AdS/QCD, LIight-Front Holography, and the Non-perturbative Running Coupling
Brodsky, Stanley J.; de Teramond, Guy; Deur, Alexandre; /Jefferson Lab
2010-04-29
The combination of Anti-de Sitter space (AdS) methods with light-front (LF) holography provides a remarkably accurate first approximation for the spectra and wavefunctions of meson and baryon light-quark bound states. The resulting bound-state Hamiltonian equation of motion in QCD leads to relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. The eigenvalues give the hadronic spectrum, and the eigenmodes represent the probability distributions of the hadronic constituents at a given scale. A positive-sign confining dilaton background modifying AdS space gives a very good account of meson and baryon spectroscopy and form factors. The light-front holographic mapping of this model also leads to a non-perturbative effective coupling {alpha}{sub s}{sup Ads} (Q{sup 2}) which agrees with the effective charge defined by the Bjorken sum rule and lattice simulations. It displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD.
Nonperturbative Yukawa Couplings from String Instantons
Blumenhagen, Ralph; Cvetic, Mirjam; Richter, Robert; Weigand, Timo; Luest, Dieter
2008-02-15
Nonperturbative D-brane instantons can generate perturbatively absent though phenomenologically relevant couplings for type II orientifold compactifications with D-branes. We discuss the generation of the perturbatively vanishing SU(5) GUT Yukawa coupling of type <10 10 5{sub H}>. Moreover, for a simple globally consistent intersecting D6-brane model, we discuss the generation of mass terms for matter fields. This can serve as a mechanism for decoupling exotic matter.
NASA Astrophysics Data System (ADS)
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
2016-09-01
We review the present theoretical and empirical knowledge for αs, the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of αs(Q2) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on αs(Q2) at high Q2, as predicted by perturbative QCD, and its analytic behavior at small Q2, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of αs(Q2) in the high momentum transfer domain of QCD. We review how αs is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior αs(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
2016-05-09
Here, we review present knowledge onmore » $$\\alpha_{s}$$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $$\\alpha_s(Q^2)$$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $$\\alpha_s(Q^2)$$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $$\\alpha_s(Q^2)$$ in the high momentum transfer domain of QCD. We review how $$\\alpha_s$$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $$\\alpha_s(Q^2)$$ in the low momentum transfer domain, where there has been no consensus on how to define $$\\alpha_s(Q^2)$$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled
Diphoton excess and running couplings
NASA Astrophysics Data System (ADS)
Bae, Kyu Jung; Endo, Motoi; Hamaguchi, Koichi; Moroi, Takeo
2016-06-01
The recently observed diphoton excess at the LHC may suggest the existence of a singlet (pseudo-)scalar particle with a mass of 750 GeV which couples to gluons and photons. Assuming that the couplings to gluons and photons originate from loops of fermions and/or scalars charged under the Standard Model gauge groups, we show that there is a model-independent upper bound on the cross section σ (pp → S → γγ) as a function of the cutoff scale Λ and masses of the fermions and scalars in the loop. Such a bound comes from the fact that the contribution of each particle to the diphoton event amplitude is proportional to its contribution to the one-loop β functions of the gauge couplings. We also investigate the perturbativity of running Yukawa couplings in models with fermion loops, and show the upper bounds on σ (pp → S → γγ) for explicit models.
Running coupling corrections to inclusive gluon production
NASA Astrophysics Data System (ADS)
Horowitz, W. A.; Kovchegov, Y. V.
2011-12-01
We calculate running coupling corrections for the lowest-order gluon production cross section in high energy hadronic and nuclear scattering using the BLM scale-setting prescription. At leading order, there are three powers of fixed coupling; in our final answer, these three couplings are replaced by seven factors of running coupling: five in the numerator and two in the denominator, forming a 'septumvirate' of running couplings, analogous to the 'triumvirate' of running couplings found earlier for the small-x BFKL/BK/JIMWLK evolution equations. It is interesting to note that the two running couplings in the denominator of the 'septumvirate' run with complex-valued momentum scales, which are complex conjugates of each other, such that the production cross section is indeed real. We use our lowest-order result to conjecture how running coupling corrections may enter the full fixed-coupling kT-factorization formula for gluon production which includes nonlinear small-x evolution.
Ghost-gluon running coupling, power corrections, and the determination of {lambda}{sub MS}
Boucaud, Ph.; Leroy, J. P.; Le Yaouanc, A.; Micheli, J.; Pene, O.; De Soto, F.; Rodriguez-Quintero, J.
2009-01-01
We compute a formula including operator-product expansion power corrections to describe the running of a QCD coupling nonperturbatively defined through the ghost and gluon dressing functions. This turns out to be rather accurate. We propose the 'plateau' procedure to compute {lambda}{sub MS} from the lattice computation of the running coupling constant. We show a good agreement between the different methods which have been used to estimate {lambda}{sub MS}{sup N{sub f}}{sup =0}. We argue that {lambda}{sub MS} or the strong coupling constant computed with different lattice spacings may be used to estimate the lattice spacing ratio.
Nonperturbative QCD coupling and its {beta} function from light-front holography
Brodsky, Stanley J.; Teramond, Guy F. de; Deur, Alexandre
2010-05-01
The light-front holographic mapping of classical gravity in anti-de Sitter space, modified by a positive-sign dilaton background, leads to a nonperturbative effective coupling {alpha}{sub s}{sup AdS}(Q{sup 2}). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx}1 GeV. The resulting {beta} function appears to capture the essential characteristics of the full {beta} function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on {alpha}{sub s}{sup AdS}(Q{sup 2}).
Nonperturbative QCD coupling and its β function from light-front holography
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.; de Téramond, Guy F.; Deur, Alexandre
2010-05-01
The light-front holographic mapping of classical gravity in anti-de Sitter space, modified by a positive-sign dilaton background, leads to a nonperturbative effective coupling αsAdS(Q2). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale ˜1GeV. The resulting β function appears to capture the essential characteristics of the full β function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on αsAdS(Q2).
Non-Perturbative QCD Coupling and Beta Function from Light Front Holography
Brodsky, Stanley J.; de Teramond, Guy F.; Deur, Alexandre
2010-05-26
The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q{sup 2}). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on {alpha}{sub s}{sup AdS} (Q{sup 2}).
Nonperturbative QCD Coupling and its $\\beta$-function from Light-Front Holography
Brodskey, Stanley J.; de Teramond, Guy; Deur, Alexandre P.
2010-05-28
The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling $\\alpha_s^{AdS}(Q^2)$. It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale $ \\sim 1$ GeV. The resulting $\\beta$-function appears to capture the essential characteristics of the full $\\beta$-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on $\\alpha_s^{AdS}(Q^2)$.
Karanikas, A.I.; Ktorides, C.N.
1987-02-15
We confront the general problem posed by nonperturbative calculations in non-Abelian gauge theories, pertaining to the Wilson loop operator, away from strong coupling. We adopt a nonperturbatively regularized formulation of Yang-Mills theories in the continuum which has already been discussed in the preceding paper. We study, in particular, Yang-Mills duality, within our regularized context, with respect to the full SU(N) group and not simply its center Z/sub N/. We further show that, from the present viewpoint, duality emerges through a distinction between the regularization length on one hand and the scale by which the Yang-Mills system is observed on the other. Finally, we are able to derive a Makeenko-Migdal-type equation for finite N.
Nonperturbative QCD Coupling and its $$\\beta$$-function from Light-Front Holography
Brodskey, Stanley J.; de Teramond, Guy; Deur, Alexandre P.
2010-05-28
The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective couplingmore » $$\\alpha_s^{AdS}(Q^2)$$. It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale $$ \\sim 1$$ GeV. The resulting $$\\beta$$-function appears to capture the essential characteristics of the full $$\\beta$$-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on $$\\alpha_s^{AdS}(Q^2)$$.« less
AdS/QCD, Light-Front Holography, and the Nonperturbative Running Coupling
Stanley J. Brodsky, Guy F. de Téramond, Alexandre Deur
2010-11-01
We have analyzed the beam spin asymmetry and the longitudinally polarized target spin asymmetry of the Deep Virtual Compton Scattering process, recently measured by the Jefferson Lab CLAS collaboration. Our aim is to extract information about the Generalized Parton Distributions of the proton. By fitting these data, in a largely model-independent procedure, we are able to extract numerical values for the two Compton Form Factors $H_{Im}$ and $\\tilde{H}_{Im}$ with uncertainties, in average, of the order of 30%.
Running coupling and fermion mass in strong coupling QED3+1
NASA Astrophysics Data System (ADS)
Sauli, Vladimír
2004-06-01
A simple toy model is used in order to exhibit the technique of extracting the non-perturbative information about Green's functions in Minkowski space. The effective charge and the dynamical electron mass are calculated in strong coupling 3+1 QED by solving the coupled Dyson-Schwinger equations for electron and photon propagators. The minimal Ball-Chiu vertex was used for simplicity and we impose the Landau gauge fixing on QED action. The solutions obtained separately in Euclidean and Minkowski space were compared. The latter one was extracted with the help of spectral technique.
Disentangling running coupling and conformal effects in QCD
Brodsky, S. J.; Gardi, E.; Grunberg, G.; Rathsman, J.
2001-05-01
We investigate the relation between a postulated skeleton expansion and the conformal limit of QCD. We begin by developing some consequences of an Abelian-like skeleton expansion, which allows one to disentangle running-coupling effects from the remaining skeleton coefficients. The latter are by construction renormalon free, and hence hopefully better behaved. We consider a simple ansatz for the expansion, where an observable is written as a sum of integrals over the running coupling. We show that in this framework one can set a unique Brodsky-Lepage-Mackenzie (BLM) scale-setting procedure as an approximation to the running-coupling integrals, where the BLM coefficients coincide with the skeleton ones. Alternatively, the running-coupling integrals can be approximated using the effective charge method. We discuss the limitations in disentangling running coupling effects in the absence of a diagrammatic construction of the skeleton expansion. Independently of the assumed skeleton structure we show that BLM coefficients coincide with conformal coefficients defined in the small {beta}{sub 0} (Banks-Zaks) limit where a perturbative infrared fixed point is present. This interpretation of the BLM coefficients should explain their previously observed simplicity and smallness. Numerical examples are critically discussed.
Intersegmental coupling and recovery from perturbations in freely running cockroaches.
Couzin-Fuchs, Einat; Kiemel, Tim; Gal, Omer; Ayali, Amir; Holmes, Philip
2015-01-15
Cockroaches are remarkably stable runners, exhibiting rapid recovery from external perturbations. To uncover the mechanisms behind this important behavioral trait, we recorded leg kinematics of freely running animals in both undisturbed and perturbed trials. Functional coupling underlying inter-leg coordination was monitored before and during localized perturbations, which were applied to single legs via magnetic impulses. The resulting transient effects on all legs and the recovery times to normal pre-perturbation kinematics were studied. We estimated coupling architecture and strength by fitting experimental data to a six-leg-unit phase oscillator model. Using maximum-likelihood techniques, we found that a network with nearest-neighbor inter-leg coupling best fitted the data and that, although coupling strengths vary among preparations, the overall inputs entering each leg are approximately balanced and consistent. Simulations of models with different coupling strengths encountering perturbations suggest that the coupling schemes estimated from our experiments allow animals relatively fast and uniform recoveries from perturbations. PMID:25609786
Intersegmental coupling and recovery from perturbations in freely running cockroaches
Couzin-Fuchs, Einat; Kiemel, Tim; Gal, Omer; Ayali, Amir; Holmes, Philip
2015-01-01
Cockroaches are remarkably stable runners, exhibiting rapid recovery from external perturbations. To uncover the mechanisms behind this important behavioral trait, we recorded leg kinematics of freely running animals in both undisturbed and perturbed trials. Functional coupling underlying inter-leg coordination was monitored before and during localized perturbations, which were applied to single legs via magnetic impulses. The resulting transient effects on all legs and the recovery times to normal pre-perturbation kinematics were studied. We estimated coupling architecture and strength by fitting experimental data to a six-leg-unit phase oscillator model. Using maximum-likelihood techniques, we found that a network with nearest-neighbor inter-leg coupling best fitted the data and that, although coupling strengths vary among preparations, the overall inputs entering each leg are approximately balanced and consistent. Simulations of models with different coupling strengths encountering perturbations suggest that the coupling schemes estimated from our experiments allow animals relatively fast and uniform recoveries from perturbations. PMID:25609786
Xiang Wenchang
2009-01-01
The analytic form of the asymptotic behavior of the S matrix in the saturation regime including the running coupling is obtained. To get this result, we solve the Balitsky and Kovchegov-Weigert evolution equations in the saturation regime, which include running coupling corrections. We study also the effect of rare fluctuations on top of the running coupling. We find that the rare fluctuations are less important in the running coupling case as compared to the fixed coupling case.
Running couplings and operator mixing in the gravitational corrections to coupling constants
Anber, Mohamed M.; Donoghue, John F.; El-Houssieny, Mohamed
2011-06-15
The use of a running coupling constant in renormalizable theories is well known, but the implementation of this idea for effective field theories with a dimensional coupling constant is, in general, less useful. Nevertheless, there are multiple attempts to define running couplings, including the effects of gravity, with varying conclusions. We sort through many of the issues involved, most particularly the idea of operator mixing and also the kinematics of crossing, using calculations in Yukawa and {lambda}{phi}{sup 4} theories as illustrative examples. We remain in the perturbative regime. In some theories with a high permutation symmetry, such as {lambda}{phi}{sup 4}, a reasonable running coupling can be defined. However, in most cases, such as Yukawa and gauge theories, a running coupling fails to correctly account for the energy dependence of the interaction strength. As a by-product we also contrast on-shell and off-shell renormalization schemes and show that operators which are normally discarded, such as those that vanish by the equations of motion, are required for off-shell renormalization of effective field theories. Our results suggest that the inclusion of gravity in the running of couplings is not useful or universal in the description of physical processes.
Nonperturbative QCD Calculations
NASA Astrophysics Data System (ADS)
Dellby, Niklas
1995-01-01
The research described in this thesis is an exact transformation of the Yang-Mills quantum chromodynamics (QCD) Lagrangrian into a form that is suitable for nonperturbative calculations. The conventional Yang-Mills Lagrangian has proven to be an excellent basis for perturbative calculations, but in nonperturbative calculations it is difficult to separate gauge problems from physical properties. To mitigate this problem, I develop a new equivalent Lagrangian that is not only expressed completely in terms of the field strengths ofthe gauge field but is also manifestly Lorentz and gauge invariant. The new Lagrangian is quadratic in derivatives, with non-linear local couplings, thus it is ideally suited for a numerical calculation. The field-strength Lagrangian is of such a form that it is possible to do a straightforward numerical stationary path expansion and find the fundamental QCD properties. This thesis examines several approximations analytically, investigating different ways to utilize the new Lagrangian. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).
Nonperturbative QCD corrections to electroweak observables
Dru B Renner, Xu Feng, Karl Jansen, Marcus Petschlies
2011-12-01
Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we will examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We will then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we will mention applications to the Adler function, the determination of the strong coupling constant and QCD corrections to muonic-hydrogen.
Impact of dispersed coupling strength on the free running periods of circadian rhythms.
Gu, Changgui; Rohling, Jos H T; Liang, Xiaoming; Yang, Huijie
2016-03-01
The dominant endogenous clock, named the suprachiasmatic nucleus (SCN), regulates circadian rhythms of behavioral and physiological activity in mammals. One of the main characteristics of the SCN is that the animal maintains a circadian rhythm with a period close to 24 h in the absence of a daily light-dark cycle (called the free running period). The free running period varies among species due to heterogeneity of the SCN network. Previous studies have shown that the heterogeneity in cellular coupling as well as in intrinsic neuronal periods shortens the free running period. Furthermore, as derived from experiments, one neuron's coupling strength is negatively associated with its period. It is unknown what the effects of this association between coupling strength and period are on the free running period and how the heterogeneity in coupling strength influences this free running period. In the present study we found that in the presence of a negative relationship between one neuron's coupling strength and its period, surprisingly, the dispersion of coupling strengths increases the free running period. Our present finding may shed new light on the understanding of the heterogeneous SCN network and provides an alternative explanation for the diversity of free running periods between species. PMID:27078397
Impact of dispersed coupling strength on the free running periods of circadian rhythms
NASA Astrophysics Data System (ADS)
Gu, Changgui; Rohling, Jos H. T.; Liang, Xiaoming; Yang, Huijie
2016-03-01
The dominant endogenous clock, named the suprachiasmatic nucleus (SCN), regulates circadian rhythms of behavioral and physiological activity in mammals. One of the main characteristics of the SCN is that the animal maintains a circadian rhythm with a period close to 24 h in the absence of a daily light-dark cycle (called the free running period). The free running period varies among species due to heterogeneity of the SCN network. Previous studies have shown that the heterogeneity in cellular coupling as well as in intrinsic neuronal periods shortens the free running period. Furthermore, as derived from experiments, one neuron's coupling strength is negatively associated with its period. It is unknown what the effects of this association between coupling strength and period are on the free running period and how the heterogeneity in coupling strength influences this free running period. In the present study we found that in the presence of a negative relationship between one neuron's coupling strength and its period, surprisingly, the dispersion of coupling strengths increases the free running period. Our present finding may shed new light on the understanding of the heterogeneous SCN network and provides an alternative explanation for the diversity of free running periods between species.
The Renormalization Group Running of the Higgs Quartic Coupling: Unification vs. Phenomenology
Montes de Oca Y, J. H.; Juarez W, S. R.; Kielanowski, P.
2007-02-09
Within the framework of the standard model (SM) of elementary particles, we obtained numerical solutions for the running Higgs mass, considering the renormalization group equations at the one and two loop approximation. Through the triviality condition (TC) and stability condition (SC) on the Higgs quartic coupling {lambda}H the bounds on the Higgs running mass have been fixed. The numerical results are presented for two special cases. One considering an unification of the three gauge couplings at the energy EU 1013 GeV and the other using the current experimental data for the gauge couplings.
Non-perturbative quantum geometry III
NASA Astrophysics Data System (ADS)
Krefl, Daniel
2016-08-01
The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stokes phenomena over the combined string coupling and quantized Kähler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local ℙ1 + ℙ1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stokes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local ℙ2 near the conifold point in moduli space is also provided.
Running of the Yukawa Couplings in a Two Higgs Doublet Model
Montes de Oca Y, J. H.; Juarez W, S. R.; Kielanowski, P.
2008-07-02
We solve the one loop Renormalization Group Equations (RGE) for the Yukawa couplings in the Standard Model with two Higgs doublets. In the RGE we include the contributions of the up and down quarks. In this approximation we explore universality and unification assumptions to study the mass-hierarchy problem through the running of the vacuum expectation values.
Quantum interactions between nonperturbative vacuum fields
Millo, R.; Faccioli, P.; Scorzato, L.
2010-04-01
We develop an approach to investigate the nonperturbative dynamics of quantum field theories, in which specific vacuum field fluctuations are treated as the low-energy dynamical degrees of freedom, while all other vacuum field configurations are explicitly integrated out from the path integral. We show how to compute the effective interaction between the vacuum field degrees of freedom both perturbatively (using stochastic perturbation theory) and fully nonperturbatively (using lattice field theory simulations). The present approach holds to all orders in the couplings and does not rely on the semiclassical approximation.
Perturbative and nonperturbative aspects of jet quenching in near-critical quark-gluon plasmas
NASA Astrophysics Data System (ADS)
Xu, Jiechen
In this thesis, we construct two QCD based energy loss models to perform quantitative analysis of jet quenching observables in ultra-relativistic nucleus-nucleus collisions at RHIC and the LHC. We first build up a perturbative QCD based CUJET2.0 jet flavor tomography model that couples the dynamical running coupling DGLV opacity series to bulk data constrained relativistic viscous hydrodynamic backgrounds. It solves the strong heavy quark energy loss puzzle at RHIC and explains the surprising transparency of the quark-gluon plasma (QGP) at the LHC. The observed azimuthal anisotropy of hard leading hadrons requires a path dependent jet-medium coupling in CUJET2.0 that implies physics of nonperturbative origin. To explore the nonperturbative chromo-electric and chromo-magnetic structure of the strongly-coupled QGP through jet probes, we build up a new CUJET3.0 framework that includes in CUJET2.0 both Polyakov loop suppressed semi-QGP chromo-electric charges and emergent chromo-magnetic monopoles in the critical transition regime. CUJET3.0 quantitatively describes the anisotropic hadron suppression at RHIC and the LHC. More significantly, it provides a robust connection between the long wavelength ``perfect fluidity'' of the QGP and the short distance jet transport in the QGP. This framework paves the way for ``measuring'' both perturbative and nonperturbative properties of the QGP, and more importantly for probing color confinement through jet quenching.
Lessons from Multi-Millenium Runs of Coupled Atmospheric-Ocean General Circulation Models
NASA Astrophysics Data System (ADS)
Liang, M.; Lin, L.; Tung, K.; Yung, Y. L.; Sun, S.
2012-12-01
Coupled atmosphere-ocean general circulation models (AOGCM) are used for climate prediction on the degree of warming due to increases in greenhouse gases, and for policy recommendations on emission curbs. We first demonstrate that the currently adopted protocol for obtaining such a prediction does not yield a robust solution and therefore cannot be relied upon for policy recommendations. The range of uncertainty in such predictions may have been underreported when models participating in Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) were run with their oceans at various stages of flux adjustment with their atmosphere, and could change significantly simply by running them longer. This is shown by comparing multi-millennium long runs of the Goddard Institute for Space Studies coupled model (GISS-EH) and the Community Climate System Model (CCSM4) with what were reported to AR4. For common predictions from preindustrial condition to 2030-2100, the previously predicted warming and spatial patterns vary even in ensemble average. The commonly adopted remedy of subtracting the "climate drift" is ineffective and often leads to a wrong solution. The long model runs here also reveal the range of variability (~30%) in the Transient Climate Response (TCR) within the same model with the same Equilibrium Climate Sensitivity (ECS). Fortunately, for simulations with multi-decadal to century long time horizon, robust solutions can be obtained off thousand-year-long control runs that reach "quasi-equilibrium" using a new protocol. The problem of different quasi-equilibrium states in long runs and the memory of the solution on these states are also addressed.
Nonperturbative Quantum Field Evolution
NASA Astrophysics Data System (ADS)
Zhao, Xingbo; Ilderton, Anton; Maris, Pieter; Vary, James P.
2014-06-01
We introduce a nonperturbative, first-principles approach to time-dependent problems in quantum field theory. In this approach, the time-evolution of quantum field configurations is calculated in real time and at the amplitude level. This method is particularly suitable for treating systems interacting with a time-dependent background field. As a test problem, we apply this approach to QED and study electron acceleration and the associated photon emission in a time- and space-dependent electromagnetic background field.
PROGRESS IN TUNE, COUPLING, AND CHROMATICITY MEASUREMENT AND FEEDBACK DURING RHIC RUN 7
CAMERON,P.; DELLAPENNA, A.; HOFF, L.; LUO, Y.; MARUSIC, A.; SCHULTHEISS, C.; TEPIKIAN, S.; ET AL.
2007-06-25
Tune feedback was first implemented in RHIC in 2002, as a specialist activity. The transition of the tune feedback system to full operational status was impeded by dynamic range problems, as well as by overall loop instabilities driven by large coupling. The dynamic range problem was solved by the CERN development of the Direct Diode Detection Analog Front End. Continuous measurement of all projections of the betatron eigenmodes made possible the world's first implementation of coupling feedback during beam acceleration, resolving the problem of overall loop instabilities. Simultaneous tune and coupling feedbacks were utilized as specialist activities for ramp development during the 2006 RHIC run. At the beginning of the 2007 RHIC run there remained two obstacles to making these feedbacks fully operational in RHIC - chromaticity measurement and control, and the presence of strong harmonics of the power line frequency in the betatron spectrum. We report on progress in tune, coupling, and chromaticity measurement and feedback, and discuss the relevance of our results to LHC commissioning.
Numerical precision of the solution to the running-coupling Balitsky-Kovchegov equation
NASA Astrophysics Data System (ADS)
Matas, Marek; Cepila, Jan; Guillermo Contreras Nuno, Jesus
2016-03-01
We use the running coupling Balitsky-Kovchegov (rcBK) equation to study the rapidity dependence of saturation in inclusive HERA data and we discuss the behaviour of its numerical solution. The rcBK equation has been solved using Runge-Kutta methods. The influence of the parameters implicit in the numerical evolution has been studied. They include, among others, the order of the Runge-Kutta evolution, the size of the different grids and the step in the numerical evolution. Some suggestions on the minimum value of these parameters are put forward.
Higgs boson couplings to bosons with the ATLAS detector: Run 1 legacy
NASA Astrophysics Data System (ADS)
Petit, E.; Atlas Collaboration
2016-07-01
The final ATLAS measurements of Higgs boson production and couplings in the decay channels H → ZZ^{(*)} → ℓℓℓℓ , H → γγ and H → WW(*) → ℓ νℓ ν are presented, based on the run 1 of the LHC. The analyses are optimised to measure the number of observed Higgs boson decays divided by the corresponding Standard Model predictions for individual Higgs boson production processes. Total, fiducial and differential cross-sections are also measured. No significant deviations from the predictions of the Standard Model are found.
Energy Loss of Heavy Quarks in a QGP with a Running Coupling Constant Approach
NASA Astrophysics Data System (ADS)
Gossiaux, P. B.; Aichelin, J.
2009-11-01
We show that the effective running coupling constant, α, and the effective regulator, κm˜D2, which we used recently to calculate the energy loss, dEdx, and the elliptic flow, v, of heavy quarks in an expanding quark gluon plasma plasma (QGP) [P. B. Gossiaux and J. Aichelin, Phys. Rev. C78, 014904 (2008), [arXiv:0802.2525], P. B. Gossiaux and J. Aichelin, J. Phys. G36 (2009) 064028, [arXiv:0901.2462], P. B. Gossiaux, R. Bierkandt and J. Aichelin, Phys. Rev. C79 (2009) 044906 [arXiv:0901.0946
Non-Perturbative Field Theories.
NASA Astrophysics Data System (ADS)
Stephenson, David
Available from UMI in association with The British Library. Requires signed TDF. Some non-perturbative aspects of field theories are studied by applying lattice gauge theory techniques. The low-lying hadronic mass spectrum is calculated numerically using quenched lattice quantum chromodynamics. The results of large numerical simulations performed on a distributed array processor are presented and analysed. Particular emphasis is stressed upon the understanding of systematic and statistical errors in the calculation. In addition, the pion decay constant and the chiral condensate are evaluated. An attempt is made to relate the numerical findings to the experimentally measured quantities. A pioneering attempt to understand Yukawa couplings is discussed. A toy Fermion-Higgs system is studied numerically on a transputer array. Dynamical fermions are included in the investigation of the behavior of the system over a wide range of Yukawa couplings. A phase diagram is found for the model which shows evidence of spontaneous chiral symmetry breaking transitions. Extensions of the model are discussed together some speculations concerning the behaviour of Yukawa couplings in general. The possibility of using the lattice as a model for space-time is investigated by studying the propagation of particles on a fractal lattice. In addition, the use of truncated fractals as novel regulators is studied numerically in the hope that the problem of fermion doubling will be alleviated.
NASA Astrophysics Data System (ADS)
Braun, M. A.
2015-07-01
The inclusive cross section for production of a jet with a given transverse momentum off a heavy nucleus is derived in the BFKL framework with a running coupling on the basis of the bootstrap relation. The cross section depends on the same three different coupling constants as the total cross section unlike the cross section for gluon production derived in the dipole approach.
Properties of quark matter in a new quasiparticle model with QCD running coupling
NASA Astrophysics Data System (ADS)
Lu, ZhenYan; Peng, GuangXiong; Xu, JianFeng; Zhang, ShiPeng
2016-06-01
The running of the QCD coupling in the effective mass causes thermodynamic inconsistency problem in the conventional quasiparticle model. We provide a novel treatment which removes the inconsistency by an effective bag constant. The chemical potential dependence of the renormalization subtraction point is constrained by the Cauchy condition in the chemical potential space. The stability and microscopic properties of strange quark matter are then studied within the completely self-consistent quasiparticle model, and the obtained equation of state of quark matter is applied to the investigation of strange stars. It is found that our improved model can describe well compact stars with mass about two times the solar mass, which indicates that such massive compact stars could be strange stars.
Dynamics and thermodynamics of a nonlocal Polyakov--Nambu--Jona-Lasinio model with running coupling
Hell, T.; Roessner, S.; Cristoforetti, M.; Weise, W.
2009-01-01
A nonlocal covariant extension of the two-flavor Nambu and Jona-Lasinio model is constructed, with built-in constraints from the running coupling of QCD at high-momentum and instanton physics at low-momentum scales. Chiral low-energy theorems and basic current algebra relations involving pion properties are shown to be reproduced. The momentum-dependent dynamical quark mass derived from this approach is in agreement with results from Dyson-Schwinger equations and lattice QCD. At finite temperature, inclusion of the Polyakov loop and its gauge invariant coupling to quarks reproduces the dynamical entanglement of the chiral and deconfinement crossover transitions as in the (local) Polyakov-loop-extended Nambu and Jona-Lasinio model, but now without the requirement of introducing an artificial momentum cutoff. Steps beyond the mean-field approximation are made including mesonic correlations through quark-antiquark ring summations. Various quantities of interest (pressure, energy density, speed of sound, etc.) are calculated and discussed in comparison with lattice QCD thermodynamics at zero chemical potential. The extension to finite quark chemical potential and the phase diagram in the (T,{mu})-plane are also discussed.
Developing a run-time coupling between ESP-r and TRNSYS
NASA Astrophysics Data System (ADS)
Jost, Romain
Rigorous modeling is essential to design buildings and deliver the next advances in energy efficiency and on-site renewable energy production. A great variety of energy simulation programs exists but they are, for the most part, specialized in one particular domain and they do not allow a complete analysis. Because all domains (heating, cooling, ventilation, lighting, acoustic) are interconnected and there is no global simulation environment existing that covers all of the system particularities with the same flexibility, it is often appropriate to proceed with software combination and/or coupling. This Master thesis describes the implementation of a run-time coupling between TRNSYS and ESP-r. In order to minimize the modifications to the source codes and create a tool able to support future development of each program, new components that receive and pass data to the other program were implemented in the two software programs. A multi DLL structure enables the coupling and exchange of information. A third piece of software, the Harmonizer, launches TRNSYS and ESP-r DLLS and manages the exchange of data. It is also responsible of the convergence handling and controls that both programs march through time together time step after time step. A new category of components, the Data Exchanger Types was implemented in TRNSYS. These components can work as standard TRNSYS Types and exchange data through their inputs and outputs but they can also impose the solver to continue iterating. This capability is essential to force TRNSYS to do more calculations at a specific time step when it has converged but co-simulation convergence requires more iterations. A component of this new category, Type 130, was created specifically for the coupling with ESP-r. Type 130 exchanges data with the Harmonizer on one side and with the TRNSYS network of Types on the other side. Testing of basic data exchange validates the data exchange method and the coupling. The co-simulator is able to
Supersymmetry and supergravity nonperturbative OCD
Roy, P.; Singh, V.
1984-01-01
This book contains 13 selections. Some of the titles are: Introduction to global supersymmetry; TeV scale models with two supersymmetries; Anomalies and index theory; and Methods in non-perturbative field theory.
Horizon Run 4 Simulation: Coupled Evolution of Galaxies and Large-Scale Structures of the Universe
NASA Astrophysics Data System (ADS)
Kim, Juhan; Park, Changbom; L'Huillier, Benjamin; Hong, Sungwook E.
2015-08-01
The Horizon Run 4 is a cosmological N-body simulation designed for the study of coupled evolution between galaxies and large-scale structures of the Universe, and for the test of galaxy formation models. Using 6300^3 gravitating particles in a cubic box of L_{box} = 3150 h^{-1} Mpc, we build a dense forest of halo merger trees to trace the halo merger history with a halo mass resolution scale down to M_s = 2.7 × 10^{11} h^{-1} M_⊙. We build a set of particle and halo data, which can serve as testbeds for comparison of cosmological models and gravitational theories with observations. We find that the FoF halo mass function shows a substantial deviation from the universal form with tangible redshift evolution of amplitude and shape. At higher redshifts, the amplitude of the mass function is lower, and the functional form is shifted toward larger values of ln (1/σ). We also find that the baryonic acoustic oscillation feature in the two-point correlation funct-ion of mock galaxies becomes broader with a peak position moving to smaller scales and the peak amplitude decreasing for increasing directional cosine mu compared to the linear predictions. From the halo merger trees built from halo data at 75 redshifts, we measure the half-mass epoch of halos and find that less massive halos tend to reach half of their current mass at higher redshifts. Simulation outputs including snapshot data, past lightcone space data, and halo merger data are available at http://sdss.kias.re.kr/astro/Horizon-Run4
On the interface between perturbative and nonperturbative QCD
NASA Astrophysics Data System (ADS)
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
2016-06-01
The QCD running coupling αs (Q2) sets the strength of the interactions of quarks and gluons as a function of the momentum transfer Q. The Q2 dependence of the coupling is required to describe hadronic interactions at both large and short distances. In this article we adopt the light-front holographic approach to strongly-coupled QCD, a formalism which incorporates confinement, predicts the spectroscopy of hadrons composed of light quarks, and describes the low-Q2 analytic behavior of the strong coupling αs (Q2). The high-Q2 dependence of the coupling αs (Q2) is specified by perturbative QCD and its renormalization group equation. The matching of the high and low Q2 regimes of αs (Q2) then determines the scale Q0 which sets the interface between perturbative and nonperturbative hadron dynamics. The value of Q0 can be used to set the factorization scale for DGLAP evolution of hadronic structure functions and the ERBL evolution of distribution amplitudes. We discuss the scheme-dependence of the value of Q0 and the infrared fixed-point of the QCD coupling. Our analysis is carried out for the MS ‾, g1, MOM and V renormalization schemes. Our results show that the discrepancies on the value of αs at large distance seen in the literature can be explained by different choices of renormalization schemes. We also provide the formulae to compute αs (Q2) over the entire range of space-like momentum transfer for the different renormalization schemes discussed in this article.
NASA Astrophysics Data System (ADS)
Tang, Yong; Wu, Yue-Liang
2011-11-01
We perform an explicit one-loop calculation for the gravitational contributions to the two-, three- and four-point gauge Green's functions with paying attention to the quadratic divergences. It is shown for the first time in the diagrammatic calculation that the Slavnov-Taylor identities are preserved even if the quantum graviton effects are included at one-loop level, such a conclusion is independent of the choice of regularization schemes. We also present a regularization scheme independent calculation based on the gauge condition independent background field framework of Vilkovisky-DeWitt's effective action with focusing on both the quadratic divergence and quartic divergence that is not discussed before. With the harmonic gauge condition, the results computed by using the traditional background field method can consistently be recovered from the Vilkovisky-DeWitt's effective action approach by simply taking a limiting case, and are found to be the same as the ones yielded by the diagrammatic calculation. As a consequence, in all the calculations, the symmetry-preserving and divergent-behavior-preserving loop regularization method can consistently lead to a nontrivial gravitational contribution to the gauge coupling constant with an asymptotic free power-law running at one loop near the Planck scale.
NASA Astrophysics Data System (ADS)
Ebert, Dietmar; Plefka, Jan; Rodigast, Andreas
2009-02-01
We study the question of a modification of the running gauge coupling of Yang-Mills theories due to quantum gravitational effects in a compact large extra dimensional brane world scenario with a low energy quantum gravity scale. The ADD scenario is applied for a D = d+δ dimensional space-time in which gravitons freely propagate, whereas the non-abelian gauge fields are confined to a d-dimensional brane. The extra dimensions are taken to be toroidal and the transverse fluctuation modes (branons) of the brane are taken into account. On this basis we have calculated the one-loop corrections due to virtual Kaluza-Klein graviton and branon modes for the gluon two- and three-point functions in an effective field theory treatment. Applying momentum cut-off regularization we find that for a d = 4 brane the leading gravitational divergencies cancel irrespective of the number of extra dimensions δ, generalizing previous results in the absence of extra-dimensions. Hence, again the Yang-Mills β-function receives no gravitational corrections at one-loop. This is no longer true in a `universal' extra dimensional scenario with a d > 4 dimensional brane. Moreover, the subleading power-law gravitational divergencies induce higher-dimensional counterterms, which we establish in our scheme. Interestingly, for d = 4 these gravitationally induced counterterms are of the form recently considered in non-abelian Lee-Wick extensions of the standard model—now with a possible mass scale in the TeV range due to the presence of large extra dimensions.
CAMERON, P.; DELLAPENNA, A.; HOFF, L.; LUO, Y.; MARUSIC, A.; PTITSYN, V.; SCHULTHEISS, C.
2006-06-26
Early efforts [1] to implement tune feedback during the acceleration ramp in RHIC were hampered by large betatron coupling, as well as the requirement for large dynamic range. Both problems have been addressed, the first by implementation of continuous measurement of coupling, and the second by the development of an improved analog front end. With these improvements, simultaneous coupling and tune feedback were successfully implemented for acceleration ramp development during RHIC Run 6. During the course of this work it became clear that direct excitation of the betatron resonances by high harmonics of the 60Hz power frequency was an obstacle to making the system fully operational. They report here on these results from RHIC Run 6, and implications for LHC commissioning.
Cameron, P.; DellaPenna, A.; Hoff, L.T.; Luo, Y.; Marusic, A.; Ptitsyn, V.; Schultheiss, C.; Gasior, M.; Jones, O.R.; Tan, C.Y.; /Fermilab
2006-06-01
Early efforts to implement tune feedback during the acceleration ramp in RHIC were hampered by large betatron coupling, as well as the requirement for large dynamic range. Both problems have been addressed, the first by implementation of continuous measurement of coupling, and the second by the development of an improved analog front end. With these improvements, simultaneous coupling and tune feedback were successfully implemented for acceleration ramp development during RHIC Run 6. During the course of this work it became clear that direct excitation of the betatron resonances by high harmonics of the 60Hz power frequency was an obstacle to making the system fully operational. We report here on these results from RHIC Run 6, and implications for LHC commissioning.
Running Faster Together: Huge Speed up of Thermal Ratchets due to Hydrodynamic Coupling
NASA Astrophysics Data System (ADS)
Malgaretti, Paolo; Pagonabarraga, Ignacio; Frenkel, Daan
2012-10-01
We present simulations that reveal a surprisingly large effect of hydrodynamic coupling on the speed of thermal ratchet motors. The model that we use considers particles performing thermal ratchet motion in a hydrodynamic solvent. Using particle-based, mesoscopic simulations that maintain local momentum conservation, we analyze quantitatively how the coupling to the surrounding fluid affects ratchet motion. We find that coupling can increase the mean velocity of the moving particles by almost 2 orders of magnitude, precisely because ratchet motion has both a diffusive and a deterministic component. The resulting coupling also leads to the formation of aggregates at longer times. The correlated motion that we describe increases the efficiency of motor-delivered cargo transport and we speculate that the mechanism that we have uncovered may play a key role in speeding up molecular motor-driven intracellular transport.
Nonperturbative Regulator for Chiral Gauge Theories?
NASA Astrophysics Data System (ADS)
Grabowska, Dorota M.; Kaplan, David B.
2016-05-01
We propose a nonperturbative gauge-invariant regulator for d -dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in d +1 dimensions with quantum gauge fields that reside on one d -dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local d -dimensional interpretation only if the chiral fermion representation is anomaly free. A physical realization of this construction would imply the existence of mirror fermions in the standard model that are invisible except for interactions induced by vacuum topology, and which could gravitate differently than conventional matter.
Nonperturbative Regulator for Chiral Gauge Theories?
Grabowska, Dorota M; Kaplan, David B
2016-05-27
We propose a nonperturbative gauge-invariant regulator for d-dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in d+1 dimensions with quantum gauge fields that reside on one d-dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local d-dimensional interpretation only if the chiral fermion representation is anomaly free. A physical realization of this construction would imply the existence of mirror fermions in the standard model that are invisible except for interactions induced by vacuum topology, and which could gravitate differently than conventional matter. PMID:27284646
Nonperturbative light-front Hamiltonian methods
NASA Astrophysics Data System (ADS)
Hiller, J. R.
2016-09-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.
NASA Astrophysics Data System (ADS)
Boucaud, Ph.; Brinet, M.; De Soto, F.; Morenas, V.; Pène, O.; Petrov, K.; Rodríguez-Quintero, J.
2014-04-01
We present a lattice calculation of the renormalized running coupling constant in symmetric (MOM) and asymmetric momentum substraction schemes including u, d, s and c quarks in the sea. An Operator Product Expansion dominated by the dimension-two < A 2> condensate is used to fit the running of the coupling. We argue that the agreement in the predicted < A 2> condensate for both schemes is a strong support for the validity of the OPE approach and the effect of this non-gauge invariant condensate over the running of the strong coupling.
Nonperturbative QCD with modern tools
Roberts, C.D.
1998-07-01
In these lectures the author introduces and explores a range of topics of contemporary interest in hadronic physics: from what drives the formation of a nonzero quark condensate to the effect that mechanism has on light and heavy meson form factors and the properties of the quark-gluon plasma. The trail leads naturally through a discussion of confinement, dynamical chiral symmetry breaking and bound state structure: phenomena that require nonperturbative methods for their explanation. In all of this, the necessary and necessarily momentum-dependent modification of the quark and gluon propagators plays a significant role.
Nonperturbative Physics at Short Distances
NASA Astrophysics Data System (ADS)
Zakharov, V. I.
There is accumulating evidence in lattice QCD that attempts to locate confining fields in vacuum configurations bring results explicitly depending on the lattice spacing (that is, ultraviolet cutoff). Generically, one deals with low-dimensional vacuum defects which occupy a vanishing fraction of the total four-dimensional space. We review briefly existing data on the vacuum defects and their significance for confinement and other non-perturbative phenomena. We interpret the data in terms of `quantum numbers' of the defects and draw an analogy, rather formal one, to developments which took place about 50 years ago and were triggered by creation of the Sakata model.
Nonperturbative Ambiguities and the Reality of Resurgent Transseries
NASA Astrophysics Data System (ADS)
Aniceto, Inês; Schiappa, Ricardo
2015-04-01
In a wide range of quantum theoretical settings—from quantum mechanics to quantum field theory, from gauge theory to string theory—singularities in the complex Borel plane, usually associated to instantons or renormalons, render perturbation theory ill-defined as they give rise to nonperturbative ambiguities. These ambiguities are associated to choices of an integration contour in the resummation of perturbation theory, along (singular) Stokes directions in the complex Borel plane (rendering perturbative expansions non-Borel summable along any Stokes line). More recently, it has been shown that the proper framework to address these issues is that of resurgent analysis and transseries. In this context, the cancelation of all nonperturbative ambiguities is shown to be a consequence of choosing the transseries median resummation as the appropriate family of unambiguous real solutions along the coupling-constant real axis. While the median resummation is easily implemented for one-parameter transseries, once one considers more general multi-parameter transseries the procedure becomes highly dependent upon properly understanding Stokes transitions in the complex Borel plane. In particular, all Stokes coefficients must now be known in order to explicitly implement multi-parameter median resummations. In the cases where quantum-theoretical physical observables are described by resurgent functions and transseries, the methods described herein show how one may cancel nonperturbative ambiguities, and define these observables nonperturbatively starting out from perturbation theory. Along the way, structural results concerning resurgent transseries are also obtained.
Theory of hadronic nonperturbative models
Coester, F.; Polyzou, W.N.
1995-08-01
As more data probing hadron structure become available hadron models based on nonperturbative relativistic dynamics will be increasingly important for their interpretation. Relativistic Hamiltonian dynamics of few-body systems (constituent-quark models) and many-body systems (parton models) provides a precisely defined approach and a useful phenomenology. However such models lack a quantitative foundation in quantum field theory. The specification of a quantum field theory by a Euclidean action provides a basis for the construction of nonperturbative models designed to maintain essential features of the field theory. For finite systems it is possible to satisfy axioms which guarantee the existence of a Hilbert space with a unitary representation of the Poincare group and the spectral condition which ensures that the spectrum of the four-momentum operator is in the forward light cone. The separate axiom which guarantees locality of the field operators can be weakened for the construction for few-body models. In this context we are investigating algebraic and analytic properties of model Schwinger functions. This approach promises insight into the relations between hadronic models based on relativistic Hamiltonian dynamics on one hand and Bethe-Salpeter Green`s-function equations on the other.
Instanton calculus and nonperturbative relations in N=2 supersymmetric gauge theories
Fucito, F.; Travaglini, G.
1997-01-01
Using instanton calculus we check, in the weak coupling region, the nonperturbative relation {l_angle}Tr{phi}{sup 2}{r_angle}=i{pi}[ F{minus}(a/2){partial_derivative}{partial_derivative}a] obtained for a N=2 globally supersymmetric gauge theory. Our computations are performed for instantons of winding number k, up to k=2, and turn out to agree with previous nonperturbative results. {copyright} {ital 1997} {ital The American Physical Society}
Nonperturbative vacuum and hard scattering processes
Sakai, N.
1980-08-01
A number of interesting suggestions for the QCD nonperturbative vacuum have been advocated in recent years by a group of people in Copenhagen. Some of the main ideas are briefly reviewed. An attempt to obtain the physical effects of the nonperturbative vacuum by studying hard scattering processes such as e/sup +/e/sup -/ ..-->.. hadrons is also described. 2 figures.
Non-perturbative String Theory from Water Waves
Iyer, Ramakrishnan; Johnson, Clifford V.; Pennington, Jeffrey S.; /SLAC
2012-06-14
We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theories coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.
Variational perturbation theory and nonperturbative calculations in QCD
NASA Astrophysics Data System (ADS)
Solovtsova, O. P.
2013-10-01
A nonperturbative approach based on the variational perturbation theory in quantum chromodynamics is developed. The variational series is different from the conventional perturbative expansion and can be used to go beyond the weak-coupling regime. The approach suggested takes into account the summation of threshold singularities and the involvement of nonperturbative light quark masses. Phenomenological applications of this approach to describe physical quantities connected with the hadronic τ-decay data: the R τ ratio, the light-quark Adler function, and the smeared R Δ function are presented. The description of examined quantities includes an infrared region and, therefore, they cannot be directly calculated within the standard perturbation theory. It is shown that in spite of this fact the approach suggested gives a rather good result for these quantities down to the lowest energy scale.
NASA Astrophysics Data System (ADS)
Diaz Saez, Bastian; Levin, Eugene
2011-11-01
In this paper we show that the intuitive guess that the geometric scaling behavior should be violated in the case of the running QCD coupling, turns out to be correct. The scattering amplitude of the dipole with the size r depends on new dimensional scale: Λ, even at large values Y=ln(1/x) and l=ln(α(r)/α(1/Qs2)). However, in this region we found a new scaling behavior: the amplitude is a function of ζ=Yl. We state that only in the vicinity of the saturation scale Q ( α(Qs2)ln(rQs2)⩽1), the amplitude shows the geometric scaling behavior. Based on these finding the geometric scaling behavior that has been seen experimentally, stems from either we have not probed the proton at HERA and the LHC deeply inside the saturation region or that there exists the mechanism of freezing of the QCD coupling constant at r≈1/Qs2.
Nonperturbative approach to the parton model
NASA Astrophysics Data System (ADS)
Simonov, Yu. A.
2016-02-01
In this paper, the nonperturbative parton distributions, obtained from the Lorentz contracted wave functions, are analyzed in the formalism of many-particle Fock components and their properties are compared to the standard perturbative distributions. We show that the collinear and IR divergencies specific for perturbative evolution treatment are absent in the nonperturbative version, however for large momenta pi2 ≫ σ (string tension), the bremsstrahlung kinematics is restored. A preliminary discussion of possible nonperturbative effects in DIS and high energy scattering is given, including in particular a possible role of multihybrid states in creating ridge-type effects.
Non-perturbative Renormalization in Truncated Yukawa Model
NASA Astrophysics Data System (ADS)
Karmanov, V. A.
2016-06-01
An approach to non-perturbative calculations in the light-front quantum field theory and its new developments are briefly reviewed. We start with the decomposition of the state vector in Fock components. After truncation of this decomposition (main approximation in this approach), the eigenvalue equation for the light-front Hamiltonian generates, in Minkowski space, a finite system of integral equations for the Fock components. Solving this system numerically and performing the non-perturbative renormalization, we find the state vector of fermion in the quenched scalar Yukawa model, up to the four-body truncation (one fermion + three bosons), for rather large values of the coupling constant. With the state vector, found in this way, the fermion electromagnetic form factors are calculated. Comparing results obtained in the four-body truncation with those found in the previous, three-body truncation, we discover very good convergence relative to truncation, that indicates that we are close to the exact non-perturbative solution in this field-theoretical model. The approach can be extended to more realistic field theories and, after further development, it could constitute an alternative to the lattice calculations.
