Science.gov

Sample records for nonrigid motion analysis

  1. Dynamic analysis of a system of hinge-connected rigid bodies with nonrigid appendages. [equations of motion

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1974-01-01

    Equations of motion are derived for use in simulating a spacecraft or other complex electromechanical system amenable to idealization as a set of hinge-connected rigid bodies of tree topology, with rigid axisymmetric rotors and nonrigid appendages attached to each rigid body in the set. In conjunction with a previously published report on finite-element appendage vibration equations, this report provides a complete minimum-dimension formulation suitable for generic programming for digital computer numerical integration.

  2. Estimating nonrigid motion from inconsistent intensity with robust shape features

    SciTech Connect

    Liu, Wenyang; Ruan, Dan

    2013-12-15

    qualitatively appealing results, demonstrating good feasibility and applicability of the proposed method. Conclusions: The authors have developed a novel method to estimate the nonrigid motion of GOIs in the presence of spatial intensity and contrast variations, taking advantage of robust shape features. Quantitative analysis and qualitative evaluation demonstrated good promise of the proposed method. Further clinical assessment and validation is being performed.

  3. Nonrigid 2D registration of fluoroscopic coronary artery image sequence with layered motion

    NASA Astrophysics Data System (ADS)

    Park, Taewoo; Jung, Hoyup; Yun, Il Dong

    2016-03-01

    We present a new method for nonrigid registration of coronary artery models with layered motion information. 2D nonrigid registration method is proposed that brings layered motion information into correspondence with fluoroscopic angiograms. The registered model is overlaid on top of interventional angiograms to provide surgical assistance during image-guided chronic total occlusion procedures. The proposed methodology is divided into two parts: layered structures alignments and local nonrigid registration. In the first part, inpainting method is used to estimate a layered rigid transformation that aligns layered motion information. In the second part, a nonrigid registration method is implemented and used to compensate for any local shape discrepancy. Experimental evaluation conducted on a set of 7 fluoroscopic angiograms results in a reduced target registration error, which showed the effectiveness of the proposed method over single layered approach.

  4. Motion correction via nonrigid coregistration of dynamic MR mammography series

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Magri, Alphonso; Unlu, Mehmet; Feiglin, David; Lipson, Edward; Mandel, James; Tillapaugh-Fay, Gwen; Lee, Wei; Coman, Ioana; Szeverenyi, Nikolaus M.

    2006-03-01

    The objectives of this investigation are to improve quality of subtraction MR breast images and improve accuracy of time-signal intensity curves (TSIC) related to local contrast-agent concentration in dynamic MR mammography. The patients, with up to nine fiducial skin markers (FSMs) taped to each breast, were prone with both breasts suspended into a single well that housed the receiver coil. After a preliminary scan, paramagnetic contrast agent gadopentate digmeglumine (Gd) was delivered intravenously, followed by physiological saline. The field of view was centered over the breasts. We used a gradient recalled echo (GRE) technique for pre-Gd baseline, and five more measurements at 60s intervals. Centroids were determined for corresponding FSMs visible on pre-Gd and any post-Gd images. This was followed by segmentation of breast surfaces in all dynamic-series images, and meshing of all post-Gd breast images. Tetrahedral volume and triangular surface elements were used to construct a finite element method (FEM) model. We used ANSYS TM software and an analogy between orthogonal components of the displacement field and the temperature differences in steady-state heat transfer (SSHT) in solids. The floating images were warped to a fixed image using an appropriate shape function for interpolation from mesh nodes to voxels. To reduce any residual misregistration, we performed surface matching between the previously warped floating image and the target image. Our method of motion correction via nonrigid coregistration yielded excellent differential-image series that clearly revealed lesions not visible in unregistered differential-image series. Further, it produced clinically useful maximum intensity projection (MIP) 3D images.

  5. Nonrigid Autofocus Motion Correction for Coronary MR Angiography with a 3D Cones Trajectory

    PubMed Central

    Ingle, R. Reeve; Wu, Holden H.; Addy, Nii Okai; Cheng, Joseph Y.; Yang, Phillip C.; Hu, Bob S.; Nishimura, Dwight G.

    2014-01-01

    Purpose: To implement a nonrigid autofocus motion correction technique to improve respiratory motion correction of free-breathing whole-heart coronary magnetic resonance angiography (CMRA) acquisitions using an image-navigated 3D cones sequence. Methods: 2D image navigators acquired every heartbeat are used to measure superior-inferior, anterior-posterior, and right-left translation of the heart during a free-breathing CMRA scan using a 3D cones readout trajectory. Various tidal respiratory motion patterns are modeled by independently scaling the three measured displacement trajectories. These scaled motion trajectories are used for 3D translational compensation of the acquired data, and a bank of motion-compensated images is reconstructed. From this bank, a gradient entropy focusing metric is used to generate a nonrigid motion-corrected image on a pixel-by-pixel basis. The performance of the autofocus motion correction technique is compared with rigid-body translational correction and no correction in phantom, volunteer, and patient studies. Results: Nonrigid autofocus motion correction yields improved image quality compared to rigid-body-corrected images and uncorrected images. Quantitative vessel sharpness measurements indicate superiority of the proposed technique in 14 out of 15 coronary segments from three patient and two volunteer studies. Conclusion: The proposed technique corrects nonrigid motion artifacts in free-breathing 3D cones acquisitions, improving image quality compared to rigid-body motion correction. PMID:24006292

  6. Sequential Non-Rigid Structure from Motion Using Physical Priors.

    PubMed

    Agudo, Antonio; Moreno-Noguer, Francesc; Calvo, Begona; Montiel, Jose M Martinez

    2016-05-01

    We propose a new approach to simultaneously recover camera pose and 3D shape of non-rigid and potentially extensible surfaces from a monocular image sequence. For this purpose, we make use of the Extended Kalman Filter based Simultaneous Localization And Mapping (EKF-SLAM) formulation, a Bayesian optimization framework traditionally used in mobile robotics for estimating camera pose and reconstructing rigid scenarios. In order to extend the problem to a deformable domain we represent the object's surface mechanics by means of Navier's equations, which are solved using a Finite Element Method (FEM). With these main ingredients, we can further model the material's stretching, allowing us to go a step further than most of current techniques, typically constrained to surfaces undergoing isometric deformations. We extensively validate our approach in both real and synthetic experiments, and demonstrate its advantages with respect to competing methods. More specifically, we show that besides simultaneously retrieving camera pose and non-rigid shape, our approach is adequate for both isometric and extensible surfaces, does not require neither batch processing all the frames nor tracking points over the whole sequence and runs at several frames per second. PMID:27046840

  7. Nonrigid motion correction in 3D using autofocusing with localized linear translations.

    PubMed

    Cheng, Joseph Y; Alley, Marcus T; Cunningham, Charles H; Vasanawala, Shreyas S; Pauly, John M; Lustig, Michael

    2012-12-01

    MR scans are sensitive to motion effects due to the scan duration. To properly suppress artifacts from nonrigid body motion, complex models with elements such as translation, rotation, shear, and scaling have been incorporated into the reconstruction pipeline. However, these techniques are computationally intensive and difficult to implement for online reconstruction. On a sufficiently small spatial scale, the different types of motion can be well approximated as simple linear translations. This formulation allows for a practical autofocusing algorithm that locally minimizes a given motion metric--more specifically, the proposed localized gradient-entropy metric. To reduce the vast search space for an optimal solution, possible motion paths are limited to the motion measured from multichannel navigator data. The novel navigation strategy is based on the so-called "Butterfly" navigators, which are modifications of the spin-warp sequence that provides intrinsic translational motion information with negligible overhead. With a 32-channel abdominal coil, sufficient number of motion measurements were found to approximate possible linear motion paths for every image voxel. The correction scheme was applied to free-breathing abdominal patient studies. In these scans, a reduction in artifacts from complex, nonrigid motion was observed. PMID:22307933

  8. Digital Anthropomorphic Phantoms of Non-Rigid Human Respiratory and Voluntary Body Motion for Investigating Motion Correction in Emission Imaging

    PubMed Central

    Könik, Arda; Connolly, Caitlin M; Johnson, Karen L; Dasari, Paul; Segars, Paul W; Pretorius, P H; Lindsay, Clifford; Dey, Joyoni; King, Michael A

    2014-01-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used XCAT phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain more realistic representation of motion, we developed a series of individual-specific XCAT phantoms modeling non-rigid respiratory and non-rigid body motions derived from the MRI acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, MRI was acquired during free/regular breathing. The MR slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a GUI. Thus far we have created 5 body motion and 5 respiratory motion XCAT phantoms from MRI acquisitions of 6 healthy volunteers (3 males and 3 females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory and body motion phantoms with a varying extent and character for each individual. In addition to these phantoms, we

  9. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    NASA Astrophysics Data System (ADS)

    Könik, Arda; Connolly, Caitlin M.; Johnson, Karen L.; Dasari, Paul; Segars, Paul W.; Pretorius, P. H.; Lindsay, Clifford; Dey, Joyoni; King, Michael A.

    2014-07-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  10. Digital Correction of Motion Artifacts in Microscopy Image Sequences Collected from Living Animals Using Rigid and Non-Rigid Registration

    PubMed Central

    Lorenz, Kevin S.; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2013-01-01

    Digital image analysis is a fundamental component of quantitative microscopy. However, intravital microscopy presents many challenges for digital image analysis. In general, microscopy volumes are inherently anisotropic, suffer from decreasing contrast with tissue depth, lack object edge detail, and characteristically have low signal levels. Intravital microscopy introduces the additional problem of motion artifacts, resulting from respiratory motion and heartbeat from specimens imaged in vivo. This paper describes an image registration technique for use with sequences of intravital microscopy images collected in time-series or in 3D volumes. Our registration method involves both rigid and non-rigid components. The rigid registration component corrects global image translations, while the non-rigid component manipulates a uniform grid of control points defined by B-splines. Each control point is optimized by minimizing a cost function consisting of two parts: a term to define image similarity, and a term to ensure deformation grid smoothness. Experimental results indicate that this approach is promising based on the analysis of several image volumes collected from the kidney, lung, and salivary gland of living rodents. PMID:22092443

  11. Digital correction of motion artefacts in microscopy image sequences collected from living animals using rigid and nonrigid registration.

    PubMed

    Lorenz, K S; Salama, P; Dunn, K W; Delp, E J

    2012-02-01

    Digital image analysis is a fundamental component of quantitative microscopy. However, intravital microscopy presents many challenges for digital image analysis. In general, microscopy volumes are inherently anisotropic, suffer from decreasing contrast with tissue depth, lack object edge detail and characteristically have low signal levels. Intravital microscopy introduces the additional problem of motion artefacts, resulting from respiratory motion and heartbeat from specimens imaged in vivo. This paper describes an image registration technique for use with sequences of intravital microscopy images collected in time-series or in 3D volumes. Our registration method involves both rigid and nonrigid components. The rigid registration component corrects global image translations, whereas the nonrigid component manipulates a uniform grid of control points defined by B-splines. Each control point is optimized by minimizing a cost function consisting of two parts: a term to define image similarity, and a term to ensure deformation grid smoothness. Experimental results indicate that this approach is promising based on the analysis of several image volumes collected from the kidney, lung and salivary gland of living rodents. PMID:22092443

  12. Quantifying Rigid and Nonrigid Motion of Liver Tumors During Stereotactic Body Radiation Therapy

    SciTech Connect

    Xu, Qianyi; Hanna, George; Grimm, Jimm; Kubicek, Gregory; Pahlajani, Niraj; Asbell, Sucha; Fan, Jiajin; Chen, Yan; LaCouture, Tamara

    2014-09-01

    Purpose: To quantify rigid and nonrigid motion of liver tumors using reconstructed 3-dimensional (3D) fiducials from stereo imaging during CyberKnife-based stereotactic body radiation therapy (SBRT). Methods and Materials: Twenty-three liver patients treated with 3 fractions of SBRT were used in this study. After 2 orthogonal kilovoltage images were taken during treatment, the 3D locations of the fiducials were generated by the CyberKnife system and validated using geometric derivations. A total of 4824 pairs of kilovoltage images from start to end of treatment were analyzed. For rigid motion, the rotational angles and translational shifts were reported by aligning 3D fiducial groups from different image pairs, using least-squares fitting. For nonrigid motion, we quantified interfractional tumor volume variations by using the proportional volume derived from the fiducials, which correlates to the sum of interfiducial distances. The individual fiducial displacements were also reported (1) after rigid corrections and (2) without angle corrections. Results: The proportional volume derived by the fiducials demonstrated a volume-increasing trend in the second (101.9% ± 3.6%) and third (101.0 ± 5.9%) fractions among most patients, possibly due to radiation-induced edema. For all patients, the translational shifts in left-right, anteroposterior, and superoinferior directions were 2.1 ± 2.3 mm, 2.9 ± 2.8 mm, and 6.4 ± 5.5 mm, respectively. The greatest translational shifts occurred in the superoinferior direction, likely due to respiratory motion from the diaphragm. The rotational angles in roll, pitch, and yaw were 1.2° ± 1.8°, 1.8° ± 2.4°, and 1.7° ± 2.1°, respectively. The 3D individual fiducial displacements with rigid corrections were 0.2 ± 0.2 mm and increased to 0.5 ± 0.4 mm without rotational corrections. Conclusions: Accurate 3D locations of internal fiducials can be reconstructed from stereo imaging during treatment. As an

  13. Nonrigid PET motion compensation in the lower abdomen using simultaneous tagged-MRI and PET imaging

    PubMed Central

    Guérin, B.; Cho, S.; Chun, S. Y.; Zhu, X.; Alpert, N. M.; El Fakhri, G.; Reese, T.; Catana, C.

    2011-01-01

    Purpose: We propose a novel approach for PET respiratory motion correction using tagged-MRI and simultaneous PET-MRI acquisitions.Methods: We use a tagged-MRI acquisition followed by motion tracking in the phase domain to estimate the nonrigid deformation of biological tissues during breathing. In order to accurately estimate motion even in the presence of noise and susceptibility artifacts, we regularize the traditional HARP tracking strategy using a quadratic roughness penalty on neighboring displacement vectors (R-HARP). We then incorporate the motion fields estimated with R-HARP in the system matrix of an MLEM PET reconstruction algorithm formulated both for sinogram and list-mode data representations. This approach allows reconstruction of all detected coincidences in a single image while modeling the effect of motion both in the emission and the attenuation maps. At present, tagged-MRI does not allow estimation of motion in the lungs and our approach is therefore limited to motion correction in soft tissues. Since it is difficult to assess the accuracy of motion correction approaches in vivo, we evaluated the proposed approach in numerical simulations of simultaneous PET-MRI acquisitions using the NCAT phantom. We also assessed its practical feasibility in PET-MRI acquisitions of a small deformable phantom that mimics the complex deformation pattern of a lung that we imaged on a combined PET-MRI brain scanner.Results: Simulations showed that the R-HARP tracking strategy accurately estimated realistic respiratory motion fields for different levels of noise in the tagged-MRI simulation. In simulations of tumors exhibiting increased uptake, contrast estimation was 20% more accurate with motion correction than without. Signal-to-noise ratio (SNR) was more than 100% greater when performing motion-corrected reconstruction which included all counts, compared to when reconstructing only coincidences detected in the first of eight gated frames. These results were

  14. MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI

    PubMed Central

    Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges

    2014-01-01

    Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection

  15. Non-rigid, but not rigid, motion interferes with the processing of structural face information in developmental prosopagnosia.

    PubMed

    Maguinness, Corrina; Newell, Fiona N

    2015-04-01

    There is growing evidence to suggest that facial motion is an important cue for face recognition. However, it is poorly understood whether motion is integrated with facial form information or whether it provides an independent cue to identity. To provide further insight into this issue, we compared the effect of motion on face perception in two developmental prosopagnosics and age-matched controls. Participants first learned faces presented dynamically (video), or in a sequence of static images, in which rigid (viewpoint) or non-rigid (expression) changes occurred. Immediately following learning, participants were required to match a static face image to the learned face. Test face images varied by viewpoint (Experiment 1) or expression (Experiment 2) and were learned or novel face images. We found similar performance across prosopagnosics and controls in matching facial identity across changes in viewpoint when the learned face was shown moving in a rigid manner. However, non-rigid motion interfered with face matching across changes in expression in both individuals with prosopagnosia compared to the performance of control participants. In contrast, non-rigid motion did not differentially affect the matching of facial expressions across changes in identity for either prosopagnosics (Experiment 3). Our results suggest that whilst the processing of rigid motion information of a face may be preserved in developmental prosopagnosia, non-rigid motion can specifically interfere with the representation of structural face information. Taken together, these results suggest that both form and motion cues are important in face perception and that these cues are likely integrated in the representation of facial identity. PMID:25737056

  16. Polar motions equivalent to high frequency nutations for a nonrigid Earth with anelastic mantle

    NASA Astrophysics Data System (ADS)

    Mathews, P. M.; Bretagnon, P.

    2003-03-01

    The coefficients of polar motions of the rigid/nonrigid Earth in frequency bands other than the retrograde diurnal one are systematically computed using general expressions, derived here for the first time, for the prograde and retrograde torques exerted on the Earth by lunisolar potentials of arbitrary spherical harmonic type. Taken together with the already known coefficients of low frequency nutations and UT1 variations, they provide a complete characterization, with high precision, of the motions of the pole of the terrestrial reference frame in space; this is needed for high precision studies in astronomy and space geodesy. The inputs used for our computations are a table of tidal amplitudes, and values of the geopotential coefficients of degrees up to 4 and of other relevant basic Earth parameters. General relations which connect the coefficients of high frequency nutations to those of the equivalent polar motions are established and used for deducing the former. The Chandler resonance plays a significant role in low frequency polar motions. In this context, the role of mantle anelasticity and the nature of the Earth's deformational response to zero frequency forcing are given special consideration. The free core nutation (FCN) resonance of low frequency nutations is shown to affect the prograde semidiurnal nutations through the coupling produced between the nutations in the two frequency bands by triaxiality terms in the angular momenta of the whole Earth and of its fluid core. It is shown in a transparent fashion that the effect of the core triaxiality arises almost exclusively from the huge FCN-related resonance in the wobble of the core. The magnitude of the effect is found to be a few times smaller than reported in a recent paper; it is also found, unlike in that paper, that the changes in the eigenfrequencies due to trixiality are only of the second order in the triaxiality parameter. Numerical results for the polar motions of the nonrigid Earth in

  17. A 3D MR-acquisition scheme for nonrigid bulk motion correction in simultaneous PET-MR

    SciTech Connect

    Kolbitsch, Christoph Prieto, Claudia; Schaeffter, Tobias; Tsoumpas, Charalampos

    2014-08-15

    Purpose: Positron emission tomography (PET) is a highly sensitive medical imaging technique commonly used to detect and assess tumor lesions. Magnetic resonance imaging (MRI) provides high resolution anatomical images with different contrasts and a range of additional information important for cancer diagnosis. Recently, simultaneous PET-MR systems have been released with the promise to provide complementary information from both modalities in a single examination. Due to long scan times, subject nonrigid bulk motion, i.e., changes of the patient's position on the scanner table leading to nonrigid changes of the patient's anatomy, during data acquisition can negatively impair image quality and tracer uptake quantification. A 3D MR-acquisition scheme is proposed to detect and correct for nonrigid bulk motion in simultaneously acquired PET-MR data. Methods: A respiratory navigated three dimensional (3D) MR-acquisition with Radial Phase Encoding (RPE) is used to obtain T1- and T2-weighted data with an isotropic resolution of 1.5 mm. Healthy volunteers are asked to move the abdomen two to three times during data acquisition resulting in overall 19 movements at arbitrary time points. The acquisition scheme is used to retrospectively reconstruct dynamic 3D MR images with different temporal resolutions. Nonrigid bulk motion is detected and corrected in this image data. A simultaneous PET acquisition is simulated and the effect of motion correction is assessed on image quality and standardized uptake values (SUV) for lesions with different diameters. Results: Six respiratory gated 3D data sets with T1- and T2-weighted contrast have been obtained in healthy volunteers. All bulk motion shifts have successfully been detected and motion fields describing the transformation between the different motion states could be obtained with an accuracy of 1.71 ± 0.29 mm. The PET simulation showed errors of up to 67% in measured SUV due to bulk motion which could be reduced to less than

  18. Comparing nonrigid registration techniques for motion corrected MR prostate diffusion imaging

    SciTech Connect

    Buerger, C. Sénégas, J.; Kabus, S.; Carolus, H.; Schulz, H.; Renisch, S.; Agarwal, H.; Turkbey, B.; Choyke, P. L.

    2015-01-15

    Purpose: T{sub 2}-weighted magnetic resonance imaging (MRI) is commonly used for anatomical visualization in the pelvis area, such as the prostate, with high soft-tissue contrast. MRI can also provide functional information such as diffusion-weighted imaging (DWI) which depicts the molecular diffusion processes in biological tissues. The combination of anatomical and functional imaging techniques is widely used in oncology, e.g., for prostate cancer diagnosis and staging. However, acquisition-specific distortions as well as physiological motion lead to misalignments between T{sub 2} and DWI and consequently to a reduced diagnostic value. Image registration algorithms are commonly employed to correct for such misalignment. Methods: The authors compare the performance of five state-of-the-art nonrigid image registration techniques for accurate image fusion of DWI with T{sub 2}. Results: Image data of 20 prostate patients with cancerous lesions or cysts were acquired. All registration algorithms were validated using intensity-based as well as landmark-based techniques. Conclusions: The authors’ results show that the “fast elastic image registration” provides most accurate results with a target registration error of 1.07 ± 0.41 mm at minimum execution times of 11 ± 1 s.

  19. Learning Spatially-Smooth Mappings in Non-Rigid Structure from Motion.

    PubMed

    Hamsici, Onur C; Gotardo, Paulo F U; Martinez, Aleix M

    2012-01-01

    Non-rigid structure from motion (NRSFM) is a classical underconstrained problem in computer vision. A common approach to make NRSFM more tractable is to constrain 3D shape deformation to be smooth over time. This constraint has been used to compress the deformation model and reduce the number of unknowns that are estimated. However, temporal smoothness cannot be enforced when the data lacks temporal ordering and its benefits are less evident when objects undergo abrupt deformations. This paper proposes a new NRSFM method that addresses these problems by considering deformations as spatial variations in shape space and then enforcing spatial, rather than temporal, smoothness. This is done by modeling each 3D shape coefficient as a function of its input 2D shape. This mapping is learned in the feature space of a rotation invariant kernel, where spatial smoothness is intrinsically defined by the mapping function. As a result, our model represents shape variations compactly using custom-built coefficient bases learned from the input data, rather than a pre-specified set such as the Discrete Cosine Transform. The resulting kernel-based mapping is a by-product of the NRSFM solution and leads to another fundamental advantage of our approach: for a newly observed 2D shape, its 3D shape is recovered by simply evaluating the learned function. PMID:23946937

  20. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    SciTech Connect

    Vijayan, Sinara; Klein, Stefan; Hofstad, Erlend Fagertun; Langø, Thomas; Lindseth, Frank; Ystgaard, Brynjulf

    2014-08-15

    Purpose: Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. Methods: The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequence in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. Results: The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. Conclusions: The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe

  1. Nonrigid motion compensation in B-mode and contrast enhanced ultrasound image sequences of the carotid artery

    NASA Astrophysics Data System (ADS)

    Carvalho, Diego D. B.; Akkus, Zeynettin; Bosch, Johan G.; van den Oord, Stijn C. H.; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In this work, we investigate nonrigid motion compensation in simultaneously acquired (side-by-side) B-mode ultrasound (BMUS) and contrast enhanced ultrasound (CEUS) image sequences of the carotid artery. These images are acquired to study the presence of intraplaque neovascularization (IPN), which is a marker of plaque vulnerability. IPN quantification is visualized by performing the maximum intensity projection (MIP) on the CEUS image sequence over time. As carotid images contain considerable motion, accurate global nonrigid motion compensation (GNMC) is required prior to the MIP. Moreover, we demonstrate that an improved lumen and plaque differentiation can be obtained by averaging the motion compensated BMUS images over time. We propose to use a previously published 2D+t nonrigid registration method, which is based on minimization of pixel intensity variance over time, using a spatially and temporally smooth B-spline deformation model. The validation compares displacements of plaque points with manual trackings by 3 experts in 11 carotids. The average (+/- standard deviation) root mean square error (RMSE) was 99+/-74μm for longitudinal and 47+/-18μm for radial displacements. These results were comparable with the interobserver variability, and with results of a local rigid registration technique based on speckle tracking, which estimates motion in a single point, whereas our approach applies motion compensation to the entire image. In conclusion, we evaluated that the GNMC technique produces reliable results. Since this technique tracks global deformations, it can aid in the quantification of IPN and the delineation of lumen and plaque contours.

  2. Accuracy of non-rigid registration for local analysis of elasticity restrictions of the lungs

    NASA Astrophysics Data System (ADS)

    Stein, Daniel; Tetzlaff, Ralf; Wolf, Ivo; Meinzer, Hans-Peter

    2009-02-01

    Diseases of the lung often begin with regionally limited changes altering the tissue elasticity. Therefore, quantification of regional lung tissue motion would be desirable for early diagnosis, treatment monitoring, and follow-up. Dynamic MRI can capture such changes, but quantification requires non-rigid registration. However, analysis of dynamic MRI data of the lung is challenging due to inherently low image signal and contrast. Towards a computer-assisted quantification for regional lung diseases, we have evaluated two Demons-based registration methods for their accuracy in quantifying local lung motion on dynamic MRI data. The registration methods were applied on masked image data, which were pre-segmented with a graph-cut algorithm. Evaluation was performed on five datasets from healthy humans with nine time frames each. As gold standard, manually defined points (between 8 and 24) on prominent landmarks (essentially vessel structures) were used. The distance between these points and the predicted landmark location as well as the overlap (Dice coefficient) of the segmentations transformed with the deformation field were calculated. We found that the Demons algorithm performed better than the Symmetric Forces Demons algorithm with respect to average landmark distance (6.5 mm +/- 4.1 mm vs. 8.6 mm +/- 6.1 mm), but comparable regarding the Dice coefficient (0.946 +/- 0.018 vs. 0.961 +/- 0.018). Additionally, the Demons algorithm computes the deformation in only 10 seconds, whereas the Symmetric Forces Demons algorithm takes about 12 times longer.

  3. Slow exchange model of nonrigid rotational motion in RNA for combined solid-state and solution NMR studies.

    PubMed

    Emani, Prashant S; Olsen, Gregory L; Echodu, Dorothy C; Varani, Gabriele; Drobny, Gary P

    2010-12-01

    Functional RNA molecules are conformationally dynamic and sample a multitude of dynamic modes over a wide range of frequencies. Thus, a comprehensive description of RNA dynamics requires the inclusion of a broad range of motions across multiple dynamic rates which must be derived from multiple spectroscopies. Here we describe a slow conformational exchange theoretical approach to combining the description of local motions in RNA that occur in the nanosecond to microsecond window and are detected by solid-state NMR with nonrigid rotational motion of the HIV-1 transactivation response element (TAR) RNA in solution as observed by solution NMR. This theoretical model unifies the experimental results generated by solution and solid-state NMR and provides a comprehensive view of the dynamics of HIV-1 TAR RNA, a well-known paradigm of an RNA where function requires extensive conformational rearrangements. This methodology provides a quantitative atomic level view of the amplitudes and rates of the local and collective displacements of the TAR RNA molecule and provides directly motional parameters for the conformational capture hypothesis of this classical RNA-ligand interaction. PMID:21067190

  4. Experiences in determination of non-rigid body motion in industrial environment using low-cost photogrammetry

    NASA Astrophysics Data System (ADS)

    Rupnik, Ewelina; Jansa, Josef

    2013-04-01

    Central to our investigation is determination of dynamic behaviour of a highly reflective platform floating on water, as well as derivation of parameters defining instantaneous water state. The employed imaging setup consists of three off-the-shelf dSLR cameras capable of video recording at a 30Hz frame rate. In order to observe a change, the non-rigid and non-diffuse bodies impose the adoption of artificial targetting and custom measurement algorithms. Attention will be given to an in-house software tool implemented to carry out point measurement, correspondence search, tracking and outlier detection methods in the presence of specular reflections and a multimedia scene. A methodology for retrieval of wave parameters in regular wave conditions is also automatically handled by the software and will be discussed. In the context of performed measurements and achieved results, we will point out the extent to which consumer grade camera can fulfil automation and accuracy demands of industrial applications and the pitfalls entailed. Lastly, we will elaborate on visual representation of computed motion and deformations.

  5. Non-rigid estimation of cell motion in calcium time-lapse images

    NASA Astrophysics Data System (ADS)

    Hachi, Siham; Lucumi Moreno, Edinson; Desmet, An-Sofie; Vanden Berghe, Pieter; Fleming, Ronan M. T.

    2016-03-01

    Calcium imaging is a widely used technique in neuroscience permitting the simultaneous monitoring of electro- physiological activity of hundreds of neurons at single cell resolution. Identification of neuronal activity requires rapid and reliable image analysis techniques, especially when neurons fire and move simultaneously over time. Traditionally, image segmentation is performed to extract individual neurons in the first frame of a calcium sequence. Thereafter, the mean intensity is calculated from the same region of interest in each frame to infer calcium signals. However, when cells move, deform and fire, this segmentation on its own generates artefacts and therefore biased neuronal activity. Therefore, there is a pressing need to develop a more efficient cell tracking technique. We hereby present a novel vision-based cell tracking scheme using a thin-plate spline deformable model. The thin-plate spline warping is based on control points detected using the Fast from Accelerated Segment Test descriptor and tracked using the Lucas-Kanade optical flow. Our method is able to track neurons in calcium time-series, even when there are large changes in intensity, such as during a firing event. The robustness and efficiency of the proposed approach is validated on real calcium time-lapse images of a neuronal population.

  6. SU-E-J-225: Quantitative Evaluation of Rigid and Non-Rigid Motion of Liver Tumors Using Stereo Imaging During SBRT

    SciTech Connect

    Xu, Q; Hanna, G; Kubicek, G; Asbell, S; Chen, Y; LaCouture, T; Grimm, J; Pahlajani, N; Fan, J

    2014-06-01

    Purpose: To quantitatively evaluate rigid and nonrigid motion of liver tumors based on fiducial tracking in 3D by stereo imaging during CyberKnife SBRT. Methods: Twenty-five liver patients previously treated with three-fractions of SBRT were retrospectively recruited in this study. During treatment, the 3D locations of fiducials were reported by the CyberKnife system after two orthogonal kV X-ray images were taken and further validated by geometry derivations. A total of 5004 pairs of X-ray images acquired during the course of treatment for all the patients, were analyzed. For rigid motion, the rotational angles and translational shifts by aligning 3D fiducial groups in different image pairs after least-square fitting were reported. For nonrigid motion, the relative interfractional tumor shape variations were reported and correlated to the sum of inter-fiducial distances. The individual fiducial displacements were also reported after rigid corrections and without angle corrections. Results: The relative tumor volume variation indicated by the inter-fiducial distances demonstrated an increasing trend in the second (101.6±3.4%) and third fraction (101.2±5.6%) among most patients. The cause could be possibly due to radiation-induced edema. For all the patients, the translational shift was 8.1±5.7 mm, with shifts in LR, AP and SI were 2.1±2.4 mm, 2.8±2.9 mm and 6.7±5.1 mm, respectively. The greatest translation shift occurred in SI, mainly due the breathing motion of diaphragm The rotational angles were 1.1±1.7°, 1.9±2.6° and 1.6±2.2°, in roll, pitch, and yaw, respectively. The 3D fiducial displacement with rigid corrections were 0.2±0.2 mm and increased to 0.6±0.3 mm without rotational corrections. Conclusion: The fiducial locations in 3D can be precisely reconstructed from CyberKnife stereo imaging system during treatment. The fiducials provide close estimation of both rigid and nonrigid motion of .liver tumors. The reported data could be further

  7. High-throughput mouse phenotyping using non-rigid registration and robust principal component analysis

    NASA Astrophysics Data System (ADS)

    Xie, Zhongliu; Kitamoto, Asanobu; Tamura, Masaru; Shiroishi, Toshihiko; Gillies, Duncan

    2016-03-01

    Intensive international efforts are underway towards phenotyping the mouse genome, by knocking out each of its ≍25,000 genes one-by-one for comparative study. With vast amounts of data to analyze, the traditional method using time-consuming histological examination is clearly impractical, leading to an overwhelming demand for some high-throughput phenotyping framework, especially with the employment of biomedical image informatics to efficiently identify phenotypes concerning morphological abnormality. Existing work has either excessively relied on volumetric analytics which is insensitive to phenotypes associated with no severe volume variations, or tailored for specific defects and thus fails to serve a general phenotyping purpose. Furthermore, the prevailing requirement of an atlas for image segmentation in contrast to its limited availability further complicates the issue in practice. In this paper we propose a high-throughput general-purpose phenotyping framework that is able to efficiently perform batch-wise anomaly detection without prior knowledge of the phenotype and the need for atlas-based segmentation. Anomaly detection is centered on the combined use of group-wise non-rigid image registration and robust principal component analysis (RPCA) for feature extraction and decomposition.

  8. Creation of 3D digital anthropomorphic phantoms which model actual patient non-rigid body motion as determined from MRI and position tracking studies of volunteers

    NASA Astrophysics Data System (ADS)

    Connolly, C. M.; Konik, A.; Dasari, P. K. R.; Segars, P.; Zheng, S.; Johnson, K. L.; Dey, J.; King, M. A.

    2011-03-01

    Patient motion can cause artifacts, which can lead to difficulty in interpretation. The purpose of this study is to create 3D digital anthropomorphic phantoms which model the location of the structures of the chest and upper abdomen of human volunteers undergoing a series of clinically relevant motions. The 3D anatomy is modeled using the XCAT phantom and based on MRI studies. The NURBS surfaces of the XCAT are interactively adapted to fit the MRI studies. A detailed XCAT phantom is first developed from an EKG triggered Navigator acquisition composed of sagittal slices with a 3 x 3 x 3 mm voxel dimension. Rigid body motion states are then acquired at breath-hold as sagittal slices partially covering the thorax, centered on the heart, with 9 mm gaps between them. For non-rigid body motion requiring greater sampling, modified Navigator sequences covering the entire thorax with 3 mm gaps between slices are obtained. The structures of the initial XCAT are then adapted to fit these different motion states. Simultaneous to MRI imaging the positions of multiple reflective markers on stretchy bands about the volunteer's chest and abdomen are optically tracked in 3D via stereo imaging. These phantoms with combined position tracking will be used to investigate both imaging-data-driven and motion-tracking strategies to estimate and correct for patient motion. Our initial application will be to cardiacperfusion SPECT imaging where the XCAT phantoms will be used to create patient activity and attenuation distributions for each volunteer with corresponding motion tracking data from the markers on the body-surface. Monte Carlo methods will then be used to simulate SPECT acquisitions, which will be used to evaluate various motion estimation and correction strategies.

  9. Non-rigid dual respiratory and cardiac motion correction methods after, during, and before image reconstruction for 4D cardiac PET

    NASA Astrophysics Data System (ADS)

    Feng, Tao; Wang, Jizhe; Fung, George; Tsui, Benjamin

    2016-01-01

    Respiratory motion (RM) and cardiac motion (CM) degrade the quality and resolution in cardiac PET scans. We have developed non-rigid motion estimation methods to estimate both RM and CM based on 4D cardiac gated PET data alone, and compensate the dual respiratory and cardiac (R&C) motions after (MCAR), during (MCDR), and before (MCBR) image reconstruction. In all three R&C motion correction methods, attenuation-activity mismatch effect was modeled by using transformed attenuation maps using the estimated RM. The difference of using activity preserving and non-activity preserving models in R&C correction was also studied. Realistic Monte Carlo simulated 4D cardiac PET data using the 4D XCAT phantom and accurate models of the scanner design parameters and performance characteristics at different noise levels were employed as the known truth and for method development and evaluation. Results from the simulation study suggested that all three dual R&C motion correction methods provide substantial improvement in the quality of 4D cardiac gated PET images as compared with no motion correction. Specifically, the MCDR method yields the best performance for all different noise levels compared with the MCAR and MCBR methods. While MCBR reduces computational time dramatically but the resultant 4D cardiac gated PET images has overall inferior image quality when compared to that from the MCAR and MCDR approaches in the ‘almost’ noise free case. Also, the MCBR method has better noise handling properties when compared with MCAR and provides better quantitative results in high noise cases. When the goal is to reduce scan time or patient radiation dose, MCDR and MCBR provide a good compromise between image quality and computational times.

  10. Motion sequence analysis in the presence of figural cues

    PubMed Central

    Sinha, Pawan; Vaina, Lucia M.

    2015-01-01

    The perception of 3D structure in dynamic sequences is believed to be subserved primarily through the use of motion cues. However, real-world sequences contain many figural shape cues besides the dynamic ones. We hypothesize that if figural cues are perceptually significant during sequence analysis, then inconsistencies in these cues over time would lead to percepts of non-rigidity in sequences showing physically rigid objects in motion. We develop an experimental paradigm to test this hypothesis and present results with two patients with impairments in motion perception due to focal neurological damage, as well as two control subjects. Consistent with our hypothesis, the data suggest that figural cues strongly influence the perception of structure in motion sequences, even to the extent of inducing non-rigid percepts in sequences where motion information alone would yield rigid structures. Beyond helping to probe the issue of shape perception, our experimental paradigm might also serve as a possible perceptual assessment tool in a clinical setting. PMID:26028822

  11. Object motion analysis study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of optical data processing (ODP) techniques for motion analysis in two-dimensional imagery was studied. The basic feasibility of this approach was demonstrated, but inconsistent performance of the photoplastic used for recording spatial filters prevented totally automatic operation. Promising solutions to the problems encountered are discussed, and it is concluded that ODP techniques could be quite useful for motion analysis.

  12. Clinical Implementation of an Online Adaptive Plan-of-the-Day Protocol for Nonrigid Motion Management in Locally Advanced Cervical Cancer IMRT

    SciTech Connect

    Heijkoop, Sabrina T. Langerak, Thomas R.; Quint, Sandra; Bondar, Luiza; Mens, Jan Willem M.; Heijmen, Ben J.M.; Hoogeman, Mischa S.

    2014-11-01

    Purpose: To evaluate the clinical implementation of an online adaptive plan-of-the-day protocol for nonrigid target motion management in locally advanced cervical cancer intensity modulated radiation therapy (IMRT). Methods and Materials: Each of the 64 patients had four markers implanted in the vaginal fornix to verify the position of the cervix during treatment. Full and empty bladder computed tomography (CT) scans were acquired prior to treatment to build a bladder volume-dependent cervix-uterus motion model for establishment of the plan library. In the first phase of clinical implementation, the library consisted of one IMRT plan based on a single model-predicted internal target volume (mpITV), covering the target for the whole pretreatment observed bladder volume range, and a 3D conformal radiation therapy (3DCRT) motion-robust backup plan based on the same mpITV. The planning target volume (PTV) combined the ITV and nodal clinical target volume (CTV), expanded with a 1-cm margin. In the second phase, for patients showing >2.5-cm bladder-induced cervix-uterus motion during planning, two IMRT plans were constructed, based on mpITVs for empty-to-half-full and half-full-to-full bladder. In both phases, a daily cone beam CT (CBCT) scan was acquired to first position the patient based on bony anatomy and nodal targets and then select the appropriate plan. Daily post-treatment CBCT was used to verify plan selection. Results: Twenty-four and 40 patients were included in the first and second phase, respectively. In the second phase, 11 patients had two IMRT plans. Overall, an IMRT plan was used in 82.4% of fractions. The main reasons for selecting the motion-robust backup plan were uterus outside the PTV (27.5%) and markers outside their margin (21.3%). In patients with two IMRT plans, the half-full-to-full bladder plan was selected on average in 45% of the first 12 fractions, which was reduced to 35% in the last treatment fractions. Conclusions: The implemented

  13. A three-dimension finite element analysis to evaluate the stress distribution in tooth supported 5-unit intermediate abutment prosthesis with rigid and nonrigid connector

    PubMed Central

    Modi, Ritesh; Kohli, Shivani; Rajeshwari, K.; Bhatia, Shekhar

    2015-01-01

    Objective: The aim of the study is to evaluate the stress distribution in tooth supported 5-unit fixed partial denture (FPD) having tooth as pier abutment using rigid and nonrigid connectors respectively, under simultaneous and progressive loading. Material and Methods: The three-dimensional (3D) finite element program (ANSYS software) was used to construct the mathematical model. Two 5-unit FPD’S were simulated, one with rigid connector and another one with nonrigid connector. For analysis, each of these models were subjected to axial and oblique forces under progressive loading (180, 180, 120, 120, 80 N force on first and second molars, premolars and canine respectively) and simultaneous loading (100, 100, 100, 100, 100 N force on first and second molars, premolars and canine respectively). Results: The rigid and nonrigid connector design have effect on stress distribution in 5-unit FPDs with pier abutments. Conclusion: Oblique forces produce more stresses than vertical forces. Nonrigid connector resulted in decrease in stress at the level of prosthesis and increase in stress at the level of alveolar crest. PMID:26038660

  14. Non-rigid registration of multiphoton microscopy images using B-splines

    NASA Astrophysics Data System (ADS)

    Lorenz, Kevin S.; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2011-03-01

    Optical microscopy poses many challenges for digital image analysis. One particular challenge includes correction of image artifacts due to respiratory motion from specimens imaged in vivo. We describe a non-rigid registration method using B-splines to correct these motion artifacts. Current attempts at non-rigid medical image registration have typically involved only a single pair of images. Extending these techniques to an entire series of images, possibly comprising hundreds of images, is presented in this paper. Our method involves creating a uniform grid of control points across each image in a stack. Each control point is manipulated by optimizing a cost function consisting of two parts: a term to determine image similarity, and a term to evaluate deformation grid smoothness. This process is repeated for all images in the stack. Analysis is evaluated using block motion estimation and other visualization techniques.

  15. Analysis of swimming motions.

    NASA Technical Reports Server (NTRS)

    Gallenstein, J.; Huston, R. L.

    1973-01-01

    This paper presents an analysis of swimming motion with specific attention given to the flutter kick, the breast-stroke kick, and the breast stroke. The analysis is completely theoretical. It employs a mathematical model of the human body consisting of frustrums of elliptical cones. Dynamical equations are written for this model including both viscous and inertia forces. These equations are then applied with approximated swimming strokes and solved numerically using a digital computer. The procedure is to specify the input of the swimming motion. The computer solution then provides the output displacement, velocity, and rotation or body roll of the swimmer.

  16. Motion analysis report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.

    1985-01-01

    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.

  17. Nonrigid registration and classification of the kidneys in 3D dynamic contrast enhanced (DCE) MR images

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Ghafourian, Pegah; Sharma, Puneet; Salman, Khalil; Martin, Diego; Fei, Baowei

    2012-02-01

    We have applied image analysis methods in the assessment of human kidney perfusion based on 3D dynamic contrast-enhanced (DCE) MRI data. This approach consists of 3D non-rigid image registration of the kidneys and fuzzy C-mean classification of kidney tissues. The proposed registration method reduced motion artifacts in the dynamic images and improved the analysis of kidney compartments (cortex, medulla, and cavities). The dynamic intensity curves show the successive transition of the contrast agent through kidney compartments. The proposed method for motion correction and kidney compartment classification may be used to improve the validity and usefulness of further model-based pharmacokinetic analysis of kidney function.

  18. NON-RIGID REGISTRATION OF HYPERSPECTRAL IMAGERY FOR ANALYSIS OF AGRONOMIC SCENES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of remote sensing imagery usually entails the registration of images from different multiple wavelengths. Even though a staring instrument has the advantage of readily producing coherent spectral images, often these images still need some form of band-to-band registration to correct for in...

  19. ANALYSIS OF AIRCRAFT MOTIONS

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1994-01-01

    This program was developed by Ames Research Center, in cooperation with the National Transportation Safety Board, as a technique for deriving time histories of an aircraft's motion from Air Traffic Control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data, to derive an expanded set of data which includes airspeed, lift, attitude angles (pitch, roll, and heading), etc. This technique should prove useful as a source of data in the investigation of commercial airline accidents and in the analysis of accidents involving aircraft which do not have onboard data recorders (e.g., military, short-haul, and general aviation). The technique used to determine the aircraft motions involves smoothing of raw radar data. These smoothed results, in combination with other available information (wind profiles and aircraft performance data), are used to derive the expanded set of data. This program uses a cubic least-square fit to smooth the raw data. This moving-arc procedure provides a smoothed time history of the aircraft position, the inertial velocities, and accelerations. Using known winds, these inertial data are transformed to aircraft stability axes to provide true airspeed, thrust-drag, lift, and roll angle. Further derivation, based on aircraft dependent performance data, can determine the aircraft angle of attack, pitch, and heading angle. Results of experimental tests indicate that values derived from ATC radar records using this technique agree favorably with airborne measurements. This program is written in FORTRAN IV to be executed in the batch mode, and has been implemented on a CDC 6000 series computer with a central memory requirement of 64k (octal) of 60 bit words.

  20. Shrinking of the Cocos and Nazca Plates due to Horizontal Thermal Contraction and Implications for Plate Non-rigidity and the Non-closure of the Pacific-Cocos-Nazca Plate Motion Circuit

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Kreemer, C.

    2015-12-01

    Plate rigidity is the central tenet of plate tectonics. Mounting evidence suggests, however, that significant intraplate deformation occurs in oceanic lithosphere due to horizontal thermal contraction, the rate of which decreases as ≈ 1/age [Kumar & Gordon 2009]. Support for this hypothesis comes from the azimuths of submarine transform faults, which are fit significantly better assuming shrinking plates than by assuming rigid plates [Mishra & Gordon 2015]. Previously we estimated the intraplate velocity field of the Pacific plate accounting for horizontal thermal contraction. The ≈2 mm/yr southeastward motion predicted for the northeastern part of the plate relative to the Pacific-Antarctic Rise may contribute to the non-closure of the Pacific-North America plate motion circuit. In a reference frame in which fix the oldest portion of the Pacific plate, some sites on the plate move up to ≈2 mm/yr [Kreemer & Gordon 2014]. Here we present intraplate velocity fields of the Cocos and Nazca plates and discuss their implications for the non-rigidity of plates and the non-closure of the Pacific-Cocos-Nazca plate circuit, which fails closure by a stunning 14 ±5 mm/yr [DeMets et al. 2010]. If we fix the oldest part of the Cocos plate, intraplate velocities of up to ≈2 mm/yr are estimated, with the fastest motion occurring at the northern end of the plate. If we fix the oldest part of the Nazca plate, displacement rates up to 2 mm/yr are estimated, with the fastest motion occurring in the northeasternmost portion of the plate. In the velocity fields for both plates, the lithosphere adjacent to transform faults along the East Pacific Rise tends to move to the south, which would skew the azimuths of the transform faults clockwise of the values expected for rigid plates, which is the same as the sense of misfit between observed azimuths of transform faults and the azimuths calculated from the MORVEL global set of relative angular velocities [DeMets et al. 2010]. Direct

  1. Video Analysis of Muscle Motion

    ERIC Educational Resources Information Center

    Foster, Boyd

    2004-01-01

    In this article, the author discusses how video cameras can help students in physical education and sport science classes successfully learn and present anatomy and kinesiology content at levels. Video analysis of physical activity is an excellent way to expand student knowledge of muscle location and function, planes and axes of motion, and…

  2. Motion Analysis From Television Images

    NASA Astrophysics Data System (ADS)

    Silberberg, George G.; Keller, Patrick N.

    1982-02-01

    The Department of Defense ranges have relied on photographic instrumentation for gathering data of firings for all types of ordnance. A large inventory of cameras are available on the market that can be used for these tasks. A new set of optical instrumentation is beginning to appear which, in many cases, can directly replace photographic cameras for a great deal of the work being performed now. These are television cameras modified so they can stop motion, see in the dark, perform under hostile environments, and provide real time information. This paper discusses techniques for modifying television cameras so they can be used for motion analysis.

  3. Optimizing 4-Dimensional Magnetic Resonance Imaging Data Sampling for Respiratory Motion Analysis of Pancreatic Tumors

    SciTech Connect

    Stemkens, Bjorn; Tijssen, Rob H.N.; Senneville, Baudouin D. de

    2015-03-01

    Purpose: To determine the optimum sampling strategy for retrospective reconstruction of 4-dimensional (4D) MR data for nonrigid motion characterization of tumor and organs at risk for radiation therapy purposes. Methods and Materials: For optimization, we compared 2 surrogate signals (external respiratory bellows and internal MRI navigators) and 2 MR sampling strategies (Cartesian and radial) in terms of image quality and robustness. Using the optimized protocol, 6 pancreatic cancer patients were scanned to calculate the 4D motion. Region of interest analysis was performed to characterize the respiratory-induced motion of the tumor and organs at risk simultaneously. Results: The MRI navigator was found to be a more reliable surrogate for pancreatic motion than the respiratory bellows signal. Radial sampling is most benign for undersampling artifacts and intraview motion. Motion characterization revealed interorgan and interpatient variation, as well as heterogeneity within the tumor. Conclusions: A robust 4D-MRI method, based on clinically available protocols, is presented and successfully applied to characterize the abdominal motion in a small number of pancreatic cancer patients.

  4. An automatic nonrigid registration for stained histological sections.

    PubMed

    Auer, Martin; Regitnig, Peter; Holzapfel, Gerhard A

    2005-04-01

    Automatic computer-based analyses of histological sections which are differently stained require that they are related to each other. Most registration methods are only able to perform rigid-body motion and are sensitive to noise and artifacts. Histological images, however, are accompanied by several artifacts and different contrasts, which require a nonrigid registration. In this paper, we present a hierarchical nonrigid registration algorithm able to align images, which contain minor image artifacts. The algorithm requires no a priori knowledge of the true image. The hierarchical design of the algorithm enhances robustness and accuracy, and saves computational costs. The proposed algorithm is decomposed into a fast, coarse, rigid registration step and a slower, but finer, nonrigid step. For the coarse registration, we use image pyramids, while for the second step, we combine a point-based registration with an elastic thin-plate spline interpolation. Accuracy tests, performed for 20 histological images obtained from human arteries, have shown that the error measure is acceptable, and that the image noise does not cause a problem. The associated convergence rate of the mean pixel displacement error during the rigid and nonrigid registrations is satisfying. The algorithm can be applied to various multicontrast elastic registration problems in medical imaging and may be extended to three dimensions. PMID:15825482

  5. Quantitative assessment of human motion using video motion analysis

    NASA Technical Reports Server (NTRS)

    Probe, John D.

    1990-01-01

    In the study of the dynamics and kinematics of the human body, a wide variety of technologies was developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development coupled with recent advances in video technology have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System to develop data on shirt-sleeved and space-suited human performance in order to plan efficient on orbit intravehicular and extravehicular activities. The system is described.

  6. Isentropic Analysis of Convective Motions

    NASA Technical Reports Server (NTRS)

    Pauluis, Olivier M.; Mrowiec, Agnieszka A.

    2013-01-01

    This paper analyzes the convective mass transport by sorting air parcels in terms of their equivalent potential temperature to determine an isentropic streamfunction. By averaging the vertical mass flux at a constant value of the equivalent potential temperature, one can compute an isentropic mass transport that filters out reversible oscillatory motions such as gravity waves. This novel approach emphasizes the fact that the vertical energy and entropy transports by convection are due to the combination of ascending air parcels with high energy and entropy and subsiding air parcels with lower energy and entropy. Such conditional averaging can be extended to other dynamic and thermodynamic variables such as vertical velocity, temperature, or relative humidity to obtain a comprehensive description of convective motions. It is also shown how this approach can be used to determine the mean diabatic tendencies from the three-dimensional dynamic and thermodynamic fields. A two-stream approximation that partitions the isentropic circulation into a mean updraft and a mean downdraft is also introduced. This offers a straightforward way to identify the mean properties of rising and subsiding air parcels. The results from the two-stream approximation are compared with two other definitions of the cloud mass flux. It is argued that the isentropic analysis offers a robust definition of the convective mass transport that is not tainted by the need to arbitrarily distinguish between convection and its environment, and that separates the irreversible convective overturning fromoscillations associated with gravity waves.

  7. Quantitative assessment of human motion using video motion analysis

    NASA Technical Reports Server (NTRS)

    Probe, John D.

    1993-01-01

    In the study of the dynamics and kinematics of the human body a wide variety of technologies has been developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development, coupled with recent advances in video technology, have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System (APAS) to develop data on shirtsleeved and space-suited human performance in order to plan efficient on-orbit intravehicular and extravehicular activities. APAS is a fully integrated system of hardware and software for biomechanics and the analysis of human performance and generalized motion measurement. Major components of the complete system include the video system, the AT compatible computer, and the proprietary software.

  8. Non-rigid registration and non-local principle component analysis to improve electron microscopy spectrum images

    NASA Astrophysics Data System (ADS)

    Yankovich, Andrew B.; Zhang, Chenyu; Oh, Albert; Slater, Thomas J. A.; Azough, Feridoon; Freer, Robert; Haigh, Sarah J.; Willett, Rebecca; Voyles, Paul M.

    2016-09-01

    Image registration and non-local Poisson principal component analysis (PCA) denoising improve the quality of characteristic x-ray (EDS) spectrum imaging of Ca-stabilized Nd2/3TiO3 acquired at atomic resolution in a scanning transmission electron microscope. Image registration based on the simultaneously acquired high angle annular dark field image significantly outperforms acquisition with a long pixel dwell time or drift correction using a reference image. Non-local Poisson PCA denoising reduces noise more strongly than conventional weighted PCA while preserving atomic structure more faithfully. The reliability of and optimal internal parameters for non-local Poisson PCA denoising of EDS spectrum images is assessed using tests on phantom data.

  9. Analysis of human motions with arm constraint.

    PubMed

    Kim, Duk-Jin; Prabhakaran, B

    2011-01-01

    This paper investigates a quantization and clustering issue on human motion performance constrained by disabilities. In a longitudinal study of medical therapy on motion disorder, stages of patient disability condition change over time. We investigate four different stages of one arm constrained walking motions by restricting 0%, 10%, 16% and 22% of arm swing angles. For analysis we use One-way ANOVA and K-mean clustering to indentify the most significant features and to partition four different motion constrained groups. Our experimental result shows that all four arm constraints during walking motion are clustered with an average accuracy of 91.7% on two different feature conditions: a mixture of singular value decomposition (SVD) and power spectral density (PSD); and SVD only on selected gait cycles. The proposed method can be integrated with a ubiquitous system (using wearable sensors) for a remote distance patient monitoring system analysis. PMID:22255718

  10. Non-rigid target tracking in 2D ultrasound images using hierarchical grid interpolation

    NASA Astrophysics Data System (ADS)

    Royer, Lucas; Babel, Marie; Krupa, Alexandre

    2014-03-01

    In this paper, we present a new non-rigid target tracking method within 2D ultrasound (US) image sequence. Due to the poor quality of US images, the motion tracking of a tumor or cyst during needle insertion is considered as an open research issue. Our approach is based on well-known compression algorithm in order to make our method work in real-time which is a necessary condition for many clinical applications. Toward that end, we employed a dedicated hierarchical grid interpolation algorithm (HGI) which can represent a large variety of deformations compared to other motion estimation algorithms such as Overlapped Block Motion Compensation (OBMC), or Block Motion Algorithm (BMA). The sum of squared difference of image intensity is selected as similarity criterion because it provides a good trade-off between computation time and motion estimation quality. Contrary to the others methods proposed in the literature, our approach has the ability to distinguish both rigid and non-rigid motions which are observed in ultrasound image modality. Furthermore, this technique does not take into account any prior knowledge about the target, and limits the user interaction which usually complicates the medical validation process. Finally, a technique aiming at identifying the main phases of a periodic motion (e.g. breathing motion) is introduced. The new approach has been validated from 2D ultrasound images of real human tissues which undergo rigid and non-rigid deformations.

  11. A dynamic human motion: coordination analysis.

    PubMed

    Pchelkin, Stepan; Shiriaev, Anton S; Freidovich, Leonid B; Mettin, Uwe; Gusev, Sergei V; Kwon, Woong; Paramonov, Leonid

    2015-02-01

    This article is concerned with the generic structure of the motion coordination system resulting from the application of the method of virtual holonomic constraints (VHCs) to the problem of the generation and robust execution of a dynamic humanlike motion by a humanoid robot. The motion coordination developed using VHCs is based on a motion generator equation, which is a scalar nonlinear differential equation of second order. It can be considered equivalent in function to a central pattern generator in living organisms. The relative time evolution of the degrees of freedom of a humanoid robot during a typical motion are specified by a set of coordination functions that uniquely define the overall pattern of the motion. This is comparable to a hypothesis on the existence of motion patterns in biomechanics. A robust control is derived based on a transverse linearization along the configuration manifold defined by the coordination functions. It is shown that the derived coordination and control architecture possesses excellent robustness properties. The analysis is performed on an example of a real human motion recorded in test experiments. PMID:25158624

  12. LCD motion blur: modeling, analysis, and algorithm.

    PubMed

    Chan, Stanley H; Nguyen, Truong Q

    2011-08-01

    Liquid crystal display (LCD) devices are well known for their slow responses due to the physical limitations of liquid crystals. Therefore, fast moving objects in a scene are often perceived as blurred. This effect is known as the LCD motion blur. In order to reduce LCD motion blur, an accurate LCD model and an efficient deblurring algorithm are needed. However, existing LCD motion blur models are insufficient to reflect the limitation of human-eye-tracking system. Also, the spatiotemporal equivalence in LCD motion blur models has not been proven directly in the discrete 2-D spatial domain, although it is widely used. There are three main contributions of this paper: modeling, analysis, and algorithm. First, a comprehensive LCD motion blur model is presented, in which human-eye-tracking limits are taken into consideration. Second, a complete analysis of spatiotemporal equivalence is provided and verified using real video sequences. Third, an LCD motion blur reduction algorithm is proposed. The proposed algorithm solves an l(1)-norm regularized least-squares minimization problem using a subgradient projection method. Numerical results show that the proposed algorithm gives higher peak SNR, lower temporal error, and lower spatial error than motion-compensated inverse filtering and Lucy-Richardson deconvolution algorithm, which are two state-of-the-art LCD deblurring algorithms. PMID:21292596

  13. Consistency-based rectification of nonrigid registrations

    PubMed Central

    Gass, Tobias; Székely, Gábor; Goksel, Orcun

    2015-01-01

    Abstract. We present a technique to rectify nonrigid registrations by improving their group-wise consistency, which is a widely used unsupervised measure to assess pair-wise registration quality. While pair-wise registration methods cannot guarantee any group-wise consistency, group-wise approaches typically enforce perfect consistency by registering all images to a common reference. However, errors in individual registrations to the reference then propagate, distorting the mean and accumulating in the pair-wise registrations inferred via the reference. Furthermore, the assumption that perfect correspondences exist is not always true, e.g., for interpatient registration. The proposed consistency-based registration rectification (CBRR) method addresses these issues by minimizing the group-wise inconsistency of all pair-wise registrations using a regularized least-squares algorithm. The regularization controls the adherence to the original registration, which is additionally weighted by the local postregistration similarity. This allows CBRR to adaptively improve consistency while locally preserving accurate pair-wise registrations. We show that the resulting registrations are not only more consistent, but also have lower average transformation error when compared to known transformations in simulated data. On clinical data, we show improvements of up to 50% target registration error in breathing motion estimation from four-dimensional MRI and improvements in atlas-based segmentation quality of up to 65% in terms of mean surface distance in three-dimensional (3-D) CT. Such improvement was observed consistently using different registration algorithms, dimensionality (two-dimensional/3-D), and modalities (MRI/CT). PMID:26158083

  14. Analysis And Display Of Human Wrist Motion

    NASA Astrophysics Data System (ADS)

    Peterson, Steven W.; Erdman, Arthur G.

    1983-07-01

    The three-dimensional kinematic analysis of the wrist is a complex problem. A method utilizing high speed stereocinematography has been developed to accurately measure the motion of the bones in the wrist. Both relative and absolute motions can be obtained using this system. The system has been shown to accurately locate a point to +/- 0.003 inch. The three-dimensional motion characteristics of the capitate in radial ulnar deviation were analyzed using this system, and the results are presented. A computer graphics program, developed by the authors, is used to display the motion characteristics of the carpal bones. In this program, the bone surface, defined using a special stereopointer and bicubic surface fitting algorithms, is displayed along with the kinematic data.

  15. Contour propagation in MRI-guided radiotherapy treatment of cervical cancer: the accuracy of rigid, non-rigid and semi-automatic registrations

    NASA Astrophysics Data System (ADS)

    van der Put, R. W.; Kerkhof, E. M.; Raaymakers, B. W.; Jürgenliemk-Schulz, I. M.; Lagendijk, J. J. W.

    2009-12-01

    External beam radiation treatment for patients with cervical cancer is hindered by the relatively large motion of the target volume. A hybrid MRI-accelerator system makes it possible to acquire online MR images during treatment in order to correct for motion and deformation. To fully benefit from such a system, online delineation of the target volumes is necessary. The aim of this study is to investigate the accuracy of rigid, non-rigid and semi-automatic registrations of MR images for interfractional contour propagation in patients with cervical cancer. Registration using mutual information was performed on both bony anatomy and soft tissue. A B-spline transform was used for the non-rigid method. Semi-automatic registration was implemented with a point set registration algorithm on a small set of manual landmarks. Online registration was simulated by application of each method to four weekly MRI scans for each of 33 cervical cancer patients. Evaluation was performed by distance analysis with respect to manual delineations. The results show that soft-tissue registration significantly (P < 0.001) improves the accuracy of contour propagation compared to registration based on bony anatomy. A combination of user-assisted and non-rigid registration provides the best results with a median error of 3.2 mm (1.4-9.9 mm) compared to 5.9 mm (1.7-19.7 mm) with bone registration (P < 0.001) and 3.4 mm (1.3-19.1 mm) with non-rigid registration (P = 0.01). In a clinical setting, the benefit may be further increased when outliers can be removed by visual inspection of the online images. We conclude that for external beam radiation treatment of cervical cancer, online MRI imaging will allow target localization based on soft tissue visualization, which provides a significantly higher accuracy than localization based on bony anatomy. The use of limited user input to guide the registration increases overall accuracy. Additional non-rigid registration further reduces the propagation

  16. Nonrigid image registration using an entropic similarity.

    PubMed

    Khader, Mohammed; Ben Hamza, A

    2011-09-01

    In this paper, we propose a nonrigid image registration technique by optimizing a generalized information-theoretic similarity measure using the quasi-Newton method as an optimization scheme and cubic B-splines for modeling the nonrigid deformation field between the fixed and moving 3-D image pairs. To achieve a compromise between the nonrigid registration accuracy and the associated computational cost, we implement a three-level hierarchical multiresolution approach such that the image resolution is increased in a coarse to fine fashion. Experimental results are provided to demonstrate the registration accuracy of our approach. The feasibility of the proposed method is demonstrated on a 3-D magnetic resonance data volume and also on clinically acquired 4-D CT image datasets. PMID:21690017

  17. Analysis as a Means of Motion Exploration and Inquiry.

    ERIC Educational Resources Information Center

    Seveyka, Jerred; Shigeoka, Cassie A.; Bavis, Ryan W.

    2000-01-01

    Discusses procedures for investigating animal motion and makes suggestions for conducting a field or laboratory experiment using video. Recommends using nature videos to perform motion analysis. (YDS)

  18. Metrology of Non-Rigid Objects

    SciTech Connect

    Blaedel, K L; Smith, D W; Claudet, A A; Kasper, E P; Patterson, S R

    2002-01-01

    Dimensional characterization of non-rigid parts presents many challenges. For example, when a non-rigid part is mounted in an inspection apparatus the effects of fixturing constraints cause significant deformation of the part. If the part is not used in normal service with the same load conditions as during inspection, the dimensional characteristics in service will deviate from the reported values during inspection. Further, the solution of designing specialized fixturing to duplicate ''as-installed'' conditions does not fully resolve the problem because each inspection requires its own methodology. The goal of this project is to formulate the research problem and propose a method of assessing the dimensional characteristics of non-rigid parts. The measured dimension of a rigid component is traceable at some level of confidence to a single source (NIST in the USA). Hence the measurement of one component of an assembly can be related to the measurement of another component of that assembly. There is no generalized analog to this pedigreed process for dimensionally characterizing non-rigid bodies. For example, a measurement made on a sheet-metal automobile fender is heavily influenced by how it is held during the measurement making it difficult to determine how well that fender will assemble to the rest of the (non-rigid) car body. This problem is often overcome for specific manufacturing problems by constructing rigid fixtures that over-constrain the non-rigid parts to be assembled and then performing the dimensional measurement of the contour of each component to check whether each meets specification. Note that such inspection measurements will yield only an approximation to the assembled shape, which is a function of both the geometry and the compliance of the component parts of the assembly. As a result, non-rigid components are more difficult to specify and inspect and therefore are more difficult to purchase from outside vendors compared to rigid components

  19. Metrology of Non-Rigid Objects

    SciTech Connect

    Blaedel, K; Swift, D; Claudet, A; Kasper, E; Patterson, S

    2002-01-01

    Dimensional characterization of non-rigid parts presents many challenges. For example, when a non-rigid part is mounted in an inspection apparatus the effects of fixturing constraints are significant. If the part is not used in normal service with the same load conditions as during inspection, the dimensional characteristics will deviate from reported values. Further, the solution of designing specialized fixturing to duplicate ''as-installed'' conditions does not fully resolve the problem because each inspection requires its own methodology. The goal of this project is to formulate the research problem and propose a method of assessing the dimensional characteristics of non-rigid parts. The measured dimension of a rigid component is traceable at some level of confidence to a single source (NIST in the USA). Hence the measurement of one component of an assembly can be related to the measurement of another component of that assembly. There is no generalized analog to this pedigreed process for dimensionally characterizing non-rigid bodies. For example, a measurement made on a sheet-metal automobile fender is heavily influenced by how it is held during the measurement making it difficult to determine how well that fender will assemble to the rest of the (non-rigid) car body. This problem is often overcome for specific manufacturing problems by constructing rigid fixtures that over-constrain the non-rigid parts to be assembled and then performing the dimensional measurement of the contour of each component to check whether each meets specification. Note that such inspection measurements will yield only an approximation to the assembled shape, which is a function of both the geometry and the compliance of the component parts of the assembly. As a result, non-rigid components are more difficult to specify and inspect and therefore are more difficult to purchase from outside vendors compared to rigid components. The problems are compounded as the requirements come to

  20. Nonrigid point registration for 2D curves and 3D surfaces and its various applications

    NASA Astrophysics Data System (ADS)

    Wang, Hesheng; Fei, Baowei

    2013-06-01

    A nonrigid B-spline-based point-matching (BPM) method is proposed to match dense surface points. The method solves both the point correspondence and nonrigid transformation without features extraction. The registration method integrates a motion model, which combines a global transformation and a B-spline-based local deformation, into a robust point-matching framework. The point correspondence and deformable transformation are estimated simultaneously by fuzzy correspondence and by a deterministic annealing technique. Prior information about global translation, rotation and scaling is incorporated into the optimization. A local B-spline motion model decreases the degrees of freedom for optimization and thus enables the registration of a larger number of feature points. The performance of the BPM method has been demonstrated and validated using synthesized 2D and 3D data, mouse MRI and micro-CT images. The proposed BPM method can be used to register feature point sets, 2D curves, 3D surfaces and various image data.

  1. Statistical methods for analysis of coordination of chest wall motion using optical reflectance imaging of multiple markers

    NASA Astrophysics Data System (ADS)

    Kenyon, C. M.; Ghezzo, R. H.; Cala, S. J.; Ferrigno, Giancarlo; Pedotti, Antonio; Macklem, P. T.; Rochester, D. F.

    1994-07-01

    To analyze coordination of chest wall motion we have used principle component analysis (PCA) and multiple regression analysis (MRA) with respect to spirometry on the displacements of 93 optical reflective markers placed upon the chest wall (CW). Each marker is tracked at 10 Hz with an accuracy of 0.2 mm in each spatial dimension using the ELITE system (IEEE Trans. Biomed. Eng. 11:943-949, 1985). PCA enables the degree of linear coordination between all of the markers to be assessed using the eigenvectors and eigenvalues of the covariance of the matrix of marker displacements in each dimension against time. Thus the number of linear degrees of freedom (DOF) which contribute more than a particular amount to the total variance can be determined and analyzed. MRA with respect to spirometrically measured lung volume changes enables identification of the CW points whose movement correlates best with lung volume. We have used this analysis to compare a quiet breathing sequence with one where tidal volume was increased fourfold involuntarily and show that the number of DOF with eigenvalues accounting for >5% of the covariance increased from 2 to 3. Also the point whose movement correlated best with lung volume changed from halfway down the lower costal margin to a more lateral point at the level of the bottom of the sternum. This quantification of CW coordination may be useful in analysis and staging of many respiratory disorders and is applicable to any nonrigid body motion where points can be tracked.

  2. Non-rigid molecular group theory and its applications

    SciTech Connect

    Balasubramanian, K.

