-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Creating New Paths, Attracting New Teachers: Why…

  10. Education Matters, March 2007

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2007-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Supreme Court Hears Union Coercion Case; What I Observed…

  11. Education Matters, September 2008

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2008-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Superteacher (What if "Improving Teacher Quality" isn't…

  12. Education Matters, June 2011

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2011-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Who Deserves Tenure? Is It Time to Move beyond This…

  13. Education Matters, October 2010

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2010-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Lessons from the Frontlines of the Charter School…

  14. Energy Matters, July 1999

    SciTech Connect

    Erickson, E.

    1999-07-09

    This issue of Energy Matters focuses on selling an energy-efficient project to management. There are also articles on combined heat and power systems, inspecting steam traps for efficient system, root cause failure analysis on AC induction motors, and performance optimization tips.

  15. No Laughing Matter. Commentary

    ERIC Educational Resources Information Center

    Simmons, Steven

    2011-01-01

    Steve Kolowich's article, "No Laughing Matter" (2010), highlights the disconnect between information found on university and college websites and information relevant to students. Using a carton by Randall Munroe, Kolowich points out that website designers and college marketing officials really do not understand what is important to prospective…

  16. Cancer Epidemiology Matters Blog

    Cancer.gov

    The Cancer Epidemiology Matters blog helps foster a dialogue between the National Cancer Institute's (NCI) Epidemiology and Genomics Research Program (EGRP), extramural researchers, and other individuals, such as clinicians, community partners, and advocates, who are interested in cancer epidemiology and genomics.

  17. Education Matters, June 2010

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2010-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Coaching Teachers Boosts Student Reading: Large-Scale…

  18. Education Matters, February 2007

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2007-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Making a Game of Math: AAE Affiliate Motivates Oklahoma…

  19. Energy Matters - Spring 2002

    SciTech Connect

    2002-03-01

    Quarterly newsletter from DOE's Industrial Technologies Program to promote the use of energy-efficient industrial systems. The focus of the Spring 2002 Issue of Energy Matters focuses on premium energy efficiency systems, with articles on new gas technologies, steam efficiency, the Augusta Newsprint Showcase, and more.

  20. Education Matters, April 2010

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2010-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Teaching as Leadership: 6 Traits of Highly Effective…

  1. Hot nuclear matter

    SciTech Connect

    Chapman, S.

    1992-11-01

    The goal in this thesis is thus twofold: The first is to investigate the feasibility of using heavy ion collisions to create conditions in the laboratory which are ripe for the formation of a quark-gluon plasma. The second is to develop a technique for studying some of the many non-perturbative features of this novel phase of matter.

  2. Art: What Matters?

    ERIC Educational Resources Information Center

    Friend, Nicholas

    2005-01-01

    Is art merely an adjunct to the serious business of life? Is there a secret ingredient that makes some art more worthwhile than other art? Does art have something to offer that makes its pursuit or purchase worthwhile, or is it simply an outlet for spare capital? Does art really matter at all? (Contains 5 figures.)

  3. Why Poetry Matters

    ERIC Educational Resources Information Center

    Parini, Jay

    2008-01-01

    Poetry does not matter to most people. They go about their business as usual, rarely consulting Shakespeare, Wordsworth, or Frost. One has to wonder if poetry has any place in the 21st century, when music videos and satellite television offer daunting competition for poems, which demand a good deal of attention and considerable analytic skills, as…

  4. Education Matters, October 2011

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2011-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) The Big Shift: Changing Demographics in the Teaching…

  5. Little Higgs dark matter

    SciTech Connect

    Birkedal, Andreas; Noble, Andrew; Perelstein, Maxim; Spray, Andrew

    2006-08-01

    The introduction of T parity dramatically improves the consistency of little Higgs models with precision electroweak data, and renders the lightest T-odd particle (LTP) stable. In the littlest Higgs model with T parity, the LTP is typically the T-odd heavy photon, which is weakly interacting and can play the role of dark matter. We analyze the relic abundance of the heavy photon, including its coannihilations with other T-odd particles, and map out the regions of the parameter space where it can account for the observed dark matter. We evaluate the prospects for direct and indirect discovery of the heavy photon dark matter. The direct detection rates are quite low and a substantial improvement in experimental sensitivity would be required for observation. A substantial flux of energetic gamma rays is produced in the annihilation of the heavy photons in the galactic halo. This flux can be observed by the GLAST telescope, and, if the distribution of dark matter in the halo is favorable, by ground-based telescope arrays such as VERITAS and HESS.

  6. Education Matters, March 2011

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2011-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) The Teacher Factor: Great Teachers Are the Key to Real…

  7. Education Matters, January 2009

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2009-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Invading Privacy: Card Check is on the Way! (Hans…

  8. Why Philosophy Matters

    ERIC Educational Resources Information Center

    Mason, Richard

    2005-01-01

    The motives of philosophers tend to be personal. Philosophy has mattered politically as part of continuing political debates. Its effects on politics, religion and the development of the sciences have been evident. Philosophy has been supposed to have special educational value, from its contents or from the benefits of its methods and arguments.…

  9. Education Matters, May 2010

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2010-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Who Me? Yes, You Can Use Technology to Individualize…

  10. Dark matter on top

    SciTech Connect

    Gómez, M.A.; Jackson, C.B.; Shaughnessy, G. E-mail: chris@uta.edu

    2014-12-01

    We consider a simplified model of fermionic dark matter which couples exclusively to the right-handed top quark via a renormalizable interaction with a color-charged scalar. We first compute the relic abundance of this type of dark matter and investigate constraints placed on the model parameter space by the latest direct detection data. We also perform a detailed analysis for the production of dark matter at the LHC for this model. We find several kinematic variables that allow for a clean signal extraction and we show that the parameter space of this model will be well probed during LHC Run-II. Finally, we investigate the possibility of detecting this type of dark matter via its annihilations into gamma rays. We compute the continuum and the line emission (which includes a possible ''Higgs in Space!'' line) and its possible discovery by future gamma-ray telescopes. We find that the annihilation spectrum has distinctive features which may distinguish it from other models.

  11. Energy Matters - Fall 2002

    SciTech Connect

    2002-09-01

    Quarterly newsletter from DOE's Industrial Technologies Program to promote the use of energy-efficient industrial systems. This issue focus of this edition of the Energy Matters Newsletter is on energy and environmental issues. Read more about compressed air's role in productivity, making good motor decisions, and more.

  12. Education Matters, March 2010

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2010-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) The War on Progress: Why the National Education…

  13. Education Matters, January 2008

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2008-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Agents of Change: Why So Many Teachers Are Quitting, and…

  14. Education Matters, February 2009

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2009-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Arrested Development: Time for Professional Development…

  15. Education Matters, May 2008

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2008-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Is She Your Competition? Are India's Students Outpacing…

  16. Education Matters, September 2007

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2007-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Are They Ready? National Study Reveals Civics Deficit in…

  17. Education Matters, June 2008

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2008-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) A Few Good Men: The Success of the Male Mentorship…

  18. Education Matters, October 2007

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2007-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Some Math Programs are Out of Tune (Niki Hayes); (2)…

  19. Education Matters, April 2007

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2007-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Johnny Can Write...If We Challenge Him (Bill Rhatican);…

  20. Elliott on Mind Matters.

    ERIC Educational Resources Information Center

    Maattanen, Pentti

    2000-01-01

    Argues that David Elliott's conception of the human mind presented in his book "Music Matters" is not coherent. Outlines three alternatives to Elliott's theory of mind. Suggests that the principles associated with the pragmatism of Charles Sanders Pierce would complement Elliott's ideas in his book. (CMK)

  1. Education Matters, December 2008

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.; Prause, Kelley, Ed.

    2008-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Historical Change (Barbara R. Davidson); (2) New…

  2. Education Matters, February 2011

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2011-01-01

    "Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Whatever It Takes? (Maybe Not): 4 Reasons Teachers…

  3. Education Matters, October 2008

    ERIC Educational Resources Information Center

    Beckner, Gary, Ed.

    2008-01-01

    Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Fixing D.C.'s Schools: How a 38-Year-Old Rookie…

  4. White matter of the brain

    MedlinePlus

    White matter is found in the deeper tissues of the brain (subcortical). It contains nerve fibers (axons), which are ... or covering called myelin. Myelin gives the white matter its color. It also protects the nerve fibers ...

  5. White matter of the brain

    MedlinePlus

    ... improves the speed and transmission of electrical nerve signals. By comparison, gray matter is tissue found on the surface of the brain (cortical). It contains the cell bodies of neurons, which give gray matter its color.

  6. The Search for Dark Matter

    SciTech Connect

    Orrell, John

    2013-11-20

    More than 25 years ago, PNNL scientists began the first underground measurements searching for dark matter using specialized radiation detector technology. Dark matter is yet to be discovered says Physicist John L. Orrell.

  7. The Search for Dark Matter

    ScienceCinema

    Orrell, John

    2014-07-24

    More than 25 years ago, PNNL scientists began the first underground measurements searching for dark matter using specialized radiation detector technology. Dark matter is yet to be discovered says Physicist John L. Orrell.

  8. Mind Over Matter: Anabolic Steroids

    MedlinePlus

    ... Term(s): Teachers / NIDA Teaching Guide / Mind Over Matter Teaching Guide and Series / Anabolic Steroids Print Mind Over Matter: Anabolic Steroids Order Free Publication in: English Spanish Download PDF 830.69 KB Anabolic steroids are ...

  9. Direct search for dark matter

    SciTech Connect

    Yoo, Jonghee; /Fermilab

    2009-12-01

    Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.

  10. Is old organic matter simple organic matter?

    NASA Astrophysics Data System (ADS)

    Nunan, Naoise; Lerch, Thomas; Pouteau, Valérie; Mora, Philippe; Changey, Fréderique; Kätterer, Thomas; Herrmann, Anke

    2016-04-01

    Bare fallow soils that have been deprived of fresh carbon inputs for prolonged periods contain mostly old, stable organic carbon. In order to shed light on the nature of this carbon, the functional diversity profiles (MicroResp™, Biolog™ and enzyme activity spectra) of the microbial communities of long-term barefallow soils were analysed and compared with those of the microbial communities from their cultivated counterparts. The study was based on the idea that microbial communities adapt to their environment and that therefore the catabolic and enzymatic profiles would reflect the type of substrates available to the microbial communities. The catabolic profiles suggested that the microbial communities in the long-term bare-fallow soil were exposed to a less diverse range of substrates and that these substrates tended to be of simpler molecular forms. Both the catabolic and enzyme activity profiles suggested that the microbial communities from the long-term bare-fallow soils were less adapted to using polymers. These results do not fit with the traditional view of old, stable carbon being composed of complex, recalcitrant polymers. An energetics analysis of the substrate use of the microbial communities for the different soils suggested that the microbial communities from the long-term bare-fallow soils were better adapted to using readily oxidizable,although energetically less rewarding, substrates. Microbial communities appear to adapt to the deprivation of fresh organic matter by using substrates that require little investment.

  11. Engaged Learning: Why Feelings Matter

    ERIC Educational Resources Information Center

    Fried, Jane

    2013-01-01

    People remember information that is important to them--because it is fundamental to their well-being, or because it matters to them in some other significant way. This is all one really needs to know about unlocking student learning. People learn and remember information that matters to them. So what matters to students? That is a complicated…

  12. Rigid particulate matter sensor

    DOEpatents

    Hall, Matthew

    2011-02-22

    A sensor to detect particulate matter. The sensor includes a first rigid tube, a second rigid tube, a detection surface electrode, and a bias surface electrode. The second rigid tube is mounted substantially parallel to the first rigid tube. The detection surface electrode is disposed on an outer surface of the first rigid tube. The detection surface electrode is disposed to face the second rigid tube. The bias surface electrode is disposed on an outer surface of the second rigid tube. The bias surface electrode is disposed to face the detection surface electrode on the first rigid tube. An air gap exists between the detection surface electrode and the bias surface electrode to allow particulate matter within an exhaust stream to flow between the detection and bias surface electrodes.

  13. Matter in general relativity

    NASA Technical Reports Server (NTRS)

    Ray, J. R.

    1982-01-01

    Two theories of matter in general relativity, the fluid theory and the kinetic theory, were studied. Results include: (1) a discussion of various methods of completing the fluid equations; (2) a method of constructing charged general relativistic solutions in kinetic theory; and (3) a proof and discussion of the incompatibility of perfect fluid solutions in anisotropic cosmologies. Interpretations of NASA gravitational experiments using the above mentioned results were started. Two papers were prepared for publications based on this work.

  14. Inflatable Dark Matter

    SciTech Connect

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D.

    2015-07-30

    We describe a general scenario, dubbed “Inflatable Dark Matter”, in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early universe. The overproduction of dark matter that is predicted within many otherwise well-motivated models of new physics can be elegantly remedied within this context, without the need to tune underlying parameters or to appeal to anthropic considerations. Thermal relics that would otherwise be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the non-thermal abundance of GUT or Planck scale axions can be brought to acceptable levels, without invoking anthropic tuning of initial conditions. Additionally, a period of late-time inflation could have occurred over a wide range of scales from ~ MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the Standard Model.

  15. Inflatable Dark Matter

    DOE PAGESBeta

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D.

    2016-01-22

    We describe a general scenario, dubbed “Inflatable Dark Matter”, in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early universe. The overproduction of dark matter that is predicted within many otherwise well-motivated models of new physics can be elegantly remedied within this context, without the need to tune underlying parameters or to appeal to anthropic considerations. Thermal relics that would otherwise be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the non-thermal abundance of GUTmore » or Planck scale axions can be brought to acceptable levels, without invoking anthropic tuning of initial conditions. Additionally, a period of late-time inflation could have occurred over a wide range of scales from ~ MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the Standard Model.« less

  16. Dark matter axions revisited

    NASA Astrophysics Data System (ADS)

    Visinelli, Luca; Gondolo, Paolo

    2009-08-01

    We study for what specific values of the theoretical parameters the axion can form the totality of cold dark matter. We examine the allowed axion parameter region in the light of recent data collected by the WMAP5 mission plus baryon acoustic oscillations and supernovae, and assume an inflationary scenario and standard cosmology. We also upgrade the treatment of anharmonicities in the axion potential, which we find important in certain cases. If the Peccei-Quinn symmetry is restored after inflation, we recover the usual relation between axion mass and density, so that an axion mass ma=(85±3)μeV makes the axion 100% of the cold dark matter. If the Peccei-Quinn symmetry is broken during inflation, the axion can instead be 100% of the cold dark matter for ma<15meV provided a specific value of the initial misalignment angle θi is chosen in correspondence to a given value of its mass ma. Large values of the Peccei-Quinn symmetry breaking scale correspond to small, perhaps uncomfortably small, values of the initial misalignment angle θi.

  17. Cosmology with matter diffusion

    SciTech Connect

    Calogero, Simone; Velten, Hermano E-mail: velten@cce.ufes.br

    2013-11-01

    We construct a viable cosmological model based on velocity diffusion of matter particles. In order to ensure the conservation of the total energy-momentum tensor in the presence of diffusion, we include a cosmological scalar field φ which we identify with the dark energy component of the universe. The model is characterized by only one new degree of freedom, the diffusion parameter σ. The standard ΛCDM model can be recovered by setting σ = 0. If diffusion takes place (σ > 0) the dynamics of the matter and of the dark energy fields are coupled. We argue that the existence of a diffusion mechanism in the universe may serve as a theoretical motivation for interacting models. We constrain the background dynamics of the diffusion model with Supernovae, H(z) and BAO data. We also perform a perturbative analysis of this model in order to understand structure formation in the universe. We calculate the impact of diffusion both on the CMB spectrum, with particular attention to the integrated Sachs-Wolfe signal, and on the matter power spectrum P(k). The latter analysis places strong constraints on the magnitude of the diffusion mechanism but does not rule out the model.

  18. Dark matter and cosmological nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1986-01-01

    Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.

  19. Cool Quark Matter

    NASA Astrophysics Data System (ADS)

    Kurkela, Aleksi; Vuorinen, Aleksi

    2016-07-01

    We generalize the state-of-the-art perturbative equation of state of cold quark matter to nonzero temperatures, needed in the description of neutron star mergers and core collapse processes. The new result is accurate to O (g5) in the gauge coupling, and is based on a novel framework for dealing with the infrared sensitive soft field modes of the theory. The zero Matsubara mode sector is treated via a dimensionally reduced effective theory, while the soft nonzero modes are resummed using the hard thermal loop approximation. This combination of known effective descriptions offers unprecedented access to small but nonzero temperatures, both in and out of beta equilibrium.

  20. Cool Quark Matter.

    PubMed

    Kurkela, Aleksi; Vuorinen, Aleksi

    2016-07-22

    We generalize the state-of-the-art perturbative equation of state of cold quark matter to nonzero temperatures, needed in the description of neutron star mergers and core collapse processes. The new result is accurate to O(g^{5}) in the gauge coupling, and is based on a novel framework for dealing with the infrared sensitive soft field modes of the theory. The zero Matsubara mode sector is treated via a dimensionally reduced effective theory, while the soft nonzero modes are resummed using the hard thermal loop approximation. This combination of known effective descriptions offers unprecedented access to small but nonzero temperatures, both in and out of beta equilibrium. PMID:27494468

  1. Dark matter axions

    SciTech Connect

    Sikivie, P. |

    1992-09-01

    The physics of axions is briefly reviewed theoretically, and various constraints on the axion mass are recounted. Then the two main contributions to the present cosmological axion energy density, that due to the realignment of the vacuum during the QCD phase transition and that from axions radiated by cosmic axion strings, are discussed. Next, two detection schemes for axions that are sensitive to different mass ranges, an electromagnetic cavity permeated by a strong magnetic field and a system of superconducting wires embedded in a material transparent to microwave radiation, are described. Finally, the phase space structure of cold dark matter galactic halos is considered. (RWR)

  2. Dark matter axions

    SciTech Connect

    Sikivie, P. . Inst. for Theoretical Physics Florida Univ., Gainesville, FL . Dept. of Physics)

    1992-01-01

    The physics of axions is briefly reviewed theoretically, and various constraints on the axion mass are recounted. Then the two main contributions to the present cosmological axion energy density, that due to the realignment of the vacuum during the QCD phase transition and that from axions radiated by cosmic axion strings, are discussed. Next, two detection schemes for axions that are sensitive to different mass ranges, an electromagnetic cavity permeated by a strong magnetic field and a system of superconducting wires embedded in a material transparent to microwave radiation, are described. Finally, the phase space structure of cold dark matter galactic halos is considered. (RWR)

  3. Dark Matter Velocity Spectroscopy.

    PubMed

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications. PMID:26849582

  4. Analysis for Extraneous Matter

    NASA Astrophysics Data System (ADS)

    Dogan, Hulya; Subramanyam, Bhadriraju; Pedersen, John R.

    Analysis for extraneous matter is an important element both in the selection of raw materials for food manufacturing and for monitoring the quality of processed foods. The presence of extraneous material in a food product is unappealing and can pose a serious health hazard to the consumer. It also represents lack of good manufacturing practices and sanitary conditions in production, storage, or distribution. The presence of extraneous materials in the product ingredients may render the final product adulterated and not suitable for human food.

  5. Gravitino Dark Matter

    SciTech Connect

    Buchmueller, Wilfried

    2010-02-10

    Gravitino dark matter, together with thermal leptogenesis, implies an upper bound on the masses of superparticles. In the case of broken R-parity the constraints from primordial nucleosynthesis are naturally satisfied and decaying gravitinos lead to characteristic signatures in high energy cosmic rays. Electron and positron fluxes from gravitino decays cannot explain both, the PAMELA positron fraction and the electron+positron flux recently measured by Fermi LAT. The observed fluxes require astrophysical sources. The measured antiproton flux allows for a sizable contribution of decaying gravitinos to the gamma-ray spectrum, in particular a line at an energy below 300 GeV.

  6. Dark Matter Velocity Spectroscopy

    NASA Astrophysics Data System (ADS)

    Speckhard, Eric G.; Ng, Kenny C. Y.; Beacom, John F.; Laha, Ranjan

    2016-01-01

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy—the measurement of energy shifts induced by relative motion of source and observer—can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  7. Radiative accidental matter

    NASA Astrophysics Data System (ADS)

    Sierra, D. Aristizabal; Simoes, C.; Wegman, D.

    2016-07-01

    Accidental matter models are scenarios where the beyond-the-standard model physics preserves all the standard model accidental and approximate symmetries up to a cutoff scale related with lepton number violation. We study such scenarios assuming that the new physics plays an active role in neutrino mass generation, and show that this unavoidably leads to radiatively induced neutrino masses. We systematically classify all possible models and determine their viability by studying electroweak precision data, big bang nucleosynthesis and electroweak perturbativity, finding that the latter places the most stringent constraints on the mass spectra. These results allow the identification of minimal radiative accidental matter models for which perturbativity is lost at high scales. We calculate radiative charged-lepton flavor violating processes in these setups, and show that μ → eγ has a rate well within MEG sensitivity provided the lepton-number violating scale is at or below 5×105 GeV, a value (naturally) assured by the radiative suppression mechanism. Sizeable τ → μγ branching fractions within SuperKEKB sensitivity are possible for lower lepton-number breaking scales. We thus point out that these scenarios can be tested not only in direct searches but also in lepton flavor-violating experiments.

  8. Baryonic dark matter

    SciTech Connect

    Lynden-Bell, D. ); Gilmore, G. )

    1990-01-01

    Dark matter, first definitely found in the large clusters of galaxies, is now known to be dominant mass in the outer parts of galaxies. All the mass definitely deduced could be made up of baryons, and this would fit well with the requirements of nucleosynthesis in a big bang of small {Omega}{sub B}. However, if inflation is the explanation of the expansion and large scale homogeneity of the universe and of baryon synthesis, and if the universe did not have an infinite extent at the big bang, then {Omega} should be minutely greater than unity. It is commonly hypothesized that most mass is composed of some unknown, non-baryonic form. This book first discusses the known forms, comets, planets, brown dwarfs, stars, gas, galaxies and Lyman {alpha} clouds in which baryons are known to exist. Limits on the amount of dark matter in baryonic form are discussed in the context of the big bang. Inhomogeneities of the right type alleviate the difficulties associated with {Omega}{sub B} = 1 cosmological nucleosynthesis.

  9. Dark matter candidates

    SciTech Connect

    Turner, M.S.

    1989-01-01

    One of the simplest, yet most profound, questions we can ask about the Universe is, how much stuff is in it, and further what is that stuff composed of. Needless to say, the answer to this question has very important implications for the evolution of the Universe, determining both the ultimate fate and the course of structure formation. Remarkably, at this late date in the history of the Universe we still do not have a definitive answer to this simplest of questions---although we have some very intriguing clues. It is known with certainty that most of the material in the Universe is dark, and we have the strong suspicion that the dominant component of material in the Cosmos is not baryons, but rather is exotic relic elementary particles left over from the earliest, very hot epoch of the Universe. If true, the Dark Matter question is a most fundamental one facing both particle physics and cosmology. The leading particle dark matter candidates are: the axion, the neutralino, and a light neutrino species. All three candidates are accessible to experimental tests, and experiments are now in progress. In addition, there are several dark horse, long shot, candidates, including the superheavy magnetic monopole and soliton stars. 13 refs.

  10. Levitating dark matter

    NASA Astrophysics Data System (ADS)

    Kaloper, Nemanja; Padilla, Antonio

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < -1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger `Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  11. Programmable matter by folding

    PubMed Central

    Hawkes, E.; An, B.; Benbernou, N. M.; Tanaka, H.; Kim, S.; Demaine, E. D.; Rus, D.; Wood, R. J.

    2010-01-01

    Programmable matter is a material whose properties can be programmed to achieve specific shapes or stiffnesses upon command. This concept requires constituent elements to interact and rearrange intelligently in order to meet the goal. This paper considers achieving programmable sheets that can form themselves in different shapes autonomously by folding. Past approaches to creating transforming machines have been limited by the small feature sizes, the large number of components, and the associated complexity of communication among the units. We seek to mitigate these difficulties through the unique concept of self-folding origami with universal crease patterns. This approach exploits a single sheet composed of interconnected triangular sections. The sheet is able to fold into a set of predetermined shapes using embedded actuation. To implement this self-folding origami concept, we have developed a scalable end-to-end planning and fabrication process. Given a set of desired objects, the system computes an optimized design for a single sheet and multiple controllers to achieve each of the desired objects. The material, called programmable matter by folding, is an example of a system capable of achieving multiple shapes for multiple functions. PMID:20616049

  12. (Mainly) axion dark matter

    NASA Astrophysics Data System (ADS)

    Baer, Howard

    2016-06-01

    The strong CP problem of QCD is at heart a problem of naturalness: why is the FF ˜ term highly suppressed in the QCD Lagrangian when it seems necessary to explain why there are three and not four light pions? The most elegant solution posits a spontaneously broken Peccei-Quinn (PQ) symmetry which requires the existence of the axion field a. The axion field settles to the minimum of its potential thus removing the offensive term but giving rise to the physical axion whose coherent oscillations can make up the cold dark matter. Only now are experiments such as ADMX beginning to explore QCD axion parameter space. Since a bonafide scalar particle- the Higgs boson- has been discovered, one might expect its mass to reside at the axion scale fa ˜ 1011 GeV. The Higgs mass is elegantly stabilized by supersymmetry: in this case the axion is accompanied by its axino and saxion superpartners. Requiring naturalness also in the electroweak sector implies higgsino-like WIMPs so then we expect mixed axion-WIMP dark matter. Ultimately we would expect detection of both an axion and a WIMP while signals for light higgsinos may show up at LHC and must show up at ILC.

  13. Levitating dark matter

    SciTech Connect

    Kaloper, Nemanja; Padilla, Antonio E-mail: antonio.padilla@nottingham.ac.uk

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra 'antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < −1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger 'Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  14. Direct detection of Dark Matter

    NASA Astrophysics Data System (ADS)

    Belli, P.

    2016-07-01

    An overview of the latest results of Dark Matter direct detection will be summarized, with particular care to the DAMA/LIBRA-phase1 results and the evidence with high confidence level obtained by exploiting the model independent Dark Matter annual modulation signature for the presence of Dark Matter particles in the galactic halo. Results from other experiments using different procedures, different techniques and different target-materials will be shortly discussed. Results, implications and experimental perspectives will be addressed.

  15. Quark matter or new particles?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).

  16. Phase transitions in nuclear matter

    SciTech Connect

    Glendenning, N.K.

    1984-11-01

    The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references.

  17. Arctic River organic matter transport

    NASA Astrophysics Data System (ADS)

    Raymond, Peter; Gustafsson, Orjan; Vonk, Jorien; Spencer, Robert; McClelland, Jim

    2016-04-01

    Arctic Rivers have unique hydrology and biogeochemistry. They also have a large impact on the Arctic Ocean due to the large amount of riverine inflow and small ocean volume. With respect to organic matter, their influence is magnified by the large stores of soil carbon and distinct soil hydrology. Here we present a recap of what is known of Arctic River organic matter transport. We will present a summary of what is known of the ages and sources of Arctic River dissolved and particulate organic matter. We will also discuss the current status of what is known about changes in riverine organic matter export due to global change.

  18. Dark Matter, Waves, and Identification

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2011-10-01

    In 1994 I wrote article for Physics Essays (Waves in Dark Matter) showing how the solar system is organized and stabilized by dark matter standing waves from the dark matter oscillating sun. Wave velocity is apparently inversely proportional to the square root of the dark matter density. At the sun's surface the wave velocity is near 1.25 m/s. More recently I have found local dark matter waves that appear to travel near 25 m/s near April 1 and appear to organize plants. They travel between plants and artificial transmitters and receivers, and penetrate my local hill. From my measurements the local dark matter density is a function of the time of year. The data indicate that dark matter interacts much more than just with gravity as others have surmised. I present experimental proofs and a local dark matter density equation in terms of the measured velocity. The waves and the earth's location may be very important for nature's organization. The observed behavior appears to go a long way towards dark matter identification. These waves also may explain the rings of the gaseous planets in terms of oscillating layers. See the ring article on the web site Darkmatterwaves.com.

  19. Solving the Dark Matter Problem

    ScienceCinema

    Baltz, Ted

    2009-09-01

    Cosmological observations have firmly established that the majority of matter in the universe is of an unknown type, called 'dark matter'. A compelling hypothesis is that the dark matter consists of weakly interacting massive particles (WIMPs) in the mass range around 100 GeV. If the WIMP hypothesis is correct, such particles could be created and studied at accelerators. Furthermore they could be directly detected as the primary component of our galaxy. Solving the dark matter problem requires that the connection be made between the two. We describe some theoretical and experimental avenues that might lead to this connection.

  20. Nucleons, Nuclear Matter and Quark Matter: A unified NJL approach

    SciTech Connect

    S. Lawley; W. Bentz; A.W. Thomas

    2006-02-10

    We use an effective quark model to describe both hadronic matter and deconfined quark matter. By calculating the equations of state and the corresponding neutron star properties, we show that the internal properties of the nucleon have important implications for the properties of these systems.

  1. Parents Matter: Supporting the Birth to Three Matters Framework

    ERIC Educational Resources Information Center

    Abbott, Lesley; Langston, Ann

    2006-01-01

    This book explores the important role of parents and the extended family in the lives of babies and young children. It complements and extends the DfES Birth to Three Matters framework, which supports practitioners in working with children aged birth to three, and builds on the information provided in the companion book "Birth to Three Matters:…

  2. Our Lopsided Universe: The Matter with Anti-Matter

    SciTech Connect

    Sekula, Steve

    2004-06-29

    Half of our universe appears to be missing, and scientists at SLAC and all over the world are trying to understand why. Don't miss this talk in which Steve Sekula will explain the core issues surrounding matter and anti-matter.

  3. PREFACE: Quark Matter 2008

    NASA Astrophysics Data System (ADS)

    Alam, Jan-e.; Chattopadhyay, Subhasis; Nayak, Tapan; Sinha, Bikash; Viyogi, Yogendra P.