Non-perturbative effects on a fractional D3-brane
NASA Astrophysics Data System (ADS)
Ferretti, Gabriele; Petersson, Christoffer
2009-03-01
In this note we study the Script N = 1 abelian gauge theory on the world volume of a single fractional D3-brane. In the limit where gravitational interactions are not completely decoupled we find that a superpotential and a fermionic bilinear condensate are generated by a D-brane instanton effect. A related situation arises for an isolated cycle invariant under an orientifold projection, even in the absence of any gauge theory brane. Moreover, in presence of supersymmetry breaking background fluxes, such instanton configurations induce new couplings in the 4-dimensional effective action, including non-perturbative contributions to the cosmological constant and non-supersymmetric mass terms.
Nonperturbative calculations in light-front QED
Chabysheva, Sophia S.
2010-12-22
The methods of light-front quantization and Pauli-Villars regularization are applied to a nonperturbative calculation of the dressed-electron state in quantum electrodynamics. This is intended as a test of the methods in a gauge theory, as a precursor to possible methods for the nonperturbative solution of quantum chromodynamics. The electron state is truncated to include at most two photons and no positrons in the Fock basis, and the wave functions of the dressed state are used to compute the electrons's anomalous magnetic moment. A choice of regularization that preserves the chiral symmetry of the massless limit is critical for the success of the calculation.
Nonperturbative atom-photon interactions in an optical cavity
Carmichael, H.J.; Tian, L.; Ren, W.
1994-12-31
One of the principal developments in cavity quantum electrodynamics in the last few years has been the extension of the ideas originally applied to systems of Rydberg atoms in microwave cavities to optical frequencies. As a corollary of this, more attention is being paid to quantum fluctuations and photon statistics. Another development, still in its infancy, is a move toward experiments using slowed or trapped atoms, or velocity selected beams; these methods are needed to enter the nonperturbative (strong dipole coupling) regime for one atom where there are experiments on subtle quantum-statistical effects go carry out. In this chapter we solve a number of theoretical problems related to these themes. Although the focus of the work is on optical systems, most of what we do is also relevant at microwave frequencies. We emphasize quantum fluctuations and photon statistics, and we try always to separate the quantum physics from those aspects of the physics that are understandable in classical terms. On the whole we only pay attention to the nonperturbative regime of cavity quantum electrodynamics where the dipole coupling strength is larger than the dissipation rates. 59 refs., 14 figs.
Gonzalez-Lopez, Jennifer; Jansen, Karl; Renner, Dru B.; Shindler, Andrea
2013-02-01
The use of chirally rotated boundary conditions provides a formulation of the Schroedinger functional that is compatible with automatic O(a) improvement of Wilson fermions up to O(a) boundary contributions. The elimination of bulk O(a) effects requires the non-perturbative tuning of the critical mass and one additional boundary counterterm. We present the results of such a tuning in a quenched setup for several values of the renormalized gauge coupling, from perturbative to non-perturbative regimes, and for a range of lattice spacings. We also check that the correct boundary conditions and symmetries are restored in the continuum limit.
The Non-Perturbative Scalar Yukawa Theory on the Light Front
NASA Astrophysics Data System (ADS)
Li, Yang; Karmanov, Vladimir; Maris, Pieter; Vary, James
2015-04-01
We present a non-perturbative calculation of the scalar Yukawa model in light-front dynamics with a Fock sector dependent renormalization. The Fock space is truncated to four particles and then the ab initio Hamiltonian approach is applied. We compute the electromagnetic form factor and compare it with the results obtained from the lower Fock sector truncations. We find that the one- and two-body contributions dominate the Fock space even in the non-perturbative region. However, the four-body contribution exceeds the three-body one as the coupling constant increases. Nevertheless, the form factor shows a good converge as the number of constituent bosons increases.
Lipshutz, Bruce H.; Taft, Benjamin R.; Abela, Alexander R.; Ghorai, Subir; Krasovskiy, Arkady; Duplais, Christophe
2012-01-01
Palladium-catalysed cross-couplings, in particular Heck, Suzuki-Miyaura and Negishi reactions developed over three decades ago, are routinely carried out in organic solvents. However, alternative media are currently of considerable interest given an increasing emphasis on making organic processes ‘greener’; for example, by minimising organic waste in the form of organic solvents. Water is the obvious leading candidate in this regard. Hence, this review focuses on the application of micellar catalysis, in which a ‘designer’ surfactant enables these award-winning coupling reactions to be run in water at room temperature. PMID:23555153
Self-consistent nonperturbative theory for classical systems.
Mederos, L; Navascués, G; Velasco, E
2002-01-01
We construct a self-consistent nonperturbative theory for the structure and thermodynamics of a classical system of particles that goes beyond the usual approaches based on perturbation theory. Our theory, which gives accurate predictions for the phase diagram, is based on two ingredients: first, use is made of an exact expression for the free energy of a many-body system in terms of a reference system and a coupling integral connecting the latter to the final system; second, correlation functions may be very accurately approximated using a number of sum rules relating the radial distribution function with thermodynamic quantities. Consistency between the coupling integral expression and the sum rules may be achieved by means of a self-consistent process. PMID:11800760
... Got Homework? Here's Help White House Lunch Recipes Running Away KidsHealth > For Kids > Running Away Print A ... life on the streets. continue The Reality of Running Away When you think about running away, you ...
Albacete, J.L.; Armesto, N.; Salgado, C.A.; Wiedemann, U.A.; Milhano, J.G.
2005-01-01
We study the effects of including a running coupling constant in high-density QCD evolution. For fixed coupling constant, QCD evolution preserves the initial dependence of the saturation momentum Q{sub s} on the nuclear size A and results in an exponential dependence on rapidity Y, Q{sub s}{sup 2}(Y)=Q{sub s}{sup 2}(Y{sub 0})exp[{alpha}{sub s}d(Y-Y{sub 0})]. For the running coupling case, we rederive analytical estimates for the A and Y dependences of the saturation scale and test them numerically. The A dependence of Q{sub s} vanishes {proportional_to}1/{radical}(Y) for large A and Y. The Y dependence is reduced to Q{sub s}{sup 2}(Y){proportional_to}exp({delta}{sup '}{radical}(Y+X)), where we find numerically {delta}{sup '}{approx_equal}3.2. We study the behavior of the gluon distribution at large transverse momentum, characterizing it by an anomalous dimension 1-{gamma}, which we define in a fixed region of small dipole sizes. In contrast to previous analytical work, we find a marked difference between the fixed coupling ({gamma}{approx_equal}0.65) and running coupling ({gamma}{approx}0.85) results. Our numerical findings show that both a scaling function depending only on the variable rQ{sub s} and the perturbative double-leading-logarithmic expression provide equally good descriptions of the numerical solutions for very small r values below the so-called scaling window.
Nonperturbative renormalization and the electron{close_quote}s anomalous moment in large-{alpha} QED
Hiller, J.R.; Brodsky, S.J.
1999-01-01
We study the physical electron in quantum electrodynamics expanded on the light-cone Fock space in order to address two problems: (1) the physics of the electron{close_quote}s anomalous magnetic moment a{sub e} in nonperturbative QED and (2) the practical problems of ultraviolet regularization and renormalization in truncated nonperturbative light-cone Hamiltonian theory. We present results for a{sub e} computed in a light-cone gauge Fock space truncated to include one bare electron and at most two photons, i.e., up to two photons in flight. The calculational scheme uses an invariant mass cutoff, discretized light-cone quantization (DLCQ), a Tamm-Dancoff truncation of the Fock space, and a photon mass regulator. We introduce new weighting methods which greatly improve convergence to the continuum within DLCQ. Nonperturbative renormalization of the coupling and electron mass are carried out, and a limit on the magnitude of the effective physical coupling strength is computed. A large renormalized coupling strength {alpha}{sub R}=0.1 is then used to make the nonperturbative effects in the electron anomalous moment from the one-electron, two-photon Fock state sector numerically detectable. {copyright} {ital 1998} {ital The American Physical Society}
NASA Astrophysics Data System (ADS)
Cheng, Michael
2012-03-01
The Standard Model provides an elegant mechanism for electroweak symmetry breaking (EWSB) via the introduction of a scalar Higgs field. However, the Standard Model Higgs mechanism is not the only way to explain EWSB. A class of models, broadly known as Technicolor, postulates the existence of a new strongly-interacting gauge sector at the TeV scale, coupled to the Standard Model through technifermions charged under electroweak. In technicolor, the spontaneous breaking of chiral symmetry triggers EWSB, with the resulting Goldstone bosons ``eaten'' by the massive W, Z gauge bosons. Because they are strongly-coupled and inherently non-perturbative, numerical lattice gauge theory provides an ideal arena in which technicolor can be explored. The maturation of lattice methods and availability of sufficient computing power has spurred the investigation of technicolor using lattice gauge theory techniques, in particular one variant known as ``walking'' technicolor. A technicolor model that resembles QCD is problematic that it does not satisfy the constraints of precision electro-weak observables, most notably those encapsulated by the Peskin-Takeuchi parameters, as well as the contraints on flavor-changing neutral currents. Walking technicolor is a class of models where the theory is near-conformal, i.e. the gauge coupling runs very slowly (``walks'') over some large range of energy scales. This walking behavior produces a large separation of scales between the natural cut-off for the theory and the EWSB scale, allowing one to naturally generate fermion masses without violating contrainsts on flavor-changing neutral currents. The dynamics of walking theories may also allow it to satisfy the bounds on the Peskin-Takeuchi parameters. We discuss the results of recent lattice calculations that explore the properties of walking technicolor models and the its implications on possible physics beyond the Standard Model.
Non-perturbative Calculation of the Positronium Mass Spectrum in Basis Light-Front Quantization
NASA Astrophysics Data System (ADS)
Wiecki, Paul; Li, Yang; Zhao, Xingbo; Maris, Pieter; Vary, James P.
2015-09-01
We report on recent improvements to our non-perturbative calculation of the positronium spectrum. Our Hamiltonian is a two-body effective interaction which incorporates one-photon exchange terms, but neglects fermion self-energy effects. This effective Hamiltonian is diagonalized numerically in a harmonic oscillator basis at strong coupling () to obtain the mass eigenvalues. We find that the mass spectrum compares favorably to the Bohr spectrum of non-relativistic quantum mechanics evaluated at this unphysical coupling.
Nonperturbative methods in HZE ion transport
NASA Technical Reports Server (NTRS)
Wilson, John W.; Badavi, Francis F.; Costen, Robert C.; Shinn, Judy L.
1993-01-01
A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport. The code is established to operate on the Langley Research Center nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code is highly efficient and compares well with the perturbation approximations.
Non-perturbative QCD amplitudes in quenched and eikonal approximations
Fried, H.M.; Grandou, T.; Sheu, Y.-M.
2014-05-15
Even though approximated, strong coupling non-perturbative QCD amplitudes remain very difficult to obtain. In this article, in eikonal and quenched approximations at least, physical insights are presented that rely on the newly-discovered property of effective locality. The present article also provides a more rigorous mathematical basis for the crude approximations used in the previous derivation of the binding potential of quarks and nucleons. Furthermore, the techniques of Random Matrix calculus along with Meijer G-functions are applied to analyze the generic structure of fermionic amplitudes in QCD. - Highlights: • We discuss the physical insight of effective locality to QCD fermionic amplitudes. • We show that an unavoidable delta function goes along with the effective locality property. • The generic structure of QCD fermion amplitudes is obtained through Random Matrix calculus.
Yang-Mills condensate as dark energy: A nonperturbative approach
NASA Astrophysics Data System (ADS)
Donà, Pietro; Marcianò, Antonino; Zhang, Yang; Antolini, Claudia
2016-02-01
Models based on the Yang-Mills condensate (YMC) have been advocated for in the literature and claimed as successful candidates for explaining dark energy. Several variations on this simple idea have been considered, the most promising of which are reviewed here. Nevertheless, the previously attained results relied heavily on the perturbative approach to the analysis of the effective Yang-Mills action, which is only adequate in the asymptotically free limit, and were extended into a regime, the infrared limit, in which confinement is expected. We show that if a minimum of the effective Lagrangian in θ =-Fμν aFa μ ν/2 exists, a YMC forms that drives the Universe toward an accelerated de Sitter phase. The details of the models depend weakly on the specific form of the effective Yang-Mills Lagrangian. Using nonperturbative techniques mutated from the functional renormalization-group procedure, we finally show that the minimum in θ of the effective Lagrangian exists. Thus, a YMC can actually take place. The nonperturbative model has properties similar to the ones in the perturbative model. In the early stage of the Universe, the YMC equation of state has an evolution that resembles the radiation component, i.e., wy→1 /3 . However, in the late stage, wy naturally runs to the critical state with wy=-1 , and the Universe transitions from a matter-dominated into a dark energy dominated stage only at latest time, at a redshift whose value depends on the initial conditions that are chosen while solving the dynamical system.
New efficient ligand for sub-mol % copper-catalyzed C-N cross-coupling reactions running under air.
Larsson, Per-Fredrik; Astvik, Peter; Norrby, Per-Ola
2012-01-01
A new efficient ligand, N,N''-dimethyldiethylene triamine (DMDETA), has been synthesized and evaluated for sub-mol % copper-catalyzed C-N cross-coupling reactions. The efficiency of the ligand was determined by kinetic methods. DMDETA proved to display efficiency similar to DMEDA and, in addition, the resulting catalyst was tolerant to air. PMID:23209530
New efficient ligand for sub-mol % copper-catalyzed C–N cross-coupling reactions running under air
Larsson, Per-Fredrik; Astvik, Peter
2012-01-01
Summary A new efficient ligand, N,N’’-dimethyldiethylene triamine (DMDETA), has been synthesized and evaluated for sub-mol % copper-catalyzed C–N cross-coupling reactions. The efficiency of the ligand was determined by kinetic methods. DMDETA proved to display efficiency similar to DMEDA and, in addition, the resulting catalyst was tolerant to air. PMID:23209530
Ab initio approach to the non-perturbative scalar Yukawa model
NASA Astrophysics Data System (ADS)
Li, Yang; Karmanov, V. A.; Maris, P.; Vary, J. P.
2015-09-01
We report on the first non-perturbative calculation of the scalar Yukawa model in the single-nucleon sector up to four-body Fock sector truncation (one "scalar nucleon" and three "scalar pions"). The light-front Hamiltonian approach with a systematic non-perturbative renormalization is applied. We study the n-body norms and the electromagnetic form factor. We find that the one- and two-body contributions dominate up to coupling α ≈ 1.7. As we approach the coupling α ≈ 2.2, we discover that the four-body contribution rises rapidly and overtakes the two- and three-body contributions. By comparing with lower sector truncations, we show that the form factor converges with respect to the Fock sector expansion.
Perturbative unification of gauge couplings in supersymmetric E6 models
NASA Astrophysics Data System (ADS)
Cho, Gi-Chol; Maru, Nobuhito; Yotsutani, Kaho
2016-07-01
We study gauge coupling unification in supersymmetric (SUSY) E6 models where an additional U(1)‧ gauge symmetry is broken near the TeV scale and a number of exotic matter fields from the 27 representations have O(TeV) mass. Solving the two-loop renormalization group equations (RGE) of gauge couplings and a kinetic mixing coupling between the U(1)‧ and U(1)Y gauge fields, we find that the gauge couplings fall into the non-perturbative regime below the grand unified theories (GUT) scale. We examine threshold corrections on the running of gauge couplings from both light and heavy ( ˜ GUT scale) particles and show constraints on the size of corrections to achieve the perturbative unification of gauge couplings.
Run scenarios for the linear collider
M. Battaglia et al.
2002-12-23
We have examined how a Linear Collider program of 1000 fb{sup -1} could be constructed in the case that a very rich program of new physics is accessible at {radical}s {le} 500 GeV. We have examined possible run plans that would allow the measurement of the parameters of a 120 GeV Higgs boson, the top quark, and could give information on the sparticle masses in SUSY scenarios in which many states are accessible. We find that the construction of the run plan (the specific energies for collider operation, the mix of initial state electron polarization states, and the use of special e{sup -}e{sup -} runs) will depend quite sensitively on the specifics of the supersymmetry model, as the decay channels open to particular sparticles vary drastically and discontinuously as the underlying SUSY model parameters are varied. We have explored this dependence somewhat by considering two rather closely related SUSY model points. We have called for operation at a high energy to study kinematic end points, followed by runs in the vicinity of several two body production thresholds once their location is determined by the end point studies. For our benchmarks, the end point runs are capable of disentangling most sparticle states through the use of specific final states and beam polarizations. The estimated sparticle mass precisions, combined from end point and scan data, are given in Table VIII and the corresponding estimates for the mSUGRA parameters are in Table IX. The precision for the Higgs boson mass, width, cross-sections, branching ratios and couplings are given in Table X. The errors on the top quark mass and width are expected to be dominated by the systematic limits imposed by QCD non-perturbative effects. The run plan devotes at least two thirds of the accumulated luminosity near the maximum LC energy, so that the program would be sensitive to unexpected new phenomena at high mass scales. We conclude that with a 1 ab{sup -1} program, expected to take the first 6-7 years
Blossier, B.; Boucaud, Ph.; Gravina, M.; Pene, O.; De soto, F.; Morenas, V.
2010-08-01
We present results concerning the nonperturbative evaluation of the ghost-gluon running QCD coupling constant from N{sub f}=2 twisted-mass lattice calculations. A novel method for calibrating the lattice spacing, independent of the string tension and hadron spectrum, is presented with results in agreement with previous estimates. The value of {Lambda}{sub MS} is computed from the running of the QCD coupling only after extrapolating to zero dynamical quark mass and after removing a nonperturbative operator-product expansion contribution that is assumed to be dominated by the dimension-two gluon condensate. The effect due to the dynamical quark mass in the determination of {Lambda}{sub MS} is discussed.
NASA Astrophysics Data System (ADS)
Pasten-Zapata, Ernesto; Jones, Julie; Moggridge, Helen
2015-04-01
As climate change is expected to generate variations on the Earth's precipitation and temperature, the water cycle will also experience changes. Consequently, water users will have to be prepared for possible changes in future water availability. The main objective of this research is to evaluate the impacts of climate change on river regimes and the implications to the operation and feasibility of run of the river hydropower schemes by analyzing four UK study sites. Run of the river schemes are selected for analysis due to their higher dependence to the available river flow volumes when compared to storage hydropower schemes that can rely on previously accumulated water volumes (linked to poster in session HS5.3). Global Climate Models (GCMs) represent the main tool to assess future climate change. In this research, Regional Climate Models (RCMs), which dynamically downscale GCM outputs providing higher resolutions, are used as starting point to evaluate climate change within the study catchments. RCM daily temperature and precipitation will be downscaled to an appropriate scale for impact studies and bias corrected using different statistical methods: linear scaling, local intensity scaling, power transformation, variance scaling and delta change correction. The downscaled variables will then be coupled to hydrological models that have been previously calibrated and validated against observed daily river flow data. The coupled hydrological and climate models will then be used to simulate historic river flows that are compared to daily observed values in order to evaluate the model accuracy. As this research will employ several different RCMs (from the EURO-CORDEX simulations), downscaling and bias correction methodologies, greenhouse emission scenarios and hydrological models, the uncertainty of each element will be estimated. According to their uncertainty magnitude, a prediction of the best downscaling approach (or approaches) is expected to be obtained. The
Nonperturbative Quantum Physics from Low-Order Perturbation Theory
NASA Astrophysics Data System (ADS)
Mera, Héctor; Pedersen, Thomas G.; Nikolić, Branislav K.
2015-10-01
The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.
Nonperturbative dynamical decoupling with random control.
Jing, Jun; Bishop, C Allen; Wu, Lian-Ao
2014-01-01
Parametric fluctuations or stochastic signals are introduced into the rectangular pulse sequence to investigate the feasibility of random dynamical decoupling. In a large parameter region, we find that the out-of-order control pulses work as well as the regular pulses for dynamical decoupling and dissipation suppression. Calculations and analysis are enabled by and based on a nonperturbative dynamical decoupling approach allowed by an exact quantum-state-diffusion equation. When the average frequency and duration of the pulse sequence take proper values, the random control sequence is robust, fault-tolerant, and insensitive to pulse strength deviations and interpulse temporal separation in the quasi-periodic sequence. This relaxes the operational requirements placed on quantum control devices to a great deal. PMID:25169735
Nonperturbative decay of supersymmetric flat directions
Guemruekcueoglu, A. Emir; Peloso, Marco; Sexton, Matthew; Olive, Keith A.
2008-09-15
We compute the nonperturbative decay of supersymmetric flat directions due to their D-term potential. Flat directions can develop large vacuum expectation values during inflation, and, if they are long-lived, this can strongly affect the reheating and thermalization stages after the inflation. We study a generic system of two U(1) or SU(2) flat directions which are cosmologically evolving after inflation. After proper gauge fixing, we show that the excitations of the fields around this background can undergo exponential amplification, at the expense of the energy density of the flat directions. We compute this effect for several values of the masses and the initial vacuum expectation values of the two flat directions, through a combination of analytical methods and extensive numerical simulations.
Nonperturbative moduli superpotential with positive exponents
NASA Astrophysics Data System (ADS)
Abe, Hiroyuki; Higaki, Tetsutaro; Kobayashi, Tatsuo; Seto, Osamu
2008-07-01
We study nonperturbative moduli superpotentials with positive exponents, i.e. the form like AeaT with a positive constant a and the modulus T. These effects can be generated, e.g., by D-branes which have negative Ramond-Ramond charge of the lower-dimensional D-brane. The scalar potentials including such terms have quite a rich structure. There are several local minima with different potential energies and a high barrier, whose height is of O(Mp4). We discuss their implications from the viewpoints of cosmology and particle phenomenology, e.g. the realization of inflation models, avoiding the overshooting problem. This type of potential would be useful to realize the inflation and low-energy supersymmetry breaking.
Phenomenology of nonperturbative charm in the nucleon
Hobbs, T. J.; Londergan, J. T.; Melnitchouk, W.
2014-04-02
We perform a comprehensive analysis of the role of nonperturbative (or intrinsic) charm in the nucleon, generated through Fock state expansions of the nucleon wave function involving five-quark virtual states represented by charmed mesons and baryons. We consider contributions from a variety of charmed meson-baryon states and find surprisingly dominant effects from the D¯*0 Λc+ configuration. We pay particular attention to the existence and persistence of high-x structure for intrinsic charm, and the x dependence of the c-c¯ asymmetry predicted in meson-baryon models. We discuss how studies of charmed baryons and mesons in hadronic reactions can be used to constrainmore » models, and outline future measurements that could further illuminate the intrinsic charm component of the nucleon.« less
Nonperturbative approach to relativistic quantum communication channels
NASA Astrophysics Data System (ADS)
Landulfo, André G. S.
2016-05-01
We investigate the transmission of both classical and quantum information between two arbitrary observers in globally hyperbolic spacetimes using a quantum field as a communication channel. The field is supposed to be in some arbitrary quasifree state and no choice of representation of its canonical commutation relations is made. Both sender and receiver possess some localized two-level quantum system with which they can interact with the quantum field to prepare the input and receive the output of the channel, respectively. The interaction between the two-level systems and the quantum field is such that one can trace out the field degrees of freedom exactly and thus obtain the quantum channel in a nonperturbative way. We end the paper determining the unassisted as well as the entanglement-assisted classical and quantum channel capacities.
Phenomenology of nonperturbative charm in the nucleon
Hobbs, T. J.; Londergan, J. T.; Melnitchouk, W.
2014-04-02
We perform a comprehensive analysis of the role of nonperturbative (or intrinsic) charm in the nucleon, generated through Fock state expansions of the nucleon wave function involving five-quark virtual states represented by charmed mesons and baryons. We consider contributions from a variety of charmed meson-baryon states and find surprisingly dominant effects from the D¯^{*0} Λ_{c}^{+} configuration. We pay particular attention to the existence and persistence of high-x structure for intrinsic charm, and the x dependence of the c-c¯ asymmetry predicted in meson-baryon models. We discuss how studies of charmed baryons and mesons in hadronic reactions can be used to constrain models, and outline future measurements that could further illuminate the intrinsic charm component of the nucleon.
Nonperturbative calculation of phonon effects on spin squeezing
NASA Astrophysics Data System (ADS)
Dylewsky, D.; Freericks, J. K.; Wall, M. L.; Rey, A. M.; Foss-Feig, M.
2016-01-01
Theoretical models of spins coupled to bosons provide a simple setting for studying a broad range of important phenomena in many-body physics, from virtually mediated interactions to decoherence and thermalization. In many atomic, molecular, and optical systems, such models also underlie the most successful attempts to engineer strong, long-ranged interactions for the purpose of entanglement generation. Especially when the coupling between the spins and bosons is strong, such that it cannot be treated perturbatively, the properties of such models are extremely challenging to calculate theoretically. Here, exact analytical expressions for nonequilibrium spin-spin correlation functions are derived for a specific model of spins coupled to bosons. The spatial structure of the coupling between spins and bosons is completely arbitrary, and thus the solution can be applied to systems in any number of dimensions. The explicit and nonperturbative inclusion of the bosons enables the study of entanglement generation (in the form of spin squeezing) even when the bosons are driven strongly and near resonantly, and thus provides a quantitative view of the breakdown of adiabatic elimination that inevitably occurs as one pushes towards the fastest entanglement generation possible. The solution also helps elucidate the effect of finite temperature on spin squeezing. The model considered is relevant to a variety of atomic, molecular, and optical systems, such as atoms in cavities or trapped ions. As an explicit example, the results are used to quantify phonon effects in trapped ion quantum simulators, which are expected to become increasingly important as these experiments push towards larger numbers of ions.
Nonperturbative QCD and elastic processes at CEBAF energies
Radyushkin, A.V. |
1994-04-01
The author outlines how one can approach nonperturbative aspects of the QCD dynamics studying elastic processes at energies accessible at upgraded CEBAF. The author`s point is that, in the absence of a complete theory of the nonperturbative effects, a possible way out is based on a systematic use of the QCD factorization procedure which separates theoretically understood ({open_quotes}known{close_quotes}) short-distance effects and nonperturbative ({open_quotes}unknown{close_quotes}) long-distance ones. The latter include hadronic distribution amplitudes, soft components of hadronic form factors etc. Incorporating the QCD sum rule version of the QCD factorization approach, one can relate these nonperturbative functions to more fundamental objects, vacuum condensates, which accumulate information about the nonperturbative structure of the QCD vacuum. The emerging QCD sum rule picture of hadronic form factors is characterized by a dominant role of essentially nonperturbative effects in the few GeV region, with perturbative mechanisms starting to show up for momentum transfers Q{sup 2} closer to 10 GeV{sup 2} and higher. Thus, increasing CEBAF energy provides a unique opportunity for a precision study of interplay between the perturbative and nonperturbative phenomena in the QCD description of elastic processes.
Backward running or absence of running from Creutz ratios
Giedt, Joel; Weinberg, Evan
2011-10-01
We extract the running coupling based on Creutz ratios in SU(2) lattice gauge theory with two Dirac fermions in the adjoint representation. Depending on how the extrapolation to zero fermion mass is performed, either backward running or an absence of running is observed at strong bare coupling. This behavior is consistent with other findings which indicate that this theory has an infrared fixed point.
Asymptotically free scalar curvature-ghost coupling in quantum Einstein gravity
Eichhorn, Astrid; Gies, Holger; Scherer, Michael M.
2009-11-15
We consider the asymptotic-safety scenario for quantum gravity which constructs a nonperturbatively renormalizable quantum gravity theory with the help of the functional renormalization group (RG). We verify the existence of a non-Gaussian fixed point and include a running curvature-ghost coupling as a first step towards the flow of the ghost sector of the theory. We find that the scalar curvature-ghost coupling is asymptotically free and RG relevant in the ultraviolet. Most importantly, the property of asymptotic safety discovered so far within the Einstein-Hilbert truncation and beyond remains stable under the inclusion of the ghost flow.
Nonperturbative overproduction of axionlike particles via derivative interactions
NASA Astrophysics Data System (ADS)
Mazumdar, Anupam; Qutub, Saleh
2016-02-01
Axionlike particles (ALPs) are quite generic in many scenarios for physics beyond the Standard Model. They are pseudoscalar Nambu-Goldstone bosons that appear once any global U (1 ) symmetry is broken spontaneously. The ALPs can gain mass from various nonperturbative quantum effects, such as anomalies or instantons. ALPs can couple to the matter sector including a scalar condensate such as inflaton or moduli field via derivative interactions, which are suppressed by the axion decay constant, fχ . Although weakly interacting, the ALPs can be produced abundantly from the coherent oscillations of a homogeneous condensate. In this paper we will study such a scenario where the ALPs can be produced abundantly, and in some cases can even overclose the Universe via odd- and even-dimensional operators, as long as fχ/ΦI≪1 , where ΦI denotes the initial amplitude of the coherent oscillations of the scalar condensate, ϕ . We will briefly mention how such dangerous overproduction would affect dark matter and dark radiation abundances in the Universe.
Non-perturbative effects in spin glasses.
Castellana, Michele; Parisi, Giorgio
2015-01-01
We present a numerical study of an Ising spin glass with hierarchical interactions--the hierarchical Edwards-Anderson model with an external magnetic field (HEA). We study the model with Monte Carlo (MC) simulations in the mean-field (MF) and non-mean-field (NMF) regions corresponding to d ≥ 4 and d < 4 for the d-dimensional ferromagnetic Ising model respectively. We compare the MC results with those of a renormalization-group (RG) study where the critical fixed point is treated as a perturbation of the MF one, along the same lines as in the -expansion for the Ising model. The MC and the RG method agree in the MF region, predicting the existence of a transition and compatible values of the critical exponents. Conversely, the two approaches markedly disagree in the NMF case, where the MC data indicates a transition, while the RG analysis predicts that no perturbative critical fixed point exists. Also, the MC estimate of the critical exponent ν in the NMF region is about twice as large as its classical value, even if the analog of the system dimension is within only ~2% from its upper-critical-dimension value. Taken together, these results indicate that the transition in the NMF region is governed by strong non-perturbative effects. PMID:25733337
Nonperturbative approach to the attractive Hubbard model
Allen, S.; Tremblay, A.-M. S.
2001-08-15
A nonperturbative approach to the single-band attractive Hubbard model is presented in the general context of functional-derivative approaches to many-body theories. As in previous work on the repulsive model, the first step is based on a local-field-type ansatz, on enforcement of the Pauli principle and a number of crucial sumrules. The Mermin-Wagner theorem in two dimensions is automatically satisfied. At this level, two-particle self-consistency has been achieved. In the second step of the approximation, an improved expression for the self-energy is obtained by using the results of the first step in an exact expression for the self-energy, where the high- and low-frequency behaviors appear separately. The result is a cooperon-like formula. The required vertex corrections are included in this self-energy expression, as required by the absence of a Migdal theorem for this problem. Other approaches to the attractive Hubbard model are critically compared. Physical consequences of the present approach and agreement with Monte Carlo simulations are demonstrated in the accompanying paper (following this one).
Nonperturbative Renormalization Group Approach to Polymerized Membranes
NASA Astrophysics Data System (ADS)
Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique
2014-03-01
Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.
Generalized parton distributions in a light-front nonperturbative approach
NASA Astrophysics Data System (ADS)
Chakrabarti, D.; Zhao, X.; Honkanen, H.; Manohar, R.; Maris, P.; Vary, J. P.
2014-06-01
Basis light-front quantization (BLFQ) has recently been developed as a promising nonperturbative technique. Using BLFQ, we investigate the generalized parton distributions (GPDs) in a nonperturbative framework for a dressed electron in QED. We evaluate light-front wave functions and carry out overlap calculations to obtain GPDs. We also perform perturbative calculations in the corresponding basis spaces to demonstrate that they compare reasonably with the BLFQ results.
Nonperturbative embedding for highly nonlocal Hamiltonians
NASA Astrophysics Data System (ADS)
Subaşı, Yiǧit; Jarzynski, Christopher
2016-07-01
The need for Hamiltonians with many-body interactions arises in various applications of quantum computing. However, interactions beyond two-body are difficult to realize experimentally. Perturbative gadgets were introduced to obtain arbitrary many-body effective interactions using Hamiltonians with at most two-body interactions. Although valid for arbitrary k -body interactions, their use is limited to small k because the strength of interaction is k th order in perturbation theory. In this paper we develop a nonperturbative technique for obtaining effective k -body interactions using Hamiltonians consisting of at most l -body interactions with l
Nonperturbative instability of AdS{sub 5}xS{sup 5}/Z{sub k}
Horowitz, Gary T.; Orgera, Jacopo; Polchinski, Joe
2008-01-15
We study the anti-de Sitter/conformal field theory correspondence with boundary conditions AdS{sub 5}xS{sup 5}/Z{sub k}, where the Z{sub k} acts freely but breaks all supersymmetry. While there are closed string tachyons at small 't Hooft coupling, there are no tachyons at large coupling. Nevertheless, we show that there is a nonperturbative instability directly analogous to the decay of the Kaluza-Klein vacuum. We discuss the implications of this instability for the strongly coupled dual field theory, and compare with earlier studies of this theory at weak coupling.
Nonperturbative semiclassical stability of de Sitter spacetime for small metric deviations
NASA Astrophysics Data System (ADS)
Fröb, Markus B.; Papadopoulos, Demetrios B.; Roura, Albert; Verdaguer, Enric
2013-03-01
We consider the linearized semiclassical Einstein equations for small deviations around de Sitter spacetime including the vacuum polarization effects of conformal fields. Employing the method of order reduction, we find the exact solutions for general metric perturbations (of scalar, vector and tensor type). Our exact (nonperturbative) solutions show clearly that in this case de Sitter is stable with respect to small metric deviations and a late-time attractor. Furthermore, they also reveal a breakdown of perturbative solutions for a sufficiently long evolution inside the horizon. Our results are valid for any conformal theory, even self-interacting ones with arbitrarily strong coupling.
Nonperturbative renormalization group approach for a scalar theory in higher-derivative gravity
Bonanno, A.; Zappala, D.
1997-05-01
A renormalization group study of a scalar theory coupled to gravity through a general functional dependence on the Ricci scalar in the action is discussed. A set of nonperturbative flow equations governing the evolution of the new interaction terms generated in both local potential and wave function renormalization is derived. It is shown for a specific model that these new terms play an important role in determining the scaling behavior of the system above the mass of the inflaton field. {copyright} {ital 1997} {ital The American Physical Society}
Probing non-perturbative effects in M-theory on orientifolds
NASA Astrophysics Data System (ADS)
Okuyama, Kazumi
2016-01-01
Using holography, we study non-perturbative effects in M-theory on orientifolds from the analysis of the S 3 partition functions of dual field theories. We consider the S 3 partition functions of N=4 Yang-Mills theory with O( n) gauge symmetry coupled to one (anti)symmetric and N f fundamental hypermultiplets from the Fermi gas approach. In addition to the worldsheet instanton and membrane instanton corrections to the grand potential, which are also present in the U( n) Yang-Mills case, we find that there exist "half instanton" corrections coming from the effect of orientifold plane.
Mullen, Scott; Cotton, Jon; Bechtold, Megan; Toby, E. Bruce
2014-01-01
Background: It has been proposed that running barefoot can lead to improved strength and proprioception. However, the duration that a runner must train barefoot to observe these changes is unknown. Hypothesis: Runners participating in a barefoot running program will have improved proprioception, increased lower extremity strength, and an increase in the volume or size of the intrinsic musculature of the feet. Study Design: Randomized controlled trial; Level of evidence, 2. Methods: In this 8-week study, 29 runners with a mean age of 36.34 years were randomized into either a control group (n = 10) who completed training in their regular running shoes or to an experimental barefoot group (n = 14). Pretraining tests consisted of a volumetric measurement of the foot followed by a strength and dynamic balance assessment. Five subjects completed the pretests but did not complete the study for reasons not related to study outcomes. Participants then completed 8 weeks of training runs. They repeated the strength and dynamic balance assessment after 8 weeks. Results: Significant changes from baseline to 8 weeks were observed within the barefoot group for single-leg hop (right, P = .0121; left, P = .0430) and reach and balance (right, P = .0029) and within the control group for single–left leg hop (P = .0286) and reach and balance (right, P = .0096; left, P = .0014). However, when comparing the differences in changes from baseline to 8 weeks between the barefoot and control groups, the improvements were not significant at the .05 level for all measures. Conclusion: Although statistically significant changes were not observed between the pre- and posttest evaluations in strength and proprioception with the 8-week low-intensity barefoot running regimen, this does not necessarily mean that these changes do not occur. It is possible that it may take months or years to observe these changes, and a short course such as this trial is insufficient. PMID:26535308
NASA Astrophysics Data System (ADS)
Wen, Xiao-Gang
2013-11-01
The standard model is a chiral gauge theory where the gauge fields couple to the right-hand and the left-hand fermions differently. The standard model is defined perturbatively and describes all elementary particles (except gravitons) very well. However, for a long time, we do not know if we can have a non-perturbative definition of the standard model as a Hamiltonian quantum mechanical theory. Here we propose a way to give a modified standard model (with 48 two-component Weyl fermions) a non-perturbative definition by embedding the modified standard model into an SO (10) chiral gauge theory. We show that the SO (10) chiral gauge theory can be put on a lattice (a 3D spatial lattice with a continuous time) if we allow fermions to interact. Such a non-perturbatively defined standard model is a Hamiltonian quantum theory with a finite-dimensional Hilbert space for a finite space volume. More generally, using the defining connection between gauge anomalies and the symmetry-protected topological orders, one can show that any truly anomaly-free chiral gauge theory can be non-perturbatively defined by putting it on a lattice in the same dimension.
Hawke, B.C.
1963-02-26
This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)
Collider searches for nonperturbative low-scale gravity states
NASA Astrophysics Data System (ADS)
Gingrich, Douglas M.
2015-12-01
The possibility of producing nonperturbative low-scale gravity states in collider experiments was first discussed in about 1998. The ATLAS and CMS experiments have searched for nonperturbative low-scale gravity states using the Large Hadron Collider with a proton-proton center-of-mass energy of 8 TeV. These experiments have now seriously confronted the possibility of producing nonperturbative low-scale gravity states which were proposed over 17 years ago. I will summarize the results of the searches, give a personal view of what they mean, and make some predictions for 13 TeV center-of-mass energy. I will also discuss early ATLAS 13 TeV center-of-mass energy results.
Insights on non-perturbative aspects of TMDs from models
H. Avakian, A. Efremov, P. Schweitzer, O. Teryaev, F. Yuan, P. Zavada
2009-12-01
Transverse momentum dependent parton distribution functions are a key ingredient in the description of spin and azimuthal asymmetries in deep-inelastic scattering processes. Recent results from non-perturbative calculations in effective approaches are reviewed, with focus on relations among different parton distribution functions in QCD and models.
Casimir-Polder forces: A nonperturbative approach
Buhmann, Stefan Yoshi; Knoell, Ludwig; Welsch, Dirk-Gunnar; Ho Trung Dung
2004-11-01
Within the frame of macroscopic QED in linear, causal media, we study the radiation force of Casimir-Polder type acting on an atom which is positioned near dispersing and absorbing magnetodielectric bodies and initially prepared in an arbitrary electronic state. It is shown that minimal and multipolar coupling lead to essentially the same lowest-order perturbative result for the force acting on an atom in an energy eigenstate. To go beyond perturbation theory, the calculations are based on the exact center-of-mass equation of motion. For a nondriven atom in the weak-coupling regime, the force as a function of time is a superposition of force components that are related to the electronic density matrix elements at a chosen time. Even the force component associated with the ground state is not derivable from a potential in the ususal way, because of the position dependence of the atomic polarizability. Further, when the atom is initially prepared in a coherent superposition of energy eigenstates, then temporally oscillating force components are observed, which are due to the interaction of the atom with both electric and magnetic fields.
On leading non-perturbative effects for heavy-quark systems
NASA Astrophysics Data System (ADS)
Baier, V. N.; Pinelis, Yu. F.
1982-10-01
Non-perturbative effects for heavy-quark systems in the physical region are considered. The summation of the leading infinite subsequence of non-perturbative corrections is carried out in the non-relativistic approximation. From the analysis follows that there must exist at least two types of vacuum fluctuations - relatively hard and soft ones - in the non-perturbative QCD vacuum.
Frisch, E.; Johnson, C.G.
1962-05-15
A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)
Perturbative and non-perturbative aspects of the two-dimensional string/Yang-Mills correspondence
NASA Astrophysics Data System (ADS)
Lelli, Simone; Maggiore, Michele; Rissone, Anna
2003-04-01
It is known that YM 2 with gauge group SU( N) is equivalent to a string theory with coupling gs=1/ N, order by order in the 1/ N expansion. We show how this result can be obtained from the bosonization of the fermionic formulation of YM 2, improving on results in the literature, and we examine a number of non-perturbative aspects of this string/YM correspondence. We find contributions to the YM 2 partition function of order exp{- kA/( πα' gs)} with k an integer and A the area of the target space, which would correspond, in the string interpretation, to D1-branes. Effects which could be interpreted as D0-branes are instead strictly absent, suggesting a non-perturbative structure typical of type 0B string theories. We discuss effects from the YM side that are interpreted in terms of the stringy exclusion principle of Maldacena and Strominger. We also find numerically an interesting phase structure, with a region where YM 2 is described by a perturbative string theory separated from a region where it is described by a topological string theory.
A non-perturbative study of the evolution of cosmic magnetised sources
NASA Astrophysics Data System (ADS)
Delgado Gaspar, I.; Pérez Martínez, A.; Piccinelli, G.; Sussman, Roberto A.
2016-01-01
We undertake a hydrodynamical study of a mixture of tightly coupled primordial radiation, neutrinos, baryons, electrons and positrons, together with a gas of already decoupled dark matter WIMPS and an already existing "frozen" magnetic field in the infinite conductivity regime. Considering this cosmic fluid as the source of a homogeneous but anisotropic Bianchi I model, we describe its interaction with the magnetic field by means of suitable equations of state that are appropriate for the particle species of the mixture between the end of the leptonic era and the beginning of the radiation-dominated epoch. Fulfilment of observational bounds on the magnetic field intensity yields a "near FLRW" (but strictly non-perturbative) evolution of the geometric, kinematic and thermodynamical variables. This evolution is roughly comparable to the weak field approximation in linear perturbations on a spatially flat FLRW background of sources in which the frozen magnetic fields are coherent over very large supra-horizon scales. Our approach and results may provide interesting guidelines in potential situations in which non-perturbative methods are required to study the interaction between magnetic fields and the cosmic fluid.
New insights on non-perturbative Yang-Mills
Aguilar, Arlene C.
2010-11-12
In this talk we review some recent results on the infrared properties of the gluon and ghost propagators in pure Yang-Mills theories. These results are obtained from the corresponding Schwinger-Dyson equation formulated in a special truncation scheme, which preserves gauge invariance. The presence of massless poles in the three gluon vertex triggers the generation of a dynamical gluon mass (Schwinger mechanism in d = 4), which gives rise to an infrared finite gluon propagator and ghost dressing function. As a byproduct of this analysis we calculate the Kugo-Ojima function, required for the definition of the non-perturbative QCD effective charge within the pinch technique framework. We show that the numerical solutions of these non-perturbative equations are in very good agreement with the results of SU(3) lattice simulations.
Elliptic CY3folds and non-perturbative modular transformation
NASA Astrophysics Data System (ADS)
Iqbal, Amer; Shabbir, Khurram
2016-03-01
We study the refined topological string partition function of a class of toric elliptically fibered Calabi-Yau threefolds. These Calabi-Yau threefolds give rise to five dimensional quiver gauge theories and are dual to configurations of M5-M2-branes. We determine the Gopakumar-Vafa invariants for these threefolds and show that the genus g free energy is given by the weight 2 g Eisenstein series. We also show that although the free energy at all genera are modular invariant, the full partition function satisfies the non-perturbative modular transformation property discussed by Lockhart and Vafa in arXiv:1210.5909 and therefore the modularity of free energy is up to non-perturbative corrections.
Non-perturbative N = 1 strings from geometric singularities
NASA Astrophysics Data System (ADS)
Mayr, P.
2000-03-01
The study of curved D-brane geometries in type II strings implies a general relation between local singularities icons/Journals/Common/calW" ALT="calW" ALIGN="TOP"/> of Calabi-Yau manifolds and gravity-free supersymmetric quantum field theories. The minimal supersymmetric case is described by F-theory compactifications on icons/Journals/Common/calW" ALT="calW" ALIGN="TOP"/> and can be used as a starting point to define minimal supersymmetric heterotic string compactifications on compact Calabi-Yau manifolds with holomorphic, stable gauge backgrounds. The geometric construction generalizes to non-perturbative vacua with 5-branes and provides a framework to study non-perturbative dynamics of the heterotic theory.
Nonperturbative theory of double photoionization of the hydrogen molecule
Vanroose, W.; Martin, F.; Rescigno, T.N.; McCurdy, C.W.
2004-10-01
We present completely ab initio nonperturbative calculations of the integral and single differential cross sections for double photoionization of H2 for photon energies from 53.9 to 75.7 eV. The method of exterior complex scaling, implemented with B-splines, is used to solve the Schrodinger equation for a correlated continuum wave function corresponding to a single photon having been absorbed by a correlated initial state. The results are in good agreement with experimental integral cross sections.
Nonperturbative gluon and ghost propagators in d = 3
Papavassiliou, Joannis
2011-05-23
We study the nonperturbative gluon and ghost propagators in d = 3 Yang-Mills, using the Schwinger-Dyson equations of the pinch technique. The use of the Schwinger mechanism leads to the dynamical generation of a gluon mass, which, in turn, gives rise to an infrared finite gluon propagator and ghost dressing function. The propagators obtained are in very good agreement with the results of SU(2) lattice simulations.
NASA Astrophysics Data System (ADS)
Ixert, Dominik; Tischler, Tobias; Schmidt, Kai P.
2015-11-01
We use nonperturbative linked-cluster expansions to determine the ground-state energy per site of the spin-one Heisenberg model on the kagome lattice. To this end, a parameter is introduced allowing us to interpolate between a fully trimerized state and the isotropic model. The ground-state energy per site of the full graph decomposition up to graphs of six triangles (18 spins) displays a complex behavior as a function of this parameter close to the isotropic model which we attribute to divergencies of partial series in the graph expansion of quasi-1D unfrustrated chain graphs. More concretely, these divergencies can be traced back to a quantum critical point of the one-dimensional unfrustrated chain of coupled triangles. Interestingly, the reorganization of the nonperturbative linked-cluster expansion in terms of clusters with enhanced symmetry yields a ground-state energy per site of the isotropic two-dimensional model that is in quantitative agreement with other numerical approaches in favor of a spontaneous trimerization of the system. Our findings are of general importance for any nonperturbative linked-cluster expansion on geometrically frustrated systems.
Emergent gauge fields and their nonperturbative effects in correlated electrons
NASA Astrophysics Data System (ADS)
Kim, Ki-Seok; Tanaka, Akihiro
2015-06-01
The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner’s and Anderson’s physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner’s description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner’s paradigm. In this review paper, we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the
Non-Perturbative, Unitary Quantum-Particle Scattering Amplitudes from Three-Particle Equations
Lindesay, James V
2002-03-19
We here use our non-perturbative, cluster decomposable relativistic scattering formalism to calculate photon-spinor scattering, including the related particle-antiparticle annihilation amplitude. We start from a three-body system in which the unitary pair interactions contain the kinematic possibility of single quantum exchange and the symmetry properties needed to identify and substitute antiparticles for particles. We extract from it unitary two-particle amplitude for quantum-particle scattering. We verify that we have done this correctly by showing that our calculated photon-spinor amplitude reduces in the weak coupling limit to the usual lowest order, manifestly covariant (QED) result with the correct normalization. That we are able to successfully do this directly demonstrates that renormalizability need not be a fundamental requirement for all physically viable models.
Domain wall fermion study of scaling in non-perturbative renormalization of quark bilinears and B
NASA Astrophysics Data System (ADS)
Zhestkov, Yuriy Gennadjevich
We develop a non-perturbative scaling technique that connects the results of simulations at different values of coupling β to obtain the renormalization coefficients of scalar and pseudoscalar operators, local vector and axial currents, conserved vector and axial currents over the range of energy scales from 1 to 10 GeV. This technique is then applied to discuss the renormalization of the physically important operator ODS=2LL , central to our understanding of CP violation. We use the domain wall fermion formulation in the quenched approximation at a series of three values of β, 6.0, 6.45, and 7.05, corresponding to lattice spacing scaling by factors of two. The lattice volumes used in the series of simulations are 84 and 164 with the extent in the fifth dimension Ls = 14.
Single-step de Sitter vacua from nonperturbative effects with matter
NASA Astrophysics Data System (ADS)
Guarino, Adolfo; Inverso, Gianluca
2016-03-01
A scenario of moduli stabilization based on the interplay between closed and open string sectors is explored in a bottom-up approach. We study N =1 effective supergravities inspired by type IIB orientifold constructions that include background fluxes and nonperturbative effects. The former generate the standard flux superpotential for the axiodilaton and complex structure moduli. The latter can be induced by gaugino condensation in a non-Abelian sector of D7-branes and involve the overall Kähler modulus of the compactification as well as matter fields. We analyze the dynamics of this coupled system and show that it is compatible with single-step moduli stabilization in a metastable de Sitter vacuum. A novelty of the scenario is that the F-term potential suffices to generate a positive cosmological constant and to stabilize all moduli, except for a flat direction that can be either lifted by a mass term or eaten up by an anomalous U(1).