    1982-06-01

    The use of generalized wreath product groups as representations of symmetry groups of nonrigid molecules is considered. Generating function techniques are outlined for nuclear spin statistics and character tables of the symmetry groups of nonrigid molecules. Several applications of nonrigid molecular group theory to NMR spectroscopy, rovibronic splitting and nuclear spin statistics of nonrigid molecules, molecular beam deflection and electric resonance experiments of weakly bound Van der Waal complexes, isomerization processes, configuration interaction calculations and the symmetry of crystals with structural distortions are described. 81 references.

  3. Quantication and analysis of respiratory motion from 4D MRI

    NASA Astrophysics Data System (ADS)

    Aizzuddin Abd Rahni, Ashrani; Lewis, Emma; Wells, Kevin

    2014-11-01

    It is well known that respiratory motion affects image acquisition and also external beam radiotherapy (EBRT) treatment planning and delivery. However often the existing approaches for respiratory motion management are based on a generic view of respiratory motion such as the general movement of organ, tissue or fiducials. This paper thus aims to present a more in depth analysis of respiratory motion based on 4D MRI for further integration into motion correction in image acquisition or image based EBRT. Internal and external motion was first analysed separately, on a per-organ basis for internal motion. Principal component analysis (PCA) was then performed on the internal and external motion vectors separately and the relationship between the two PCA spaces was analysed. The motion extracted from 4D MRI on general was found to be consistent with what has been reported in literature.

  4. Application of the nonrigid shape matching algorithm to volumetric cardiac images

    NASA Astrophysics Data System (ADS)

    Goldgof, Dmitry B.; Chandra, Kambhamettu

    1991-07-01

    This paper presents a new method for tracking points on the left ventricle (LV) surface from volumetric cardiac images. If an object undergoes nonrigid motion, the standard motion parameters of translation and rotation are not sufficient to describe the object transformation. The authors define the local surface stretching as an additional motion parameter of nonrigid transformation. In homothetic motion, this parameter is constant at all points on the surface. In this work a new algorithm for tracking LV surface through the heart cycle is presented. The authors utilize small motion assumption, hypothesize all possible correspondences, and compute curvature changes for each hypothesis. Then, calculation is made of the error between computed curvature changes and the one predicted by homothetic motion assumption. The hypothesis with the smallest error gives point correspondences between consecutive time frames. The algorithm is demonstrated on simulated data, then applied to real data of LV. The data set was provided by Dr. Eric Hoffman at University of Pennsylvania Medical school and consists of 16 volumetric (128 by 128 by 118) images taken through the heart cycle.

  5. Two-character motion analysis and synthesis.

    PubMed

    Kwon, Taesoo; Cho, Young-Sang; Park, Sang Il; Shin, Sung Yong

    2008-01-01

    In this paper, we deal with the problem of synthesizing novel motions of standing-up martial arts such as Kickboxing, Karate, and Taekwondo performed by a pair of human-like characters while reflecting their interactions. Adopting an example-based paradigm, we address three non-trivial issues embedded in this problem: motion modeling, interaction modeling, and motion synthesis. For the first issue, we present a semi-automatic motion labeling scheme based on force-based motion segmentation and learning-based action classification. We also construct a pair of motion transition graphs each of which represents an individual motion stream. For the second issue, we propose a scheme for capturing the interactions between two players. A dynamic Bayesian network is adopted to build a motion transition model on top of the coupled motion transition graph that is constructed from an example motion stream. For the last issue, we provide a scheme for synthesizing a novel sequence of coupled motions, guided by the motion transition model. Although the focus of the present work is on martial arts, we believe that the framework of the proposed approach can be conveyed to other two-player motions as well. PMID:18369275

  6. Evaluation of five non-rigid image registration algorithms using the NIREP framework

    NASA Astrophysics Data System (ADS)

    Wei, Ying; Christensen, Gary E.; Song, Joo Hyun; Rudrauf, David; Bruss, Joel; Kuhl, Jon G.; Grabowski, Thomas J.

    2010-03-01

    Evaluating non-rigid image registration algorithm performance is a difficult problem since there is rarely a "gold standard" (i.e., known) correspondence between two images. This paper reports the analysis and comparison of five non-rigid image registration algorithms using the Non-Rigid Image Registration Evaluation Project (NIREP) (www.nirep.org) framework. The NIREP framework evaluates registration performance using centralized databases of well-characterized images and standard evaluation statistics (methods) which are implemented in a software package. The performance of five non-rigid registration algorithms (Affine, AIR, Demons, SLE and SICLE) was evaluated using 22 images from two NIREP neuroanatomical evaluation databases. Six evaluation statistics (relative overlap, intensity variance, normalized ROI overlap, alignment of calcarine sulci, inverse consistency error and transitivity error) were used to evaluate and compare image registration performance. The results indicate that the Demons registration algorithm produced the best registration results with respect to the relative overlap statistic but produced nearly the worst registration results with respect to the inverse consistency statistic. The fact that one registration algorithm produced the best result for one criterion and nearly the worst for another illustrates the need to use multiple evaluation statistics to fully assess performance.

  7. Random motion analysis of flexible satellite structures

    NASA Technical Reports Server (NTRS)

    Huang, T. C.; Das, A.

    1978-01-01

    A singular perturbation formulation is used to study the responses of a flexible satellite when random measurement errors can occur. The random variables, at different instants of time, are assumed to be uncorrelated. Procedures for obtaining maxima and minima are described, and a variation of the linear method is developed for the formal solution of the two-point boundary-value problems represented by the variational equations. Random and deterministic solutions for the structural position coordinates are studied, and an analytic algorithm for treating the force equation of motion is developed. Since the random system indicated by the variational equation will always be asymptotically unstable, any analysis of stability must be based on the deterministic system.

  8. INS integrated motion analysis for autonomous vehicle navigation

    NASA Technical Reports Server (NTRS)

    Roberts, Barry; Bazakos, Mike

    1991-01-01

    The use of inertial navigation system (INS) measurements to enhance the quality and robustness of motion analysis techniques used for obstacle detection is discussed with particular reference to autonomous vehicle navigation. The approach to obstacle detection used here employs motion analysis of imagery generated by a passive sensor. Motion analysis of imagery obtained during vehicle travel is used to generate range measurements to points within the field of view of the sensor, which can then be used to provide obstacle detection. Results obtained with an INS integrated motion analysis approach are reviewed.

  9. Wavelet based free-form deformations for nonrigid registration

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.

  10. Analysis of motion in speed skating

    NASA Astrophysics Data System (ADS)

    Koga, Yuzo; Nishimura, Tetsu; Watanabe, Naoki; Okamoto, Kousuke; Wada, Yuhei

    1997-03-01

    A motion on sports has been studied by many researchers from the view of the medical, psychological and mechanical fields. Here, we try to analyze a speed skating motion dynamically for an aim of performing the best record. As an official competition of speed skating is performed on the round rink, the skating motion must be studied on the three phases, that is, starting phase, straight and curved course skating phase. It is indispensable to have a visual data of a skating motion in order to analyze kinematically. So we took a several subject's skating motion by 8 mm video cameras in order to obtain three dimensional data. As the first step, the movement of the center of gravity of skater (abbreviate to C. G.) is discussed in this paper, because a skating motion is very complicated. The movement of C. G. will give an information of the reaction force to a skate blade from the surface of ice. We discuss the discrepancy of several skating motion by studied subjects. Our final goal is to suggest the best skating form for getting the finest record.

  11. Motion analysis and removal in intensity variation based OCT angiography.

    PubMed

    Liu, Xuan; Kirby, Mitchell; Zhao, Feng

    2014-11-01

    In this work, we investigated how bulk motion degraded the quality of optical coherence tomography (OCT) angiography that was obtained through calculating interframe signal variation, i.e., interframe signal variation based optical coherence angiography (isvOCA). We demonstrated theoretically and experimentally that the spatial average of isvOCA signal had an explicit functional dependency on bulk motion. Our result suggested that the bulk motion could lead to an increased background in angiography image. Based on our motion analysis, we proposed to reduce image artifact induced by transient bulk motion in isvOCA through adaptive thresholding. The motion artifact reduced angiography was demonstrated in a 1.3μm spectral domain OCT system. We implemented signal processing using graphic processing unit for real-time imaging and conducted in vivo microvasculature imaging on human skin. Our results clearly showed that the adaptive thresholding method was highly effective in the motion artifact removal for OCT angiography. PMID:25426314

  12. Left ventricle motion modeling and analysis by adaptive-size physically based models

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Chen; Goldgof, Dmitry B.

    1992-06-01

    This paper presents a new physically based modeling method which employs adaptive-size meshes to model left ventricle (LV) shape and track its motion during cardiac cycle. The mesh size increases or decreases dynamically during surface reconstruction process to locate nodes near surface areas of interest and to minimize the fitting error. Further, presented with multiple 3-D data frames, the mesh size varies as the LV undergoes nonrigid motion. Simulation results illustrate the performance and accuracy of the proposed algorithm. Then, the algorithm is applied to the volumetric temporal cardiac data. The LV data was acquired by the 3-D computed tomography scanner. It was provided by Dr. Eric Hoffman at University of Pennsylvania Medical school and consists of 16 volumetric (128 by 128 by 118) images taken through the heart cycle.

  13. Extending the Analysis of One-Dimensional Motion.

    ERIC Educational Resources Information Center

    Canderle, Luis H.

    1999-01-01

    Proposes that introductory physics courses extend the analysis of one-dimensional motion to a more sophisticated level. Gives four experimental setups and graphical analysis of the distance, velocity, and acceleration in the vertical and horizontal directions. (WRM)

  14. Statistical analysis and correlation discovery of tumor respiratory motion.

    PubMed

    Wu, Huanmei; Sharp, Gregory C; Zhao, Qingya; Shirato, Hiroki; Jiang, Steve B

    2007-08-21

    Tumors, especially in the thorax and abdomen, are subject to respiratory motion, and understanding the structure of respiratory motion is a key component to the management and control of disease in these sites. We have applied statistical analysis and correlation discovery methods to analyze and mine tumor respiratory motion based on a finite state model of tumor motion. Aggregates (such as minimum, maximum, average and mean), histograms, percentages, linear regression and multi-round statistical analysis have been explored. The results have been represented in various formats, including tables, graphs and text description. Different graphs, for example scatter plots, clustered column figures, 100% stacked column figures and box-whisker plots, have been applied to highlight different aspects of the results. The internal tumor motion from 42 lung tumors, 30 of which have motion larger than 5 mm, has been analyzed. Results for both inter-patient and intra-patient motion characteristics, such as duration and travel distance patterns, are reported. New knowledge of patient-specific tumor motion characteristics have been discovered, such as expected correlations between properties. The discovered tumor motion characteristics will be utilized in different aspects of image-guided radiation treatment, including treatment planning, online tumor motion prediction and real-time radiation dose delivery. PMID:17671334

  15. Statistical analysis and correlation discovery of tumor respiratory motion

    NASA Astrophysics Data System (ADS)

    Wu, Huanmei; Sharp, Gregory C.; Zhao, Qingya; Shirato, Hiroki; Jiang, Steve B.

    2007-08-01

    Tumors, especially in the thorax and abdomen, are subject to respiratory motion, and understanding the structure of respiratory motion is a key component to the management and control of disease in these sites. We have applied statistical analysis and correlation discovery methods to analyze and mine tumor respiratory motion based on a finite state model of tumor motion. Aggregates (such as minimum, maximum, average and mean), histograms, percentages, linear regression and multi-round statistical analysis have been explored. The results have been represented in various formats, including tables, graphs and text description. Different graphs, for example scatter plots, clustered column figures, 100% stacked column figures and box-whisker plots, have been applied to highlight different aspects of the results. The internal tumor motion from 42 lung tumors, 30 of which have motion larger than 5 mm, has been analyzed. Results for both inter-patient and intra-patient motion characteristics, such as duration and travel distance patterns, are reported. New knowledge of patient-specific tumor motion characteristics have been discovered, such as expected correlations between properties. The discovered tumor motion characteristics will be utilized in different aspects of image-guided radiation treatment, including treatment planning, online tumor motion prediction and real-time radiation dose delivery.

  16. Kinematic analysis of human body motion

    NASA Astrophysics Data System (ADS)

    Wada, Yuhei; Yamashita, Hiroyuki; Nishimura, Tetsu; Itoh, Masaru; Watanabe, Naoki; Yanagi, Shigeru

    1997-03-01

    The knowledge of analyzing a human motion can contribute to the treatment and the prevention of sports injuries or the investigation of welfare equipment. It is important to know the human motion by not only the medical field but the mechanical knowledge. The mechanical knowledge is expected to prevent the sports injuries or to design such as an artificial equipment. Here, we suggest a basic procedure to analyze a human motion from the view of the dynamical knowledge. Although the human body is composed of a lot of element and joint, if the slight movement on the joint such as dislocation and distortion is neglected, the human body can be replaced by a mechanical links system. On this assumption, we analyze an actual simple human motion. We take a picture of a simple arm motion from video cameras. And at the same time, we directly measure the vertical acceleration of the hand by an accelerometer. From the video image, we get the vertical acceleration of the hand with assuming the arm as two-links system. On the process of resolving the vertical acceleration of the hand, we introduce the Fourier series for filtering. Finally, we confirm the propriety of our suggested procedure by comparing the calculated acceleration of hand with the directly measured acceleration.

  17. Nonrigid Image Registration in Digital Subtraction Angiography Using Multilevel B-Spline

    PubMed Central

    2013-01-01

    We address the problem of motion artifact reduction in digital subtraction angiography (DSA) using image registration techniques. Most of registration algorithms proposed for application in DSA, have been designed for peripheral and cerebral angiography images in which we mainly deal with global rigid motions. These algorithms did not yield good results when applied to coronary angiography images because of complex nonrigid motions that exist in this type of angiography images. Multiresolution and iterative algorithms are proposed to cope with this problem, but these algorithms are associated with high computational cost which makes them not acceptable for real-time clinical applications. In this paper we propose a nonrigid image registration algorithm for coronary angiography images that is significantly faster than multiresolution and iterative blocking methods and outperforms competing algorithms evaluated on the same data sets. This algorithm is based on a sparse set of matched feature point pairs and the elastic registration is performed by means of multilevel B-spline image warping. Experimental results with several clinical data sets demonstrate the effectiveness of our approach. PMID:23971026

  18. Nonrigid image registration in digital subtraction angiography using multilevel B-spline.

    PubMed

    Nejati, Mansour; Sadri, Saeid; Amirfattahi, Rassoul

    2013-01-01

    We address the problem of motion artifact reduction in digital subtraction angiography (DSA) using image registration techniques. Most of registration algorithms proposed for application in DSA, have been designed for peripheral and cerebral angiography images in which we mainly deal with global rigid motions. These algorithms did not yield good results when applied to coronary angiography images because of complex nonrigid motions that exist in this type of angiography images. Multiresolution and iterative algorithms are proposed to cope with this problem, but these algorithms are associated with high computational cost which makes them not acceptable for real-time clinical applications. In this paper we propose a nonrigid image registration algorithm for coronary angiography images that is significantly faster than multiresolution and iterative blocking methods and outperforms competing algorithms evaluated on the same data sets. This algorithm is based on a sparse set of matched feature point pairs and the elastic registration is performed by means of multilevel B-spline image warping. Experimental results with several clinical data sets demonstrate the effectiveness of our approach. PMID:23971026

  19. Galileo Redux or, How Do Nonrigid, Extended Bodies Fall?

    ERIC Educational Resources Information Center

    Newburgh, Ronald; Andes, George M.

    1995-01-01

    Presents a model for the Slinky that allows for calculations that agree with observed behavior and predictions that suggest further experimentation. Offers an opportunity for introducing nonrigid bodies within the Galilean framework. (JRH)

  20. Ground motion estimation and nonlinear seismic analysis

    SciTech Connect

    McCallen, D.B.; Hutchings, L.J.

    1995-08-14

    Site specific predictions of the dynamic response of structures to extreme earthquake ground motions are a critical component of seismic design for important structures. With the rapid development of computationally based methodologies and powerful computers over the past few years, engineers and scientists now have the capability to perform numerical simulations of many of the physical processes associated with the generation of earthquake ground motions and dynamic structural response. This paper describes application of a physics based, deterministic, computational approach for estimation of earthquake ground motions which relies on site measurements of frequently occurring small (i.e. M < 3 ) earthquakes. Case studies are presented which illustrate application of this methodology for two different sites, and nonlinear analyses of a typical six story steel frame office building are performed to illustrate the potential sensitivity of nonlinear response to site conditions and proximity to the causative fault.

  1. Motional-mode analysis of trapped ions

    NASA Astrophysics Data System (ADS)

    Kalis, Henning; Hakelberg, Frederick; Wittemer, Matthias; Mielenz, Manuel; Warring, Ulrich; Schaetz, Tobias

    2016-08-01

    We present two methods for characterization of motional-mode configurations that are generally applicable to the weak- and strong-binding limit of single or multiple trapped atomic ions. Our methods are essential to realize control of the individual as well as the common motional degrees of freedom. In particular, when implementing scalable radio-frequency trap architectures with decreasing ion-electrode distances, local curvatures of electric potentials need to be measured and adjusted precisely, e.g., to tune phonon tunneling and control effective spin-spin interaction. We demonstrate both methods using single 25Mg+ ions that are individually confined 40 μ m above a surface-electrode trap array and prepared close to the ground state of motion in three dimensions.

  2. A Bio-Inspired, Motion-Based Analysis of Crowd Behavior Attributes Relevance to Motion Transparency, Velocity Gradients, and Motion Patterns

    PubMed Central

    Raudies, Florian; Neumann, Heiko

    2012-01-01

    The analysis of motion crowds is concerned with the detection of potential hazards for individuals of the crowd. Existing methods analyze the statistics of pixel motion to classify non-dangerous or dangerous behavior, to detect outlier motions, or to estimate the mean throughput of people for an image region. We suggest a biologically inspired model for the analysis of motion crowds that extracts motion features indicative for potential dangers in crowd behavior. Our model consists of stages for motion detection, integration, and pattern detection that model functions of the primate primary visual cortex area (V1), the middle temporal area (MT), and the medial superior temporal area (MST), respectively. This model allows for the processing of motion transparency, the appearance of multiple motions in the same visual region, in addition to processing opaque motion. We suggest that motion transparency helps to identify “danger zones” in motion crowds. For instance, motion transparency occurs in small exit passages during evacuation. However, motion transparency occurs also for non-dangerous crowd behavior when people move in opposite directions organized into separate lanes. Our analysis suggests: The combination of motion transparency and a slow motion speed can be used for labeling of candidate regions that contain dangerous behavior. In addition, locally detected decelerations or negative speed gradients of motions are a precursor of danger in crowd behavior as are globally detected motion patterns that show a contraction toward a single point. In sum, motion transparency, image speeds, motion patterns, and speed gradients extracted from visual motion in videos are important features to describe the behavioral state of a motion crowd. PMID:23300930

  3. Analysis of motion features for molecular dynamics simulation of proteins

    NASA Astrophysics Data System (ADS)

    Kamada, Mayumi; Toda, Mikito; Sekijima, Masakazu; Takata, Masami; Joe, Kazuki

    2011-01-01

    Recently, a new method for time series analysis using the wavelet transformation has been proposed by Sakurai et al. We apply it to molecular dynamics simulation of Thermomyces lanuginosa lipase (TLL). Introducing indexes to characterize collective motion of the protein, we have obtained the following two results. First, time evolution of the collective motion involves not only the dynamics within a single potential well but also takes place wandering around multiple conformations. Second, correlation of the collective motion between secondary structures shows that collective motion exists involving multiple secondary structures. We discuss future prospects of our study involving 'disordered proteins'.

  4. Analysis of accelerated motion in the theory of relativity

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    Conventional treatments of accelerated motion in the theory of relativity have led to certain difficulties of interpretation. Certain reversals in the apparent gravitational field of an accelerated body may be avoided by simpler analysis based on the use of restricted conformal transformations. In the conformal theory the velocity of light remains constant even for experimenters in accelerated motion. The problem considered is that of rectilinear motion with a variable velocity. The motion takes place along the x or x' axis of two coordinate systems.

  5. Inertial navigation sensor integrated motion analysis for autonomous vehicle navigation

    NASA Technical Reports Server (NTRS)

    Roberts, Barry; Bhanu, Bir

    1992-01-01

    Recent work on INS integrated motion analysis is described. Results were obtained with a maximally passive system of obstacle detection (OD) for ground-based vehicles and rotorcraft. The OD approach involves motion analysis of imagery acquired by a passive sensor in the course of vehicle travel to generate range measurements to world points within the sensor FOV. INS data and scene analysis results are used to enhance interest point selection, the matching of the interest points, and the subsequent motion-based computations, tracking, and OD. The most important lesson learned from the research described here is that the incorporation of inertial data into the motion analysis program greatly improves the analysis and makes the process more robust.

  6. Full-motion video analysis for improved gender classification

    NASA Astrophysics Data System (ADS)

    Flora, Jeffrey B.; Lochtefeld, Darrell F.; Iftekharuddin, Khan M.

    2014-06-01

    The ability of computer systems to perform gender classification using the dynamic motion of the human subject has important applications in medicine, human factors, and human-computer interface systems. Previous works in motion analysis have used data from sensors (including gyroscopes, accelerometers, and force plates), radar signatures, and video. However, full-motion video, motion capture, range data provides a higher resolution time and spatial dataset for the analysis of dynamic motion. Works using motion capture data have been limited by small datasets in a controlled environment. In this paper, we explore machine learning techniques to a new dataset that has a larger number of subjects. Additionally, these subjects move unrestricted through a capture volume, representing a more realistic, less controlled environment. We conclude that existing linear classification methods are insufficient for the gender classification for larger dataset captured in relatively uncontrolled environment. A method based on a nonlinear support vector machine classifier is proposed to obtain gender classification for the larger dataset. In experimental testing with a dataset consisting of 98 trials (49 subjects, 2 trials per subject), classification rates using leave-one-out cross-validation are improved from 73% using linear discriminant analysis to 88% using the nonlinear support vector machine classifier.

  7. Motion.

    ERIC Educational Resources Information Center

    Gerhart, James B.; Nussbaum, Rudi H.

    This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…

  8. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  9. Approximate analysis of balloting motion of railgun projectiles. Technical report

    SciTech Connect

    Chu, S.H.

    1991-07-01

    This is the final of three reports dealing with the in-bore balloting motion of a projectile fired from an electromagnetic railgun. Knowledge of projectile in-bore motion is important to its design and the design of the railgun. It is a complicated problem since many parameters are involved and it is not easy to determine the interacting relationships between them. To make the problem easier to understand it was analyzed on several levels. Beginning from the basic simple model which computed only the axial motion, more complicated models were introduced in upper levels that included the more significant lateral forces and gun tube vibration effects. This report deals with the approximate analysis of balloting motion. This model considers the effects of the propulsion force, the friction force of the projectile package (projectile and armature), air resistance, gravity, the elastic forces, and the projectile/barrel clearance. To simplify the modeling, a plane motion configuration is assumed. Though the projectile is moving with a varying yaw angle, the axes of the barrel and the projectile package, and the projectile center of gravity are always considered in a plane containing the centerlines of the rails. Equations of motion are derived and solved. A sample computation is performed and the results plotted to give a clearer understanding of projectile in-bore motion.

  10. Nonrigid registration method to assess reproducibility of breath-holding with ABC in lung cancer

    SciTech Connect

    Sarrut, David . E-mail: dsarrut@univ-lyon2.fr; Boldea, Vlad; Ayadi, Myriam; Badel, Jean-Noel; Ginestet, Chantal; Clippe, Sebastien; Carrie, Christian

    2005-02-01

    Purpose: To study the interfraction reproducibility of breath-holding using active breath control (ABC), and to develop computerized tools to evaluate three-dimensional (3D) intrathoracic motion in each patient. Methods and materials: Since June 2002, 11 patients with non-small-cell lung cancer enrolled in a Phase II trial have undergone four CT scans: one during free-breathing (reference) and three using ABC. Patients left the room between breath-hold scans. The patient's breath was held at the same predefined phase of the breathing cycle (about 70% of the vital capacity) using the ABC device, then patients received 3D-conformal radiotherapy. Automated computerized tools for breath-hold CT scans were developed to analyze lung and tumor interfraction residual motions with 3D nonrigid registration. Results: All patients but one were safely treated with ABC for 7 weeks. For 6 patients, the lung volume differences were <5%. The mean 3D displacement inside the lungs was between 2.3 mm (SD 1.4) and 4 mm (SD 3.3), and the gross tumor volume residual motion was 0.9 mm (SD 0.4) to 5.9 mm (SD 0.7). The residual motion was slightly greater in the inferior part of the lung than the superior. For 2 patients, we detected volume changes >300 cm{sup 3} and displacements >10 mm, probably owing to atelectasia and emphysema. One patient was excluded, and two others had incomplete data sets. Conclusion: Breath-holding with ABC was effective in 6 patients, and discrepancies were clinically accountable in 2. The proposed 3D nonrigid registration method allows for personalized evaluation of breath-holding reproducibility with ABC. It will be used to adapt the patient-specific internal margins.

  11. Numerical analysis of slender vortex motion

    SciTech Connect

    Zhou, H.

    1996-02-01

    Several numerical methods for slender vortex motion (the local induction equation, the Klein-Majda equation, and the Klein-Knio equation) are compared on the specific example of sideband instability of Kelvin waves on a vortex. Numerical experiments on this model problem indicate that all these methods yield qualitatively similar behavior, and this behavior is different from the behavior of a non-slender vortex with variable cross-section. It is found that the boundaries between stable, recurrent, and chaotic regimes in the parameter space of the model problem depend on the method used. The boundaries of these domains in the parameter space for the Klein-Majda equation and for the Klein-Knio equation are closely related to the core size. When the core size is large enough, the Klein-Majda equation always exhibits stable solutions for our model problem. Various conclusions are drawn; in particular, the behavior of turbulent vortices cannot be captured by these local approximations, and probably cannot be captured by any slender vortex model with constant vortex cross-section. Speculations about the differences between classical and superfluid hydrodynamics are also offered.

  12. Tracking Non-rigid Structures in Computer Simulations

    SciTech Connect

    Gezahegne, A; Kamath, C

    2008-01-10

    A key challenge in tracking moving objects is the correspondence problem, that is, the correct propagation of object labels from one time step to another. This is especially true when the objects are non-rigid structures, changing shape, and merging and splitting over time. In this work, we describe a general approach to tracking thousands of non-rigid structures in an image sequence. We show how we can minimize memory requirements and generate accurate results while working with only two frames of the sequence at a time. We demonstrate our results using data from computer simulations of a fluimix problem.

  13. Nonrigid Medical Image Registration Based on Mesh Deformation Constraints

    PubMed Central

    Qiu, TianShuang; Guo, DongMei

    2013-01-01

    Regularizing the deformation field is an important aspect in nonrigid medical image registration. By covering the template image with a triangular mesh, this paper proposes a new regularization constraint in terms of connections between mesh vertices. The connection relationship is preserved by the spring analogy method. The method is evaluated by registering cerebral magnetic resonance imaging (MRI) image data obtained from different individuals. Experimental results show that the proposed method has good deformation ability and topology-preserving ability, providing a new way to the nonrigid medical image registration. PMID:23424604

  14. Human Factors Vehicle Displacement Analysis: Engineering In Motion

    NASA Technical Reports Server (NTRS)

    Atencio, Laura Ashley; Reynolds, David; Robertson, Clay

    2010-01-01

    While positioned on the launch pad at the Kennedy Space Center, tall stacked launch vehicles are exposed to the natural environment. Varying directional winds and vortex shedding causes the vehicle to sway in an oscillating motion. The Human Factors team recognizes that vehicle sway may hinder ground crew operation, impact the ground system designs, and ultimately affect launch availability . The objective of this study is to physically simulate predicted oscillation envelopes identified by analysis. and conduct a Human Factors Analysis to assess the ability to carry out essential Upper Stage (US) ground operator tasks based on predicted vehicle motion.

  15. Recurrence plots and recurrence quantification analysis of human motion data

    NASA Astrophysics Data System (ADS)

    Josiński, Henryk; Michalczuk, Agnieszka; Świtoński, Adam; Szczesna, Agnieszka; Wojciechowski, Konrad

    2016-06-01

    The authors present exemplary application of recurrence plots, cross recurrence plots and recurrence quantification analysis for the purpose of exploration of experimental time series describing selected aspects of human motion. Time series were extracted from treadmill gait sequences which were recorded in the Human Motion Laboratory (HML) of the Polish-Japanese Academy of Information Technology in Bytom, Poland by means of the Vicon system. Analysis was focused on the time series representing movements of hip, knee, ankle and wrist joints in the sagittal plane.

  16. Quantitative Motion Analysis in Two and Three Dimensions.

    PubMed

    Wessels, Deborah J; Lusche, Daniel F; Kuhl, Spencer; Scherer, Amanda; Voss, Edward; Soll, David R

    2016-01-01

    This chapter describes 2D quantitative methods for motion analysis as well as 3D motion analysis and reconstruction methods. Emphasis is placed on the analysis of dynamic cell shape changes that occur through extension and retraction of force generating structures such as pseudopodia and lamellipodia. Quantitative analysis of these structures is an underutilized tool in the field of cell migration. Our intent, therefore, is to present methods that we developed in an effort to elucidate mechanisms of basic cell motility, directed cell motion during chemotaxis, and metastasis. We hope to demonstrate how application of these methods can more clearly define alterations in motility that arise due to specific mutations or disease and hence, suggest mechanisms or pathways involved in normal cell crawling and treatment strategies in the case of disease. In addition, we present a 4D tumorigenesis model for high-resolution analysis of cancer cells from cell lines and human cancer tissue in a 3D matrix. Use of this model led to the discovery of the coalescence of cancer cell aggregates and unique cell behaviors not seen in normal cells or normal tissue. Graphic illustrations to visually display and quantify cell shape are presented along with algorithms and formulae for calculating select 2D and 3D motion analysis parameters. PMID:26498790

  17. Non-rigid registration and KLT filter to improve SNR and CNR in GRE-EPI myocardial perfusion imaging.

    PubMed

    Mihai, Georgeta; Ding, Yu; Xue, Hui; Chung, Yiu-Cho; Rajagopalan, Sanjay; Guehring, Jens; Simonetti, Orlando P

    2012-12-01

    The purpose of the study was to evaluate the effect of motion compensation by non-rigid registration combined with the Karhunen-Loeve Transform (KLT) filter on the signal to noise (SNR) and contrast-to-noise ratio (CNR) of hybrid gradient-echo echoplanar (GRE-EPI) first-pass myocardial perfusion imaging. Twenty one consecutive first-pass adenosine stress perfusion MR data sets interpreted positive for ischemia or infarction were processed by non-rigid Registration followed by KLT filtering. SNR and CNR were measured in abnormal and normal myocardium in unfiltered and KLT filtered images following non-rigid registration to compensate for respiratory and other motions. Image artifacts introduced by filtering in registered and nonregistered images were evaluated by two observers. There was a statistically significant increase in both SNR and CNR between normal and abnormal myocardium with KLT filtering (mean SNR increased by 62.18% ± 21.05% and mean CNR increased by 58.84% ± 18.06%; p = 0.01). Motion correction prior to KLT filtering reduced significantly the occurrence of filter induced artifacts (KLT only-artifacts in 42 out of 55 image series vs. registered plus KLT-artifacts in 3 out of 55 image series). In conclusion the combination of non- rigid registration and KLT filtering was shown to increase the SNR and CNR of GRE-EPI perfusion images. Subjective evaluation of image artifacts revealed that prior motion compensation significantly reduced the artifacts introduced by the KLT filtering process. PMID:23936584

  18. Bifurcation analysis of aircraft pitching motions near the stability boundary

    NASA Technical Reports Server (NTRS)

    Hui, W. H.; Tobak, M.

    1984-01-01

    Bifuraction theory is used to analyze the nonlinear dynamic stability characteristics of an aircraft subject to single degree of freedom pitching-motion perturbations about a large mean angle of attack. The requisite aerodynamic information in the equations of motion is represented in a form equivalent to the response to finite-amplitude pitching oscillations about the mean angle of attack. This information is deduced from the case of infinitesimal-amplitude oscillations. The bifurcation theory analysis reveals that when the mean angle of attack is increased beyond a critical value at which the aerodynamic damping vanishes, new solutions representing finite-amplitude periodic motions bifurcate from the previously stable steady motion. The sign of a simple criterion, cast in terms of aerodynamic properties, determines whether the bifurcating solutions are stable (supercritical) or unstable (subcritical). For flat-plate airfoils flying at supersonic/hypersonic speed, the bifurcation is subcritical, implying either that exchanges of stability between steady and periodic motion are accompanied by hysteresis phenomena, or that potentially large aperiodic departures from steady motion may develop.

  19. Observation and analysis of high-speed human motion with frequent occlusion in a large area

    NASA Astrophysics Data System (ADS)

    Wang, Yuru; Liu, Jiafeng; Liu, Guojun; Tang, Xianglong; Liu, Peng

    2009-12-01

    The use of computer vision technology in collecting and analyzing statistics during sports matches or training sessions is expected to provide valuable information for tactics improvement. However, the measurements published in the literature so far are either unreliably documented to be used in training planning due to their limitations or unsuitable for studying high-speed motion in large area with frequent occlusions. A sports annotation system is introduced in this paper for tracking high-speed non-rigid human motion over a large playing area with the aid of motion camera, taking short track speed skating competitions as an example. The proposed system is composed of two sub-systems: precise camera motion compensation and accurate motion acquisition. In the video registration step, a distinctive invariant point feature detector (probability density grads detector) and a global parallax based matching points filter are used, to provide reliable and robust matching across a large range of affine distortion and illumination change. In the motion acquisition step, a two regions' relationship constrained joint color model and Markov chain Monte Carlo based joint particle filter are emphasized, by dividing the human body into two relative key regions. Several field tests are performed to assess measurement errors, including comparison to popular algorithms. With the help of the system presented, the system obtains position data on a 30 m × 60 m large rink with root-mean-square error better than 0.3975 m, velocity and acceleration data with absolute error better than 1.2579 m s-1 and 0.1494 m s-2, respectively.

  20. PROBABILISTIC SITE IDENTIFICATION ANALYSIS USING NUPEC RECORDED FREE FIELD MOTIONS.

    SciTech Connect

    XU,J.; COSTANTINO,C.; HOFMAYER,C.; MURPHY,A.; KITADA,Y.

    2002-08-04

    THIS PAPER DESCRIBES A PROBABILISTIC SITE IDENTIFICATION ANALYSIS PERFORMED BY BNL, USING THE FREE FIELD EARTHQUAKE MOTIONS RECORDED AT THE NUPEC TEST SITE. THE BNL ANALYSIS WAS INTENDED TO PROVIDE ADEQUATE CHARACTERIZATION OF THE SOIL PROPERTIES FOR THE TEST SITE TO BE USED FOR SSI ANALYSES. THE FREE FIELD DATA WERE PROVIDED BY NUPEC. THE METHODOLOGY EMPLOYED IN THE BNL PROBABILISTIC ANALYSIS OF SITE IDENTIFICATION INCLUDES THE MONTE CARLO PR...

  1. E. Mach on the analysis of motion sensation.

    PubMed

    Henn, V

    1984-01-01

    Ernst Mach (1838-1916) in his many and widely read publications contributed to physics, physiology, and philosophy. His work on the analysis of motion sensation is discussed in the light of contemporary ideas and modern concepts of vestibular physiology. PMID:6384156

  2. Three-dimensional rodent motion analysis and neurodegenerative disorders

    PubMed Central

    Karakostas, Tasos; Hsiang, Simon; Boger, Heather; Middaugh, Lawrence; Granholm, Ann-Charlotte

    2016-01-01

    Background Three-dimensional (3D) motion analysis is established in investigating, human pathological motion. In the field of gait, its use results in the objective identification of primary, and secondary causes of deviations, many current interventions are the result of pre- and post-testing, and it was shown recently that it can result in decreased number of surgeries and overall cost of care. Consequently, recent attempts have implemented 3D motion analysis using rat models to study, parkinsonism. However, to-date, a 3D user friendly analytical approach using rodent models to, identify etiologies of age-related motor impairment and accompanying pathologies has not been, implemented. New method We have developed and presented all aspects of a 3D, three body-segment rodent model, to analyze motions of the lower, upper and head segments between rodents of parkinsonism-type and, normal aging during free walking. Our model does not require transformation matrices to describe the, position of each body-segment. Because body-segment positions are not considered to consist of three, rotations about the laboratory axes, the rotations are not sequence dependent. Results Each body-segment demonstrated distinct 3D movement patterns. The parkinsonism-type, genotype walked slower with less range of motion, similarly to patients with parkinsonism. Comparison with existing methods This is the first model considering the rodent’s body as three, distinct segments. To the best of our knowledge, it is the first model to ever consider and report the 3D, head motion patterns. Conclusions This novel approach will allow unbiased analysis of spontaneous locomotion in mouse, models of parkinsonism or normal aging. PMID:24129039

  3. Analysis of unbounded operators and random motion

    SciTech Connect

    Jorgensen, Palle E. T.

    2009-11-15

    We study infinite weighted graphs with view to 'limits at infinity' or boundaries at infinity. Examples of such weighted graphs arise in infinite (in practice, that means 'very' large) networks of resistors or in statistical mechanics models for classical or quantum systems. However, more generally, our analysis includes reproducing kernel Hilbert spaces and associated operators on them. If X is some infinite set of vertices or nodes, in applications the essential ingredient going into the definition is a reproducing kernel Hilbert space; it measures the differences of functions on X evaluated on pairs of points in X. Moreover, the Hilbert norm-squared in H(X) will represent a suitable measure of energy. Associated unbounded operators will define a notion or dissipation, it can be a graph Laplacian or a more abstract unbounded Hermitian operator defined from the reproducing kernel Hilbert space under study. We prove that there are two closed subspaces in reproducing kernel Hilbert space H(X) that measure quantitative notions of limits at infinity in X: one generalizes finite-energy harmonic functions in H(X) and the other a deficiency index of a natural operator in H(X) associated directly with the diffusion. We establish these results in the abstract, and we offer examples and applications. Our results are related to, but different from, potential theoretic notions of 'boundaries' in more standard random walk models. Comparisons are made.

  4. Non-actual motion: phenomenological analysis and linguistic evidence.

    PubMed

    Blomberg, Johan; Zlatev, Jordan

    2015-09-01

    Sentences with motion verbs describing static situations have been seen as evidence that language and cognition are geared toward dynamism and change (Talmy in Toward a cognitive semantics, MIT Press, Cambridge, 2000; Langacker in Concept, image, and symbol: the cognitive basis of grammar, Mouton de Gruyter, Berlin and New York, 1990). Different concepts have been used in the literature, e.g., fictive motion, subjective motion and abstract motion to denote this. Based on phenomenological analysis, we reinterpret such concepts as reflecting different motivations for the use of such constructions (Blomberg and Zlatev in Phenom Cogn Sci 13(3):395-418, 2014). To highlight the multifaceted character of the phenomenon, we propose the concept non-actual motion (NAM), which we argue is more compatible with the situated cognition approach than explanations such as "mental simulation" (e.g., Matlock in Studies in linguistic motivation, Mouton de Gruyter, Berlin, 2004). We investigate the expression of NAM by means of a picture-based elicitation task with speakers of Swedish, French and Thai. Pictures represented figures that either afford human motion or not (±afford); crossed with this, the figure extended either across the picture from a third-person perspective (3 pp) or from a first-person perspective (1 pp). All picture types elicited NAM-sentences with the combination [+afford, 1 pp] producing most NAM-sentences in all three languages. NAM-descriptions also conformed to language-specific patterns for the expression of actual motion. We conclude that NAM shows interaction between pre-linguistic motivations and language-specific conventions. PMID:26265050

  5. An automated motion measurement system for clinical gait analysis.

    PubMed

    Taylor, K D; Mottier, F M; Simmons, D W; Cohen, W; Pavlak, R; Cornell, D P; Hankins, G B

    1982-01-01

    An automated motion measurement system using a television camera interfaced to a computer was constructed and evaluated to determine its applicability to clinical gait analysis. Experimental data indicate that the motion measurement system has a resolution of 1 part in 2000 and a static accuracy of 1 part in 1000 with a worst case dynamic error of 1 part in 300. The study has also shown that this system can reliably track multiple passive markers on a human illuminated with infrared light emitting diodes. This approach minimizes patient distraction, since the illumination is not visible, and reduces patient discomfort since a marker telemetry back pack system, to control active markers, is not needed. Further, the motion measurement system has been successfully demonstrated under conditions similar to those expected in a clinical environment. PMID:7130206

  6. Analysis of cardiac interventricular septum motion in different respiratory states

    NASA Astrophysics Data System (ADS)

    Tautz, Lennart; Feng, Li; Otazo, Ricardo; Hennemuth, Anja; Axel, Leon

    2016-03-01

    The interaction between the left and right heart ventricles (LV and RV) depends on load and pressure conditions that are affected by cardiac contraction and respiration cycles. A novel MRI sequence, XD-GRASP, allows the acquisition of multi-dimensional, respiration-sorted and cardiac-synchronized free-breathing image data. In these data, effects of the cardiac and respiratory cycles on the LV/RV interaction can be observed independently. To enable the analysis of such data, we developed a semi-automatic exploration workflow. After tracking a cross-sectional line positioned over the heart, over all motion states, the septum and heart wall border locations are detected by analyzing the grey-value profile under the lines. These data are used to quantify septum motion, both in absolute units and as a fraction of the heart size, to compare values for different subjects. In addition to conventional visualization techniques, we used color maps for intuitive exploration of the variable values for this multi-dimensional data set. We acquired short-axis image data of nine healthy volunteers, to analyze the position and the motion of the interventricular septum in different breathing states and different cardiac cycle phases. The results indicate a consistent range of normal septum motion values, and also suggest that respiratory phase-dependent septum motion is greatest near end-diastolic phases. These new methods are a promising tool to assess LV/RV ventricle interaction and the effects of respiration on this interaction.

  7. PROBABILISTIC SITE IDENTIFICATION ANALYSIS USING NUPEC RECORDED FREE FIELD MOTIONS.

    SciTech Connect

    XU,J.; COSTANTINO,C.; HOFMAYER,C.; MURPHY,A.; KITADA,Y.

    2002-08-04

    THIS PAPER DESCRIBES A PROBABILISTIC SITE IDENTIFICATION ANALYSIS PERFORMED BY BNL, USING THE FREE FIELD EARTHQUAKE MOTIONS RECORDED AT THE NUPEC TEST SITE. THE BNL ANALYSIS WAS INTENDED TO PROVIDE ADEQUATE CHARACTERIZATION OF THE SOIL PROPERTIES FOR THE TEST SITE TO BE USED FOR SSI ANALYSES. THE FREE FIELD DATA WERE PROVIDED BY NUPEC. THE METHODOLOGY EMPLOYED IN THE BNL PROBABILISTIC ANALYSIS OF SITE IDENTIFICATION INCLUDES THE MONTE CARLO PROCESS IN CONJUNCTION WITH EQUIVALENT LINEARCONVOLUTION ANALYSES FOR GENERATING A LARGE NUMBER OF SITE PROFILES FOR USE IN CONVOLUTION STUDIES FROM WHICH MEAN ESTIMATES OF RESPONSE CAN BE GENERATED. THE RANDOM VARIABLE SELECTED TO CHARACTERIZE THE SITE PROFILE IS THE SHEAR WAVE VELOCITY IN EACH SOIL LAYER OF THE SITE PROFILE. A LOGNORMAL DISTRIBUTION WAS ASSUMED WITH THE STANDARD DEVIATION DETERMINED FROM AVAILABLE SITE DATA AND APPLICABLE REGULATORY REQUIREMENTS. THE CONVOLUTION ANALYSES WERE PERFORMED USING AN APPROPRIATE SOILDEGRADATION MODEL AN D THE OUTCROP INPUT MOTIONS GENERATED FROM THE RECORDED IN ROCK MOTIONS. THE BNL ANALYSIS PRODUCED RESULTS IN TERMS OF THE MEAN, MEDIAN AND VARIOUS FRACTILES OF FREE FIELD SOIL PROPERTIES AT THE TEST SITE, AND THE CORRESPONDING SURFACE RESPONSE SPECTRA, WHICH ARE PRESENTED IN THIS PAPER.

  8. Energy flow: image correspondence approximation for motion analysis

    NASA Astrophysics Data System (ADS)

    Wang, Liangliang; Li, Ruifeng; Fang, Yajun

    2016-04-01

    We propose a correspondence approximation approach between temporally adjacent frames for motion analysis. First, energy map is established to represent image spatial features on multiple scales using Gaussian convolution. On this basis, energy flow at each layer is estimated using Gauss-Seidel iteration according to the energy invariance constraint. More specifically, at the core of energy invariance constraint is "energy conservation law" assuming that the spatial energy distribution of an image does not change significantly with time. Finally, energy flow field at different layers is reconstructed by considering different smoothness degrees. Due to the multiresolution origin and energy-based implementation, our algorithm is able to quickly address correspondence searching issues in spite of background noise or illumination variation. We apply our correspondence approximation method to motion analysis, and experimental results demonstrate its applicability.

  9. Video motion analysis with automated tracking: an insight

    NASA Astrophysics Data System (ADS)

    Aftab Usman, Bilal; Alam, Junaid; Sabieh Anwar, Muhammad

    2015-11-01

    The article describes the use of elementary techniques in computer vision and motion photography for the analysis of well known experiments in interactive instructional physics laboratories. We describe a method for the automated tracking of the kinematics of physical objects which involves the subtraction of orthogonal colors in color space. The aim is to expose undergraduate students to image processing and its applications in video motion analysis. The straightforward technique is simple, results in computational speedup compared to an existing method, removes the need for a laborious repetitive and manual tagging of frames and is generally robust against color variations. Insight is also presented into the process of thresholding and selecting the correct region out of the several choice presented in the post-threshold frames. Finally, the approach is illustrated through a selection of well known mechanics experiments.

  10. Automated analysis of non-mass-enhancing lesions in breast MRI based on morphological, kinetic, and spatio-temporal moments and joint segmentation-motion compensation technique

    NASA Astrophysics Data System (ADS)

    Hoffmann, Sebastian; Shutler, Jamie D.; Lobbes, Marc; Burgeth, Bernhard; Meyer-Bäse, Anke

    2013-12-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.

  11. The effect of bow stiffeners in nonrigid airships

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1923-01-01

    It is now well known that all nonrigid airships constructed at the present time have bow stiffeners consisting of battens curved to the form of the envelope and designed to hold the nose of the ship in its true form despite the very large pressure which exists at the extreme forward point. The effect of the stiffeners is to reduce considerably the apparent pressure which has to be maintained inside the envelope in order to prevent the nose from caving in.

  12. Retrieval analysis of motion preserving spinal devices and periprosthetic tissues

    PubMed Central

    Kurtz, Steven M.; Steinbeck, Marla; Ianuzzi, Allyson; van Ooij, André; Punt, Ilona M.; Isaza, Jorge; Ross, E.R.S.

    2009-01-01

    This article reviews certain practical aspects of retrieval analysis for motion preserving spinal implants and periprosthetic tissues as an essential component of the overall revision strategy for these implants. At our institution, we established an international repository for motion-preserving spine implants in 2004. Our repository is currently open to all spine surgeons, and is intended to be inclusive of all cervical and lumbar implant designs such as artificial discs and posterior dynamic stabilization devices. Although a wide range of alternative materials is being investigated for nonfusion spine implants, many of the examples in this review are drawn from our existing repository of metal-on-polyethylene, metal-on-metal lumbar total disc replacements (TDRs), and polyurethane-based dynamic motion preservation devices. These devices are already approved or nearing approval for use in the United States, and hence are the most clinically relevant at the present time. This article summarizes the current literature on the retrieval analysis of these implants and concludes with recommendations for the development of new test methods that are based on the current state of knowledge of in vivo wear and damage mechanisms. Furthermore, the relevance and need to evaluate the surrounding tissue to obtain a complete understanding of the biological reaction to implant component corrosion and wear is reviewed. PMID:25802641

  13. Motion Simulation Analysis of Rail Weld CNC Fine Milling Machine

    NASA Astrophysics Data System (ADS)

    Mao, Huajie; Shu, Min; Li, Chao; Zhang, Baojun

    CNC fine milling machine is a new advanced equipment of rail weld precision machining with high precision, high efficiency, low environmental pollution and other technical advantages. The motion performance of this machine directly affects its machining accuracy and stability, which makes it an important consideration for its design. Based on the design drawings, this article completed 3D modeling of 60mm/kg rail weld CNC fine milling machine by using Solidworks. After that, the geometry was imported into Adams to finish the motion simulation analysis. The displacement, velocity, angular velocity and some other kinematical parameters curves of the main components were obtained in the post-processing and these are the scientific basis for the design and development for this machine.

  14. 3D Guided Wave Motion Analysis on Laminated Composites

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  15. Current induced domain wall motion: Analysis and simulation

    NASA Astrophysics Data System (ADS)

    Yang, Lei

    The subject of current induced magnetic reversal has received considerable interest recently due to its attractive property for magnetic nanodevice applications. In this thesis, 3D simulations are performed to study current induced magnetic domain motion in magnetic nanostrips and nanowires based on the Landau-Lifshitz-Gilbert model with a spin transfer torque. For sufficiently thin strips and wires, the LLG equation can be reduced to a one dimensional model. For the simplified models, the dynamic laws for the domain wall motion are derived from a matched asymptotic expansion. The results are consistent with the numerical results. We also study the current induced magnetic domain wall motion in magnetic nanostrips with defects. Our numerical results show that when a domain wall passes through a defect, it experiences a strong attracting force. There is a critical current density below which the domain wall will oscillate around the defect and eventually be pinned at the defect. From the asymptotic expansion analysis, we show that the amplitude of this domain wall oscillation can be resonantly amplified by an ac current with proper frequency for the first time. This suggests a way to reduce the critical current for depinning of the domain wall.

  16. Sea Ice Motion from Wavelet Analysis of Satellite Data

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Zhou, Yun-He; Zukor, Dorothy (Technical Monitor)

    2000-01-01

    Wavelet analysis of NASA scatterometer (NSCAT) backscatter and Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) radiance data can be used to obtain daily sea ice drift information for the Arctic region. This technique provides improved spatial coverage over the existing array of Arctic Ocean buoys and better temporal resolution over techniques utilizing data from satellite synthetic aperture radars. Comparisons with ice motion derived from ocean buoys give good quantitative agreement. Both comparison results from NSCAT and SSM/I are compatible, and the results from NSCAT can definitely complement that from SSM/I when there are cloud or surface effects. Then three sea-ice drift daily results from NSCAT, SSM/I, and buoy data can be merged as a composite map by some data fusion techniques. The ice flow streamlines are highly correlated with surface air pressure contours. Examples of derived ice-drift maps in December 1996 illustrate large-scale circulation reversals over a period of four days. A method for deriving divergence and shear at the large-scale has been developed and comparison between buoys and satellite results shows a good agreement. These calibrated/validated results indicate that NSCAT, SSM/I merged daily ice motion are suitably accurate to identify and closely locate sea ice processes, and to improve our current knowledge of sea ice drift and related processes through the data assimilation of ocean-ice numerical model. For demonstration purpose, the ice velocities derived from satellite data are compared with the ice velocities derived from a coupled ice-ocean interaction model. The comparison reveals that the general circulation patterns of the two are quite similar but the ice velocity differences between the two are quite significant. In order to quantify the wind effects on ice motion, empirical orthogonal functions (EOF) are used in the principal component analysis for both ice motion and pressure field. Some

  17. Computer-aided target tracking in motion analysis studies

    NASA Astrophysics Data System (ADS)

    Burdick, Dominic C.; Marcuse, M. L.; Mislan, J. D.

    1990-08-01

    Motion analysis studies require the precise tracking of reference objects in sequential scenes. In a typical situation, events of interest are captured at high frame rates using special cameras, and selected objects or targets are tracked on a frame by frame basis to provide necessary data for motion reconstruction. Tracking is usually done using manual methods which are slow and prone to error. A computer based image analysis system has been developed that performs tracking automatically. The objective of this work was to eliminate the bottleneck due to manual methods in high volume tracking applications such as the analysis of crash test films for the automotive industry. The system has proven to be successful in tracking standard fiducial targets and other objects in crash test scenes. Over 95 percent of target positions which could be located using manual methods can be tracked by the system, with a significant improvement in throughput over manual methods. Future work will focus on the tracking of clusters of targets and on tracking deformable objects such as airbags.

  18. An automated time and hand motion analysis based on planar motion capture extended to a virtual environment

    NASA Astrophysics Data System (ADS)

    Tinoco, Hector A.; Ovalle, Alex M.; Vargas, Carlos A.; Cardona, María J.

    2015-03-01

    In the context of industrial engineering, the predetermined time systems (PTS) play an important role in workplaces because inefficiencies are found in assembly processes that require manual manipulations. In this study, an approach is proposed with the aim to analyze time and motions in a manual process using a capture motion system embedded to a virtual environment. Capture motion system tracks IR passive markers located on the hands to take the positions of each one. For our purpose, a real workplace is virtually represented by domains to create a virtual workplace based on basic geometries. Motion captured data are combined with the virtual workplace to simulate operations carried out on it, and a time and motion analysis is completed by means of an algorithm. To test the methodology of analysis, a case study was intentionally designed using and violating the principles of motion economy. In the results, it was possible to observe where the hands never crossed as well as where the hands passed by the same place. In addition, the activities done in each zone were observed and some known deficiencies were identified in the distribution of the workplace by computational analysis. Using a frequency analysis of hand velocities, errors in the chosen assembly method were revealed showing differences in the hand velocities. An opportunity is seen to classify some quantifiable aspects that are not identified easily in a traditional time and motion analysis. The automated analysis is considered as the main contribution in this study. In the industrial context, a great application is perceived in terms of monitoring the workplace to analyze repeatability, PTS, workplace and labor activities redistribution using the proposed methodology.

  19. Deformable models with sparsity constraints for cardiac motion analysis.

    PubMed

    Yu, Yang; Zhang, Shaoting; Li, Kang; Metaxas, Dimitris; Axel, Leon

    2014-08-01

    Deformable models integrate bottom-up information derived from image appearance cues and top-down priori knowledge of the shape. They have been widely used with success in medical image analysis. One limitation of traditional deformable models is that the information extracted from the image data may contain gross errors, which adversely affect the deformation accuracy. To alleviate this issue, we introduce a new family of deformable models that are inspired from the compressed sensing, a technique for accurate signal reconstruction by harnessing some sparseness priors. In this paper, we employ sparsity constraints to handle the outliers or gross errors, and integrate them seamlessly with deformable models. The proposed new formulation is applied to the analysis of cardiac motion using tagged magnetic resonance imaging (tMRI), where the automated tagging line tracking results are very noisy due to the poor image quality. Our new deformable models track the heart motion robustly, and the resulting strains are consistent with those calculated from manual labels. PMID:24721617

  20. Sparse deformable models with application to cardiac motion analysis.

    PubMed

    Yu, Yang; Zhang, Shaoting; Huang, Junzhou; Metaxas, Dimitris; Axel, Leon

    2013-01-01

    Deformable models have been widely used with success in medical image analysis. They combine bottom-up information derived from image appearance cues, with top-down shape-based constraints within a physics-based formulation. However, in many real world problems the observations extracted from the image data often contain gross errors, which adversely affect the deformation accuracy. To alleviate this issue, we introduce a new family of deformable models that are inspired from compressed sensing, a technique for efficiently reconstructing a signal based on its sparseness in some domain. In this problem, we employ sparsity to represent the outliers or gross errors, and combine it seamlessly with deformable models. The proposed new formulation is applied to the analysis of cardiac motion, using tagged magnetic resonance imaging (tMRI), where the automated tagging line tracking results are very noisy due to the poor image quality. Our new deformable models track the heart motion robustly, and the resulting strains are consistent with those calculated from manual labels. PMID:24683970

  1. Separating complex compound patient motion tracking data using independent component analysis

    NASA Astrophysics Data System (ADS)

    Lindsay, C.; Johnson, K.; King, M. A.

    2014-03-01

    In SPECT imaging, motion from respiration and body motion can reduce image quality by introducing motion-related artifacts. A minimally-invasive way to track patient motion is to attach external markers to the patient's body and record their location throughout the imaging study. If a patient exhibits multiple movements simultaneously, such as respiration and body-movement, each marker location data will contain a mixture of these motions. Decomposing this complex compound motion into separate simplified motions can have the benefit of applying a more robust motion correction to the specific type of motion. Most motion tracking and correction techniques target a single type of motion and either ignore compound motion or treat it as noise. Few methods account for compound motion exist, but they fail to disambiguate super-position in the compound motion (i.e. inspiration in addition to body movement in the positive anterior/posterior direction). We propose a new method for decomposing the complex compound patient motion using an unsupervised learning technique called Independent Component Analysis (ICA). Our method can automatically detect and separate different motions while preserving nuanced features of the motion without the drawbacks of previous methods. Our main contributions are the development of a method for addressing multiple compound motions, the novel use of ICA in detecting and separating mixed independent motions, and generating motion transform with 12 DOFs to account for twisting and shearing. We show that our method works with clinical datasets and can be employed to improve motion correction in single photon emission computed tomography (SPECT) images.

  2. Camera systems in human motion analysis for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  3. Improved spectral analysis for the motional Stark effect diagnostica)

    NASA Astrophysics Data System (ADS)

    Ko, J.; Klabacha, J.

    2012-10-01

    The magnetic pitch angle and the magnitude from reversed field pinch plasmas in the Madison symmetric torus (MST) have been routinely obtained from fully resolved motional Stark effect (MSE) spectrum analyses. Recently, the spectrum fit procedure has been improved by initializing and constraining the fit parameters based on the MSE model in the atomic data and analysis structure. A collisional-radiative model with level populations nlm-resolved up to n = 4 and a simple Born approximation for ion-impact cross sections is used for this analysis. Measurement uncertainty is quantified by making MSE measurements with multiple views of a single spatial location, ranging 5%-15% for typical MST operation conditions. A multi-view fit improves the goodness of fit of MSE spectral features and background.

  4. Neural correlates of facial motion perception.

    PubMed

    Girges, Christine; O'Brien, Justin; Spencer, Janine

    2016-06-01

    Several neuroimaging studies have revealed that the superior temporal sulcus (STS) is highly implicated in the processing of facial motion. A limitation of these investigations, however, is that many of them utilize unnatural stimuli (e.g., morphed videos) or those which contain many confounding spatial cues. As a result, the underlying mechanisms may not be fully engaged during such perception. The aim of the current study was to build upon the existing literature by implementing highly detailed and accurate models of facial movement. Accordingly, neurologically healthy participants viewed simultaneous sequences of rigid and nonrigid motion that was retargeted onto a standard computer generated imagery face model. Their task was to discriminate between different facial motion videos in a two-alternative forced choice paradigm. Presentations varied between upright and inverted orientations. In corroboration with previous data, the perception of natural facial motion strongly activated a portion of the posterior STS. The analysis also revealed engagement of the lingual gyrus, fusiform gyrus, precentral gyrus, and cerebellum. These findings therefore suggest that the processing of dynamic facial information is supported by a network of visuomotor substrates. PMID:26077725

  5. Arctic Sea Ice Motion from Wavelet Analysis of Satellite Data

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Zhao, Yunhe

    1998-01-01

    Wavelet analysis of DMSP SSM/I (Special Sensor Microwave/Imager) 85 GHz and 37 GHz radiance data, SMMR (Scanning Multichannel Microwave Radiometer) 37 GHz, and NSCAT (NASA Scatterometer) 13.9 GHZ data can be used to obtain daily sea ice drift information for both the northern and southern polar regions. The derived maps of sea ice drift provide both improved spatial coverage over the existing array of Arctic Ocean buoys and better temporal resolution over techniques utilizing data from satellite synthetic aperture radars (SAR). Examples of derived ice-drift maps in the Arctic illustrate large-scale circulation reversals within a period of a couple weeks. Comparisons with ice displacements derived from buoys show good quantitative agreement. NASA Scatterometer (NSCAT) 13.9 GHZ data have been also used for wavelet analysis to derive sea-ice drift. First, the 40' incidence-angle, sigma-zero (surface roughness) daily map of whole Arctic region with 25 km of pixel size from satellite's 600 km swath has been constructed. Then, the similar wavelet transform procedure to SSM/I data can be applied. Various scales of wavelet transform and threshold have been tested. By overlaying , neighbor filtering, and block-averaging the results of multiscale wavelet transforms, the final sea ice drift vectors are much smooth and representative to the sea ice motion. This wavelet analysis procedure is robust and can make a major contribution to the understanding of ice motion over large areas at relatively high temporal resolutions. The results of wavelet analysis of SSM/I and NSCAT images and buoy data can be merged by some data fusion techniques and will help to improve our current knowledge of sea ice drift and related processes through the data assimilation of ocean-ice numerical model.

  6. Effectiveness of an Automatic Tracking Software in Underwater Motion Analysis

    PubMed Central

    Magalhaes, Fabrício A.; Sawacha, Zimi; Di Michele, Rocco; Cortesi, Matteo; Gatta, Giorgio; Fantozzi, Silvia

    2013-01-01

    Tracking of markers placed on anatomical landmarks is a common practice in sports science to perform the kinematic analysis that interests both athletes and coaches. Although different software programs have been developed to automatically track markers and/or features, none of them was specifically designed to analyze underwater motion. Hence, this study aimed to evaluate the effectiveness of a software developed for automatic tracking of underwater movements (DVP), based on the Kanade-Lucas-Tomasi feature tracker. Twenty-one video recordings of different aquatic exercises (n = 2940 markers’ positions) were manually tracked to determine the markers’ center coordinates. Then, the videos were automatically tracked using DVP and a commercially available software (COM). Since tracking techniques may produce false targets, an operator was instructed to stop the automatic procedure and to correct the position of the cursor when the distance between the calculated marker’s coordinate and the reference one was higher than 4 pixels. The proportion of manual interventions required by the software was used as a measure of the degree of automation. Overall, manual interventions were 10.4% lower for DVP (7.4%) than for COM (17.8%). Moreover, when examining the different exercise modes separately, the percentage of manual interventions was 5.6% to 29.3% lower for DVP than for COM. Similar results were observed when analyzing the type of marker rather than the type of exercise, with 9.9% less manual interventions for DVP than for COM. In conclusion, based on these results, the developed automatic tracking software presented can be used as a valid and useful tool for underwater motion analysis. Key Points The availability of effective software for automatic tracking would represent a significant advance for the practical use of kinematic analysis in swimming and other aquatic sports. An important feature of automatic tracking software is to require limited human

  7. A novel parametric method for non-rigid image registration.

    PubMed

    Cuzol, Anne; Hellier, Pierre; Mémin, Etienne

    2005-01-01

    This paper presents a novel non-rigid registration method. The main contribution of the method is the modeling of the vorticity (respectively divergence) of the deformation field using vortex (respectively sink and source) particles. Two parameters are associated with a particle: the vorticity (or divergence) strength and the influence domain. This leads to a very compact representation of vorticity and divergence fields. In addition, the optimal position of these particles is determined using a mean shift process. 2D experiments of this method are presented and demonstrate its ability to recover evolving phenomena (MS lesions) so as to register images from 20 patients. PMID:17354717

  8. Accident investigation: Analysis of aircraft motions from ATC radar recordings

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1976-01-01

    A technique was developed for deriving time histories of an aircraft's motion from air traffic control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data (from an onboard Mode-C transponder), to derive an expanded set of data which includes airspeed, lift, thrust-drag, attitude angles (pitch, roll, and heading), etc. This method of analyzing aircraft motions was evaluated through flight experiments which used the CV-990 research aircraft and recordings from both the enroute and terminal ATC radar systems. The results indicate that the values derived from the ATC radar records are for the most part in good agreement with the corresponding values obtained from airborne measurements. In an actual accident, this analysis of ATC radar records can complement the flight-data recorders, now onboard airliners, and provide a source of recorded information for other types of aircraft that are equipped with Mode-C transponders but not with onboard recorders.

  9. Validation and Comparison of Approaches to Respiratory Motion Estimation

    NASA Astrophysics Data System (ADS)

    Kabus, Sven; Klinder, Tobias; Murphy, Keelin; Werner, René; Sarrut, David

    The accuracy of respiratory motion estimation has a direct impact on the success of clinical applications such as diagnosis, as well as planning, delivery, and assessment of therapy for lung or other thoracic diseases. While rigid registration is well suited to validation and has reached a mature state in clinical applications, for non-rigid registration no gold-standard exists. This chapter investigates the validation of non-rigid registration accuracy with a focus on lung motion. The central questions addressed in this chapter are (1) how to measure registration accuracy, (2) how to generate ground-truth for validation, and (3) how to interpret accuracy assessment results.

  10. Automatic mitral annulus tracking in volumetric ultrasound using non-rigid image registration.

    PubMed

    De Veene, Henri; Bertrand, Philippe B; Popovic, Natasa; Vandervoort, Pieter M; Claus, Piet; De Beule, Matthieu; Heyde, Brecht

    2015-08-01

    Analysis of mitral annular dynamics plays an important role in the diagnosis and selection of optimal valve repair strategies, but remains cumbersome and time-consuming if performed manually. In this paper we propose non-rigid image registration to automatically track the annulus in 3D ultrasound images for both normal and pathological valves, and compare the performance against manual tracing. Relevant clinical properties such as annular area, circumference and excursion could be extracted reliably by the tracking algorithm. The root-mean-square error, calculated as the difference between the manually traced landmarks (18 in total) and the automatic tracking, was 1.96 ± 0.46 mm over 10 valves (5 healthy and 5 diseased) which is within the clinically acceptable error range. PMID:26736674

  11. Head Motion Modeling for Human Behavior Analysis in Dyadic Interaction

    PubMed Central

    Xiao, Bo; Georgiou, Panayiotis; Baucom, Brian; Narayanan, Shrikanth S.

    2015-01-01

    This paper presents a computational study of head motion in human interaction, notably of its role in conveying interlocutors’ behavioral characteristics. Head motion is physically complex and carries rich information; current modeling approaches based on visual signals, however, are still limited in their ability to adequately capture these important properties. Guided by the methodology of kinesics, we propose a data driven approach to identify typical head motion patterns. The approach follows the steps of first segmenting motion events, then parametrically representing the motion by linear predictive features, and finally generalizing the motion types using Gaussian mixture models. The proposed approach is experimentally validated using video recordings of communication sessions from real couples involved in a couples therapy study. In particular we use the head motion model to classify binarized expert judgments of the interactants’ specific behavioral characteristics where entrainment in head motion is hypothesized to play a role: Acceptance, Blame, Positive, and Negative behavior. We achieve accuracies in the range of 60% to 70% for the various experimental settings and conditions. In addition, we describe a measure of motion similarity between the interaction partners based on the proposed model. We show that the relative change of head motion similarity during the interaction significantly correlates with the expert judgments of the interactants’ behavioral characteristics. These findings demonstrate the effectiveness of the proposed head motion model, and underscore the promise of analyzing human behavioral characteristics through signal processing methods. PMID:26557047

  12. Site-specific volumetric analysis of lung tumour motion

    NASA Astrophysics Data System (ADS)

    Pepin, Eric W.; Wu, Huanmei; Sandison, George A.; Langer, Mark; Shirato, Hiroki

    2010-06-01

    The treatment of lung cancer with radiation therapy is hindered by respiratory motion. Real-time adjustments to compensate for this motion are hampered by mechanical system latencies and imaging-rate restrictions. To better understand tumour motion behaviour for adaptive image-guided radiation therapy of lung cancer, the volume of a tumour's motion space was investigated. Motion data were collected by tracking an implanted fiducial using fluoroscopy at 30 Hz during treatment sessions. A total of 637 treatment fractions from 31 tumours were used in this study. For each fraction, data points collected from three consecutive breathing cycles were used to identify instantaneous tumour location. A convex hull was created over these data points, defining the tumour motion envelope. The study sought a correlation between the tumour location in the lung and the convex hull's volume and shape. It was found that tumours located in the upper apex had smaller motion envelopes (<50 mm3), whereas tumours located near the chest wall or diaphragm had larger envelopes (>70 mm3). Tumours attached to fixed anatomical structures had small motion spaces. Three general shapes described the tumour motion envelopes: 50% of motion envelopes enclosed largely 1D oscillation, 38% enclosed an ellipsoid path, 6% enclosed an arced path and 6% were of hybrid shape. This location-space correlation suggests it may be useful in developing a predictive model, but more work needs to be done to verify it.

  13. Coherence analysis for movement disorder motion captured by six degree-of-freedom inertial sensing

    NASA Astrophysics Data System (ADS)

    Teskey, Wesley J. E.; Elhabiby, Mohamed; El-Sheimy, Naser; MacIntosh, Brian

    2012-06-01

    The use of inertial sensors (accelerometer and gyroscopes) for evaluation of movement disorder motion, including essential tremor (ET) and Parkinson's disease (PD), is becoming prevalent. This paper uses a novel combination of six degree-of-freedom motion analysis and coherence based processing methodologies to uncover differences in the signature of motion for the ET and PD movement disorders. This is the first analysis of such motions utilizing the novel methodology outlined, and it displays a distinct motion profile differentiating between these two groups. Such an analysis can be used to assist medical professionals in diagnosing movement disorders given a currently high error rate of diagnosis. As well, the Kalman smoothing analysis performed in this paper can be quite useful for any application when tracking of human motion is required. Another contribution of the work is the use of wavelets in zero phase lag filtering, which helped in preparing the data for analysis by removing unwanted frequencies without introducing distortions into the data.