    2008-10-01

    Quark Matter 2008—the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions was held in Jaipur, the Pink City of India, from 4-10 February, 2008. Organizing Quark Matter 2008 in India itself indicates the international recognition of the Indian contribution to the field of heavy-ion physics, which was initiated and nurtured by Bikash Sinha, Chair of the conference. The conference was inaugurated by the Honourable Chief Minister of Rajasthan, Smt. Vasundhara Raje followed by the key note address by Professor Carlo Rubbia. The scientific programme started with the theoretical overview, `SPS to RHIC and onwards to LHC' by Larry McLerran followed by several theoretical and experimental overview talks on the ongoing experiments at SPS and RHIC. The future experiments at the LHC, FAIR and J-PARC, along with the theoretical predictions, were discussed in great depth. Lattice QCD predictions on the nature of the phase transition and critical point were vigorously debated during several plenary and parallel session presentations. The conference was enriched by the presence of an unprecedented number of participants; about 600 participants representing 31 countries across the globe. This issue contains papers based on plenary talks and oral presentations presented at the conference. Besides invited and contributed talks, there were also a large number of poster presentations. Members of the International Advisory Committee played a pivotal role in the selection of speakers, both for plenary and parallel session talks. The contributions of the Organizing Committee in all aspects, from helping to prepare the academic programme down to arranging local hospitality, were much appreciated. We thank the members of both the committees for making Quark Matter 2008 a very effective and interesting platform for scientific deliberations. Quark Matter 2008 was financially supported by: Air Liquide (New Delhi) Board of Research Nuclear Sciences (Mumbai) Bose

  4. Indirect Dark Matter Signals

    SciTech Connect

    Boer, Wim de

    2008-11-23

    Dark Matter annihilation (DMA) may yield an excess of gamma rays and antimatter particles, like antiprotons and positrons, above the background from cosmic ray interactions. Several signatures, ranging from the positron excess, as observed by HEAT, AMS-01 and PAMELA, the gamma ray excess, as observed by the EGRET spectrometer, the WMAP-haze, and constraints from antiprotons, as observed by CAPRICE, BESS and PAMELA, have been discussed in the literature. Unfortunately, the different signatures all lead to different WIMP masses, indicating that at least some of these interpretations are likely to be incorrect. Here we review them and discuss their relative merits and uncertainties. New x-ray data from ROSAT suggests non-negligible convection in our Galaxy, which leads to an order of magnitude uncertainty in the yield of charged particles from DMA, since even a rather small convection will let drift the charged particles in the halo to outer space.

  5. Environmental psychology matters.

    PubMed

    Gifford, Robert

    2014-01-01

    Environmental psychology examines transactions between individuals and their built and natural environments. This includes investigating behaviors that inhibit or foster sustainable, climate-healthy, and nature-enhancing choices, the antecedents and correlates of those behaviors, and interventions to increase proenvironmental behavior. It also includes transactions in which nature provides restoration or inflicts stress, and transactions that are more mutual, such as the development of place attachment and identity and the impacts on and from important physical settings such as home, workplaces, schools, and public spaces. As people spend more time in virtual environments, online transactions are coming under increasing research attention. Every aspect of human existence occurs in one environment or another, and the transactions with and within them have important consequences both for people and their natural and built worlds. Environmental psychology matters. PMID:24050189

  6. Bright galaxies, dark matters.

    NASA Astrophysics Data System (ADS)

    Rubin, V.

    This book charts two extraordinary journeys: the road to a better understanding of the structure and composition of the universe, and V. Rubin's own pathbreaking career. The scientific papers included here offer an overview of the topic that has been the major focus of her career: the motions of stars within galaxies and the evidence from these motions that most of the matter in the universe is dark. Elsewhere the author examines some of the tools of her trade - from star charts to the Hubble Telescope to some of the observatories where she has worked. The concluding section, "The astronomical life", finds V. Rubin writing candidly about the demands and rewards of her career, offering insightful portraits of colleagues, friends, and other notable women in science.

  7. Superdense neutron matter

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Datta, B.; Kalman, G.

    1978-01-01

    A relativistic theory of high-density matter is presented which takes into account the short-range interaction due to the exchange of spin-2 mesons. An equation of state is derived and used to compute neutron-star properties. The prediction of the theory for the values of maximum mass and moment of inertia for a stable neutron star are 1.75 solar masses and 1.68 by 10 to the 45th power g-sq cm, in very good agreement with the presently known observational bounds. The corresponding radius is found to be 10.7 km. It is found that the inclusion of the spin-2 interaction reduces the disagreement between the relativistic and nonrelativistic theories in their predictions of masses and moments of inertia.

  8. Language matters: an introduction.

    PubMed

    Leap, William L; Provencher, Denis M

    2011-01-01

    That language and sexuality are closely connected is one of the enduring themes in human sexuality research. The articles in this special issue of the Journal of Homosexuality explore some of these language-centered insights as they apply to same-sex related desires, identities, and practices and to other dimensions of non-normative sexual experiences. The articles address language use over a range of geographic and social locations. The linguistic practices discussed are diverse, including the language associated with Santería, comments viewers make about gay pornography, homophobic discourse, coming out stories, stories where declarations of sexual identity are tacitly withheld, sexual messages in Black hip hop culture, assessments of urban AIDS ministries, and policies that limit transgender subjects' access to urban space. Taken together, these articles demonstrate that language matters in the everyday experience of sexual sameness and they model some of the approaches that are now being explored in language and sexuality studies. PMID:21740206

  9. Quark matter and fermionic dark matter compact stars

    NASA Astrophysics Data System (ADS)

    Samanta, Chhanda; Mukhopadhyay, Somenath; Basu, Devasish Narayan

    2016-03-01

    Compact stars, made of quark matter and fermionic dark matter with arbitrary masses and interaction strengths, are studied by solving the Tolman-Oppenheimer-Volkoff equation of general relativity. The mass-radius relation for quark matter compact stars is obtained from the MIT bag model equation of state (EoS) with thin crust for different bag constants. The EoS of non-self-annihilating dark matter for an interacting Fermi gas with dark matter particle of 1-100 GeV mass is studied. For sufficiently strong interactions, the maximum stable mass of compact stars and its radius are controlled by the parameter of the interaction, both increasing linearly with the interaction strength. The mass-radius relation for compact stars made of strongly interacting fermions shows that the radius remains approximately constant for a wide range of compact stars.

  10. Does Climate Literacy Matter?

    NASA Astrophysics Data System (ADS)

    Bedford, D. P.

    2014-12-01

    One obstacle to climate science education is the perception that climate literacy plays little or no role in the formation of opinions about the reality and seriousness of anthropogenic global warming (AGW), or that members of the non-specialist public already know enough climate science to hold an informed opinion. Why engage in climate science education if climate literacy does not matter? The idea that resistance to or dismissal of the findings and policy implications of climate science can be addressed simply by providing more and better information—the 'deficit model'—has been heavily critiqued in recent years. However, the pendulum is in danger of swinging too far in the opposite direction, with the view that information deficits either do not exist or are not relevant at all to attitude formation, and that cultural perspectives are sufficient by themselves to explain attitudes to AGW. This paper briefly reviews several recent publications that find a correlation between higher levels of climate literacy and greater acceptance of or concern about AGW, then presents results from a survey completed by 458 students at a primarily undergraduate institution in northern Utah in April-May 2013. These data indicate that attitudes to AGW are largely tribal, based on political outlook, Democrats being more concerned, Republicans less concerned. Overall levels of climate literacy demonstrated by respondents were low, but concern about AGW increased with higher levels of climate literacy among Republicans—though not among Democrats, for whom acceptance of AGW appears to be more an article of faith or badge of identity. Findings such as this suggest that, contrary to some recent critiques of the deficit model, information deficits do exist and do matter for opinion formation on AGW, although cultural factors are clearly also of great importance. Climate science education therefore can potentially help engage members of the public in issues related to AGW.

  11. Estimating Dark Matter Distributions

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Woodroofe, Michael; Walker, Matthew G.; Mateo, Mario; Olszewski, Edward

    2005-06-01

    Thanks to instrumental advances, new, very large kinematic data sets for nearby dwarf spheroidal (dSph) galaxies are on the horizon. A key aim of these data sets is to help determine the distribution of dark matter in these galaxies. Past analyses have generally relied on specific dynamical models or highly restrictive dynamical assumptions. We describe a new, nonparametric analysis of the kinematics of nearby dSph galaxies designed to take full advantage of the future large data sets. The method takes as input the projected positions and radial velocities of stars known to be members of the galaxies but does not use any parametric dynamical model or the assumption that the mass distribution follows that of the visible matter. The problem of estimating the radial mass distribution M(r) (the mass within the true radius r) is converted into a problem of estimating a regression function nonparametrically. From the Jeans equation we show that the unknown regression function is subject to fundamental shape restrictions, which we exploit in our analysis using statistical techniques borrowed from isotonic estimation and spline smoothing. Simulations indicate that M(r) can be estimated to within a factor of 2 or better with samples as small as 1000 stars over almost the entire radial range sampled by the kinematic data. The technique is applied to a sample of 181 stars in the Fornax dSph galaxy. We show that the galaxy contains a significant, extended dark halo some 10 times more massive than its baryonic component. Although applied here to dSph kinematics, this approach can be used in the analysis of any kinematically hot stellar system in which the radial velocity field is discretely sampled.

  12. What is a Matter Particle?

    NASA Astrophysics Data System (ADS)

    Chan, Tsan Ung

    Positive baryon numbers (A>0) and positive lepton numbers (L>0) characterize matter particles while negative baryon numbers and negative lepton numbers characterize antimatter particles. Matter particles and antimatter particles belong to two distinct classes of particles. Matter neutral particles are particles characterized by both zero baryon number and zero lepton number. This third class of particles includes mesons formed by a quark and an antiquark pair (a pair of matter particle and antimatter particle) and bosons which are messengers of known interactions (photons for electromagnetism, W and Z bosons for the weak interaction, gluons for the strong interaction). The antiparticle of a matter particle belongs to the class of antimatter particles, the antiparticle of an antimatter particle belongs to the class of matter particles. The antiparticle of a matter neutral particle belongs to the same class of matter neutral particles. A truly neutral particle is a particle identical with its antiparticle; it belongs necessarily to the class of matter neutral particles. All known interactions of the Standard Model conserve baryon number and lepton number; matter cannot be created or destroyed via a reaction governed by these interactions. Conservation of baryon and lepton number parallels conservation of atoms in chemistry; the number of atoms of a particular species in the reactants must equal the number of those atoms in the products. These laws of conservation valid for interaction involving matter particles are indeed valid for any particles (matter particles characterized by positive numbers, antimatter particles characterized by negative numbers, and matter neutral particles characterized by zero). Interactions within the framework of the Standard Model which conserve both matter and charge at the microscopic level cannot explain the observed asymmetry of our Universe. The strong interaction was introduced to explain the stability of nuclei: there must exist a

  13. Astronomy Matters for Chemistry Teachers.

    ERIC Educational Resources Information Center

    Huebner, Jay S.; And Others

    1996-01-01

    Describes basic misconceptions about the origin of elements and forms of matter found in chemistry texts that need modification in light of modern observational data and interpretations given in astronomy. Notes that there are forms of matter other than elements and compounds. Confounding examples from astronomy include white dwarfs, neutron…

  14. Soft matter: food for thought

    NASA Astrophysics Data System (ADS)

    Ogborn, Jon

    2004-01-01

    'Soft matter' is a lively current field of research, looking at fundamental theoretical questions about the structure and behaviour of complex forms of matter, and at very practical problems of, for example, improving the performance of glues or the texture of ice cream. Foodstuffs provide an excellent way in to this modern topic, which lies on the boundary between physics and chemistry.

  15. Soft Matter: Food for Thought

    ERIC Educational Resources Information Center

    Ogborn, Jon

    2004-01-01

    "Soft matter" is a lively current field of research, looking at fundamental theoretical questions about the structure and behaviour of complex forms of matter, and at very practical problems of, for example, improving the performance of glues or the texture of ice cream. Foodstuffs provide an excellent way in to this modern topic, which lies on…

  16. Dark Matter Searches With GLAST

    SciTech Connect

    Wai, Lawrence; Nuss, E.

    2007-02-05

    Indirect detection of particle dark matter relies upon pair annihilation of Weakly Interaction Massive Particles (WIMPs), which is complementary to the well known techniques of direct detection (WIMP-nucleus scattering) and collider production (WIMP pair production). Pair annihilation of WIMPs results in the production of gamma-rays, neutrinos, and anti-matter. Of the various experiments sensitive to indirect detection of dark matter, the Gamma-ray Large Area Space Telescope (GLAST) may play the most crucial role in the next few years. After launch in late 2007, The GLAST Large Area Telescope (LAT) will survey the gamma-ray sky in the energy range of 20MeV-300GeV. By eliminating charged particle background above 100 MeV, GLAST may be sensitive to as yet to be observed Milky Way dark matter subhalos, as well as WIMP pair annihilation spectral lines from the Milky Way halo. Discovery of gamma-ray signals from dark matter in the Milky Way would not only demonstrate the particle nature of dark matter; it would also open a new observational window on galactic dark matter substructure. Location of new dark matter sources by GLAST would dramatically alter the experimental landscape; ground based gamma ray telescopes could follow up on the new GLAST sources with precision measurements of the WIMP pair annihilation spectrum.

  17. The Hunt for Dark Matter

    NASA Astrophysics Data System (ADS)

    Gelmini, Graciela B.

    These lectures, given at the 2014 Theoretical Advanced Study Institute (TASI), are an introduction to what we know at present about dark matter and the major current experimental and observational efforts to identify what it consists of. They attempt to present the complexities of the subject, making clear common simplifying assumptions, to better understand the reach of dark matter searches.

  18. Quantum vacuum and dark matter

    NASA Astrophysics Data System (ADS)

    Hajdukovic, Dragan Slavkov

    2012-01-01

    Recently, the gravitational polarization of the quantum vacuum was proposed as alternative to the dark matter paradigm. In the present paper we consider four benchmark measurements: the universality of the central surface density of galaxy dark matter haloes, the cored dark matter haloes in dwarf spheroidal galaxies, the non-existence of dark disks in spiral galaxies and distribution of dark matter after collision of clusters of galaxies (the Bullet cluster is a famous example). Only some of these phenomena (but not all of them) can (in principle) be explained by the dark matter and the theories of modified gravity. However, we argue that the framework of the gravitational polarization of the quantum vacuum allows the understanding of the totality of these phenomena.

  19. Dark matter versus Mach's principle.

    NASA Astrophysics Data System (ADS)

    von Borzeszkowski, H.-H.; Treder, H.-J.

    1998-02-01

    Empirical and theoretical evidence show that the astrophysical problem of dark matter might be solved by a theory of Einstein-Mayer type. In this theory up to global Lorentz rotations the reference system is determined by the motion of cosmic matter. Thus one is led to a "Riemannian space with teleparallelism" realizing a geometric version of the Mach-Einstein doctrine. The field equations of this gravitational theory contain hidden matter terms where the existence of hidden matter is inferred safely from its gravitational effects. It is argued that in the nonrelativistic mechanical approximation they provide an inertia-free mechanics where the inertial mass of a body is induced by the gravitational action of the comic masses. Interpreted form the Newtonian point of view this mechanics shows that the effective gravitational mass of astrophysical objects depends on r such that one expects the existence of dark matter.

  20. The search for dark matter

    NASA Astrophysics Data System (ADS)

    Cline, David B.

    2016-03-01

    We discuss the search for dark matter. We first review the data from LUX that excludes the low-mass WIMP region and slightly lowers the XENON100 limits. We provide a brief review of the problems with the claimed low-mass signals. We discuss the current expectations for SUSY-WIMP dark matter and show why very massive detectors like Darwin may be required. We discuss some theoretical predictions from the meeting. There was compelling evidence from events observed in the Galactic Center by Fermi-LAT of WIMP dark matter at the UCLA meeting. We recount the Richard Arnowitt Lectures at UCLA dark matter symposiums and his role in the development of the strategy to detect SUGRA dark matter. In Honor of Richard Arnowitt.

  1. Multi-Component Dark Matter

    SciTech Connect

    Zurek, Kathryn M.

    2008-11-01

    We explore multi-component dark matter models where the dark sector consists of multiple stable states with different mass scales, and dark forces coupling these states further enrich the dynamics. The multi-component nature of the dark matter naturally arises in supersymmetric models, where both R parity and an additional symmetry, such as a Z{sub 2}, is preserved. We focus on a particular model where the heavier component of dark matter carries lepton number and annihilates mostly to leptons. The heavier component, which is essentially a sterile neutrino, naturally explains the PAMELA, ATIC and synchrotron signals, without an excess in antiprotons which typically mars other models of weak scale dark matter. The lighter component, which may have a mass from a GeV to a TeV, may explain the DAMA signal, and may be visible in low threshold runs of CDMS and XENON, which search for light dark matter.

  2. Oscillating asymmetric dark matter

    SciTech Connect

    Tulin, Sean; Yu, Hai-Bo; Zurek, Kathryn M. E-mail: haiboyu@umich.edu

    2012-05-01

    We study the dynamics of dark matter (DM) particle-antiparticle oscillations within the context of asymmetric DM. Oscillations arise due to small DM number-violating Majorana-type mass terms, and can lead to recoupling of annihilation after freeze-out and washout of the DM density. Asymmetric DM oscillations 'interpolate' between symmetric and asymmetric DM freeze-out scenarios, and allow for a larger DM model-building parameter space. We derive the density matrix equations for DM oscillations and freeze-out from first principles using nonequilibrium field theory, and our results are qualitatively different than in previous studies. DM dynamics exhibits particle-vs-antiparticle 'flavor' effects, depending on the interaction type, analogous to neutrino oscillations in a medium. 'Flavor-sensitive' DM interactions include scattering or annihilation through a new vector boson, while 'flavor-blind' interactions include scattering or s-channel annihilation through a new scalar boson. In particular, we find that flavor-sensitive annihilation does not recouple when coherent oscillations begin, and that flavor-blind scattering does not lead to decoherence.

  3. Modelling Hadronic Matter

    NASA Astrophysics Data System (ADS)

    Menezes, Débora P.

    2016-04-01

    Hadron physics stands somewhere in the diffuse intersection between nuclear and particle physics and relies largely on the use of models. Historically, around 1930, the first nuclear physics models known as the liquid drop model and the semi-empirical mass formula established the grounds for the study of nuclei properties and nuclear structure. These two models are parameter dependent. Nowadays, around 500 hundred non-relativistic (Skyrme-type) and relativistic models are available in the literature and largely used and the vast majority are parameter dependent models. In this review I discuss some of the shortcomings of using non-relativistic models and the advantages of using relativistic ones when applying them to describe hadronic matter. I also show possible applications of relativistic models to physical situations that cover part of the QCD phase diagram: I mention how the description of compact objects can be done, how heavy-ion collisions can be investigated and particle fractions obtained and show the relation between liquid-gas phase transitions and the pasta phase.

  4. Modeling Soft Matter

    NASA Astrophysics Data System (ADS)

    Kremer, Kurt

    Soft matter science or soft materials science is a relatively new term for the science of a huge class of rather different materials such as colloids, polymers (of synthetic or biological origin), membranes, complex molecular assemblies, complex fluids, etc. and combinations thereof. While many of these systems are contained in or are even the essential part of everyday products ("simple" plastics such as yoghurt cups, plastic bags, CDs, many car parts; gels and networks such as rubber, many low fat foods, "gummi" bears; colloidal systems such as milk, mayonnaise, paints, almost all cosmetics or body care products, the border lines between the different applications and systems are of course not sharp) or as biological molecules or assemblies (DNA, proteins, membranes and cytoskeleton, etc.) are central to our existence, others are basic ingredients of current and future high tech products (polymers with specific optical or electronic properties, conducting macromolecules, functional materials). Though the motivation is different in life science rather than in materials science biomolecular simulations, the basic structure of the problems faced in the two fields is very similar.

  5. Quark matter and cosmology

    SciTech Connect

    Schramm, D.N. |; Fields, B.; Thomas, D.

    1992-01-01

    The possible implications of the quark-hadron transition for cosmology are explored. Possible surviving signatures are discussed. In particular, the possibility of generating a dark matter candidate such as strange nuggets or planetary mass black holes is noted. Much discussion is devoted to the possible role of the transition for cosmological nucleosynthesis. It is emphasized that even an optimized first order phase transition will not significantly alter the nucleosynthesis constraints on the cosmological baryon density nor on neutrino counting. However, it is noted that Be and B observations in old stars may eventually be able to be a signature of a cosmologically significant quark-hadron transition. It is pointed out that the critical point in this regard is whether the observed B/Be ratio can be produced by spallation processes or requires cosmological input. Spallation cannot produce a B/Be ratio below 7.6. A supporting signature would be Be and B ratios to oxygen that greatly exceed galactic values. At present, all data is still consistent with a spallagenic origin.

  6. Probing gravitational dark matter

    NASA Astrophysics Data System (ADS)

    Ren, Jing; He, Hong-Jian

    2015-03-01

    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χs. It is a Bbb Z2 odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξsχs2Script R, where ξs is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξsχs2Script R, together with Higgs-curvature nonminimal coupling term ξhH†HScript R, induces effective couplings between χs2 and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.

  7. Mind and matter.

    PubMed

    Freris, Leon

    2013-11-01

    In the View Point article of Reference 1, the editor of CIB was kind enough to let me express my views on the topic of Darwinian evolution. Since then and mainly through contacts generated by that article, I felt that there was more to be said on this topic. The editor was kind enough to allow me to air my views again.   I have no qualifications in biology or philosophy, so the readers of CIB may find that some of the material on evolution in this article is well-known territory to them, but for me it was a part of the unfolding story that informed my understanding and led me to some conclusions. My thesis is that the explanations based on the present materialist/reductionist views on how experiential qualities developed out of inert matter are unconvincing and that an alternative viewpoint offers a more parsimonious and logically coherent account. The article presents my rearrangement of material contained or taken from references 2, 4, 5, and 6 linked by my own commentary. For a better-argued and ultimately more convincing exposition of the views in this article the interested reader should study the references. PMID:24505505

  8. Probing gravitational dark matter

    SciTech Connect

    Ren, Jing; He, Hong-Jian

    2015-03-27

    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χ{sub s}. It is a ℤ{sub 2} odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξ{sub s}χ{sub s}{sup 2}R, where ξ{sub s} is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξ{sub s}χ{sub s}{sup 2}R, together with Higgs-curvature nonminimal coupling term ξ{sub h}H{sup †}HR, induces effective couplings between χ{sub s}{sup 2} and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.

  9. Mind and matter

    PubMed Central

    Freris, Leon

    2013-01-01

    In the View Point article of Reference 1, the editor of CIB was kind enough to let me express my views on the topic of Darwinian evolution. Since then and mainly through contacts generated by that article, I felt that there was more to be said on this topic. The editor was kind enough to allow me to air my views again.   I have no qualifications in biology or philosophy, so the readers of CIB may find that some of the material on evolution in this article is well-known territory to them, but for me it was a part of the unfolding story that informed my understanding and led me to some conclusions. My thesis is that the explanations based on the present materialist/reductionist views on how experiential qualities developed out of inert matter are unconvincing and that an alternative viewpoint offers a more parsimonious and logically coherent account. The article presents my rearrangement of material contained or taken from references 2, 4, 5, and 6 linked by my own commentary. For a better-argued and ultimately more convincing exposition of the views in this article the interested reader should study the references. PMID:24505505

  10. Bright Galaxies, Dark Matters

    NASA Astrophysics Data System (ADS)

    Rubin, Vera

    In 1965, Vera Rubin was the first woman permitted to observe at Palomar Observatory. In the intervening years, she has become one of the world's finest and most respected astronomers. This particular collection of essays is compiled from work written over the past 15 years and deals with a variety of subjects in astronomy and astrophysics, specifically galaxies and dark matter. The book also contains biographical sketches of astronomers who have been colleagues and friends, providing a stimulating view of a woman in science. About the Author Since 1965 Vera Rubin has been a staff member at the Department of Terrestrial Magnetism of the Carnegie Institution of Washington. Dr. Rubin has authored nearly 200 papers on the structure of our galaxy, motions within other galaxies, and large scale motions in the universe. She has been a distinguished visiting astronomer at the Cerro Tololo Inter American Observatory in Chile; a Chancellor's Distinguished Professor at the University of California, Berkeley; a President's Distinguished Visitor at Vassar College; and a Beatrice Tinsley visiting professor at the University of Texas, Austin.

  11. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  12. AMS-02 fits dark matter

    NASA Astrophysics Data System (ADS)

    Balázs, Csaba; Li, Tong

    2016-05-01

    In this work we perform a comprehensive statistical analysis of the AMS-02 electron, positron fluxes and the antiproton-to-proton ratio in the context of a simplified dark matter model. We include known, standard astrophysical sources and a dark matter component in the cosmic ray injection spectra. To predict the AMS-02 observables we use propagation parameters extracted from observed fluxes of heavier nuclei and the low energy part of the AMS-02 data. We assume that the dark matter particle is a Majorana fermion coupling to third generation fermions via a spin-0 mediator, and annihilating to multiple channels at once. The simultaneous presence of various annihilation channels provides the dark matter model with additional flexibility, and this enables us to simultaneously fit all cosmic ray spectra using a simple particle physics model and coherent astrophysical assumptions. Our results indicate that AMS-02 observations are not only consistent with the dark matter hypothesis within the uncertainties, but adding a dark matter contribution improves the fit to the data. Assuming, however, that dark matter is solely responsible for this improvement of the fit, it is difficult to evade the latest CMB limits in this model.

  13. Astrophysical Probes of Dark Matter

    NASA Astrophysics Data System (ADS)

    Profumo, S.

    2013-08-01

    What is the connection between how the dark matter was produced in the early universe and how we can detect it today? Where does the WIMP miracle come from, and is it really a "WIMP" miracle? What brackets the mass range for thermal relics? Where does <συ> come from, and what does it mean? What is the difference between chemical and kinetic decoupling? Why do some people think that dark matter cannot be lighter than 40 GeV? Why is bbar b such a popular annihilation final state? Why is antimatter a good way to look for dark matter? Why should the cosmic-ray positron fraction decline with energy? How do you calculate the flux of neutrinos from dark matter annihilation in a celestial body, and when is it independent of the dark matter pair-annihilation rate? How does dark matter produce photons? -- Read these lecture notes, do the suggested 10 exercises, and you will find answers to all of these questions (and to many more on what You Always Wanted to Know About Dark Matter But Were Afraid to Ask).

  14. Dark matter and dark radiation

    SciTech Connect

    Ackerman, Lotty; Buckley, Matthew R.; Carroll, Sean M.; Kamionkowski, Marc

    2009-01-15

    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ('dark electromagnetism') that couples only to dark matter, not to the standard model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark-matter mass is sufficiently high and the dark fine-structure constant {alpha}-circumflex is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on {alpha}-circumflex comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies {alpha}-circumflex < or approx. 10{sup -3} for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark-matter dynamics, which remain to be explored.

  15. Reionization and dark matter decay

    NASA Astrophysics Data System (ADS)

    Oldengott, Isabel M.; Boriero, Daniel; Schwarz, Dominik J.

    2016-08-01

    Cosmic reionization and dark matter decay can impact observations of the cosmic microwave sky in a similar way. A simultaneous study of both effects is required to constrain unstable dark matter from cosmic microwave background observations. We compare two reionization models with and without dark matter decay. We find that a reionization model that fits also data from quasars and star forming galaxies results in tighter constraints on the reionization optical depth τreio, but weaker constraints on the spectral index ns than the conventional parametrization. We use the Planck 2015 data to constrain the effective decay rate of dark matter to Γeff < 2.9 × 10‑25/s at 95% C.L. This limit is robust and model independent. It holds for any type of decaying dark matter and it depends only weakly on the chosen parametrization of astrophysical reionization. For light dark matter particles that decay exclusively into electromagnetic components this implies a limit of Γ < 5.3 × 10‑26/s at 95% C.L. Specifying the decay channels, we apply our result to the case of keV-mass sterile neutrinos as dark matter candidates and obtain constraints on their mixing angle and mass, which are comparable to the ones from the diffuse X-ray background.

  16. Direct Dark Matter Detection Phenomenology

    NASA Astrophysics Data System (ADS)

    Newstead, Jayden L.

    The identity and origin of dark matter is one of the more elusive mysteries in the fields of particle physics and cosmology. In the near future, direct dark matter detectors will offer a chance at observing dark matter non-gravitationally for the first time. In this thesis, formalisms are developed to analyze direct detection experiments and to quantify the extent to which properties of the dark matter can be determined. A range of non-standard assumptions about the dark matter are considered, including inelastic scattering, isospin violation and momentum dependent scattering. Bayesian inference is applied to realistic detector configurations to evaluate parameter estimation and model selection ability. A complete set of simplified models for spin-0, spin-1/2 and spin-1 dark matter candidates are formulated. The corresponding non-relativistic operators are found, and are used to derive observational signals for the simplified models. The ability to discern these simplified models with direct detection experiments is demonstrated. In the near future direct dark matter detectors will be sensitive to coherent neutrino scattering, which will limit the discovery potential of these experiments. It was found that eleven of the fourteen non-relativistic operators considered produce signals distinct from coherent scattering, and thus the neutrino background does not greatly affect the discovery potential in these cases.