NASA Astrophysics Data System (ADS)
Bauer, Carsten; Rückriegel, Andreas; Sharma, Anand; Kopietz, Peter
2015-09-01
Using a nonperturbative functional renormalization group approach, we calculate the renormalized quasiparticle velocity v (k ) and the static dielectric function ɛ (k ) of suspended graphene as functions of an external momentum k . Our numerical result for v (k ) can be fitted by v (k ) /vF=A +B ln(Λ0/k ) , where vF is the bare Fermi velocity, Λ0 is an ultraviolet cutoff, and A =1.37 , B =0.51 for the physically relevant value (e2/vF=2.2 ) of the coupling constant. In contrast to calculations based on the static random-phase approximation, we find that ɛ (k ) approaches unity for k →0 . Our result for v (k ) agrees very well with a recent measurement by Elias et al. [Nat. Phys. 7, 701 (2011), 10.1038/nphys2049].
Zhang, Hou-Dao; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing
2015-01-14
We consider the hybrid system-bath dynamics, based on the Yan's dissipaton formalism [Y. J. Yan, J. Chem. Phys. 140, 054105 (2014)]. This theory provides a unified quasi-particle treatment on three distinct classes of quantum bath, coupled nonperturbatively to arbitrary quantum systems. In this work, to study the entangled system and bath polarization and nonlinear Fano interference, we incorporate further the time-dependent light field, which interacts with both the molecular system and the collective bath dipoles directly. Numerical demonstrations are carried out on a two-level system, with comparison between phonon and exciton baths, in both linear and nonlinear Fano interference regimes. PMID:25591343
Zhang, Hou-Dao; Xu, Rui-Xue Zheng, Xiao; Yan, YiJing
2015-01-14
We consider the hybrid system–bath dynamics, based on the Yan’s dissipaton formalism [Y. J. Yan, J. Chem. Phys. 140, 054105 (2014)]. This theory provides a unified quasi-particle treatment on three distinct classes of quantum bath, coupled nonperturbatively to arbitrary quantum systems. In this work, to study the entangled system and bath polarization and nonlinear Fano interference, we incorporate further the time-dependent light field, which interacts with both the molecular system and the collective bath dipoles directly. Numerical demonstrations are carried out on a two-level system, with comparison between phonon and exciton baths, in both linear and nonlinear Fano interference regimes.
Nonperturbative NN scattering in {sup 3}S{sub 1}–{sup 3}D{sub 1} channels of EFT(⁄π)
Yang, Ji-Feng
2013-12-15
The closed-form T matrices in the {sup 3}S{sub 1}–{sup 3}D{sub 1} channels of EFT(⁄π) for NN scattering with the potentials truncated at order O(Q{sup 4}) are presented with the nonperturbative divergences parametrized in a general manner. The stringent constraints imposed by the closed form of the T matrices are exploited in the underlying theory perspective and turned into virtues in the implementation of subtractions and the manifestation of power counting rules in nonperturbative regimes, leading us to the concept of EFT scenario. A number of scenarios of the EFT description of NN scattering are compared with PSA data in terms of effective range expansion and {sup 3}S{sub 1} phase shifts, showing that it is favorable to proceed in a scenario with conventional EFT couplings and sophisticated renormalization in order to have large NN scattering lengths. The informative utilities of fine tuning are demonstrated in several examples and naturally interpreted in the underlying theory perspective. In addition, some of the approaches adopted in the recent literature are also addressed in the light of EFT scenario. -- Highlights: •Closed-form unitary T matrices for NN scattering are obtained in EFT(⁄π). •Nonperturbative properties inherent in such closed-form T matrices are explored. •Nonperturbative renormalization is implemented through exploiting these properties. •Unconventional power counting of couplings is shown to be less favored by PSA data. •The ideas about nonperturbative renormalization here might have wider applications.
Nonperturbative quantization of the electroweak model's electrodynamic sector
NASA Astrophysics Data System (ADS)
Fry, M. P.
2015-04-01
Consider the Euclidean functional integral representation of any physical process in the electroweak model. Integrating out the fermion degrees of freedom introduces 24 fermion determinants. These multiply the Gaussian functional measures of the Maxwell, Z , W , and Higgs fields to give an effective functional measure. Suppose the functional integral over the Maxwell field is attempted first. This paper is concerned with the large amplitude behavior of the Maxwell effective measure. It is assumed that the large amplitude variation of this measure is insensitive to the presence of the Z , W , and H fields; they are assumed to be a subdominant perturbation of the large amplitude Maxwell sector. Accordingly, we need only examine the large amplitude variation of a single QED fermion determinant. To facilitate this the Schwinger proper time representation of this determinant is decomposed into a sum of three terms. The advantage of this is that the separate terms can be nonperturbatively estimated for a measurable class of large amplitude random fields in four dimensions. It is found that the QED fermion determinant grows faster than exp [c e2∫d4x Fμν 2] , c >0 , in the absence of zero mode supporting random background potentials. This raises doubt on whether the QED fermion determinant is integrable with any Gaussian measure whose support does not include zero mode supporting potentials. Including zero mode supporting background potentials can result in a decaying exponential growth of the fermion determinant. This is prima facie evidence that Maxwellian zero modes are necessary for the nonperturbative quantization of QED and, by implication, for the nonperturbative quantization of the electroweak model.
Non-perturbative QCD Modeling and Meson Physics
NASA Astrophysics Data System (ADS)
Nguyen, T.; Souchlas, N. A.; Tandy, P. C.
2009-04-01
Using a ladder-rainbow kernel previously established for light quark hadron physics, we explore the extension to masses and electroweak decay constants of ground state pseudoscalar and vector quarkonia and heavy-light mesons in the c- and b-quark regions. We make a systematic study of the effectiveness of a constituent mass concept as a replacement for a heavy quark dressed propagator for such states. The difference between vector and axial vector current correlators is explored within the same model to provide an estimate of the four quark chiral condensate and the leading distance scale for the onset of non-perturbative phenomena in QCD.
Non-perturbative QCD Modeling and Meson Physics
Nguyen, T.; Souchlas, N. A.; Tandy, P. C.
2009-04-20
Using a ladder-rainbow kernel previously established for light quark hadron physics, we explore the extension to masses and electroweak decay constants of ground state pseudoscalar and vector quarkonia and heavy-light mesons in the c- and b-quark regions. We make a systematic study of the effectiveness of a constituent mass concept as a replacement for a heavy quark dressed propagator for such states. The difference between vector and axial vector current correlators is explored within the same model to provide an estimate of the four quark chiral condensate and the leading distance scale for the onset of non-perturbative phenomena in QCD.
A non-perturbative argument for the non-abelian Higgs mechanism
De Palma, G.; Strocchi, F.
2013-09-15
The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion.
Kloss, Thomas; Canet, Léonie; Delamotte, Bertrand; Wschebor, Nicolás
2014-02-01
We investigate the scaling regimes of the Kardar-Parisi-Zhang (KPZ) equation in the presence of spatially correlated noise with power-law decay D(p) ∼ p(-2ρ) in Fourier space, using a nonperturbative renormalization group approach. We determine the full phase diagram of the system as a function of ρ and the dimension d. In addition to the weak-coupling part of the diagram, which agrees with the results from Europhys. Lett. 47, 14 (1999) and Eur. Phys. J. B 9, 491 (1999), we find the two fixed points describing the short-range- (SR) and long-range- (LR) dominated strong-coupling phases. In contrast with a suggestion in the references cited above, we show that, for all values of ρ, there exists a unique strong-coupling SR fixed point that can be continuously followed as a function of d. We show in particular that the existence and the behavior of the LR fixed point do not provide any hint for 4 being the upper critical dimension of the KPZ equation with SR noise. PMID:25353423
Nonperturbative relativistic calculation of the muonic hydrogen spectrum
Carroll, J. D.; Thomas, A. W.; Rafelski, J.; Miller, G. A.
2011-07-15
We investigate the muonic hydrogen 2P{sub 3/2}{sup F=2} to 2S{sub 1/2}{sup F=1} transition through a precise, nonperturbative numerical solution of the Dirac equation including the finite-size Coulomb force and finite-size vacuum polarization. The results are compared with earlier perturbative calculations of (primarily) [E. Borie, Phys. Rev. A 71, 032508 (2005); E. Borie and G. A. Rinker, Rev. Mod. Phys. 54, 67 (1982); E. Borie, Z. Phys. A 275, 347 (1975) and A. P. Martynenko, Phys. Rev. A 71, 022506 (2005); A. Martynenko, Phys. At. Nucl. 71, 125 (2008), and K. Pachucki, Phys. Rev. A 53, 2092 (1996)] and experimental results recently presented by Pohl et al.[Nature (London) 466, 213 (2010)], in which this very comparison is interpreted as requiring a modification of the proton charge radius from that obtained in electron scattering and electronic hydrogen analyses. We find no significant discrepancy between the perturbative and nonperturbative calculations, and we present our results as confirmation of the perturbative methods.
Dark matter and dark energy via nonperturbative (flavor) vacua
NASA Astrophysics Data System (ADS)
Tarantino, Walter
2012-02-01
A nonperturbative field theoretical approach to flavor physics (Blasone-Vitiello formalism) has been shown to imply a highly nontrivial vacuum state. Although still far from representing a satisfactory framework for a coherent and complete characterization of flavor states, in recent years the formalism has received attention for its possible implications at cosmological scales. In a previous work, we implemented the approach on a simple supersymmetric model (free Wess-Zumino), with flavor mixing, which was regarded as a model for free neutrinos and sneutrinos. The resulting effective vacuum (called flavor vacuum) was found to be characterized by a strong supersymmetry breaking. In this paper we explore the phenomenology of the model and we argue that the flavor vacuum is a consistent source for both dark energy (thanks to the bosonic sector of the model) and dark matter (via the fermionic one). Quite remarkably, besides the parameters connected with neutrino physics, in this model no other parameters have been introduced, possibly leading to a predictive theory of dark energy/matter. Despite its oversimplification, such a toy model already seems capable to shed some light on the observed energy hierarchy between neutrino physics, dark energy and dark matter. Furthermore, we move a step forth in the construction of a more realistic theory, by presenting a novel approach for calculating relevant quantities and hence extending some results to interactive theories, in a completely nonperturbative way.
Testing QCD in the non-perturbative regime
A.W. Thomas
2007-01-01
This is an exciting time for strong interaction physics. We have a candidate for a fundamental theory, namely QCD, which has passed all the tests thrown at it in the perturbative regime. In the non-perturbative regime it has also produced some promising results and recently a few triumphs but the next decade will see enormous progress in our ability to unambiguously calculate the consequences of non-perturbative QCD and to test those predictions experimentally. Amongst the new experimental facilities being constructed, the hadronic machines at JPARC and GSI-FAIR and the 12 GeV Upgrade at Jefferson Lab, the major new electromagnetic facility worldwide, present a beautifully complementary network aimed at producing precise new measurements which will advance our knowledge of nuclear systems and push our ability to calculate the consequences of QCD to the limit. We will first outline the plans at Jefferson Lab for doubling the energy of CEBAF. The new facility presents some wonderful opportunities for discovery in strong interaction physics, as well as beyond the standard model. Then we turn to the theoretical developments aimed at extracting precise results for physical hadron properties from lattice QCD simulations. This discussion will begin with classical examples, such as the mass of the nucleon and ?, before dealing with a very recent and spectacular success involving information extracted from modern parity violating electron scattering.
Fishbone instability and kink mode stabilization in nonperturbative simulations
NASA Astrophysics Data System (ADS)
Gorelenkov, Nikolai
2011-10-01
Two phenomena relying on the nonperturbative treatment of the fast ion terms are the fishbone instability and ideal kink mode stabilization. We employ the global NOVA-KN hybrid kinetic-MHD code to study the stability properties of these low-n solutions, such as the resonant (fishbone) and non-resonant (ideal) branches. The nonperturbative approach treats fast ions with their realistic drift orbits numerically by computing the moments of their perturbed pressure tensors in order to include them into the eigenmode equation. We introduce this technique together with the new conforming velocity space grid to efficiently evaluate the wave-particle interaction matrix. The used method results in both resonant and modified non-resonant branches, which are further studied to understand their stability properties in the presence of energetic ions [C.Z. Cheng, Phys. Reports, v.211,p.1 (1992)]. We include the destabilizing effects from energetic beam ions and alpha particles, which seem to be important for the studied instabilities. A model used for beam ion distribution is also presented. We study the properties of those branches in details. The applications to the modified burning ITER plasma are discussed to understand how far the stability region is in the operating space from its nominal values. This work is supported by US DOE contract no. DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Pradhan, P. K.; Prasanna, Venkatraman; Lee, Doo Young; Lee, Myong-In
2016-02-01
The relationship between the warm phase of El Niño southern oscillation (ENSO) and Indian summer monsoon rainfall is explored through seven coupled global climate models (CGCMs), which are semi-operational at APEC Climate Center (APCC). The 23-year (1983-2005) hindcast datasets of individual model ensembles derived from May initial conditions for southwest monsoon season (JJAS) are utilized to find out the simultaneous influence of El Niño-ISMR relationship in 1990s, which is observed to be weaker than present decades. The hindcast of ISMR climatology derived from seven individual models viz. APCC, NCEP, POAMA, SINT, SUT1, PNU and UHT1 appears to be reasonably simulated; in particular, about 50 % of mean departure is evident in most CGCMs. In addition, four of six El Niño years during the aforementioned period are well depicted in most of the CGCMs, while the years 1994 and 1997 are not represented well by these seven individual models. The warm SST anomaly aligned with surplus precipitation over tropical equatorial Pacific region simulated using APCC, NCEP, POAMA, SINT and SUT1 is relatively better than that simulated in PNU and UHT1 and it is closer to observation. The El Niño-ISMR teleconnection skills both monthly to seasonal scale are very poor in PNU as well as UHT1 and their RMSEs are 3.84 and 3.77 higher than APCC, NCEP, POAMA, SINT and SUT1 models. The authors developed two Multi-Model Ensembles (MMEs) that were simple composites of ensemble forecast from seven models (APCC, NCEP, POAMA, SINT, SUT1, PNU and UHT1) referred to as MME1, and from five models (APCC, NCEP, POAMA, SINT and SUT1) are referred to as MME2. Importantly, the one-month lead MME2 prediction of anomaly correlation coefficient (ACC) and its adverse impacts is reasonably better than MME1 prediction. However, there are some limitations in capturing SST forcing fields over Indian Ocean region in both MMEs. Among the seven models, SINT has the highest pattern correlation of precipitation
Charm physics with a nonperturbatively determined relativistic heavy quark action
NASA Astrophysics Data System (ADS)
Lin, Huey-Wen
We explore the methodology of a nonperturbative approach on the lattice to heavy quark calculations. We discuss the application of the regularization-independent (RI) scheme of Rome/Southampton to determining the normalization of heavy quark operators nonperturbatively using the Fermilab action. We study the fermion action needed to accurately describe the low-energy physics of systems including heavy quarks in lattice QCD, even when the heavy fermion mass m is on the order of, or larger than, the inverse lattice spacing: m ≥ 1/a. We carry out an expansion through first order in | p⃗ |a and all orders in ma, refining the analysis of the Fermilab and Tsukuba groups. We demonstrate that the spectrum of heavy quark bound states can be determined accurately through | p⃗ |a and (ma)n for arbitrary exponent n by using a lattice action containing only three unknown coefficients: m0, zeta and cP (a generalization of cSW), which are functions of ma. We propose to determine the coefficients of the relativistic heavy quark action by matching the finite-volume on-shell spectrum with one determined in an exact relativistic theory. The matching relativistic amplitudes may be determined from finite-volume step-scaling recursion. The results will be presented from a step-scaling determination of the coefficients in the relativistic heavy quark action. By matching finite-volume heavy-heavy and heavy-light meson masses, we attempt to determine the three parameters ( m0, zeta, cP) in the on-shell-improved heavy quark action. These calculations are carried out on 163 and 243 spatial volumes for a heavy quark mass approximately that of the charm quark. We use nonperturbative coefficients obtained from the step-scaling method to calculate the charmed meson spectrum on 243, a -1 = 2.4 GeV lattices. The charmonium state masses, including radial excited states, are in reasonable agreement with the experimentally observed spectrum. We find the hyperfine splitting is 77.8(15) MeV with
Tan, Khay M; Barman, Ishan; Dingari, Narahara C; Singh, Gajendra P; Chia, Tet F; Tok, Wee L
2013-02-01
There is a critical need for a real-time, nonperturbative probe for monitoring the adulteration of automotive gasoline. Running on adulterated fuel leads to a substantive increase in air pollution, because of increased tailpipe emissions of harmful pollutants, as well as a reduction in engine performance. Consequently, both classification of the gasoline type and quantification of the adulteration content are of great significance for quality control. Gasoline adulteration detection is currently carried out in the laboratory with gas chromatography, which is time-consuming and costly. Here, we propose the application of Raman spectroscopic measurements for on-site rapid detection of gasoline adulteration. In this proof-of-principle report, we demonstrate the effectiveness of Raman spectra, in conjunction with multivariate analysis methods, in classifying the base oil types and simultaneously detecting the adulteration content in a wide range of commercial gasoline mixtures, both in their native states and spiked with different adulterants. In particular, we show that Raman spectra acquired with an inexpensive noncooled detector provides adequate specificity to clearly discriminate between the gasoline samples and simultaneously characterize the specific adulterant content with a limit of detection below 5%. Our promising results in this study illustrate, for the first time, the capability and the potential of Raman spectroscopy, together with multivariate analysis, as a low-cost, powerful tool for on-site rapid detection of gasoline adulteration and opens substantive avenues for applications in related fields of quality control in the oil industry. PMID:23259604
Nonperturbative dynamics of reheating after inflation: A review
NASA Astrophysics Data System (ADS)
Amin, Mustafa A.; Hertzberg, Mark P.; Kaiser, David I.; Karouby, Johanna
2015-12-01
Our understanding of the state of the universe between the end of inflation and big bang nucleosynthesis (BBN) is incomplete. The dynamics at the end of inflation are rich and a potential source of observational signatures. Reheating, the energy transfer between the inflaton and Standard Model fields (possibly through intermediaries) and their subsequent thermalization, can provide clues to how inflation fits in with known high-energy physics. We provide an overview of our current understanding of the nonperturbative, nonlinear dynamics at the end of inflation, some salient features of realistic particle physics models of reheating, and how the universe reaches a thermal state before BBN. In addition, we review the analytical and numerical tools available in the literature to study preheating and reheating and discuss potential observational signatures from this fascinating era.
Nonperturbative True Muonium on the Light Front with TMSWIFT
NASA Astrophysics Data System (ADS)
Lamm, Henry; Lebed, Richard F.
2016-08-01
The true muonium {(μbar{μ})} bound state presents an interesting test of light-cone quantization techniques. In addition to exhibiting the standard problems of handling non-perturbative calculations, true muonium requires correct treatment of {ebar{e}} Fock-state contributions. Having previously produced a crude model of true muonium using the method of iterated resolvents, our current work has focused on the inclusion of the box diagrams to improve the cutoff-dependent issues of the model. Further, a parallel computer code, TMSWIFT, allowing for smaller numerical uncertainties, has been developed. This work focuses on the current state of these efforts to develop a model of true muonium that is testable at near-term experiments.
Nonlinear normal modes in electrodynamic systems: A nonperturbative approach
NASA Astrophysics Data System (ADS)
Kudrin, A. V.; Kudrina, O. A.; Petrov, E. Yu.
2016-06-01
We consider electromagnetic nonlinear normal modes in cylindrical cavity resonators filled with a nonlinear nondispersive medium. The key feature of the analysis is that exact analytic solutions of the nonlinear field equations are employed to study the mode properties in detail. Based on such a nonperturbative approach, we rigorously prove that the total energy of free nonlinear oscillations in a distributed conservative system, such as that considered in our work, can exactly coincide with the sum of energies of the normal modes of the system. This fact implies that the energy orthogonality property, which has so far been known to hold only for linear oscillations and fields, can also be observed in a nonlinear oscillatory system.
Three-body scattering from nonperturbative flow equations
Diehl, S.; Krahl, H. C.; Scherer, M.
2008-09-15
We consider fermion-dimer scattering in the presence of a large positive scattering length in the frame of functional renormalization group equations. A flow equation for the momentum dependent fermion-dimer scattering amplitude is derived from first principles in a systematic vertex expansion of the exact flow equation for the effective action. The resummation obtained from the nonperturbative flow is shown to be equivalent to the one performed by the integral equation by Skorniakov and Ter-Martirosian (STM). The flow equation approach allows to integrate out fermions and bosons simultaneously, in line with the fact that the bosons are not fundamental but build up gradually as fluctuation induced bound states of fermions. In particular, the STM result for atom-dimer scattering is obtained by choosing the relative cutoff scales of fermions and bosons such that the fermion fluctuations are integrated out already at the initial stage of the RG evolution.
ERIC Educational Resources Information Center
Sheehan, George A.
This book is both a personal and technical account of the experience of running by a heart specialist who began a running program at the age of 45. In its seventeen chapters, there is information presented on the spiritual, psychological, and physiological results of running; treatment of athletic injuries resulting from running; effects of diet…
Nonperturbative Dynamics of Strong Interactions from Gauge/Gravity Duality
Grigoryan, Hovhannes
2008-08-01
This thesis studies important dynamical observables of strong interactions such as form factors. It is known that Quantum Chromodynamics (QCD) is a theory which describes strong interactions. For large energies, one can apply perturbative techniques to solve some of the QCD problems. However, for low energies QCD enters into the nonperturbative regime, where di erent analytical or numerical tools have to be applied to solve problems of strong interactions. The holographic dual model of QCD is such an analytical tool that allows one to solve some nonperturbative QCD problems by translating them into a dual ve-dimensional theory de ned on some warped Anti de Sitter (AdS) background. Working within the framework of the holographic dual model of QCD, we develop a formalism to calculate form factors and wave functions of vector mesons and pions. As a result, we provide predictions of the electric radius, the magnetic and quadrupole moments which can be directly veri ed in lattice calculations or even experimentally. To nd the anomalous pion form factor, we propose an extension of the holographic model by including the Chern-Simons term required to reproduce the chiral anomaly of QCD. This allows us to nd the slope of the form factor with one real and one slightly o -shell photon which appeared to be close to the experimental ndings. We also analyze the limit of large virtualities (when the photon is far o -shell) and establish that predictions of the holographic model analytically coincide with those of perturbative QCD with asymptotic pion distribution amplitude. We also study the e ects of higher dimensional terms in the AdS/QCD model and show that these terms improve the holographic description towards a more realistic scenario. We show this by calculating corrections to the vector meson form factors and corrections to the observables such as electric radii, magnetic and quadrupole moments.
NASA Astrophysics Data System (ADS)
Bulava, John; Della Morte, Michele; Heitger, Jochen; Wittemeier, Christian
2016-06-01
We nonperturbatively determine the renormalization factor of the axial vector current in lattice QCD with Nf=3 flavors of Wilson-clover fermions and the tree-level Symanzik-improved gauge action. The (by now standard) renormalization condition is derived from the massive axial Ward identity, and it is imposed among Schrödinger functional states with large overlap on the lowest lying hadronic state in the pseudoscalar channel, in order to reduce kinematically enhanced cutoff effects. We explore a range of couplings relevant for simulations at lattice spacings of ≈0.09 fm and below. An interpolation formula for ZA(g02) , smoothly connecting the nonperturbative values to the 1-loop expression, is provided together with our final results.
Running and Breathing in Mammals
NASA Astrophysics Data System (ADS)
Bramble, Dennis M.; Carrier, David R.
1983-01-01
Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.
Nonperturbative NN scattering in 3S1-3D1 channels of EFT(⁄π)
NASA Astrophysics Data System (ADS)
Yang, Ji-Feng
2013-12-01
The closed-form T matrices in the 3S1-3D1 channels of EFT(⁄π) for NN scattering with the potentials truncated at order O(Q4) are presented with the nonperturbative divergences parametrized in a general manner. The stringent constraints imposed by the closed form of the T matrices are exploited in the underlying theory perspective and turned into virtues in the implementation of subtractions and the manifestation of power counting rules in nonperturbative regimes, leading us to the concept of EFT scenario. A number of scenarios of the EFT description of NN scattering are compared with PSA data in terms of effective range expansion and 3S1 phase shifts, showing that it is favorable to proceed in a scenario with conventional EFT couplings and sophisticated renormalization in order to have large NN scattering lengths. The informative utilities of fine tuning are demonstrated in several examples and naturally interpreted in the underlying theory perspective. In addition, some of the approaches adopted in the recent literature are also addressed in the light of EFT scenario.
Reading, Writing, and Running.
ERIC Educational Resources Information Center
Detherage, Jim
1980-01-01
Describes an English course that capitalizes on the popularity of running, integrating running with reading and writing activities. Notes the positive results of this interdisciplinary approach. Provides samples of student writings. (RL)
ERIC Educational Resources Information Center
Dukes, Denzel; And Others
1980-01-01
Frederic Leer's article "Running as an Adjunct to Psychotherapy" (January 1980 issue of this journal) is criticized by three authors. They focus on the psychological and social effects of running and its usefulness as a treatment for depressed adults. (LAB)
ERIC Educational Resources Information Center
Scantling, Ed; Strand, Brad
1997-01-01
Fitness runs are planned activities that make running more interesting. The paper outlines five types of fitness runs, all of which can be modified to conform to different facilities, age groups, or available time. The activities have students playing detective, playing cards, deciphering words, learning about calories, and playing wolf. (SM)
Biomechanics of Distance Running.
ERIC Educational Resources Information Center
Cavanagh, Peter R., Ed.
Contributions from researchers in the field of running mechanics are included in the 13 chapters of this book. The following topics are covered: (1) "The Mechanics of Distance Running: A Historical Perspective" (Peter Cavanagh); (2) "Stride Length in Distance Running: Velocity, Body Dimensions, and Added Mass Effects" (Peter Cavanagh, Rodger…
Bakshi, Somenath; Choi, Heejun; Rangarajan, Nambirajan; Barns, Kenneth J.; Bratton, Benjamin P.
2014-01-01
Studies of time-dependent drug and environmental effects on single, live bacterial cells would benefit significantly from a permeable, nonperturbative, long-lived fluorescent stain specific to the nucleoids (chromosomal DNA). The ideal stain would not affect cell growth rate or nucleoid morphology and dynamics, even during laser illumination for hundreds of camera frames. In this study, time-dependent, single-cell fluorescence imaging with laser excitation and a sensitive electron-multiplying charge-coupled-device (EMCCD) camera critically tested the utility of “dead-cell stains” (SYTOX orange and SYTOX green) and “live-cell stains” (DRAQ5 and SYTO 61) and also 4′,6-diamidino-2-phenylindole (DAPI). Surprisingly, the dead-cell stains were nearly ideal for imaging live Escherichia coli, while the live-cell stains and DAPI caused nucleoid expansion and, in some cases, cell permeabilization and the halting of growth. SYTOX orange performed well for both the Gram-negative E. coli and the Gram-positive Bacillus subtilis. In an initial application, we used two-color fluorescence imaging to show that the antimicrobial peptide cecropin A destroyed nucleoid-ribosome segregation over 20 min after permeabilization of the E. coli cytoplasmic membrane, reminiscent of the long-term effects of the drug rifampin. In contrast, the human cathelicidin LL-37, while similar to cecropin A in structure, length, charge, and the ability to permeabilize bacterial membranes, had no observable effect on nucleoid-ribosome segregation. Possible underlying causes are suggested. PMID:24907320
New approach to nonperturbative quantum mechanics with minimal length uncertainty
NASA Astrophysics Data System (ADS)
Pedram, Pouria
2012-01-01
The existence of a minimal measurable length is a common feature of various approaches to quantum gravity such as string theory, loop quantum gravity, and black-hole physics. In this scenario, all commutation relations are modified and the Heisenberg uncertainty principle is changed to the so-called Generalized (Gravitational) Uncertainty Principle (GUP). Here, we present a one-dimensional nonperturbative approach to quantum mechanics with minimal length uncertainty relation which implies X=x to all orders and P=p+(1)/(3)βp3 to first order of GUP parameter β, where X and P are the generalized position and momentum operators and [x,p]=iℏ. We show that this formalism is an equivalent representation of the seminal proposal by Kempf, Mangano, and Mann and predicts the same physics. However, this proposal reveals many significant aspects of the generalized uncertainty principle in a simple and comprehensive form and the existence of a maximal canonical momentum is manifest through this representation. The problems of the free particle and the harmonic oscillator are exactly solved in this GUP framework and the effects of GUP on the thermodynamics of these systems are also presented. Although X, P, and the Hamiltonian of the harmonic oscillator all are formally self-adjoint, the careful study of the domains of these operators shows that only the momentum operator remains self-adjoint in the presence of the minimal length uncertainty. We finally discuss the difficulties with the definition of potentials with infinitely sharp boundaries.
Dyonic Flux Tube Structure of Nonperturbative QCD Vacuum
NASA Astrophysics Data System (ADS)
Chandola, H. C.; Pandey, H. C.
We study the flux tube structure of the nonperturbative QCD vacuum in terms of its dyonic excitations by using an infrared effective Lagrangian and show that the dyonic condensation of QCD vacuum has a close connection with the process of color confinement. Using the fiber bundle formulation of QCD, the magnetic symmetry condition is presented in a gauge covariant form and the gauge potential has been constructed in terms of the magnetic vectors on global sections. The dynamical breaking of the magnetic symmetry has been shown to lead the dyonic condensation of QCD vacuum in the infrared energy sector. Deriving the asymptotic solutions of the field equations in the dynamically broken phase, the dyonic flux tube structure of QCD vacuum is explored which has been shown to lead the confinement parameters in terms of the vector and scalar mass modes of the condensed vacuum. Evaluating the charge quantum numbers and energy associated with the dyonic flux tube solutions, the effect of electric excitation of monopole is analyzed using the Regge slope parameter (as an input parameter) and an enhancement in the dyonic pair correlations and the confining properties of QCD vacuum in its dyonically condensed mode has been demonstrated.
The t expansion: A nonperturbative analytic tool for Hamiltonian systems
NASA Astrophysics Data System (ADS)
Horn, D.; Weinstein, M.
1984-09-01
A systematic nonperturbative scheme is developed to calculate the ground-state expectation values of arbitrary operators for any Hamiltonian system. Quantities computed in this way converge rapidly to their true expectation values. The method is based upon the use of the operator e-tH to contract any trial state onto the true ground state of the Hamiltonian H. We express all expectation values in the contracted state as a power series in t, and reconstruct t-->∞ behavior by means of Padé approximants. The problem associated with factors of spatial volume is taken care of by developing a connected graph expansion for matrix elements of arbitrary operators taken between arbitrary states. We investigate Padé methods for the t series and discuss the merits of various procedures. As examples of the power of this technique we present results obtained for the Heisenberg and Ising models in 1+1 dimensions starting from simple mean-field wave functions. The improvement upon mean-field results is remarkable for the amount of effort required. The connection between our method and conventional perturbation theory is established, and a generalization of the technique which allows us to exploit off-diagonal matrix elements is introduced. The bistate procedure is used to develop a t expansion for the ground-state energy of the Ising model which is, term by term, self-dual.
Nonperturbative amplification of inhomogeneities in a self-reproducing universe
NASA Astrophysics Data System (ADS)
Linde, Andrei; Linde, Dmitri; Mezhlumian, Arthur
1996-08-01
We investigate the distribution of energy density in a stationary self-reproducing inflationary universe. We show that the main fraction of volume of the Universe in a state with a given density ρ at any given moment of proper time t is concentrated near the centers of deep exponentially wide spherically symmetric wells in the density distribution. Since this statement is very surprising and counterintuitive, we perform our investigation by three different analytical methods to verify our conclusions, and then confirm our analytical results by computer simulations. If one assumes that we are typical observers living in the Universe at a given moment of time, then our results may imply that we should live near the center of a deep and exponentially large void, which we will call an infloid. The validity of this particular interpretation of our results is not quite clear since it depends on the as-yet unsolved problem of measure in quantum cosmology. Therefore, at the moment we would prefer to consider our results simply as a demonstration of nontrivial properties of the hypersurface of a given time in the fractal self-reproducing universe, without making any far-reaching conclusions concerning the structure of our own part of the Universe. Still we believe that our results may be of some importance since they demonstrate that nonperturbative effects in quantum cosmology, at least in principle, may have significant observational consequences, including an apparent violation of the Copernican principle.
Charmed spectroscopy from a nonperturbatively determined relativistic heavy quark action in full QCD
Huey-Wen Lin
2006-07-28
We present a preliminary calculation of the charmed meson spectrum using the 2+1 flavor domain wall fermion lattice configurations currently being generated by the RBC and UKQCD collaborations. The calculation is performed using the 3-parameter, relativistic heavy quark action with nonperturbatively determined coefficients. We will also demonstrate a step-scaling procedure for determining these coefficients nonperturbatively using a series of quenched, gauge field ensembles generated for three different lattice spacings.
Nonperturbative results for the mass dependence of the QED fermion determinant
Fry, M. P.
2010-05-15
The fermion determinant in four-dimensional quantum electrodynamics in the presence of O(2)xO(3) symmetric background gauge fields with a nonvanishing global chiral anomaly is considered. It is shown that the leading mass singularity of the determinant's nonperturbative part is fixed by the anomaly. It is also shown that for a large class of such fields there is at least one value of the fermion mass at which the determinant's nonperturbative part reduces to its noninteracting value.
Karanikas, A.I.; Ktorides, C.N.; Mavromatos, N.E.
1986-12-01
A recently proposed approach to gauge field theories, by which one formulates them non-locally and subsequently approaches locality arbitrarily close, is applied to U(1) gauge theories. We test the possibility that the aformentioned methodology might introduce a measure in the functional integral which supports non-perturbative calculations in the continuum. In particular, we are able to carry relevant calculations pertaining to the expectation value of the Wilson's loop operator in 3+1, 2+1 and 1+1 dimensions. The results are similar to ones obtained through the lattice regularization of R(1) gauge theory, with the important difference that in our case they refer to continuum U(1) gauge theory, as a function of the bare coupling constant. We further solidify the validity of our approach by conducting a calculation referring to the 2-dimensional scalar Heisenberg model, remaining always in the continuum. copyright 1986 Academic Press, Inc.
NASA Astrophysics Data System (ADS)
Decremer, Damien; Chung, Chul E.; Räisänen, Petri
2015-03-01
Climate modelers often integrate the model with constant forcing over a long time period, and make an average over the period in order to reduce climate noise. If the time series is persistent, as opposed to rapidly varying, such an average does not reduce noise efficiently. In this case, ensemble runs, which ideally represent independent runs, can reduce noise more efficiently. We quantify the noise reduction gain by using ensemble runs over a long continuous run in constant-forcing simulations. We find that in terms of the amplitude of the noise, a continuous simulation of 30 years may be equivalent to as few as five 3-year long ensemble runs in a slab ocean-atmosphere coupled model and as few as two 3-year long ensemble runs in a fully coupled model. The outperformance of ensemble runs over a continuous run is strictly a function of the persistence of the time series. We find that persistence depends on model, location and variable, and that persistence in surface air temperature has robust spatial structures in coupled models. We demonstrate that lag-1 year autocorrelation represents persistence fairly well, but the use of lag-1 year-lag-5 years autocorrelations represents the persistence far more sufficiently. Furthermore, there is more persistence in coupled model output than in the output of a first-order autoregressive model with the same lag-1 autocorrelation.
Nonperturbative effects on the ferromagnetic transition in repulsive Fermi gases
NASA Astrophysics Data System (ADS)
He, Lianyi; Huang, Xu-Guang
2012-04-01
It is generally believed that a dilute spin-(1)/(2) Fermi gas with repulsive interactions can undergo a ferromagnetic phase transition to a spin-polarized state at a critical gas parameter (kFa)c. Previous theoretical predictions of the ferromagnetic phase transition have been based on the perturbation theory, which treats the gas parameter as a small number. On the other hand, Belitz, Kirkpatrick, and Vojta (BKV) have argued that the phase transition in clean itinerant ferromagnets is generically of first order at low temperatures, due to the correlation effects that lead to a nonanalytic term in the free energy. The second-order perturbation theory predicts a first-order phase transition at (kFa)c=1.054, consistent with the BKV argument. However, since the critical gas parameter is expected to be of order O(1), perturbative predictions may be unreliable. In this paper we study the nonperturbative effects on the ferromagnetic phase transition by summing the particle-particle ladder diagrams to all orders in the gas parameter. We consider a universal repulsive Fermi gas where the effective range effects can be neglected, which can be realized in a two-component Fermi gas of 6Li atoms by using a nonadiabatic field switch to the upper branch of a Feshbach resonance with a positive s-wave scattering length. Our theory predicts a second-order phase transition, which indicates that ferromagnetic transition in dilute Fermi gases is possibly a counterexample to the BKV argument. The predicted critical gas parameter (kFa)c=0.858 is in good agreement with the recent quantum Monte Carlo result (kFa)c=0.86 for a nearly zero-range potential [S. Pilati , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.030405 105, 030405 (2010)]. We also compare the spin susceptibility with the quantum Monte Carlo result and find good agreement.
ERIC Educational Resources Information Center
Watson, David
2012-01-01
Inside the academy there is a cultural perspective that it should run itself, in the sense that "business as usual" should be done with no one's hands obviously on the levers. This theory reaches its high point in the "self-government" of Oxford and Cambridge colleges. In this article, the author explores the question, "who runs our…
McInnis, W. P.
1974-01-01
Fitness and health have become bywords in the past decade, signifying increased emphasis on these factors as necessary for good psychological and physical health. Reasons are given why we should run and how to do it. There is a discussion of the technique of running, and equipment. Brief mention is made of complications. An attempt is made to interest the individual in the benefits of running as a sport as well as the best method for the average person to achieve fitness and health. PMID:20469054
PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity
NASA Astrophysics Data System (ADS)
Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier
2012-05-01
Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not
More on the nonperturbative Gribov-Zwanziger quantization of linear covariant gauges
NASA Astrophysics Data System (ADS)
Capri, M. A. L.; Fiorentini, D.; Guimaraes, M. S.; Mintz, B. W.; Palhares, L. F.; Sorella, S. P.; Dudal, D.; Justo, I. F.; Pereira, A. D.; Sobreiro, R. F.
2016-03-01
In this paper, we discuss the gluon propagator in the linear covariant gauges in D =2 , 3, 4 Euclidean dimensions. Nonperturbative effects are taken into account via the so-called refined Gribov-Zwanziger framework. We point out that, as in the Landau and maximal Abelian gauges, for D =3 , 4, the gluon propagator displays a massive (decoupling) behavior, while for D =2 , a scaling one emerges. All results are discussed in a setup that respects the Becchi-Rouet-Stora-Tyutin (BRST) symmetry, through a recently introduced nonperturbative BRST transformation. We also propose a minimizing functional that could be used to construct a lattice version of our nonperturbative definition of the linear covariant gauge.
NASA Astrophysics Data System (ADS)
Alessio, F.; Barandela, M. C.; Callot, O.; Duval, P.-Y.; Franek, B.; Frank, M.; Galli, D.; Gaspar, C.; Herwijnen, E. v.; Jacobsson, R.; Jost, B.; Neufeld, N.; Sambade, A.; Schwemmer, R.; Somogyi, P.
2010-04-01
LHCb has designed and implemented an integrated Experiment Control System. The Control System uses the same concepts and the same tools to control and monitor all parts of the experiment: the Data Acquisition System, the Timing and the Trigger Systems, the High Level Trigger Farm, the Detector Control System, the Experiment's Infrastructure and the interaction with the CERN Technical Services and the Accelerator. LHCb's Run Control, the main interface used by the experiment's operator, provides access in a hierarchical, coherent and homogeneous manner to all areas of the experiment and to all its sub-detectors. It allows for automated (or manual) configuration and control, including error recovery, of the full experiment in its different running modes. Different instances of the same Run Control interface are used by the various sub-detectors for their stand-alone activities: test runs, calibration runs, etc. The architecture and the tools used to build the control system, the guidelines and components provided to the developers, as well as the first experience with the usage of the Run Control will be presented
Lipshutz, Bruce H; Taft, Benjamin R; Abela, Alexander R; Ghorai, Subir; Krasovskiy, Arkady; Duplais, Christophe
2012-04-01
Palladium-catalysed cross-couplings, in particular Heck, Suzuki-Miyaura and Negishi reactions developed over three decades ago, are routinely carried out in organic solvents. However, alternative media are currently of considerable interest given an increasing emphasis on making organic processes 'greener'; for example, by minimising organic waste in the form of organic solvents. Water is the obvious leading candidate in this regard. Hence, this review focuses on the application of micellar catalysis, in which a 'designer' surfactant enables these award-winning coupling reactions to be run in water at room temperature. PMID:23555153
Nonperturbative gluon and ghost propagators for d=3 Yang-Mills theory
Aguilar, A. C.; Binosi, D.; Papavassiliou, J.
2010-06-15
We study a manifestly gauge-invariant set of Schwinger-Dyson equations to determine the nonperturbative dynamics of the gluon and ghost propagators in d=3 Yang-Mills theory. The use of the well-known Schwinger mechanism, in the Landau gauge leads to the dynamical generation of a mass for the gauge boson (gluon in d=3), which, in turn, gives rise to an infrared finite gluon propagator and ghost dressing function. The propagators obtained from the numerical solution of these nonperturbative equations are in very good agreement with the results of SU(2) lattice simulations.
Dressed skeleton expansion and the coupling scale ambiguity problem
Lu, Hung Jung
1992-09-01
Perturbative expansions in quantum field theories are usually expressed in powers of a coupling constant. In principle, the infinite sum of the expansion series is independent of the renormalization scale of the coupling constant. In practice, there is a remnant dependence of the truncated series on the renormalization scale. This scale ambiguity can severely restrict the predictive power of theoretical calculations. The dressed skeleton expansion is developed as a calculational method which avoids the coupling scale ambiguity problem. In this method, physical quantities are expressed as functional expansions in terms of a coupling vertex function. The arguments of the vertex function are given by the physical momenta of each process. These physical momenta effectively replace the unspecified renormalization scale and eliminate the ambiguity problem. This method is applied to various field theoretical models and its main features and limitations are explored. For quantum chromodynamics, an expression for the running coupling constant of the three-gluon vertex is obtained. The effective coupling scale of this vertex is shown to be essentially given by {mu}{sup 2} {approximately} Q{sub min}{sup 2}Q{sub med}{sup 2}/Q{sub max}{sup 2} where Q{sub min}{sup 2}Q{sub med}{sup 2}/Q{sub max}{sup 2} are respectively the smallest, the next-to-smallest and the largest scale among the three gluon virtualities. This functional form suggests that the three-gluon vertex becomes non-perturbative at asymmetric momentum configurations. Implications for four-jet physics is discussed.
Prevention of running injuries.
Fields, Karl B; Sykes, Jeannie C; Walker, Katherine M; Jackson, Jonathan C
2010-01-01
Evidence for preventive strategies to lessen running injuries is needed as these occur in 40%-50% of runners on an annual basis. Many factors influence running injuries, but strong evidence for prevention only exists for training modification primarily by reducing weekly mileage. Two anatomical factors - cavus feet and leg length inequality - demonstrate a link to injury. Weak evidence suggests that orthotics may lessen risk of stress fracture, but no clear evidence proves they will reduce the risk of those athletes with leg length inequality or cavus feet. This article reviews other potential injury variables, including strength, biomechanics, stretching, warm-up, nutrition, psychological factors, and shoes. Additional research is needed to determine whether interventions to address any of these will help prevent running injury. PMID:20463502
PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity
NASA Astrophysics Data System (ADS)
Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier
2012-05-01
Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not
Reheating dynamics affects non-perturbative decay of spectator fields
NASA Astrophysics Data System (ADS)
Enqvist, Kari; Lerner, Rose N.; Rusak, Stanislav
2013-11-01
The behaviour of oscillating scalar spectator fields after inflation depends on the thermal background produced by inflaton decay. Resonant decay of the spectator is often blocked by large induced thermal masses. We account for the finite decay width of the inflaton and the protracted build-up of the thermal bath to determine the early evolution of a homogeneous spectator field σ coupled to the Higgs Boson Φ through the term g2σ2Φ2, the only renormalisable coupling of a new scalar to the Standard Model. We find that for very large higgs-spectator coupling ggtrsim10-3, the resonance is not always blocked as was previously suggested. As a consequence, the oscillating spectator can decay quickly. For other parameter values, we find that although qualitative features of the thermal blocking still hold, the dynamics are altered compared to the instant decay case. These findings are important for curvaton models, where the oscillating field must be relatively long lived in order to produce the curvature perturbation. They are also relevant for other spectator fields, which must decay sufficiently early to avoid spoiling the predictions of baryogenesis and nucleosynthesis.
Reheating dynamics affects non-perturbative decay of spectator fields
Enqvist, Kari; Lerner, Rose N.; Rusak, Stanislav E-mail: rose.lerner@helsinki.fi
2013-11-01
The behaviour of oscillating scalar spectator fields after inflation depends on the thermal background produced by inflaton decay. Resonant decay of the spectator is often blocked by large induced thermal masses. We account for the finite decay width of the inflaton and the protracted build-up of the thermal bath to determine the early evolution of a homogeneous spectator field σ coupled to the Higgs Boson Φ through the term g{sup 2}σ{sup 2}Φ{sup 2}, the only renormalisable coupling of a new scalar to the Standard Model. We find that for very large higgs-spectator coupling g∼>10{sup −3}, the resonance is not always blocked as was previously suggested. As a consequence, the oscillating spectator can decay quickly. For other parameter values, we find that although qualitative features of the thermal blocking still hold, the dynamics are altered compared to the instant decay case. These findings are important for curvaton models, where the oscillating field must be relatively long lived in order to produce the curvature perturbation. They are also relevant for other spectator fields, which must decay sufficiently early to avoid spoiling the predictions of baryogenesis and nucleosynthesis.
Oleynik, G.; Engelfried, J.; Mengel, L.
1995-05-01
DART is the high speed, Unix based data acquisition system being developed by Fermilab in collaboration with seven High Energy Physics Experiments. This paper describes DART run control, which has been developed over the past year and is a flexible, distributed, extensible system for the, control and monitoring of the data acquisition systems. We discuss the unique and interesting concepts of the run control and some of our experiences in developing it. We also give a brief update and status of the whole DART system.
Wilson, W Jeffrey; Johnson, Brandon A
2016-01-01
We describe the construction and use of a running wheel responsive to the movement of the earthworm. The wheel employs readily available, inexpensive components and is easily constructed. Movement of the wheel can be monitored visually or via standard behavioral laboratory computer interfaces. Examples of data are presented, and possibilities for use in the teaching classroom are discussed. PMID:27385934
ERIC Educational Resources Information Center
Brown, Jill Harris
2007-01-01
Every year, the Parent-Teacher Association of Ferndale Elementary School in Atlanta, Georgia sponsors a fun road race for the students, teachers, families, and community. This annual event has inspired the author to develop the Running and Art project to show off her students' art and squeeze in a little art history, too. In this article, the…
Wilson, W. Jeffrey; Johnson, Brandon A.
2016-01-01
We describe the construction and use of a running wheel responsive to the movement of the earthworm. The wheel employs readily available, inexpensive components and is easily constructed. Movement of the wheel can be monitored visually or via standard behavioral laboratory computer interfaces. Examples of data are presented, and possibilities for use in the teaching classroom are discussed. PMID:27385934
Kobayashi, Takeshi; Takahashi, Tomo E-mail: tomot@cc.saga-u.ac.jp
2012-06-01
We investigate the scale-dependence, or the runnings, of linear and second order density perturbations generated in various curvaton scenarios. We argue that the second order perturbations, i.e. non-Gaussianity, can strongly depend on the scale, even when the linear perturbations are nearly scale-invariant. We present analytic formulae for the runnings from curvatons with general energy potentials, and clarify the conditions under which f{sub NL} becomes strongly scale-dependent. From the point of view of the f{sub NL} running, curvaton potentials can be classified into roughly two categories by whether the potential flattens or steepens compared to a quadratic one. As such examples, we study pseudo-Nambu-Goldstone curvatons, and self-interacting curvatons, respectively. The dynamics of non-quadratic curvatons and the behaviors of the resulting density perturbations are clarified by analytical methods. Then we also study models where multiple source can be responsible for density perturbations such as the multi-curvaton, and mixed curvaton and inflaton models where the running of f{sub NL} can also be large due to their multi-source nature. We make quantitative analysis for each curvaton scenario and discuss in what cases the scale-dependence, in particular, of f{sub NL} can be large enough to be probed with future CMB experiments.