  14. Motion analysis of artery pulsation in neonatal cranial ultrasonogram

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Masayuki; Kubo, Hiroki; Kitsunezuka, Yoshiki; Yamada, Masayoshi

    1999-05-01

    Using an optical-flow technique, we have quantitatively analyzed tissue motion due to artery pulsation accompanied with blood flow in a neonatal cranial ultrasonogram. The tissue motion vector was successfully calculated at each pixel in a series of echo images (32 frames, 640 X 480 pixels/frame, 8 bits/pixel, 33 ms/frame) taken in the brightness mode by using an ultrasound probe of 5.0 MHz. The optical-flow technique used was a gradient method combined with local optimization for 3 X 3 neighbors. From 2D mappings of tissue motion vectors and their time-sequence variations, it was found that the tissue motion due to artery pulsation revealed periodic to-and-fro motion synchronized with heartbeat (300 - 500 ms), clearly distinguishing from unwanted non-periodic motion due to the sway of neonatal head during diagnosis.

  15. Heart Rate and Motion Analysis by GPS in Beach Soccer

    PubMed Central

    Castellano, Julen; Casamichana, David

    2010-01-01

    Although beach soccer has become increasingly popular in recent years very little scientific research has been conducted into the sport. A pilot study was carried out with the aim of examining the physiological (heart rate) and physical (motion analysis) responses of beach soccer players during competitive matches. Ten players (age 25.5 ± 0.5 years; height 1.80 ± 0.08 m; weight 78.2 ± 5.6 kg.) were studied over five beach soccer matches. The physiological demands were analysed by measuring heart rate (HR) using telemetric devices, while the physical profile was evaluated by recording motion and speed by means of GPS devices. During competitive matches, players obtained a HRmean of 165.2 bpm (86.5% HRmax), with 59.3% of the time participating (TP) corresponding to values above 90% of the HRmax. The distance covered per minute of participation was 97.7 m, with 9.5% of this distance corresponding to high-intensity running and 2.5% to sprint; the work:rest ratio was 1.4:1 and the maximum speed 21.7 km·h-1. These results showed that beach soccer is an intermittent physical activity of greater intensity than other team games. It requires a major contribution from the anaerobic system as emphasis is placed on players making quick bursts of high-intensity activity separated by brief rest periods. Key points The distance covered per minute of play is around 100 m. Beach soccer is an intermittent sport with a work:rest ratio of 1.4:1. The playing surface in beach soccer is an important handicap to obtain maximum speeds. Beach soccer has a high physiological intensity, with more than half of the game is spent at intensities above 90 % of the HRmax. PMID:24149392

  16. Untypical Undergraduate Research: Player Motion Analysis in Sports

    NASA Astrophysics Data System (ADS)

    Loerke, Dinah

    There is significant concern about the degree of attrition in STEM disciplines from the start of K-12 through to the end of higher education, and the analysis of the `leaky pipeline' from the various institutions has identified a critical decline - which may be as high as 60 percent - between the fraction of students who identify as having an interest in a science or engineering major at the start of college/university, and the fraction of students who ultimately graduate with a STEM degree. It has been shown that this decline is even more dramatic for women and underrepresented minorities (Blickenstaff 2005, Metcalf 2010). One intervention which has been proven to be effective for retention of potential STEM students is early research experience, particularly if it facilitates the students' integration into a STEM learning community (Graham et al. 2013, Toven-Lindsey et al. 2015). In other words, to retain students in STEM majors, we would like to encourage them to `think of themselves as scientists', and simultaneously promote supportive peer networks. The University of Denver (DU) already has a strong undergraduate research program. However, while the current program provides valuable training for many students, it likely comes too late to be effective for student retention in STEM, because it primarily serves older students who have already finished the basic coursework in their discipline; within physics, we know that the introductory physics courses already serve as gatekeeper courses that cause many gifted but `non-typical' students to lose interest in pursuing a STEM major (Tobias 1990). To address this issue, my lab is developing a small research spinoff program in which we apply spatiotemporal motion analysis to the motion trajectories of players in sports, using video recordings of DU Pioneer hockey games. This project aims to fulfill a dual purpose: The research is framed in a way that we think is attractive and accessible for beginning students who

  17. The Importance of Stimulus Noise Analysis for Self-Motion Studies

    PubMed Central

    Nesti, Alessandro; Beykirch, Karl A.; MacNeilage, Paul R.; Barnett-Cowan, Michael; Bülthoff, Heinrich H.

    2014-01-01

    Motion simulators are widely employed in basic and applied research to study the neural mechanisms of perception and action during inertial stimulation. In these studies, uncontrolled simulator-introduced noise inevitably leads to a disparity between the reproduced motion and the trajectories meticulously designed by the experimenter, possibly resulting in undesired motion cues to the investigated system. Understanding actual simulator responses to different motion commands is therefore a crucial yet often underestimated step towards the interpretation of experimental results. In this work, we developed analysis methods based on signal processing techniques to quantify the noise in the actual motion, and its deterministic and stochastic components. Our methods allow comparisons between commanded and actual motion as well as between different actual motion profiles. A specific practical example from one of our studies is used to illustrate the methodologies and their relevance, but this does not detract from its general applicability. Analyses of the simulator’s inertial recordings show direction-dependent noise and nonlinearity related to the command amplitude. The Signal-to-Noise Ratio is one order of magnitude higher for the larger motion amplitudes we tested, compared to the smaller motion amplitudes. Simulator-introduced noise is found to be primarily of deterministic nature, particularly for the stronger motion intensities. The effect of simulator noise on quantification of animal/human motion sensitivity is discussed. We conclude that accurate recording and characterization of executed simulator motion are a crucial prerequisite for the investigation of uncertainty in self-motion perception. PMID:24755871

  18. An analysis of human motion detection systems use during elder exercise routines.

    PubMed

    Alexander, Gregory L; Havens, Timothy C; Rantz, Marilyn; Keller, James; Casanova Abbott, Carmen

    2010-03-01

    Human motion analysis provides motion pattern and body pose estimations. This study integrates computer-vision techniques and explores a markerless human motion analysis system. Using human-computer interaction (HCI) methods and goals, researchers use a computer interface to provide feedback about range of motion to users. A total of 35 adults aged 65 and older perform three exercises in a public gym while human motion capture methods are used. Following exercises, participants are shown processed human motion images captured during exercises on a customized interface. Standardized questionnaires are used to elicit responses from users during interactions with the interface. A matrix of HCI goals (effectiveness, efficiency, and user satisfaction) and emerging themes are used to describe interactions. Sixteen users state the interface would be useful, but not necessarily for safety purposes. Users want better image quality, when expectations are matched satisfaction increases, and unclear meaning of motion measures decreases satisfaction. PMID:20185803

  19. Measurement Performance of a Computer Assisted Vertebral Motion Analysis System

    PubMed Central

    Davis, Reginald J.; Lee, David C.; Cheng, Boyle

    2015-01-01

    Background Segmental instability of the lumbar spine is a significant cost within the US health care system; however current thresholds for indication of radiographic instability are not well defined. Purpose To determine the performance measurements of sagittal lumbar intervertebral measurements using computerassisted measurements of the lumbar spine using motion sequences from a video-fluoroscopic technique. Study design Sensitivity, specificity, predictive values, prevalence, and test-retest reliability evaluation of digitized manual versus computer-assisted measurements of the lumbar spine. Patient sample A total of 2239 intervertebral levels from 509 symptomatic patients, and 287 intervertebral levels from 73 asymptomatic participants were retrospectively evaluated. Outcome measures Specificity, sensitivity, negative predictive value (NPV), diagnostic accuracy, and prevalence between the two measurement techniques; Measurements of Coefficient of repeatability (CR), limits of agreement (LOA), intraclass correlation coefficient (ICC; type 3,1), and standard error of measurement for both measurement techniques. Methods Asymptomatic individuals and symptomatic patients were all evaluated using both the Vertebral Motion Analysis (VMA) system and fluoroscopic flexion extension static radiographs (FE). The analysis was compared to known thresholds of 15% intervertebral translation (IVT, equivalent to 5.3mm assuming a 35mm vertebral body depth) and 25° intervertebral rotation (IVR). Results The VMA measurements demonstrated greater specificity, % change in sensitivity, NPV, prevalence, and reliability compared with FE for radiographic evidence of instability. Specificity was 99.4% and 99.1% in the VMA compared to 98.3% and 98.2% in the FE for IVR and IVT, respectively. Sensitivity in this study was 41.2% and 44.6% greater in the VMA compared to the FE for IVR and IVT, respectively. NPV was 91% and 88% in the VMA compared to 62% and 66% in the FE for IVR and IVT

  20. Articulated Non-Rigid Point Set Registration for Human Pose Estimation from 3D Sensors

    PubMed Central

    Ge, Song; Fan, Guoliang

    2015-01-01

    We propose a generative framework for 3D human pose estimation that is able to operate on both individual point sets and sequential depth data. We formulate human pose estimation as a point set registration problem, where we propose three new approaches to address several major technical challenges in this research. First, we integrate two registration techniques that have a complementary nature to cope with non-rigid and articulated deformations of the human body under a variety of poses. This unique combination allows us to handle point sets of complex body motion and large pose variation without any initial conditions, as required by most existing approaches. Second, we introduce an efficient pose tracking strategy to deal with sequential depth data, where the major challenge is the incomplete data due to self-occlusions and view changes. We introduce a visible point extraction method to initialize a new template for the current frame from the previous frame, which effectively reduces the ambiguity and uncertainty during registration. Third, to support robust and stable pose tracking, we develop a segment volume validation technique to detect tracking failures and to re-initialize pose registration if needed. The experimental results on both benchmark 3D laser scan and depth datasets demonstrate the effectiveness of the proposed framework when compared with state-of-the-art algorithms. PMID:26131673

  1. A study of attitude control concepts for precision-pointing non-rigid spacecraft

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1975-01-01

    Attitude control concepts for use onboard structurally nonrigid spacecraft that must be pointed with great precision are examined. The task of determining the eigenproperties of a system of linear time-invariant equations (in terms of hybrid coordinates) representing the attitude motion of a flexible spacecraft is discussed. Literal characteristics are developed for the associated eigenvalues and eigenvectors of the system. A method is presented for determining the poles and zeros of the transfer function describing the attitude dynamics of a flexible spacecraft characterized by hybrid coordinate equations. Alterations are made to linear regulator and observer theory to accommodate modeling errors. The results show that a model error vector, which evolves from an error system, can be added to a reduced system model, estimated by an observer, and used by the control law to render the system less sensitive to uncertain magnitudes and phase relations of truncated modes and external disturbance effects. A hybrid coordinate formulation using the provided assumed mode shapes, rather than incorporating the usual finite element approach is provided.

  2. Robust multiple cue fusion-based high-speed and nonrigid object tracking algorithm for short track speed skating

    NASA Astrophysics Data System (ADS)

    Liu, Chenguang; Cheng, Heng-Da; Zhang, Yingtao; Wang, Yuxuan; Xian, Min

    2016-01-01

    This paper presents a methodology for tracking multiple skaters in short track speed skating competitions. Nonrigid skaters move at high speed with severe occlusions happening frequently among them. The camera is panned quickly in order to capture the skaters in a large and dynamic scene. To automatically track the skaters and precisely output their trajectories becomes a challenging task in object tracking. We employ the global rink information to compensate camera motion and obtain the global spatial information of skaters, utilize random forest to fuse multiple cues and predict the blob of each skater, and finally apply a silhouette- and edge-based template-matching and blob-evolving method to labelling pixels to a skater. The effectiveness and robustness of the proposed method are verified through thorough experiments.

  3. Supplementary active stabilization of nonrigid gravity gradient satellites

    NASA Technical Reports Server (NTRS)

    Keat, J. E.

    1972-01-01

    The use of active control for stability augmentation of passive gravity gradient satellites is investigated. The reaction jet method of control is the main interest. Satellite nonrigidity is emphasized. The reduction in the Hamiltonian H is used as a control criteria. The velocities, relative to local vertical, of the jets along their force axes are shown to be of fundamental significance. A basic control scheme which satisfies the H reduction criteria is developed. Each jet is fired when its velocity becomes appropriately large. The jet is de-energized when velocity reaches zero. Firing constraints to preclude orbit alteration may be needed. Control is continued until H has been minimized. This control policy is investigated using impulse and rectangular pulse models of the jet outputs.

  4. Motion as perturbation. II. Development of the method for dosimetric analysis of motion effects with fixed-gantry IMRT

    SciTech Connect

    Nelms, Benjamin E.; Opp, Daniel; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir

    2014-06-15

    s, with the resulting average motion speed of 1.45 cm/s. The motion-perturbed high resolution (2 mm voxel) volumetric dose grids on the MC2 phantom were generated for each beam. From each grid, a coronal dose plane at the detector level was extracted and compared to the corresponding moving MC2 measurement, using gamma analysis with both global (G) and local (L) dose-error normalization. Results: Using the TG-119 criteria of (3%G/3 mm), per beam average gamma analysis passing rates exceeded 95% in all cases. No individual beam had a passing rate below 91%. LDVE correction eliminated systematic disagreement patterns at the beams’ aperture edges. In a representative example, application of LDVE correction improved (2%L/2 mm) gamma analysis passing rate for an IMRT beam from 74% to 98%. Conclusions: The effect of motion on the moving region-of-interest IMRT dose can be estimated with a standard, static phantom QA measurement, provided the motion characteristics are independently known from 4D CT or otherwise. The motion-perturbed absolute dose estimates were validated by the direct planar diode array measurements, and were found to reliably agree with them in a homogeneous phantom.

  5. Complexity analysis of scalable motion-compensated wavelet video decoders

    NASA Astrophysics Data System (ADS)

    Landge, Gouri; van der Schaar, Mihaela; Akella, Venkatesh

    2004-11-01

    Scalable wavelet video coders based on Motion Compensated Temporal Filtering (MCTF) have been shown to exhibit good coding efficiency over a large range of bit-rates, in addition to providing spatial, temporal and SNR scalabilities. However, the complexity of these wavelet video coding schemes has not been thoroughly investigated. In this paper, we analyze the computational complexity of a fully-scalable MCTF-based wavelet video decoder that is likely to become part of the emerging MPEG-21 standard. We model the change in computational complexity of various components of the decoder as a function of bit-rate, encoding parameters such as filter types for spatial and temporal decomposition and the number of decomposition levels, and sequence characteristics. A key by-product of our analysis is the observation that fixed-function hardware accelerators are not appropriate for implementing these next generation fully scalable video decoders. The absolute complexity of the various functional units as well as their relative complexity varies depending on the transmission bit-rate, thereby requiring different hardware/software architecture support at different bit-rates. To cope with these variations, a preliminary architecture comprising of a reconfigurable co-processor and a general purpose processor is proposed as an implementation platform for these video decoders. We also propose an algorithm to utilize the co-processor efficiently.

  6. Non-rigid multi-modal registration on the GPU

    NASA Astrophysics Data System (ADS)

    Vetter, Christoph; Guetter, Christoph; Xu, Chenyang; Westermann, Rüdiger

    2007-03-01

    Non-rigid multi-modal registration of images/volumes is becoming increasingly necessary in many medical settings. While efficient registration algorithms have been published, the speed of the solutions is a problem in clinical applications. Harnessing the computational power of graphics processing unit (GPU) for general purpose computations has become increasingly popular in order to speed up algorithms further, but the algorithms have to be adapted to the data-parallel, streaming model of the GPU. This paper describes the implementation of a non-rigid, multi-modal registration using mutual information and the Kullback-Leibler divergence between observed and learned joint intensity distributions. The entire registration process is implemented on the GPU, including a GPU-friendly computation of two-dimensional histograms using vertex texture fetches as well as an implementation of recursive Gaussian filtering on the GPU. Since the computation is performed on the GPU, interactive visualization of the registration process can be done without bus transfer between main memory and video memory. This allows the user to observe the registration process and to evaluate the result more easily. Two hybrid approaches distributing the computation between the GPU and CPU are discussed. The first approach uses the CPU for lower resolutions and the GPU for higher resolutions, the second approach uses the GPU to compute a first approximation to the registration that is used as starting point for registration on the CPU using double-precision. The results of the CPU implementation are compared to the different approaches using the GPU regarding speed as well as image quality. The GPU performs up to 5 times faster per iteration than the CPU implementation.

  7. Applying Model Analysis to a Resource-Based Analysis of the Force and Motion Conceptual Evaluation

    ERIC Educational Resources Information Center

    Smith, Trevor I.; Wittmann, Michael C.; Carter, Tom

    2014-01-01

    Previously, we analyzed the Force and Motion Conceptual Evaluation in terms of a resources-based model that allows for clustering of questions so as to provide useful information on how students correctly or incorrectly reason about physics. In this paper, we apply model analysis to show that the associated model plots provide more information…

  8. Statistical modeling of ground motion relations for seismic hazard analysis

    NASA Astrophysics Data System (ADS)

    Raschke, Mathias

    2013-10-01

    We introduce a new approach for ground motion relations (GMR) in the probabilistic seismic hazard analysis (PSHA), being influenced by the extreme value theory of mathematical statistics. Therein, we understand a GMR as a random function. We derive mathematically the principle of area equivalence, wherein two alternative GMRs have an equivalent influence on the hazard if these GMRs have equivalent area functions. This includes local biases. An interpretation of the difference between these GMRs (an actual and a modeled one) as a random component leads to a general overestimation of residual variance and hazard. Beside this, we discuss important aspects of classical approaches and discover discrepancies with the state of the art of stochastics and statistics (model selection and significance, test of distribution assumptions, extreme value statistics). We criticize especially the assumption of logarithmic normally distributed residuals of maxima like the peak ground acceleration (PGA). The natural distribution of its individual random component (equivalent to exp( ɛ 0) of Joyner and Boore, Bull Seism Soc Am 83(2):469-487, 1993) is the generalized extreme value. We show by numerical researches that the actual distribution can be hidden and a wrong distribution assumption can influence the PSHA negatively as the negligence of area equivalence does. Finally, we suggest an estimation concept for GMRs of PSHA with a regression-free variance estimation of the individual random component. We demonstrate the advantages of event-specific GMRs by analyzing data sets from the PEER strong motion database and estimate event-specific GMRs. Therein, the majority of the best models base on an anisotropic point source approach. The residual variance of logarithmized PGA is significantly smaller than in previous models. We validate the estimations for the event with the largest sample by empirical area functions, which indicate the appropriate modeling of the GMR by an anisotropic

  9. Motion/imagery secure cloud enterprise architecture analysis

    NASA Astrophysics Data System (ADS)

    DeLay, John L.

    2012-06-01

    Cloud computing with storage virtualization and new service-oriented architectures brings a new perspective to the aspect of a distributed motion imagery and persistent surveillance enterprise. Our existing research is focused mainly on content management, distributed analytics, WAN distributed cloud networking performance issues of cloud based technologies. The potential of leveraging cloud based technologies for hosting motion imagery, imagery and analytics workflows for DOD and security applications is relatively unexplored. This paper will examine technologies for managing, storing, processing and disseminating motion imagery and imagery within a distributed network environment. Finally, we propose areas for future research in the area of distributed cloud content management enterprises.

  10. Sensitivity analysis of the GNSS derived Victoria plate motion

    NASA Astrophysics Data System (ADS)

    Apolinário, João; Fernandes, Rui; Bos, Machiel

    2014-05-01

    estimated trend (Williams 2003, Langbein 2012). Finally, our preferable angular velocity estimation is used to evaluate the consequences on the kinematics of the Victoria block, namely the magnitude and azimuth of the relative motions with respect to the Nubia and Somalia plates and their tectonic implications. References Agnew, D. C. (2013). Realistic simulations of geodetic network data: The Fakenet package, Seismol. Res. Lett., 84 , 426-432, doi:10.1785/0220120185. Blewitt, G. & Lavallee, D., (2002). Effect of annual signals on geodetic velocity, J. geophys. Res., 107(B7), doi:10.1029/2001JB000570. Bos, M.S., R.M.S. Fernandes, S. Williams, L. Bastos (2012) Fast Error Analysis of Continuous GNSS Observations with Missing Data, Journal of Geodesy, doi: 10.1007/s00190-012-0605-0. Bos, M.S., L. Bastos, R.M.S. Fernandes, (2009). The influence of seasonal signals on the estimation of the tectonic motion in short continuous GPS time-series, J. of Geodynamics, j.jog.2009.10.005. Fernandes, R.M.S., J. M. Miranda, D. Delvaux, D. S. Stamps and E. Saria (2013). Re-evaluation of the kinematics of Victoria Block using continuous GNSS data, Geophysical Journal International, doi:10.1093/gji/ggs071. Langbein, J. (2012). Estimating rate uncertainty with maximum likelihood: differences between power-law and flicker-random-walk models, Journal of Geodesy, Volume 86, Issue 9, pp 775-783, Williams, S. D. P. (2003). Offsets in Global Positioning System time series, J. Geophys. Res., 108, 2310, doi:10.1029/2002JB002156, B6.

  11. Circular motion analysis of time-varying bioimpedance.

    PubMed

    Sanchez, B; Louarroudi, E; Rutkove, S B; Pintelon, R

    2015-11-01

    This paper presents a step forward towards the analysis of a linear periodically time-varying (PTV) bioimpedance ZPTV(jw, t), which is an important subclass of a linear time-varying (LTV) bioimpedance. Similarly to the Fourier coefficients of a periodic signal, a PTV impedance can be decomposed into frequency dependent impedance phasors, [Formula: see text], that are rotating with an angular speed of wr = 2πr/TZ. The vector length of these impedance phasors corresponds to the amplitude of the rth-order harmonic impedance |Zr( jw)| and the initial phase is given by Φr(w, t0) = [Symbol: see text]Zr( jw) + 2πrt0/TZ, with t0∈[0, T] being a time instant within the measurement time T. The impedance period TZ stands for the cycle length of the bio-system under investigation; for example, the elapsed time between two consecutive R-waves in the electrocardiogram or the breathing periodicity in case of the heart or lungs, respectively. First, it is demonstrated that the harmonic impedance phasor [Formula: see text], at a particular measured frequency k, can be represented by a rotating phasor, leading to the so-called circular motion analysis technique. Next, the two dimensional (2D) representation of the harmonic impedance phasors is then extended to a three-dimensional (3D) coordinate system by taking into account the frequency dependence. Finally, we introduce a new visualizing tool to summarize the frequency response behavior of ZPTV( jw, t) into a single 3D plot using the local Frenet-Serret frame. This novel 3D impedance representation is then compared with the 3D Nyquist representation of a PTV impedance. The concepts are illustrated through real measurements conducted on a PTV RC-circuit. PMID:26489699

  12. Compensation of intra-frame head motion in PET data with motion corrected independent component analysis (MCICA)

    NASA Astrophysics Data System (ADS)

    McKeown, Martin J.; Gadala, Marwa; Abu-Gharbieh, Rafeef

    2005-04-01

    Independent Component Analysis (ICA) has proved a powerful exploratory analysis method for fMRI. In the ICA model, the fMRI data at a given time point are modeled as the linear superposition of spatially independent (and spatially stationary) component maps. The ICA model has been recently applied to positron emission tomography (PET) data with some success (Human Brain Mapping 18:284-295(2003), IEEE Trans. BME, Naganawa et al, in press). However, in PET imaging each frame is, in fact, activity integrated over a relatively long period of time, making the assumption that the underlying component maps are spatially stationary (and hence no head movement has taken place during the frame collection) very tenuous. Here we extend the application of the ICA model to 11C-methylphenidate PET data by assuming that each frame is actually composed of the superposition of rigidly transformed underlying spatial components. We first determine the "noisy" initial spatially independent components of a data set under the erroneous assumption of no intra or inter-frame motion. Aspects of the initial components that reliably track spatial perturbations of the data are then determined to produce the motion-compensated components. Initial components included ring-like spatial distributions, indicating that movement corrupts the statistical properties of the data. The final intra-frame motion-compensated components included more plausible symmetric and robust activity in the striatum as would be expected compared to the raw data and the initial components. We conclude that 1) intra-frame motion is a serious confound in PET imaging which affects the statistical properties of the data and 2) our proposed procedure ameliorates such motion effects.

  13. Roll motion analysis of deepwater pipelay crane vessel

    NASA Astrophysics Data System (ADS)

    You, Dandan; Sun, Liping; Qu, Zhiguo; Wang, Tao

    2013-12-01

    For a large floating vessel in waves, radiation damping is not an accurate prediction of the degree of roll unlike other degrees of freedom motion. Therefore, to get the knowledge of roll motion performance of deepwater pipelay crane vessels and to keep the vessel working safety, the paper presents the relationship between a series of dimensionless roll damping coefficients and the roll response amplitude operator (RAO). By using two kinds of empirical data, the roll damping is estimated in the calculation flow. After getting the roll damping coefficient from the model test, a prediction of roll motion in regular waves is evaluated. According to the wave condition in the working region, short term statistics of roll motion are presented under different wave parameters. Moreover, the relationship between the maximal roll response level to peak spectral wave period and the roll damping coefficient is investigated. Results may provide some reference to design and improve this kind of vessel.

  14. Effect of Non-rigid Registration Algorithms on Deformation Based Morphometry: A Comparative Study with Control and Williams Syndrome Subjects

    PubMed Central

    Han, Zhaoying; Thornton-Wells, Tricia A.; Dykens, Elisabeth M.; Gore, John C.; Dawant, Benoit M.

    2014-01-01

    Deformation Based Morphometry (DBM) is a widely used method for characterizing anatomical differences across groups. DBM is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to a DBM atlas. Although several studies have compared non-rigid registration algorithms for segmentation tasks, few studies have compared the effect of the registration algorithms on group differences that may be uncovered through DBM. In this study, we compared group atlas creation and DBM results obtained with five well-established non-rigid registration algorithms using thirteen subjects with Williams Syndrome (WS) and thirteen Normal Control (NC) subjects. The five non-rigid registration algorithms include: (1) The Adaptive Bases Algorithm (ABA); (2) The Image Registration Toolkit (IRTK); (3) The FSL Nonlinear Image Registration Tool (FSL); (4) The Automatic Registration Tool (ART); and (5) the normalization algorithm available in SPM8. Results indicate that the choice of algorithm has little effect on the creation of group atlases. However, regions of differences between groups detected with DBM vary from algorithm to algorithm both qualitatively and quantitatively. The unique nature of the data set used in this study also permits comparison of visible anatomical differences between the groups and regions of difference detected by each algorithm. Results show that the interpretation of DBM results is difficult. Four out of the five algorithms we have evaluated detect bilateral differences between the two groups in the insular cortex, the basal ganglia, orbitofrontal cortex, as well as in the cerebellum. These correspond to differences that have been reported in the literature and that are visible in our samples. But our results also show that some algorithms detect regions that are not detected by the others and that the extent of the detected regions varies from algorithm to algorithm. These results suggest

  15. A Mobile Motion Analysis System Using Intertial Sensors for Analysis of Lower Limb Prosthetics

    SciTech Connect

    Mueller, John Kyle P; Ericson, Milton Nance; Farquhar, Ethan; Lind, Randall F; Evans III, Boyd Mccutchen

    2011-01-01

    Soldiers returning from the global war on terror requiring lower leg prosthetics generally have different concerns and requirements than the typical lower leg amputee. These subjects are usually young, wish to remain active and often desire to return to active military duty. As such, they demand higher performance from their prosthetics, but are at risk for chronic injury and joint conditions in their unaffected limb. Motion analysis is a valuable tool in assessing the performance of new and existing prosthetic technologies as well as the methods in fitting these devices to both maximize performance and minimize risk of injury for the individual soldier. We are developing a mobile, low-cost motion analysis system using inertial measurement units (IMUs) and two custom force sensors that detect ground reaction forces and moments on both the unaffected limb and prosthesis. IMUs were tested on a robot programmed to simulate human gait motion. An algorithm which uses a kinematic model of the robot and an extended Kalman filter (EKF) was used to convert the rates and accelerations from the gyro and accelerometer into joint angles. Compared to encoder data from the robot, which was considered the ground truth in this experiment, the inertial measurement system had a RMSE of <1.0 degree. Collecting kinematic and kinetic data without the restrictions and expense of a motion analysis lab could help researchers, designers and prosthetists advance prosthesis technology and customize devices for individuals. Ultimately, these improvements will result in better prosthetic performance for the military population.

  16. Recent researches in airship construction III : a new type of nonrigid airship

    NASA Technical Reports Server (NTRS)

    Naatz, H

    1924-01-01

    The author describes experiments in designing nonrigid airships. A nonrigid airship of 32,000 cubic meters, the PL 27 withstood all stresses with 20 kg/m(exp 2) hull pressure during its life of two years. The moment of resistance is known, as also the stresses in the envelope for the given hull pressure. The mean internal pressure necessary to give the airship the requisite rigidity and to prevent buckling was also investigated.

  17. Analysis of glacial and periglacial processes using structure from motion

    NASA Astrophysics Data System (ADS)

    Piermattei, L.; Carturan, L.; de Blasi, F.; Tarolli, P.; Dalla Fontana, G.; Vettore, A.; Pfeifer, N.

    2015-11-01

    Close-range photo-based surface reconstruction from the ground is rapidly emerging as an alternative to lidar (light detection and ranging), which today represents the main survey technique in many fields of geoscience. The recent evolution of photogrammetry, incorporating computer vision algorithms such as Structure from Motion (SfM) and dense image matching such as Multi-View Stereo (MVS), allows the reconstruction of dense 3-D point clouds for the photographed object from a sequence of overlapping images taken with a digital consumer camera. The objective of our work was to test the accuracy of the ground-based SfM-MVS approach in calculating the geodetic mass balance of a 2.1 km2 glacier in the Ortles-Cevedale Group, Eastern Italian Alps. In addition, we investigated the feasibility of using the image-based approach for the detection of the surface displacement rate of a neighbouring active rock glacier. Airborne laser scanning (ALS) data were used as benchmarks to estimate the accuracy of the photogrammetric DTMs and the reliability of the method in this specific application. The glacial and periglacial analyses were performed using both range and image-based surveying techniques, and the results were then compared. The results were encouraging because the SfM-MVS approach enables the reconstruction of high-quality DTMs which provided estimates of glacial and periglacial processes similar to those achievable by ALS. Different resolutions and accuracies were obtained for the glacier and the rock glacier, given the different survey geometries, surface characteristics and areal extents. The analysis of the SfM-MVS DTM quality allowed us to highlight the limitations of the adopted expeditious method in the studied alpine terrain and the potential of this method in the multitemporal study of glacial and periglacial areas.

  18. Tectonic Motion of Malaysia: Analysis from Years 2001 TO 2013

    NASA Astrophysics Data System (ADS)

    Gill, J.; Shariff, N. S.; Omar, K.; Amin, Z. M.

    2015-10-01

    This paper seeks to investigate the tectonic motion of Malaysia using the Malaysian Active GPS Station (MASS) and Malaysia Realtime Kinematic GNSS Network (MyRTKnet) data from years 2001 to 2013. GNSS data were processed using Bernese 5.0, and plotted as a time series; whereby the period before and after the 2004 Sumatra-Andaman mega earthquake are plotted separately. From the time series, episodic events and stable inter-seismic deformation period are analysed. The results indicate that the 2001- 2004 and 2008-2011 periods were free from episodic events; hence, chosen to depict the tectonic motion of Malaysia before and after 2004 Sumatra-Andaman earthquake, respectively. The motion had a major change in direction and rate, especially for East Malaysia and South Peninsular Malaysia. This indicates there exist a long-term post-seismic deformation due to the 2004 mega earthquake. Nonetheless, the 2008-2011 inter-seismic period is stable, and suitable to represent the current long-term tectonic motion of Malaysia: Peninsular and East Malaysia moves south-east, at an average velocity of 0.89 ±0.01 cm/yr south and 1.70 ±0.02 cm/yr east, and 1.06 ±0.01 cm/yr south and 2.50 ±0.02 cm/yr east, respectively. In addition, the co-seismic motion for the 2005 Nias, 2007 Bengkulu and 2012 Northern Sumatra earthquakes after the 2004 Sumatra-Andaman earthquake are relatively small, indicating these three earthquakes have no significant contribution to the long-term tectonic motion of Malaysia. Overall, this paper aims to provide a general insight into the tectonic motion of Malaysia which, expectedly, may benefit other scientific fields.

  19. Inertial motion capture system for biomechanical analysis in pressure suits

    NASA Astrophysics Data System (ADS)

    Di Capua, Massimiliano

    A non-invasive system has been developed at the University of Maryland Space System Laboratory with the goal of providing a new capability for quantifying the motion of the human inside a space suit. Based on an array of six microprocessors and eighteen microelectromechanical (MEMS) inertial measurement units (IMUs), the Body Pose Measurement System (BPMS) allows the monitoring of the kinematics of the suit occupant in an unobtrusive, self-contained, lightweight and compact fashion, without requiring any external equipment such as those necessary with modern optical motion capture systems. BPMS measures and stores the accelerations, angular rates and magnetic fields acting upon each IMU, which are mounted on the head, torso, and each segment of each limb. In order to convert the raw data into a more useful form, such as a set of body segment angles quantifying pose and motion, a series of geometrical models and a non-linear complimentary filter were implemented. The first portion of this works focuses on assessing system performance, which was measured by comparing the BPMS filtered data against rigid body angles measured through an external VICON optical motion capture system. This type of system is the industry standard, and is used here for independent measurement of body pose angles. By comparing the two sets of data, performance metrics such as BPMS system operational conditions, accuracy, and drift were evaluated and correlated against VICON data. After the system and models were verified and their capabilities and limitations assessed, a series of pressure suit evaluations were conducted. Three different pressure suits were used to identify the relationship between usable range of motion and internal suit pressure. In addition to addressing range of motion, a series of exploration tasks were also performed, recorded, and analysed in order to identify different motion patterns and trajectories as suit pressure is increased and overall suit mobility is reduced

  20. Fusion of optical flow based motion pattern analysis and silhouette classification for person tracking and detection

    NASA Astrophysics Data System (ADS)

    Tangelder, Johan W. H.; Lebert, Ed; Burghouts, Gertjan J.; van Zon, Kasper; den Uyl, Marten J.

    2014-10-01

    This paper presents a novel approach to detect persons in video by combining optical flow based motion analysis and silhouette based recognition. A new fast optical flow computation method is described, and its application in a motion based analysis framework unifying human tracking and detection is outlined. Our optical flow algorithm represents optical flow by grid based motion vectors, which are computed very efficiently and robustly applying template matching. We model the motion patterns of the tracked human and non-human objects by the positions, velocities, motion magnitudes, and motion directions of their optical flow vectors, and build a random forest on these features. For recognition, the random forest computes a normalized score measuring the similarity of a track to a human track. Using edge detection on a motion image for each motion blob its silhouette is computed. Recognition scores are computed, which measure the similarity of the silhouettes with human silhouettes. The optical flow classifier and the silhouette classifier are used as a combined classifier. We analyze the ROC curve to set different decision thresholds on the recognition score for different scenarios. The experiments on the VIRAT test set demonstrate that for human detection the combination of the optical flow based motion method with one based on human silhouette analysis, obtains superior results, compared to the constituent methods.

  1. Learning intervention-induced deformations for non-rigid MR-CT registration and electrode localization in epilepsy patients

    PubMed Central

    Onofrey, John A.; Staib, Lawrence H.; Papademetris, Xenophon

    2015-01-01

    This paper describes a framework for learning a statistical model of non-rigid deformations induced by interventional procedures. We make use of this learned model to perform constrained non-rigid registration of pre-procedural and post-procedural imaging. We demonstrate results applying this framework to non-rigidly register post-surgical computed tomography (CT) brain images to pre-surgical magnetic resonance images (MRIs) of epilepsy patients who had intra-cranial electroencephalography electrodes surgically implanted. Deformations caused by this surgical procedure, imaging artifacts caused by the electrodes, and the use of multi-modal imaging data make non-rigid registration challenging. Our results show that the use of our proposed framework to constrain the non-rigid registration process results in significantly improved and more robust registration performance compared to using standard rigid and non-rigid registration methods. PMID:26900569

  2. A Motion Correction Framework for Time Series Sequences in Microscopy Images

    PubMed Central

    Kumar, Ankur N.; Short, Kurt W.; Piston, David W.

    2014-01-01

    With the advent of in vivo laser scanning fluorescence microscopy techniques, time-series and three-dimensional volumes of living tissue and vessels at micron scales can be acquired to firmly analyze vessel architecture and blood flow. Analysis of a large number of image stacks to extract architecture and track blood flow manually is cumbersome and prone to observer bias. Thus, an automated framework to accomplish these analytical tasks is imperative. The first initiative toward such a framework is to compensate for motion artifacts manifest in these microscopy images. Motion artifacts in in vivo microscopy images are caused by respiratory motion, heart beats, and other motions from the specimen. Consequently, the amount of motion present in these images can be large and hinders further analysis of these images. In this article, an algorithmic framework for the correction of time-series images is presented. The automated algorithm is comprised of a rigid and a nonrigid registration step based on shape contexts. The framework performs considerably well on time-series image sequences of the islets of Langerhans and provides for the pivotal step of motion correction in the further automatic analysis of microscopy images. PMID:23410911

  3. Analysis of achievable disturbance attenuation in a precision magnetically-suspended motion control system

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander V.; Holmes, Michael L.; Behrouzjou, Roxana; Trumper, David L.

    1994-01-01

    The results of the analysis of the achievable disturbance attenuation to get an Angstrom motion control resolution and macroscopic travel in a precision magnetically-suspended motion control system are presented in this paper. Noise sources in the transducers, electronics, and mechanical vibrations are used to develop the control design.

  4. Clinical applications of a quantitative analysis of regional lift ventricular wall motion

    NASA Technical Reports Server (NTRS)

    Leighton, R. F.; Rich, J. M.; Pollack, M. E.; Altieri, P. I.

    1975-01-01

    Observations were summarized which may have clinical application. These were obtained from a quantitative analysis of wall motion that was used to detect both hypokinesis and tardokinesis in left ventricular cineangiograms. The method was based on statistical comparisons with normal values for regional wall motion derived from the cineangiograms of patients who were found not to have heart disease.

  5. An accurate 3D shape context based non-rigid registration method for mouse whole-body skeleton registration

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Zahra, David; Bourgeat, Pierrick; Berghofer, Paula; Acosta Tamayo, Oscar; Wimberley, Catriona; Gregoire, Marie C.; Salvado, Olivier

    2011-03-01

    Small animal image registration is challenging because of its joint structure, and posture and position difference in each acquisition without a standard scan protocol. In this paper, we face the issue of mouse whole-body skeleton registration from CT images. A novel method is developed for analyzing mouse hind-limb and fore-limb postures based on geodesic path descriptor and then registering the major skeletons and fore limb skeletons initially by thin-plate spline (TPS) transform based on the obtained geodesic paths and their enhanced correspondence fields. A target landmark correction method is proposed for improving the registration accuracy of the improved 3D shape context non-rigid registration method we previously proposed. A novel non-rigid registration framework, combining the skeleton posture analysis, geodesic path based initial alignment and 3D shape context model, is proposed for mouse whole-body skeleton registration. The performance of the proposed methods and framework was tested on 12 pairs of mouse whole-body skeletons. The experimental results demonstrated the flexibility, stability and accuracy of the proposed framework for automatic mouse whole body skeleton registration.

  6. Low-cost human motion capture system for postural analysis onboard ships

    NASA Astrophysics Data System (ADS)

    Nocerino, Erica; Ackermann, Sebastiano; Del Pizzo, Silvio; Menna, Fabio; Troisi, Salvatore

    2011-07-01

    The study of human equilibrium, also known as postural stability, concerns different research sectors (medicine, kinesiology, biomechanics, robotics, sport) and is usually performed employing motion analysis techniques for recording human movements and posture. A wide range of techniques and methodologies has been developed, but the choice of instrumentations and sensors depends on the requirement of the specific application. Postural stability is a topic of great interest for the maritime community, since ship motions can make demanding and difficult the maintenance of the upright stance with hazardous consequences for the safety of people onboard. The need of capturing the motion of an individual standing on a ship during its daily service does not permit to employ optical systems commonly used for human motion analysis. These sensors are not designed for operating in disadvantageous environmental conditions (water, wetness, saltiness) and with not optimal lighting. The solution proposed in this study consists in a motion acquisition system that could be easily usable onboard ships. It makes use of two different methodologies: (I) motion capture with videogrammetry and (II) motion measurement with Inertial Measurement Unit (IMU). The developed image-based motion capture system, made up of three low-cost, light and compact video cameras, was validated against a commercial optical system and then used for testing the reliability of the inertial sensors. In this paper, the whole process of planning, designing, calibrating, and assessing the accuracy of the motion capture system is reported and discussed. Results from the laboratory tests and preliminary campaigns in the field are presented.

  7. Motion Analysis of a Rocket-Propelled Truck.

    ERIC Educational Resources Information Center

    Hitt, Darren L.; Lowe, Mary L.

    1996-01-01

    Describes an experiment to study the motion of a rocket-propelled vehicle over the entire duration of the engine burn using a video system with a frame-by-frame playback and a Sonic Ranger for ultrasonic position movements. Enables students to study the impulse-momentum principle and the effects of a time-varying force. (JRH)

  8. Local collective motion analysis for multi-probe dynamic imaging and microrheology.

    PubMed

    Khan, Manas; Mason, Thomas G

    2016-08-01

    Dynamical artifacts, such as mechanical drift, advection, and hydrodynamic flow, can adversely affect multi-probe dynamic imaging and passive particle-tracking microrheology experiments. Alternatively, active driving by molecular motors can cause interesting non-Brownian motion of probes in local regions. Existing drift-correction techniques, which require large ensembles of probes or fast temporal sampling, are inadequate for handling complex spatio-temporal drifts and non-Brownian motion of localized domains containing relatively few probes. Here, we report an analytical method based on local collective motion (LCM) analysis of as few as two probes for detecting the presence of non-Brownian motion and for accurately eliminating it to reveal the underlying Brownian motion. By calculating an ensemble-average, time-dependent, LCM mean square displacement (MSD) of two or more localized probes and comparing this MSD to constituent single-probe MSDs, we can identify temporal regimes during which either thermal or athermal motion dominates. Single-probe motion, when referenced relative to the moving frame attached to the multi-probe LCM trajectory, provides a true Brownian MSD after scaling by an appropriate correction factor that depends on the number of probes used in LCM analysis. We show that LCM analysis can be used to correct many different dynamical artifacts, including spatially varying drifts, gradient flows, cell motion, time-dependent drift, and temporally varying oscillatory advection, thereby offering a significant improvement over existing approaches. PMID:27269299

  9. Local collective motion analysis for multi-probe dynamic imaging and microrheology

    NASA Astrophysics Data System (ADS)

    Khan, Manas; Mason, Thomas G.

    2016-08-01

    Dynamical artifacts, such as mechanical drift, advection, and hydrodynamic flow, can adversely affect multi-probe dynamic imaging and passive particle-tracking microrheology experiments. Alternatively, active driving by molecular motors can cause interesting non-Brownian motion of probes in local regions. Existing drift-correction techniques, which require large ensembles of probes or fast temporal sampling, are inadequate for handling complex spatio-temporal drifts and non-Brownian motion of localized domains containing relatively few probes. Here, we report an analytical method based on local collective motion (LCM) analysis of as few as two probes for detecting the presence of non-Brownian motion and for accurately eliminating it to reveal the underlying Brownian motion. By calculating an ensemble-average, time-dependent, LCM mean square displacement (MSD) of two or more localized probes and comparing this MSD to constituent single-probe MSDs, we can identify temporal regimes during which either thermal or athermal motion dominates. Single-probe motion, when referenced relative to the moving frame attached to the multi-probe LCM trajectory, provides a true Brownian MSD after scaling by an appropriate correction factor that depends on the number of probes used in LCM analysis. We show that LCM analysis can be used to correct many different dynamical artifacts, including spatially varying drifts, gradient flows, cell motion, time-dependent drift, and temporally varying oscillatory advection, thereby offering a significant improvement over existing approaches.

  10. Cardiac Motion Analysis Using High-Speed Video Images in a Rat Model for Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Ishii, Idaku; Okuda, Toshikazu; Nie, Yuman; Takaki, Takeshi; Orito, Kensuke; Tanaka, Akane; Matsuda, Hiroshi

    In this study, we performed a cardiac motion analysis by using 1000-frames per second (fps) stereo images to capture the three-dimensional motion of small color markers in a rat heart. This method of recording cardiac motion could quantify the rate of change in the myocardial area, which indicated localized myocardial activity of rhythmic expansion and contraction. We analyzed the three-dimensional motion distributions in a rat model for myocardial infarction, in which the heart rate was 4 times/s or more. In the analysis, we spatiotemporally quantified the characteristic cardiac motion in ischemic heart diseases and found that infarction due to ischemia in the rat heart was spread around the left ventricle.

  11. Rotation-invariant nonrigid point set matching in cluttered scenes.

    PubMed

    Lian, Wei; Zhang, Lei; Zhang, David

    2012-05-01

    This paper addresses the problem of rotation-invariant nonrigid point set matching. The shape context (SC) feature descriptor is used because of its strong discriminative nature, whereas edges in the graphs constructed by point sets are used to determine the orientations of SCs. Similar to lengths or directions, oriented SCs constructed this way can be regarded as attributes of edges. By matching edges between two point sets, rotation invariance is achieved. Two novel ways of constructing graphs on a model point set are proposed, aiming at making the orientations of SCs as robust to disturbances as possible. The structures of these graphs facilitate the use of dynamic programming (DP) for optimization. The strong discriminative nature of SC, the special structure of the model graphs, and the global optimality of DP make our methods robust to various types of disturbances, particularly clutters. The extensive experiments on both synthetic and real data validated the robustness of the proposed methods to various types of disturbances. They can robustly detect the desired shapes in complex and highly cluttered scenes. PMID:22514129

  12. Considerations concerning the non-rigid Earth nutation theory

    NASA Astrophysics Data System (ADS)

    Dehant, V.; Arias, F.; Bizouard, Ch.; Bretagnon, P.; Brzezinski, A.; Buffett, B.; Capitaine, N.; Defraigne, P.; de Viron, O.; Feissel, M.; Fliegel, H.; Forte, A.; Gambis, D.; Getino, J.; Gross, R.; Herring, T.; Kinoshita, H.; Klioner, S.; Mathews, P. M.; McCarthy, D.; Moisson, X.; Petrov, S.; Ponte, R. M.; Roosbeek, F.; Salstein, D.; Schuh, H.; Seidelmann, K.; Soffel, M.; Souchay, J.; Vondrak, J.; Wahr, J. M.; Wallace, P.; Weber, R.; Williams, J.; Yatskiv, Y.; Zharov, V.; Zhu, S. Y.

    This paper presents the reflections of the Working Group of which the tasks were to examine the non-rigid Earth nutation theory. To this aim, six different levels have been identified: Level 1 concerns the input model (giving profiles of the Earth's density and theological properties) for the calculation of the Earth's transfer function of Level 2; Level 2 concerns the integration inside the Earth in order to obtain the Earth's transfer function for the nutations at different frequencies; Level 3 concerns the rigid Earth nutations; Level 4 examines the convolution (products in the frequency domain) between the Earth's nutation transfer function obtained in Level 2, and the rigid Earth nutation (obtained in Level 3). This is for an Earth without ocean and atmosphere; Level 5 concerns the effects of the atmosphere and the oceans on the precession, obliquity rate, and nutations; Level 6 concerns the comparison with the VLBI observations, of the theoretical results obtained in Level 4, corrected for the effects obtained in Level 5. Each level is discussed at the state of the art of the developments.

  13. Non-rigid registration of cervical spine MRI volumes.

    PubMed

    Aktar, Mst Nargis; Alam, Md Jahangir; Pickering, Mark; Webb, Alexandra; Perriman, Diana

    2015-08-01

    Whiplash is the colloquial term for neck injuries caused by sudden extension of the cervical spine. Patients with chronic whiplash associated disorder (WAD) can experience neck pain for many years after the original injury. Researchers have found some evidence to suggest that chronic whiplash is related to the amount of intra-muscular fat in the cervical spine muscles. Hence, an important step towards developing a treatment for chronic WAD is a technique to accurately and efficiently measure the amount of intra-muscular fat in the muscles of the cervical spine. Our proposed technique for making this measurement is to automatically segment the cervical spine muscles using a fused volume created from multi-modal MRI volumes of the cervical spine. Multiple modes are required to enhance the boundaries between the different muscles to assist the following automatic segmentation process. However, before these multiple modes can be fused it is first necessary to accurately register these volumes. Hence, in this paper, we have proposed a new non-rigid multi-modal registration algorithm using the sum of conditional variance (SCV) with partial volume interpolation (PVI) similarity measure and Gauss-Newton (GN) optimization for the accurate registration of multi-modal cervical spine MRI volumes. The performance of the proposed approach is compared with the existing SCV based registration algorithm and the sum of the conditional squared deviation from the mode (SCSDM) method. The experimental results demonstrate that the proposed approach provides superior performance than the best existing approaches. PMID:26736677

  14. Non-rigid alignment in electron tomography in materials science.

    PubMed

    Printemps, Tony; Bernier, Nicolas; Bleuet, Pierre; Mula, Guido; Hervé, Lionel

    2016-09-01

    Electron tomography is a key technique that enables the visualization of an object in three dimensions with a resolution of about a nanometre. High-quality 3D reconstruction is possible thanks to the latest compressed sensing algorithms and/or better alignment and preprocessing of the 2D projections. Rigid alignment of 2D projections is routine in electron tomography. However, it cannot correct misalignments induced by (i) deformations of the sample due to radiation damage or (ii) drifting of the sample during the acquisition of an image in scanning transmission electron microscope mode. In both cases, those misalignments can give rise to artefacts in the reconstruction. We propose a simple-to-implement non-rigid alignment technique to correct those artefacts. This technique is particularly suited for needle-shaped samples in materials science. It is initiated by a rigid alignment of the projections and it is then followed by several rigid alignments of different parts of the projections. Piecewise linear deformations are applied to each projection to force them to simultaneously satisfy the rigid alignments of the different parts. The efficiency of this technique is demonstrated on three samples, an intermetallic sample with deformation misalignments due to a high electron dose typical to spectroscopic electron tomography, a porous silicon sample with an extremely thin end particularly sensitive to electron beam and another porous silicon sample that was drifting during image acquisitions. PMID:27018779

  15. Statistical analysis of motion contrast in optical coherence tomography angiography

    NASA Astrophysics Data System (ADS)

    Cheng, Yuxuan; Guo, Li; Pan, Cong; Lu, Tongtong; Hong, Tianyu; Ding, Zhihua; Li, Peng

    2015-11-01

    Optical coherence tomography angiography (Angio-OCT), mainly based on the temporal dynamics of OCT scattering signals, has found a range of potential applications in clinical and scientific research. Based on the model of random phasor sums, temporal statistics of the complex-valued OCT signals are mathematically described. Statistical distributions of the amplitude differential and complex differential Angio-OCT signals are derived. The theories are validated through the flow phantom and live animal experiments. Using the model developed, the origin of the motion contrast in Angio-OCT is mathematically explained, and the implications in the improvement of motion contrast are further discussed, including threshold determination and its residual classification error, averaging method, and scanning protocol. The proposed mathematical model of Angio-OCT signals can aid in the optimal design of the system and associated algorithms.

  16. Directivity in NGA earthquake ground motions: Analysis using isochrone theory

    USGS Publications Warehouse

    Spudich, P.; Chiou, B.S.J.

    2008-01-01

    We present correction factors that may be applied to the ground motion prediction relations of Abrahamson and Silva, Boore and Atkinson, Campbell and Bozorgnia, and Chiou and Youngs (all in this volume) to model the azimuthally varying distribution of the GMRotI50 component of ground motion (commonly called 'directivity') around earthquakes. Our correction factors may be used for planar or nonplanar faults having any dip or slip rake (faulting mechanism). Our correction factors predict directivity-induced variations of spectral acceleration that are roughly half of the strike-slip variations predicted by Somerville et al. (1997), and use of our factors reduces record-to-record sigma by about 2-20% at 5 sec or greater period. ?? 2008, Earthquake Engineering Research Institute.

  17. GOCI Level-2 Processing Improvements and Cloud Motion Analysis

    NASA Technical Reports Server (NTRS)

    Robinson, Wayne

    2015-01-01

    The Ocean Biology Processing Group has been working with the Korean Institute of Ocean Science and Technology (KIOST) to process geosynchronous ocean color data from the GOCI (Geostationary Ocean Color Instrument) aboard the COMS (Communications, Ocean and Meteorological Satellite). The level-2 processing program, l2gen has GOCI processing as an option. Improvements made to that processing are discussed here as well as a discussion about cloud motion effects.

  18. An analysis of the motion of pigs through gas pipelines

    SciTech Connect

    Weingarten, J.S.; Chapman, A.J.; Walker, W.F.

    1984-12-01

    A one-dimensional, quasi-steady, model describing the motion of a pig moving in a gas pipeline is developed for the cases of a solid pig, which obstructs the cross section of the pipe, and one with a concentric hole through it. The resultant governing equations constitute a set of seven nonlinear differential equations. A numerical solution scheme, implemented by a computer program, is described. Results and discussion are presented for a set of typical cases.

  19. Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow

    PubMed Central

    Richards, Lisa M.; Towle, Erica L.; Fox, Douglas J.; Dunn, Andrew K.

    2014-01-01

    Abstract. Although multiple intraoperative cerebral blood flow (CBF) monitoring techniques are currently available, a quantitative method that allows for continuous monitoring and that can be easily integrated into the surgical workflow is still needed. Laser speckle contrast imaging (LSCI) is an optical imaging technique with a high spatiotemporal resolution that has been recently demonstrated as feasible and effective for intraoperative monitoring of CBF during neurosurgical procedures. This study demonstrates the impact of retrospective motion correction on the quantitative analysis of intraoperatively acquired LSCI images. LSCI images were acquired through a surgical microscope during brain tumor resection procedures from 10 patients under baseline conditions and after a cortical stimulation in three of those patients. The patient’s electrocardiogram (ECG) was recorded during acquisition for postprocess correction of pulsatile artifacts. Automatic image registration was retrospectively performed to correct for tissue motion artifacts, and the performance of rigid and nonrigid transformations was compared. In baseline cases, the original images had 25%±27% noise across 16 regions of interest (ROIs). ECG filtering moderately reduced the noise to 20%±21%, while image registration resulted in a further noise reduction of 15%±4%. Combined ECG filtering and image registration significantly reduced the noise to 6.2%±2.6% (p<0.05). Using the combined motion correction, accuracy and sensitivity to small changes in CBF were improved in cortical stimulation cases. There was also excellent agreement between rigid and nonrigid registration methods (15/16 ROIs with <3% difference). Results from this study demonstrate the importance of motion correction for improved visualization of CBF changes in clinical LSCI images. PMID:26157974

  20. Tendon strain imaging using non-rigid image registration: a validation study

    NASA Astrophysics Data System (ADS)

    Almeida, Nuno M.; Slagmolen, Pieter; Barbosa, Daniel; Scheys, Lennart; Geukens, Leonie; Fukagawa, Shingo; Peers, Koen; Bellemans, Johan; Suetens, Paul; D'Hooge, Jan

    2012-03-01

    Ultrasound image has already been proved to be a useful tool for non-invasive strain quantifications in soft tissue. While clinical applications only include cardiac imaging, the development of techniques suitable for musculoskeletal system is an active area of research. On this study, a technique for speckle tracking on ultrasound images using non-rigid image registration is presented. This approach is based on a single 2D+t registration procedure, in which the temporal changes on the B-mode speckle patterns are locally assessed. This allows estimating strain from ultrasound image sequences of tissues under deformation while imposing temporal smoothness in the deformation field, originating smooth strain curves. METHODS: The tracking algorithm was systematically tested on synthetic images and gelatin phantoms, under sinusoidal deformations with amplitudes between 0.5% and 4.0%, at frequencies between 0.25Hz and 2.0Hz. Preliminary tests were also performed on Achilles tendons isolated from human cadavers. RESULTS: The strain was estimated with deviations of -0.011%+/-0.053% on the synthetic images and agreements of +/-0.28% on the phantoms. Some tests with real tendons show good tracking results. However, significant variability between the trials still exists. CONCLUSIONS: The proposed image registration methodology constitutes a robust tool for motion and deformation tracking in both simulated and real phantom data. Strain estimation in both cases reveals that the proposed method is accurate and provides good precision. Although the ex-vivo results are still preliminary, the potential of the proposed algorithm is promising. This suggests that further improvements, together with systematic testing, can lead to in-vivo and clinical applications.

  1. Virtual Robot Teaching Based on Motion Analysis and Hand Manipulability for Multi-Fingered Robot

    NASA Astrophysics Data System (ADS)

    Kawasaki, Haruhisa; Furukawa, Tomohir; Ueki, Satoshi; Mouri, Tetsuya

    A virtual robot teaching system, consisting of human demonstration and motion-intention analysis in a virtual reality environment, is an advanced form of automatic programming for multi-fingered robots. We propose a new segmentation method to analyze human motion data and a virtual teaching system based on hand manipulability, in which the position and orientation of the robot hand are determined so as to maximize the robot hand's manipulability. In the segmentation method, human motion data consisting of contact points, grasp force, hand and object position, and the like are segmented into plural primitive motions and the type of task is analyzed based on the sequence of the primitive motions. A trial assembly task using a humanoid robot hand named Gifu Hand III is shown to demonstrate the effectiveness of the proposed method.

  2. Implementation of a markerless motion analysis method to quantify hyperkinesis in males with fragile X syndrome.

    PubMed

    O'Keefe, Joan A; Espinoza Orías, Alejandro A; Khan, Hassan; Hall, Deborah A; Berry-Kravis, Elizabeth; Wimmer, Markus A

    2014-02-01

    Hyperactive behavior - and implicitly, motion - in Fragile X syndrome (FXS) has been historically described using behavioral rating scales. While rating scales are the current standard outcome measures used in clinical research, they have limitations including their qualitative nature and subjectivity. The advent of new motion capture technologies has provided the opportunity to develop quantitative methods for measuring hyperactive motion. The hypotheses for this study were that a novel markerless motion analysis method (1) can quantitatively measure kinematic parameters, (2) can differentiate the level of hyperkinesis between control and FXS populations, and (3) will correlate with blind-reviewer synchronous video-capture methods and behavioral rating scale scores. Twenty young males (7-control, 13-FXS; ages 9-32) were studied using a standardized protocol in a markerless motion analysis suite. Behavioral scale questionnaires were filled out by parents and those scores were correlated with motion parameters (frequency and total traveled distance) of body segments during 30s of story listening while standing in the observation space. The markerless system was able to track subjects and the two populations displayed significantly different quantities of motion, with larger amounts of motion in the FXS group (p < 0.05). Pearson's correlation coefficients between frequency counts obtained from the markerless system and rater-based video capture were between 0.969 and 0.996 (p < 0.001). Significant correlations between rating scale scores and motion parameters ranged from 0.462 ≤ r ≤ 0.568 (p ≤ 0.040). These results suggest feasibility and validity of a markerless system as a non-invasive method able to quantify motion in individuals with hyperkinesis. PMID:24252602

  3. Strong Ground-Motion Prediction in Seismic Hazard Analysis: PEGASOS and Beyond

    NASA Astrophysics Data System (ADS)

    Scherbaum, F.; Bommer, J. J.; Cotton, F.; Bungum, H.; Sabetta, F.

    2005-12-01

    The SSHAC Level 4 approach to probabilistic seismic hazard analysis (PSHA), which could be considered to define the state-of-the-art in PSHA using multiple expert opinions, has been fully applied only twice, firstly in the multi-year Yucca Mountain study and subsequently (2002-2004) in the PEGASOS project. The authors of this paper participated as ground-motion experts in this latter project, the objective of which was comprehensive seismic hazard analysis for four nuclear power plant sites in Switzerland, considering annual exceedance frequencies down to 1/10000000. Following SSHAC procedure, particular emphasis was put on capturing both the aleatory and epistemic uncertainties. As a consequence, ground motion prediction was performed by combining several empirical ground motion models within a logic tree framework with the weights on each logic tree branch expressing the personal degree-of-belief of each ground-motion expert. In the present paper, we critically review the current state of ground motion prediction methodology in PSHA in particular for regions of low seismicity. One of the toughest lessons from PEGASOS was that in systematically and rigorously applying the laws of uncertainty propagation to all of the required conversions and adjustments of ground motion models, a huge price has to be paid in an ever-growing aleatory variability. Once this path has been followed, these large sigma values will drive the hazard, particularly for low annual frequencies of exceedance. Therefore, from a post-PEGASOS perspective, the key issues in the context of ground-motion prediction for PSHA for the near future are to better understand the aleatory variability of ground motion and to develop suites of ground-motion prediction equations that employ the same parameter definitions. The latter is a global rather than a regional challenge which might be a desirable long-term goal for projects similar to the PEER NGA (Pacific Earthquake Engineering Research Center, Next

  4. Independent motion detection with a rival penalized adaptive particle filter

    NASA Astrophysics Data System (ADS)

    Becker, Stefan; Hübner, Wolfgang; Arens, Michael

    2014-10-01

    Aggregation of pixel based motion detection into regions of interest, which include views of single moving objects in a scene is an essential pre-processing step in many vision systems. Motion events of this type provide significant information about the object type or build the basis for action recognition. Further, motion is an essential saliency measure, which is able to effectively support high level image analysis. When applied to static cameras, background subtraction methods achieve good results. On the other hand, motion aggregation on freely moving cameras is still a widely unsolved problem. The image flow, measured on a freely moving camera is the result from two major motion types. First the ego-motion of the camera and second object motion, that is independent from the camera motion. When capturing a scene with a camera these two motion types are adverse blended together. In this paper, we propose an approach to detect multiple moving objects from a mobile monocular camera system in an outdoor environment. The overall processing pipeline consists of a fast ego-motion compensation algorithm in the preprocessing stage. Real-time performance is achieved by using a sparse optical flow algorithm as an initial processing stage and a densely applied probabilistic filter in the post-processing stage. Thereby, we follow the idea proposed by Jung and Sukhatme. Normalized intensity differences originating from a sequence of ego-motion compensated difference images represent the probability of moving objects. Noise and registration artefacts are filtered out, using a Bayesian formulation. The resulting a posteriori distribution is located on image regions, showing strong amplitudes in the difference image which are in accordance with the motion prediction. In order to effectively estimate the a posteriori distribution, a particle filter is used. In addition to the fast ego-motion compensation, the main contribution of this paper is the design of the probabilistic

  5. Tongue Motion Patterns in Post-Glossectomy and Typical Speakers: A Principal Components Analysis

    PubMed Central

    Stone, Maureen; Langguth, Julie M.; Woo, Jonghye; Chen, Hegang; Prince, Jerry L.

    2015-01-01

    Purpose In this study, the authors examined changes in tongue motion caused by glossectomy surgery. A speech task that involved subtle changes in tongue-tip positioning (the motion from /i/ to /s/) was measured. The hypothesis was that patients would have limited motion on the tumor (resected) side and would compensate with greater motion on the nontumor side in order to elevate the tongue tip and blade for /s/. Method Velocity fields were extracted from tagged magnetic resonance images in the left, middle, and right tongue of 3 patients and 10 controls. Principal components (PCs) analysis quantified motion differences and distinguished between the subject groups. Results PCs 1 and 2 represented variance in (a) size and independence of the tongue tip, and (b) direction of motion of the tip, body, or both. Patients and controls were correctly separated by a small number of PCs. Conclusions Motion of the tumor slice was different between patients and controls, but the nontumor side of the patients’ tongues did not show excessive or adaptive motion. Both groups contained apical and laminal /s/ users, and 1 patient created apical /s/ in a highly unusual manner. PMID:24023377

  6. Facial motion parameter estimation and error criteria in model-based image coding

    NASA Astrophysics Data System (ADS)

    Liu, Yunhai; Yu, Lu; Yao, Qingdong

    2000-04-01

    Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.

  7. GENERAL THEORY OF THE ROTATION OF THE NON-RIGID EARTH AT THE SECOND ORDER. I. THE RIGID MODEL IN ANDOYER VARIABLES

    SciTech Connect

    Getino, J.; Miguel, D.; Escapa, A.

    2010-05-15

    This paper is the first part of an investigation where we will present an analytical general theory of the rotation of the non-rigid Earth at the second order, which considers the effects of the interaction of the rotation of the Earth with itself, also named as the spin-spin coupling. Here, and as a necessary step in the development of that theory, we derive complete, explicit, analytical formulae of the rigid Earth rotation that account for the second-order rotation-rotation interaction. These expressions are not provided in this form by any current rigid Earth model. Working within the Hamiltonian framework established by Kinoshita, we study the second-order effects arising from the interaction of the main term in the Earth geopotential expansion with itself, and with the complementary term arising when referring the rotational motion to the moving ecliptic. To this aim, we apply a canonical perturbation method to solve analytically the canonical equations at the second order, determining the expressions that provide the nutation-precession, the polar motion, and the length of day. In the case of the motion of the equatorial plane, nutation-precession, we compare our general approach with the particular study for this motion developed by Souchay et al., showing the existence of new terms whose numerical values are within the truncation level of 0.1 {mu}as adopted by those authors. These terms emerge as a consequence of not assuming in this work the same restrictive simplifications taken by Souchay et al. The importance of these additional contributions is that, as the analytical formulae show, they depend on the Earth model considered, in such a way that the fluid core resonance could amplify them significatively when extending this theory to the non-rigid Earth models.

  8. Analysis of wrist bone motion before and after SL-ligament resection.

    PubMed

    Eschweiler, Jörg; Stromps, Jan Philipp; Rath, Björn; Pallua, Norbert; Radermacher, Klaus

    2016-06-01

    The analysis of the three-dimensional motion of wrist joint components in the physiological and injured wrist is of high clinical interest. Therefore, the purpose of this in vitro study was to compare the motion of scaphoid, lunate and triquetrum during physiological wrist motion in flexion and extension, and in radial- and ulnar-deviation, with those motion patterns after complete resection of the scapho-lunate-ligament. Eight fresh frozen cadaver wrists were carefully thawed and prepared for the investigation with an electromagnetic tracking system by implantation of measurement coils with 6 degrees of freedom. Electromagnetic tracking enabled the motion analysis of the scaphoid, lunate, and triquetrum bones with respect to the fixed radius in three planes of passive motion. After scapho-lunate-ligament injury changes in the translational and rotational motion pattern especially of the scaphoid bone occurred in dorsal-volar directions during flexion and extension, radial- and ulnar-deviation, and during rotation around the radio-ulnar- and longitudinal-axis of the wrist. PMID:26402881

  9. Analysis of free breathing motion using artifact reduced 4D CT image data

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Jan; Werner, Rene; Frenzel, Thorsten; Lu, Wei; Low, Daniel; Handels, Heinz

    2007-03-01

    The mobility of lung tumors during the respiratory cycle is a source of error in radiotherapy treatment planning. Spatiotemporal CT data sets can be used for studying the motion of lung tumors and inner organs during the breathing cycle. We present methods for the analysis of respiratory motion using 4D CT data in high temporal resolution. An optical flow based reconstruction method was used to generate artifact-reduced 4D CT data sets of lung cancer patients. The reconstructed 4D CT data sets were segmented and the respiratory motion of tumors and inner organs was analyzed. A non-linear registration algorithm is used to calculate the velocity field between consecutive time frames of the 4D data. The resulting velocity field is used to analyze trajectories of landmarks and surface points. By this technique, the maximum displacement of any surface point is calculated, and regions with large respiratory motion are marked. To describe the tumor mobility the motion of the lung tumor center in three orthogonal directions is displayed. Estimated 3D appearance probabilities visualize the movement of the tumor during the respiratory cycle in one static image. Furthermore, correlations between trajectories of the skin surface and the trajectory of the tumor center are determined and skin regions are identified which are suitable for prediction of the internal tumor motion. The results of the motion analysis indicate that the described methods are suitable to gain insight into the spatiotemporal behavior of anatomical and pathological structures during the respiratory cycle.

  10. Non-rigid image registration to reduce beam-induced blurring of cryo-electron microscopy images

    PubMed Central

    Karimi Nejadasl, Fatemeh; Karuppasamy, Manikandan; Newman, Emily R.; McGeehan, John E.; Ravelli, Raimond B. G.