  17. Prelude to compressed baryonic matter

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    Why study compressed baryonic matter, or more generally strongly interacting matter at high densities and temperatures? Most obviously, because it's an important piece of Nature. The whole universe, in the early moments of the big bang, was filled with the stuff. Today, highly compressed baryonic matter occurs in neutron stars and during crucial moments in the development of supernovae. Also, working to understand compressed baryonic matter gives us new perspectives on ordinary baryonic matter, i.e. the matter in atomic nuclei. But perhaps the best answer is a variation on the one George Mallory gave, when asked why he sought to scale Mount Everest: Because, as a prominent feature in the landscape of physics, it's there. Compressed baryonic matter is a material we can produce in novel, challenging experiments that probe new extremes of temperature and density. On the theoretical side, it is a mathematically well-defined domain with a wealth of novel, challenging problems, as well as wide-ranging connections. Its challenges have already inspired a lot of very clever work, and revealed some wonderful surprises, as documented in this volume.

  18. Skew-flavored dark matter

    DOE PAGESBeta

    Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.; Kilic, Can

    2016-05-10

    We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less

  19. Skew-flavored dark matter

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.; Kilic, Can

    2016-05-01

    We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in which dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. These events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.

  20. Mass extinctions and missing matter

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.

    1984-01-01

    The possible influence of 'invisible matter' on the solar system's comet halo, and therefore on quasi-periodic cometary bombardment of the earth and consequent mass extinctions, is briefly addressed. Invisible matter consisting of small or cold interstellar molecular clouds could significantly modulate the comet background flux, while invisible matter consisting of a large population of old, dead stars with a relatively small galactic concentration probably could not. It is also shown that the downward force exerted by the Galaxy will perturb the halo, but will not produce any periodicity.

  1. Dark-matter 'paparazzi' exposed

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2008-10-01

    After waiting almost two years for data that may shed light on the mysterious substance that makes up almost a quarter of the universe, some physicists thought a new result on dark matter was just too exciting to keep quiet. So when a member of the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) team recently gave a conference talk, a few audience members could not resist taking photos of the slides. By incorporating their snapshots into papers posted on the arXiv preprint server, these "paparazzi" physicists sparked a debate on both dark matter and datasharing etiquette in a digital world.

  2. Soliton matter as a model of dense nuclear matter

    SciTech Connect

    Glendenning, N.K.

    1985-01-01

    We employ the hybrid soliton model of the nucleon consisting of a topological meson field and deeply bound quarks to investigate the behavior of the quarks in soliton matter as a function of density. To organize the calculation, we place the solitons on a spatial lattice. The model suggests the transition of matter from a color insulator to a color conductor above a critical density of a few times normal nuclear density. 9 references, 5 figures.

  3. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  4. Cerebral White Matter

    PubMed Central

    Schmahmann, Jeremy D.; Smith, Eric E.; Eichler, Florian S.; Filley, Christopher M.

    2013-01-01

    Lesions of the cerebral white matter (WM) result in focal neurobehavioral syndromes, neuropsychiatric phenomena, and dementia. The cerebral WM contains fiber pathways that convey axons linking cerebral cortical areas with each other and with subcortical structures, facilitating the distributed neural circuits that subserve sensorimotor function, intellect, and emotion. Recent neuroanatomical investigations reveal that these neural circuits are topographically linked by five groupings of fiber tracts emanating from every neocortical area: (1) cortico-cortical association fibers; (2) corticostriatal fibers; (3) commissural fibers; and cortico-subcortical pathways to (4) thalamus and (5) pontocerebellar system, brain stem, and/or spinal cord. Lesions of association fibers prevent communication between cortical areas engaged in different domains of behavior. Lesions of subcortical structures or projection/striatal fibers disrupt the contribution of subcortical nodes to behavior. Disconnection syndromes thus result from lesions of the cerebral cortex, subcortical structures, and WM tracts that link the nodes that make up the distributed circuits. The nature and the severity of the clinical manifestations of WM lesions are determined, in large part, by the location of the pathology: discrete neurological and neuropsychiatric symptoms result from focal WM lesions, whereas cognitive impairment across multiple domains—WM dementia—occurs in the setting of diffuse WM disease. We present a detailed review of the conditions affecting WM that produce these neurobehavioral syndromes, and consider the pathophysiology, clinical effects, and broad significance of the effects of aging and vascular compromise on cerebral WM, in an attempt to help further the understanding, diagnosis, and treatment of these disorders. PMID:18990132

  5. Light Dark Matter

    NASA Astrophysics Data System (ADS)

    Cassé, M.; Fayet, P.

    The SPI spectrometer aboard of the INTEGRAL satellite has released a map of the e^+e- annihilation emission line of unprecedented quality, showing that most of the photons arise from a region coinciding with the stellar bulge of the Milky Way. The impressive intensity (≃ 10-3 photon cm-2 s-1) and morphology (round and wide) of the emission is begging an explanation. Different classes of astrophysical objects could inject positrons in the interstellar medium of the bulge, but the only acceptable ones should inject them at energies low enough to avoid excessive bremsstrahlung emission in the soft gamma ray regime. Among the ~ MeV injectors, none seems generous enough to sustain the high level of annihilation observed. Even the most profuse candidate, namely the β+ radioactivity of 56Co nuclei created and expelled in the interstellar medium by explosive nucleosynthesis of type Ia supernovae, falls short explaining the phenomenon due to the small fraction of positrons leaking out from the ejecta (≈ 3%), together with the low SNIa rate in the bulge (≈ 0.03 per century). It is therefore worth exploring alternative solutions, as for instance, the idea that the source of the positrons is the annihilation of light dark matter (LDM) particles of the kind recently proposed, totally independently, by Bœhm and Fayet. Assuming that LDM is the culprit, crucial constraints on the characteristics (mass and annihilation cross-section) of the associated particle may be discussed, combining direct gamma ray observations and models of the early Universe. In particular, the mass of the LDM particles should be significantly less than 100 MeV, so that the e+ and e- resulting from their annihilations do not radiate exceedingly through bremsstrahlung in the interstellar gas of the galactic bulge.

  6. Matter perturbations in scaling cosmology

    NASA Astrophysics Data System (ADS)

    Fuño, A. Romero; Hipólito-Ricaldi, W. S.; Zimdahl, W.

    2016-04-01

    A suitable nonlinear interaction between dark matter with an energy density ρM and dark energy with an energy density ρX is known to give rise to a non-canonical scaling ρM ∝ ρXa-ξ, where ξ is a parameter which generally deviates from ξ = 3. Here, we present a covariant generalization of this class of models and investigate the corresponding perturbation dynamics. The resulting matter power spectrum for the special case of a time-varying Lambda model is compared with data from the Sloan Digital Sky Survey (SDSS) DR9 catalogue (Ahn et al.). We find a best-fitting value of ξ = 3.25 which corresponds to a decay of dark matter into the cosmological term. Our results are compatible with the Lambda Cold Dark Matter model at the 2σ confidence level.

  7. Active matter, then and now.

    PubMed

    Keller, Evelyn Fox

    2016-09-01

    Historically, living was divided from dead, inert matter by its autonomous activity. Today, a number of materials not themselves alive are characterized as having inherent activity, and this activity has become the subject of a hot new field of physics, "Active Matter", or "Soft matter become alive." For active matter scientists, the relation of physics to biology is guaranteed in one direction by the assertion that the cell is a material, and hence its study can be considered a branch of material science, and in the other direction, by the claim that the physical dynamics of this material IS what brings the cell to life, and therefore its study is a proper branch of biology. I will examine these claims in relation to the concerns of nineteenth century scientists on the one hand, and on the other, in relation to future prospects of the division between animate and inanimate. PMID:27580611

  8. Galactic Interactions and Dark Matter

    NASA Astrophysics Data System (ADS)

    Willig, T.; Storrs, A.

    2005-12-01

    In studying galactic interactions is it possible with present instrumentation to find evidence of dark matter within these interactions? The present theory is that dark matter and its gravitational force is what accounts for much of spiral galaxy rotation curves. If this is true, we should be able to find evidence of dark matter when two galaxies (one being a spiral galaxy) interact. Several pairs of interacting galaxies in various stages of interaction will be studied. In addition, several non interacting spiral galaxies will be studied for comparisons. We present analysis of a variety of archival imaging data from radio maps through x-ray images in an attempt to observe the effects of dark matter in galaxy interactions.

  9. The Dark Matter of Biology.

    PubMed

    Ross, Jennifer L

    2016-09-01

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology. PMID:27602719

  10. Integrated coherent matter wave circuits

    NASA Astrophysics Data System (ADS)

    Ryu, C.; Boshier, M. G.

    2015-09-01

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. Here we report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through their electric polarizability. The source of coherent matter waves is a Bose-Einstein condensate (BEC). We launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.

  11. The LZ dark matter experiment

    NASA Astrophysics Data System (ADS)

    McKinsey, D. N.; LZ Collaboration

    2016-05-01

    The LUX and ZEPLIN collaborations have merged to construct a 7 tonne two-phase Xe dark matter detector, known as LUX-ZEPLIN or LZ. Chosen as one of the Generation 2 suite of dark matter direct detection experiments, LZ will probe spin-independent WIMP-nucleon cross sections down to 2 × 10-48 cm2 at 50 GeV/c2 within 3 years of operation, covering a substantial range of theoretically-motivated dark matter candidates. Along with dark matter interactions with Xe nuclei, LZ will also be sensitive to solar neutrinos emitted by the pp fusion process in the sun, neutrinos emitted by a nearby supernova and detected by coherent neutrino-nucleus scattering, certain classes of axions and axion-like particles, and neutrinoless double-beta decay of 136Xe. The design of LZ is presented, along with its expected backgrounds and projected sensitivity.

  12. Thermodynamics of cosmological matter creation.

    PubMed

    Prigogine, I; Geheniau, J; Gunzig, E; Nardone, P

    1988-10-01

    A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the

  13. Thermodynamics of cosmological matter creation

    PubMed Central

    Prigogine, I.; Geheniau, J.; Gunzig, E.; Nardone, P.

    1988-01-01

    A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the

  14. Dark matter triggers of supernovae

    NASA Astrophysics Data System (ADS)

    Graham, Peter W.; Rajendran, Surjeet; Varela, Jaime

    2015-09-01

    The transit of primordial black holes through a white dwarf causes localized heating around the trajectory of the black hole through dynamical friction. For sufficiently massive black holes, this heat can initiate runaway thermonuclear fusion causing the white dwarf to explode as a supernova. The shape of the observed distribution of white dwarfs with masses up to 1.25 M⊙ rules out primordial black holes with masses ˜1019- 1020 gm as a dominant constituent of the local dark matter density. Black holes with masses as large as 1024 gm will be excluded if recent observations by the NuStar Collaboration of a population of white dwarfs near the galactic center are confirmed. Black holes in the mass range 1020- 1022 gm are also constrained by the observed supernova rate, though these bounds are subject to astrophysical uncertainties. These bounds can be further strengthened through measurements of white dwarf binaries in gravitational wave observatories. The mechanism proposed in this paper can constrain a variety of other dark matter scenarios such as Q balls, annihilation/collision of large composite states of dark matter and models of dark matter where the accretion of dark matter leads to the formation of compact cores within the star. White dwarfs, with their astronomical lifetimes and sizes, can thus act as large spacetime volume detectors enabling a unique probe of the properties of dark matter, especially of dark matter candidates that have low number density. This mechanism also raises the intriguing possibility that a class of supernova may be triggered through rare events induced by dark matter rather than the conventional mechanism of accreting white dwarfs that explode upon reaching the Chandrasekhar mass.

  15. Strongly interacting parton matter equilibration

    SciTech Connect

    Ozvenchuk, V.; Linnyk, O.; Bratkovskaya, E.; Gorenstein, M.; Cassing, W.

    2012-07-15

    We study the kinetic and chemical equilibration in 'infinite' parton matter within the Parton-Hadron-String Dynamics transport approach. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different energy densities. Particle abundances, kinetic energy distributions, and the detailed balance of the off-shell quarks and gluons in the strongly-interacting quarkgluon plasma are addressed and discussed.

  16. Neutron stars and strange matter

    SciTech Connect

    Cooperstein, J.

    1986-01-01

    The likelihood is investigated that quark matter with strangeness of order unity resides in neutron stars. In the strong coupling regime near rho/sub 0/ this is found to be unlikely. Considering higher densities where perturbative expansions are used, we find a lower bound to be at 7rho/sub 0/ for the transition density. This is higher than the inferred density of observed neutron stars, and thus the transition to quark matter is precluded. 15 refs., 3 figs.

  17. Sterile neutrinos as dark matter

    SciTech Connect

    Dodelson, S.; Widrow, L.M. |

    1993-03-01

    The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed or sterile neutrinos. This model has been studied extensively in the context of the hot dark matter scenario. We reexamine this model and find that hot, warm, and cold dark matter are all possibilities. We focus on the case where sterile neutrinos are the dark matter. Since their only direct coupling is to left-handed or active neutrinos, the most efficient production mechanism is via neutrino oscillations. If the production rate is always less than the expansion rate, then these neutrinos will never be in thermal equilibrium. However, they may still play a significant role in the dynamics of the Universe and possibly provide the missing mass necessary for closure. We consider a single generation of neutrino fields ({nu}{sub L}, {nu}{sub R}) with a Dirac mass, {mu}, and a Majorana mass for the right-handed components only, M. For M {much_gt} {mu} we show that the number density of sterile neutrinos is proportional to {mu}{sup 2}/M so that the energy density today is independent of M. However M is crucial in determining the large scale structure of the Universe. In particular, M {approx_equal} 0.1--1.0 key leads to warm dark matter and a structure formation scenario that may have some advantages over both the standard hot and cold dark matter scenarios.

  18. Sterile neutrinos as dark matter

    SciTech Connect

    Dodelson, S. ); Widrow, L.M. . Dept. of Physics Toronto Univ., ON . Canadian Inst. for Theoretical Astrophysics)

    1993-03-01

    The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed or sterile neutrinos. This model has been studied extensively in the context of the hot dark matter scenario. We reexamine this model and find that hot, warm, and cold dark matter are all possibilities. We focus on the case where sterile neutrinos are the dark matter. Since their only direct coupling is to left-handed or active neutrinos, the most efficient production mechanism is via neutrino oscillations. If the production rate is always less than the expansion rate, then these neutrinos will never be in thermal equilibrium. However, they may still play a significant role in the dynamics of the Universe and possibly provide the missing mass necessary for closure. We consider a single generation of neutrino fields ([nu][sub L], [nu][sub R]) with a Dirac mass, [mu], and a Majorana mass for the right-handed components only, M. For M [much gt] [mu] we show that the number density of sterile neutrinos is proportional to [mu][sup 2]/M so that the energy density today is independent of M. However M is crucial in determining the large scale structure of the Universe. In particular, M [approx equal] 0.1--1.0 key leads to warm dark matter and a structure formation scenario that may have some advantages over both the standard hot and cold dark matter scenarios.

  19. Triplet-quadruplet dark matter

    NASA Astrophysics Data System (ADS)

    Tait, Tim M. P.; Yu, Zhao-Huan

    2016-03-01

    We explore a dark matter model extending the standard model particle content by one fermionic SU(2) L triplet and two fermionic SU(2) L quadruplets, leading to a minimal realistic UV-complete model of electroweakly interacting dark matter which interacts with the Higgs doublet at tree level via two kinds of Yukawa couplings. After electroweak symmetry-breaking, the physical spectrum of the dark sector consists of three Majorana fermions, three singly charged fermions, and one doubly charged fermion, with the lightest neutral fermion χ 1 0 serving as a dark matter candidate. A typical spectrum exhibits a large degree of degeneracy in mass between the neutral and charged fermions, and we examine the one-loop corrections to the mass differences to ensure that the lightest particle is neutral. We identify regions of parameter space for which the dark matter abundance is saturated for a standard cosmology, including coannihilation channels, and find that this is typically achieved for {m}_{χ_1^0}˜ 2.4 TeV. Constraints from precision electroweak measurements, searches for dark matter scattering with nuclei, and dark matter annihilation are important, but leave open a viable range for a thermal relic.

  20. Bootstrapping white matter segmentation, Eve++

    NASA Astrophysics Data System (ADS)

    Plassard, Andrew; Hinton, Kendra E.; Venkatraman, Vijay; Gonzalez, Christopher; Resnick, Susan M.; Landman, Bennett A.

    2015-03-01

    Multi-atlas labeling has come in wide spread use for whole brain labeling on magnetic resonance imaging. Recent challenges have shown that leading techniques are near (or at) human expert reproducibility for cortical gray matter labels. However, these approaches tend to treat white matter as essentially homogeneous (as white matter exhibits isointense signal on structural MRI). The state-of-the-art for white matter atlas is the single-subject Johns Hopkins Eve atlas. Numerous approaches have attempted to use tractography and/or orientation information to identify homologous white matter structures across subjects. Despite success with large tracts, these approaches have been plagued by difficulties in with subtle differences in course, low signal to noise, and complex structural relationships for smaller tracts. Here, we investigate use of atlas-based labeling to propagate the Eve atlas to unlabeled datasets. We evaluate single atlas labeling and multi-atlas labeling using synthetic atlases derived from the single manually labeled atlas. On 5 representative tracts for 10 subjects, we demonstrate that (1) single atlas labeling generally provides segmentations within 2mm mean surface distance, (2) morphologically constraining DTI labels within structural MRI white matter reduces variability, and (3) multi-atlas labeling did not improve accuracy. These efforts present a preliminary indication that single atlas labels with correction is reasonable, but caution should be applied. To purse multi-atlas labeling and more fully characterize overall performance, more labeled datasets would be necessary.

  1. Two field matter bounce cosmology

    SciTech Connect

    Cai, Yi-Fu; McDonough, Evan; Duplessis, Francis; Brandenberger, Robert H. E-mail: evanmc@physics.mcgill.ca E-mail: rhb@hep.physics.mcgill.ca

    2013-10-01

    We re-examine the non-singular Matter Bounce scenario first developed in [20], which starts with a matter-dominated period of contraction and transitions into an Ekpyrotic phase of contraction. We consider both matter fields, the first of which plays the role of regular matter, and the second of which is responsible for the non-singular bounce. Since the dominant matter field is massive, the induced curvature fluctuations are initially not scale-invariant, whereas the fluctuations of the second scalar field (which are initially entropy fluctuations) are scale-invariant. We study the transfer of the initial entropy perturbations into curvature fluctuations in the matter-dominated phase of contraction and show that the latter become nearly scale invariant on large scales but are blue tilted on small scales. We study the evolution of both curvature and entropy fluctuations through the bounce, and show that both have a scale-invariant spectrum which is blue-tilted on small scales. However, we find that the entropy fluctuations have an amplitude that is much smaller than that of the curvature perturbations, due to gravitational amplification of curvature perturbations during the bounce phase.

  2. Dark matter and global symmetries

    NASA Astrophysics Data System (ADS)

    Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.

    2016-09-01

    General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O (1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime.

  3. Dark matter beams at LBNF

    NASA Astrophysics Data System (ADS)

    Coloma, Pilar; Dobrescu, Bogdan A.; Frugiuele, Claudia; Harnik, Roni

    2016-04-01

    High-intensity neutrino beam facilities may produce a beam of light dark matter when protons strike the target. Searches for such a dark matter beam using its scattering in a nearby detector must overcome the large neutrino background. We characterize the spatial and energy distributions of the dark matter and neutrino beams, focusing on their differences to enhance the sensitivity to dark matter. We find that a dark matter beam produced by a Z ' boson in the GeV mass range is both broader and more energetic than the neutrino beam. The reach for dark matter is maximized for a detector sensitive to hard neutral-current scatterings, placed at a sizable angle off the neutrino beam axis. In the case of the Long-Baseline Neutrino Facility (LBNF), a detector placed at roughly 6 degrees off axis and at a distance of about 200 m from the target would be sensitive to Z ' couplings as low as 0.05. This search can proceed symbiotically with neutrino measurements. We also show that the MiniBooNE and MicroBooNE detectors, which are on Fermilab's Booster beamline, happen to be at an optimal angle from the NuMI beam and could perform searches with existing data. This illustrates potential synergies between LBNF and the short-baseline neutrino program if the detectors are positioned appropriately.

  4. Dark matter beams at LBNF

    DOE PAGESBeta

    Coloma, Pilar; Dobrescu, Bogdan A.; Frugiuele, Claudia; Harnik, Roni

    2016-04-08

    High-intensity neutrino beam facilities may produce a beam of light dark matter when protons strike the target. Searches for such a dark matter beam using its scattering in a nearby detector must overcome the large neutrino background. We characterize the spatial and energy distributions of the dark matter and neutrino beams, focusing on their differences to enhance the sensitivity to dark matter. We find that a dark matter beam produced by a Zmore » $$^{'}$$ boson in the GeV mass range is both broader and more energetic than the neutrino beam. The reach for dark matter is maximized for a detector sensitive to hard neutral-current scatterings, placed at a sizable angle off the neutrino beam axis. In the case of the Long-Baseline Neutrino Facility (LBNF), a detector placed at roughly 6 degrees off axis and at a distance of about 200 m from the target would be sensitive to Z$$^{'}$$ couplings as low as 0.05. This search can proceed symbiotically with neutrino measurements. We also show that the MiniBooNE and MicroBooNE detectors, which are on Fermilab’s Booster beamline, happen to be at an optimal angle from the NuMI beam and could perform searches with existing data. As a result, this illustrates potential synergies between LBNF and the short-baseline neutrino program if the detectors are positioned appropriately.« less

  5. Plasma dark matter direct detection

    NASA Astrophysics Data System (ADS)

    Clarke, J. D.; Foot, R.

    2016-01-01

    Dark matter in spiral galaxies like the Milky Way may take the form of a dark plasma. Hidden sector dark matter charged under an unbroken U(1)' gauge interaction provides a simple and well defined particle physics model realising this possibility. The assumed U(1)' neutrality of the Universe then implies (at least) two oppositely charged dark matter components with self-interactions mediated via a massless "dark photon" (the U(1)' gauge boson). In addition to nuclear recoils such dark matter can give rise to keV electron recoils in direct detection experiments. In this context, the detailed physical properties of the dark matter plasma interacting with the Earth is required. This is a complex system, which is here modelled as a fluid governed by the magnetohydrodynamic equations. These equations are numerically solved for some illustrative examples, and implications for direct detection experiments discussed. In particular, the analysis presented here leaves open the intriguing possibility that the DAMA annual modulation signal is due primarily to electron recoils (or even a combination of electron recoils and nuclear recoils). The importance of diurnal modulation (in addition to annual modulation) as a means of probing this kind of dark matter is also emphasised.

  6. Extreme Mechanics of Growing Matter

    NASA Astrophysics Data System (ADS)

    Kuhl, Ellen

    2013-03-01

    Growth is a distinguishing feature of all living things. Unlike standard materials, living matter can autonomously respond to alterations in its environment. As a result of a continuous ultrastructural turnover and renewal of cells and extracellular matrix, living matter can undergo extreme changes in composition, size, and shape within the order of months, weeks, or days. While hard matter typically adapts by increasing its density to grow strong, soft matter adapts by increasing its volume to grow large. Here we provide a state-of-the-art review of growing matter, and compare existing mathematical models for growth and remodeling of living systems. Applications are plentiful ranging from plant growth to tumor growth, from asthma in the lungs to restenosis in the vasculature, from plastic to reconstructive surgery, and from skeletal muscle adaptation to heart failure. Using these examples, we discuss current challenges and potential future directions. We hope to initiate critical discussions around the biophysical modeling of growing matter as a powerful tool to better understand biological systems in health and disease. This research has been supported by the NSF CAREER award CMMI 0952021.

  7. Cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Dubinski, John Joseph

    The dark halos arising in the Cold Dark Matter (CDM) cosmology are simulated to investigate the relationship between the structure and kinematics of dark halos and galaxies. Realistic cosmological initial conditions and tidal field boundary conditions are used in N-body simulations of the collapse of density peaks to form dark halos. The core radii of dark halos are no greater than the softening radius, rs = 1.4 kpc. The density profiles can be fit with an analytical Hernquist (1990) profile with an effective power law which varies between -1 in the center to -4 at large radii. The rotation curves of dark halos resemble the flat rotation curves of spiral galaxies in the observed range, 1.5 approximately less than r approximately less than 30 kpc. The halos are strongly triaxial and very flat with (c/a) = 0.50 and (b/a) = 0.71. The distribution of ellipticities for dark halos reaches a maximum at epsilon = 0.5 in contrast to the distribution for elliptical galaxies which peaks at epsilon = 0.2 suggesting that ellipticals are much rounder than dark halos. Dark halos are generally flatter than their progenitor density peaks. The final shape and orientation of a dark halo are largely determined by tidal torquing and are sensitive to changes in the strength and orientation of a tidal field. Dark halos are pressure supported objects with negligible rotational support as indicated by the mean dimensionless spin, lamda = 0.042 +/- 0.024. The angular momentum vector tends to align with the true minor axis of dark halos. Elliptical galaxies have a similar behavior implied by the observation of the tendency for alignment of the rotation vector and the apparent minor axis. The origin of this behavior may be traced to the tendency for tidal torques to misalign with the major axis of a density peak. Tidal torques are found to isotropize the velocity ellipsoids of dark halos at large radii, contrary to the expectation of radially anisotropic velocity ellipsoids in cold collapse

  8. Matter-antimatter asymmetry and dark matter from torsion

    SciTech Connect

    Poplawski, Nikodem J.

    2011-04-15

    We propose a simple scenario which explains the observed matter-antimatter imbalance and the origin of dark matter in the Universe. We use the Einstein-Cartan-Sciama-Kibble theory of gravity which naturally extends general relativity to include the intrinsic spin of matter. Spacetime torsion produced by spin generates, in the classical Dirac equation, the Hehl-Datta term which is cubic in spinor fields. We show that under a charge-conjugation transformation this term changes sign relative to the mass term. A classical Dirac spinor and its charge conjugate therefore satisfy different field equations. Fermions in the presence of torsion have higher energy levels than antifermions, which leads to their decay asymmetry. Such a difference is significant only at extremely high densities that existed in the very early Universe. We propose that this difference caused a mechanism, according to which heavy fermions existing in such a Universe and carrying the baryon number decayed mostly to normal matter, whereas their antiparticles decayed mostly to hidden antimatter which forms dark matter. The conserved total baryon number of the Universe remained zero.

  9. Matter-antimatter asymmetry and dark matter from torsion

    NASA Astrophysics Data System (ADS)

    Popławski, Nikodem J.

    2011-04-01

    We propose a simple scenario which explains the observed matter-antimatter imbalance and the origin of dark matter in the Universe. We use the Einstein-Cartan-Sciama-Kibble theory of gravity which naturally extends general relativity to include the intrinsic spin of matter. Spacetime torsion produced by spin generates, in the classical Dirac equation, the Hehl-Datta term which is cubic in spinor fields. We show that under a charge-conjugation transformation this term changes sign relative to the mass term. A classical Dirac spinor and its charge conjugate therefore satisfy different field equations. Fermions in the presence of torsion have higher energy levels than antifermions, which leads to their decay asymmetry. Such a difference is significant only at extremely high densities that existed in the very early Universe. We propose that this difference caused a mechanism, according to which heavy fermions existing in such a Universe and carrying the baryon number decayed mostly to normal matter, whereas their antiparticles decayed mostly to hidden antimatter which forms dark matter. The conserved total baryon number of the Universe remained zero.

  10. 20 CFR 702.371 - Interlocutory matters.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Interlocutory matters. 702.371 Section 702... Procedures Interlocutory Matters, Supplementary Orders, and Modifications § 702.371 Interlocutory matters. Compensation orders shall not be made or filed with respect to interlocutory matters of a procedural...

  11. 20 CFR 702.371 - Interlocutory matters.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Interlocutory matters. 702.371 Section 702... Procedures Interlocutory Matters, Supplementary Orders, and Modifications § 702.371 Interlocutory matters. Compensation orders shall not be made or filed with respect to interlocutory matters of a procedural...

  12. 7 CFR 201.51 - Inert matter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Inert matter. 201.51 Section 201.51 Agriculture... REGULATIONS Purity Analysis in the Administration of the Act § 201.51 Inert matter. Inert matter shall include.... Also included as inert matter are separated cotyledons of legumes, irrespective of whether or not...

  13. 20 CFR 702.371 - Interlocutory matters.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Interlocutory matters. 702.371 Section 702... Procedures Interlocutory Matters, Supplementary Orders, and Modifications § 702.371 Interlocutory matters. Compensation orders shall not be made or filed with respect to interlocutory matters of a procedural...

  14. Matter and Interactions: A Particle Physics Perspective

    ERIC Educational Resources Information Center

    Organtini, Giovanni

    2011-01-01

    In classical mechanics, matter and fields are completely separated; matter interacts with fields. For particle physicists this is not the case; both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this article we explain why particle physicists believe in…

  15. 7 CFR 201.51 - Inert matter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Inert matter. 201.51 Section 201.51 Agriculture... REGULATIONS Purity Analysis in the Administration of the Act § 201.51 Inert matter. Inert matter shall include.... Also included as inert matter are separated cotyledons of legumes, irrespective of whether or not...

  16. 20 CFR 702.371 - Interlocutory matters.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Interlocutory matters. 702.371 Section 702... Procedures Interlocutory Matters, Supplementary Orders, and Modifications § 702.371 Interlocutory matters. Compensation orders shall not be made or filed with respect to interlocutory matters of a procedural...

  17. 7 CFR 201.51 - Inert matter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Inert matter. 201.51 Section 201.51 Agriculture... REGULATIONS Purity Analysis in the Administration of the Act § 201.51 Inert matter. Inert matter shall include.... Also included as inert matter are separated cotyledons of legumes, irrespective of whether or not...

  18. 7 CFR 201.51 - Inert matter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Inert matter. 201.51 Section 201.51 Agriculture... REGULATIONS Purity Analysis in the Administration of the Act § 201.51 Inert matter. Inert matter shall include.... Also included as inert matter are separated cotyledons of legumes, irrespective of whether or not...

  19. 20 CFR 702.371 - Interlocutory matters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Interlocutory matters. 702.371 Section 702... Procedures Interlocutory Matters, Supplementary Orders, and Modifications § 702.371 Interlocutory matters. Compensation orders shall not be made or filed with respect to interlocutory matters of a procedural...