Nonperturbative stochastic method for driven spin-boson model
NASA Astrophysics Data System (ADS)
Orth, Peter P.; Imambekov, Adilet; Le Hur, Karyn
2013-01-01
We introduce and apply a numerically exact method for investigating the real-time dissipative dynamics of quantum impurities embedded in a macroscopic environment beyond the weak-coupling limit. We focus on the spin-boson Hamiltonian that describes a two-level system interacting with a bosonic bath of harmonic oscillators. This model is archetypal for investigating dissipation in quantum systems, and tunable experimental realizations exist in mesoscopic and cold-atom systems. It finds abundant applications in physics ranging from the study of decoherence in quantum computing and quantum optics to extended dynamical mean-field theory. Starting from the real-time Feynman-Vernon path integral, we derive an exact stochastic Schrödinger equation that allows us to compute the full spin density matrix and spin-spin correlation functions beyond weak coupling. We greatly extend our earlier work [P. P. Orth, A. Imambekov, and K. Le Hur, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.032118 82, 032118 (2010)] by fleshing out the core concepts of the method and by presenting a number of interesting applications. Methodologically, we present an analogy between the dissipative dynamics of a quantum spin and that of a classical spin in a random magnetic field. This analogy is used to recover the well-known noninteracting-blip approximation in the weak-coupling limit. We explain in detail how to compute spin-spin autocorrelation functions. As interesting applications of our method, we explore the non-Markovian effects of the initial spin-bath preparation on the dynamics of the coherence σx(t) and of σz(t) under a Landau-Zener sweep of the bias field. We also compute to a high precision the asymptotic long-time dynamics of σz(t) without bias and demonstrate the wide applicability of our approach by calculating the spin dynamics at nonzero bias and different temperatures.
Boudenot, Arnaud; Achiou, Zahra; Portier, Hugues
2015-12-01
Bone is a living tissue needing mechanical stress to maintain strength. Traditional endurance exercises offer only modest effects on bone. Walking and running produce low impact but lead to bone fatigue. This article is specifically addressed to therapists and explains the mechanisms involved for the effects of exercise on bone. Intermittent exercise limits bone fatigue, and downhill exercises increase ground impact forces and involve eccentric muscle contractions, which are particularly osteogenic. PMID:26562001
Calcaneal loading during walking and running
NASA Technical Reports Server (NTRS)
Giddings, V. L.; Beaupre, G. S.; Whalen, R. T.; Carter, D. R.
2000-01-01
PURPOSE: This study of the foot uses experimentally measured kinematic and kinetic data with a numerical model to evaluate in vivo calcaneal stresses during walking and running. METHODS: External ground reaction forces (GRF) and kinematic data were measured during walking and running using cineradiography and force plate measurements. A contact-coupled finite element model of the foot was developed to assess the forces acting on the calcaneus during gait. RESULTS: We found that the calculated force-time profiles of the joint contact, ligament, and Achilles tendon forces varied with the time-history curve of the moment about the ankle joint. The model predicted peak talocalcaneal and calcaneocuboid joint loads of 5.4 and 4.2 body weights (BW) during walking and 11.1 and 7.9 BW during running. The maximum predicted Achilles tendon forces were 3.9 and 7.7 BW for walking and running. CONCLUSIONS: Large magnitude forces and calcaneal stresses are generated late in the stance phase, with maximum loads occurring at approximately 70% of the stance phase during walking and at approximately 60% of the stance phase during running, for the gait velocities analyzed. The trajectories of the principal stresses, during both walking and running, corresponded to each other and qualitatively to the calcaneal trabecular architecture.
Running Training, Instruction on Running Technique, and Running Economy in 10-year-old Males.
ERIC Educational Resources Information Center
Petray, Clayre K.; Krahenbuhl, Gary S.
1985-01-01
This study attempted to determine the effects of running training, instruction on running techniques, or a combination of instruction and training on the running economy of 10-year-old children. No significant alterations in running economy or technique were produced as a result of the various regimens. (Author/MT)
Gollwitzer, K.; /Fermilab
2007-06-01
The Fermilab Tevatron Collider Run II program continues at the energy and luminosity frontier of high energy particle physics. To the collider experiments CDF and D0, over 3 fb{sup -1} of integrated luminosity has been delivered to each. Upgrades and improvements in the Antiproton Source of the production and collection of antiprotons have led to increased number of particles stored in the Recycler. Electron cooling and associated improvements have help make a brighter antiproton beam at collisions. Tevatron improvements to handle the increased number of particles and the beam lifetimes have resulted in an increase in luminosity.
Marc Schlegel, Leonard Gamberg
2010-02-01
In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Using this framework we explore under what conditions the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.
An exact, finite, gauge-invariant, non-perturbative approach to QCD renormalization
NASA Astrophysics Data System (ADS)
Fried, H. M.; Tsang, P. H.; Gabellini, Y.; Grandou, T.; Sheu, Y.-M.
2015-08-01
A particular choice of renormalization, within the simplifications provided by the non-perturbative property of Effective Locality, leads to a completely finite, non-perturbative approach to renormalized QCD, in which all correlation functions can, in principle, be defined and calculated. In this Model of renormalization, only the Bundle chain-Graphs of the cluster expansion are non-zero. All Bundle graphs connecting to closed quark loops of whatever complexity, and attached to a single quark line, provided no 'self-energy' to that quark line, and hence no effective renormalization. However, the exchange of momentum between one quark line and another, involves only the cluster-expansion's chain graphs, and yields a set of contributions which can be summed and provide a finite color-charge renormalization that can be incorporated into all other QCD processes. An application to High Energy elastic pp scattering is now underway.
Gamberg, Leonard; Schlegel, Marc
2010-01-18
In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Lastly, using this framework we explore under what conditionsmore » the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.« less
Gamberg, Leonard; Schlegel, Marc
2010-01-18
In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Lastly, using this framework we explore under what conditions the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.
An exact, finite, gauge-invariant, non-perturbative approach to QCD renormalization
Fried, H.M.; Tsang, P.H.; Gabellini, Y.; Grandou, T.; Sheu, Y.-M.
2015-08-15
A particular choice of renormalization, within the simplifications provided by the non-perturbative property of Effective Locality, leads to a completely finite, non-perturbative approach to renormalized QCD, in which all correlation functions can, in principle, be defined and calculated. In this Model of renormalization, only the Bundle chain-Graphs of the cluster expansion are non-zero. All Bundle graphs connecting to closed quark loops of whatever complexity, and attached to a single quark line, provided no ‘self-energy’ to that quark line, and hence no effective renormalization. However, the exchange of momentum between one quark line and another, involves only the cluster-expansion’s chain graphs, and yields a set of contributions which can be summed and provide a finite color-charge renormalization that can be incorporated into all other QCD processes. An application to High Energy elastic pp scattering is now underway.
A nonperturbative definition of N = 4 Super Yang-Mills by the plane wave matrix model
Shimasaki, Shinji
2008-11-23
We propose a nonperturbative definition of N = 4 Super Yang-Mills(SYM). We realize N = 4 SYM on RxS{sup 3} as the theory around a vacuum of the plane wave matrix model. Our regularization preserves 16 supersymmetries and the gauge symmetry. We perform the one-loop calculation to give evidence that in the continuum limit the superconformal symmetry is restored.
NON-PERTURBATIVE GLUODYNAMICS OF HIGH ENERGY HEAVY-ION COLLISIONS
KRASNITZ,A.; VENUGOPALAN,R.
2000-01-03
The dynamics of low-x partons in the transverse plane of a high-energy nuclear collision is classical, and therefore admits a fully non-perturbative numerical treatment. The authors report results of a recent study estimating the initial energy density in the central region of a collision. Preliminary estimates of the number of gluons per unit rapidity, and the initial transverse momentum distribution of gluons, are also provided.
Non-perturbative effects for the Quark-Gluon Plasma equation of state
Begun, V. V. Gorenstein, M. I. Mogilevsky, O. A.
2012-07-15
The non-perturbative effects for the Quark-Gluon Plasma (QGP) equation of state (EoS) are considered. The modifications of the bag model EoS are constructed to satisfy the main qualitative features observed for the QGP EoS in the lattice QCD calculations. A quantitative comparison with the lattice results is done for the SU(3) gluon plasma and for the QGP with dynamical quarks. Our analysis advocates a negative value of the bag constant B.
Large x Behaviour and the Non-Perturbative Structure of Hadronic Systems
Anthony W. Thomas
2005-02-01
While the traditional interest in structure functions has been the confirmation of the predictions of perturbative QCD, this data also contains a wealth of information on how QCD works in the infrared, or confinement, region. As the challenge of the strong force now turns to the study of QCD in the non-perturbative region, such information is extremely valuable.We outline some of the key issues for both nucleon and nuclear structure functions.
198. SPOUT RUN ARCH BRIDGE AND SPOUT RUN WESTBOUND BRIDGE ...
198. SPOUT RUN ARCH BRIDGE AND SPOUT RUN WESTBOUND BRIDGE FROM POTOMAC RIVER LOOKING SOUTHWEST. - George Washington Memorial Parkway, Along Potomac River from McLean to Mount Vernon, VA, Mount Vernon, Fairfax County, VA
Not Available
1981-09-01
PDU Run 10, a 46-day H-Coal syncrude mode operation using Wyodak coal, successfully met all targeted objectives, and was the longest PDU operation to date in this program. Targeted coal conversion of 90 W % was exceeded with a C/sub 4/-975/sup 0/F distillate yield of 43 to 48 W %. Amocat 1A catalyst was qualified for Pilot Plant operation based on improved operation and superior performance. PDU 10 achieved improved yields and lower hydrogen consumption compared to PDU 6, a similar operation. High hydroclone efficiency and high solids content in the vacuum still were maintained throughout the run. Steady operations at lower oil/solids ratios were demonstrated. Microautoclave testing was introduced as an operational aid. Four additional studies were successfully completed during PDU 10. These included a catalyst tracer study in conjunction with Sandia Laboratories; tests on letdown valve trims for Battelle; a fluid dynamics study with Amoco; and special high-pressure liquid sampling.
Baryon-Baryon-Meson Coupling Constants in QCD
Aliev, T. M.; Ozpineci, A.; Savci, M.; Azizi, K.; Zamiralov, V.
2010-12-22
The strong coupling constant of decuplet and octet baryons to vector and pseudoscalar mesons are calculated in light cone QCD sum rules in general case and when the SU(3){sub f} symmetry is taken into account. A comparison of the obtained results with the existing experimental data and predictions of the other nonperturbative approaches is also made.
Nonperturbative heterogeneous mean-field approach to epidemic spreading in complex networks
NASA Astrophysics Data System (ADS)
Gómez, Sergio; Gómez-Gardeñes, Jesús; Moreno, Yamir; Arenas, Alex
2011-09-01
Since roughly a decade ago, network science has focused among others on the problem of how the spreading of diseases depends on structural patterns. Here, we contribute to further advance our understanding of epidemic spreading processes by proposing a nonperturbative formulation of the heterogeneous mean-field approach that has been commonly used in the physics literature to deal with this kind of spreading phenomena. The nonperturbative equations we propose have no assumption about the proximity of the system to the epidemic threshold, nor any linear approximation of the dynamics. In particular, we first develop a probabilistic description at the node level of the epidemic propagation for the so-called susceptible-infected-susceptible family of models, and after we derive the corresponding heterogeneous mean-field approach. We propose to use the full extension of the approach instead of pruning the expansion to first order, which leads to a nonperturbative formulation that can be solved by fixed-point iteration, and used with reliability far away from the epidemic threshold to assess the prevalence of the epidemics. Our results are in close agreement with Monte Carlo simulations, thus enhancing the predictive power of the classical heterogeneous mean-field approach, while providing a more effective framework in terms of computational time.
Nonperturbative heterogeneous mean-field approach to epidemic spreading in complex networks.
Gómez, Sergio; Gómez-Gardeñes, Jesús; Moreno, Yamir; Arenas, Alex
2011-09-01
Since roughly a decade ago, network science has focused among others on the problem of how the spreading of diseases depends on structural patterns. Here, we contribute to further advance our understanding of epidemic spreading processes by proposing a nonperturbative formulation of the heterogeneous mean-field approach that has been commonly used in the physics literature to deal with this kind of spreading phenomena. The nonperturbative equations we propose have no assumption about the proximity of the system to the epidemic threshold, nor any linear approximation of the dynamics. In particular, we first develop a probabilistic description at the node level of the epidemic propagation for the so-called susceptible-infected-susceptible family of models, and after we derive the corresponding heterogeneous mean-field approach. We propose to use the full extension of the approach instead of pruning the expansion to first order, which leads to a nonperturbative formulation that can be solved by fixed-point iteration, and used with reliability far away from the epidemic threshold to assess the prevalence of the epidemics. Our results are in close agreement with Monte Carlo simulations, thus enhancing the predictive power of the classical heterogeneous mean-field approach, while providing a more effective framework in terms of computational time. PMID:22060454
NASA Astrophysics Data System (ADS)
Gaertner, Miguel Angel; Jesús González-Alemán, Juan; Romera, Raquel; Domínguez, Marta; Gil, Victoria; Sánchez, Enrique; Gallardo, Clemente; Miglietta, Mario Marcelo; Walsh, Kevin; Sein, Dmitri; Somot, Samuel; dell'Aquila, Alessandro; Ahrens, Bodo; Colette, Augustin; Bastin, Sophie; Van Meijgaard, Erik; Nikulin, Grigory
2016-04-01
Medicanes are cyclones over the Mediterranean Sea having a tropical structure and a rather small size, for which the sea-atmosphere interaction plays a fundamental role. High resolution and ocean-atmosphere coupled RCM simulations performed in MedCORDEX and EURO-CORDEX projects are used to analyze the ability of RCMs to represent the observed characteristics of medicanes, and the impact of increasing resolution and using air-sea coupling on its simulation. An observational database based on satellite images combined with very high resolution simulations (Miglietta et al. 2013) is used as the reference for evaluating the simulations. The simulated medicanes do not coincide in general with the observed cases, so that the evaluation should be done in a statistical sense. The spatial distribution of medicanes is generally well simulated, while the monthly distribution reveals the difficulty of simulating the first medicanes appearing in September after the summer minimum. Large differences are found among models, supporting the use of multi-model ensembles. Interesting trade-offs are found for some models, as better values for intensity are associated to worse frequency values in one model, or relatively good values of frequency and intensity are obtained at the expense of a damped air-sea interaction in a model with spectral nudging. High resolution has a strong and positive impact on the frequency of simulated medicanes, while the effect on its intensity is less clear. Air-sea coupling reduces the medicane frequency, as could be expected due to a negative intensity feedback that is known for tropical cyclones. A preliminary analysis indicates that this feedback could depend on the oceanic mixed layer depth, increasing the interest of applying ocean-atmosphere coupled RCMs
Does Addiction Run in Families?
... runs in some families. Addiction runs in ours." Matt's family has a history of addiction. He realizes ... may be more likely to become addicted. Read Matt's story About the National Institute on Drug Abuse ( ...
Henning, P. Troy
2014-01-01
Context: Pelvic stress fractures, osteitis pubis, and snapping hip syndrome account for a portion of the overuse injuries that can occur in the running athlete. Evidence Acquisition: PubMed searches were performed for each entity using the following keywords: snapping hip syndrome, coxa sultans, pelvic stress fracture, and osteitis pubis from 2008 to 2013. Topic reviews, case reports, case series, and randomized trials were included for review. Study Design: Clinical review. Level of Evidence: Level 4. Results: Collectively, 188 articles were identified. Of these, 58 were included in this review. Conclusion: Based on the available evidence, the majority of these overuse injuries can be managed non-operatively. Primary treatment should include removal from offending activity, normalizing regional muscle strength/length imbalances and nutritional deficiencies, and mitigating training errors through proper education of the athlete and training staff. Strength of Recommendation Taxonomy: C PMID:24587861
A new approach to analytic, non-perturbative and gauge-invariant QCD
NASA Astrophysics Data System (ADS)
Fried, H. M.; Grandou, T.; Sheu, Y.-M.
2012-11-01
Following a previous calculation of quark scattering in eikonal approximation, this paper presents a new, analytic and rigorous approach to the calculation of QCD phenomena. In this formulation a basic distinction between the conventional "idealistic" description of QCD and a more "realistic" description is brought into focus by a non-perturbative, gauge-invariant evaluation of the Schwinger solution for the QCD generating functional in terms of the exact Fradkin representations of Green's functional G(x,y|A) and the vacuum functional L[A]. Because quarks exist asymptotically only in bound states, their transverse coordinates can never be measured with arbitrary precision; the non-perturbative neglect of this statement leads to obstructions that are easily corrected by invoking in the basic Lagrangian a probability amplitude which describes such transverse imprecision. The second result of this non-perturbative analysis is the appearance of a new and simplifying output called "Effective Locality", in which the interactions between quarks by the exchange of a "gluon bundle"-which "bundle" contains an infinite number of gluons, including cubic and quartic gluon interactions-display an exact locality property that reduces the several functional integrals of the formulation down to a set of ordinary integrals. It should be emphasized that "non-perturbative" here refers to the effective summation of all gluons between a pair of quark lines-which may be the same quark line, as in a self-energy graph-but does not (yet) include a summation over all closed-quark loops which are tied by gluon-bundle exchange to the rest of the "Bundle Diagram". As an example of the power of these methods we offer as a first analytic calculation the quark-antiquark binding potential of a pion, and the corresponding three-quark binding potential of a nucleon, obtained in a simple way from relevant eikonal scattering approximations. A second calculation, analytic, non-perturbative and gauge
... Homework? Here's Help White House Lunch Recipes Why Does My Nose Run? KidsHealth > For Kids > Why Does My Nose Run? Print A A A Text ... smell, you must be upside down! But why does your nose run? Read on to find out ...
Strong Coupling Gauge Theories in LHC ERA
NASA Astrophysics Data System (ADS)
Fukaya, H.; Harada, M.; Tanabashi, M.; Yamawaki, K.
2011-01-01
AdS/QCD, light-front holography, and the nonperturbative running coupling / Stanley J. Brodsky, Guy de Teramond and Alexandre Deur -- New results on non-abelian vortices - Further insights into monopole, vortex and confinement / K. Konishi -- Study on exotic hadrons at B-factories / Toru Iijima -- Cold compressed baryonic matter with hidden local symmetry and holography / Mannque Rho -- Aspects of baryons in holographic QCD / T. Sakai -- Nuclear force from string theory / K. Hashimoto -- Integrating out holographic QCD back to hidden local symmetry / Masayasu Harada, Shinya Matsuzaki and Koichi Yamawaki -- Holographic heavy quarks and the giant Polyakov loop / Gianluca Grignani, Joanna Karczmarek and Gordon W. Semenoff -- Effect of vector-axial-vector mixing to dilepton spectrum in hot and/or dense matter / Masayasu Harada and Chihiro Sasaki -- Infrared behavior of ghost and gluon propagators compatible with color confinement in Yang-Mills theory with the Gribov horizon / Kei-Ichi Kondo -- Chiral symmetry breaking on the lattice / Hidenori Fukaya [for JLQCD and TWQCD collaborations] -- Gauge-Higgs unification: Stable Higgs bosons as cold dark matter / Yutaka Hosotani -- The limits of custodial symmetry / R. Sekhar Chivukula ... [et al.] -- Higgs searches at the tevatron / Kazuhiro Yamamoto [for the CDF and D[symbol] collaborations] -- The top triangle moose / R. S. Chivukula ... [et al.] -- Conformal phase transition in QCD like theories and beyond / V. A. Miransky -- Gauge-Higgs unification at LHC / Nobuhito Maru and Nobuchika Okada -- W[symbol]W[symbol] scattering in Higgsless models: Identifying better effective theories / Alexander S. Belyaev ... [et al.] -- Holographic estimate of Muon g - 2 / Deog Ki Hong -- Gauge-Higgs dark matter / T. Yamashita -- Topological and curvature effects in a multi-fermion interaction model / T. Inagaki and M. Hayashi -- A model of soft mass generation / J. Hosek -- TeV physics and conformality / Thomas Appelquist -- Conformal
Resurgent Transseries and the Holomorphic Anomaly: Nonperturbative Closed Strings in Local
NASA Astrophysics Data System (ADS)
Couso-Santamaría, Ricardo; Edelstein, José D.; Schiappa, Ricardo; Vonk, Marcel
2015-08-01
The holomorphic anomaly equations describe B-model closed topological strings in Calabi-Yau geometries. Having been used to construct perturbative expansions, it was recently shown that they can also be extended past perturbation theory by making use of resurgent transseries. These yield formal nonperturbative solutions, showing integrability of the holomorphic anomaly equations at the nonperturbative level. This paper takes such constructions one step further by working out in great detail the specific example of topological strings in the mirror of the local toric Calabi-Yau background, and by addressing the associated (resurgent) large-order analysis of both perturbative and multi-instanton sectors. In particular, analyzing the asymptotic growth of the perturbative free energies, one finds contributions from three different instanton actions related by symmetry, alongside another action related to the Kähler parameter. Resurgent transseries methods then compute, from the extended holomorphic anomaly equations, higher instanton sectors and it is shown that these precisely control the asymptotic behavior of the perturbative free energies, as dictated by resurgence. The asymptotic large-order growth of the one-instanton sector unveils the presence of resonance, i.e., each instanton action is necessarily joined by its symmetric contribution. The structure of different resurgence relations is extensively checked at the numerical level, both in the holomorphic limit and in the general nonholomorphic case, always showing excellent agreement with transseries data computed out of the nonperturbative holomorphic anomaly equations. The resurgence relations further imply that the string free energy displays an intricate multi-branched Borel structure, and that resonance must be properly taken into account in order to describe the full transseries solution.
NASA Astrophysics Data System (ADS)
Dirnaichner, Alois; Grifoni, Milena; Prüfling, Andreas; Steininger, Daniel; Hüttel, Andreas K.; Strunk, Christoph
2015-05-01
We present measurements of tunneling magnetoresistance (TMR) in single-wall carbon nanotubes attached to ferromagnetic contacts in the Coulomb blockade regime. Strong variations of the TMR with gate voltage over a range of four conductance resonances, including a peculiar double-dip signature, are observed. The data are compared to calculations in the "dressed second order" (DSO) framework. In this nonperturbative theory, conductance peak positions and linewidths are affected by charge fluctuations incorporating the properties of the carbon nanotube quantum dot and the ferromagnetic leads. The theory is able to qualitatively reproduce the experimental data.
Nonperturbative renormalization of quark bilinear operators and B{sub K} using domain wall fermions
Aoki, Y.; Dawson, C.; Boyle, P. A.; Tweedie, R. J.; Christ, N. H.; Li, S.; Mawhinney, R. D.; Donnellan, M. A.; Juettner, A.; Sachrajda, C. T.; Izubuchi, T.; Noaki, J.; Soni, A.; Yamaguchi, A.
2008-09-01
We present a calculation of the renormalization coefficients of the quark bilinear operators and the K-K mixing parameter B{sub K}. The coefficients relating the bare lattice operators to those in the RI/MOM scheme are computed nonperturbatively and then matched perturbatively to the MS scheme. The coefficients are calculated on the RBC/UKQCD 2+1 flavor dynamical lattice configurations. Specifically we use a 16{sup 3}x32 lattice volume, the Iwasaki gauge action at {beta}=2.13 and domain wall fermions with L{sub s}=16.
Finite temperature QCD with two flavors of nonperturbatively improved Wilson fermions
Bornyakov, V.G.; Chernodub, M.N.; Ichie, H.; Mori, Y.; Nakamura, Y.; Suzuki, T.; Koma, Y.; Polikarpov, M.I.; Uvarov, P.V.; Veselov, A.I.; Schierholz, G.; Slavnov, A. A.; Stueben, H.
2005-06-01
We study QCD with two flavors of nonperturbatively improved Wilson fermions at finite temperature on the 16{sup 3}8 lattice. We determine the transition temperature at lattice spacing as small as a{approx}0.12 fm, and study string breaking below the finite temperature transition. We find that the static potential can be fitted by a two-state ansatz, including a string state and a two-meson state. We investigate the role of Abelian monopoles at finite temperature.
A new, analytic, non-perturbative, gauge-invariant formulation of realistic QCD
Fried, H. M.; Grandou, T.; Gabellini, Y.; Sheu, Y.-M.
2012-09-26
This Formulation [1], [2], [3] is New, in the sense that it is less than 3 years old. But it could have been done decades ago, since the input information existed, but was overlooked. It is Analytic in the sense that physically-reasonable approximations can be estimated with paper and pencil; and exact amplitudes can be calculated as Meijer G-functions of various orders. It is Non-Perturbative in the sense that sums over all possible gluon exchanges between any pair of quarks and/or antiquarks, including cubic and quartic gluon interactions, are exactly performed. These multiple gluon exchanges combine into 'Gluon Bundles' (GBs), as sums over Feynman graphs with finite numbers of exchanged gluons are replaced by {sup B}undle Graphs{sup .} In effect, gluons disappear from the formalism, and GBs remain as the effective carrier of all interactions between quark lines. A simple re-arrangement of the Schwinger/Symanzik functional solution for the Generating Functional of QCD - a rearrangement possible in QCD but not in QED - produces a formal statement of Gauge-Invariance, even though the formulation contains gauge-dependent gluon propagators. After the non-perturbative sums produce GBs, one sees explicit cancelation of all gauge-dependent gluon propagators; gauge-invariance is achieved as gauge-independence. A new insight into Realistic QCD appears in the non-perturbative domain, because quarks do not have individual asymptotic states; they are always asymptotically bound, and their transverse coordinates cannot, in principle, be measured exactly. 'Transverse Imprecision' is introduced into the basic Lagrangian, and quark-binding potentials for the construction of mesons and nucleons can then be defined and evaluated. And the greatest surprise of all: A new, non-perturbative property appears, called Effective Locality, with the result that all functional integrals reduce to (a few) sets of ordinary integrals, easy to estimate approximately, or calculate on a desk
Challenges in the extraction of TMDs from SIDIS data: perturbative vs non-perturbative aspects
Boglione, Mariaelena; Gonzalez Hernandez, Jose O.; Melis, Stefano; Prokudin, Alexey
2015-09-01
We present our recent results on the study of the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, q_{T}. Using the Collins-Soper-Sterman (CSS) formalism, we study the matching between the region where fixed-order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be applied in the SIDIS kinematical configurations we examine. We comment on the impact that the nonperturbative component has even at relatively high energies.
Running with the radius in RS1
NASA Astrophysics Data System (ADS)
Lewandowski, Adam; May, Michael J.; Sundrum, Raman
2003-01-01
We derive a renormalization group formalism for the Randall-Sundrum scenario, where the renormalization scale is set by a floating compactification radius. While inspired by the AdS-CFT conjecture, our results are derived concretely within higher-dimensional effective field theory. Matching theories with different radii leads to running hidden brane couplings. The hidden brane Lagrangian consists of four-dimensional local operators constructed from the induced value of the bulk fields on the brane. We find hidden Lagrangians which are nontrivial fixed points of the RG flow. Calculations in RS1 can be greatly simplified by “running down” the effective theory to a small radius. We demonstrate these simplifications by studying the Goldberger-Wise stabilization mechanism. In this paper, we focus on the classical and tree-level quantum field theory of bulk scalar fields, which demonstrates the essential features of the RG in the simplest context.
Biodiversity conservation in running waters
Allan, J.D. ); Flecker, A.S. )
1993-01-01
In the concerns about biodiversity conservation, fresh waters have received less attention than tropical forests and oceans. However, running waters harbor a diverse panoply of species, habitats, and ecosystems, including some of the most threatened and many having great value to human society. An overview of the biological diversity of running waters and the state of imperilment is presented. Six major factors that threaten destruction of running water species and ecosystems are discussed: habitat loss and degradation; species invasions; overharvesting; secondary extinctions; chemical and organic pollution; global climate change. General measures for recovery and restoration of running waters conclude the article.
A Running Start: Resource Guide for Youth Running Programs
ERIC Educational Resources Information Center
Jenny, Seth; Becker, Andrew; Armstrong, Tess
2016-01-01
The lack of physical activity is an epidemic problem among American youth today. In order to combat this, many schools are incorporating youth running programs as a part of their comprehensive school physical activity programs. These youth running programs are being implemented before or after school, at school during recess at the elementary…
APEX: A Prime EXperiment at Jefferson Lab - Test Run Results and Full Run Plans; Update
Beacham, James
2015-06-01
APEX is an experiment at Thomas Jefferson National Accelerator Facility (JLab) in Virginia, USA, that searches for a new gauge boson (A') with sub-GeV mass and coupling to ordinary matter of g' ~ (10^{-6} - 10⁻²)e. Electrons impinge upon a fixed target of high-Z material. An A' is produced via a process analogous to photon bremsstrahlung, decaying to an e⁺+e⁻ pair. A test run was held in July of 2010, covering m_{A'} = 175 to 250 MeV and couplings g'/e > 10⁻³. A full run is approved and will cover m_{A'} ~ 65 to 525 MeV and g'/e > 2.3 x 10⁻⁴, and is expected to occur sometime in 2016 or 2017.
APEX: A Prime EXperiment at Jefferson Lab. Test Run Results and Full Run Plans; Update
NASA Astrophysics Data System (ADS)
Beacham, James
2015-06-01
APEX is an experiment at Thomas Jefferson National Accelerator Facility (JLab) in Virginia, USA, that searches for a new gauge boson (A') with sub-GeV mass and coupling to ordinary matter of g' ˜ (10-6 - 10-2)e. Electrons impinge upon a fixed target of high-Z material. An A' is produced via a process analogous to photon bremsstrahlung, decaying to an e+e- pair. A test run was held in July of 2010, covering mA' = 175 to 250 MeV and couplings g'/e > 10-3. A full run is approved and will cover mA' ˜ 65 to 525 MeV and g'/e > 2.3 × 10-4, and is expected to occur sometime in 2016 or 2017.
Role of the nonperturbative input in QCD resummed Drell-Yan Q{sub T} distributions
Qiu, Jianwei; Zhang, Xiaofei
2001-06-01
We analyze the role of the nonperturbative input in the Collins-Soper-Sterman (CSS) b-space QCD resummation formalism for Drell-Yan transverse momentum (Q{sub T}) distributions, and investigate the predictive power of the CSS formalism. We find that the predictive power of the CSS formalism has a strong dependence on the collision energy S in addition to its well-known Q{sup 2} dependence, and the S dependence improves the predictive power at collider energies. We show that a reliable extrapolation from perturbatively resummed b-space distributions to the nonperturbative large b region is necessary to ensure the correct Q{sub T} distributions. By adding power corrections to the renormalization group equations in the CSS formalism, we derive a new extrapolation formalism. We demonstrate that at collider energies the CSS resummation formalism plus our extrapolation has an excellent predictive power for W and Z production at all transverse momenta Q{sub T}{<=}Q. We also show that the b-space resummed Q{sub T} distributions provide a good description of Drell-Yan data at fixed target energies.
ERIC Educational Resources Information Center
Schilling, Mark F.
1990-01-01
Developed are simple recursion formulas for generating the exact distribution of the longest run of heads, both for a fair coin and for a biased coin. Discusses the applications of runs-related phenomena such as molecular biology, Markov chains, geometric variables, and random variables. (YP)
Coordinating the 2009 RHIC Run
Brookhaven Lab - Mei Bai
2010-01-08
Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect
Stiffness adaptations in shod running.
Divert, Carolyn; Baur, Heiner; Mornieux, Guillaume; Mayer, Frank; Belli, Alain
2005-11-01
When mechanical parameters of running are measured, runners have to be accustomed to testing conditions. Nevertheless, habituated runners could still show slight evolutions of their patterns at the beginning of each new running bout. This study investigated runners' stiffness adjustments during shoe and barefoot running and stiffness evolutions of shoes. Twenty-two runners performed two 4-minute bouts at 3.61 m.s-1 shod and barefoot after a 4-min warm-up period. Vertical and leg stiffness decreased during the shoe condition but remained stable in the barefoot condition, p < 0.001. Moreover, an impactor test showed that shoe stiffness increased significantly during the first 4 minutes, p < 0.001. Beyond the 4th minute, shoe properties remained stable. Even if runners were accustomed to the testing condition, as running pattern remained stable during barefoot running, they adjusted their leg and vertical stiffness during shoe running. Moreover, as measurements were taken after a 4-min warm-up period, it could be assumed that shoe properties were stable. Then the stiffness adjustment observed during shoe running might be due to further habituations of the runners to the shod condition. To conclude, it makes sense to run at least 4 minutes before taking measurements in order to avoid runners' stiffness alteration due to shoe property modifications. However, runners could still adapt to the shoe. PMID:16498177
Coordinating the 2009 RHIC Run
Brookhaven Lab - Mei Bai
2009-04-13
Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect
Scale dependencies of proton spin constituents with a nonperturbative αs
NASA Astrophysics Data System (ADS)
Jia, Shaoyang; Huang, Feng
2012-11-01
By introducing the contribution from dynamically generated gluon mass, we present a brand new parametrized form of QCD beta function to get an inferred limited running behavior of QCD coupling constant αs. This parametrized form is regarded as an essential factor to determine the scale dependencies of the proton spin constituents at the very low scale. In order to compare with experimental results directly, we work within the gauge-invariant framework to decompose the proton spin. Utilizing the updated next-to-next-leading-order evolution equations for angular momentum observables within a modified minimal subtraction scheme, we indicate that gluon contribution to proton spin cannot be ignored. Specifically, by assuming asymptotic limits of the total quark/gluon angular momentum valid, respectively, the scale dependencies of quark angular momentum Jq and gluon angular momentum Jg down to Q2˜1GeV2 are presented, which are comparable with the preliminary analysis of deeply virtual Compton scattering experiments by HERMES and JLab. After solving scale dependencies of quark spin ΔΣq, orbital angular momenta of quarks Lq are given by subtraction, presenting a holistic picture of proton spin partition within up and down quarks at a low scale.
NASA Astrophysics Data System (ADS)
Matveev, V. I.; Makarov, D. N.
2011-09-01
A simple method including nonperturbative shell corrections has been developed for calculating energy losses on complex atoms. The energy losses of fast highly charged ions on neon, argon, krypton, and xenon atoms have been calculated and compared with experimental data. It has been shown that the inclusion of the non-perturbative shell corrections noticeably improves agreement with experimental data as compared to calculations by the Bethe-Bloch formula with the standard corrections. This undoubtedly helps to reduce the number of fitting parameters in various modifications of the Bethe-Bloch formula, which are usually determined semiempirically.
Yukawa couplings in string theory: the case for F-theory GUT's
NASA Astrophysics Data System (ADS)
Font, Anamaría
2015-11-01
We study the pattern of Yukawa couplings in local F-theory SU(5) GUT's. Couplings for the third family of quarks and leptons appear at the perturbative level, but to reproduce the observed couplings for the lighter families requires non-perturbative dynamics. We show that corrections due to instanton effects do lead to a Yukawa matrix with a hierarchical structure. Our results apply to both down-like and up- like 10 × 10 × 5 couplings. The models include magnetic fluxes needed for a chiral spectrum and for symmetry breaking down to the Standard Model. We compute the holomorphic couplings via residues and then obtain the physical couplings taking into account the normalization of wavefunction profiles. Combining non-perturbative corrections and magnetic fluxes allows to fit the measured masses and hierarchies of the third and second generations in the Standard Model.
Nonperturbative charming penguin contributions to isospin asymmetries in radiative B decays
Kim, Chul; Mehen, Thomas; Leibovich, Adam K.
2008-09-01
Recent experimental data on the radiative decays B{yields}V{gamma}, where V is a light vector meson, find small isospin violation in B{yields}K*{gamma} while isospin asymmetries in B{yields}{rho}{gamma} are of order 20%, with large uncertainties. Using soft-collinear effective theory, we calculate isospin asymmetries in these radiative B decays up to O(1/m{sub b}), also including O(v{alpha}{sub s}) contributions from nonperturbative charming penguins (NPCP). In the absence of NPCP contributions, the theoretical predictions for the asymmetries are a few percent or less. Including the NPCP can significantly increase the isospin asymmetries for both B{yields}V{gamma} modes. We also consider the effect of the NPCP on the branching ratio and CP asymmetries in B{sup {+-}}{yields}V{sup {+-}}{gamma}.
NASA Astrophysics Data System (ADS)
Canet, Léonie; Delamotte, Bertrand; Wschebor, Nicolás
2016-06-01
We investigate the regime of fully developed homogeneous and isotropic turbulence of the Navier-Stokes (NS) equation in the presence of a stochastic forcing, using the nonperturbative (functional) renormalization group (NPRG). Within a simple approximation based on symmetries, we obtain the fixed-point solution of the NPRG flow equations that corresponds to fully developed turbulence both in d =2 and 3 dimensions. Deviations to the dimensional scalings (Kolmogorov in d =3 or Kraichnan-Batchelor in d =2 ) are found for the two-point functions. To further analyze these deviations, we derive exact flow equations in the large wave-number limit, and show that the fixed point does not entail the usual scale invariance, thereby identifying the mechanism for the emergence of intermittency within the NPRG framework. The purpose of this work is to provide a detailed basis for NPRG studies of NS turbulence; the determination of the ensuing intermittency exponents is left for future work.
Nonperturbative construction of massive Yang-Mills fields without the Higgs field
NASA Astrophysics Data System (ADS)
Kondo, Kei-Ichi
2013-01-01
In order to understand the so-called decoupling solution for gluon and ghost propagators in QCD, we give a nonperturbative construction of a massive vector field describing a non-Abelian massive spin-one particle, which has the correct physical degrees of freedom and is invariant under a modified Becchi-Rouet-Stora-Tyutin transformation, in a massive Yang-Mills model without the Higgs field, i.e., the Curci-Ferrari model. The resulting non-Abelian massive vector boson field is written by using a nonlinear but local transformation from the original fields in the Curci-Ferrari model. As an application, we write down a local mass term for the Yang-Mills field and a dimension-two condensate, which are exactly invariant under the modified Becchi-Rouet-Stora-Tyutin transformation, Lorentz transformation, and color rotation.
Nonperturbative finite T broadening of the {rho} meson and dilepton emission in heavy-ion collisions
Ruppert, Joerg; Renk, Thorsten
2005-06-01
We study self-consistently the finite T broadening of the {rho} meson and its implications for dilepton emission in heavy-ion collisions. For this purpose finite width effects at finite temperature due to the {rho}-{pi} interaction are investigated in a self-consistent {phi}-functional approach. The temperature dependence of the {rho} meson and pion spectral functions and self-energies is discussed. The spectral functions show considerable broadening in comparison with a perturbative calculation on the one-loop level. Using these spectral functions, we make a comparison to dilepton emission data from the CERES NA49 Collaboration employing a parametrized fireball evolution model of collision. We demonstrate that these nonperturbative finite width effects are in-medium modifications relevant to the understanding of the enhancement of the low invariant mass spectrum of dileptons emitted in A-A collisions.
High-order optical processes in intense laser field: Towards nonperturbative nonlinear optics
NASA Astrophysics Data System (ADS)
Strelkov, V. V.
2016-05-01
We develop an approach describing nonlinear-optical processes in the strong-field domain characterized by the nonperturbative field-with-matter interaction. The polarization of an isolated atom in the external field calculated via the numerical solution of the time-dependent Schrödinger equation agrees with our analytical findings. For the practically important case of one strong laser field and several weaker fields, we derive and analytically solve propagation equations describing high-order (HO) wave mixing, HO parametric amplification, and HO stimulated scattering. These processes provide a way of efficient coherent xuv generation. Some properties of HO processes are new in nonlinear optics: essentially complex values of the coefficients in the propagation equations, the superexponential (hyperbolic) growing solutions, etc. Finally, we suggest conditions for the practical realization of these processes and discuss published numerical and experimental results where such processes could have been observed.
Non-perturbative and self-consistent models of neutron stars in R-squared gravity
Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Kokkotas, Kostas D.; Staykov, Kalin V. E-mail: daniela.doneva@uni-tuebingen.de E-mail: kalin.v.staikov@gmail.com
2014-06-01
In the present paper we investigate non-perturbatively and self-consistently the structure of neutron stars in R-squared gravity by simultaneously solving the interior and exterior problem. The mass-radius relations are obtained for several equations of state and for wide range of the R-squared gravity parameter a. Even though the deviation from general relativity for nonzero values of a can be large, they are still comparable with the variations due to different modern realistic equations of state. That is why the current observations of the neutron star masses and radii alone can not put constraints on the value of the parameter a. We also compare our results with those obtained within the perturbative method and we discuss the differences between them.
Gravity waves from the nonperturbative decay of condensates along supersymmetric flat directions.
Dufaux, Jean-François
2009-07-24
Nonperturbative effects may lead to an explosive decay of flat direction condensates in supersymmetric theories. We confirm the efficiency of this process with lattice simulations: After only one to five rotations of the condensates in their complex plane, most of their energy is converted into inhomogeneous fluctuations. This generates a gravitational wave background, which depends on the inflaton sector and falls in the hertz-kilohertz frequency range today. These gravity waves can be observable by upcoming experiments such as Advanced LIGO and depend crucially on (i) the initial vacuum expectation value of flat directions when they start to oscillate, (ii) their soft supersymmetry-breaking mass, and (iii) the reheat temperature of the Universe. This signal could open a new observational window on inflation and low-energy supersymmetry. PMID:19659339
Suppression of Tritium Retention in Remote Areas of ITER by Nonperturbative Reactive Gas Injection
Tabares, F. L.; Ferreira, J. A.; Ramos, A.; Rooij, G. van; Westerhout, J.; Al, R.; Rapp, J.; Drenik, A.; Mozetic, M.
2010-10-22
A technique based on reactive gas injection in the afterglow region of the divertor plasma is proposed for the suppression of tritium-carbon codeposits in remote areas of ITER when operated with carbon-based divertor targets. Experiments in a divertor simulator plasma device indicate that a 4 nm/min deposition can be suppressed by addition of 1 Pa{center_dot}m{sup 3} s{sup -1} ammonia flow at 10 cm from the plasma. These results bolster the concept of nonperturbative scavenger injection for tritium inventory control in carbon-based fusion plasma devices, thus paving the way for ITER operation in the active phase under a carbon-dominated, plasma facing component background.
Nonperturbative renormalization group study of the stochastic Navier-Stokes equation.
Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo
2012-07-01
We study the renormalization group flow of the average action of the stochastic Navier-Stokes equation with power-law forcing. Using Galilean invariance, we introduce a nonperturbative approximation adapted to the zero-frequency sector of the theory in the parametric range of the Hölder exponent 4-2ε of the forcing where real-space local interactions are relevant. In any spatial dimension d, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's -5/3 law is, thus, recovered for ε = 2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the -5/3 law emerges in the presence of a saturation in the ε dependence of the scaling dimension of the eddy diffusivity at ε = 3/2 when, according to perturbative renormalization, the velocity field becomes infrared relevant. PMID:23005533
Toward physical cosmology: focus on inhomogeneous geometry and its non-perturbative effects
NASA Astrophysics Data System (ADS)
Buchert, Thomas
2011-08-01
We outline the key steps toward the construction of a physical, fully relativistic cosmology. The influence of inhomogeneities on the effective evolution history of the Universe is encoded in backreaction terms and expressed through spatially averaged geometrical invariants. These are absent and potential candidates for the missing dark sources in the standard model. Since they can be interpreted as energies of an emerging scalar field (the morphon), we are in a position to propose a strategy of how phenomenological scalar field models for dark energy, dark matter and inflation, that are usually added as fundamental sources to a homogeneous-geometry (FLRW) cosmology, can be potentially traced back to the inhomogeneous geometrical properties of space and its embedding into spacetime. We lay down a line of arguments that is—thus far only qualitatively—conclusive, and we address open problems of quantitative nature, related to the interpretation of observations. We discuss within a covariant framework (i) the foliation problem and invariant definitions of backreaction effects; (ii) the background problem and the notion of an effective cosmology; (iii) generalizations of the cosmological principle and generalizations of the cosmological equations; (iv) dark energies as energies of an effective scalar field; (v) the global gravitational instability of the standard model and basins of attraction for effective states; (vi) multiscale cosmological models and volume acceleration; (vii) effective metrics and strategies for effective distance measurements on the light cone, including observational predictions; (viii) examples of non-perturbative models, including explicit backreaction models for the LTB solution, extrapolations of the relativistic Lagrangian perturbation theory and scalar metric inhomogeneities. The role of scalar metric perturbations is critically examined and embedded into the non-perturbative framework.
Watson, Matthew D; Peran, Ivan; Raleigh, Daniel P
2016-07-01
Coiled coils are abundant in nature, occurring in ∼3% of proteins across sequenced genomes, and are found in proteins ranging from transcription factors to structural proteins. The motif continues to be an important model system for understanding protein-protein interactions and is finding increased use in bioinspired materials and synthetic biology. Knowledge of the thermodynamics of self-assembly, particularly the dissociation constant KD, is essential for the application of designed coiled coils and for understanding the in vivo specificity of natural coiled coils. Standard methods for measuring KD typically rely on concentration dependent circular dichroism (CD). Fluorescence methods are an attractive alternative; however Trp is rarely found in an interior position of a coiled coil, and appending unnatural fluorophores can perturb the system. We demonstrate a simple, non-perturbing method to monitor coiled coil formation using p-cyanophenylalanine (FCN) and selenomethionine (MSe), the Se analogue of Met. FCN fluorescence can be selectively excited and is effectively quenched by electron transfer with MSe. Both FCN and MSe represent minimally perturbing substitutions in coiled coils. MSe quenching of FCN fluorescence is shown to offer a non-perturbing method for following coiled coil formation and for accurately determining dissociation constants. The method is validated using a designed heterodimeric coiled coil. The KD deduced by fluorescence monitored titration is in excellent agreement with the value deduced from concentration dependent CD measurements to within the uncertainty of the measurement. However, the fluorescence approach requires less protein, is less time-consuming, can be applied to lower concentrations and could be applied to high throughput screens. PMID:27258904
NASA Astrophysics Data System (ADS)
Anabitarte, M.; Bellini, M.; Aguilar, José Edgar Madriz
2010-01-01
We extend to 5D an approach of a 4D non-perturbative formalism to study scalar metric fluctuations of a 5D Riemann-flat de Sitter background metric. In contrast with the results obtained in 4D, the spectrum of cosmological scalar metric fluctuations during inflation can be scale invariant and the background inflaton field can take sub-Planckian values.
Running of the running and entropy perturbations during inflation
NASA Astrophysics Data System (ADS)
van de Bruck, Carsten; Longden, Chris
2016-07-01
In single field slow-roll inflation, one expects that the spectral index ns-1 is first order in slow-roll parameters. Similarly, its running αs=d ns/d log k and the running of the running βs=d αs/d log k are second and third order and therefore expected to be progressively smaller, and usually negative. Hence, such models of inflation are in considerable tension with a recent analysis hinting that βs may actually be positive, and larger than αs. Motivated by this, in this work we ask the question of what kinds of inflationary models may be useful in achieving such a hierarchy of runnings, particularly focusing on two-field models of inflation in which the late-time transfer of power from isocurvature to curvature modes allows for a much more diverse range of phenomenology. We calculate the runnings due to this effect and briefly apply our results to assess the feasibility of finding |βs|≳|αs| in some specific models.
Zhang, S. Y.
2014-09-15
Au beam at the RHIC ramp in run 2014 is reviewed together with the run 2011 and run 2012. Observed bunch length and longitudinal emittance are compared with the IBS simulations. The IBS growth rate of the longitudinal emittance in run 2014 is similar to run 2011, and both are larger than run 2012. This is explained by the large transverse emittance at high intensity observed in run 2012, but not in run 2014. The big improvement of the AGS ramping in run 2014 might be related to this change. The importance of the injector intensity improvement in run 2014 is emphasized, which gives rise to the initial luminosity improvement of 50% in run 2014, compared with the previous Au-Au run 2011. In addition, a modified IBS model, which is calibrated using the RHIC Au runs from 9.8 GeV/n to 100 GeV/n, is presented and used in the study.
How Fast Can a Human Run? - Bipedal vs. Quadrupedal Running.
Kinugasa, Ryuta; Usami, Yoshiyuki
2016-01-01
Usain Bolt holds the current world record in the 100-m run, with a running time of 9.58 s, and has been described as the best human sprinter in history. However, this raises questions concerning the maximum human running speed, such as "Can the world's fastest men become faster still?" The correct answer is likely "Yes." We plotted the historical world records for bipedal and quadrupedal 100-m sprint times according to competition year. These historical records were plotted using several curve-fitting procedures. We found that the projected speeds intersected in 2048, when for the first time, the winning quadrupedal 100-m sprint time could be lower, at 9.276 s, than the winning bipedal time of 9.383 s. Video analysis revealed that in quadrupedal running, humans employed a transverse gallop with a small angular excursion. These results suggest that in the future, the fastest human on the planet might be a quadrupedal runner at the 2048 Olympics. This may be achieved by shifting up to the rotary gallop and taking longer strides with wide sagittal trunk motion. PMID:27446911
Children's Fitness. Managing a Running Program.
ERIC Educational Resources Information Center
Hinkle, J. Scott; Tuckman, Bruce W.
1987-01-01
A running program to increase the cardiovascular fitness levels of fourth-, fifth-, and sixth-grade children is described. Discussed are the running environment, implementation of a running program, feedback, and reinforcement. (MT)
Teaching Bank Runs through Films
ERIC Educational Resources Information Center
Flynn, David T.