    2013-01-01

    The typical dose used to record cryo-electron microscopy images from vitrified biological specimens is so high that radiation-induced structural alterations are bound to occur during data acquisition. Integration of all scattered electrons into one image can lead to significant blurring, particularly if the data are collected from an unsupported thin layer of ice suspended over the holes of a support film. Here, the dose has been fractioned and exposure series have been acquired in order to study beam-induced specimen movements under low dose conditions, prior to bubbling. Gold particles were added to the protein sample as fiducial markers. These were automatically localized and tracked throughout the exposure series and showed correlated motions within small patches, with larger amplitudes of motion vectors at the start of a series compared with the end of each series. A non-rigid scheme was used to register all images within each exposure series, using natural neighbor interpolation with the gold particles as anchor points. The procedure increases the contrast and resolution of the examined macromolecules. PMID:23254656

  11. Inverse methods for modeling non-rigid plate kinematics: Application to mesozoic plate reconstructions of the Central Atlantic

    NASA Astrophysics Data System (ADS)

    Kneller, Erik A.; Johnson, Christopher A.; Karner, Garry D.; Einhorn, Jesse; Queffelec, Thomas A.

    2012-12-01

    Published plate reconstructions commonly show significant differences in initial plate configuration and syn-extensional opening directions. The variability of published models is primarily due to the difficulty associated with restoring crustal stretching history. Here we present an inverse non-rigid kinematic method that inverts plate motion and present day crustal thickness to approximate the history of bulk lateral strain and crustal thinning associated with lithospheric stretching. The kinematic link between plate motion and bulk crustal thickness that is used with this method is based on insights obtained from geodynamic models. We implement this approach in open source kinematic modeling software and apply it to test new Early Mesozoic plate kinematic models of the Central Atlantic. This application shows that the patterns of stretching inferred from the syn-rift basins of the Newark Supergroup can be explained if (1) syn-rift Euler pole flow lines were parallel to the Grand Banks transform margin and (2) initial formation of the East Coast Margin Igneous Province was coincident with the formation of the Central Atlantic Magmatic Province. These syn-rift to breakup models of the Central Atlantic lead to better constrained models of early seafloor spreading that show full spreading velocities in the ultraslow regime and within the transition from ultraslow to slow spreading regimes.

  12. A non-rigid registration method for cerebral DSA images based on forward and inverse stretching - avoiding bilinear interpolation.

    PubMed

    Liu, Bin; Zhang, Bingbing; Wan, Chao; Dong, Yihuan

    2014-01-01

    In order to reduce the motion artifact caused by the patient in cerebral DSA images, a non-rigid registration method based on stretching transformation is presented in this paper. Unlike other traditional methods, it does not need bilinear interpolation which is rather time-consuming and even produce 'originally non-existent gray value'. By this method, the mask image is rasterized to generate appropriate control points. The Energy of Histogram of Differences criterion is adopted as similarity measurement, and the Powell algorithm is utilized for acceleration. A forward stretching transformation is used to complete motion estimation and an inverse stretching transformation to generate target image by pixel mapping strategy. This method is effective to maintain the topological relationships of the gray value before and after the image deformation. The mask image remains clear and accurate contours, and the quality of the subtraction image after the registration is favorable. This method can provide support for clinical treatment and diagnosis of cerebral disease. PMID:24212008

  13. Artificial flagellates: Analysis of advancing motions of biflagellate micro-objects

    NASA Astrophysics Data System (ADS)

    Mori, Nobuhito; Kuribayashi, Kaori; Takeuchi, Shoji

    2010-02-01

    This paper describes an analysis of advancing motions of micro-objects with two flagella separated from a unicellular alga, Chlamydomonas reinhardtii. We harnessed their flagella as actuators of the micro-objects. The isolated flagella can be attached to microbeads and propel them. We found that the biflagellate beads tend to advance, while the uniflagellate microbeads only rotate. Our model for the motion of the biflagellate beads led to conditions for generating an advancing motion. This approach is important since it provides general guidelines for designing micro-objects driven by flagellalike actuators.

  14. Analysis of preflutter and postflutter characteristics with motion-matched aerodynamic forces

    NASA Technical Reports Server (NTRS)

    Cunningham, H. J.

    1978-01-01

    The development of the equations of dynamic equilibrium for a lifting surface from Lagrange's equation is reviewed and restated for general exponential growing and decaying oscillatory motion. Aerodynamic forces for this motion are obtained from the three-dimensional supersonic kernel function that is newly generalized to complex reduced frequencies. Illustrative calculations were made for two flutter models at supersonic Mach numbers. Preflutter and postflutter motion isodecrement curves were obtained. This type of analysis can be used to predict preflutter behavior during flutter testing and to predict postflutter behavior for use in the design of flutter suppression systems.

  15. Pilot/vehicle model analysis of visual and motion cue requirements in flight simulation

    NASA Technical Reports Server (NTRS)

    Lancraft, R.; Zacharias, G.; Baron, S.

    1981-01-01

    The optimal control model for pilot/vehicle analysis is used to explore the effects of a CGI visual system and motion system dynamics on helicopter hover simulation fidelity. This is accomplished by expanding the perceptual aspects of the model to include motion sensing and by relating CGI parameters to information processing parameters of the model. Simulator fidelity is examined by comparing predicted performance and workload for flight with that predicted for various simulator configuration. The results of the analysis suggest that simulator deficiencies or a reasonable nature (by current standards) can result in substantial performance and/or workload infidelity. Both CGI and motion system effects are significant for this task. There is also a distinct interaction between the two sources of pilot cues. In particular, the presence of motion reduces the sensitivity to CGI limitations.

  16. Digital resolver for helicopter model blade motion analysis

    NASA Technical Reports Server (NTRS)

    Daniels, T. S.; Berry, J. D.; Park, S.

    1992-01-01

    The paper reports the development and initial testing of a digital resolver to replace existing analog signal processing instrumentation. Radiometers, mounted directly on one of the fully articulated blades, are electrically connected through a slip ring to analog signal processing circuitry. The measured signals are periodic with azimuth angle and are resolved into harmonic components, with 0 deg over the tail. The periodic nature of the helicopter blade motion restricts the frequency content of each flapping and yaw signal to the fundamental and harmonics of the rotor rotational frequency. A minicomputer is employed to collect these data and then plot them graphically in real time. With this and other information generated by the instrumentation, a helicopter test pilot can then adjust the helicopter model's controls to achieve the desired aerodynamic test conditions.

  17. Non-rigid registration of medical images based on ordinal feature and manifold learning

    NASA Astrophysics Data System (ADS)

    Li, Qi; Liu, Jin; Zang, Bo

    2015-12-01

    With the rapid development of medical imaging technology, medical image research and application has become a research hotspot. This paper offers a solution to non-rigid registration of medical images based on ordinal feature (OF) and manifold learning. The structural features of medical images are extracted by combining ordinal features with local linear embedding (LLE) to improve the precision and speed of the registration algorithm. A physical model based on manifold learning and optimization search is constructed according to the complicated characteristics of non-rigid registration. The experimental results demonstrate the robustness and applicability of the proposed registration scheme.

  18. In-vivo motion analysis of bi-ventricular hearts from tagged MR images

    NASA Astrophysics Data System (ADS)

    Park, Kyoungju; Axel, Leon; Metaxas, Dimitris N.

    2005-04-01

    We conduct experiments to look at the in-vivo cardiac motion during systole, to visualize heart contraction, and to examine the clinical usefulness. Our model-based technique incorporates subject-specific modeling, motion analysis and the extraction of clinically relevant parameters within one framework. Previous bi-ventricular model based method could only handle up to the mid-ventricles and have a few test-subjects. Our parameterized model includes the LV, RV and up to the basal area for full ventricular motion study. Finite element methods capture cardiac motion by tracking the material points from tagged Magnetic Resonance (MR) images. A number of experiments from ten subjects are evaluated and analyzed. We tested subject several times and compared the resulting parameters to ensure the reproducibility and deviations. The resulting parameters can be used to describe the cardiac motion of normal subjects. The patterns of normal subjects were derived from experiments. While significant shape and motion variations were apparent in normal subjects, the quantitative analysis show typical patterns. Generally, the basal area moves downwards and the apical area contracts towards the cavity. The principal strain analysis describes the directions and magnitudes of maximum shortening, and maximum thickening.

  19. Vibronic structure of the cyclopentadienyl radical and its nonrigid van der Waals cluster with nitrogen

    NASA Astrophysics Data System (ADS)

    Sun, S.; Bernstein, E. R.

    1995-09-01

    Fluorescence excitation and two color mass resolved excitation spectroscopy are employed to study the D1(2A2″)←D0(2E1″) vibronic transitions of the cyclopentadienyl radical (cpd) and its van der Waals cluster with nitrogen. The radical is created by photolysis of the cyclopentadiene dimer and cooled by expansion from a supersonic nozzle. The cpd(N2)1 cluster is generated in this cooling process. Mass resolved excitation spectra of cpd are obtained for the first 1200 cm-1 of the D1←D0 transition. The excitation spectrum of cpd(N2)1 shows a complicated structure for the origin transition. With the application of hole burning spectroscopy, we are able to assign all the cluster transitions to a single isomer. The features are assigned to a 55 cm-1 out-of-plane van der Waals mode stretch and contortional (rotational) motions of the N2 molecule with respect to the cpd radical. Empirical potential energy calculations are used to predict the properties of this cluster and yield the following results: (1) the N2 molecular axis is perpendicular to the cpd fivefold axis and parallel to the plane of the cpd ring with the two molecular centers of mass lying on the fivefold ring axis; (2) the binding energy of cpd(N2)1 is 434 cm-1; and (3) the rotational motion of the N2 molecule is essentially unhindered about the cpd fivefold axis. The molecular symmetry group D5h(MS) is applied to the nonrigid cluster, and optical selection rules exclude even↔odd transitions (Δn=0, ±2, ±4,... allowed) between the different contortional levels. Tentative assignments are given to the observed contortional features based on these considerations. The barrier to internal rotation is also small in the excited state. The results for the cpd(N2)1 van der Waals cluster are compared to those for the benzene (N2)1 and benzyl radical (N2)1 clusters.

  20. The application of biomechanical motion analysis to aspects of green monkey (Cercopithecus a. sabaeus) locomotion.

    PubMed

    Wells, J P; Wood, G A

    1975-09-01

    A cinematographic method of biomechanical motion analysis is presented which permits the determination of body segment forces and joint moments of force, and thereby dominant muscle action. An analysis of the horizontal leap of Cercopithecus is used as an example of the utility of this approach in the area of functional morphology. Kinematic and kinetic data are presented and discussed in terms of the biomechanical requirements of this form of locomotion. The importance of a consideration of inertial as well as gravitational forces in an analysis of positional behavior involving body motion is stressed. PMID:810035

  1. Ground motion issues for seismic analysis of tall buildings: A status report

    USGS Publications Warehouse

    Bozorgnia, Y.; Campbell, K.W.; Luco, N.; Moehle, J.P.; Naeim, F.; Somerville, P.; Yang, T.Y.

    2007-01-01

    The Pacific Earthquake Engineering Research Center (PEER) is coordinating a major multidisciplinary programme, the Tall Buildings Initiative (TBI), to address critical technical issues related to the design and analysis of new tall buildings located in coastal California. The authors of this paper, listed alphabetically, are involved in various research studies related to ground motion modelling, selection, modification and simulation for analysis of tall buildings. This paper summarizes the scope and progress of ongoing activities related to ground motion issues for response history analysis of tall buildings.

  2. A finite state model for respiratory motion analysis in image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Wu, Huanmei; Sharp, Gregory C.; Salzberg, Betty; Kaeli, David; Shirato, Hiroki; Jiang, Steve B.

    2004-12-01

    Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates.

  3. Experimental and numerical analysis of rider motion in weave conditions

    NASA Astrophysics Data System (ADS)

    Doria, A.; Formentini, M.; Tognazzo, M.

    2012-08-01

    Motorcycle dynamics is characterised by the presence of modes of vibration that may become unstable and lead to dangerous conditions. In particular, the weave mode shows large yaw and roll oscillations of the rear frame and out of phase oscillations of the front frame about the steer axis. The presence of the rider influences the modes of vibration, since the mass, stiffness and damping of limbs modify the dynamic properties of the system; moreover, at low frequency the rider can control oscillations. There are few experimental results dealing with the response of the rider in the presence of large oscillations of the motorcycle. This lack is due to the difficulty of carrying out measurements on the road and of reproducing the phenomena in the laboratory. This paper deals with a research programme aimed at measuring the oscillations of the rider's body on a running motorcycle in the presence of weave. First, testing equipment is presented. It includes a special measurement device that is able to measure the relative motion between the rider and the motorcycle. Then the road tests carried out at increasing speeds (from 160 to 210 km/h) are described and discussed. Best-fitting methods are used for identifying the main features of measured vibrations in terms of natural frequencies, damping ratios and modal shapes. The last section deals with the comparison between measured and simulated response of the motorcycle-rider system in weave conditions; good agreement was found.

  4. Cone-Beam Computed Tomography–Guided Positioning of Laryngeal Cancer Patients with Large Interfraction Time Trends in Setup and Nonrigid Anatomy Variations

    SciTech Connect

    Gangsaas, Anne Astreinidou, Eleftheria; Quint, Sandra; Levendag, Peter C.; Heijmen, Ben

    2013-10-01

    Purpose: To investigate interfraction setup variations of the primary tumor, elective nodes, and vertebrae in laryngeal cancer patients and to validate protocols for cone beam computed tomography (CBCT)-guided correction. Methods and Materials: For 30 patients, CBCT-measured displacements in fractionated treatments were used to investigate population setup errors and to simulate residual setup errors for the no action level (NAL) offline protocol, the extended NAL (eNAL) protocol, and daily CBCT acquisition with online analysis and repositioning. Results: Without corrections, 12 of 26 patients treated with radical radiation therapy would have experienced a gradual change (time trend) in primary tumor setup ≥4 mm in the craniocaudal (CC) direction during the fractionated treatment (11/12 in caudal direction, maximum 11 mm). Due to these trends, correction of primary tumor displacements with NAL resulted in large residual CC errors (required margin 6.7 mm). With the weekly correction vector adjustments in eNAL, the trends could be largely compensated (CC margin 3.5 mm). Correlation between movements of the primary and nodal clinical target volumes (CTVs) in the CC direction was poor (r{sup 2}=0.15). Therefore, even with online setup corrections of the primary CTV, the required CC margin for the nodal CTV was as large as 6.8 mm. Also for the vertebrae, large time trends were observed for some patients. Because of poor CC correlation (r{sup 2}=0.19) between displacements of the primary CTV and the vertebrae, even with daily online repositioning of the vertebrae, the required CC margin around the primary CTV was 6.9 mm. Conclusions: Laryngeal cancer patients showed substantial interfraction setup variations, including large time trends, and poor CC correlation between primary tumor displacements and motion of the nodes and vertebrae (internal tumor motion). These trends and nonrigid anatomy variations have to be considered in the choice of setup verification protocol

  5. Ranking of several ground-motion models for seismic hazard analysis in Iran

    NASA Astrophysics Data System (ADS)

    Ghasemi, H.; Zare, M.; Fukushima, Y.

    2008-09-01

    In this study, six attenuation relationships are classified with respect to the ranking scheme proposed by Scherbaum et al (2004 Bull. Seismol. Soc. Am. 94 1-22). First, the strong motions recorded during the 2002 Avaj, 2003 Bam, 2004 Kojour and 2006 Silakhor earthquakes are consistently processed. Then the normalized residual sets are determined for each selected ground-motion model, considering the strong-motion records chosen. The main advantage of these records is that corresponding information about the causative fault plane has been well studied for the selected events. Such information is used to estimate several control parameters which are essential inputs for attenuation relations. The selected relations (Zare et al (1999 Soil Dyn. Earthq. Eng. 18 101-23) Fukushima et al (2003 J. Earthq. Eng. 7 573-98) Sinaeian (2006 PhD Thesis International Institute of Earthquake Engineering and Seismology, Tehran, Iran); Boore and Atkinson (2007 PEER, Report 2007/01); Campbell and Bozorgnia (2007 PEER, Report 2007/02); and Chiou and Youngs (2006 PEER Interim Report for USGS Review)) have been deemed suitable for predicting peak ground-motion amplitudes in the Iranian plateau. Several graphical techniques and goodness-of-fit measures are also applied for statistical distribution analysis of the normalized residual sets. Such analysis reveals ground-motion models, developed using Iranian strong-motion records as the most appropriate ones in the Iranian context. The results of the present study are applicable in seismic hazard assessment projects in Iran.

  6. Two novel motion-based algorithms for surveillance video analysis on embedded platforms

    NASA Astrophysics Data System (ADS)

    Vijverberg, Julien A.; Loomans, Marijn J. H.; Koeleman, Cornelis J.; de With, Peter H. N.

    2010-05-01

    This paper proposes two novel motion-vector based techniques for target detection and target tracking in surveillance videos. The algorithms are designed to operate on a resource-constrained device, such as a surveillance camera, and to reuse the motion vectors generated by the video encoder. The first novel algorithm for target detection uses motion vectors to construct a consistent motion mask, which is combined with a simple background segmentation technique to obtain a segmentation mask. The second proposed algorithm aims at multi-target tracking and uses motion vectors to assign blocks to targets employing five features. The weights of these features are adapted based on the interaction between targets. These algorithms are combined in one complete analysis application. The performance of this application for target detection has been evaluated for the i-LIDS sterile zone dataset and achieves an F1-score of 0.40-0.69. The performance of the analysis algorithm for multi-target tracking has been evaluated using the CAVIAR dataset and achieves an MOTP of around 9.7 and MOTA of 0.17-0.25. On a selection of targets in videos from other datasets, the achieved MOTP and MOTA are 8.8-10.5 and 0.32-0.49 respectively. The execution time on a PC-based platform is 36 ms. This includes the 20 ms for generating motion vectors, which are also required by the video encoder.

  7. Motion Analysis of 100 Mediastinal Lymph Nodes: Potential Pitfalls in Treatment Planning and Adaptive Strategies

    SciTech Connect

    Pantarotto, Jason R.; Piet, Anna H.M.; Vincent, Andrew; Soernsen de Koste, John R. van; Senan, Suresh

    2009-07-15

    Purpose: The motion of mediastinal lymph nodes may undermine local control with involved-field radiotherapy. We studied patterns of nodal and tumor motion in 41 patients with lung cancer. Methods and Materials: Four-dimensional (4D) computed tomography planning scans were retrospectively evaluated to identify patients with clearly visible mediastinal lymph nodes. One hundred nodes from 14 patients with Stage I and 27 patients with Stage III were manually contoured in all 4D computed tomography respiratory phases. Motion was derived from changes in the nodal center-of-mass position. Primary tumors were also delineated in all phases for 16 patients with Stage III disease. Statistical analysis included a multivariate mixed-effects model of grouped data. Results: Average 3D nodal motion during quiet breathing was 0.68 cm (range, 0.17-1.64 cm); 77% moved greater than 0.5 cm, and 10% moved greater than 1.0 cm. Motion was greatest in the lower mediastinum (p = 0.002), and nodes measuring 2 cm or greater in diameter showed motion similar to that in smaller nodes. In 11 of 16 patients studied, at least one node moved more than the corresponding primary tumor. No association between 3D primary tumor motion and nodal motion was observed. For mobile primary tumors, phase offsets between the primary tumor and nodes of two or more and three or more phases were observed for 33% and 12% of nodes, respectively. Conclusions: Mediastinal nodal motion is common, with phase offsets seen between the primary tumor and different nodes in the same patient. Patient-specific information is needed to ensure geometric coverage, and adaptive strategies based solely on the primary tumor may be misleading.

  8. Nuclear quadrupole resonance lineshape analysis for different motional models: Stochastic Liouville approach

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Earle, K. A.; Mielczarek, A.; Kubica, A.; Milewska, A.; Moscicki, J.

    2011-12-01

    A general theory of lineshapes in nuclear quadrupole resonance (NQR), based on the stochastic Liouville equation, is presented. The description is valid for arbitrary motional conditions (particularly beyond the valid range of perturbation approaches) and interaction strengths. It can be applied to the computation of NQR spectra for any spin quantum number and for any applied magnetic field. The treatment presented here is an adaptation of the "Swedish slow motion theory," [T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000), 10.1006/jmre.2000.2125] originally formulated for paramagnetic systems, to NQR spectral analysis. The description is formulated for simple (Brownian) diffusion, free diffusion, and jump diffusion models. The two latter models account for molecular cooperativity effects in dense systems (such as liquids of high viscosity or molecular glasses). The sensitivity of NQR slow motion spectra to the mechanism of the motional processes modulating the nuclear quadrupole interaction is discussed.

  9. Right ventricular strain analysis from three-dimensional echocardiography by using temporally diffeomorphic motion estimation

    PubMed Central

    Zhu, Meihua; Ashraf, Muhammad; Broberg, Craig S.; Sahn, David J.; Song, Xubo

    2014-01-01

    Purpose: Quantitative analysis of right ventricle (RV) motion is important for study of the mechanism of congenital and acquired diseases. Unlike left ventricle (LV), motion estimation of RV is more difficult because of its complex shape and thin myocardium. Although attempts of finite element models on MR images and speckle tracking on echocardiography have shown promising results on RV strain analysis, these methods can be improved since the temporal smoothness of the motion is not considered. Methods: The authors have proposed a temporally diffeomorphic motion estimation method in which a spatiotemporal transformation is estimated by optimization of a registration energy functional of the velocity field in their earlier work. The proposed motion estimation method is a fully automatic process for general image sequences. The authors apply the method by combining with a semiautomatic myocardium segmentation method to the RV strain analysis of three-dimensional (3D) echocardiographic sequences of five open-chest pigs under different steady states. Results: The authors compare the peak two-point strains derived by their method with those estimated from the sonomicrometry, the results show that they have high correlation. The motion of the right ventricular free wall is studied by using segmental strains. The baseline sequence results show that the segmental strains in their methods are consistent with results obtained by other image modalities such as MRI. The image sequences of pacing steady states show that segments with the largest strain variation coincide with the pacing sites. Conclusions: The high correlation of the peak two-point strains of their method and sonomicrometry under different steady states demonstrates that their RV motion estimation has high accuracy. The closeness of the segmental strain of their method to those from MRI shows the feasibility of their method in the study of RV function by using 3D echocardiography. The strain analysis of the

  10. Camera motion tracking of real bronchoscope using epipolar geometry analysis and CT-derived bronchoscopic images

    NASA Astrophysics Data System (ADS)

    Deguchi, Daisuke; Mori, Kensaku; Hasegawa, Jun-ichi; Toriwaki, Jun-ichiro; Takabatake, Hirotsugu; Natori, Hiroshi

    2002-04-01

    This paper describes a method to track camera motion of a real endoscope by using epipolar geometry analysis and CT derived virtual endoscopic images. A navigation system for a flexible endoscope guides medical doctors by providing navigation information during endoscope examinations. This paper tries to estimate the motion from an endoscopic video image based on epipolar geometry analysis and image registration between virtual endoscopic (VE) and real endoscopic (RE) images. The method consists of three parts: (a) direct estimation of camera motion by using epipolar geometry analysis, (b) precise estimation by using image registration, and (c) detection of bubble frames for avoiding miss-registration. First we calculate optical flow patterns from two consecutive frames. The camera motion is computed by substituting the obtained flows into the epipolar equations. Then we find the observation parameter of a virtual endoscopy system that generates the most similar endoscopic view to the current RE frame. We execute these processes for all frames of RE videos except for frames where bubbles appear. We applied the proposed method to RE videos of three patients who have CT images. The experimental results show the method can track camera motion for over 500 frames continuously in the best case.

  11. High-Speed Video Analysis of Damped Harmonic Motion

    ERIC Educational Resources Information Center

    Poonyawatpornkul, J.; Wattanakasiwich, P.

    2013-01-01

    In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…

  12. Motion analysis of knee joint using dynamic volume images

    NASA Astrophysics Data System (ADS)

    Haneishi, Hideaki; Kohno, Takahiro; Suzuki, Masahiko; Moriya, Hideshige; Mori, Sin-ichiro; Endo, Masahiro

    2006-03-01

    Acquisition and analysis of three-dimensional movement of knee joint is desired in orthopedic surgery. We have developed two methods to obtain dynamic volume images of knee joint. One is a 2D/3D registration method combining a bi-plane dynamic X-ray fluoroscopy and a static three-dimensional CT, the other is a method using so-called 4D-CT that uses a cone-beam and a wide 2D detector. In this paper, we present two analyses of knee joint movement obtained by these methods: (1) transition of the nearest points between femur and tibia (2) principal component analysis (PCA) of six parameters representing the three dimensional movement of knee. As a preprocessing for the analysis, at first the femur and tibia regions are extracted from volume data at each time frame and then the registration of the tibia between different frames by an affine transformation consisting of rotation and translation are performed. The same transformation is applied femur as well. Using those image data, the movement of femur relative to tibia can be analyzed. Six movement parameters of femur consisting of three translation parameters and three rotation parameters are obtained from those images. In the analysis (1), axis of each bone is first found and then the flexion angle of the knee joint is calculated. For each flexion angle, the minimum distance between femur and tibia and the location giving the minimum distance are found in both lateral condyle and medial condyle. As a result, it was observed that the movement of lateral condyle is larger than medial condyle. In the analysis (2), it was found that the movement of the knee can be represented by the first three principal components with precision of 99.58% and those three components seem to strongly relate to three major movements of femur in the knee bend known in orthopedic surgery.

  13. Particle Motion Analysis Reveals Nanoscale Bond Characteristics and Enhances Dynamic Range for Biosensing.

    PubMed

    Visser, Emiel W A; van IJzendoorn, Leo J; Prins, Menno W J

    2016-03-22

    Biofunctionalized colloidal particles are widely used as labels in bioanalytical assays, lab-on-chip devices, biophysical research, and in studies on live biological systems. With detection resolution going down to the level of single particles and single molecules, understanding the nature of the interaction of the particles with surfaces and substrates becomes of paramount importance. Here, we present a comprehensive study of motion patterns of colloidal particles maintained in close proximity to a substrate by short molecular tethers (40 nm). The motion of the particles (500-1000 nm) was optically tracked with a very high localization accuracy (below 3 nm). A surprisingly large variation in motion patterns was observed, which can be attributed to properties of the particle-molecule-substrate system, namely the bond number, the nature of the bond, particle protrusions, and substrate nonuniformities. Experimentally observed motion patterns were compared to numerical Monte Carlo simulations, revealing a close correspondence between the observed motion patterns and properties of the molecular system. Particles bound via single tethers show distinct disc-, ring-, and bell-shaped motion patterns, where the ring- and bell-shaped patterns are caused by protrusions on the particle in the direct vicinity of the molecular attachment point. Double and triple tethered particles exhibit stripe-shaped and triangular-shaped motion patterns, respectively. The developed motion pattern analysis allows for discrimination between particles bound by different bond types, which opens the possibility to improve the limit of detection and the dynamic range of bioanalytical assays, with a projected increase of dynamic range by nearly 2 orders of magnitude. PMID:26913834

  14. Discomfort Evaluation of Truck Ingress/Egress Motions Based on Biomechanical Analysis.

    PubMed

    Choi, Nam-Chul; Lee, Sang Hun

    2015-01-01

    This paper presents a quantitative discomfort evaluation method based on biomechanical analysis results for human body movement, as well as its application to an assessment of the discomfort for truck ingress and egress. In this study, the motions of a human subject entering and exiting truck cabins with different types, numbers, and heights of footsteps were first measured using an optical motion capture system and load sensors. Next, the maximum voluntary contraction (MVC) ratios of the muscles were calculated through a biomechanical analysis of the musculoskeletal human model for the captured motion. Finally, the objective discomfort was evaluated using the proposed discomfort model based on the MVC ratios. To validate this new discomfort assessment method, human subject experiments were performed to investigate the subjective discomfort levels through a questionnaire for comparison with the objective discomfort levels. The validation results showed that the correlation between the objective and subjective discomforts was significant and could be described by a linear regression model. PMID:26067194

  15. Analysis of means of improving the uncontrolled lateral motions of personal airplanes

    NASA Technical Reports Server (NTRS)

    Mckinney, Marion O , Jr

    1951-01-01

    A theoretical analysis has been made of means of improving the uncontrolled motions of personal airplanes. The purpose of this investigation was to determine whether such airplanes could be made to fly uncontrolled for an indefinite period of time without getting into dangerous attitudes and for a reasonable period of time (1 to 3 min) without deviating excessively from their original course. The results of this analysis indicated that the uncontrolled motions of a personal airplane could be made safe as regards spiral tendencies and could be greatly improved as regards maintenance of course without resort to an autopilot. The only way to make the uncontrolled motions completely satisfactory as regards continuous maintenance of course, however, is to use a conventional type of autopilot.

  16. Discomfort Evaluation of Truck Ingress/Egress Motions Based on Biomechanical Analysis

    PubMed Central

    Choi, Nam-Chul; Lee, Sang Hun

    2015-01-01

    This paper presents a quantitative discomfort evaluation method based on biomechanical analysis results for human body movement, as well as its application to an assessment of the discomfort for truck ingress and egress. In this study, the motions of a human subject entering and exiting truck cabins with different types, numbers, and heights of footsteps were first measured using an optical motion capture system and load sensors. Next, the maximum voluntary contraction (MVC) ratios of the muscles were calculated through a biomechanical analysis of the musculoskeletal human model for the captured motion. Finally, the objective discomfort was evaluated using the proposed discomfort model based on the MVC ratios. To validate this new discomfort assessment method, human subject experiments were performed to investigate the subjective discomfort levels through a questionnaire for comparison with the objective discomfort levels. The validation results showed that the correlation between the objective and subjective discomforts was significant and could be described by a linear regression model. PMID:26067194

  17. An e-textile system for motion analysis.

    PubMed

    Edmison, Josh; Jones, Mark; Lockhart, Thurmon; Martin, Thomas

    2004-01-01

    Electronic textiles (e-textiles) offer the promise of home health care devices that integrate seamlessly into the wearer's everyday lifestyle while providing a higher level of functionality than current devices. Existing gait analysis systems are cumbersome laboratory-based systems that, while providing valuable information, would be difficult or impossible to deploy in the home. Yet gait analysis systems offer the promise of preventing and/or mitigating the serious effects of falls in the elderly population. This paper proposes an e-textile solution to this problem along with a design approach for realizing a solution that is inexpensive and usable across the elderly population. Preliminary results are given to demonstrate the promise of the proposed system. PMID:15718659

  18. AN E-TEXTILE SYSTEM FOR MOTION ANALYSIS

    PubMed Central

    EDMISON, Josh; JONES, Mark; LOCKHART, Thurmon; MARTIN, Thomas

    2010-01-01

    Electronic textiles (e-textiles) offer the promise of home health care devices that integrate seamlessly into the wearer’s everyday lifestyle while providing a higher level of functionality than current devices. Existing gait analysis systems are cumbersome laboratory-based systems that, while providing valuable information, would be difficult or impossible to deploy in the home. Yet gait analysis systems offer the promise of preventing and/or mitigating the serious effects of falls in the elderly population. This paper proposes an e-textile solution to this problem along with a design approach for realizing a solution that is inexpensive and usable across the elderly population. Preliminary results are given to demonstrate the promise of the proposed system. PMID:15718659

  19. Wearable inertial sensors in swimming motion analysis: a systematic review.

    PubMed

    de Magalhaes, Fabricio Anicio; Vannozzi, Giuseppe; Gatta, Giorgio; Fantozzi, Silvia

    2015-01-01

    The use of contemporary technology is widely recognised as a key tool for enhancing competitive performance in swimming. Video analysis is traditionally used by coaches to acquire reliable biomechanical data about swimming performance; however, this approach requires a huge computational effort, thus introducing a delay in providing quantitative information. Inertial and magnetic sensors, including accelerometers, gyroscopes and magnetometers, have been recently introduced to assess the biomechanics of swimming performance. Research in this field has attracted a great deal of interest in the last decade due to the gradual improvement of the performance of sensors and the decreasing cost of miniaturised wearable devices. With the aim of describing the state of the art of current developments in this area, a systematic review of the existing methods was performed using the following databases: PubMed, ISI Web of Knowledge, IEEE Xplore, Google Scholar, Scopus and Science Direct. Twenty-seven articles published in indexed journals and conference proceedings, focusing on the biomechanical analysis of swimming by means of inertial sensors were reviewed. The articles were categorised according to sensor's specification, anatomical sites where the sensors were attached, experimental design and applications for the analysis of swimming performance. Results indicate that inertial sensors are reliable tools for swimming biomechanical analyses. PMID:25356682

  20. Robust motion tracking based on adaptive speckle decorrelation analysis of OCT signal.

    PubMed

    Wang, Yuewen; Wang, Yahui; Akansu, Ali; Belfield, Kevin D; Hubbi, Basil; Liu, Xuan

    2015-11-01

    Speckle decorrelation analysis of optical coherence tomography (OCT) signal has been used in motion tracking. In our previous study, we demonstrated that cross-correlation coefficient (XCC) between Ascans had an explicit functional dependency on the magnitude of lateral displacement (δx). In this study, we evaluated the sensitivity of speckle motion tracking using the derivative of function XCC(δx) on variable δx. We demonstrated the magnitude of the derivative can be maximized. In other words, the sensitivity of OCT speckle tracking can be optimized by using signals with appropriate amount of decorrelation for XCC calculation. Based on this finding, we developed an adaptive speckle decorrelation analysis strategy to achieve motion tracking with optimized sensitivity. Briefly, we used subsequently acquired Ascans and Ascans obtained with larger time intervals to obtain multiple values of XCC and chose the XCC value that maximized motion tracking sensitivity for displacement calculation. Instantaneous motion speed can be calculated by dividing the obtained displacement with time interval between Ascans involved in XCC calculation. We implemented the above-described algorithm in real-time using graphic processing unit (GPU) and demonstrated its effectiveness in reconstructing distortion-free OCT images using data obtained from a manually scanned OCT probe. The adaptive speckle tracking method was validated in manually scanned OCT imaging, on phantom as well as in vivo skin tissue. PMID:26600996

  1. Robust motion tracking based on adaptive speckle decorrelation analysis of OCT signal

    PubMed Central

    Wang, Yuewen; Wang, Yahui; Akansu, Ali; Belfield, Kevin D.; Hubbi, Basil; Liu, Xuan

    2015-01-01

    Speckle decorrelation analysis of optical coherence tomography (OCT) signal has been used in motion tracking. In our previous study, we demonstrated that cross-correlation coefficient (XCC) between Ascans had an explicit functional dependency on the magnitude of lateral displacement (δx). In this study, we evaluated the sensitivity of speckle motion tracking using the derivative of function XCC(δx) on variable δx. We demonstrated the magnitude of the derivative can be maximized. In other words, the sensitivity of OCT speckle tracking can be optimized by using signals with appropriate amount of decorrelation for XCC calculation. Based on this finding, we developed an adaptive speckle decorrelation analysis strategy to achieve motion tracking with optimized sensitivity. Briefly, we used subsequently acquired Ascans and Ascans obtained with larger time intervals to obtain multiple values of XCC and chose the XCC value that maximized motion tracking sensitivity for displacement calculation. Instantaneous motion speed can be calculated by dividing the obtained displacement with time interval between Ascans involved in XCC calculation. We implemented the above-described algorithm in real-time using graphic processing unit (GPU) and demonstrated its effectiveness in reconstructing distortion-free OCT images using data obtained from a manually scanned OCT probe. The adaptive speckle tracking method was validated in manually scanned OCT imaging, on phantom as well as in vivo skin tissue. PMID:26600996

  2. Probability-based motion analysis using bidirectional prediction-independent framework in the compressed domain

    NASA Astrophysics Data System (ADS)

    Kim, Nacwoo; Kim, Tae Yong; Choi, Jong Soo

    2005-06-01

    We propose a reformed method that utilizes the motion vectors (MVs) in an MPEG sequence as the motion depicter for motion analysis and representation of video contents. The MVs are converted to a uniform MV set, independent of the frame type and the direction of prediction, and then used as motion depicters in each frame. To obtain such a uniform MV set, a new motion analysis method using bidirectional prediction-independent framework is proposed. Generally, it is impossible to directly compare an I frame without MV to others such as B or P frames. But, this approach enables a frame-type-independent representation that normalizes temporal features including frame type, macroblock (MB) encoding, and MVs. Experimental results show that our method has good performance and high validity. Compared with a full-decoding method, the average of the processing time in our method is reduced about 55%, because our method is directly processed on the MPEG bit stream after variable length code (VLC) decoding. Average of the effective number of the normalized MVs in the proposed algorithm is increased about 25% than that of the conventional method.

  3. ANALYSIS OF THE MOTION OF AN EXTRASOLAR PLANET IN A BINARY SYSTEM

    SciTech Connect

    Plávalová, Eva; Solovaya, Nina A. E-mail: solov@sai.msu.ru

    2013-11-01

    More than 10% of extra-solar planets (EPs) orbit in a binary or multiple stellar system. We investigated the motion of planets revolving in binary systems in the case of the three-body problem. We carried out an analysis of the motion of an EP revolving in a binary system with the following conditions: (1) a planet in a binary system revolves around one of the components (parent star); (2) the distance between the star's components is greater than that between the parent star and the orbiting planet (ratio of the semi-major axes is a small parameter); and (3) the mass of the planet is smaller than the mass of the stars, but is not negligible. The Hamiltonian of the system without short periodic terms was used. We expanded the Hamiltonian in terms of the Legendre polynomial and truncated after the second-order term, depending on only one angular variable. In this case, the solution of the system was obtained and the qualitative analysis of the motion was produced. We have applied this theory to real EPs and compared to the numerical integration. Analyses of the possible regions of motion are presented. It is shown that stable and unstable motions of EPs are possible. We applied our calculations to two binary systems hosting an EP and calculated the possible values for their unknown orbital elements.

  4. Multi-scale AM-FM motion analysis of ultrasound videos of carotid artery plaques

    NASA Astrophysics Data System (ADS)

    Murillo, Sergio; Murray, Victor; Loizou, C. P.; Pattichis, C. S.; Pattichis, Marios; Barriga, E. Simon

    2012-03-01

    An estimated 82 million American adults have one or more type of cardiovascular diseases (CVD). CVD is the leading cause of death (1 of every 3 deaths) in the United States. When considered separately from other CVDs, stroke ranks third among all causes of death behind diseases of the heart and cancer. Stroke accounts for 1 out of every 18 deaths and is the leading cause of serious long-term disability in the United States. Motion estimation of ultrasound videos (US) of carotid artery (CA) plaques provides important information regarding plaque deformation that should be considered for distinguishing between symptomatic and asymptomatic plaques. In this paper, we present the development of verifiable methods for the estimation of plaque motion. Our methodology is tested on a set of 34 (5 symptomatic and 29 asymptomatic) ultrasound videos of carotid artery plaques. Plaque and wall motion analysis provides information about plaque instability and is used in an attempt to differentiate between symptomatic and asymptomatic cases. The final goal for motion estimation and analysis is to identify pathological conditions that can be detected from motion changes due to changes in tissue stiffness.

  5. The adaptation of GDL motion recognition system to sport and rehabilitation techniques analysis.

    PubMed

    Hachaj, Tomasz; Ogiela, Marek R

    2016-06-01

    The main novelty of this paper is presenting the adaptation of Gesture Description Language (GDL) methodology to sport and rehabilitation data analysis and classification. In this paper we showed that Lua language can be successfully used for adaptation of the GDL classifier to those tasks. The newly applied scripting language allows easily extension and integration of classifier with other software technologies and applications. The obtained execution speed allows using the methodology in the real-time motion capture data processing where capturing frequency differs from 100 Hz to even 500 Hz depending on number of features or classes to be calculated and recognized. Due to this fact the proposed methodology can be used to the high-end motion capture system. We anticipate that using novel, efficient and effective method will highly help both sport trainers and physiotherapist in they practice. The proposed approach can be directly applied to motion capture data kinematics analysis (evaluation of motion without regard to the forces that cause that motion). The ability to apply pattern recognition methods for GDL description can be utilized in virtual reality environment and used for sport training or rehabilitation treatment. PMID:27106581

  6. Propagating labels of the human brain based on non-rigid MR image registration: an evaluation

    NASA Astrophysics Data System (ADS)

    Heckemann, Rolf A.; Hajnal, Joseph V.; Rueckert, Daniel; Hill, Derek L. G.; Hammers, Alexander

    2005-04-01

    Background: In order to perform statistical analysis of cohorts based on images, reliable methods for automated anatomical segmentation are required. Label propagation (LP) from manually segmented atlases onto newly acquired images is a particularly promising approach. Methods: We investigated LP on a set of 6 three-dimensional T1-weighted magnetic resonance data sets of the brains of normal individuals. For each image, a manually prepared segmentation of 67 structures was available. Each subject image was used in turn as an atlas and registered non-rigidly to each other subject's image. The resulting transformations were applied to the label sets, yielding five different generated segmentations for each subject, which we compared with the native manual segmentations using an overlap measure (similarity index, SI). We then reviewed the LP results for five structures with varied anatomical and label characteristics visually to determine how the registration procedure had affected the delineation of their boundaries. Results: The majority of structures propagated well as measured by SI (SI > 70 in 80% of measurements). Boundaries that were marked in the atlas image by definite intensity differences were congruent, with good agreement between the manual and the generated segmentations. Some boundaries in the manual segmentation were defined as planes marked by landmarks; such boundaries showed greater mismatch. In some cases, the proximity of structures with similar intensity distorted the LP results: e.g., parts of the parahippocampal gyrus were labeled as hippocampus in two cases. Conclusion: The size and shape of anatomical structures can be determined reliably using label propagation, especially where boundaries are defined by distinct differences in grey scale image intensity. These results will inform further work to evaluate potential clinical uses of information extracted from images in this way.

  7. The slider motion error analysis by positive solution method in parallel mechanism

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoqing; Zhang, Lisong; Zhu, Liang; Yang, Wenguo; Hu, Penghao

    2016-01-01

    Motion error of slider plays key role in 3-PUU parallel coordinates measuring machine (CMM) performance and influence the CMM accuracy, which attracts lots of experts eyes in the world, Generally, the analysis method is based on the view of space 6-DOF. Here, a new analysis method is provided. First, the structure relation of slider and guideway can be abstracted as a 4-bar parallel mechanism. So, the sliders can be considered as moving platform in parallel kinematic mechanism PKM. Its motion error analysis is also transferred to moving platform position analysis in PKM. Then, after establishing the positive and negative solutions, some existed theory and technology for PKM can be applied to analyze slider straightness motion error and angular motion error simultaneously. Thirdly, some experiments by autocollimator are carried out to capture the original error data about guideway its own error, the data can be described as straightness error function by fitting curvilinear equation. Finally, the Straightness error of two guideways are considered as the variation of rod length in parallel mechanism, the slider's straightness error and angular error can be obtained by putting data into the established model. The calculated result is generally consistent with experiment result. The idea will be beneficial on accuracy calibration and error correction of 3-PUU CMM and also provides a new thought to analyze kinematic error of guideway in precision machine tool and precision instrument.

  8. Applying a Resources Framework to Analysis of the Force and Motion Conceptual Evaluation

    ERIC Educational Resources Information Center

    Smith, Trevor I.; Wittman, Michael C.

    2008-01-01

    We suggest one redefinition of common clusters of questions used to analyze student responses on the Force and Motion Conceptual Evaluation. Our goal is to propose a methodology that moves beyond an analysis of student learning defined by correct responses, either on the overall test or on clusters of questions defined solely by content. We use…

  9. Safety analysis forseismic motion of control rods accounting for rod misalignment

    SciTech Connect

    Osmin, W.L.; Paik, I.K.

    1992-01-01

    The purpose of this report is to provide a summary of the results of three safety analyses performed by the SRL Safety Analysis Group (SAG) to assess the safety impact of control rod motion induced by a Design Basis Earthquake (DBE).

  10. SMART USE OF COMPUTER-AIDED SPERM ANALYSIS (CASA) TO CHARACTERIZE SPERM MOTION

    EPA Science Inventory

    Computer-aided sperm analysis (CASA) has evolved over the past fifteen years to provide an objective, practical means of measuring and characterizing the velocity and parttern of sperm motion. CASA instruments use video frame-grabber boards to capture multiple images of spermato...

  11. Biophotogrammetry model of respiratory motion analysis applied to children.

    PubMed

    Ripka, W L; Ricieri, D da V; Ulbricht, L; Neves, E B; Stadnik, A M W; Romaneli, E F R

    2012-01-01

    This study aimed to test a protocol of measurements based on Biophotogrammetry to Analysis of Respiratory Mechanics (BARM) in healthy children. Seventeen normal spirometric children (six male and 11 female) were tested. Their performed maneuvers of forced inspiratory vital capacity were recorded in the supine position. The images were acquired by a digital camera, laterally placed to the trunk. Surface markers allowed that the files, exported to CorelDraw® software, were processed by irregular trapezoids paths. Compartments were defined in the thoracic (TX), abdominal (AB) and the chest wall (CW). They were defined at the end of an inspiration and expiration, both maximum, controlled by a digital spirometer. The result showed that the measured areas at the inspiratory and expiratory periods were statistically different (p<0.05). It reflects the mobility of CW and compartments. In conclusion, the proposed method can identify the breathing pattern of the measured subject using images in two dimensions (2D). PMID:23366409

  12. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet

    NASA Astrophysics Data System (ADS)

    Zuza, Andrew V.; Yin, An

    2016-05-01

    Collision-induced continental deformation commonly involves complex interactions between strike-slip faulting and off-fault deformation, yet this relationship has rarely been quantified. In northern Tibet, Cenozoic deformation is expressed by the development of the > 1000-km-long east-striking left-slip Kunlun, Qinling, and Haiyuan faults. Each have a maximum slip in the central fault segment exceeding 10s to ~ 100 km but a much smaller slip magnitude (~< 10% of the maximum slip) at their terminations. The along-strike variation of fault offsets and pervasive off-fault deformation create a strain pattern that departs from the expectations of the classic plate-like rigid-body motion and flow-like distributed deformation end-member models for continental tectonics. Here we propose a non-rigid bookshelf-fault model for the Cenozoic tectonic development of northern Tibet. Our model, quantitatively relating discrete left-slip faulting to distributed off-fault deformation during regional clockwise rotation, explains several puzzling features, including the: (1) clockwise rotation of east-striking left-slip faults against the northeast-striking left-slip Altyn Tagh fault along the northwestern margin of the Tibetan Plateau, (2) alternating fault-parallel extension and shortening in the off-fault regions, and (3) eastward-tapering map-view geometries of the Qimen Tagh, Qaidam, and Qilian Shan thrust belts that link with the three major left-slip faults in northern Tibet. We refer to this specific non-rigid bookshelf-fault system as a passive bookshelf-fault system because the rotating bookshelf panels are detached from the rigid bounding domains. As a consequence, the wallrock of the strike-slip faults deforms to accommodate both the clockwise rotation of the left-slip faults and off-fault strain that arises at the fault ends. An important implication of our model is that the style and magnitude of Cenozoic deformation in northern Tibet vary considerably in the east

  13. Noncontact optical motion sensing for real-time analysis

    NASA Astrophysics Data System (ADS)

    Fetzer, Bradley R.; Imai, Hiromichi

    1990-08-01

    The adaptation of an image dissector tube (IDT) within the OPTFOLLOW system provides high resolution displacement measurement of a light discontinuity. Due to the high speed response of the IDT and the advanced servo loop circuitry, the system is capable of real time analysis of the object under test. The image of the discontinuity may be contoured by direct or reflected light and ranges spectrally within the field of visible light. The image is monitored to 500 kHz through a lens configuration which transposes the optical image upon the photocathode of the IDT. The photoelectric effect accelerates the resultant electrons through a photomultiplier and an enhanced current is emitted from the anode. A servo loop controls the electron beam, continually centering it within the IDT using magnetic focusing of deflection coils. The output analog voltage from the servo amplifier is thereby proportional to the displacement of the target. The system is controlled by a microprocessor with a 32kbyte memory and provides a digital display as well as instructional readout on a color monitor allowing for offset image tracking and automatic system calibration.

  14. Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels.

    PubMed Central

    Chiu, S W; Jakobsson, E; Subramaniam, S; McCammon, J A

    1991-01-01

    Molecular dynamics simulations have been done on a system consisting of the polypeptide membrane channel former gramicidin, plus water molecules in the channel and caps of waters at the two ends of the channel. In the absence of explicit simulation of the surrounding membrane, the helical form of the channel was maintained by artificial restraints on the peptide motion. The characteristic time constant of the artificial restraint was varied to assess the effect of the restraints on the channel structure and water motions. Time-correlation analysis was done on the motions of individual channel waters and on the motions of the center of mass of the channel waters. It is found that individual water molecules confined in the channel execute higher frequency motions than bulk water, for all degrees of channel peptide restraint. The center-of-mass motion of the chain of channel waters (which is the motion that is critical for transmembrane transport, due to the mandatory single filing of water in the channel) does not exhibit these higher frequency motions. The mobility of the water chain is dramatically reduced by holding the channel rigid. Thus permeation through the channel is not like flow through a rigid pipe; rather permeation is facilitated by peptide motion. For the looser restraints we used, the mobility of the water chain was not very much affected by the degree of restraint. Depending on which set of experiments is considered, the computed mobility of our water chain in the flexible channel is four to twenty times too high to account for the experimentally measured resistance of the gramicidin channel to water flow. From this result it appears likely that the peptide motions of an actual gramicidin channel embedded in a lipid membrane may be more restrained than in our flexible channel model, and that these restraints may be a significant modulator of channel permeability. For the completely rigid channel model the "trapping" of the water molecules in

  15. Stability analysis of the motion along re-entry optimal trajectories

    NASA Astrophysics Data System (ADS)

    Popescu, M.

    1983-10-01

    A stability analysis of the equations of motion governing the ricochet re-entry trajectory of a rocket-powered vehicle is presented. The plane case of a vehicle propelled by the time-dependent expulsion of gases is considered, taking the change in mass into account. The zone of stability is defined using a frequency criterion, while the stability domains of the parameters of motion are derived by constructing a Liapunov function. The perturbations of the state variables and their damping-out velocities are estimated.

  16. Piping benchmark problems. Volume 1. Dynamic analysis uniform support motion response spectrum method

    SciTech Connect

    Bezler, P.; Hartzman, M.; Reich, M.

    1980-08-01

    A set of benchmark problems and solutions have been developed for verifying the adequacy of computer programs used for dynamic analysis and design of nuclear piping systems by the Response Spectrum Method. The problems range from simple to complex configurations which are assumed to experience linear elastic behavior. The dynamic loading is represented by uniform support motion, assumed to be induced by seismic excitation in three spatial directions. The solutions consist of frequencies, participation factors, nodal displacement components and internal force and moment components. Solutions to associated anchor point motion static problems are not included.

  17. Development of a motion analysis system specialized for car-crash tests

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Hoo; Lee, Jea-Sun

    1995-05-01

    A prototype of a PC-based motion analysis system specialized for the car-crash test with 2D and 3D analysis capabilities was developed. The core of the proposed motion analysis system is the film-to-video conversion and the semiautomatic marker tracking. Construction of the converter using a 16 mm film projector and a CCD camera is currently undergoing. The semiautomatic marker tracking system was tested in an outdoor pilot experiment a with a small-sized passenger car. A film-to- video converter, a PC with a frame grabber, an RGB video monitor and the tracking software are the components of the tracking system. A location- prediction & marker-detection algorithm was embedded in the tracking software of automatic marker detection. Other data analysis features were also discussed.

  18. Analysis of the Accuracy and Robustness of the Leap Motion Controller

    PubMed Central

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-01-01

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction. PMID:23673678

  19. Phototaxis of Haloarcula marismortui revealed through a novel microbial motion analysis algorithm.

    PubMed

    Lin, Yu-Cheng; Fu, Hsu-Yuan; Yang, Chii-Shen

    2010-01-01

    Haloarcula marismortui has been described to be nonmotile prior to the recent identification of flagellar filaments, suggesting the motile nature of H. marismortui. Here we observed the locomotion of freshly cultured H. marismortui cells and tracked the swimming trajectories via ImageJ. Trajectories of H. marismortui are intrinsically noisy, posing difficulties in motion analysis with previously established algorithms. By introducing the concept of "window vector," a Microsoft Excel-VBA-implemented microbial motion analysis algorithm reported here was able to (1) discriminate nonswimming objects from swimming cells without empirical customization by applying a power-law relationship and (2) reduce the noise caused by Brownian motion, thus enhancing the accuracy of swim reversal identification. Based on this motion analysis algorithm, two recently identified sensory rhodopsins, HmSRI and HmSRII, were shown to mediate photoattractant and photorepellent responses, respectively, revealing the phototactic activity of H. marismortui, the only archaeon showing such phenomenon other than Halobacterium salinarum. PMID:20553410

  20. Energy Consumption Analysis Procedure for Robotic Applications in different task motion

    NASA Astrophysics Data System (ADS)

    Ahmed, Iman; Aris, Ishak b.; Hamiruce Marhaban, Mohammad; Juraiza Ishak, Asnor

    2015-11-01

    This work proposes energy analysis method for humanoid robot, seen from simple motion task to complex one in energy chain. The research developed a procedure suitable for analysis, saving and modelling of energy consumption not only in this type of robot but also in most robots that based on electrical power as an energy source. This method has validated by an accurate integration using Matlab software for the power consumption curve to calculate the energy of individual and multiple servo motors. Therefore, this study can be considered as a procedure for energy analysis by utilizing the laboratory instruments capabilities to measure the energy parameters. We performed a various task motions with different angular speed to find out the speed limits in terms of robot stability and control strategy. A battery capacity investigation have been searched for several types of batteries to extract the power modelling equation and energy density parameter for each battery type, Matlab software have been built to design the algorithm and to evaluate experimental amount of the energy which is represented by area under the curve of the power curves. This will provide a robust estimation for the required energy in different task motions to be considered in energy saving (i.e., motion planning and real time scheduling).

  1. Real-Time Respiratory Motion Analysis Using 4-D Shape Priors.

    PubMed

    Wasza, Jakob; Fischer, Peter; Leutheuser, Heike; Oefner, Tobias; Bert, Christoph; Maier, Andreas; Hornegger, Joachim

    2016-03-01

    Respiratory motion analysis based on range imaging (RI) has emerged as a popular means of generating respiration surrogates to guide motion management strategies in computer-assisted interventions. However, existing approaches employ heuristics, require substantial manual interaction, or yield highly redundant information. In this paper, we propose a framework that uses preprocedurally obtained 4-D shape priors from patient-specific breathing patterns to drive intraprocedural RI-based real-time respiratory motion analysis. As the first contribution, we present a shape motion model enabling an unsupervised decomposition of respiration induced high-dimensional body surface displacement fields into a low-dimensional representation encoding thoracic and abdominal breathing. Second, we propose a method designed for GPU architectures to quickly and robustly align our models to high-coverage multiview RI body surface data. With our fully automatic method, we obtain respiration surrogates yielding a Pearson correlation coefficient (PCC) of 0.98 with conventional surrogates based on manually selected regions on RI body surface data. Compared to impedance pneumography as a respiration signal that measures the change of lung volume, we obtain a PCC of 0.96. Using off-the-shelf hardware, our framework enables high temporal resolution respiration analysis at 50 Hz. PMID:26258934

  2. Quantitative biomechanical analysis of wrist motion in bone-trimming jobs in the meat packing industry.

    PubMed

    Marklin, R W; Monroe, J F

    1998-02-01

    This study was motivated by the serious impact that cumulative trauma disorders (CTDs) of the upper extremities have on the meat packing industry. To date, no quantitative data have been gathered on the kinematics of hand and wrist motion required in bone-trimming jobs in the red-meat packing industry and how these motions are related to the risk of CTDs. The wrist motion of bone-trimming workers from a medium-sized plant was measured, and the kinematic data were compared to manufacturing industry's preliminary wrist motion benchmarks from industrial workers who performed hand-intensive, repetitive work in jobs that were of low and high risk of hand/wrist CTDs. Results of this comparison show that numerous wrist motion variables in both the left and right hands of bone-trimming workers are in the high-risk category. This quantitative analysis provides biomechanical support for the high incidence of CTDs in the meat packing industry. The research reported in this paper established a preliminary database of wrist and hand kinematics required in bone-trimming jobs in the red-meat packing industry. This kinematic database could augment the industry's efforts to reduce the severity and cost of CTDs. Ergonomics practitioners in the industry could use the kinematic methods employed in this research to assess the CTD risk of jobs that require repetitious, hand-intensive work. PMID:9494434

  3. Analysis of tissue changes, measurement system effects, and motion artifacts in echo decorrelation imaging

    PubMed Central

    Hooi, Fong Ming; Nagle, Anna; Subramanian, Swetha; Douglas Mast, T.

    2015-01-01

    Echo decorrelation imaging, a method for mapping ablation-induced ultrasound echo changes, is analyzed. Local echo decorrelation is shown to approximate the decoherence spectrum of tissue reflectivity. Effects of the ultrasound measurement system, echo signal windowing, electronic noise, and tissue motion on echo decorrelation images are determined theoretically, leading to a method for reduction of motion and noise artifacts. Theoretical analysis is validated by simulations and experiments. Simulated decoherence of the scattering medium was recovered with root-mean-square error less than 10% with accuracy dependent on the correlation window size. Motion-induced decorrelation measured in an ex vivo pubovisceral muscle model showed similar trends to theoretical motion-induced decorrelation for a 2.1 MHz curvilinear array with decorrelation approaching unity for 3–4 mm elevational displacement or 1–1.6 mm range displacement. For in vivo imaging of porcine liver by a 7 MHz linear array, theoretical decorrelation computed using image-based motion estimates correlated significantly with measured decorrelation (r = 0.931, N = 10). Echo decorrelation artifacts incurred during in vivo radiofrequency ablation in the same porcine liver were effectively compensated based on the theoretical echo decorrelation model and measured pre-treatment decorrelation. These results demonstrate the potential of echo decorrelation imaging for quantification of heat-induced changes to the scattering tissue medium during thermal ablation. PMID:25697993

  4. Improved dosimetry for targeted radionuclide therapy using nonrigid registration on sequential SPECT images

    SciTech Connect

    Ao, Edwin C. I.; Mok, Greta S. P.; Wu, Nien-Yun; Wang, Shyh-Jen; Song, Na

    2015-02-15

    Purpose: Voxel-level and patient-specific 3D dosimetry for targeted radionuclide therapy (TRT) typically involves serial nuclear medicine scans. Misalignment of the images can result in reduced dosimetric accuracy. Since the scans are typically performed over a period of several days, there will be patient movement between scans and possible nonrigid organ deformation. This work aims to implement and evaluate the use of nonrigid image registration on a series of quantitative SPECT (QSPECT) images for TRT dosimetry. Methods: A population of 4D extended cardiac torso phantoms, comprised of three In-111 Zevalin biokinetics models and three anatomical variations, was generated based on the patient data. The authors simulated QSPECT acquisitions at five time points. At each time point, individual organ and whole-body deformation between scans were modeled by translating/rotating organs and the body up to 5°/voxels, keeping ≤5% difference in organ volume. An analytical projector was used to generate realistic noisy projections for a medium energy general purpose collimator. Projections were reconstructed using OS-EM algorithm with geometric collimator detector response, attenuation, and scatter corrections. The QSPECT images were registered using organ-based nonrigid image registration method. The cumulative activity in each voxel was obtained by integrating the activity over time. Dose distribution images were obtained by convolving the cumulative activity images with a Y-90 dose kernel. Dose volume histograms (DVHs) for organs-of-interest were analyzed. Results: After nonrigid registration, the mean differences in organ doses compared to the case without misalignment were improved from (−15.50 ± 5.59)% to (−2.12 ± 1.05)% and (−7.28 ± 2.30)% to (−0.23 ± 0.71)% for the spleen and liver, respectively. For all organs, the cumulative DVHs showed improvement after nonrigid registration and the normalized absolute error of differential DVHs ranged from 6.79% to

  5. Method determining the nature of oscillating motion of the aircraft based on the analysis of coefficients of aerodynamic damping derivatives

    NASA Astrophysics Data System (ADS)

    Dyadkin, A. A.; Khatuntseva, O. N.

    2014-12-01

    Analysis of experimental data shows that the nature of the oscillating motion of an aircraft does not depend uniquely on the value of the coefficients of aerodynamic damping derivatives. The present work makes an attempt to explain this phenomenon and develops a methodology to adequately characterize the oscillating motion of aircraft based on the analysis of the coefficients of aerodynamic damping derivatives.

  6. 4D-analysis of left ventricular heart cycle using procrustes motion analysis.

    PubMed

    Piras, Paolo; Evangelista, Antonietta; Gabriele, Stefano; Nardinocchi, Paola; Teresi, Luciano; Torromeo, Concetta; Schiariti, Michele; Varano, Valerio; Puddu, Paolo Emilio

    2014-01-01

    The aim of this study is to investigate human left ventricular heart morphological changes in time among 17 healthy subjects. Preliminarily, 2 patients with volumetric overload due to aortic insufficiency were added to our analyses. We propose a special strategy to compare the shape, orientation and size of cardiac cycle's morphological trajectories in time. We used 3D data obtained by Speckle Tracking Echocardiography in order to detect semi-automated and homologous landmarks clouds as proxies of left ventricular heart morphology. An extended Geometric Morphometrics toolkit in order to distinguish between intra- and inter-individual shape variations was used. Shape of trajectories with inter-individual variation were compared under the assumption that trajectories attributes, estimated at electrophysiologically homologous times are expressions of left ventricular heart function. We found that shape analysis as commonly applied in Geometric Morphometrics studies fails in identifying a proper morpho-space to compare the shape of morphological trajectories in time. To overcome this problem, we performed a special type of Riemannian Parallel Transport, called "linear shift". Whereas the two patients with aortic insufficiency were not differentiated in the static shape analysis from the healthy subjects, they set apart significantly in the analyses of motion trajectory's shape and orientation. We found that in healthy subjects, the variations due to inter-individual morphological differences were not related to shape and orientation of morphological trajectories. Principal Component Analysis showed that volumetric contraction, torsion and twist are differently distributed on different axes. Moreover, global shape change appeared to be more correlated with endocardial shape change than with the epicardial one. Finally, the total shape variation occurring among different subjects was significantly larger than that observable across properly defined morphological

  7. 4D-Analysis of Left Ventricular Heart Cycle Using Procrustes Motion Analysis

    PubMed Central

    Piras, Paolo; Evangelista, Antonietta; Gabriele, Stefano; Nardinocchi, Paola; Teresi, Luciano; Torromeo, Concetta; Schiariti, Michele; Varano, Valerio; Puddu, Paolo Emilio

    2014-01-01

    The aim of this study is to investigate human left ventricular heart morphological changes in time among 17 healthy subjects. Preliminarily, 2 patients with volumetric overload due to aortic insufficiency were added to our analyses. We propose a special strategy to compare the shape, orientation and size of cardiac cycle’s morphological trajectories in time. We used 3D data obtained by Speckle Tracking Echocardiography in order to detect semi-automated and homologous landmarks clouds as proxies of left ventricular heart morphology. An extended Geometric Morphometrics toolkit in order to distinguish between intra- and inter-individual shape variations was used. Shape of trajectories with inter-individual variation were compared under the assumption that trajectories attributes, estimated at electrophysiologically homologous times are expressions of left ventricular heart function. We found that shape analysis as commonly applied in Geometric Morphometrics studies fails in identifying a proper morpho-space to compare the shape of morphological trajectories in time. To overcome this problem, we performed a special type of Riemannian Parallel Transport, called “linear shift”. Whereas the two patients with aortic insufficiency were not differentiated in the static shape analysis from the healthy subjects, they set apart significantly in the analyses of motion trajectory’s shape and orientation. We found that in healthy subjects, the variations due to inter-individual morphological differences were not related to shape and orientation of morphological trajectories. Principal Component Analysis showed that volumetric contraction, torsion and twist are differently distributed on different axes. Moreover, global shape change appeared to be more correlated with endocardial shape change than with the epicardial one. Finally, the total shape variation occurring among different subjects was significantly larger than that observable across properly defined morphological

  8. ΔΔPT: a comprehensive toolbox for the analysis of protein motion

    PubMed Central

    2013-01-01

    Background Normal Mode Analysis is one of the most successful techniques for studying motions in proteins and macromolecules. It can provide information on the mechanism of protein functions, used to aid crystallography and NMR data reconstruction, and calculate protein free energies. Results ΔΔPT is a toolbox allowing calculation of elastic network models and principle component analysis. It allows the analysis of pdb files or trajectories taken from; Gromacs, Amber, and DL_POLY. As well as calculation of the normal modes it also allows comparison of the modes with experimental protein motion, variation of modes with mutation or ligand binding, and calculation of molecular dynamic entropies. Conclusions This toolbox makes the respective tools available to a wide community of potential NMA users, and allows them unrivalled ability to analyse normal modes using a variety of techniques and current software. PMID:23758746

  9. Statistical analysis of surrogate signals to incorporate respiratory motion variability into radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Wilms, Matthias; Ehrhardt, Jan; Werner, René; Marx, Mirko; Handels, Heinz

    2014-03-01

    Respiratory motion and its variability lead to location uncertainties in radiation therapy (RT) of thoracic and abdominal tumors. Current approaches for motion compensation in RT are usually driven by respiratory surrogate signals, e.g., spirometry. In this contribution, we present an approach for statistical analysis, modeling and subsequent simulation of surrogate signals on a cycle-by-cycle basis. The simulated signals represent typical patient-specific variations of, e.g., breathing amplitude and cycle period. For the underlying statistical analysis, all breathing cycles of an observed signal are consistently parameterized using approximating B-spline curves. Statistics on breathing cycles are then performed by using the parameters of the B-spline approximations. Assuming that these parameters follow a multivariate Gaussian distribution, realistic time-continuous surrogate signals of arbitrary length can be generated and used to simulate the internal motion of tumors and organs based on a patient-specific diffeomorphic correspondence model. As an example, we show how this approach can be employed in RT treatment planning to calculate tumor appearance probabilities and to statistically assess the impact of respiratory motion and its variability on planned dose distributions.

  10. Probabilistic Social Behavior Analysis by Exploring Body Motion-Based Patterns.

    PubMed

    Roudposhti, Kamrad Khoshhal; Nunes, Urbano; Dias, Jorge

    2016-08-01

    Understanding human behavior through nonverbal-based features, is interesting in several applications such as surveillance, ambient assisted living and human-robot interaction. In this article in order to analyze human behaviors in social context, we propose a new approach which explores interrelations between body part motions in scenarios with people doing a conversation. The novelty of this method is that we analyze body motion-based features in frequency domain to estimate different human social patterns: Interpersonal Behaviors (IBs) and a Social Role (SR). To analyze the dynamics and interrelations of people's body motions, a human movement descriptor is used to extract discriminative features, and a multi-layer Dynamic Bayesian Network (DBN) technique is proposed to model the existent dependencies. Laban Movement Analysis (LMA) is a well-known human movement descriptor, which provides efficient mid-level information of human body motions. The mid-level information is useful to extract the complex interdependencies. The DBN technique is tested in different scenarios to model the mentioned complex dependencies. The study is applied for obtaining four IBs (Interest, Indicator, Empathy and Emphasis) to estimate one SR (Leading).The obtained results give a good indication of the capabilities of the proposed approach for people interaction analysis with potential applications in human-robot interaction. PMID:26540675

  11. Evaluation of suitability of a micro-processing unit of motion analysis for upper limb tracking.

    PubMed

    Barraza Madrigal, José Antonio; Cardiel, Eladio; Rogeli, Pablo; Leija Salas, Lorenzo; Muñoz Guerrero, Roberto

    2016-08-01

    The aim of this study is to assess the suitability of a micro-processing unit of motion analysis (MPUMA), for monitoring, reproducing, and tracking upper limb movements. The MPUMA is based on an inertial measurement unit, a 16-bit digital signal controller and a customized algorithm. To validate the performance of the system, simultaneous recordings of the angular trajectory were performed with a video-based motion analysis system. A test of the flexo-extension of the shoulder joint during the active elevation in a complete range of 120º of the upper limb was carried out in 10 healthy volunteers. Additional tests were carried out to assess MPUMA performance during upper limb tracking. The first, a 3D motion reconstruction of three movements of the shoulder joint (flexo-extension, abduction-adduction, horizontal internal-external rotation), and the second, an upper limb tracking online during the execution of three movements of the shoulder joint followed by a continuous random movement without any restrictions by using a virtual model and a mechatronic device of the shoulder joint. Experimental results demonstrated that the MPUMA measured joint angles that are close to those from a motion-capture system with orientation RMS errors less than 3º. PMID:27185034

  12. Hilbert-Huang transform analysis of dynamic and earthquake motion recordings

    USGS Publications Warehouse

    Zhang, R.R.; Ma, S.; Safak, E.; Hartzell, S.

    2003-01-01

    This study examines the rationale of Hilbert-Huang transform (HHT) for analyzing dynamic and earthquake motion recordings in studies of seismology and engineering. In particular, this paper first provides the fundamentals of the HHT method, which consist of the empirical mode decomposition (EMD) and the Hilbert spectral analysis. It then uses the HHT to analyze recordings of hypothetical and real wave motion, the results of which are compared with the results obtained by the Fourier data processing technique. The analysis of the two recordings indicates that the HHT method is able to extract some motion characteristics useful in studies of seismology and engineering, which might not be exposed effectively and efficiently by Fourier data processing technique. Specifically, the study indicates that the decomposed components in EMD of HHT, namely, the intrinsic mode function (IMF) components, contain observable, physical information inherent to the original data. It also shows that the grouped IMF components, namely, the EMD-based low- and high-frequency components, can faithfully capture low-frequency pulse-like as well as high-frequency wave signals. Finally, the study illustrates that the HHT-based Hilbert spectra are able to reveal the temporal-frequency energy distribution for motion recordings precisely and clearly.