  20. Double-Disk Dark Matter

    NASA Astrophysics Data System (ADS)

    Fan, JiJi; Katz, Andrey; Randall, Lisa; Reece, Matthew

    2013-09-01

    Based on observational tests of large scale structure and constraints on halo structure, dark matter is generally taken to be cold and essentially collisionless. On the other hand, given the large number of particles and forces in the visible world, a more complex dark sector could be a reasonable or even likely possibility. This hypothesis leads to testable consequences, perhaps portending the discovery of a rich hidden world neighboring our own. We consider a scenario that readily satisfies current bounds that we call Partially Interacting Dark Matter (PIDM). This scenario contains self-interacting dark matter, but it is not the dominant component. Even if PIDM contains only a fraction of the net dark matter density, comparable to the baryonic fraction, the subdominant component’s interactions can lead to interesting and potentially observable consequences. Our primary focus will be the special case of Double-Disk Dark Matter (DDDM), in which self-interactions allow the dark matter to lose enough energy to lead to dynamics similar to those in the baryonic sector. We explore a simple model in which DDDM can cool efficiently and form a disk within galaxies, and we evaluate some of the possible observational signatures. The most prominent signal of such a scenario could be an enhanced indirect detection signature with a distinctive spatial distribution. Even though subdominant, the enhanced density at the center of the galaxy and possibly throughout the plane of the galaxy (depending on precise alignment) can lead to large boost factors, and could even explain a signature as large as the 130 GeV Fermi line. Such scenarios also predict additional dark radiation degrees of freedom that could soon be detectable and would influence the interpretation of future data, such as that from Planck and from the Gaia satellite. We consider this to be the first step toward exploring a rich array of new possibilities for dark matter dynamics.

  1. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  2. Quality and Safety Matter

    NASA Astrophysics Data System (ADS)

    Manha, William D.

    2010-09-01

    ,(the presenter) 0 injuries, 0 deaths 3. March 18, 1980,(USSR) Vostok 8A92M booster pad explosion, 48 deaths. 4. August 22, 2003,(Brazil) -Alcantara VLS -1, V03. Solid rocket ignited on pad, 21 deaths 5. Summer of 2006(USA) a payload organization inquired about requirements to fly a satellite with a new “safe” SpaceDev hybrid propulsion system using a solid polymer as the fuel and nitrous oxide as the oxidizer. The extensive titanium/nitrous oxide materials compatibility testing that was required discouraged the payload organization from further exploration of using the Shuttle as the launch vehicle. 6. July 26, 2007(USA) SpaceShipTwo nitrous oxide explosion, 3 seriously injured, 3 deaths The above listed catastrophic failures resulted in 210 deaths, but there were none on the Apollo SM explosion because of compliance with CalOSHA. This is an applied lesson learned of the Shuttle. Safety was not jeopardized without extensive materials compatibility testing. On the other hand, the nitrous oxide was erroneously identified as safe for launch from Shuttle or ISS which resulted in a catastrophic explosion and resulted in 3 major injuries, and 3 deaths. This is a testimony of a survivor of a catastrophic failure where safety rules were followed and the application of the lesson learned which confirmed safety and quality, as expressed by Von Braun, PERFECTION and SAFETY do MATTER!

  3. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  4. Cryogenic Dark Matter Search (CDMS): The Hunt for Dark Matter

    SciTech Connect

    Sadoulet, Bernard

    2006-03-06

    Deciphering the nature of dark matter has great scientific importance. A leading hypothesis is that dark matter is made of Weakly Interactive Massive Particles (WIMPs), which may result from supersymmetry or additional spatial dimensions. The underground search for elastic scattering of WIMPs on suitable targets (the so-called 'direct detection') is currently led by the Cryogenic Dark Matter Search II (CDMS II) experiment. Its sensitivity is ten times better than any other experiment and we hope to obtain another factor ten in the coming two years. After a brief recall of our recent results, I will describe the complementarity between direct detection experiments, the LHC and the ILC and I will outline the role that SLAC could play in this SuperCDMS program.

  5. Dark matter from dark energy-baryonic matter couplings

    NASA Astrophysics Data System (ADS)

    Avilés, Alejandro; Cervantes-Cota, Jorge L.

    2011-01-01

    We present a scenario in which a scalar field dark energy is coupled to the trace of the energy momentum tensor of the baryonic matter fields. In the slow-roll regime, this interaction could give rise to the cosmological features of dark matter. We work out the cosmological background solutions and fit the parameters of the model using the Union 2 supernovae data set. Then, we develop cosmological perturbations up to linear order, and we find that the perturbed variables have an acceptable behavior, in particular, the density contrast of baryonic matter grows similar to that in the ΛCDM model for a suitable choice of the strength parameter of the coupling.

  6. Molecular dynamics for dense matter

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshiki; Watanabe, Gentaro; Chiba, Satoshi

    2012-08-01

    We review a molecular dynamics method for nucleon many-body systems called quantum molecular dynamics (QMD), and our studies using this method. These studies address the structure and the dynamics of nuclear matter relevant to neutron star crusts, supernova cores, and heavy-ion collisions. A key advantage of QMD is that we can study dynamical processes of nucleon many-body systems without any assumptions about the nuclear structure. First, we focus on the inhomogeneous structures of low-density nuclear matter consisting not only of spherical nuclei but also of nuclear "pasta", i.e., rod-like and slab-like nuclei. We show that pasta phases can appear in the ground and equilibrium states of nuclear matter without assuming nuclear shape. Next, we show our simulation of compression of nuclear matter which corresponds to the collapsing stage of supernovae. With the increase in density, a crystalline solid of spherical nuclei changes to a triangular lattice of rods by connecting neighboring nuclei. Finally, we discuss fragment formation in expanding nuclear matter. Our results suggest that a generally accepted scenario based on the liquid-gas phase transition is not plausible at lower temperatures.

  7. Did LIGO Detect Dark Matter?

    NASA Astrophysics Data System (ADS)

    Bird, Simeon; Cholis, Ilias; Muñoz, Julian B.; Ali-Haïmoud, Yacine; Kamionkowski, Marc; Kovetz, Ely D.; Raccanelli, Alvise; Riess, Adam G.

    2016-05-01

    We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20 M⊙≲Mbh≲100 M⊙ where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to the emission of gravitational radiation and ultimately will merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2 - 53 Gpc-3 yr-1 rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have neither optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next-generation experiments will be invaluable in performing these tests.

  8. White matter dementia in CADASIL.

    PubMed

    Filley, C M; Thompson, L L; Sze, C I; Simon, J A; Paskavitz, J F; Kleinschmidt-DeMasters, B K

    1999-03-01

    Cerebral white matter disorders may be associated with profound neurobehavioral dysfunction. We report a 62-year-old man who had a slowly progressive 25-year history of personality change, psychosis, mood disorder, and dementia. Neurologic examination disclosed abulia, impaired memory retrieval, and preserved language, with only minimal motor impairment. Neuropsychological testing found a sustained attention deficit, cognitive slowing, impaired learning with intact recognition, and perseveration. Magnetic resonance imaging of the brain revealed extensive leukoencephalopathy. Right frontal brain biopsy showed ill-defined white matter pallor with hyaline narrowing of white matter arterioles. Granular osmiophilic material adjacent to vascular smooth muscle cells on electron microscopy of a skin biopsy, and an arginine for cysteine replacement at position 169 in the 4 EGF motif of the notch 3 region on chromosome 19q12 established the diagnosis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). This case illustrates that CADASIL can manifest as an isolated neurobehavioral disorder over an extended time period. The dementia associated with CADASIL closely resembles that which may occur with other white matter disorders, and represents an example of white matter dementia. PMID:10371078

  9. Did LIGO Detect Dark Matter?

    PubMed

    Bird, Simeon; Cholis, Ilias; Muñoz, Julian B; Ali-Haïmoud, Yacine; Kamionkowski, Marc; Kovetz, Ely D; Raccanelli, Alvise; Riess, Adam G

    2016-05-20

    We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20M_{⊙}≲M_{bh}≲100M_{⊙} where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to the emission of gravitational radiation and ultimately will merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2-53  Gpc^{-3} yr^{-1} rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have neither optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next-generation experiments will be invaluable in performing these tests. PMID:27258861

  10. Exotic States of Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Lombardo, Umberto; Baldo, Marcello; Burgio, Fiorella; Schulze, Hans-Josef

    2008-02-01

    pt. A. Theory of nuclear matter EOS and symmetry energy. Constraining the nuclear equation of state from astrophysics and heavy ion reactions / C. Fuchs. In-medium hadronic interactions and the nuclear equation of state / F. Sammarruca. EOS and single-particle properties of isospin-asymmetric nuclear matter within the Brueckner theory / W. Zuo, U. Lombardo & H.-J. Schulze. Thermodynamics of correlated nuclear matter / A. Polls ... [et al.]. The validity of the LOCV formalism and neutron star properties / H. R. Moshfegh ... [et al.]. Ferromagnetic instabilities of neutron matter: microscopic versus phenomenological approaches / I. Vidaã. Sigma meson and nuclear matter saturation / A. B. Santra & U. Lombardo. Ramifications of the nuclear symmetry energy for neutron stars, nuclei and heavy-ion collisions / A. W. Steiner, B.-A. Li & M. Prakash. The symmetry energy in nuclei and nuclear matter / A. E. L. Dieperink. Probing the symmetry energy at supra-saturation densities / M. Di Toro et al. Investigation of low-density symmetry energy via nucleon and fragment observables / H. H. Wolter et al. Instability against cluster formation in nuclear and compact-star matter / C. Ducoin ... [et al.]. Microscopic optical potentials of nucleon-nucleus and nucleus-nucleus scattering / Z.-Y. Ma, J. Rong & Y.-Q. Ma -- pt. B. The neutron star crust: structure, formation and dynamics. Neutron star crust beyond the Wigner-Seitz approximation / N. Chamel. The inner crust of a neutron star within the Wigner-Seitz method with pairing: from drip point to the bottom / E. E. Saperstein, M. Baldo & S. V. Tolokonnikov. Nuclear superfluidity and thermal properties of neutron stars / N. Sandulescu. Collective excitations: from exotic nuclei to the crust of neutron stars / E. Khan, M. Grasso & J. Margueron. Monte Carlo simulation of the nuclear medium: fermi gases, nuclei and the role of Pauli potentials / M. A. Pérez-García. Low-density instabilities in relativistic hadronic models / C. Provid

  11. Static Response of Neutron Matter.

    PubMed

    Buraczynski, Mateusz; Gezerlis, Alexandros

    2016-04-15

    We generalize the problem of strongly interacting neutron matter by adding a periodic external modulation. This allows us to study from first principles a neutron system that is extended and inhomogeneous, with connections to the physics of both neutron-star crusts and neutron-rich nuclei. We carry out fully nonperturbative microscopic quantum Monte Carlo calculations of the energy of neutron matter at different densities, as well as different strengths and periodicities of the external potential. In order to remove systematic errors, we examine finite-size effects and the impact of the wave function ansatz. We also make contact with energy-density functional theories of nuclei and disentangle isovector gradient contributions from bulk properties. Finally, we calculate the static density-density linear response function of neutron matter and compare it with the response of other physical systems. PMID:27127963

  12. Static Response of Neutron Matter

    NASA Astrophysics Data System (ADS)

    Buraczynski, Mateusz; Gezerlis, Alexandros

    2016-04-01

    We generalize the problem of strongly interacting neutron matter by adding a periodic external modulation. This allows us to study from first principles a neutron system that is extended and inhomogeneous, with connections to the physics of both neutron-star crusts and neutron-rich nuclei. We carry out fully nonperturbative microscopic quantum Monte Carlo calculations of the energy of neutron matter at different densities, as well as different strengths and periodicities of the external potential. In order to remove systematic errors, we examine finite-size effects and the impact of the wave function ansatz. We also make contact with energy-density functional theories of nuclei and disentangle isovector gradient contributions from bulk properties. Finally, we calculate the static density-density linear response function of neutron matter and compare it with the response of other physical systems.

  13. Composite strongly interacting dark matter

    NASA Astrophysics Data System (ADS)

    Cline, James M.; Liu, Zuowei; Moore, Guy D.; Xue, Wei

    2014-07-01

    It has been suggested that cold dark matter (CDM) has difficulties in explaining tentative evidence for noncuspy halo profiles in small galaxies, and the low velocity dispersions observed in the largest Milky Way satellites ("too-big-to-fail" problem). Strongly self-interacting dark matter has been noted as a robust solution to these problems. The elastic cross sections required are much larger than predicted by generic CDM models, but could naturally be of the right size if dark matter is composite. We explore in a general way the constraints on models where strongly interacting CDM is in the form of dark "atoms" or "molecules," or bound states of a confining gauge interaction ("hadrons"). These constraints include considerations of relic density, direct detection, big bang nucleosynthesis, the cosmic microwave background, and LHC data.

  14. Dark matter in 3D

    NASA Astrophysics Data System (ADS)

    Alves, Daniele S. M.; El Hedri, Sonia; Wacker, Jay G.

    2016-03-01

    We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. We illustrate our method using the Via Lactea II N-body simulation as well as an analytical model for the dark matter halo. We conclude that {O}(1000) events are necessary to measure deviations from the Standard Halo Model and constrain or measure the presence of anisotropies.

  15. The DAMIC Dark Matter Experiment

    SciTech Connect

    de Mello Neto, J. R.T.

    2015-10-07

    The DAMIC (DArk Matter In CCDs) experiment uses high-resistivity, scientific-grade CCDs to search for dark matter. The CCD’s low electronic noise allows an unprecedently low energy threshold of a few tens of eV; this characteristic makes it possible to detect silicon recoils resulting from interactions of low-mass WIMPs. In addition, the CCD’s high spatial resolution and the excellent energy response results in very effective background identification techniques. The experiment has a unique sensitivity to dark matter particles with masses below 10 GeV/c2. Previous results have motivated the construction of DAMIC100, a 100 grams silicon target detector currently being installed at SNOLAB. The mode of operation and unique imaging capabilities of the CCDs, and how they may be exploited to characterize and suppress backgrounds are discussed, as well as physics results after one year of data taking.

  16. Dark Matter in 3D

    SciTech Connect

    Alves, Daniele S.M.; Hedri, Sonia El; Wacker, Jay G.

    2012-04-01

    We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. We illustrate our method using the Via Lactea II N-body simulation as well as an analytical model for the dark matter halo. We conclude that O(1000) events are necessary to measure deviations from the Standard Halo Model and constrain or measure the presence of anisotropies.

  17. Cold dark matter heats up.

    PubMed

    Pontzen, Andrew; Governato, Fabio

    2014-02-13

    A principal discovery in modern cosmology is that standard model particles comprise only 5 per cent of the mass-energy budget of the Universe. In the ΛCDM paradigm, the remaining 95 per cent consists of dark energy (Λ) and cold dark matter. ΛCDM is being challenged by its apparent inability to explain the low-density 'cores' of dark matter measured at the centre of galaxies, where centrally concentrated high-density 'cusps' were predicted. But before drawing conclusions, it is necessary to include the effect of gas and stars, historically seen as passive components of galaxies. We now understand that these can inject heat energy into the cold dark matter through a coupling based on rapid gravitational potential fluctuations, explaining the observed low central densities. PMID:24522596

  18. Dark matter from split seesaw

    NASA Astrophysics Data System (ADS)

    Kusenko, Alexander; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2010-09-01

    The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter-antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.

  19. Swim pressure of active matter

    NASA Astrophysics Data System (ADS)

    Takatori, Sho; Yan, Wen; Brady, John; Caltech Team

    2014-11-01

    Through their self-motion, all active matter systems generate a unique ``swim pressure'' that is entirely athermal in origin. This new source for the active stress exists at all scales in both living and nonliving active systems, and also applies to larger organisms where inertia is important (i.e., the Stokes number is not small). Here we explain the origin of the swim stress and develop a simple thermodynamic model to study the self-assembly and phase separation in active soft matter. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria and catalytic nanobots, schools of fish and birds, and molecular motors that activate the cellular cytoskeleton.

  20. Interstellar organic matter in meteorites

    NASA Technical Reports Server (NTRS)

    Yang, J.; Epstein, S.

    1983-01-01

    Deuterium-enriched hydrogen is present in organic matter in such meteorites as noncarbonaceous chondrites. The majority of the unequilibrated primitive meteorites contain hydrogen whose D/H ratios are greater than 0.0003, requiring enrichment (relative to cosmic hydrogen) by isotope exchange reactions taking place below 150 K. The D/H values presented are the lower limits for the organic compounds derived from interstellar molecules, since all processes subsequent to their formation, including terrestrial contamination, decrease their D/H ratios. In contrast, the D/H ratios of hydrogen associated with hydrated silicates are relatively uniform for the meteorites analyzed. The C-13/C-12 ratios of organic matter, irrespective of D/H ratio, lie well within those observed for the earth. Present findings suggest that other interstellar material, in addition to organic matter, is preserved and is present in high D/H ratio meteorites.

  1. Cosmological Simulations of Dark Matter

    NASA Astrophysics Data System (ADS)

    Vogelsberger, Mark

    2015-04-01

    Dark matter is supposed to be the backbone of structure formation in the universe. It dominates the energy content of the universe together with dark energy. Modern computer simulation allow the detailed prediction of the distribution of dark matter on very large and small scales. The main inputs for these simulations are the initial conditions observed through the cosmic microwave background and gravity as the main force behind structure formation. I will present in my talk recent advances in cosmological simulations and how state-of-the-art simulations lead to virtual universes which agree remarkably well with observations of the real universe. Despite this success the small-scale structure predicted by these simulations does not agree perfectly with observations. I will discuss possible solutions to these problems that might also point to new theories of dark matter.

  2. Dark matter in 3D

    DOE PAGESBeta

    Alves, Daniele S. M.; El Hedri, Sonia; Wacker, Jay G.

    2016-03-21

    We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. We illustrate our methodmore » using the Via Lactea II N-body simulation as well as an analytical model for the dark matter halo. Furthermore, we conclude that O(1000) events are necessary to measure deviations from the Standard Halo Model and constrain or measure the presence of anisotropies.« less

  3. Natural supersymmetric minimal dark matter

    NASA Astrophysics Data System (ADS)

    Fabbrichesi, Marco; Urbano, Alfredo

    2016-03-01

    We show how the Higgs boson mass is protected from the potentially large corrections due to the introduction of minimal dark matter if the new physics sector is made supersymmetric. The fermionic dark matter candidate (a 5-plet of S U (2 )L) is accompanied by a scalar state. The weak gauge sector is made supersymmetric, and the Higgs boson is embedded in a supersymmetric multiplet. The remaining standard model states are nonsupersymmetric. Nonvanishing corrections to the Higgs boson mass only appear at three-loop level, and the model is natural for dark matter masses up to 15 TeV—a value larger than the one required by the cosmological relic density. The construction presented stands as an example of a general approach to naturalness that solves the little hierarchy problem which arises when new physics is added beyond the standard model at an energy scale around 10 TeV.

  4. Dark matter via massive bigravity

    NASA Astrophysics Data System (ADS)

    Blanchet, Luc; Heisenberg, Lavinia

    2015-05-01

    In this work we investigate the existence of relativistic models for dark matter in the context of bimetric gravity, used here to reproduce the modified Newtonian dynamics (MOND) at galactic scales. For this purpose we consider two different species of dark matter particles that separately couple to the two metrics of bigravity. These two sectors are linked together via an internal U (1 ) vector field, and some effective composite metric built out of the two metrics. Among possible models only certain classes of kinetic and interaction terms are allowed without invoking ghost degrees of freedom. Along these lines we explore the number of allowed kinetic terms in the theory and point out the presence of ghosts in a previous model. Finally, we propose a promising class of ghost-free candidate theories that could provide the MOND phenomenology at galactic scales while reproducing the standard cold dark matter model at cosmological scales.

  5. STAR: Characterizing hot quark matter

    NASA Astrophysics Data System (ADS)

    Van Buren, G.; STAR Collaboration

    2013-04-01

    With discovery of Quark Gluon Plasma well-established at RHIC, the STAR Experiment continues to work toward a more complete understanding of properties of the produced matter, and the conditions necessary for the phase change. We will present recent progress on characterizing quark matter at high temperature through a wide variety of measurement techniques in STAR's repertoire: from observing species suppression and correlations, to determining statistical moments and prospecting for symmetry-breaking. RHIC has further embarked on a program to study this matter through a range of conditions achieved by varying the collision energies, which are hoped to span and locate the QCD critical point. We will show how STAR's toolkit is already providing intriguing results from the the first phase of this program and discuss possible future directions for the program.

  6. Dark matter searches at ATLAS

    NASA Astrophysics Data System (ADS)

    Mehlhase, Sascha

    2016-06-01

    The large excess of Dark Matter observed in the Universe and its particle nature is one of the key problems yet to be solved in particle physics. Despite the extensive success of the Standard Model, it is not able to explain this excess, which instead might be due to yet unknown particles, such as Weakly Interacting Massive Particles, that could be produced at the Large Hadron Collider. This contribution will give an overview of different approaches to finding evidence for Dark Matter with the ATLAS experiment in √{s }=8 TeV Run-1 data.

  7. Exploring Baryons for Dark Matter

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    There is on-going research for the detection of WIMP's based on a speculative idea of supersymmetry, which attempts to unify the fundamental forces of nature, including gravity. The detection of WIMP's is expected to find a solution to the issue of dark matter. We continue to hold and support our view of the millennium that gravity is not a fundamental force of Nature. We are therefore exploring baryons as the particles to address the issue of dark matter. We poster present our analyses to support our proposal.

  8. Diquark abundance in stellar matter

    SciTech Connect

    Horvath, J.E.; de Freitas Pacheco, J.A.; de Araujo, J.C.N. )

    1992-11-15

    The clustering of quarks into pairs (diquarks) has been suggested recently to play an important role in dense matter and its astrophysical realization in neutron-star cores. We address in this work the features of diquark matter by employing an accurate equation of state valid for the effective {lambda}{phi}{sup 4} diquark theory, and find milder (although non-negligible) effects than in previous calculations. Some considerations on the very presence of a diquark-dominated region immediately above the deconfinement density are also given.

  9. Every Child Mattered in England: But What Matters to Children?

    ERIC Educational Resources Information Center

    Meehan, Catherine

    2016-01-01

    "Every Child Matters" under New Labour provided a framework for services for young children's care and education. It was pushed aside by the Conservative-led coalition and replaced by "More Great Childcare". The UK as a signatory to the United Nations Convention on the Rights of the Child, therefore has obligations for…

  10. Dynamical matter-parity breaking and gravitino dark matter

    SciTech Connect

    Schmidt, Jonas; Weniger, Christoph; Yanagida, Tsutomu T.

    2010-11-15

    Scenarios where gravitinos with GeV masses makeup dark matter are known to be in tension with high reheating temperatures, as required by e.g. thermal leptogenesis. This tension comes from the longevity of the NLSPs (next-to-lightest supersymmetric particle), which can destroy the successful predictions of the standard primordial nucleosynthesis. However, a small violation of matter parity can open new decay channels for the NLSP, avoiding the BBN (standard primordial nucleosynthesis) problems, while being compatible with experimental cosmic-ray constraints. In this paper, we propose a model where matter parity, which we assume to be embedded in the U(1){sub B-L} gauge symmetry, is broken dynamically in a hidden sector at low-scales. This can naturally explain the smallness of the matter parity breaking in the visible sector. We discuss the dynamics of the corresponding pseudo Nambu-Goldstone modes of B-L breaking in the hidden sector, and we comment on typical cosmic-ray and collider signatures in our model.

  11. Analysis of dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    2016-05-01

    As the law of unity of opposites of the Philosophy tells us, the bright material exists, the dark matter also exists. Dark matter and dark energy should allow the law of unity of opposites. The Common attributes of the matter is radiation, then common attributes of dark matter must be absorb radiation. Only the rotation speed is lower than the speed of light radiation, can the matter radiate, since the speed of the matter is lower than the speed of light, so the matter is radiate; The rotate speed of the dark matter is faster than the light , so the dark matter doesn't radiate, it absorbs radiation. The energy that the dark matter absorb radiation produced (affect the measurement of time and space distribution of variations) is dark energy, so the dark matter produce dark energy only when it absorbs radiation. Dark matter does not radiate, two dark matters does not exist inevitably forces, and also no dark energy. Called the space-time ripples, the gravitational wave is bent radiation, radiation particles should be graviton, graviton is mainly refers to the radiation particles whose wavelength is small. Dark matter, dark energy also confirms the existence of the law of symmetry.

  12. Quark matter droplets in neutron stars

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.

    1993-01-01

    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  13. Wino dark matter under siege

    SciTech Connect

    Cohen, Timothy; Lisanti, Mariangela; Pierce, Aaron; Slatyer, Tracy R. E-mail: mlisanti@princeton.edu E-mail: tslatyer@mit.edu

    2013-10-01

    A fermion triplet of SU(2){sub L} — a wino — is a well-motivated dark matter candidate. This work shows that present-day wino annihilations are constrained by indirect detection experiments, with the strongest limits coming from H.E.S.S. and Fermi. The bounds on wino dark matter are presented as a function of mass for two scenarios: thermal (winos constitute a subdominant component of the dark matter for masses less than 3.1 TeV) and non-thermal (winos comprise all the dark matter). Assuming the NFW halo model, the H.E.S.S. search for gamma-ray lines excludes the 3.1 TeV thermal wino; the combined H.E.S.S. and Fermi results completely exclude the non-thermal scenario. Uncertainties in the exclusions are explored. Indirect detection may provide the only probe for models of anomaly plus gravity mediation where the wino is the lightest superpartner and scalars reside at the 100 TeV scale.

  14. Particulate matter and preterm birth

    EPA Science Inventory

    Particulate matter (PM) has been variably associated with preterm birth (PTB) (gestation <37 weeks), but the role played by specific chemical components of PM has been little studied. We examined the association between ambient PM <2.5 micrometers in aerodynamic diameter (PM2.S) ...

  15. The Particle Theory of Matter

    ERIC Educational Resources Information Center

    Widick, Paul R.

    1969-01-01

    Described are activities that are designed to help elementary children understand the possibility of the particle theory of matter. Children work with beads, marbles, B-B shot and sand; by mixing these materials and others they are led to see that it is highly possible for the existence of particles which are not visible. (BR)

  16. Diphoton resonance confronts dark matter

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Min; Kang, Yoo-Jin; Lee, Hyun Min

    2016-07-01

    As an interpretation of the 750 GeV diphoton excesses recently reported by both ATLAS and CMS collaborations, we consider a simple extension of the Standard Model with a Dirac fermion dark matter where a singlet complex scalar field mediates between dark matter and SM particles via effective couplings to SM gauge bosons and/or Higgs-portal. In this model, we can accommodate the diphoton events through the direct and/or cascade decays of pseudo-scalar and real scalar partners of the complex scalar field. We show that mono-jet searches and gamma-ray observations are complementary in constraining the region where the width of the diphoton resonance can be enhanced due to the couplings of the resonance to dark matter and the correct relic density is obtained. In the case of cascade decay of the resonance, the effective couplings of singlet scalars can be smaller, but the model is still testable by the future discrimination between single photon and photon-jet at the LHC as well as the gamma-ray searches for the cascade annihilation of dark matter.

  17. Source Testing for Particulate Matter.

    ERIC Educational Resources Information Center

    DeVorkin, Howard

    Developed for presentation at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971, this outline covers procedures for the testing of particulate matter. These are: (1) basic requirements, (2) information required, (3) collection of samples, (4) processing of samples, (5)…

  18. Z-portal dark matter

    SciTech Connect

    Arcadi, Giorgio; Mambrini, Yann; Richard, Francois

    2015-03-11

    We propose to generalize the extensions of the Standard Model where the Z boson serves as a mediator between the Standard Model sector and the dark sector χ. We show that, like in the Higgs portal case, the combined constraints from the recent direct searches restrict severely the nature of the coupling of the dark matter to the Z boson and set a limit m{sub χ}≳200 GeV (except in a very narrow region around the Z-pole region). Using complementarity between spin dependent, spin independent and FERMI limits, we predict the nature of this coupling, more specifically the axial/vectorial ratio that respects a thermal dark matter coupled through a Z-portal while not being excluded by the current observations. We also show that the next generation of experiments of the type LZ or XENON1T will test Z-portal scenario for dark matter mass up to 2 TeV. The condition of a thermal dark matter naturally predicts the spin-dependent scattering cross section on the neutron to be σ{sub χn}{sup SD}≃10{sup −40} cm{sup 2}, which then becomes a clear prediction of the model and a signature testable in the near future experiments.

  19. Apparatus for particulate matter analysis

    DOEpatents

    Gundel, Lara A.; Apte, Michael G.; Hansen, Anthony D.; Black, Douglas R.

    2007-01-30

    The apparatus described herein is a miniaturized system for particle exposure assessment (MSPEA) for the quantitative measurement and qualitative identification of particulate content in gases. The present invention utilizes a quartz crystal microbalance (QCM) or other mass-sensitive temperature compensated acoustic wave resonator for mass measurement. Detectors and probes and light sources are used in combination for the qualitative determination of particulate matter.

  20. Magnetism in Dense Quark Matter

    NASA Astrophysics Data System (ADS)

    Ferrer, Efrain J.; de la Incera, Vivian

    We review the mechanisms via which an external magnetic field can affect the ground state of cold and dense quark matter. In the absence of a magnetic field, at asymptotically high densities, cold quark matter is in the Color-Flavor-Locked (CFL) phase of color superconductivity characterized by three scales: the superconducting gap, the gluon Meissner mass, and the baryonic chemical potential. When an applied magnetic field becomes comparable with each of these scales, new phases and/or condensates may emerge. They include the magnetic CFL (MCFL) phase that becomes relevant for fields of the order of the gap scale; the paramagnetic CFL, important when the field is of the order of the Meissner mass, and a spin-one condensate associated to the magnetic moment of the Cooper pairs, significant at fields of the order of the chemical potential. We discuss the equation of state (EoS) of MCFL matter for a large range of field values and consider possible applications of the magnetic effects on dense quark matter to the astrophysics of compact stars.