2009-01-01
The author advocates the use of films to supplement textbook treatments of bank runs and panics in money and banking or general banking classes. Modern students, particularly those in developed countries, tend to be unfamiliar with potential fragilities of financial systems such as a lack of deposit insurance or other safety net mechanisms. Films…
Running, or Stumbling Through, Simulations.
ERIC Educational Resources Information Center
Jones, Ken
1989-01-01
Discussion of the difference between an educational simulation and other interactive learning events highlights the effects terminology can have on both facilitators and participants. Five common mistakes made in running simulations are identified, and gaming terminology used in Britain and in the United States is discussed. (three references)…
Eikonal Scattering at Strong Coupling
NASA Astrophysics Data System (ADS)
Irizarry-Gelpi, Melvin Eloy
The scattering of subatomic particles is a source of important physical phenomena. Decades of work have yielded many techniques for the computation of scattering amplitudes. Most of these techniques involve perturbative quantum field theory and thus apply only at weak coupling. Complementary to scattering is the formation of bound states, which are intrinsically nonperturbative. Regge theory arose in the late 1950s as an attempt to describe, with a single framework, both scattering and the formation of bound states. In Regge theory one obtains an amplitude with bound state poles after analytic continuation of a nonperturbative scattering amplitude, corresponding to a sum of an infinite number of Feynman diagrams at large energy and fixed momentum transfer (but with crossed kinematics). Thus, in order to obtain bound states at fixed energy, one computes an amplitude at large momentum transfer. In this dissertation we calculate amplitudes with bound states in the regime of fixed energy and small momentum transfer. We formulate the elastic scattering problem in terms of many-body path integrals, familiar from quantum mechanics. Then we invoke the semiclassical JWKB approximation, where the path integral is dominated by classical paths. The dynamics in the semiclassical regime are strongly coupled, as found by Halpern and Siegel. When the momentum transfer is small, the classical paths are simple straight lines and the resulting semiclassical amplitudes display a spectrum of bound states that agrees with the spectrum found by solving wave equations with potentials. In this work we study the bound states of matter particles with various types of interactions, including electromagnetic and gravitational interactions. Our work has many analogies with the work started by Alday and Maldacena, who computed scattering amplitudes of gluons at strong coupling with semiclassical quantum mechanics of strings in anti de-Sitter spacetime. We hope that in the future we can apply our
Xiong, Hao; Si, Liu-Gang; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying
2014-10-15
We propose an interesting scheme for tunable high-order sideband comb generation by utilizing ultrastrong optomechanical interaction in a GaAs optomechanical disk resonator beyond the perturbative approximation. We analyze the nonlinear nature of the optomechanical interaction, and give a full description of the non-perturbative effects. It is shown, within the non-perturbative regime, that high-order sideband comb with large intensities can be realized and controlled in a GaAs optomechanical disk resonator with experimentally achievable system parameters, and the non-perturbative regime leads to rich and nontrivial behavior.
Running cosmological constant with observational tests
NASA Astrophysics Data System (ADS)
Geng, Chao-Qiang; Lee, Chung-Chi; Zhang, Kaituo
2016-09-01
We investigate the running cosmological constant model with dark energy linearly proportional to the Hubble parameter, Λ = σH +Λ0, in which the ΛCDM limit is recovered by taking σ = 0. We derive the linear perturbation equations of gravity under the Friedmann-Lemaïtre-Robertson-Walker cosmology, and show the power spectra of the CMB temperature and matter density distribution. By using the Markov chain Monte Carlo method, we fit the model to the current observational data and find that σH0 /Λ0 ≲ 2.63 ×10-2 and 6.74 ×10-2 for Λ (t) coupled to matter and radiation-matter, respectively, along with constraints on other cosmological parameters.
Lindesay, James V
2002-03-12
Starting from a unitary, Lorentz invariant two-particle scattering amplitude, we show how to use an identification and replacement process to construct a unique, unitary particle-antiparticle amplitude. This process differs from conventional on-shell Mandelstam s,t,u crossing in that the input and constructed amplitudes can be off-diagonal and off-energy shell. Further, amplitudes are constructed using the invariant parameters which are appropriate to use as driving terms in the multi-particle, multichannel nonperturbative, cluster decomposable, relativistic scattering equations of the Faddeev-type integral equations recently presented by Alfred, Kwizera, Lindesay and Noyes. It is therefore anticipated that when so employed, the resulting multi-channel solutions will also be unitary. The process preserves the usual particle-antiparticle symmetries. To illustrate this process, we construct a J=0 scattering length model chosen for simplicity. We also exhibit a class of physical models which contain a finite quantum mass parameter and are Lorentz invariant. These are constructed to reduce in the appropriate limits, and with the proper choice of value and sign of the interaction parameter, to the asymptotic solution of the nonrelativistic Coulomb problem, including the forward scattering singularity , the essential singularity in the phase, and the Bohr bound-state spectrum.
NASA Astrophysics Data System (ADS)
Aoki, Ken-Ichi; Kumamoto, Shin-Ichiro; Sato, Daisuke
2014-04-01
We analyze dynamical chiral symmetry breaking (Dχ SB) in the Nambu-Jona-Lasinio model by using the non-perturbative renormalization group equation. The equation takes the form of a two-dimensional partial differential equation for the multi-fermion effective interactions V(x,t) where x is the bar {ψ }ψ operator and t is the logarithm of the renormalization scale. The Dχ SB occurs due to the quantum corrections, which means it emerges at some finite tc while integrating the equation with respect to t. At t_c some singularities suddenly appear in V which is compulsory in the spontaneous symmetry breakdown. Therefore there is no solution of the equation beyond tc. We newly introduce the notion of a weak solution to get the global solution including the infrared limit t rArr ∞ and investigate its properties. The obtained weak solution is global and unique, and it perfectly describes the physically correct vacuum even in the case of the first order phase transition appearing in a finite-density medium. The key logic of deduction is that the weak solution we defined automatically convexifies the effective potential when treating the singularities.
A non-perturbative approach to freezing of superfuid 4He in density functional theory
NASA Astrophysics Data System (ADS)
Minoguchi, T.; Galli, De; Rossi, M.; Yoshimori, A.
2012-12-01
Freezing of various classical liquids is successfully described by density functional theory (DFT). On the other hand, so far no report has been published that DFT describes the freezing of superfuid 4He correctly. In fact, DFT gives too stable solid phase and the superfuid phase does not exist at finite positive pressures within a second order perturbation. In this paper we try a non-perturbative version of DFT, that is modified weighted density approximation (MWDA) to go beyond second order perturbation for the freezing of superfuid 4He. Via an exact zero temperature quantum Monte-Carlo (QMC) method we have computed the equation of state and the compressibility of superfuid 4He. By utilizing a recently introduced analytic continuation method (the GIFT method), we have obtained also density response functions at different densities from QMC imaginary time correlation functions. Contrary to second order perturbation, by employing these QMC data as DFT input we find a too stable superfuid phase, preventing freezing around the experimentally observed freezing pressure. We find the same pathological behavior by using another model energy functional of superfuid 4He (Orsay-Trento model). We conclude that the straightforward MWDA calculation gives such a poor result when liquid-gas transition is present.
A note on the nonperturbative nature of the Schwinger effect in the expanding de Sitter space
NASA Astrophysics Data System (ADS)
Nicolaevici, Nistor
2015-02-01
We reconsider a recent perturbative calculation [M. A. Băloi, Mod. Phys. Lett. A29, 1450138 (2014)] of particle production in the expanding de Sitter space in an external electromagnetic field and apply it to the case of a constant uniform electric field in two dimensions. We show that perturbative number of created particles significantly differs from the existing nonperturbative result based on the Bogoliubov transformation method. We also point out that for a physically meaningful perturbative amplitude one should restrict to external potentials Aμ which in conformal coordinates vanish at infinite times. Potentials which do not respect this condition lead to gauge-dependent amplitudes, which also show close similarities with amplitudes in flat space in the unphysical case when the external potential suddenly vanishes. These problems are intimately linked with the finite upper limit of the conformal time in the de Sitter space and most probably a similar restriction should be imposed in perturbative calculations in FRW spacetimes with the same property.
Nonperturbative THz nonlinearities for many-body quantum control in semiconductors
NASA Astrophysics Data System (ADS)
Lange, C.; Maag, T.; Bayer, A.; Hohenleutner, M.; Baierl, S.; Bougeard, D.; Mootz, M.; Koch, S. W.; Kira, M.; Huber, R.
2016-03-01
Quantum computing and ultrafast quantum electronics constitute pivotal technologies of the 21st century and revolutionize the way we process information. Successful implementations require controlling superpositions of states and coherence in matter, and exploit nonlinear effects for elementary logic operations. In the THz frequency range between optics and electronics, solid state systems offer a rich spectrum of collective excitations such as excitons, phonons, magnons, or Landau electrons. Here, single-cycle THz transients of 8.7 kV/cm amplitude centered at 1 THz strongly excite inter-Landau-level transitions of magnetically biased GaAs quantum wells, facilitating coherent Landau ladder climbing by more than six rungs, population inversion, and coherent polarization control. Strong, highly nonlinear pump-probe and four- and six-wave mixing signals, entirely unexpected for this paragon of the harmonic oscillator, are revealed through two-time THz spectroscopy. In this scenario of nonperturbative polarization dynamics, our microscopic theory shows how the protective limits of Kohn's theorem are ultimately surpassed by dynamically enhanced Coulomb interactions, opening the door to exploiting many-body dynamics for nonlinear quantum control.
Perturbative and non-perturbative aspects of moments of the thrust distribution in e+e-
NASA Astrophysics Data System (ADS)
Gardi, Einan
2000-04-01
Resummation and power-corrections play a crucial role in the phenomenology of event-shape variables like the thrust T. Previous investigations showed that the perturbative contribution to the average thrust is dominated by gluons of small invariant mass, of the order of 10% of Q, where Q is the center-of-mass energy. The effect of soft gluons is also important, leading to a non-perturbative 1/Q correction. These conclusions are based on renormalon analysis in the single dressed gluon (SDG) approximation. Here we analyze higher moments of the thrust distribution using a similar technique. We find that the characteristic gluon invariant mass contributing to langle(1-T)mrangle increases with m. Yet, for m = 2 this scale is quite low, around 27% of Q, and therefore renormalon resummation is still very important. On the other hand, the power-correction to langle(1-T)2rangle from a single soft gluon emission is found to be highly suppressed: it scales as 1/Q3. In practice, langle(1-T)2rangle and higher moments depend also on soft gluon emission from configurations of three hard partons, which may lead to αs(Q2)/Q power-corrections. This issue is yet to be investigated.
A simple non-perturbing cell migration assay insensitive to proliferation effects.
Glenn, Honor L; Messner, Jacob; Meldrum, Deirdre R
2016-01-01
Migration is a fundamental cellular behavior that plays an indispensable role in development and homeostasis, but can also contribute to pathology such as cancer metastasis. Due to its relevance to many aspects of human health, the ability to accurately measure cell migration is of broad interest, and numerous approaches have been developed. One of the most commonly employed approaches, because of its simplicity and throughput, is the exclusion zone assay in which cells are allowed to migrate into an initially cell-free region. A major drawback of this assay is that it relies on simply counting cells in the exclusion zone and therefore cannot distinguish the effects of proliferation from migration. We report here a simple modification to the exclusion zone migration assay that exclusively measures cell migration and is not affected by proliferation. This approach makes use of a lineage-tracing vital stain that is retained through cell generations and effectively reads out migration relative to the original, parental cell population. This modification is simple, robust, non-perturbing, and inexpensive. We validate the method in a panel of cell lines under conditions that inhibit or promote migration and demonstrate its use in normal and cancer cell lines as well as primary cells. PMID:27535324
A simple non-perturbing cell migration assay insensitive to proliferation effects
Glenn, Honor L.; Messner, Jacob; Meldrum, Deirdre R.
2016-01-01
Migration is a fundamental cellular behavior that plays an indispensable role in development and homeostasis, but can also contribute to pathology such as cancer metastasis. Due to its relevance to many aspects of human health, the ability to accurately measure cell migration is of broad interest, and numerous approaches have been developed. One of the most commonly employed approaches, because of its simplicity and throughput, is the exclusion zone assay in which cells are allowed to migrate into an initially cell-free region. A major drawback of this assay is that it relies on simply counting cells in the exclusion zone and therefore cannot distinguish the effects of proliferation from migration. We report here a simple modification to the exclusion zone migration assay that exclusively measures cell migration and is not affected by proliferation. This approach makes use of a lineage-tracing vital stain that is retained through cell generations and effectively reads out migration relative to the original, parental cell population. This modification is simple, robust, non-perturbing, and inexpensive. We validate the method in a panel of cell lines under conditions that inhibit or promote migration and demonstrate its use in normal and cancer cell lines as well as primary cells. PMID:27535324
Truthing the stretch: non-perturbative cosmological realizations with multiscale spherical collapse
NASA Astrophysics Data System (ADS)
Neyrinck, Mark C.
2016-01-01
Here we present a simple, parameter-free, non-perturbative algorithm that gives low-redshift cosmological particle realizations accurate to few-Megaparsec scales, called MUSCLE (MUltiscale Spherical-ColLapse Evolution). It has virtually the same cost as producing N-body-simulation initial conditions, since it works with the `stretch' parameter ψ, the Lagrangian divergence of the displacement field. It promises to be useful in quickly producing mock catalogues, and to simplify computationally intensive reconstructions of galaxy surveys. MUSCLE applies a spherical-collapse prescription on multiple Gaussian-smoothed scales. It achieves higher accuracy than perturbative schemes (Zel'dovich and second-order Lagrangian perturbation theory - 2LPT), and, by including the void-in-cloud process (voids in large-scale collapsing regions), solves problems with a single-scale spherical-collapse scheme. Slight further improvement is possible by mixing in the 2LPT estimate on large scales. Additionally, we show the behaviour of ψ for different morphologies (voids, walls, filaments, and haloes). A PYTHON code to produce these realizations is available at http://skysrv.pha.jhu.edu/˜neyrinck/muscle.html.
Non-perturbative tests of continuum HQET through small-volume two-flavour QCD
NASA Astrophysics Data System (ADS)
Fritzsch, Patrick; Garron, Nicolas; Heitger, Jochen
2016-01-01
We study the heavy quark mass dependence of selected observables constructed from heavy-light meson correlation functions in small-volume two-flavour lattice QCD after taking the continuum limit. The light quark mass is tuned to zero, whereas the range of available heavy quark masses m h covers a region extending from around the charm to beyond the bottom quark mass scale. This allows entering the asymptotic mass-scaling regime as 1/ m h → 0 and performing well-controlled extrapolations to the infinite-mass limit. Our results are then compared to predictions obtained in the static limit of continuum Heavy Quark Effective Theory (HQET), in order to verify non-perturbatively that HQET is an effective theory of QCD. While in general we observe a nice agreement at the per cent level, we find it to be less convincing for the small-volume pseudoscalar decay constant when perturbative matching is involved. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Constantinou, M.; Horsley, R.; Panagopoulos, H.; Perlt, H.; Rakow, P. E. L.; Schierholz, G.; Schiller, A.; Zanotti, J. M.
2015-01-01
The renormalization factors of local quark-bilinear operators are computed nonperturbatively for Nf=3 flavors of stout link nonperturbative clover (SLiNC) fermions, with emphasis on the various procedures for the chiral and continuum extrapolations. The simulations are performed at a lattice spacing a =0.074 fm , and for five values of the pion mass in the range of 290-465 MeV, allowing a safe and stable chiral extrapolation. Emphasis is given in the subtraction of the well-known pion pole which affects the renormalization factor of the pseudoscalar current. We also compute the inverse propagator and the Green's functions of the local bilinears to one loop in perturbation theory. We investigate lattice artifacts by computing them perturbatively to second order as well as to all orders in the lattice spacing. The renormalization conditions are defined in the RI'-MOM scheme, for both the perturbative and nonperturbative results. The renormalization factors, obtained at different values of the renormalization scale, are translated to the MS ¯ scheme and are evolved perturbatively to 2 GeV. Any residual dependence on the initial renormalization scale is eliminated by an extrapolation to the continuum limit. We also study the various sources of systematic errors. Particular care is taken in correcting the nonperturbative estimates by subtracting lattice artifacts computed to one-loop perturbation theory using the same action. We test two different methods, by subtracting either the O (g2a2) contributions, or the complete (all orders in a ) one-loop lattice artifacts.
Renormalization group improved Higgs inflation with a running kinetic term
NASA Astrophysics Data System (ADS)
Takahashi, Fuminobu; Takahashi, Ryo
2016-09-01
We study a Higgs inflation model with a running kinetic term, taking account of the renormalization group evolution of relevant coupling constants. Specifically we study two types of the running kinetic Higgs inflation, where the inflaton potential is given by the quadratic or linear term potential in a frame where the Higgs field is canonically normalized. We solve the renormalization group equations at two-loop level and calculate the scalar spectral index and the tensor-to-scalar ratio. We find that, even if the renormalization group effects are included, the quadratic inflation is ruled out by the CMB observations, while the linear one is still allowed.
Mehdizadeh, Sina; Arshi, Ahmed Reza; Davids, Keith
2015-07-01
The aims of this study were to compare coordination and coordination variability in backward and forward running and to investigate the effects of speed on coordination variability in both backward and forward running. Fifteen healthy male participants took part in this study to run forwards and backwards on a treadmill at 80%, 100% and 120% of their preferred running speeds. The coordinate data of passive reflective markers attached to body segments were recorded using motion capture systems. Coordination of shank-foot and thigh-shank couplings in sagittal plane was quantified using the continuous relative phase method. Coordination variability was calculated as the standard deviation of a coordination pattern over 50 strides. Cross-correlation coefficients and associated phase shifts were determined to quantify similarity in coordination patterns between forward and backward running. Our results demonstrated that the coordination pattern in a gait cycle of backward running was in reverse to that of forward running at all speeds implying that the same neural circuitry is responsible for regulating both forward and backward running gaits. In addition, results demonstrated that there was an average of approximately 11% phase shift between the coordination patterns of backward and forward running which indicates that a single underlying mechanism might be responsible for generating motor patterns in both forward and backward running. Finally, backward running had significantly higher magnitude of coordination variability compared to forward running, signifying that more degrees of freedom were involved in backward running. Speed however, did not affect coordination variability in either task. PMID:26021460
Strategies to improve running economy.
Barnes, Kyle R; Kilding, Andrew E
2015-01-01
Running economy (RE) represents a complex interplay of physiological and biomechanical factors that is typically defined as the energy demand for a given velocity of submaximal running and expressed as the submaximal oxygen uptake (VO2) at a given running velocity. This review considered a wide range of acute and chronic interventions that have been investigated with respect to improving economy by augmenting one or more components of the metabolic, cardiorespiratory, biomechanical or neuromuscular systems. Improvements in RE have traditionally been achieved through endurance training. Endurance training in runners leads to a wide range of physiological responses, and it is very likely that these characteristics of running training will influence RE. Training history and training volume have been suggested to be important factors in improving RE, while uphill and level-ground high-intensity interval training represent frequently prescribed forms of training that may elicit further enhancements in economy. More recently, research has demonstrated short-term resistance and plyometric training has resulted in enhanced RE. This improvement in RE has been hypothesized to be a result of enhanced neuromuscular characteristics. Altitude acclimatization results in both central and peripheral adaptations that improve oxygen delivery and utilization, mechanisms that potentially could improve RE. Other strategies, such as stretching should not be discounted as a training modality in order to prevent injuries; however, it appears that there is an optimal degree of flexibility and stiffness required to maximize RE. Several nutritional interventions have also received attention for their effects on reducing oxygen demand during exercise, most notably dietary nitrates and caffeine. It is clear that a range of training and passive interventions may improve RE, and researchers should concentrate their investigative efforts on more fully understanding the types and mechanisms that
Non-perturbative QCD effects in q T spectra of Drell-Yan and Z-boson production
NASA Astrophysics Data System (ADS)
D'Alesio, Umberto; Echevarria, Miguel G.; Melis, Stefano; Scimemi, Ignazio
2014-11-01
The factorization theorems for transverse momentum distributions of dilepton/boson production, recently formulated by Collins and Echevarria-Idilbi-Scimemi in terms of well-defined transverse momentum dependent distributions (TMDs), allows for a systematic and quantitative analysis of non-perturbative QCD effects of the cross sections involving these quantities. In this paper we perform a global fit using all current available data for Drell-Yan and Z-boson production at hadron colliders within this framework. The perturbative calculable pieces of our estimates are included using a complete resummation at next-to-next-to-leading-logarithmic accuracy. Performing the matching of transverse momentum distributions onto the standard collinear parton distribution functions and recalling that the corresponding matching coefficient can be partially exponentiated, we find that this exponentiated part is spin-independent and resummable. We argue that the inclusion of higher order perturbative pieces is necessary when data from lower energy scales are analyzed. We consider non-perturbative corrections both to the intrinsic nucleon structure and to the evolution kernel and find that the non-perturbative part of the TMDs could be parametrized in terms of a minimal set of parameters (namely 2-3). When all corrections are included the global fit so performed gives a χ 2 /d .o .f . ≲ 1 and a very precise prediction for vector boson production at the Large Hadron Collider (LHC).
Southern Company Services, Inc.
2003-08-01
This report discusses test campaign TC06 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC06. Test run TC06 was started on July 4, 2001, and completed on September 24, 2001, with an interruption in service between July 25, 2001, and August 19, 2001, due to a filter element failure in the PCD caused by abnormal operating conditions while tuning the main air compressor. The reactor temperature was varied between 1,725 and 1,825 F at pressures from 190 to 230 psig. In TC06, 1,214 hours of solid circulation and 1,025 hours of coal feed were attained with 797 hours of coal feed after the filter element failure. Both reactor and PCD operations were stable during the test run with a stable baseline pressure drop. Due to its length and stability, the TC06 test run provided valuable data necessary to analyze long-term reactor operations and to identify necessary modifications to improve equipment and process performance as well as progressing the goal of many thousands of hours of filter element exposure.
NASA Astrophysics Data System (ADS)
McNab, A.; Stagni, F.; Ubeda Garcia, M.
2014-06-01
We present a model for the operation of computing nodes at a site using Virtual Machines (VMs), in which VMs are created and contextualized for experiments by the site itself. For the experiment, these VMs appear to be produced spontaneously "in the vacuum" rather having to ask the site to create each one. This model takes advantage of the existing pilot job frameworks adopted by many experiments. In the Vacuum model, the contextualization process starts a job agent within the VM and real jobs are fetched from the central task queue as normal. An implementation of the Vacuum scheme, Vac, is presented in which a VM factory runs on each physical worker node to create and contextualize its set of VMs. With this system, each node's VM factory can decide which experiments' VMs to run, based on site-wide target shares and on a peer-to-peer protocol in which the site's VM factories query each other to discover which VM types they are running. A property of this system is that there is no gate keeper service, head node, or batch system accepting and then directing jobs to particular worker nodes, avoiding several central points of failure. Finally, we describe tests of the Vac system using jobs from the central LHCb task queue, using the same contextualization procedure for VMs developed by LHCb for Clouds.
Commitment and Dependence Upon Regular Running.
ERIC Educational Resources Information Center
Sachs, Michael L.; Pargman, David
The linear relationship between intellectual commitment to running and psychobiological dependence upon running is examined. A sample of 540 regular runners (running frequency greater than three days per week for the past year for the majority) was surveyed with a questionnaire. Measures of commitment and dependence on running, as well as…
Preventing Running Injuries through Barefoot Activity
ERIC Educational Resources Information Center
Hart, Priscilla M.; Smith, Darla R.
2008-01-01
Running has become a very popular lifetime physical activity even though there are numerous reports of running injuries. Although common theories have pointed to impact forces and overpronation as the main contributors to chronic running injuries, the increased use of cushioning and orthotics has done little to decrease running injuries. A new…
ERIC Educational Resources Information Center
McCutcheon, Lynn
Running is a popular form of exercise which people do for different reasons. Competitive runners (N=99) and noncompetitive runners (N=28) responded to a survey of 10 reasons for running by choosing their most important reasons for running. Subjects also indicated their age, sex, how long they had been running, their average weekly mileage, how…
Physiologic Responses to Treadmill and Water Running.
ERIC Educational Resources Information Center
Bishop, Phillip A.; And Others
1989-01-01
Presents results of a study of the physiological responses of uninjured runners to running on a treadmill and in water. Water running may lessen an injured athlete's rate of deconditioning, but indications are that the metabolic cost of water running is not significantly greater than that of treadmill running. (SM)
Dirichlet branes and nonperturbative aspects of supersymmetric string and gauge theories
Yin, Zheng
1999-05-01
In chapter 1 the author reviews some elements of string theory relevant to the rest of this report. He touches on both the classical, i.e. perturbative, string physics before D-branes rise to prominence, and some of the progresses they brought forth. In chapter 2 he proceeds to give an exact algebraic formulation of D-branes in curved spaces. This allows one to classify them in backgrounds of interest and study their geometric properties. He applies this formalism to string theory on Calabi-Yau and other supersymmetry preserving manifolds. Then he studies the behavior of the D-branes under mirror symmetry in chapter 3. Mirror symmetry is known to be a symmetry of string theory perturbatively. He finds evidence for its nonperturbative validity when D-branes are also considered and compute some dynamical consequences. In chapter 4 he turns to examine the consistency of curved and/or intersecting D-brane configurations. They have been used recently to extract information about the field theories that arise in certain limits. It turns out that there are potential quantum mechanical inconsistencies associated with them. What saves the day are certain subtle topological properties of D-branes. This resolution has implications for the conserved charges carried by the D-branes, which he computes for the cases studied in chapter 2. In chapter 5 he uses intersecting brane configurations to study three dimensional supersymmetric gauge theories. There is also a mirror symmetry there that, among other things, exchanges classical and quantum mechanical quantities of a (mirror) pair of theories. It has an elegant realization in term of a symmetry of string theory involving D-branes. The author employs it to study a wide class of 3d models. He also predicts new mirror pairs and unconventional 3d field theories without Lagrangian descriptions.
Transition Form Factors: A Unique Opportunity to Connect Non-Perturbative Strong Interactions to QCD
Gothe, Ralf W.
2014-01-01
Meson-photoproduction measurements and their reaction-amplitude analyses can establish more sensitively, and in some cases in an almost model-independent way, nucleon excitations and non-resonant reaction amplitudes. However, to investigate the strong interaction from explored — where meson-cloud degrees of freedom contribute substantially to the baryon structure — to still unexplored distance scales — where quark degrees of freedom dominate and the transition from dressed to current quarks occurs — we depend on experiments that allow us to measure observables that are probing this evolving non-perturbative QCD regime over its full range. Elastic and transition form factors are uniquely suited to trace this evolution by measuring elastic electron scattering and exclusive single-meson and double-pion electroproduction cross sections off the nucleon. These exclusive measurements will be extended to higher momentum transfers with the energy-upgraded CEBAF beam at JLab to study the quark degrees of freedom, where their strong interaction is responsible for the ground and excited nucleon state formations. After establishing unprecedented high-precision data, the imminent next challenge is a high-quality analysis to extract these relevant electrocoupling parameters for various resonances that then can be compared to state-of-the-art models and QCD-based calculations. Recent results will demonstrate the status of the analysis and of their theoretical descriptions, and an experimental and theoretical outlook will highlight what shall and may be achieved in the new era of the 12-GeV upgraded transition form factor program.
Smith, Roger J.
2008-10-15
A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B{sub pol} diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T{sub e}, n{sub e}, and B{sub ||} along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n{sub e}B{sub ||} product and higher n{sub e} and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.
Nonperturbative analysis of the two-level atom: Applications to multiphoton excitation
Duvall, R.E.; Valeo, E.J.; Oberman, C.R.
1987-08-01
Selective excitation in an atomic system subjected to a slowly varying external electromagnetic field is studied using a two-level model. Time evolution of the system is found using an approach which is nonperturbative in the field strength. There is no constraint to small values of the applied field, that is, the field (in appropriate energy units) need not be small compared to the difference in energies of the two levels. Rather, we prey upon the fact that the situation of interest to us is where the frequency of the exciting field is small compared to the frequency associated with the level difference. Transition probabilities and resonance conditions are found which circumscribe both the large and small field limits. In the weak field limit the previous results of high-order perturbation theory are readily recovered. For a monochromatic field the characteristic features of resonance excitation at high harmonic number of the applied field are (a) extremely narrow resonance widths and (b) shifts in resonance positions which are strong functions of field intensity. Because of this sensitivity, we are able to demonstrate that when slow temporal evolution of the field amplitude is taken into account (e.g., due to finite pulse duration) the appropriate mean excitation rate is that due to the uncorrelated contribution of many resonances. The results of this analysis are used to estimate excitation rates in a specific atomic system, Cd/sup 12 +/, which are then compared to multiphoton ionization rates. Our calculations suggest that the ionization rate exceeds the excitation rate by several orders of magnitude. 15 refs., 3 figs.
Smith, Roger J
2008-10-01
A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means. PMID:19044521
40 CFR 258.26 - Run-on/run-off control systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Run-on/run-off control systems. 258.26... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.26 Run-on/run-off control systems. (a) Owners or operators of all MSWLF units must design, construct, and maintain: (1) A run-on control...
40 CFR 258.26 - Run-on/run-off control systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Run-on/run-off control systems. 258.26... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.26 Run-on/run-off control systems. (a) Owners or operators of all MSWLF units must design, construct, and maintain: (1) A run-on control...
40 CFR 258.26 - Run-on/run-off control systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Run-on/run-off control systems. 258.26... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.26 Run-on/run-off control systems. (a) Owners or operators of all MSWLF units must design, construct, and maintain: (1) A run-on control...
40 CFR 258.26 - Run-on/run-off control systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Run-on/run-off control systems. 258.26... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.26 Run-on/run-off control systems. (a) Owners or operators of all MSWLF units must design, construct, and maintain: (1) A run-on control...
40 CFR 258.26 - Run-on/run-off control systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Run-on/run-off control systems. 258.26... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.26 Run-on/run-off control systems. (a) Owners or operators of all MSWLF units must design, construct, and maintain: (1) A run-on control...
ERIC Educational Resources Information Center
Williams, Robert H.
1972-01-01
Natural gas is viewed as an attractive fuel - low polluting, with low production and transportation costs. However, high demand, coupled with a decreased discovery rate for new gas reserves, is leading to a natural gas shortage. Other resources must be substituted with synthetic gas from coal and methane from organic wastes emerging as potential…
Risk Sensitive Control of Diffusions with Small Running Cost
Biswas, Anup
2011-08-15
Infinite horizon risk-sensitive control of diffusions is analyzed under a stability condition coupled with a bound on the running cost. It is shown that the corresponding Hamilton-Jacobi-Bellman equation has a solution (w( Dot-Operator ),{lambda}{sup Asterisk-Operator }) where the scalar {lambda}{sup Asterisk-Operator} is in fact the optimal cost. This also leads to an existence result for optimal controls.
New perspective on matter coupling in 2D quantum gravity
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Loll, R.
1999-11-01
We provide compelling evidence that a previously introduced model of nonperturbative 2D Lorentzian quantum gravity exhibits (two-dimensional) flat-space behavior when coupled to Ising spins. The evidence comes from both a high-temperature expansion and from Monte Carlo simulations of the combined gravity-matter system. This weak-coupling behavior lends further support to the conclusion that the Lorentzian model is a genuine alternative to Liouville quantum gravity in two dimensions, with a different and much ``smoother'' critical behavior.
Beyond the rainbow: Effects from pion back-coupling
Fischer, Christian S.; Williams, Richard
2008-10-01
We investigate hadronic unquenching effects in light quarks and mesons. To this end, we take into account the back-coupling of the pion onto the quark propagator within the nonperturbative continuum framework of Schwinger-Dyson equations (SDE) and Bethe-Salpeter equations (BSE). We improve on a previous approach by explicitly solving both the coupled system of SDEs and BSEs in the complex plane and the normalization problem for Bethe-Salpeter kernels depending on the total momentum of the meson. As a result of our study, we find considerable unquenching effects in the spectrum of light pseudoscalar, vector and axial-vector mesons.
Effect of Minimalist Footwear on Running Efficiency
Gillinov, Stephen M.; Laux, Sara; Kuivila, Thomas; Hass, Daniel; Joy, Susan M.
2015-01-01
Background: Although minimalist footwear is increasingly popular among runners, claims that minimalist footwear enhances running biomechanics and efficiency are controversial. Hypothesis: Minimalist and barefoot conditions improve running efficiency when compared with traditional running shoes. Study Design: Randomized crossover trial. Level of Evidence: Level 3. Methods: Fifteen experienced runners each completed three 90-second running trials on a treadmill, each trial performed in a different type of footwear: traditional running shoes with a heavily cushioned heel, minimalist running shoes with minimal heel cushioning, and barefoot (socked). High-speed photography was used to determine foot strike, ground contact time, knee angle, and stride cadence with each footwear type. Results: Runners had more rearfoot strikes in traditional shoes (87%) compared with minimalist shoes (67%) and socked (40%) (P = 0.03). Ground contact time was longest in traditional shoes (265.9 ± 10.9 ms) when compared with minimalist shoes (253.4 ± 11.2 ms) and socked (250.6 ± 16.2 ms) (P = 0.005). There was no difference between groups with respect to knee angle (P = 0.37) or stride cadence (P = 0.20). When comparing running socked to running with minimalist running shoes, there were no differences in measures of running efficiency. Conclusion: When compared with running in traditional, cushioned shoes, both barefoot (socked) running and minimalist running shoes produce greater running efficiency in some experienced runners, with a greater tendency toward a midfoot or forefoot strike and a shorter ground contact time. Minimalist shoes closely approximate socked running in the 4 measurements performed. Clinical Relevance: With regard to running efficiency and biomechanics, in some runners, barefoot (socked) and minimalist footwear are preferable to traditional running shoes. PMID:26131304
Leg stiffness of sprinters using running-specific prostheses
McGowan, Craig P.; Grabowski, Alena M.; McDermott, William J.; Herr, Hugh M.; Kram, Rodger
2012-01-01
Running-specific prostheses (RSF) are designed to replicate the spring-like nature of biological legs (bioL) during running. However, it is not clear how these devices affect whole leg stiffness characteristics or running dynamics over a range of speeds. We used a simple spring–mass model to examine running mechanics across a range of speeds, in unilateral and bilateral transtibial amputees and performance-matched controls. We found significant differences between the affected leg (AL) of unilateral amputees and both ALs of bilateral amputees compared with the bioL of non-amputees for nearly every variable measured. Leg stiffness remained constant or increased with speed in bioL, but decreased with speed in legs with RSPs. The decrease in leg stiffness in legs with RSPs was mainly owing to a combination of lower peak ground reaction forces and increased leg compression with increasing speeds. Leg stiffness is an important parameter affecting contact time and the force exerted on the ground. It is likely that the fixed stiffness of the prosthesis coupled with differences in the limb posture required to run with the prosthesis limits the ability to modulate whole leg stiffness and the ability to apply high vertical ground reaction forces during sprinting. PMID:22337629
Ventilatory Threshold, Running Economy and Distance Running Performance of Trained Athletes.
ERIC Educational Resources Information Center
Powers, Scott K.; And Others
1983-01-01
In an attempt to identify physiological factors that account for success in distance running, researchers evaluated relationships among ventilatory threshold, running economy, and distance running performance. Subjects were trained male runners with similar maximal aerobic power. (Authors/PP)
Running Parallel Discrete Event Simulators on Sierra
Barnes, P. D.; Jefferson, D. R.
2015-12-03
In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.
NASA Technical Reports Server (NTRS)
Tuttle, Sharon M.; Eick, Christoph F.
1991-01-01
To debug a C Language Integrated Production System (CLIPS) program, certain 'historical' information about a run is needed. It would be convenient for system builders to have the capability to request such information. We will discuss how historical Rete networks can be used for answering questions that help a system builder detect the cause of an error in a CLIPS program. Moreover, the cost of maintaining a historical Rete network is compared with that for a classical Rete network. We will demonstrate that the cost for assertions is only slightly higher for a historical Rete network. The cost for handling retraction could be significantly higher; however, we will show that by using special data structures that rely on hashing, it is also possible to implement retractions efficiently.
An Epidemiologic Perspective. Does Running Cause Osteoarthritis?
ERIC Educational Resources Information Center
Eichner, Edward R.
1989-01-01
A review of literature on exercise and arthritis considers relevant epidemiologic and experimental studies of animals and humans, focusing on the relationship between running and osteoarthritis. No conclusive evidence exists that running causes osteoarthritis; research trends suggest that running may slow the functional aspects of musculoskeletal…
Non-perturbative dynamics of the heavy-light quark system in the non-recoil limit
N. Brambilla; A. Vairo
1997-03-01
Starting from the relativistic gauge-invariant quark-antiquark Green function the authors obtain the relevant interaction in the one-body limit, which can be interpreted as the kernel of a non-perturbative Dirac equation. They study this kernel in different kinematic regions, reproducing, in particular, for heavy quark the potential case and sum rules results. They discuss the relevance of the result for heavy-light mesons and the relation with the phenomenological Dirac equations used up to now in the literature.
NASA Technical Reports Server (NTRS)
Norbury, John W.
1992-01-01
The very large electromagnetic dissociation (EMD) cross section recently observed by Hill, Wohn, Schwellenbach, and Smith do not agree with Weizsacker-Williams (WW) theory or any simple modification thereof. Calculations are presented for the reaction probabilities for this experiment and the entire single and double nucleon removal EMD data set. It is found that for those few reactions where theory and experiment disagree, the probabilities are exceptionally large. This indicates that WW theory is not valid for these reactions and that one must consider higher order corrections and perhaps even a non-perturbative approach to quantum electrodynamics (QED).
NASA Astrophysics Data System (ADS)
Anagnostopoulos, K. N.; Nishimura, J.
2002-11-01
Monte Carlo simulations of a system whose action has an imaginary part are considered to be extremely difficult. We propose a new approach to this ``complex-action problem,'' which utilizes a factorization property of distribution functions. The basic idea is quite general, and it removes the so-called overlap problem completely. Here we apply the method to a nonperturbative study of superstring theory using its matrix formulation. In this particular example, the distribution function turns out to be positive definite, which allows us to reduce the problem even further. Our numerical results suggest an intuitive explanation for the dynamical generation of 4D space-time.
Gelfand, N.M.
1994-12-01
The performance of the Fermilab Tevatron Collider at the commencement of run Ib was far below expectations. After a frustrating period of several months, a low-{beta} quad downstream of the interaction point at B0 was found to be rolled. This rolled quadrupole coupled the horizontal and vertical motion of the Tevatron beams. It also made matching the beam from the Main Ring to the Tevatron impossible, resulting in emittance blow up on injection. The net result of the roll was a significant reduction in the Tevatron luminosity. When the roll in the quadrupole was corrected the performance of the Tevatron improved dramatically. This note will discuss the experimental data indicating the presence of coupling and subsequent calculations which show how coupling an affect the luminosity. It is not intended to exhaust a discussion of coupling, which hopefully will be understood well enough to be discussed in a subsequent note.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-10-01
Usually stars that are born together tend to move together but sometimes stars can go rogue and run away from their original birthplace. A pair of astronomers have now discovered the first runaway red supergiant (RSG) ever identified in another galaxy. With a radial velocity discrepancy of 300 km/s, its also the fastest runaway massive star known. Discrepant Speeds: When massive stars form in giant molecular clouds, they create what are known as OB associations: groups of hot, massive, short-lived stars that have similar velocities because theyre moving through space together. But sometimes stars that appear to be part of an OB association dont have the same velocity as the rest of the group. These stars are called runaways.What causes an OB star to run away is still debated, but we know that a fairly significant fraction of OB stars are runaways. In spite of this, surprisingly few runaways have been found that are evolved massive stars i.e., the post-main-sequence state of OB stars. This is presumably because these evolved stars have had more time to move away from their birthplace, and its more difficult to identify a runaway without the context of its original group. An Evolved Runaway: Difference between observed velocity and expected velocity, plotted as a function of expected velocity. The black points are foreground stars. The red points are expected RSGs, clustered around a velocity difference of zero. The green pentagon is the runaway RSG J004330.06+405258.4. [Evans Massey 2015]Despite this challenge, a recent survey of RSGs in the galaxy M31 has led to the detection of a massive star on the run! Kate Evans (Lowell Observatory and California Institute of Technology) and Philip Massey (Lowell Observatory and Northern Arizona University) discovered that RSG J004330.06+405258.4 is moving through the Andromeda Galaxy with a radial velocity thats off by about 300 km/s from the radial velocity expected for its location.Evans and Massey discovered this rogue star
Higgs boson self-coupling from two-loop analysis
Alhendi, H. A.; Barakat, T.; Loqman, I. Gh.
2010-09-01
The scale invariant of the effective potential of the standard model at two loop is used as a boundary condition under the assumption that the two-loop effective potential approximates the full effective potential. This condition leads with the help of the renormalization-group functions of the model at two loop to an algebraic equation of the scalar self-coupling with coefficients that depend on the gauge and the top quark couplings. It admits only two real positive solutions. One of them, in the absence of the gauge and top quark couplings, corresponds to the nonperturbative ultraviolet fixed point of the scalar renormalization-group function and the other corresponds to the perturbative infrared fixed point. The dependence of the scalar coupling on the top quark and the strong couplings at two-loop radiative corrections is analyzed.
Random Test Run Length and Effectiveness
NASA Technical Reports Server (NTRS)
Andrews, James H.; Groce, Alex; Weston, Melissa; Xu, Ru-Gang
2008-01-01
A poorly understood but important factor in many applications of random testing is the selection of a maximum length for test runs. Given a limited time for testing, it is seldom clear whether executing a small number of long runs or a large number of short runs maximizes utility. It is generally expected that longer runs are more likely to expose failures -- which is certainly true with respect to runs shorter than the shortest failing trace. However, longer runs produce longer failing traces, requiring more effort from humans in debugging or more resources for automated minimization. In testing with feedback, increasing ranges for parameters may also cause the probability of failure to decrease in longer runs. We show that the choice of test length dramatically impacts the effectiveness of random testing, and that the patterns observed in simple models and predicted by analysis are useful in understanding effects observed.
NASA Astrophysics Data System (ADS)
Hanlet, Pierrick; Mice Collaboration
2014-06-01
The Muon Ionization Cooling Experiment (MICE) is a demonstration experiment to prove the feasibility of cooling a beam of muons for use in a Neutrino Factory and/or Muon Collider. The MICE cooling channel is a section of a modified Study II cooling channel which will provide a 10% reduction in beam emittance. In order to ensure a reliable measurement, MICE will measure the beam emittance before and after the cooling channel at the level of 1%, or a relative measurement of 0.001. This renders MICE a precision experiment which requires strict controls and monitoring of all experimental parameters in order to control systematic errors. The MICE Controls and Monitoring system is based on EPICS and integrates with the DAQ, Data monitoring systems, and a configuration database. The new MICE Run Control has been developed to ensure proper sequencing of equipment and use of system resources to protect data quality. A description of this system, its implementation, and performance during recent muon beam data collection will be discussed.
Phillips, Kimberley A.; Hambright, M. Karen; Hewes, Kelly; Schilder, Brian M.; Ross, Corinna N.; Tardif, Suzette D.
2015-01-01
Background The common marmoset (Callithrix jacchus) is a small, New World primate that is used extensively in biomedical and behavioral research. This short-lived primate, with its small body size, ease of handling, and docile temperament, has emerged as a valuable model for aging and neurodegenerative research. A growing body of research has indicated exercise, aerobic exercise especially, imparts beneficial effects to normal aging. Understanding the mechanisms underlying these positive effects of exercise, and the degree to which exercise has neurotherapeutic effects, is an important research focus. Thus, developing techniques to engage marmosets in aerobic exercise would have great advantages. New method Here we describe the marmoset exercise ball (MEB) paradigm: a safe (for both experimenter and subjects), novel and effective means to engage marmosets in aerobic exercise. We trained young adult male marmosets to run on treadmills for 30 min a day, 3 days a week. Results Our training procedures allowed us to engage male marmosets in this aerobic exercise within 4 weeks, and subjects maintained this frequency of exercise for 3 months. Comparison with existing methods To our knowledge, this is the first described method to engage marmosets in aerobic exercise. A major advantage of this exercise paradigm is that while it was technically forced exercise, it did not appear to induce stress in the marmosets. Conclusions These techniques should be useful to researchers wishing to address physiological responses of exercise in a marmoset model. PMID:25835199
Padulo, Johnny; Powell, Douglas; Milia, Raffaele; Ardigò, Luca Paolo
2013-01-01
The biomechanical management of bioenergetics of runners when running uphill was investigated. Several metabolic and mechanical variables have been studied simultaneously to spread light on the locomotory strategy operated by humans for effective locomotion. The studied variables were: heart rate, heart rate variability, oxygen intake and blood lactate, metabolic cost, kinematics, ground reaction force and muscular activity. 18 high-level competitive male runners ran at 70% VO2max on different uphill slope conditions: 0%, 2% and 7%. Modifications were significant in almost all variables studied, and were more pronounced with increasing incline. Step frequency/length and ground reaction force are adjusted to cope with both the task of uphill progression and the available (limited) metabolic power. From 0% to 7% slope, step frequency and ground reaction force and metabolic cost increased concurrently by 4%, 12% and 53%, respectively (with a 4% step length decrease as well). It is hypothesised that this biomechanical management is allowed by an environment-body communication performed by means of specific muscular activity. PMID:23874850
Lidar observations of run-up (Invited)
NASA Astrophysics Data System (ADS)
List, K. M.; Raubenheimer, B.; Elgar, S.
2010-12-01
The time dependent position of the run-up (the intersection of the shoreward edge of the water and the beach face), the maximum run-up, and the run-up duration measured with a terrestrial lidar will be compared with predictions of a ballistic model including friction (Holland and Puleo, J. Geophys. Res., 106(C3), 2001). Cross-shore water surface profiles were obtained on July 12, 2010, at South Beach, Martha’s Vineyard, MA at about 5.07 Hz with a lidar mounted on a 2-m tall frame situated approximately 5 m landward of the maximum run-up. The beach profile was estimated from lidar measurements during run-down (when the beach was uncovered by water). Wave heights, periods, and directions in 11-m water depth were 1.3 m, 7 s, and less than 5° relative to shore normal. Initial run-up velocity was estimated from the shoreward movement of the 3 run-up locations (spanning approximately 3 m in the cross-shore) immediately following the wave collapse. The foreshore slope was estimated from the beach profile between the wave collapse and the maximum run-up. The run-up edge thickness was estimated as the average of the water depth 1 m landward of the location of the run-up edge after the wave has collapsed and the depth 1 m seaward of the run-up edge at the time of maximum run-up. The friction factor used in the ballistic model was estimated as 0.005 by fitting the model predictions to the motion of a single run-up. For the 6 run-up events examined, the model predicted the maximum run-up and the run-up duration within about 20% of the observations. Interactions between the onshore propagating wave and the run-down from a prior wave sometimes caused discrepancies between the observed run-up position and the model predictions. The observations suggest that lidar may be a useful method to obtain high-frequency measurements of run-up water surfaces and bed level changes. Funded by ONR, NSF, and NSSEFF.
Mitra, A.N.; Yang, K.
1995-06-01
The momentum dependence of the off-shell {rho}-{omega} mixing amplitude is calculated through a two-quark loop diagram, using nonperturbative meson-quark vertex functions for the {rho} and {omega} mesons, as well as nonperturbative quark propagators. Both these quantities are generated self-consistently through an interlinked Bethe-Salpeter equation (BSE) cum Schwinger- Dyson equation (SDE) approach with a 3D support for the BSE kernel with two basic constants that are prechecked against a wide cross section of both meson and baryon spectra within a common structural framework for their respective 3D BSE`s. With the precalibration, the on-shell strength works out at {minus}2.434 {delta}({ital m}{sub {ital q}}{sup 2}) in units of the change in ``constituent mass squared,`` which is consistent with the {ital e}{sup +}{ital e}{sup {minus}} to {pi}{sup +}{pi}{sup {minus}} data for a {ital u}-{ital d} mass difference of 4 MeV, while the relative off-shell strength (0.99{plus_minus}0.01) lies midway between quark-loop and QCD-SR results. We also calculate the photon-mediated {rho}-{omega} propagator whose off-shell structure has an additional pole at {ital q}{sup 2}=0. The implications of these results vis-a-vis related investigations are discussed.
Harada, Koji; Kubo, Hirofumi; Yamamoto, Yuki
2011-03-15
Nuclear effective field theory (NEFT) including pions in the two-nucleon sector is examined from the Wilsonian renormalization group point of view. The pion exchange is cut off at the floating cutoff scale, {Lambda}, with the short-distance part being represented as contact interactions in accordance with the general principle of renormalization. We derive the nonperturbative renormalization group equations in the leading order of the nonrelativistic approximation in the operator space up to including O(p{sup 2}), and find the nontrivial fixed points in the {sup 1}S{sub 0} and {sup 3}S{sub 1}-{sup 3}D{sub 1} channels which are identified with those in the pionless NEFT. The scaling dimensions, which determine the power counting, of the contact interactions at the nontrivial fixed points are also identified with those in the pionless NEFT. We emphasize the importance of the separation of the pion exchange into the short-distance and the long-distance parts, since a part of the former is nonperturbative while the latter is perturbative.