  13. Multi-level model for 2D human motion analysis and description

    NASA Astrophysics Data System (ADS)

    Foures, Thomas; Joly, Philippe

    2003-01-01

    This paper deals with the proposition of a model for human motion analysis in a video. Its main caracteristic is to adapt itself automatically to the current resolution, the actual quality of the picture, or the level of precision required by a given application, due to its possible decomposition into several hierarchical levels. The model is region-based to address some analysis processing needs. The top level of the model is only defined with 5 ribbons, which can be cut into sub-ribbons regarding to a given (or an expected) level of details. Matching process between model and current picture consists in the comparison of extracted subject shape with a graphical rendering of the model built on the base of some computed parameters. The comparison is processed by using a chamfer matching algorithm. In our developments, we intend to realize a platform of interaction between a dancer and tools synthetizing abstract motion pictures and music in the conditions of a real-time dialogue between a human and a computer. In consequence, we use this model in a perspective of motion description instead of motion recognition: no a priori gestures are supposed to be recognized as far as no a priori application is specially targeted. The resulting description will be made following a Description Scheme compliant with the movement notation called "Labanotation".

  14. Intra- and interfractional patient motion for a variety of immobilization devices

    SciTech Connect

    Engelsman, Martijn; Rosenthal, Stanley J.; Michaud, Susan L.; Adams, Judith A.; Schneider, Robert J.; Bradley, Stephen G.; Flanz, Jacob B.; Kooy, Hanne M.

    2005-11-15

    The magnitude of inter- and intrafractional patient motion has been assessed for a broad set of immobilization devices. Data was analyzed for the three ordinal directions - left-right (x), sup-inf (y), and ant-post (z) - and the combined spatial displacement. We have defined 'rigid' and 'nonrigid' immobilization devices depending on whether they could be rigidly and reproducibly connected to the treatment couch or not. The mean spatial displacement for intrafractional motion for rigid devices is 1.3 mm compared to 1.9 mm for nonrigid devices. The modified Gill-Thomas-Cosman frame performed best at controlling intrafractional patient motion, with a 95% probability of observing a three-dimensional (3D) vector length of motion (v{sub 95}) of less than 1.8 mm, but could not be evaluated for interfractional motion. All other rigid and nonrigid immobilization devices had a v{sub 95} of more than 3 mm for intrafractional patient motion. Interfractional patient motion was only evaluated for the rigid devices. The mean total interfractional displacement was at least 3.0 mm for these devices while v{sub 95} was at least 6.0 mm.

  15. Error analysis of motion correction method for laser scanning of moving objects

    NASA Astrophysics Data System (ADS)

    Goel, S.; Lohani, B.

    2014-05-01

    The limitation of conventional laser scanning methods is that the objects being scanned should be static. The need of scanning moving objects has resulted in the development of new methods capable of generating correct 3D geometry of moving objects. Limited literature is available showing development of very few methods capable of catering to the problem of object motion during scanning. All the existing methods utilize their own models or sensors. Any studies on error modelling or analysis of any of the motion correction methods are found to be lacking in literature. In this paper, we develop the error budget and present the analysis of one such `motion correction' method. This method assumes availability of position and orientation information of the moving object which in general can be obtained by installing a POS system on board or by use of some tracking devices. It then uses this information along with laser scanner data to apply correction to laser data, thus resulting in correct geometry despite the object being mobile during scanning. The major application of this method lie in the shipping industry to scan ships either moving or parked in the sea and to scan other objects like hot air balloons or aerostats. It is to be noted that the other methods of "motion correction" explained in literature can not be applied to scan the objects mentioned here making the chosen method quite unique. This paper presents some interesting insights in to the functioning of "motion correction" method as well as a detailed account of the behavior and variation of the error due to different sensor components alone and in combination with each other. The analysis can be used to obtain insights in to optimal utilization of available components for achieving the best results.

  16. Analysis of sediment particle velocity in wave motion based on wave flume experiments

    NASA Astrophysics Data System (ADS)

    Krupiński, Adam

    2012-10-01

    The experiment described was one of the elements of research into sediment transport conducted by the Division of Geotechnics of West-Pomeranian University of Technology. The experimental analyses were performed within the framework of the project "Building a knowledge transfer network on the directions and perspectives of developing wave laboratory and in situ research using innovative research equipment" launched by the Institute of Hydroengineering of the Polish Academy of Sciences in Gdańsk. The objective of the experiment was to determine relations between sediment transport and wave motion parameters and then use the obtained results to modify formulas defining sediment transport in rivers, like Ackers-White formula, by introducing basic parameters of wave motion as the force generating bed material transport. The article presents selected results of the experiment concerning sediment velocity field analysis conducted for different parameters of wave motion. The velocity vectors of particles suspended in water were measured with a Particle Image Velocimetry (PIV) apparatus registering suspended particles in a measurement flume by producing a series of laser pulses and analysing their displacement with a high-sensitivity camera connected to a computer. The article presents velocity fields of suspended bed material particles measured in the longitudinal section of the wave flume and their comparison with water velocity profiles calculated for the definite wave parameters. The results presented will be used in further research for relating parameters essential for the description of monochromatic wave motion to basic sediment transport parameters and "transforming" mean velocity and dynamic velocity in steady motion to mean wave front velocity and dynamic velocity in wave motion for a single wave.

  17. Mathematical analysis of errors resulting from choice of reference frame coordinates in measuring human joint motion

    SciTech Connect

    Hollerbach, K.; Hollister, A.

    1995-02-01

    Measurements of human joint motion frequently involve the use of opto-electronic and other motion analysis systems where some type of makers are used to establish joint motion within a global reference coordinate frame. Typically, this global reference coordinate frame is chosen to be most convenient for the person carrying out the experiment in which the joint motion is measured, and Euler angles are chosen as the measure of joint motion. Results, however, may be quite arbitrary and therefore rendered meaningless if the reference frame is not properly chosen with respect to the physical joint axis. In order to make a proper choice of coordinate axes in the reference frame, one must take into consideration both the location and the orientation of die physical joint axis relative to the reference frame`s axes. In nature, joint axes can exist at any orientation and location relative to an arbitrarily chosen global reference frame. An axis that is not properly aligned with the global reference frame is therefore called an arbitrary axis. We demonstrate that errors result when measurements and calculations are made in a global reference frame that is arbitrarily placed and oriented, with little regard for the physical axis. Slight offsets of global reference frame produce significant errors in recording rotations about the joint axis. We conclude that, in order to be able to reach valid conclusions from joint motion measurements, the reference frame with respect to which all are taken must be brought to the physical axis; furthermore, one of the reference axes must be aligned with the physical axis. Any other choice of reference axes will result in misleading an often erroneous results.

  18. SU-E-J-194: Continuous Patient Surface Monitoring and Motion Analysis During Lung SBRT

    SciTech Connect

    Chung, E; Rioux, A; Benedict, S; Yamamoto, T

    2015-06-15

    Purpose: Continuous monitoring of the SBRT lung patient motion during delivery is critical for ensuring adequate target volume margins in stereotactic body radiotherapy (SBRT). This work assesses the deviation of the patient surface motion using a real-time surface tracking system throughout treatment delivery. Methods: Our SBRT protocol employs abdominal compression to reduce the diaphragm movement to within 1 cm, and this is confirmed daily with fluoroscopy. Most patients are prescribed 3–5 fractions, and on treatment day a repeat motion analysis with fluoroscopy is performed, followed by a kV CBCT is aligned with the original planning CT image for 3D setup confirmation. During this entire process a patient surface data restricted to whole chest or the sternum at the middle of the breathing cycle was captured using AlignRT optical surface tracking system and defined as a reference surface. For 10 patients, the deviation of the patient position from the reference surface was recorded during the SBRT delivery in the anterior-posterior (AP) direction at 3–6 measurements per second. Results: On average, the patient position deviated from the reference surface more than 4 mm, 3 mm and 2 mm in the AP direction for 0.95%, 3.7% and 11.1% of the total treatment time, respectively. Only one of the 10 patients showed that the maximum deviation of the patient surface during the SBRT delivery was greater than 1 cm. The average deviation of the patient surface from the reference surface during the SBRT delivery was not greater than 1.6 mm for any patient. Conclusion: This investigation indicates that AP motion can be significant even though the frequency is low. Continuous monitoring during SBRT has demonstrated value in monitoring patient motion ensuring that margins selected for SBRT are appropriate, and the use of non-ionizing and high-frequency imaging can provide useful indicators of motion during treatment.

  19. A non-rigid registration method for mouse whole body skeleton registration

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Zahra, David; Bourgeat, Pierrick; Berghofer, Paula; Acosta Tamayo, Oscar; Wimberley, Catriona; Gregoire, Marie Claude; Salvado, Olivier

    2010-03-01

    Micro-CT/PET imaging scanner provides a powerful tool to study tumor in small rodents in response to therapy. Accurate image registration is a necessary step to quantify the characteristics of images acquired in longitudinal studies. Small animal registration is challenging because of the very deformable body of the animal often resulting in different postures despite physical restraints. In this paper, we propose a non-rigid registration approach for the automatic registration of mouse whole body skeletons, which is based on our improved 3D shape context non-rigid registration method. The whole body skeleton registration approach has been tested on 21 pairs of mouse CT images with variations of individuals and time-instances. The experimental results demonstrated the stability and accuracy of the proposed method for automatic mouse whole body skeleton registration.

  20. Free-form deformation based non-rigid registration on breast cancer MR imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Liangbin; Suo, Shiteng; Lu, Xuesong; Li, Yuehua; Chen, Li; Zhang, Su

    2013-07-01

    High-Intensity Focused Ultrasound treatment combined with magnetic resonance technology (MRI-guided HIFU, MRgHIFU) can protect the thermal ablation without harming the surrounding tissue by using MRI for target positioning, where image registration plays an important role in the implementation of precise treatment. In this paper, we apply three-dimension free-form deformation non-rigid registration on treatment plan amendments and tracking of breast cancer. Free-form deformation based and demons based non-rigid registration are respectively employed on breast cancer MR imaging required at different times before and after for comparison. The results of the experiments show that the registration performed on the breast tumor image data with slight and larger deformation is effective, and the mutual information of the ROI increased from 1.49 before registration to 1.53.

  1. An improved 3D shape context registration method for non-rigid surface registration

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Zahra, David; Bourgeat, Pierrick; Berghofer, Paula; Acosta Tamayo, Oscar; Wimberley, Catriona; Gregoire, Marie-Claude; Salvado, Olivier

    2010-03-01

    3D shape context is a method to define matching points between similar shapes as a pre-processing step to non-rigid registration. The main limitation of the approach is point mismatching, which includes long geodesic distance mismatch and neighbors crossing mismatch. In this paper, we propose a topological structure verification method to correct the long geodesic distance mismatch and a correspondence field smoothing method to correct the neighbors crossing mismatch. A robust 3D shape context model is proposed and further combined with thin-plate spline model for non-rigid surface registration. The method was tested on phantoms and rat hind limb skeletons from micro CT images. The results from experiments on mouse hind limb skeletons indicate that the approach is robust.

  2. Application of Dense Array Analysis to Strong Motion Data Recorded at The SMART-1 Array

    NASA Astrophysics Data System (ADS)

    Francois, C.

    2003-12-01

    This paper is part of a project to design an optimal strong motion dense array in New Zealand. The overall project looks at developing a dense network of strong motion seismometers in order to measure directly the rupture process of major seismogenic sources such as the Alpine Fault and strands of the Marlborough Fault System defining the South Island sector of the Australia-Pacific plate boundary zone. This work shows the application of dense array analysis to a set of seismic data recorded at the SMART-1 array in Taiwan (data kindly provided by the Institute of Earth Sciences, Academia Sinica Data Management Center for Strong Motion Seismology - Taiwan). The data have been processed and analysed applying modified MUSIC algorithm with higher computing capabilities giving higher resolution results. The SMART-1 array is an ideal dense array of 37 strong motion instruments set up in the following configuration: 3 concentric circles of radii 200m, 1 km and 2km, and one central station. The studied event called Event 5 was recorded on January 29th 1981 and had a magnitude 6. Event 5 is an ideal case study as its epicentral distance (about 30 km) is comparable to epicentral distances for expected events on the Alpine Fault or on the Hope Fault in New Zealand. Event 5 has been previously widely analysed using strong motion array studies and aftershocks studies but with disagreeing results; this new study hopes to bring new insights in the debate. Using simple fault and velocity models, this latest analysis of Event 5 has given the following rupture properties. It has confirmed one of the hypotheses that the fault ruptured from southeast to northwest. The higher resolution of the computation has improved the location of the hypocentre depth and the location of the propagating rupture front. This allowed resolving changes of velocities in the rupture process and locating asperities in the fault plane. Contrary to the previous array studies, the inferred size of the fault

  3. Analysis of Human's Motions Based on Local Mean Decomposition in Through-wall Radar Detection

    NASA Astrophysics Data System (ADS)

    Lu, Qi; Liu, Cai; Zeng, Zhaofa; Li, Jing; Zhang, Xuebing

    2016-04-01

    Observation of human motions through a wall is an important issue in security applications and search-and rescue. Radar has advantages in looking through walls where other sensors give low performance or cannot be used at all. Ultrawideband (UWB) radar has high spatial resolution as a result of employment of ultranarrow pulses. It has abilities to distinguish the closely positioned targets and provide time-lapse information of targets. Moreover, the UWB radar shows good performance in wall penetration when the inherently short pulses spread their energy over a broad frequency range. Human's motions show periodic features including respiration, swing arms and legs, fluctuations of the torso. Detection of human targets is based on the fact that there is always periodic motion due to breathing or other body movements like walking. The radar can gain the reflections from each human body parts and add the reflections at each time sample. The periodic movements will cause micro-Doppler modulation in the reflected radar signals. Time-frequency analysis methods are consider as the effective tools to analysis and extract micro-Doppler effects caused by the periodic movements in the reflected radar signal, such as short-time Fourier transform (STFT), wavelet transform (WT), and Hilbert-Huang transform (HHT).The local mean decomposition (LMD), initially developed by Smith (2005), is to decomposed amplitude and frequency modulated signals into a small set of product functions (PFs), each of which is the product of an envelope signal and a frequency modulated signal from which a time-vary instantaneous phase and instantaneous frequency can be derived. As bypassing the Hilbert transform, the LMD has no demodulation error coming from window effect and involves no negative frequency without physical sense. Also, the instantaneous attributes obtained by LMD are more stable and precise than those obtained by the empirical mode decomposition (EMD) because LMD uses smoothed local

  4. Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis

    PubMed Central

    Schwegmann, Alexander; Lindemann, Jens P.; Egelhaaf, Martin

    2014-01-01

    Knowing the depth structure of the environment is crucial for moving animals in many behavioral contexts, such as collision avoidance, targeting objects, or spatial navigation. An important source of depth information is motion parallax. This powerful cue is generated on the eyes during translatory self-motion with the retinal images of nearby objects moving faster than those of distant ones. To investigate how the visual motion pathway represents motion-based depth information we analyzed its responses to image sequences recorded in natural cluttered environments with a wide range of depth structures. The analysis was done on the basis of an experimentally validated model of the visual motion pathway of insects, with its core elements being correlation-type elementary motion detectors (EMDs). It is the key result of our analysis that the absolute EMD responses, i.e., the motion energy profile, represent the contrast-weighted nearness of environmental structures during translatory self-motion at a roughly constant velocity. In other words, the output of the EMD array highlights contours of nearby objects. This conclusion is largely independent of the scale over which EMDs are spatially pooled and was corroborated by scrutinizing the motion energy profile after eliminating the depth structure from the natural image sequences. Hence, the well-established dependence of correlation-type EMDs on both velocity and textural properties of motion stimuli appears to be advantageous for representing behaviorally relevant information about the environment in a computationally parsimonious way. PMID:25136314

  5. Evaluation and validation methods for intersubject nonrigid 3D image registration of the human brain

    NASA Astrophysics Data System (ADS)

    Guo, Ting; Starreveld, Yves P.; Peters, Terry M.

    2005-04-01

    This work presents methodologies for assessing the accuracy of non-rigid intersubject registration algorithms from both qualitative and quantitative perspectives. The first method was based on a set of 43 anatomical landmarks. MRI brain images of 12 subjects were non-rigidly registered to the standard MRI dataset. The "gold-standard" coordinates of the 43 landmarks in the target were estimated by averaging their coordinates after 6 tagging sessions. The Euclidean distance between each landmark of a subject after warping to the reference space and the homologous "gold-standard" landmark on the reference image was considered as the registration error. Another method based on visual inspection software displaying the spatial change of colour-coded spheres, before and after warping, was also developed to evaluate the performance of the non-rigid warping algorithms within the homogeneous regions in the deep-brain. Our methods were exemplified by assessing and comparing the accuracy of two intersubject non-rigid registration approaches, AtamaiWarp and ANIMAL algorithms. From the first method, the average registration error was 1.04mm +/- 0.65mm for AtamaiWarp, and 1.59mm +/- 1.47mm for ANIMAL. With maximum registration errors of 2.78mm and 3.90mm respectively, AtamaiWarp and ANIMAL located 58% and 35% landmarks respectively with registration errors less than 1mm. A paired t-test showed that the differences in registration error between AtamaiWarp and ANIMAL were significant (P < 0.002) demonstrating that AtamaiWarp, in addition to being over 60 times faster than ANIMAL, also provides more accurate results. From the second method, both algorithms treated the interior of homogeneous regions in an appropriate manner.

  6. A novel scheme for automatic nonrigid image registration using deformation invariant feature and geometric constraint

    NASA Astrophysics Data System (ADS)

    Deng, Zhipeng; Lei, Lin; Zhou, Shilin

    2015-10-01

    Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.

  7. Summary of transformation equations and equations of motion used in free flight and wind tunnel data reduction and analysis

    NASA Technical Reports Server (NTRS)

    Gainer, T. G.; Hoffman, S.

    1972-01-01

    Basic formulations for developing coordinate transformations and motion equations used with free-flight and wind-tunnel data reduction are presented. The general forms presented include axes transformations that enable transfer back and forth between any of the five axes systems that are encountered in aerodynamic analysis. Equations of motion are presented that enable calculation of motions anywhere in the vicinity of the earth. A bibliography of publications on methods of analyzing flight data is included.

  8. Tracking and Motion Analysis of Crack Propagations in Crystals for Molecular Dynamics

    SciTech Connect

    Tsap, L V; Duchaineau, M; Goldgof, D B

    2001-05-14

    This paper presents a quantitative analysis for a discovery in molecular dynamics. Recent simulations have shown that velocities of crack propagations in crystals under certain conditions can become supersonic, which is contrary to classical physics. In this research, they present a framework for tracking and motion analysis of crack propagations in crystals. It includes line segment extraction based on Canny edge maps, feature selection based on physical properties, and subsequent tracking of primary and secondary wavefronts. This tracking is completely automated; it runs in real time on three 834-image sequences using forty 250 MHZ processors. Results supporting physical observations are presented in terms of both feature tracking and velocity analysis.

  9. Fixtureless geometric inspection of nonrigid parts using "generalized numerical inspection fixture"

    NASA Astrophysics Data System (ADS)

    Radvar Esfahlan, Hassan

    Free-form nonrigid parts form the substance of today's automotive and aerospace industries. These parts have different shapes in free state due to their dimensional and geometric variations, gravity and residual strains. For the geometric inspection of such compliant parts, special inspection fixtures, in combination with coordinate measuring systems (CMM) and/or optical data acquisition devices (scanners) are used. This inevitably causes additional costs and delays that result in a lack of competitiveness in the industry. The goal of this thesis is to facilitate the dimensional and geometrical inspection of flexible components from a point cloud without using a jig or secondary conformation operation. More specifically, we aim to develop a methodology to localize and quantify the profile defects in the case of thin shells which are typical to the aerospace and automotive industries. The presented methodology is based on the fact that the interpoint geodesic distance between any two points of a shape remains unchangeable during an isometric deformation. This study elaborates on the theory and general methods for the metrology of nonrigid parts. We have developed a Generalized Numerical Inspection Fixture (GNIF), a robust methodology which merges existing technologies in metric and computational geometry, nonlinear dimensionality reduction techniques, and finite element methods to introduce a general approach to the fixtureless geometrical inspection of nonrigid parts.

  10. Non-rigid surface proximity registration of CT images considering the influence of pleural thickenings

    NASA Astrophysics Data System (ADS)

    Faltin, Peter; Chaisaowong, Kraisorn; Kraus, Thomas; Aach, Til

    2012-02-01

    Given two CT thorax images from the same patient taken at two different points in time, a detailed follow-up assessment of pleural thickenings and their growth requires a registration of the regarded image regions. While the spatio-temporal matching of thickenings could be achieved by a rigid registration, the direct visual comparison or the combination of thickening segmentations from different points in time require a more precise registration. We present a new method which provides a non-rigid registration of the 3D image data in the region close to the lung surface, where pleural thickenings are located. A B-spline based approach is used to compensate the non-rigid deformations of the lungs. The control-grid for the B-splines is determined using a non-iterative method, which requires matched feature points from the registered image pair. However, current non-rigid registration methods compensate all changes of the lung surface. This is in our case explicitly undesired for changes caused by pleural thickenings. Therefore, our approach takes the thickenings into account by choosing feature points not directly located on the lung surface. The number of feature points is reduced and only strong features are kept for a 3D block matching.

  11. Validation of a Non-Rigid Registration Error Detection Algorithm Using Clinical MRI Brain Data

    PubMed Central

    Datteri, Ryan D.; Liu, Yuan; D’Haese, Pierre-François; Dawant, Benoit M.

    2014-01-01

    Identification of error in non-rigid registration is a critical problem in the medical image processing community. We recently proposed an algorithm that we call “Assessing Quality Using Image Registration Circuits” (AQUIRC) to identify non-rigid registration errors and have tested its performance using simulated cases. In this article, we extend our previous work to assess AQUIRC’s ability to detect local non-rigid registration errors and validate it quantitatively at specific clinical landmarks, namely the Anterior Commissure (AC) and the Posterior Commissure (PC). To test our approach on a representative range of error we utilize 5 different registration methods and use 100 target images and 9 atlas images. Our results show that AQUIRC’s measure of registration quality correlates with the true target registration error (TRE) at these selected landmarks with an R2 = 0.542. To compare our method to a more conventional approach, we compute Local Normalized Correlation Coefficient (LNCC) and show that AQUIRC performs similarly. However, a multi-linear regression performed with both AQUIRC’s measure and LNCC shows a higher correlation with TRE than correlations obtained with either measure alone, thus showing the complementarity of these quality measures. We conclude the article by showing that the AQUIRC algorithm can be used to reduce registration errors for all five algorithms. PMID:25095252

  12. Motion of a Moving Elastic Beam Carrying a Moving MASS—ANALYSIS and Experimental Verification

    NASA Astrophysics Data System (ADS)

    PARK, S.; YOUM, Y.

    2001-02-01

    In this paper, vibrational motion of an elastic beam fixed on a moving cart and carrying a moving mass is investigated. The equations of motion of the beam-mass-cart system are derived and the coupled dynamic equations are solved by the unconstrained modal analysis. In modal analysis, the exact normal mode solutions corresponding to the eigenfrequencies for each position of the moving mass and the ratios of the weight of the beam-mass-cart system are used. Proper transformation of time solutions between the normal modes for a position and those for the next position of the moving mass is also considered. Numerical simulations are carried out to obtain open-loop responses of the system in tracking pre-designed paths of the moving mass. The simulation results show that the model predicts the dynamic behavior of the beam-mass-cart system well. Experiments are carried out to show the validity of the proposed analytical method.

  13. A measurement approach based on micro-Doppler maps for signature and motion analysis

    NASA Astrophysics Data System (ADS)

    Ricci, R.; Sona, A.

    2013-05-01

    In this paper, a novel and comprehensive measurement approach is proposed for the detection and analysis of human motion signature. The approach combines theoretical concepts and tools of micro-Doppler theory, image processing, and human modeling, in a original way. The attention is primarily focused on the description of the most meaningful parameters influencing the accuracy of the obtained signature. The ultimate purpose is to provide a framework through which organizing, comparing, and merging future research activities, ideas and results in the field of human motion signature analysis for security, health and disaster recovery purposes. Some simulation and experimental results underlying the feasibility and effectiveness of the measurement approach are also summarized and analyzed.

  14. Motion analysis of the glenohumeral joint during activities of daily living.

    PubMed

    Lovern, B; Stroud, L A; Ferran, N A; Evans, S L; Evans, R O; Holt, C A

    2010-12-01

    The shoulder complex has a larger range of motion (ROM) than any other joint complex in the human body, leaving it prone to numerous injuries. Objective kinematic analysis could yield useful functional insights that may assist clinical practice. Non-invasive optoelectronic motion analysis techniques have been used to assess the shoulders of five healthy subjects performing ROM tasks and 10 functional tasks of daily living. The four most demanding tasks - touching the side and back of the head, brushing the opposite side of the head, lifting an object to shoulder height and lifting an object to head height, required 78%, 60%, 61% and 71%, respectively, of the glenohumeral elevation necessary for full abduction in the scapular plane for the 10 shoulders. This has implications for clinical practice where maximum arm elevation is commonly used to determine a patient's ability to return to work and other everyday activities. PMID:21153974

  15. Analysis of wave packet motion in frequency and time domain: oxazine 1.

    PubMed

    Braun, Markus; Sobotta, Constanze; Dürr, Regina; Pulvermacher, Horst; Malkmus, Stephan

    2006-08-17

    Wave packet motion in the laser dye oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral range of 600-690 nm was accessible by amplified broadband probe pulses covering the overlap region of ground-state bleach and stimulated emission signal. The influence of vibrational wave packets on the optical signal is analyzed in the frequency domain and the time domain. For the analysis in the frequency domain an algorithm is presented that accounts for interference effects of neighbored vibrational modes. By this method amplitude, phase and decay time of vibrational modes are retrieved as a function of probe wavelength and distortions due to neighbored modes are reduced. The analysis of the data in the time domain yields complementary information on the intensity, central wavelength, and spectral width of the optical bleach spectrum due to wave packet motion. PMID:16898679

  16. Robust Spectral Analysis of Thoraco-Abdominal Motion and Oxymetry in Obstructive Sleep Apnea

    PubMed Central

    Nino, Cesar L.; Rodriguez-Martinez, Carlos E.; Gutierrez, Maria J.; Singareddi, Ravi; Nino, Gustavo

    2014-01-01

    Standard PSG montage involves the use of nasal-oral airflow sensors to visualize cyclic episodes of upper airflow interruption, which are considered diagnostic of sleep apnea. Given the high-cost and discomfort associated with in-laboratory PSG, there is an emergent need for novel technology that simplifies OSA screening and diagnosis with less expensive methods. The main goal of this project was to identify novel OSA signatures based on the spectral analysis of thoraco-abdominal motion channels. Our main hypothesis was that proper spectral analysis can detect OSA cycles in adults using simultaneous recording of SaO2 and either, chest or abdominal motion. The impact of this new approach is that it may allow the design of more comfortable and reliable portable devices for screening, diagnosis and monitoring of OSA, functioning only with oximetry and airflow-independent (abdominal or chest) breathing sensors. PMID:24110335

  17. Unsteady Aerodynamic and Dynamic Analysis of the Meridian UAS in a Rolling-Yawing Motion

    NASA Astrophysics Data System (ADS)

    Lykins, Ryan

    The nonlinear and unsteady aerodynamic effects of operating the Meridian unmanned aerial system (UAS) in crosswinds and at high angular rates is investigated in this work. The Meridian UAS is a large autonomous aircraft, with a V-tail configuration, operated in Polar Regions for the purpose of remotely measuring ice sheet thickness. The inherent nonlinear coupling produced by the V-tail, along with the strong atmospheric disturbances, has made classical model identification methods inadequate for proper model development. As such, a powerful tool known as Fuzzy Logic Modeling (FLM) was implemented to generate time-dependent, nonlinear, and unsteady aerodynamic models using flight test data collected in Greenland in 2011. Prior to performing FLM, compatibility analysis is performed on the data, for the purpose of systematic bias removal and airflow angle estimation. As one of the advantages of FLM is the ability to model unsteady aerodynamics, the reduced frequency for both longitudinal and lateral-directional motions is determined from the unbiased data, using Theodorsen's theory of unsteadiness, which serves as an input parameter in modeling. These models have been used in this work to identify pilot induced oscillations, unsteady coupling motions, unsteady motion due to the slipstream and cross wind interaction, and destabilizing motions and orientations. This work also assesses the accuracy of preliminary aircraft dynamic models developed using engineering level software, and addresses the autopilot Extended Kalman Filter state estimations.

  18. Statistical motion vector analysis for object tracking in compressed video streams

    NASA Astrophysics Data System (ADS)

    Leny, Marc; Prêteux, Françoise; Nicholson, Didier

    2008-02-01

    Compressed video is the digital raw material provided by video-surveillance systems and used for archiving and indexing purposes. Multimedia standards have therefore a direct impact on such systems. If MPEG-2 used to be the coding standard, MPEG-4 (part 2) has now replaced it in most installations, and MPEG-4 AVC/H.264 solutions are now being released. Finely analysing the complex and rich MPEG-4 streams is a challenging issue addressed in that paper. The system we designed is based on five modules: low-resolution decoder, motion estimation generator, object motion filtering, low-resolution object segmentation, and cooperative decision. Our contributions refer to as the statistical analysis of the spatial distribution of the motion vectors, the computation of DCT-based confidence maps, the automatic motion activity detection in the compressed file and a rough indexation by dedicated descriptors. The robustness and accuracy of the system are evaluated on a large corpus (hundreds of hours of in-and outdoor videos with pedestrians and vehicles). The objective benchmarking of the performances is achieved with respect to five metrics allowing to estimate the error part due to each module and for different implementations. This evaluation establishes that our system analyses up to 200 frames (720x288) per second (2.66 GHz CPU).

  19. Work-related chronic neck impairment. Neck motion analysis in female traverse crane operators.

    PubMed

    Alund, M; Larsson, S E; Lewin, T

    1992-09-01

    Twenty-one female steel industry traverse crane operators with long-term sick-leave (3 (1-8) years) due to chronic neck disability underwent careful analysis of case history, physical status and electrogoniometric three-dimensional recordings of active neck motion. Results were compared with those from working female crane operators having identical work posture and tasks and, further, with a group of working female clerks. The sick-listed crane operators had previous frequent contacts with the primary health care because of complaints from the neck and back. In comparison with the reference groups, the sick-listed crane operators showed tenderness of the trapezius and levator scapulae muscles and a short neck stature in combination with impaired active neck motion range with reduced motion speed. The motion pattern was however unchanged. The findings are consistent with the clinical picture of chronic neck myalgia that persisted despite long-term absence from the previous exposure to high static work load upon the neck-shoulders. PMID:1411359

  20. Turbulent Fluid Motion 5: Fourier Analysis, the Spectral Form of the Continuum Equations, and Homogeneous Turbulence

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1996-01-01

    Background material on Fourier analysis and on the spectral form of the continuum equations, both averaged and unaveraged, are given. The equations are applied to a number of cases of homogeneous turbulence with and without mean gradients. Spectral transfer of turbulent activity between scales of motion is studied in some detail. The effects of mean shear, heat transfer, normal strain, and buoyancy are included in the analyses.

  1. Two Phase Non-Rigid Multi-Modal Image Registration Using Weber Local Descriptor-Based Similarity Metrics and Normalized Mutual Information

    PubMed Central

    Yang, Feng; Ding, Mingyue; Zhang, Xuming; Wu, Yi; Hu, Jiani

    2013-01-01

    Non-rigid multi-modal image registration plays an important role in medical image processing and analysis. Existing image registration methods based on similarity metrics such as mutual information (MI) and sum of squared differences (SSD) cannot achieve either high registration accuracy or high registration efficiency. To address this problem, we propose a novel two phase non-rigid multi-modal image registration method by combining Weber local descriptor (WLD) based similarity metrics with the normalized mutual information (NMI) using the diffeomorphic free-form deformation (FFD) model. The first phase aims at recovering the large deformation component using the WLD based non-local SSD (wldNSSD) or weighted structural similarity (wldWSSIM). Based on the output of the former phase, the second phase is focused on getting accurate transformation parameters related to the small deformation using the NMI. Extensive experiments on T1, T2 and PD weighted MR images demonstrate that the proposed wldNSSD-NMI or wldWSSIM-NMI method outperforms the registration methods based on the NMI, the conditional mutual information (CMI), the SSD on entropy images (ESSD) and the ESSD-NMI in terms of registration accuracy and computation efficiency. PMID:23765270

  2. A computer program for an analysis of the relative motion of a space station and a free flying experiment module

    NASA Technical Reports Server (NTRS)

    Butler, J. H.

    1971-01-01

    A preliminary analysis of the relative motion of a free flying experiment module in the vicinity of a space station under the perturbative effects of drag and earth oblateness was made. A listing of a computer program developed for determining the relative motion of a module utilizing the Cowell procedure is presented, as well as instructions for its use.

  3. Radiostereometric and Radiographic Analysis of Glenoid Component Motion After Total Shoulder Arthroplasty.

    PubMed

    Streit, Jonathan J; Shishani, Yousef; Greene, Meridith E; Nebergall, Audrey K; Wanner, John Paul; Bragdon, Charles R; Malchau, Henrik; Gobezie, Reuben

    2015-10-01

    Aseptic glenoid component loosening is a common cause of total shoulder arthroplasty (TSA) failure, but early detection is difficult because pain often appears late and radiolucent lines are of uncertain significance. This study sought to answer the following questions: (1) What types of glenoid component motion may be observed during the first 3 years following implantation?; (2) Is the appearance of radiolucent lines around the glenoid component a reliable indicator of component motion?; and (3) Are clinical outcomes correlated with early glenoid component motion within the first 3 years after TSA? Eleven patients (mean age, 60.6 years) underwent TSA using a cemented, all-polyethylene glenoid component with tantalum bead implantation. Clinical outcomes (American Shoulder and Elbow Surgeons [ASES] score, visual analog scale [VAS] pain score, and range of motion) were compared pre- and postoperatively, and radiolucencies were graded according to the criteria of Lazarus et al. Patients were evaluated using radiostereometric analysis at 6 months and 1, 2, and 3 years postoperatively to measure component micromotion in translation and rotation. At a mean follow-up of 50.2 months, mean ASES score had improved from 30.3 to 81.3 (P<.001), mean VAS pain score had improved from 8 to 1 (P<.001), active forward flexion had improved from 109° to 155° (P=.001), active external rotation had improved from 28° to 54° (P=.003), and internal rotation had improved from the level of the sacrum to L3 (P=.002). Radiolucencies were detected around none of the components at 1 year, 6 components at 2 years, and 5 components at 3 years, and these radiolucencies were mostly found around components that experienced high levels of rotational motion. PMID:26488784

  4. Including the effect of motion artifacts in noise and performance analysis of dual-energy contrast-enhanced mammography

    NASA Astrophysics Data System (ADS)

    Allec, N.; Abbaszadeh, S.; Scott, C. C.; Lewin, J. M.; Karim, K. S.

    2012-12-01

    In contrast-enhanced mammography (CEM), the dual-energy dual-exposure technique, which can leverage existing conventional mammography infrastructure, relies on acquiring the low- and high-energy images using two separate exposures. The finite time between image acquisition leads to motion artifacts in the combined image. Motion artifacts can lead to greater anatomical noise in the combined image due to increased mismatch of the background tissue in the images to be combined, however the impact has not yet been quantified. In this study we investigate a method to include motion artifacts in the dual-energy noise and performance analysis. The motion artifacts are included via an extended cascaded systems model. To validate the model, noise power spectra of a previous dual-energy clinical study are compared to that of the model. The ideal observer detectability is used to quantify the effect of motion artifacts on tumor detectability. It was found that the detectability can be significantly degraded when motion is present (e.g., detectability of 2.5 mm radius tumor decreased by approximately a factor of 2 for translation motion on the order of 1000 μm). The method presented may be used for a more comprehensive theoretical noise and performance analysis and fairer theoretical performance comparison between dual-exposure techniques, where motion artifacts are present, and single-exposure techniques, where low- and high-energy images are acquired simultaneously and motion artifacts are absent.

  5. Including the effect of motion artifacts in noise and performance analysis of dual-energy contrast-enhanced mammography.

    PubMed

    Allec, N; Abbaszadeh, S; Scott, C C; Lewin, J M; Karim, K S

    2012-12-21

    In contrast-enhanced mammography (CEM), the dual-energy dual-exposure technique, which can leverage existing conventional mammography infrastructure, relies on acquiring the low- and high-energy images using two separate exposures. The finite time between image acquisition leads to motion artifacts in the combined image. Motion artifacts can lead to greater anatomical noise in the combined image due to increased mismatch of the background tissue in the images to be combined, however the impact has not yet been quantified. In this study we investigate a method to include motion artifacts in the dual-energy noise and performance analysis. The motion artifacts are included via an extended cascaded systems model. To validate the model, noise power spectra of a previous dual-energy clinical study are compared to that of the model. The ideal observer detectability is used to quantify the effect of motion artifacts on tumor detectability. It was found that the detectability can be significantly degraded when motion is present (e.g., detectability of 2.5 mm radius tumor decreased by approximately a factor of 2 for translation motion on the order of 1000 μm). The method presented may be used for a more comprehensive theoretical noise and performance analysis and fairer theoretical performance comparison between dual-exposure techniques, where motion artifacts are present, and single-exposure techniques, where low- and high-energy images are acquired simultaneously and motion artifacts are absent. PMID:23202244

  6. Large-deformation modal coordinates for nonrigid vehicle dynamics

    NASA Technical Reports Server (NTRS)

    Likins, P. W.; Fleischer, G. E.

    1972-01-01

    The derivation of minimum-dimension sets of discrete-coordinate and hybrid-coordinate equations of motion of a system consisting of an arbitrary number of hinge-connected rigid bodies assembled in tree topology is presented. These equations are useful for the simulation of dynamical systems that can be idealized as tree-like arrangements of substructures, with each substructure consisting of either a rigid body or a collection of elastically interconnected rigid bodies restricted to small relative rotations at each connection. Thus, some of the substructures represent elastic bodies subjected to small strains or local deformations, but possibly large gross deformations, in the hybrid formulation, distributed coordinates referred to herein as large-deformation modal coordinates, are used for the deformations of these substructures. The equations are in a form suitable for incorporation into one or more computer programs to be used as multipurpose tools in the simulation of spacecraft and other complex electromechanical systems.

  7. New method for detection of complex 3D fracture motion - Verification of an optical motion analysis system for biomechanical studies

    PubMed Central

    2012-01-01

    Background Fracture-healing depends on interfragmentary motion. For improved osteosynthesis and fracture-healing, the micromotion between fracture fragments is undergoing intensive research. The detection of 3D micromotions at the fracture gap still presents a challenge for conventional tactile measurement systems. Optical measurement systems may be easier to use than conventional systems, but, as yet, cannot guarantee accuracy. The purpose of this study was to validate the optical measurement system PONTOS 5M for use in biomechanical research, including measurement of micromotion. Methods A standardized transverse fracture model was created to detect interfragmentary motions under axial loadings of up to 200 N. Measurements were performed using the optical measurement system and compared with a conventional high-accuracy tactile system consisting of 3 standard digital dial indicators (1 μm resolution; 5 μm error limit). Results We found that the deviation in the mean average motion detection between the systems was at most 5.3 μm, indicating that detection of micromotion was possible with the optical measurement system. Furthermore, we could show two considerable advantages while using the optical measurement system. Only with the optical system interfragmentary motion could be analyzed directly at the fracture gap. Furthermore, the calibration of the optical system could be performed faster, safer and easier than that of the tactile system. Conclusion The PONTOS 5 M optical measurement system appears to be a favorable alternative to previously used tactile measurement systems for biomechanical applications. Easy handling, combined with a high accuracy for 3D detection of micromotions (≤ 5 μm), suggests the likelihood of high user acceptance. This study was performed in the context of the deployment of a new implant (dynamic locking screw; Synthes, Oberdorf, Switzerland). PMID:22405047

  8. Dynamic modeling and sensitivity analysis of dAFM in the transient and steady state motions.

    PubMed

    Payam, Amir Farokh

    2016-10-01

    In this paper, based on the slow time varying function theory, dynamical equations for the amplitude and phase of the dynamic atomic force microscope are derived. Then, the sensitivity of the amplitude and phase to the dissipative and conservative parts of interaction force is investigated. The most advantage of this dynamical model is the ability to simulate and analysis the dynamics behavior of amplitude and phase of the AFM tip motion not only in the steady state but also in the transient regime. Using numerical analysis the transient and steady state behavior of amplitude and phase is studied and the sensitivity of amplitude and phase to the interaction force is analyzed. PMID:27448201

  9. Implementation and application of real-time motion analysis based on passive markers.

    PubMed

    Baroni, G; Ferrigno, G; Pedotti, A

    1998-11-01

    A method for real-time motion analysis based on passive markers is presented. An opto-electronic automatic motion analyser was used as hardware platform and the real-time operation was based on the interfacing between two levels of the system architecture. True real-time acquisition, processing and representation of two-dimensional and three-dimensional kinematics data were implemented through a newly conceived data acquisition procedure and high speed optimisation of the kinematics data processing. The method allows one to operate the motion analysis system in real-time; even when the data elaboration unit is required to perform other processing functions, the only consequence is a decrease in system sampling rate. The maximum number of processed and plotted markers in three dimensions at the highest system sampling rate (100 Hz) turned out to be suitable for the implementation of analytical and visual kinematics biofeedback. An example of the achievable level of complexity in terms of marker disposition model and graphic representation is reported by describing a demonstration of the real-time representation of human face movements. A clinical application of the method for patient position definition and control at radiotherapy units is presented. PMID:10367459

  10. Representation of the Physiological Factors Contributing to Postflight Changes in Functional Performance Using Motion Analysis Software

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2010-01-01

    Astronauts experience changes in multiple physiological systems due to exposure to the microgravity conditions of space flight. To understand how changes in physiological function influence functional performance, a testing procedure has been developed that evaluates both astronaut postflight functional performance and related physiological changes. Astronauts complete seven functional and physiological tests. The objective of this project is to use motion tracking and digitizing software to visually display the postflight decrement in the functional performance of the astronauts. The motion analysis software will be used to digitize astronaut data videos into stick figure videos to represent the astronauts as they perform the Functional Tasks Tests. This project will benefit NASA by allowing NASA scientists to present data of their neurological studies without revealing the identities of the astronauts.

  11. The error analysis and online measurement of linear slide motion error in machine tools

    NASA Astrophysics Data System (ADS)

    Su, H.; Hong, M. S.; Li, Z. J.; Wei, Y. L.; Xiong, S. B.

    2002-06-01

    A new accurate two-probe time domain method is put forward to measure the straight-going component motion error in machine tools. The characteristics of non-periodic and non-closing in the straightness profile error are liable to bring about higher-order harmonic component distortion in the measurement results. However, this distortion can be avoided by the new accurate two-probe time domain method through the symmetry continuation algorithm, uniformity and least squares method. The harmonic suppression is analysed in detail through modern control theory. Both the straight-going component motion error in machine tools and the profile error in a workpiece that is manufactured on this machine can be measured at the same time. All of this information is available to diagnose the origin of faults in machine tools. The analysis result is proved to be correct through experiment.

  12. An Elastic Analysis of a Plated Bone to Determine Fracture Gap Motion

    NASA Technical Reports Server (NTRS)

    Cooke, F. W.; Vannah, W. M.

    1985-01-01

    An elastic analysis to determine fracture gap motions occurring in the osteotomized and plated canine femur was performed using the finite element program NASTRAN. The femur was idealized as a hollow right cylinder, and transverse anisotropy was assumed for the elastic properties of the bone. A 3-D 360 degree model consisting of 224 isoparametric quadrilateral hexahedral and 11 beam elements was created. A range of plate stiffnesses was tested by varying the modulus of elasticity of the plate from 207 GPa to 1 GPA. Moments were applied in the plane of the plate, about the axis of the plate, and in the plane of the screws. Results showed that, for plates of typical geometry and elastic modulus under 10 GPa, the contribution to fracture gap motion occurring due to deformation in the bone was negligible compared to that contribution from deformation in the plate.

  13. Initial assessment of facial nerve paralysis based on motion analysis using an optical flow method.

    PubMed

    Samsudin, Wan Syahirah W; Sundaraj, Kenneth; Ahmad, Amirozi; Salleh, Hasriah

    2016-01-01

    An initial assessment method that can classify as well as categorize the severity of paralysis into one of six levels according to the House-Brackmann (HB) system based on facial landmarks motion using an Optical Flow (OF) algorithm is proposed. The desired landmarks were obtained from the video recordings of 5 normal and 3 Bell's Palsy subjects and tracked using the Kanade-Lucas-Tomasi (KLT) method. A new scoring system based on the motion analysis using area measurement is proposed. This scoring system uses the individual scores from the facial exercises and grades the paralysis based on the HB system. The proposed method has obtained promising results and may play a pivotal role towards improved rehabilitation programs for patients. PMID:26578273

  14. Knee joint secondary motion accuracy improved by quaternion-based optimizer with bony landmark constraints.

    PubMed

    Wang, Hongsheng; Zheng, Naiqaun Nigel

    2010-12-01

    Skin marker-based motion analysis has been widely used in biomechanical studies and clinical applications. Unfortunately, the accuracy of knee joint secondary motions is largely limited by the nonrigidity nature of human body segments. Numerous studies have investigated the characteristics of soft tissue movement. Utilizing these characteristics, we may improve the accuracy of knee joint motion measurement. An optimizer was developed by incorporating the soft tissue movement patterns at special bony landmarks into constraint functions. Bony landmark constraints were assigned to the skin markers at femur epicondyles, tibial plateau edges, and tibial tuberosity in a motion analysis algorithm by limiting their allowed position space relative to the underlying bone. The rotation matrix was represented by quaternion, and the constrained optimization problem was solved by Fletcher's version of the Levenberg-Marquardt optimization technique. The algorithm was validated by using motion data from both skin-based markers and bone-mounted markers attached to fresh cadavers. By comparing the results with the ground truth bone motion generated from the bone-mounted markers, the new algorithm had a significantly higher accuracy (root-mean-square (RMS) error: 0.7 ± 0.1 deg in axial rotation and 0.4 ± 0.1 deg in varus-valgus) in estimating the knee joint secondary rotations than algorithms without bony landmark constraints (RMS error: 1.7 ± 0.4 deg in axial rotation and 0.7 ± 0.1 deg in varus-valgus). Also, it predicts a more accurate medial-lateral translation (RMS error: 0.4 ± 0.1 mm) than the conventional techniques (RMS error: 1.2 ± 0.2 mm). The new algorithm, using bony landmark constrains, estimates more accurate secondary rotations and medial-lateral translation of the underlying bone. PMID:21142329

  15. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.

    PubMed

    Bernardina, Gustavo R D; Cerveri, Pietro; Barros, Ricardo M L; Marins, João C B; Silvatti, Amanda P

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems. PMID:27513846

  16. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis

    PubMed Central

    Cerveri, Pietro; Barros, Ricardo M. L.; Marins, João C. B.; Silvatti, Amanda P.

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems. PMID:27513846

  17. Stochastic exploration of ambiguities for nonrigid shape recovery.

    PubMed

    Moreno-Noguer, Francesc; Fua, Pascal

    2013-02-01

    Recovering the 3D shape of deformable surfaces from single images is known to be a highly ambiguous problem because many different shapes may have very similar projections. This is commonly addressed by restricting the set of possible shapes to linear combinations of deformation modes and by imposing additional geometric constraints. Unfortunately, because image measurements are noisy, such constraints do not always guarantee that the correct shape will be recovered. To overcome this limitation, we introduce a stochastic sampling approach to efficiently explore the set of solutions of an objective function based on point correspondences. This allows us to propose a small set of ambiguous candidate 3D shapes and then use additional image information to choose the best one. As a proof of concept, we use either motion or shading cues to this end and show that we can handle a complex objective function without having to solve a difficult nonlinear minimization problem. The advantages of our method are demonstrated on a variety of problems including both real and synthetic data. PMID:22547426

  18. MRI Signal Intensity Based B-Spline Nonrigid Registration for Pre- and Intraoperative Imaging During Prostate Brachytherapy

    PubMed Central

    Oguro, Sota; Tokuda, Junichi; Elhawary, Haytham; Haker, Steven; Kikinis, Ron; Tempany, Clare M.C.; Hata, Nobuhiko

    2009-01-01

    Purpose To apply an intensity-based nonrigid registration algorithm to MRI-guided prostate brachytherapy clinical data and to assess its accuracy. Materials and Methods A nonrigid registration of preoperative MRI to intraoperative MRI images was carried out in 16 cases using a Basis-Spline algorithm in a retrospective manner. The registration was assessed qualitatively by experts’ visual inspection and quantitatively by measuring the Dice similarity coefficient (DSC) for total gland (TG), central gland (CG), and peripheral zone (PZ), the mutual information (MI) metric, and the fiducial registration error (FRE) between corresponding anatomical landmarks for both the nonrigid and a rigid registration method. Results All 16 cases were successfully registered in less than 5 min. After the nonrigid registration, DSC values for TG, CG, PZ were 0.91, 0.89, 0.79, respectively, the MI metric was −0.19 ± 0.07 and FRE presented a value of 2.3 ± 1.8 mm. All the metrics were significantly better than in the case of rigid registration, as determined by one-sided t-tests. Conclusion The intensity-based nonrigid registration method using clinical data was demonstrated to be feasible and showed statistically improved metrics when compare to only rigid registration. The method is a valuable tool to integrate pre- and intraoperative images for brachytherapy. PMID:19856437

  19. Kinematic analysis of wrist motion during simulated colonoscopy in first-year gastroenterology fellows

    PubMed Central

    Ratuapli, Shiva K; Ruff, Kevin C; Ramirez, Francisco C; Wu, Qing; Mohankumar, Deepika; Santello, Marco; Fleischer, David E

    2015-01-01

    Background and study aims: Gastroenterology trainees acquire skill and proficiency in performing colonoscopies at different rates. The cause for heterogeneous competency among the trainees is unclear. Kinematic analysis of the wrist joint while performing colonoscopy can objectively assess the variation in wrist motion. Our objective was to test the hypothesis that the time spent by the trainees in extreme ranges of wrist motion will decrease as the trainees advance through the fellowship year. Subjects and methods: Five first-year gastroenterology fellows were prospectively studied at four intervals while performing simulated colonoscopies. The setting was an endoscopy simulation laboratory at a tertiary care center. Kinematic assessment of wrist motion was done using a magnetic position/orientation tracker held in place by a custom-made arm sleeve and hand glove. The main outcome measure was time spent performing each of four ranges of wrist motion (mid, center, extreme, and out) for each wrist degree of freedom (pronation/supination, flexion/extension, and adduction/abduction). Results: There were no statistically significant differences in the time spent for wrist movements across the three degrees of freedom throughout the study period. However, fellows spent significantly less time in extreme range (1.47 ± 0.34 min vs. 2.44 ± 0.34 min, P = 0.004) and center range (1.02 ± 0.34 min vs 1.9 ± 0.34 min, P = 0.01) at the end of the study compared to the baseline evaluation. The study was limited by the small number of subjects and performance of colonoscopies on a simulator rather than live patients. Conclusions: Gastroenterology trainees alter the time spent at the extreme range of wrist motion as they advance through training. Endoscopy training during the first 10 months of fellowship may have beneficial effects on learning ergonomically correct motion patterns. PMID:26716123

  20. The Eye, Film, And Video In High-Speed Motion Analysis

    NASA Astrophysics Data System (ADS)

    Hyzer, William G.

    1987-09-01

    The unaided human eye with its inherent limitations serves us well in the examination of most large-scale, slow-moving, natural and man-made phenomena, but constraints imposed by inertial factors in the visual mechanism severely limit our ability to observe fast-moving and short-duration events. The introduction of high-speed photography (c. 1851) and videography (c. 1970) served to stretch the temporal limits of human perception by several orders of magnitude so critical analysis could be performed on a wide range of rapidly occurring events of scientific, technological, industrial, and educational interest. The preferential selection of eye, film, or video imagery in fulfilling particular motion analysis requirements is determined largely by the comparative attributes and limitations of these methods. The choice of either film or video does not necessarily eliminate the eye, because it usually continues as a vital link in the analytical chain. The important characteristics of the eye, film, and video imagery in high-speed motion analysis are discussed with particular reference to fields of application which include biomechanics, ballistics, machine design, mechanics of materials, sports analysis, medicine, production engineering, and industrial trouble-shooting.

  1. Time Series Analysis of Particle Tracking Data for Molecular Motion on the Cell Membrane

    PubMed Central

    Ying, Wenxia; Huerta, Gabriel; Steinberg, Stanly; Zúñiga, Martha

    2013-01-01

    Biophysicists use single particle tracking (SPT) methods to probe the dynamic behavior of individual proteins and lipids in cell membranes. The mean squared displacement (MSD) has proven to be a powerful tool for analyzing the data and drawing conclusions about membrane organization, including features like lipid rafts, protein islands, and confinement zones defined by cytoskeletal barriers. Here, we implement time series analysis as a new analytic tool to analyze further the motion of membrane proteins. The experimental data track the motion of 40 nm gold particles bound to Class I major histocompatibility complex (MHCI) molecules on the membranes of mouse hepatoma cells. Our first novel result is that the tracks are significantly autocorrelated. Because of this, we developed linear autoregressive models to elucidate the autocorrelations. Estimates of the signal to noise ratio for the models show that the autocorrelated part of the motion is significant. Next, we fit the probability distributions of jump sizes with four different models. The first model is a general Weibull distribution that shows that the motion is characterized by an excess of short jumps as compared to a normal random walk. We also fit the data with a chi distribution which provides a natural estimate of the dimension d of the space in which a random walk is occurring. For the biological data, the estimates satisfy 1 < d < 2, implying that particle motion is not confined to a line, but also does not occur freely in the plane. The dimension gives a quantitative estimate of the amount of nanometer scale obstruction met by a diffusing molecule. We introduce a new distribution and use the generalized extreme value distribution to show that the biological data also have an excess of long jumps as compared to normal diffusion. These fits provide novel estimates of the microscopic diffusion constant. Previous MSD analyses of SPT data have provided evidence for nanometer-scale confinement zones that

  2. Nonlinear analysis of cylindrical and conical hysteretic whirl motions in rotor-dynamics

    NASA Astrophysics Data System (ADS)

    Sorge, Francesco

    2014-09-01

    The internal friction of a rotor-shaft-support system is mainly due to the shaft structural hysteresis and to some possible shrink-fit release of the assembly. The experimentation points out the destabilizing effect of the internal friction in the over-critical rotor running. Nevertheless, this detrimental influence may be efficiently counterbalanced by other external dissipative sources located in the supports or by a proper anisotropic configuration of the support stiffness. The present analysis considers a rotor-shaft system which is symmetric with respect to the mid-span and is constrained by viscous-flexible supports with different stiffness on two orthogonal planes. The cylindrical and conical whirling modes are easily uncoupled and separately analysed. The internal dissipation is modelled by nonlinear Coulombian forces and moments, which counteract the translational and rotational motion of the rotor relative to a frame rotating with the shaft ends. The nonlinear equations of motion are solved by averaging approaches of the Krylov-Bogoliubov type. In both the over-critical whirling motions, cylindrical and conical, stable limit cycles may be attained whose amplitude is as large as the external dissipation applied by the supports is low. The stiffness anisotropy of the supports may be recognised as quite beneficial for the cylindrical whirl.

  3. Motion analysis of a motorcycle taking into account the rider's effects

    NASA Astrophysics Data System (ADS)

    Zhu, Shaopeng; Murakami, Shintaroh; Nishimura, Hidekazu

    2012-08-01

    In this paper, to analyse the rider's effects on the motion of a motorcycle, we model a rider-motorcycle system by taking into account the leaning motion of the rider's upper torso and his/her arm connection with the handlebars. The nonlinearity of the tyre force is introduced by utilising hyperbolic tangent functions to approximate a Magic Formula tyre model. On the basis of a derived nonlinear state-space model, we analyse the effects of not only the rider's arms but also his/her postures during steady turning by simulations. The rider's postures including lean-with, lean-in and lean-out are realised by adding the lean torque to the rider's upper torso. The motorcycle motion and the rider's effects are analysed in the case where the friction coefficient of the road surface changes severely during steady turning. In addition, a linearised state-space model is derived during steady turning, and a stability analysis of the rider-motorcycle system is performed.

  4. Receiver Function Analysis of Strong-motion Stations in Kaohsiung-Pingtung area, Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Che-Min; Wen, Kuo-Liang; Kuo, Chun-Hsiang; Huang, Jyun-Yan

    2016-04-01

    The Kaohsiung City and Pingtung County are located in southern Taiwan and bounded on the west side by several active faults. The shallow velocity structure of thick alluvium basin in this area should be delineated to understand the seismic site effect of strong ground motion. Receiver Function (RF) is a conventional technique for studying the structure of the crust and upper mantle beneath the seismometer. But, the RF analysis of high-frequency acceleration seismograms is also proved to be feasible for estimating shallow structures recently. This study applied the RF technique on the Strong-motion records of almost one-hundred TSMIP stations in Kaohsiung-Pingtung area to estimate the shallow shear-wave velocity structures. The averaged RFs of all stations exhibit the obvious variation because of the different geologies and site conditions. After the forward modeling of RFs based on the Genetic Algorithms (GA) searching, the shallow shear-wave velocity structures beneath all the strong-motion stations in the Kaohsiung-Pingtung area were estimated to delineate the iso-depth contour maps of the main formation interfaces and a preliminary shallow 3D velocity model.

  5. Tongue Motion Patterns in Post-Glossectomy and Typical Speakers: A Principal Components Analysis

    ERIC Educational Resources Information Center

    Stone, Maureen; Langguth, Julie M.; Woo, Jonghye; Chen, Hegang; Prince, Jerry L.

    2014-01-01

    Purpose: In this study, the authors examined changes in tongue motion caused by glossectomy surgery. A speech task that involved subtle changes in tongue-tip positioning (the motion from /i/ to /s/) was measured. The hypothesis was that patients would have limited motion on the tumor (resected) side and would compensate with greater motion on the…

  6. Stability of sequences generated by nonlinear differential systems. [for analysis of glider jet aircraft motion

    NASA Technical Reports Server (NTRS)

    Brown, R. L.

    1979-01-01

    A local stability analysis is presented for both the analytic and numerical solutions of the initial value problem for a system of ordinary differential equations. It is shown that, using a proper choice of Liapunov function, a connected region of stable initial values of both the analytic solution and the one-leg k-step numerical solution can be approximated. Attention is given to the example of the two-dimensional problem involving the stability of the longitudinal equations of motion of a gliding jet aircraft.

  7. Rainbows, water droplets, and seeing--slow motion analysis of experiments in atmospheric optics.

    PubMed

    Vollmer, Michael; Möllmann, Klaus-Peter

    2011-10-01

    Many physics processes underlying phenomena in atmospheric optics happen on a rather short time scale such that neither the human eye nor video cameras are able to analyze the details. We report applications of high-speed imaging of laboratory experiments in atmospheric optics with subsequent slow motion analysis. The potential to study respective transient effects is investigated in general and for a few phenomena in detail, in particular for rainbow scattering due to single oscillating droplets during free fall, and for light propagation effects through atmospheric paths with turbulences, leading, e.g., to scintillation of stars or shimmering of mirage images. PMID:22016242

  8. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters

    NASA Astrophysics Data System (ADS)

    Nasehi Tehrani, Joubin; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.

  9. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters.

    PubMed

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-21

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation. PMID:26531324

  10. Wave motion analysis in arch structures via wavelet finite element method

    NASA Astrophysics Data System (ADS)

    Yang, Zhibo; Chen, Xuefeng; Li, Xiang; Jiang, Yongying; Miao, Huihui; He, Zhengjia

    2014-01-01

    The application of B-spline wavelet on interval (BSWI) finite element method for wave motion analysis in arch structures is presented in this paper. Instead of traditional polynomial interpolation, scaling functions at certain scales have been adopted to form the shape functions and construct wavelet-based elements. Different from other wavelet numerical methods adding wavelets directly, the element displacement field represented by the coefficients of wavelets expansions is transformed from wavelet space to physical space via the corresponding transformation matrix. The energy functional of the arch is obtained by the generalized shell theory, and the finite element model for wave motion analysis is constructed according to Hamilton's principle and the central difference method in time domain. Taking the practical application into account, damaged arch waveguides are also investigated. Proper analysis of the responses from structure damages allows one to indicate the location very precisely. This paper mainly focuses on the crack in structures. Based on Castigliano's theorem and the Pairs equation, the local flexibility of crack is formulated for BSWI element. Numerical experiments are performed to study the effect of wave propagations in arch waveguides, that is, frequency dispersion and mode spilt in the arch. The responses of the arch with cracks are simulated under the broad-band, narrow-band and chirp excitations. In order to estimate the spatial, time and frequency concentrations of responses, the reciprocal length, time-frequency transform and correlation coefficient are introduced in this investigation.

  11. Motion capability analysis of a quadruped robot as a parallel manipulator

    NASA Astrophysics Data System (ADS)

    Yu, Jingjun; Lu, Dengfeng; Zhang, Zhongxiang; Pei, Xu

    2014-12-01

    This paper presents the forward and inverse displacement analysis of a quadruped robot MANA as a parallel manipulator in quadruple stance phase, which is used to obtain the workspace and control the motion of the body. The robot MANA designed on the basis of the structure of quadruped mammal is able to not only walk and turn in the uneven terrain, but also accomplish various manipulating tasks as a parallel manipulator in quadruple stance phase. The latter will be the focus of this paper, however. For this purpose, the leg kinematics is primarily analyzed, which lays the foundation on the gait planning in terms of locomotion and body kinematics analysis as a parallel manipulator. When all four feet of the robot contact on the ground, by assuming there is no slipping at the feet, each contacting point is treated as a passive spherical joint and the kinematic model of parallel manipulator is established. The method for choosing six non-redundant actuated joints for the parallel manipulator from all twelve optional joints is elaborated. The inverse and forward displacement analysis of the parallel manipulator is carried out using the method of coordinate transformation. Finally, based on the inverse and forward kinematic model, two issues on obtaining the reachable workspace of parallel manipulator and planning the motion of the body are implemented and verified by ADAMS simulation.

  12. Efficient Constrained Local Model Fitting for Non-Rigid Face Alignment

    PubMed Central

    Wang, Yang; Cox, Mark; Sridharan, Sridha; Cohn, Jeffery F.

    2009-01-01

    Active appearance models (AAMs) have demonstrated great utility when being employed for non-rigid face alignment/tracking. The “simultaneous” algorithm for fitting an AAM achieves good non-rigid face registration performance, but has poor real time performance (2-3 fps). The “project-out” algorithm for fitting an AAM achieves faster than real time performance (> 200 fps) but suffers from poor generic alignment performance. In this paper we introduce an extension to a discriminative method for non-rigid face registration/tracking referred to as a constrained local model (CLM). Our proposed method is able to achieve superior performance to the “simultaneous” AAM algorithm along with real time fitting speeds (35 fps). We improve upon the canonical CLM formulation, to gain this performance, in a number of ways by employing: (i) linear SVMs as patch-experts, (ii) a simplified optimization criteria, and (iii) a composite rather than additive warp update step. Most notably, our simplified optimization criteria for fitting the CLM divides the problem of finding a single complex registration/warp displacement into that of finding N simple warp displacements. From these N simple warp displacements, a single complex warp displacement is estimated using a weighted least-squares constraint. Another major advantage of this simplified optimization lends from its ability to be parallelized, a step which we also theoretically explore in this paper. We refer to our approach for fitting the CLM as the “exhaustive local search” (ELS) algorithm. Experiments were conducted on the CMU Multi-PIE database. PMID:20046797

  13. Radar signal analysis of ballistic missile with micro-motion based on time-frequency distribution

    NASA Astrophysics Data System (ADS)

    Wang, Jianming; Liu, Lihua; Yu, Hua

    2015-12-01

    The micro-motion of ballistic missile targets induces micro-Doppler modulation on the radar return signal, which is a unique feature for the warhead discrimination during flight. In order to extract the micro-Doppler feature of ballistic missile targets, time-frequency analysis is employed to process the micro-Doppler modulated time-varying radar signal. The images of time-frequency distribution (TFD) reveal the micro-Doppler modulation characteristic very well. However, there are many existing time-frequency analysis methods to generate the time-frequency distribution images, including the short-time Fourier transform (STFT), Wigner distribution (WD) and Cohen class distribution, etc. Under the background of ballistic missile defence, the paper aims at working out an effective time-frequency analysis method for ballistic missile warhead discrimination from the decoys.

  14. Extended aeroelastic analysis for helicopter rotors with prescribed hub motion and blade appended penduluum vibration absorbers

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.

    1984-01-01

    The mathematical development for the expanded capabilities of the G400 rotor aeroelastic analysis was examined. The G400PA expanded analysis simulates the dynamics of all conventional rotors, blade pendulum vibration absorbers, and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. The methodology for modeling the unsteady stalled airloads of two dimensional airfoils is discussed. Formulations for calculating the rotor impedance matrix appropriate to the higher harmonic blade excitations are outlined. This impedance matrix, and the associated vibratory hub loads, are the rotor dynamic characteristic elements for use in the simplified coupled rotor/fuselage vibration analysis (SIMVIB). Updates to the development of the original G400 theory, program documentation, user instructions and information are presented.

  15. Comprehensive analysis of motions in molecular dynamics trajectories of the actin capping protein and its inhibitor complexes.

    PubMed

    Koike, Ryotaro; Takeda, Shuichi; Maéda, Yuichiro; Ota, Motonori

    2016-07-01

    The actin capping protein (CP) binds to actin filaments to block further elongation. The capping activity is inhibited by proteins V-1 and CARMIL interacting with CP via steric and allosteric mechanisms, respectively. The crystal structures of free CP, CP/V-1, and CP/CARMIL complexes suggest that the binding of CARMIL alters the flexibility of CP rather than the overall structure of CP, and this is an allosteric inhibition mechanism. Here, we performed molecular dynamics (MD) simulations of CP in the free form, and in complex with CARMIL or V-1. The resulting trajectories were analyzed exhaustively using Motion Tree, which identifies various rigid-body motions ranging from small local motions to large domain motions. After enumerating all the motions, CP flexibilities with different ligands were characterized by a list of frequencies for 20 dominant rigid-body motions, some of which were not identified in previous studies. The comparative analysis highlights the influence of the binding of the CARMIL peptide to CP flexibility. In free CP and the CP/V-1 complex, domain motions around a large crevice between the N-stalk and the CP-S domain occur frequently. The CARMIL peptide binds the crevice and suppresses the motions effectively. In addition, the binding of the CARMIL peptide enhances and alters local motions around the pocket that participates in V-1 binding. These newly identified motions are likely to suppress the binding of V-1 to CP. The observed changes in CP motion provide insights that describe the mechanism of allosteric regulation by CARMIL through modulating CP flexibility. Proteins 2016; 84:948-956. © 2016 Wiley Periodicals, Inc. PMID:27028786

  16. Objective evaluation of methods to track motion from clinical cardiac-gated tagged MRI without the use of a gold standard

    NASA Astrophysics Data System (ADS)

    Parages, Felipe M.; Denney, Thomas S.; Brankov, Jovan G.

    2015-03-01

    Cardiac-gated MRI is widely used for the task of measuring parameters related to heart motion. More specifically, gated tagged MRI is the preferred modality to estimate local deformation (strain) and rotational motion (twist) of myocardial tissue. Many methods have been proposed to estimate cardiac motion from gated MRI sequences. However, when dealing with clinical data, evaluation of these methods is problematic due to the absence of gold-standards for cardiac motion. To overcome that, a linear regression scheme known as regression-without-truth (RWT) was proposed in the past. RWT uses priors to model the distribution of true values, thus enabling us to assess image-analysis algorithms without knowledge of the ground-truth. Furthermore, it allows one to rank methods by means of an objective figure-of-merit γ (i.e. precision). In this work we apply RWT to compare the performance of several gated MRI motion-tracking methods (e.g. non-rigid registration, feature based, harmonic phase) at the task of estimating myocardial strain and left-ventricle (LV) twist, from a population of 18 clinical human cardiac-gated tagged MRI studies.

  17. Cardiac motion compensation and resolution modeling in simultaneous PET-MR: a cardiac lesion detection study

    NASA Astrophysics Data System (ADS)

    Petibon, Y.; Ouyang, J.; Zhu, X.; Huang, C.; Reese, T. G.; Chun, S. Y.; Li, Q.; El Fakhri, G.