  1. Teacher Working Conditions that Matter

    ERIC Educational Resources Information Center

    Leithwood, Ken; McAdie, Pat

    2007-01-01

    To advance understanding of the issues concerning teachers' working conditions, the Elementary Teachers' Federation of Ontario commissioned one of the authors to do an analytical review of literature on teachers' working conditions. This resulted in the publication, "Teacher Working Conditions That Matter: Evidence for Change." The framework for…

  2. Dark matter in NGC 4472

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael

    1992-01-01

    An attempt is made to constrain the total mass distribution of the giant elliptical galaxy NGC 4472 by constructing simultaneous equilibrium models for the gas and stars. Emphasis is given to reconciling the value of the emission-weighted average value of kT derived from the Ginga spectrum with the amount of dark matter needed to account for velocity dispersion observations.

  3. A Rigorous Curriculum Really Matters

    ERIC Educational Resources Information Center

    Cook, Erika

    2013-01-01

    As every good secondary administrator knows, rigorous curricula matter. Challenging curricula is the factor in lifting each student to reach their potential: "the academic intensity of the student's high school curriculum still counts more than anything else...in providing momentum toward completing a bachelor's degree"…

  4. Photon signals from quarkyonic matter.

    PubMed

    Torrieri, Giorgio; Vogel, Sascha; Bäuchle, Bjørn

    2013-07-01

    We calculate the bremsstrahlung photon spectrum emitted from dynamically evolving "quarkyonic" matter and compare this spectrum with that of a high chemical potential quark-gluon plasma as well as to a hadron gas. We find that the transverse momentum distribution and the harmonic coefficient is markedly different in the three cases. The transverse momentum distribution of quarkyonic matter can be fit with an exponential but is markedly steeper than the distribution expected for the quark-gluon plasma or a hadron gas, even at the lower temperatures expected in the critical point region. The quarkyonic elliptic flow coefficient fluctuates randomly from event to event and within the same event at different transverse momenta. The latter effect, which can be explained by the shape of quark wave functions within quarkyonic matter, might be considered as a quarkyonic matter signature, provided that the initial temperature is low enough that the quarkyonic regime dominates over deconfinement effects and the reaction-plane flow can be separated from the fluctuating component. PMID:23862994

  5. Hyperon matter at low densities

    SciTech Connect

    Sulaksono, A.

    2014-09-25

    It was reported recently that hyperons can be present inside PSRJ1614-2230 compact star. This can be realized only if the strength of the ω-hyperons and φ-hyperons coupling of conventional hyperons coupling constant on the extended relativistic mean field (ERMF) model increase by a factor of 1.5 to 3. In the present work, the mass and radius relation of the neutron star that is calculated by using BSR28 parameter set of ERMF model augmented with maximal coupling strength of the ω-hyperons and φ-hyperons (X=1), is compared to the mass and radius relation of the neutron star that is predicted by the same RMF parameter set but by assuming that hyperons do not exist in the matter (No. Hyp) as well as those by assuming the hyperons coupling constant fulfilled the conventional SU(6) and SU(3) symmetry. The consequences of implementing X=1 prescription are also discussed. The potential depths of hyperons in symmetric nuclear matter (SNM), pure neutron matter (PNM) and pure lambda matter (PLM) based on this parameter set are also calculated by using the X=1, SU (6) and SU (3) prescriptions. The results are compared to those obtained from microscopic models, quark meson coupling model (χ QMM) and the QCD sum rule for finite density (QCD SM) result.

  6. Dark matter in massive galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2013-07-01

    The spatial distributions of luminous and dark matter in massive early-type galaxies (ETGs) reflect the formation processes which shaped these systems. This article reviews the predictions of cosmological simulations for the dark and baryonic components of ETGs, and the observational constraints from lensing, hydrostatic X-ray gas atmospheres, and outer halo stellar dynamics.

  7. Extraterrestrial Matter Chronometry of Sediments

    NASA Astrophysics Data System (ADS)

    Peucker-Ehrenbrink, B.; Waters, C. A.; Hoffman, P. F.; Kurz, M. D.

    2010-12-01

    Tracer records of extraterrestrial matter (ET) accumulation in sediments suggest that ET accretion rates are reasonable constant on time scales relevant to sediment accumulation in terrestrial and marine environments (1000-100,000 years), except during impact events. Geochemical tracers of ET matter in sediments are therefore informative rate indicators applicable to individual samples. This alleviates the need for interpolating rates between known chronometric tie points. The most sensitive tracers of ET accretion include noble gases, particularly helium, and the heavy platinum group elements osmium, iridium and platinum. Helium and osmium have tell-tale isotope signatures that are sensitive indicators of terrestrial vs. extraterrestrial pedigree. Here we investigate the use of coupled helium-osmium isotope and helium, osmium, iridium and platinum concentration analyses to determine sedimentation rates across Neoproterozoic glacial terminations. Bodiselitsch et al. (Science 308, 2005, 239ff) suggested that significant iridium anomalies at transitions from glacial to postglacial sediments constrain the duration of Neoproterozoic Marinoan glaciation to at least 3, and most likely 12 million years. Our data on Marinoan sections from NW Canada and Namibia reveal no large ET matter anomaly, and support a more nuanced interpretation of coupled geochemical indicators of accretion of ET matter across those transitions. Our records provide insights into environmental changes during periods of Neoproterozoic climate change.

  8. Accountability for What Matters Most

    ERIC Educational Resources Information Center

    Wagner, Tony

    2012-01-01

    During the author's travels all over the United States speaking to a wide variety of audiences, and his visits with leadership groups in the Middle East and Far East, he has encountered diverse audiences who share his concern that the majority of students are leaving high school without the skills that matter most--even in those school districts…

  9. The Electrical Property of Matter.

    ERIC Educational Resources Information Center

    DeMeo, Stephen; Lythcott, Jean

    2001-01-01

    Describes a demonstration of static charge using balloons and crystals to illustrate the electrical nature of matter. Building on the classic physics demonstration that uses pieces of paper and a plastic rod, this approach adds a new dimension of chemistry. Offers suggestions for how to discuss the observed phenomenon. (DLH)

  10. Spinor Structure and Matter Spectrum

    NASA Astrophysics Data System (ADS)

    Varlamov, V. V.

    2016-08-01

    Classification of relativistic wave equations is given on the ground of interlocking representations of the Lorentz group. A system of interlocking representations is associated with a system of eigenvector subspaces of the energy operator. Such a correspondence allows one to define matter spectrum, where the each level of this spectrum presents a some state of elementary particle. An elementary particle is understood as a superposition of state vectors in nonseparable Hilbert space. Classification of indecomposable systems of relativistic wave equations is produced for bosonic and fermionic fields on an equal footing (including Dirac and Maxwell equations). All these fields are equivalent levels of matter spectrum, which differ from each other by the value of mass and spin. It is shown that a spectrum of the energy operator, corresponding to a given matter level, is non-degenerate for the fields of type (l, 0) ⊕ (0, l), where l is a spin value, whereas for arbitrary spin chains we have degenerate spectrum. Energy spectra of the stability levels (electron and proton states) of the matter spectrum are studied in detail. It is shown that these stability levels have a nature of threshold scales of the fractal structure associated with the system of interlocking representations of the Lorentz group.

  11. Regional Background Fine Particulate Matter

    EPA Science Inventory

    A modeling system composed of the global model GEOS-Chem providing hourly lateral boundary conditions to the regional model CMAQ was used to calculate the policy relevant background level of fine particulate: matter. Simulations were performed for the full year of 2004 over the d...

  12. Gray Matter Axonal Connectivity Maps

    PubMed Central

    Bonilha, Leonardo; Gleichgerrcht, Ezequiel; Nesland, Travis; Rorden, Chris; Fridriksson, Julius

    2015-01-01

    Structural brain connectivity is generally assessed through methods that rely on pre-defined regions of interest (e.g., Brodmann’s areas), thus preventing analyses that are largely free from a priori anatomical assumptions. Here, we introduce a novel and practical technique to evaluate a voxel-based measure of axonal projections connecting gray matter tissue [gray matter axonal connectivity map (GMAC)]. GMACs are compatible with voxel-based statistical approaches, and can be used to assess whole brain, scale-free, gray matter connectivity. In this study, we demonstrate how whole-brain GMACs can be generated from conventional structural connectome methodology, describing each step in detail, as well as providing tools to allow for the calculation of GMAC. To illustrate the utility of GMAC, we demonstrate the relationship between age and gray matter connectivity, using voxel-based analyses of GMAC. We discuss the potential role of GMAC in further analyses of cortical connectivity in healthy and clinical populations. PMID:25798111

  13. Warm Dense Matter: An Overview

    SciTech Connect

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-04-21

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities. The conclusion of this

  14. Alternative to particle dark matter

    NASA Astrophysics Data System (ADS)

    Khoury, Justin

    2015-01-01

    We propose an alternative to particle dark matter that borrows ingredients of modified Newtonian dynamics (MOND) while adding new key components. The first new feature is a dark matter fluid, in the form of a scalar field with small equation of state and sound speed. This component is critical in reproducing the success of cold dark matter for the expansion history and the growth of linear perturbations, but does not cluster significantly on nonlinear scales. Instead, the missing mass problem on nonlinear scales is addressed by a modification of the gravitational force law. The force law approximates MOND at large and intermediate accelerations, and therefore reproduces the empirical success of MOND at fitting galactic rotation curves. At ultralow accelerations, the force law reverts to an inverse-square law, albeit with a larger Newton's constant. This latter regime is important in galaxy clusters and is consistent with their observed isothermal profiles, provided the characteristic acceleration scale of MOND is mildly varying with scale or mass, such that it is 12 times higher in clusters than in galaxies. We present an explicit relativistic theory in terms of two scalar fields. The first scalar field is governed by a Dirac-Born-Infeld action and behaves as a dark matter fluid on large scales. The second scalar field also has single-derivative interactions and mediates a fifth force that modifies gravity on nonlinear scales. Both scalars are coupled to matter via an effective metric that depends locally on the fields. The form of this effective metric implies the equality of the two scalar gravitational potentials, which ensures that lensing and dynamical mass estimates agree. Further work is needed in order to make both the acceleration scale of MOND and the fraction at which gravity reverts to an inverse-square law explicitly dynamical quantities, varying with scale or mass.

  15. Cosmology of atomic dark matter

    NASA Astrophysics Data System (ADS)

    Cyr-Racine, Francis-Yan; Sigurdson, Kris

    2013-05-01

    While, to ensure successful cosmology, dark matter (DM) must kinematically decouple from the standard model plasma very early in the history of the Universe, it can remain coupled to a bath of “dark radiation” until a relatively late epoch. One minimal theory that realizes such a scenario is the atomic dark matter model, in which two fermions oppositely charged under a new U(1) dark force are initially coupled to a thermal bath of “dark photons” but eventually recombine into neutral atomlike bound states and begin forming gravitationally bound structures. As dark atoms have (dark) atom-sized geometric cross sections, this model also provides an example of self-interacting DM with a velocity-dependent cross section. Delayed kinetic decoupling in this scenario predicts novel DM properties on small scales but retains the success of cold DM on larger scales. We calculate the atomic physics necessary to capture the thermal history of this dark sector and show significant improvements over the standard atomic hydrogen calculation are needed. We solve the Boltzmann equations that govern the evolution of cosmological fluctuations in this model and find in detail the impact of the atomic DM scenario on the matter power spectrum and the cosmic microwave background (CMB). This scenario imprints a new length scale, the dark-acoustic-oscillation scale, on the matter density field. This dark-acoustic-oscillation scale shapes the small-scale matter power spectrum and determines the minimal DM halo mass at late times, which may be many orders of magnitude larger than in a typical weakly interacting-massive-particle scenario. This model necessarily includes an extra dark radiation component, which may be favored by current CMB experiments, and we quantify CMB signatures that distinguish an atomic DM scenario from a standard ΛCDM model containing extra free-streaming particles. We finally discuss the impacts of atomic DM on galactic dynamics and show that these provide the

  16. Dark matter in the Universe

    SciTech Connect

    Turner, M.S. Chicago Univ., IL . Enrico Fermi Inst.)

    1991-03-01

    What is the quantity and composition of material in the universe This is one of the most fundamental questions we can ask about the universe, and its answer bears on a number of important issues including the formation of structure in the universe, and the ultimate fate and the earliest history of the universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: most of the material in the universe does not give off detectable radiation, i.e., is dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments -- structure formation, the temporal Copernican principle, and inflation -- and by some observational data. If {Omega} is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10{sup {minus}6} eV to 10{sup {minus}4} eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 71 refs., 6 figs.

  17. Dark matter in the universe

    SciTech Connect

    Turner, M.S. Chicago Univ., IL . Enrico Fermi Inst.)

    1990-11-01

    What is the quantity and composition of material in the Universe This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: Most of the material in the Universe does not give off detectable radiation, i.e., is dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments--structure formation, the temporal Copernican principle, and inflation--and by some observational data. If {Omega} is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10{sup {minus}6} eV to 10{sup {minus}4} eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 63 refs.

  18. Thermodynamics of neutron-rich nuclear matter

    NASA Astrophysics Data System (ADS)

    López, Jorge A.; Porras, Sergio Terrazas; Gutiérrez, Araceli Rodríguez

    2016-07-01

    This manuscript presents methods to obtain properties of neutron-rich nuclear matter from classical molecular dynamics. Some of these are bulk properties of infinite nuclear matter, phase information, the Maxwell construction, spinodal lines and symmetry energy.

  19. Dark matter axions and caustic rings

    SciTech Connect

    Sikivie, P.

    1997-11-01

    This report contains discussions on the following topics: the strong CP problem; dark matter axions; the cavity detector of galactic halo axions; and caustic rings in the density distribution of cold dark matter halos.

  20. 48 CFR 232.503 - Postaward matters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Postaward matters. 232.503 Section 232.503 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....503 Postaward matters....

  1. 48 CFR 232.502 - Preaward matters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Preaward matters. 232.502 Section 232.502 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....502 Preaward matters....

  2. 48 CFR 232.502 - Preaward matters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Preaward matters. 232.502 Section 232.502 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....502 Preaward matters....

  3. 48 CFR 232.502 - Preaward matters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Preaward matters. 232.502 Section 232.502 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....502 Preaward matters....

  4. 48 CFR 232.503 - Postaward matters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Postaward matters. 232.503 Section 232.503 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....503 Postaward matters....

  5. 48 CFR 232.502 - Preaward matters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Preaward matters. 232.502 Section 232.502 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....502 Preaward matters....

  6. 48 CFR 232.503 - Postaward matters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Postaward matters. 232.503 Section 232.503 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....503 Postaward matters....

  7. 48 CFR 232.503 - Postaward matters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Postaward matters. 232.503 Section 232.503 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....503 Postaward matters....

  8. 48 CFR 232.503 - Postaward matters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Postaward matters. 232.503 Section 232.503 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....503 Postaward matters....

  9. 48 CFR 232.502 - Preaward matters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Preaward matters. 232.502 Section 232.502 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT....502 Preaward matters....

  10. Strongly Interacting Matter at High Energy Density

    SciTech Connect

    McLerran,L.

    2008-09-07

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  11. Dark matter annihilation at the galactic center

    NASA Astrophysics Data System (ADS)

    Linden, Tim

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately five times as much dark matter as baryonic matter. However, efforts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the first multiwavelength analysis of the GC, with suitable effective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing efforts which have successfully detected an excess in gamma-ray emission from the region immediately surrounding the GC, which is difficult to describe in terms of standard diffuse emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I

  12. Dark matter and the equivalence principle

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Gradwohl, Ben-Ami

    1993-01-01

    A survey is presented of the current understanding of dark matter invoked by astrophysical theory and cosmology. Einstein's equivalence principle asserts that local measurements cannot distinguish a system at rest in a gravitational field from one that is in uniform acceleration in empty space. Recent test-methods for the equivalence principle are presently discussed as bases for testing of dark matter scenarios involving the long-range forces between either baryonic or nonbaryonic dark matter and ordinary matter.

  13. New spectral features from bound dark matter

    NASA Astrophysics Data System (ADS)

    Catena, Riccardo; Kouvaris, Chris

    2016-07-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature that we predict can provide a complementary verification of dark matter discovery at experiments with positive signal but unclear background. The effect is generically expected, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section.

  14. Dark Matter Annihilation at the Galactic Center

    SciTech Connect

    Linden, Timothy Ryan

    2013-06-01

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately ve times as much dark matter as baryonic matter. However, e orts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the rst multiwavelength analysis of the GC, with suitable e ective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing e orts which have successfully detected an excess in -ray emission from the region immediately surrounding the GC, which is di cult to describe in terms of standard di use emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I discuss the

  15. Dark matter in a bouncing universe

    SciTech Connect

    Cheung, Yeuk-Kwan E.; Kang, Jin U; Li, Changhong E-mail: jin.u.kang2@gmail.com

    2014-11-01

    We investigate a new scenario of dark matter production in a bouncing universe, in which dark matter was produced completely out of equilibrium in the contracting as well as expanding phase. We explore possibilities of using dark matter as a probe of the bouncing universe, focusing on the relationship between a critical temperature of the bouncing universe and the present relic abundance of dark matter.

  16. 49 CFR 1104.8 - Objectionable matter.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 8 2013-10-01 2013-10-01 false Objectionable matter. 1104.8 Section 1104.8..., GENERALLY § 1104.8 Objectionable matter. The Board may order that any redundant, irrelevant, immaterial, impertinent, or scandalous matter be stricken from any document....

  17. 48 CFR 32.503 - Postaward matters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Postaward matters. 32.503... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.503 Postaward matters. This section covers matters that are generally relevant only after award of a contract. This does not preclude taking...

  18. 48 CFR 32.502 - Preaward matters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Preaward matters. 32.502... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.502 Preaward matters. This section covers matters that generally are relevant only before contract award. This does not preclude taking...

  19. 46 CFR 201.181 - General matters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false General matters. 201.181 Section 201.181 Shipping... PROCEDURE Judicial Standards of Practice (Rule 19) § 201.181 General matters. (a) In general, the functions... after notice and opportunity for hearing, or in the case of other matters from the time of notice by...

  20. 49 CFR 1104.8 - Objectionable matter.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Objectionable matter. 1104.8 Section 1104.8..., GENERALLY § 1104.8 Objectionable matter. The Board may order that any redundant, irrelevant, immaterial, impertinent, or scandalous matter be stricken from any document....

  1. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Inert matter. 201.19 Section 201.19 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.19 Inert matter. The label shall show the percentage by weight of inert matter....

  2. 49 CFR 1104.8 - Objectionable matter.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 8 2014-10-01 2014-10-01 false Objectionable matter. 1104.8 Section 1104.8..., GENERALLY § 1104.8 Objectionable matter. The Board may order that any redundant, irrelevant, immaterial, impertinent, or scandalous matter be stricken from any document....

  3. 10 CFR 603.600 - Administrative matters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Administrative matters. 603.600 Section 603.600 Energy... Affecting Participants' Financial, Property, and Purchasing Systems § 603.600 Administrative matters. This subpart addresses “systemic” administrative matters that place requirements on the operation of...

  4. 46 CFR 201.181 - General matters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false General matters. 201.181 Section 201.181 Shipping... PROCEDURE Judicial Standards of Practice (Rule 19) § 201.181 General matters. (a) In general, the functions... after notice and opportunity for hearing, or in the case of other matters from the time of notice by...

  5. 48 CFR 32.503 - Postaward matters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Postaward matters. 32.503... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.503 Postaward matters. This section covers matters that are generally relevant only after award of a contract. This does not preclude taking...

  6. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  7. 46 CFR 201.181 - General matters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false General matters. 201.181 Section 201.181 Shipping... PROCEDURE Judicial Standards of Practice (Rule 19) § 201.181 General matters. (a) In general, the functions... after notice and opportunity for hearing, or in the case of other matters from the time of notice by...

  8. 40 CFR 1508.19 - Matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Matter. 1508.19 Section 1508.19 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.19 Matter. Matter includes for purposes of part 1504: (a) With respect to the Environmental Protection Agency, any...

  9. 40 CFR 1508.19 - Matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Matter. 1508.19 Section 1508.19 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.19 Matter. Matter includes for purposes of part 1504: (a) With respect to the Environmental Protection Agency, any...

  10. 48 CFR 32.502 - Preaward matters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Preaward matters. 32.502... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.502 Preaward matters. This section covers matters that generally are relevant only before contract award. This does not preclude taking...

  11. 40 CFR 1508.19 - Matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Matter. 1508.19 Section 1508.19 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.19 Matter. Matter includes for purposes of part 1504: (a) With respect to the Environmental Protection Agency, any...

  12. 48 CFR 32.502 - Preaward matters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Preaward matters. 32.502... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.502 Preaward matters. This section covers matters that generally are relevant only before contract award. This does not preclude taking...

  13. 49 CFR 1104.8 - Objectionable matter.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 8 2011-10-01 2011-10-01 false Objectionable matter. 1104.8 Section 1104.8..., GENERALLY § 1104.8 Objectionable matter. The Board may order that any redundant, irrelevant, immaterial, impertinent, or scandalous matter be stricken from any document....

  14. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  15. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  16. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Inert matter. 201.19 Section 201.19 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.19 Inert matter. The label shall show the percentage by weight of inert matter....

  17. 10 CFR 603.600 - Administrative matters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Administrative matters. 603.600 Section 603.600 Energy... Affecting Participants' Financial, Property, and Purchasing Systems § 603.600 Administrative matters. This subpart addresses “systemic” administrative matters that place requirements on the operation of...

  18. 46 CFR 201.181 - General matters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false General matters. 201.181 Section 201.181 Shipping... PROCEDURE Judicial Standards of Practice (Rule 19) § 201.181 General matters. (a) In general, the functions... after notice and opportunity for hearing, or in the case of other matters from the time of notice by...

  19. 10 CFR 603.600 - Administrative matters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Administrative matters. 603.600 Section 603.600 Energy... Affecting Participants' Financial, Property, and Purchasing Systems § 603.600 Administrative matters. This subpart addresses “systemic” administrative matters that place requirements on the operation of...

  20. 48 CFR 32.502 - Preaward matters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Preaward matters. 32.502... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.502 Preaward matters. This section covers matters that generally are relevant only before contract award. This does not preclude taking...

  1. 46 CFR 201.181 - General matters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false General matters. 201.181 Section 201.181 Shipping... PROCEDURE Judicial Standards of Practice (Rule 19) § 201.181 General matters. (a) In general, the functions... after notice and opportunity for hearing, or in the case of other matters from the time of notice by...

  2. 48 CFR 32.503 - Postaward matters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Postaward matters. 32.503... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.503 Postaward matters. This section covers matters that are generally relevant only after award of a contract. This does not preclude taking...

  3. 48 CFR 32.503 - Postaward matters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Postaward matters. 32.503... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.503 Postaward matters. This section covers matters that are generally relevant only after award of a contract. This does not preclude taking...

  4. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Inert matter. 201.19 Section 201.19 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.19 Inert matter. The label shall show the percentage by weight of inert matter....

  5. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  6. 10 CFR 603.600 - Administrative matters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Administrative matters. 603.600 Section 603.600 Energy... Affecting Participants' Financial, Property, and Purchasing Systems § 603.600 Administrative matters. This subpart addresses “systemic” administrative matters that place requirements on the operation of...

  7. 48 CFR 32.502 - Preaward matters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Preaward matters. 32.502... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.502 Preaward matters. This section covers matters that generally are relevant only before contract award. This does not preclude taking...

  8. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Inert matter. 201.19 Section 201.19 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.19 Inert matter. The label shall show the percentage by weight of inert matter....

  9. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Inert matter. 201.19 Section 201.19 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.19 Inert matter. The label shall show the percentage by weight of inert matter....

  10. 40 CFR 1508.19 - Matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Matter. 1508.19 Section 1508.19 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.19 Matter. Matter includes for purposes of part 1504: (a) With respect to the Environmental Protection Agency, any...

  11. 49 CFR 1104.8 - Objectionable matter.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 8 2012-10-01 2012-10-01 false Objectionable matter. 1104.8 Section 1104.8..., GENERALLY § 1104.8 Objectionable matter. The Board may order that any redundant, irrelevant, immaterial, impertinent, or scandalous matter be stricken from any document....

  12. 10 CFR 603.600 - Administrative matters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Administrative matters. 603.600 Section 603.600 Energy... Affecting Participants' Financial, Property, and Purchasing Systems § 603.600 Administrative matters. This subpart addresses “systemic” administrative matters that place requirements on the operation of...

  13. 10 CFR 820.8 - Evidentiary matters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Evidentiary matters. 820.8 Section 820.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.8 Evidentiary matters. (a... matter related to a DOE nuclear activity or for any decision required by this part. A DOE Official...

  14. 48 CFR 32.503 - Postaward matters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Postaward matters. 32.503... REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.503 Postaward matters. This section covers matters that are generally relevant only after award of a contract. This does not preclude taking...

  15. 40 CFR 1508.19 - Matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Matter. 1508.19 Section 1508.19 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.19 Matter. Matter includes for purposes of part 1504: (a) With respect to the Environmental Protection Agency, any...

  16. An Inquiry into the Phases of Matter

    ERIC Educational Resources Information Center

    Young, Sarah

    2010-01-01

    The "What's the "matter" With XOD" activity addresses students' misconceptions and refines their ideas about phases of matter. This activity introduces the characteristics for solids, liquids, and gases, and begins a discussion about physical and chemical changes and how matter can cycle through different phases. Depending on class size and…

  17. Nonthermal dark matter in mirage mediation

    SciTech Connect

    Nagai, Minoru; Nakayama, Kazunori

    2007-12-15

    In mirage-mediation models there exists a modulus field whose mass is O(1000) TeV and its late decay may significantly change the standard thermal relic scenario of the dark matter. We study nonthermal production of the dark matter directly from the modulus decay, and find that for some parameter regions nonthermally produced neutralinos can become the dark matter.

  18. Dark matter from Affleck-Dine baryogenesis

    SciTech Connect

    Kusenko, Alexander

    1999-07-15

    Fragmentation of the Affleck-Dine condensate into Q-balls could fill the Universe with dark matter either in the form of stable baryonic balls, or LSP produced from the decay of unstable Q-balls. The dark matter and the ordinary matter in the Universe may share the same origin.

  19. Variational Theory of Hot Dense Matter

    ERIC Educational Resources Information Center

    Mukherjee, Abhishek

    2009-01-01

    We develop a variational theory of hot nuclear matter in neutron stars and supernovae. It can also be used to study charged, hot nuclear matter which may be produced in heavy-ion collisions. This theory is a generalization of the variational theory of cold nuclear and neutron star matter based on realistic models of nuclear forces and pair…

  20. DPIS for warm dense matter

    SciTech Connect

    Kondo, K.; Kanesue, T.; Horioka, K.; Okamura, M.

    2010-05-23

    Warm Dense Matter (WDM) offers an challenging problem because WDM, which is beyond ideal plasma, is in a low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams ({approx} 0.3 MeV/u) can be useful tool for WDM physics, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linear accelerator directly without the beam transport line. DPIS with a realistic final focus and a linear accelerator can produce WDM.

  1. Anderson and Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, T. V.

    The legacy of P. W. Anderson, perhaps the most fertile and influential condensed matter physicist of the second half of the twentieth century, is briefly mentioned here. I note three pervasive values. They are: emergence with its constant tendency to surprise us and to stretch our imagination, the Baconian emphasis on the experimental moorings of modern science, and mechanism as the explanatory core. Out of his work, which is spread over more than six decades and in many ways has charted modern condensed matter physics, nearly a dozen seminal contributions, chosen idiosyncratically, are mentioned at the risk of leaving out many which may also have started subfields. Some of these are: antiferromagnestism and broken symmetry, superexchange and strong electron correlations, localization in disordered systems, gauge invariance and mass, and the resonating valence bond in magnetic systems as well as in high-temperature superconductivity...

  2. Stochastic thermodynamics for active matter

    NASA Astrophysics Data System (ADS)

    Speck, Thomas

    2016-05-01

    The theoretical understanding of active matter, which is driven out of equilibrium by directed motion, is still fragmental and model oriented. Stochastic thermodynamics, on the other hand, is a comprehensive theoretical framework for driven systems that allows to define fluctuating work and heat. We apply these definitions to active matter, assuming that dissipation can be modelled by effective non-conservative forces. We show that, through the work, conjugate extensive and intensive observables can be defined even in non-equilibrium steady states lacking a free energy. As an illustration, we derive the expressions for the pressure and interfacial tension of active Brownian particles. The latter becomes negative despite the observed stable phase separation. We discuss this apparent contradiction, highlighting the role of fluctuations, and we offer a tentative explanation.

  3. Creep dynamics in soft matter

    NASA Astrophysics Data System (ADS)

    Cabriolu, Raffaela

    Detecting any precursors of failure in Soft Matter Systems (SMS) is an inter-disciplinary topic with important applications (e.g. prediction of failure in engineering processes). Further, it provides an ideal benchmark to understand how mechanical stress and failure impacts the flow properties of amorphous condensed matter. Furthermore, some SMS are viscoelastic, flowing like viscous liquids or deforming like a solid according to applied forces. Often SMS are fragile and local rearrangements trigger catastrophic macroscopic failure. Despite the importance of the topic little is known on the local creep dynamics before the occurrence of such catastrophic events. To study creep and failure at an atomic/molecular level and at time scales that are not easily accessible by experiments we chose to carry out microscopic simulations. In this work we present the response of a colloidal system to uniaxial tensile stress applied and we compare our results to experimental works [8].