Liu, Yueqiang Chapman, I. T.; Hao, G. Z.; Wang, Z. R.; Menard, J. E.; Okabayashi, M.; Strait, E. J.; Turnbull, A.
2014-05-15
A non-perturbative magnetohydrodynamic-kinetic hybrid formulation is developed and implemented into the MARS-K code [Liu et al., Phys. Plasmas 15, 112503 (2008)] that takes into account the anisotropy and asymmetry [Graves et al., Nature Commun. 3, 624 (2012)] of the equilibrium distribution of energetic particles (EPs) in particle pitch angle space, as well as first order finite orbit width (FOW) corrections for both passing and trapped EPs. Anisotropic models, which affect both the adiabatic and non-adiabatic drift kinetic energy contributions, are implemented for both neutral beam injection and ion cyclotron resonant heating induced EPs. The first order FOW correction does not contribute to the precessional drift resonance of trapped particles, but generally remains finite for the bounce and transit resonance contributions, as well as for the adiabatic contributions from asymmetrically distributed passing particles. Numerical results for a 9MA steady state ITER plasma suggest that (i) both the anisotropy and FOW effects can be important for the resistive wall mode stability in ITER plasmas; and (ii) the non-perturbative approach predicts less kinetic stabilization of the mode, than the perturbative approach, in the presence of anisotropy and FOW effects for the EPs. The latter may partially be related to the modification of the eigenfunction of the mode by the drift kinetic effects.
Running boundary actions, Asymptotic Safety, and black hole thermodynamics
NASA Astrophysics Data System (ADS)
Becker, Daniel; Reuter, Martin
2012-07-01
Previous explorations of the Asymptotic Safety scenario in Quantum Einstein Gravity (QEG) by means of the effective average action and its associated functional renormalization group (RG) equation assumed spacetime manifolds which have no boundaries. Here we take a first step towards a generalization for non-trivial boundaries, restricting ourselves to action functionals which are at most of second order in the derivatives acting on the metric. We analyze two examples of truncated actions with running boundary terms: full fledged QEG within the single-metric Einstein-Hilbert truncation, augmented by a scale dependent Gibbons-Hawking surface term, and a bi-metric truncation for gravity coupled to scalar matter fields. The latter contains 17 running couplings, related to both bulk and boundary terms, whose beta-functions are computed in the induced gravity approximation (large N limit). We find that the bulk and the boundary Newton constant, pertaining to the Einstein-Hilbert and Gibbons-Hawking term, respectively, show opposite RG running; proposing a scale dependent variant of the ADM mass we argue that the running of both couplings is consistent with gravitational anti-screening. We discuss the status of the `bulk-boundary matching' usually considered necessary for a well defined variational principle within the functional RG framework, and we explain a number of conceptual issues related to the `zoo' of (Newton-type, for instance) coupling constants, for the bulk and the boundary, which result from the bi-metric character of the gravitational average action. In particular we describe a simple device for counting the number of field modes integrated out between the infrared cutoff scale and the ultraviolet. This method makes it manifest that, in an asymptotically safe theory, there are effectively no field modes integrated out while the RG trajectory stays in the scaling regime of the underlying fixed point. As an application, we investigate how the semiclassical
Impact Accelerations of Barefoot and Shod Running.
Thompson, M; Seegmiller, J; McGowan, C P
2016-05-01
During the ground contact phase of running, the body's mass is rapidly decelerated resulting in forces that propagate through the musculoskeletal system. The repetitive attenuation of these impact forces is thought to contribute to overuse injuries. Modern running shoes are designed to reduce impact forces, with the goal to minimize running related overuse injuries. Additionally, the fore/mid foot strike pattern that is adopted by most individuals when running barefoot may reduce impact force transmission. The aim of the present study was to compare the effects of the barefoot running form (fore/mid foot strike & decreased stride length) and running shoes on running kinetics and impact accelerations. 10 healthy, physically active, heel strike runners ran in 3 conditions: shod, barefoot and barefoot while heel striking, during which 3-dimensional motion analysis, ground reaction force and accelerometer data were collected. Shod running was associated with increased ground reaction force and impact peak magnitudes, but decreased impact accelerations, suggesting that the midsole of running shoes helps to attenuate impact forces. Barefoot running exhibited a similar decrease in impact accelerations, as well as decreased impact peak magnitude, which appears to be due to a decrease in stride length and/or a more plantarflexed position at ground contact. PMID:26837933
Non-perturbative Calculation of the Scalar Yukawa Theory in Four-Body Truncation
NASA Astrophysics Data System (ADS)
Li, Yang; Karmanov, V. A.; Maris, P.; Vary, J. P.
2015-09-01
The quenched scalar Yukawa theory is solved in the light-front Tamm-Dancoff approach including up to four constituents (one scalar nucleon, three scalar pions). The Fock sector dependent renormalization is implemented. By studying the Fock sector norms, we find that the lowest two Fock sectors dominate the state even in the large-coupling region. The one-body sector shows convergence with respect to the Fock sector truncation. However, the four-body norm exceeds the three-body norm at the coupling.
NASA Astrophysics Data System (ADS)
Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.
2014-03-01
Inertial confinement fusion requires an imploded target in which a central hot spot is surrounded by a cold and dense pusher. The hot spot/pusher interface can take complicated shape in three dimensions due to hydrodynamic mix. It is also a transition region where the Knudsen and inverse Knudsen layer effect can significantly modify the fusion reactivity in comparison with the commonly used value evaluated with background Maxwellians. Here, we describe a hybrid model that couples the kinetic correction of fusion reactivity to global hydrodynamic implosion simulations. The key ingredient is a non-perturbative treatment of the tail ions in the interface region where the Gamow ion Knudsen number approaches or surpasses order unity. The accuracy of the coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space.
Endurance running and the evolution of Homo.
Bramble, Dennis M; Lieberman, Daniel E
2004-11-18
Striding bipedalism is a key derived behaviour of hominids that possibly originated soon after the divergence of the chimpanzee and human lineages. Although bipedal gaits include walking and running, running is generally considered to have played no major role in human evolution because humans, like apes, are poor sprinters compared to most quadrupeds. Here we assess how well humans perform at sustained long-distance running, and review the physiological and anatomical bases of endurance running capabilities in humans and other mammals. Judged by several criteria, humans perform remarkably well at endurance running, thanks to a diverse array of features, many of which leave traces in the skeleton. The fossil evidence of these features suggests that endurance running is a derived capability of the genus Homo, originating about 2 million years ago, and may have been instrumental in the evolution of the human body form. PMID:15549097
Running spectral index from inflation with modulations
Kobayashi, Takeshi; Takahashi, Fuminobu E-mail: fuminobu.takahashi@ipmu.jp
2011-01-01
We argue that a large negative running spectral index, if confirmed, might suggest that there are abundant structures in the inflaton potential, which result in a fairly large (both positive and negative) running of the spectral index at all scales. It is shown that the center value of the running spectral index suggested by the recent CMB data can be easily explained by an inflaton potential with superimposed periodic oscillations. In contrast to cases with constant running, the perturbation spectrum is enhanced at small scales, due to the repeated modulations. We mention that such features at small scales may be seen by 21 cm observations in the future.
Physiological correlates to 800 meter running performance.
Deason, J; Powers, S K; Lawler, J; Ayers, D; Stuart, M K
1991-12-01
Much of the previous research efforts aimed at determining those physiological characteristics that contribute to distance running success have centered around distances greater than 1500 meters with little attention to events such as the 800 meter run. Therefore, this investigation examined the relationship between selected physiological and body composition, characteristics and performance in an 800 meter run. Measurements of body composition, VO2max, running economy, and performance times for 100 and 300 meter dashes were obtained on 11 male track athletes. Stepwise multiple regression analysis was performed using 800 meter race time as the dependent variable. Although the combination of 300 and 100 meter run times, percent body fat, running economy and VO2 max as independent variables accounted for the greatest amount of total variance (r2 = .89), the additional variance explained by the model did not increase significantly (p greater than 0.05), when VO2max, percent body fat, and running economy were added to a model which contained 300 and 100 meter run time (r2 = .85) as the explanatory variables. These data offer additional support for the notion that much of the intramuscular ATP produce and utilized during an 800 meter run comes from anaerobic metabolic pathway. PMID:1806725
Stringy evidence for {ital D}=11 structure in a strongly coupled type-IIA superstring
Bars, I.
1995-09-15
Witten proposed that the low energy physics of a strongly coupled {ital D}=10 type-IIA superstring may be described by {ital D}=11 supergravity. To explore the stringy aspects of the underlying theory we examine the stringy massive states. We propose a systematic formula for identifying nonperturbative states in {ital D}=10 type-IIA superstring theory, such that, together with the elementary excited string states, they form {ital D}=11 supersymmetric multiplets, in SO(10) representations. This provides hints for the construction of a conjectured weakly coupled {ital D}=11 theory that is dual to the strongly coupled {ital D}=10 type-IIA superstring.
The coordinated movement of the spine and pelvis during running.
Preece, Stephen J; Mason, Duncan; Bramah, Christopher
2016-02-01
Previous research into running has demonstrated consistent patterns in pelvic, lumbar and thoracic motions between different human runners. However, to date, there has been limited attempt to explain why observed coordination patterns emerge and how they may relate to centre of mass (CoM) motion. In this study, kinematic data were collected from the thorax, lumbar spine, pelvis and lower limbs during over ground running in n=28 participants. These data was subsequently used to develop a theoretical understanding of the coordination of the spine and pelvis in all three body planes during the stance phase of running. In the sagittal plane, there appeared to be an antiphase coordinate pattern which may function to increase femoral inclination at toe off whilst minimising anterior-posterior accelerations of the CoM. In the medio-lateral direction, CoM motion appears to facilitate transition to the contralateral foot. However, an antiphase coordination pattern was also observed, most likely to minimise unnecessary accelerations of the CoM. In the transverse plane, motion of the pelvis was observed to lag slightly behind that of the thorax. However, it is possible that the close coupling between these two segments facilitates the thoracic rotation required to passively drive arm motion. This is the first study to provide a full biomechanical rationale for the coordination of the spine and pelvis during human running. This insight should help clinicians develop an improved understanding of how spinal and pelvic motions may contribute to, or result from, common running injuries. PMID:26618444
Tackmann, Kerstin; collaboration, for the BABAR
2008-01-23
Knowing the mass of the b-quark is essential to the study of the structure and decays of B mesons as well as to future tests of the Higgs mechanism of mass generation. We present recent preliminary measurements of the b-quark mass and related nonperturbative parameters from moments of kinematic distributions in charmed and charmless semileptonic and radiative penguin B decays. Their determination from charmless semileptonic B decays is the first measurement in this mode. The data were collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -}-collider at the Stanford Linear Accelerator Center at a center-of-momentum energy of 10:58 GeV.
NASA Astrophysics Data System (ADS)
Grinyuk, A. A.; Lipatov, A. V.; Lykasov, G. I.; Zotov, N. P.
2016-01-01
We study the role of the nonperturbative input to the transverse momentum dependent (TMD) gluon density in hard processes at the LHC. We derive the input TMD gluon distribution at a low scale μ02˜1 GeV2 from a fit of inclusive hadron spectra measured at low transverse momenta in p p collisions at the LHC and demonstrate that the best description of these spectra for larger hadron transverse momenta can be achieved by matching the derived TMD gluon distribution with the exact solution of the Balitsky-Fadin-Kuraev-Lipatov equation obtained at low x and small gluon transverse momenta outside the saturation region. Then, we extend the input TMD gluon density to higher μ2 numerically using the Catani-Ciafoloni-Fiorani-Marchesini gluon evolution equation. Special attention is paid to phenomenological applications of the obtained TMD gluon density to some LHC processes, which are sensitive to the gluon content of a proton.
Impact of Running Away on Girls' Pregnancy
ERIC Educational Resources Information Center
Thrane, Lisa E.; Chen, Xiaojin
2012-01-01
This study assessed the impact of running away on pregnancy in the subsequent year among U.S. adolescents. We also investigated interactions between running away and sexual assault, romance, and school disengagement. Pregnancy among females between 11 and 17 years (n = 6100) was examined utilizing the Longitudinal Study of Adolescent Health (Add…
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Test run. 92.126 Section 92.126 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.126 Test run. (a) The following...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Test run. 92.126 Section 92.126 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.126 Test run. (a) The following...
The Meaning of Running Away for Girls
ERIC Educational Resources Information Center
Peled, Einat; Cohavi, Ayelet
2009-01-01
Objective: The aim of this qualitative research was to understand how runaway girls perceive the processes involved in leaving home and the meaning they attribute to it. Method: Findings are based on in-depth interviews with 10 Israeli girls aged 13-17 with a history of running away from home. Results: The meaning of running away as it emerged…
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Test run. 92.126 Section 92.126 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.126 Test run. (a) The following...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Test run. 92.126 Section 92.126 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.126 Test run. (a) The following...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Test run. 92.126 Section 92.126 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.126 Test run. (a) The following...
S. Donati
2002-06-04
In this paper we report on the first run II results from the CDF experiment. A brief description of the Tevatron collider and CDF detector upgrades and performance achieved in the first part of run II is followed by the CDF expectations in the fields of beauty, top, electroweak and Higgs physics.
Teaching Bank Runs with Classroom Experiments
ERIC Educational Resources Information Center
Balkenborg, Dieter; Kaplan, Todd; Miller, Timothy
2011-01-01
Once relegated to cinema or history lectures, bank runs have become a modern phenomenon that captures the interest of students. In this article, the authors explain a simple classroom experiment based on the Diamond-Dybvig model (1983) to demonstrate how a bank run--a seemingly irrational event--can occur rationally. They then present possible…
The Second Student-Run Homeless Shelter
ERIC Educational Resources Information Center
Seider, Scott C.
2012-01-01
From 1983-2011, the Harvard Square Homeless Shelter (HSHS) in Cambridge, Massachusetts, was the only student-run homeless shelter in the United States. However, college students at Villanova, Temple, Drexel, the University of Pennsylvania, and Swarthmore drew upon the HSHS model to open their own student-run homeless shelter in Philadelphia,…
Hong, Tianzhen; Buhl, Fred; Haves, Philip
2008-09-20
EnergyPlus is a new generation building performance simulation program offering many new modeling capabilities and more accurate performance calculations integrating building components in sub-hourly time steps. However, EnergyPlus runs much slower than the current generation simulation programs. This has become a major barrier to its widespread adoption by the industry. This paper analyzed EnergyPlus run time from comprehensive perspectives to identify key issues and challenges of speeding up EnergyPlus: studying the historical trends of EnergyPlus run time based on the advancement of computers and code improvements to EnergyPlus, comparing EnergyPlus with DOE-2 to understand and quantify the run time differences, identifying key simulation settings and model features that have significant impacts on run time, and performing code profiling to identify which EnergyPlus subroutines consume the most amount of run time. This paper provides recommendations to improve EnergyPlus run time from the modeler?s perspective and adequate computing platforms. Suggestions of software code and architecture changes to improve EnergyPlus run time based on the code profiling results are also discussed.
Run II data analysis on the grid
Igor Mandrichenko, Igor Terekhov and Frank Wurthwein
2002-12-02
In this document, we begin the technical design for the distributed RunII computing for CDF and D0. The present paper defines the three components of the data handling area of Run II computing, namely the Data Handling System, the Storage System and the Application. We outline their functionality and interaction between them. We identify necessary and desirable elements of the interfaces.
Minimum Wage Effects in the Longer Run
ERIC Educational Resources Information Center
Neumark, David; Nizalova, Olena
2007-01-01
Exposure to minimum wages at young ages could lead to adverse longer-run effects via decreased labor market experience and tenure, and diminished education and training, while beneficial longer-run effects could arise if minimum wages increase skill acquisition. Evidence suggests that as individuals reach their late 20s, they earn less the longer…
Separating Fact from Fiction: Increasing Running Speed
ERIC Educational Resources Information Center
Murgia, Carla
2008-01-01
From a biomechanical point of view, this article explores the common belief that one must increase stride length and frequency in order to increase running speed. The limb length, explosive power, and anaerobic capacity of the athlete, as well as the type of running (sprinting vs. long distance) must be considered before making such a…
The Effect of Training in Minimalist Running Shoes on Running Economy.
Ridge, Sarah T; Standifird, Tyler; Rivera, Jessica; Johnson, A Wayne; Mitchell, Ulrike; Hunter, Iain
2015-09-01
The purpose of this study was to examine the effect of minimalist running shoes on oxygen uptake during running before and after a 10-week transition from traditional to minimalist running shoes. Twenty-five recreational runners (no previous experience in minimalist running shoes) participated in submaximal VO2 testing at a self-selected pace while wearing traditional and minimalist running shoes. Ten of the 25 runners gradually transitioned to minimalist running shoes over 10 weeks (experimental group), while the other 15 maintained their typical training regimen (control group). All participants repeated submaximal VO2 testing at the end of 10 weeks. Testing included a 3 minute warm-up, 3 minutes of running in the first pair of shoes, and 3 minutes of running in the second pair of shoes. Shoe order was randomized. Average oxygen uptake was calculated during the last minute of running in each condition. The average change from pre- to post-training for the control group during testing in traditional and minimalist shoes was an improvement of 3.1 ± 15.2% and 2.8 ± 16.2%, respectively. The average change from pre- to post-training for the experimental group during testing in traditional and minimalist shoes was an improvement of 8.4 ± 7.2% and 10.4 ± 6.9%, respectively. Data were analyzed using a 2-way repeated measures ANOVA. There were no significant interaction effects, but the overall improvement in running economy across time (6.15%) was significant (p = 0.015). Running in minimalist running shoes improves running economy in experienced, traditionally shod runners, but not significantly more than when running in traditional running shoes. Improvement in running economy in both groups, regardless of shoe type, may have been due to compliance with training over the 10-week study period and/or familiarity with testing procedures. Key pointsRunning in minimalist footwear did not result in a change in running economy compared to running in traditional footwear
The Effect of Training in Minimalist Running Shoes on Running Economy
Ridge, Sarah T.; Standifird, Tyler; Rivera, Jessica; Johnson, A. Wayne; Mitchell, Ulrike; Hunter, Iain
2015-01-01
The purpose of this study was to examine the effect of minimalist running shoes on oxygen uptake during running before and after a 10-week transition from traditional to minimalist running shoes. Twenty-five recreational runners (no previous experience in minimalist running shoes) participated in submaximal VO2 testing at a self-selected pace while wearing traditional and minimalist running shoes. Ten of the 25 runners gradually transitioned to minimalist running shoes over 10 weeks (experimental group), while the other 15 maintained their typical training regimen (control group). All participants repeated submaximal VO2 testing at the end of 10 weeks. Testing included a 3 minute warm-up, 3 minutes of running in the first pair of shoes, and 3 minutes of running in the second pair of shoes. Shoe order was randomized. Average oxygen uptake was calculated during the last minute of running in each condition. The average change from pre- to post-training for the control group during testing in traditional and minimalist shoes was an improvement of 3.1 ± 15.2% and 2.8 ± 16.2%, respectively. The average change from pre- to post-training for the experimental group during testing in traditional and minimalist shoes was an improvement of 8.4 ± 7.2% and 10.4 ± 6.9%, respectively. Data were analyzed using a 2-way repeated measures ANOVA. There were no significant interaction effects, but the overall improvement in running economy across time (6.15%) was significant (p = 0.015). Running in minimalist running shoes improves running economy in experienced, traditionally shod runners, but not significantly more than when running in traditional running shoes. Improvement in running economy in both groups, regardless of shoe type, may have been due to compliance with training over the 10-week study period and/or familiarity with testing procedures. Key points Running in minimalist footwear did not result in a change in running economy compared to running in traditional footwear
Coupling expert systems and simulation
NASA Technical Reports Server (NTRS)
Kawamura, K.; Beale, G.; Padalkar, S.; Rodriguez-Moscoso, J.; Hsieh, B. J.; Vinz, F.; Fernandez, K. R.
1988-01-01
A prototype coupled system called NESS (NASA Expert Simulation System) is described. NESS assists the user in running digital simulations of dynamic systems, interprets the output data to performance specifications, and recommends a suitable series compensator to be added to the simulation model.
Orthopaedic Perspective on Barefoot and Minimalist Running.
Roth, Jonathan; Neumann, Julie; Tao, Matthew
2016-03-01
In recent years, there has been a movement toward barefoot and minimalist running. Advocates assert that a lack of cushion and support promotes a forefoot or midfoot strike rather than a rearfoot strike, decreasing the impact transient and stress on the hip and knee. Although the change in gait is theorized to decrease injury risk, this concept has not yet been fully elucidated. However, research has shown diminished symptoms of chronic exertional compartment syndrome and anterior knee pain after a transition to minimalist running. Skeptics are concerned that, because of the effects of the natural environment and the lack of a standardized transition program, barefoot running could lead to additional, unforeseen injuries. Studies have shown that, with the transition to minimalist running, there is increased stress on the foot and ankle and risk of repetitive stress injuries. Nonetheless, despite the large gap of evidence-based knowledge on minimalist running, the potential benefits warrant further research and consideration. PMID:26808173
Ward identities and chiral anomalies for coupled fermionic chains
NASA Astrophysics Data System (ADS)
Costa, L. C.; Ferraz, A.; Mastropietro, Vieri
2013-12-01
Coupled fermionic chains are usually described by an effective model written in terms of bonding and anti-bonding fermionic fields with linear dispersion in the vicinities of the respective Fermi points. We derive for the first time exact Ward Identities (WI) for this model, proving the existence of chiral anomalies which verify the Adler-Bardeen non-renormalization property. Such WI are expected to play a crucial role in the understanding of the thermodynamic properties of the system. Our results are non-perturbative and are obtained analyzing Grassmann functional integrals by means of constructive quantum field theory methods.
Impedances and collective instabilities of the Tevatron at Run II
Ng, King-Yuen, FERMI
1998-09-01
The longitudinal and transverse coupling impedances of the Tevatron vacuum chamber are estimated and summed up. The resistive-wall impedances of the beam pipe and the laminations in the Lambertson magnets dominate below {approximately} 50 MHz. Then come the inductive parts of the bellows and BPM`s. The longitudinal and transverse collective instabilities, for both single bunch and multi bunches, are studied using Run II parameters. As expected the transverse coupled-bunch instability driven by the resistive-wall impedance is the most severe collective instability. However, it can be damped by a transverse damper designed for the correction of injection offsets. The power of such a damper has been studied.
A Runs-Test Algorithm: Contingent Reinforcement and Response Run Structures
ERIC Educational Resources Information Center
Hachiga, Yosuke; Sakagami, Takayuki
2010-01-01
Four rats' choices between two levers were differentially reinforced using a runs-test algorithm. On each trial, a runs-test score was calculated based on the last 20 choices. In Experiment 1, the onset of stimulus lights cued when the runs score was smaller than criterion. Following cuing, the correct choice was occasionally reinforced with food,…
Characterization of running with compliant curved legs.
Jun, Jae-Yun; Clark, Jonathan E
2015-08-01
Running with compliant curved legs involves the progression of the center of pressure, the changes of both the leg's stiffness and effective rest length, and the shift of the location of the maximum stress point along the leg. These phenomena are product of the geometric and material properties of these legs, and the rolling motion produced during stance. We examine these aspects with several reduced-order dynamical models to relate the leg's design parameters (such as normalized foot radius, leg's effective stiffness, location of the maximum stress point and leg shape) to running performance (such as robustness and efficiency). By using these models, we show that running with compliant curved legs can be more efficient, robust with fast recovery behavior from perturbations than running with compliant straight legs. Moreover, the running performance can be further improved by tuning these design parameters in the context of running with rolling. The results shown in this work may serve as potential guidance for future compliant curved leg designs that may further improve the running performance. PMID:26151098
A detailed study of nonperturbative solutions of two-body Dirac equations
Crater, H.W.; Becker, R.L.; Wong, C.Y.; Van Alstine, P.
1992-12-01
In quark model calculations of the meson spectrums fully covariant two-body Dirac equations dictated by Dirac's relativistic constraint mechanics gave a good fit to the entire meson mass spectrum for light quark mesons as well as heavy quark mesons with constituent world scalar and vector potentials depending on just one or two parameters. In this paper, we investigate the properties of these equations that made them work so well by solving them numerically for quantum electrodynamics (QED) and related field theories. The constraint formalism generates a relativistic quantum mechanics defined by two coupled Dirac equations on a sixteen component wave function which contain Lorentz covariant constituent potentials that are initially undetermined. An exact Pauli reduction leads to a second order relativistic Schroedinger-like equation for a reduced eight component wave function determined by an effective interaction -- the quasipotential. We first determine perturbatively to lowest order the relativistic quasipotential for the Schroedinger-like equation by comparing that form with one derived from the Bethe-Salpeter equation. Insertion of this perturbative information into the minimal interaction structures of the two-body Dirac equations then completely determines their interaction structures. Then we give a procedure for constructing the full sixteen component solution to our coupled first-order Dirac equations from a solution of the second order equation for the reduced wave function. Next, we show that a perturbative treatment of these equations yields the standard spectral results for QED and related interactions.
A detailed study of nonperturbative solutions of two-body Dirac equations
Crater, H.W.; Becker, R.L.; Wong, C.Y.; Van Alstine, P.
1992-12-01
In quark model calculations of the meson spectrums fully covariant two-body Dirac equations dictated by Dirac`s relativistic constraint mechanics gave a good fit to the entire meson mass spectrum for light quark mesons as well as heavy quark mesons with constituent world scalar and vector potentials depending on just one or two parameters. In this paper, we investigate the properties of these equations that made them work so well by solving them numerically for quantum electrodynamics (QED) and related field theories. The constraint formalism generates a relativistic quantum mechanics defined by two coupled Dirac equations on a sixteen component wave function which contain Lorentz covariant constituent potentials that are initially undetermined. An exact Pauli reduction leads to a second order relativistic Schroedinger-like equation for a reduced eight component wave function determined by an effective interaction -- the quasipotential. We first determine perturbatively to lowest order the relativistic quasipotential for the Schroedinger-like equation by comparing that form with one derived from the Bethe-Salpeter equation. Insertion of this perturbative information into the minimal interaction structures of the two-body Dirac equations then completely determines their interaction structures. Then we give a procedure for constructing the full sixteen component solution to our coupled first-order Dirac equations from a solution of the second order equation for the reduced wave function. Next, we show that a perturbative treatment of these equations yields the standard spectral results for QED and related interactions.
Study on Running Safety with Gauge Widening
NASA Astrophysics Data System (ADS)
Adachi, Masakazu; Sato, Yasuhiro; Ohno, Hiroyuki; Matsumoto, Akira; Iwamoto, Atsushi; Kobayashi, Minoru
Gauge widening has been set in order that rolling stock runs safely and smoothly on curved tracks. Recently gauge widening has been reduced due to the change of vehicle structures and track maintenance. The reduction of gauge widening may lead the decrease of steering ability of wheelsets and running safety of vehicles. The purpose of this study is to grasp curving performance and running safety when gauge widening was varied. Stand tests were carried out by a bogie test stand, and the authors concluded that the curving performance can be increased according to gauge widening, but the effect is limited in perfect rolling region, and not so effective for normal setting range.
Nonperturbative renormalization of the neutrinoless double-β operator in p-shell nuclei
NASA Astrophysics Data System (ADS)
Shukla, Deepshikha; Engel, Jonathan; Navratil, Petr
2011-10-01
We use Lee-Suzuki mappings and related techniques to construct effective two-body p-shell interactions and neutrinoless double-β operators that exactly reproduce the results of large no-core-shell-model calculations of (fictitious) double-β decay in nuclei with mass number A=6. We then apply the effective operators to the (also fictitious) decay of nuclei with A=7, 8, and 10, again comparing with no-core calculations in much larger spaces. The results with the effective two-body operators are generally good. In some cases, however, they differ non-negligibly from the full no-core results, suggesting that three-body corrections to the decay operator in heavier nuclei may be important. An application of our procedure and related ideas to fp-shell nuclei such as 76Ge should be feasible within coupled-cluster theory.
Soule, Pat LeRoy
1978-01-01
Water-surface profiles of the 25-, 50-, and 100-year recurrence interval discharges have been computed for all streams and reaches of channels in Fairfax County, Virginia, having a drainage area greater than 1 square mile except for Dogue Creek, Little Hunting Creek, and that portion of Cameron Run above Lake Barcroft. Maps have a 2-foot contour interval and a horizontal scale of 1 inch equals 100 feet were used for base on which flood boundaries were delineated for 25-, 50-, and 100-year floods to be expected in each basin under ultimate development conditions. This report is one of a series and presents a discussion of techniques employed in computing discharges and profiles as well as the flood profiles and maps on which flood boundaries have been delineated for the Horsepen Run, Sugarland Run, Nichols Run, and Pond Branch basins in Fairfax County. (Woodard-USGS)
Social network structures and bank runs
NASA Astrophysics Data System (ADS)
Li, Shouwei; Li, Jiaheng
2016-05-01
This paper investigates the impact of social network structures of depositors on bank runs. The analyzed network structures include random networks, small-world networks and scale-free networks. Simulation results show that the probability of bank run occurrence in random networks is larger than that in small-world networks, but the probability of bank run occurrence in scale-free networks drops from the highest to the lowest among the three types of network structures with the increase of the proportion of impatient depositors. The average degree of depositor networks has a significant impact on bank runs, but this impact is related to the proportion of impatient depositors and the confidence levels of depositors in banks.
Smarter running can keep buildings fit.
England, Simon
2011-09-01
Simon England, director at Accenture Health UK, outlines the benefits of an "assessment-based" approach to creating "smarter" healthcare buildings with reduced running costs and a lower carbon footprint. PMID:21961394
Marco Rescigno
2002-10-29
After a hiatus of almost 6 years and an extensive upgrade, Tevatron, the world largest proton-antiproton collider, has resumed the operation for the so called RUN II. In this paper we give a brief overview of the many new features of the Tevatron complex and of the upgraded CDF experiment, and show the presently achieved detector performances as well as highlights of the RUN II physics program in the beauty and electroweak sector.
RHIC Polarized proton performance in run-8
Montag,C.; Bai, M.; MacKay, W.W.; Roser, T.; Abreu, N.; Ahrens, L.; Barton, D.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Bunce, G.; Calaga, R.; Cameron, P.; Connolly, R.; D'Ottavio, T.; Drees, A.; Fedotov, A.V.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.; Hayes, T.; Huang, H.; Ingrassia, P.; Kayran, D.A.; Kewisch, J.; Lee, R.C.; Lin, F.; Litvinenko, V.N.; Luccio, A.U.; Luo, Y.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Michnoff, R.; Morris, J.; Oerter, B.; Pilat, F.; Pile, P.; Robert-Demolaize, G.; Russo, T.; Satogata, T.; Schultheiss, C.; Sivertz, M.; Smith, K.; Tepikian, S.; D. Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.
2008-10-06
During Run-8, the Relativistic Heavy Ion Collider (RHIC) provided collisions of spin-polarized proton beams at two interaction regions. Physics data were taken with vertical orientation of the beam polarization, which in the 'Yellow' RHIC ring was significantly lower than in previous years. We present recent developments and improvements as well as the luminosity and polarization performance achieved during Run-8, and we discuss possible causes of the not as high as previously achieved polarization performance of the 'Yellow' ring.
Negative running can prevent eternal inflation
Kinney, William H.; Freese, Katherine E-mail: ktfreese@umich.edu
2015-01-01
Current data from the Planck satellite and the BICEP2 telescope favor, at around the 2 σ level, negative running of the spectral index of curvature perturbations from inflation. We show that for negative running α < 0, the curvature perturbation amplitude has a maximum on scales larger than our current horizon size. A condition for the absence of eternal inflation is that the curvature perturbation amplitude always remain below unity on superhorizon scales. For current bounds on n{sub S} from Planck, this corresponds to an upper bound of the running α < −9 × 10{sup −5}, so that even tiny running of the scalar spectral index is sufficient to prevent eternal inflation from occurring, as long as the running remains negative on scales outside the horizon. In single-field inflation models, negative running is associated with a finite duration of inflation: we show that eternal inflation may not occur even in cases where inflation lasts as long as 10{sup 4} e-folds.
Metadata aided run selection at ATLAS
NASA Astrophysics Data System (ADS)
Buckingham, R. M.; Gallas, E. J.; C-L Tseng, J.; Viegas, F.; Vinek, E.; ATLAS Collaboration
2011-12-01
Management of the large volume of data collected by any large scale scientific experiment requires the collection of coherent metadata quantities, which can be used by reconstruction or analysis programs and/or user interfaces, to pinpoint collections of data needed for specific purposes. In the ATLAS experiment at the LHC, we have collected metadata from systems storing non-event-wise data (Conditions) into a relational database. The Conditions metadata (COMA) database tables not only contain conditions known at the time of event recording, but also allow for the addition of conditions data collected as a result of later analysis of the data (such as improved measurements of beam conditions or assessments of data quality). A new web based interface called "runBrowser" makes these Conditions Metadata available as a Run based selection service. runBrowser, based on PHP and JavaScript, uses jQuery to present selection criteria and report results. It not only facilitates data selection by conditions attributes, but also gives the user information at each stage about the relationship between the conditions chosen and the remaining conditions criteria available. When a set of COMA selections are complete, runBrowser produces a human readable report as well as an XML file in a standardized ATLAS format. This XML can be saved for later use or refinement in a future runBrowser session, shared with physics/detector groups, or used as input to ELSSI (event level Metadata browser) or other ATLAS run or event processing services.
Running With an Elastic Lower Limb Exoskeleton.
Cherry, Michael S; Kota, Sridhar; Young, Aaron; Ferris, Daniel P
2016-06-01
Although there have been many lower limb robotic exoskeletons that have been tested for human walking, few devices have been tested for assisting running. It is possible that a pseudo-passive elastic exoskeleton could benefit human running without the addition of electrical motors due to the spring-like behavior of the human leg. We developed an elastic lower limb exoskeleton that added stiffness in parallel with the entire lower limb. Six healthy, young subjects ran on a treadmill at 2.3 m/s with and without the exoskeleton. Although the exoskeleton was designed to provide ~50% of normal leg stiffness during running, it only provided 24% of leg stiffness during testing. The difference in added leg stiffness was primarily due to soft tissue compression and harness compliance decreasing exoskeleton displacement during stance. As a result, the exoskeleton only supported about 7% of the peak vertical ground reaction force. There was a significant increase in metabolic cost when running with the exoskeleton compared with running without the exoskeleton (ANOVA, P < .01). We conclude that 2 major roadblocks to designing successful lower limb robotic exoskeletons for human running are human-machine interface compliance and the extra lower limb inertia from the exoskeleton. PMID:26694976
Khan, A. Ali; Goeckeler, M.; Schaefer, A.; Haegler, Ph.; Hemmert, T. R.; Wollenweber, T.; Horsley, R.; Zanotti, J. M.; Pleiter, D.; Rakow, P. E. L.; Schierholz, G.
2006-11-01
We present data for the axial coupling constant g{sub A} of the nucleon obtained in lattice QCD with two degenerate flavors of dynamical nonperturbatively improved Wilson quarks. The renormalization is also performed nonperturbatively. For the analysis we give a chiral extrapolation formula for g{sub A} based on the small scale expansion scheme of chiral effective field theory for two degenerate quark flavors. Applying this formalism in a finite volume, we derive a formula that allows us to extrapolate our data simultaneously to the infinite volume and to the chiral limit. Using the additional lattice data in finite volume, we are able to determine the axial coupling of the nucleon in the chiral limit without imposing the known value at the physical point.
Non-Perturbative Many-Body Approach to the Hubbard Model and Single-Particle Pseudogap
NASA Astrophysics Data System (ADS)
Vilk, Y. M.; Tremblay, A.-M. S.
1997-11-01
for the self-energy are derived in both the magnetic and pairing pseudogap regimes. Other approaches, such as paramagnon, self-consistent fluctuation exchange approximation (FLEX), and pseudo-potential parquet approaches are critically compared. In particular, it is argued that the failure of the FLEX approximation to reproduce the psuedogap and the precursors AFM bands in the weak coupling regime and the Hubbard bands in the strong coupling regime is due to inconsistent treatment of vertex corrections in the expression for the self-energy. Treating the spin fluctuations as if there was a Migdal's theorem can lead not only to quantitatively wrong results but also to qualitatively wrong predictions, in particular with regard to the single-particle pseudogap.
Sex differences in running mechanics and patellofemoral joint kinetics following an exhaustive run.
Willson, John D; Loss, Justin R; Willy, Richard W; Meardon, Stacey A
2015-11-26
Patellofemoral joint pain (PFP) is a common running-related injury that is more prevalent in females and thought to be associated with altered running mechanics. Changes in running mechanics have been observed following an exhaustive run but have not been analyzed relative to the sex bias for PFP. The purpose of this study was to test if females demonstrate unique changes in running mechanics associated with PFP following an exhaustive run. For this study, 18 females and 17 males ran to volitional exhaustion. Peak PFJ contact force and stress, PFJ contact force and stress loading rates, hip adduction excursion, and hip and knee joint frontal plane angular impulse were analyzed between females and males using separate 2 factor ANOVAs (2 (male/female)×2 (before/after exhaustion)). We observed similar changes in running mechanics among males and females over the course of the exhaustive run. Specifically, greater peak PFJ contact force loading rate (5%, P=.01), PFJ stress loading rate (5%, P<.01), hip adduction excursion (1.3°, P<.01), hip abduction angular impulse (4%, P<.01), knee abduction angular impulse (5%, P=.03), average vertical ground reaction force loading rate (10%, P<.01) and step length (2.1cm, P=.001) were observed during exhausted running. These small changes in suspected PFP pathomechanical factors may increase a runner׳s propensity for PFP. However, unique changes in female running mechanics due to exhaustion do not appear to contribute to the sex bias for PFP. PMID:26525514
NASA Astrophysics Data System (ADS)
Sharma, Anju; Mitra, A. N.
A qqq BSE formalism based on DBχS of an input four-fermion Lagrangian of "current" u, d quarks interacting pairwise via gluon-exchange-propagator in its nonperturbative regime, is employed for the calculation of baryon self-energy via quark-loop integrals. To that end the baryon-qqq vertex function is derived under Covariant Instantaneity Ansatz (CIA), using Green function techniques. This is a three-body extension of an earlier qbar q (two-body) result on the exact 3D-4D interconnection for the respective BS wave functions under 3D kernel support. The nonperturbative QCD feature of this approach (vis-a-vis chiral perturbation theory — see text for comparison) is preserved through the gluon exchange propagator in the infrared regime (characterized by two parameters C0, ω0), precalibrated to both qbar q and qqq spectra plus other observables, together with a DBχ S mechanism to generate the dynamical mass m(p). The quark-loop integrals for the neutron (n) - proton (p) mass difference receive contributions from two sources: (i) the strong SU(2) effect arising from the d-u mass difference (4 MeV); (ii) the e.m. effect of the respective quark charges. The resultant n-p difference comes dominantly from the d-u effect (+1.71 MeV), which is mildly offset by e.m. effect (-0.44), subject to gauge corrections. For an estimate of the latter a general method for QED gauge corrections to an arbitrary momentum dependent vertex function is outlined (in App. C), and a calculation made for the (two-body) kaon as a test case, indicates an increase by 0.612 MeV in the earlier kaon e.m. value (1.032 MeV). This result is taken as a rough indication of the percentage gauge correction expected for the n-p case. A critical comparison is given with the results from QCD sum rules.
Instanton induced Yukawa couplings from distant E3 and E(-1) instantons
NASA Astrophysics Data System (ADS)
Goodsell, Mark D.; Witkowski, Lukas T.
2016-01-01
We calculate non-perturbative contributions to Yukawa couplings on D3-branes at orbifold singularities due to E3 and fractional E(-1) instantons which do not intersect the visible sector branes. While distant E3 instantons on bulk cycles typically contribute to Yukawa couplings, we find that distant fractional E(-1) can also give rise to new Yukawa couplings. However, fractional E(-1) instantons only induce Yukawa couplings if they are located at a singularity which shares a collapsed homologous two-cycle with the singularity supporting the visible sector. The non-perturbative contributions to Yukawa couplings exhibit a different flavour structure than the tree-level Yukawa couplings and, as a result, they can be sources of flavour violation. This is particularly relevant for schemes of moduli stabilisation which rely on superpotential contributions from E3 instantons, such as KKLT or the Large Volume Scenario. As a byproduct of our analysis, we shed some new light on the properties of annulus diagrams with matter field insertions in stringy instanton calculus.
Ginell, W.S.
1982-03-17
A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.
Ginell, William S.
1989-04-25
A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.
Intrinsic Spin-Orbit Coupling in Superconducting Delta-Doped SrTiO3 Heterostructures
Bell, Christopher
2011-08-19
We report the violation of the Pauli limit due to intrinsic spin-orbit coupling in SrTiO{sub 3} heterostructures. Via selective doping down to a few nanometers, a two-dimensional superconductor is formed, geometrically suppressing orbital pair-breaking. The spin-orbit scattering is exposed by the robust in-plane superconducting upper critical field, exceeding the Pauli limit by a factor of 4. Transport scattering times several orders of magnitude higher than for conventional thin film superconductors enables a new regime to be entered, where spin-orbit coupling effects arise non-perturbatively.
Compare 100 GeV/n Au Run 2010 with Run 2007
Zhang, S.Y.
2011-01-01
With the very successful commissioning of the vertical stochastic cooling in 100 GeV/n Au Run 2010, the IBS (intra-beam scattering) is no longer the dominant factor in terms of the integrated luminosity. A new luminosity model is needed, where the beam intensity lifetime is more important and the burn-off needs to be accounted for. Toward this goal, a brief review of the Run 2010, compared with Run 2007, is presented.
Validity of Self-Reported Running Distance.
Dideriksen, Mette; Soegaard, Cristina; Nielsen, Rasmus O
2016-06-01
Dideriksen, M, Soegaard, C, and Nielsen, RO. Validity of self-reported running distance. J Strength Cond Res 30(6): 1592-1596, 2016-It is unclear whether there is a difference between subjective evaluation and objective global positioning systems (GPS) measurement of running distance. The purpose of this study was to investigate if such difference exists. A total of 100 participants (51% men; median age, 41.5; body mass, 78.1 kg ±13.8 SD) completed a run of free choice, then subjectively reported the distance in kilometer (km). This information was subsequently compared with the distance derived from a nondifferential GPS watch using paired t-tests and Bland-Altman's 95% limits of agreement. No significant difference was found between the mean paired differences between subjective evaluations and GPS measurements (1.86%, 95% confidence interval = -1.53%; 5.25%, p = 0.96). The Bland-Altman 95% limits of agreement revealed considerable variation (lower limit = -28% and upper limit = 40%). Such variation exceeds the clinical error range of 10%. In conclusion, the mean running distance (km) is similar between self-reporting and GPS measurements. However, researchers should consider using GPS measurements in favor of subjective reporting of running distance because of considerable variation on an individual level. PMID:26479023
Exercise economy in skiing and running
Losnegard, Thomas; Schäfer, Daniela; Hallén, Jostein
2014-01-01
Substantial inter-individual variations in exercise economy exist even in highly trained endurance athletes. The variation is believed to be determined partly by intrinsic factors. Therefore, in the present study, we compared exercise economy in V2-skating, double poling, and uphill running. Ten highly trained male cross-country skiers (23 ± 3 years, 180 ± 6 cm, 75 ± 8 kg, VO2peak running: 76.3 ± 5.6 mL·kg−1·min−1) participated in the study. Exercise economy and VO2peak during treadmill running, ski skating (V2 technique) and double poling were compared based on correlation analysis. There was a very large correlation in exercise economy between V2-skating and double poling (r = 0.81) and large correlations between V2-skating and running (r = 0.53) and double poling and running (r = 0.58). There were trivial to moderate correlations between exercise economy and the intrinsic factors VO2peak (r = 0.00–0.23), cycle rate (r = 0.03–0.46), body mass (r = −0.09–0.46) and body height (r = 0.11–0.36). In conclusion, the inter-individual variation in exercise economy could be explained only moderately by differences in VO2peak, body mass and body height. Apparently other intrinsic factors contribute to the variation in exercise economy between highly trained subjects. PMID:24478718
Chaotic inflation with curvaton induced running
NASA Astrophysics Data System (ADS)
Sloth, Martin S.
2014-09-01
While dust contamination now appears as a likely explanation of the apparent tension between the recent BICEP2 data and the Planck data, we will here explore the consequences of a large running in the spectral index as suggested by the BICEP2 Collaboration as an alternative explanation of the apparent tension, but which would be in conflict with prediction of the simplest model of chaotic inflation. The large field chaotic model is sensitive to UV physics, and the nontrivial running of the spectral index suggested by the BICEP2 Collaboration could therefore, if true, be telling us some additional new information about the UV completion of inflation. However, before we would be able to draw such strong conclusions with confidence, we would first have to also carefully exclude all the alternatives. Assuming monomial chaotic inflation is the right theory of inflation, we therefore explore the possibility that the running could be due to some other less UV sensitive degree of freedom. As an example, we ask if it is possible that the curvature perturbation spectrum has a contribution from a curvaton, which makes up for the large running in the spectrum. We find that this effect could mask the information we can extract about the UV physics. We also study different models, which might lead to a large negative intrinsic running of the curvaton.
Coupled-cluster calculations of nucleonic matter
NASA Astrophysics Data System (ADS)
Hagen, G.; Papenbrock, T.; Ekström, A.; Wendt, K. A.; Baardsen, G.; Gandolfi, S.; Hjorth-Jensen, M.; Horowitz, C. J.
2014-01-01
Background: The equation of state (EoS) of nucleonic matter is central for the understanding of bulk nuclear properties, the physics of neutron star crusts, and the energy release in supernova explosions. Because nuclear matter exhibits a finely tuned saturation point, its EoS also constrains nuclear interactions. Purpose: This work presents coupled-cluster calculations of infinite nucleonic matter using modern interactions from chiral effective field theory (EFT). It assesses the role of correlations beyond particle-particle and hole-hole ladders, and the role of three-nucleon forces (3NFs) in nuclear matter calculations with chiral interactions. Methods: This work employs the optimized nucleon-nucleon (NN) potential NNLOopt at next-to-next-to leading order, and presents coupled-cluster computations of the EoS for symmetric nuclear matter and neutron matter. The coupled-cluster method employs up to selected triples clusters and the single-particle space consists of a momentum-space lattice. We compare our results with benchmark calculations and control finite-size effects and shell oscillations via twist-averaged boundary conditions. Results: We provide several benchmarks to validate the formalism and show that our results exhibit a good convergence toward the thermodynamic limit. Our calculations agree well with recent coupled-cluster results based on a partial wave expansion and particle-particle and hole-hole ladders. For neutron matter at low densities, and for simple potential models, our calculations agree with results from quantum Monte Carlo computations. While neutron matter with interactions from chiral EFT is perturbative, symmetric nuclear matter requires nonperturbative approaches. Correlations beyond the standard particle-particle ladder approximation yield non-negligible contributions. The saturation point of symmetric nuclear matter is sensitive to the employed 3NFs and the employed regularization scheme. 3NFs with nonlocal cutoffs exhibit a
Nonperturbative and spin effects in the central exclusive production of the tensor χc(2+) meson
NASA Astrophysics Data System (ADS)
Pasechnik, R. S.; Szczurek, A.; Teryaev, O. V.
2010-02-01
We discuss central exclusive production (CEP) of the tensor χc(2+) meson in proton-(anti)proton collisions at Tevatron, RHIC, and LHC energies. The amplitude for the process is derived within the kt-factorization approach. Differential and total cross sections are calculated for several unintegrated gluon distribution functions (UGDFs). We compare exclusive production of all charmonium states χc(0+), χc(1+) and χc(2+). Good description of the recent Tevatron data is achieved both with Martin-Ryskin phenomenological UGDF and UGDF based on unified BFKL-DGLAP approach. Unlike for Higgs production, the main contribution to the diffractive amplitude of heavy quarkonia comes from nonperturbative region of gluon transverse momenta Q⊥<1GeV. At y≈0, depending on UGDF we predict the contribution of χc(1+,2+) to the J/Ψ+γ channel to be comparable or larger than that of the χc(0+) one. This is partially due to a significant contribution from lower polarization states λ=0 for χc(1+) and λ=0, ±1 for χc(2+) meson. Corresponding theoretical uncertainties are discussed.
NASA Astrophysics Data System (ADS)
Smith, Roger J.
2008-10-01
A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local Bpol diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local Te, ne, and B∥ along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher neB∥ product and higher ne and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.
Holographic Ricci dark energy as running vacuum
NASA Astrophysics Data System (ADS)
George, Paxy; Mathew, Titus K.
2016-04-01
Holographic Ricci dark energy (DE) that has been proposed ago has faced problems of future singularity. In the present work, we consider the Ricci DE with an additive constant in its density as running vacuum energy. We have analytically solved the Friedmann equations and also the role played by the general conservation law followed by the cosmic components together. We have shown that the running vacuum energy status of the Ricci DE helps to remove the possible future singularity in the model. The additive constant in the density of the running vacuum played an important role, such that, without that, the model predicts either eternal deceleration or eternal acceleration. But along with the additive constant, equivalent to a cosmological constant, the model predicts a late time acceleration in the expansion of the universe, and in the far future of the evolution it tends to de Sitter universe.