    2013-04-01

    Cardiac motion and partial volume effects (PVE) are two of the main causes of image degradation in cardiac PET. Motion generates artifacts and blurring while PVE lead to erroneous myocardial activity measurements. Newly available simultaneous PET-MR scanners offer new possibilities in cardiac imaging as MRI can assess wall contractility while collecting PET perfusion data. In this perspective, we develop a list-mode iterative reconstruction framework incorporating both tagged-MR derived non-rigid myocardial wall motion and position dependent detector point spread function (PSF) directly into the PET system matrix. In this manner, our algorithm performs both motion ‘deblurring’ and PSF deconvolution while reconstructing images with all available PET counts. The proposed methods are evaluated in a beating non-rigid cardiac phantom whose hot myocardial compartment contains small transmural and non-transmural cold defects. In order to accelerate imaging time, we investigate collecting full and half k-space tagged MR data to obtain tagged volumes that are registered using non-rigid B-spline registration to yield wall motion information. Our experimental results show that tagged-MR based motion correction yielded an improvement in defect/myocardium contrast recovery of 34-206% as compared to motion uncorrected studies. Likewise, lesion detectability improved by respectively 115-136% and 62-235% with MR-based motion compensation as compared to gating and no motion correction and made it possible to distinguish non-transmural from transmural defects, which has clinical significance given the inherent limitations of current single modality imaging in identifying the amount of residual ischemia. The incorporation of PSF modeling within the framework of MR-based motion compensation significantly improved defect/myocardium contrast recovery (5.1-8.5%, p < 0.01) and defect detectability (39-56%, p < 0.01). No statistical difference was found in PET contrast and lesion

  18. Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy

    SciTech Connect

    Janssens, Guillaume; Orban de Xivry, Jonathan; Fekkes, Stein; Dekker, Andre; Macq, Benoit; Lambin, Philippe; Elmpt, Wouter van

    2009-09-15

    Purpose: Interfraction dose accumulation is necessary to evaluate the dose distribution of an entire course of treatment by adding up multiple dose distributions of different treatment fractions. This accumulation of dose distributions is not straightforward as changes in the patient anatomy may occur during treatment. For this purpose, the accuracy of nonrigid registration methods is assessed for dose accumulation based on the calculated deformations fields. Methods: A phantom study using a deformable cubic silicon phantom with implanted markers and a cylindrical silicon phantom with MOSFET detectors has been performed. The phantoms were deformed and images were acquired using a cone-beam CT imager. Dose calculations were performed on these CT scans using the treatment planning system. Nonrigid CT-based registration was performed using two different methods, the Morphons and Demons. The resulting deformation field was applied on the dose distribution. For both phantoms, accuracy of the registered dose distribution was assessed. For the cylindrical phantom, also measured dose values in the deformed conditions were compared with the dose values of the registered dose distributions. Finally, interfraction dose accumulation for two treatment fractions of a patient with primary rectal cancer has been performed and evaluated using isodose lines and the dose volume histograms of the target volume and normal tissue. Results: A significant decrease in the difference in marker or MOSFET position was observed after nonrigid registration methods (p<0.001) for both phantoms and with both methods, as well as a significant decrease in the dose estimation error (p<0.01 for the cubic phantom and p<0.001 for the cylindrical) with both methods. Considering the whole data set at once, the difference between estimated and measured doses was also significantly decreased using registration (p<0.001 for both methods). The patient case showed a slightly underdosed planning target volume

  19. Vibration characteristics of a large wind turbine tower on non-rigid foundations

    NASA Technical Reports Server (NTRS)

    Yee, S. T.; Cang, T. Y. P.; Scavuzzo, R. J.; Timmerman, D. H.; Fenton, J. W.

    1977-01-01

    Vibration characteristics of the Mod-OA wind turbine supported by nonrigid foundations were investigated for a range of soil rigidities. The study shows that the influence of foundation rotation on the fundamental frequency of the wind turbine is quite significant for cohesive soils or loose sand. The reduction in natural frequency can be greater than 20 percent. However, for a foundation resting on well graded, dense granular materials or bedrock, such effect is small and the foundation can be treated as a fixed base.

  20. A margin-based analysis of the dosimetric impact of motion on step-and-shoot IMRT lung plans

    PubMed Central

    2014-01-01

    Purpose Intrafraction motion during step-and-shoot (SNS) IMRT is known to affect the target dosimetry by a combination of dose blurring and interplay effects. These effects are typically managed by adding a margin around the target. A quantitative analysis was performed, assessing the relationship between target motion, margin size, and target dosimetry with the goal of introducing new margin recipes. Methods A computational algorithm was used to calculate 1,174 motion-encoded dose distributions and DVHs within the patient’s CT dataset. Sinusoidal motion tracks were used simulating intrafraction motion for nine lung tumor patients, each with multiple margin sizes. Results D95% decreased by less than 3% when the maximum target displacement beyond the margin experienced motion less than 5 mm in the superior-inferior direction and 15 mm in the anterior-posterior direction. For target displacements greater than this, D95% decreased rapidly. Conclusions Targets moving in excess of 5 mm outside the margin can cause significant changes to the target. D95% decreased by up to 20% with target motion 10 mm outside the margin, with underdosing primarily limited to the target periphery. Multi-fractionated treatments were found to exacerbate target under-coverage. Margins several millimeters smaller than the maximum target displacement provided acceptable motion protection, while also allowing for reduced normal tissue morbidity. PMID:24499602

  1. Comparisons: Technical-Tactical and Time-Motion Analysis of Mixed Martial Arts by Outcomes.

    PubMed

    Miarka, Bianca; Vecchio, Fabrício B D; Camey, Suzi; Amtmann, John A

    2016-07-01

    Miarka, B, Vecchio, FBD, Camey, S, and Amtmann, JA. Comparisons: technical-tactical and time-motion analysis of mixed martial arts by outcomes. J Strength Cond Res 30(7): 1975-1984, 2016-The aim of this study was to compare time-motion and technical-tactical analysis between paired outcomes and rounds of mixed martial arts (MMA) matches. The sample consisted of 645 rounds of MMA competition paired by outcomes (first round, winners n = 215 and losers n = 215; second round, winners n = 215 and losers n = 215; third round, winners n = 215 and losers n = 215). The time-motion variables were categorized into low-intensity or high-intensity, stand-up or groundwork situations. Stand-up techniques were analyzed by observing total strikes to the head and body, and takedowns. The actions on the ground were analyzed by observing submission activity, including successful choking and joint locking actions, and also positional improvements, including advances to the mount, half guard, and side and back positions. Chi-squared and Wilcoxon tests were conducted with a significance level of p ≤ 0.05. Results showed that winners had higher values for total strikes and submissions in all rounds, and also positional improvements, over losers. The standing combat with low-intensity comparisons presented differences between the rounds first, with a median of 2:33.5 (P25-P75%: 1:20-3:56) minute, second, with 2:37 (1:24-3:59) minute, and third, with 2:07 (1:06-3:39.2) minute. These data suggest a focus on the intermittent demand presented in combat phases with a special attention to the strike and ground technical-tactical skills; strength and conditioning coaches could emphasize the effort pause ratios for both standing and ground combat that mimic the requirements of MMA, especially during the third round. PMID:26670995

  2. Statistical analysis of target motion in gated lung stereotactic body radiation therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Yang, Yong; Li, Tianfang; Li, Xiang; Heron, Dwight E.; Saiful Huq, M.

    2011-03-01

    An external surrogate-based respiratory gating technique is a useful method to reduce target margins for the treatment of a moving lung tumor. The success of this technique relies on a good correlation between the motion of the external markers and the internal tumor as well as the repeatability of the respiratory motion. In gated lung stereotactic body radiation therapy (SBRT), the treatment time for each fraction could exceed 30 min due to large fractional dose. Tumor motion may experience pattern changes such as baseline shift during such extended treatment time. The purpose of this study is to analyze tumor motion traces in actual treatment situations and to evaluate the effect of the target baseline shift in gated lung SBRT treatment. Real-time motion data for both the external markers and tumors from 51 lung SBRT treatments with Cyberknife Synchrony technology were analyzed in this study. The treatment time is typically greater than 30 min. The baseline shift was calculated with a rolling average window equivalent to ~20 s and subtracted from that at the beginning. The magnitude of the baseline shift and its relationship with treatment time were investigated. Phase gating simulation was retrospectively performed on 12 carefully selected treatments with respiratory amplitude larger than 5 mm and regular phases. A customized gating window was defined for each individual treatment. It was found that the baseline shifts are specific to each patient and each fraction. Statistical analysis revealed that more than 69% treatments exhibited increased baseline shifts with the lapse of treatment time. The magnitude of the baseline shift could reach 5.3 mm during a 30 min treatment. Gating simulation showed that tumor excursion was caused mainly by the uncertainties in phase gating simulation and baseline shift, the latter being the primary factor. With a 5 mm gating window, 2 out of 12 treatments in the study group showed significant tumor excursion. Baseline shifts

  3. MOTION AND DISORDER IN CRYSTAL STRUCTURE ANALYSIS: Measuring and Distinguishing Them

    NASA Astrophysics Data System (ADS)

    Burgi, H. B.

    2000-10-01

    Dynamic processes in crystalline solids are reflected in the atomic displacement amplitudes determined, together with the atomic coordinates, by crystal structure analysis. The interpretation of such amplitudes poses two severe problems: (a) The relative phases of the atomic displacements are lost; and (b) the amplitudes may reflect disorder in the structure and systematic error in the diffraction experiment in addition to motion, but the three contributions cannot be separated on the basis of measurements at a single temperature. Several approximate ways to solve these problems, e.g. rigid-body and segmented-rigid-body analysis, are reviewed together with their limitations. A more recent approach that represents a significant advance with respect to both difficulties is also described: Crystal structures are determined over a range of temperatures; the mean square amplitude quantities are interpreted by taking explicit account of their temperature dependence, i.e. by exploiting the difference in behavior of a microscopic oscillator in the low-temperature, quantum regime and in the high-temperature, classical regime. A distinction between low-frequency and high-frequency motion, disorder, and systematic error becomes possible with this model; this is illustrated with the help of case studies.

  4. Evaluation of ground motion scaling methods for analysis of structural systems

    USGS Publications Warehouse

    O'Donnell, A. P.; Beltsar, O.A.; Kurama, Y.C.; Kalkan, E.; Taflanidis, A.A.

    2011-01-01

    Ground motion selection and scaling comprises undoubtedly the most important component of any seismic risk assessment study that involves time-history analysis. Ironically, this is also the single parameter with the least guidance provided in current building codes, resulting in the use of mostly subjective choices in design. The relevant research to date has been primarily on single-degree-of-freedom systems, with only a few studies using multi-degree-of-freedom systems. Furthermore, the previous research is based solely on numerical simulations with no experimental data available for the validation of the results. By contrast, the research effort described in this paper focuses on an experimental evaluation of selected ground motion scaling methods based on small-scale shake-table experiments of re-configurable linearelastic and nonlinear multi-story building frame structure models. Ultimately, the experimental results will lead to the development of guidelines and procedures to achieve reliable demand estimates from nonlinear response history analysis in seismic design. In this paper, an overview of this research effort is discussed and preliminary results based on linear-elastic dynamic response are presented. ?? ASCE 2011.

  5. A New 3-Dimensional Dynamic Quantitative Analysis System of Facial Motion: An Establishment and Reliability Test

    PubMed Central

    Feng, Guodong; Zhao, Yang; Tian, Xu; Gao, Zhiqiang

    2014-01-01

    This study aimed to establish a 3-dimensional dynamic quantitative facial motion analysis system, and then determine its accuracy and test-retest reliability. The system could automatically reconstruct the motion of the observational points. Standardized T-shaped rod and L-shaped rods were used to evaluate the static and dynamic accuracy of the system. Nineteen healthy volunteers were recruited to test the reliability of the system. The average static distance error measurement was 0.19 mm, and the average angular error was 0.29°. The measuring results decreased with the increase of distance between the cameras and objects, 80 cm of which was considered to be optimal. It took only 58 seconds to perform the full facial measurement process. The average intra-class correlation coefficient for distance measurement and angular measurement was 0.973 and 0.794 respectively. The results demonstrated that we successfully established a practical 3-dimensional dynamic quantitative analysis system that is accurate and reliable enough to meet both clinical and research needs. PMID:25390881

  6. Automatic segmentation of phase-correlated CT scans through nonrigid image registration using geometrically regularized free-form deformation

    SciTech Connect

    Shekhar, Raj; Lei, Peng; Castro-Pareja, Carlos R.; Plishker, William L.; D'Souza, Warren D.

    2007-07-15

    Conventional radiotherapy is planned using free-breathing computed tomography (CT), ignoring the motion and deformation of the anatomy from respiration. New breath-hold-synchronized, gated, and four-dimensional (4D) CT acquisition strategies are enabling radiotherapy planning utilizing a set of CT scans belonging to different phases of the breathing cycle. Such 4D treatment planning relies on the availability of tumor and organ contours in all phases. The current practice of manual segmentation is impractical for 4D CT, because it is time consuming and tedious. A viable solution is registration-based segmentation, through which contours provided by an expert for a particular phase are propagated to all other phases while accounting for phase-to-phase motion and anatomical deformation. Deformable image registration is central to this task, and a free-form deformation-based nonrigid image registration algorithm will be presented. Compared with the original algorithm, this version uses novel, computationally simpler geometric constraints to preserve the topology of the dense control-point grid used to represent free-form deformation and prevent tissue fold-over. Using mean squared difference as an image similarity criterion, the inhale phase is registered to the exhale phase of lung CT scans of five patients and of characteristically low-contrast abdominal CT scans of four patients. In addition, using expert contours for the inhale phase, the corresponding contours were automatically generated for the exhale phase. The accuracy of the segmentation (and hence deformable image registration) was judged by comparing automatically segmented contours with expert contours traced directly in the exhale phase scan using three metrics: volume overlap index, root mean square distance, and Hausdorff distance. The accuracy of the segmentation (in terms of radial distance mismatch) was approximately 2 mm in the thorax and 3 mm in the abdomen, which compares favorably to the

  7. Estimation of Spatial-Temporal Gait Parameters Using a Low-Cost Ultrasonic Motion Analysis System

    PubMed Central

    Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil

    2014-01-01

    In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications. PMID:25140636

  8. Motion Artifact Reduction in Ultrasound Based Thermal Strain Imaging of Atherosclerotic Plaques Using Time Series Analysis

    PubMed Central

    Dutta, Debaditya; Mahmoud, Ahmed M.; Leers, Steven A.; Kim, Kang

    2013-01-01

    Large lipid pools in vulnerable plaques, in principle, can be detected using US based thermal strain imaging (US-TSI). One practical challenge for in vivo cardiovascular application of US-TSI is that the thermal strain is masked by the mechanical strain caused by cardiac pulsation. ECG gating is a widely adopted method for cardiac motion compensation, but it is often susceptible to electrical and physiological noise. In this paper, we present an alternative time series analysis approach to separate thermal strain from the mechanical strain without using ECG. The performance and feasibility of the time-series analysis technique was tested via numerical simulation as well as in vitro water tank experiments using a vessel mimicking phantom and an excised human atherosclerotic artery where the cardiac pulsation is simulated by a pulsatile pump. PMID:24808628

  9. Anisotropic responses to motion toward and away from the eye

    NASA Technical Reports Server (NTRS)

    Perrone, John A.

    1986-01-01

    When a rigid object moves toward the eye, it is usually perceived as being rigid. However, in the case of motion away from the eye, the motion and structure of the object are perceived nonveridically, with the percept tending to reflect the nonrigid transformations that are present in the retinal image. This difference in response to motion to and from the observer was quantified in an experiment using wire-frame computer-generated boxes which moved toward and away from the eye. Two theoretical systems are developed by which uniform three-dimensional velocity can be recovered from an expansion pattern of nonuniform velocity vectors. It is proposed that the human visual system uses two similar systems for processing motion in depth. The mechanism used for motion away from the eye produces perceptual errors because it is not suited to objects with a depth component.

  10. Analysis of Recorded and Simulated Far-Field Ground Motion From the Source Physics Experiment (Invited)

    NASA Astrophysics Data System (ADS)

    Pitarka, A.; Mellors, R. J.; Vorobiev, O. Y.; Rodgers, A. J.; Walter, W. R.; Antoun, T.; Matzel, E.; Ford, S. R.; Wagoner, J. L.; Petersson, A.; Sjogreen, B.

    2013-12-01

    The Source Physics Experiment (SPE) provides new data for investigating the excitation and propagation of seismic waves generated by buried explosions. The main subjects of our ongoing investigation are the generation of shear-waves, propagation of seismic energy at local and regional distances, and development of numerical techniques for simulating ground motion from underground explosions using physics based source models for different emplacement conditions. We will present an overview of our investigation results based on analysis of far-field waveforms recorded by five linear arrays of stations within 10 km of the shot point, and a small array of stations, with a 2km epicentral distance. We tested the efficiency of our numerical scheme that uses three-dimensional hydrodynamic methods, coupled with an anelastic wave propagation finite-difference method to model the explosion source and ground motion recorded at far-field stations. The best source models that fit the recorded shear and compressional near-field motion, and a calibrated 3D local velocity model, were used to evaluate the sensitivity of wave propagation near the source region to source process, including spall, underground structure, high frequency wave scattering, and surface topography. In particular, we focused on the contribution of these effects to S-wave generation and P/S amplitude ratio in the modeled frequency range of 0.1-8Hz. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  11. Simball Box for Laparoscopic Training With Advanced 4D Motion Analysis of Skills.

    PubMed

    Hagelsteen, Kristine; Sevonius, Dan; Bergenfelz, Anders; Ekelund, Mikael

    2016-06-01

    Background Laparoscopic skills training and evaluation outside the operating room is important for all surgeons learning new skills. To study feasibility, a video box trainer tracking 4-dimensional (4D) metrics was evaluated as a laparoscopic training tool. Method Simball Box is a video box trainer with authentic surgical instruments and camera with video recording, equipped with 4D motion analysis registered through trocars using machine vision technology. Residents attending a 3-day laparoscopy course were evaluated performing a laparoscopic surgical knot at start, middle, and end. Metrics were obtained. Feedback data were presented in reference to expert/tutorial performance. Results Ten right-handed residents were included. Median time (range) to finish the task was 359 (253-418), 129 (95-166), and 95 (52-156) seconds; 655%, 236%, and 174% of tutorial performance, with significance pre-/midcourse (P < .0001), pre-/postcourse (P < .0001), and mid-/postcourse (P = .0050). Combined median total instrument motion decreased pre-/midcourse from 1208 (845-1751) to 522 cm (411-810 cm); P = .042 to 405 cm (246-864 cm) postcourse; pre-/postcourse P < .0001; 673%, 291%, 225% of tutorial performance. Total angular distance in radians (range) was 150 (87-251), 65 (42-116), and 50 (33-136) with significance pre-/midcourse (P = .022) and pre-/postcourse (P = .0002). Right-handed average speed (cm/s) increased: 1.94 (1.11-2.27) pre-, 2.39 (1.56-2.83) mid-, 2.60 (1.67-3.19) postcourse with significance pre-/midcourse (P = .022) and pre-/postcourse (P = .002). Average acceleration (mm/s(2)) and motion smoothness (µm/s(3)) failed to show any difference. Conclusion For laparoscopic training and as a promising evaluation device, Simball Box obtained metrics mirroring progression well. PMID:26857834

  12. 3D nonrigid medical image registration using a new information theoretic measure

    NASA Astrophysics Data System (ADS)

    Li, Bicao; Yang, Guanyu; Coatrieux, Jean Louis; Li, Baosheng; Shu, Huazhong

    2015-11-01

    This work presents a novel method for the nonrigid registration of medical images based on the Arimoto entropy, a generalization of the Shannon entropy. The proposed method employed the Jensen-Arimoto divergence measure as a similarity metric to measure the statistical dependence between medical images. Free-form deformations were adopted as the transformation model and the Parzen window estimation was applied to compute the probability distributions. A penalty term is incorporated into the objective function to smooth the nonrigid transformation. The goal of registration is to optimize an objective function consisting of a dissimilarity term and a penalty term, which would be minimal when two deformed images are perfectly aligned using the limited memory BFGS optimization method, and thus to get the optimal geometric transformation. To validate the performance of the proposed method, experiments on both simulated 3D brain MR images and real 3D thoracic CT data sets were designed and performed on the open source elastix package. For the simulated experiments, the registration errors of 3D brain MR images with various magnitudes of known deformations and different levels of noise were measured. For the real data tests, four data sets of 4D thoracic CT from four patients were selected to assess the registration performance of the method, including ten 3D CT images for each 4D CT data covering an entire respiration cycle. These results were compared with the normalized cross correlation and the mutual information methods and show a slight but true improvement in registration accuracy.

  13. Estimation of operative line of resection using preoperative image and nonrigid registration.

    PubMed

    Lee, Jong-Ha; Won, Chang-Hee; Kong, Seong-Gon

    2008-01-01

    Even though accurate diagnosis of organs is done using preoperative images such as CT or MRI, these information are not directly used in the operating room, because organs are nonrigid and their shapes change with time. In this paper, we propose to obtain an intraoperative image of an open organ and fuse the image with a preoperative image. The intraoperative image is obtained from a three-dimensional laser scanner. The registration of preoperative image to the intraoperative image can relate the information from the preoperative image to the open organ in the operating room. We do this by registering preoperative images to intraoperative images. An algorithm based on Robust Point Matching method is developed for this nonrigid image registration problem. We also propose a new metric called Non Overlapping Ratio to determine the registration error. The experiments demonstrate that the proposed method is capable of achieving region of interest estimation within 1.51 mm mean distance error and 0.66% Non Overlapping Ratio. PMID:19163585

  14. 3D nonrigid registration via optimal mass transport on the GPU.

    PubMed

    Ur Rehman, Tauseef; Haber, Eldad; Pryor, Gallagher; Melonakos, John; Tannenbaum, Allen

    2009-12-01

    In this paper, we present a new computationally efficient numerical scheme for the minimizing flow approach for optimal mass transport (OMT) with applications to non-rigid 3D image registration. The approach utilizes all of the gray-scale data in both images, and the optimal mapping from image A to image B is the inverse of the optimal mapping from B to A. Further, no landmarks need to be specified, and the minimizer of the distance functional involved is unique. Our implementation also employs multigrid, and parallel methodologies on a consumer graphics processing unit (GPU) for fast computation. Although computing the optimal map has been shown to be computationally expensive in the past, we show that our approach is orders of magnitude faster then previous work and is capable of finding transport maps with optimality measures (mean curl) previously unattainable by other works (which directly influences the accuracy of registration). We give results where the algorithm was used to compute non-rigid registrations of 3D synthetic data as well as intra-patient pre-operative and post-operative 3D brain MRI datasets. PMID:19135403

  15. 3D nonrigid registration via optimal mass transport on the GPU

    PubMed Central

    Rehman, Tauseef ur; Haber, Eldad; Pryor, Gallagher; Melonakos, John; Tannenbaum, Allen

    2009-01-01

    In this paper, we present a new computationally efficient numerical scheme for the minimizing flow approach for optimal mass transport (OMT) with applications to non-rigid 3D image registration. The approach utilizes all of the gray-scale data in both images, and the optimal mapping from image A to image B is the inverse of the optimal mapping from B to A. Further, no landmarks need to be specified, and the minimizer of the distance functional involved is unique. Our implementation also employs multigrid, and parallel methodologies on a consumer graphics processing unit (GPU) for fast computation. Although computing the optimal map has been shown to be computationally expensive in the past, we show that our approach is orders of magnitude faster then previous work and is capable of finding transport maps with optimality measures (mean curl) previously unattainable by other works (which directly influences the accuracy of registration). We give results where the algorithm was used to compute non-rigid registrations of 3D synthetic data as well as intra-patient pre-operative and post-operative 3D brain MRI datasets. PMID:19135403

  16. NON-RIGID IMAGE REGISTRATION BASED STRAIN ESTIMATOR FOR INTRAVASCULAR ULTRASOUND ELASTOGRAPHY

    PubMed Central

    Richards, Michael S.; Doyley, Marvin M.

    2013-01-01

    Intravascular ultrasound elastography (IVUSe) could improve the diagnosis of cardiovascular disease by revealing vulnerable plaques through their mechanical tissue properties. To improve the performance of IVUSe, we developed and implemented a non-rigid image-registration method to visualize the radial and circumferential component of strain within vascular tissues. We evaluated the algorithm’s performance with four initialization schemes using simulated and experimentally acquired ultrasound images. Applying the registration method to radio-frequency (RF) echo frames improved the accuracy of displacements compared to when B-mode images were employed. However, strain elastograms measured from RF echo frames produce erroneous results when both the zero-initialization method and the mesh-refinement scheme were employed. For most strain levels, the cross-correlation-initialization method produced the best performance. The simulation study predicted that elastograms obtained from vessels with average strains in the range of 3%–5% should have high elastographic signal-to-noise ratio (SNRe)–on the order of 4.5 and 7.5 for the radial and circumferential components of strain, respectively. The preliminary in vivo validation study (phantom and an atherosclerotic rabbit) demonstrated that the non-rigid registration method could produce useful radial and circumferential strain elastograms under realistic physiologic conditions. The results of this investigation were sufficiently encouraging to warrant a more comprehensive in vivo validation. PMID:23245827

  17. A kidney deformation model for use in non-rigid registration during image-guided surgery

    NASA Astrophysics Data System (ADS)

    Ong, Rowena E.; Herrell, S. Duke, III; Miga, Michael I.; Galloway, Robert L., Jr.

    2008-03-01

    In order to facilitate the removal of tumors during partial nephrectomies, an image-guided surgery system may be useful. This system would require a registration of the physical kidney to a pre-operative image volume; however, it is unclear whether a rigid registration would be sufficient. One possible source of non-rigid deformation is the clamping of the renal artery during surgery and the subsequent loss of pressure as the kidney is punctured and blood loss occurs. To explore this issue, a model of kidney deformation due to loss of perfusion and pressure was developed based on Biot's consolidation model. The model was tested on two resected porcine kidneys in which the renal artery and vein were clamped. CT image volumes of the kidney were obtained before and after the deformation caused unclamping, and fiducial markers embedded on the kidney surface allowed the deformation to be tracked. The accuracy of the kidney model was accessed by calculating the model error at the fiducial locations and using image similarity measures. Preliminary results indicate that the model may be useful in a non-rigid registration scheme; however, further refinements to the model may be necessary to better simulate the deformation due to loss of perfusion and pressure.

  18. A deformation model for non-rigid registration of the kidney

    NASA Astrophysics Data System (ADS)

    Ong, Rowena E.; Glisson, Courtenay L.; Herrell, S. Duke; Miga, Michael I.; Galloway, Robert

    2009-02-01

    The development of an image-guided renal surgery system may aid tumor resection during partial nephrectomies. This system would require the registration of pre-operative kidney CT or MR scans to the physical kidney; however, the amount of non-rigid deformation occurring during surgery and whether it can be corrected for in an image-guided system is unknown. One possible source of non-rigid deformation is a change in pressure within the kidney: during surgery, clamping of the renal artery and vein results in a loss of perfusion, such that the subsequent cutting of the kidney and fluid outflow may cause a decrease in intrarenal pressure. In this work, we attempt to characterize the deformation due to cutting of the kidney and subsequent changes in intrarenal pressure. To accomplish this, we perfused a resected porcine kidney at a physiologically realistic pressure, clamped the renal vessels, and cut the kidney using a tracked scalpel. The resulting deformation was tracked in a CT scanner using 15-20 glass bead fiducials attached to the kidney surface. A modified form of Biot's consolidation model was used to simulate the deformation, and the accuracy was assessed by calculating the target registration error and image similarity.

  19. Smart align -- A new tool for robust non-rigid registration of scanning microscope data

    SciTech Connect

    Jones, Lewys; Yang, Hao; Pennycook, Timothy J.; Marshall, Matthew S. J.; Van Aert, Sandra; Browning, Nigel D.; Castell, Martin R.; Nellist, Peter D.

    2015-07-10

    Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include bias voltage series to probe local electronic structure. Whatever the application, such investigations must begin with the careful alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.

  20. A Method for Non-Rigid Face Alignment via Combining Local and Holistic Matching

    PubMed Central

    Yang, Yang; Chen, Zhuo

    2016-01-01

    We propose a method for non-rigid face alignment which only needs a single template, such as using a person’s smile face to match his surprise face. First, in order to be robust to outliers caused by complex geometric deformations, a new local feature matching method called K Patch Pairs (K-PP) is proposed. Specifically, inspired by the state-of-art similarity measure used in template matching, K-PP is to find the mutual K nearest neighbors between two images. A weight matrix is then presented to balance the similarity and the number of local matching. Second, we proposed a modified Lucas-Kanade algorithm combined with local matching constraint to solve the non-rigid face alignment, so that a holistic face representation and local features can be jointly modeled in the object function. Both the flexible ability of local matching and the robust ability of holistic fitting are included in our method. Furthermore, we show that the optimization problem can be efficiently solved by the inverse compositional algorithm. Comparison results with conventional methods demonstrate our superiority in terms of both accuracy and robustness. PMID:27494319

  1. Simultaneous Nonrigid Registration, Segmentation, and Tumor Detection in MRI Guided Cervical Cancer Radiation Therapy

    PubMed Central

    Lu, Chao; Chelikani, Sudhakar; Jaffray, David A.; Milosevic, Michael F.; Staib, Lawrence H.; Duncan, James S.

    2013-01-01

    External beam radiation therapy (EBRT) for the treatment of cancer enables accurate placement of radiation dose on the cancerous region. However, the deformation of soft tissue during the course of treatment, such as in cervical cancer, presents significant challenges for the delineation of the target volume and other structures of interest. Furthermore, the presence and regression of pathologies such as tumors may violate registration constraints and cause registration errors. In this paper, automatic segmentation, nonrigid registration and tumor detection in cervical magnetic resonance (MR) data are addressed simultaneously using a unified Bayesian framework. The proposed novel method can generate a tumor probability map while progressively identifying the boundary of an organ of interest based on the achieved nonrigid transformation. The method is able to handle the challenges of significant tumor regression and its effect on surrounding tissues. The new method was compared to various currently existing algorithms on a set of 36 MR data from six patients, each patient has six T2-weighted MR cervical images. The results show that the proposed approach achieves an accuracy comparable to manual segmentation and it significantly outperforms the existing registration algorithms. In addition, the tumor detection result generated by the proposed method has a high agreement with manual delineation by a qualified clinician. PMID:22328178

  2. Smart align -- A new tool for robust non-rigid registration of scanning microscope data

    DOE PAGESBeta

    Jones, Lewys; Yang, Hao; Pennycook, Timothy J.; Marshall, Matthew S. J.; Van Aert, Sandra; Browning, Nigel D.; Castell, Martin R.; Nellist, Peter D.

    2015-07-10

    Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include bias voltage series to probe local electronic structure. Whatever the application, such investigations must begin with the carefulmore » alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.« less

  3. Motion-mode energy method for vehicle dynamics analysis and control

    NASA Astrophysics Data System (ADS)

    Zhang, Nong; Wang, Lifu; Du, Haiping

    2014-01-01

    Vehicle motion and vibration control is a fundamental motivation for the development of advanced vehicle suspension systems. In a vehicle-fixed coordinate system, the relative motions of the vehicle between body and wheel can be classified into several dynamic stages based on energy intensity, and can be decomposed into sets of uncoupled motion-modes according to modal parameters. Vehicle motions are coupled, but motion-modes are orthogonal. By detecting and controlling the predominating vehicle motion-mode, the system cost and energy consumption of active suspensions could be reduced. A motion-mode energy method (MEM) is presented in this paper to quantify the energy contribution of each motion-mode to vehicle dynamics in real time. The control of motion-modes is prioritised according to the level of motion-mode energy. Simulation results on a 10 degree-of-freedom nonlinear full-car model with the magic-formula tyre model illustrate the effectiveness of the proposed MEM. The contribution of each motion-mode to the vehicle's dynamic behaviour is analysed under different excitation inputs from road irregularities, directional manoeuvres and braking. With the identified dominant motion-mode, novel cost-effective suspension systems, such as active reconfigurable hydraulically interconnected suspension, can possibly be used to control full-car motions with reduced energy consumption. Finally, discussion, conclusions and suggestions for future work are provided.

  4. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: The case of domain motions

    NASA Astrophysics Data System (ADS)

    Naritomi, Yusuke; Fuchigami, Sotaro

    2011-02-01

    Protein dynamics on a long time scale was investigated using all-atom molecular dynamics (MD) simulation and time-structure based independent component analysis (tICA). We selected the lysine-, arginine-, ornithine-binding protein (LAO) as a target protein and focused on its domain motions in the open state. A MD simulation of the LAO in explicit water was performed for 600 ns, in which slow and large-amplitude domain motions of the LAO were observed. After extracting domain motions by rigid-body domain analysis, the tICA was applied to the obtained rigid-body trajectory, yielding slow modes of the LAO's domain motions in order of decreasing time scale. The slowest mode detected by the tICA represented not a closure motion described by a largest-amplitude mode determined by the principal component analysis but a twist motion with a time scale of tens of nanoseconds. The slow dynamics of the LAO were well described by only the slowest mode and were characterized by transitions between two basins. The results show that tICA is promising for describing and analyzing slow dynamics of proteins.

  5. Understanding geological processes: Visualization of rigid and non-rigid transformations

    NASA Astrophysics Data System (ADS)

    Shipley, T. F.; Atit, K.; Manduca, C. A.; Ormand, C. J.; Resnick, I.; Tikoff, B.

    2012-12-01

    Visualizations are used in the geological sciences to support reasoning about structures and events. Research in cognitive sciences offers insights into the range of skills of different users, and ultimately how visualizations might support different users. To understand the range of skills needed to reason about earth processes we have developed a program of research that is grounded in the geosciences' careful description of the spatial and spatiotemporal patterns associated with earth processes. In particular, we are pursuing a research program that identifies specific spatial skills and investigates whether and how they are related to each other. For this study, we focus on a specific question: Is there an important distinction in the geosciences between rigid and non-rigid deformation? To study a general spatial thinking skill we employed displays with non-geological objects that had been altered by rigid change (rotation), and two types of non-rigid change ("brittle" (or discontinuous) and "ductile" (or continuous) deformation). Disciplinary scientists (geosciences and chemistry faculty), and novices (non-science faculty and undergraduate psychology students) answered questions that required them to visualize the appearance of the object before the change. In one study, geologists and chemists were found to be superior to non-science faculty in reasoning about rigid rotations (e.g., what an object would look like from a different perspective). Geologists were superior to chemists in reasoning about brittle deformations (e.g., what an object looked like before it was broken - here the object was a word cut into many fragments displaced in different directions). This finding is consistent with two hypotheses: 1) Experts are good at visualizing the types of changes required for their domain; and 2) Visualization of rigid and non-rigid changes are not the same skill. An additional important finding is that there was a broad range of skill in both rigid and non-rigid

  6. Detection of Counter-Changing Contrast: Second-Order Apparent Motion Without Postrectification Motion-Energy Analysis or Salience Mapping/Feature Tracking

    ERIC Educational Resources Information Center

    Gilroy, Lee A.; Hock, Howard S.

    2004-01-01

    The perception of 2nd-order, texture-contrast-defined motion was studied for apparent-motion stimuli composed of a pair of spatially displaced, simultaneously visible checkerboards. It was found that background-relative, counter-changing contrast provided the informational basis for the perception of 2nd-order apparent motion; motion began where…

  7. Analysis of visual acuity and motion resolvability as measures for optimal visual perception of the workspace.

    PubMed

    Janabi-Sharifi, Farrokh; Vakanski, Aleksandar

    2011-03-01

    For working tasks with high visual demand, ergonomic design of the working stations requires defining criteria for comparative evaluation and analysis of the visual perceptibility in different regions of the workspace. This paper provides kinematic models of visual acuity and motion resolvability as adopted measures of visual perceptibility of the workspace. The proposed models have been examined through two sets of experiments. The first experiment is designed to compare the models outputs with those from experiments. Time measurements of the participants' response to visual events are employed for calculation of the perceptibility measures. The overall comparison results show similar patterns and moderate statistical errors of the measured and kinematically modeled values of the parameters. In the second experiment, the proposed set of visual perceptibility measures are examined for a simulated industrial task of inserting electronic chips into slots of a working table, resembling a fine assembly line of transponders manufacturing. The results from ANOVA tests for the visual acuity and the motion resolvability justify the postures adopted by the participants using visual perceptibility measures for completing the insertion tasks. PMID:20947063

  8. Effects of light refraction on the accuracy of camera calibration and reconstruction in underwater motion analysis.

    PubMed

    Kwon, Young-Hoo; Casebolt, Jeffrey B

    2006-01-01

    One of the most serious obstacles to accurate quantification of the underwater motion of a swimmer's body is image deformation caused by refraction. Refraction occurs at the water-air interface plane (glass) owing to the density difference. Camera calibration-reconstruction algorithms commonly used in aquatic research do not have the capability to correct this refraction-induced nonlinear image deformation and produce large reconstruction errors. The aim of this paper is to provide a through review of: the nature of the refraction-induced image deformation and its behaviour in underwater object-space plane reconstruction; the intrinsic shortcomings of the Direct Linear Transformation (DLT) method in underwater motion analysis; experimental conditions that interact with refraction; and alternative algorithms and strategies that can be used to improve the calibration-reconstruction accuracy. Although it is impossible to remove the refraction error completely in conventional camera calibration-reconstruction methods, it is possible to improve the accuracy to some extent by manipulating experimental conditions or calibration frame characteristics. Alternative algorithms, such as the localized DLT and the double-plane method are also available for error reduction. The ultimate solution for the refraction problem is to develop underwater camera calibration and reconstruction algorithms that have the capability to correct refraction. PMID:16521625

  9. Effects of light refraction on the accuracy of camera calibration and reconstruction in underwater motion analysis.

    PubMed

    Kwon, Young-Hoo; Casebolt, Jeffrey B

    2006-07-01

    One of the most serious obstacles to accurate quantification of the underwater motion of a swimmer's body is image deformation caused by refraction. Refraction occurs at the water-air interface plane (glass) owing to the density difference. Camera calibration-reconstruction algorithms commonly used in aquatic research do not have the capability to correct this refraction-induced nonlinear image deformation and produce large reconstruction errors. The aim of this paper is to provide a thorough review of: the nature of the refraction-induced image deformation and its behaviour in underwater object-space plane reconstruction; the intrinsic shortcomings of the Direct Linear Transformation (DLT) method in underwater motion analysis; experimental conditions that interact with refraction; and alternative algorithms and strategies that can be used to improve the calibration-reconstruction accuracy. Although it is impossible to remove the refraction error completely in conventional camera calibration-reconstruction methods, it is possible to improve the accuracy to some extent by manipulating experimental conditions or calibration frame characteristics. Alternative algorithms, such as the localized DLT and the double-plane method are also available for error reduction. The ultimate solution for the refraction problem is to develop underwater camera calibration and reconstruction algorithms that have the capability to correct refraction. PMID:16939159

  10. A finite element approach for large motion dynamic analysis of multibody structures in space

    NASA Technical Reports Server (NTRS)

    Chang, Che-Wei

    1989-01-01

    A three-dimensional finite element formulation for modeling the transient dynamics of constrained multibody space sructures with truss-like configurations is presented. Convected coordinate systems are used to define rigid-body motion of individual elements in the system. These systems are located at one end of each element and are oriented such that one axis passes through the other end of the element. Deformation of each element, relative to its convected coordinate system, is defined by cubic flexural shape functions as used in finite element methods of structural analysis. The formulation is oriented toward joint dominated structures and places the generalized coordinates at the joint. A transformation matrix is derived to integrate joint degree-of-freedom into the equations of motion of the element. Based on the derivation, a general-purpose code LATDYN (Large Angle Transient DYNamics) was developed. Two examples are presented to illustrate the application of the code. For the spin-up of a flexible beam, results are compared with existing solutions available in the literature. For the deployment of one bay of a deployable space truss (the Minimast), results are verified by the geometric knowledge of the system and converged solution of a successively refined model.

  11. Experimental analysis and prediction of antisymmetric wave motion in a tapered anisotropic waveguide.

    PubMed

    Moll, Jochen; Wandowski, Tomasz; Malinowski, Pawel; Radzienski, Maciej; Opoka, Szymon; Ostachowicz, Wieslaw

    2015-07-01

    This paper presents experimental results for wave propagation in an anisotropic multilayered structure with linearly varying cross section. Knowing the dispersion and wave propagation properties in such a structure is of great importance for non-destructive material testing and structural health monitoring applications for accurate damage detection and localization. In the proposed study, the wavefield is generated by a circular piezoelectric wafer active sensor and measured by a scanning laser-Doppler-vibrometer. The measurements are compared with a theoretical group delay estimation and a signal prediction for the antisymmetric wave motion along the non-uniform propagation path. The required dispersion curves are derived from the well-known global matrix method for segments of constant thickness. A multidimensional frequency-wavenumber analysis of linescan data and the full wavefield provides further insight of the adiabatic wave motion because the wavenumber changes along the tapered geometry of the waveguide. In addition, it is demonstrated that a terahertz time-domain system can be used in glass-fiber reinforced plastic structures as a tool to estimate the thickness profile of thin structures by means of time-of-flight measurements. This information is particularly important for guided wave-based diagnostics of structures with unknown thickness. PMID:26233030

  12. Contribution to a marker-free system for human motion analysis

    NASA Astrophysics Data System (ADS)

    Calais, Elodie F.; Legrand, Louis; Voisin, Yvon; Diou, Alan

    2002-07-01

    This paper presents a novel approach to human gait analysis using a marker-free system. The devised acquisition system is composed of three synchronized and calibrated charge coupled device cameras. The aim of this work is to recognize in gray level image sequences the leg of a walking human and to reconstruct it in the three-dimensional space. An articulated three- dimensional (3D) model of the human body, based on the use of tapered superquadric curves, is first introduced. A motion-based segmentation, using morphological operators, is then applied to the image sequences in order to extract the boundaries of the leg in motion. A reconstruction process, based on the use of a least median of squares regression is next performed, to determine the location of the human body in the 3D space. Finally, a spatial coherence is imposed on the reconstructed curves in order to better fit the anatomy of the leg and to take into account the articulated model. Each stage of the proposed methodology has been tested both on synthetic images and on real world images of walking humans. The obtained results suggest that this approach is quite promising and should be useful in the study of the gait.

  13. Intermittent turbulent events over sandy current ripples: a motion-picture analysis of flume experiments

    NASA Astrophysics Data System (ADS)

    Ha, H. K.; Chough, S. K.

    2003-10-01

    A series of laboratory flume experiments was conducted in order to elucidate sediment transport processes over sandy current ripples. Instantaneous cinematography, capable of recording up to 30 frames per second, was employed to trace the coherent trajectories of the sediment particles and flow. Analysis of channel side-view images suggests that sediment behaviour over a fully developed current ripple can be categorized as distinct stages on both stoss and lee sides. Near the reattachment point on the stoss side, sediment particles exhibit the following intermittent but coherent motions: (1) impact of sediment-laden fluid on the reattachment point; (2) entrainment of particles; (3) spiral-like turbulent motion; and (4) downstream dissipation of particles. The sequential sediment behaviour is called micro-scale kolk, which is a key mechanism responsible for turbulent sediment entrainment over current ripples. The salient features of boil were not observed. In the crest and lee side region, sequential images show the following characteristics: (1) detachment of particles and fluid at the crest; (2) entrainment and shielding of particles; (3) avalanching and rolling of free-shear layer; and (4) downstream dissipation and recreation of a lee face. Segregation of heavy minerals was accomplished by successive avalanches along the lee slope and mixing vortices in the separation cell.

  14. Coarse analysis of multiscale systems: Diffuser flows, charged particle motion, and connections to averaging theory

    NASA Astrophysics Data System (ADS)

    Fung, Jimmy

    We describe a technique for the efficient computation of the dominant-scale dynamics of a fluid system when only a high-fidelity simulation is available. Such a technique is desirable when governing equations for the dominant scales are unavailable, when model reduction is impractical, or when the original high-fidelity computation is expensive. We adopt the coarse analysis framework proposed by I. G. Kevrekidis (Comm. Math. Sci. 2003), where a computational superstructure is designed to use short-time, high-fidelity simulations to extract the dominant features for a multiscale system. We apply this technique to compute the dominant features of the compressible flow through a planar diffuser. We apply the proper orthogonal decomposition to classify the dominant and subdominant scales of diffuser flows. We derive a coarse projective Adams-Bashforth time integration routine and compute averaged diffuser flows. The results include accurate tracking of the dominant-scale dynamics for a range of parameter values for the computational superstructure. These results demonstrate that coarse analysis methods are useful for solving fluid flow problems of a multiscale nature. In order to elucidate the behavior of coarse analysis techniques, we make comparisons to averaging theory. To this end, we derive governing equations for the average motion of charged particles in a magnetic field in a number of different settings. First, we apply a novel procedure, inspired by WKB theory and Whitham averaging, to average the variational principle. The resulting equations are equivalent to the guiding center equations for charged particle motion; this marks an instance where averaging and variational principles commute. Secondly, we apply Lagrangian averaging techniques, previously applied in fluid mechanics, to derive averaged equations. Making comparisons to the WKB/Whitham derivation allows for the necessary closure of the Lagrangian averaging formulation. We also discuss the

  15. Susceptibility to motion sickness among Skylab astronauts

    NASA Technical Reports Server (NTRS)

    Graybiel, A.; Miller, E. F., II; Homick, J. L.

    1974-01-01

    The mechanisms causing susceptibility to motion sickness in zero gravity are not well understood. Preflight and postflight motion sickness susceptibility tests conducted on the three Skylab crews are described. Under operational conditions, the first Skylab crew experienced no motion sickness, while the other two crews did. Susceptibility was greater in the Skylab workshop than in the command module. Weightlessness in itself is a unique motion environment. Changes occur in nonrigid body parts and in the response of macular receptors in the otolith organs. Tests in parabolic flight, where zero gravity is the only significant factor in motion sickness susceptibility, indicate that some people need to adapt to weightlessness and others do not. A comparison of all US and Soviet manned missions indicates that a headward shift of fluid on transition to zero gravity is not a predisposing factor in motion sickness. Under certain conditions after adaptation susceptibility was lower in the Skylab workshop than on the ground. The anti-motion sickness drugs used in Skylab are judged effective for prevention and treatment.

  16. A Theoretical Analysis of the Effects of Fuel Motion on Airplane Dynamics

    NASA Technical Reports Server (NTRS)

    Schy, Albert A

    1952-01-01

    The general equations of motion for an airplane with a number of spherical fuel tanks are derived. The motion of the fuel is approximated by the motion of solid pendulums. The same type of derivation and equations are shown to apply to any type of fuel tank where the motion of the fuel may be represented in terms of undamped harmonic oscillators. Motions are calculated for a present-day high-speed airplane and a free-flying airplane model with two spherical tanks in the symmetry plane.

  17. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: Phantom and patient studies

    PubMed Central

    Huang, Chuan; Petibon, Yoann; Ouyang, Jinsong; Reese, Timothy G.; Ahlman, Mark A.; Bluemke, David A.; El Fakhri, Georges

    2015-01-01

    Purpose: Degradation of image quality caused by cardiac and respiratory motions hampers the diagnostic quality of cardiac PET. It has been shown that improved diagnostic accuracy of myocardial defect can be achieved by tagged MR (tMR) based PET motion correction using simultaneous PET-MR. However, one major hurdle for the adoption of tMR-based PET motion correction in the PET-MR routine is the long acquisition time needed for the collection of fully sampled tMR data. In this work, the authors propose an accelerated tMR acquisition strategy using parallel imaging and/or compressed sensing and assess the impact on the tMR-based motion corrected PET using phantom and patient data. Methods: Fully sampled tMR data were acquired simultaneously with PET list-mode data on two simultaneous PET-MR scanners for a cardiac phantom and a patient. Parallel imaging and compressed sensing were retrospectively performed by GRAPPA and kt-FOCUSS algorithms with various acceleration factors. Motion fields were estimated using nonrigid B-spline image registration from both the accelerated and fully sampled tMR images. The motion fields were incorporated into a motion corrected ordered subset expectation maximization reconstruction algorithm with motion-dependent attenuation correction. Results: Although tMR acceleration introduced image artifacts into the tMR images for both phantom and patient data, motion corrected PET images yielded similar image quality as those obtained using the fully sampled tMR images for low to moderate acceleration factors (<4). Quantitative analysis of myocardial defect contrast over ten independent noise realizations showed similar results. It was further observed that although the image quality of the motion corrected PET images deteriorates for high acceleration factors, the images were still superior to the images reconstructed without motion correction. Conclusions: Accelerated tMR images obtained with more than 4 times acceleration can still provide

  18. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: Phantom and patient studies

    SciTech Connect

    Huang, Chuan; Petibon, Yoann; Ouyang, Jinsong; El Fakhri, Georges; Reese, Timothy G.; Ahlman, Mark A.; Bluemke, David A.

    2015-02-15

    Purpose: Degradation of image quality caused by cardiac and respiratory motions hampers the diagnostic quality of cardiac PET. It has been shown that improved diagnostic accuracy of myocardial defect can be achieved by tagged MR (tMR) based PET motion correction using simultaneous PET-MR. However, one major hurdle for the adoption of tMR-based PET motion correction in the PET-MR routine is the long acquisition time needed for the collection of fully sampled tMR data. In this work, the authors propose an accelerated tMR acquisition strategy using parallel imaging and/or compressed sensing and assess the impact on the tMR-based motion corrected PET using phantom and patient data. Methods: Fully sampled tMR data were acquired simultaneously with PET list-mode data on two simultaneous PET-MR scanners for a cardiac phantom and a patient. Parallel imaging and compressed sensing were retrospectively performed by GRAPPA and kt-FOCUSS algorithms with various acceleration factors. Motion fields were estimated using nonrigid B-spline image registration from both the accelerated and fully sampled tMR images. The motion fields were incorporated into a motion corrected ordered subset expectation maximization reconstruction algorithm with motion-dependent attenuation correction. Results: Although tMR acceleration introduced image artifacts into the tMR images for both phantom and patient data, motion corrected PET images yielded similar image quality as those obtained using the fully sampled tMR images for low to moderate acceleration factors (<4). Quantitative analysis of myocardial defect contrast over ten independent noise realizations showed similar results. It was further observed that although the image quality of the motion corrected PET images deteriorates for high acceleration factors, the images were still superior to the images reconstructed without motion correction. Conclusions: Accelerated tMR images obtained with more than 4 times acceleration can still provide

  19. Regional-specific Stochastic Simulation of Spatially-distributed Ground-motion Time Histories using Wavelet Packet Analysis

    NASA Astrophysics Data System (ADS)

    Huang, D.; Wang, G.

    2014-12-01

    Stochastic simulation of spatially distributed ground-motion time histories is important for performance-based earthquake design of geographically distributed systems. In this study, we develop a novel technique to stochastically simulate regionalized ground-motion time histories using wavelet packet analysis. First, a transient acceleration time history is characterized by wavelet-packet parameters proposed by Yamamoto and Baker (2013). The wavelet-packet parameters fully characterize ground-motion time histories in terms of energy content, time- frequency-domain characteristics and time-frequency nonstationarity. This study further investigates the spatial cross-correlations of wavelet-packet parameters based on geostatistical analysis of 1500 regionalized ground motion data from eight well-recorded earthquakes in California, Mexico, Japan and Taiwan. The linear model of coregionalization (LMC) is used to develop a permissible spatial cross-correlation model for each parameter group. The geostatistical analysis of ground-motion data from different regions reveals significant dependence of the LMC structure on regional site conditions, which can be characterized by the correlation range of Vs30 in each region. In general, the spatial correlation and cross-correlation of wavelet-packet parameters are stronger if the site condition is more homogeneous. Using the regional-specific spatial cross-correlation model and cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground-motion time histories can be synthesized. Case studies and blind tests demonstrated that the simulated ground motions generally agree well with the actual recorded data, if the influence of regional-site conditions is considered. The developed method has great potential to be used in computational-based seismic analysis and loss estimation in a regional scale.

  20. Motion error analysis of the 3D coordinates of airborne lidar for typical terrains

    NASA Astrophysics Data System (ADS)

    Peng, Tao; Lan, Tian; Ni, Guoqiang

    2013-07-01

    A motion error model of 3D coordinates is established and the impact on coordinate errors caused by the non-ideal movement of the airborne platform is analyzed. The simulation results of the model show that when the lidar system operates at high altitude, the influence on the positioning errors derived from laser point cloud spacing is small. For the model the positioning errors obey simple harmonic vibration whose amplitude envelope gradually reduces with the increase of the vibration frequency. When the vibration period number is larger than 50, the coordinate errors are almost uncorrelated with time. The elevation error is less than the plane error and in the plane the error in the scanning direction is less than the error in the flight direction. Through the analysis of flight test data, the conclusion is verified.

  1. Pattern recognition analysis of satellite data for tropical cyclone motion and intensity forecasts

    NASA Technical Reports Server (NTRS)

    Hunter, Herbert; Nunez, Edwin; Barker, Llyle; Rodgers, ED

    1986-01-01

    An objective empirical analysis technique is employed to investigate the extent to which satellite-obtained measurements (GOES IR and TOVS data) of a tropical cyclone and its environment can be used to predict cyclone motion. The paper describes the procedure used to process the satellite derived data in order to optimize their possible predictive value, the technique used in developing the regression algorithms, and the results of testing these algorithms using the Lachenbrach and Mickey (1968) procedure. The data were examined alone and in conjunction with available nonsatellite climatological and persistence variables for each storm. These predictors are similar to those used in the National Hurricane Center (NHC) CLIPPER model. The performances obtained using the Nichols Research Corporation CLIPPER model and the NHC CLIPPER model are compared, using homogeneous data sets for the comparisons. Major differences in results were found to be related to differences in the models.

  2. An automated analysis of wide area motion imagery for moving subject detection

    NASA Astrophysics Data System (ADS)

    Tahmoush, Dave

    2015-05-01

    Automated analysis of wide area motion imagery (WAMI) can significantly reduce the effort required for converting data into reliable decisions. We register consecutive WAMI frames and use false-color frame comparisons to enhance the visual detection of possible subjects in the imagery. The large number of WAMI detections produces the need for a prioritization of detections for further inspection. We create a priority queue of detections for automated revisit with smaller field-ofview assets based on the locations of the movers as well as the probability of the detection. This automated queue works within an operator's preset prioritizations but also allows the flexibility to dynamically respond to new events as well as incorporating additional information into the surveillance tasking.

  3. Interventional heart wall motion analysis with cardiac C-arm CT systems

    NASA Astrophysics Data System (ADS)

    Müller, Kerstin; Maier, Andreas K.; Zheng, Yefeng; Wang, Yang; Lauritsch, Günter; Schwemmer, Chris; Rohkohl, Christopher; Hornegger, Joachim; Fahrig, Rebecca

    2014-05-01

    Today, quantitative analysis of three-dimensional (3D) dynamics of the left ventricle (LV) cannot be performed directly in the catheter lab using a current angiographic C-arm system, which is the workhorse imaging modality for cardiac interventions. Therefore, myocardial wall analysis is completely based on the 2D angiographic images or pre-interventional 3D/4D imaging. In this paper, we present a complete framework to study the ventricular wall motion in 4D (3D+t) directly in the catheter lab. From the acquired 2D projection images, a dynamic 3D surface model of the LV is generated, which is then used to detect ventricular dyssynchrony. Different quantitative features to evaluate LV dynamics known from other modalities (ultrasound, magnetic resonance imaging) are transferred to the C-arm CT data. We use the ejection fraction, the systolic dyssynchrony index a 3D fractional shortening and the phase to maximal contraction (ϕi, max) to determine an indicator of LV dyssynchrony and to discriminate regionally pathological from normal myocardium. The proposed analysis tool was evaluated on simulated phantom LV data with and without pathological wall dysfunctions. The LV data used is publicly available online at https://conrad.stanford.edu/data/heart. In addition, the presented framework was tested on eight clinical patient data sets. The first clinical results demonstrate promising performance of the proposed analysis tool and encourage the application of the presented framework to a larger study in clinical practice.

  4. A specialized motion capture system for real-time analysis of mandibular movements using infrared cameras

    PubMed Central

    2013-01-01

    Background In the last years, several methods and devices have been proposed to record the human mandibular movements, since they provide quantitative parameters that support the diagnosis and treatment of temporomandibular disorders. The techniques currently employed suffer from a number of drawbacks including high price, unnatural to use, lack of support for real-time analysis and mandibular movements recording as a pure rotation. In this paper, we propose a specialized optical motion capture system, which causes a minimum obstruction and can support 3D mandibular movement analysis in real-time. Methods We used three infrared cameras together with nine reflective markers that were placed at key points of the face. Some classical techniques are suggested to conduct the camera calibration and three-dimensional reconstruction and we propose some specialized algorithms to automatically recognize our set of markers and track them along a motion capture session. Results To test the system, we developed a prototype software and performed a clinical experiment in a group of 22 subjects. They were instructed to execute several movements for the functional evaluation of the mandible while the system was employed to record them. The acquired parameters and the reconstructed trajectories were used to confirm the typical function of temporomandibular joint in some subjects and to highlight its abnormal behavior in others. Conclusions The proposed system is an alternative to the existing optical, mechanical, electromagnetic and ultrasonic-based methods, and intends to address some drawbacks of currently available solutions. Its main goal is to assist specialists in diagnostic and treatment of temporomandibular disorders, since simple visual inspection may not be sufficient for a precise assessment of temporomandibular joint and associated muscles. PMID:23433470

  5. A study of the nonlinear aerodynamics of bodies in nonplanar motion. Ph.D. Thesis - Stanford Univ., Calif.; [numerical analysis of aerodynamic force and moment systems during large amplitude, arbitrary motions

    NASA Technical Reports Server (NTRS)

    Schiff, L. B.

    1974-01-01

    Concepts from the theory of functionals are used to develop nonlinear formulations of the aerodynamic force and moment systems acting on bodies in large-amplitude, arbitrary motions. The analysis, which proceeds formally once the functional dependence of the aerodynamic reactions upon the motion variables is established, ensures the inclusion, within the resulting formulation, of pertinent aerodynamic terms that normally are excluded in the classical treatment. Applied to the large-amplitude, slowly varying, nonplanar motion of a body, the formulation suggests that the aerodynamic moment can be compounded of the moments acting on the body in four basic motions: steady angle of attack, pitch oscillations, either roll or yaw oscillations, and coning motion. Coning, where the nose of the body describes a circle around the velocity vector, characterizes the nonplanar nature of the general motion.

  6. Identification of the Causative Disease of Intermittent Claudication through Walking Motion Analysis: Feature Analysis and Differentiation

    PubMed Central

    Watanabe, Tetsuyou; Yoneyama, Takeshi; Toribatake, Yasumitsu

    2014-01-01

    Intermittent claudication is a walking symptom. Patients with intermittent claudication experience lower limb pain after walking for a short time. However, rest relieves the pain and allows the patient to walk again. Unfortunately, this symptom predominantly arises from not 1 but 2 different diseases: LSS (lumber spinal canal stenosis) and PAD (peripheral arterial disease). Patients with LSS can be subdivided by the affected vertebra into 2 main groups: L4 and L5. It is clinically very important to determine whether patients with intermittent claudication suffer from PAD, L4, or L5. This paper presents a novel SVM- (support vector machine-) based methodology for such discrimination/differentiation using minimally required data, simple walking motion data in the sagittal plane. We constructed a simple walking measurement system that is easy to set up and calibrate and suitable for use by nonspecialists in small spaces. We analyzed the obtained gait patterns and derived input parameters for SVM that are also visually detectable and medically meaningful/consistent differentiation features. We present a differentiation methodology utilizing an SVM classifier. Leave-one-out cross-validation of differentiation/classification by this method yielded a total accuracy of 83%. PMID:25114980

  7. Analysis of bifurcation and stability for a tractor semi-trailer in planar motion

    NASA Astrophysics Data System (ADS)

    Ding, Nenggen; Shi, Xiaobo; Zhang, Yipeng; Chen, Wen

    2014-12-01

    This paper is intended for bifurcation analysis of a nonlinear tractor semi-trailer vehicle model in planar motion and for investigating its stability under constant running conditions. Bifurcation analysis shows that bifurcation diagrams of a tractor semi-trailer are quite different from those of a single-unit vehicle. Some instability phenomena of the vehicle system such as jackknifing, sideslip, and spinning are explained by correlating them with the behaviour in the neighbourhood of unstable fixed points based on analysis of eigenvectors, phase trajectories, and status of lateral tyre force saturation. It is also found that yaw planar instability of a tractor semi-trailer is caused by lateral tyre force saturation of the tractor's rear axles and/or the trailer's axles. Moreover, the stability region in the state space is demarcated, and a stability index for evaluating size of the stability region in a feasible domain is proposed. Yaw stability under constant driving conditions is analysed by using the proposed stability index.

  8. Quantitative Analysis Of Sperm Motion Kinematics From Real-Time Video-Edge Images

    NASA Astrophysics Data System (ADS)

    Davis, Russell O...; Katz, David F.

    1988-02-01

    A new model of sperm swimming kinematics, which uses signal processing methods and multivariate statistical techniques to identify individual cell-motion parameters and unique cell populations, is presented. Swimming paths of individual cells are obtained using real-time, video-edge digitization. Raw paths are adaptively filtered to identify average paths, and measurements of space-time oscillations about average paths are made. Time-dependent frequency information is extracted from spatial variations about average paths using harmonic analysis. Raw-path and average-path measures such as curvature, curve length, and straight-line length, and measures of oscillations about average paths such as time-dependent amplitude and frequency variations, are used in a multivariate, cluster analysis to identify unique cell populations. The entire process, including digitization of sperm video images, is computer-automated. Preliminary results indicate that this method of tracking, digitization, and kinematic analysis accurately identifies unique cell subpopulations, including: the relative numbers of cells in each subpopulation, how subpopulations differ, and the extent and significance of such differences. With appropriate work, this approach may be useful for clinical discrimination between normal and abnormal semen specimens.

  9. Analysis of particle motions of volcanic earthquakes at White Island, New Zealand, using multicomponent complex trace analysis method

    NASA Astrophysics Data System (ADS)

    Han, Arim; Kim, Ki Young; Jolly, Arthur D.

    2015-04-01

    To investigate particle motions of volcanos seismic waves, we applied multicomponent complex trace analysis to the non-harmonic tremor detected on August 19 and very long period (VLP) and long period (LP) events recorded on October 3, 2013 at seismic stations WIZ and WSRZ on White Island volcano in New Zealand. Seismic data of 1,000 s duration from continuous records were digitized at a 100-Hz sample rate. Since spectral ranges for the tremor and LP events were overlapped to each other, a low-pass filter with a corner frequency of 0.5 Hz was applied to the VLP event only. To generate the quadrature traces, we applied the Hilbert transform to seismic data and then we calculated instantaneous polarization attributes. To minimize the effects of rapid temporal changes, 10-s moving averages were applied to the instantaneous polarization attributes. The volcanic tremor was mainly composed of horizontally polarized waves with retrograde elliptic motions for which the phase difference between vertical and horizontal components and the reciprocal ellipticity was 9 deg and 0.2 to 0.3, respectively. The rise angle less than 4 deg indicated that the sources were located at shallow depths. The VLP event was linearly polarized with phase difference nearly constant at 0 deg, reciprocal ellipticity close to 0.1, and rise angle of 58 and 52 deg at the two seismic stations. The positive values of rise angle indicate that the VLP event was composed of the compressional waves. Using the values of rise angle, elevations, and surface locations of two seismic stations, we computed the source depth of the VLP event. The depth was estimated to be 0.9 km. The LP events had values for phase difference of 11 and 3 deg, reciprocal ellipticity of 0.2 to 0.3 and rise angle less than 5 deg. The polarization attributes and particle motions of the LP events were similar to those of the volcanic tremor.

  10. Ground motion measurement in the lake Mead (Nevada, USA) area by temporal analysis of multiple interferograms.

    NASA Astrophysics Data System (ADS)

    Cavalie, O.; Doin, M.; Lasserre, C.; Briole, P.

    2004-12-01

    SAR interferometry has proven to be a reliable method for detecting small displacements due to ground subsidence. In this study, we propose to measure ground motion around the lake Mead (Nevada, USA) using InSAR. This artificial lake has been filled with water in 1935. An earlier studie, based on levelling measurements, has shown that the lake impoundement has induced a subsidence of 17 centimeters (Kaufmann et al., 2000). This relaxation process is analogous to the postglacial rebound, but at a smaller scale. To quantify the deformation and constrain the crust and mantle rheological parameters in the lake area, we have analysed multiple interferograms (245) based on 45 ERS images between 1992 and 2001. The interferometric phase contains information about deformation occurring between two satellite passes, as well as satellite orbits errors, topographic, and atmospheric artefacts. The topographic signature is removed using the 3-arc seconds SRTM data. To correct for orbital errors, we remove a best fitting linear ramp. Atmospheric artefact, in our interferograms, are mainly due to the variation of water vapor vertical stratification between the two passes. This results in a interferometric phase correlation with altitude which we remove by minimization. These corrections are then refined through an iterative procedure and validated using data from global atmospheric models. Corrected interferograms are then inverted to solve for deformation using a method based on the large spatial coverage of coherent pixels, allowing to strengthen the signal to noise ratio (Schmidt and Burgmann, 2003). This data inversion provides a time series of the expected deformation in the lake Mead area. The analysis of the deformation evolution during the period covered by the ERS satellites (1992-2001) shows a correlation between the vertical motion and the water level changes. So, we observe a subsidence of up to 1.5 cm between 1996 and 1998, followed by an uplift due to the drop of the

  11. A coordination class analysis of college students' judgments about animated motion

    NASA Astrophysics Data System (ADS)

    Thaden-Koch, Thomas Christian

    The coordination class construct was invented by di5essa and Sherin to clarify what it means to learn and use scientific concepts. A coordination class is defined to consist of readout strategies, which guide observation, and the causal net, which contains knowledge necessary for making inferences from observations. A coordination class, as originally specified, reliably extracts a certain class of information from a variety of situations. The coordination class construct is relatively new. To examine its utility, transcripts of interviews with college students were analyzed in terms of the coordination class construct. In the interviews, students judged the realism of several computer animations depicting balls rolling on a pair of tracks. When shown animations with only one ball, students made judgments consistent with focusing on the ball's speed changes. Adding a second ball to each animation strongly affected judgments made by students taking introductory physics courses, but had a smaller effect on judgments made by students taking a psychology course. Reasoning was described in this analysis as the coordination of readouts about animations with causal net elements related to realistic motion. Decision-making was characterized both for individual students and for groups by the causal net elements expressed, by the types of readouts reported, and by the coordination processes involved. The coordination class construct was found useful for describing the elements and processes of student decision-making, but little evidence was found to suggest that the students studied possessed reliable coordination classes. Students' causal nets were found to include several appropriate expectations about realistic motion. Several students reached judgments that appeared contrary to their expectations and reported mutually incompatible expectations. Descriptions of students' decision-making processes often included faulty readouts, or feedback loops in which causal net

  12. Collaborative real-time motion video analysis by human observer and image exploitation algorithms

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2015-05-01

    Motion video analysis is a challenging task, especially in real-time applications. In most safety and security critical applications, a human observer is an obligatory part of the overall analysis system. Over the last years, substantial progress has been made in the development of automated image exploitation algorithms. Hence, we investigate how the benefits of automated video analysis can be integrated suitably into the current video exploitation systems. In this paper, a system design is introduced which strives to combine both the qualities of the human observer's perception and the automated algorithms, thus aiming to improve the overall performance of a real-time video analysis system. The system design builds on prior work where we showed the benefits for the human observer by means of a user interface which utilizes the human visual focus of attention revealed by the eye gaze direction for interaction with the image exploitation system; eye tracker-based interaction allows much faster, more convenient, and equally precise moving target acquisition in video images than traditional computer mouse selection. The system design also builds on prior work we did on automated target detection, segmentation, and tracking algorithms. Beside the system design, a first pilot study is presented, where we investigated how the participants (all non-experts in video analysis) performed in initializing an object tracking subsystem by selecting a target for tracking. Preliminary results show that the gaze + key press technique is an effective, efficient, and easy to use interaction technique when performing selection operations on moving targets in videos in order to initialize an object tracking function.

  13. Rigid and non-rigid micro-plates: Philippines and Myanmar-Andaman case studies

    NASA Astrophysics Data System (ADS)

    Rangin, Claude

    2016-01-01

    Generally, tectonic plates are considered as rigid. Oblique plate convergence favors the development of micro-plates along the converging boundaries. The north-south-trending Philippines archipelago (here named Philippine Mobile Belt, PMB), a few hundreds kilometers wide, is one of such complex tectonic zones. We show here that it is composed of rigid rotating crustal blocks (here called platelets). In Myanmar, the northernmost tip of the Sumatra-Andaman subduction system is another complex zone made of various crustal blocks in-between convergent plates. Yet, contrary to PMB, it sustains internal deformation with platelet buckling, altogether indicative of a non-rigid behavior. Therefore, the two case studies, Philippine Mobile Belt and Myanmar-Andaman micro-plate (MAS), illustrate the complexity of micro-plate tectonics and kinematics at convergent plate boundaries.

  14. Non-rigid registration of breast surfaces using the laplace and diffusion equations

    PubMed Central

    2010-01-01

    A semi-automated, non-rigid breast surface registration method is presented that involves solving the Laplace or diffusion equations over undeformed and deformed breast surfaces. The resulting potential energy fields and isocontours are used to establish surface correspondence. This novel surface-based method, which does not require intensity images, anatomical landmarks, or fiducials, is compared to a gold standard of thin-plate spline (TPS) interpolation. Realistic finite element simulations of breast compression and further testing against a tissue-mimicking phantom demonstrate that this method is capable of registering surfaces experiencing 6 - 36 mm compression to within a mean error of 0.5 - 5.7 mm. PMID:20149261

  15. A novel flexible framework with automatic feature correspondence optimization for nonrigid registration in radiotherapy

    SciTech Connect

    Vasquez Osorio, Eliana M.; Hoogeman, Mischa S.; Bondar, Luiza; Levendag, Peter C.; Heijmen, Ben J. M.

    2009-07-15

    Technical improvements in planning and dose delivery and in verification of patient positioning have substantially widened the therapeutic window for radiation treatment of cancer. However, changes in patient anatomy during the treatment limit the exploitation of these new techniques. To further improve radiation treatments, anatomical changes need to be modeled and accounted for. Nonrigid registration can be used for this purpose. This article describes the design, the implementation, and the validation of a new framework for nonrigid registration for radiotherapy applications. The core of this framework is an improved version of the thin plate spline robust point matching (TPS-RPM) algorithm. The TPS-RPM algorithm estimates a global correspondence and a transformation between the points that represent organs of interest belonging to two image sets. However, the algorithm does not allow for the inclusion of prior knowledge on the correspondence of subset of points, and therefore, it can lead to inconsistent anatomical solutions. In this article TPS-RPM was improved by employing a novel correspondence filter that supports simultaneous registration of multiple structures. The improved method allows for coherent organ registration and for the inclusion of user-defined landmarks, lines, and surfaces inside and outside of structures of interest. A procedure to generate control points from segmented organs is described. The framework parameters r and {lambda}, which control the number of points and the nonrigidness of the transformation, respectively, were optimized for three sites with different degrees of deformation (head and neck, prostate, and cervix) using two cases per site. For the head and neck cases, the salivary glands were manually contoured on CT scans, for the prostate cases the prostate and the vesicles, and for the cervix cases the cervix uterus, the bladder, and the rectum. The transformation error obtained using the best set of parameters was below 1

  16. Direct estimation of nonrigid registrations with image-based self-occlusion reasoning.

    PubMed

    Gay-Bellile, Vincent; Bartoli, Adrien; Sayd, Patrick

    2010-01-01

    The registration problem for images of a deforming surface has been well studied. External occlusions are usually well handled. In 2D image-based registration, self-occlusions are more challenging. Consequently, the surface is usually assumed to be only slightly self-occluding. This paper is about image-based nonrigid registration with self-occlusion reasoning. A specific framework explicitly modeling self-occlusions is proposed. It is combined with an intensity-based, "direct" data term for registration. Self-occlusions are detected as shrinkage areas in the 2D warp. Experimental results on several challenging data sets show that our approach successfully registers images with self-occlusions while effectively detecting the self-occluded regions. PMID:19926901

  17. Infrared image non-rigid registration based on regional information entropy demons algorithm

    NASA Astrophysics Data System (ADS)

    Lu, Chaoliang; Ma, Lihua; Yu, Ming; Cui, Shumin; Wu, Qingrong

    2015-02-01

    Infrared imaging fault detection which is treated as an ideal, non-contact, non-destructive testing method is applied to the circuit board fault detection. Since Infrared images obtained by handheld infrared camera with wide-angle lens have both rigid and non-rigid deformations. To solve this problem, a new demons algorithm based on regional information entropy was proposed. The new method overcame the shortcomings of traditional demons algorithm that was sensitive to the intensity. First, the information entropy image was gotten by computing regional information entropy of the image. Then, the deformation between the two images was calculated that was the same as demons algorithm. Experimental results demonstrated that the proposed algorithm has better robustness in intensity inconsistent images registration compared with the traditional demons algorithm. Achieving accurate registration between intensity inconsistent infrared images provided strong support for the temperature contrast.

  18. Analysis of neck muscle activity and comparison of head movement and body movement during rotational motion.

    PubMed

    Sirikantharajah, Shahini; Valter McConville, Kristiina M; Zolfaghari, Nika

    2015-08-01

    The neck is a very delicate part of the body that is highly prone to whiplash injuries, during jerk. A lot of the research relating to whiplash injuries performed to date has been tested in environments with linear motions and have mostly applied their work to car collisions. Whiplash injuries can also affect disabled individuals during falls, bed transfers, and while travelling in wheelchairs. The primary objective of this paper was to focus on neck and body behaviour during rotational motion, rather than linear motion which has been often associated with car collisions. This paper takes the current motion signal processing technique a step further by computing the differential between head and body motion. Neck electromyogram (EMG) and angular velocity data of the head and body were acquired simultaneously from 20 subjects, as they were rotated 45 degrees in the forward pitch plane, with and without visual input, in a motion simulator. The centre of rotation (COR) on the simulator was located behind the subject Results showed that neck muscle behaviour was affected by the forward rotations, as well as visual input. Anterior neck muscles were most active during forward rotations and trials including VR. Maximum effective muscle power and activity of 10.54% and 55.72 (mV/mV)·s were reached respectively. Furthermore, during forward rotations the motion profiles started off with dominance in body motion, followed by dominance in head motion. PMID:26737049

  19. Processing of translational and rotational motions of surface waves: performance analysis and applications to single sensor and to array measurements

    NASA Astrophysics Data System (ADS)

    Maranò, Stefano; Fäh, Donat

    2014-01-01

    The analysis of rotational seismic motions has received considerable attention in the last years. Recent advances in sensor technologies allow us to measure directly the rotational components of the seismic wavefield. Today this is achieved with improved accuracy and at an affordable cost. The analysis and the study of rotational motions are, to a certain extent, less developed than other aspects of seismology due to the historical lack of instrumental observations. This is due to both the technical challenges involved in measuring rotational motions and to the widespread belief that rotational motions are insignificant. This paper addresses the joint processing of translational and rotational motions from both the theoretical and the practical perspectives. Our attention focuses on the analysis of motions of both Rayleigh waves and Love waves from recordings of single sensors and from an array of sensors. From the theoretical standpoint, analysis of Fisher information (FI) allows us to understand how the different measurement types contribute to the estimation of quantities of geophysical interest. In addition, we show how rotational measurements resolve ambiguity on parameter estimation in the single sensor setting. We quantify the achievable estimation accuracy by means of Cramér-Rao bound (CRB). From the practical standpoint, a method for the joint processing of rotational and translational recordings to perform maximum likelihood (ML) estimation is presented. The proposed technique estimates parameters of Love waves and Rayleigh waves from single sensor or array recordings. We support and illustrate our findings with a comprehensive collection of numerical examples. Applications to real recordings are also shown.

  20. Nonrigid 3D medical image registration and fusion based on deformable models.

    PubMed

    Liu, Peng; Eberhardt, Benjamin; Wybranski, Christian; Ricke, Jens; Lüdemann, Lutz

    2013-01-01

    For coregistration of medical images, rigid methods often fail to provide enough freedom, while reliable elastic methods are available clinically for special applications only. The number of degrees of freedom of elastic models must be reduced for use in the clinical setting to archive a reliable result. We propose a novel geometry-based method of nonrigid 3D medical image registration and fusion. The proposed method uses a 3D surface-based deformable model as guidance. In our twofold approach, the deformable mesh from one of the images is first applied to the boundary of the object to be registered. Thereafter, the non-rigid volume deformation vector field needed for registration and fusion inside of the region of interest (ROI) described by the active surface is inferred from the displacement of the surface mesh points. The method was validated using clinical images of a quasirigid organ (kidney) and of an elastic organ (liver). The reduction in standard deviation of the image intensity difference between reference image and model was used as a measure of performance. Landmarks placed at vessel bifurcations in the liver were used as a gold standard for evaluating registration results for the elastic liver. Our registration method was compared with affine registration using mutual information applied to the quasi-rigid kidney. The new method achieved 15.11% better quality with a high confidence level of 99% for rigid registration. However, when applied to the quasi-elastic liver, the method has an averaged landmark dislocation of 4.32 mm. In contrast, affine registration of extracted livers yields a significantly (P = 0.000001) smaller dislocation of 3.26 mm. In conclusion, our validation shows that the novel approach is applicable in cases where internal deformation is not crucial, but it has limitations in cases where internal displacement must also be taken into account. PMID:23690883

  1. Non-rigid MRI-TRUS registration in targeted prostate biopsy

    NASA Astrophysics Data System (ADS)

    Marami, Bahram; Sirouspour, Shahin; Ghoul, Suha; Emami Abarghouei, Shadi; Sun, Yue; Fenster, Aaron

    2015-03-01

    A non-rigid registration method is presented for the alignment of pre-procedural magnetic resonance (MR) images with delineated suspicious regions to intra-procedural 3D transrectal ultrasound (TRUS) images in TRUS-guided prostate biopsy. In the first step, 3D MR and TRUS images are aligned rigidly using six pairs of manually identified approximate matching points on the boundary of the prostate. Then, two image volumes are non-rigidly registered using a finite element method (FEM)-based linear elastic deformation model. A vector of observation prediction errors at some points of interest within the prostate volume is computed using an intensity-based similarity metric called the modality independent neighborhood descriptor (MIND). The error vector is employed in a classical state estimation framework to estimate prostate deformation between MR and TRUS images. The points of interests are identified using speeded-up robust features (SURF) that are scale and rotation-invariant descriptors in MR images. The proposed registration method on 10 sets of prostate MR and TRUS images yielded a target registration error of 1.99+/-0.83 mm, and 1.97+/-0.87 mm in the peripheral zone (PZ) and whole gland (WG), respectively, using 68 manually-identified fiducial points. The Dice similarity coefficient (DSC) was 87.9+/-2.9, 82.3+/-4.8, 93.0+/-1.7, and 84.2+/-6.2 percent for the WG, apex, mid-gland and base of the prostate, respectively. Moreover, the mean absolute distances (MAD) between the WG surfaces in the TRUS and registered MR images was 1.6+/-0.3 mm. Registration results indicate effectiveness of the proposed method in improving the targeting accuracy in the TRUS-guided prostate biopsy.

  2. Optimizing nonrigid registration performance between volumetric true 3D ultrasound images in image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2011-03-01

    Compensating for brain shift as surgery progresses is important to ensure sufficient accuracy in patient-to-image registration in the operating room (OR) for reliable neuronavigation. Ultrasound has emerged as an important and practical imaging technique for brain shift compensation either by itself or through computational modeling that estimates whole-brain deformation. Using volumetric true 3D ultrasound (3DUS), it is possible to nonrigidly (e.g., based on B-splines) register two temporally different 3DUS images directly to generate feature displacement maps for data assimilation in the biomechanical model. Because of a large amount of data and number of degrees-of-freedom (DOFs) involved, however, a significant computational cost may be required that can adversely influence the clinical feasibility of the technique for efficiently generating model-updated MR (uMR) in the OR. This paper parametrically investigates three B-splines registration parameters and their influence on the computational cost and registration accuracy: number of grid nodes along each direction, floating image volume down-sampling rate, and number of iterations. A simulated rigid body displacement field was employed as a ground-truth against which the accuracy of displacements generated from the B-splines nonrigid registration was compared. A set of optimal parameters was then determined empirically that result in a registration computational cost of less than 1 min and a sub-millimetric accuracy in displacement measurement. These resulting parameters were further applied to a clinical surgery case to demonstrate their practical use. Our results indicate that the optimal set of parameters result in sufficient accuracy and computational efficiency in model computation, which is important for future application of the overall biomechanical modeling to generate uMR for image-guidance in the OR.

  3. Non-rigid registration of medical images based on estimation of deformation states.

    PubMed

    Marami, Bahram; Sirouspour, Shahin; Capson, David W

    2014-11-21

    A unified framework for automatic non-rigid 3D-3D and 3D-2D registration of medical images with static and dynamic deformations is proposed in this paper. The problem of non-rigid image registration is approached as a classical state estimation problem using a generic deformation model for the soft tissue. The registration technique employs a dynamic linear elastic continuum mechanics model of the tissue deformation, which is discretized using the finite element method. In the proposed method, the registration is achieved through a Kalman-like filtering process, which incorporates information from the deformation model and a vector of observation prediction errors computed from an intensity-based similarity/distance metric between images. With this formulation, single and multiple-modality, 3D-3D and 3D-2D image registration problems can all be treated within the same framework. The performance of the proposed registration technique was evaluated in a number of different registration scenarios. First, 3D magnetic resonance (MR) images of uncompressed and compressed breast tissue were co-registered. 3D MR images of the uncompressed breast tissue were also registered to a sequence of simulated 2D interventional MR images of the compressed breast. Finally, the registration algorithm was employed to dynamically track a target sub-volume inside the breast tissue during the process of the biopsy needle insertion based on registering pre-insertion 3D MR images to a sequence of real-time simulated 2D interventional MR images. Registration results indicate that the proposed method can be effectively employed for the registration of medical images in image-guided procedures, such as breast biopsy in which the tissue undergoes static and dynamic deformations. PMID:25350234

  4. Non-rigid registration of medical images based on estimation of deformation states

    NASA Astrophysics Data System (ADS)

    Marami, Bahram; Sirouspour, Shahin; Capson, David W.

    2014-11-01

    A unified framework for automatic non-rigid 3D-3D and 3D-2D registration of medical images with static and dynamic deformations is proposed in this paper. The problem of non-rigid image registration is approached as a classical state estimation problem using a generic deformation model for the soft tissue. The registration technique employs a dynamic linear elastic continuum mechanics model of the tissue deformation, which is discretized using the finite element method. In the proposed method, the registration is achieved through a Kalman-like filtering process, which incorporates information from the deformation model and a vector of observation prediction errors computed from an intensity-based similarity/distance metric between images. With this formulation, single and multiple-modality, 3D-3D and 3D-2D image registration problems can all be treated within the same framework. The performance of the proposed registration technique was evaluated in a number of different registration scenarios. First, 3D magnetic resonance (MR) images of uncompressed and compressed breast tissue were co-registered. 3D MR images of the uncompressed breast tissue were also registered to a sequence of simulated 2D interventional MR images of the compressed breast. Finally, the registration algorithm was employed to dynamically track a target sub-volume inside the breast tissue during the process of the biopsy needle insertion based on registering pre-insertion 3D MR images to a sequence of real-time simulated 2D interventional MR images. Registration results indicate that the proposed method can be effectively employed for the registration of medical images in image-guided procedures, such as breast biopsy in which the tissue undergoes static and dynamic deformations.

  5. Non-Rigid Object Contour Tracking via a Novel Supervised Level Set Model.

    PubMed

    Sun, Xin; Yao, Hongxun; Zhang, Shengping; Li, Dong

    2015-11-01

    We present a novel approach to non-rigid objects contour tracking in this paper based on a supervised level set model (SLSM). In contrast to most existing trackers that use bounding box to specify the tracked target, the proposed method extracts the accurate contours of the target as tracking output, which achieves better description of the non-rigid objects while reduces background pollution to the target model. Moreover, conventional level set models only emphasize the regional intensity consistency and consider no priors. Differently, the curve evolution of the proposed SLSM is object-oriented and supervised by the specific knowledge of the targets we want to track. Therefore, the SLSM can ensure a more accurate convergence to the exact targets in tracking applications. In particular, we firstly construct the appearance model for the target in an online boosting manner due to its strong discriminative power between the object and the background. Then, the learnt target model is incorporated to model the probabilities of the level set contour by a Bayesian manner, leading the curve converge to the candidate region with maximum likelihood of being the target. Finally, the accurate target region qualifies the samples fed to the boosting procedure as well as the target model prepared for the next time step. We firstly describe the proposed mechanism of two-phase SLSM for single target tracking, then give its generalized multi-phase version for dealing with multi-target tracking cases. Positive decrease rate is used to adjust the learning pace over time, enabling tracking to continue under partial and total occlusion. Experimental results on a number of challenging sequences validate the effectiveness of the proposed method. PMID:26099142

  6. 3D nonrigid medical image registration using a new information theoretic measure.

    PubMed

    Li, Bicao; Yang, Guanyu; Coatrieux, Jean Louis; Li, Baosheng; Shu, Huazhong

    2015-11-21

    This work presents a novel method for the nonrigid registration of medical images based on the Arimoto entropy, a generalization of the Shannon entropy. The proposed method employed the Jensen-Arimoto divergence measure as a similarity metric to measure the statistical dependence between medical images. Free-form deformations were adopted as the transformation model and the Parzen window estimation was applied to compute the probability distributions. A penalty term is incorporated into the objective function to smooth the nonrigid transformation. The goal of registration is to optimize an objective function consisting of a dissimilarity term and a penalty term, which would be minimal when two deformed images are perfectly aligned using the limited memory BFGS optimization method, and thus to get the optimal geometric transformation. To validate the performance of the proposed method, experiments on both simulated 3D brain MR images and real 3D thoracic CT data sets were designed and performed on the open source elastix package. For the simulated experiments, the registration errors of 3D brain MR images with various magnitudes of known deformations and different levels of noise were measured. For the real data tests, four data sets of 4D thoracic CT from four patients were selected to assess the registration performance of the method, including ten 3D CT images for each 4D CT data covering an entire respiration cycle. These results were compared with the normalized cross correlation and the mutual information methods and show a slight but true improvement in registration accuracy. PMID:26528821

  7. Acquisition of priori tissue optical structure based on non-rigid image registration

    NASA Astrophysics Data System (ADS)

    Wan, Wenbo; Li, Jiao; Liu, Lingling; Wang, Yihan; Zhang, Yan; Gao, Feng

    2015-03-01

    Shape-parameterized diffuse optical tomography (DOT), which is based on a priori that assumes the uniform distribution of the optical properties in the each region, shows the effectiveness of complex biological tissue optical heterogeneities reconstruction. The priori tissue optical structure could be acquired with the assistance of anatomical imaging methods such as X-ray computed tomography (XCT) which suffers from low-contrast for soft tissues including different optical characteristic regions. For the mouse model, a feasible strategy of a priori tissue optical structure acquisition is proposed based on a non-rigid image registration algorithm. During registration, a mapping matrix is calculated to elastically align the XCT image of reference mouse to the XCT image of target mouse. Applying the matrix to the reference atlas which is a detailed mesh of organs/tissues in reference mouse, registered atlas can be obtained as the anatomical structure of target mouse. By assigning the literature published optical parameters of each organ to the corresponding anatomical structure, optical structure of the target organism can be obtained as a priori information for DOT reconstruction algorithm. By applying the non-rigid image registration algorithm to a target mouse which is transformed from the reference mouse, the results show that the minimum correlation coefficient can be improved from 0.2781 (before registration) to 0.9032 (after fine registration), and the maximum average Euclid distances can be decreased from 12.80mm (before registration) to 1.02mm (after fine registration), which has verified the effectiveness of the algorithm.

  8. Hierarchical domain-motion analysis of conformational changes in sarcoplasmic reticulum Ca²⁺-ATPase.

    PubMed

    Kobayashi, Chigusa; Koike, Ryotaro; Ota, Motonori; Sugita, Yuji

    2015-04-01

    Sarco(endo)plasmic reticulum Ca(2+)-ATPase transports two Ca(2+) per ATP-hydrolyzed across biological membranes against a large concentration gradient by undergoing large conformational changes. Structural studies with X-ray crystallography revealed functional roles of coupled motions between the cytoplasmic domains and the transmembrane helices in individual reaction steps. Here, we employed "Motion Tree (MT)," a tree diagram that describes a conformational change between two structures, and applied it to representative Ca(2+) -ATPase structures. MT provides information of coupled rigid-body motions of the ATPase in individual reaction steps. Fourteen rigid structural units, "common rigid domains (CRDs)" are identified from seven MTs throughout the whole enzymatic reaction cycle. CRDs likely act as not only the structural units, but also the functional units. Some of the functional importance has been newly revealed by the analysis. Stability of each CRD is examined on the morphing trajectories that cover seven conformational transitions. We confirmed that the large conformational changes are realized by the motions only in the flexible regions that connect CRDs. The Ca(2+) -ATPase efficiently utilizes its intrinsic flexibility and rigidity to response different switches like ligand binding/dissociation or ATP hydrolysis. The analysis detects functional motions without extensive biological knowledge of experts, suggesting its general applicability to domain movements in other membrane proteins to deepen the understanding of protein structure and function. PMID:25641564

  9. Systematic Errors Associated with the CPMG Pulse Sequence and Their Effect on Motional Analysis of Biomolecules

    NASA Astrophysics Data System (ADS)

    Ross, A.; Czisch, M.; King, G. C.

    1997-02-01

    A theoretical approach to calculate the time evolution of magnetization during a CPMG pulse sequence of arbitrary parameter settings is developed and verified by experiment. The analysis reveals that off-resonance effects can cause systematic reductions in measured peak amplitudes that commonly lie in the range 5-25%, reaching 50% in unfavorable circumstances. These errors, which are finely dependent upon frequency offset and CPMG parameter settings, are subsequently transferred into erroneousT2values obtained by curve fitting, where they are reduced or amplified depending upon the magnitude of the relaxation time. Subsequent transfer to Lipari-Szabo model analysis can produce significant errors in derived motional parameters, with τeinternal correlation times being affected somewhat more thanS2order parameters. A hazard of this off-resonance phenomenon is its oscillatory nature, so that strongly affected and unaffected signals can be found at various frequencies within a CPMG spectrum. Methods for the reduction of the systematic error are discussed. Relaxation studies on biomolecules, especially at high field strengths, should take account of potential off-resonance contributions.

  10. Numerical studies of motion of vortex filaments - Implementing the asymptotic analysis

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Tavantzis, J.; Ting, L.

    1984-01-01

    A computational code is developed for the integro-differential equations governing the motion of the centerlines of vortex filaments submerged in a background potential flow. These equations, which are derived from the method of matched asymptotic analysis, include the effect of the decaying large-magnitude circumferential and axial velocity components in the vortical cores. Numerical examples are presented to assess the effect of a large axial velocity and that of nonsimilar initial profiles in the vortical cores. The initial configurations of the filaments are chosen so as to fulfill the basic assumption of the asymptotic analysis, which is that the effective vortical core size is much smaller than all the other length scales in the flowfield, e.g., the radius of curvature and the interfilament distance. The computations are continued until the basic assumption is no longer valid, that is when the merging or intersection of filaments has begun. A classification of the various types of local or global merging or intersection of filaments is made and demonstrated by numerical examples. It is then shown that the asymptotic solution not only provides the initial data but also can be used to formulate the appropriate boundary conditions for the numerical solution of a merged region.

  11. Motion analysis and ultrastructural study of a colonial diatom, Bacillaria paxillifer.

    PubMed

    Yamaoka, Nozomi; Suetomo, Yasutaka; Yoshihisa, Tohru; Sonobe, Seiji

    2016-06-01

    The pennate diatom, Bacillaria paxillifer, forms a colony in which adjacent cells glide smoothly and almost continuously, yet no obvious apparatus driving the movement, such as flagella or cilia, is observed. Thus far, neither the mechanism nor physiological significance of this movement has been well understood. Here, we report quantitative analysis of the gliding motion of B. paxillifer and morphological analysis of this diatom with light and electron microscopes. The gliding of pairs of adjacent B. paxillifer cells in a colony was cyclic with rather constant periods while the average gliding period varied from a few seconds to multiples of 10 s among colonies. The gliding was compromised reversibly by inhibitors for actin and myosin, suggesting involvement of the actomyosin system. Indeed, we observed two closely apposed actin bundles near the raphe by fluorescence-labeled phalloidin staining. Using electron microscopy, we observed filamentous structures that resemble the actin bundles seen with fluorescence microscopy, and we also found novel electron-dense structures located between the plasma membrane and these actin-like filaments. From these and other observations, we suggest that B. paxillifer also uses actin bundles and propose a putative myosin as a molecular motor in the gliding of unicellular diatoms. PMID:26754563

  12. Applying a resources framework to analysis of the Force and Motion Conceptual Evaluation

    NASA Astrophysics Data System (ADS)

    Smith, Trevor I.; Wittmann, Michael C.

    2008-12-01

    We suggest one redefinition of common clusters of questions used to analyze student responses on the Force and Motion Conceptual Evaluation. Our goal is to propose a methodology that moves beyond an analysis of student learning defined by correct responses, either on the overall test or on clusters of questions defined solely by content. We use the resources framework theory of learning to define clusters within this experimental test that was designed without the resources framework in mind. We take special note of the contextual and representational dependence of questions with seemingly similar physics content. We analyze clusters in ways that allow the most common incorrect answers to give as much, or more, information as the correctness of responses in that cluster. We show that false positives can be found, especially on questions dealing with Newton’s third law. We apply our clustering to a small set of data to illustrate the value of comparing students’ incorrect responses which are otherwise identical on a correct or incorrect analysis. Our work provides a connection between theory and experiment in the area of survey design and the resources framework.

  13. A novel application of motion analysis for detecting stress responses in embryos at different stages of development

    PubMed Central

    2013-01-01

    Background Motion analysis is one of the tools available to biologists to extract biologically relevant information from image datasets and has been applied to a diverse range of organisms. The application of motion analysis during early development presents a challenge, as embryos often exhibit complex, subtle and diverse movement patterns. A method of motion analysis able to holistically quantify complex embryonic movements could be a powerful tool for fields such as toxicology and developmental biology to investigate whole organism stress responses. Here we assessed whether motion analysis could be used to distinguish the effects of stressors on three early developmental stages of each of three species: (i) the zebrafish Danio rerio (stages 19 h, 21.5 h and 33 h exposed to 1.5% ethanol and a salinity of 5); (ii) the African clawed toad Xenopus laevis (stages 24, 32 and 34 exposed to a salinity of 20); and iii) the pond snail Radix balthica (stages E3, E4, E6, E9 and E11 exposed to salinities of 5, 10 and 15). Image sequences were analysed using Sparse Optic Flow and the resultant frame-to-frame motion parameters were analysed using Discrete Fourier Transform to quantify the distribution of energy at different frequencies. This spectral frequency dataset was then used to construct a Bray-Curtis similarity matrix and differences in movement patterns between embryos in this matrix were tested for using ANOSIM. Results Spectral frequency analysis of these motion parameters was able to distinguish stage-specific effects of environmental stressors in most cases, including Xenopus laevis at stages 24, 32 and 34 exposed to a salinity of 20, Danio rerio at 33 hpf exposed to 1.5% ethanol, and Radix balthica at stages E4, E9 and E11 exposed to salinities of 5, 10 and 15. This technique was better able to distinguish embryos exposed to stressors than analysis of manual quantification of movement and within species distinguished most of the developmental stages

  14. MR-based Motion Correction for PET Imaging

    PubMed Central

    Ouyang, Jinsong; Li, Quanzheng; Fakhri, Georges El

    2012-01-01

    PET image quality is limited by patient motion. Emission data are blurred due to cardiac and/or respiratory motion. Although spatial resolution is 4 mm for standard clinical whole-body PET scanners, the effective resolution can be a low as 1 cm due to motion. Additionally, the deformation of attenuation medium causes image artifacts. Previously, gating is used to “freeze” the motion, but leads to significantly increased noise level. Simultaneous PET-MR modality offers a new way to perform PET motion correction. MR can be used to measure 3D motion fields, which can then be incorporated into the iterative PET reconstruction to obtain motion corrected PET images. In this report, we present MR imaging techniques to acquire dynamic images, a non-rigid image registration algorithm to extract motion fields from acquired MR images, and a PET reconstruction algorithm with motion correction. We also present results from both phantom and in-vivo animal PET-MR studies. We demonstrate that MR-based PET motion correction using simultaneous PET-MR improves image quality and lesion detectability compared to gating and to no motion correction. PMID:23178089

  15. Time-motion analysis of Italian elite women's basketball games: individual and team analyses.

    PubMed

    Conte, Daniele; Favero, Terence G; Lupo, Corrado; Francioni, Fabio M; Capranica, Laura; Tessitore, Antonio

    2015-01-01

    The aim of this study was to assess elite women's basketball game performance. Five elite women's games (3 Italian first division and 2 Euroleague) were analyzed for individual and team time-motion analyses. The individual analysis evaluated the players' movement patterns with particular focus on high-intensity activity (HIA), sprint activity, and repeated sprint events (RSEs). Team analysis included live time (LT), stoppage time (ST), and their ratio, transfer (TR) phases, and half court and full court actions. The frequency of occurrence of changes of activities was n = 576 ± 110, one every 2.56 seconds of LT. Total HIA was 8.5 ± 1.8% of LT and no significant differences between quarter periods were observed. In general, players performed linear sprints (48.3 ± 2.9%) over 1-5 m distance (56.8 ± 5.6%). The occurrence of RSE was 4.4 ± 1.7, with 58.6 ± 18.5% passive recovery between sprints. Team analysis showed no significant difference between games for LT and ST phases (ratio = 1.18 ± 0.25). For game analysis, LT and ST were 43.4 ± 7.8% and 51.1 ± 8.4%, respectively. A difference between games was found for half court actions (p < 0.01) and TR phases (p ≤ 0.05). Moreover, 1 TR and 2 TR were the most performed (45.3 and 23.9%) actions. These results encourage coaches to include repeated sprint ability with mainly linear and short sprints into a comprehensive training program. PMID:25051006

  16. Analysis of Interfraction Prostate Motion Using Megavoltage Cone Beam Computed Tomography

    SciTech Connect

    Bylund, Kevin C. Bayouth, John E.; Smith, Mark C.; Hass, A. Curtis; Bhatia, Sudershan K.; Buatti, John M..

    2008-11-01

    Purpose: Determine the degree of interfraction prostate motion and its components measured by using daily megavoltage (MV) cone beam computed tomography (CBCT) imaging. Methods and Materials: A total of 984 daily MV CBCT images from 24 patients undergoing definitive intensity-modulated radiotherapy for localized prostate cancer were analyzed retrospectively. Pretreatment couch shifts, based on physician registration of MV CBCT to planning CT data sets, were used as a measure of daily interfraction motion. Off-line bony registration was performed to separate bony misalignment from internal organ motion. Interobserver and intraobserver variation studies were performed on 20 MV CBCT images. Results: Mean interfraction prostate motion was 6.7 mm, with the greatest single-axis deviation in the anterior-posterior (AP) direction. The largest positional inaccuracy was accounted for by systematic deviations in bony misalignment, whereas random deviations occurred from bony misalignment and internal prostate motion. In the aggregate, AP motion did not correlate with days elapsed since beginning therapy or on average with rectal size at treatment planning. Interobserver variation was greatest in the AP direction, decreased in experienced observers, and further decreased in intraobserver studies. Mean interfraction motion during the first 6 days of therapy, when used as a subsequent offset, reduced acceptable AP planning target volume margins by 50%. Conclusion: The MV CBCT is a practical direct method of daily localization that shows significant interfraction motion with respect to conventional three-dimensional conformal and intensity-modulated radiotherapy margins, similar to that measured in other modalities.

  17. Video Analysis of Projectile Motion Using Tablet Computers as Experimental Tools

    ERIC Educational Resources Information Center

    Klein, P.; Gröber, S.; Kuhn, J.; Müller, A.

    2014-01-01

    Tablet computers were used as experimental tools to record and analyse the motion of a ball thrown vertically from a moving skateboard. Special applications plotted the measurement data component by component, allowing a simple determination of initial conditions and "g" in order to explore the underlying laws of motion. This experiment…

  18. The timing of fault motion in Death Valley from Illite Age Analysis of fault gouge

    NASA Astrophysics Data System (ADS)

    Lynch, E. A.; Haines, S. H.; Van der Pluijm, B.

    2014-12-01

    We constrained the timing of fluid circulation and associated fault motion in the Death Valley region of the US Basin and Range Province from Illite Age Analysis (IAA) of fault gouge at seven Low-Angle Normal Fault (LANF) exposures in the Black Mountains and Panamint Mountains, and in two nearby areas. 40Ar/39Ar ages of neoformed, illitic clay minerals in these fault zones range from 2.8 Ma to 18.6 Ma, preserving asynchronous fault motion across the region that corresponds to an evolving history of crustal block movements during Neogene extensional deformation. From north to south, along the western side of the Panamint Range, the Mosaic Canyon fault yields an authigenic illite age of 16.9±2.9 Ma, the Emigrant fault has ages of less than 10-12 Ma at Tucki Mountain and Wildrose Canyon, and an age of 3.6±0.17 Ma was obtained for the Panamint Front Range LANF at South Park Canyon. Across Death Valley, along the western side of the Black Mountains, Ar ages of clay minerals are 3.2±3.9 Ma, 12.2±0.13 Ma and 2.8±0.45 Ma for the Amargosa Detachment, the Gregory Peak Fault and the Mormon Point Turtleback detachment, respectively. Complementary analysis of the δH composition of neoformed clays shows a primarily meteoric source for the mineralizing fluids in these LANF zones. The ages fall into two geologic timespans, reflecting activity pulses in the Middle Miocene and in the Upper Pliocene. Activity on both of the range front LANFs does not appear to be localized on any single portion of these fault systems. Middle Miocene fault rock ages of neoformed clays were also obtained in the Ruby Mountains (10.5±1.2 Ma) to the north of the Death Valley region and to the south in the Whipple Mountains (14.3±0.19 Ma). The presence of similar, bracketed times of activity indicate that LANFs in the Death Valley region were tectonically linked, while isotopic signatures indicate that faulting pulses involved surface fluid penetration.

  19. A Statistical Analysis of Loop-Top Motion in Solar Limb Flares

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Sui, Linhui; Brosius, D. G.; Dennis, Brian R.

    2005-01-01

    Previous studies of hot, thermal solar flare loops imaged with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) have identified several flares for which the loop top shrinks downward early in the impulsive phase and then expands upward later in the impulsive phase (Sui & Holman 2003; Sui, Holman & Dennis 2004; Veronig et al. 2005). This early downward motion is not predicted by flare models. We study a statistical sample of RHESSI flares to assess how common this evolution is and to better characterize it. In a sample of 88 flares near the solar lin$ that show identifiable loop structure in RHESSI images, 66% (58 flares) showed downward loop-top motion followed by upward motion. We therefore conclude that the early downward motion is a frequent characteristic of flare loops. We obtain the distribution of the timing of the change from downward to upward motion relative to flare start and peak times. We also obtain the distributions of downward and upward speeds.

  20. Combined prospective and retrospective correction to reduce motion-induced image misalignment and geometric distortions in EPI.

    PubMed

    Ooi, Melvyn B; Muraskin, Jordan; Zou, Xiaowei; Thomas, William J; Krueger, Sascha; Aksoy, Murat; Bammer, Roland; Brown, Truman R

    2013-03-01

    Despite rigid-body realignment to compensate for head motion during an echo-planar imaging time-series scan, nonrigid image deformations remain due to changes in the effective shim within the brain as the head moves through the B(0) field. The current work presents a combined prospective/retrospective solution to reduce both rigid and nonrigid components of this motion-related image misalignment. Prospective rigid-body correction, where the scan-plane orientation is dynamically updated to track with the subject's head, is performed using an active marker setup. Retrospective distortion correction is then applied to unwarp the remaining nonrigid image deformations caused by motion-induced field changes. Distortion correction relative to a reference time-frame does not require any additional field mapping scans or models, but rather uses the phase information from the echo-planar imaging time-series itself. This combined method is applied to compensate echo-planar imaging scans of volunteers performing in-plane and through-plane head motions, resulting in increased image stability beyond what either prospective or retrospective rigid-body correction alone can achieve. The combined method is also assessed in a blood oxygen level dependent functional MRI task, resulting in improved Z-score statistics. PMID:22499027

  1. Motion facilitates face perception across changes in viewpoint and expression in older adults.

    PubMed

    Maguinness, Corrina; Newell, Fiona N

    2014-12-01

    Faces are inherently dynamic stimuli. However, face perception in younger adults appears to be mediated by the ability to extract structural cues from static images and a benefit of motion is inconsistent. In contrast, static face processing is poorer and more image-dependent in older adults. We therefore compared the role of facial motion in younger and older adults to assess whether motion can enhance perception when static cues are insufficient. In our studies, older and younger adults learned faces presented in motion or in a sequence of static images, containing rigid (viewpoint) or nonrigid (expression) changes. Immediately following learning, participants matched a static test image to the learned face which varied by viewpoint (Experiment 1) or expression (Experiment 2) and was either learned or novel. First, we found an age effect with better face matching performance in younger than in older adults. However, we observed face matching performance improved in the older adult group, across changes in viewpoint and expression, when faces were learned in motion relative to static presentation. There was no benefit for facial (nonrigid) motion when the task involved matching inverted faces (Experiment 3), suggesting that the ability to use dynamic face information for the purpose of recognition reflects motion encoding which is specific to upright faces. Our results suggest that ageing may offer a unique insight into how dynamic cues support face processing, which may not be readily observed in younger adults' performance. (PsycINFO Database Record (c) 2014 APA, all rights reserved). PMID:25328999

  2. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions

    NASA Astrophysics Data System (ADS)

    Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng

    2015-12-01

    We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion.

  3. Development of computer-assisted sperm analysis plugin for analyzing sperm motion in microfluidic environments using Image-J.

    PubMed

    Elsayed, Mohamed; El-Sherry, Taymour M; Abdelgawad, Mohamed

    2015-11-01

    We modified a previously reported computer-assisted sperm analysis (CASA) plugin for Image-J to enable analyzing motion of sperm cells in microfluidic environments. Microfluidics is increasingly being used in sperm-related applications such as sperm selection, IVF, and sperm motion behavior. Current CASA systems are not capable of analyzing motion of sperm cells in microfluidic devices where both sperm cells and the liquid itself are constantly moving, contrary to the conventional situation of sperm cells moving in a stationary liquid. We resolved this deficiency in the modified plugin reported here and built an image processing pipeline to enhance object detection, which increased CASA accuracy considerably. More importantly, particle tracking was improved and modified to accommodate sperm cells going out of focus for short periods during swimming on the same track. This last feature is particularly important in microfluidics where height of the microchannel is larger than that of CASA custom chambers to avoid channel blockage; this increased height causes sperm cells to frequently come in and out of focus. New parameters were introduced to allow studying new aspects of sperm motion behavior such as rheotaxis and wall tracking. The new plugin was able to detect and analyze motion of human, bull, and chicken sperm. A preliminary study using this tool agreed well with previously reported studies on rheotaxis and wall tracking behavior of sperm. PMID:26318232

  4. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions.

    PubMed

    Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng

    2015-12-01

    We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion. PMID:26724085

  5. Discovering hierarchical motion structure.

    PubMed

    Gershman, Samuel J; Tenenbaum, Joshua B; Jäkel, Frank

    2016-09-01

    Scenes filled with moving objects are often hierarchically organized: the motion of a migrating goose is nested within the flight pattern of its flock, the motion of a car is nested within the traffic pattern of other cars on the road, the motion of body parts are nested in the motion of the body. Humans perceive hierarchical structure even in stimuli with two or three moving dots. An influential theory of hierarchical motion perception holds that the visual system performs a "vector analysis" of moving objects, decomposing them into common and relative motions. However, this theory does not specify how to resolve ambiguity when a scene admits more than one vector analysis. We describe a Bayesian theory of vector analysis and show that it can account for classic results from dot motion experiments, as well as new experimental data. Our theory takes a step towards understanding how moving scenes are parsed into objects. PMID:25818905

  6. Laser spot tracking based on modified circular Hough transform and motion pattern analysis.

    PubMed

    Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan

    2014-01-01

    Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas-Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development. PMID:25350502

  7. Use of Finite Elements Analysis for a Weigh-in-Motion Sensor Design

    PubMed Central

    Opitz, Rigobert; Goanta, Viorel; Carlescu, Petru; Barsanescu, Paul-Doru; Taranu, Nicolae; Banu, Oana

    2012-01-01

    High speed weigh-in-motion (WIM) sensors are utilized as components of complex traffic monitoring and measurement systems. They should be able to determine the weights on wheels, axles and vehicle gross weights, and to help the classification of vehicles (depending on the number of axles). WIM sensors must meet the following main requirements: good accuracy, high endurance, low price and easy installation in the road structure. It is not advisable to use cheap materials in constructing these devices for lower prices, since the sensors are normally working in harsh environmental conditions such as temperatures between −40 °C and +70 °C, dust, temporary water immersion, shocks and vibrations. Consequently, less expensive manufacturing technologies are recommended. Because the installation cost in the road structure is high and proportional to the WIM sensor cross section (especially with its thickness), the device needs to be made as flat as possible. The WIM sensor model presented and analyzed in this paper uses a spring element equipped with strain gages. Using Finite Element Analysis (FEA), the authors have attempted to obtain a more sensitive, reliable, lower profile and overall cheaper elastic element for a new WIM sensor. PMID:22969332

  8. Three-dimensional motion analysis of lumbopelvic rhythm during lateral trunk bending

    PubMed Central

    Tojima, Michio; Ogata, Naoshi; Inokuchi, Haruhi; Haga, Nobuhiko

    2016-01-01

    [Purpose] To examine the variations in the lumbopelvic rhythm and lumbar-hip ratio in the frontal plane. [Subjects and Methods] Markers were placed on the T10 and T12 spinous processes, bilateral paravertebral muscles at the T11 level, the pelvis, and the femur. Lumbar spine and hip angles were measured during lateral trunk bending using three-dimensional motion analysis. Data from the trunk lateral bending movement were categorized into descending (start of hip movement to when the hip angle reached its maximum value) and ascending (from the maximum hip angle to the end of movement) phases. The lumbar-hip ratio was calculated as the ratio of the lumbar spine angle to the hip angle. [Results] The lumbar-hip ratio decreased from 5.9 to 3.6 in the descending phase, indicating lumbar spinal movement was less than hip movement. In the ascending phase, the lumbar-hip ratio was reversed. The lumbopelvic rhythm was better expressed by a cubic or quadratic function rather than a linear function. These functions indicate that when the hip inclines by 1° that the lumbar spine bends laterally by 2.4°. [Conclusion] The lumbopelvic rhythm and lumbar-hip ratio indicate lumbar lateral bending instead of a limitation of hip inclination.

  9. Evaluation of lens distortion errors using an underwater camera system for video-based motion analysis

    NASA Technical Reports Server (NTRS)

    Poliner, Jeffrey; Fletcher, Lauren; Klute, Glenn K.

    1994-01-01

    Video-based motion analysis systems are widely employed to study human movement, using computers to capture, store, process, and analyze video data. This data can be collected in any environment where cameras can be located. One of the NASA facilities where human performance research is conducted is the Weightless Environment Training Facility (WETF), a pool of water which simulates zero-gravity with neutral buoyance. Underwater video collection in the WETF poses some unique problems. This project evaluates the error caused by the lens distortion of the WETF cameras. A grid of points of known dimensions was constructed and videotaped using a video vault underwater system. Recorded images were played back on a VCR and a personal computer grabbed and stored the images on disk. These images were then digitized to give calculated coordinates for the grid points. Errors were calculated as the distance from the known coordinates of the points to the calculated coordinates. It was demonstrated that errors from lens distortion could be as high as 8 percent. By avoiding the outermost regions of a wide-angle lens, the error can be kept smaller.

  10. Analysis of rare high-DNA cell populations in serous effusions using continuous-motion imaging.

    PubMed

    Tucker, J H; Stark, M H; Eason, P; Duvall, E

    1991-07-01

    The rare high-DNA cell sub-populations in a series of serous effusion specimens were analysed to determine whether such measurements could provide a basis for the improved diagnosis of malignancy. Monolayer specimens stained with gallocyanin chrome-alum were scanned with the CERVIFIP continuous-motion image analyser to locate and measure the highest-DNA cells in the sample. Two types of features were obtained for the detected sub-populations; firstly, 'percentile ploidy' values which characterise the ploidy levels above which specified proportions of the total cells are found; and secondly 'percentage abnormal' values which characterise the proportion of the cells diagnosed as malignant during examination by a cytopathologist. The classification accuracy for one or both of these features was then obtained by comparison with the clinical outcome of each patient. The results gave a classification error of 9/44 (20%) using the 0.01% percentile ploidy alone, 6/44 (14%) using the 75% percentage abnormal feature alone, but only 2/44 (5%) from a box discriminant using both features. It was therefore concluded that the analysis of the high-DNA cell population could be of value in the diagnosis of malignancy in serous effusion specimens. PMID:1883747

  11. Analysis and experiment of self-frequency-tuning piezoelectric energy harvesters for rotational motion

    NASA Astrophysics Data System (ADS)

    Hsu, Jin-Chen; Tseng, Chih-Ta; Chen, Yi-Sheng

    2014-07-01

    Piezoelectric energy harvesting provides a means to harvest the ambient kinetic energy (e.g., vibrations and rotations) of structures for conversion into usable electricity. The technique can be employed to provide power sources for wireless sensors and low-power devices. Most energy harvesting devices developed to date operate most efficiently within a narrow bandwidth because they are resonance-frequency-based designs, although several tunable techniques have been proposed to broaden the efficient frequency range of energy harvesting. However, most efforts have focused on harvesting vibration energy rather than rotational energy. This paper presents the results of a comprehensive design analysis and experimental tests of a passive self-tuning piezoelectric composite cantilever beam for harvesting energy from rotational motion. The piezoelectric beam harvester is mounted on a rotating axis in the radial direction so that the tensile stress induced by the centrifugal force effectively stiffens the beam to passively tune the resonance frequency. A calculation procedure based on a finite element method is developed to analyze the self-frequency-tuning piezoelectric energy harvester, and the results are compared with those obtained from an analytic beam model. The design parameters for the self-tuning characteristics are identified and discussed. Experimental results verify the frequency-tuning energy harvesting behavior and show improved performances for the voltage and power outputs in the bandwidth.

  12. Geometric approach to target tracking motion analysis in bearing-only tracking

    NASA Astrophysics Data System (ADS)

    Gad, Ahmed S.; Mojica, Fernando; Farooq, Mohamad

    2002-07-01

    In maritime operations, target tracking and localization, also called target motion analysis (TMA), is an important issue. If an active sensor is used, the tracking process will be observable since we can predict the target range and bearing without any difficulty. The major disadvantage of using the active sources is that the enemy's targets can easily detect the ship position. Thus, tracking using active sources become a risky proposition. The alternative is to use passive tracking, but in this case the tracking process will be unobservable because we can only measure the target bearing. The range can be estimated via triangularization by using at least two platforms. Another method is to try to find the range using a geometrical approach to have at least one accurate range and then we can use it to construct the track under some assumptions. In this paper, a geometrical approach to bearing-only tracking is introduced. The target range is derived using few bearing measurements. Several own ship-target geometries have been set up for this purpose. To compute the target range, it is required that the own ship execute an admissible maneuver. The geometrical approach presented provides an acceptable performance and can be used for a short time period in the tracking process to provide a reasonable estimate of the range and then the tracker can use this range to generate the target track and hence reduce the bias.

  13. Exploiting methyl groups as motional labels for structure analysis in solid polymers.

    PubMed

    White, J L

    1997-12-01

    We report results of magic-angle spinning (MAS) nuclear Overhauser experiments on solid polymers. Specifically, the focus of this work is to demonstrate that methyl groups provide unique motional labels in crystalline and amorphous materials that may be exploited to provide spatial information. The motivation for this work stems from the fact that recently developed techniques for distance determination in organic solids, e.g. REDOR and related spin-echo methods, typically require isotopic labelling. Comparison of heteronuclear MAS 13C-1H NOE growth rates for bis-phenol A (a crystalline organic solid), polycarbonate, chloral polycarbonate, polystyrene, poly(4-methylstyrene), and poly(alpha-methylstyrene) confirms that methyl groups are the only sources of cross-relaxation in these rigid polymers. The experiments are straightforward, and have the advantage that no isotopic labelling is required. In general, decreased growth rates and increased induction periods for carbons distant from methyl groups are observed. Critical analysis of the data suggests that the rates are sensitive to packing density, and we address the contribution of intrachain and interchain interactions to the observed rates. We expect that methyl-stimulated NOE's are general to all rigid solids, and that these experiments could prove useful for local structure characterization of polymers in cases where isotopic labelling is not practical. PMID:9472795

  14. Laser Spot Tracking Based on Modified Circular Hough Transform and Motion Pattern Analysis

    PubMed Central

    Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan

    2014-01-01

    Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas–Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development. PMID:25350502

  15. Physiological demands of women's rugby union: time-motion analysis and heart rate response.

    PubMed

    Virr, Jody Lynn; Game, Alex; Bell, Gordon John; Syrotuik, Daniel

    2014-01-01

    The aim of this study was to determine the physical demands of women's rugby union match play using time-motion analysis and heart rate (HR) response. Thirty-eight premier club level female rugby players, ages 18-34 years were videotaped and HRs monitored for a full match. Performances were coded into 12 different movement categories: 5 speeds of locomotion (standing, walking, jogging, striding, sprinting), 4 forms of intensive non-running exertion (ruck/maul/tackle, pack down, scrum, lift) and 3 discrete activities (kick, jump, open field tackle). The main results revealed that backs spend significantly more time sprinting and walking whereas forwards spend more time in intensive non-running exertion and jogging. Forwards also had a significantly higher total work frequency compared to the backs, but a higher total rest frequency compared to the backs. In terms of HR responses, forwards displayed higher mean HRs throughout the match and more time above 80% of their maximum HR than backs. In summary, women's rugby union is characterised by intermittent bursts of high-intensity activity, where forwards and backs have similar anaerobic energy demands, but different specific match demands. PMID:24168428

  16. Automatic analysis and characterization of the hummingbird wings motion using dense optical flow features.

    PubMed

    Martínez, Fabio; Manzanera, Antoine; Romero, Eduardo

    2015-01-01

    A new method for automatic analysis and characterization of recorded hummingbird wing motion is proposed. The method starts by computing a multiscale dense optical flow field, which is used to segment the wings, i.e., pixels with larger velocities. Then, the kinematic and deformation of the wings were characterized as a temporal set of global and local measures: a global angular acceleration as a time function of each wing and a local acceleration profile that approximates the dynamics of the different wing segments. Additionally, the variance of the apparent velocity orientation estimates those wing foci with larger deformation. Finally a local measure of the orientation highlights those regions with maximal deformation. The approach was evaluated in a total of 91 flight cycles, captured using three different setups. The proposed measures follow the yaw turn hummingbird flight dynamics, with a strong correlation of all computed paths, reporting a standard deviation of [Formula: see text] and [Formula: see text] for the global angular acceleration and the global wing deformation respectively. PMID:25599248

  17. Strobokymographic and videostroboscopic analysis of vocal fold motion in unilateral superior laryngeal nerve paralysis.

    PubMed

    Mendelsohn, Abie H; Sung, Myung-Whun; Berke, Gerald S; Chhetri, Dinesh K

    2007-02-01

    The clinical diagnosis of superior laryngeal nerve paralysis (SLNp) is infrequently made, because of the heterogeneity of clinical presentations and laryngoscopic findings. Laryngeal electromyography (LEMG) can provide the definitive diagnosis of this abnormality. With increasing use of LEMG in clinical practice, this condition is now more frequently appreciated by otolaryngologists. A characteristic, but infrequently reported, videostroboscopic vocal fold motion termed Gegenschlagen ("dashing-against-each-other") has previously been described to occur in unilateral SLNp. We encountered such motion in a clinical case, which we subsequently verified as unilateral SLNp by means of LEMG. This characteristic glottic motion was then verified in an in vivo canine model of phonation after unilateral SLNp. Videostrobokymography was performed to generate kymograms that illustrated this vocal fold motion clearly. Kymograms of both human and canine subjects with SLNp demonstrated an undulating motion of the horizontally shifting glottic space as the medial edges of the vocal folds chased each other 90 degrees out of phase. As one vocal fold mucosal edge was opening, the other was closing, and this repeated motion appeared as vocal folds chasing or dashing against each other. Although not uniformly seen in all cases, this vocal fold motion appears to be unique to SLNp. PMID:17388230

  18. Motion analysis study on sensitivity of finite element model of the cervical spine to geometry.

    PubMed

    Zafarparandeh, Iman; Erbulut, Deniz U; Ozer, Ali F

    2016-07-01

    Numerous finite element models of the cervical spine have been proposed, with exact geometry or with symmetric approximation in the geometry. However, few researches have investigated the sensitivity of predicted motion responses to the geometry of the cervical spine. The goal of this study was to evaluate the effect of symmetric assumption on the predicted motion by finite element model of the cervical spine. We developed two finite element models of the cervical spine C2-C7. One model was based on the exact geometry of the cervical spine (asymmetric model), whereas the other was symmetric (symmetric model) about the mid-sagittal plane. The predicted range of motion of both models-main and coupled motions-was compared with published experimental data for all motion planes under a full range of loads. The maximum differences between the asymmetric model and symmetric model predictions for the principal motion were 31%, 78%, and 126% for flexion-extension, right-left lateral bending, and right-left axial rotation, respectively. For flexion-extension and lateral bending, the minimum difference was 0%, whereas it was 2% for axial rotation. The maximum coupled motions predicted by the symmetric model were 1.5° axial rotation and 3.6° lateral bending, under applied lateral bending and axial rotation, respectively. Those coupled motions predicted by the asymmetric model were 1.6° axial rotation and 4° lateral bending, under applied lateral bending and axial rotation, respectively. In general, the predicted motion response of the cervical spine by the symmetric model was in the acceptable range and nonlinearity of the moment-rotation curve for the cervical spine was properly predicted. PMID:27107032

  19. Ground Motion Measurement in the Lake Mead Area (Nevada, USA), by Temporal Analysis of Multiple Interferograms.

    NASA Astrophysics Data System (ADS)

    Doin, M.; Cavalie, O.; Lasserre, C.; Briole, P.

    2005-12-01

    SAR interferometry has proven to be a reliable method for detecting small displacements due to ground subsidence. In this study, we measure ground motion around the lake Mead (Nevada, USA) using InSAR. This artificial lake has been filled with water in 1935. An earlier study, based on leveling measurements, has shown that the load associated with lake impoundment has induced a delayed subsidence of 17 centimeters. This relaxation process has been argued to be due to viscous displacement in the uppermost mantle, analogous to the postglacial rebound, but at a smaller spatial scale and with a much lower viscous relaxation scale. To quantify the deformation and thus constrain the crust and mantle rheological parameters in the lake area, we analyse multiple interferograms (~280) based on 43 ERS images acquired between 1992 and 2001 and on 12 Envisat images acquired between 2003 and 2005. ERS-Envisat interferograms are performed to merge the two data sets in one time series. With baselines smaller than 300 m, all interferograms have a very good coherence due to the desert region. Most interferograms show strong atmospheric artefacts that are partly due to the variation of water vapor vertical stratification between two satellite passes. Tropospheric delay is computed for each interferogram using the correlation between phase and elevation far from the lake area. It is then inverted for each date of SAR images before interferograms correction. These corrections are validated using data from global atmospheric models (ERA40). Corrected interferograms are then inverted to solve for time series of the expected deformation in the lake Mead area . The linear inversion treats each pixel independently from its neighbours and use the data redundancy to reduce errors such as local decorrelations. Smoothing constraints added in the inversion efficiently eliminate local atmospheric artefacts. We obtain a time series of the expected deformation in the lake Mead area. The analysis of

  20. Motion Tracking System

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Integrated Sensors, Inc. (ISI), under NASA contract, developed a sensor system for controlling robot vehicles. This technology would enable a robot supply vehicle to automatically dock with Earth-orbiting satellites or the International Space Station. During the docking phase the ISI-developed sensor must sense the satellite's relative motion, then spin so the robot vehicle can adjust its motion to align with the satellite and slowly close until docking is completed. ISI used the sensing/tracking technology as the basis of its OPAD system, which simultaneously tracks an object's movement in six degrees of freedom. Applications include human limb motion analysis, assembly line position analysis and auto crash dummy motion analysis. The NASA technology is also the basis for Motion Analysis Workstation software, a package to simplify the video motion analysis process.

  1. Dynamics analysis of electrodynamic satellite tethers. Equations of motion and numerical solution algorithms for the tether

    NASA Technical Reports Server (NTRS)

    Nacozy, P. E.

    1984-01-01

    The equations of motion are developed for a perfectly flexible, inelastic tether with a satellite at its extremity. The tether is attached to a space vehicle in orbit. The tether is allowed to possess electrical conductivity. A numerical solution algorithm to provide the motion of the tether and satellite system is presented. The resulting differential equations can be solved by various existing standard numerical integration computer programs. The resulting differential equations allow the introduction of approximations that can lead to analytical, approximate general solutions. The differential equations allow more dynamical insight of the motion.

  2. Motion analysis of mechanical heart valve prosthesis utilizing high-speed video

    NASA Astrophysics Data System (ADS)

    Adlparvar, Payam; Guo, George; Kingsbury, Chris

    1993-01-01

    The Edwards-Duromedics (ED) mechanical heart valve prosthesis is of a bileaflet design, incorporating unique design features that distinguish its performance with respect to other mechanical valves of similar type. Leaflet motion of mechanical heart valves, particularly during closure, is related to valve durability, valve sounds and the efficiency of the cardiac output. Modifications to the ED valve have resulted in significant improvements with respect to leaflet motion. In this study a high-speed video system was used to monitor the leaflet motion of the valve, and to compare the performance of the Modified Specification to that of the Original Specification using a St. Jude Medical as a control valve.

  3. A trade-off analysis design tool. Aircraft interior noise-motion/passenger satisfaction model

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.

    1977-01-01

    A design tool was developed to enhance aircraft passenger satisfaction. The effect of aircraft interior motion and noise on passenger comfort and satisfaction was modelled. Effects of individual aircraft noise sources were accounted for, and the impact of noise on passenger activities and noise levels to safeguard passenger hearing were investigated. The motion noise effect models provide a means for tradeoff analyses between noise and motion variables, and also provide a framework for optimizing noise reduction among noise sources. Data for the models were collected onboard commercial aircraft flights and specially scheduled tests.

  4. ANALYSIS OF STRONG-MOTION EARTHQUAKE RECORDS FROM A WELL-INSTRUMENTED EARTH DAM.

    USGS Publications Warehouse

    Fedock, Joseph J.

    1986-01-01

    Strong-motion records from Long Valley Dam during the Mammoth Lakes earthquake sequence of May 1980 are analyzed to determine the main features of the dam's motions. The dam was instrumented with 22 accelerometers on its embankment and in the immediate vicinity, and more than 60 high-quality, long-duration accelerograms were recorded for the three largest earthquakes of the sequence. Free-field responses are compared with embankment responses to help establish the amplification of the structural motions and to identify modes of vibration of the structure.

  5. Space Motion Sickness - Analysis of Medical Debriefs Data for Incidence and Treatment

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Younker, D.; Daniels, V.

    2011-01-01

    Astronauts use medications for the treatment of a variety of illnesses during space travel. Data mining efforts to assess minor clinical conditions occurring during Shuttle flights STS-1 through STS-94 revealed that space motion sickness (SMS) was the most common ailment during early flight days, occurring in approx.40% of crewmembers, followed by digestive system disturbances (9%) and infectious diseases, which most commonly involved the respiratory or urinary tracts. A more recent analysis of postflight medical debriefs data to examine trends with respect to medication use by astronauts during spaceflights indicated that 37% of all prescriptions recorded was for pain followed by sleep (22%), SMS (18%), decongestion (14%), and all others (14%). Further analysis revealed that about 150 of 317 crewmembers experienced symptoms of SMS. Nearly all (132 of 150) crewmembers took medication for the treatment of symptoms with a total of 387 doses. Promethazine was taken most often (201 doses); in most cases this resulted in alleviation of symptoms with 130 crewmembers (65%) reporting feeling much or somewhat better. Although fewer total doses of the combination of promethazine and dextroamphetamine (Phen/Dex) were taken (45 doses), slightly more than half of these doses resulted in improvement. The combination of scopolamine and dextroamphetamine (Scop/Dex) was reported to be effective in only 37% of cases, with 36 of 97 total doses resulting in improvement. A higher percentage (24%) of Scop/Dex doses was reported to be ineffective compared with promethazine alone or as Phen/Dex (10% and 7%, respectively). Comparisons of the effectiveness of the different dosage forms of promethazine revealed that intramuscular injection was most effective in alleviating symptoms with 55% feeling much better, 16% feeling somewhat better, and only 7% feeling no effect or worse. Overall, it appears that promethazine alone was used more frequently during flight and was reported effective for

  6. Stereoscopic motion analysis in densely packed clusters: 3D analysis of the shimmering behaviour in Giant honey bees

    PubMed Central

    2011-01-01

    Background The detailed interpretation of mass phenomena such as human escape panic or swarm behaviour in birds, fish and insects requires detailed analysis of the 3D movements of individual participants. Here, we describe the adaptation of a 3D stereoscopic imaging method to measure the positional coordinates of individual agents in densely packed clusters. The method was applied to study behavioural aspects of shimmering in Giant honeybees, a collective defence behaviour that deters predatory wasps by visual cues, whereby individual bees flip their abdomen upwards in a split second, producing Mexican wave-like patterns. Results Stereoscopic imaging provided non-invasive, automated, simultaneous, in-situ 3D measurements of hundreds of bees on the nest surface regarding their thoracic position and orientation of the body length axis. Segmentation was the basis for the stereo matching, which defined correspondences of individual bees in pairs of stereo images. Stereo-matched "agent bees" were re-identified in subsequent frames by the tracking procedure and triangulated into real-world coordinates. These algorithms were required to calculate the three spatial motion components (dx: horizontal, dy: vertical and dz: towards and from the comb) of individual bees over time. Conclusions The method enables the assessment of the 3D positions of individual Giant honeybees, which is not possible with single-view cameras. The method can be applied to distinguish at the individual bee level active movements of the thoraces produced by abdominal flipping from passive motions generated by the moving bee curtain. The data provide evidence that the z-deflections of thoraces are potential cues for colony-intrinsic communication. The method helps to understand the phenomenon of collective decision-making through mechanoceptive synchronization and to associate shimmering with the principles of wave propagation. With further, minor modifications, the method could be used to study

  7. Generalized Mathematical Modelling of a Novel Singularity-free Class of Six Degrees of Freedom Motion Platform

    NASA Astrophysics Data System (ADS)

    Weiss, Abraham

    2011-12-01

    The current state-of-the-art simulation motion platforms are based on parallel manipulators known as Gough-Stewart platforms or hexapods. These have limited motion range in both translational and angular senses, and are subject to singularities. An alternative novel kinematic architecture, the Atlas platform, has been developed at Carleton University. The Atlas platform achieves six degree of freedom motion by mounting the Atlas spherical platform on top of an XYZ translation platform. The Atlas rotational stage comprises a sphere manipulated by three omnidirectional wheels. Each wheel imparts a prescribed velocity to the sphere through friction enabling it to rotate about any desired axis with unlimited angular displacement. This thesis investigates four main issues including: unified and generalized kinematics of a sphere actuated by n omnidirectional wheels; the dynamics of a sphere actuated by omnidirectional wheels; vibration induced by omnidirectional wheels on an actuated sphere; and a comparison between classes of omnidirectional wheels in the context of the Atlas platform. The kinematic model for the system was derived using a zero-slip approach yielding a basic Jacobian. The model was then generalized to include any number and type of omnidirectional wheels treating the various wheel designs as geometric classes. Results show non-negligible corrections in both magnitude and direction of the resulting angular motion of the sphere. The equations of motion for the system were obtained taking into account several non-rigid effects. The non-smooth shape of the wheels was taken as a positional input for vibration analysis. Comparison between omnidirectional wheel types was made from the standpoint of vibration and transmission efficiency, with mixed results, using a numerical integration program developed in Matlab. The program, developed with numerical simulation in mind, was then used to investigate the effects of various parameters on the behaviour of the

  8. Error-resilient video coding performance analysis of motion JPEG2000 and MPEG-4

    NASA Astrophysics Data System (ADS)

    Dufaux, Frederic; Ebrahimi, Touradj

    2004-01-01

    The new Motion JPEG 2000 standard is providing with some compelling features. It is based on an intra-frame wavelet coding, which makes it very well suited for wireless applications. Indeed, the state-of-the-art wavelet coding scheme achieves very high coding efficiency. In addition, Motion JPEG 2000 is very resilient to transmission errors as frames are coded independently (intra coding). Furthermore, it requires low complexity and introduces minimal coding delay. Finally, it supports very efficient scalability. In this paper, we analyze the performance of Motion JPEG 2000 in error-prone transmission. We compare it to the well-known MPEG-4 video coding scheme, in terms of coding efficiency, error resilience and complexity. We present experimental results which show that Motion JPEG 2000 outperforms MPEG-4 in the presence of transmission errors.

  9. Non-rigid registration between 3D ultrasound and CT images of the liver based on intensity and gradient information

    NASA Astrophysics Data System (ADS)

    Lee, Duhgoon; Nam, Woo Hyun; Lee, Jae Young; Ra, Jong Beom

    2011-01-01

    In order to utilize both ultrasound (US) and computed tomography (CT) images of the liver concurrently for medical applications such as diagnosis and image-guided intervention, non-rigid registration between these two types of images is an essential step, as local deformation between US and CT images exists due to the different respiratory phases involved and due to the probe pressure that occurs in US imaging. This paper introduces a voxel-based non-rigid registration algorithm between the 3D B-mode US and CT images of the liver. In the proposed algorithm, to improve the registration accuracy, we utilize the surface information of the liver and gallbladder in addition to the information of the vessels inside the liver. For an effective correlation between US and CT images, we treat those anatomical regions separately according to their characteristics in US and CT images. Based on a novel objective function using a 3D joint histogram of the intensity and gradient information, vessel-based non-rigid registration is followed by surface-based non-rigid registration in sequence, which improves the registration accuracy. The proposed algorithm is tested for ten clinical datasets and quantitative evaluations are conducted. Experimental results show that the registration error between anatomical features of US and CT images is less than 2 mm on average, even with local deformation due to different respiratory phases and probe pressure. In addition, the lesion registration error is less than 3 mm on average with a maximum of 4.5 mm that is considered acceptable for clinical applications.

  10. Model-based approach for human kinematics reconstruction from markerless and marker-based motion analysis systems.

    PubMed

    Sholukha, V; Bonnechere, B; Salvia, P; Moiseev, F; Rooze, M; Van Sint Jan, S

    2013-09-27

    Modeling tools related to the musculoskeletal system have been previously developed. However, the integration of the real underlying functional joint behavior is lacking and therefore available kinematic models do not reasonably replicate individual human motion. In order to improve our understanding of the relationships between muscle behavior, i.e. excursion and motion data, modeling tools must guarantee that the model of joint kinematics is correctly validated to ensure meaningful muscle behavior interpretation. This paper presents a model-based method that allows fusing accurate joint kinematic information with motion analysis data collected using either marker-based stereophotogrammetry (MBS) (i.e. bone displacement collected from reflective markers fixed on the subject's skin) or markerless single-camera (MLS) hardware. This paper describes a model-based approach (MBA) for human motion data reconstruction by a scalable registration method for combining joint physiological kinematics with limb segment poses. The presented results and kinematics analysis show that model-based MBS and MLS methods lead to physiologically-acceptable human kinematics. The proposed method is therefore available for further exploitation of the underlying model that can then be used for further modeling, the quality of which will depend on the underlying kinematic model. PMID:23972432

  11. A segment interaction analysis of proximal-to-distal sequential segment motion patterns.

    PubMed

    Putnam, C A

    1991-01-01

    The purpose of this study was to examine the motion-dependent interaction between adjacent lower extremity segments during the actions of kicking and the swing phases of running and walking. This was done to help explain the proximal-to-distal sequential pattern of segment motions typically observed in these activities and to evaluate general biomechanical principles used to explain this motion pattern. High speed film data were collected for four subjects performing each skill. Equations were derived which expressed the interaction between segments in terms of resultant joint moments at the hip and knee and several interactive moments which were functions of gravitational forces or kinematic variables. The angular motion-dependent interaction between the thigh and leg was found to play a significant role in determining the sequential segment motion patterns observed in all three activities. The general nature of this interaction was consistent across all three movements except during phases in which there were large differences in the knee angle. Support was found for the principle of summation of segment speeds, whereas no support was found for the principle of summation of force or for general statements concerning the effect of negative thigh acceleration on positive leg acceleration. The roles played by resultant joint moments in producing the observed segment motion sequences are discussed. PMID:1997807

  12. Hamiltonian Analysis of the Particle Motion in an Accelerator with the Longitudinal Magnetic Field

    SciTech Connect

    Reva, V. B.

    2006-03-20

    The particle motion at a presence of a large magnetic field directed along the particle trajectory demands the special description. This article deals with the decomposition of the Hamiltonian on the two parts: fast and slow motion. The first part describes the fast rotation around the magnetic line of longitudinal field. The second part describes the slow drift of rotation center from one magnetic line to another. The supposed method enables to write the simple Hamiltonian to each motion type and to formulate the matrix formalism for any element of an accelerator device (quadruple, skew- quadruple, drift gap, bend with a filed index). The Hamiltonian decomposition has physical clearness when the longitudinal field is larger than another fields but it is correct for the arbitrary parameters. At the small longitudinal field the coupling term in Hamiltonian between two modes is essential. The dispersion property of fast and slow modes is derived easy from Hamiltonian also. This method expands easily for nonlinear motion of such modes. This results may be used at analyzed the electron motion in the cooling device, the muon motion in the muon ionization cooler or another system with strong solenoidal coupling.