  4. Swift Heavy Ions in Matter

    NASA Astrophysics Data System (ADS)

    Rothard, Hermann; Severin, Daniel; Trautmann, Christina

    2015-12-01

    The present volume contains the proceedings of the Ninth International Symposium on Swift Heavy Ions in Matter (SHIM). This conference was held in Darmstadt, from 18 to 21 May 2015. SHIM is a triennial series, which started about 25 years ago by a joint initiative of CIRIL - Caen and GSI - Darmstadt, with the aim of promoting fundamental and applied interdisciplinary research in the field of high-energy, heavy-ion interaction processes with matter. SHIM was successively organized in Caen (1989), Bensheim (1992), Caen (1995), Berlin (1998), Catania (2002), Aschaffenburg (2005), Lyon (2008), and Kyoto (2012). The conference attracts scientists from many different fields using high-energy heavy ions delivered by large accelerator facilities and characterized by strong and short electronic excitations.

  5. Number-theory dark matter

    NASA Astrophysics Data System (ADS)

    Nakayama, Kazunori; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2011-05-01

    We propose that the stability of dark matter is ensured by a discrete subgroup of the U(1)B-L gauge symmetry, Z(B-L). We introduce a set of chiral fermions charged under the U(1)B-L in addition to the right-handed neutrinos, and require the anomaly-cancellation conditions associated with the U(1)B-L gauge symmetry. We find that the possible number of fermions and their charges are tightly constrained, and that non-trivial solutions appear when at least five additional chiral fermions are introduced. The Fermat theorem in the number theory plays an important role in this argument. Focusing on one of the solutions, we show that there is indeed a good candidate for dark matter, whose stability is guaranteed by Z(B-L).

  6. Baryon asymmetry and dark matter

    NASA Astrophysics Data System (ADS)

    Bolz, M.; Buchmüller, W.; Plümacher, M.

    1998-12-01

    We study the implications of a large baryogenesis temperature, TB=≀(1010 GeV), on the mass spectrum of superparticles in supersymmetric extensions of the standard model. Models with a neutralino as lightest superparticle (LSP) are excluded. A consistent picture is obtained with the gravitino as LSP, followed by a higgsino-like neutralino (NSP). Gravitinos with masses from 10 to 100 GeV may be the dominant component of dark matter.

  7. Implications of quaternionic dark matter

    NASA Astrophysics Data System (ADS)

    Brumby, S. P.; Hanlon, B. E.; Joshi, G. C.

    1997-02-01

    Taking the complex nature of quantum mechanics which we observe today as a low energy effect of a broken quaternionic theory we explore the possibility that dark matter arises as a consequence of this underlying quaternionic structure to our universe. We introduce a low energy, effective, Lagrangian which incorporates the remnants of a local quaternionic algebra, investigate the stellar production of the resultant exotic bosons and explore the possible low energy consequences of our remnant extended Hilbert space.

  8. Quantum anomalies in dense matter

    SciTech Connect

    Son, D.T.; Zhitnitsky, Ariel R.

    2004-10-01

    We consider the effects of quantum anomalies involving the baryon current for high-density matter. In the effective Lagrangian, the anomaly terms describe the interaction of three light fields: the electromagnetic photons A{sub {mu}}, neutral light Nambu-Goldstone bosons ({pi}, {eta}, {eta}{sup '}), and the superfluid phonon. The anomaly induced interactions lead to a number of interesting phenomena which may have phenomenological consequences observable in neutron stars.

  9. A matter of fried onions.

    PubMed

    Friedman, D B

    1992-12-01

    In the 1946 film 'A Matter of Life and Death', complex partial seizures were portrayed in detail and with surprising accuracy. This study was conducted to determine the nature of the medical collaboration in the preparation of the film as well as the reasons why the creative team of Michael Powell and Emeric Pressburger included these details, but elected to make them invisible to all but those with medical educations. PMID:1344781

  10. Dark matter in the universe

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1991-01-01

    What is the quantity and composition of material in the Universe? This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand. Most of the radiation in the Universe does not give off detectable radiation; it is dark. The dark matter associated with bright galaxies contributes somewhere between 10 and 30 percent of the critical density; baryonic matter contributes between 1.1 and 12 percent of the critical. The case for the spatially flat, Einstein-de Sitter model is supported by three compelling theoretical arguments - structure formation, the temporal Copernican principle, and inflation - and by some observational data. If Omega is indeed unity, or even just significantly greater than 0.1, then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark matter candidates: an axion of mass 10 (exp -6) eV to 10 (exp -4) eV; a neutrino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either planned or are underway.

  11. Inflationary attractor from tachyonic matter

    NASA Astrophysics Data System (ADS)

    Guo, Zong-Kuan; Piao, Yun-Song; Cai, Rong-Gen; Zhang, Yuan-Zhong

    2003-08-01

    We study the complete evolution of a flat and homogeneous universe dominated by tachyonic matter. We demonstrate the attractor behavior of tachyonic inflation using the Hamilton-Jacobi formalism. We also obtain analytical approximations for the trajectories of the tachyon field in different regions. The numerical calculation shows that an initial nonvanishing momentum does not prevent the onset of inflation. The slow-rolling solution is an attractor.

  12. Scalar graviton as dark matter

    SciTech Connect

    Pirogov, Yu. F.

    2015-06-15

    The basics of the theory of unimodular bimode gravity built on the principles of unimodular gauge invariance/relativity and general covariance are exposed. Besides the massless tensor graviton of General Relativity, the theory includes an (almost) massless scalar graviton treated as the gravitational dark matter. A spherically symmetric vacuum solution describing the coherent scalar-graviton field for the soft-core dark halos, with the asymptotically flat rotation curves, is demonstrated as an example.

  13. Conformal inflation coupled to matter

    SciTech Connect

    Brax, Philippe

    2014-05-01

    We formulate new conformal models of inflation and dark energy which generalise the Higgs-Dilaton scenario. We embed these models in unimodular gravity whose effect is to break scale invariance in the late time Universe. In the early Universe, inflation occurs close to a maximum of both the scalar potential and the scalar coupling to the Ricci scalar in the Jordan frame. At late times, the dilaton, which decouples from the dynamics during inflation, receives a potential term from unimodular gravity and leads to the acceleration of the Universe. We address two central issues in this scenario. First we show that the Damour-Polyalov mechanism, when non-relativistic matter is present prior to the start of inflation, sets the initial conditions for inflation at the maximum of the scalar potential. We then show that conformal invariance implies that matter particles are not coupled to the dilaton in the late Universe at the classical level. When fermions acquire masses at low energy, scale invariance is broken and quantum corrections induce a coupling between the dilaton and matter which is still small enough to evade the gravitational constraints in the solar system.

  14. Dark Matter Burners: Preliminary Estimate

    SciTech Connect

    Moskalenko, Igor V.; Wai, L.; /SLAC

    2006-09-11

    We show that a star orbiting close enough to an adiabatically grown supermassive black hole can capture a large number of weakly interacting massive particles (WIMPs) during its lifetime. WIMP annihilation energy release in low- to medium-mass stars is comparable with or even exceeds the luminosity of such stars due to thermonuclear burning. The excessive energy release in the stellar core may result in an evolution scenario different from what is expected for a regular star. The model thus predicts the existence of unusual stars within the central parsec of galactic nuclei. If found, such stars would provide evidence for the existence of particle dark matter. The excess luminosity of such stars attributed to WIMP ''burning'' can be used to infer the local WIMP matter density. A white dwarf with a highly eccentric orbit around the central black hole may exhibit variations in brightness correlated with the orbital phase. On the other hand, white dwarfs shown to lack such orbital brightness variations can be used to provide constraints on WIMP matter density, WIMP-nucleus scattering and pair annihilation cross sections.

  15. Two-portal dark matter

    NASA Astrophysics Data System (ADS)

    Ghorbani, Karim; Ghorbani, Hossein

    2015-06-01

    We propose a renormalizable dark matter model in which a fermionic dark matter (DM) candidate communicates with the standard model particles through two distinct portals: Higgs and vector portals. The dark sector is charged under a U (1 )' gauge symmetry while the standard model has a leptophobic interaction with the dark vector boson. The leading contribution of the DM-nucleon elastic scattering cross section begins at one-loop level. The model meets all the constraints imposed by direct detection experiments provided by LUX and XENON100, observed relic abundance according to WMAP and Planck, and the invisible Higgs decay width measured at the LHC. It turns out that the dark matter mass in the viable parameter space can take values from a few GeV up to 1 TeV. This is a new feature which is absent in the models with only one portal. In addition, we can find in the constrained regions of the parameter space a DM mass of ˜34 GeV annihilating into b quark pair, which explains the Fermi-LAT gamma-ray excess.

  16. Isocurvature cold dark matter fluctuations

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Bond, J. R.

    1986-01-01

    According to Preskill et al. (1983), the axion field represents a particularly attractive candidate for the dark matter in the universe. In many respects it behaves like other forms of cold dark matter, such as massive gravitinos, photinos, and monopoles. It is, however, a pseudo-Goldstone boson of very low mass, and it is only because of rapid coherent oscillations of the field that it can dominate the mass density of the universe. In the present paper it is assumed that the isocurvature mode is dominant. The linear evolution calculations conducted do not depend upon specific details of particle physics. For this reason, the conducted discussion is applicable to any cold dark matter model with isocurvature perturbations. The results of the study lead to the conclusion that scale-invariant isocurvature perturbations do not seem an attractive possibility for the origin of large-scale structure. The findings strengthen the review that primordial adiabatic perturbations were the dominant fluctuations in the early stages of the Big Bang.

  17. Strange-quark-matter stars

    SciTech Connect

    Glendenning, N.K.

    1989-11-01

    We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 13 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to consist of individual hadrons. We conclude that it is implausible that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, is a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation if strange matter is stable at an energy density exceeding about 5.4 times that of nuclear matter. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 34 refs., 10 figs., 1 tab.

  18. Decoupling dark energy from matter

    SciTech Connect

    Brax, Philippe; Davis, Anne-Christine; Martin, Jérôme E-mail: c.vandebruck@sheffield.ac.uk E-mail: jmartin@iap.fr

    2009-09-01

    We examine the embedding of dark energy in high energy models based upon supergravity and extend the usual phenomenological setting comprising an observable sector and a hidden supersymmetry breaking sector by including a third sector leading to the acceleration of the expansion of the universe. We find that gravitational constraints on the non-existence of a fifth force naturally imply that the dark energy sector must possess an approximate shift symmetry. When exact, the shift symmetry provides an example of a dark energy sector with a runaway potential and a nearly massless dark energy field whose coupling to matter is very weak, contrary to the usual lore that dark energy fields must couple strongly to matter and lead to gravitational inconsistencies. Moreover, the shape of the potential is stable under one-loop radiative corrections. When the shift symmetry is slightly broken by higher order terms in the Kähler potential, the coupling to matter remains small. However, the cosmological dynamics are largely affected by the shift symmetry breaking operators leading to the appearance of a minimum of the scalar potential such that dark energy behaves like an effective cosmological constant from very early on in the history of the universe.

  19. Axion cold dark matter revisited

    NASA Astrophysics Data System (ADS)

    Visinelli, L.; Gondolo, P.

    2010-01-01

    We study for what specific values of the theoretical parameters the axion can form the totality of cold dark matter. We examine the allowed axion parameter region in the light of recent data collected by the WMAP5 mission plus baryon acoustic oscillations and supernovae [1], and assume an inflationary scenario and standard cosmology. We also upgrade the treatment of anharmonicities in the axion potential, which we find important in certain cases. If the Peccei-Quinn symmetry is restored after inflation, we recover the usual relation between axion mass and density, so that an axion mass ma = (85 ± 3) μeV makes the axion 100% of the cold dark matter. If the Peccei-Quinn symmetry is broken during inflation, the axion can instead be 100% of the cold dark matter for ma < 15 meV provided a specific value of the initial misalignment angle θi is chosen in correspondence to a given value of its mass ma. Large values of the Peccei-Quinn symmetry breaking scale correspond to small, perhaps uncomfortably small, values of the initial misalignment angle θi.

  20. Collisional versus Collisionless Dark Matter.

    PubMed

    Moore; Gelato; Jenkins; Pearce; Quilis

    2000-05-20

    We compare the structure and substructure of dark matter halos in model universes dominated by collisional, strongly self-interacting dark matter (SIDM) and collisionless, weakly interacting dark matter (CDM). While SIDM virialized halos are more nearly spherical than CDM halos, they can be rotationally flattened by as much as 20% in their inner regions. Substructure halos suffer ram-pressure truncation and drag, which are more rapid and severe than their gravitational counterparts tidal stripping and dynamical friction. Lensing constraints on the size of galactic halos in clusters are a factor of 2 smaller than predicted by gravitational stripping, and the recent detection of tidal streams of stars escaping from the satellite galaxy Carina suggests that its tidal radius is close to its optical radius of a few hundred parsecs-an order of magnitude smaller than predicted by CDM models but consistent with SIDM models. The orbits of SIDM satellites suffer significant velocity bias, sigmaSIDM&solm0;sigmaCDM=0.85, and are more circular than CDM satellites, betaSIDM approximately 0.5, in agreement with the inferred orbits of the Galaxy's satellites. In the limit of a short mean free path, SIDM halos have singular isothermal density profiles; thus, in its simplest incarnation SIDM, is inconsistent with galactic rotation curves. PMID:10828999

  1. Carbonaceous Matter in Growing Nanoparticles

    NASA Astrophysics Data System (ADS)

    Johnston, M. V.; Stangl, C. M.; Horan, A. J.

    2015-12-01

    Atmospheric nanoparticles constitute the greatest portion of ambient aerosol loading by number. A major source of atmospheric nanoparticles is new particle formation (NPF), a gas to particle conversion process whereby clusters nucleate from gas phase precursors to form clusters on the order of one or a few nanometers and then grow rapidly to climatically relevant sizes. A substantial fraction of cloud condensation nuclei (CCN) are thought to arise from NPF. In order to better predict the frequency, growth rates, and climatic impacts of NPF, knowledge of the chemical mechanisms by which nucleated nanoparticles grow is needed. The two main contributors to particle growth are (neutralized) sulfate and carbonaceous matter. Particle growth by sulfuric acid condensation is generally well understood, though uncertainty remains about the extent of base neutralization and the relative roles of ammonia and amines. Much less is known about carbonaceous matter, and field measurements suggest that nitrogen-containing species are important. In this presentation, recent work by our group will be described that uses a combination of ambient measurements, laboratory experiments and computational work to study carbonaceous matter in growing nanoparticles. These studies span a range of particle sizes from the initial adsorption of molecules onto a nanometer-size ammonium bisulfate seed cluster to reactions in particles that are large enough to support condensed-phase chemistry.

  2. Dark matter near the sun

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.

    1986-01-01

    The amount of dark matter in the disk of the Galaxy at the solar position is determined by comparing the observed distributions of tracer stars with the predictions obtained from different assumptions of how the unseen matter is distributed. The major uncertainties, observational and theoretical, are estimated. For all the observed samples, typical models imply that about half of the mass in the solar vicinity must be in the form of unobserved matter. The volume density of unobserved material near the sun is about 0.1 solar mass/cu pc; the corresponding column density is about 30 solar masses/cu pc. This, so far unseen, material must be in a disk with an exponential scale height of less than 0.7 kpc. All the existing observations are consistent with the unseen disk material being in the form of stars not massive enough to burn hydrogen. It is suggested that the unseen material that is required to hold up the rotation curves of galaxies and to satisfy the virial theorem for clusters of galaxies might also be in the form of low-mass stars.

  3. Non-baryonic dark matter in cosmology

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.

    2013-07-01

    This paper is based on lectures given at the IX Mexican School on Gravitation and Mathematical Physics. The lectures (as the paper) were a broad-band review of the current status of non-baryonic dark matter research. I start with a historical overview of the evidences of dark matter existence, then I discuss how dark matter is distributed from small scale to large scale, and I then verge the attention to dark matter nature: dark matter candidates and their detection. I finally discuss some of the limits of the ΛCDM model, with particular emphasis on the small scale problems of the paradigm.

  4. Superconducting Detectors for Superlight Dark Matter.

    PubMed

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M

    2016-01-01

    We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1  keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure. PMID:26799009

  5. Large Extra Dimension and Dark Matter Detection

    SciTech Connect

    Qin Bo; Starkman, Glenn D.; Silk, Joseph

    2008-01-03

    If our space has the large extra dimensions as proposed by Arkani-Hamed, Dimopoulos and Dvali (ADD), then gravity would start to deviate from Newtonian gravity and be greatly enhanced in sub-millimeter scales. Here we show that in the ADD scenario, gravity could play an important role (compared to the weak interaction) in the interactions between dark matter particles and the electron. We find that for typical WIMP dark matter, such dark matter-electron 'gravitational' scattering cross section may be much larger than the dark matter-nucleon cross section constrained by current dark matter experiments.

  6. Large Extra Dimension and Dark Matter Detection

    NASA Astrophysics Data System (ADS)

    Qin, Bo; Starkman, Glenn D.; Silk, Joseph

    2008-01-01

    If our space has the large extra dimensions as proposed by Arkani-Hamed, Dimopoulos and Dvali (ADD), then gravity would start to deviate from Newtonian gravity and be greatly enhanced in sub-millimeter scales. Here we show that in the ADD scenario, gravity could play an important role (compared to the weak interaction) in the interactions between dark matter particles and the electron. We find that for typical WIMP dark matter, such dark matter-electron ``gravitational'' scattering cross section may be much larger than the dark matter-nucleon cross section constrained by current dark matter experiments.

  7. Superconducting Detectors for Superlight Dark Matter

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M.

    2016-01-01

    We propose and study a new class of superconducting detectors that are sensitive to O (meV ) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, mX≳1 keV . We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  8. The local dark matter density

    NASA Astrophysics Data System (ADS)

    Read, J. I.

    2014-06-01

    I review current efforts to measure the mean density of dark matter near the Sun. This encodes valuable dynamical information about our Galaxy and is also of great importance for ‘direct detection’ dark matter experiments. I discuss theoretical expectations in our current cosmology; the theory behind mass modelling of the Galaxy; and I show how combining local and global measures probes the shape of the Milky Way dark matter halo and the possible presence of a ‘dark disc’. I stress the strengths and weaknesses of different methodologies and highlight the continuing need for detailed tests on mock data—particularly in the light of recently discovered evidence for disequilibria in the Milky Way disc. I collate the latest measurements of ρdm and show that, once the baryonic surface density contribution Σb is normalized across different groups, there is remarkably good agreement. Compiling data from the literature, I estimate Σb = 54.2 ± 4.9 M⊙pc-2, where the dominant source of uncertainty is in the H i gas contribution. Assuming this contribution from the baryons, I highlight several recent measurements of ρdm in order of increasing data complexity and prior, and, correspondingly, decreasing formal error bars. Comparing these measurements with spherical extrapolations from the Milky Way’s rotation curve, I show that the Milky Way is consistent with having a spherical dark matter halo at R0 ˜ 8 kpc. The very latest measures of ρdm based on ˜10 000 stars from the Sloan Digital Sky Survey appear to favour little halo flattening at R0, suggesting that the Galaxy has a rather weak dark matter disc, with a correspondingly quiescent merger history. I caution, however, that this result hinges on there being no large systematics that remain to be uncovered in the SDSS data, and on the local baryonic surface density being Σb ˜ 55 M⊙pc-2. I conclude by discussing how the new Gaia satellite will be transformative. We will obtain much tighter

  9. PREFACE: Quark Matter 2006 Conference

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan

    2007-07-01

    The Quark Matter 2006 conference was held on 14 20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The

  10. BOOK REVIEW: Soft Condensed Matter

    NASA Astrophysics Data System (ADS)

    Jones, Richard A. L.

    2002-11-01

    The author states in the preface of the book that the aim is '...to give a unified overview of the various aspects of the physics of soft condensed matter'. The book succeeds in fulfilling this aim in many respects. i) The style is fluent and concise and gives the necessary explanations to make its content understandable to people with some knowledge of the basic principles of physics. ii) The content of the book is complete enough to give a panoramic view of the landscape of soft condensed matter. The first two chapters give, respectively, a short introduction and a presentation of forces, energies and timescales, giving a general overview and pointing out the particular importance of different aspects such as timescales, which are much more important in soft condensed matter than in traditional or 'hard' condensed matter. The next chapter, devoted to phase transition, recalls that the equilibrium between two phases is controlled by free energy considerations. Spinodal decomposition is presented as a counterpart of nucleation and growth. Again, characteristic length scales are considered and applied to a phase separation mixture of polymers in a common solvent. The following three chapters are devoted respectively to specific topics: colloidal dispersion, polymers and gelation. The stability and phase behaviour of colloids are related to the interaction between colloidal particles. Properties of colloidal crystals as well as colloidal dispersion are depicted in terms of stabilization of crystalline colloids. The flow properties of colloidal dispersion are presented in terms of free energy minimization and the structure of the dispersion. After a brief introduction to polymer chemistry and architecture, the coil-globule transition is discussed. Viscoelasticity of polymers is described and discussed by introducing the notion of entanglement. This leads to the introduction of the tube model and the theory of reptation. The sol-gel transition is presented

  11. White matter injury in ischemic stroke.

    PubMed

    Wang, Yuan; Liu, Gang; Hong, Dandan; Chen, Fenghua; Ji, Xunming; Cao, Guodong

    2016-06-01

    Stroke is one of the major causes of disability and mortality worldwide. It is well known that ischemic stroke can cause gray matter injury. However, stroke also elicits profound white matter injury, a risk factor for higher stroke incidence and poor neurological outcomes. The majority of damage caused by stroke is located in subcortical regions and, remarkably, white matter occupies nearly half of the average infarct volume. Indeed, white matter is exquisitely vulnerable to ischemia and is often injured more severely than gray matter. Clinical symptoms related to white matter injury include cognitive dysfunction, emotional disorders, sensorimotor impairments, as well as urinary incontinence and pain, all of which are closely associated with destruction and remodeling of white matter connectivity. White matter injury can be noninvasively detected by MRI, which provides a three-dimensional assessment of its morphology, metabolism, and function. There is an urgent need for novel white matter therapies, as currently available strategies are limited to preclinical animal studies. Optimal protection against ischemic stroke will need to encompass the fortification of both gray and white matter. In this review, we discuss white matter injury after ischemic stroke, focusing on clinical features and tools, such as imaging, manifestation, and potential treatments. We also briefly discuss the pathophysiology of WMI and future research directions. PMID:27090751

  12. Dark-matter admixed neutron stars

    NASA Astrophysics Data System (ADS)

    Leung, S.-C.; Chu, M.-C.; Lin, L.-M.

    2011-11-01

    We study the hydrostatic equilibrium configuration of an admixture of degenerate dark matter and normal nuclear matter by using a general relativistic two-fluid formalism. We consider non-self-annihilating dark matter particles of mass ˜1GeV. The mass-radius relations and moments of inertia of these dark-matter admixed neutron stars are investigated and the stability of these stars is demonstrated by performing a radial perturbation analysis. We find a new class of compact stars which consists of a small normal matter core with radius of a few kilometers embedded in a ten-kilometer-sized dark matter halo. These stellar objects may be observed as extraordinarily small neutron stars that are incompatible with realistic nuclear matter models.

  13. DNA methylation patterns in luminal breast cancers differ from non-luminal subtypes and can identify relapse risk independent of other clinical variables.

    PubMed

    Kamalakaran, Sitharthan; Varadan, Vinay; Giercksky Russnes, Hege E; Levy, Dan; Kendall, Jude; Janevski, Angel; Riggs, Michael; Banerjee, Nilanjana; Synnestvedt, Marit; Schlichting, Ellen; Kåresen, Rolf; Shama Prasada, K; Rotti, Harish; Rao, Ramachandra; Rao, Laxmi; Eric Tang, Man-Hung; Satyamoorthy, K; Lucito, Robert; Wigler, Michael; Dimitrova, Nevenka; Naume, Bjorn; Borresen-Dale, Anne-Lise; Hicks, James B

    2011-02-01

    The diversity of breast cancers reflects variations in underlying biology and affects the clinical implications for patients. Gene expression studies have identified five major subtypes- Luminal A, Luminal B, basal-like, ErbB2+ and Normal-Like. We set out to determine the role of DNA methylation in subtypes by performing genome-wide scans of CpG methylation in breast cancer samples with known expression-based subtypes. Unsupervised hierarchical clustering using a set of most varying loci clustered the tumors into a Luminal A majority (82%) cluster, Basal-like/ErbB2+ majority (86%) cluster and a non-specific cluster with samples that were also inconclusive in their expression-based subtype correlations. Contributing methylation loci were both gene associated loci (30%) and non-gene associated (70%), suggesting subtype dependant genome-wide alterations in the methylation landscape. The methylation patterns of significant differentially methylated genes in luminal A tumors are similar to those identified in CD24 + luminal epithelial cells and the patterns in basal-like tumors similar to CD44 + breast progenitor cells. CpG islands in the HOXA cluster and other homeobox (IRX2, DLX2, NKX2-2) genes were significantly more methylated in Luminal A tumors. A significant number of genes (2853, p < 0.05) exhibited expression-methylation correlation, implying possible functional effects of methylation on gene expression. Furthermore, analysis of these tumors by using follow-up survival data identified differential methylation of islands proximal to genes involved in Cell Cycle and Proliferation (Ki-67, UBE2C, KIF2C, HDAC4), angiogenesis (VEGF, BTG1, KLF5), cell fate commitment (SPRY1, OLIG2, LHX2 and LHX5) as having prognostic value independent of subtypes and other clinical factors. PMID:21169070

  14. Dissipative hidden sector dark matter

    NASA Astrophysics Data System (ADS)

    Foot, R.; Vagnozzi, S.

    2015-01-01

    A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken U (1 )' gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength ε ˜10-9 appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on big bang nucleosynthesis and its contribution to the relativistic energy density at hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focusing on spiral and irregular galaxies. For these galaxies we modeled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.

  15. Theory of dark matter superfluidity

    NASA Astrophysics Data System (ADS)

    Berezhiani, Lasha; Khoury, Justin

    2015-11-01

    We propose a novel theory of dark matter (DM) superfluidity that matches the successes of the Λ cold dark matter (Λ CDM ) model on cosmological scales while simultaneously reproducing the modified Newtonian dynamics (MOND) phenomenology on galactic scales. The DM and MOND components have a common origin, representing different phases of a single underlying substance. DM consists of axionlike particles with mass of order eV and strong self-interactions. The condensate has a polytropic equation of state P ˜ρ3 giving rise to a superfluid core within galaxies. Instead of behaving as individual collisionless particles, the DM superfluid is more aptly described as collective excitations. Superfluid phonons, in particular, are assumed to be governed by a MOND-like effective action and mediate a MONDian acceleration between baryonic matter particles. Our framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not); due to the higher velocity dispersion in clusters, and correspondingly higher temperature, the DM in clusters is either in a mixture of superfluid and the normal phase or fully in the normal phase. The rich and well-studied physics of superfluidity leads to a number of observational signatures: an array of low-density vortices in galaxies; merger dynamics that depend on the infall velocity vs phonon sound speed; distinct mass peaks in bulletlike cluster mergers, corresponding to superfluid and normal components; and interference patters in supercritical mergers. Remarkably, the superfluid phonon effective theory is strikingly similar to that of the unitary Fermi gas, which has attracted much excitement in the cold atom community in recent years. The critical temperature for DM superfluidity is of order mK, comparable to known cold atom Bose-Einstein condensates. Identifying a precise cold atom analog would give important insights on the microphysical interactions underlying DM superfluidity

  16. Thermodynamics of polarized relativistic matter

    NASA Astrophysics Data System (ADS)

    Kovtun, Pavel

    2016-07-01

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  17. Interaction of Radiation with Matter

    NASA Astrophysics Data System (ADS)

    Horváth, D.; Vértes, A.

    The effects of interactions of the various kinds of nuclear radiation with matter are summarized with special emphasis on relations to nuclear chemistry and possible applications. The Bethe-Bloch theory describes the slowing down process of heavy charged particles via ionization, and it is modified for electrons and photons to include radiation effects like bremsstrahlung and pair production. Special emphasis is given to processes involved in particle detection, the Cherenkov effect and transition radiation. Useful formulae, numerical constants, and graphs are provided to help calculations of the stopping power of particles in simple and composite materials.

  18. Dark Matter in the MSSM

    SciTech Connect

    Cotta, R.C.; Gainer, J.S.; Hewett, J.L.; Rizzo, T.G.; /SLAC

    2009-04-07

    We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. This study opens up new possibilities for SUSY phenomenology both in colliders and in astrophysical experiments. Here we shall discuss the implications of this analysis relevant to the study of dark matter.

  19. Machine learning phases of matter

    NASA Astrophysics Data System (ADS)

    Carrasquilla, Juan; Stoudenmire, Miles; Melko, Roger

    We show how the technology that allows automatic teller machines read hand-written digits in cheques can be used to encode and recognize phases of matter and phase transitions in many-body systems. In particular, we analyze the (quasi-)order-disorder transitions in the classical Ising and XY models. Furthermore, we successfully use machine learning to study classical Z2 gauge theories that have important technological application in the coming wave of quantum information technologies and whose phase transitions have no conventional order parameter.

  20. Neutrino interactions in neutron matter

    NASA Astrophysics Data System (ADS)

    Cipollone, Andrea

    2012-12-01

    Neutrino flow is the dominant mechanism of energy transfer in the latest stages of supernovae explosions and in compact stars. The Standard Model of particle physics and accelerator data, provide a satisfactory description of neutrino physics in vacuum up to TeV scale. Nevertheless modeling the dynamics of neutrino interaction in the nuclear environment involves severe difficulties. This thesis in mainly aimed at obtaining the weak response of infinite matter, using both the Correlated Basis Function theory and Landau Theory of Fermi liquid to take into account properly nucleon-nucleon hard core potential and long range correlation (quasi-particle, collective modes, ecc.)