Is running associated with degenerative joint disease
Panush, R.S.; Schmidt, C.; Caldwell, J.R.; Edwards, N.L.; Longley, S.; Yonker, R.; Webster, E.; Nauman, J.; Stork, J.; Pettersson, H.
1986-03-07
Little information is available regarding the long-term effects, if any, of running on the musculoskeletal system. The authors compared the prevalence of degenerative joint disease among 17 male runners with 18 male nonrunners. Running subjects (53% marathoners) ran a mean of 44.8 km (28 miles)/wk for 12 years. Pain and swelling of hips, knees, ankles and feet and other musculoskeletal complaints among runners were comparable with those among nonrunners. Radiologic examinations (for osteophytes, cartilage thickness, and grade of degeneration) also were without notable differences among groups. They did not find an increased prevalence of osteoarthritis among the runners. Our observations suggest that long-duration, high-mileage running need to be associated with premature degenerative joint disease in the lower extremities.
Jefferson Lab Data Acquisition Run Control System
Vardan Gyurjyan; Carl Timmer; David Abbott; William Heyes; Edward Jastrzembski; David Lawrence; Elliott Wolin
2004-10-01
A general overview of the Jefferson Lab data acquisition run control system is presented. This run control system is designed to operate the configuration, control, and monitoring of all Jefferson Lab experiments. It controls data-taking activities by coordinating the operation of DAQ sub-systems, online software components and third-party software such as external slow control systems. The main, unique feature which sets this system apart from conventional systems is its incorporation of intelligent agent concepts. Intelligent agents are autonomous programs which interact with each other through certain protocols on a peer-to-peer level. In this case, the protocols and standards used come from the domain-independent Foundation for Intelligent Physical Agents (FIPA), and the implementation used is the Java Agent Development Framework (JADE). A lightweight, XML/RDF-based language was developed to standardize the description of the run control system for configuration purposes.
Footwear Decreases Gait Asymmetry during Running
Hoerzer, Stefan; Federolf, Peter A.; Maurer, Christian; Baltich, Jennifer; Nigg, Benno M.
2015-01-01
Previous research on elderly people has suggested that footwear may improve neuromuscular control of motion. If footwear does in fact improve neuromuscular control, then such an influence might already be present in young, healthy adults. A feature that is often used to assess neuromuscular control of motion is the level of gait asymmetry. The objectives of the study were (a) to develop a comprehensive asymmetry index (CAI) that is capable of detecting gait asymmetry changes caused by external boundary conditions such as footwear, and (b) to use the CAI to investigate whether footwear influences gait asymmetry during running in a healthy, young cohort. Kinematic and kinetic data were collected for both legs of 15 subjects performing five barefoot and five shod over-ground running trials. Thirty continuous gait variables including ground reaction forces and variables of the hip, knee, and ankle joints were computed for each leg. For each individual, the differences between the variables for the right and left leg were calculated. Using this data, a principal component analysis was conducted to obtain the CAI. This study had two main outcomes. First, a sensitivity analysis suggested that the CAI had an improved sensitivity for detecting changes in gait asymmetry caused by external boundary conditions. The CAI may, therefore, have important clinical applications such as monitoring the progress of neuromuscular diseases (e.g. stroke or cerebral palsy). Second, the mean CAI for shod running (131.2 ± 48.5; mean ± standard deviation) was significantly lower (p = 0.041) than the CAI for barefoot running (155.7 ± 39.5). This finding suggests that in healthy, young adults gait asymmetry is reduced when running in shoes compared to running barefoot, which may be a result of improved neuromuscular control caused by changes in the afferent sensory feedback. PMID:26488484
Panteli, Flora; Smirniotou, Athanasia; Theodorou, Apostolos
2016-06-01
The purpose of the study was to investigate possible changes at step pattern and technical performance of the long jump approach run in seven young long jumpers by modifying the performance environment (long jump runway versus track lane) and the nested actions (run-through with take-off versus complete long jump). Our findings suggest that the step pattern and technical aspects of the approach run are affected by environmental context and nested task constraints. In terms of environmental context, it appears that practising the training routine of run-through followed by take-off on the long jump runway allows athletes to simulate competition conditions in terms of step regulation and technical efficacy. The task of run-through followed by take-off on the track lane failed to initiate visual perception, step regulation and technical efficiency at the steps preceding the instant of take-off. In terms of nested task constraints, when run-ups were followed by jump for distance instead of only a take-off, a higher level of consistency was achieved and step regulation was based on perception-action coupling. Practising long jump run-up accuracy at a setting not containing the informational elements of the performance environment fails to develop the key elements of the skill. PMID:26390236
Abort Gap Cleaning for LHC Run 2
Uythoven, Jan; Boccardi, Andrea; Bravin, Enrico; Goddard, Brennan; Hemelsoet, Georges-Henry; Höfle, Wolfgang; Jacquet, Delphine; Kain, Verena; Mazzoni, Stefano; Meddahi, Malika; Valuch, Daniel; Gianfelice-Wendt, Eliana
2014-07-01
To minimize the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to the applied cleaning algorithms.
CDF - Run II Status and Prospects
Manfred Paulini
2003-03-17
After a five year upgrade period, the CDF detector located at the Fermilab Tevatron Collider is back in operation taking high quality data with all subsystems functional. We report on the status of the CDF experiment in Run II and discuss the start-up of the Tevatron accelerator. First physics results from CDF are presented. We also discuss the prospects for B physics in RunII, in particular the measurements of B{sub S}{sup 0} flavour oscillations and CP violation in B decays.
Tevatron Run II performance and plans
Michael D Church
2002-07-12
The Fermilab accelerator complex has been operating Run II for approximately one year. In this mode 36 proton bunches collide with 36 antiproton bunches at 2 interaction regions in the Tevatron at 980 GeV beam energy. The long range goal in Run II is to obtain a total integrated luminosity of 15 pb{sup -1}. The current status and performance of the accelerator complex is described, including the Tevatron, Main Injector, Antiproton Source, and Recycler Ring. Future upgrade plans and prospects for reaching the admittedly ambitious long range goal are presented.
ERIC Educational Resources Information Center
Wilt, Fred
This guidebook is written for coaches of runners competing in both crosscountry and track. The techniques of training athletes in this sport are described with emphasis placed on why certain methods are successful as well as how they are accomplished. The methods of training runners of different ages and varying experience are discussed. Articles…
NASA Astrophysics Data System (ADS)
Kalinichenko, Igor; Kazinski, Peter
2014-08-01
The explicit expressions for the one-loop non-perturbative corrections to the gravitational effective action induced by a scalar field on a stationary gravitational background are obtained both at zero and finite temperatures. The perturbative and non-perturbative contributions to the one-loop effective action are explicitly separated. It is proved that, after a suitable renormalization, the perturbative part of the effective action at zero temperature can be expressed in a covariant form solely in terms of the metric and its derivatives. This part coincides with the known large mass expansion of the one-loop effective action. The non-perturbative part of the renormalized one-loop effective action at zero temperature is proved to depend explicitly on the Killing vector defining the vacuum state of quantum fields. This part cannot be expressed in a covariant way through the metric and its derivatives alone. The implications of this result for the structure and symmetries of the effective action for gravity are discussed.
2. DETAIL OF STRUCTURAL SYSTEM FOR CANTILEVERED HOG RUN; BUILDING ...
2. DETAIL OF STRUCTURAL SYSTEM FOR CANTILEVERED HOG RUN; BUILDING 168 (1960 HOG KILL) IS BENEATH HOG RUN - Rath Packing Company, Cantilevered Hog Run, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA
Validation of Distance Run Tests for Elementary School Children
ERIC Educational Resources Information Center
Jackson, Andrew S.; Coleman, A. Eugene
1976-01-01
The author reports that 9- and 12-minute distance runs proved to be significantly correlated with maximum oxygen uptake and that the runs were suitable tests of the distance running ability of elementary school boys and girls. (GW)
Effects of a minimalist shoe on running economy and 5-km running performance.
Fuller, Joel T; Thewlis, Dominic; Tsiros, Margarita D; Brown, Nicholas A T; Buckley, Jonathan D
2016-09-01
The purpose of this study was to determine if minimalist shoes improve time trial performance of trained distance runners and if changes in running economy, shoe mass, stride length, stride rate and footfall pattern were related to any difference in performance. Twenty-six trained runners performed three 6-min sub-maximal treadmill runs at 11, 13 and 15 km·h(-1) in minimalist and conventional shoes while running economy, stride length, stride rate and footfall pattern were assessed. They then performed a 5-km time trial. In the minimalist shoe, runners completed the trial in less time (effect size 0.20 ± 0.12), were more economical during sub-maximal running (effect size 0.33 ± 0.14) and decreased stride length (effect size 0.22 ± 0.10) and increased stride rate (effect size 0.22 ± 0.11). All but one runner ran with a rearfoot footfall in the minimalist shoe. Improvements in time trial performance were associated with improvements in running economy at 15 km·h(-1) (r = 0.58), with 79% of the improved economy accounted for by reduced shoe mass (P < 0.05). The results suggest that running in minimalist shoes improves running economy and 5-km running performance. PMID:27328725
Universal entanglement crossover of coupled quantum wires
NASA Astrophysics Data System (ADS)
Vasseur, Romain; Jacobsen, Jesper; Saleur, Hubert
2014-03-01
We consider the entanglement between two one-dimensional quantum wires (Luttinger Liquids) coupled by tunneling through a quantum impurity. The physics of the system involves a crossover between weak and strong coupling regimes characterized by an energy scale TB, and methods of conformal field theory therefore cannot be applied. The evolution of the entanglement in this crossover has led to many numerical studies, but has remained little understood, analytically or even qualitatively. This is, in part, due to the fact that the entanglement in this case is non-perturbative in the tunneling amplitude. We argue that the correct universal scaling form of the entanglement entropy S (for an arbitrary interval containing the impurity) is ∂S / ∂lnL = f(LTB) . In the special case where the coupling to the impurity can be refermionized, we show how the universal function f(LTB) can be obtained analytically using recent results on form factors of twist fields and a defect massless-scattering formalism. Our results are carefully checked against numerical simulations. This work was supported by the the French ANR (ANR Projet 2010 Blanc SIMI 4 : DIME), the US DOE (grant number DE-FG03-01ER45908), the Quantum Materials program of LBNL (RV) and the Institut Universitaire de France (JLJ).
The running athlete: Roentgenograms and remedies
Pavlov, H.; Torg, J.S.
1986-01-01
The authors have put together an atlas of radiographs of almost every conceivable running injury to the foot, ankle, leg, knee, femur, groin, and spine. Text material is limited to legends which describe the figures, and the remedies listed are brief. The text indicates conservative versus surgical treatment and, in some instances, recommends a surgical procedure.
Healthy Living Initiative: Running/Walking Club
ERIC Educational Resources Information Center
Stylianou, Michalis; Kulinna, Pamela Hodges; Kloeppel, Tiffany
2014-01-01
This study was grounded in the public health literature and the call for schools to serve as physical activity intervention sites. Its purpose was twofold: (a) to examine the daily distance covered by students in a before-school running/walking club throughout 1 school year and (b) to gain insights on the teachers perspectives of the club.…
Running Clubs--A Combinatorial Investigation.
ERIC Educational Resources Information Center
Nissen, Phillip; Taylor, John
1991-01-01
Presented is a combinatorial problem based on the Hash House Harriers rule which states that the route of the run should not have previously been traversed by the club. Discovered is how many weeks the club can meet before the rule has to be broken. (KR)
The CDF Run II disk inventory manager
Paul Hubbard and Stephan Lammel
2001-11-02
The Collider Detector at Fermilab (CDF) experiment records and analyses proton-antiproton interactions at a center-of-mass energy of 2 TeV. Run II of the Fermilab Tevatron started in April of this year. The duration of the run is expected to be over two years. One of the main data handling strategies of CDF for Run II is to hide all tape access from the user and to facilitate sharing of data and thus disk space. A disk inventory manager was designed and developed over the past years to keep track of the data on disk, to coordinate user access to the data, and to stage data back from tape to disk as needed. The CDF Run II disk inventory manager consists of a server process, a user and administrator command line interfaces, and a library with the routines of the client API. Data are managed in filesets which are groups of one or more files. The system keeps track of user access to the filesets and attempts to keep frequently accessed data on disk. Data that are not on disk are automatically staged back from tape as needed. For CDF the main staging method is based on the mt-tools package as tapes are written according to the ANSI standard.
Individualism, innovation, and long-run growth
Gorodnichenko, Yuriy; Roland, Gerard
2011-01-01
Countries having a more individualist culture have enjoyed higher long-run growth than countries with a more collectivist culture. Individualist culture attaches social status rewards to personal achievements and thus, provides not only monetary incentives for innovation but also social status rewards, leading to higher rates of innovation and economic growth. PMID:22198759
Utah CTE: Running in New Circles
ERIC Educational Resources Information Center
Dobson, Kristine; Fischio, Shannon; Thomas, Susan
2011-01-01
Although the authors admit that they do not have any fool-proof formulas to offer for using Web site, blog, Facebook, Twitter, or YouTube in order to more successfully share one's career and technical education (CTE) story, they share a story of their own journey and hope that it may help people to run faster and more effectively in these new…
B PHYSICS AT THE TEVATRON RUN II.
YIP,K.
2004-03-27
We present the B physics results from the CDF and D0 experiments at the Tevatron Run II at Fermilab and their future prospect. This includes various B mass and lifetime measurements, B mixing, the confirmation of the discovery of the X particle, rare decays, CP violation, and spectroscopy.
A luminosity model of RHIC gold runs
Zhang, S.Y.
2011-11-01
In this note, we present a luminosity model for RHIC gold runs. The model is applied to the physics fills in 2007 run without cooling, and with the longitudinal cooling applied to one beam only. Having good comparison, the model is used to project a fill with the longitudinal cooling applied to both beams. Further development and possible applications of the model are discussed. To maximize the integrated luminosity, usually the higher beam intensity, smaller longitudinal and transverse emittance, and smaller {beta} are the directions to work on. In past 10 years, the RHIC gold runs have demonstrated a path toward this goal. Most recently, a successful commissioning of the bunched beam stochastic cooling, both longitudinal and transverse, has offered a chance of further RHIC luminosity improvement. With so many factors involved, a luminosity model would be useful to identify and project gains in the machine development. In this article, a preliminary model is proposed. In Section 2, several secondary factors, which are not yet included in the model, are identified based on the RHIC operation condition and experience in current runs. In Section 3, the RHIC beam store parameters used in the model are listed, and validated. In Section 4, the factors included in the model are discussed, and the luminosity model is presented. In Section 5, typical RHIC gold fills without cooling, and with partial cooling are used for comparison with the model. Then a projection of fills with more coolings is shown. In Section 6, further development of the model is discussed.
An Orthopedic Perspective. Does Running Cause Osteoarthritis?
ERIC Educational Resources Information Center
Pascale, Mark; Grana, William A.
1989-01-01
Discusses the development of osteoarthritis and whether running and other impact loading sports promote it. Although these sports do not cause arthritis in normal weight bearing limbs, they can accelerate it in damaged joints. It is important to identify people with preeexisting joint disease so they can choose nonimpact-loading aerobic exercise.…
South Africa/Time Running Out.
ERIC Educational Resources Information Center
Clark, Todd, Ed.
1984-01-01
Based on the book, "South Africa: Time Running Out," a report of the Study Commission on U.S. Policy Toward Southern Africa, this 10-20 day unit of study is designed to help high school students learn about the history, geography, and present situation in South Africa and its relationship to the United States. The first of four sections provides…
Lightweight Restraint For Coupling Flanges
NASA Technical Reports Server (NTRS)
Whitaker, Willie D.
1989-01-01
End flanges of flexible coupling system restrained against excessive rotation or axial separation by inexpensive, lightweight mechanism based on cables and pulleys. Restraining mechanism adapted to cable, duct, hose, or passageway couplings between vehicles, or to other applications in which angular and positional misalignments must be restricted to moderate specified values. Total misalignment of two end flanges limited to amount of slack available in cable-and-pulley mechanism. When cable taut, further axial separation of flange centers restrained, but small tilts accommodated by running of cable through pulleys.
NASA Astrophysics Data System (ADS)
Bock, J. J.; Gundersen, J.; Lee, A. T.; Richards, P. L.; Wollack, E.
2009-03-01
This paper describes contributions to the CMBpol Technology Study Workshop concerning optical coupling structures. These are structures in or near the focal plane which convert the free space wave to a superconducting microstrip on a SI wafer, or to the waveguide input to a HEMT receiver. In addition to an introduction and conclusions by the editor, this paper includes independent contributions by Bock on 'Planar Antenna-Coupled Bolometers for CMB Polarimetry', by Gunderson and Wollack on 'Millimeter-Wave Platlet Feeds', and by Lee on 'Multi-band Dual-Polarization Lens-coupled Planar Antennas for Bolometric CMB polarimetry.'
Marathon run: cardiovascular adaptation and cardiovascular risk.
Predel, Hans-Georg
2014-11-21
The first marathon run as an athletic event took place in the context of the Olympic Games in 1896 in Athens, Greece. Today, participation in a 'marathon run' has become a global phenomenon attracting young professional athletes as well as millions of mainly middle-aged amateur athletes worldwide each year. One of the main motives for these amateur marathon runners is the expectation that endurance exercise (EE) delivers profound beneficial health effects. However, with respect to the cardiovascular system, a controversial debate has emerged whether the marathon run itself is healthy or potentially harmful to the cardiovascular system, especially in middle-aged non-elite male amateur runners. In this cohort, exercise-induced increases in cardiac biomarkers-troponin and brain natriuretic peptide-and acute functional cardiac alterations have been observed and interpreted as potential cardiac damage. Furthermore, in the cohort of 40- to 65-year-old males engaged in intensive EE, a significant risk for the development of atrial fibrillation has been identified. Fortunately, recent studies demonstrated a normalization of the cardiac biomarkers and the functional alterations within a short time frame. Therefore, these alterations may be perceived as physiological myocardial reactions to the strenuous exercise and the term 'cardiac fatigue' has been coined. This interpretation is supported by a recent analysis of 10.9 million marathon runners demonstrating that there was no significantly increased overall risk of cardiac arrest during long-distance running races. In conclusion, intensive and long-lasting EE, e.g. running a full-distance Marathon, results in high cardiovascular strain whose clinical relevance especially for middle-aged and older athletes is unclear and remains a matter of controversy. Furthermore, there is a need for evidence-based recommendations with respect to medical screening and training strategies especially in male amateur runners over the age of
Scaled centrifugal compressor, collector and running gear program
NASA Technical Reports Server (NTRS)
Kenehan, J. G.
1983-01-01
The Scaled Centrifugal Compressor, Collector and Running gear Program was conducted in support of an overall NASA strategy to improve small-compressor performance, durability, and reliability while reducing initial and life-cycle costs. Accordingly, Garrett designed and provided a test rig, gearbox coupling, and facility collector for a new NASA facility, and provided a scaled model of an existing, high-performance impeller for evaluation scaling effects on aerodynamic performance and for obtaining other performance data. Test-rig shafting was designed to operate smoothly throughout a speed range up to 60,000 rpm. Pressurized components were designed to operate at pressures up to 300 psia and at temperatures to 1000 F. Nonrotating components were designed to provide a margin-of-safety of 0.05 or greater; rotating components, for a margin-of-safety based on allowable yield and ultimate strengths. Design activities were supported by complete design analysis, and the finished hardware was subjected to check-runs to confirm proper operation. The test rig will support a wide range of compressor tests and evaluations.
Škof, B; Strojnik, V
2006-01-01
Objective The aim of this study was to determine the influence of intensive aerobic running on some muscle contractile characteristics and the dynamics of their recovery during a 2 hour period afterwards. Methods Seven well trained runners performed a 6 km run at anaerobic threshold (VOBLA). Knee torque during single twitch, low and high frequency electrical stimulation (ES), maximum voluntary knee extension, and muscle activation level test of the quadriceps femoris muscles were measured before and immediately after the run, and at several time points during a 120 minute interval that followed the run. Results After exercise, the mean (SE) maximum twitch torque (TTW) and torque at ES with 20 Hz (low frequency ES; TF20) dropped by 14.1 (5.1)% (p<0.05) and 20.6 (7.9)% (p<0.05) respectively, while torque at stimulation with 100 Hz (high frequency ES; TF100), maximum isometric knee extension torque (maximum voluntary contraction torque; TMVC), and activation level did not change significantly. Twitch contraction time was shortened by 8 (2)% (p<0.05). Ten minutes after the run, TTW was 40% higher than immediately after the run and 10% (p<0.05) higher than before the run. TF20, TF100, and TMVC remained lower for 60 minutes (p<0.05) than before the run. Conclusions A 6 km continuous run at VOBLA caused peripheral fatigue by impairing excitation–contraction coupling. Twitch torque recovered very quickly. However, the process of torque restoration at maximum isometric knee extension torque and at high and low frequency ES took much longer. PMID:16505077
Coupled ensemble flow line advection and analysis.
Guo, Hanqi; Yuan, Xiaoru; Huang, Jian; Zhu, Xiaomin
2013-12-01
Ensemble run simulations are becoming increasingly widespread. In this work, we couple particle advection with pathline analysis to visualize and reveal the differences among the flow fields of ensemble runs. Our method first constructs a variation field using a Lagrangian-based distance metric. The variation field characterizes the variation between vector fields of the ensemble runs, by extracting and visualizing the variation of pathlines within ensemble. Parallelism in a MapReduce style is leveraged to handle data processing and computing at scale. Using our prototype system, we demonstrate how scientists can effectively explore and investigate differences within ensemble simulations. PMID:24051840
Uncertainty Analysis of Model Coupling
NASA Astrophysics Data System (ADS)
Held, H.; Knopf, B.; Schneider von Deimling, T.; Schellnhuber, H.-J.
The Earth System is a highly complex system that is often modelled by coupling sev- eral nonlinear submodules. For predicting the climate with these models, the following uncertainties play an essential role: parameter uncertainty, uncertainty in initial con- ditions or model uncertainty. Here we will address uncertainty in initial conditions as well as model uncertainty. As the process of coupling is an important part of model- ing, the main aspect of this work is the investigation of uncertainties that are due to the coupling process. For this study we use conceptual models that, compared to GCMs, have the advantage that the model itself as well as the output can be treated in a mathematically elabo- rated way. As the time for running the model is much shorter, the investigation is also possible for a longer period, e.g. for paleo runs. In consideration of these facts it is feasible to analyse the whole phase space of the model. The process of coupling is investigated by using different methods of examining low order coupled atmosphere-ocean systems. In the dynamical approach a fully coupled system of the two submodules can be compared to a system where one submodule forces the other. For a particular atmosphere-ocean system, based on the Lorenz model for the atmosphere, there can be shown significant differences in the predictability of a forced system depending whether the subsystems are coupled in a linear or a non- linear way. In [1] it is shown that in the linear case the forcing cannot represent the coupling, but in the nonlinear case, that we investigated in our study, the variability and the statistics of the coupled system can be reproduced by the forcing. Another approach to analyse the coupling is to carry out a bifurcation analysis. Here the bifurcation diagram of a single atmosphere system is compared to that of a cou- pled atmosphere-ocean system. Again it can be seen from the different behaviour of the coupled and the uncoupled system, that the
Measurement of the strong coupling constant using τ decays
NASA Astrophysics Data System (ADS)
Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Lan Wu, Sau; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration
1993-06-01
The strong coupling constant is determined from the leptonic branching ratios, the lifetime, and the invariant mass distribution of the hadronic final state of the τ lepton, using data accumulated at LEP with the ALEPH detector. The strong coupling constant measurement, αs( mτ2) = 0.330±0.046, evolved to the Z mass yields αs( MZ2) = 0.188±0.005. The error includes experimental and theoretical uncertainties, the latter evaluated in the framework of the Shifman, Vainshtein and Zakharov (SVZ) approach. The method allows the non-perturbative contribution to the hadronic decay rate to be determined to be 0.3±0.5%.
Unsal, Mithat
2007-03-06
We study the phase diagrams of N = {infinity} vector-like, asymptotically free gauge theories as a function of volume, on S{sup 3} x S{sup 1}. The theories of interest are the ones with fermions in two index representations [adjoint, (anti)symmetric, and bifundamental abbreviated as QCD(adj), QCD(AS/S) and QCD(BF)], and are interrelated via orbifold or orientifold projections. The phase diagrams reveal interesting phenomena such as disentangled realizations of chiral and center symmetry, confinement without chiral symmetry breaking, zero temperature chiral transitions, and in some cases, exotic phases which spontaneously break the discrete symmetries such as C, P, T as well as CPT. In a regime where the theories are perturbative, the deconfinement temperature in SYM, and QCD(AS/S/BF) coincide. The thermal phase diagrams of thermal orbifold QCD(BF), orientifold QCD(AS/S), and N = 1 SYM coincide, provided charge conjugation symmetry for QCD(AS/S) and Z{sub 2} interchange symmetry of the QCD(BF) are not broken in the phase continuously connected to R{sup 4} limit. When the S{sup 1} circle is endowed with periodic boundary conditions, the (nonthermal) phase diagrams of orbifold and orientifold QCD are still the same, however, both theories possess chirally symmetric phases which are absent in N=1 SYM. The match and mismatch of the phase diagrams depending on the spin structure of fermions along the S{sup 1} circle is naturally explained in terms of the necessary and sufficient symmetry realization conditions which determine the validity of the nonperturbative orbifold orientifold equivalence.
Couvillon, Margaret J.; Phillipps, Hunter L. F.; Schürch, Roger; Ratnieks, Francis L. W.
2012-01-01
The presence of noise in a communication system may be adaptive or may reflect unavoidable constraints. One communication system where these alternatives are debated is the honeybee (Apis mellifera) waggle dance. Successful foragers communicate resource locations to nest-mates by a dance comprising repeated units (waggle runs), which repetitively transmit the same distance and direction vector from the nest. Intra-dance waggle run variation occurs and has been hypothesized as a colony-level adaptation to direct recruits over an area rather than a single location. Alternatively, variation may simply be due to constraints on bees' abilities to orient waggle runs. Here, we ask whether the angle at which the bee dances on vertical comb influences waggle run variation. In particular, we determine whether horizontal dances, where gravity is not aligned with the waggle run orientation, are more variable in their directional component. We analysed 198 dances from foragers visiting natural resources and found support for our prediction. More horizontal dances have greater angular variation than dances performed close to vertical. However, there is no effect of waggle run angle on variation in the duration of waggle runs, which communicates distance. Our results weaken the hypothesis that variation is adaptive and provide novel support for the constraint hypothesis. PMID:22513277
The influence of a new sole geometry while running.
Knoepfli-Lenzin, Claudia; Waech, Jennifer Carole; Gülay, Turgut; Schellenberg, Florian; Lorenzetti, Silvio
2014-01-01
Running shoe construction influences the forces experienced by the human body while running. The aim of this study was to ascertain whether the new sole architecture of the On running shoe reduces ground reaction forces compared with running barefoot or with a conventional running shoe and whether it changes the physiological parameters of running in shoes. Thirty-seven trained male participants were studied while running at submaximal speeds wearing their conventional running shoe, wearing the On running shoe and while barefoot. Additional biomechanical and physiological values were investigated to determine whether the On running shoe induced any changes in these parameters compared with conventional running shoes. The On exhibited similar ground reaction forces as conventional shoes, and these were different from the forces experienced while running barefoot, showing that the On was more similar to typical shoed running. No difference was observed in running economy between the On and a conventional shoe model. However, a slightly lower heart rate (HR) (≈1.3%) and blood lactate concentration (≈5.5%) were observed during submaximal running with the On running shoe compared with a conventional running shoe, as well as a greater lateral deviation of the centre of pressure mid-stance. The ramifications of the reduced HR and blood lactate concentration for competitive performance are unknown. PMID:24977468
The influence of a new sole geometry while running
Knoepfli-Lenzin, Claudia; Waech, Jennifer Carole; Gülay, Turgut; Schellenberg, Florian; Lorenzetti, Silvio
2014-01-01
Abstract Running shoe construction influences the forces experienced by the human body while running. The aim of this study was to ascertain whether the new sole architecture of the On running shoe reduces ground reaction forces compared with running barefoot or with a conventional running shoe and whether it changes the physiological parameters of running in shoes. Thirty-seven trained male participants were studied while running at submaximal speeds wearing their conventional running shoe, wearing the On running shoe and while barefoot. Additional biomechanical and physiological values were investigated to determine whether the On running shoe induced any changes in these parameters compared with conventional running shoes. The On exhibited similar ground reaction forces as conventional shoes, and these were different from the forces experienced while running barefoot, showing that the On was more similar to typical shoed running. No difference was observed in running economy between the On and a conventional shoe model. However, a slightly lower heart rate (HR) (≈1.3%) and blood lactate concentration (≈5.5%) were observed during submaximal running with the On running shoe compared with a conventional running shoe, as well as a greater lateral deviation of the centre of pressure mid-stance. The ramifications of the reduced HR and blood lactate concentration for competitive performance are unknown. PMID:24977468
The Relationship between Running Velocity and the Energy Cost of Turning during Running
Hatamoto, Yoichi; Yamada, Yosuke; Sagayama, Hiroyuki; Higaki, Yasuki; Kiyonaga, Akira; Tanaka, Hiroaki
2014-01-01
Ball game players frequently perform changes of direction (CODs) while running; however, there has been little research on the physiological impact of CODs. In particular, the effect of running velocity on the physiological and energy demands of CODs while running has not been clearly determined. The purpose of this study was to examine the relationship between running velocity and the energy cost of a 180°COD and to quantify the energy cost of a 180°COD. Nine male university students (aged 18–22 years) participated in the study. Five shuttle trials were performed in which the subjects were required to run at different velocities (3, 4, 5, 6, 7, and 8 km/h). Each trial consisted of four stages with different turn frequencies (13, 18, 24 and 30 per minute), and each stage lasted 3 minutes. Oxygen consumption was measured during the trial. The energy cost of a COD significantly increased with running velocity (except between 7 and 8 km/h, p = 0.110). The relationship between running velocity and the energy cost of a 180°COD is best represented by a quadratic function (y = −0.012+0.066x +0.008x2, [r = 0.994, p = 0.001]), but is also well represented by a linear (y = −0.228+0.152x, [r = 0.991, p<0.001]). These data suggest that even low running velocities have relatively high physiological demands if the COD frequency increases, and that running velocities affect the physiological demands of CODs. These results also showed that the energy expenditure of COD can be evaluated using only two data points. These results may be useful for estimating the energy expenditure of players during a match and designing shuttle exercise training programs. PMID:24497913
Impact of running away on girls' pregnancy.
Thrane, Lisa E; Chen, Xiaojin
2012-04-01
This study assessed the impact of running away on pregnancy in the subsequent year among U.S. adolescents. We also investigated interactions between running away and sexual assault, romance, and school disengagement. Pregnancy among females between 11 and 17 years (n = 6100) was examined utilizing the Longitudinal Study of Adolescent Health (Add Health) data from Waves 1 and 2. The odds of pregnancy in the next year were 1.67 times greater for runaways net of other factors. A history of sexual assault and romantic involvement increased the likelihood of pregnancy. The relationship between pregnancy and runaway behavior in the general population is understudied. Our findings suggest that runaway youth have a multiplicity of needs that require a complex array of medical, social, emotional, and academic resources to promote positive sexual health outcomes. PMID:21794907
The CDF Run IIb Silicon Detector
M. Aoki; N. Bacchetta; S. Behari et al.
2004-02-25
Fermilab plans to deliver 5-15 fb{sup -1} of integrated luminosity to the CDF and D0 experiments. The current inner silicon detectors at CDF (SVXIIa and L00) will not tolerate the radiation dose associated with high luminosity running and will need to be replaced. A new readout chip (SVX4) has been designed in radiation-hard 0.25 {micro}m CMOS technology. Single sided sensors are arranged in a compact structure, called a stave, with integrated readout and cooling systems. This paper describes the general design of the Run IIb system, testing results of prototype electrical components (staves), and prototype silicon sensor performance before and after irradiation.
The Physics Case for Extended Tevatron Running
Wood, Darien R.
2010-11-01
Run II of the Tevatron collider at Fermilab is currently scheduled to end late in 2011. Given the current performance of the collider and of the CDF and D0 detectors, it is estimated that the current data set could be approximately doubled with a run extended into 2014. A few examples are presented of the physics potential of these additional statistics. These are discussed in the context of the expected reach of the LHC 7 TeV data and the existing Tevatron data. In particular, an extraordinary opportunity is described which could probe the existence of a standard model Higgs boson with mass in the currently preferred region between 115 GeV and 150 GeV.
NASA Astrophysics Data System (ADS)
Hildreth, M.; Ivanchenko, V. N.; Lange, D. J.; Kortelainen, M. J.
2015-12-01
During LHC shutdown between run-1 and run-2 intensive developments were carried out to improve performance of CMS simulation. For physics improvements migration from Geant4 9.4p03 to Geant4 10.0p02 has been performed. CPU performance has been improved by introduction of the Russian roulette method inside CMS calorimeters, optimization of CMS simulation sub-libraries, and usage of statics build of the simulation executable. As a result of these efforts, CMS simulation has been speeded up by about factor two. In this work we provide description of updates for different software components of CMS simulation. Development of a multi-threaded (MT) simulation approach for CMS will be also discuss.
1987 DOE review: First collider run operation
Childress, S.; Crawford, J.; Dugan, G.; Edwards, H.; Finley, D.A.; Fowler, W.B.; Harrison, M.; Holmes, S.; Makara, J.N.; Malamud, E.
1987-05-01
This review covers the operations of the first run of the 1.8 TeV superconducting super collider. The papers enclosed cover: PBAR source status, fixed target operation, Tevatron cryogenic reliability and capacity upgrade, Tevatron Energy upgrade progress and plans, status of the D0 low beta insertion, 1.8 K and 4.7 K refrigeration for low-..beta.. quadrupoles, progress and plans for the LINAC and booster, near term and long term and long term performance improvements.
Field, R.; /Florida U.
2005-01-01
New CDF Run 2 results on the inclusive jet cross section (K{sub T} algorithm) and the b-jet cross section (MidPoint algorithm) are presented and compared with theory. We also study the ''underlying event'' by using the direction of the leading jet to isolate regions of {eta}-{phi} space that are very sensitive to the ''beam-beam'' remnants and to multiple parton interactions.
Footwear and running cardio-respiratory responses.
Rubin, D A; Butler, R J; Beckman, B; Hackney, A C
2009-05-01
This study compared cardio-respiratory responses during running wearing a motion control shoe (MC) or a cushioning shoe (CU) in a cross-over single blinded design. Fourteen runners (10F/4M, age=27.3+/-5.1 years, body mass=64.1+/-12.2 kg, height=167.8+/-7.5 cm, VO (2)max=52.3+/-8.8 ml/kg/min) completed a 40-min run at approximately 65% VO (2) max under both shoe conditions. Oxygen uptake (mL/kg/min; L/min), minute ventilation (L/min), respiratory exchange ratio, and heart rate were measured at minutes 8-10, 18-20, 28-30 and 38-40 of exercise. Rating of perceived exertion was obtained at minutes 10, 20, 30 and 40. Two (footwear) by four (time) repeated measures ANOVAs showed no differences between footwear conditions in overall oxygen consumption (MC=36.8+/-1.5 vs. CU=35.3+/-1.4 mL/kg/min, p=0.143), minute ventilation (MC=50.4+/-4 vs. CU=48.5+/-3.8, p=0.147), respiratory exchange ratio (MC=0.90+/-0.01 vs. CU=0.89+/-0.01, p=0.331), heart rate (MC=159+/-3 vs. CU=160+/-3, p=0.926), or rate of perceived exertion. The design of motion control footwear does not appear to affect cardio-respiratory or perceived exertion responses during submaximal running. The findings are specific to the shoes tested. Nonetheless, the outcomes suggest that footwear selection to reduce certain overuse injuries does not increase the work of running. PMID:19199221
First Run II results from ALICE
NASA Astrophysics Data System (ADS)
Toia, Alberica
2016-07-01
The ALICE Collaboration is collecting data with both Minimum Bias and Muon triggers with pp collisions at √s = 13 TeV in the ongoing LHC Run II. An excellent performance of tracking and PID in the central barrel and in the muon spectrometer has been obtained. First results on the charged-particle pseudorapidity density and on identified particle transverse momentum spectra at √s = 13 TeV is presented.
Prior voluntary wheel running attenuates neuropathic pain.
Grace, Peter M; Fabisiak, Timothy J; Green-Fulgham, Suzanne M; Anderson, Nathan D; Strand, Keith A; Kwilasz, Andrew J; Galer, Erika L; Walker, Frederick Rohan; Greenwood, Benjamin N; Maier, Steven F; Fleshner, Monika; Watkins, Linda R
2016-09-01
Exercise is known to exert a systemic anti-inflammatory influence, but whether its effects are sufficient to protect against subsequent neuropathic pain is underinvestigated. We report that 6 weeks of voluntary wheel running terminating before chronic constriction injury (CCI) prevented the full development of allodynia for the ∼3-month duration of the injury. Neuroimmune signaling was assessed at 3 and 14 days after CCI. Prior exercise normalized ipsilateral dorsal spinal cord expression of neuroexcitatory interleukin (IL)-1β production and the attendant glutamate transporter GLT-1 decrease, as well as expression of the disinhibitory P2X4R-BDNF axis. The expression of the macrophage marker Iba1 and the chemokine CCL2 (MCP-1), and a neuronal injury marker (activating transcription factor 3), was attenuated by prior running in the ipsilateral lumbar dorsal root ganglia. Prior exercise suppressed macrophage infiltration and/or injury site proliferation, given decreased presence of macrophage markers Iba1, iNOS (M1), and Arg-1 (M2; expression was time dependent). Chronic constriction injury-driven increases in serum proinflammatory chemokines were suppressed by prior running, whereas IL-10 was increased. Peripheral blood mononuclear cells were also stimulated with lipopolysaccharide ex vivo, wherein CCI-induced increases in IL-1β, nitrite, and IL-10 were suppressed by prior exercise. Last, unrestricted voluntary wheel running, beginning either the day of, or 2 weeks after, CCI, progressively reversed neuropathic pain. This study is the first to investigate the behavioral and neuroimmune consequences of regular exercise terminating before nerve injury. This study suggests that chronic pain should be considered a component of "the diseasome of physical inactivity," and that an active lifestyle may prevent neuropathic pain. PMID:27355182
Constructing predictive models of human running.
Maus, Horst-Moritz; Revzen, Shai; Guckenheimer, John; Ludwig, Christian; Reger, Johann; Seyfarth, Andre
2015-02-01
Running is an essential mode of human locomotion, during which ballistic aerial phases alternate with phases when a single foot contacts the ground. The spring-loaded inverted pendulum (SLIP) provides a starting point for modelling running, and generates ground reaction forces that resemble those of the centre of mass (CoM) of a human runner. Here, we show that while SLIP reproduces within-step kinematics of the CoM in three dimensions, it fails to reproduce stability and predict future motions. We construct SLIP control models using data-driven Floquet analysis, and show how these models may be used to obtain predictive models of human running with six additional states comprising the position and velocity of the swing-leg ankle. Our methods are general, and may be applied to any rhythmic physical system. We provide an approach for identifying an event-driven linear controller that approximates an observed stabilization strategy, and for producing a reduced-state model which closely recovers the observed dynamics. PMID:25505131
The mechanics of running in children.
Schepens, B; Willems, P A; Cavagna, G A
1998-06-15
1. The effect of age and body size on the bouncing mechanism of running was studied in children aged 2-16 years. 2. The natural frequency of the bouncing system (fs) and the external work required to move the centre of mass of the body were measured using a force platform. 3. At all ages, during running below approximately 11 km h-1, the freely chosen step frequency (f) is about equal to fs (symmetric rebound), independent of speed, although it decreases with age from 4 Hz at 2 years to 2.5 Hz above 12 years. 4. The decrease of step frequency with age is associated with a decrease in the mass-specific vertical stiffness of the bouncing system (k/m) due to an increase of the body mass (m) with a constant stiffness (k). Above 12 years, k/m and f remain approximately constant due to a parallel increase in both k and m with age. 5. Above the critical speed of approximately 11 km h-1, independent of age, the rebound becomes asymmetric, i.e. f < fs. 6. The maximum running speed (Vf, max) increases with age while the step frequency at remains constant (approximately 4 Hz), independent of age. 7. At a given speed, the higher step frequency in preteens results in a mass-specific power against gravity less than that in adults. The external power required to move the centre of mass of the body is correspondingly reduced. PMID:9596810
Constructing predictive models of human running
Maus, Horst-Moritz; Revzen, Shai; Guckenheimer, John; Ludwig, Christian; Reger, Johann; Seyfarth, Andre
2015-01-01
Running is an essential mode of human locomotion, during which ballistic aerial phases alternate with phases when a single foot contacts the ground. The spring-loaded inverted pendulum (SLIP) provides a starting point for modelling running, and generates ground reaction forces that resemble those of the centre of mass (CoM) of a human runner. Here, we show that while SLIP reproduces within-step kinematics of the CoM in three dimensions, it fails to reproduce stability and predict future motions. We construct SLIP control models using data-driven Floquet analysis, and show how these models may be used to obtain predictive models of human running with six additional states comprising the position and velocity of the swing-leg ankle. Our methods are general, and may be applied to any rhythmic physical system. We provide an approach for identifying an event-driven linear controller that approximates an observed stabilization strategy, and for producing a reduced-state model which closely recovers the observed dynamics. PMID:25505131
Injury and Illness Rates During Ultratrail Running.
Vernillo, G; Savoldelli, A; La Torre, A; Skafidas, S; Bortolan, L; Schena, F
2016-06-01
This study aimed to describe injury/illness rates in ultratrail runners competing in a 65-km race to build a foundation for injury prevention and help race organizers to plan medical provision for these events. Prospectively transcribed medical records were analysed for 77 athletes at the end of the race. Number of injuries/illnesses per 1 000 runners and per 1 000-h run, overall injury/illness rate and 90% confidence intervals and rates for major and minor illnesses, musculoskeletal injuries, and skin disorders were analysed. A total of 132 injuries/illnesses were encountered during the race. The overall injuries/illnesses were 1.9 per runner and 13.1 per 1 000-h run. Medical illnesses were the most prominent medical diagnoses encountered (50.3%), followed by musculoskeletal injuries (32.8%), and skin-related disorders (16.9%). Despite the ultra-long nature of the race, the majority of injuries/illnesses were minor in nature. Medical staff and runners should prepare to treat all types of injuries and illnesses, especially the fatigue arising throughout the course of an ultratrail run and injuries to the lower limbs. Future studies should attempt to systematically identify injury locations and mechanisms in order to better direct injury prevention strategies and plan more accurate medical care. PMID:27116340
47 CFR 76.804 - Disposition of home run wiring.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an...
28 CFR 544.34 - Inmate running events.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Inmate running events. 544.34 Section 544... EDUCATION Inmate Recreation Programs § 544.34 Inmate running events. Running events will ordinarily not... available for all inmate running events....
28 CFR 544.34 - Inmate running events.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Inmate running events. 544.34 Section 544... EDUCATION Inmate Recreation Programs § 544.34 Inmate running events. Running events will ordinarily not... available for all inmate running events....
47 CFR 76.804 - Disposition of home run wiring.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an...
28 CFR 544.34 - Inmate running events.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Inmate running events. 544.34 Section 544... EDUCATION Inmate Recreation Programs § 544.34 Inmate running events. Running events will ordinarily not... available for all inmate running events....
28 CFR 544.34 - Inmate running events.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Inmate running events. 544.34 Section 544... EDUCATION Inmate Recreation Programs § 544.34 Inmate running events. Running events will ordinarily not... available for all inmate running events....
28 CFR 544.34 - Inmate running events.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Inmate running events. 544.34 Section 544... EDUCATION Inmate Recreation Programs § 544.34 Inmate running events. Running events will ordinarily not... available for all inmate running events....
47 CFR 76.804 - Disposition of home run wiring.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an...
The complete HEFT Lagrangian after the LHC Run I
NASA Astrophysics Data System (ADS)
Brivio, I.; Gonzalez-Fraile, J.; Gonzalez-Garcia, M. C.; Merlo, L.
2016-07-01
The complete effective chiral Lagrangian for a dynamical Higgs is presented and constrained by means of a global analysis including electroweak precision data together with Higgs and triple gauge-boson coupling data from the LHC Run I. The operators' basis up to next-to-leading order in the expansion consists of 148 (188 considering right-handed neutrinos) flavour universal terms and it is presented here making explicit the custodial nature of the operators. This effective Lagrangian provides the most general description of the physical Higgs couplings once the electroweak symmetry is assumed, and it allows for deviations from the SU(2)_L doublet nature of the Standard Model Higgs. The comparison with the effective linear Lagrangian constructed with an exact SU(2)_L doublet Higgs and considering operators with at most canonical dimension six is presented. A promising strategy to disentangle the two descriptions consists in analysing (i) anomalous signals present only in the chiral Lagrangian and not expected in the linear one, that are potentially relevant for LHC searches, and (ii) decorrelation effects between observables that are predicted to be correlated in the linear case and not in the chiral one. The global analysis presented here, which includes several kinematic distributions, is crucial for reducing the allowed parameter space and for controlling the correlations between parameters. This improves previous studies aimed at investigating the Higgs Nature and the origin of the electroweak symmetry breaking.
Tracking at CDF: algorithms and experience from Run I and Run II
Snider, F.D.; /Fermilab
2005-10-01
The authors describe the tracking algorithms used during Run I and Run II by CDF at the Fermilab Tevatron Collider, covering the time from about 1992 through the present, and discuss the performance of the algorithms at high luminosity. By tracing the evolution of the detectors and algorithms, they reveal some of the successful strategies used by CDF to address the problems of tracking at high luminosities.
Comparison of CAISO-run Plexos output with LLNL-run Plexos output
Schmidt, A; Meyers, C; Smith, S
2011-12-20
In this report we compare the output of the California Independent System Operator (CAISO) 33% RPS Plexos model when run on various computing systems. Specifically, we compare the output resulting from running the model on CAISO's computers (Windows) and LLNL's computers (both Windows and Linux). We conclude that the differences between the three results are negligible in the context of the entire system and likely attributed to minor differences in Plexos version numbers as well as the MIP solver used in each case.
The Effects of a Duathlon Simulation on Ventilatory Threshold and Running Economy.
Berry, Nathaniel T; Wideman, Laurie; Shields, Edgar W; Battaglini, Claudio L
2016-06-01
Multisport events continue to grow in popularity among recreational, amateur, and professional athletes around the world. This study aimed to determine the compounding effects of the initial run and cycling legs of an International Triathlon Union (ITU) Duathlon simulation on maximal oxygen uptake (VO2max), ventilatory threshold (VT) and running economy (RE) within a thermoneutral, laboratory controlled setting. Seven highly trained multisport athletes completed three trials; Trial-1 consisted of a speed only VO2max treadmill protocol (SOVO2max) to determine VO2max, VT, and RE during a single-bout run; Trial-2 consisted of a 10 km run at 98% of VT followed by an incremental VO2max test on the cycle ergometer; Trial-3 consisted of a 10 km run and 30 km cycling bout at 98% of VT followed by a speed only treadmill test to determine the compounding effects of the initial legs of a duathlon on VO2max, VT, and RE. A repeated measures ANOVA was performed to determine differences between variables across trials. No difference in VO2max, VT (%VO2max), maximal HR, or maximal RPE was observed across trials. Oxygen consumption at VT was significantly lower during Trial-3 compared to Trial-1 (p = 0.01). This decrease was coupled with a significant reduction in running speed at VT (p = 0.015). A significant interaction between trial and running speed indicate that RE was significantly altered during Trial-3 compared to Trial-1 (p < 0.001). The first two legs of a laboratory based duathlon simulation negatively impact VT and RE. Our findings may provide a useful method to evaluate multisport athletes since a single-bout incremental treadmill test fails to reveal important alterations in physiological thresholds. Key pointsDecrease in relative oxygen uptake at VT (ml·kg(-1)·min(-1)) during the final leg of a duathlon simulation, compared to a single-bout maximal run.We observed a decrease in running speed at VT during the final leg of a duathlon simulation; resulting in an
The Effects of a Duathlon Simulation on Ventilatory Threshold and Running Economy
Berry, Nathaniel T.; Wideman, Laurie; Shields, Edgar W.; Battaglini, Claudio L.