  13. 3D non-rigid registration using surface and local salient features for transrectal ultrasound image-guided prostate biopsy

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Akbari, Hamed; Halig, Luma; Fei, Baowei

    2011-03-01

    We present a 3D non-rigid registration algorithm for the potential use in combining PET/CT and transrectal ultrasound (TRUS) images for targeted prostate biopsy. Our registration is a hybrid approach that simultaneously optimizes the similarities from point-based registration and volume matching methods. The 3D registration is obtained by minimizing the distances of corresponding points at the surface and within the prostate and by maximizing the overlap ratio of the bladder neck on both images. The hybrid approach not only capture deformation at the prostate surface and internal landmarks but also the deformation at the bladder neck regions. The registration uses a soft assignment and deterministic annealing process. The correspondences are iteratively established in a fuzzy-to-deterministic approach. B-splines are used to generate a smooth non-rigid spatial transformation. In this study, we tested our registration with pre- and postbiopsy TRUS images of the same patients. Registration accuracy is evaluated using manual defined anatomic landmarks, i.e. calcification. The root-mean-squared (RMS) of the difference image between the reference and floating images was decreased by 62.6+/-9.1% after registration. The mean target registration error (TRE) was 0.88+/-0.16 mm, i.e. less than 3 voxels with a voxel size of 0.38×0.38×0.38 mm3 for all five patients. The experimental results demonstrate the robustness and accuracy of the 3D non-rigid registration algorithm.

  14. LEARNING NONRIGID DEFORMATIONS FOR CONSTRAINED POINT-BASED REGISTRATION FOR IMAGE-GUIDED MR-TRUS PROSTATE INTERVENTION

    PubMed Central

    Onofrey, John A.; Staib, Lawrence H.; Sarkar, Saradwata; Venkataraman, Rajesh; Papademetris, Xenophon

    2015-01-01

    This paper presents and validates a low-dimensional nonrigid registration method for fusing magnetic resonance imaging (MRI) and trans-rectal ultrasound (TRUS) in image-guided prostate biopsy. Prostate cancer is one of the most prevalent forms of cancer and the second leading cause of cancer-related death in men in the United States. Conventional clinical practice uses TRUS to guide prostate biopsies when there is a suspicion of cancer. Pre-procedural MRI information can reveal lesions and may be fused with intra-procedure TRUS imaging to provide patient-specific, localization of lesions for targeting. The state-of-the-art MRI-TRUS nonrigid image fusion process relies upon semi-automated segmentation of the prostate in both the MRI and TRUS images. In this paper, we develop a fast, automated nonrigid registration approach to MRI-TRUS fusion based on a statistical deformation model of intra-procedural deformations derived from a clinical sample. PMID:26405508

  15. Precise ground motion measurements to support multi-hazard analysis in Jakarta

    NASA Astrophysics Data System (ADS)

    Koudogbo, Fifamè; Duro, Javier; Garcia Robles, Javier; Abidin, Hasanuddin Z.

    2015-04-01

    Jakarta is the capital of Indonesia and is home to approximately 10 million people on the coast of the Java Sea. The Capital District of Jakarta (DKI) sits in the lowest lying areas of the basin. Its topography varies, with the northern part just meters above current sea level and lying on a flood plain. Subsequently, this portion of the city frequently floods. Flood events have been increasing in severity during the past decade. The February 2007 event inundated 235 Km2 (about 36%) of the city, by up to seven meters in some areas. This event affected more than 2.6 million people; the estimated financial and economic losses from this event amounted to US900 million [1][2]. Inundations continue to occur under any sustained rainfall conditions. Flood events in Jakarta are expected to become more frequent in coming years, with a shift from previously slow natural processes with low frequency to a high frequency process resulting in severe socio-economic damage. Land subsidence in Jakarta results in increased vulnerability to flooding due to the reduced gravitational capacity to channel storm flows to the sea and an increased risk of tidal flooding. It continues at increasingly alarming rates, principally caused by intensive deep groundwater abstraction [3]. Recent studies have found typical subsidence rates of 7.5-10 cm a year. In localized areas of north Jakarta subsidence in the range 15-25 cm a year is occurring which, if sustained, would result in them sinking to 4-5 m below sea level by 2025 [3]. ALTAMIRA INFORMATION, company specialized in ground motion monitoring, has developed GlobalSARTM, which combines several processing techniques and algorithms based on InSAR technology, to achieve ground motion measurements with millimetric precision and high accuracy [4]. Within the RASOR (Rapid Analysis and Spatialisation and Of Risk) project, ALTAMIRA INFORMATION will apply GlobalSARTM to assess recent land subsidence in Jakarta, based on the processing of Very High

  16. ELIMINATING CONSERVATISM IN THE PIPING SYSTEM ANALYSIS PROCESS THROUGH APPLICATION OF A SUITE OF LOCALLY APPROPRIATE SEISMIC INPUT MOTIONS

    SciTech Connect

    Anthony L. Crawford; Robert E. Spears, Ph.D.; Mark J. Russell

    2009-07-01

    Seismic analysis is of great importance in the evaluation of nuclear systems due to the heavy influence such loading has on their designs. Current Department of Energy seismic analysis techniques for a nuclear safety-related piping system typically involve application of a single conservative seismic input applied to the entire system [1]. A significant portion of this conservatism comes from the need to address the overlapping uncertainties in the seismic input and in the building response that transmits that input motion to the piping system. The approach presented in this paper addresses these two sources of uncertainty through the application of a suite of 32 input motions whose collective performance addresses the total uncertainty while each individual motion represents a single variation of it. It represents an extension of the soil-structure interaction analysis methodology of SEI/ASCE 43-05 [2] from the structure to individual piping components. Because this approach is computationally intensive, automation and other measures have been developed to make such an analysis efficient. These measures are detailed in this paper.

  17. Validity and Reliability of Two-Dimensional Motion Analysis for Quantifying Postural Deficits in Adults With and Without Neurological Impairment.

    PubMed

    Paul, S S; Lester, M E; Foreman, K B; Dibble, L E

    2016-09-01

    Frequently, clinical balance outcome measures are limited by floor or ceiling effects and provide insufficient resolution to determine subtle deficits. Detailed assessment of postural control obtained through posturography may be cost-prohibitive or logistically infeasible in some clinical settings. Two-dimensional (2D) motion analysis may provide a clinically feasible means of obtaining detailed quantification of balance deficits. Forty-five participants aged 18-80 years, with and without Parkinson disease, performed the Push and Release (PR) test, sit-to-stand (STS), and timed single leg stance (SLS). Performance was captured simultaneously using a three-dimensional (3D) (10-camera laboratory-based 3D motion capture system and 3D motion analysis software) and 2D (two commercially available video cameras and 2D motion analysis software) system. Agreement was excellent between 2D and 3D systems for all outcomes of the PR and SLS (intraclass correlation coefficients [ICC2,1 ] 0.96-0.99, 95% CIs 0.92-0.98 to 0.99-1.0), and ranged from fair to excellent for STS outcomes (ICC2,1 0.59-0.93, 95% CIs 0.36-0.75 to 0.87-0.96). Test-retest reliability (ICC3,1 0.89-1.0, 95% CIs 0.76-0.96 to 1.0-1.0) and inter-rater reliability (ICC2,1 0.77-1.0, 95% CIs 0.61-0.87 to 1.0-1.0) of the 2D obtained outcomes were excellent. A technology package of commonly available video cameras and 2D motion analysis software was a valid and reliable method for quantifying outcomes of postural control tasks in people with a range of balance abilities. Two-dimensional analysis can be used in clinical practice to provide balance assessments as a cost-effective alternative to 3D motion capture. Anat Rec, 299:1165-1173, 2016. © 2016 Wiley Periodicals, Inc. PMID:27314922

  18. Analysis of accuracy in optical motion capture - A protocol for laboratory setup evaluation.

    PubMed

    Eichelberger, Patric; Ferraro, Matteo; Minder, Ursina; Denton, Trevor; Blasimann, Angela; Krause, Fabian; Baur, Heiner

    2016-07-01

    Validity and reliability as scientific quality criteria have to be considered when using optical motion capture (OMC) for research purposes. Literature and standards recommend individual laboratory setup evaluation. However, system characteristics such as trueness, precision and uncertainty are often not addressed in scientific reports on 3D human movement analysis. One reason may be the lack of simple and practical methods for evaluating accuracy parameters of OMC. A protocol was developed for investigating the accuracy of an OMC system (Vicon, volume 5.5×1.2×2.0m(3)) with standard laboratory equipment and by means of trueness and uncertainty of marker distances. The study investigated the effects of number of cameras (6, 8 and 10), measurement height (foot, knee and hip) and movement condition (static and dynamic) on accuracy. Number of cameras, height and movement condition affected system accuracy significantly. For lower body assessment during level walking, the most favorable setting (10 cameras, foot region) revealed mean trueness and uncertainty to be -0.08 and 0.33mm, respectively. Dynamic accuracy cannot be predicted based on static error assessments. Dynamic procedures have to be used instead. The significant influence of the number of cameras and the measurement location suggests that instrumental errors should be evaluated in a laboratory- and task-specific manner. The use of standard laboratory equipment makes the proposed procedure widely applicable and it supports the setup process of OCM by simple functional error assessment. Careful system configuration and thorough measurement process control are needed to produce high-quality data. PMID:27230474

  19. An analysis of the treatment couch and control system dynamics for respiration-induced motion compensation

    SciTech Connect

    D'Souza, Warren D.; McAvoy, Thomas J.

    2006-12-15

    Sophisticated methods for real-time motion compensation include using the linear accelerator, MLC, or treatment couch. To design such a couch, the required couch and control system dynamics need to be investigated. We used an existing treatment couch known as the Hexapod{sup TM} to gain insight into couch dynamics and an internal model controller to simulate feedback control of respiration-induced motion. The couch dynamics, described using time constants and dead times, were investigated using step inputs. The resulting data were modeled as first and second order systems with dead time. The couch was determined to have a linear response for step inputs {<=}1 cm. Motion data from 12 patients were obtained using a skin marker placed on the abdomen of the patient and the marker data were assumed to be an exact surrogate of tumor motion. The feedback system was modeled with the couch as a second-ordersystem and the controller as a first order system. The time constants of the couch and controller and the dead times were varied starting with parameters obtained from the Hexapod{sup TM} couch and the performance of the feedback system was evaluated. The resulting residual motion under feedback control was generally <0.3 cm when a fast enough couch was simulated.

  20. Probabilistic atlases for face and biological motion perception: An analysis of their reliability and overlap

    PubMed Central

    Engell, Andrew D.; McCarthy, Gregory

    2013-01-01

    Neuroimaging research has identified several category-selective regions in visual cortex that respond most strongly when viewing an exemplar image from a preferred category, such as faces. Recent studies, however, have suggested a more complex pattern of activation that has been heretofore unrecognized, e.g., the presence of additional patches of activation to faces beyond the well-studied fusiform face area, and the activation of ostensible face selective regions by animate motion of non-biological forms. Here, we characterize the spatial pattern of brain activity evoked by viewing faces or biological motion in large fMRI samples (N > 120). We create probabilistic atlases for both face and biological motion activation, and directly compare their spatial patterns of activation. Our findings support the suggestion that the fusiform face area is composed of at least two separable foci of activation. The face-evoked response in the fusiform and nearby ventral temporal cortex has good reliability across runs; however, we found surprisingly high variability in lateral brain regions by faces, and for all brain regions by biological motion, which had an overall much lower effect size. We found that faces and biological motion evoke substantially overlapping activation distributions in both ventral and lateral occipitotemporal cortex. The peaks of activation for these different categories within these overlapping regions were close but distinct. PMID:23435213

  1. A Four-Dimensional Computed Tomography Analysis of Multiorgan Abdominal Motion

    SciTech Connect

    Hallman, Joshua L.; Mori, Shinichiro; Sharp, Gregory C.; Lu, Hsiao-Ming; Hong, Theodore S.; Chen, George T.Y.

    2012-05-01

    Purpose: To characterize and quantify multiorgan respiration-induced motion in the abdomen in liver and pancreatic cancer patients. Methods and Materials: Four-dimensional computed tomography scans were acquired for 18 patients treated for abdominal tumors. Contours of multiple abdominal organs were drawn by the radiation oncologist at one respiratory phase; these contours were propagated to other respiratory phases by deformable registration. Three-dimensional organ models were generated from the resulting contours at each phase. Motions of the bounding box and center of mass were extracted and analyzed for the clinical target volume and organs at risk. Results: On average, the center of mass motion for liver clinical target volumes was 9.7 mm (SD 5 mm) in the superior-inferior direction, with a range of 3 to 18 mm; for pancreatic tumors, the average was 5 mm (SD 1 mm) m with a range of 3 to 7 mm. Abdominal organs move in unison, but with varying amplitudes. Gating near exhale (T40-T60) reduces the range of motion by a factor of {approx}10. Conclusion: We have used deformable registration to calculate the trajectories of abdominal organs in four dimensions, based on center of mass and bounding box motion metrics. Our results are compared with previously reported studies. Possible reasons for differences are discussed.

  2. Analysis of the Motion of the Extrasolar Planet HD 120136 Ab in a Binary System: Calculating Unknown Angular Orbital Elements

    NASA Astrophysics Data System (ADS)

    Plávalová, E.; Solovay, N. A.

    2015-07-01

    We have carried out an analysis of the motion of an extrasolar planet orbiting in a binary system, as a particular case of the three-body problem. The following assumptions have been made: a) the planet orbits around one of the binary components (the parent star); b) the distance between the stellar components is greater than that between the parent star and the orbiting planet (the ratio of the semi-major axes is a small parameter); c) the mass of the planet is smaller than the mass of the star, but is not negligible. We employed the Hamiltonian of the system without short-period terms, and we expanded it in terms of Legendre polynomials and truncated the expansion after the second-order terms. Such form of the Hamiltonian enables us to solve the differential equations of motion of our system and analyze of the motion of the extrasolar planet. We have applied this theory to the system HD 120136, and described the possible regions in which the planet can move. The theory permits us to calculate an unknown angular orbital element for the planet HD 120136 Ab, the ascending node: Ω1=134°±14°. The motion of the planet is expected to be stable over long time scales.

  3. Analysis of Ion Motion and Scattering in the Extreme Regime of High Intensity Electron Beams in Plasma Wakefield Accelerators

    SciTech Connect

    Gholizadeh, Reza; Katsouleas, Tom; Muggli, Patric; Mori, Warren

    2006-11-27

    Plasma wakefield accelerator is examined in the extreme regime of nanometer transverse beam sizes, typical of designs in the multi-TeV range. We find that ion motion, synchrotron radiation, nuclear scattering and particle trapping constrain the design parameters in which high beam quality and efficiency can be maintained. For a particular example relevant to an ILC Afterburner, the analysis suggests that an intermediate mass ion such as Argon may best satisfy the constraints.

  4. Analysis of Ion Motion and Scattering in the Extreme Regime of High Intensity Electron Beams in Plasma Wakefield Accelerators

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Reza; Katsouleas, Tom; Muggli, Patric; Mori, Warren

    2006-11-01

    Plasma wakefield accelerator is examined in the extreme regime of nanometer transverse beam sizes, typical of designs in the multi-TeV range. We find that ion motion, synchrotron radiation, nuclear scattering and particle trapping constrain the design parameters in which high beam quality and efficiency can be maintained. For a particular example relevant to an ILC Afterburner, the analysis suggests that an intermediate mass ion such as Argon may best satisfy the constraints.

  5. The strong ground motion in Mexico City: array and borehole data analysis.

    NASA Astrophysics Data System (ADS)

    Roullé, A.; Chávez-García, F. J.

    2003-04-01

    Site response at Mexico City has been intensively studied for the last 15 years, since the disastrous 1985 earthquakes. After those events, more than 100 accelerographs were installed, and their data have been extremely useful in quantifying amplification and in the subsequent upgrading of the building code. However, detailed analysis of the wavefield has been hampered by the lack of absolute time in the records and the large spacing between stations in terms of dominant wavelengths. In 2001, thanks to the support of CONACYT, Mexico, a new dense accelerographic network was installed in the lake bed zone of Mexico City. The entire network, including an existing network of 3 surface and 2 borehole stations operated by CENAPRED, consists in 12 surface and 4 borehole stations (at 30, 102 and 50 meters). Each station has a 18 bits recorder and a GPS receiver so that the complete network is a 3D array with absolute time. The main objective of this array is to provide data that can help us to better understand the wavefield that propagates in Mexico City during large earthquakes. Last year, a small event of magnitude 6.0 was partially recorded by 6 of the 12 surface stations and all the borehole stations. We analysed the surface data using different array processing techniques such as f-k methods and MUSIC algorithm and the borehole ones using a cross-correlation method. For periods inferior to the site resonance period, the soft clay layer with very low propagation velocities (less than 500 m/s) and a possible multipathing rule the wavefield pattern. For the large period range, the dominant surface wave comes from the epicentral direction and propagates with a quicker velocity (more than 1500 m/s) that corresponds to the velocity of deep layers. The analysis of borehole data shows the presence of different quick wavetrains in the short period range that could correspond to the first harmonic modes of Rayleigh waves. To complete this study, four others events recorded in

  6. High-order harmonic generation from polyatomic molecules including nuclear motion and a nuclear modes analysis

    SciTech Connect

    Madsen, C. B.; Abu-samha, M.; Madsen, L. B.

    2010-04-15

    We present a generic approach for treating the effect of nuclear motion in high-order harmonic generation from polyatomic molecules. Our procedure relies on a separation of nuclear and electron dynamics where we account for the electronic part using the Lewenstein model and nuclear motion enters as a nuclear correlation function. We express the nuclear correlation function in terms of Franck-Condon factors, which allows us to decompose nuclear motion into modes and identify the modes that are dominant in the high-order harmonic generation process. We show results for the isotopes CH{sub 4} and CD{sub 4} and thereby provide direct theoretical support for a recent experiment [S. Baker et al., Science 312, 424 (2006)] that uses high-order harmonic generation to probe the ultrafast structural nuclear rearrangement of ionized methane.

  7. High-order harmonic generation from polyatomic molecules including nuclear motion and a nuclear modes analysis

    NASA Astrophysics Data System (ADS)

    Madsen, C. B.; Abu-Samha, M.; Madsen, L. B.

    2010-04-01

    We present a generic approach for treating the effect of nuclear motion in high-order harmonic generation from polyatomic molecules. Our procedure relies on a separation of nuclear and electron dynamics where we account for the electronic part using the Lewenstein model and nuclear motion enters as a nuclear correlation function. We express the nuclear correlation function in terms of Franck-Condon factors, which allows us to decompose nuclear motion into modes and identify the modes that are dominant in the high-order harmonic generation process. We show results for the isotopes CH4 and CD4 and thereby provide direct theoretical support for a recent experiment [S. Baker , Science 312, 424 (2006)] that uses high-order harmonic generation to probe the ultrafast structural nuclear rearrangement of ionized methane.

  8. Laser vibrometer analysis of sensor loading effects in underwater measurements of compliant surface motion

    SciTech Connect

    Caspall, J.J.; Gray, M.D.; Caille, G.W.; Jarzynski, J.; Rogers, P.H.; McCall, G.S. II

    1996-04-01

    The application of contact motion sensors, such as accelerometers, in the measurement of the vibration of compliant surfaces underwater may lead to errors in the evaluation of certain types of surface motion. An underwater scanning laser Doppler vibrometer (USLDV) was used to measure the scattered velocity field due to a mock sensor (rigid, neutrally buoyant cylindrical body) on a compliant surface (the outer surface of a thin cylindrical shell coated with a layer of soft rubber). Axially propagating waves were launched in the shell by a ring of 10 uniformly distributed shakers located near one end of the shell and driven with a short pulse. The outer surface of the coating was scanned over a short line segment in the axial direction with and without the mock sensor attached. The extracted scattered field, consisted of high wavenumber fluid-solid interface waves accompanied by rotational motion of the mock sensor. [Work supported by ONR] {copyright} {ital 1996 American Institute of Physics.}

  9. Motion Analysis and the Anterior Cruciate Ligament: Classification of Injury Risk.

    PubMed

    Bates, Nathaniel A; Hewett, Timothy E

    2016-02-01

    Anterior cruciate ligament (ACL) injuries are common, catastrophic events that incur large expense and lead to degradation of the knee. As such, various motion capture techniques have been applied to identify athletes who are at increased risk for suffering ACL injuries. The objective of this clinical commentary was to synthesize information related to how motion capture analyses contribute to the identification of risk factors that may predict relative injury risk within a population. Individuals employ both active and passive mechanisms to constrain knee joint articulation during motion. There is strong evidence to indicate that athletes who consistently classify as high-risk loaders during landing suffer from combined joint stability deficits in both the active and passive knee restraints. Implementation of prophylactic neuromuscular interventions and biofeedback can effectively compensate for some of the deficiencies that result from poor control of the active knee stabilizers and reduce the incidence of ACL injuries. PMID:26383143

  10. Dynamic Finite Element Analysis of Mobile Bearing Type Knee Prosthesis under Deep Flexional Motion

    PubMed Central

    Mohd Anuar, Mohd Afzan; Todo, Mitsugu; Hirokawa, Shunji

    2014-01-01

    The primary objective of this study is to distinguish between mobile bearing and fixed bearing posterior stabilized knee prostheses in the mechanics performance using the finite element simulation. Quantifying the relative mechanics attributes and survivorship between the mobile bearing and the fixed bearing prosthesis remains in investigation among researchers. In the present study, 3-dimensional computational model of a clinically used mobile bearing PS type knee prosthesis was utilized to develop a finite element and dynamic simulation model. Combination of displacement and force driven knee motion was adapted to simulate a flexion motion from 0° to 135° with neutral, 10°, and 20° internal tibial rotation to represent deep knee bending. Introduction of the secondary moving articulation in the mobile bearing knee prosthesis has been found to maintain relatively low shear stress during deep knee motion with tibial rotation. PMID:25133247

  11. Efficient Human Action and Gait Analysis Using Multiresolution Motion Energy Histogram

    NASA Astrophysics Data System (ADS)

    Yu, Chih-Chang; Cheng, Hsu-Yung; Cheng, Chien-Hung; Fan, Kuo-Chin

    2010-12-01

    Average Motion Energy (AME) image is a good way to describe human motions. However, it has to face the computation efficiency problem with the increasing number of database templates. In this paper, we propose a histogram-based approach to improve the computation efficiency. We convert the human action/gait recognition problem to a histogram matching problem. In order to speed up the recognition process, we adopt a multiresolution structure on the Motion Energy Histogram (MEH). To utilize the multiresolution structure more efficiently, we propose an automated uneven partitioning method which is achieved by utilizing the quadtree decomposition results of MEH. In that case, the computation time is only relevant to the number of partitioned histogram bins, which is much less than the AME method. Two applications, action recognition and gait classification, are conducted in the experiments to demonstrate the feasibility and validity of the proposed approach.

  12. Kinetics of the Shanghai Maglev: Kinematical Analysis of a Real "Textbook" Case of Linear Motion

    NASA Astrophysics Data System (ADS)

    Hsu, Tung

    2014-10-01

    A vehicle starts from rest at constant acceleration, then cruises at constant speed for a time. Next, it decelerates at a constant rate.… This and similar statements are common in elementary physics courses. Students are asked to graph the motion of the vehicle or find the velocity, acceleration, and distance traveled by the vehicle from a given graph.1 However, a "constant acceleration-constant velocity-constant deceleration" motion, which gives us an ideal trapezoidal shape in the velocity-time graph, is not common in everyday life. Driving a car or riding a bicycle for a short distance can be much more complicated. Therefore, it is interesting to take a look at a real case of "constant acceleration-constant velocity-constant deceleration" motion.

  13. Analysis of plate spin motion and its implications for strength of plate boundary

    NASA Astrophysics Data System (ADS)

    Matsuyama, Takeshi; Iwamori, Hikaru

    2016-02-01

    In this study, we investigate the driving forces of plate motion, especially those of plate spin motion, that are related to the toroidal components of the global plate velocity field. In previous works, numerical simulations of mantle convection have been used to examine the extent to which toroidal velocity components are naturally generated on the surface, by varying key parameters, notably the rheological properties of plates and plate boundaries. Here, we take the reverse approach and perform analyses of observed plate motions, which show an increase in the toroidal/poloidal ratio at high degrees of spherical harmonic expansion, as well as a rapid change in the plate spin rate and the estimated driving stress around a critical plate size of approximately 1000 km. This quantitative relationship constrains the strength at plate boundaries to 3-75 MPa, which is consistent with several seismological observations, including those from the NE Japan arc associated with the 2011 Tohoku earthquake.

  14. iRED analysis of TAR RNA reveals motional coupling, long-range correlations, and a dynamical hinge.

    PubMed

    Musselman, Catherine; Al-Hashimi, Hashim M; Andricioaei, Ioan

    2007-07-15

    The HIV-1 transactivation response RNA element (TAR), which is essential to the lifecycle of the virus, has been suggested, based on NMR and hydrodynamic measurements, to undergo substantial, collective, structural dynamics that are important for its function. To deal with the significant coupling between overall diffusional rotation and internal motion expected to exist in TAR, here we utilize an isotropic reorientational eigenmode dynamics analysis of simulated molecular trajectories to obtain a detailed description of TAR dynamics and an accurately quantified pattern of dynamical correlations. The analysis demonstrates the inseparability of internal and overall motional modes, confirms the existence and reveals the nature of collective domain dynamics, and additionally reveals that the hinge for these motions is centered on residues U23, C24, and C41. Results also indicate the existence of long-range communication between the loop and the core of the RNA, and between the loop and the bulge. Additionally, the isotropic reorientational eigenmode dynamics analysis explains, from a dynamical perspective, several existing biochemical mutational studies and suggests new mutations for future structural dynamics studies. PMID:17449677

  15. Validation of TMJ osteoarthritis synthetic defect database via non-rigid registration

    NASA Astrophysics Data System (ADS)

    Paniagua, Beatriz; Pera, Juliette; Budin, Francois; Gomes, Liliane; Styner, Martin; Lucia, Cevidanes; Nguyen, Tung

    2015-03-01

    Temporomandibular joint (TMJ) disorders are a group of conditions that cause pain and dysfunction in the jaw joint and the muscles controlling jaw movement. However, diagnosis and treatment of these conditions remain controversial. To date, there is no single sign, symptom, or test that can clearly diagnose early stages of osteoarthritis (OA). Instead, the diagnosis is based on a consideration of several factors, including radiological evaluation. The current radiological diagnosis scores of TMJ pathology are subject to misdiagnosis. We believe these scores are limited by the acquisition procedures, such as oblique cuts of the CT and head positioning errors, and can lead to incorrect diagnoses of flattening of the head of the condyle, formation of osteophytes, or condylar pitting. This study consists of creating and validating a methodological framework to simulate defects in CBCT scans of known location and size, in order to create synthetic TMJ OA database. User-generated defects were created using a non-rigid deformation protocol in CBCT. All segmentation evaluation, surface distances and linear distances from the user-generated to the simulated defects showed our methodological framework to be very precise and within a voxel (0.5 mm) of magnitude. A TMJ OA synthetic database will be created next, and evaluated by expert radiologists, and this will serve to evaluate how sensitive the current radiological diagnosis tools are.

  16. Bayesian Characterization of Uncertainty in Intra-Subject Non-Rigid Registration

    PubMed Central

    Risholm, Petter; Janoos, Firdaus; Norton, Isaiah; Golby, Alex J.; Wells, William M.

    2013-01-01

    In settings where high-level inferences are made based on registered image data, the registration uncertainty can contain important information. In this article, we propose a Bayesian non-rigid registration framework where conventional dissimilarity and regularization energies can be included in the likelihood and the prior distribution on deformations respectively through the use of Boltzmann’s distribution. The posterior distribution is characterized using Markov Chain Monte Carlo (MCMC) methods with the effect of the Boltzmann temperature hyper-parameters marginalized under broad uninformative hyper-prior distributions. The MCMC chain permits estimation of the most likely deformation as well as the associated uncertainty. On synthetic examples, we demonstrate the ability of the method to identify the maximum a posteriori estimate and the associated posterior uncertainty, and demonstrate that the posterior distribution can be non-Gaussian. Additionally, results from registering clinical data acquired during neurosurgery for resection of brain tumor are provided; we compare the method to single transformation results from a deterministic optimizer and introduce methods that summarize the high-dimensional uncertainty. At the site of resection, the registration uncertainty increases and the marginal distribution on deformations is shown to be multi-modal. PMID:23602919

  17. Intraclass retrieval of nonrigid 3D objects: application to face recognition.

    PubMed

    Passalis, Georgios; Kakadiaris, Ioannis A; Theoharis, Theoharis

    2007-02-01

    As the size of the available collections of 3D objects grows, database transactions become essential for their management with the key operation being retrieval (query). Large collections are also precategorized into classes so that a single class contains objects of the same type (e.g., human faces, cars, four-legged animals). It is shown that general object retrieval methods are inadequate for intraclass retrieval tasks. We advocate that such intraclass problems require a specialized method that can exploit the basic class characteristics in order to achieve higher accuracy. A novel 3D object retrieval method is presented which uses a parameterized annotated model of the shape of the class objects, incorporating its main characteristics. The annotated subdivision-based model is fitted onto objects of the class using a deformable model framework, converted to a geometry image and transformed into the wavelet domain. Object retrieval takes place in the wavelet domain. The method does not require user interaction, achieves high accuracy, is efficient for use with large databases, and is suitable for nonrigid object classes. We apply our method to the face recognition domain, one of the most challenging intraclass retrieval tasks. We used the Face Recognition Grand Challenge v2 database, yielding an average verification rate of 95.2 percent at 10-3 false accept rate. The latest results of our work can be found at http://www.cbl.uh.edu/UR8D/. PMID:17170476

  18. An Algebraic Method for Exploring Quantum Monodromy and Quantum Phase Transitions in Non-Rigid Molecules

    NASA Astrophysics Data System (ADS)

    Larese, D.; Iachello, F.

    2011-06-01

    A simple algebraic Hamiltonian has been used to explore the vibrational and rotational spectra of the skeletal bending modes of HCNO, BrCNO, NCNCS, and other ``floppy`` (quasi-linear or quasi-bent) molecules. These molecules have large-amplitude, low-energy bending modes and champagne-bottle potential surfaces, making them good candidates for observing quantum phase transitions (QPT). We describe the geometric phase transitions from bent to linear in these and other non-rigid molecules, quantitatively analysing the spectroscopy signatures of ground state QPT, excited state QPT, and quantum monodromy.The algebraic framework is ideal for this work because of its small calculational effort yet robust results. Although these methods have historically found success with tri- and four-atomic molecules, we now address five-atomic and simple branched molecules such as CH_3NCO and GeH_3NCO. Extraction of potential functions is completed for several molecules, resulting in predictions of barriers to linearity and equilibrium bond angles.

  19. Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration.

    PubMed

    Candemir, Sema; Jaeger, Stefan; Palaniappan, Kannappan; Musco, Jonathan P; Singh, Rahul K; Zhiyun Xue; Karargyris, Alexandros; Antani, Sameer; Thoma, George; McDonald, Clement J

    2014-02-01

    The National Library of Medicine (NLM) is developing a digital chest X-ray (CXR) screening system for deployment in resource constrained communities and developing countries worldwide with a focus on early detection of tuberculosis. A critical component in the computer-aided diagnosis of digital CXRs is the automatic detection of the lung regions. In this paper, we present a nonrigid registration-driven robust lung segmentation method using image retrieval-based patient specific adaptive lung models that detects lung boundaries, surpassing state-of-the-art performance. The method consists of three main stages: 1) a content-based image retrieval approach for identifying training images (with masks) most similar to the patient CXR using a partial Radon transform and Bhattacharyya shape similarity measure, 2) creating the initial patient-specific anatomical model of lung shape using SIFT-flow for deformable registration of training masks to the patient CXR, and 3) extracting refined lung boundaries using a graph cuts optimization approach with a customized energy function. Our average accuracy of 95.4% on the public JSRT database is the highest among published results. A similar degree of accuracy of 94.1% and 91.7% on two new CXR datasets from Montgomery County, MD, USA, and India, respectively, demonstrates the robustness of our lung segmentation approach. PMID:24239990

  20. Oriented Gaussian mixture models for nonrigid 2D/3D coronary artery registration.

    PubMed

    Baka, N; Metz, C T; Schultz, C J; van Geuns, R-J; Niessen, W J; van Walsum, T

    2014-05-01

    2D/3D registration of patient vasculature from preinterventional computed tomography angiography (CTA) to interventional X-ray angiography is of interest to improve guidance in percutaneous coronary interventions. In this paper we present a novel feature based 2D/3D registration framework, that is based on probabilistic point correspondences, and show its usefulness on aligning 3D coronary artery centerlines derived from CTA images with their 2D projection derived from interventional X-ray angiography. The registration framework is an extension of the Gaussian mixture model (GMM) based point-set registration to the 2D/3D setting, with a modified distance metric. We also propose a way to incorporate orientation in the registration, and show its added value for artery registration on patient datasets as well as in simulation experiments. The oriented GMM registration achieved a median accuracy of 1.06 mm, with a convergence rate of 81% for nonrigid vessel centerline registration on 12 patient datasets, using a statistical shape model. The method thereby outperformed the iterative closest point algorithm, the GMM registration without orientation, and two recently published methods on 2D/3D coronary artery registration. PMID:24770908

  1. Experimental analysis of bed load sediment motions using high-speed imagery

    NASA Astrophysics Data System (ADS)

    Fathel, S. L.; Furbish, D. J.; Schmeeckle, M. W.

    2013-12-01

    Bed load sediment particles move as complex motions over the surface of a stream bed, accelerating and decelerating in response to the near-bed turbulence and due to particle-bed interactions. Using high-speed imagery of coarse sand particles on a planer bed surface, we track individual particle hops from start to stop. This work re-examines, and adds to, previously published measurements taken from flume experiments, such that we are able to better characterize these hopping motions. In particular, we analyze both the cross-stream and streamwise hop distances in combination with their associated travel times. Measurements confirm that the cross-stream particle hop distances scale with travel time to the 4/3 power and the streamwise hop distances scale with travel time to the 5/3 power. Even though both of these hopping motions scale with travel time, we find that streamwise motions are generally less scattered about the 5/3 relation in comparison with more erratic cross-stream motions. As previously suggested, the probability density function of the streamwise hop distances takes the form of a gamma-like distribution, where a large portion of the motions are small, positive distances. In contrast to previous work, we find that the probability density function of the travel times takes the form of an exponential-like distribution, which suggests a steady disentrainment rate with respect to time following particle entrainment. Collectively, these data represent a sample from the joint probability density function of hop distances and travel times. This work is aimed at developing a deeper understanding of this joint probability density function, sediment entrainment and disentrainment, and issues arising from time and window censorship, wherein the censored data may represent a biased description of the underlying ensemble distribution of hop distances and travel times.

  2. Co-occurrence of outlet impingement syndrome of the shoulder and restricted range of motion in the thoracic spine - a prospective study with ultrasound-based motion analysis

    PubMed Central

    2010-01-01

    Background Shoulder complaints, and especially the outlet-impingement syndrome, are a common condition. Among other things, poor posture has been discussed as a cause. A correlation between impingement syndrome and restricted mobility of the thoracic spine (T) has been described earlier, but there has been no motion analysis of the thoracic spine to show these correlations. In the present prospective study, we intended to find out whether there is a significant difference in the thoracic sagittal range of motion (ROM) between patients with a shoulder outlet impingement syndrome and a group of patients who had no shoulder pathology. Secondly, we wanted to clarify whether Ott's sign correlates with ultrasound topometric measurements. Methods Two sex- and age-matched groups (2 × n = 39) underwent a clinical and an ultrasound topometric examination. The postures examined were sitting up straight, sitting in maximal flexion and sitting in maximal extension. The disabilities of the arm, shoulder and hand (DASH) score (obtained by means of a self-assessment questionnaire) and the Constant score were calculated. Lengthening and shortening of the dorsal projections of the spine in functional positions was measured by tape with Ott's sign. Results On examination of the thoracic kyphosis in the erect seated posture there were no significant differences between the two groups (p = 0.66). With ultrasound topometric measurement it was possible to show a significantly restricted segmental mobility of the thoracic spine in the study group compared with the control group (p = 0.01). An in-depth look at the mobility of the subsegments T1-4, T5-8 and T9-12 revealed that differences between the groups in the mobility in the lower two sections of the thoracic spine were significant (T5-8: p = 0.03; T9-12: p = 0.02). The study group had an average Constant score of 35.1 points and the control group, 85.5 (p < 0.001). On the DASH score the patient group reached 34.2 points and the

  3. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    NASA Astrophysics Data System (ADS)

    Thein, Pyi Soe; Pramumijoyo, Subagyo; Brotopuspito, Kirbani Sri; Wilopo, Wahyu; Kiyono, Junji; Setianto, Agung; Putra, Rusnardi Rahmat

    2015-04-01

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green's function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  4. Video analysis of projectile motion using tablet computers as experimental tools

    NASA Astrophysics Data System (ADS)

    Klein, P.; Gröber, S.; Kuhn, J.; Müller, A.

    2014-01-01

    Tablet computers were used as experimental tools to record and analyse the motion of a ball thrown vertically from a moving skateboard. Special applications plotted the measurement data component by component, allowing a simple determination of initial conditions and g in order to explore the underlying laws of motion. This experiment can easily be performed by students themselves, providing more autonomy in their problem-solving processes than traditional learning approaches. We believe that this autonomy and the authenticity of the experimental tool both foster their motivation.

  5. Vertical motions in the Uranian atmosphere - an analysis of radio observations

    NASA Astrophysics Data System (ADS)

    Hofstadter, M. D.; Berge, G. L.; Muhleman, D. O.

    1990-03-01

    The present, 6-cm radio map of Uranus indicates latitudinal features which may be due to vertical motions of the atmosphere. It appears in light of Voyager IR measurements as well as previously obtained radio data that these large-scale vertical motions, which have not undergone significant changes over the course of 8 years, extend from the 0.1- to the 45-bar levels; this span corresponds to a height of the order of 250 km. The latitudinal structures are believed to be primarily caused by horizontal variations of absorber abundances.

  6. Development of a small flapping robot. Motion analysis during takeoff by numerical simulation and experiment

    NASA Astrophysics Data System (ADS)

    Fujikawa, Taro; Hirakawa, Kazuaki; Okuma, Shinnosuke; Udagawa, Takamasa; Nakano, Satoru; Kikuchi, Koki

    2008-08-01

    We present the development of a small flapping robot for use as an observation system in hazardous environments. An isometric physical model was constructed based on the observations of body and wing motions during takeoff of a butterfly, and we compared the flapping motion of the model with that of a butterfly. A computational model based on the finite-element method is used to analyze the vortex around the wing of the model during takeoff of the constructed robot. Computation results clarify the takeoff mechanism of the model and show the feasibility of a small flying device employing a flapping mechanism.

  7. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    SciTech Connect

    Thein, Pyi Soe; Pramumijoyo, Subagyo; Wilopo, Wahyu; Setianto, Agung; Brotopuspito, Kirbani Sri; Kiyono, Junji; Putra, Rusnardi Rahmat

    2015-04-24

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  8. Dynamical analysis of nearby clusters. Automated astrometry from the ground: precision proper motions over a wide field

    NASA Astrophysics Data System (ADS)

    Bouy, H.; Bertin, E.; Moraux, E.; Cuillandre, J.-C.; Bouvier, J.; Barrado, D.; Solano, E.; Bayo, A.

    2013-06-01

    Context. The kinematic properties of the different classes of objects in a given association hold important clues about the history of its members, and offer a unique opportunity to test the predictions of the various models of stellar formation and evolution. Aims: DANCe (standing for dynamical analysis of nearby clusters) is a survey program aimed at deriving a comprehensive and homogeneous census of the stellar and substellar content of a number of nearby (<1 kpc) young (<500 Myr) associations. Whenever possible, members will be identified based on their kinematics properties, ensuring little contamination from background and foreground sources. Otherwise, the dynamics of previously confirmed members will be studied using the proper motion measurements. We present here the method used to derive precise proper motion measurements, using the Pleiades cluster as a test bench. Methods: Combining deep wide-field multi-epoch panchromatic images obtained at various obervatories over up to 14 years, we derived accurate proper motions for the sources in the field of the survey. The datasets cover ≈80 square degrees, centered around the Seven Sisters. Results: Using new tools, we have computed a catalog of 6 116 907 unique sources, including proper motion measurements for 3 577 478 of them. The catalog covers the magnitude range between i = 12 ~ 24 mag, achieving a proper motion accuracy <1 mas y-1 for sources as faint as i = 22.5 mag. We estimate that our final accuracy reaches 0.3 mas yr-1 in the best cases, depending on magnitude, observing history, and the presence of reference extragalactic sources for the anchoring onto the ICRS. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the

  9. Analysis of the Pendular and Pitch Motions of a Driven Three-Dimensional Pendulum

    ERIC Educational Resources Information Center

    Findley, T.; Yoshida, S.; Norwood, D. P.

    2007-01-01

    A three-dimensional pendulum, modelled after the Laser Interferometer Gravitational-Wave Observatory's suspended optics, was constructed to investigate the pendulum's dynamics due to suspension point motion. In particular, we were interested in studying the pendular-pitch energy coupling. Determination of the pendular's Q value (the quality factor…

  10. Wave motion on the surface of the human tympanic membrane: Holographic measurement and modeling analysis

    PubMed Central

    Cheng, Jeffrey Tao; Hamade, Mohamad; Merchant, Saumil N.; Rosowski, John J.; Harrington, Ellery; Furlong, Cosme

    2013-01-01

    Sound-induced motions of the surface of the tympanic membrane (TM) were measured using stroboscopic holography in cadaveric human temporal bones at frequencies between 0.2 and 18 kHz. The results are consistent with the combination of standing-wave-like modal motions and traveling-wave-like motions on the TM surface. The holographic techniques also quantified sound-induced displacements of the umbo of the malleus, as well as volume velocity of the TM. These measurements were combined with sound-pressure measurements near the TM to compute middle-ear input impedance and power reflectance at the TM. The results are generally consistent with other published data. A phenomenological model that behaved qualitatively like the data was used to quantify the relative magnitude and spatial frequencies of the modal and traveling-wave-like displacement components on the TM surface. This model suggests the modal magnitudes are generally larger than those of the putative traveling waves, and the computed wave speeds are much slower than wave speeds predicted by estimates of middle-ear delay. While the data are inconsistent with simple modal displacements of the TM, an alternate model based on the combination of modal motions in a lossy membrane can also explain these measurements without invoking traveling waves. PMID:23363110

  11. Analysis of 3-D Tongue Motion from Tagged and Cine Magnetic Resonance Images

    ERIC Educational Resources Information Center

    Xing, Fangxu; Woo, Jonghye; Lee, Junghoon; Murano, Emi Z.; Stone, Maureen; Prince, Jerry L.

    2016-01-01

    Purpose: Measuring tongue deformation and internal muscle motion during speech has been a challenging task because the tongue deforms in 3 dimensions, contains interdigitated muscles, and is largely hidden within the vocal tract. In this article, a new method is proposed to analyze tagged and cine magnetic resonance images of the tongue during…

  12. Assessing randomness and complexity in human motion trajectories through analysis of symbolic sequences

    PubMed Central

    Peng, Zhen; Genewein, Tim; Braun, Daniel A.

    2014-01-01

    Complexity is a hallmark of intelligent behavior consisting both of regular patterns and random variation. To quantitatively assess the complexity and randomness of human motion, we designed a motor task in which we translated subjects' motion trajectories into strings of symbol sequences. In the first part of the experiment participants were asked to perform self-paced movements to create repetitive patterns, copy pre-specified letter sequences, and generate random movements. To investigate whether the degree of randomness can be manipulated, in the second part of the experiment participants were asked to perform unpredictable movements in the context of a pursuit game, where they received feedback from an online Bayesian predictor guessing their next move. We analyzed symbol sequences representing subjects' motion trajectories with five common complexity measures: predictability, compressibility, approximate entropy, Lempel-Ziv complexity, as well as effective measure complexity. We found that subjects' self-created patterns were the most complex, followed by drawing movements of letters and self-paced random motion. We also found that participants could change the randomness of their behavior depending on context and feedback. Our results suggest that humans can adjust both complexity and regularity in different movement types and contexts and that this can be assessed with information-theoretic measures of the symbolic sequences generated from movement trajectories. PMID:24744716

  13. Radionuclide ventriculography: evaluation of automated and visual methods for regional wall motion analysis

    SciTech Connect

    Steckley, R.A.; Kronenberg, M.W.; Born, M.L.; Rhea, T.C.; Bateman, J.E.; Rollo, F.D.; Friesinger, G.C.

    1982-01-01

    Regional wall motion (RWM) abnormalities are sensitive indicators of left ventricular (LV) dysfunction, but quantitation of RWM with gated radionuclide ventriculography (RVG) has been limited, particularly in the left anterior oblique (LAO) projection. Regional LV performance was studied in 18 patients undergoing LAO RVG immediately prior to contrast ventriculography (CVG). Wall motion was analyzed by semiautomated and visual methods using several coordinate systems. For semiautomated methods, RVG and CVG wall motion were closely related in the two 90 degrees polar sectors at the apex and posterior wall (r . .85) and in the five 45 degrees polar sectors from midseptum through posterior wall (r . .82). The basal sectors on RVG had weak relationship to CVG, due to adjacent vascular structures. Semiautomated and visual grades for polar sectors on both CVG and RVG were closely related (r . .88- .94). Measured regional wall motion on LAO RVG compared favorably with near-simultaneous CVG in nonoverlapping portions of the LV and allowed objective quantitation of regional LV performance.

  14. Radionuclide ventriculography: evaluation of automated and visual methods for regional wall motion analysis

    SciTech Connect

    Steckley, R.A.; Kronenberg, M.W.; Born, M.L.; Rhea, T.C.; Bateman, J.E.; Rollo, F.D.; Friesinger, G.C.

    1982-01-01

    Regional wall motion (RWM) abnormalities are sensitive indicators of left ventricular (LV) dysfunction, but quantitation of RWM with gated radionuclide ventriculography (RVG) has been limited, particularly in the left anterior oblique (LAO) projection. Regional LV performance was studied in 18 patients undergoing LAO RVG immediately prior to contrast ventriculography (CVG). Wall motion was analyzed by semiautomated and visual methods using several coordinate systems. For semiautomated methods, RVG and CVG wall motion were closely related in the two 90/sup 0/ polar sectors at the apex and posterior wall r = .850 and in the five 45/sup 0/ polar sectors from midseptum through posterior wall (r = .82). The basal sectors on RVG had weak relationships to CVG, due to adjacent vascular structures. Semiautomated and visual grades for polar sectors on both CVG and RVG were closely related (r = .88-.94). Measured regional wall motion on LAO RVG compared favorably with near-simultaneous CVG in nonoverlapping portions of the LV and allowed objective quantitation of regional LV performance.

  15. Kinetics of the Shanghai Maglev: Kinematical Analysis of a Real "Textbook" Case of Linear Motion

    ERIC Educational Resources Information Center

    Hsu, Tung

    2014-01-01

    A vehicle starts from rest at constant acceleration, then cruises at constant speed for a time. Next, it decelerates at a constant rate.… This and similar statements are common in elementary physics courses. Students are asked to graph the motion of the vehicle or find the velocity, acceleration, and distance traveled by the vehicle from a given…

  16. Wall-Motion Based Analysis of Global and Regional Left Atrial Mechanics

    PubMed Central

    Moyer, Christian B.; Helm, Patrick A.; Clarke, Christopher J.; Budge, Loren P.; Kramer, Christopher M.; Ferguson, John D.; Norton, Patrick T.; Holmes, Jeffrey W.

    2015-01-01

    Atrial fibrillation is an increasingly prevalent cardiovascular disease; changes in atrial structure and function induced by atrial fibrillation and its treatments are often spatially heterogeneous. However, spatial heterogeneity of function is difficult to assess with standard imaging techniques. This paper describes a method to assess global and regional mechanical function by combining cardiac magnetic resonance imaging and finite-element surface fitting. We used this fitted surface to derive measures of left atrial volume, regional motion, and spatial heterogeneity of motion in 23 subjects, including healthy volunteers and atrial fibrillation patients. We fit the surfaces using a Newton optimization scheme in under 1 min on a standard laptop, with a root mean square error of 2.3±0.5 mm, less than 9% of the mean fitted radius, and an inter-operator variability of less than 10%. Fitted surfaces showed clear definition of the phases of left atrial motion (filling, passive emptying, active contraction) in both volume-time and regional radius-time curves. Averaged surfaces of healthy volunteers and atrial fibrillation patients provided evidence of substantial regional variation in both amount and timing of regional motion, indicating spatial heterogeneity of function, even in healthy adults. PMID:23708788

  17. Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis.

    PubMed

    Cheng, Jeffrey Tao; Hamade, Mohamad; Merchant, Saumil N; Rosowski, John J; Harrington, Ellery; Furlong, Cosme

    2013-02-01

    Sound-induced motions of the surface of the tympanic membrane (TM) were measured using stroboscopic holography in cadaveric human temporal bones at frequencies between 0.2 and 18 kHz. The results are consistent with the combination of standing-wave-like modal motions and traveling-wave-like motions on the TM surface. The holographic techniques also quantified sound-induced displacements of the umbo of the malleus, as well as volume velocity of the TM. These measurements were combined with sound-pressure measurements near the TM to compute middle-ear input impedance and power reflectance at the TM. The results are generally consistent with other published data. A phenomenological model that behaved qualitatively like the data was used to quantify the relative magnitude and spatial frequencies of the modal and traveling-wave-like displacement components on the TM surface. This model suggests the modal magnitudes are generally larger than those of the putative traveling waves, and the computed wave speeds are much slower than wave speeds predicted by estimates of middle-ear delay. While the data are inconsistent with simple modal displacements of the TM, an alternate model based on the combination of modal motions in a lossy membrane can also explain these measurements without invoking traveling waves. PMID:23363110

  18. Analysis of the characteristics of human arm in cooperative motion between two humans

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Ikeura, Ryojun; Mizutani, Kazuki; Sawai, Hideki

    2005-12-01

    In the present day, there is demand for making robot being assistant in many kinds of cooperative tasks with human being, for example, in the medical service and welfare work. Such robot is supposed to be without sense of incongruity felt against human being and with the ability of executing smooth movement in human-robot cooperative task. In view of every motion of the human body being in naturally perfect smoothness, it is essential to analyze the human motional characteristics by introducing human model for establishing the law of control on the cooperative robot with human being. In this study, master-slave cooperation more appropriate for human-robot cooperative task was adopted. The experiment was carried out founded on the hypothesis that the human arm around the elbow joint was considered as a simple mass-spring-damper dynamic system with one end fixed. Upon main investigation into the slave's relaxed arm in clockwise motion, by virtue of examining the physical parameters in the mathematical model of the human arm, its impedance characteristics were recognized. It was found that as for human ordinary motion, the damping factor was low enough to be disregarded and the stiffness possessed individually linear property. And besides, the friction-like force was discovered to exist.

  19. Theoretical performance assessment and empirical analysis of super-resolution under unknown affine sensor motion.

    PubMed

    Thelen, Brian J; Valenzuela, John R; LeBlanc, Joel W

    2016-04-01

    This paper deals with super-resolution (SR) processing and associated theoretical performance assessment for under-sampled video data collected from a moving imaging platform with unknown motion and assuming a relatively flat scene. This general scenario requires joint estimation of the high-resolution image and the parameters that determine a projective transform that relates the collected frames to one another. A quantitative assessment of the variance in the random error as achieved through a joint-estimation approach (e.g., SR image reconstruction and motion estimation) is carried out via the general framework of M-estimators and asymptotic statistics. This approach provides a performance measure on estimating the fine-resolution scene when there is a lack of perspective information and represents a significant advancement over previous work that considered only the more specific scenario of mis-registration. A succinct overview of the theoretical framework is presented along with some specific results on the approximate random error for the case of unknown translation and affine motions. A comparison is given between the approximated random error and that actually achieved by an M-estimator approach to the joint-estimation problem. These results provide insight on the reduction in SR reconstruction accuracy when jointly estimating unknown inter-frame affine motion. PMID:27140759

  20. Motion correction for synthesis and analysis of respiratory-gated lung SPECT image

    NASA Astrophysics Data System (ADS)

    Ue, Hidenori; Haneishi, Hideaki; Iwanaga, Hideyuki; Suga, Kazuyoshi

    2005-04-01

    A conventional SPECT image of lung is obtained by accumulating the detected count of gamma rays over long acquisition time that contains many respiratory cycles. The lung motion due to respiration during the acquisition makes reconstructed image blurred and may lead to a misdiagnosis. If a respiratory-gated SPECT is used, reconstructed images at various phase of respiration are obtained and the blur in a image can be avoided. However, the respiratory-gated SPECT requires long time to accumulate sufficient number of counts at each phase. If the acquisition time is not long enough, the detected count becomes inadequately small and hence the reconstructed image becomes noisy. We propose a method for correcting the motion between different phase images obtained with the respiratory-gated SPECT. In this method, an objective function consisting of both the degree of similarity between a reference and a deformed image and the smoothness of deformation is defined and optimized. The expansion ratio defined as a ratio of the change of the local volume due to the deformation is introduced to preserve the total activity during the motion correction process. By summing each phase images corrected by this method, a less noisy and less blurred SPECT image can be obtained. Furthermore, this method allows us to analyze the local movement of lung. This method was applied to the computer phantom, the real phantom and some clinical data and the motion correction and visualization of local movements between inspiration and expiration phase images were successfully achieved.

  1. Nonlinear random motion analysis of coupled heave-pitch motions of a spar platform considering 1st-order and 2nd-order wave loads

    NASA Astrophysics Data System (ADS)

    Liu, Shuxiao; Tang, Yougang; Li, Wei

    2016-06-01

    In this study, we consider first- and second-order random wave loads and the effects of time-varying displacement volume and transient wave elevation to establish motion equations of the Spar platform's coupled heave-pitch. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of second-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. Second-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the second-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.

  2. Analysis of Nematode Motion Using an Improved Light-Scatter Based System

    PubMed Central

    Nutting, Chuck S.; Eversole, Rob R.; Blair, Kevin; Specht, Sabine; Nutman, Thomas B.; Klion, Amy D.; Wanji, Samuel; Boussinesq, Michel; Mackenzie, Charles D.

    2015-01-01

    Background The detailed assessment of nematode activity and viability still remains a relatively undeveloped area of biological and medical research. Computer-based approaches to assessing the motility of larger nematode stages have been developed, yet these lack the capability to detect and analyze the more subtle and important characteristics of the motion of nematodes. There is currently a need to improved methods of assessing the viability and health of parasitic worms. Methods We describe here a system that converts the motion of nematodes through a light-scattering system into an electrical waveform, and allows for reproducible, and wholly non-subjective, assessment of alterations in motion, as well as estimation of the number of nematode worms of different forms and sizes. Here we have used Brugia sp. microfilariae (L1), infective larvae (L3) and adults, together with the free-living nematode Caenorhabditis elegans. Results The motion of worms in a small (200ul) volume can be detected, with the presence of immotile worms not interfering with the readings at practical levels (up to at least 500 L1 /200ul). Alterations in the frequency of parasite movement following the application of the anti-parasitic drugs, (chloroquine and imatinib); the anti-filarial effect of the latter agent is the first demonstrated here for the first time. This system can also be used to estimate the number of parasites, and shortens the time required to estimate parasites numbers, and eliminates the need for microscopes and trained technicians to provide an estimate of microfilarial sample sizes up to 1000 parasites/ml. Alterations in the form of motion of the worms can also be depicted. Conclusions This new instrument, named a "WiggleTron", offers exciting opportunities to further study nematode biology and to aid drug discovery, as well as contributing to a rapid estimate of parasite numbers in various biological samples. PMID:25695776

  3. Registration and analysis of in-vivo multispectral images for correction of motion and comparison in time

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke Jan; de Roode, Rowland; Staring, Marius; Verdaasdonk, Rudolf

    2006-02-01

    In-vivo image-based multi-spectral images have typical problems in image acquisition, registration, visualization and analysis. As its spatial and spectral axes do not have the same unit, standard image algorithms often do not apply. The image size is often so large that it is hard to analyze them interactively. In a clinical setting, image motion will always occur during the acquisition times up to 30 seconds, since most (elderly) patients often have difficulty to retain their poses. In this paper, we discuss how the acquisition, registration, display and analysis can be optimized for in-vivo multi-spectral images.

  4. Analysis of left atrial respiratory and cardiac motion for cardiac ablation therapy

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Holmes, D. R.; Johnson, S. B.; Lehmann, H. I.; Robb, R. A.; Packer, D. L.

    2015-03-01

    Cardiac ablation therapy is often guided by models built from preoperative computed tomography (CT) or magnetic resonance imaging (MRI) scans. One of the challenges in guiding a procedure from a preoperative model is properly synching the preoperative models with cardiac and respiratory motion through computational motion models. In this paper, we describe a methodology for evaluating cardiac and respiratory motion in the left atrium and pulmonary veins of a beating canine heart. Cardiac catheters were used to place metal clips within and near the pulmonary veins and left atrial appendage under fluoroscopic and ultrasound guidance and a contrast-enhanced, 64-slice multidetector CT scan was collected with the clips in place. Each clip was segmented from the CT scan at each of the five phases of the cardiac cycle at both end-inspiration and end-expiration. The centroid of each segmented clip was computed and used to evaluate both cardiac and respiratory motion of the left atrium. A total of three canine studies were completed, with 4 clips analyzed in the first study, 5 clips in the second study, and 2 clips in the third study. Mean respiratory displacement was 0.2+/-1.8 mm in the medial/lateral direction, 4.7+/-4.4 mm in the anterior/posterior direction (moving anterior on inspiration), and 9.0+/-5.0 mm superior/inferior (moving inferior with inspiration). At end inspiration, the mean left atrial cardiac motion at the clip locations was 1.5+/-1.3 mm in the medial/lateral direction, and 2.1+/-2.0 mm in the anterior/posterior and 1.3+/-1.2 mm superior/inferior directions. At end expiration, the mean left atrial cardiac motion at the clip locations was 2.0+/-1.5mm in the medial/lateral direction, 3.0+/-1.8mm in the anterior/posterior direction, and 1.5+/-1.5 mm in the superior/inferior directions.

  5. Numerical simulation analysis on Wenchuan seismic strong motion in Hanyuan region

    NASA Astrophysics Data System (ADS)

    Chen, X.; Gao, M.; Guo, J.; Li, Z.; Li, T.

    2015-12-01

    69227 deaths, 374643 injured, 17923 people missing, direct economic losses 845.1 billion, and a large number houses collapse were caused by Wenchuan Ms8 earthquake in Sichuan Province on May 12, 2008, how to reproduce characteristics of its strong ground motion and predict its intensity distribution, which have important role to mitigate disaster of similar giant earthquake in the future. Taking Yunnan-Sichuan Province, Wenchuan town, Chengdu city, Chengdu basin and its vicinity as the research area, on the basis of the available three-dimensional velocity structure model and newly topography data results from ChinaArray of Institute of Geophysics, China Earthquake Administration, 2 type complex source rupture process models with the global and local source parameters are established, we simulated the seismic wave propagation of Wenchuan Ms8 earthquake throughout the whole three-dimensional region by the GMS discrete grid finite-difference techniques with Cerjan absorbing boundary conditions, and obtained the seismic intensity distribution in this region through analyzing 50×50 stations data (simulated ground motion output station). The simulated results indicated that: (1)Simulated Wenchuan earthquake ground motion (PGA) response and the main characteristics of the response spectrum are very similar to those of the real Wenchuan earthquake records. (2)Wenchuan earthquake ground motion (PGA) and the response spectra of the Plain are much greater than that of the left Mountain area because of the low velocity of the shallow surface media and the basin effect of the Chengdu basin structure. Simultaneously, (3) the source rupture process (inversion) with far-field P-wave, GPS data and InSAR information and the Longmenshan Front Fault (source rupture process) are taken into consideration in GMS numerical simulation, significantly different waveform and frequency component of the ground motion are obtained, though the strong motion waveform is distinct asymmetric

  6. Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion

    NASA Technical Reports Server (NTRS)

    Lane, Christopher; Axelrad, Penina

    2004-01-01

    Geometrical methods for formation flying design based on the analytical solution to Hill's equations have been previously developed and used to specify desired relative motions in near circular orbits. By generating relationships between the vehicles that are intuitive, these approaches offer valuable insight into the relative motion and allow for the rapid design of satellite configurations to achieve mission specific requirements, such as vehicle separation at perigee or apogee, minimum separation, or a specific geometrical shape. Furthermore, the results obtained using geometrical approaches can be used to better constrain numerical optimization methods; allowing those methods to converge to optimal satellite configurations faster. This paper presents a set of geometrical relationships for formations in eccentric orbits, where Hill.s equations are not valid, and shows how these relationships can be used to investigate formation designs and how they evolve with time.

  7. Energy pumping analysis of skating motion in a half pipe and on a level surface

    NASA Astrophysics Data System (ADS)

    Feng, Z. C.; Xin, Ming

    2015-01-01

    In this paper, an energy pumping mechanism for locomotion is analysed. The pumping is accomplished by exerting forces perpendicular to the direction of motion. The paper attempts to demonstrate an interesting application of the classical mechanics to two sporting events: a person skating in a half pipe and a person travelling on a level surface on a skateboard. The equations of motion based on simplified mechanical models are derived using the Lagrange mechanics. The energy-pumping phenomenon is revealed through numerical simulations with simple pumping actions. The result presented in this paper can be used as an interesting class project in undergraduate mechanics or physics courses. It also motivates potential new applications of energy pumping in many engineering fields.

  8. Seismic hazard analysis. Volume 5. Review panel, Ground Motion Panel, and feedback results

    SciTech Connect

    Bernreuter, D. L.

    1981-08-01

    The Site Specific Spectra Project (SSSP) was a multi-year study funded by the US Nuclear Regulatory Commission to provide estimates of the seismic hazards at a number of nuclear power plant sites in the Eastern US. A key element of our approach was the Peer Review Panel, which we formed in order to ensure that our use of expert opinion was reasonable. We discuss the Peer Review Panel results and provide the complete text of each member's report. In order to improve the ground motion model, an Eastern US Ground Motion Model Panel was formed. In Section 4 we tabulate the responses from the panel members to our feedback questionnaire and discuss the implications of changes introduced by them. We conclude that the net difference in seismic hazard values from those presented in Volume 4 is small and does not warrant a reanalysis. 22 figs.

  9. GSATools: analysis of allosteric communication and functional local motions using a structural alphabet

    PubMed Central

    Pandini, Alessandro; Fornili, Arianna; Fraternali, Franca; Kleinjung, Jens

    2013-01-01

    Motivation: GSATools is a free software package to analyze conformational ensembles and to detect functional motions in proteins by means of a structural alphabet. The software integrates with the widely used GROMACS simulation package and can generate a range of graphical outputs. Three applications can be supported: (i) investigation of the conformational variability of local structures; (ii) detection of allosteric communication; and (iii) identification of local regions that are critical for global functional motions. These analyses provide insights into the dynamics of proteins and allow for targeted design of functional mutants in theoretical and experimental studies. Availability: The C source code of the GSATools, along with a set of pre-compiled binaries, is freely available under GNU General Public License from http://mathbio.nimr.mrc.ac.uk/wiki/GSATools. Contact: alessandro.pandini@kcl.ac.uk or jkleinj@nimr.mrc.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23740748

  10. Statistical analysis of censored motion sickness latency data using the two-parameter Weibull distribution

    NASA Technical Reports Server (NTRS)

    Park, Won J.; Crampton, George H.

    1988-01-01

    The suitability of the two-parameter Weibull distribution for describing highly censored cat motion sickness latency data was evaluated by estimating the parameters with the maximum likelihood method and testing for goodness of fit with the Kolmogorov-Smirnov statistic. A procedure for determining confidence levels and testing for significance of the difference between Weibull parameters is described. Computer programs for these procedures may be obtained from an archival source.

  11. Non-Rigid Registration of Liver CT Images for CT-Guided Ablation of Liver Tumors.

    PubMed

    Luu, Ha Manh; Klink, Camiel; Niessen, Wiro; Moelker, Adriaan; Walsum, Theo van

    2016-01-01

    CT-guided percutaneous ablation for liver cancer treatment is a relevant technique for patients not eligible for surgery and with tumors that are inconspicuous on US imaging. The lack of real-time imaging and the use of a limited amount of CT contrast agent make targeting the tumor with the needle challenging. In this study, we evaluate a registration framework that allows the integration of diagnostic pre-operative contrast enhanced CT images and intra-operative non-contrast enhanced CT images to improve image guidance in the intervention. The liver and tumor are segmented in the pre-operative contrast enhanced CT images. Next, the contrast enhanced image is registered to the intra-operative CT images in a two-stage approach. First, the contrast-enhanced diagnostic image is non-rigidly registered to a non-contrast enhanced image that is conventionally acquired at the start of the intervention. In case the initial registration is not sufficiently accurate, a refinement step is applied using non-rigid registration method with a local rigidity term. In the second stage, the intra-operative CT-images that are used to check the needle position, which often consist of only a few slices, are registered rigidly to the intra-operative image that was acquired at the start of the intervention. Subsequently, the diagnostic image is registered to the current intra-operative image, using both transformations, this allows the visualization of the tumor region extracted from pre-operative data in the intra-operative CT images containing needle. The method is evaluated on imaging data of 19 patients at the Erasmus MC. Quantitative evaluation is performed using the Dice metric, mean surface distance of the liver border and corresponding landmarks in the diagnostic and the intra-operative images. The registration of the diagnostic CT image to the initial intra-operative CT image did not require a refinement step in 13 cases. For those cases, the resulting registration had a Dice

  12. Comparisons between measurement and analysis of fluid motion in internal combustion engines

    SciTech Connect

    Witze, P.O.

    1981-10-01

    The Engine Combustion Technology Project was created for the purpose of promoting the development of advanced piston engine concepts by the development of techniques to measure, analyze, and understand the combustion process. The technologies emphasized in the project include laser-based measurement techniques and large-scale computer simulations. Considerable progress has already been achieved by project participants in modeling engine air motion, fuel sprays, and engine combustion phenomena. This milestone report covers one part of that progress, summarizing the current capabilities of multi-dimensional computer codes being developed by the project to predict the behavior of turbulent air motion in an engine environment. Computed results are compared directly with experimental data in six different areas of importance to internal combustion engines: (1) Induction-generated ring-vortex structures; (2) Piston-induced vortex roll-up; (3) Behavior of turbulence during compression; (4) Decay of swirling flow during compression; (5) Decay of swirling flow in a constant volume engine simulator; (6) Exhaust-pipe flow. The computational procedures used include vortex dynamics, rapid distortion theory, and finite difference models employing two-equation and subgrid-scale turbulence models. Although the capability does not yet exist to predict the air motion in an engine from its geometric configuration alone, the results presented show that many flowfield sub-processes can be predicted given well-specified initial and boundary conditions.

  13. Analysis of passive motion of para- and retropharyngeal structures during swallowing using dynamic magnetic resonance imaging.

    PubMed

    Chitose, Shun-ichi; Haraguchi, Masahiro; Nagata, Shuji; Katayama, Reiji; Sato, Kiminori; Fukahori, Mioko; Sueyoshi, Shintaro; Kurita, Takashi; Abe, Toshi; Nakashima, Tadashi

    2014-06-01

    The purpose of this study was to analyze passive motion of the para- and retropharyngeal space (PRS) during swallowing using dynamic magnetic resonance imaging (MRI). We conducted a preliminary study involving 30 healthy volunteers who underwent dynamic MRI. Consecutive MRI axial images were obtained by examining the plane parallel to the hard palate at the level of the anterior inferior corner of C2. Anterior displacement of the posterior pharyngeal wall (PPW) was measured as a motion index of pharyngeal contraction. The displacement and internal angle of the bilateral external and internal carotid arteries (ECA and ICA) and the bilateral centroids of the PRS area, as well as the increase in PRS area, were calculated at rest and at maximum pharyngeal contraction. In most participants, the bilateral ECA, ICA, and centroids were anterointernally displaced by pharyngeal contraction. The normalized ECA displacement (r = 0.64, r (2) = 0.41), normalized ICA displacement (r = 0.60, r (2) = 0.37), and normalized centroid displacement (r = 0.43, r (2) = 0.19) were more than moderately positively correlated with the normalized PPW displacement. The normalized PRS area increase (r = 0.35, r (2) = 0.12) was weakly positively correlated with the normalized PPW displacement. These results revealed that PRS area increased as the ECA and ICA were drawn anterointernally via its passive motion by pharyngeal contraction. PMID:24859486

  14. <