  1. Dark matter in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Carollo, C. M.; Zeeuw, P. T. DE; Marel, R. P. Van Der; Danziger, I. J.; Qian, E. E.

    1995-01-01

    We present measurements of the shape of the stellar line-of-sight velocity distribution out to two effective radii along the major axes of the four elliptical galaxies NGC 2434, 2663, 3706, and 5018. The velocity dispersion profiles are flat or decline gently with radius. We compare the data to the predictions of f = f(E, L(sub z)) axisymmetric models with and without dark matter. Strong tangential anisotropy is ruled out at large radii. We conclude from our measurements that massive dark halos must be present in three of the four galaxies, while for the fourth galaxy (NGC 2663) the case is inconclusive.

  2. Introduction to Dark Matter Experiments

    NASA Astrophysics Data System (ADS)

    Schnee, Richard W.

    2011-03-01

    I provide an introduction to experiments designed to detect WIMP dark matter directly, focussing on building intuitive understanding of the characteristics of potential WIMP signals and the experimental techniques. After deriving the characteristics of potential signals in direct-detection experiments for standard WIMP models, I summarize the general experimental methods shared by most direct-detection experiments and review the advantages, challenges, and status of such searches. Experiments are already probing SUSY models, with best limits on the spin-independent coupling below 10-7 pb. Combined information from direct and indirect detection, along with detection at colliders, promises to teach us much about fundamental particle physics, cosmology, and astrophysics.

  3. Self-interacting dark matter

    SciTech Connect

    Tulin, Sean

    2014-06-24

    The particle physics nature of dark matter (DM) can leave an imprint on the structure of Universe. If DM has a sizable cross section for self-interactions (much larger than the typical weak scale cross section), this can affect the density profiles of DM halos. Moreover, there exist long-standing discrepancies on small scales between astrophysical observations and predictions from N-body simulations of collisionless DM, which suggests that DM may be self-interacting. Here, we review these discrepancies, we discuss the particle physics implications of self-interacting DM, and we show that DM self-interactions have interesting implications for direct and indirect detection searches.

  4. Crystallization of dense neutron matter

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Chitre, S. M.

    1974-01-01

    The equation of state for cold neutron matter at high density is studied in the t-matrix formulation, and it is shown that energetically it is convenient to have neutrons in a crystalline configuration rather than in a liquid state for values of the density exceeding 1600 Tg/cu cm. The study of the mechanical properties indicates that the system is stable against shearing stresses. A solid core in the deep interior of heavy neutron stars appears to offer the most plausible explanation of speed-ups observed in the Vela pulsar.

  5. EXTRAGALACTIC DARK MATTER AND DIRECT DETECTION EXPERIMENTS

    SciTech Connect

    Baushev, A. N.

    2013-07-10

    Recent astronomical data strongly suggest that a significant part of the dark matter content of the Local Group and Virgo Supercluster is not incorporated into the galaxy halos and forms diffuse components of these galaxy clusters. A portion of the particles from these components may penetrate the Milky Way and make an extragalactic contribution to the total dark matter containment of our Galaxy. We find that the particles of the diffuse component of the Local Group are apt to contribute {approx}12% to the total dark matter density near Earth. The particles of the extragalactic dark matter stand out because of their high speed ({approx}600 km s{sup -1}), i.e., they are much faster than the galactic dark matter. In addition, their speed distribution is very narrow ({approx}20 km s{sup -1}). The particles have an isotropic velocity distribution (perhaps, in contrast to the galactic dark matter). The extragalactic dark matter should provide a significant contribution to the direct detection signal. If the detector is sensitive only to the fast particles (v > 450 km s{sup -1}), then the signal may even dominate. The density of other possible types of the extragalactic dark matter (for instance, of the diffuse component of the Virgo Supercluster) should be relatively small and comparable with the average dark matter density of the universe. However, these particles can generate anomaly high-energy collisions in direct dark matter detectors.

  6. Propagation of Light through Composite Dark Matter

    NASA Astrophysics Data System (ADS)

    Kvam, Audrey; Latimer, David

    2013-10-01

    A concordance of observations indicates that around 80% of the matter in the universe is some unknown dark matter. This dark matter could be comprised of a single structureless particle, but much richer theories exist. Signals from the DAMA, CoGeNT, and CDMS-II dark matter detectors along with the non-observation of dark matter by other detectors motivate theories of composite dark matter along with a ``dark'' electromagnetic sector. The composite models propose baryon-like or atom-like dark matter. If photons kinetically mix with the ``dark'' photons, then light traveling through dark matter will experience dispersion. We expect the dispersion to be approximated by the Drude-Lorentz model where the model parameters are particular to a given dark matter candidate. As light travels through the dispersive medium, it can accrue to a frequency-dependent time lag. Measurement of such a time lag can yield clues as to the nature of the dark matter. As a first application, we model hydrogenic dark atoms and use astrophysical data to constrain the mass, binding energy, and the fractional electric charge of the dark atoms.

  7. Flavored dark matter beyond Minimal Flavor Violation

    SciTech Connect

    Agrawal, Prateek; Blanke, Monika; Gemmler, Katrin

    2014-10-13

    We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3) χ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter χ which transforms as triplet under U(3) χ , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator Φ with a coupling λ. We identify a number of “flavor-safe” scenarios for the structure of λ which are beyond Minimal Flavor Violation. Also, for dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. Furthermore, the combined flavor and dark matter constraints on the parameter space of λ turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed.

  8. Flavored dark matter beyond Minimal Flavor Violation

    DOE PAGESBeta

    Agrawal, Prateek; Blanke, Monika; Gemmler, Katrin

    2014-10-13

    We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3) χ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter χ which transforms asmore » triplet under U(3) χ , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator Φ with a coupling λ. We identify a number of “flavor-safe” scenarios for the structure of λ which are beyond Minimal Flavor Violation. Also, for dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. Furthermore, the combined flavor and dark matter constraints on the parameter space of λ turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed.« less

  9. How cold is cold dark matter?

    SciTech Connect

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T. E-mail: jtneelak@syr.edu

    2014-03-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed.

  10. New astrophysical probes of dark matter

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Yu

    In my thesis, I present four studies to explore astrophysical methods for understanding dark matter properties. To understand the nature of dark matter, I explore a few unstable dark matter models that are invoked as ways to address apparent discrepancies between the predictions of standard cold dark matter and observations of small-scale galactic structure. My studies are aimed at developing independent large-scale constraints on these models. One of the model is a decaying dark matter model such that one dark matter particle decays into two relativistic non-interacting particles. In the second model, a dark matter particle decays into a less massive, stable dark matter particle with a recoil kick velocity Vk and a relativistic non-interacting particle. I consider two types of experiments: one is weak lensing cosmic shear with future or forthcoming surveys like Dark Energy Survey (DES) and Large Synoptic Survey Telescope (LSST); the other one is Lyman-alpha forest spectrum, which has contemporary data from Sloan Digital Sky Survey (SDSS) and other observations. I found that large-scale structure growth is sensitive to the change of dark matter properties due to these decay processes, and they can provide competitive constraints comparing to other existing limits. On small scale, the gravitational interplay of baryon and dark matter can affect the clustering of dark matter. I examine adiabatic contraction (AC) models what are traditionally used to parametrize the dark matter response to the cooling of baryons by investigating a suite of numerical simulations. We found that the errors in AC reconstructions are correlated with baryonic physics and certain halo properties. Our results indicate that existing AC models need significant calibration in order to predicting realistic matter distribution.

  11. Is Cold Dark Matter a Vacuum Effect?

    NASA Astrophysics Data System (ADS)

    Houlden, Michael A.

    Current theories about the Universe based on an FLRW model conclude that it is composed of ~4% normal matter, ~28 % dark matter and ~68% Dark Energy which is responsible for the well-established accelerated expansion: this model works extremely well. As the Universe expands the density of normal and dark matter decreases while the proportion of Dark Energy increases. This model assumes that the amount of dark matter, whose nature at present is totally unknown, has remained constant. This is a natural assumption if dark matter is a particle of some kind - WIMP, sterile neutrino, lightest supersysmmetric particle or axion, etc. - that must have emerged from the early high temperature phase of the Big Bang. This paper proposes that dark matter is not a particle such as these but a vacuum effect, and that the proportion of dark matter in the Universe is actually increasing with time. The idea that led to this suggestion was that a quantum process (possibly the Higgs mechanism) might operate in the nilpotent vacuum that Rowlands postulates is a dual space to the real space where Standard Model fundamental fermions (and we) reside. This could produce a vacuum quantum state that has mass, which interacts gravitationally, and such states would be `dark matter'. It is proposed that the rate of production of dark matter by this process might depend on local circumstances, such as the density of dark matter and/or normal matter. This proposal makes the testable prediction that the ratio of baryonic to dark matter varies with redshift and offers an explanation, within the framework of Rowlands' ideas, of the coincidence problem - why has cosmic acceleration started in the recent epoch at redshift z ~0.55 when the Dark Energy density first became equal to the matter density?. This process also offers a potential solution to the `missing baryon' problem.

  12. Dark matter velocity dispersion effects on CMB and matter power spectra

    NASA Astrophysics Data System (ADS)

    Piattella, O. F.; Casarini, L.; Fabris, J. C.; de Freitas Pacheco, J. A.

    2016-02-01

    Effects of velocity dispersion of dark matter particles on the CMB TT power spectrum and on the matter linear power spectrum are investigated using a modified CAMB code. Cold dark matter originated from thermal equilibrium processes does not produce appreciable effects but this is not the case if particles have a non-thermal origin. A cut-off in the matter power spectrum at small scales, similar to that produced by warm dark matter or that produced in the late forming dark matter scenario, appears as a consequence of velocity dispersion effects, which act as a pressure perturbation.

  13. Dark matter from spacetime nonlocality

    NASA Astrophysics Data System (ADS)

    Saravani, Mehdi; Aslanbeigi, Siavash

    2015-11-01

    We propose that dark matter is not yet another new particle in nature, but that it is a remnant of quantum gravitational effects on known fields. We arrive at this possibility in an indirect and surprising manner: by considering retarded, nonlocal, and Lorentzian evolution for quantum fields. This is inspired by recent developments in causal set theory, where such an evolution shows up as the continuum limit of scalar field propagation on a background causal set. Concretely, we study the quantum theory of a massless scalar field whose evolution is given not by the the d'Alembertian □, but by an operator □˜ which is Lorentz invariant, reduces to □ at low energies, and defines an explicitly retarded evolution: (□˜ϕ )(x ) only depends on ϕ (y ), where y is in the causal past of x . This modification results in the existence of a continuum of massive particles, in addition to the usual massless ones, in the free theory. When interactions are introduced, these massive or off-shell quanta can be produced by the scattering of massless particles, but once produced, they no longer interact, which makes them a natural candidate for dark matter.

  14. Active matter clusters at interfaces

    NASA Astrophysics Data System (ADS)

    Copenhagen, Katherine; Gopinathan, Ajay

    Collective and directed motility or swarming is an emergent phenomenon displayed by many self-organized assemblies of active biological matter such as clusters of embryonic cells during tissue development and flocks of birds. Such clusters typically encounter very heterogeneous environments. What happens when a cluster encounters an interface between two different environments has implications for its function and fate. Here we study this problem by using a mathematical model of a cluster that treats it as a single cohesive unit whose movement depends on the nature of the local environment. We find that low speed clusters which exert forces but no active torques, encountering an interface with a moderate difference in properties can lead to refraction or even total internal reflection of the cluster. For large speeds and clusters with active torques, they show more complex behaviors crossing the interface multiple times, becoming trapped at the interface and deviating from the predictable refraction and reflection of the low velocity clusters. Our results show a wide range of behaviors that occur when collectively moving active biological matter moves across interfaces and these insights can be used to control motion by patterning environments.

  15. Active matter clusters at interfaces.

    NASA Astrophysics Data System (ADS)

    Copenhagen, Katherine; Gopinathan, Ajay

    2016-03-01

    Collective and directed motility or swarming is an emergent phenomenon displayed by many self-organized assemblies of active biological matter such as clusters of embryonic cells during tissue development, cancerous cells during tumor formation and metastasis, colonies of bacteria in a biofilm, or even flocks of birds and schools of fish at the macro-scale. Such clusters typically encounter very heterogeneous environments. What happens when a cluster encounters an interface between two different environments has implications for its function and fate. Here we study this problem by using a mathematical model of a cluster that treats it as a single cohesive unit that moves in two dimensions by exerting a force/torque per unit area whose magnitude depends on the nature of the local environment. We find that low speed (overdamped) clusters encountering an interface with a moderate difference in properties can lead to refraction or even total internal reflection of the cluster. For large speeds (underdamped), where inertia dominates, the clusters show more complex behaviors crossing the interface multiple times and deviating from the predictable refraction and reflection for the low velocity clusters. We then present an extreme limit of the model in the absence of rotational damping where clusters can become stuck spiraling along the interface or move in large circular trajectories after leaving the interface. Our results show a wide range of behaviors that occur when collectively moving active biological matter moves across interfaces and these insights can be used to control motion by patterning environments.

  16. Twin Higgs Asymmetric Dark Matter

    NASA Astrophysics Data System (ADS)

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-01

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)'×SU(2)', atwin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD' scale ΛQCD'≃0.5 - 20 GeV , and that t' is heavy. We focus on the light b' quark regime, mb'≲ΛQCD', where QCD' is characterized by a single scale ΛQCD' with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3 /2 twin baryon, Δ'˜b'b'b', with a dynamically determined mass (˜5 ΛQCD') in the preferred range for the DM-to-baryon ratio ΩDM/Ωbaryon≃5 . Gauging the U (1 )' group leads to twin atoms (Δ'-τ' ¯ bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.

  17. A matter of quantum voltages

    NASA Astrophysics Data System (ADS)

    Sellner, Bernhard; Kathmann, Shawn M.

    2014-11-01

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (Vo) - the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate Vo from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of Vo for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict Vo as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.

  18. Spin-one matter fields

    NASA Astrophysics Data System (ADS)

    Napsuciale, M.; Rodríguez, S.; Ferro-Hernández, Rodolfo; Gómez-Ávila, Selim

    2016-04-01

    Spin-one matter fields are relevant both for the description of hadronic states and as potential extensions of the Standard Model. In this work we present a formalism for the description of massive spin-one fields transforming in the (1 ,0 )⊕(0 ,1 ) representation of the Lorentz group, based on the covariant projection onto parity eigenspaces and Poincaré orbits. The formalism yields a constrained dynamics. We solve the constraints and perform the canonical quantization accordingly. This formulation uses the recent construction of a parity-based covariant basis for matrix operators acting on the (j ,0 )⊕(0 ,j ) representations. The algebraic properties of the covariant basis play an important role in solving the constraints and allowing the canonical quantization of the theory. We study the chiral structure of the theory and conclude that it is not chirally symmetric in the massless limit, hence it is not possible to have chiral gauge interactions. However, spin-one matter fields can have vector gauge interactions. Also, the dimension of the field makes self-interactions naively renormalizable. Using the covariant basis, we classify all possible self-interaction terms.

  19. Active matter on asymmetric substrates

    NASA Astrophysics Data System (ADS)

    Olson Reichhardt, C. J.; Drocco, J.; Mai, T.; Wan, M. B.; Reichhardt, C.

    2011-10-01

    For collections of particles in a thermal bath interacting with an asymmetric substrate, it is possible for a ratchet effect to occur where the particles undergo a net dc motion in response to an ac forcing. Ratchet effects have been demonstrated in a variety of systems including colloids as well as magnetic vortices in type-II superconductors. Here we examine the case of active matter or self-driven particles interacting with asymmetric substrates. Active matter systems include self-motile colloidal particles undergoing catalysis, swimming bacteria, artificial swimmers, crawling cells, and motor proteins. We show that a ratchet effect can arise in this type of system even in the absence of ac forcing. The directed motion occurs for certain particle-substrate interaction rules and its magnitude depends on the amount of time the particles spend swimming in one direction before turning and swimming in a new direction. For strictly Brownian particles there is no ratchet effect. If the particles reflect off the barriers or scatter from the barriers according to Snell's law there is no ratchet effect; however, if the particles can align with the barriers or move along the barriers, directed motion arises. We also find that under certain motion rules, particles accumulate along the walls of the container in agreement with experiment. We also examine pattern formation for synchronized particle motion. We discuss possible applications of this system for self-assembly, extracting work, and sorting as well as future directions such as considering collective interactions and flocking models.

  20. Modelling Positron Interactions with Matter

    NASA Astrophysics Data System (ADS)

    Garcia, G.; Petrovic, Z.; White, R.; Buckman, S.

    2011-05-01

    In this work we link fundamental measurements of positron interactions with biomolecules, with the development of computer codes for positron transport and track structure calculations. We model positron transport in a medium from a knowledge of the fundamental scattering cross section for the atoms and molecules comprising the medium, combined with a transport analysis based on statistical mechanics and Monte-Carlo techniques. The accurate knowledge of the scattering is most important at low energies, a few tens of electron volts or less. The ultimate goal of this work is to do this in soft condensed matter, with a view to ultimately developing a dosimetry model for Positron Emission Tomography (PET). The high-energy positrons first emitted by a radionuclide in PET may well be described by standard formulas for energy loss of charged particles in matter, but it is incorrect to extrapolate these formulas to low energies. Likewise, using electron cross-sections to model positron transport at these low energies has been shown to be in serious error due to the effects of positronium formation. Work was supported by the Australian Research Council, the Serbian Government, and the Ministerio de Ciencia e Innovación, Spain.

  1. A matter of quantum voltages

    SciTech Connect

    Sellner, Bernhard; Kathmann, Shawn M.

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V{sub o}) – the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V{sub o} from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V{sub o} for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V{sub o} as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.

  2. A Matter of Quantum Voltages

    SciTech Connect

    Sellner, Bernhard; Kathmann, Shawn M.

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. Electron holography is able to measure the variation of voltages in matter and modern supercomputers allow the calculation of quantum voltages with practically unlimited spatial and temporal resolution of bulk systems. Of particular interest is the Mean Inner Potential (Vo) - the spatial average of these voltages. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of Vo for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Furthermore, we predict Vo as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  3. PREFACE: Quark Matter 2006 Conference

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan

    2007-07-01

    The Quark Matter 2006 conference was held on 14 20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The

  4. Twin Higgs Asymmetric Dark Matter.

    PubMed

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors. PMID:26430985

  5. Twin Higgs WIMP dark matter

    NASA Astrophysics Data System (ADS)

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-01

    Dark matter (DM) without a matter asymmetry is studied in the context of twin Higgs (TH) theories in which the LHC naturalness problem is addressed. These possess a twin sector related to the Standard Model (SM) by a (broken) Z2 symmetry, and interacting with the SM via a specific Higgs portal. We focus on the minimal realization of the TH mechanism, the fraternal twin Higgs, with only a single generation of twin quarks and leptons, and the S U (3 )'×S U (2 )' gauge group. We show that a variety of natural twin-WIMP DM candidates are present (directly linked to the weak scale by naturalness), the simplest and most attractive being the τ' lepton with a mass mτ'>mHiggs/2 , although spin-1 W'± DM and multicomponent DM are also possible (twin baryons are strongly disfavored by tuning). We consider in detail the dynamics of the possibly (meta)stable glueballs in the twin sector, the nature of the twin QCD phase transition, and possible new contributions to the number of relativistic degrees of freedom, Δ Neff . Direct detection signals are below current bounds but accessible in near-future experiments. Indirect detection phenomenology is rich and requires detailed studies of twin hadronization and fragmentation to twin glueballs and quarkonia and their subsequent decay to SM, and possible light twin sector states.

  6. Condensed matter analogues of cosmology

    NASA Astrophysics Data System (ADS)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  7. Thermal effects in supernova matter

    NASA Astrophysics Data System (ADS)

    Constantinou, Constantinos

    A crucial ingredient in simulations of core collapse supernova (SN) explosions is the equation of state (EOS) of nucleonic matter for densities extending from 10-7 fm-3 to 1 ffm-3, temperatures up to 50 MeV, and proton-to-baryon fraction in the range 0 to 1/2. SN explosions release 99% of the progenitor star's gravitational potential energy in the form of neutrinos and, additionally, they are responsible for populating the universe with elements heavier than 56Fe. Therefore, the importance of understanding this phenomenon cannot be overstated as it could shed light onto the underlying nuclear and neutrino physics. A realistic EOS of SN matter must incorporate the nucleon-nucleon interaction in a many-body environment. We treat this problem with a non-relativistic potential model as well as relativistic mean-field theoretical one. In the former approach, we employ the Skyrme-like Hamiltonian density constructed by Akmal, Pandharipande, and Ravenhall which takes into account the long scattering lengths of nucleons that determine the low density characteristics. In the latter, we use a Walecka-like Lagrangian density supplemented by non-linear interactions involving scalar, vector, and isovector meson exchanges, calibrated so that known properties of nuclear matter are reproduced. We focus on the bulk homogeneous phase and calculate its thermodynamic properties as functions of baryon density, temperature, and proton-to-baryon ratio. The exact numerical results are then compared to those in the degenerate and non-degenerate limits for which analytical formulae have been derived. We find that the two models bahave similarly for densities up to nuclear saturation but exhibit differences at higher densities most notably in the isospin susceptibilities, the chemical potentials, and the pressure. The importance of the correct momentum dependence in the single particle potential that fits optical potentials of nucleon-nucleus scattering was highlighted in the context of

  8. Dark matter dynamics and indirect detection

    SciTech Connect

    Bertone, Gianfranco; Merritt, David; /Rochester Inst. Tech.

    2005-04-01

    Non-baryonic, or ''dark'', matter is believed to be a major component of the total mass budget of the universe. We review the candidates for particle dark matter and discuss the prospects for direct detection (via interaction of dark matter particles with laboratory detectors) and indirect detection (via observations of the products of dark matter self-annihilations), focusing in particular on the Galactic center, which is among the most promising targets for indirect detection studies. The gravitational potential at the Galactic center is dominated by stars and by the supermassive black hole, and the dark matter distribution is expected to evolve on sub-parsec scales due to interaction with these components. We discuss the dominant interaction mechanisms and show how they can be used to rule out certain extreme models for the dark matter distribution, thus increasing the information that can be gleaned from indirect detection searches.

  9. Light dark matter and dark radiation

    NASA Astrophysics Data System (ADS)

    Heo, Jae Ho; Kim, C. S.

    2016-03-01

    Light ( M ≤ 20 MeV) dark-matter particles freeze out after neutrino decoupling. If the dark-matter particle couples to a neutrino or an electromagnetic plasma, the late time entropy production from dark-matter annihilation can change the neutrino-to-photon temperature ratio, and equally the effective number of neutrinos N eff. We study the non-equilibrium effects of dark-matter annihilation on the N eff and the effects by using a thermal equilibrium approximation. Both results are constrained with Planck observations. We demonstrate that the lower bounds of the dark-matter mass and the possibilities of the existence of additional radiation particles are more strongly constrained for dark-matter annihilation process in non-equilibrium.

  10. Astrophysical Probes of Dark Matter Interactions

    NASA Astrophysics Data System (ADS)

    Reece, Matthew

    The majority of matter in the universe is dark matter, made up of some particle beyond those in the Standard Model of particle physics. So far we have very little information about what dark matter is and how it interacts, except through gravity. Constraints from halo shapes and the Bullet Cluster give upper bounds on the self-interaction strength of dark matter, but these bounds are very weak: roughly the same size as nuclear physics cross sections, which are very large by the standards of particle physics. Given how little we know about dark matter, it is important to search for it in as broad a context as possible. Existing direct and indirect detection analyses are typically motivated by simple particle physics models like WIMP dark matter. This research will aim to widen the scope of searches for dark matter by considering a more complete range of particle physics models, working out their implications for astrophysical data, and interpreting existing data in terms of these new models. New models of dark matter can affect searches in a variety of ways. Signals may show up in conventional indirect detection searches, e.g. in gamma rays detected by Fermi-LAT or in antiprotons detected by AMS-02. The new particle physics content of the models could be reflected in surprising spectral shapes or other features of such signals, or in gamma rays with a different profile on the sky than expected in typical models. The PI has worked, for example, on a model in which signals may arise from a dark disk, which is just one of many possibilities. Signals of new dark matter models might also arise in more subtle ways. Structure in the dark sector could influence the development of structure in the visible sector, indirectly. For instance, a dark matter disk or other dark structures could alter the orbits of stars in the galaxy and may be detectable through detailed studies of the kinematics of stellar populations. Dark accretion disks could exist around astrophysical objects

  11. Chandra Probes Nature of Dark Matter

    NASA Astrophysics Data System (ADS)

    2001-09-01

    Astronomers have shed new light on dark matter, the invisible and unknown material that comprises most of the universe. Using NASA's Chandra X-ray Observatory, scientists have precisely determined the distribution of dark matter in a distant galaxy cluster. These new measurements serve to narrow the field of candidates that explain this puzzling element. John Arabadjis and Mark Bautz of the Massachusetts Institute of Technology (MIT) in Cambridge, Mass., and Gordon Garmire of Pennsylvania State University (Penn State) in University Park, announced their results today at the "Two Years of Science with Chandra" symposium in Washington. Their observations enabled them to trace the distribution of dark matter in the galaxy cluster EMSS 1358+6245. Previous evidence from radio, optical and X-ray observations convinced astronomers that most of the matter in the universe is in some dark, as yet undetected, form that makes its presence felt only through gravity. "The new Chandra observations are providing new clues about the nature of this mysterious stuff," said Bautz. "When combined with data from the Hubble Space Telescope, we are able to place restrictions on the cross section, or size, of the dark matter particles," said Arabadjis. "The larger the particles, the more strongly they interact, and the more they alter the dark matter distribution." In galaxy clusters, the amount of dark matter can be inferred by measuring the pressure in hot gas that emits X-rays. Astronomers can then determine how much dark matter would be required to provide the gravity necessary to keep the gas from escaping the cluster. In the cluster EMSS 1358+6245, the mass of the dark matter is found to be about four times that of the "normal" matter (matter not comprised of exotic particles), typical of large galaxy clusters. The distribution of dark matter holds the key to understanding its composition. The most popular model for dark matter invokes slowly moving particles called cold dark matter

  12. The Cosmology of Composite Inelastic Dark Matter

    SciTech Connect

    Spier Moreira Alves, Daniele; Behbahani, Siavosh R.; Schuster, Philip; Wacker, Jay G.; /SLAC

    2011-08-19

    Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark hadrons results in several qualitatively different configurations of the resulting dark matter composition depending on the relative mass scales in the system.

  13. Baryon destruction by asymmetric dark matter

    SciTech Connect

    Davoudiasl H.; Morrissey, D.; Sigurdson, K.; Tulin, S.

    2011-11-10

    We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10{sup 29}-10{sup 32} yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.

  14. Baryon destruction by asymmetric dark matter

    SciTech Connect

    Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris

    2011-11-01

    We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10{sup 29}-10{sup 32} yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.

  15. Volume integral theorem for exotic matter

    SciTech Connect

    Nandi, Kamal Kanti; Zhang Yuanzhong; Kumar, K.B. Vijaya

    2004-12-15

    We answer an important question in general relativity about the volume integral theorem for exotic matter by suggesting an exact integral quantifier for matter violating Averaged Null Energy Condition (ANEC). It is checked against some well-known static, spherically symmetric traversable wormhole solutions of general relativity with a sign reversed kinetic term minimally coupled scalar field. The improved quantifier is consistent with the principle that traversable wormholes can be supported by arbitrarily small quantities of exotic matter.

  16. Improved constraints on inelastic dark matter

    SciTech Connect

    Schmidt-Hoberg, Kai; Winkler, Martin Wolfgang E-mail: mwinkler@ph.tum.de

    2009-09-01

    We perform an extensive study of the DAMA annual modulation data in the context of inelastic dark matter. We find that inelastic dark matter with mass m{sub χ}∼>15 GeV is excluded at the 95% confidence level by the combination of DAMA spectral information and results from other direct detection experiments. However, at smaller m{sub χ}, inelastic dark matter constitutes a possible solution to the DAMA puzzle.

  17. Dark matter as a cancer hazard

    NASA Astrophysics Data System (ADS)

    Chashchina, Olga; Silagadze, Zurab

    2016-07-01

    We comment on the paper "Dark matter collisions with the human body" by K. Freese and C. Savage (2012) [1] and describe a dark matter model for which the results of the previous paper do not quite apply. Within this mirror dark matter model, potentially hazardous objects, mirror micrometeorites, can exist and may lead to diseases triggered by multiple mutations, such as cancer, though with very low probability.

  18. Dissipative dark matter explains rotation curves

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2015-06-01

    Dissipative dark matter, where dark matter particles interact with a massless (or very light) boson, is studied. Such dark matter can arise in simple hidden sector gauge models, including those featuring an unbroken U (1 )' gauge symmetry, leading to a dark photon. Previous work has shown that such models can not only explain the large scale structure and cosmic microwave background, but potentially also dark matter phenomena on small scales, such as the inferred cored structure of dark matter halos. In this picture, dark matter halos of disk galaxies not only cool via dissipative interactions but are also heated via ordinary supernovae (facilitated by an assumed photon-dark photon kinetic mixing interaction). This interaction between the dark matter halo and ordinary baryons, a very special feature of these types of models, plays a critical role in governing the physical properties of the dark matter halo. Here, we further study the implications of this type of dissipative dark matter for disk galaxies. Building on earlier work, we develop a simple formalism which aims to describe the effects of dissipative dark matter in a fairly model independent way. This formalism is then applied to generic disk galaxies. We also consider specific examples, including NGC 1560 and a sample of dwarf galaxies from the LITTLE THINGS survey. We find that dissipative dark matter, as developed here, does a fairly good job accounting for the rotation curves of the galaxies considered. Not only does dissipative dark matter explain the linear rise of the rotational velocity of dwarf galaxies at small radii, but it can also explain the observed wiggles in rotation curves which are known to be correlated with corresponding features in the disk gas distribution.

  19. Current and future searches for dark matter

    SciTech Connect

    Bauer, Daniel A.; /Fermilab

    2005-07-01

    Recent experimental data confirms that approximately one quarter of the universe consists of cold dark matter. Particle theories provide natural candidates for this dark matter in the form of either Axions or Weakly Interacting Massive Particles (WIMPs). A growing body of experiments is aimed at direct or indirect detection of particle dark matter. I summarize the current status of these experiments and offer projections of their future sensitivity.

  20. Dark matter more mysterious than expected

    NASA Astrophysics Data System (ADS)

    Jałocha, Joanna

    2015-12-01

    Based on the lecture Dark Matter --- more mysterious than expected}, given by me at the Cosmology School in Kielce on 18 July 2015, I will briefly discuss in this essay the history of dark matter and why this notion is so essential for the contemporary physics. Next, I will present the point of view of the research team I work with, on the presence of nonbaryonic dark matter in the Universe and in spiral galaxies.

  1. Dark Matter Jets at the LHC

    SciTech Connect

    Bai, Yang; Rajaraman, Arvind; /UC, Irvine

    2012-03-28

    We argue that dark matter particles which have strong interactions with the Standard Model particles are not excluded by current astrophysical constraints. These dark matter particles have unique signatures at colliders; instead of missing energy, the dark matter particles produce jets. We propose a new search strategy for such strongly interacting particles by looking for a signal of two trackless jets. We show that suitable cuts can plausibly allow us to find these signals at the LHC even in early data.

  2. Future Observations and Simulations for Dark Matter

    NASA Astrophysics Data System (ADS)

    Tollerud, Erik Jon; Collins, Michelle; Brooks, Alyson; Wechsler, Risa H.; Dawson, William; Keeton, Charles R.; Read, Justin; Bullock, James; Somerville, Rachel S.

    2016-01-01

    We look to the future of astronomical observations that may provide new measurements of dark matter properties, and discuss their relative sensitivity, potential, and relative complexity of pursuing, analyzing, and interpreting these observations. We present the key details of relevant projects and missions in the context of dark matter constraints, including GAIA, LSST, WFIRST, TMT, etc. We also look to the future of numerical work for N-body and hydrodynamic simulations on galaxy or cosmological scales for different dark matter properties.

  3. ALICE: The Quest for 'Primordial' Matter

    SciTech Connect

    Fabjan, C. W.

    2008-04-21

    ALICE - An LHC Ion Collider Experiment - is being prepared to study, in an optimized and dedicated approach, the physics of nuclear matter under extreme conditions of temperature and density. The LHC Ion programme is the logical sequel in the quest to study the novel form of matter, the Quark-Gluon Plasma, the form of matter believed to have existed in our Universe during the first microsecond after the Big Bang. The status of ALICE, its research programme and discovery potential are presented.

  4. TASI 2008 Lectures on Dark Matter

    SciTech Connect

    Hooper, Dan; /Fermilab /Chicago U., Astron. Astrophys. Ctr.

    2009-01-01

    Based on lectures given at the 2008 Theoretical Advanced Study Institute (TASI), I review here some aspects of the phenomenology of particle dark matter, including the process of thermal freeze-out in the early universe, and the direct and indirect detection of WIMPs. I also describe some of the most popular particle candidates for dark matter and summarize the current status of the quest to discover dark matter's particle identity.

  5. Regenerating a symmetry in asymmetric dark matter.

    PubMed

    Buckley, Matthew R; Profumo, Stefano

    2012-01-01

    Asymmetric dark matter theories generically allow for mass terms that lead to particle-antiparticle mixing. Over the age of the Universe, dark matter can thus oscillate from a purely asymmetric configuration into a symmetric mix of particles and antiparticles, allowing for pair-annihilation processes. Additionally, requiring efficient depletion of the primordial thermal (symmetric) component generically entails large annihilation rates. We show that unless some symmetry completely forbids dark matter particle-antiparticle mixing, asymmetric dark matter is effectively ruled out for a large range of masses, for almost any oscillation time scale shorter than the age of the Universe. PMID:22304253

  6. The Dark Matter Problem: A Historical Perspective

    NASA Astrophysics Data System (ADS)

    Sanders, Robert H.

    2010-04-01

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters revisited: missing mass found; 8. CDM confronts galaxy rotation curves; 9. The new cosmology: dark matter is not enough; 10. An alternative to dark matter: Modified Newtonian Dynamics; 11. Seeing dark matter: the theory and practice of detection; 12. Reflections: a personal point of view; Appendix; References; Index.

  7. Holographic Quark Matter and Neutron Stars

    NASA Astrophysics Data System (ADS)

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-01

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.

  8. The emerging case for axion dark matter

    NASA Astrophysics Data System (ADS)

    Sikivie, P.

    2011-01-01

    Dark matter axions form a rethermalizing Bose-Einstein condensate. This provides an opportunity to distinguish axions from other forms of dark matter on observational grounds. I show that if the dark matter is axions, tidal torque theory predicts a specific structure for the phase space distribution of the halos of isolated disk galaxies, such as the Milky Way. This phase space structure is precisely that of the caustic ring model, for which observational support had been found earlier. The other dark matter candidates predict a different phase space structure for galactic halos.

  9. Neutrino signals from dark matter decay

    SciTech Connect

    Covi, Laura; Grefe, Michael; Ibarra, Alejandro; Tran, David E-mail: michael.grefe@desy.de E-mail: david.tran@ph.tum.de

    2010-04-01

    We investigate different neutrino signals from the decay of dark matter particles to determine the prospects for their detection, and more specifically if any spectral signature can be disentangled from the background in present and future neutrino observatories. If detected, such a signal could bring an independent confirmation of the dark matter interpretation of the dramatic rise in the positron fraction above 10 GeV recently observed by the PAMELA satellite experiment and offer the possibility of distinguishing between astrophysical sources and dark matter decay or annihilation. In combination with other signals, it may also be possible to distinguish among different dark matter decay channels.

  10. Non-canonical inflation coupled to matter

    NASA Astrophysics Data System (ADS)

    Céspedes, Sebastián; Davis, Anne-Christine

    2015-11-01

    We compute corrections to the inflationary potential due to conformally coupled non-relativistic matter. We find that under certain conditions of the matter coupling, inflation may be interrupted abruptly. We display this in the superconformal Starobinsky model, where matter is conformally coupled to the Einstein frame metric. These corrections may easily stop inflation provided that there is an initial density of non-relativistic matter. Since these additional heavy degrees of freedom generically occur in higher dimension theories, for example as Kaluza-Klein modes, this effect can arise in multiple scenarios.

  11. Dipolar dark matter with massive bigravity

    SciTech Connect

    Blanchet, Luc; Heisenberg, Lavinia

    2015-12-14

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.

  12. Dipolar dark matter with massive bigravity

    NASA Astrophysics Data System (ADS)

    Blanchet, Luc; Heisenberg, Lavinia

    2015-12-01

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.

  13. Dark matter from decaying topological defects

    SciTech Connect

    Hindmarsh, Mark; Kirk, Russell; West, Stephen M. E-mail: russell.kirk.2008@live.rhul.ac.uk

    2014-03-01

    We study dark matter production by decaying topological defects, in particular cosmic strings. In topological defect or ''top-down'' (TD) scenarios, the dark matter injection rate varies as a power law with time with exponent p−4. We find a formula in closed form for the yield for all p < 3/2, which accurately reproduces the solution of the Boltzmann equation. We investigate two scenarios (p = 1, p = 7/6) motivated by cosmic strings which decay into TeV-scale states with a high branching fraction into dark matter particles. For dark matter models annihilating either by s-wave or p-wave, we find the regions of parameter space where the TD model can account for the dark matter relic density as measured by Planck. We find that topological defects can be the principal source of dark matter, even when the standard freeze-out calculation under-predicts the relic density and hence can lead to potentially large ''boost factor'' enhancements in the dark matter annihilation rate. We examine dark matter model-independent limits on this scenario arising from unitarity and discuss example model-dependent limits coming from indirect dark matter search experiments. In the four cases studied, the upper bound on Gμ for strings with an appreciable channel into TeV-scale states is significantly more stringent than the current Cosmic Microwave Background limits.

  14. Holographic Quark Matter and Neutron Stars.

    PubMed

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-15

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars. PMID:27472110

  15. Dark matter: an overview of direct searches.

    NASA Astrophysics Data System (ADS)

    Gerbier, G.

    1991-11-01

    The purpose of this paper is to give a flavour of the experimental challenges raised by the detection of dark matter. It summarizes the detection methods of the MACHO's, celestial bodies candidate for the baryonic dark matter and of the WIMP's, particles candidate for the non-baryonic dark matter. Current status and hopes are given. Two side aspects not directly related to the experimental search will be evoked to illustrate that the dark matter puzzle is indeed at the common frontier of various fields of physics.

  16. The contentious nature of soil organic matter.

    PubMed

    Lehmann, Johannes; Kleber, Markus

    2015-12-01

    The exchange of nutrients, energy and carbon between soil organic matter, the soil environment, aquatic systems and the atmosphere is important for agricultural productivity, water quality and climate. Long-standing theory suggests that soil organic matter is composed of inherently stable and chemically unique compounds. Here we argue that the available evidence does not support the formation of large-molecular-size and persistent 'humic substances' in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds. We discuss implications of this view of the nature of soil organic matter for aquatic health, soil carbon-climate interactions and land management. PMID:26595271

  17. Graviton scattering and matter distribution.

    PubMed

    Britten, R J

    1992-05-01

    In this model gravitation results from the emission and absorption of quanta (gravitons) that are scattered a few times in crossing a typical galaxy. Many features of the universe can be explained in terms of this model, although theoretical justification for the scattering of gravitons is lacking. Gravitons follow a random walk and diffuse through the outer regions of a galaxy. As a result the force of attraction follows a 1/R law, matching observed galactic rotation curves and explaining galactic dynamics without the need of dark matter. The model makes predictions regarding early stages in the expansion of the universe and the establishment of the mass distribution. It may be assumed that a nearly uniform expanding cloud of gas was present that was subject to collapse under gravitational forces. The 1/R law of attraction due to graviton diffusion is orders of magnitude more effective for initiation of collapse than the inverse square law, and it applies to blocks of gas larger than the graviton mean free path. Delay in the spread of gravitational attraction by diffusion sets a time-dependent range beyond which the attractive force is zero. In the model this causes arrays of matter to collapse locally into zones with a spacing set by the length of the range of the attractive force. An initial examination indicates that under these conditions the background radiation could have been released from a nearly uniform distribution at the time of decoupling of radiation and matter, followed by gravitational collapse into blocks of galactic mass. In the model the diffusion of gravitons continued and collapse became possible on a larger scale, initiating the formation of galactic clusters and still larger structures. The slow rate of diffusion then prevented the largest structures from attracting each other and permitted the formation of the voids on a very large scale. The model predicts that on the largest scale there is a three-dimensional repeated array of structures

  18. Spin polarized asymmetric nuclear matter and neutron star matter within the lowest order constrained variational method

    SciTech Connect

    Bordbar, G. H.; Bigdeli, M.

    2008-01-15

    In this paper, we calculate properties of the spin polarized asymmetrical nuclear matter and neutron star matter, using the lowest order constrained variational (LOCV) method with the AV{sub 18}, Reid93, UV{sub 14}, and AV{sub 14} potentials. According to our results, the spontaneous phase transition to a ferromagnetic state in the asymmetrical nuclear matter as well as neutron star matter do not occur.

  19. Superfluidity in asymmetric nuclear matter

    SciTech Connect

    Sedrakian, A.; Alm, T.; Lombardo, U.

    1997-02-01

    The onset of superfluidity in isospin-asymmetric nuclear matter is investigated within the BCS theory. A neutron-proton superfluid state in the channel {sup 3}S{sub 1}-{sup 3}D{sub 1} comes about from the interplay between thermal excitations and separation {delta}{mu} of the two Fermi surfaces. The superfluid state disappears above the threshold value of the density-asymmetry parameter {alpha}=(n{sub n}{minus}n{sub p})/n{approx_equal}0.35. For large enough shift between the two Fermi surfaces {delta}{mu}=(1)/(2)({mu}{sub n}{minus}{mu}{sub p}) the transition to the normal state becomes a first-order transition and a second gap solution develops. This solution, however, corresponds to a metastable superfluid state which is unstable with respect to the transition to the normal state. {copyright} {ital 1997} {ital The American Physical Society}

  20. Singlet-Doublet Dark Matter

    SciTech Connect

    Cohen, Timothy; Kearney, John; Pierce, Aaron; Tucker-Smith, David; /Williams Coll.

    2012-02-15

    In light of recent data from direct detection experiments and the Large Hadron Collider, we explore models of dark matter in which an SU(2){sub L} doublet is mixed with a Standard Model singlet. We impose a thermal history. If the new particles are fermions, this model is already constrained due to null results from XENON100. We comment on remaining regions of parameter space and assess prospects for future discovery. We do the same for the model where the new particles are scalars, which at present is less constrained. Much of the remaining parameter space for both models will be probed by the next generation of direct detection experiments. For the fermion model, DeepCore may also play an important role.

  1. The Cryogenic Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Sander, Joel

    2004-05-01

    The Cryogenic Dark Matter Search (CDMS) is an experiment to search for Weakly Interacting Massive Particles (WIMPs). The experiment initially was deployed at a shallow underground site, and is currently deployed at a deep underground site at the Soudan Mine in Minnesota. The detectors operate at cryogenic temperature, and are capable of distinguishing nuclear recoils from WIMP interactions from various backgrounds. The detectors are shielded from background by both active and passive elements. We will describe the components of the overall experiment, and focus on the novel data acquisition system that has been develop to control and monitor the experiment via the World Wide Web. Preliminary signals from the operation at Soudan will be discussed.

  2. Hadronization line in stringy matter

    SciTech Connect

    Biro, Tamas S.; Cleymans, Jean

    2008-09-15

    The equation of state of the string model with linear strings comes close to describing the lattice quantum chromodynamics results and allows for the E/N{approx_equal}6T{sub 0}=1GeV relation found in phenomenological statistical model. The E/N value is derived from the zero pressure condition in quark matter and is a fairly general result. The baryochemical potential dependence of the hadron gas can be met if it is interpreted in the framework of an additive quark model. The conclusion is reached that stringy models explain the E/N=6T{sub 0} relation naturally and independently of the value of the string tension.

  3. The PICASSO Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Wichoski, Ubi

    2011-12-01

    The PICASSO experiment searches for cold dark matter through the direct detection of weakly interacting massive particles (WIMPs) via their spin-dependent interactions with fluorine at SNOLAB, Sudbury—ON, Canada since 2002. The detection principle is based on the superheated droplet technique; the detectors consist of a gel matrix with millions of liquid droplets of superheated fluorocarbon (C4F10) dispersed in it. Recently, a new setup has been built and installed in the Ladder Lab area at SNOLAB. In the present phase of the experiment the Collaboration is running 4.5-litre detector modules with approximately 85 g of active mass per module. Here, we give an overview of the experiment and discuss the progress in background mitigation, in particular background discrimination in the PICASSO detectors.

  4. Linearized gravity with matter time

    NASA Astrophysics Data System (ADS)

    Ali, Masooma; Husain, Viqar; Rahmati, Shohreh; Ziprick, Jonathan

    2016-05-01

    We study general relativity with pressureless dust in the canonical formulation, with the dust field chosen as a matter time gauge. The resulting theory has three physical degrees of freedom in the metric field. The linearized canonical theory reveals two graviton modes and a scalar mode. We find that the graviton modes remain Lorentz covariant despite the time gauge, and that the scalar mode is ultralocal. We also discuss a modification of the theory to include a parameter in the Hamiltonian that is analogous to that in Horava-Lifshitz models. In this case the scalar mode is no longer ultralocal and it acquires a propagation speed that is dependent on the deformation parameter.

  5. Paramagnetic squeezing of QCD matter.

    PubMed

    Bali, G S; Bruckmann, F; Endrődi, G; Schäfer, A

    2014-01-31

    We determine the magnetization of quantum chromodynamics for several temperatures around and above the transition between the hadronic and the quark-gluon phases of strongly interacting matter. We obtain a paramagnetic response that increases in strength with the temperature. We argue that due to this paramagnetism, chunks of quark-gluon plasma produced in noncentral heavy ion collisions should become squeezed perpendicular to the magnetic field. This anisotropy will then contribute to the elliptic flow v2 observed in such collisions, in addition to the pressure gradient that is usually taken into account. We present a simple estimate for the magnitude of this new effect and a rough comparison to the effect due to the initial collision geometry. We conclude that the paramagnetic effect might have a significant impact on the value of v2. PMID:24580441

  6. Neutron Matter Wave Quantum Optics

    NASA Astrophysics Data System (ADS)

    Rauch, Helmut

    2012-06-01

    Neutron matter-wave optics provides the basis for new quantum experiments and a step towards applications of quantum phenomena. Most experiments have been performed with a perfect crystal neutron interferometer where widely separated coherent beams can be manipulated individually. Various geometric phases have been measured and their robustness against fluctuation effects has been proven, which may become a useful property for advanced quantum communication. Quantum contextuality for single particle systems shows that quantum correlations are to some extent more demanding than classical ones. In this case entanglement between external and internal degrees of freedom offers new insights into basic laws of quantum physics. Non-contextuality hidden variable theories can be rejected by arguments based on the Kochen-Specker theorem.

  7. Hierarchical Structures in Granular Matter

    NASA Astrophysics Data System (ADS)

    González-Gutiérrez, J.; Carrillo-Estrada, J. L.; Ruiz-Suárez, J. C.

    2013-12-01

    Granular matter, under the proper conditions of vibration, exhibits a behavior that closely resembles that of gases, liquids or solids. In a vibrated mix of glass particles and magnetic steel particles, it is also possible to observe aggregation phenomena, as well as, processes of reconstruction of the generated clusters. In this work we discuss the effects of the so called granular temperature on the evolution of the agglomerates generated by the magnetic interactions. On the basis of a fractal analysis and the measured mass distribution, we analyze experimental results on the static structural aspects of the aggregates originated by two methods we call: granular diffusion limited aggregation (GDLA) and growth limited by concentration (GLC).

  8. Modified gravity and dark matter

    NASA Astrophysics Data System (ADS)

    Cembranos, Jose A. R.

    2016-05-01

    The fundamental nature of Dark Matter (DM) has not been established. Indeed, beyond its gravitational effects, DM remains undetected by present experiments. In this situation, it is reasonable to wonder if other alternatives can effectively explain the observations usually associated with the existence of DM. The modification of the gravitational interaction has been studied in this context from many different approaches. However, the large amount of different astrophysical evidences makes difficult to think that modified gravity can account for all these observations. On the other hand, if such a modification introduces new degrees of freedom, they may work as DM candidates. We will summarize the phenomenology of these gravitational DM candidates by analyzing minimal models.

  9. Holographic viscosity of fundamental matter.

    PubMed

    Mateos, David; Myers, Robert C; Thomson, Rowan M

    2007-03-01

    A holographic dual of a finite-temperature SU(Nc) gauge theory with a small number of flavors Nf or =1/4pi. Given the known results for the entropy density, the contribution of the fundamental matter eta fund is therefore enhanced at strong 't Hooft coupling lambda; for example, eta fund approximately lambda NcNfT3 in four dimensions. Other transport coefficients are analogously enhanced. These results hold with or without a baryon number chemical potential. PMID:17358523

  10. Resonance properties in nuclear matter

    SciTech Connect

    Ehehalt, W.; Cassing, W.; Engel, A.; Mosel, U.; Wolf, G. )

    1993-06-01

    We analyze the formation and decay properties of nucleon resonances formed in heavy-ion collisions at 1--2 GeV/[ital u] within a microscopic transport approach. In case of Au+Au reactions the density of [Delta] resonances reaches 0.15 fm[sup [minus]3] in the central cell for a time period of the order of 10 fm/[ital c] such that one can legitimately speak about [ital resonance] [ital matter]. The lifetime of the [Delta]'s is found to be shortened at high density by only 20% due to the in-medium channel [Delta]+[ital N][r arrow][ital N]+[ital N].

  11. Morals Matter in Economic Games

    PubMed Central

    Brodbeck, Felix C.; Kugler, Katharina G.; Reif, Julia A. M.; Maier, Markus A.

    2013-01-01

    Contrary to predictions from Expected Utility Theory and Game Theory, when making economic decisions in interpersonal situations, people take the interest of others into account and express various forms of solidarity, even in one-shot interactions with anonymous strangers. Research in other-regarding behavior is dominated by behavioral economical and evolutionary biological approaches. Psychological theory building, which addresses mental processes underlying other-regarding behavior, is rare. Based on Relational Models Theory (RMT, [1]) and Relationship Regulation Theory (RRT, [2]) it is proposed that moral motives influence individuals’ decision behavior in interpersonal situations via conscious and unconscious (automatic) processes. To test our propositions we developed the ‘Dyadic Solidarity Game’ and its solitary equivalent, the ‘Self-Insurance Game’. Four experiments, in which the moral motives “Unity” and “Proportionality” were manipulated, support the propositions made. First, it was shown that consciously activated moral motives (via framing of the overall goal of the experiment) and unconsciously activated moral motives (via subliminal priming) influence other-regarding behavior. Second, this influence was only found in interpersonal, not in solitary situations. Third, by combining the analyses of the two experimental games the extent to which participants apply the Golden Rule (“treat others how you wish to be treated”) could be established. Individuals with a “Unity” motive treated others like themselves, whereas individuals with a “Proportionality” motive gave others less then they gave themselves. The four experiments not only support the assumption that morals matter in economic games, they also deliver new insights in how morals matter in economic decision making. PMID:24358115

  12. Morals matter in economic games.

    PubMed

    Brodbeck, Felix C; Kugler, Katharina G; Reif, Julia A M; Maier, Markus A

    2013-01-01

    Contrary to predictions from Expected Utility Theory and Game Theory, when making economic decisions in interpersonal situations, people take the interest of others into account and express various forms of solidarity, even in one-shot interactions with anonymous strangers. Research in other-regarding behavior is dominated by behavioral economical and evolutionary biological approaches. Psychological theory building, which addresses mental processes underlying other-regarding behavior, is rare. Based on Relational Models Theory (RMT, [1]) and Relationship Regulation Theory (RRT, [2]) it is proposed that moral motives influence individuals' decision behavior in interpersonal situations via conscious and unconscious (automatic) processes. To test our propositions we developed the 'Dyadic Solidarity Game' and its solitary equivalent, the 'Self-Insurance Game'. Four experiments, in which the moral motives "Unity" and "Proportionality" were manipulated, support the propositions made. First, it was shown that consciously activated moral motives (via framing of the overall goal of the experiment) and unconsciously activated moral motives (via subliminal priming) influence other-regarding behavior. Second, this influence was only found in interpersonal, not in solitary situations. Third, by combining the analyses of the two experimental games the extent to which participants apply the Golden Rule ("treat others how you wish to be treated") could be established. Individuals with a "Unity" motive treated others like themselves, whereas individuals with a "Proportionality" motive gave others less then they gave themselves. The four experiments not only support the assumption that morals matter in economic games, they also deliver new insights in how morals matter in economic decision making. PMID:24358115

  13. Statistical Mechanics of Jammed Matter

    NASA Astrophysics Data System (ADS)

    Behringer, Bob

    2009-03-01

    Jammed systems consist of large numbers of macroscopic particles. As such, they are inherently statistical in nature. However, in general, key assumptions of ordinary statistical mechanics need not apply. For instance, energy does not flow in a meaningful way from a thermal bath to such systems. And energy need not be conserved. However, experiments and simulations have shown that there are well defined distributions for such important properties as forces, contact numbers, etc. And new theoretical constructions have been proposed, starting with Edwards et al. The present symposium highlights recent developments for the statistics of jammed matter. This talk reviews the overall field, and highlights recent work in granular systems[1]. Brian Tighe[2] will describe new results from a force ensemble approach proposed recently by Snoeijer et al. Silke Henkes will describe a different force-based ensemble approach that yields a generalized partition function[3]. Eric Corwin will describe state-of-the-art experiments on dense emulsions[4]. And Matthias Schr"oter will present novel experiments on fluidized suspensions that address the issue of jamming and glassy behavior[5]. So, do we have a complete description of jammed matter? Not yet, but these talks, as well as other exciting developments in the field, show that there has been enormous progress, towards that end. [4pt] [1] T. S. Majmudar et al., Nature 435, 1079 (2005); Phys. Rev. Lett. 98 058001 (2007). [0pt] [2] B. P. Tighe, A. R. T. van Eerd, and T. J. H. Vlugt , Phys. Rev. Lett. 100, 238001 (2008). [0pt] [3] S. Henkes, C. O'Hern and B. Chakrabory, Phys. Rev. Lett. 99, 038002 (2007). [0pt] [4] J. Bruji'c et al., Phys. Rev. Lett. 98, 248001 (2007). [0pt] [5] M. Schr"ooter, D. I. Goldman, and H. L. Swinney, Phys. Rev. E 71, 030301(R) (2005).

  14. Phenomenological studies of dark matter

    NASA Astrophysics Data System (ADS)

    Gomez Ramirez, Miguel Alejandro

    It is common knowledge that eighty percent of the matter in our Universe consists of a mysterious substance called "dark matter'' (DM) which has only been detected through its gravitational interactions. The "Standard Model'' (SM) of particle physics, despite its extremely impressive successes, does not have a good candidate particle to fit the DM requirements. If DM is made up of a particle which interacts weakly and it has a mass on the same scale as other SM particles, it should be detectable. In this work, two different phenomenological studies of DM are performed. The first possibility is a weakly-interacting particle being detected when a high density of particles and enough energy is present. These conditions are met by objects called "active galactic nuclei'' (AGN). AGN are the extremely violent central regions of very large galaxies, and in these regions highly-energetic "jets'' of particles are accelerated. It was thought that the possibility the jet particles interact with the surrounding DM producing photons with very distinctive characteristics. A comparison of predicted values with current data is made and it is shown that the prospects for detecting DM in this way are promising in the near future. In the second approach instead of working with complicated fully developed models, only the minimal content needed to account for DM is added to the SM. The strength of these "simplified'' models is that they encompass the interactions and parameter spaces of well-motivated models such as supersymmetry. A simplified model of fermionic DM candidate which couples exclusively to the right handed top quark via a color-charged scalar is considered (motivated by EW symmetry breaking). It is shown that this model can account for the totality of DM and the chances of detection in the near future are very good.

  15. Revisiting First-Year College Students' Mattering: Social Support, Academic Stress, and the Mattering Experience

    ERIC Educational Resources Information Center

    Rayle, Andrea Dixon; Chung, Kuo-Yi

    2008-01-01

    In this study, Nancy Schlossberg's (1989) theory of college students' mattering to others was revisited. Mattering is the experience of others depending on us, being interested in us, and being concerned with our fate. The relationships of gender, mattering to college friends and the college environment, and friend and family social support with…

  16. Microvasculature of the human cerebral white matter: arteries of the deep white matter.

    PubMed

    Nonaka, Hiroko; Akima, Michio; Hatori, Tsutomu; Nagayama, Tadashi; Zhang, Zean; Ihara, Fumie

    2003-06-01

    The vascular architecture of the human cerebral deep white matter was studied using soft X-ray and diaphanized specimens, achieved by intra-arterial injection of barium and vascular stain respectively, and also by electron microscopic examination of the corrosion cast of arteries in normal adult brains. The deep white matter arteries passed through the cerebral cortex with a few branches to the cortex and ran straight through the white matter. The arteries concentrated ventriculopetally to the white matter around the lateral ventricle. Anastomoses were noted around the ventricular wall at the terminals of the deep white matter arteries. No centrifugal branches irrigating the periventricular white matter from the lenticulo-striate arteries were observed in the present study. The presence of anastomoses among the terminal branches of deep white matter arteries protects against ischemic change or infarction in this area from an occlusion of a single deep white matter artery. This may lead to development of terminal zone infarction from ischemia or vascular diseases, affecting multiple deep white matter arteries. The subcortical and deep white matter arteries had thick adventitial sheaths and large adventitial spaces in the white matter but not in the cortex. The presence or absence of the adventitial space is regarded as another characteristic difference between the arteries in the white matter and cortex. This difference may influence pathological changes in vascular lesions in these respective areas. PMID:12777099

  17. RISK MANAGEMENT FOR INDOOR PARTICULATE MATTER

    EPA Science Inventory

    Because people spend 90% of their time indoors, exposure to particulate matter indoors is a major contributor to the risk associated with particulate matter. The risk due to indoor exposure is probably even higher for susceptible populations such as the elderly, the sick, and t...

  18. Plasma, The Fourth State of Matter

    ERIC Educational Resources Information Center

    Zandy, Hassan F.

    1970-01-01

    Discusses plasma as a source of energy through nuclear fission processes, as well as the difficulties encountered in such a process. States that 99 percent of the matter in the universe is plasma, and only 1 percent is the common three states of matter. Describes the fundamental properties of plasma, plasma "pinch, and plasma oscillations. (RR)

  19. Starting and Running the "Libraries Matter" Campaign

    ERIC Educational Resources Information Center

    Pope, Kitty; Chenoweth, Rose; Bersche, Karen; Bell, Lori

    2006-01-01

    Sometimes a simple idea, such as selling gel bracelets that say "Libraries Matter" to raise money, can spark something much bigger. In this article, the authors explain how their Libraries Matter campaign grew beyond their own regional system to cover their whole state and eventually other points around the globe. This successful Web-based…

  20. Viability of the Matter Bounce Scenario

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Amorós, Jaume

    2015-04-01

    It is shown that teleparallel F(T) theories of gravity combined with Loop Quantum Cosmology support a Matter Bounce Scenario which is an alternative to the inflation scenario in the Big Bang paradigm. It is checked that these bouncing models provide theoretical data that fits well with the current observational data, allowing the viability of the Matter Bounce Scenario.