2016-01-01
Multisport events continue to grow in popularity among recreational, amateur, and professional athletes around the world. This study aimed to determine the compounding effects of the initial run and cycling legs of an International Triathlon Union (ITU) Duathlon simulation on maximal oxygen uptake (VO2max), ventilatory threshold (VT) and running economy (RE) within a thermoneutral, laboratory controlled setting. Seven highly trained multisport athletes completed three trials; Trial-1 consisted of a speed only VO2max treadmill protocol (SOVO2max) to determine VO2max, VT, and RE during a single-bout run; Trial-2 consisted of a 10 km run at 98% of VT followed by an incremental VO2max test on the cycle ergometer; Trial-3 consisted of a 10 km run and 30 km cycling bout at 98% of VT followed by a speed only treadmill test to determine the compounding effects of the initial legs of a duathlon on VO2max, VT, and RE. A repeated measures ANOVA was performed to determine differences between variables across trials. No difference in VO2max, VT (%VO2max), maximal HR, or maximal RPE was observed across trials. Oxygen consumption at VT was significantly lower during Trial-3 compared to Trial-1 (p = 0.01). This decrease was coupled with a significant reduction in running speed at VT (p = 0.015). A significant interaction between trial and running speed indicate that RE was significantly altered during Trial-3 compared to Trial-1 (p < 0.001). The first two legs of a laboratory based duathlon simulation negatively impact VT and RE. Our findings may provide a useful method to evaluate multisport athletes since a single-bout incremental treadmill test fails to reveal important alterations in physiological thresholds. Key points Decrease in relative oxygen uptake at VT (ml·kg-1·min-1) during the final leg of a duathlon simulation, compared to a single-bout maximal run. We observed a decrease in running speed at VT during the final leg of a duathlon simulation; resulting in an
Run-08 pC polarization analysis - October 16, 2008
Dharmawardane,V.; Bazilevsky,A.; Bunce, G.; Gill, R.; Huang, H.; Makdisi, Y.; Nakagawa, I.; Morozov, B.; Okada, H.; Sivertz, M.; Zelenski, A.; Alekseev, I.; Svirida, D.
2009-03-01
In this note we will discuss the analysis of RHIC run 08 pC data that were collected during February 14 - March 10, 2008. An analysis method that is similar to Run 05 and Run 06 was adopted for Run 08 analysis (except few minor changes, which are described below). A detailed analysis note and a NIM article that describe the pC analysis procedure (for run 05 and run 06) can be found elsewhere. In brief, the analysis consists of calibrating the detectors, determining energy corrections ('dead layers'), determining good runs and extracting the polarization from data.
Midsole thickness affects running patterns in habitual rearfoot strikers during a sustained run.
TenBroek, Trampas M; Rodrigues, Pedro A; Frederick, Edward C; Hamill, Joseph
2014-08-01
The purpose of this study was to: (1) investigate how kinematic patterns are adjusted while running in footwear with THIN, MEDIUM, and THICK midsole thicknesses and (2) determine if these patterns are adjusted over time during a sustained run in footwear of different thicknesses. Ten male heel-toe runners performed treadmill runs in specially constructed footwear (THIN, MEDIUM, and THICK midsoles) on separate days. Standard lower extremity kinematics and acceleration at the tibia and head were captured. Time epochs were created using data from every 5 minutes of the run. Repeated-measures ANOVA was used (P < .05) to determine differences across footwear and time. At touchdown, kinematics were similar for the THIN and MEDIUM conditions distal to the knee, whereas only the THIN condition was isolated above the knee. No runners displayed midfoot or forefoot strike patterns in any condition. Peak accelerations were slightly increased with THIN and MEDIUM footwear as was eversion, as well as tibial and thigh internal rotation. It appears that participants may have been anticipating, very early in their run, a suitable kinematic pattern based on both the length of the run and the footwear condition. PMID:24615336
Running induces nausea in rats: Kaolin intake generated by voluntary and forced wheel running.
Nakajima, Sadahiko
2016-10-01
Three experiments were conducted showing rats' pica behavior (kaolin clay intake) due to running in activity wheels. The amount of kaolin consumed was a positive function of the available time of voluntary running (20, 40, or 60 min), although this relationship was blunted by a descending (i.e., 60 → 40 → 20 min) test series of execution (Experiment 1). Pica was also generated by forced running in a motorized wheel for 60 min as a positive function of the speed of wheel rotations at 98, 185, or 365 m/h, independent of the order of execution (Experiment 2). Voluntary running generated more pica than did forced running at 80 m/h, although the distance travelled in the former condition was 27% lesser than that in the latter condition (Experiment 3). Because kaolin intake is regarded as a reliable measure of nausea in rats, these results show that wheel running, either voluntary or forced, induces nausea in rats. PMID:27191407
NASA Technical Reports Server (NTRS)
Reswick, J. B.; Mooney, V.; Bright, C. W.; Owens, L. J. (Inventor)
1979-01-01
A coupling for use in an apparatus for connecting a prosthesis to the bone of a stump of an amputated limb is described which permits a bio-compatible carbon sleeve forming a part of the prosthesis connector to float so as to prevent disturbing the skin seal around the carbon sleeve. The coupling includes a flexible member interposed between a socket that is inserted within an intermedullary cavity of the bone and the sleeve. A lock pin is carried by the prosthesis and has a stem portion which is adapted to be coaxially disposed and slideably within the tubular female socket for securing the prosthesis to the stump. The skin around the percutaneous carbon sleeve is able to move as a result of the flexing coupling so as to reduce stresses caused by changes in the stump shape and/or movement between the bone and the flesh portion of the stump.
Babelay, E.F.
1962-02-13
A flexible shaft coupling for operation at speeds in excess of 14,000 rpm is designed which requires no lubrication. A driving sleeve member and a driven sleeve member are placed in concentric spaced relationship. A torque force is transmitted to the driven member from the driving member through a plurality of nylon balls symmetrically disposed between the spaced sleeves. The balls extend into races and recesses within the respective sleeve members. The sleeve members have a suitable clearance therebetween and the balls have a suitable radial clearance during operation of the coupling to provide a relatively loose coupling. These clearances accommodate for both parallel and/or angular misalignments and avoid metal-tometal contact between the sleeve members during operation. Thus, no lubrication is needed, and a minimum of vibrations is transmitted between the sleeve members. (AEC)
Large mass hierarchies from strongly-coupled dynamics
NASA Astrophysics Data System (ADS)
Athenodorou, Andreas; Bennett, Ed; Bergner, Georg; Elander, Daniel; Lin, C.-J. David; Lucini, Biagio; Piai, Maurizio
2016-06-01
Besides the Higgs particle discovered in 2012, with mass 125 GeV, recent LHC data show tentative signals for new resonances in diboson as well as diphoton searches at high center-of-mass energies (2 TeV and 750 GeV, respectively). If these signals are confirmed (or other new resonances are discovered at the TeV scale), the large hierarchies between masses of new bosons require a dynamical explanation. Motivated by these tentative signals of new physics, we investigate the theoretical possibility that large hierarchies in the masses of glueballs could arise dynamically in new strongly-coupled gauge theories extending the standard model of particle physics. We study lattice data on non-Abelian gauge theories in the (near-)conformal regime as well as a simple toy model in the context of gauge/gravity dualities. We focus our attention on the ratio R between the mass of the lightest spin-2 and spin-0 resonances, that for technical reasons is a particularly convenient and clean observable to study. For models in which (non-perturbative) large anomalous dimensions arise dynamically, we show indications that this mass ratio can be large, with R>5. Moreover,our results suggest that R might be related to universal properties of the IR fixed point. Our findings provide an interesting step towards understanding large mass ratios in the non-perturbative regime of quantum field theories with (near) IR conformal behaviour.
Structure and chemical valence study of Srn+1RunO3n+1 (n = 1, 2, ∞) series
NASA Astrophysics Data System (ADS)
Zheng, Long; Zhu, Xiao-Qin; Sui, Yong-Xing; Xue, Jian-Zhong; Liu, Bo; Pei, Ming-Xu
2015-05-01
Effect of structure parameter n and its coupling with the connection mode among RuO6 octahedra of Srn+1RunO3n+1 (n = 1, 2, ∞) are investigated. The gradually enhanced rotation and tilting effect with increasing n are observed in Srn+1RunO3n+1. Besides, the chemical valence of Ru is not changed, while the one of Sr gradually varies with increasing n, which highlights the great contribution of connection mode to the chemical environment. Our results show a strong n dependence on the connection mode between octahedra in Srn+1RunO3n+1 (n = 1, 2, ∞).
NASA Astrophysics Data System (ADS)
Aoki, Ken-Ichi; Sato, Daisuke
The method of non-perturbative renormalization group (NPRG) is applied to the analysis of dynamical chiral symmetry breaking (DχSB) in QCD. We show that the DχSB solution of the NPRG flow equation can be obtained without the bosonization. The solution, having the singular point, can be authorized as the weak solution of partial differential equation, and can be easily evaluated using the method of the characteristic curve. Also we show that our non-ladder extended approximation improves almost perfectly the gauge dependence of the chiral condensates.
Sandell, Jörgen; Palmgren, Per J.; Björndahl, Lars
2008-01-01
Abstract Objective This study investigates the effect of chiropractic treatment on hip joint extension ability and running velocity. Methods This was a prospective, randomized, controlled experimental pilot study. Seventeen healthy male junior athletes (age, 17-20 years) training in middle distance running were recruited from local Swedish athletic associations. Hip extension ability and running velocity were measured before and after the study period. Chiropractic investigations comprised motion palpation of the sacroiliac and hip joints and modified Thomas test of the ability to extend the leg. In the treatment group, findings of restrictive joint dysfunctions formed the basis for the choice of chiropractic treatment. The interventions were based on a pragmatic approach consisting of high-velocity, low-amplitude manipulations targeted toward, but not exclusively to, the sacroiliac joints. Results The treatment group showed significantly greater hip extension ability after chiropractic treatment than did controls (P < .05). Participants in the treatment group did not show a significant decrease in time for running 30 m after treatment (average, −0.065 seconds; P = .0572), whereas the difference was even smaller for the control subjects (average, −0.003; P = .7344). Conclusions The results imply that chiropractic treatment can improve hip extensibility in subjects with restriction as measured by the modified Thomas test. It could be speculated that the running step was amplified by increasing the angle of step through facilitated hip joint extension ability. The possible effect of chiropractic treatment to enhance the running velocity, by increasing the hip joint extension ability and thereby increasing the running step, remains unproven. PMID:19674719
The Effects of Backwards Running Training on Forward Running Economy in Trained Males.
Ordway, Jason D; Laubach, Lloyd L; Vanderburgh, Paul M; Jackson, Kurt J
2016-03-01
Backwards running (BR) results in greater cardiopulmonary response and muscle activity compared with forward running (FR). BR has traditionally been used in rehabilitation for disorders such as stroke and lower leg extremity injuries, as well as in short bursts during various athletic events. The aim of this study was to measure the effects of sustained backwards running training on forward running economy in trained male athletes. Eight highly trained, male runners (26.13 ± 6.11 years, 174.7 ± 6.4 cm, 68.4 ± 9.24 kg, 8.61 ± 3.21% body fat, 71.40 ± 7.31 ml·kg(-1)·min(-1)) trained with BR while harnessed on a treadmill at 161 m·min(-1) for 5 weeks following a 5-week BR run-in period at a lower speed (134 m·min(-1)). Subjects were tested at baseline, postfamiliarized, and post-BR training for body composition, a ramped VO2max test, and an economy test designed for trained male runners. Subjects improved forward running economy by 2.54% (1.19 ± 1.26 ml·kg(-1)·min(-1), p = 0.032) at 215 m·min(-1). VO2max, body mass, lean mass, fat mass, and % body fat did not change (p > 0.05). Five weeks of BR training improved FR economy in healthy, trained male runners without altering VO2max or body composition. The improvements observed in this study could be a beneficial form of training to an already economical population to improve running economy. PMID:26332781
Moore, Isabel S
2016-06-01
Running economy (RE) has a strong relationship with running performance, and modifiable running biomechanics are a determining factor of RE. The purposes of this review were to (1) examine the intrinsic and extrinsic modifiable biomechanical factors affecting RE; (2) assess training-induced changes in RE and running biomechanics; (3) evaluate whether an economical running technique can be recommended and; (4) discuss potential areas for future research. Based on current evidence, the intrinsic factors that appeared beneficial for RE were using a preferred stride length range, which allows for stride length deviations up to 3 % shorter than preferred stride length; lower vertical oscillation; greater leg stiffness; low lower limb moment of inertia; less leg extension at toe-off; larger stride angles; alignment of the ground reaction force and leg axis during propulsion; maintaining arm swing; low thigh antagonist-agonist muscular coactivation; and low activation of lower limb muscles during propulsion. Extrinsic factors associated with a better RE were a firm, compliant shoe-surface interaction and being barefoot or wearing lightweight shoes. Several other modifiable biomechanical factors presented inconsistent relationships with RE. Running biomechanics during ground contact appeared to play an important role, specifically those during propulsion. Therefore, this phase has the strongest direct links with RE. Recurring methodological problems exist within the literature, such as cross-comparisons, assessing variables in isolation, and acute to short-term interventions. Therefore, recommending a general economical running technique should be approached with caution. Future work should focus on interdisciplinary longitudinal investigations combining RE, kinematics, kinetics, and neuromuscular and anatomical aspects, as well as applying a synergistic approach to understanding the role of kinetics. PMID:26816209
Run-09 pC polarimeter analysis
Alekseev, I.; Aschenauer, E.; Atoyan, G.; Bazilevsky, A.; Gill, R.; Huang, H.; Lee, S.; Li, X.; Makdisi, Y.; Morozov, B.; Nakagawa, I.; Svirida, D.; Zelenski, A.
2010-08-01
Analysis of PC polarimeter data at {radical}s = 200 and 500 GeV from Run9 is presented. Final polarization results, fill-by-fill, for blue and yellow beams, as to be used by RHIC experiments (in collisions) are released and collected in http://www4.rcf.bnl.gov/cnipol/pubdocs/Run09Offline/. Global relative systematic uncertainties {delta}P/P (to be considered as correlated from fill to fill) are 4.7% for 100 GeV beams, and 8.3% (12.1%) for blue (yellow) 250 GeV beams. For a product of two beam polarizations P{sub B} {center_dot} P{sub Y} (used in double spin asymmetry measurements) the relative uncertainty {delta}(P{sub B} {center_dot} P{sub Y})/(P{sub B} {center_dot} P{sub Y}) 8.8% for 100 GeV beams and 18.5% for 250 GeV beams. For the average between two beam polarization (P{sub B} + P{sub Y})/2 (used in single spin asymmetry measurements, when data from two polarized beams are combined) the relative uncertainty is 4.4% for 100 GeV beams and 9.2% for 250 GeV beams. Larger uncertainties for 250 GeV beams relate to significant rate related systematic effects experienced in the first part of Run9 (due to thicker targets used and smaller trans. beam size at higher beam energy).
Repeatability of a running heat tolerance test.
Mee, Jessica A; Doust, Jo; Maxwell, Neil S
2015-01-01
At present there is no standardised heat tolerance test (HTT) procedure adopting a running mode of exercise. Current HTTs may misdiagnose a runner's susceptibility to a hyperthermic state due to differences in exercise intensity. The current study aimed to establish the repeatability of a practical running test to evaluate individual's ability to tolerate exercise heat stress. Sixteen (8M, 8F) participants performed the running HTT (RHTT) (30 min, 9 km h(-1), 2% elevation) on two separate occasions in a hot environment (40 °C and 40% relative humidity). There were no differences in peak rectal temperature (RHTT1: 38.82 ± 0.47 °C, RHTT2: 38.86 ± 0.49 °C, Intra-class correlation coefficient (ICC)=0.93, typical error of measure (TEM) = 0.13 °C), peak skin temperature (RHTT1: 38.12 ± 0.45, RHTT2: 38.11 ± 0.45 °C, ICC = 0.79, TEM = 0.30 °C), peak heart rate (RHTT1: 182 ± 15 beats min(-1), RHTT2: 183 ± 15 beats min(-1), ICC = 0.99, TEM = 2 beats min(-1)), nor sweat rate (1721 ± 675 g h(-1), 1716 ± 745 g h(-1), ICC = 0.95, TEM = 162 g h(-1)) between RHTT1 and RHTT2 (p>0.05). Results demonstrate good agreement, strong correlations and small differences between repeated trials, and the TEM values suggest low within-participant variability. The RHTT was effective in differentiating between individuals physiological responses; supporting a heat tolerance continuum. The findings suggest the RHTT is a repeatable measure of physiological strain in the heat and may be used to assess the effectiveness of acute and chronic heat alleviating procedures. PMID:25774031
Braun, William A; Dutto, Darren J
2003-09-01
Delayed onset of muscle soreness (DOMS) is a common response to exercise involving significant eccentric loading. Symptoms of DOMS vary widely and may include reduced force generating capacity, significant alterations in biochemical indices of muscle and connective tissue health, alteration of neuromuscular function, and changes in mechanical performance. The purpose of the investigation was to examine the effects of downhill running and ensuing DOMS on running economy and stride mechanics. Nine, well-trained distance runners and triathletes participated in the study. Running economy was measured at three relative intensities [65, 75, and 85% of maximal aerobic capacity ( VO(2peak))] before (RE1) and 48 h after (RE2) a 30-min downhill run (-10%) at 70% VO(2peak). Dependent variables included leg muscle soreness, rate of oxygen consumption ( VO(2)), minute ventilation, respiratory exchange ratio, lactate, heart rate, and stride length. These measurements were entered into a two-factor multivariate analysis of variance (MANOVA). The analysis revealed a significant time effect for all variables and a significant interaction (time x intensity) for lactate. The energy cost of locomotion was elevated at RE2 by an average of 3.2%. This was coupled with a significant reduction in stride length. The change in VO(2) was inversely correlated with the change in stride length ( r= -0.535). Lactate was significantly elevated at RE2 for each run intensity, with a mean increase of 0.61 mmol l(-1). Based on these findings, it is suggested that muscle damage led to changes in stride mechanics and a greater reliance on anaerobic methods of energy production, contributing to the change in running economy during DOMS. PMID:12783232
Lower Three Runs Instream Flow Study
del Carmen, B.R.; Paller, M.H.
1993-12-31
An Instream Flow Study was conducted to identify the minimum discharge from PAR Pond that will support a balanced biological fish community in Lower Three Runs. Hydraulic and habitat models of the Physical Habitat simulation System (PHABSIM), the major component of the US Fish and Wildlife Service`s Instream Flow Incremental Methodology (IFIM) were applied. Following calibration of the Water Surface Profile (WSP)Model for three study reaches, hydraulic data was input to the AVDEPTH habitat model to develop relationships between discharge and reaches, hydraulic data was input to the AVDEPTH habitat model to development relationship between discharge and available habitat.
Schools should not be run as businesses
NASA Astrophysics Data System (ADS)
Jones, Robert
2011-04-01
Schools, prisons, hospitals, governments and the like should not be run as businesses or following business principles. The reason is simple, most businesses fail in 3 to 5 years and 90% fail in 10 years. Business methodology more often than not leads to failure. Society should instead prefer and follow the methods of science, engineering and democracy. The scientific method is superior to markets. It has been known for 100 years that groups can produce better decisions than individuals. We should not have chairs, and deans and presidents. Rather, decisions should be taken by workers councils.
AGU member running to fill congressional seat
NASA Astrophysics Data System (ADS)
Crum, Emily
John F Mink, an AGU member (Hydrology) for 50 years, and husband of the late Representative Patsy T. Mink (D-Hawaii), will run in a special election on 30 November to fill the remainder of his wife's unexpired congressional term. Patsy Mink, who represented the 2nd Congressional District of Hawaii, passed away on 28 September after battling pneumonia.Her name will appear on the 5 November election ballot as a candidate for Hawaii's 2nd District in the 108th Congress. If she is elected posthumously, the state of Hawaii will hold a special election in January to select an official to serve the full two-year term.
Software reliability: Repetitive run experimentation and modeling
NASA Technical Reports Server (NTRS)
Nagel, P. M.; Skrivan, J. A.
1982-01-01
A software experiment conducted with repetitive run sampling is reported. Independently generated input data was used to verify that interfailure times are very nearly exponentially distributed and to obtain good estimates of the failure rates of individual errors and demonstrate how widely they vary. This fact invalidates many of the popular software reliability models now in use. The log failure rate of interfailure time was nearly linear as a function of the number of errors corrected. A new model of software reliability is proposed that incorporates these observations.
The effect of a long-distance run on plantar pressure distribution during running.
Willems, Tine Marieke; De Ridder, Roel; Roosen, Philip
2012-03-01
The purpose of this study was to assess plantar pressure alterations after long-distance running. Prior to and after a 20 km run, force distribution underneath the feet of 52 participants was registered using Footscan(®) pressure plates while the participants ran shod at a constant self-selected pace. Peak force, mean force and impulse were registered underneath different zones of the foot. In addition, temporal data as total foot contact time, time of contact and end of contact were derived for these zones. Furthermore, a medio-lateral pressure distribution ratio was calculated in different phases of the roll-off. After the run, increases in the loading of the forefoot, midfoot and medial heel were noted and decreases in loading of the lateral toes. In the forefoot push off phase a more lateral pressure distribution was observed. The results of this study demonstrated plantar pressure deviations after long-distance running which could give additional information related to several running injuries. PMID:22153665
Parallel Algorithm Solves Coupled Differential Equations
NASA Technical Reports Server (NTRS)
Hayashi, A.
1987-01-01
Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.
Environmental influences on the LIGO gravitational wave detectors during the 6th science run
NASA Astrophysics Data System (ADS)
Effler, A.; Schofield, R. M. S.; Frolov, V. V.; González, G.; Kawabe, K.; Smith, J. R.; Birch, J.; McCarthy, R.
2015-02-01
We describe the influence of environmental noise on Laser Interferometric Gravitational-Wave Observatory (LIGO) detectors in the sixth science run, from July 2009 to October 2010. We show results from experimental investigations testing the coupling level and mechanisms for acoustic, electromagnetic/magnetic and seismic noise to the instruments. We argue the sensors’ importance for vetoes of false positive detections, report estimates of the noise sources’ contributions to the detector background, and discuss the ways in which environmental coupling should be reduced in the LIGO upgrade, Advanced LIGO.
GRETINA commissioning and engineering run resolution analysis
NASA Astrophysics Data System (ADS)
Tarlow, Thomas; Beausang, Con; Ross, Tim; Hughes, Richard; Gell, Kristen; Good, Erin
2012-10-01
GRETINA, the first stage in the full Gamma Ray Energy Tracking Array (GRETA), consists of seven modules covering approximately 1 solid angle. Each module is made up of four large, highly-segmented germanium detectors capable of measuring the interaction points of individual gamma-rays. GRETINA has recently been assembled and commissioned in LBNL via a series of engineering and commissioning runs. Here we report on an analysis of data from the first engineering run (ER01) which was intended to probe the response of the data acquisition system to high multiplicity gamma-ray cascades. For this experiment the 122Sn(40Ar, 4n) reaction at a beam energy of 210 MeV was utilized to populate high spin states in 158Er. A variety of beam currents, targets and trigger conditions were utilized to test the acquisition. Here we report on the measured energy resolution, both with calibration and in-beam sources as well as a gamma-gamma coincidence analysis to confirm the known level scheme and the capability of the data acquisition system for high fold coincidence measurements. This work was partly supported by the US Department of Energy via grant numbers DE-FG52-09NA29454 and DE-FG02-05-ER41379.
The Run-by-Run Monte Carlo simulation for the ANTARES experiment
NASA Astrophysics Data System (ADS)
Fusco, L. A.; Margiotta, A.
2016-04-01
The ANTARES neutrino telescope is the largest and longest-operated underwater neutrino telescope. Data acquisition conditions in a marine environment are not stable in time: biological and physical phenomena follow a seasonal evolution producing a periodical change of the rates registered at the neutrino telescope. Variations in the sea current velocity also affect the measured baseline value and the burst fraction on short time scales. Monte Carlo simulations of the detector response to charged particles in the proximity of the telescope should reproduce the conditions of the medium and of the acquisition setup as much as possible. An efficient way to account for their variability is to extract related information directly from the data runs. A Run-by-Run simulation procedure has been developed to follow the time evolution of data acquisition in ANTARES.
Van Caekenberghe, Ine; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk
2013-01-01
Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior–posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level
RANS-VOF solver for solitary wave run-up on a circular cylinder
NASA Astrophysics Data System (ADS)
Cao, Hong-jian; Wan, De-cheng
2015-04-01
Simulation of solitary wave run-up on a vertical circular cylinder is carried out in a viscous numerical wave tank developed based on the open source codes OpenFOAM. An incompressible two-phase flow solver naoe-FOAM-SJTU is used to solve the Reynolds-Averaged Navier-Stokes (RANS) equations with the SST k- ω turbulence model. The PISO algorithm is utilized for the pressure-velocity coupling. The air-water interface is captured via Volume of Fluid (VOF) technique. The present numerical model is validated by simulating the solitary wave run-up and reflected against a vertical wall, and solitary wave run-up on a vertical circular cylinder. Comparisons between numerical results and available experimental data show satisfactory agreement. Furthermore, simulations are carried out to study the solitary wave run-up on the cylinder with different incident wave height H and different cylinder radius a. The relationships of the wave run-up height with the incident wave height H, cylinder radius a are analyzed. The evolutions of the scattering free surface and vortex shedding are also presented to give a better understanding of the process of nonlinear wave-cylinder interaction.
1 in 3 Hospitals in Developing World Lack Running Water
... in 3 Hospitals in Developing World Lack Running Water Clean water essential for surgeries, hygiene, infection control, researchers say ... SUNDAY, July 3, 2016 (HealthDay News) -- Clean running water is essential for hospital sanitation, but a new ...
The psychological benefits of recreational running: a field study.
Szabo, Attila; Abrahám, Júlia
2013-01-01
Running yields positive changes in affect, but the external validity of controlled studies has received little attention in the literature. In this inquiry, 50 recreational runners completed the Exercise-Induced Feeling Inventory (Gauvin & Rejeskí, 1993) before and after a bout of self-planned running on an urban running path. Positive changes were seen in all four measures of affect (p < .001). Multivariate regressions were performed to examine the contribution of four exercise characteristics (i.e., duration of the current run, weekly running time, weekly running distance, and running experience) to the observed changes in affect. The results have revealed that exercise characteristics accounted for only 14-30% of the variance in the recreational runners' affect, in both directions. It is concluded that psychological benefits of recreational running may be linked to placebo (conditioning and/or expectancy) effects. PMID:22780910
1 in 3 Hospitals in Developing World Lack Running Water
... 159695.html 1 in 3 Hospitals in Developing World Lack Running Water Clean water essential for surgeries, ... finds a third of hospitals in the developing world don't have it. "Running water is something ...
2. PERSPECTIVE VIEW OF OVENS ALONG CATS RUN LOOKING NORTHEAST, ...
2. PERSPECTIVE VIEW OF OVENS ALONG CATS RUN LOOKING NORTHEAST, SHOWING OVEN NOS. 159 (RIGHT) THROUGH 163 (LEFT) - Griffin No. 1 Coke Works, Along Cats Run, Southeast of Masontown Bourough (Nicholson Township), Masontown, Fayette County, PA
The LHCb silicon tracker: running experience
NASA Astrophysics Data System (ADS)
Saornil Gamarra, S.
2013-02-01
The LHCb Silicon Tracker is part of the main tracking system of the LHCb detector at the LHC. It measures very precisely the particle trajectories coming from the interaction point in the region of high occupancies around the beam axis. It covers the full acceptance angle in front of the dipole magnet in the Tracker Turicensis station and the innermost part around the beam axis in the three Inner Tracker stations downstream of the magnet. The Silicon Tracker covers a sensitive area of 12 m2 using silicon micro-strip sensors with very long readout strips. We report on running experience for the experiment. Focussing on electronic and hardware issues we describe some of the lessons learned and pitfalls encountered after three years of successful operation.
DNA strand displacement system running logic programs.
Rodríguez-Patón, Alfonso; Sainz de Murieta, Iñaki; Sosík, Petr
2014-01-01
The paper presents a DNA-based computing model which is enzyme-free and autonomous, not requiring a human intervention during the computation. The model is able to perform iterated resolution steps with logical formulae in conjunctive normal form. The implementation is based on the technique of DNA strand displacement, with each clause encoded in a separate DNA molecule. Propositions are encoded assigning a strand to each proposition p, and its complementary strand to the proposition ¬p; clauses are encoded comprising different propositions in the same strand. The model allows to run logic programs composed of Horn clauses by cascading resolution steps. The potential of the model is demonstrated also by its theoretical capability of solving SAT. The resulting SAT algorithm has a linear time complexity in the number of resolution steps, whereas its spatial complexity is exponential in the number of variables of the formula. PMID:24211259
Soule, Pat LeRoy
1978-01-01
Water-surface profiles of the 25-, 50-, and 100-year recurrence interval discharges have been computed for all streams and reaches of channels in Fairfax County, Virginia, having a drainage area greater than 1 square mile except for Dogue Creek, Little Hunting Creek, and that portion of Cameron Run above Lake Barcroft. Maps having a 2-foot contour interval and a horizontal scale of 1 inch equals 100 feet were used for base on which flood boundaries were delineated for 25-, 50-, and 100-year floods to be expected in each basin under ultimate development conditions. This report is one of a series and presents a discussion of techniques employed in computing discharges and profiles as well as the flood profiles and maps on which flood boundaries have been delineated for the Occoquan River and its tributaries within Fairfax County and those streams on Mason Neck within Fairfax County tributary to the Potomac River. (Woodard-USGS)
Giving students the run of sprinting models
NASA Astrophysics Data System (ADS)
Heck, André; Ellermeijer, Ton
2009-11-01
A biomechanical study of sprinting is an interesting task for students who have a background in mechanics and calculus. These students can work with real data and do practical investigations similar to the way sports scientists do research. Student research activities are viable when the students are familiar with tools to collect and work with data from sensors and video recordings and with modeling tools for comparing simulation and experimental results. This article describes a multipurpose system, named COACH, that offers a versatile integrated set of tools for learning, doing, and teaching mathematics and science in a computer-based inquiry approach. Automated tracking of reference points and correction of perspective distortion in videos, state-of-the-art algorithms for data smoothing and numerical differentiation, and graphical system dynamics based modeling are some of the built-in techniques that are suitable for motion analysis. Their implementation and their application in student activities involving models of running are discussed.
Pathogenic regulation of running water macroinvertebrates
Cummins, K.W.; Wilzbach, M.A.
1989-01-01
The research during the second year focused on a large scale laboratory and field experiment on factors regulating growth and mortality of populations of the stream shredder caddisfly {ital Pycnopsyche guttifer}. This species, which is an obligate shredder feeding on leaf litter in woodland streams during its autumn-winter growth period, was selected because of the extensive pool of background data that are available, the ease with which its terrestrial eggs can be collected, and its suitability for laboratory culture and field observations. The species is univoltine and it is widely distributed in the eastern US, but did not occur naturally in the specific stream, Piney Run, MD, into which a population was introduced. 13 figs., 1 tab.
Data from the LIGO I Science Run
NASA Astrophysics Data System (ADS)
Lazzarini, Albert
2001-06-01
The LIGO1 I Science Run is planned to begin in mid-2002. The characteristics of the data stream, data volumes, data products, and data availability are discussed. The data analysis activities will be undertaken by the LIGO Scientific Collaboration (LSC2). These activities include operating dedicated on-site pipelines at the LIGO observatories. In addition, a dedicated off-site facility for will be dedicated to melding data from different interferometer datastreams (both LIGO and eventually those of other international projects as part of a network-wide analysis effort). Exploratory university-based research on LIGO data will likely be supported in part by the nascent US computing grid. LIGO Laboratory and the LSC are working on grid computing efforts within the GriPhyN (Grid Physics Network) collaboration research activities. .
[Comparative quality measurements part 1: run charts].
Kottner, Jan
2012-06-01
Quality assessment may be based on data of quality indicators. There are two main approaches for comparative quality measurements: comparison of data of the same service at different points over time or comparison of data of different services at the same time. Risk adjustment and standardisation must be performed and random variation must be adequately taken into account. In Statistical Process Control (SPC) theory common cause and special cause variation are distinguished. Processes in statistical control are stable and predictable. If processes exhibit special cause variation the management should investigate the reasons for this and manage the causes. Run charts as simple tools to display and analyse data of processes and outcomes over time are discussed in this article. They can be used for self-comparison. The following two parts of this three-part series explain control charts and funnel plots. PMID:22661066
Modular Control of Treadmill vs Overground Running
Farina, Dario; Kersting, Uwe Gustav
2016-01-01
Motorized treadmills have been widely used in locomotion studies, although a debate remains concerning the extrapolation of results obtained from treadmill experiments to overground locomotion. Slight differences between treadmill (TRD) and overground running (OVG) kinematics and muscle activity have previously been reported. However, little is known about differences in the modular control of muscle activation in these two conditions. Therefore, we aimed at investigating differences between motor modules extracted from TRD and OVG by factorization of multi-muscle electromyographic (EMG) signals. Twelve healthy men ran on a treadmill and overground at their preferred speed while we recorded tibial acceleration and surface EMG from 11 ipsilateral lower limb muscles. We extracted motor modules representing relative weightings of synergistic muscle activations by non-negative matrix factorization from 20 consecutive gait cycles. Four motor modules were sufficient to accurately reconstruct the EMG signals in both TRD and OVG (average reconstruction quality = 92±3%). Furthermore, a good reconstruction quality (80±7%) was obtained also when muscle weightings of one condition (either OVG or TRD) were used to reconstruct the EMG data from the other condition. The peak amplitudes of activation signals showed a similar timing (pattern) across conditions. The magnitude of peak activation for the module related to initial contact was significantly greater for OVG, whereas peak activation for modules related to leg swing and preparation to landing were greater for TRD. We conclude that TRD and OVG share similar muscle weightings throughout motion. In addition, modular control for TRD and OVG is achieved with minimal temporal adjustments, which were dependent on the phase of the running cycle. PMID:27064978
Thermodynamical aspects of running vacuum models
NASA Astrophysics Data System (ADS)
Lima, J. A. S.; Basilakos, Spyros; Solà, Joan
2016-04-01
The thermal history of a large class of running vacuum models in which the effective cosmological term is described by a truncated power series of the Hubble rate, whose dominant term is Λ (H) ∝ H^{n+2}, is discussed in detail. Specifically, by assuming that the ultrarelativistic particles produced by the vacuum decay emerge into space-time in such a way that its energy density ρ _r ∝ T4, the temperature evolution law and the increasing entropy function are analytically calculated. For the whole class of vacuum models explored here we find that the primeval value of the comoving radiation entropy density (associated to effectively massless particles) starts from zero and evolves extremely fast until reaching a maximum near the end of the vacuum decay phase, where it saturates. The late-time conservation of the radiation entropy during the adiabatic FRW phase also guarantees that the whole class of running vacuum models predicts the same correct value of the present day entropy, S0 ˜ 10^{87}-10^{88} (in natural units), independently of the initial conditions. In addition, by assuming Gibbons-Hawking temperature as an initial condition, we find that the ratio between the late-time and primordial vacuum energy densities is in agreement with naive estimates from quantum field theory, namely, ρ _{Λ 0}/ρ _{Λ I} ˜ 10^{-123}. Such results are independent on the power n and suggests that the observed Universe may evolve smoothly between two extreme, unstable, non-singular de Sitter phases.
29 CFR 452.30 - Run-off elections.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 2 2011-07-01 2011-07-01 false Run-off elections. 452.30 Section 452.30 Labor Regulations... OF 1959 Frequency and Kinds of Elections § 452.30 Run-off elections. A run-off election must meet the... example, if the run-off is to be held at the same meeting as the original election, the original notice...
29 CFR 452.30 - Run-off elections.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 2 2010-07-01 2010-07-01 false Run-off elections. 452.30 Section 452.30 Labor Regulations... OF 1959 Frequency and Kinds of Elections § 452.30 Run-off elections. A run-off election must meet the... example, if the run-off is to be held at the same meeting as the original election, the original notice...
29 CFR 452.30 - Run-off elections.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 2 2012-07-01 2012-07-01 false Run-off elections. 452.30 Section 452.30 Labor Regulations... OF 1959 Frequency and Kinds of Elections § 452.30 Run-off elections. A run-off election must meet the... example, if the run-off is to be held at the same meeting as the original election, the original notice...
29 CFR 452.30 - Run-off elections.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 2 2014-07-01 2014-07-01 false Run-off elections. 452.30 Section 452.30 Labor Regulations... OF 1959 Frequency and Kinds of Elections § 452.30 Run-off elections. A run-off election must meet the... example, if the run-off is to be held at the same meeting as the original election, the original notice...
29 CFR 452.30 - Run-off elections.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 2 2013-07-01 2013-07-01 false Run-off elections. 452.30 Section 452.30 Labor Regulations... OF 1959 Frequency and Kinds of Elections § 452.30 Run-off elections. A run-off election must meet the... example, if the run-off is to be held at the same meeting as the original election, the original notice...
Mean Platelet Volume (MPV) Predicts Middle Distance Running Performance
Lippi, Giuseppe; Salvagno, Gian Luca; Danese, Elisa; Skafidas, Spyros; Tarperi, Cantor; Guidi, Gian Cesare; Schena, Federico
2014-01-01
Background Running economy and performance in middle distance running depend on several physiological factors, which include anthropometric variables, functional characteristics, training volume and intensity. Since little information is available about hematological predictors of middle distance running time, we investigated whether some hematological parameters may be associated with middle distance running performance in a large sample of recreational runners. Methods The study population consisted in 43 amateur runners (15 females, 28 males; median age 47 years), who successfully concluded a 21.1 km half-marathon at 75–85% of their maximal aerobic power (VO2max). Whole blood was collected 10 min before the run started and immediately thereafter, and hematological testing was completed within 2 hours after sample collection. Results The values of lymphocytes and eosinophils exhibited a significant decrease compared to pre-run values, whereas those of mean corpuscular volume (MCV), platelets, mean platelet volume (MPV), white blood cells (WBCs), neutrophils and monocytes were significantly increased after the run. In univariate analysis, significant associations with running time were found for pre-run values of hematocrit, hemoglobin, mean corpuscular hemoglobin (MCH), red blood cell distribution width (RDW), MPV, reticulocyte hemoglobin concentration (RetCHR), and post-run values of MCH, RDW, MPV, monocytes and RetCHR. In multivariate analysis, in which running time was entered as dependent variable whereas age, sex, blood lactate, body mass index, VO2max, mean training regimen and the hematological parameters significantly associated with running performance in univariate analysis were entered as independent variables, only MPV values before and after the trial remained significantly associated with running time. After adjustment for platelet count, the MPV value before the run (p = 0.042), but not thereafter (p = 0.247), remained significantly
Baum, Brian S; Hobara, Hiroaki; Kim, Yoon Hyuk; Shim, Jae Kun
2016-06-01
Individuals with lower extremity amputation must adapt the mechanical interactions between the feet and ground to account for musculoskeletal function loss. However, it is currently unknown how individuals with amputation modulate three-dimensional ground reaction forces (GRFs) when running. This study aimed to understand how running with running-specific prostheses influences three-dimensional support forces from the ground. Eight individuals with unilateral transtibial amputations and 8 control subjects ran overground at 2.5, 3.0, and 3.5 m/s. Ten force plates measured GRFs at 1000 Hz. Peak and average GRFs and impulses in each plane were compared between limbs and groups. Prosthetic limbs generated reduced vertical impulses, braking forces and impulses, and mediolateral forces while generating similar propulsive impulses compared with intact and control limbs. Intact limbs generated greater peak and average vertical forces and average braking forces than control subjects' limbs. These data indicate that the nonamputated limb experiences elevated mechanical loading compared with prosthetic and control limbs. This may place individuals with amputation at greater risk of acute injury or joint degeneration in their intact limb. Individuals with amputation adapted to running-specific prosthesis force production limitations by generating longer periods of positive impulse thus producing propulsive impulses equivalent to intact and control limbs. PMID:26957365
How Fast Can a Human Run? − Bipedal vs. Quadrupedal Running
Kinugasa, Ryuta; Usami, Yoshiyuki
2016-01-01
Usain Bolt holds the current world record in the 100-m run, with a running time of 9.58 s, and has been described as the best human sprinter in history. However, this raises questions concerning the maximum human running speed, such as “Can the world’s fastest men become faster still?” The correct answer is likely “Yes.” We plotted the historical world records for bipedal and quadrupedal 100-m sprint times according to competition year. These historical records were plotted using several curve-fitting procedures. We found that the projected speeds intersected in 2048, when for the first time, the winning quadrupedal 100-m sprint time could be lower, at 9.276 s, than the winning bipedal time of 9.383 s. Video analysis revealed that in quadrupedal running, humans employed a transverse gallop with a small angular excursion. These results suggest that in the future, the fastest human on the planet might be a quadrupedal runner at the 2048 Olympics. This may be achieved by shifting up to the rotary gallop and taking longer strides with wide sagittal trunk motion. PMID:27446911
NASA Technical Reports Server (NTRS)
Rosenbaum, Bernard J. (Inventor)
2000-01-01
A system for coupling a vascular overflow graft or cannula to a heart pump. A pump pipe outlet is provided with an external tapered surface which receives the end of a compressible connula. An annular compression ring with a tapered internal bore surface is arranged about the cannula with the tapered internal surface in a facing relationship to the external tapered surface. The angle of inclination of the tapered surfaces is converging such that the spacing between the tapered surfaces decreases from one end of the external tapered surface to the other end thereby providing a clamping action of the tapered surface on a cannula which increases as a function of the length of cannula segment between the tapered surfaces. The annular compression ring is disposed within a tubular locking nut which threadedly couples to the pump and provides a compression force for urging the annular ring onto the cannula between the tapered surfaces. The nut has a threaded connection to the pump body. The threaded coupling to the pump body provides a compression force for the annular ring. The annular ring has an annular enclosure space in which excess cannula material from the compression between the tapered surfaces to "bunch up" in the space and serve as an enlarged annular ring segment to assist holding the cannula in place. The clamped cannula provides a seamless joint connection to the pump pipe outlet where the clamping force is uniformly applied to the cannula because of self alignment of the tapered surfaces. The nut can be easily disconnected to replace the pump if necessary.
Distance Running Performance Tests in Children. What Do They Mean?
ERIC Educational Resources Information Center
Cureton, Kirk J.
1982-01-01
Distance running tests evaluate a unique physical activity that is an important component of many other physical tasks. Factor analytic studies have clearly shown that distance running tests assess underlying abilities and physiological capacities that are different from those assessed by runs of shorter duration. (CJ)
Improvement in Running Economy after 6 Weeks of Plyometric Training.
ERIC Educational Resources Information Center
Turner, Amanda M.; Owings, Matt; Schwane, James A.
2003-01-01
Investigated whether a 6-week regimen of plyometric training would improve running economy. Data were collected on 18 regular but not highly trained distance runners who participated in either regular running training or plyometric training. Results indicated that 6 weeks of plyometric training improved running economy at selected speeds in this…
40 CFR 91.409 - Engine dynamometer test run.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine dynamometer test run. 91.409... Engine dynamometer test run. (a) Engine and dynamometer start-up. (1) Only adjustments in accordance with... manufacturer's option, the engine can be run with the throttle in a fixed position or by using the...
40 CFR 86.1438 - Test run-EPA.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Test run-EPA. 86.1438 Section 86.1438... Short Test Procedures § 86.1438 Test run—EPA. (a) This section describes the test run performed by the... prior to conduct of the CST. The test run consists of the wait time, vehicle preconditioning, and...
14 CFR 25.113 - Takeoff distance and takeoff run.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Takeoff distance and takeoff run. 25.113... and takeoff run. (a) Takeoff distance on a dry runway is the greater of— (1) The horizontal distance... include a clearway, the takeoff run is equal to the takeoff distance. If the takeoff distance includes...
14 CFR 25.113 - Takeoff distance and takeoff run.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff distance and takeoff run. 25.113... and takeoff run. (a) Takeoff distance on a dry runway is the greater of— (1) The horizontal distance... include a clearway, the takeoff run is equal to the takeoff distance. If the takeoff distance includes...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs...
14 CFR 23.59 - Takeoff distance and takeoff run.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Takeoff distance and takeoff run. 23.59... Takeoff distance and takeoff run. Link to an amendment published at 76 FR 75753, December 2, 2011. For... run, must be determined. (a) Takeoff distance is the greater of— (1) The horizontal distance along...
40 CFR 91.409 - Engine dynamometer test run.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine dynamometer test run. 91.409... Engine dynamometer test run. (a) Engine and dynamometer start-up. (1) Only adjustments in accordance with... manufacturer's option, the engine can be run with the throttle in a fixed position or by using the...
40 CFR 86.1438 - Test run-EPA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Test run-EPA. 86.1438 Section 86.1438... Short Test Procedures § 86.1438 Test run—EPA. (a) This section describes the test run performed by the... prior to conduct of the CST. The test run consists of the wait time, vehicle preconditioning, and...
49 CFR 238.319 - Running brake test.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received,...
40 CFR 86.1237-85 - Dynamometer runs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Dynamometer runs. 86.1237-85 Section... Methanol-Fueled Heavy-Duty Vehicles § 86.1237-85 Dynamometer runs. (a) The vehicle shall be either driven... the diurnal loss test and beginning of the hot soak preparation run shall not exceed 3 minutes,...
40 CFR 91.409 - Engine dynamometer test run.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine dynamometer test run. 91.409... Engine dynamometer test run. (a) Engine and dynamometer start-up. (1) Only adjustments in accordance with... manufacturer's option, the engine can be run with the throttle in a fixed position or by using the...
40 CFR 600.507-12 - Running change data requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Running change data requirements. 600... Running change data requirements. (a) Except as specified in paragraph (d) of this section, the manufacturer shall submit additional running change fuel economy and carbon-related exhaust emissions data...
40 CFR 1066.960 - Running loss test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Procedures for Motor Vehicles § 1066.960 Running loss test. Test vehicles for running loss emissions as described in 40 CFR 86.134-96. ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Running loss test. 1066.960...
40 CFR 600.507-08 - Running change data requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Running change data requirements. 600... Running change data requirements. (a) Except as specified in paragraph (d) of this section, the manufacturer shall submit additional running change fuel economy data as specified in paragraph (b) of...
14 CFR 25.113 - Takeoff distance and takeoff run.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Takeoff distance and takeoff run. 25.113... and takeoff run. (a) Takeoff distance on a dry runway is the greater of— (1) The horizontal distance... include a clearway, the takeoff run is equal to the takeoff distance. If the takeoff distance includes...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs...
40 CFR 86.1237-85 - Dynamometer runs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Dynamometer runs. 86.1237-85 Section... Methanol-Fueled Heavy-Duty Vehicles § 86.1237-85 Dynamometer runs. (a) The vehicle shall be either driven... the diurnal loss test and beginning of the hot soak preparation run shall not exceed 3 minutes,...
14 CFR 25.113 - Takeoff distance and takeoff run.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Takeoff distance and takeoff run. 25.113... and takeoff run. (a) Takeoff distance on a dry runway is the greater of— (1) The horizontal distance... include a clearway, the takeoff run is equal to the takeoff distance. If the takeoff distance includes...
40 CFR 90.409 - Engine dynamometer test run.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine dynamometer test run. 90.409... Test Procedures § 90.409 Engine dynamometer test run. (a) Engine and dynamometer start-up. (1) Only... practice. (3) For Phase 1 engines, at the manufacturer's option, the engine can be run with the throttle...
40 CFR 86.1438 - Test run-EPA.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Test run-EPA. 86.1438 Section 86.1438... Short Test Procedures § 86.1438 Test run—EPA. (a) This section describes the test run performed by the... prior to conduct of the CST. The test run consists of the wait time, vehicle preconditioning, and...
40 CFR 86.537-90 - Dynamometer test runs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Dynamometer test runs. 86.537-90... 1978 and Later New Motorcycles; Test Procedures § 86.537-90 Dynamometer test runs. (a) The vehicle... (505 seconds) is run. (b) The following steps shall be taken for each test: (1) Place drive wheel...
Predictors of Running Away from Family Foster Care
ERIC Educational Resources Information Center
Nesmith, Andrea
2006-01-01
Running away is a frequent but little studied phenomenon among adolescents in foster care. Repeated running from care often leads to premature discharge and homelessness for youth. This article uses cumulative risk theory in the context of normative adolescent development to investigate predictors of running away from foster care. Results indicate…
Using Integration and Autonomy to Teach an Elementary Running Unit
ERIC Educational Resources Information Center
Sluder, J. Brandon; Howard-Shaughnessy, Candice
2015-01-01
Cardiovascular fitness is an important aspect of overall fitness, health, and wellness, and running can be an excellent lifetime physical activity. One of the most simple and effective means of exercise, running raises heart rate in a short amount of time and can be done with little to no cost for equipment. There are many benefits to running,…
14 CFR 23.59 - Takeoff distance and takeoff run.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Takeoff distance and takeoff run. 23.59... Takeoff distance and takeoff run. For normal, utility, and acrobatic category multiengine jets of more... option of the applicant, the takeoff run, must be determined. (a) Takeoff distance is the greater of—...
40 CFR 90.409 - Engine dynamometer test run.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine dynamometer test run. 90.409... Test Procedures § 90.409 Engine dynamometer test run. (a) Engine and dynamometer start-up. (1) Only... practice. (3) For Phase 1 engines, at the manufacturer's option, the engine can be run with the throttle...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs...