Science.gov

Sample records for nonsense mutation w1282x

  1. Association of a nonsense mutation (W1282X), the most common mutation in the Ashkenazi Jewish cystic fibrosis patients in Israel, with presentation of severe disease

    SciTech Connect

    Shoshani, T.; Bashan, N.; Seret, H.; Kerem, B.; Kerem, E. ); Augarten, A.; Gazit, E.; Yahav, Y.; Yaar, L. ); Rivlin, Y. ); Tal, A. )

    1992-01-01

    Only about 30% of the cystic fibrosis chromosomes in the Israeli cystic fibrosis patient populations carry the major CF mutation ({Delta}F508). Since different Jewish ethnic groups tended to live as closed isolates until recent times, high frequencies of specific mutations are expected among the remainder cystic fibrosis chromosomes of these ethnic groups. Genetic factors appear to influence the severity of the disease. It is therefore expected that different mutations will be associated with either severe or mild phenotype. Direct genomic sequencing of exons included in the two nucleotide-binding folds of the putative CFTR protein was performed on 119 Israeli cystic fibrosis patients from 97 families. One sequence alteration which is expected to create a termination at residue 1282 (W1282X) was found in 63 chromosomes. Of 95 chromosomes, 57(60%) are of Ashkenazi origin. In conclusion, the W1282X mutation is the most common cystic fibrosis mutation in the Ashkenazi Jewish patient population in Israel. This nonsense mutation is associated with presentation of severe disease.

  2. High prevalence of W1282x mutation in cystic fibrosis patients from Karachay-Cherkessia.

    PubMed

    Petrova, N V; Kashirskaya, N Yu; Vasilyeva, T A; Timkovskaya, E E; Voronkova, A Yu; Shabalova, L A; Kondratyeva, E I; Sherman, V D; Novoselova, O G; Kapranov, N I; Zinchenko, R A; Ginter, E K; Makaov, A Kh-M; Kerem, B

    2016-05-01

    Cystic fibrosis (CF; OMIM #219700) is a common autosomal recessive disease. The spectrum and frequency of CFTR mutations vary significantly in different populations and ethnic groups. A genetic epidemiological study was conducted in the indigenous ethnic group of people known as the Karachais. They live in the Republic of Karachay-Cherkessia, which lies in the northwest of Russia's North Caucasus region. Karachai's are Turkic-speaking and consist of 194 thousand people (approximately 40% of the population of the Republic). Molecular genetic analysis was performed in 10 unrelated Karachai families with CF patients from three districts in the Republic. A high frequency of W1282X mutation was found (18 of 20 mutant alleles): eight patients were homozygous for the W1282X mutation, and two were compound heterozygous (the second alleles were R1066C and R709X). Analysis for 13 common CF mutations in the sample of 142 healthy Karachais identified two 1677delTA and two W1282X mutation carriers. Thus, the most common CFTR mutation, F508del, was not detected among the CF patients or in healthy Karachais. The most frequent mutation among Karachai patients is W1282X (90%). Its frequency in healthy Karachais is approximately 0.007. Haplotype analysis using the CFTR intragene DNA markers IVS1CA, IVS6aGATT, IVS8CA and IVS17bCA showed that the origins of the W1282X mutation in Karachay-Cherkessia and the Eastern European part of Russia are different. PMID:26948992

  3. Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators

    PubMed Central

    Wang, Wei; Hong, Jeong S.; Rab, Andras; Sorscher, Eric J.; Kirk, Kevin L.

    2016-01-01

    W1282X is a common nonsense mutation among cystic fibrosis patients that results in the production of a truncated Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Here we show that the channel activity of the W1282X-CFTR polypeptide is exceptionally low in excised membrane patches at normally saturating doses of ATP and PKA (single channel open probability (PO) < 0.01). However, W1282X-CFTR channels were stimulated by two CFTR modulators, the FDA-approved VX-770 and the dietary compound curcumin. Each of these compounds is an allosteric modulator of CFTR gating that promotes channel activity in the absence of the native ligand, ATP. Although W1282X-CFTR channels were stimulated by VX-770 in the absence of ATP their activities remained dependent on PKA phosphorylation. Thus, activated W1282X-CFTR channels should remain under physiologic control by cyclic nucleotide signaling pathways in vivo. VX-770 and curcumin exerted additive effects on W1282X-CFTR channel gating (opening/closing) in excised patches such that the Po of the truncated channel approached unity (> 0.9) when treated with both modulators. VX-770 and curcumin also additively stimulated W1282X-CFTR mediated currents in polarized FRT epithelial monolayers. In this setting, however, the stimulated W1282X-CFTR currents were smaller than those mediated by wild type CFTR (3–5%) due presumably to lower expression levels or cell surface targeting of the truncated protein. Combining allosteric modulators of different mechanistic classes is worth considering as a treatment option for W1282X CF patients perhaps when coupled with maneuvers to increase expression of the truncated protein. PMID:27007499

  4. Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators.

    PubMed

    Wang, Wei; Hong, Jeong S; Rab, Andras; Sorscher, Eric J; Kirk, Kevin L

    2016-01-01

    W1282X is a common nonsense mutation among cystic fibrosis patients that results in the production of a truncated Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Here we show that the channel activity of the W1282X-CFTR polypeptide is exceptionally low in excised membrane patches at normally saturating doses of ATP and PKA (single channel open probability (PO) < 0.01). However, W1282X-CFTR channels were stimulated by two CFTR modulators, the FDA-approved VX-770 and the dietary compound curcumin. Each of these compounds is an allosteric modulator of CFTR gating that promotes channel activity in the absence of the native ligand, ATP. Although W1282X-CFTR channels were stimulated by VX-770 in the absence of ATP their activities remained dependent on PKA phosphorylation. Thus, activated W1282X-CFTR channels should remain under physiologic control by cyclic nucleotide signaling pathways in vivo. VX-770 and curcumin exerted additive effects on W1282X-CFTR channel gating (opening/closing) in excised patches such that the Po of the truncated channel approached unity (> 0.9) when treated with both modulators. VX-770 and curcumin also additively stimulated W1282X-CFTR mediated currents in polarized FRT epithelial monolayers. In this setting, however, the stimulated W1282X-CFTR currents were smaller than those mediated by wild type CFTR (3-5%) due presumably to lower expression levels or cell surface targeting of the truncated protein. Combining allosteric modulators of different mechanistic classes is worth considering as a treatment option for W1282X CF patients perhaps when coupled with maneuvers to increase expression of the truncated protein. PMID:27007499

  5. Synthetic Aminoglycosides Efficiently Suppress Cystic Fibrosis Transmembrane Conductance Regulator Nonsense Mutations and Are Enhanced by Ivacaftor

    PubMed Central

    Xue, Xiaojiao; Mutyam, Venkateshwar; Tang, Liping; Biswas, Silpak; Jackson, Laura A.; Dai, Yanying; Belakhov, Valery; Shalev, Moran; Chen, Fuquan; Schacht, Jochen; J. Bridges, Robert; Baasov, Timor; Hong, Jeong

    2014-01-01

    New drugs are needed to enhance premature termination codon (PTC) suppression to treat the underlying cause of cystic fibrosis (CF) and other diseases caused by nonsense mutations. We tested new synthetic aminoglycoside derivatives expressly developed for PTC suppression in a series of complementary CF models. Using a dual-luciferase reporter system containing the four most prevalent CF transmembrane conductance regulator (CFTR) nonsense mutations (G542X, R553X, R1162X, and W1282X) within their local sequence contexts (the three codons on either side of the PTC), we found that NB124 promoted the most readthrough of G542X, R1162X, and W1282X PTCs. NB124 also restored full-length CFTR expression and chloride transport in Fischer rat thyroid cells stably transduced with a CFTR–G542XcDNA transgene, and was superior to gentamicin and other aminoglycosides tested. NB124 restored CFTR function to roughly 7% of wild-type activity in primary human bronchial epithelial (HBE) CF cells (G542X/delF508), a highly relevant preclinical model with endogenous CFTR expression. Efficacy was further enhanced by addition of the CFTR potentiator, ivacaftor (VX-770), to airway cells expressing CFTR PTCs. NB124 treatment rescued CFTR function in a CF mouse model expressing a human CFTR-G542X transgene; efficacy was superior to gentamicin and exhibited favorable pharmacokinetic properties, suggesting that in vitro results translated to clinical benefit in vivo. NB124 was also less cytotoxic than gentamicin in a tissue-based model for ototoxicity. These results provide evidence that NB124 and other synthetic aminoglycosides provide a 10-fold improvement in therapeutic index over gentamicin and other first-generation aminoglycosides, providing a promising treatment for a wide array of CFTR nonsense mutations. PMID:24251786

  6. Exploring the readthrough of nonsense mutations by non-acidic Ataluren analogues selected by ligand-based virtual screening.

    PubMed

    Pibiri, Ivana; Lentini, Laura; Tutone, Marco; Melfi, Raffaella; Pace, Andrea; Di Leonardo, Aldo

    2016-10-21

    Ataluren, also known as PTC124, is a 5-(fluorophenyl)-1,2,4-oxadiazolyl-benzoic acid suggested to suppress nonsense mutations by readthrough of premature stop codons in the mRNA. Potential interaction of PTC124 with mRNA has been recently studied by molecular dynamics simulations highlighting the importance of H-bonding and stacking π-π interactions. A series of non-acidic analogues of PTC124 were selected from a large database via a ligand-based virtual screening approach. Eight of them were synthesized and tested for their readthrough activity using the Fluc reporter harboring the UGA premature stop codon. The most active compound was further tested for suppression of the UGA nonsense mutation in the bronchial epithelial IB3.1 cell line carrying the W1282X mutation in the CFTR gene. PMID:27404557

  7. PTC124 targets genetic disorders caused by nonsense mutations.

    PubMed

    Welch, Ellen M; Barton, Elisabeth R; Zhuo, Jin; Tomizawa, Yuki; Friesen, Westley J; Trifillis, Panayiota; Paushkin, Sergey; Patel, Meenal; Trotta, Christopher R; Hwang, Seongwoo; Wilde, Richard G; Karp, Gary; Takasugi, James; Chen, Guangming; Jones, Stephen; Ren, Hongyu; Moon, Young-Choon; Corson, Donald; Turpoff, Anthony A; Campbell, Jeffrey A; Conn, M Morgan; Khan, Atiyya; Almstead, Neil G; Hedrick, Jean; Mollin, Anna; Risher, Nicole; Weetall, Marla; Yeh, Shirley; Branstrom, Arthur A; Colacino, Joseph M; Babiak, John; Ju, William D; Hirawat, Samit; Northcutt, Valerie J; Miller, Langdon L; Spatrick, Phyllis; He, Feng; Kawana, Masataka; Feng, Huisheng; Jacobson, Allan; Peltz, Stuart W; Sweeney, H Lee

    2007-05-01

    Nonsense mutations promote premature translational termination and cause anywhere from 5-70% of the individual cases of most inherited diseases. Studies on nonsense-mediated cystic fibrosis have indicated that boosting specific protein synthesis from <1% to as little as 5% of normal levels may greatly reduce the severity or eliminate the principal manifestations of disease. To address the need for a drug capable of suppressing premature termination, we identified PTC124-a new chemical entity that selectively induces ribosomal readthrough of premature but not normal termination codons. PTC124 activity, optimized using nonsense-containing reporters, promoted dystrophin production in primary muscle cells from humans and mdx mice expressing dystrophin nonsense alleles, and rescued striated muscle function in mdx mice within 2-8 weeks of drug exposure. PTC124 was well tolerated in animals at plasma exposures substantially in excess of those required for nonsense suppression. The selectivity of PTC124 for premature termination codons, its well characterized activity profile, oral bioavailability and pharmacological properties indicate that this drug may have broad clinical potential for the treatment of a large group of genetic disorders with limited or no therapeutic options. PMID:17450125

  8. Chronic ataluren (PTC124) treatment of nonsense mutation cystic fibrosis.

    PubMed

    Wilschanski, M; Miller, L L; Shoseyov, D; Blau, H; Rivlin, J; Aviram, M; Cohen, M; Armoni, S; Yaakov, Y; Pugatsch, T; Pugatch, T; Cohen-Cymberknoh, M; Miller, N L; Reha, A; Northcutt, V J; Hirawat, S; Donnelly, K; Elfring, G L; Ajayi, T; Kerem, E

    2011-07-01

    In a subset of patients with cystic fibrosis (CF), nonsense mutations (premature stop codons) disrupt production of full-length, functional CF transmembrane conductance regulator (CFTR). Ataluren (PTC124) allows ribosomal readthrough of premature stop codons in mRNA. We evaluated drug activity and safety in patients with nonsense mutation CF who took ataluren three times daily (morning, midday and evening) for 12 weeks at either a lower dose (4, 4 and 8 mg·kg(-1)) or higher dose (10, 10 and 20 mg·kg(-1)). The study enrolled 19 patients (10 males and nine females aged 19-57 yrs; dose: lower 12, higher seven) with a classic CF phenotype, at least one CFTR nonsense mutation allele, and an abnormal nasal total chloride transport. Both ataluren doses were similarly active, improving total chloride transport with a combined mean change of -5.4 mV (p<0.001), and on-treatment responses (at least -5 mV improvement) and hyperpolarisations (values more electrically negative than -5 mV) in 61% (p<0.001) and 56% (p = 0.002) of patients. CFTR function was greater with time and was accompanied by trends toward improvements in pulmonary function and CF-related coughing. Adverse clinical and laboratory findings were uncommon and usually mild. Chronic ataluren administration produced time-dependent improvements in CFTR activity and clinical parameters with generally good tolerability. PMID:21233271

  9. Identification of a nonsense mutation in feline ABCB1.

    PubMed

    Mealey, K L; Burke, N S

    2015-10-01

    The aim of this study was to sequence all exons of the ABCB1 (MDR1) gene in cats that had experienced adverse reactions to P-glycoprotein substrate drugs (phenotyped cats). Eight phenotyped cats were included in the study consisting of eight cats that experienced central nervous system toxicosis after receiving ivermectin (n = 2), a combination product containing moxidectin and imidacloprid (n = 3), a combination product containing praziquantel and emodepside (n = 1) or selamectin (n = 2), and 1 cat that received the product containing praziquantel and emodepside but did not experience toxicity (n = 1). Fifteen exons contained polymorphisms and twelve exons showed no variation from the reference sequence. The most significant finding was a nonsense mutation (ABCB11930_1931del TC) in one of the ivermectin-treated cats. This cat was homozygous for the deletion mutation. All of the other phenotyped cats were homozygous for the wild-type allele. However, 14 missense mutations were identified in one or more phenotyped cats. ABCB11930_1931del TC was also identified in four nonphenotyped cats (one homozygous and three heterozygous for the mutant allele). Cats affected by ABCB11930_1931del TC would be expected to have a similar phenotype as dogs with the previously characterized ABCB1-1Δ mutation. PMID:25660379

  10. Nonsense mutations in the rhodopsin gene that give rise to mild phenotypes trigger mRNA degradation in human cells by nonsense-mediated decay.

    PubMed

    Roman-Sanchez, Ramon; Wensel, Theodore G; Wilson, John H

    2016-04-01

    Eight different nonsense mutations in the human rhodopsin gene cause retinitis pigmentosa (RP), an inherited degenerative disease of the retina that can lead to complete blindness. Although all these nonsense mutations lead to premature termination codons (PTCs) in rhodopsin mRNA, some display dominant inheritance, while others are recessive. Because nonsense-mediated decay (NMD) can degrade mRNAs containing PTCs and modulate the inheritance patterns of genetic diseases, we asked whether any of the nonsense mutations in the rhodopsin gene generated mRNAs that were susceptible to degradation by NMD. We hypothesized that nonsense mutations that caused mild RP phenotypes would trigger NMD, whereas those that did not engage NMD would cause more severe RP phenotypes-presumably due to the toxicity of the truncated protein. To test our hypothesis, we transfected human rhodopsin nonsense mutants into HEK293 and HT1080 human cells and measured transcript levels by qRT-PCR. In both cell lines, rhodopsin mutations Q64X and Q344X, which cause severe phenotypes that are dominantly inherited, yielded the same levels of rhodopsin mRNA as wild type. By contrast, rhodopsin mutations W161X and E249X, which cause recessive RP, showed decreased rhodopsin mRNA levels, consistent with NMD. Rhodopsin mutant Y136X, a dominant mutation that causes late-onset RP with a very mild pathology, also gave lower mRNA levels. Treatment of cells with Wortmannin, an inhibitor of NMD, eliminated the degradation of Y136X, W161X, and E249X rhodopsin mRNAs. These results suggest that NMD modulates the severity of RP in patients with nonsense mutations in the rhodopsin gene. PMID:26416182

  11. Nonsense mutations in the human. beta. -globin gene affect mRNA metabolism

    SciTech Connect

    Baserga, S.J.; Benz, E.J. Jr. )

    1988-04-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human {alpha}- and {beta}-globin genes. Studies on mRNA isolated from patients with {beta}{sup 0}-thalassemia have shown that for both the {beta}-17 and the {beta}-39 mutations less than normal levels of {beta}-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human {beta}-globin mRNA). In vitro studies using the cloned {beta}-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human {beta}-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation.

  12. Nonsense mutation in the regulatory gene ETH2 involved in methionine biosynthesis in Saccharomyces cervisiae.

    PubMed

    Masselot, M; Robichon-Szulmajster, H

    1972-08-01

    Ethionine-resistant mutants, mapping at the locus eth2-the product of which is involved in pleiotropic regulation of methionine biosynthesis-have been isolated in a strain carrying five ochre nonsense mutations. Selection for nonsense suppressors in such a strain led to characterization of several allele-specific but gene non-specific suppressors which are active on the recessive heteroallele eth2-2 (resulting in partial recovery of sensitivity toward ethionine) as well as on the five other suppressible alleles. Two of these suppressors are unlinked to the eth2 gene and either dominant or semi-dominant. It is concluded that the mutation eth2-2 resulted in a nonsense codon. Enzyme studies indicate that this mutation results in a complete absence of an active product of gene eth2, in contrast with the effect of a former mutation eth2-1 which was interpreted as leading to a modified product of this gene (Cherest, Surdin-Kerjan and de Robichon-Szulmajster 1971). This conclusion is based on the absence of repressibility of methionine group I enzymes and the observation that in a heteroallelic diploid, eth2-1 expression is not masked by eth2-2. The nonsense suppressors studied lead to at least partial recovery of repressibility of methionine group I enzymes. All these results support the idea that the product of gene ETH2 is an aporepressor protein. PMID:4560067

  13. A patient with a novel homozygous missense mutation in FTO and concomitant nonsense mutation in CETP

    PubMed Central

    Çağlayan, Ahmet Okay; Tüysüz, Beyhan; Coşkun, Süleyman; Quon, Jennifer; Harmanci, Akdes Serin; Baranoski, Jacob F.; Baran, Burçin; Erson-Omay, E. Zeynep; Henegariu, Octavian; Mane, Shrikant M.; Bilgüvar, Kaya; Yasuno, Katsuhito; Günel, Murat

    2015-01-01

    The fat mass and obesity associated gene (FTO) has previously been associated with a variety of diseases and conditions, notably obesity, acute coronary syndrome and metabolic syndrome. Reports describing mutations in FTO as well as FTO animal models have further demonstrated a role for FTO in the development of the brain and other organs. Here, we describe a patient born of consanguineous union who presented with microcephaly, developmental delay, behavioral abnormalities, dysmorphic facial features, hypotonia, and other various phenotypic abnormalities. Whole exome sequencing revealed a novel homozygous missense mutation in FTO and a nonsense mutation in the cholesteryl ester transfer protein (CETP). Exome CNV analysis revealed no disease causing large duplications or deletions within coding regions. Patient’s, her parents’ and non-related control’ fibroblasts were analyzed for morphologic defects, abnormal proliferation, apoptosis and transcriptome profile. We have shown that FTO is located in nucleus of cells from each tested samples. Western blot analysis demonstrated no changes in patient FTO. Q-PCR analysis revealed slightly decreased levels of FTO expression in patient cells compared to controls. No morphological or proliferation differences between the patient and control fibroblasts were observed. There is still much to be learned about the molecular mechanisms by which mutations in FTO contribute to such severe phenotypes. PMID:26740239

  14. Design of Novel Aminoglycoside Derivatives with Enhanced Suppression of Diseases-Causing Nonsense Mutations.

    PubMed

    Sabbavarapu, Narayana Murthy; Shavit, Michal; Degani, Yarden; Smolkin, Boris; Belakhov, Valery; Baasov, Timor

    2016-04-14

    New pseudotrisaccharide derivatives of aminoglycosides that exploit additional interaction on the shallow groove face of the decoding-site rRNA of eukaryotic ribosome were designed, synthesized and biologically evaluated. Novel lead structures (6 and 7 with an additional 7'-OH), exhibiting enhanced specificity to eukaryotic cytoplasmic ribosome, and superior nonsense mutation suppression activity than those of gentamicin, were discovered. The comparative benefit of new leads was demonstrated in four different nonsense DNA-constructs underling the genetic diseases cystic fibrosis, Usher syndrome, and Hurler syndrome. PMID:27096052

  15. A novel Werner Syndrome mutation: pharmacological treatment by read-through of nonsense mutations and epigenetic therapies

    PubMed Central

    Agrelo, Ruben; Sutz, Miguel Arocena; Setien, Fernando; Aldunate, Fabian; Esteller, Manel; Da Costa, Valeria; Achenbach, Ricardo

    2015-01-01

    Werner Syndrome (WS) is a rare inherited disease characterized by premature aging and increased propensity for cancer. Mutations in the WRN gene can be of several types, including nonsense mutations, leading to a truncated protein form. WRN is a RecQ family member with both helicase and exonuclease activities, and it participates in several cell metabolic pathways, including DNA replication, DNA repair, and telomere maintenance. Here, we reported a novel homozygous WS mutation (c.3767 C > G) in 2 Argentinian brothers, which resulted in a stop codon and a truncated protein (p.S1256X). We also observed increased WRN promoter methylation in the cells of patients and decreased messenger WRN RNA (WRN mRNA) expression. Finally, we showed that the read-through of nonsense mutation pharmacologic treatment with both aminoglycosides (AGs) and ataluren (PTC-124) in these cells restores full-length protein expression and WRN functionality. PMID:25830902

  16. Sporadic Hirschsprung`s disease due to a novel nonsense mutation in the RET protooncogene

    SciTech Connect

    Carlson, K.M.; Donis-Keller, H.; Langer, J.C.

    1994-09-01

    Hirschsprung`s disease (HSCR, aganglionic megacolon) is characterized by a lack of ganglion cells along variable lengths of the hindgut. This is most likely due to a failure of the progenitor cells (that are destined to become the ganglion cells of the submucosal and myenteric plexuses) to complete their distal migration in the colon. Recently, mutations in the RET protoocogene have been reported in association with HSCR. We report a novel nonsense mutation resulting in a severely truncated protein. Germline DNA from a panel of 6 HSCR patients was analyzed by SSCP for 20 exons of RET. Eight exons were also directly sequenced. We identified a novel mutation within RET exon 2. The mutation (TAC{sub 36}{yields}TAG{sub 36}), which occurs at nucleotide position 108, involves the replacement of tyrosine with a stop codon and results in a truncated 35 amino acid protein. This mutation is the most 5{prime} nonsense mutation reported thus far. Interestingly, the patient has no prior family history of HSCR and was also diagnosed with multiple developmental anomalies including dysplastic kidney. Recent gene targeting studies with mouse models have shown that RET is essential for normal renal development. However, a parallel phenotype has not been seen in other reported HSCR patients with RET mutations. The observations reported here provide evidence that RET plays a role in human renal development. Ongoing studies will determine the extent of RET involvement in sporadic cases of HSCR.

  17. A nonsense mutation in zebrafish gata1 causes the bloodless phenotype in vlad tepes

    PubMed Central

    Lyons, Susan E.; Lawson, Nathan D.; Lei, Lin; Bennett, Paul E.; Weinstein, Brant M.; Liu, P. Paul

    2002-01-01

    Vlad tepes (vltm651) is one of only five “bloodless” zebrafish mutants isolated through large-scale chemical mutagenesis screening. It is characterized by a severe reduction in blood cell progenitors and few or no blood cells at the onset of circulation. We now report characterization of the mutant phenotype and the identification of the gene mutated in vltm651. Embryos homozygous for the vltm651 mutation had normal expression of hematopoietic stem cell markers through 24 h postfertilization, as well as normal expression of myeloid and lymphoid markers. Analysis of erythroid development revealed variable expression of erythroid markers. Through positional and candidate gene cloning approaches we identified a nonsense mutation in the gata1 gene, 1015C → T (Arg-339 → Stop), in vltm651. The nonsense mutation was located C-terminal to the two zinc fingers and resulted in a truncated protein that was unable to bind DNA or mediate GATA-specific transactivation. A BAC clone containing the zebrafish gata1 gene was able to rescue the bloodless phenotype in vltm651. These results show that the vltm651 mutation is a previously uncharacterized gata1 allele in the zebrafish. The vltm651 mutation sheds new light on Gata1 structure and function in vivo, demonstrates that Gata1 plays an essential role in zebrafish hematopoiesis with significant conservation of function between mammals and zebrafish, and offers a powerful tool for future studies of the hematopoietic pathway. PMID:11960002

  18. Novel LMF1 Nonsense Mutation in a Patient with Severe Hypertriglyceridemia

    PubMed Central

    Cefalù, Angelo B.; Noto, Davide; Arpi, Maria Luisa; Yin, Fen; Spina, Rossella; Hilden, Hannele; Barbagallo, Carlo M.; Carroccio, Antonio; Tarugi, Patrizia; Squatrito, Sebastiano; Vigneri, Riccardo; Taskinen, Marja-Riitta; Péterfy, Miklós; Averna, Maurizio R.

    2009-01-01

    Context: Lipase maturation factor 1 (LMF1) gene is a novel candidate gene in severe hypertriglyceridemia. Lmf1 is involved in the maturation of lipoprotein lipase (LPL) and hepatic lipase in endoplasmic reticulum. To date only one patient with severe hypertriglyceridemia and related disorders was found to be homozygous for a nonsense mutation in LMF1 gene (Y439X). Objective: The objective of the study was to investigate LMF1 gene in hypertriglyceridemic patients in whom mutations in LPL, APOC2, and APOA5 genes had been excluded. Results: The resequencing of LMF1 gene led to the discovery of a novel homozygous nonsense mutation in one patient with severe hypertriglyceridemia and recurrent episodes of pancreatitis. The mutation causes a G>A substitution in exon 9 (c.1395G>A), leading to a premature stop codon (W464X). LPL activity and mass were reduced by 76 and 50%, respectively, compared with normolipidemic controls. The proband over the years has shown a good response to treatment. The proband’s son, heterozygous for the W464X, shows normal plasma triglyceride levels. Conclusions: We identified the second novel pathogenic mutation in LMF1 gene in a patient with severe hypertriglyceridemia. LPL deficiency in our patient was milder than in the carrier of the Y439X previously described. PMID:19820022

  19. Nonsense mutations in the hairless gene underlie APL in five families of Pakistani origin

    PubMed Central

    Kim, Hyunmi; Wajid, Muhammad; Kraemer, Liv; Shimomura, Yutaka; Christiano, Angela M.

    2012-01-01

    (1) Background Atrichia with papular lesions (APL) is a rare autosomal recessive form of inherited alopecia. Affected individuals present with a distinct pattern of total hair loss on the scalp, axilla and body shortly after birth and are essentially devoid of eyelashes and eyebrows. This form of hair loss is irreversible and the histology is consistent with an absence of mature hair follicles. In addition to total atrichia, APL patients also present with papules and follicular cysts filled with cornified material. Mutations in the Hairless (HR) gene have been shown to underlie APL. (2) Objective Here, we studied five unrelated large Pakistani families with clinical manifestations of APL. (3) Methods Based on previous reports of HR mutations in APL, we performed direct DNA sequencing analysis. (4) Results DNA sequencing of the HR gene in APL patients revealed three novel nonsense mutations in five unrelated families. All affected individuals were homozygous for a nonsense mutation due to C-to-T transitions at different positions in the amino acid sequence. Two families carry the mutation Q323X (CAG-TAG) in exon 3, two families harbor the mutation Q502X (CAG-TAG) in exon 6, and one family had a mutation at R940X (CGA-TGA) in exon 14. Haplotype analysis revealed that all affected individuals of both APL1 and APL16 families were homozygous for the same haplotype, and likewise, the mutation in families APL2 and APL19 was on the the same haplotype. (5) Conclusions We report three novel nonsense mutations in the HR gene in APL. Two of the newly identified mutations, Q323X and Q502X, were found to be shared between unrelated families and marker analysis confirmed an identical homozygous haplotype for APL1 and APL16, and for APL2 and APL19. These findings suggest that Q323X and Q502X did not arise independently, but instead appear to have been propagated in the population. Collectively, these findings contribute further evidence for the involvement of hairless mutations in

  20. A novel missense mutation in POMT1 modulates the severe congenital muscular dystrophy phenotype associated with POMT1 nonsense mutations.

    PubMed

    Wallace, Stephanie E; Conta, Jessie H; Winder, Thomas L; Willer, Tobias; Eskuri, Jamie M; Haas, Richard; Patterson, Kathleen; Campbell, Kevin P; Moore, Steven A; Gospe, Sidney M

    2014-04-01

    Mutations in POMT1 lead to a group of neuromuscular conditions ranging in severity from Walker-Warburg syndrome to limb girdle muscular dystrophy. We report two male siblings, ages 19 and 14, and an unrelated 6-year old female with early onset muscular dystrophy and intellectual disability with minimal structural brain anomalies and no ocular abnormalities. Compound heterozygous mutations in POMT1 were identified including a previously reported nonsense mutation (c.2167dupG; p.Asp723Glyfs*8) associated with Walker-Warburg syndrome and a novel missense mutation in a highly conserved region of the protein O-mannosyltransferase 1 protein (c.1958C>T; p.Pro653Leu). This novel variant reduces the phenotypic severity compared to patients with homozygous c.2167dupG mutations or compound heterozygous patients with a c.2167dupG mutation and a wide range of other mutant POMT1 alleles. PMID:24491487

  1. A Novel Missense Mutation in POMT1 Modulates the Severe Congenital Muscular Dystrophy Phenotype Associated with POMT1 Nonsense Mutations

    PubMed Central

    Wallace, Stephanie E.; Conta, Jessie H.; Winder, Thomas L.; Willer, Tobias; Eskuri, Jamie M.; Haas, Richard; Patterson, Kathleen; Campbell, Kevin P.; Moore, Steven A.; Gospe, Sidney M.

    2014-01-01

    Mutations in POMT1 lead to a group of neuromuscular conditions ranging in severity from Walker-Warburg syndrome to limb girdle muscular dystrophy. We report two male siblings, ages 19 and 14, and an unrelated 6-year old female with early onset muscular dystrophy and intellectual disability with minimal structural brain anomalies and no ocular abnormalities. Compound heterozygous mutations in POMT1 were identified including a previously reported nonsense mutation (c.2167dupG; p.Asp723Glyfs*8) associated with Walker-Warburg syndrome and a novel missense mutation in a highly conserved region of the protein O-mannosyltransferase 1 protein (c.1958C>T; p.Pro653Leu). This novel variant reduces the phenotypic severity compared to patients with homozygous c.2167dupG mutations or compound heterozygous patients with a c.2167dupG mutation and a wide range of other mutant POMT1 alleles. PMID:24491487

  2. Isolated cardiomyopathy caused by a DMD nonsense mutation in somatic mosaicism: genetic normalization in skeletal muscle.

    PubMed

    Juan-Mateu, J; Paradas, C; Olivé, M; Verdura, E; Rivas, E; González-Quereda, L; Rodríguez, M J; Baiget, M; Gallano, P

    2012-12-01

    X-linked dilated cardiomyopathy is a pure cardiac dystrophinopathy phenotype mainly caused by DMD mutations that present a specific transcription effect in cardiac tissue. We report a 26-year-old male who presented with severe dilated cardiomyopathy and high creatine kinase. The patient did not complain of skeletal muscle weakness. A muscle biopsy showed mild dystrophic changes and a low proportion of dystrophin-negative fibres. A molecular study identified a nonsense DMD mutation (p.Arg2098X) in somatic mosaicism. The ratio of mutant versus normal allele in blood and skeletal muscle suggests selective pressure against mutant muscle cells, a process known as genetic normalization. We hypothesize that this process may have mitigated skeletal muscle symptoms in this patient. This is the second report of a DMD somatic mosaic with evidence of genetic normalization in muscle. Somatic DMD mutations should be considered in patients presenting with idiopathic dilated cardiomyopathy. PMID:22092019

  3. Non-syndromic tooth agenesis associated with a nonsense mutation in ectodysplasin-A (EDA).

    PubMed

    Nikopensius, T; Annilo, T; Jagomägi, T; Gilissen, C; Kals, M; Krjutškov, K; Mägi, R; Eelmets, M; Gerst-Talas, U; Remm, M; Saag, M; Hoischen, A; Metspalu, A

    2013-06-01

    Mutations in the ectodysplasin-A (EDA) gene have been generally associated with X-linked hypohidrotic ectodermal dysplasia (XLHED). Recently, missense mutations in EDA have been reported to cause familial non-syndromic tooth agenesis. In this study, we report a novel EDA mutation in an Estonian family segregating non-syndromic tooth agenesis with variable expressivity. Affected individuals had no associated defects in other ectodermal organs. Using whole-exome sequencing, we identified a heterozygous nonsense mutation c.874G>T (p.Glu292X) in the TNF homology domain of EDA in all affected female patients. This protein-altering variant arose de novo, and the potentially causative allele was transmitted to affected offspring from the affected mother. We suggest that the dental phenotype variability described in heterozygous female carriers of EDA mutation may occur because of the differential pattern of X-chromosome inactivation, which retains reduced levels of EDA-receptor signaling in tissues involved in tooth morphogenesis. This results in selective tooth agenesis rather than XLHED phenotype. The present study broadens the mutation spectrum for this locus and demonstrates that EDA mutations may result in non-syndromic tooth agenesis in heterozygous females. PMID:23603338

  4. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9.

    PubMed

    Cohen, Jonathan; Pertsemlidis, Alexander; Kotowski, Ingrid K; Graham, Randall; Garcia, Christine Kim; Hobbs, Helen H

    2005-02-01

    The low-density lipoprotein receptor (LDLR) prevents hypercholesterolemia and atherosclerosis by removing low-density lipoprotein (LDL) from circulation. Mutations in the genes encoding either LDLR or its ligand (APOB) cause severe hypercholesterolemia. Missense mutations in PCSK9, encoding a serine protease in the secretory pathway, also cause hypercholesterolemia. These mutations are probably gain-of-function mutations, as overexpression of PCSK9 in the liver of mice produces hypercholesterolemia by reducing LDLR number. To test whether loss-of-function mutations in PCSK9 have the opposite effect, we sequenced the coding region of PCSK9 in 128 subjects (50% African American) with low plasma levels of LDL and found two nonsense mutations (Y142X and C679X). These mutations were common in African Americans (combined frequency, 2%) but rare in European Americans (<0.1%) and were associated with a 40% reduction in plasma levels of LDL cholesterol. These data indicate that common sequence variations have large effects on plasma cholesterol levels in selected populations. PMID:15654334

  5. Exome sequencing reveals a nebulin nonsense mutation in a dog model of nemaline myopathy.

    PubMed

    Evans, Jacquelyn M; Cox, Melissa L; Huska, Jonathan; Li, Frank; Gaitero, Luis; Guo, Ling T; Casal, Margaret L; Granzier, Henk L; Shelton, G Diane; Clark, Leigh Anne

    2016-10-01

    Nemaline myopathy (NM) is a congenital muscle disorder associated with muscle weakness, hypotonia, and rod bodies in the skeletal muscle fibers. Mutations in 10 genes have been implicated in human NM, but spontaneous cases in dogs have not been genetically characterized. We identified a novel recessive myopathy in a family of line-bred American bulldogs (ABDs); rod bodies in muscle biopsies established this as NM. Using SNP profiles from the nuclear family, we evaluated inheritance patterns at candidate loci and prioritized TNNT1 and NEB for further investigation. Whole exome sequencing of the dam, two affected littermates, and an unaffected littermate revealed a nonsense mutation in NEB (g.52734272 C>A, S8042X). Whole tissue gel electrophoresis and western blots confirmed a lack of full-length NEB in affected tissues, suggesting nonsense-mediated decay. The pathogenic variant was absent from 120 dogs of 24 other breeds and 100 unrelated ABDs, suggesting that it occurred recently and may be private to the family. This study presents the first molecularly characterized large animal model of NM, which could provide new opportunities for therapeutic approaches. PMID:27215641

  6. [Therapeutic readthrough strategy for suppression of nonsense mutations in duchenne muscular dystrophy].

    PubMed

    Shiozuka, Masataka; Matsuda, Ryoichi

    2011-11-01

    Effective treatment for Duchenne muscular dystrophy (DMD) is currently unavailable. Readthrough of disease-causing premature termination codons might alleviate the symptoms of genetic diseases caused by nonsense mutations. Several ribosome-binding compounds, including selective antibiotics and synthetic novel small molecules, induce translational readthrough, restoring full-length functional proteins. Here in this innovative therapeutic strategy has been summarized with a focus on DMD. We have previously reported that negamycin restored dystrophin expression with less toxicity than gentamicin in mdx mice. To explore more potent readthrough inducers, we established the transgenic mouse called READ (readthrough evaluation and assessment by dural receptor) for readthrough-specific detection. Using READ mice, we discovered drug candidates, including sterically negamycin-like small molecules and aminoglycoside derivatives. The newly developed small molecules induced dose-dependent readthrough with greater potency than ataluren in vitro and promoted the expression of dystrophin and reduction in serum creatine kinase activity in mdx mice. Moreover, the aminoglycoside derivative restored both dystrophin protein and contractile function of mdx skeletal muscles with appreciably higher readthrough activity and lower toxicity than that of gentamicin. Furthermore, we confirmed the efficacy of a thioglycolate-based depilatory agent to enhance the topical delivery of skin-impermeable drugs, including aminoglycosides. These promising new chemotherapeutic agents with beneficial effects on readthrough action, lower toxicity, and transdermal delivery may have significant value in treating or preventing genetic diseases caused by nonsense mutations. PMID:22068478

  7. Identification of a novel WFS1 homozygous nonsense mutation in Jordanian children with Wolfram syndrome.

    PubMed

    Bodoor, Khaldon; Batiha, Osama; Abu-Awad, Ayman; Al-Sarihin, Khaldon; Ziad, Haya; Jarun, Yousef; Abu-Sheikha, Aya; Abu Jalboush, Sara; Alibrahim, Khoulod S

    2016-09-01

    Wolfram syndrome (WS) is a rare autosomal recessive neurodegenerative disorder characterized by the presentation of early onset type I diabetes mellitus and optic atrophy with later onset diabetes insipidus and deafness. WFS1 gene was identified on chromosome 4p16.1 as the gene responsible for WS disease given that most of the WS patients were found to carry mutations in this gene. This study was carried out to investigate the molecular spectrum of WFS1 gene in Jordanian families. Molecular and clinical characterization was performed on five WS patients from two unrelated Jordanian families. Our data indicated that WS patients of the first family harbored two deletion mutations (V415del and F247fs) located in exon 8 and exon 7 respectively, with a compound heterozygous pattern of inheritance; while in the second family, we identified a novel nonsense mutation (W185X) located in exon 5 in the N-terminal cytoplasmic domain with a homozygous pattern of inheritance. This mutation can be considered as loss of function mutation since the resulting truncated protein lost both the transmembrane domain and the C-terminal domain. Additionally, the W185X mutation lies within the CaM binding domain in wolframin protein which is thought to have a role in the regulation of wolframin function in response to calcium levels. PMID:27617222

  8. Mutations preventing expression of sup3 tRNASer nonsense suppressors of Schizosaccharomyces pombe.

    PubMed Central

    Pearson, D; Willis, I; Hottinger, H; Bell, J; Kumar, A; Leupold, U; Söll, D

    1985-01-01

    Suppression of nonsense codons in Schizosaccharomyces pombe by sup3-e tRNASerUGA or sup3-i tRNASerUAA is reduced or abolished by mutations within the suppressor locus. Twenty-five suppressor-inactive sup3-e genes and thirteen mutant sup3-i genes were isolated from S. pombe genomic clone banks by colony hybridization. Sequence analysis of these revertant alleles corroborates genetic evidence for mutational hotspots within the sup3 tRNA gene. Fifteen types of point mutations or insertions were found. Many of these replace bases which are highly or completely conserved in eucaryotic tRNA genes. Transcription of the altered sup3 genes in a Saccharomyces cerevisiae extract enabled the identification of mutations which affect the rate of 5'-end maturation or splicing of the tRNA precursors or both. A total of seven mutations were found which alter transcriptional efficiencies. Of these, five are located outside the internal transcription control regions. Images PMID:3921825

  9. A new homozygous nonsense mutation in LAMA3A underlying laryngo-onycho-cutaneous syndrome.

    PubMed

    Barzegar, M; Mozafari, N; Kariminejad, A; Asadikani, Z; Ozoemena, L; McGrath, J A

    2013-12-01

    Laryngo-onycho-cutaneous (LOC) syndrome is a subtype of autosomal recessive junctional epidermolysis bullosa in which there is prominent skin and mucosal granulation tissue that can lead to delayed wound healing, laryngeal obstruction and blindness. Thus far, all cases are of Punjabi ancestry and have been shown to result from a founder mutation in the LAMA3 gene, notably involving a single nucleotide insertion mutation in exon 39, which is specific to the LAMA3A (designated exon 1 of LAMA3A) and not the LAMA3B1 or LAMA3B2 isoforms. Here, we describe a new pedigree with LOC syndrome. Affected individuals (from Iran) have the characteristic clinicopathological and molecular features of LOC syndrome: prominent granulation tissue (especially affecting the eyes), normal intensity laminin-332 immunostaining at the dermal-epidermal junction, and autosomal recessive mutations in the LAMA3A-specific exon. The pathogenic mutation is a homozygous nonsense mutation, designated p.Gln57X, which just affects the laminin-α3a transcript. These findings therefore expand the molecular basis of LOC syndrome. PMID:23869449

  10. Compound heterozygosity for nonsense ans missense mutations in the LAMB3 gene in nonlethal junctional epidermolysis bullosa.

    PubMed

    McGarth, J A; Christiano, A M; Pulkkinen, L; Eady, R A; Uitto, J

    1996-05-01

    Mutations in the genes encoding laminin 5 (LAMA3, LAMB3, and LAMC2) have been delineated in the autosomal recessive blistering skin disorder, junctional epidermolysis bullosa, particularly in the lethal (Herlitz) variant. In this study, we searched for mutations in these genes in two patients with nonlethal forms of junctional epidermolysis bullosa using polymerase chain reaction amplification of genomic DA, followed by heteroduplex analysis and direct automated nucleotide sequencing. Both patients were found to be compound heterozygotes for the same nonsense mutation on one LAMB3 allele, and different missense mutations on the other LAMB3 allele. The combination of a nonsense and a missense mutation in the LAMB3 gene appears to be important in determining the milder clinical phenotype in some cases of the nonlethal forms of junctional epidermolysis bullosa involving abnormalities in laminin 5. PMID:8618058

  11. Compound heterozygosity for nonsense and missense mutations in the LAMB3 gene in nonlethal junctional epidermolysis bullosa.

    PubMed

    Christiano, A M; Pulkkinen, L; Eady, R A; Uitto, J

    1996-04-01

    Mutations in the genes encoding laminin 5 (LAMA3, LAMB3, and LAMC2) have been delineated in the autosomal recessive blistering skin disorder, junctional epidermolysis bullosa, particularly in the lethal (Herlitz) variant. In this study, we searched for mutations in these genes in two patients with nonlethal forms of junctional epidermolysis bullosa using polymerase chain reaction amplification of genomic DNA, followed by heteroduplex analysis and direct automated nucleotide sequencing. Both patients were found to be compound heterozygotes for the same nonsense mutation on one LAMB3 allele, and different missense mutations on the other LAMB3 allele. The combination of nonsense and a missense mutation in the LAMB3 gene appears to be important in determining the milder clinical phenotype in some cases of the nonlethal forms of junctional epidermolysis bullosa involving abnormalities in laminin 5. PMID:8618020

  12. Association of nonsense mutation in GABRG2 with abnormal trafficking of GABAA receptors in severe epilepsy.

    PubMed

    Ishii, Atsushi; Kanaumi, Takeshi; Sohda, Miwa; Misumi, Yoshio; Zhang, Bo; Kakinuma, Naoto; Haga, Yoshiko; Watanabe, Kazuyoshi; Takeda, Sen; Okada, Motohiro; Ueno, Shinya; Kaneko, Sunao; Takashima, Sachio; Hirose, Shinichi

    2014-03-01

    Mutations in GABRG2, which encodes the γ2 subunit of GABAA receptors, can cause both genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. Most GABRG2 truncating mutations associated with Dravet syndrome result in premature termination codons (PTCs) and are stably translated into mutant proteins with potential dominant-negative effects. This study involved search for mutations in candidate genes for Dravet syndrome, namely SCN1A, 2A, 1B, 2B, GABRA1, B2, and G2. A heterozygous nonsense mutation (c.118C>T, p.Q40X) in GABRG2 was identified in dizygotic twin girls with Dravet syndrome and their apparently healthy father. Electrophysiological studies with the reconstituted GABAA receptors in HEK cells showed reduced GABA-induced currents when mutated γ2 DNA was cotransfected with wild-type α1 and β2 subunits. In this case, immunohistochemistry using antibodies to the α1 and γ2 subunits of GABAA receptor showed granular staining in the soma. In addition, microinjection of mutated γ2 subunit cDNA into HEK cells severely inhibited intracellular trafficking of GABAA receptor subunits α1 and β2, and retention of these proteins in the endoplasmic reticulum. The mutated γ2 subunit-expressing neurons also showed impaired axonal transport of the α1 and β2 subunits. Our findings suggested that different phenotypes of epilepsy, e.g., GEFS+ and Dravet syndrome (which share similar abnormalities in causative genes) are likely due to impaired axonal transport associated with the dominant-negative effects of GABRG2. PMID:24480790

  13. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I

    PubMed Central

    Li, Kairong; Turner, Ashley N.; Chen, Min; Brosius, Stephanie N.; Schoeb, Trenton R.; Messiaen, Ludwine M.; Bedwell, David M.; Zinn, Kurt R.; Anastasaki, Corina; Gutmann, David H.; Korf, Bruce R.

    2016-01-01

    ABSTRACT Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681*) and a missense mutation (c.2542G>C; p.Gly848Arg). The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1Arg681* and missense NF1Gly848Arg mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1Gly848Arg mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1Arg681* mutation are not viable. Mice with one Nf1Arg681* allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf14F/Arg681*; DhhCre) display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1. PMID:27482814

  14. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I.

    PubMed

    Li, Kairong; Turner, Ashley N; Chen, Min; Brosius, Stephanie N; Schoeb, Trenton R; Messiaen, Ludwine M; Bedwell, David M; Zinn, Kurt R; Anastasaki, Corina; Gutmann, David H; Korf, Bruce R; Kesterson, Robert A

    2016-07-01

    Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681*) and a missense mutation (c.2542G>C; p.Gly848Arg). The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1(Arg681*) and missense NF1(Gly848Arg) mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1(Gly848Arg) mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1(Arg681*) mutation are not viable. Mice with one Nf1(Arg681*) allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf1(4F/Arg681*); DhhCre) display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1. PMID:27482814

  15. Nonsense mutation in the glycoprotein Ib. alpha. coding sequence associated with Bernard-Soulier syndrome

    SciTech Connect

    Ware, J.; Russell, S.R.; Vicente, V.; Scharf, R.E.; Tomer, A.; McMillian, R.; Ruggeri, Z.M. )

    1990-03-01

    Three distinct gene products, the {alpha} and {beta} chains of glycoprotein (GP) Ib and GP IX, constitute the platelet membrane GP Ib-IX complex, a receptor for von Willebrand factor and thrombin involved in platelet adhesion and aggregation. Defective function of the GP Ib-IX complex is the hallmark of a rare congenital bleeding disorder of still undefined pathogenesis, the Bernard-Soulier syndrome. The authors have analyzed the molecular basis of the disease in one patient in whom immunoblotting of solubilized platelets demonstrated absence of normal GP Ib{alpha} but presence of a smaller immunoreactive species. The truncated polypeptide was also present, along with normal protein, in platelets from the patient's mother and two of his four children. Genetic characterization identified a nucleotide transition changing the Trp-343 codon (TGG) to a nonsense codon (TGA). Such a mutation explains the origin of the smaller GP Ib{alpha}, which by lacking half of the sequence on the carboxyl-terminal side, including the transmembrane domain, cannot be properly inserted in the platelet membrane. Both normal and mutant codons were found in the patient, suggesting that he is a compound heterozygote with a still unidentified defect in the other GP Ib{alpha} allele. Nonsense mutation and truncated GP Ib{alpha} polypeptide were found to cosegregate in four individuals through three generations and were associated with either Bernard-Soulier syndrome or carrier state phenotype. The molecular abnormality demonstrated in this family provides evidence that defective synthesis of GP Ib{alpha} alters the membrane expression of the GP Ib-IX complex and may be responsible for Bernard-Soulier syndrome.

  16. In vitro read-through of phenylalanine hydroxylase (PAH) nonsense mutations using aminoglycosides: a potential therapy for phenylketonuria.

    PubMed

    Ho, Gladys; Reichardt, Juergen; Christodoulou, John

    2013-11-01

    Phenylketonuria (PKU, OMIM 261600) is an autosomal recessive inborn error of phenylalanine metabolism, predominantly caused by mutations in the phenylalanine hydroxylase (PAH) gene. Approximately 10% of patients carry a nonsense mutation, which results in an inactive or unstable truncated protein. In some genetic disorders, including cystic fibrosis and Duchenne muscular dystrophy, restoration of full-length protein has been achieved by aminoglycoside antibiotics, such as gentamicin and G-418 (Geneticin). More recently, nonsense read-through has been induced at greater rates using a non-aminoglycoside drug, PTC124 (Ataluren), which has the advantage of being non-toxic in contrast to the antibiotics. The efficacy of read-through induced by three compounds, aminoglycosides G418 and gentamicin, and PTC124 were evaluated for four nonsense mutations of PAH in an in vitro expression system in two mammalian cell lines (COS-7 and HEK293). The production of full-length PAH was investigated using western blotting and the functionality confirmed by enzyme activity. Gentamicin and G-418 induced read-through of nonsense PAH mutations in HEK293 cells. The read-through product partially restored enzymatic activity, which was significantly less than that of wild-type, but comparable to a missense mutation of PAH associated with less severe forms of PKU. Treatment with PTC124 up to 100 μM did not result in full-length PAH polypeptide. Nonsense read-through drugs are a potential form of treatment for PKU, although the high dosage of aminoglycosides used is not appropriate in a clinical setting. In vitro studies with new non-toxic read-through agents as well as in vivo studies would also be essential to determine the extent of read-through required to restore normal phenylalanine levels. PMID:23532445

  17. Thomsen or Becker myotonia? A novel autosomal recessive nonsense mutation in the CLCN1 gene associated with a mild phenotype.

    PubMed

    Gurgel-Giannetti, Juliana; Senkevics, Adriano S; Zilbersztajn-Gotlieb, Dinorah; Yamamoto, Lydia U; Muniz, Viviane P; Pavanello, Rita C M; Oliveira, Acary B; Zatz, Mayana; Vainzof, Mariz

    2012-02-01

    We describe a large Brazilian consanguineous kindred with 3 clinically affected patients with a Thomsen myotonia phenotype. They carry a novel homozygous nonsense mutation in the CLCN1 gene (K248X). None of the 6 heterozygote carriers show any sign of myotonia on clinical evaluation or electromyography. These findings confirm the autosomal recessive inheritance of the novel mutation in this family, as well as the occurrence of phenotypic variability in the autosomal recessive forms of myotonia. PMID:22246887

  18. Screening for five mutations detects 97% of cystic fibrosis (CF) chromosomes and predicts a carrier frequency of 1:29 in the Jewish Ashkenazi population

    SciTech Connect

    Abeliovich, D.; Lavon, I.P.; Lerer, I.; Cohen, T. ); Cutting, G.R. ); Springer, C.; Avital, A.

    1992-11-01

    To determine the distribution and frequency of cystic fibrosis (CF) mutations in the Israeli population, the authors have screened 96 patients for 11 relatively common mutations. Five mutations - [Delta]F508, G542X, W1282X, N1303K, and 3849 + 10kb C[yields]T-were found to account for 97% of the CF alleles in the Ashkenazi Jews. In contrast, of the 11 mutations tested, only [Delta]F508 was detected in Jewish patients of Sephardic or Oriental origin, accounting for 43% of the CF alleles. Four mutations - [Delta]F508, G542X, W1282X, and N1303K- accounted for 55% of the CF alleles in Arab patients. In a pilot screening study, a random sample of 424 Ashkenazi individuals was analyzed for three mutations - [Delta]F508, W128X, and G542X. Thirteen individuals were detected as heterozygotes (six for [Delta]F508 and seven for W1282X), predicting a heterozygote frequency of 1:29. This is similar to the frequency of carriers in the Caucasian population of northern European ancestry. On the basis of these data, the Ashkenazi populations is considered to be a candidate for CF heterozygote screening. 32 refs., 2 tabs.

  19. Differential nonsense mediated decay of mutated mRNAs in mismatch repair deficient colorectal cancers.

    PubMed

    El-Bchiri, Jamila; Buhard, Olivier; Penard-Lacronique, Virginie; Thomas, Gilles; Hamelin, Richard; Duval, Alex

    2005-08-15

    The nonsense-mediated decay (NMD) system normally targets mRNAs with premature termination codons (PTCs) for rapid degradation. We investigated for a putative role of NMD in cancers with microsatellite instability (MSI-H cancers), because numerous mutant mRNAs containing PTC are generated in these tumors as a consequence of their mismatch repair deficiency. Using a quantitative RT-PCR approach in a large series of colorectal cancer cell lines, we demonstrate a significantly increased rate of degradation of mutant mRNAs containing a PTC compared with wild-type. A specific siRNA strategy was used to inhibit RENT-1 and/or RENT-2 activity, two major genes in the NMD system. This allowed us to show that increased degradation of PTC-containing mRNAs in MSI-H tumors was partly dependent upon NMD activity. The efficiency of NMD for the degradation of mutant mRNAs from target genes was highly variable in these cancers. NMD degraded some of them (TGFssRII, MSH3, GRK4), although allowing the persistent expression of others (BAX, TCF-4). This is of particular interest within the context of a proposed conservation of biological activity for the corresponding mutated proteins. We thus propose that NMD might play an important role in the selection of target gene mutations with a functional role in MSI-H carcinogenesis. PMID:16000315

  20. Multiple abnormalities due to a nonsense mutation in the Alx4 gene.

    PubMed

    Chen, B; Chen, Lu; Zhou, Y; Mi, T; Chen, D Y; Chen, Li; Yin, J; Xue, Z F

    2013-01-01

    Patterning of the limb anterior-posterior axes depends on several signals that derive from the three signaling centers of the limb bud. These signals interact to constitute a complex and ordered network that critically contributes to the development of limb buds. Preaxial polydactyly in mouse is predominantly caused by ectopic expression of the zone of polarizing activity or Sonic hedgehog in the anterior region of the limb bud. In this study, we describe an N-ethyl-N-nitrosourea-induced polydactylous mouse (Alx4m1Yzcm) with an extra digit on the anterior aspect of one or two hinddigits. The mutation was mapped to chromosome 2, between markers D2Mit45 and D2Mit184. The Alx4 gene was identified as a potential candidate gene in this location. Sequence analysis of the Alx4 gene for polydactylous heterozygotes revealed an A/T transversion mutation that resulted in substitution of a lysine codon with a stop (nonsense) codon at position 145. Alx4m1Yzcm homozygous mice exhibited multiple abnormalities, including extensive preaxial polydactyly of all four limbs (up to seven digits) and the formation of omphalocele. PMID:23979902

  1. A novel nonsense mutation in the NOG gene causes familial NOG-related symphalangism spectrum disorder

    PubMed Central

    Takano, Kenichi; Ogasawara, Noriko; Matsunaga, Tatsuo; Mutai, Hideki; Sakurai, Akihiro; Ishikawa, Aki; Himi, Tetsuo

    2016-01-01

    The human noggin (NOG) gene is responsible for a broad spectrum of clinical manifestations of NOG-related symphalangism spectrum disorder (NOG-SSD), which include proximal symphalangism, multiple synostoses, stapes ankylosis with broad thumbs (SABTT), tarsal–carpal coalition syndrome, and brachydactyly type B2. Some of these disorders exhibit phenotypes associated with congenital stapes ankylosis. In the present study, we describe a Japanese pedigree with dactylosymphysis and conductive hearing loss due to congenital stapes ankylosis. The range of motion in her elbow joint was also restricted. The family showed multiple clinical features and was diagnosed with SABTT. Sanger sequencing analysis of the NOG gene in the family members revealed a novel heterozygous nonsense mutation (c.397A>T; p.K133*). In the family, the prevalence of dactylosymphysis and hyperopia was 100% while that of stapes ankylosis was less than 100%. Stapes surgery using a CO2 laser led to a significant improvement of the conductive hearing loss. This novel mutation expands our understanding of NOG-SSD from clinical and genetic perspectives. PMID:27508084

  2. Papillon-Lefèvre syndrome with homozygous nonsense mutation of cathepsin C gene presenting with late-onset periodontitis.

    PubMed

    Ragunatha, Shivanna; Ramesh, Mudalagirigowda; Anupama, Panagar; Kapoor, Meenakshi; Bhat, Meenakshi

    2015-01-01

    Papillon-Lefèvre syndrome (PLS) is a rare autosomal recessive disorder of keratinization caused by homozygous mutations in the gene encoding lysosomal protease cathepsin C (CTSC). It is clinically characterized by transgredient palmoplantar keratoderma (PPK) and periodontitis. A 15-year-old boy presenting with PPK from the age of 6 months and late-onset periodontitis that began at the age of 12 years is described. Mutation analysis revealed a homozygous nonsense mutation (p.Y304X) in exon 7 of the CTSC gene. Late-onset periodontitis in a patient with Papillon-Lefèvre syndrome is a rare phenotypic variation. PMID:24894642

  3. Novel nonsense mutation in the katA gene of a catalase-negative Staphylococcus aureus strain☆

    PubMed Central

    Lagos, Jaime; Alarcón, Pedro; Benadof, Dona; Ulloa, Soledad; Fasce, Rodrigo; Tognarelli, Javier; Aguayo, Carolina; Araya, Pamela; Parra, Bárbara; Olivares, Berta; Hormazábal, Juan Carlos; Fernández, Jorge

    2016-01-01

    We report the first description of a rare catalase-negative strain of Staphylococcus aureus in Chile. This new variant was isolated from blood and synovial tissue samples of a pediatric patient. Sequencing analysis revealed that this catalase-negative strain is related to ST10 strain, which has earlier been described in relation to S. aureus carriers. Interestingly, sequence analysis of the catalase gene katA revealed presence of a novel nonsense mutation that causes premature translational truncation of the C-terminus of the enzyme leading to a loss of 222 amino acids. Our study suggests that loss of catalase activity in this rare catalase-negative Chilean strain is due to this novel nonsense mutation in the katA gene, which truncates the enzyme to just 283 amino acids. PMID:26887242

  4. Phase 2a Study of Ataluren-Mediated Dystrophin Production in Patients with Nonsense Mutation Duchenne Muscular Dystrophy

    PubMed Central

    Finkel, Richard S.; Flanigan, Kevin M.; Wong, Brenda; Bönnemann, Carsten; Sampson, Jacinda; Sweeney, H. Lee; Reha, Allen; Northcutt, Valerie J.; Elfring, Gary; Barth, Jay; Peltz, Stuart W.

    2013-01-01

    Background Approximately 13% of boys with Duchenne muscular dystrophy (DMD) have a nonsense mutation in the dystrophin gene, resulting in a premature stop codon in the corresponding mRNA and failure to generate a functional protein. Ataluren (PTC124) enables ribosomal readthrough of premature stop codons, leading to production of full-length, functional proteins. Methods This Phase 2a open-label, sequential dose-ranging trial recruited 38 boys with nonsense mutation DMD. The first cohort (n = 6) received ataluren three times per day at morning, midday, and evening doses of 4, 4, and 8 mg/kg; the second cohort (n = 20) was dosed at 10, 10, 20 mg/kg; and the third cohort (n = 12) was dosed at 20, 20, 40 mg/kg. Treatment duration was 28 days. Change in full-length dystrophin expression, as assessed by immunostaining in pre- and post-treatment muscle biopsy specimens, was the primary endpoint. Findings Twenty three of 38 (61%) subjects demonstrated increases in post-treatment dystrophin expression in a quantitative analysis assessing the ratio of dystrophin/spectrin. A qualitative analysis also showed positive changes in dystrophin expression. Expression was not associated with nonsense mutation type or exon location. Ataluren trough plasma concentrations active in the mdx mouse model were consistently achieved at the mid- and high- dose levels in participants. Ataluren was generally well tolerated. Interpretation Ataluren showed activity and safety in this short-term study, supporting evaluation of ataluren 10, 10, 20 mg/kg and 20, 20, 40 mg/kg in a Phase 2b, double-blind, long-term study in nonsense mutation DMD. Trial Registration ClinicalTrials.gov NCT00264888 PMID:24349052

  5. Milder course in Duchenne patients with nonsense mutations and no muscle dystrophin.

    PubMed

    Zatz, M; Pavanello, R C M; Lazar, M; Yamamoto, G L; Lourenço, N C V; Cerqueira, A; Nogueira, L; Vainzof, M

    2014-11-01

    Duchenne muscular dystrophy (DMD), a severe and lethal condition, is caused by the absence of muscle dystrophin. Therapeutic trials aiming at the amelioration of muscle function have been targeting the production of muscle dystrophin in affected Duchenne patients. However, how much dystrophin is required to rescue the DMD phenotype remains an open question. We have previously identified two exceptional golden retriever muscular dystrophy (GRMD) dogs with a milder course despite the total absence of muscle dystrophin. Here we report two unusual patients carrying nonsense mutations in the DMD gene and dystrophin deficiency but with an unexpectedly mild phenotype. Three reported polymorphisms, respectively in genes LTBP4, SPP1 and ACTN3 were excluded as possible DMD genetic modifiers in our patients. Finding the mechanisms that protect some rare patients and dogs from the deleterious effect of absent muscle dystrophin is of utmost importance and may lead to new avenues for treatment. Importantly, these observations indicate that it is possible to have a functional large muscle even without dystrophin. PMID:25047667

  6. A nonsense mutation of human XRCC4 is associated with adult-onset progressive encephalocardiomyopathy

    PubMed Central

    Bee, Leonardo; Nasca, Alessia; Zanolini, Alice; Cendron, Filippo; d'Adamo, Pio; Costa, Rodolfo; Lamperti, Costanza; Celotti, Lucia; Ghezzi, Daniele; Zeviani, Massimo

    2015-01-01

    We studied two monozygotic twins, born to first cousins, affected by a multisystem disease. At birth, they both presented with bilateral cryptorchidism and malformations. Since early adulthood, they developed a slowly progressive neurological syndrome, with cerebellar and pyramidal signs, cognitive impairment, and depression. Dilating cardiomyopathy is also present in both. By whole-exome sequencing, we found a homozygous nucleotide change in XRCC4 (c.673C>T), predicted to introduce a premature stop codon (p.R225*). XRCC4 transcript levels were profoundly reduced, and the protein was undetectable in patients' skin fibroblasts. XRCC4 plays an important role in non-homologous end joining of DNA double-strand breaks (DSB), a system that is involved in repairing DNA damage from, for example, ionizing radiations. Gamma-irradiated mutant cells demonstrated reduction, but not abolition, of DSB repair. In contrast with embryonic lethality of the Xrcc4 KO mouse, nonsense mutations in human XRCC4 have recently been associated with primordial dwarfism and, in our cases, with adult-onset neurological impairment, suggesting an important role for DNA repair in the brain. Surprisingly, neither immunodeficiency nor predisposition to malignancy was reported in these patients. PMID:25872942

  7. A nonsense mutation in the DNA repair factor Hebo causes mild bone marrow failure and microcephaly.

    PubMed

    Zhang, Shu; Pondarre, Corinne; Pennarun, Gaelle; Labussiere-Wallet, Helene; Vera, Gabriella; France, Benoit; Chansel, Marie; Rouvet, Isabelle; Revy, Patrick; Lopez, Bernard; Soulier, Jean; Bertrand, Pascale; Callebaut, Isabelle; de Villartay, Jean-Pierre

    2016-05-30

    Inherited bone marrow failure syndromes are human conditions in which one or several cell lineages of the hemopoietic system are affected. They are present at birth or may develop progressively. They are sometimes accompanied by other developmental anomalies. Three main molecular causes have been recognized to result in bone marrow failure syndromes: (1) defects in the Fanconi anemia (FA)/BRCA DNA repair pathway, (2) defects in telomere maintenance, and (3) abnormal ribosome biogenesis. We analyzed a patient with mild bone marrow failure and microcephaly who did not present with the typical FA phenotype. Cells from this patient showed increased sensitivity to ionizing radiations and phleomycin, attesting to a probable DNA double strand break (dsb) repair defect. Linkage analysis and whole exome sequencing revealed a homozygous nonsense mutation in the ERCC6L2 gene. We identified a new ERCC6L2 alternative transcript encoding the DNA repair factor Hebo, which is critical for complementation of the patient's DNAdsb repair defect. Sequence analysis revealed three structured regions within Hebo: a TUDOR domain, an adenosine triphosphatase domain, and a new domain, HEBO, specifically present in Hebo direct orthologues. Hebo is ubiquitously expressed, localized in the nucleus, and rapidly recruited to DNAdsb's in an NBS1-dependent manner. PMID:27185855

  8. Massive Idiosyncratic Exon Skipping Corrects the Nonsense Mutation in Dystrophic Mouse Muscle and Produces Functional Revertant Fibers by Clonal Expansion

    PubMed Central

    Lu, Q.L.; Morris, G.E.; Wilton, S.D.; Ly, T.; Artem'yeva, O.V.; Strong, P.; Partridge, T.A.

    2000-01-01

    Conventionally, nonsense mutations within a gene preclude synthesis of a full-length functional protein. Obviation of such a blockage is seen in the mdx mouse, where despite a nonsense mutation in exon 23 of the dystrophin gene, occasional so-called revertant muscle fibers are seen to contain near-normal levels of its protein product. Here, we show that reversion of dystrophin expression in mdx mice muscle involves unprecedented massive loss of up to 30 exons. We detected several alternatively processed transcripts that could account for some of the revertant dystrophins and could not detect genomic deletion from the region commonly skipped in revertant dystrophin. This, together with exon skipping in two noncontiguous regions, favors aberrant splicing as the mechanism for the restoration of dystrophin, but is hard to reconcile with the clonal idiosyncrasy of revertant dystrophins. Revertant dystrophins retain functional domains and mediate plasmalemmal assembly of the dystrophin-associated glycoprotein complex. Physiological function of revertant fibers is demonstrated by the clonal growth of revertant clusters with age, suggesting that revertant dystrophin could be used as a guide to the construction of dystrophin expression vectors for individual gene therapy. The dystrophin gene in the mdx mouse provides a favored system for study of exon skipping associated with nonsense mutations. PMID:10704448

  9. Nonsense mutation in MERTK causes autosomal recessive retinitis pigmentosa in a consanguineous Pakistani family

    PubMed Central

    Shahzadi, Amber; Riazuddin, S Amer; Ali, Shahbaz; Li, David; Khan, Shaheen N; Husnain, Tayyab; Akram, Javed; Sieving, Paul A; Hejtmancik, J Fielding; Riazuddin, Sheikh

    2012-01-01

    Background Retinitis pigmentosa (RP) is one of the most common ophthalmic disorders affecting one in approximately 5000 people worldwide. A nuclear family was recruited from the Punjab province of Pakistan to study the genetic basis of autosomal recessive RP. Methods All affected individuals underwent a thorough ophthalmic examination and the disease was characterised based upon results for fundus photographs and electroretinogram recordings. Genomic DNA was extracted from peripheral leucocytes. Exclusion studies were performed with short tandem repeat (STR) markers flanking reported autosomal recessive RP loci. Haplotypes were constructed and results were statistically evaluated. Results The results of exclusion analyses suggested that family PKRP173 was linked to chromosome 2q harbouring mer tyrosine kinase protooncogene (MERTK), a gene previously associated with autosomal recessive RP. Additional STR markers refined the critical interval and placed it in a 13.4 cM (17 Mb) region flanked by D2S293 proximally and D2S347 distally. Significant logarithm of odds (LOD) scores of 3.2, 3.25 and 3.18 at θ=0 were obtained with markers D2S1896, D2S2269 and D2S160. Sequencing of the coding exons of MERTK identified a mutation, c.718G→T in exon 4, which results in a premature termination of p.E240X that segregates with the disease phenotype in the family. Conclusion Our results strongly suggest that the nonsense mutation in MERTK, leading to premature termination of the protein, is responsible for RP phenotype in the affected individuals of the Pakistani family. PMID:20538656

  10. APOBEC3G generates nonsense mutations in human T-cell leukemia virus type 1 proviral genomes in vivo.

    PubMed

    Fan, Jun; Ma, Guangyong; Nosaka, Kisato; Tanabe, Junko; Satou, Yorifumi; Koito, Atsushi; Wain-Hobson, Simon; Vartanian, Jean-Pierre; Matsuoka, Masao

    2010-07-01

    Human T-cell leukemia virus type 1 (HTLV-1) induces cell proliferation after infection, leading to efficient transmission by cell-to-cell contact. After a long latent period, a fraction of carriers develop adult T-cell leukemia (ATL). Genetic changes in the tax gene in ATL cells were reported in about 10% of ATL cases. To determine genetic changes that may occur throughout the provirus, we determined the entire sequence of the HTLV-1 provirus in 60 ATL cases. Abortive genetic changes, including deletions, insertions, and nonsense mutations, were frequent in all viral genes except the HBZ gene, which is transcribed from the minus strand of the virus. G-to-A base substitutions were the most frequent mutations in ATL cells. The sequence context of G-to-A mutations was in accordance with the preferred target sequence of human APOBEC3G (hA3G). The target sequences of hA3G were less frequent in the plus strand of the HBZ coding region than in other coding regions of the HTLV-1 provirus. Nonsense mutations in viral genes including tax were also observed in proviruses from asymptomatic carriers, indicating that these mutations were generated during reverse transcription and prior to oncogenesis. The fact that hA3G targets the minus strand during reverse transcription explains why the HBZ gene is not susceptible to such nonsense mutations. HTLV-1-infected cells likely take advantage of hA3G to escape from the host immune system by losing expression of viral proteins. PMID:20463074

  11. Biallelic nonsense mutations in the otogelin-like gene (OTOGL) in a child affected by mild to moderate hearing impairment.

    PubMed

    Bonnet, C; Louha, M; Loundon, N; Michalski, N; Verpy, E; Smagghe, L; Hardelin, J-P; Rouillon, I; Jonard, L; Couderc, R; Gherbi, S; Garabedian, E N; Denoyelle, F; Petit, C; Marlin, S

    2013-09-25

    Hearing impairment is characterized by great genetic heterogeneity. We report the identification, by whole exome sequencing, of two different nonsense mutations (c.1558C>T; p.Gln520 and c.2773C>T; p.Arg925) in the otogelin-like gene (OTOGL), in a child affected by mild to moderate isolated deafness. Parental genotypes allowed us to conclude that these mutations are present in the compound heterozygous state in the patient. In addition, our clinical data establish that the tectorial membrane and/or the outer hair cells are defective in this form of deafness. PMID:23850727

  12. Effects of mutations at position 36 of tRNA(Glu) on missense and nonsense suppression in Escherichia coli.

    PubMed

    Gregory, S T; Dahlberg, A E

    1995-03-13

    Mutations in the anticodon of tRNA(Glu) (UUC) were isolated or constructed and characterized for their ability to suppress cognate nonsense or missense mutations in vivo. The C36-to-A36 transversion mutation was isolated as an ochre and an amber suppressor, while the G36 transversion was selected as a CAG missense suppressor. tRNA(Glu) suppressors of an AAG missense mutation could not be isolated, and a U36 transition mutation introduced into tRNA(Glu) in vitro conferred no suppressor phenotype. Over-expression of glutamyl-tRNA synthetase did not increase the activity of the U36 mutant tRNA(Glu), suggesting a defect at the level of translation rather than at the level of synthetase recognition. PMID:7890035

  13. Nonsense mutations of the CYBB gene in two Thai families with X-linked chronic granulomatous disease.

    PubMed

    Vilaiphan, Prapaporn; Chatchatee, Pantipa; Ngamphaiboon, Jarungchit; Tongkobpetch, Siraprapa; Suphapeetiporn, Kanya; Shotelersuk, Vorasuk

    2007-12-01

    X-linked chronic granulomatous disease (X-CGD) is an immunodeficiency disorder characterized by defective intracellular killing of microorganisms due to the neutrophils' inability to generate superoxide ions. Although it is always caused by mutations in the CYBB gene, clinical and molecular characteristics vary in different ethnic backgrounds. Two unrelated Thai boys presented with severe persistent pulmonary infections at the age of two months. Their abnormal dihydrorhodamine (DHR) flow cytometry assays supported the diagnosis of X-CGD. Mutation analysis was performed by polymerase chain reaction (PCR) amplification and sequencing of the entire coding regions of CYBB. Mutations identified were confirmed by restriction enzyme analyses. PCR-sequencing of the entire coding regions of CYBB identified nonsense mutations, 271C>T (R91X) in exon 4 and 456T>A (Y152X) in exon 5, in probands of each family. Both of the patients' mothers were found to be carriers. This observation supports that CYBB is the gene responsible for X-CGD across different populations and nonsense mutations are associated with severe phenotypes. PMID:18402298

  14. Identification of a novel nonsense mutation in RP1 that causes autosomal recessive retinitis pigmentosa in an Indonesian family

    PubMed Central

    Siemiatkowska, Anna M.; Astuti, Galuh D.N.; Arimadyo, Kentar; den Hollander, Anneke I.; Faradz, Sultana M.H.; Cremers, Frans P.M.

    2012-01-01

    Purpose The purpose of this study was to identify the underlying molecular genetic defect in an Indonesian family with three affected individuals who had received a diagnosis of retinitis pigmentosa (RP). Methods Clinical evaluation of the family members included measuring visual acuity and fundoscopy, and assessing visual field and color vision. Genomic DNA of the three affected individuals was analyzed with Illumina 700k single nucleotide polymorphism (SNP) arrays, and homozygous regions were identified using PLINK software. Mutation analysis was performed with sequence analysis of the retinitis pigmentosa 1 (RP1) gene that resided in one of the homozygous regions. The frequency of the identified mutation in the Indonesian population was determined with TaqI restriction fragment length polymorphism analysis. Results A novel homozygous nonsense mutation in exon 4 of the RP1 gene, c.1012C>T (p.R338*), was identified in the proband and her two affected sisters. Unaffected family members either carried two wild-type alleles or were heterozygous carriers of the mutation. The mutation was not present in 184 Indonesian control samples. Conclusions Most of the previously reported RP1 mutations are inherited in an autosomal dominant mode, and appear to cluster in exon 4. Here, we identified a novel homozygous p.R338* mutation in exon 4 of RP1, and speculate on the mutational mechanisms of different RP1 mutations underlying dominant and recessive RP. PMID:23077400

  15. Molecular Basis for Hair Loss in Mice Carrying a Novel Nonsense Mutation (Hrrh-R) in the Hairless Gene (Hr)

    PubMed Central

    Liu, Y.; Sundberg, J. P.; Das, S.; Carpenter, D.; Cain, K. T.; Michaud, E. J.; Voy, B. H.

    2010-01-01

    Animal models carrying mutations in the hairless (Hr) gene provide a rich resource for study of hair follicle biology. A spontaneous mouse mutant with a phenotype strikingly similar to rhino mutants of Hr arose spontaneously in the mouse facility at Oak Ridge National Laboratory. Sequence analysis of Hr in these mutants uncovered a nonsense mutation in exon 12, designated as Hrrh-R (rhino, Oak Ridge). The mutation led to significant reduction in Hr mRNA levels, predicted to be due to nonsense-mediated decay. Histological analysis indicated dilated hair follicle infundibula at 14 days of age that rapidly became filled with cornified material. Microarray analyses revealed that expression levels of many genes involved in keratinocyte differentiation, epidermal regeneration, and wound healing were significantly upregulated before morphological detection of the phenotype, suggesting their role in onset of the Hrrh-R phenotype. Identification of this new Hr allele and the underlying molecular alterations allows further understanding of the role of Hr in hair follicle biology. PMID:20080498

  16. A nonsense thyrotropin receptor gene mutation (R609X) is associated with congenital hypothyroidism and heart defects.

    PubMed

    Cangul, Hakan; Bas, Veysel N; Saglam, Yaman; Kendall, Michaela; Barrett, Timothy G; Maher, Eamonn R; Aycan, Zehra

    2014-11-01

    Congenital hypothyroidism (CH), one of the most important preventable causes of mental retardation, is a clinical condition characterized by thyroid hormone deficiency in newborns. CH is most often caused by defects in thyroid development leading to thyroid dysgenesis. The thyroid-stimulating hormone receptor (TSHR) is the main known gene causing thyroid dysgenesis in consanguineous families with CH. In this study, we aim to determine the genetic alteration in a case with congenital hypothyroidism and heart defects coming from a consanguineous family. We utilized genetic linkage analysis and direct sequencing to achieve our aim. Our results revealed that the family showed linkage to the TSHR locus, and we detected a homozygous nonsense mutation (R609X) in the case. Apart from other cases with the same mutation, our case had accompanying cardiac malformations. Although cardiac malformations are not uncommon in sporadic congenital hypothyroidism, here, they are reported for the first time with R609X mutation in a familial case. PMID:24945425

  17. Carpenter Syndrome: Extended RAB23 Mutation Spectrum and Analysis of Nonsense-mediated mRNA Decay

    PubMed Central

    Jenkins, Dagan; Baynam, Gareth; De Catte, Luc; Elcioglu, Nursel; Gabbett, Michael T; Hudgins, Louanne; Hurst, Jane A; Jehee, Fernanda Sarquis; Oley, Christine; Wilkie, Andrew O M

    2011-01-01

    Carpenter syndrome, a rare autosomal recessive disorder characterized by a combination of craniosynostosis, polysyndactyly, obesity, and other congenital malformations, is caused by mutations in RAB23, encoding a member of the Rab-family of small GTPases. In 15 out of 16 families previously reported, the disease was caused by homozygosity for truncating mutations, and currently only a single missense mutation has been identified in a compound heterozygote. Here, we describe a further 8 independent families comprising 10 affected individuals with Carpenter syndrome, who were positive for mutations in RAB23. We report the first homozygous missense mutation and in-frame deletion, highlighting key residues for RAB23 function, as well as the first splice-site mutation. Multi-suture craniosynostosis and polysyndactyly have been present in all patients described to date, and abnormal external genitalia have been universal in boys. High birth weight was not evident in the current group of patients, but further evidence for laterality defects is reported. No genotype-phenotype correlations are apparent. We provide experimental evidence that transcripts encoding truncating mutations are subject to nonsense-mediated decay, and that this plays an important role in the pathogenesis of many RAB23 mutations. These observations refine the phenotypic spectrum of Carpenter syndrome and offer new insights into molecular pathogenesis. © 2011 Wiley-Liss, Inc. PMID:21412941

  18. Frameshift and nonsense p53 mutations in squamous-cell carcinoma of head and neck - non-reactivity with 3 anti-p53 monoclonal-antibodies.

    PubMed

    Chen, Y; Xu, L; Massey, L; Zlotolow, I; Huvos, A; Garinchesa, P; Old, L

    1994-03-01

    p53 mutations in human tumors are often associated with overexpression of p53, and immunohistochemical detection of p53 has frequently been chosen as a simpler method than genetic analysis to access p53 mutations. In this study, we analyzed the p53 gene by single-strand conformational polymorphism (SSCP) and DNA sequencing, and correlated findings to Ab staining results. In a series of 58 squamous cell carcinoma, 15 showed mutations in exons 5, 6, 7, 8 and 9 by SSCP. Of these 15 cases, 11 were positive by antibody staining, and DNA sequencing showed missense mutations but no frameshift or nonsense mutations. In contrast, the antibody-negative cases had frameshift or nonsense mutations, but no missense mutations. SSCP analysis of these 4 cases showed mutations in exon 6 (2 cases), exon 7 (1), and exon 8 (1), respectively. In case 1, sequencing data revealed a single-base addition in exon 6, leading to a truncated gene product of 207 amino acids (aa), in contrast to 393 aa in wild-type p53. Similar frameshift mutations were shown in case 2 and case 3. Case 4, instead of a frameshift mutation, carried a nonsense mutation, and a truncated peptide of 235 aa. All these mutations thus shared the feature of producing truncated p53 products nonreactive with antibodies. We conclude that frameshift mutations as well as nonsense mutations can lead to altered p53 undetectable by available monoclonal antibodies. Our finding indicates that the absence of Ab reactivity does not rule out genetic alterations of the p53 gene in human tumors. PMID:21566966

  19. Nonsense mutations of the von Willebrand factor gene in patients with von Willebrand disease type III and type I

    SciTech Connect

    Zhang, Z.P.; Lindstedt, M.; Falk, G.; Blombaeck, M.; Egberg, N.; Anvret, M. )

    1992-10-01

    von Willebrand disease (vWD) is the most common inherited bleeding disorder in humans. The disease is caused by qualitative and quantitative abnormalities of the von Willebrand factor (vWF). Genomic DNA from 25 patients with vWD type III, the most severe form of the disease, was studied using PCR followed by restriction-enzyme analysis and direct sequencing of the products. Nonsense mutations (CGA[yields]TGA) were detected in exons 28, 32, and 45 by screening of all 11 CGA arginine codons of the vWF gene. Two patients were found to be homozygous and five heterozygous for the mutation. Both parents and some of the relatives of the homozygous patients carry the mutation. These are the first reported examples of homozygous point mutations associated with the severe form of vWD. In the three heterozygous probands, one of the parents carried the mutation and had vWD type I. Family studies including parents and family members with or without vWD type I indicted that these three heterozygous patients are likely to be compound heterozygous. Twenty-one individuals from these seven families with vWD type I found to be heterozygous for the mutation. 21 refs., 5 figs., 4 tabs.

  20. A Novel Locus Harbouring a Functional CD164 Nonsense Mutation Identified in a Large Danish Family with Nonsyndromic Hearing Impairment.

    PubMed

    Nyegaard, Mette; Rendtorff, Nanna D; Nielsen, Morten S; Corydon, Thomas J; Demontis, Ditte; Starnawska, Anna; Hedemand, Anne; Buniello, Annalisa; Niola, Francesco; Overgaard, Michael T; Leal, Suzanne M; Ahmad, Wasim; Wikman, Friedrik P; Petersen, Kirsten B; Crüger, Dorthe G; Oostrik, Jaap; Kremer, Hannie; Tommerup, Niels; Frödin, Morten; Steel, Karen P; Tranebjærg, Lisbeth; Børglum, Anders D

    2015-07-01

    Nonsyndromic hearing impairment (NSHI) is a highly heterogeneous condition with more than eighty known causative genes. However, in the clinical setting, a large number of NSHI families have unexplained etiology, suggesting that there are many more genes to be identified. In this study we used SNP-based linkage analysis and follow up microsatellite markers to identify a novel locus (DFNA66) on chromosome 6q15-21 (LOD 5.1) in a large Danish family with dominantly inherited NSHI. By locus specific capture and next-generation sequencing, we identified a c.574C>T heterozygous nonsense mutation (p.R192*) in CD164. This gene encodes a 197 amino acid transmembrane sialomucin (known as endolyn, MUC-24 or CD164), which is widely expressed and involved in cell adhesion and migration. The mutation segregated with the phenotype and was absent in 1200 Danish control individuals and in databases with whole-genome and exome sequence data. The predicted effect of the mutation was a truncation of the last six C-terminal residues of the cytoplasmic tail of CD164, including a highly conserved canonical sorting motif (YXXФ). In whole blood from an affected individual, we found by RT-PCR both the wild-type and the mutated transcript suggesting that the mutant transcript escapes nonsense mediated decay. Functional studies in HEK cells demonstrated that the truncated protein was almost completely retained on the plasma cell membrane in contrast to the wild-type protein, which targeted primarily to the endo-lysosomal compartments, implicating failed endocytosis as a possible disease mechanism. In the mouse ear, we found CD164 expressed in the inner and outer hair cells of the organ of Corti, as well as in other locations in the cochlear duct. In conclusion, we have identified a new DFNA locus located on chromosome 6q15-21 and implicated CD164 as a novel gene for hearing impairment. PMID:26197441

  1. A Novel Locus Harbouring a Functional CD164 Nonsense Mutation Identified in a Large Danish Family with Nonsyndromic Hearing Impairment

    PubMed Central

    Nielsen, Morten S.; Corydon, Thomas J.; Demontis, Ditte; Starnawska, Anna; Hedemand, Anne; Buniello, Annalisa; Niola, Francesco; Overgaard, Michael T.; Leal, Suzanne M.; Ahmad, Wasim; Wikman, Friedrik P.; Petersen, Kirsten B.; Crüger, Dorthe G.; Oostrik, Jaap; Kremer, Hannie; Tommerup, Niels; Frödin, Morten; Steel, Karen P.; Tranebjærg, Lisbeth; Børglum, Anders D.

    2015-01-01

    Nonsyndromic hearing impairment (NSHI) is a highly heterogeneous condition with more than eighty known causative genes. However, in the clinical setting, a large number of NSHI families have unexplained etiology, suggesting that there are many more genes to be identified. In this study we used SNP-based linkage analysis and follow up microsatellite markers to identify a novel locus (DFNA66) on chromosome 6q15-21 (LOD 5.1) in a large Danish family with dominantly inherited NSHI. By locus specific capture and next-generation sequencing, we identified a c.574C>T heterozygous nonsense mutation (p.R192*) in CD164. This gene encodes a 197 amino acid transmembrane sialomucin (known as endolyn, MUC-24 or CD164), which is widely expressed and involved in cell adhesion and migration. The mutation segregated with the phenotype and was absent in 1200 Danish control individuals and in databases with whole-genome and exome sequence data. The predicted effect of the mutation was a truncation of the last six C-terminal residues of the cytoplasmic tail of CD164, including a highly conserved canonical sorting motif (YXXФ). In whole blood from an affected individual, we found by RT-PCR both the wild-type and the mutated transcript suggesting that the mutant transcript escapes nonsense mediated decay. Functional studies in HEK cells demonstrated that the truncated protein was almost completely retained on the plasma cell membrane in contrast to the wild-type protein, which targeted primarily to the endo-lysosomal compartments, implicating failed endocytosis as a possible disease mechanism. In the mouse ear, we found CD164 expressed in the inner and outer hair cells of the organ of Corti, as well as in other locations in the cochlear duct. In conclusion, we have identified a new DFNA locus located on chromosome 6q15-21 and implicated CD164 as a novel gene for hearing impairment. PMID:26197441

  2. A Novel Nonsense Mutation in the MIP Gene Linked to Congenital Posterior Polar Cataracts in a Chinese Family

    PubMed Central

    Song, Zixun; Wang, Lianqing; Liu, Yaping; Xiao, Wei

    2015-01-01

    Purpose To detect the causative mutation for congenital posterior polar cataracts in a five-generation Chinese family and further explore the potential pathogenesis of this disease. Methods Coding exons, with flanking sequences of five candidate genes, were screened using direct DNA sequencing. The identified mutations were confirmed by restriction fragment length polymorphism (RFLP) analysis. A full-length wild-type or an Y219* mutant aquaporin0 (AQP0) fused with an N-terminal FLAG tag, was transfected into HEK293T cells. For co-localization studies, FLAG-WT-AQP0 and Myc-Y219*-AQP0 constructs were co-transfected. Quantitative real-time RT-PCR, western blotting and immunofluorescence studies were performed to determine protein expression levels and sub-cellular localization, respectively. Results We identified a novel nonsense mutation in MIP (c.657 C>G; p.Y219*) (major intrinsic protein gene) that segregates with congenital posterior polar cataract in a Chinese family. This mutation altered a highly conserved tyrosine to a stop codon (Y219*) within AQP0.When FLAG-WT-AQP0 and FLAG-Y219*-AQP0 expression constructs were singly transfected into HEK 293T cells, mRNA expression showed no significant difference between the wild-type and the mutant, while Y219*-AQP0 protein expression was significantly lower than that of wild-type AQP0. Wild-type AQP0 predominantly localized to the plasma membrane, while the mutated protein was abundant within the cytoplasm of HEK293T cells. However, when FLAG-WT-AQP0 andMyc-MU-AQP0were co-expressed, both proteins showed high fluorescence in the cytoplasm. Conclusions The novel nonsense mutation in the MIP gene (c.657 C>G) identified in a Chinese family may cause posterior polar cataracts. The dominant negative effect of the mutated protein on the wild-type protein interfered with the trafficking of wild-type protein to the cell membrane and both the mutant and wild-type protein were trapped in the cytoplasm. Consequently, both wild

  3. De Novo Nonsense Mutations in KAT6A, a Lysine Acetyl-Transferase Gene, Cause a Syndrome Including Microcephaly and Global Developmental Delay

    PubMed Central

    Arboleda, Valerie A.; Lee, Hane; Dorrani, Naghmeh; Zadeh, Neda; Willis, Mary; Macmurdo, Colleen Forsyth; Manning, Melanie A.; Kwan, Andrea; Hudgins, Louanne; Barthelemy, Florian; Miceli, M. Carrie; Quintero-Rivera, Fabiola; Kantarci, Sibel; Strom, Samuel P.; Deignan, Joshua L.; Grody, Wayne W.; Vilain, Eric; Nelson, Stanley F.

    2015-01-01

    Chromatin remodeling through histone acetyltransferase (HAT) and histone deactylase (HDAC) enzymes affects fundamental cellular processes including the cell-cycle, cell differentiation, metabolism, and apoptosis. Nonsense mutations in genes that are involved in histone acetylation and deacetylation result in multiple congenital anomalies with most individuals displaying significant developmental delay, microcephaly and dysmorphism. Here, we report a syndrome caused by de novo heterozygous nonsense mutations in KAT6A (a.k.a., MOZ, MYST3) identified by clinical exome sequencing (CES) in four independent families. The same de novo nonsense mutation (c.3385C>T [p.Arg1129∗]) was observed in three individuals, and the fourth individual had a nearby de novo nonsense mutation (c.3070C>T [p.Arg1024∗]). Neither of these variants was present in 1,815 in-house exomes or in public databases. Common features among all four probands include primary microcephaly, global developmental delay including profound speech delay, and craniofacial dysmorphism, as well as more varied features such as feeding difficulties, cardiac defects, and ocular anomalies. We further demonstrate that KAT6A mutations result in dysregulation of H3K9 and H3K18 acetylation and altered P53 signaling. Through histone and non-histone acetylation, KAT6A affects multiple cellular processes and illustrates the complex role of acetylation in regulating development and disease. PMID:25728775

  4. De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay.

    PubMed

    Arboleda, Valerie A; Lee, Hane; Dorrani, Naghmeh; Zadeh, Neda; Willis, Mary; Macmurdo, Colleen Forsyth; Manning, Melanie A; Kwan, Andrea; Hudgins, Louanne; Barthelemy, Florian; Miceli, M Carrie; Quintero-Rivera, Fabiola; Kantarci, Sibel; Strom, Samuel P; Deignan, Joshua L; Grody, Wayne W; Vilain, Eric; Nelson, Stanley F

    2015-03-01

    Chromatin remodeling through histone acetyltransferase (HAT) and histone deactylase (HDAC) enzymes affects fundamental cellular processes including the cell-cycle, cell differentiation, metabolism, and apoptosis. Nonsense mutations in genes that are involved in histone acetylation and deacetylation result in multiple congenital anomalies with most individuals displaying significant developmental delay, microcephaly and dysmorphism. Here, we report a syndrome caused by de novo heterozygous nonsense mutations in KAT6A (a.k.a., MOZ, MYST3) identified by clinical exome sequencing (CES) in four independent families. The same de novo nonsense mutation (c.3385C>T [p.Arg1129∗]) was observed in three individuals, and the fourth individual had a nearby de novo nonsense mutation (c.3070C>T [p.Arg1024∗]). Neither of these variants was present in 1,815 in-house exomes or in public databases. Common features among all four probands include primary microcephaly, global developmental delay including profound speech delay, and craniofacial dysmorphism, as well as more varied features such as feeding difficulties, cardiac defects, and ocular anomalies. We further demonstrate that KAT6A mutations result in dysregulation of H3K9 and H3K18 acetylation and altered P53 signaling. Through histone and non-histone acetylation, KAT6A affects multiple cellular processes and illustrates the complex role of acetylation in regulating development and disease. PMID:25728775

  5. In vivo and in vitro correction of the mdx dystrophin gene nonsense mutation by short-fragment homologous replacement.

    PubMed

    Kapsa, R; Quigley, A; Lynch, G S; Steeper, K; Kornberg, A J; Gregorevic, P; Austin, L; Byrne, E

    2001-04-10

    Targeted genetic correction of mutations in cells is a potential strategy for treating human conditions that involve nonsense, missense, and transcriptional splice junction mutations. One method of targeted gene repair, single-stranded short-fragment homologous replacement (ssSFHR), has been successful in repairing the common deltaF508 3-bp microdeletion at the cystic fibrosis transmembrane conductance regulator (CFTR) locus in 1% of airway epithelial cells in culture. This study investigates in vitro and in vivo application of a double-stranded method variant of SFHR gene repair to the mdx mouse model of Duchenne muscular dystrophy (DMD). A 603-bp wild-type PCR product was used to repair the exon 23 C-to-T mdx nonsense transition at the Xp21.1 dys locus in cultured myoblasts and in tibialis anterior (TA) from male mdx mice. Multiple transfection and variation of lipofection reagent both improved in vitro SFHR efficiency, with successful conversion of mdx to wild-type nucleotide at the dys locus achieved in 15 to 20% of cultured loci and in 0.0005 to 0.1% of TA. The genetic correction of mdx myoblasts was shown to persist for up to 28 days in culture and for at least 3 weeks in TA. While a high frequency of in vitro gene repair was observed, the lipofection used here appeared to have adverse effects on subsequent cell viability and corrected cells did not express dystrophin transcript. With further improvements to in vitro and in vivo gene repair efficiencies, SFHR may find some application in DMD and other genetic neuromuscular disorders in humans. PMID:11426463

  6. A nonsense mutation in cGMP-dependent type II protein kinase (PRKG2) causes dwarfism in American Angus cattle

    PubMed Central

    Koltes, James E.; Mishra, Bishnu P.; Kumar, Dinesh; Kataria, Ranjit S.; Totir, Liviu R.; Fernando, Rohan L.; Cobbold, Rowland; Steffen, David; Coppieters, Wouter; Georges, Michel; Reecy, James M.

    2009-01-01

    Historically, dwarfism was the major genetic defect in U.S. beef cattle. Aggressive culling and sire testing were used to minimize its prevalence; however, neither of these practices can eliminate a recessive genetic defect. We assembled a 4-generation pedigree to identify the mutation underlying dwarfism in American Angus cattle. An adaptation of the Elston-Steward algorithm was used to overcome small pedigree size and missing genotypes. The dwarfism locus was fine-mapped to BTA6 between markers AFR227 and BM4311. Four candidate genes were sequenced, revealing a nonsense mutation in exon 15 of cGMP-dependant type II protein kinase (PRKG2). This C/T transition introduced a stop codon (R678X) that truncated 85 C-terminal amino acids, including a large portion of the kinase domain. Of the 75 mutations discovered in this region, only this mutation was 100% concordant with the recessive pattern of inheritance in affected and carrier individuals (log of odds score = 6.63). Previous research has shown that PRKG2 regulates SRY (sex-determining region Y) box 9 (SOX9)-mediated transcription of collagen 2 (COL2). We evaluated the ability of wild-type (WT) or R678X PRKG2 to regulate COL2 expression in cell culture. Real-time PCR results confirmed that COL2 is overexpressed in cells that overexpressed R678X PRKG2 as compared with WT PRKG2. Furthermore, COL2 and COL10 mRNA expression was increased in dwarf cattle compared with unaffected cattle. These experiments indicate that the R678X mutation is functional, resulting in a loss of PRKG2 regulation of COL2 and COL10 mRNA expression. Therefore, we present PRKG2 R678X as a causative mutation for dwarfism cattle. PMID:19887637

  7. Recurrent nonsense mutations within the type VII collagen gene in patients with severe recessive dystrophic epidermolysis bullosa

    SciTech Connect

    Hovnanian, A.; Hilal, L.; Goossens, M. ); Blanchet-Bardon, C.; Prost, Y. de ); Christiano, A.M.; Uitto, J. )

    1994-08-01

    The generalized mutilating form of recessive dystrophic epidermolysis bullosa (i.e., the Hallopeau-Siemens type; HS-RDEB) is a life-threatening disease characterized by extreme mucocutaneous fragility associated with absent or markedly altered anchoring fibrils (AF). Recently, the authors reported linkage between HS-RDEB and the type VII collagen gene (COL7A1), which encodes the major component of AF. In this study, they investigated 52 unrelated HS-RDEB patients and 2 patients with RDEB inversa for the presence, at CpG dinucleotides, of mutations changing CGA arginine codons to premature stop codons TGA within the COL7A1 gene. Eight exons containing 10 CGA codons located in the amino-terminal domain of the COL7A1 gene were studied. Mutation analysis was performed using denaturing gradient gel electrophoresis of PCR-amplified genomic fragments. Direct sequencing of PCR-amplified products with altered electrophoretic mobility led to the characterization of three premature stop codons, each in a single COL7A1 allele, in four patients. Two patients (one affected with HS-RDEB and the other with RDEB inversa) have the same C-to-T transition at arginine codon 109. Two other HS-RDEB patients have a C-to-T transition at arginine 1213 and 1216, respectively. These nonsense mutations predict the truncation of [approximately]56%-92% of the polypeptide, including the collagenous and the noncollagenous NC-2 domains. On the basis of linkage analysis, which showed no evidence for locus heterogeneity in RDEB, it is expected that these patients are compound heterozygotes and have additional mutations on the other COL7A1 allele, leading to impaired AF formation. These results indicate that stop mutations within the COL7A1 gene can underlie both HS-RDEB and RDEB inversa, thus providing further evidence for the implication of this gene in RDEB. 46 refs., 3 figs., 1 tab.

  8. Resistance of mRNAs with AUG-proximal nonsense mutations to nonsense-mediated decay reflects variables of mRNA structure and translational activity

    PubMed Central

    Pereira, Francisco J.C.; Teixeira, Alexandre; Kong, Jian; Barbosa, Cristina; Silva, Ana Luísa; Marques-Ramos, Ana; Liebhaber, Stephen A.; Romão, Luísa

    2015-01-01

    Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that recognizes and selectively degrades mRNAs carrying premature termination codons (PTCs). The level of sensitivity of a PTC-containing mRNA to NMD is multifactorial. We have previously shown that human β-globin mRNAs carrying PTCs in close proximity to the translation initiation AUG codon escape NMD. This was called the ‘AUG-proximity effect’. The present analysis of nonsense codons in the human α-globin mRNA illustrates that the determinants of the AUG-proximity effect are in fact quite complex, reflecting the ability of the ribosome to re-initiate translation 3′ to the PTC and the specific sequence and secondary structure of the translated ORF. These data support a model in which the time taken to translate the short ORF, impacted by distance, sequence, and structure, not only modulates translation re-initiation, but also impacts on the exact boundary of AUG-proximity protection from NMD. PMID:26068473

  9. Nonsense Mutations in the Maltose A Region of the Genetic Map of Escherichia coli

    PubMed Central

    Hatfield, Dolph; Hofnung, Maurice; Schwartz, Maxime

    1969-01-01

    The isolation of one amber mutation in malQ, one ochre mutation in malP, and seven amber mutations in malT is reported. A study of their phenotypic expressions in the presence of the amber suppressor suIII and the ochre suppressor suc suggests that (i) malQ is the structural gene for amylomaltase; (ii) malQ and the structural gene for maltodextrin phosphorylase, malP, belong to the same operon; (iii) the malT product, which promotes the expression of the malP-malQ operon, is a protein synthesized in limiting amounts by the wild-type strain. PMID:4902812

  10. A novel nonsense mutation in the WFS1 gene causes the Wolfram syndrome.

    PubMed

    Noorian, Shahab; Savad, Shahram; Mohammadi, Davood Shah

    2016-05-01

    Wolfram syndrome is a rare autosomal recessive neurodegenerative disorder, which is mostly caused by mutations in the WFS1 gene. The WFS1 gene product, which is called wolframin, is thought to regulate the function of endoplasmic reticulum. The endoplasmic reticulum has a critical role in protein folding and material transportation within the cell or to the surface of the cell. Identification of new mutations in WFS1 gene will unravel the molecular pathology of WS. The aim of this case report study is to describe a novel mutation in exon 4 of the WFS1 gene (c.330C>A) in a 9-year-old boy with WS. PMID:26943604

  11. A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect

    SciTech Connect

    Landsberger, D.; Meiner, V.; Reshef, A.; Leitersdorf, E. ); Levy, Yishai ); Westhytzen, D.R. van der; Coetzee, G.A. )

    1992-02-01

    Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here the authors characterize and LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found either in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identical LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.

  12. A novel nonsense mutation of the KAL1 gene (p.Trp204*) in Kallmann syndrome

    PubMed Central

    El Husny, Antonette Souto; Raiol-Moraes, Milene; Fernandes-Caldato, Milena Coelho; Ribeiro-dos-Santos, Ândrea

    2014-01-01

    Objective To describe a novel KAL1 mutation in patients affected by Kallmann syndrome. Setting Endocrinology Clinic of the João de Barros Barreto University Hospital – Federal University of Pará, Brazil. Methods Clinical examination, hormone assays and sequencing of exons 5, 6 and 9 of the KAL1 gene in four Brazilian brothers with Kallmann syndrome. Results Detected a novel KAL1 mutation, c.612G.A/p.Trp204*, in four hemizygous brothers with Kallmann syndrome, and five heterozygous female family members. Conclusion The novel p.Trp204* mutation of the KAL1 gene results in the production of a truncated anosmin-1 enzyme in patients with Kallmann syndrome. This finding broadens the spectrum of pathogenic mutations for this disease. PMID:25328414

  13. A comparative evaluation of NB30, NB54 and PTC124 in translational read-through efficacy for treatment of an USH1C nonsense mutation

    PubMed Central

    Goldmann, Tobias; Overlack, Nora; Möller, Fabian; Belakhov, Valery; van Wyk, Michiel; Baasov, Timor; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-01-01

    Translational read-through-inducing drugs (TRIDs) promote read-through of nonsense mutations, placing them in the spotlight of current gene-based therapeutic research. Here, we compare for the first time the relative efficacies of new-generation aminoglycosides NB30, NB54 and the chemical compound PTC124 on retinal toxicity and read-through efficacy of a nonsense mutation in the USH1C gene, which encodes the scaffold protein harmonin. This mutation causes the human Usher syndrome, the most common form of inherited deaf-blindness. We quantify read-through efficacy of the TRIDs in cell culture and show the restoration of harmonin function. We do not observe significant differences in the read-through efficacy of the TRIDs in retinal cultures; however, we show an excellent biocompatibility in retinal cultures with read-through versus toxicity evidently superior for NB54 and PTC124. In addition, in vivo administration of NB54 and PTC124 induced recovery of the full-length harmonin a1 with the same efficacy. The high biocompatibilities combined with the sustained read-through efficacies of these drugs emphasize the potential of NB54 and PTC124 in treating nonsense mutation-based retinal disorders. PMID:23027640

  14. A novel nonsense GPSM2 mutation in a Yemeni family underlying Chudley-McCullough syndrome.

    PubMed

    Hamzeh, Abdul Rezzak; Nair, Pratibha; Mohamed, Madiha; Saif, Fatima; Tawfiq, Nafisa; Al-Ali, Mahmoud Taleb; Bastaki, Fatma

    2016-06-01

    Mutations in the G Protein Signaling Modulator 2 (GPSM2) cause the autosomal recessive disorder Chudley-McCullough syndrome (CMS), which is characterized by profound congenital sensorineural hearing loss with various abnormalities in the brain. This phenotypic combination is attributed to the role played by GPSM2 in the establishment of planar polarity and spindle orientation during asymmetric cell divisions. Here we present two brothers from a Yemeni family who were diagnosed clinically with CMS then tested for GPSM2 mutations using Sanger sequencing. Consequent to sequencing, in silico tools (such as CADD) were utilized to assess functional consequences. Molecular analysis revealed a previously unreported homozygous mutation in GPSM2 in both brothers (c.1055C > A) leading to a truncating protein change; (p.Ser352*). This mutation is predicted to abolish all four GoLoco domains in GPSM2 and this explains the bioinformatic prediction for this mutation to be functionally damaging. Full clinical and molecular accounts of the novel mutation are provided in this paper. PMID:27180139

  15. Exercise-induced downbeat nystagmus in a Korean family with a nonsense mutation in CACNA1A.

    PubMed

    Choi, Jae-Hwan; Seo, Jae-Deuk; Choi, Yu Ri; Kim, Min-Ji; Shin, Jin-Hong; Kim, Ji Soo; Choi, Kwang-Dong

    2015-08-01

    Episodic ataxia type 2 (EA2) is characterized by recurrent attacks of vertigo and ataxia lasting hours triggered by emotional stress or exercise. Although interictal horizontal gaze-evoked nystagmus and rebound nystagmus are commonly observed in patients with EA2, the nystagmus has been rarely reported during the vertigo attack. To better describe exercise-induced nystagmus in EA2, four affected members from three generations of a Korean family with EA2 received full neurological and neuro-otological evaluations. Vertigo was provoked in the proband with running for 10 min to record eye movements during the vertigo attack. We performed a polymerase chain reaction-based direct sequence analysis of all coding regions of CACNA1A in all participants. The four affected members had a history of exertional vertigo, imbalance, childhood epilepsy, headache, and paresthesia. The provocation induced severe vertigo and imbalance lasting several hours, and oculography documented pure downbeat nystagmus during the attack. Genetic analyses identified a nonsense mutation in exon 23 which has been registered in dbSNP as a pathogenic allele (c.3832C>T, p.R1278X) in all the affected members. Ictal downbeat nystagmus in the studied family indicates cerebellar dysfunction during the vertigo attack in EA2. In patients with episodic vertigo and ataxia, the observation of exercise-induced nystagmus would provide a clue for EA2. PMID:25784583

  16. A homozygous nonsense mutation in the alpha 3 chain gene of laminin 5 (LAMA3) in Herlitz junctional epidermolysis bullosa: prenatal exclusion in a fetus at risk.

    PubMed

    McGrath, J A; Kivirikko, S; Ciatti, S; Moss, C; Dunnill, G S; Eady, R A; Rodeck, C H; Christiano, A M; Uitto, J

    1995-09-01

    Mutations in the three genes (LAMA3, LAMB3, and LAMC2) that encode the three chains (alpha 3, beta 3, and gamma 2, respectively) of laminin 5, a protein involved in epidermal-dermal adhesion, have been established as the genetic basis for the inherited blistering skin disorder, Herlitz junctional epidermolysis bullosa (H-JEB). In this study, we performed mutational analysis on genomic DNA from a child with H-JEB and identified a nonsense mutation in the alpha 3 chain gene (LAMA3) consisting of a homozygous C-to-T transition resulting in a premature termination codon (CGA-->TGA) on both alleles. The parents were shown to be heterozygous carriers of the same mutation. Direct mutation analysis was used to perform DNA-based prenatal diagnosis from a chorionic villus biopsy at 10 weeks' gestation in a subsequent pregnancy. The fetus was predicted to be genotypically normal with respect to the LAMA3 mutation. PMID:8530087

  17. Variants of the D{sub 5} dopamine receptor gene found in patients with schizophrenia: Identification of a nonsense mutation and multiple missense changes

    SciTech Connect

    Sobell, J.L.; Lind, T.J.; Sommer, S.S.

    1994-09-01

    To determine whether mutations in the D{sub 5} dopamine receptor (D{sub 5}DR) gene are associated with schizophrenia, the gene was examined in 78 unrelated schizophrenic individuals. After amplification by the polymerase chain reaction, products were examined by dideoxy fingerprinting (ddF), a highly sensitive screening method related to single strand conformational polymorphism analysis. All samples with unusual ddF patterns were sequenced to precisely identify the sequence change. In the 156 D{sub 5}DR alleles examined, nine sequence changes were identified. Four of the nine did not affect protein structure; of these, three were silent changes and one was a transition in the 3{prime} untranslated region. The remaining five sequence changes result in protein alterations: of these, one is a missense change in a non-conserved amino acid, 3 are missense changes in amino acids that are conserved in some dopamine D{sub 5} receptors and the last is a nonsense mutation. To investigate whether the nonsense mutation was associated with schizophrenia, 400 additional schizophrenic cases of western European descent and 1914 ethnically-similar controls were screened for the change. One additional schizophrenic carrier was identified and verified by direct genomic sequencing (allele frequency: .0013), but eight carriers also were found and confirmed among the non-schizophrenics (allele frequency: .0021)(p>.25). The gene was re-examined in all newly identified carriers of the nonsense mutation by direct sequencing and/or ddF in search of additional mutations. None were identified. Family studies also were conducted to investigate possible cosegregation of the mutation with other neuropsychiatric diseases, but this was not demonstrated. Thus, the mutation does not appear to be associated with an increased risk of schizophrenia nor does an initial analysis suggest cosegregation with other neuropsychiatric disorders or symptom complexes.

  18. Anti-Muellerian hormone Bruxelles: A nonsense mutation associated with the persistent Muellerian duct syndrome

    SciTech Connect

    Boussin, L.; Guerrier, D.; Legeai, L.; Josso, N.; Picard, J.Y. ); Knebelmann, B.; Kahn, A. )

    1991-05-01

    The persistent Muellerian duct syndrome (PMDS) is characterized by the persistence of Muellerian derivatives, uterus and tubes, in otherwise normally virilized males. In a previous study, the authors showed that this syndrome is heterogeneous, with lack of production of anti-Muellerian hormone (AMH) by testicular tissue accounting for only some, AMH-negative, cases of this disorder. They have characterized the point mutation responsible for an AMH-negative PMDS in three siblings: a guanine to thymine transversion at position 2096 in the fifth exon changes a GAA triplet, coding for glutamic acid, to a TAA stop codon. The mutation could also be recognized, using the polymerase chain reaction, on RNA produced in trace amounts by a lymphoblastic cell line. The translation product, although undetectable in testicular tissue, could be visualized in culture medium of cells transfected with the mutant gene.

  19. A patient with limb girdle muscular dystrophy carries a TRIM32 deletion, detected by a novel CGH array, in compound heterozygosis with a nonsense mutation.

    PubMed

    Neri, M; Selvatici, R; Scotton, C; Trabanelli, C; Armaroli, A; De Grandis, D; Levy, N; Gualandi, F; Ferlini, A

    2013-06-01

    Limb girdle muscular dystrophy 2H is a rare autosomal recessive muscular dystrophy, clinically highly variable, caused by mutations in the TRIM32 gene. Here we describe a 35-years-old who experienced progressive muscle weakness. The muscle biopsy revealed an unspecific pattern of atrophic and hypertrophic fibers; the immunohistochemistry for several proteins was normal. Comparative genomic hybridization (CGH) analysis showed a heterozygous deletion of the entire TRIM32 gene. On the other allele we identified the R316X nonsense mutation. The genetic diagnosis of LGMD2H in this case was reached by using a novel high throughput diagnostic tool. PMID:23541687

  20. Identification of a novel nonsense mutation and a missense substitution in the AGPAT2 gene causing congenital generalized lipodystrophy type 1

    PubMed Central

    Haghighi, Amirreza; Razzaghy-Azar, Maryam; Talea, Ali; Sadeghian, Mahnaz; Ellard, Sian; Haghighi, Alireza

    2012-01-01

    Congenital generalized lipodystrophy (CGL) is an autosomal recessive disease characterized by the generalized scant of adipose tissue. CGL type 1 is caused by mutations in gene encoding 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2). A clinical and molecular genetic investigation was performed in affected and unaffected members of two families with CGL type 1. The AGPAT2 coding region was sequenced in index cases of the two families. The presence of the identified mutations in relevant parents was tested. We identified a novel nonsense mutation (c.685G>T, p.Glu229*) and a missense substitution (c.514G>A, p.Glu172Lys). The unaffected parents in both families were heterozygous carrier of the relevant mutation. The results expand genotype–phenotype spectrum in CGL1 and will have applications in prenatal and early diagnosis of the disease. This is the first report of Persian families identified with AGPAT2 mutations. PMID:22902344

  1. A homozygous nonsense mutation in the alpha 3 chain gene of laminin 5 (LAMA3) in lethal (Herlitz) junctional epidermolysis bullosa.

    PubMed

    Kivirikko, S; McGrath, J A; Baudoin, C; Aberdam, D; Ciatti, S; Dunnill, M G; McMillan, J R; Eady, R A; Ortonne, J P; Meneguzzi, G

    1995-05-01

    The inherited mechanobullous disorder, junctional epidermolysis bullosa (JEB), is characterized by extensive blistering and erosions of the skin and mucous membranes. The diagnostic hallmarks of JEB include ultrastructural abnormalities in the hemidesmosomes of the cutaneous basement membrane zone, as well as an absence of staining with antibodies against the anchoring filament protein, laminin 5. Therefore, the three genes encoding alpha 3, beta 3 and gamma 2 chains of laminin 5, known as LAMA3, LAMB3 and LAMC2, are candidate genes for JEB. We have previously demonstrated mutations in the LAMB3 and LAMC2 genes in several families with JEB. We initiated mutation analysis from an affected child by PCR amplification of individual LAMA3 exons, followed by heteroduplex analysis. Nucleotide sequencing of heteroduplexes identified a homozygous nonsense mutation within domain I/II of the alpha 3 chain. These findings provide the first evidence that nonsense mutations within the LAMA3 gene are also involved in the pathogenesis of JEB, and indicate that mutations of all three genes of laminin 5 can result in the JEB phenotype. PMID:7633458

  2. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC

    PubMed Central

    Rubio-Cabezas, Oscar; Puri, Vishwajeet; Murano, Incoronata; Saudek, Vladimir; Semple, Robert K; Dash, Satya; Hyden, Caroline S S; Bottomley, William; Vigouroux, Corinne; Magré, Jocelyne; Raymond-Barker, Philippa; Murgatroyd, Peter R; Chawla, Anil; Skepper, Jeremy N; Chatterjee, V Krishna; Suliman, Sara; Patch, Ann-Marie; Agarwal, Anil K; Garg, Abhimanyu; Barroso, Inês; Cinti, Saverio; Czech, Michael P; Argente, Jesús; O'Rahilly, Stephen; Savage, David B

    2009-01-01

    Lipodystrophic syndromes are characterized by adipose tissue deficiency. Although rare, they are of considerable interest as they, like obesity, typically lead to ectopic lipid accumulation, dyslipidaemia and insulin resistant diabetes. In this paper we describe a female patient with partial lipodystrophy (affecting limb, femorogluteal and subcutaneous abdominal fat), white adipocytes with multiloculated lipid droplets and insulin-resistant diabetes, who was found to be homozygous for a premature truncation mutation in the lipid droplet protein cell death-inducing Dffa-like effector C (CIDEC) (E186X). The truncation disrupts the highly conserved CIDE-C domain and the mutant protein is mistargeted and fails to increase the lipid droplet size in transfected cells. In mice, Cidec deficiency also reduces fat mass and induces the formation of white adipocytes with multilocular lipid droplets, but in contrast to our patient, Cidec null mice are protected against diet-induced obesity and insulin resistance. In addition to describing a novel autosomal recessive form of familial partial lipodystrophy, these observations also suggest that CIDEC is required for unilocular lipid droplet formation and optimal energy storage in human fat. PMID:20049731

  3. A non-sense MCM9 mutation in a familial case of primary ovarian insufficiency.

    PubMed

    Fauchereau, F; Shalev, S; Chervinsky, E; Beck-Fruchter, R; Legois, B; Fellous, M; Caburet, S; Veitia, R A

    2016-05-01

    Primary ovarian insufficiency (POI) results in an early loss of ovarian function, and remains idiopathic in about 80% of cases. Here, we have performed a complete genetic study of a consanguineous family with two POI cases. Linkage analysis and homozygosity mapping identified 12 homozygous regions with linkage, totalling 84 Mb. Whole-exome sequencing of the two patients and a non-affected sister allowed us to detect a homozygous causal variant in the MCM9 gene. The variant c.1483G>T [p.E495*], confirmed using Sanger sequencing, introduced a premature stop codon in coding exon 8 and is expected to lead to the loss of a functional protein. MCM9 belongs to a complex required for DNA repair by homologous recombination, and its impairment in mouse is known to induce meiotic recombination defects and oocyte degeneration. A previous study recently described two consanguineous families in which homozygous mutations of MCM9 were responsible for POI and short stature. Interestingly, the affected sisters in the family described here had a normal height. Altogether, our results provide the confirmation of the implication of MCM9 variants in POI and expand their phenotypic spectrum. PMID:26771056

  4. Next-generation sequencing discloses a nonsense mutation in the dystrophin gene from long preserved dried umbilical cord and low-level somatic mosaicism in the proband mother.

    PubMed

    Taniguchi-Ikeda, Mariko; Takeshima, Yasuhiro; Lee, Tomoko; Nishiyama, Masahiro; Awano, Hiroyuki; Yagi, Mariko; Unzaki, Ai; Nozu, Kandai; Nishio, Hisahide; Matsuo, Masafumi; Kurahashi, Hiroki; Toda, Tatsushi; Morioka, Ichiro; Iijima, Kazumoto

    2016-04-01

    Duchene muscular dystrophy (DMD) is a progressive muscle wasting disease, caused by mutations in the dystrophin (DMD) on the X chromosome. One-third of patients are estimated to have de novo mutations. To provide in-depth genetic counseling, the comprehensive identification of mutations is mandatory. However, many DMD patients did not undergo genetic diagnosis because detailed genetic diagnosis was not available or their mutational types were difficult to identify. Here we report the genetic testing of a sporadic DMD boy, who died >20 years previously. Dried umbilical cord preserved for 38 years was the only available source of genomic DNA. Although the genomic DNA was severely degraded, multiplex ligation-dependent probe amplification analysis was performed but no gross mutations found. Sanger sequencing was attempted but not conclusive. Next-generation sequencing (NGS) was performed by controlling the tagmentation during library preparation. A nonsense mutation in DMD (p.Arg2095*) was clearly identified in the proband. Consequently, the identical mutation was detected as an 11% mosaic mutation from his healthy mother. Finally, the proband's sister was diagnosed as a non-carrier of the mutation. Thus using NGS we have identified a pathogenic DMD mutation from degraded DNA and low-level somatic mosaicism, which would have been overlooked using Sanger sequencing. PMID:26740235

  5. Identification of a nonsense mutation in APAF1 that is likely causal for a decrease in reproductive efficiency in Holstein dairy cattle.

    PubMed

    Adams, Heather A; Sonstegard, Tad S; VanRaden, Paul M; Null, Daniel J; Van Tassell, Curt P; Larkin, Denis M; Lewin, Harris A

    2016-08-01

    The HH1 haplotype on chromosome 5 is associated with a reduced conception rate and a deficit of homozygotes at the population level in Holstein cattle. The source HH1 haplotype was traced to the bull Pawnee Farm Arlinda Chief (Chief), who was born in 1962 and has sired more than 16,000 daughters. We identified a nonsense mutation in APAF1 (apoptotic protease activating factor 1;APAF1 p.Q579X) within HH1 using whole-genome resequencing of Chief and 3 of his sons. This mutation is predicted to truncate 670 AA (53.7%) of the encoded APAF1 protein that contains a WD40 domain critical to protein-protein interactions. Initial screening revealed no homozygous individuals for the mutation in 758 animals previously genotyped, whereas all 497 HH1 carriers possessed 1 copy of the mutant allele. Subsequent commercial genotyping of 246,773 Holsteins revealed 5,299 APAF1 heterozygotes and zero homozygotes for the mutation. The causative role of this mutation is also supported by functional data in mice that have demonstrated Apaf1 to be an essential molecule in the cytochrome-c-mediated apoptotic cascade and directly implicated in developmental and neurodegenerative disorders. In addition, most Apaf1 homozygous knockouts die by day 16.5 of development. We thus propose that the APAF1 p.Q579X nonsense mutation is the functional equivalent of the Apaf1 knockout. This mutation has caused an estimated 525,000 spontaneous abortions worldwide over the past 35 years, accounting for approximately $420 million in losses. With the mutation identified, selection against the deleterious allele in breeding schemes has aided in eliminating this defect from the population, reducing carrier frequency from 8% in past decades to 2% in 2015. PMID:27289157

  6. Treatment of lipoid proteinosis with acitretin in two patients from two unrelated Chinese families with novel nonsense mutations of the ECM1 gene.

    PubMed

    Luo, Xiao-Yan; Li, Qiu; Tan, Qi; Yang, Huan; Xiang, Juan; Miao, Jing-Kun; Wang, Hua

    2016-07-01

    Lipoid proteinosis is a rare recessive genetic disorder caused by loss-of-function mutations to chromosome 1 at 1q21, the extracellular matrix protein 1 (ECM1) gene. Two children with lipoid proteinosis were reported from two unrelated Chinese families, both manifesting with a typical hoarse voice, white acne-like atrophic lesions and scarring on the skin, and beaded papules around the eyelids. The diagnosis had been confirmed by laboratory tests, skin biopsy and laryngoscope examination. Genomic DNA sequencing was performed for both children and their family members. The two children were treated with acitretin for 6 months and followed up for 1 year. Genomic DNA sequencing of the ECM1 gene showed a novel homozygous nonsense mutation of C1522>T (p.R508X) at exon 10 in one patient, and a novel compound heterozygote for a nonsense/frame-shift combination of mutations of R281X/1596delG at exons 7 and 10 in the other patient. The symptom of hoarse voice was improved by 6-month treatment with acitretin, while there was no improvement in the skin lesions. These results demonstrated that acitretin treatment may have efficacy for some of patients with lipoid proteinosis, with superior effect on laryngeal symptoms than skin lesions. However, the conclusive therapeutic effect and underlying mechanisms remain to be further investigated. PMID:26778481

  7. Two Distinct Temperature-Sensitive Alleles at the Elav Locus of Drosophila Are Suppressed Nonsense Mutations of the Same Tryptophan Codon

    PubMed Central

    Samson, M. L.; Lisbin, M. J.; White, K.

    1995-01-01

    The Drosophila gene elav encodes a 483-amino-acid-long nuclear RNA binding protein required for normal neuronal differentiation and maintenance. We molecularly analyzed the three known viable alleles of the gene, namely elav(ts1), elav(FliJ1), and elav(FliJ2), which manifest temperature-sensitive phenotypes. The modification of the elav(FliJ1) allele corresponds to the change of glycine(426) (GGA) into a glutamic acid (GAA). Surprisingly, elav(ts1) and elav(FliJ2) were both found to have tryptophan(419) (TGG) changed into two different stop codons, TAG and TGA, respectively. Unexpectedly, protein analysis from elav(ts1) and elav(FliJ2) reveals not only the predicted 45-kD truncated ELAV protein due to translational truncation, but also a predominant full-size 50-kD ELAV protein, both at permissive and nonpermissive temperatures. The full-length protein present in elav(ts1) and elav(FliJ2) can a priori be explained by one of several mechanisms leading to functional suppression of the nonsense mutation or by detection of a previously unrecognized ELAV isoform of similar size resulting from alternative splicing and unaffected by the stop codon. Experiments described in this article support the functional suppression of the nonsense mutation as the mechanism responsible for the full-length protein. PMID:8582616

  8. Pediatric case report: clinical profile of a patient with PCWH with p.Q377X nonsense mutation in the SOX10 gene.

    PubMed

    Oshimo, Tomoko; Fukai, Kazuyoshi; Abe, Yuko; Hozumi, Yutaka; Yokoi, Toshiaki; Tanaka, Akemi; Yamanishi, Kiyofumi; Ishii, Masamitsu; Suzuki, Tamio

    2012-12-01

    We report the case of a Japanese patient with PCWH, a neurological variant of Waardenburg type 4. Direct sequencing of the genomic DNA obtained from peripheral leukocytes revealed the p.Q377X nonsense mutation in the SOX10 gene. The patient had mottled hypopigmented macules on the trunk since birth; such macules have not been described previously. The so-called "white forelock", a triangular or diamond shaped leukoderma on the forehead, was absent. We also reviewed and summarized the outcomes of 23 patients with Waardenburg syndrome type 4, PCWH and Yemenite deaf-blind hypopigmentation syndrome, in which SOX10 mutations were identified. Among them, 17 cases were reported to have hypopigmented skin macule(s). The five patients who had the white forelock had PCWH with severe neurological complications. Paradoxically, two cases had hyperpigmented spots. Heterochromia of the iris was reported in four patients. PMID:22963253

  9. A homozygous nonsense mutation in the {alpha}3 chain gene of laminin 5 (LAMA3) in Herlitz junctional epidermolysis bullosa: Prenatal exclusion in a fetus at risk

    SciTech Connect

    McGrath, J.A.; Ciatti, S.; Christiano, A.M.

    1995-09-01

    Mutations in the three genes (LAMA3, LAMB3, and LAMC2) that encode the three chains ({alpha}3, {Beta}3, and {gamma}2, respectively) of laminin 5, a protein involved in epidermal-dermal adhesion, have been established as the genetic basis for the inherited blistering skin disorder, Herlitz junctional epidermolysis bullosa (H-JEB). In this study, we performed mutational analysis on genomic DNA from a child with H-JEB and identified a nonsense mutation in the {alpha}3 chain gene (LAMA3) consisting of a homozygous C-to-T transition resulting in a premature termination codon (CGA {r_arrow} TGA) on both alleles. The parents were shown to be heterozygous carriers of the same mutation. Direct mutation analysis was used to perform DNA-based prenatal diagnosis from a chorionic villus biopsy at 10 weeks` gestation in a subsequent pregnancy. The fetus was predicted to be genotypically normal with respect to the LAMA3 mutation. 15 refs., 1 fig.

  10. A nonsense mutation in mouse Tardbp affects TDP43 alternative splicing activity and causes limb-clasping and body tone defects.

    PubMed

    Ricketts, Thomas; McGoldrick, Philip; Fratta, Pietro; de Oliveira, Hugo M; Kent, Rosie; Phatak, Vinaya; Brandner, Sebastian; Blanco, Gonzalo; Greensmith, Linda; Acevedo-Arozena, Abraham; Fisher, Elizabeth M C

    2014-01-01

    Mutations in TARDBP, encoding Tar DNA binding protein-43 (TDP43), cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Attempts to model TDP43 dysfunction in mice have used knockouts or transgenic overexpressors, which have revealed the difficulties of manipulating TDP43, whose level is tightly controlled by auto-regulation. In a complementary approach, to create useful mouse models for the dissection of TDP43 function and pathology, we have identified a nonsense mutation in the endogenous mouse Tardbp gene through screening an N-ethyl-N-nitrosourea (ENU) mutant mouse archive. The mutation is predicted to cause a Q101X truncation in TDP43. We have characterised Tardbp(Q101X) mice to investigate this mutation in perturbing TDP43 biology at endogenous expression levels. We found the Tardbp(Q101X) mutation is homozygous embryonic lethal, highlighting the importance of TDP43 in early development. Heterozygotes (Tardbp(+/Q101X) ) have abnormal levels of mutant transcript, but we find no evidence of the truncated protein and mice have similar full-length TDP43 protein levels as wildtype littermates. Nevertheless, Tardbp(+/Q101X) mice have abnormal alternative splicing of downstream gene targets, and limb-clasp and body tone phenotypes. Thus the nonsense mutation in Tardbp causes a mild loss-of-function phenotype and behavioural assessment suggests underlying neurological abnormalities. Due to the role of TDP43 in ALS, we investigated potential interactions with another known causative gene, mutant superoxide dismutase 1 (SOD1). Tardbp(+/Q101X) mice were crossed with the SOD1(G93Adl) transgenic mouse model of ALS. Behavioural and physiological assessment did not reveal modifying effects on the progression of ALS-like symptoms in the double mutant progeny from this cross. In summary, the Tardbp(Q101X) mutant mice are a useful tool for the dissection of TDP43 protein regulation, effects on splicing, embryonic development and neuromuscular phenotypes

  11. A Nonsense Mutation in Mouse Tardbp Affects TDP43 Alternative Splicing Activity and Causes Limb-Clasping and Body Tone Defects

    PubMed Central

    Fratta, Pietro; de Oliveira, Hugo M.; Kent, Rosie; Phatak, Vinaya; Brandner, Sebastian; Blanco, Gonzalo; Greensmith, Linda; Acevedo-Arozena, Abraham; Fisher, Elizabeth M. C.

    2014-01-01

    Mutations in TARDBP, encoding Tar DNA binding protein-43 (TDP43), cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Attempts to model TDP43 dysfunction in mice have used knockouts or transgenic overexpressors, which have revealed the difficulties of manipulating TDP43, whose level is tightly controlled by auto-regulation. In a complementary approach, to create useful mouse models for the dissection of TDP43 function and pathology, we have identified a nonsense mutation in the endogenous mouse Tardbp gene through screening an N-ethyl-N-nitrosourea (ENU) mutant mouse archive. The mutation is predicted to cause a Q101X truncation in TDP43. We have characterised TardbpQ101X mice to investigate this mutation in perturbing TDP43 biology at endogenous expression levels. We found the TardbpQ101X mutation is homozygous embryonic lethal, highlighting the importance of TDP43 in early development. Heterozygotes (Tardbp+/Q101X) have abnormal levels of mutant transcript, but we find no evidence of the truncated protein and mice have similar full-length TDP43 protein levels as wildtype littermates. Nevertheless, Tardbp+/Q101X mice have abnormal alternative splicing of downstream gene targets, and limb-clasp and body tone phenotypes. Thus the nonsense mutation in Tardbp causes a mild loss-of-function phenotype and behavioural assessment suggests underlying neurological abnormalities. Due to the role of TDP43 in ALS, we investigated potential interactions with another known causative gene, mutant superoxide dismutase 1 (SOD1). Tardbp+/Q101X mice were crossed with the SOD1G93Adl transgenic mouse model of ALS. Behavioural and physiological assessment did not reveal modifying effects on the progression of ALS-like symptoms in the double mutant progeny from this cross. In summary, the TardbpQ101X mutant mice are a useful tool for the dissection of TDP43 protein regulation, effects on splicing, embryonic development and neuromuscular phenotypes. These mice are

  12. Novel nonsense mutation (p.Ile411Metfs*12) in the SLC19A2 gene causing Thiamine Responsive Megaloblastic Anemia in an Indian patient.

    PubMed

    Manimaran, Paramasivam; Subramanian, Veedamali S; Karthi, Sellamuthu; Gandhimathi, Krishnan; Varalakshmi, Perumal; Ganesh, Ramasamy; Rathinavel, Andiappan; Said, Hamid M; Ashokkumar, Balasubramaniem

    2016-01-15

    Thiamine-responsive megaloblastic anemia (TRMA), an autosomal recessive disorder, is caused by mutations in SLC19A2 gene encodes a high affinity thiamine transporter (THTR-1). The occurrence of TRMA is diagnosed by megaloblastic anemia, diabetes mellitus, and sensorineural deafness. Here, we report a female TRMA patient of Indian descent born to 4th degree consanguineous parents presented with retinitis pigmentosa and vision impairment, who had a novel homozygous mutation (c.1232delT/ter422; p.Ile411Metfs*12) in 5th exon of SLC19A2 gene that causes premature termination of hTHTR-1. PROSITE analysis predicted to abrogate GPCRs family-1 signature motif in the variant by this mutation c.1232delT/ter422, suggesting uncharacteristic rhodopsin function leading to cause RP clinically. Thiamine transport activity by the clinical variant was severely inhibited than wild-type THTR-1. Confocal imaging had shown that the variant p.I411Mfs*12 is targeted to the cell membrane and showed no discrepancy in membrane expression than wild-type. Our findings are the first report, to the best of our knowledge, on this novel nonsense mutation of hTHTR-1 causing TRMA in an Indian patient through functionally impaired thiamine transporter activity. PMID:26549656

  13. Acute intermittent porphyria: A single-base deletion and a nonsense mutation in the human hydroxymethylbilane synthase gene, predicting truncations of the enzyme polypeptide

    SciTech Connect

    Lee, G.L.; Astrin, K.H.; Desnick, R.J.

    1995-08-28

    Acute intermittent porphyria (AIP) is an autosomal-dominant inborn error of metabolism that results from the half-normal activity of the third enzyme in the heme biosynthetic pathway, hydroxymethylbilane synthase (HMB-synthase). AIP is an ecogenetic condition, since the life-threatening acute attacks are precipitated by various factors, including drugs, alcohol, fasting, and certain hormones. Biochemical diagnosis is problematic, and the identification of mutations in the HMB-synthase gene provides accurate detection of presymptomatic heterozygotes, permitting avoidance of the acute precipitating factors. By direct solid-phase sequencing, two mutations causing AIP were identified, an adenine deletion at position 629 in exon 11(629delA), which alters the reading frame and predicts premature truncation of the enzyme protein after amino acid 255, and a nonsense mutation in exon 12 (R225X). These mutations were confirmed by either restriction enzyme analysis or family studies of symptomatic patients, permitting accurate presymptomatic diagnosis of affected relatives. 29 refs., 2 figs.

  14. An exon-based comparative variant analysis pipeline to study the scale and role of frameshift and nonsense mutation in the human-chimpanzee divergence.

    PubMed

    Yu, GongXin

    2009-01-01

    Chimpanzees and humans are closely related but differ in many deadly human diseases and other characteristics in physiology, anatomy, and pathology. In spite of decades of extensive research, crucial questions about the molecular mechanisms behind the differences are yet to be understood. Here I report ExonVar, a novel computational pipeline for Exon-based human-chimpanzee comparative Variant analysis. The objective is to comparatively analyze mutations specifically those that caused the frameshift and nonsense mutations and to assess their scale and potential impacts on human-chimpanzee divergence. Genomewide analysis of human and chimpanzee exons with ExonVar identified a number of species-specific, exon-disrupting mutations in chimpanzees but much fewer in humans. Many were found on genes involved in important biological processes such as T cell lineage development, the pathogenesis of inflammatory diseases, and antigen induced cell death. A "less-is-more" model was previously established to illustrate the role of the gene inactivation and disruptions during human evolution. Here this analysis suggested a different model where the chimpanzee-specific exon-disrupting mutations may act as additional evolutionary force that drove the human-chimpanzee divergence. Finally, the analysis revealed a number of sequencing errors in the chimpanzee and human genome sequences and further illustrated that they could be corrected without resequencing. PMID:19859573

  15. A nonsense mutation of Stim1 identified in stroke-prone spontaneously hypertensive rats decreased the store-operated calcium entry in astrocytes.

    PubMed

    Ohara, Hiroki; Nabika, Toru

    2016-08-01

    We previously identified a nonsense mutation in the stromal interaction molecule-1 (Stim1) resulting in expression of a truncated STIM1 in the stroke-prone spontaneously hypertensive rat (SHRSP). In this study, we evaluated activity of the store-operated Ca(2+)-entry (SOCE) regulated by STIM1 to clarify putative functional abnormalities of the truncated STIM1. As a result, reduced SOCE activity resulting in suppression of cyclooxygenase-2 expression induced by SOCE was found in cultured astrocytes with the truncated STIM1 when compared with those with the wild-type. Our results indicated that the truncated STIM1 impaired Ca(2+) signaling regulated by SOCE and that the impaired SOCE activity might be responsible for pathological phenotypes in SHRSP. PMID:27237974

  16. Increased Selectivity towards Cytoplasmic versus Mitochondrial Ribosome Confers Improved Efficiency of Synthetic Aminoglycosides in Fixing Damaged Genes: A Strategy for Treatment of Genetic Diseases Caused by Nonsense Mutations

    PubMed Central

    Kandasamy, Jeyakumar; Atia-Glikin, Dana; Shulman, Eli; Shapira, Katya; Shavit, Michal; Belakhov, Valery; Baasov, Timor

    2012-01-01

    Compelling evidence is now available that gentamicin and geneticin (G418) can induce mammalian ribosome to suppress disease-causing nonsense mutations and partially restore the expression of functional proteins. However, toxicity and relative lack of efficacy at subtoxic doses limit the use of gentamicin for suppression therapy. Although G418 exhibits strongest activity, it is very cytotoxic even at low doses. We describe here the first systematic development of the novel aminoglycoside (S)-11 exhibiting similar in vitro and ex vivo activity to that of G418, while its cell toxicity is significantly lower than those of gentamicin and G418. Using a series of biochemical assays, we provide proof of principle that antibacterial activity and toxicity of aminoglycosides can be dissected from their suppression activity. The data further indicate that the increased specificity towards cytoplasmic ribosome correlates with the increased activity, and that the decreased specificity towards mitochondrial ribosome confers to the lowered cytotoxicity. PMID:23148581

  17. Safety, tolerability, and pharmacokinetics of PTC124, a nonaminoglycoside nonsense mutation suppressor, following single- and multiple-dose administration to healthy male and female adult volunteers.

    PubMed

    Hirawat, Samit; Welch, Ellen M; Elfring, Gary L; Northcutt, Valerie J; Paushkin, Sergey; Hwang, Seongwoo; Leonard, Eileen M; Almstead, Neil G; Ju, William; Peltz, Stuart W; Miller, Langdon L

    2007-04-01

    Nonsense (premature stop codon) mutations are causative in 5% to 15% of patients with monogenetic inherited disorders. PTC124, a 284-Dalton 1,2,4-oxadiazole, promotes ribosomal readthrough of premature stop codons in mRNA and offers therapeutic potential for multiple genetic diseases. The authors conducted 2 phase I studies of PTC124 in 62 healthy adult volunteers. The initial, single-dose study evaluated doses of 3 to 200 mg/kg and assessed fed-fasting status on pharmacokinetics following a dose of 50 mg/kg. The subsequent multiple-dose study evaluated doses from 10 to 50 mg/kg/dose twice per day (bid) for up to 14 days. PTC124 administered orally as a liquid suspension was palatable and well tolerated through single doses of 100 mg/kg. At 150 and 200 mg/kg, PTC124 induced mild headache, dizziness, and gastrointestinal events. With repeated doses through 50 mg/kg/dose bid, reversible transaminase elevations <2 times the upper limit of normal were sometimes observed. Immunoblot analyses of peripheral blood mononuclear cell extracts revealed no protein elongation due to nonspecific ribosomal readthrough of normal stop codons. PTC124 plasma concentrations exceeding the 2- to 10-microg/mL values associated with activity in preclinical genetic disease models were safely achieved. No sex-related differences in pharmacokinetics were seen. No drug accumulation with repeated dosing was apparent. Diurnal variation was observed, with greater PTC124 exposures after evening doses. PTC124 excretion in the urine was <2%. PTC124 pharmacokinetics were described by a 1-compartment model. Collectively, the data support initiation of phase II studies of PTC124 in patients with nonsense mutation-mediated cystic fibrosis and Duchenne muscular dystrophy. PMID:17389552

  18. Two novel exonic point mutations in HEXA identified in a juvenile Tay-Sachs patient: role of alternative splicing and nonsense-mediated mRNA decay.

    PubMed

    Levit, A; Nutman, D; Osher, E; Kamhi, E; Navon, R

    2010-06-01

    We have identified three mutations in the beta-hexoseaminidase A (HEXA) gene in a juvenile Tay-Sachs disease (TSD) patient, which exhibited a reduced level of HEXA mRNA. Two mutations are novel, c.814G>A (p.Gly272Arg) and c.1305C>T (p.=), located in exon 8 and in exon 11, respectively. The third mutation, c.1195A>G (p.Asn399Asp) in exon 11, has been previously characterized as a common polymorphism in African-Americans. Hex A activity measured in TSD Glial cells, transfected with HEXA cDNA constructs bearing these mutations, was unaltered from the activity level measured in normal HEXA cDNA. Analysis of RT-PCR products revealed three aberrant transcripts in the patient, one where exon 8 was absent, one where exon 11 was absent and a third lacking both exons 10 and 11. All three novel transcripts contain frameshifts resulting in premature termination codons (PTCs). Transfection of mini-gene constructs carrying the c.814G>A and c.1305C>T mutations proved that the two mutations result in exon skipping. mRNAs that harbor a PTC are detected and degraded by the nonsense-mediated mRNA decay (NMD) pathway to prevent synthesis of abnormal proteins. However, although NMD is functional in the patient's fibroblasts, aberrant transcripts are still present. We suggest that the level of correctly spliced transcripts as well as the efficiency in which NMD degrade the PTC-containing transcripts, apparently plays an important role in the phenotype severity of the unique patient and thus should be considered as a potential target for drug therapy. PMID:20363167

  19. Nonsense mutation in the phosphofructokinase muscle subunit gene associated with retention of intron 10 in one of the isolated transcripts in Ashkenazi Jewish patients with Tarui disease.

    PubMed Central

    Vasconcelos, O; Sivakumar, K; Dalakas, M C; Quezado, M; Nagle, J; Leon-Monzon, M; Dubnick, M; Gajdusek, D C; Goldfarb, L G

    1995-01-01

    Mutations in the human phosphofructokinase muscle subunit gene (PFKM) are known to cause myopathy classified as glycogenosis type VII (Tarui disease). Previously described molecular defects include base substitutions altering encoded amino acids or resulting in abnormal splicing. We report a mutation resulting in phosphofructokinase deficiency in three patients from an Ashkenazi Jewish family. Using a reverse transcription PCR assay, PFKM subunit transcripts differing by length were detected in skeletal muscle tissue of all three affected subjects. In the longer transcript, an insertion of 252 nucleotides totally homologous to the structure of the 10th intron of the PFKM gene was found separating exon 10 from exon 11. In addition, two single base transitions were identified by direct sequencing: [exon 6; codon 95; CGA (Arg) to TGA (stop)] and [exon 7; codon 172; ACC (Thr) to ACT (Thr)] in either transcript. Single-stranded conformational polymorphism and restriction enzyme analyses confirmed the presence of these point substitutions in genomic DNA and strongly suggested homozygosity for the pathogenic allele. The nonsense mutation at codon 95 appeared solely responsible for the phenotype in these patients, further expanding genetic heterogeneity of Tarui disease. Transcripts with and without intron 10 arising from identical mutant alleles probably resulted from differential pre-mRNA processing and may represent a novel message from the PFKM gene. Images Fig. 2 Fig. 4 Fig. 5 PMID:7479776

  20. Alpha-thalassemia intellectual disability: variable phenotypic expression among males with a recurrent nonsense mutation - c.109C>T (p.R37X).

    PubMed

    Basehore, M J; Michaelson-Cohen, R; Levy-Lahad, E; Sismani, C; Bird, L M; Friez, M J; Walsh, T; Abidi, F; Holloway, L; Skinner, C; McGee, S; Alexandrou, A; Syrrou, M; Patsalis, P C; Raymond, G; Wang, T; Schwartz, C E; King, M-C; Stevenson, R E

    2015-05-01

    Alpha-thalassemia intellectual disability, one of the recognizable X-linked disability syndromes, is characterized by short stature, microcephaly, distinctive facies, hypotonic appearance, cardiac and genital anomalies, and marked skewing of X-inactivation in female carriers. With the advent of next generation sequencing, mutations have been identified that result in less severe phenotypes lacking one or more of these phenotypic manifestations. Here we report five unrelated kindreds in which a c.109C>T (p.R37X) mutation segregates with a variable but overall milder phenotype. The distinctive facial appearance of alpha-thalassemia intellectual disability was present in only one of the 18 affected males evaluated beyond the age of puberty, although suggestive facial appearance was present in several during infancy or early childhood. Although the responsible genetic alteration is a nonsense mutation in exon 2 of ATRX, the phenotype appears to be partially rescued by the production of alternative transcripts and/or other molecular mechanisms. PMID:24805811

  1. Delayed diagnosis of Townes-Brocks syndrome with multicystic kidneys and renal failure caused by a novel SALL1 nonsense mutation: A case report

    PubMed Central

    LIN, FU-JUN; LU, WEI; GALE, DANIEL; YAO, YAO; ZOU, REN; BIAN, FAN; JIANG, GENG-RU

    2016-01-01

    Townes-Brocks syndrome (TBS) is a rare autosomal dominant congenital anomaly syndrome characterized by the triad of anorectal, hand and external ear malformations. Kidney involvement is less common and may progress to end-stage renal failure (ESRF) early in life. The present study reports the case of a male patient presenting with multiple bilateral cortical kidney cysts at the age of 4 years, at which time the kidneys were of normal size and function. A clinical diagnosis of autosomal recessive polycystic kidney disease was made initially as the patient's parents are clinically healthy. However, the consideration of extra-renal involvements (imperforate anus at birth, preaxial polydactyly and dysplastic right ear) following the progression of the patient to ESRF at the age of 16 years, led to the diagnosis of TBS. This prompted sequencing of the SALL1 gene, which identified a novel heterozygous nonsense mutation in the mutational ‘hotspot’ of exon 2 (c.874C>T, p.Q292X), and this mutation was not detected in healthy controls. The current case highlights that TBS may present with normal sized, cystic kidneys in childhood, while recognition of extra-renal features of cystic kidney diseases, such as TBS, and genetic testing may facilitate the correct diagnosis and transmission mode. Reaching a correct diagnosis of as TBS is important since this condition has a 50% rate of transmission to offspring and can progress to ESRF early in life. PMID:27073431

  2. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy.

    PubMed Central

    Shiga, N; Takeshima, Y; Sakamoto, H; Inoue, K; Yokota, Y; Yokoyama, M; Matsuo, M

    1997-01-01

    The mechanism of exon skipping induced by nonsense mutations has not been well elucidated. We now report results of in vitro splicing studies which disclosed that a particular example of exon skipping is due to disruption of a splicing enhancer sequence located within the exon. A nonsense mutation (E1211X) due to a G to T transversion at the 28th nucleotide of exon 27 (G3839T) was identified in the dystrophin gene of a Japanese Becker muscular dystrophy case. Partial skipping of the exon resulted in the production of truncated dystrophin mRNA, although the consensus sequences for splicing at both ends of exon 27 were unaltered. To determine how E1211X induced exon 27 skipping, the splicing enhancer activity of purine-rich region within exon 27 was examined in an in vitro splicing system using chimeric doublesex gene pre-mRNA. The mutant sequence containing G3839T abolished splicing enhancer activity of the wild-type purine-rich sequence for the upstream intron in this chimeric pre-mRNA. An artificial polypurine oligonucleotide mimicking the purine-rich sequence of exon 27 also showed enhancer activity that was suppressed by the introduction of a T nucleotide. Furthermore, the splicing enhancer activity was more markedly inhibited when a nonsense codon was created by the inserted T residue. This is the first evidence that partial skipping of an exon harboring a nonsense mutation is due to disruption of a splicing enhancer sequence. PMID:9410897

  3. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy.

    PubMed

    Shiga, N; Takeshima, Y; Sakamoto, H; Inoue, K; Yokota, Y; Yokoyama, M; Matsuo, M

    1997-11-01

    The mechanism of exon skipping induced by nonsense mutations has not been well elucidated. We now report results of in vitro splicing studies which disclosed that a particular example of exon skipping is due to disruption of a splicing enhancer sequence located within the exon. A nonsense mutation (E1211X) due to a G to T transversion at the 28th nucleotide of exon 27 (G3839T) was identified in the dystrophin gene of a Japanese Becker muscular dystrophy case. Partial skipping of the exon resulted in the production of truncated dystrophin mRNA, although the consensus sequences for splicing at both ends of exon 27 were unaltered. To determine how E1211X induced exon 27 skipping, the splicing enhancer activity of purine-rich region within exon 27 was examined in an in vitro splicing system using chimeric doublesex gene pre-mRNA. The mutant sequence containing G3839T abolished splicing enhancer activity of the wild-type purine-rich sequence for the upstream intron in this chimeric pre-mRNA. An artificial polypurine oligonucleotide mimicking the purine-rich sequence of exon 27 also showed enhancer activity that was suppressed by the introduction of a T nucleotide. Furthermore, the splicing enhancer activity was more markedly inhibited when a nonsense codon was created by the inserted T residue. This is the first evidence that partial skipping of an exon harboring a nonsense mutation is due to disruption of a splicing enhancer sequence. PMID:9410897

  4. Tay-Sachs disease in an Arab family due to c.78G>A HEXA nonsense mutation encoding a p.W26X early truncation enzyme peptide.

    PubMed

    Haghighi, Alireza; Masri, Amira; Kornreich, Ruth; Desnick, Robert J

    2011-12-01

    Tay-Sachs disease (TSD), a pan-ethnic, autosomal recessive, neurodegenerative, lysosomal disease, results from deficient β-hexosaminidase A activity due to β-hexosaminidase α-subunit (HEXA) mutations. Prenatal/premarital carrier screening programs in the Ashkenazi Jewish community have markedly reduced disease occurrence. We report the first Jordanian Arab TSD patient diagnosed by deficient β-hexosaminidase A activity. HEXA mutation analysis revealed homozygosity for a nonsense mutation, c.78G>A (p.W26X). Previously reported in Arab patients, this mutation is a candidate for TSD screening in Arab populations. PMID:21967858

  5. FANCM c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor.

    PubMed

    Peterlongo, Paolo; Catucci, Irene; Colombo, Mara; Caleca, Laura; Mucaki, Eliseos; Bogliolo, Massimo; Marin, Maria; Damiola, Francesca; Bernard, Loris; Pensotti, Valeria; Volorio, Sara; Dall'Olio, Valentina; Meindl, Alfons; Bartram, Claus; Sutter, Christian; Surowy, Harald; Sornin, Valérie; Dondon, Marie-Gabrielle; Eon-Marchais, Séverine; Stoppa-Lyonnet, Dominique; Andrieu, Nadine; Sinilnikova, Olga M; Mitchell, Gillian; James, Paul A; Thompson, Ella; Marchetti, Marina; Verzeroli, Cristina; Tartari, Carmen; Capone, Gabriele Lorenzo; Putignano, Anna Laura; Genuardi, Maurizio; Medici, Veronica; Marchi, Isabella; Federico, Massimo; Tognazzo, Silvia; Matricardi, Laura; Agata, Simona; Dolcetti, Riccardo; Della Puppa, Lara; Cini, Giulia; Gismondi, Viviana; Viassolo, Valeria; Perfumo, Chiara; Mencarelli, Maria Antonietta; Baldassarri, Margherita; Peissel, Bernard; Roversi, Gaia; Silvestri, Valentina; Rizzolo, Piera; Spina, Francesca; Vivanet, Caterina; Tibiletti, Maria Grazia; Caligo, Maria Adelaide; Gambino, Gaetana; Tommasi, Stefania; Pilato, Brunella; Tondini, Carlo; Corna, Chiara; Bonanni, Bernardo; Barile, Monica; Osorio, Ana; Benitez, Javier; Balestrino, Luisa; Ottini, Laura; Manoukian, Siranoush; Pierotti, Marco A; Renieri, Alessandra; Varesco, Liliana; Couch, Fergus J; Wang, Xianshu; Devilee, Peter; Hilbers, Florentine S; van Asperen, Christi J; Viel, Alessandra; Montagna, Marco; Cortesi, Laura; Diez, Orland; Balmaña, Judith; Hauke, Jan; Schmutzler, Rita K; Papi, Laura; Pujana, Miguel Angel; Lázaro, Conxi; Falanga, Anna; Offit, Kenneth; Vijai, Joseph; Campbell, Ian; Burwinkel, Barbara; Kvist, Anders; Ehrencrona, Hans; Mazoyer, Sylvie; Pizzamiglio, Sara; Verderio, Paolo; Surralles, Jordi; Rogan, Peter K; Radice, Paolo

    2015-09-15

    Numerous genetic factors that influence breast cancer risk are known. However, approximately two-thirds of the overall familial risk remain unexplained. To determine whether some of the missing heritability is due to rare variants conferring high to moderate risk, we tested for an association between the c.5791C>T nonsense mutation (p.Arg1931*; rs144567652) in exon 22 of FANCM gene and breast cancer. An analysis of genotyping data from 8635 familial breast cancer cases and 6625 controls from different countries yielded an association between the c.5791C>T mutation and breast cancer risk [odds ratio (OR) = 3.93 (95% confidence interval (CI) = 1.28-12.11; P = 0.017)]. Moreover, we performed two meta-analyses of studies from countries with carriers in both cases and controls and of all available data. These analyses showed breast cancer associations with OR = 3.67 (95% CI = 1.04-12.87; P = 0.043) and OR = 3.33 (95% CI = 1.09-13.62; P = 0.032), respectively. Based on information theory-based prediction, we established that the mutation caused an out-of-frame deletion of exon 22, due to the creation of a binding site for the pre-mRNA processing protein hnRNP A1. Furthermore, genetic complementation analyses showed that the mutation influenced the DNA repair activity of the FANCM protein. In summary, we provide evidence for the first time showing that the common p.Arg1931* loss-of-function variant in FANCM is a risk factor for familial breast cancer. PMID:26130695

  6. Genome-wide SNP scan of pooled DNA reveals nonsense mutation in FGF20 in the scaleless line of featherless chickens

    PubMed Central

    2012-01-01

    Background Scaleless (sc/sc) chickens carry a single recessive mutation that causes a lack of almost all body feathers, as well as foot scales and spurs, due to a failure of skin patterning during embryogenesis. This spontaneous mutant line, first described in the 1950s, has been used extensively to explore the tissue interactions involved in ectodermal appendage formation in embryonic skin. Moreover, the trait is potentially useful in tropical agriculture due to the ability of featherless chickens to tolerate heat, which is at present a major constraint to efficient poultry meat production in hot climates. In the interests of enhancing our understanding of feather placode development, and to provide the poultry industry with a strategy to breed heat-tolerant meat-type chickens (broilers), we mapped and identified the sc mutation. Results Through a cost-effective and labour-efficient SNP array mapping approach using DNA from sc/sc and sc/+ blood sample pools, we map the sc trait to chromosome 4 and show that a nonsense mutation in FGF20 is completely associated with the sc/sc phenotype. This mutation, common to all sc/sc individuals and absent from wild type, is predicted to lead to loss of a highly conserved region of the FGF20 protein important for FGF signalling. In situ hybridisation and quantitative RT-PCR studies reveal that FGF20 is epidermally expressed during the early stages of feather placode patterning. In addition, we describe a dCAPS genotyping assay based on the mutation, developed to facilitate discrimination between wild type and sc alleles. Conclusions This work represents the first loss of function genetic evidence supporting a role for FGF ligand signalling in feather development, and suggests FGF20 as a novel central player in the development of vertebrate skin appendages, including hair follicles and exocrine glands. In addition, this is to our knowledge the first report describing the use of the chicken SNP array to map genes based on

  7. A CLN8 nonsense mutation in the whole genome sequence of a mixed breed dog with neuronal ceroid lipofuscinosis and Australian Shepherd ancestry.

    PubMed

    Guo, Juyuan; Johnson, Gary S; Brown, Holly A; Provencher, Michele L; da Costa, Ronaldo C; Mhlanga-Mutangadura, Tendai; Taylor, Jeremy F; Schnabel, Robert D; O'Brien, Dennis P; Katz, Martin L

    2014-08-01

    The neuronal ceroid lipofuscinoses (NCLs) are hereditary neurodegenerative diseases characterized by seizures and progressive cognitive decline, motor impairment, and vision loss accompanied by accumulation of autofluorescent lysosomal storage bodies in the central nervous system and elsewhere in the body. Mutations in at least 14 genes underlie the various forms of NCL. One of these genes, CLN8, encodes an intrinsic membrane protein of unknown function that appears to be localized primarily to the endoplasmic reticulum. Most CLN8 mutations in people result in a form of NCL with a late infantile onset and relatively rapid progression. A mixed breed dog with Australian Shepherd and Blue Heeler ancestry developed neurological signs characteristic of NCL starting at about 8months of age. The signs became progressively worse and the dog was euthanized at 21months of age due to seizures of increasing frequency and severity. Postmortem examination of the brain and retinas identified massive accumulations of intracellular autofluorescent inclusions characteristic of the NCLs. Whole genome sequencing of DNA from this dog identified a CLN8:c.585G>A transition that predicts a CLN8:p.Trp195* nonsense mutation. This mutation appears to be rare in both ancestral breeds. All of our 133 archived DNA samples from Blue Heelers, and 1481 of our 1488 archived Australian Shepherd DNA samples tested homozygous for the reference CLN8:c.585G allele. Four of the Australian Shepherd samples tested heterozygous and 3 tested homozygous for the mutant CLN8:c.585A allele. All 3 dogs homozygous for the A allele exhibited clinical signs of NCL and in 2 of them NCL was confirmed by postmortem evaluation of brain tissue. The occurrence of confirmed NCL in 3 of 4 CLN8:c.585A homozygous dogs, plus the occurrence of clinical signs consistent with NCL in the fourth homozygote strongly suggests that this rare truncating mutation causes NCL. Identification of this NCL-causing mutation provides the

  8. A Novel Nonsense Mutation of the AGL Gene in a Romanian Patient with Glycogen Storage Disease Type IIIa

    PubMed Central

    Zimmermann, Anca; Rossmann, Heidi; Bucerzan, Simona; Grigorescu-Sido, Paula

    2016-01-01

    Background. Glycogen storage disease type III (GSDIII) is a rare metabolic disorder with autosomal recessive inheritance, caused by deficiency of the glycogen debranching enzyme. There is a high phenotypic variability due to different mutations in the AGL gene. Methods and Results. We describe a 2.3-year-old boy from a nonconsanguineous Romanian family, who presented with severe hepatomegaly with fibrosis, mild muscle weakness, cardiomyopathy, ketotic fasting hypoglycemia, increased transaminases, creatine phosphokinase, and combined hyperlipoproteinemia. GSD type IIIa was suspected. Accordingly, genomic DNA of the index patient was analyzed by next generation sequencing of the AGL gene. For confirmation of the two mutations found, genetic analysis of the parents and grandparents was also performed. The patient was compound heterozygous for the novel mutation c.3235C>T, p.Gln1079⁎ (exon 24) and the known mutation c.1589C>G, p.Ser530⁎ (exon 12). c.3235 >T, p.Gln1079⁎ was inherited from the father, who inherited it from his mother. c.1589C>G, p.Ser530⁎ was inherited from the mother, who inherited it from her father. Conclusion. We report the first genetically confirmed case of a Romanian patient with GSDIIIa. We detected a compound heterozygous genotype with a novel mutation, in the context of a severe hepatopathy and an early onset of cardiomyopathy. PMID:26885414

  9. A Novel Nonsense Mutation of the AGL Gene in a Romanian Patient with Glycogen Storage Disease Type IIIa.

    PubMed

    Zimmermann, Anca; Rossmann, Heidi; Bucerzan, Simona; Grigorescu-Sido, Paula

    2016-01-01

    Background. Glycogen storage disease type III (GSDIII) is a rare metabolic disorder with autosomal recessive inheritance, caused by deficiency of the glycogen debranching enzyme. There is a high phenotypic variability due to different mutations in the AGL gene. Methods and Results. We describe a 2.3-year-old boy from a nonconsanguineous Romanian family, who presented with severe hepatomegaly with fibrosis, mild muscle weakness, cardiomyopathy, ketotic fasting hypoglycemia, increased transaminases, creatine phosphokinase, and combined hyperlipoproteinemia. GSD type IIIa was suspected. Accordingly, genomic DNA of the index patient was analyzed by next generation sequencing of the AGL gene. For confirmation of the two mutations found, genetic analysis of the parents and grandparents was also performed. The patient was compound heterozygous for the novel mutation c.3235C>T, p.Gln1079(⁎) (exon 24) and the known mutation c.1589C>G, p.Ser530(⁎) (exon 12). c.3235 >T, p.Gln1079(⁎) was inherited from the father, who inherited it from his mother. c.1589C>G, p.Ser530(⁎) was inherited from the mother, who inherited it from her father. Conclusion. We report the first genetically confirmed case of a Romanian patient with GSDIIIa. We detected a compound heterozygous genotype with a novel mutation, in the context of a severe hepatopathy and an early onset of cardiomyopathy. PMID:26885414

  10. A homozygous nonsense mutation in the {beta}3 chain gene of laminin 5 (LAMB3) in herlitz junctional epidermolysis bullosa

    SciTech Connect

    Pulkkinen, L.; Christiano, A.M.; Uitto, J.

    1994-11-15

    Herlitz junctional epidermolysis bullosa (H-JEB) is a severe autosomal recessive disorder characterized by blister formation within the dermal-epidermal basement membrane. Based on immunofluorescence analysis recognizing laminin 5 epitopes (previously known as nicein/kalinin), the genes for this lamina lucida protein have been proposed as candidate genes in H-JEB. Amplification of mRNA by RT-PCR, followed by direct nucleotide sequencing, revealed a homozygous C-to T transition resulting in a premature termination codon (CGA{r_arrow}TGA) on both alleles. This mutation was verified at the genomic DNA level, and both parents were shown to be heterozygous carriers of the same mutation. This is the first description of a mutation in the laminin {beta}3 chain gene (LAMB3) of laminin 5 in an H-JEB patient. 15 refs., 2 figs.

  11. A Nonsense Mutation in the Acid α-Glucosidase Gene Causes Pompe Disease in Finnish and Swedish Lapphunds

    PubMed Central

    Seppälä, Eija H.; Reuser, Arnold J. J.; Lohi, Hannes

    2013-01-01

    Pompe disease is a recessively inherited and often fatal disorder caused by the deficiency of acid α-glucosidase, an enzyme encoded by the GAA gene and needed to break down glycogen in lysosomes. This glycogen storage disease type II has been reported also in Swedish Lapphund dogs. Here we describe the genetic defect in canine Pompe disease and show that three related breeds from Scandinavia carry the same mutation. The affected dogs are homozygous for the GAA c.2237G>A mutation leading to a premature stop codon at amino acid position 746. The corresponding mutation has previously been reported in humans and causes infantile Pompe disease in combination with a second fully deleterious mutation. The affected dogs from both the Finnish as well as the Swedish breed mimic infantile-onset Pompe disease genetically, but also clinico-pathologically. Therefore this canine model provides a valuable tool for preclinical studies aimed at the development of gene therapy in Pompe disease. PMID:23457621

  12. A nonsense mutation in the acid α-glucosidase gene causes Pompe disease in Finnish and Swedish Lapphunds.

    PubMed

    Seppälä, Eija H; Reuser, Arnold J J; Lohi, Hannes

    2013-01-01

    Pompe disease is a recessively inherited and often fatal disorder caused by the deficiency of acid α-glucosidase, an enzyme encoded by the GAA gene and needed to break down glycogen in lysosomes. This glycogen storage disease type II has been reported also in Swedish Lapphund dogs. Here we describe the genetic defect in canine Pompe disease and show that three related breeds from Scandinavia carry the same mutation. The affected dogs are homozygous for the GAA c.2237G>A mutation leading to a premature stop codon at amino acid position 746. The corresponding mutation has previously been reported in humans and causes infantile Pompe disease in combination with a second fully deleterious mutation. The affected dogs from both the Finnish as well as the Swedish breed mimic infantile-onset Pompe disease genetically, but also clinico-pathologically. Therefore this canine model provides a valuable tool for preclinical studies aimed at the development of gene therapy in Pompe disease. PMID:23457621

  13. A novel nonsense CDK5RAP2 mutation in a Somali child with primary microcephaly and sensorineural hearing loss.

    PubMed

    Pagnamenta, Alistair T; Murray, Jennie E; Yoon, Grace; Sadighi Akha, Elham; Harrison, Victoria; Bicknell, Louise S; Ajilogba, Kaseem; Stewart, Helen; Kini, Usha; Taylor, Jenny C; Keays, David A; Jackson, Andrew P; Knight, Samantha J L

    2012-10-01

    Primary microcephaly is a genetically heterogeneous condition characterized by reduced head circumference (-3 SDS or more) and mild-to-moderate learning disability. Here, we describe clinical and molecular investigations of a microcephalic child with sensorineural hearing loss. Although consanguinity was unreported initially, detection of 13.7 Mb of copy neutral loss of heterozygosity (cnLOH) on chromosome 9 implicated the CDK5RAP2 gene. Targeted sequencing identified a homozygous E234X mutation, only the third mutation to be described in CDK5RAP2, the first in an individual of non-Pakistani descent. Sensorineural hearing loss is not generally considered to be consistent with autosomal recessive microcephaly and therefore it seems likely that the deafness in this individual is caused by the co-occurrence of a further gene mutation, independent of CDK5RAP2. Nevertheless, further detailed clinical descriptions of rare CDK5RAP2 patients, including hearing assessments will be needed to resolve fully the phenotypic range associated with mutations in this gene. This study also highlights the utility of SNP-array testing to guide disease gene identification where an autosomal recessive condition is plausible. PMID:22887808

  14. Mutations in SMG9, Encoding an Essential Component of Nonsense-Mediated Decay Machinery, Cause a Multiple Congenital Anomaly Syndrome in Humans and Mice.

    PubMed

    Shaheen, Ranad; Anazi, Shams; Ben-Omran, Tawfeg; Seidahmed, Mohammed Zain; Caddle, L Brianna; Palmer, Kristina; Ali, Rehab; Alshidi, Tarfa; Hagos, Samya; Goodwin, Leslie; Hashem, Mais; Wakil, Salma M; Abouelhoda, Mohamed; Colak, Dilek; Murray, Stephen A; Alkuraya, Fowzan S

    2016-04-01

    Nonsense-mediated decay (NMD) is an important process that is best known for degrading transcripts that contain premature stop codons (PTCs) to mitigate their potentially harmful consequences, although its regulatory role encompasses other classes of transcripts as well. Despite the critical role of NMD at the cellular level, our knowledge about the consequences of deficiency of its components at the organismal level is largely limited to model organisms. In this study, we report two consanguineous families in which a similar pattern of congenital anomalies was found to be most likely caused by homozygous loss-of-function mutations in SMG9, encoding an essential component of the SURF complex that generates phospho-UPF1, the single most important step in NMD. By knocking out Smg9 in mice via CRISPR/Cas9, we were able to recapitulate the major features of the SMG9-related multiple congenital anomaly syndrome we observed in humans. Surprisingly, human cells devoid of SMG9 do not appear to have reduction of PTC-containing transcripts but do display global transcriptional dysregulation. We conclude that SMG9 is required for normal human and murine development, most likely through a transcriptional regulatory role, the precise nature of which remains to be determined. PMID:27018474

  15. Moderation of phenotypic severity in dystrophic and junctional forms of epidermolysis bullosa through in-frame skipping of exons containing non-sense or frameshift mutations.

    PubMed

    McGrath, J A; Ashton, G H; Mellerio, J E; Salas-Alanis, J C; Swensson, O; McMillan, J R; Eady, R A

    1999-09-01

    Non-sense mutations on both alleles of either the type VII collagen gene (COL7A1) or the genes encoding laminin 5 (LAMA3, LAMB3, or LAMC2) usually result in clinically severe forms of recessive dystrophic or junctional epidermolysis bullosa, respectively. In this study we assessed two unrelated families whose mutations in genomic DNA predicted severe recessive dystrophic epidermolysis bullosa or junctional epidermolysis bullosa phenotypes but in whom the manifestations were milder than expected. The recessive dystrophic epidermolysis bullosa patients had a homozygous single base-pair frameshift mutation in exon 19 of COL7A1 (2470insG). Clinically, there was generalized blistering but only mild scarring. Skin biopsy revealed positive type VII collagen immunoreactivity and recognizable anchoring fibrils. The junctional epidermolysis bullosa patients were compound heterozygotes for a frameshift/non-sense combination of mutations in exons 3 and 17 of LAMB3 (29insC/Q834X). These patients did not have the lethal form of junctional epidermolysis bullosa but, as adults, displayed the milder generalized atrophic benign epidermolysis bullosa variant. There was undetectable laminin 5 staining at the dermal-epidermal junction using an antibody to the beta3 chain, but faintly positive alpha3 and gamma2 chain labeling, and there was variable hypoplasia of hemidesmosomes. To explain the milder recessive dystrophic epidermolysis bullosa and junctional epidermolysis bullosa phenotypes in these families, reverse transcription-polymerase chain reaction, using RNA extracted from frozen skin, was able to provide evidence for some rescue of mutant mRNA transcripts with restoration of the open- reading frame. In the recessive dystrophic epidermolysis bullosa patients, transcripts containing in-frame skipping of exon 19 of COL7A1 in the cDNA were detected, and in the junctional epidermolysis bullosa patients transcripts with in-frame skipping of exon 17 of LAMB3 were identified. The

  16. Case Report: Compound heterozygous nonsense mutations in TRMT10A are associated with microcephaly, delayed development, and periventricular white matter hyperintensities.

    PubMed

    Narayanan, Mohan; Ramsey, Keri; Grebe, Theresa; Schrauwen, Isabelle; Szelinger, Szabolcs; Huentelman, Matthew; Craig, David; Narayanan, Vinodh

    2015-01-01

    Microcephaly is a fairly common feature observed in children with delayed development, defined as head circumference less than 2 standard deviations below the mean for age and gender. It may be the result of an acquired insult to the brain, such prenatal or perinatal brain injury (congenital infection or hypoxic ischemic encephalopathy), or be a part of a genetic syndrome. There are over 1000 conditions listed in OMIM (Online Mendelian Inheritance in Man) where microcephaly is a key finding; many of these are associated with specific somatic features and non-CNS anomalies. The term primary microcephaly is used when microcephaly and delayed development are the primary features, and they are not part of another recognized syndrome. In this case report, we present the clinical features of siblings (brother and sister) with primary microcephaly and delayed development, and subtle dysmorphic features. Both children had brain MRI studies that showed periventricular and subcortical T2/FLAIR hyperintensities, without signs of white matter volume loss, and no parenchymal calcifications by CT scan. The family was enrolled in a research study for whole exome sequencing of probands and parents. Analysis of variants determined that the children were compound heterozygotes for nonsense mutations, c.277C>T (p.Arg93*) and c.397C>T (p.Arg133*), in the TRMT10A gene. Mutations in this gene have only recently been reported in children with microcephaly and early onset diabetes mellitus. Our report adds to current knowledge of TRMT10A related neurodevelopmental disorders and demonstrates imaging findings suggestive of delayed or abnormal myelination of the white matter in this disorder. Accurate diagnosis through genomic testing, as in the children described here, allows for early detection and management of medical complications, such as diabetes mellitus. PMID:26535115

  17. Case Report: Compound heterozygous nonsense mutations in TRMT10A are associated with microcephaly, delayed development, and periventricular white matter hyperintensities

    PubMed Central

    Narayanan, Mohan; Ramsey, Keri; Grebe, Theresa; Schrauwen, Isabelle; Szelinger, Szabolcs; Huentelman, Matthew; Craig, David; Narayanan, Vinodh

    2015-01-01

    Microcephaly is a fairly common feature observed in children with delayed development, defined as head circumference less than 2 standard deviations below the mean for age and gender. It may be the result of an acquired insult to the brain, such prenatal or perinatal brain injury (congenital infection or hypoxic ischemic encephalopathy), or be a part of a genetic syndrome. There are over 1000 conditions listed in OMIM (Online Mendelian Inheritance in Man) where microcephaly is a key finding; many of these are associated with specific somatic features and non-CNS anomalies. The term primary microcephaly is used when microcephaly and delayed development are the primary features, and they are not part of another recognized syndrome. In this case report, we present the clinical features of siblings (brother and sister) with primary microcephaly and delayed development, and subtle dysmorphic features. Both children had brain MRI studies that showed periventricular and subcortical T2/FLAIR hyperintensities, without signs of white matter volume loss, and no parenchymal calcifications by CT scan. The family was enrolled in a research study for whole exome sequencing of probands and parents. Analysis of variants determined that the children were compound heterozygotes for nonsense mutations, c.277C>T (p.Arg93*) and c.397C>T (p.Arg133*), in the TRMT10A gene. Mutations in this gene have only recently been reported in children with microcephaly and early onset diabetes mellitus. Our report adds to current knowledge of TRMT10A related neurodevelopmental disorders and demonstrates imaging findings suggestive of delayed or abnormal myelination of the white matter in this disorder. Accurate diagnosis through genomic testing, as in the children described here, allows for early detection and management of medical complications, such as diabetes mellitus. PMID:26535115

  18. Anti-Müllerian hormone Bruxelles: a nonsense mutation associated with the persistent Müllerian duct syndrome.

    PubMed Central

    Knebelmann, B; Boussin, L; Guerrier, D; Legeai, L; Kahn, A; Josso, N; Picard, J Y

    1991-01-01

    The persistent Müllerian duct syndrome (PMDS) is characterized by the persistence of Müllerian derivatives, uterus and tubes, in otherwise normally virilized males. In a previous study, we showed that this syndrome is heterogeneous, with lack of production of anti-Müllerian hormone (AMH) by testicular tissue accounting for only some, AMH-negative, cases of this disorder. We have characterized the point mutation responsible for an AMH-negative PMDS in three siblings: a guanine to thymine transversion at position 2096 in the fifth exon changes a GAA triplet, coding for glutamic acid, to a TAA stop codon. The mutation could also be recognized, using the polymerase chain reaction, on RNA produced in trace amounts by a lymphoblastic cell line. The translation product, although undetectable in testicular tissue, could be visualized in culture medium of cells transfected with the mutant gene. Images PMID:2023927

  19. Identification of a Novel NLRP12 Nonsense Mutation (Trp408X) in the Extremely Rare Disease FCAS by Exome Sequencing

    PubMed Central

    Xia, Xiaoru; Dai, Caijun; Zhu, Xiaochun; Liao, Qiumei; Luo, Xu; Fu, Yangyang; Wang, Liangxing

    2016-01-01

    Familial cold autoinflammatory syndrome (FCAS) is an extremely rare autosomal dominant inherited disease. Although there are four genes that have been linked with FCAS, its molecular diagnosis has been challenging in a relatively large proportion of cases. In this study, we aimed to investigate the genetic defect of a recruited FCAS family using exome sequencing followed by in-depth bioinformatics analysis. As a result, a novel heterozygous stop-gain mutation (Trp408X) in NLRP12 was identified in autosomal dominant inherited FCAS with clinical features of recurrent fever and skin urticaria due to cold conditions. When combined with previous studies, all of the reported mutations were found to have occurred in a highly conserved region in the NACHT domain coding sequence in NLRP12 exon 3, suggesting that a screening strategy for FCAS should focus on this area of the gene. In conclusion, this study demonstrates the importance of exome sequencing for clinical diagnosis of genetic disorders and provides molecular insight into FCAS treatment and diagnosis. PMID:27314497

  20. Homozygosity for a novel adenosine deaminase (ADA) nonsense mutation (Q3>X) in a child with severe combined immunodeficiency (SCID)

    SciTech Connect

    Santisteban, I.; Arrendondo-Vega, F.X.; Kelly, S. |

    1994-09-01

    A Somali girl was diagnosed with ADA-deficient SCID at 7 mo; she responded well to PEG-ADA replacement and is now 3.3 yr old. ADA mRNA was undetectable (Northern) in her cultured T cells, but was present in T cells of her parents and two sibs. All PCR-amplified exon 1 genomic clones from the patient had a C>T transition at bp 7 relative to the start of translation, replacing Gln at codon 3 (AGA) with a termination codon (TGA, Q3>X). Patient cDNA (prepared by RT-PCR with a 5{prime} primer that covered codons 1-7) had a previously described polymorphism, K80>R, but was otherwise normal, indicating that no other coding mutations were present. A predicted new genomic BfaI restriction site was used to establish her homozygosity for Q3>X and to analyze genotypes of family members. We also analyzed the segregation of a variable Alu polyA-associated TAAA repeat (AluVpA) situated 5{prime} of the ADA gene. Three different AluVpA alleles were found, one of which was only present in the father and was not associated with his Q3>X allele. Because the father`s RBCs had only {approximately}15% of normal ADA activity, we analyzed his ADA cDNA. We found a G>A transition at bp 425 that substitutes Gln for Arg142, a solvent-accessible residue, and eliminates a BsmAI site in exon 5. ADA activity of the R142>Q in vitro translation product was 20-25% of wild type ADA translation product, suggesting that R142>Q is a new {open_quote}partial{close_quote} ADA deficiency mutation. As expected, Q3>X mRNA did not yield a detectable in vitro translation product. We conclude that the patient`s father is a compound heterozygote carrying the ADA Q3>X/R142>Q genotype. {open_quote}Partial{close_quote} ADA deficiency unassociated with immunodeficiency is relatively common in individuals of African descent. The present findings and previous observations suggest that {open_quote}partial{close_quote} ADA deficiency may have had an evolutionary advantage.

  1. A Nonsense Mutation in a Cinnamyl Alcohol Dehydrogenase Gene Is Responsible for the Sorghum brown midrib6 Phenotype1[W][OA

    PubMed Central

    Sattler, Scott E.; Saathoff, Aaron J.; Haas, Eric J.; Palmer, Nathan A.; Funnell-Harris, Deanna L.; Sarath, Gautam; Pedersen, Jeffrey F.

    2009-01-01

    brown midrib6 (bmr6) affects phenylpropanoid metabolism, resulting in reduced lignin concentrations and altered lignin composition in sorghum (Sorghum bicolor). Recently, bmr6 plants were shown to have limited cinnamyl alcohol dehydrogenase activity (CAD; EC 1.1.1.195), the enzyme that catalyzes the conversion of hydroxycinnamoyl aldehydes (monolignals) to monolignols. A candidate gene approach was taken to identify Bmr6. Two CAD genes (Sb02g024190 and Sb04g005950) were identified in the sorghum genome based on similarity to known CAD genes and through DNA sequencing a nonsense mutation was discovered in Sb04g005950 that results in a truncated protein lacking the NADPH-binding and C-terminal catalytic domains. Immunoblotting confirmed that the Bmr6 protein was absent in protein extracts from bmr6 plants. Phylogenetic analysis indicated that Bmr6 is a member of an evolutionarily conserved group of CAD proteins, which function in lignin biosynthesis. In addition, Bmr6 is distinct from the other CAD-like proteins in sorghum, including SbCAD4 (Sb02g024190). Although both Bmr6 and SbCAD4 are expressed in sorghum internodes, an examination of enzymatic activity of recombinant Bmr6 and SbCAD4 showed that Bmr6 had 1 to 2 orders of magnitude greater activity for monolignol substrates. Modeling of Bmr6 and SbCAD4 protein structures showed differences in the amino acid composition of the active site that could explain the difference in enzyme activity. These differences include His-57, which is unique to Bmr6 and other grass CADs. In summary, Bmr6 encodes the major CAD protein involved in lignin synthesis in sorghum, and the bmr6 mutant is a null allele. PMID:19363091

  2. Recurrence of pulmonary alveolar proteinosis after bilateral lung transplantation in a patient with a nonsense mutation in CSF2RB.

    PubMed

    Takaki, Masahiro; Tanaka, Takeshi; Komohara, Yoshihiro; Tsuchihashi, Yoshiko; Mori, Daisuke; Hayashi, Kentaro; Fukuoka, Junya; Yamasaki, Naoya; Nagayasu, Takeshi; Ariyoshi, Koya; Morimoto, Konosuke; Nakata, Koh

    2016-01-01

    Hereditary pulmonary alveolar proteinosis (PAP) caused by mutations in CSF2RA or CSF2RB, which encode GM-CSF receptor α and β respectively, is a rare disease. Although some experimental therapeutic strategies have been proposed, no clinical evidence has yet been reported. We herein describe the clinical course and recurrence of hereditary PAP after lung transplantation. A 36-year-old woman developed PAP of unknown etiology. She underwent bilateral lung transplantation from living donors at the age of 42 years because of severe respiratory failure complicated by pulmonary fibrosis. However, PAP recurred after 9 months, and we found that donor-origin alveolar macrophages had been almost completely replaced with recipient-origin macrophages. We performed a genetic analysis and identified a point deletion in the CSF2RB gene that caused a GM-CSF receptor-mediated signaling defect. PAP progressed with fibrosis in both transplanted lungs, and the patient died of respiratory failure 5 years after the lung transplantation. Distinct from recent reports on pulmonary macrophage transplantation in mice, this case suggests that human alveolar macrophages might not maintain their population only by self-renewal but may depend on a supply of precursor cells from the circulation. Bone marrow transplantation should be considered for treatment of severe PAP with GM-CSF receptor gene deficiency. PMID:27595063

  3. Sense and Nonsense in HPT

    ERIC Educational Resources Information Center

    Brethower, Dale

    2004-01-01

    Sense and nonsense is abound in human performance technology (HPT). There is no single cause of the abundance of nonsense. However, there is a reason that nonsense is more abundant than sense. The reason is that any principle has a specific domain of applicability. Within that domain it is sense. Outside that domain it is nonsense. Some…

  4. The first family with Tay-Sachs disease in Cyprus: Genetic analysis reveals a nonsense (c.78G>A) and a silent (c.1305C>T) mutation and allows preimplantation genetic diagnosis.

    PubMed

    Georgiou, Theodoros; Christopoulos, George; Anastasiadou, Violetta; Hadjiloizou, Stavros; Cregeen, David; Jackson, Marie; Mavrikiou, Gavriella; Kleanthous, Marina; Drousiotou, Anthi

    2014-12-01

    Tay-Sachs disease (TSD) is a recessively inherited neurodegenerative disorder caused by mutations in the HEXA gene resulting in β-hexosaminidase A (HEX A) deficiency and neuronal accumulation of GM2 ganglioside. We describe the first patient with Tay-Sachs disease in the Cypriot population, a juvenile case which presented with developmental regression at the age of five. The diagnosis was confirmed by measurement of HEXA activity in plasma, peripheral leucocytes and fibroblasts. Sequencing the HEXA gene resulted in the identification of two previously described mutations: the nonsense mutation c.78G>A (p.Trp26X) and the silent mutation c.1305C>T (p.=). The silent mutation was reported once before in a juvenile TSD patient of West Indian origin with an unusually mild phenotype. The presence of this mutation in another juvenile TSD patient provides further evidence that it is a disease-causing mutation. Successful preimplantation genetic diagnosis (PGD) and prenatal follow-up were provided to the couple. PMID:25606403

  5. Edward Lear, Limericks, and Nonsense: A Little Nonsense. [Lesson Plan].

    ERIC Educational Resources Information Center

    2002

    British poet Edward Lear (1812-1888) is widely recognized as the father of the limerick form of poetry and is well known for his nonsense poems. In the first lesson for grades 3-5, which focuses on Lear's nonsense poem "The Owl and the Pussy Cat," students learn about nonsense poetry as well as the various poetic techniques and devices that poets…

  6. Rare Autosomal Recessive Cardiac Valvular Form of Ehlers-Danlos Syndrome Results from Mutations in the COL1A2 Gene That Activate the Nonsense-Mediated RNA Decay Pathway

    PubMed Central

    Schwarze, Ulrike; Hata, Ryu-Ichiro; McKusick, Victor A.; Shinkai, Hiroshi; Hoyme, H. Eugene; Pyeritz, Reed E.; Byers, Peter H.

    2004-01-01

    Splice site mutations in the COL1A2 gene of type I collagen can give rise to forms of Ehlers-Danlos syndrome (EDS) because of partial or complete skipping of exon 6, as well as to mild, moderate, or lethal forms of osteogenesis imperfecta as a consequence of skipping of other exons. We identified three unrelated individuals with a rare recessively inherited form of EDS (characterized by joint hypermobility, skin hyperextensibility, and cardiac valvular defects); in two of them, COL1A2 messenger RNA (mRNA) instability results from compound heterozygosity for splice site mutations in the COL1A2 gene, and, in the third, it results from homozygosity for a nonsense codon. The splice site mutations led to use of cryptic splice donor sites, creation of a downstream premature termination codon, and extremely unstable mRNA. In the wild-type allele, the two introns (IVS11 and IVS24) in which these mutations occurred were usually spliced slowly in relation to their respective immediate upstream introns. In the mutant alleles, the upstream intron was removed, so that exon skipping could not occur. In the context of the mutation in IVS24, computer-generated folding of a short stretch of mRNA surrounding the mutation site demonstrated realignment of the relationships between the donor and acceptor sites that could facilitate use of a cryptic donor site. These findings suggest that the order of intron removal is an important variable in prediction of mutation outcome at splice sites and that folding of the nascent mRNA could be one element that contributes to determination of order of splicing. The complete absence of proα2(I) chains has the surprising effect of producing cardiac valvular disease without bone involvement. PMID:15077201

  7. Rimas Tontas. (Nonsense Rhymes)

    ERIC Educational Resources Information Center

    Galarza, Ernesto

    Part of the series "Coleccion Mini-Libros" (Mini-Book Collection), the booklet is a compilation of 50 short nonsense verses written in Spanish. The author and The Southwest Council of La Raza offer the collection for the use of parents and teachers dedicated to stimulating interest in Spanish among the youth of our country. (EJ)

  8. Mutation analysis of the cystic fibrosis transmembrane regulator gene in native American populations of the southwest

    SciTech Connect

    Grebe, T.A. Maricopa Medical Center, Phoenix, AZ ); Doane, W.W.; Norman, R.A.; Rhodes, S.N. ); Richter, S.F. ); Clericuzio, C. ); Seltzer, W.K. ); Goldberg, B.E. ); Hernried, L.S. ); McClure, M.; Kaplan, G.

    1992-10-01

    The authors report DNA and clinical analysis of cystic fibrosis (CF) in two previously unstudied, genetically isolated populations: Pueblo and Navajo Native Americans. Direct mutation analysis of six mutations of the CFTR gene - namely, [Delta]F508, G542X, G551D, R553X, N1303K, and W1282X - was performed on PCR-amplified genomic DNA extracted from blood samples. Haplotype analyses with marker/enzyme pairs XV2c/TaqI and KM29/PstI were performed as well. Of the 12 affected individuals studied, no [Delta]F508 mutation was detected; only one G542X mutation was found. None of the other mutations was detected. All affected individuals have either an AA, AC, or CC haplotype, except for the one carrying the G542X mutation, who has the haplotye AB. Clinically, six of the affected individuals examined exhibit growth deficiency, and five (all from the Zuni Pueblo) have a severe CF phenotype. Four of the six Zunis with CF are also microcephalic, a finding not previously noted in CF patients. The DNA data have serious implications for risk assessment of CF carrier status for these people. 14 refs., 3 tabs.

  9. Clinicopathological and Targeted Exome Gene Features of a Patient with Metastatic Acinic Cell Carcinoma of the Parotid Gland Harboring an ARID2 Nonsense Mutation and CDKN2A/B Deletion

    PubMed Central

    Warner, Wayne A.; Wong, Deborah J.; Palma-Diaz, Fernando; Shibuya, Terry Y.; Momand, Jamil

    2015-01-01

    We describe the presentation, treatment, clinical outcome, and targeted genome analysis of a metastatic salivary acinic cell carcinoma (AciCC). A 71-year-old male presented with a 3 cm right tail of a parotid lesion, first detected as a nodule by the patient seven months earlier. He had a right total parotidectomy with cranial nerve VII resection, right facial nerve resection and grafting, resection of the right conchal cartilage, and right modified radical neck dissection. The primary tumor revealed AciCC with two distinct areas: a well-differentiated component with glandular architecture and a dedifferentiated component with infiltrative growth pattern associated with prominent stromal response, necrosis, perineural invasion, and cellular pleomorphism. Tumor staging was pT4 N0 MX. Immunohistochemistry staining showed pankeratin (+), CD56 (−), and a Ki67 proliferation index of 15%. Upon microscopic inspection, 49 local lymph nodes resected during parotidectomy were negative for cancer cells. Targeted sequencing of the primary tumor revealed deletions of CDKN2A and CDKN2B, a nonsense mutation in ARID2, and single missense mutations of unknown significance in nine other genes. Despite postoperative localized radiation treatment, follow-up whole body PET/CT scan showed lung, soft tissue, bone, and liver metastases. The patient expired 9 months after resection of the primary tumor. PMID:26634163

  10. SNaPshot Assay for the Detection of the Most Common CFTR Mutations in Infertile Men

    PubMed Central

    Mircevska, Marija; Plaseski, Toso; Filipovski, Vanja; Plaseska-Karanfilska, Dijana

    2014-01-01

    Congenital bilateral absence of vas deferens (CBAVD) is the most common CFTR-related disorder (CFTR-RD) that explains about 1–2% of the male infertility cases. Controversial data have been published regarding the involvement of CFTR mutations in infertile men with non-obstructive azoospermia and oligozoospermia. Here, we describe single base extension (SNaPshot) assay for detection of 11 common CFTR mutations: F508del, G542X, N1303K, 621+1G->T, G551D, R553X, R1162X, W1282X, R117H, 2184insA and 1717-1G->A and IVS8polyT variants. The assay was validated on 50 previously genotyped samples and was used to screen a total of 369 infertile men with different impairment of spermatogenesis and 136 fertile controls. Our results show that double heterozygosity of cystic fibrosis (CF) and CFTR-related disorder (CFTR-RD) mutations are found in a high percentage (22.7%) of infertile men with obstructive azoospermia, but not in other studied groups of infertile men. The SNaPshot assay described here is an inexpensive, fast and robust method for primary screening of the most common CFTR mutations both in patients with classical CF and CFTR-RD. It can contribute to better understanding of the role of CFTR mutations in impaired spermatogenesis, ultimately leading to improved management of infertile men. PMID:25386751

  11. Ethnic heterogeneity and cystic fibrosis transmembrane regulator (CFTR) mutation frequencies in Chicago-area CF families.

    PubMed Central

    Ober, C; Lester, L A; Mott, C; Billstrand, C; Lemke, A; van der Ven, K; Marcus, S; Kraut, J; Lloyd-Still, J; Booth, C

    1992-01-01

    The identification of a common mutation, delta F508, in the CFTR gene allowed, for the first time, the detection of cystic fibrosis (CF) carriers in the general population. Further genetic studies revealed > 100 additional disease-causing mutations in this gene, few of which occur on > 1% of CF chromosomes in any ethnic group. Prior to establishing counseling guidelines and carrier risk assessments, we sought to establish the frequencies of the CFTR mutations that are present in CF families living in the Chicago area, a region notable for its ethnic heterogeneity. Our sample included 283 unrelated CF carriers, with the following ethnic composition: 78% non-Ashkenazi Caucasians, 5% Ashkenazi, 9% African-American, 3% Mexican, 0.3% Native American, and 5% mixed ancestry. When a panel of 10 mutations (delta F508, delta I507, G542X, G551D, R553X, S549N, R1162X, W1282X, N1303K, and 1717-1G-->A) was used, detection rates ranged from 75% in non-Ashkenazi Caucasians to 40% in African-Americans. These data suggest that the goal of screening for 90%-95% of CF mutations may be unrealistic in this and other, similar U.S. populations. PMID:1281385

  12. Ethnic heterogeneity and cystic fibrosis transmembrane regulator (CFTR) mutation frequencies in Chicago-area CF families

    SciTech Connect

    Ober, C.; Lester, L.A.; Mott, C.; Billstrand, C.; Lemke, A.; Ven, K. van der ); Marcus, S.; Kraut, J.; Booth, C. ); Lloyd-Still, J. )

    1992-12-01

    The identification of a common mutation, [Delta]F508, in the CFTR gene allowed, for the first time, the detection of cystic fibrosis (CF) carriers in the general population. Further genetic studies revealed >100 additional disease-causing mutations in this gene, few of which occur on >1% of CF chromosomes in any ethnic group. Prior to establishing counseling guidelines and carrier risk assessments, the authors sought to establish the frequencies of the CFTR mutations that are present in CF families living in the Chicago are, a region notable for its ethnic heterogeneity. Their sample included 283 unrelated CF carriers, with the following ethnic composition: 78% non-Ashkenazi Caucasians, 5% Ashkenazi, 9% African-American, 3% Mexican, 0.3% Native American, and 5% mixed ancestry. When a panel of 10 mutations ([Delta]F508, [Delta]I507, G542X, G551D, R553X, S549N, R1162X, W1282X, N1303K, and 1717-1G[r arrow]A) was used, detection rates ranged from 75% in non-Ashkenazi Caucasians to 40% in African-Americans. These data suggest that the goal of screening for 90%-95% of CF mutations may be unrealistic in this and other, similar US populations. 22 refs., 1 tab.

  13. A recurrent homozygous nonsense mutation within the LAMA3 gene as a cause of Herlitz junctional epidermolysis bullosa in patients of Pakistani ancestry: evidence for a founder effect.

    PubMed

    McGrath, J A; Kivirikko, S; Ciatti, S; Moss, C; Christiano, A M; Uitto, J

    1996-04-01

    The anchoring filament protein laminin 5 is abnormally expressed in the skin of patients with Herlitz junctional epidermolysis bullosa (H-JEB). In this study, we performed mutational analysis on genomic DNA from a H-JEB child of first-cousin Pakistani parents, and identified a homozygous C-to-T transition in the LAMA3 gene of laminin 5 resulting in a premature termination codon (CGA-TGA) on both alleles. This mutation, R650X, has been previously reported in two other seemingly unrelated H-JEB individuals of Pakistani ancestry. Although this mutation may represent a mutational hotspot within the LAMA3 gene, haplotype analysis based on a silent intragenic polymorphism (GCC/GCG, alanine 429; GenBank no. L34155), and on three flanking microsatellite polymorphism (D18S45, D18S478, and D18S480), suggests that a common ancestral allele may be present in all three cases. PMID:8618022

  14. Gonadal dysgenesis without adrenal insufficiency in a 46, XY patient heterozygous for the nonsense C16X mutation: a case of SF1 haploinsufficiency.

    PubMed

    Mallet, Delphine; Bretones, Patricia; Michel-Calemard, Laurence; Dijoud, Frederique; David, Michel; Morel, Yves

    2004-10-01

    Targeted disruption of the orphan nuclear receptor SF1 results in the absence of adrenals and gonads, establishing that this transcription factor is implicated in gonadal determination and adrenal development. Four human SF1 gene mutations have been described to date: three (G35E, R92Q, R255L) were responsible for adrenal insufficiency associated with a gonadal dysgenesis in two 46, XY individuals, one (8 bp deletion in exon 6) resulted in gonadal dysgenesis without adrenal insufficiency. We identified a new heterozygous SF1 gene mutation, C16X, in a 46, XY patient showing gonadal dysgenesis with normal adrenal function: low basal levels of AMH and testosterone (T), weak T response to hCG, hypoplastic testes with abundant seminiferous tubules but rare germ cells. This mutation causes premature termination of translation and should abolish all SF1 activity. Therefore haploinsufficiency could explain the deleterious effect of this mutation in our patient suggesting that testis development is more SF1 dose-dependent than adrenal development. Although the same mechanism explains the deleterious effects of SF1 missense mutations, recent studies have demonstrated an additional dominant negative effect. These data suggest that heterozygous mutation impaired adrenal development only if the two mechanisms, gene dosage and dominant negative effects occur. PMID:15472171

  15. Nonsense mutations in the alcohol dehydrogenase gene of Drosophila melanogaster correlate with an abnormal 3' end processing of the corresponding pre-mRNA.

    PubMed Central

    Brogna, S

    1999-01-01

    From bacteria to mammals, mutations that generate premature termination codons have been shown to result in the reduction in the abundance of the corresponding mRNA. In mammalian cells, more often than not, the reduction happens while the RNA is still associated with the nucleus. Here, it is reported that mutations in the alcohol dehydrogenase gene (Adh) of Drosophila melanogaster that generate premature termination codons lead to reduced levels of cytoplasmic and nuclear mRNA. Unexpectedly, it has been found that the poly(A) tails of Adh mRNAs and pre-mRNAs that carry a premature termination codon are longer than in the wild-type transcript. The more 5' terminal the mutation is, the longer is the poly(A) tail of the transcript. These findings suggest that the integrity of the coding region may be required for accurate mRNA 3' end processing. PMID:10199572

  16. Identification of a nonsense mutation in APAF1 that is likely causal for a decrease in reproductive efficiency in Holstein dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A haplotype on cattle chromosome 5 carrying a recessive lethal allele was found to originate in a Holstein-Friesian foundation sire. Resequencing led to the identification of a stop-gain mutation in exon 11 of APAF1, a gene known to cause embryonic lethality and neurodevelopmental abnormalities in ...

  17. Exome sequencing identifies a nonsense mutation in Fam46a associated with bone abnormalities in a new mouse model for skeletal dysplasia.

    PubMed

    Diener, Susanne; Bayer, Sieglinde; Sabrautzki, Sibylle; Wieland, Thomas; Mentrup, Birgit; Przemeck, Gerhard K H; Rathkolb, Birgit; Graf, Elisabeth; Hans, Wolfgang; Fuchs, Helmut; Horsch, Marion; Schwarzmayr, Thomas; Wolf, Eckhard; Klopocki, Eva; Jakob, Franz; Strom, Tim M; Hrabě de Angelis, Martin; Lorenz-Depiereux, Bettina

    2016-04-01

    We performed exome sequencing for mutation discovery of an ENU (N-ethyl-N-nitrosourea)-derived mouse model characterized by significant elevated plasma alkaline phosphatase (ALP) activities in female and male mutant mice, originally named BAP014 (bone screen alkaline phosphatase #14). We identified a novel loss-of-function mutation within the Fam46a (family with sequence similarity 46, member A) gene (NM_001160378.1:c.469G>T, NP_001153850.1:p.Glu157*). Heterozygous mice of this mouse line (renamed Fam46a (E157*Mhda)) had significantly high ALP activities and apparently no other differences in morphology compared to wild-type mice. In contrast, homozygous Fam46a (E157*Mhda) mice showed severe morphological and skeletal abnormalities including short stature along with limb, rib, pelvis, and skull deformities with minimal trabecular bone and reduced cortical bone thickness in long bones. ALP activities of homozygous mutants were almost two-fold higher than in heterozygous mice. Fam46a is weakly expressed in most adult and embryonic tissues with a strong expression in mineralized tissues as calvaria and femur. The FAM46A protein is computationally predicted as a new member of the superfamily of nucleotidyltransferase fold proteins, but little is known about its function. Fam46a (E157*Mhda) mice are the first mouse model for a mutation within the Fam46a gene. PMID:26803617

  18. Nonsense mutation at Tyr-4046 in the DNA-dependent protein kinase catalytic subunit of severe combined immune deficiency mice

    PubMed Central

    Araki, Ryoko; Fujimori, Akira; Hamatani, Kiyohiro; Mita, Kazuei; Saito, Toshiyuki; Mori, Masahiko; Fukumura, Ryutaro; Morimyo, Mitsuoki; Muto, Masahiro; Itoh, Masahiro; Tatsumi, Kouichi; Abe, Masumi

    1997-01-01

    The severe combined immune deficiency (SCID) mouse was reported as an animal model for human immune deficiency. Through the course of several studies, the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) gene came to be considered a candidate for the SCID-responsible gene. We isolated an ORF of the murine DNA-PKcs gene from SCID mice and their parent strain C.B-17 mice and determined the DNA sequences. The ORF of the murine DNA-PKcs gene contained 4128-aa residues and had 78.9% homology with the human DNA-PKcs gene. A particularly important finding is that a T to A transversion results in the substitution of termination codon in SCID mice for the Tyr-4046 in C.B-17 mice. No other mutation was detected in the ORF of the gene. The generality of this transversion was confirmed using four individual SCID and wild-type mice. The substitution took place in the phosphatidylinositol 3-kinase domain, and the mutated gene encodes the truncated products missing 83 residues of wild-type DNA-PKcs products. Furthermore, the quantity of DNA-PKcs transcript in wild-type and SCID cells was almost equal. These observations indicate that the DNA-PKcs gene is the SCID-responsible gene itself and that the detected mutation leads to the SCID aberration. PMID:9122213

  19. Molecular basis of cystic fibrosis in Lithuania: incomplete CFTR mutation detection by PCR-based screening protocols.

    PubMed

    Giannattasio, S; Bobba, A; Jurgelevicius, V; Vacca, R A; Lattanzio, P; Merafina, R S; Utkus, A; Kucinskas, V; Marra, E

    2006-01-01

    Mutational analysis of the cystic fibrosis transmembrane regulator (CFTR) gene was performed in 98 unrelated CF chromosomes from 49 Lithuanian CF patients through a combined approach in which the p.F508del mutation was first screened by allele-specific PCR while CFTR mutations in nonp.F508del chromosomes have been screened for by denaturing gradient gel electrophoresis analysis. A CFTR mutation was characterized in 62.2% of CF chromosomes, two of which (2.0%) have been previously shown to carry a large gene deletion CFTRdele2,3(21 kb). The most frequent Lithuanian CF mutation is p.F508del (52.0%). Seven CFTR mutations, p.N1303K (2.0%), p.R75Q (1.0%), p.G314R (1.0%), p.R553X (4.2%), p.W1282X (1.0%), and g.3944delGT (1.0%), accounted for 10.1% of Lithuanian CF chromosomes. It was not possible to characterize 35.8% of the CF Lithuanian chromosomes. Analysis of intron 8 (TG)mTn and M470V polymorphic loci did not permit the characterization of the CFTR dysfunction underlying the CF phenotype in the patients for which no CFTR mutation was identified. Thus, screening of the eight CFTR mutations identified in this study and of the large deletion CFTRdele2,3(21 kb) allows the implementation of an early molecular or confirmatory CF diagnosis for 65% of Lithuanian CF chromosomes. PMID:17020467

  20. Frequency of CFTR, SPINK1, and Cathepsin B Gene Mutation in North Indian Population: Connections between Genetics and Clinical Data

    PubMed Central

    Singh, Shweta; Choudhuri, Gourdas; Agarwal, Sarita

    2014-01-01

    Objectives. Genetic mutations and polymorphisms have been correlated with chronic pancreatitis (CP). This study aims to investigate the association of genetic variants of cystic fibrosis transmembrane conductance regulator (CFTR) and serine protease inhibitor Kazal type 1 (SPINK-1) genes and Cathepsin B gene polymorphisms with CP and to associate genetic backgrounds with clinical phenotypes. Methods. 150 CP patients and 150 normal controls were enrolled consecutively. We analyzed SPINK-1 N34S and IVS3+2T>C gene mutations by PCR-restriction-fragment length polymorphism (RFLP). The identification of DF508, G551D, G542X, R117H, and W1282X mutations was carried out by ARMS-PCR. S549N mutation, IVS8 polyTn polymorphism, and Cathepsin B Lec26Val were analysed by PCR-RFLP, nested PCR, and PCR-RFLP plus sequencing, respectively. Results. We found a significant association of SPINK1 (N34S) gene polymorphism. IVS1−37T>C polymorphism shows linkage with 101A>G. 300 chromosomes belonging to the CFTR subgroup exhibited minor allele frequency of 0.04, 0.03, 0.03, 0.013, 0.006, and 0.02 for DF508, G452X, G551D, S549N, R117H, and IVS8 T5, respectively. Except for R117H and IVS8 T5 polymorphisms, all other mutations showed significant variation. Conclusion. Analysis of potential susceptibility variants is needed to support nature of the genes and environment in pancreatitis. This data may help establish genetic screening and prenatal setup for Indian population. PMID:24616641

  1. [Sense and nonsense of diets].

    PubMed

    Ballmer, P E

    1990-03-17

    Strict vegetarian diets and liquid formulations of "protein-sparing modified fast diets" can be harmful and represent potential "nonsense" in diets. "Sense" with respect to diets is demonstrated by a short summary of the physiological effects of dietary fibre. Fibre incorporates water, increases fecal bulk and reduces transit time of the bowel. Fermentation of fibres in the large bowel produces short-chain fatty acids, e.g. acetate, propionate and butyrate with desirable effects. Butyrate, for example, modifies colonic cell proliferation and may reduce the incidence of colorectal neoplasms. The beneficial effects of a diet, high in fibre, on blood lipids, overweight, colorectal disease and diabetes mellitus are briefly discussed. PMID:2157278

  2. Nonsense-Mediated Decay in Genetic Disease: Friend or Foe?

    PubMed Central

    Miller, Jake N.; Pearce, David A.

    2014-01-01

    Eukaryotic cells utilize various RNA quality control mechanisms to ensure high fidelity of gene expression, thus protecting against the accumulation of nonfunctional RNA and the subsequent production of abnormal peptides. Messenger RNAs (mRNAs) are largely responsible for protein production, and mRNA quality control is particularly important for protecting the cell against the downstream effects of genetic mutations. Nonsense-mediated decay (NMD) is an evolutionarily conserved mRNA quality control system in all eukaryotes that degrades transcripts containing premature termination codons (PTCs). By degrading these aberrant transcripts, NMD acts to prevent the production of truncated proteins that could otherwise harm the cell through various insults, such as dominant negative effects or the ER stress response. Although NMD functions to protect the cell against the deleterious effects of aberrant mRNA, there is a growing body of evidence that mutation-, codon-, gene-, cell-, and tissue-specific differences in NMD efficiency can alter the underlying pathology of genetic disease. In addition, the protective role that NMD plays in genetic disease can undermine current therapeutic strategies aimed at increasing the production of full-length functional protein from genes harboring nonsense mutations. Here, we review the normal function of this RNA surveillance pathway and how it is regulated, provide current evidence for the role that it plays in modulating genetic disease phenotypes, and how NMD can be used as a therapeutic target. PMID:25485595

  3. A common SCN5A polymorphism attenuates a severe cardiac phenotype caused by a nonsense SCN5A mutation in a Chinese family with an inherited cardiac conduction defect

    PubMed Central

    Niu, Dau‐Ming; Hwang, Betau; Hwang, Han‐Wei; Wang, Nana H; Wu, Jer‐Yuarn; Lee, Pi‐Chang; Chien, Jen‐Chung; Shieh, Ru‐Chi

    2006-01-01

    The SCN5A mutations have been associated with a variety of arrhythmic disorders, including type 3 long QT syndrome (LQT3), Brugada syndrome and inherited cardiac conduction defects. The relationship between genotype and phenotype in SCN5A mutations is complex. Some SCN5A mutations may cause death or severe manifestations in some people and may not cause any symptoms or arrhythmias in others. The causes of these unpredictable clinical manifestations remain incompletely understood. The molecular basis of a four‐generation family with cardiac conduction abnormalities was studied and whether variants in the SCN5A gene could account for the cardiac phenotypic variability observed in this family was determined. A novel mutation (W1421X) of SCN5A was identified in a four‐generation family with cardiac conduction abnormalities and several cases of sudden death. Most family members who carry this W1421X mutation have developed major clinical manifestations or electrocardiographic abnormalities, both of which became more prominent as the patients grew older. However, the 73‐year‐old grandfather, who carried both the W1421X and R1193Q mutations, had thus far remained healthy and presented with only subtle electrocardiographic abnormalities, whereas most of his offspring, who carried a single mutation (W1421X), had died early or had major disease manifestations. This observation suggests that the R1193Q mutation has a complementary role in alleviating the deleterious effects conferred by W1421X in the function of the SCN5A gene. This report provides a good model to explain the mechanism of penetrance of genetic disorders. PMID:16707561

  4. Autosomal Dominant Polycystic Kidney Disease (ADPKD) in an Italian family carrying a novel nonsense mutation and two missense changes in exons 44 and 45 of the PKD1 gene

    SciTech Connect

    Rossetti, S.; Bresin, E.; Corra, S.

    1996-10-16

    Sixty-seven Italian patients with autosomal dominant polycystic kidney disease (ADPKD) were screened for mutations in the 3{prime} unique region of the PKD1 gene, using heteroduplex DNA analysis. Novel aberrant bands were detected in 3 patients from the same family. DNA sequencing showed a C to T transition in exon 44 (C12269T), resulting in a premature stop codon (R4020X), predicted to impair the synthesis of the putative intracytoplasmic C-terminus tail of the PKD1 protein, polycystin. The mutation also generates a novel DdeI restriction site, and the abnormal restriction pattern was observed both on genomic DNA and on cDNA from the affected relatives, indicating that this is indeed the pathogenetic molecular lesion. Reverse transcriptase-polymerase chain reaction (RT-PCR) performed on lymphocyte mRNA showed that the mutant transcript is normally present and stable. No aberrantly spliced mRNAs were detected. Interestingly, the mutant PKD1 chromosome in this family also bears two missense mutations downstream (A12341G and C12384T), not found in the other ADPKD families studied. 19 refs., 4 figs.

  5. Nonsense-Mediated Decay Enables Intron Gain in Drosophila

    PubMed Central

    Dolezal, Marlies; Hua, Liushuai; Schlötterer, Christian

    2010-01-01

    Intron number varies considerably among genomes, but despite their fundamental importance, the mutational mechanisms and evolutionary processes underlying the expansion of intron number remain unknown. Here we show that Drosophila, in contrast to most eukaryotic lineages, is still undergoing a dramatic rate of intron gain. These novel introns carry significantly weaker splice sites that may impede their identification by the spliceosome. Novel introns are more likely to encode a premature termination codon (PTC), indicating that nonsense-mediated decay (NMD) functions as a backup for weak splicing of new introns. Our data suggest that new introns originate when genomic insertions with weak splice sites are hidden from selection by NMD. This mechanism reduces the sequence requirement imposed on novel introns and implies that the capacity of the spliceosome to recognize weak splice sites was a prerequisite for intron gain during eukaryotic evolution. PMID:20107520

  6. Distribution of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Mutations in a Cohort of Patients Residing in Palestine.

    PubMed

    Siryani, Issa; Jama, Mohamed; Rumman, Nisreen; Marzouqa, Hiyam; Kannan, Moein; Lyon, Elaine; Hindiyeh, Musa

    2015-01-01

    Cystic fibrosis (CF) is an autosomal recessive inherited life-threatening disorder that causes severe damage to the lungs and the digestive system. In Palestine, mutations in the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) that contributes to the clinical presentation of CF are ill defined. A cohort of thirty three clinically diagnosed CF patients from twenty one different Palestinian families residing in the central and southern part of Palestine were incorporated in this study. Sweat chloride testing was performed using the Sweat Chek Conductivity Analyzer (ELITECH Group, France) to confirm the clinical diagnosis of CF. In addition, nucleic acid from the patients' blood samples was extracted and the CFTR mutation profiles were assessed by direct sequencing of the CFTR 27 exons and the intron-exon boundaries. For patient's DNA samples where no homozygous or two heterozygous CFTR mutations were identified by exon sequencing, DNA samples were tested for deletions or duplications using SALSA MLPA probemix P091-D1 CFTR assay. Sweat chloride testing confirmed the clinical diagnosis of CF in those patients. All patients had NaCl conductivity >60 mmol/l. In addition, nine different CFTR mutations were identified in all 21 different families evaluated. These mutations were c.1393-1G>A, F508del, W1282X, G85E, c.313delA, N1303K, deletion exons 17a-17b-18, deletion exons 17a-17b and Q1100P. c.1393-1G>A was shown to be the most frequent occurring mutation among tested families. We have profiled the underling mutations in the CFTR gene of a cohort of 21 different families affected by CF. Unlike other studies from the Arab countries where F508del was reported to be the most common mutation, in southern/central Palestine, the c.1393-1G>A appeared to be the most common. Further studies are needed per sample size and geographic distribution to account for other possible CFTR genetic alterations and their frequencies. Genotype/phenotype assessments are also

  7. Distribution of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Mutations in a Cohort of Patients Residing in Palestine

    PubMed Central

    Siryani, Issa; Jama, Mohamed; Rumman, Nisreen; Marzouqa, Hiyam; Kannan, Moein; Lyon, Elaine; Hindiyeh, Musa

    2015-01-01

    Cystic fibrosis (CF) is an autosomal recessive inherited life-threatening disorder that causes severe damage to the lungs and the digestive system. In Palestine, mutations in the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) that contributes to the clinical presentation of CF are ill defined. A cohort of thirty three clinically diagnosed CF patients from twenty one different Palestinian families residing in the central and southern part of Palestine were incorporated in this study. Sweat chloride testing was performed using the Sweat Chek Conductivity Analyzer (ELITECH Group, France) to confirm the clinical diagnosis of CF. In addition, nucleic acid from the patients’ blood samples was extracted and the CFTR mutation profiles were assessed by direct sequencing of the CFTR 27 exons and the intron-exon boundaries. For patient’s DNA samples where no homozygous or two heterozygous CFTR mutations were identified by exon sequencing, DNA samples were tested for deletions or duplications using SALSA MLPA probemix P091-D1 CFTR assay. Sweat chloride testing confirmed the clinical diagnosis of CF in those patients. All patients had NaCl conductivity >60mmol/l. In addition, nine different CFTR mutations were identified in all 21 different families evaluated. These mutations were c.1393-1G>A, F508del, W1282X, G85E, c.313delA, N1303K, deletion exons 17a-17b-18, deletion exons 17a-17b and Q1100P. c.1393-1G>A was shown to be the most frequent occurring mutation among tested families. We have profiled the underling mutations in the CFTR gene of a cohort of 21 different families affected by CF. Unlike other studies from the Arab countries where F508del was reported to be the most common mutation, in southern/central Palestine, the c.1393-1G>A appeared to be the most common. Further studies are needed per sample size and geographic distribution to account for other possible CFTR genetic alterations and their frequencies. Genotype/phenotype assessments are also

  8. Nonsense codons trigger an RNA partitioning shift.

    PubMed

    Bhalla, Angela D; Gudikote, Jayanthi P; Wang, Jun; Chan, Wai-Kin; Chang, Yao-Fu; Olivas, O Renee; Wilkinson, Miles F

    2009-02-13

    T-cell receptor-beta (TCRbeta) genes naturally acquire premature termination codons (PTCs) as a result of programmed gene rearrangements. PTC-bearing TCRbeta transcripts are dramatically down-regulated to protect T-cells from the deleterious effects of the truncated proteins that would otherwise be produced. Here we provide evidence that two responses collaborate to elicit this dramatic down-regulation. One is rapid mRNA decay triggered by the nonsense-mediated decay (NMD) RNA surveillance pathway. We demonstrate that this occurs in highly purified nuclei lacking detectable levels of three different cytoplasmic markers, but containing an outer nuclear membrane marker, suggesting that decay occurs either in the nucleoplasm or at the outer nuclear membrane. The second response is a dramatic partitioning shift in the nuclear fraction-to-cytoplasmic fraction mRNA ratio that results in few TCRbeta transcripts escaping to the cytoplasmic fraction of cells. Analysis of TCRbeta mRNA kinetics after either transcriptional repression or induction suggested that this nonsense codon-induced partitioning shift (NIPS) response is not the result of cytoplasmic NMD but instead reflects retention of PTC(+) TCRbeta mRNA in the nuclear fraction of cells. We identified TCRbeta sequences crucial for NIPS but found that NIPS is not exclusively a property of TCRbeta transcripts, and we identified non-TCRbeta sequences that elicit NIPS. RNA interference experiments indicated that NIPS depends on the NMD factors UPF1 and eIF4AIII but not the NMD factor UPF3B. We propose that NIPS collaborates with NMD to retain and degrade a subset of PTC(+) transcripts at the outer nuclear membrane and/or within the nucleoplasm. PMID:19091751

  9. An UPF3-based nonsense-mediated decay in Paramecium.

    PubMed

    Contreras, Julia; Begley, Victoria; Macias, Sandra; Villalobo, Eduardo

    2014-12-01

    Nonsense-mediated decay recognises mRNAs containing premature termination codons. One of its components, UPF3, is a molecular link bridging through its binding to the exon junction complex nonsense-mediated decay and splicing. In protists UPF3 has not been identified yet. We report that Paramecium tetraurelia bears an UPF3 gene and that it has a role in nonsense-mediated decay. Interestingly, the identified UPF3 has not conserved the essential amino acids required to bind the exon junction complex. Though, our data indicates that this ciliate bears genes coding for core proteins of the exon junction complex. PMID:25463387

  10. 5-azacytidine inhibits nonsense-mediated decay in a MYC-dependent fashion

    PubMed Central

    Bhuvanagiri, Madhuri; Lewis, Joe; Putzker, Kerstin; Becker, Jonas P; Leicht, Stefan; Krijgsveld, Jeroen; Batra, Richa; Turnwald, Brad; Jovanovic, Bogdan; Hauer, Christian; Sieber, Jana; Hentze, Matthias W; Kulozik, Andreas E

    2014-01-01

    Nonsense-mediated RNA decay (NMD) is an RNA-based quality control mechanism that eliminates transcripts bearing premature translation termination codons (PTC). Approximately, one-third of all inherited disorders and some forms of cancer are caused by nonsense or frame shift mutations that introduce PTCs, and NMD can modulate the clinical phenotype of these diseases. 5-azacytidine is an analogue of the naturally occurring pyrimidine nucleoside cytidine, which is approved for the treatment of myelodysplastic syndrome and myeloid leukemia. Here, we reveal that 5-azacytidine inhibits NMD in a dose-dependent fashion specifically upregulating the expression of both PTC-containing mutant and cellular NMD targets. Moreover, this activity of 5-azacytidine depends on the induction of MYC expression, thus providing a link between the effect of this drug and one of the key cellular pathways that are known to affect NMD activity. Furthermore, the effective concentration of 5-azacytidine in cells corresponds to drug levels used in patients, qualifying 5-azacytidine as a candidate drug that could potentially be repurposed for the treatment of Mendelian and acquired genetic diseases that are caused by PTC mutations. PMID:25319547

  11. 5-azacytidine inhibits nonsense-mediated decay in a MYC-dependent fashion.

    PubMed

    Bhuvanagiri, Madhuri; Lewis, Joe; Putzker, Kerstin; Becker, Jonas P; Leicht, Stefan; Krijgsveld, Jeroen; Batra, Richa; Turnwald, Brad; Jovanovic, Bogdan; Hauer, Christian; Sieber, Jana; Hentze, Matthias W; Kulozik, Andreas E

    2014-12-01

    Nonsense-mediated RNA decay (NMD) is an RNA-based quality control mechanism that eliminates transcripts bearing premature translation termination codons (PTC). Approximately, one-third of all inherited disorders and some forms of cancer are caused by nonsense or frame shift mutations that introduce PTCs, and NMD can modulate the clinical phenotype of these diseases. 5-azacytidine is an analogue of the naturally occurring pyrimidine nucleoside cytidine, which is approved for the treatment of myelodysplastic syndrome and myeloid leukemia. Here, we reveal that 5-azacytidine inhibits NMD in a dose-dependent fashion specifically upregulating the expression of both PTC-containing mutant and cellular NMD targets. Moreover, this activity of 5-azacytidine depends on the induction of MYC expression, thus providing a link between the effect of this drug and one of the key cellular pathways that are known to affect NMD activity. Furthermore, the effective concentration of 5-azacytidine in cells corresponds to drug levels used in patients, qualifying 5-azacytidine as a candidate drug that could potentially be repurposed for the treatment of Mendelian and acquired genetic diseases that are caused by PTC mutations. PMID:25319547

  12. Efficient analysis of mouse genome sequences reveal many nonsense variants.

    PubMed

    Steeland, Sophie; Timmermans, Steven; Van Ryckeghem, Sara; Hulpiau, Paco; Saeys, Yvan; Van Montagu, Marc; Vandenbroucke, Roosmarijn E; Libert, Claude

    2016-05-17

    Genetic polymorphisms in coding genes play an important role when using mouse inbred strains as research models. They have been shown to influence research results, explain phenotypical differences between inbred strains, and increase the amount of interesting gene variants present in the many available inbred lines. SPRET/Ei is an inbred strain derived from Mus spretus that has ∼1% sequence difference with the C57BL/6J reference genome. We obtained a listing of all SNPs and insertions/deletions (indels) present in SPRET/Ei from the Mouse Genomes Project (Wellcome Trust Sanger Institute) and processed these data to obtain an overview of all transcripts having nonsynonymous coding sequence variants. We identified 8,883 unique variants affecting 10,096 different transcripts from 6,328 protein-coding genes, which is about 28% of all coding genes. Because only a subset of these variants results in drastic changes in proteins, we focused on variations that are nonsense mutations that ultimately resulted in a gain of a stop codon. These genes were identified by in silico changing the C57BL/6J coding sequences to the SPRET/Ei sequences, converting them to amino acid (AA) sequences, and comparing the AA sequences. All variants and transcripts affected were also stored in a database, which can be browsed using a SPRET/Ei M. spretus variants web tool (www.spretus.org), including a manual. We validated the tool by demonstrating the loss of function of three proteins predicted to be severely truncated, namely Fas, IRAK2, and IFNγR1. PMID:27147605

  13. The novel Cln1(R151X) mouse model of infantile neuronal ceroid lipofuscinosis (INCL) for testing nonsense suppression therapy.

    PubMed

    Miller, Jake N; Kovács, Attila D; Pearce, David A

    2015-01-01

    The neuronal ceroid lipofuscinoses (NCLs), also known as Batten disease, are a group of autosomal recessive neurodegenerative disorders in children characterized by the progressive onset of seizures, blindness, motor and cognitive decline and premature death. Patients with mutations in CLN1 primarily manifest with infantile NCL (INCL or Haltia-Santavuori disease), which is second only to congenital NCL for its age of onset and devastating progression. CLN1 encodes a lysosomal enzyme, palmitoyl-protein thioesterase 1 (PPT1). Nonsense mutations in CLN1 account for 52.3% of all disease causing alleles in infantile NCL, the most common of which worldwide is the p.R151X mutation. Previously, we have shown how nonsense-mediated decay is involved in the degradation of CLN1 mRNA transcripts containing the p.R151X mutation in human lymphoblast cell lines. We have also shown how the read-through drugs gentamicin and ataluren (PTC124) increase CLN1 (PPT1) enzyme activity. Here, we provide the initial characterization of the novel Cln1(R151X) mouse model of infantile neuronal ceroid lipofuscinosis that we have generated. This nonsense mutation model recapitulates the molecular, histological and behavioral phenotypes of the human disease. Cln1(R151X) mice showed a significant decrease in Cln1 mRNA level and PPT1 enzyme activity, accumulation of autofluorescent storage material, astrocytosis and microglial activation in the brain. Behavioral characterization of Cln1(R151X) mice at 3 and 5 months of age revealed significant motor deficits as measured by the vertical pole and rotarod tests. We also show how the read-through compound ataluren (PTC124) increases PPT1 enzyme activity and protein level in Cln1(R151X) mice in a proof-of-principle study. PMID:25205113

  14. Nonsense-mediated mRNA decay among coagulation factor genes

    PubMed Central

    Shahbazi, Shirin

    2016-01-01

    Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation factor deficiencies such as hemophilia. Materials and Methods: A relevant literature search of PubMed was performed using the keywords coagulation factors, Nonsense-mediated mRNA decay and premature translation termination codons. Search limitations included English language and human-based studies. Results: Mutations that cause premature translation termination codons probably account for one-third of genetically inherited diseases. Transcripts bearing aberrant termination codons are selectively identified and eliminated by an evolutionarily conserved posttranscriptional pathway known as nonsense-mediated mRNA decay (NMD). There are many pieces of evidence of decay among coagulation factor genes. However, the hemophilia gene (F8) does not seem to be subjected to NMD. Since the F8 gene is located on the X-chromosome, a connection between X-linked traits and mRNA decay could be assumed. Conclusion: Considering that not all genes go through decay, this review focuses on the basics of the mechanism in coagulation genes. It is interesting to determine whether this translation-coupled surveillance system represents a general rule for the genes encoding components of the same physiological cascade. PMID:27279976

  15. The nonsense-mediated RNA decay pathway is disrupted in inflammatory myofibroblastic tumors.

    PubMed

    Lu, JingWei; Plank, Terra-Dawn; Su, Fang; Shi, XiuJuan; Liu, Chen; Ji, Yuan; Li, ShuaiJun; Huynh, Andrew; Shi, Chao; Zhu, Bo; Yang, Guang; Wu, YanMing; Wilkinson, Miles F; Lu, YanJun

    2016-08-01

    Inflammatory myofibroblastic tumors (IMTs) are characterized by myofibroblast proliferation and an inflammatory cell infiltrate. Little is known about the molecular pathways that precipitate IMT formation. Here, we report the identification of somatic mutations in UPF1, a gene that encodes an essential component of the nonsense-mediated RNA decay (NMD) pathway, in 13 of 15 pulmonary IMT samples. The majority of mutations occurred in a specific region of UPF1 and triggered UPF1 alternative splicing. Several mRNA targets of the NMD pathway were upregulated in IMT samples, indicating that the UPF1 mutations led to reduced NMD magnitude. These upregulated NMD targets included NIK mRNA, which encodes a potent activator of NF-κB. In human lung cells, UPF1 depletion increased expression of chemokine-encoding genes in a NIK-dependent manner. Elevated chemokines and IgE class switching events were observed in IMT samples, consistent with NIK upregulation in these tumors. Together, these results support a model in which UPF1 mutations downregulate NMD, leading to NIK-dependent NF-κB induction, which contributes to the immune infiltration that is characteristic of IMTs. The molecular link between the NMD pathway and IMTs has implications for the diagnosis and treatment of these tumors. PMID:27348585

  16. MicroRNA-mediated repression of nonsense mRNAs

    PubMed Central

    Zhao, Ya; Lin, Jimin; Xu, Beiying; Hu, Sida; Zhang, Xue; Wu, Ligang

    2014-01-01

    Numerous studies have established important roles for microRNAs (miRNAs) in regulating gene expression. Here, we report that miRNAs also serve as a surveillance system to repress the expression of nonsense mRNAs that may produce harmful truncated proteins. Upon recognition of the premature termination codon by the translating ribosome, the downstream portion of the coding region of an mRNA is redefined as part of the 3′ untranslated region; as a result, the miRNA-responsive elements embedded in this region can be detected by miRNAs, triggering accelerated mRNA deadenylation and translational inhibition. We demonstrate that naturally occurring cancer-causing APC (adenomatous polyposis coli) nonsense mutants which escape nonsense-mediated mRNA decay (NMD) are repressed by miRNA-mediated surveillance. In addition, we show that miRNA-mediated surveillance and exon–exon junction complex-mediated NMD are not mutually exclusive and act additively to enhance the repressive activity. Therefore, we have uncovered a new role for miRNAs in repressing nonsense mutant mRNAs. DOI: http://dx.doi.org/10.7554/eLife.03032.001 PMID:25107276

  17. On Sense and Nonsense: Looking Beyond the Literacy Wars

    ERIC Educational Resources Information Center

    Roy, Kaustuv

    2005-01-01

    This essay argues that sense depends on the circulation of nonsense. A realisation of the reciprocal relation can result in a micro-level praxis that helps us, as educators, to free ourselves from the polarisations that have occurred in the field of literacy, such as the phonics/whole language debate, replacing the antagonism with a more…

  18. Telomere Length Regulation and Telomeric Chromatin Require the Nonsense-Mediated mRNA Decay Pathway

    PubMed Central

    Lew, Jodi E.; Enomoto, Shinichiro; Berman, Judith

    1998-01-01

    Rap1p localization factor 4 (RLF4) is a Saccharomyces cerevisiae gene that was identified in a screen for mutants that affect telomere function and alter the localization of the telomere binding protein Rap1p. In rlf4 mutants, telomeric silencing is reduced and telomere DNA tracts are shorter, indicating that RLF4 is required for both the establishment and/or maintenance of telomeric chromatin and for the control of telomere length. In this paper, we demonstrate that RLF4 is allelic to NMD2/UPF2, a gene required for the nonsense-mediated mRNA decay (NMD) pathway (Y. Cui, K. W. Hagan, S. Zhang, and S. W. Peltz, Mol. Cell. Biol. 9:423–436, 1995, and F. He and A. Jacobson, Genes Dev. 9:437–454, 1995). The NMD pathway, which requires Nmd2p/Rlf4p together with two other proteins, (Upf1p and Upf3p), targets nonsense messages for degradation in the cytoplasm by the exoribonuclease Xrn1p. Deletion of UPF1 and UPF3 caused telomere-associated defects like those caused by rlf4 mutations, implying that the NMD pathway, rather than an NMD-independent function of Nmd2p/Rlf4p, is required for telomere functions. In addition, telomere length regulation required Xrn1p but not Rat1p, a nuclear exoribonuclease with functional similarity to Xrn1p (A. W. Johnson, Mol. Cell. Biol. 17:6122–6130, 1997). In contrast, telomere-associated defects were not observed in pan2, pan3, or pan2 pan3 strains, which are defective in the intrinsic deadenylation-dependent decay of normal (as opposed to nonsense) mRNAs. Thus, loss of the NMD pathway specifically causes defects at telomeres, demonstrating a physiological requirement for the NMD pathway in normal cell functions. We propose a model in which the NMD pathway regulates the levels of specific mRNAs that are important for telomere functions. PMID:9742129

  19. Premature termination codons in PRPF31 cause retinitis pigmentosa via haploinsufficiency due to nonsense-mediated mRNA decay

    PubMed Central

    Rio Frio, Thomas; Wade, Nicholas M.; Ransijn, Adriana; Berson, Eliot L.; Beckmann, Jacques S.; Rivolta, Carlo

    2008-01-01

    Dominant mutations in the gene encoding the mRNA splicing factor PRPF31 cause retinitis pigmentosa, a hereditary form of retinal degeneration. Most of these mutations are characterized by DNA changes that lead to premature termination codons. We investigated 6 different PRPF31 mutations, represented by single-base substitutions or microdeletions, in cell lines derived from 9 patients with dominant retinitis pigmentosa. Five of these mutations lead to premature termination codons, and 1 leads to the skipping of exon 2. Allele-specific measurement of PRPF31 transcripts revealed a strong reduction in the expression of mutant alleles. As a consequence, total PRPF31 protein abundance was decreased, and no truncated proteins were detected. Subnuclear localization of the full-length PRPF31 that was present remained unaffected. Blocking nonsense-mediated mRNA decay significantly restored the amount of mutant PRPF31 mRNA but did not restore the synthesis of mutant proteins, even in conjunction with inhibitors of protein degradation pathways. Our results indicate that most PRPF31 mutations ultimately result in null alleles through the activation of surveillance mechanisms that inactivate mutant mRNA and, possibly, proteins. Furthermore, these data provide compelling evidence that the pathogenic effect of PRPF31 mutations is likely due to haploinsufficiency rather than to gain of function. PMID:18317597

  20. Interaction between Nmd2p and Upf1p is required for activity but not for dominant-negative inhibition of the nonsense-mediated mRNA decay pathway in yeast.

    PubMed Central

    He, F; Brown, A H; Jacobson, A

    1996-01-01

    Rapid turnover of nonsense-containing mRNAs in the yeast Saccharomyces cerevisiae is dependent on the products of the UPF1 (Upf1p), NMD2/UPF2 (Nmd2p) and UPF3 (Upf3p) genes. Mutations in each of these genes lead to the selective stabilization of mRNAs containing early nonsense mutations without affecting the decay rates of most other mRNAs. NMD2 was recently identified in a two-hybrid screen as a gene that encodes a Upf1p-interacting protein. To identify the amino acids essential to this interaction, we used two-hybrid analysis as well as missense, nonsense, and deletion mutants of NMD2, and mapped the Upf1p-interacting domain of Nmd2p to a 157-amino acid segment at its C-terminus. Mutations in this domain that disrupt interaction with Upf1p also disrupt nonsense-mediated mRNA decay. A dominant-negative deletion allele of NMD2 identified previously includes the Upf1p-interacting domain. However, mutations in the Upf1p-interacting domain do not affect dominant-negative inhibition of mRNA decay caused by this allele, suggesting interaction with yet another factor. These results, and the observation that deletion of a putative nuclear localization signal and a putative transmembrane domain also inactivate nonsense-mediated mRNA decay, suggest that Nmd2p may contain as many as four important functional domains. PMID:8601282

  1. Occurrence of a 2-bp (AT) deletion allele and a nonsense (G-to-T) mutant allele at the E2 (DBT) locus of six patients with maple syrup urine disease: Multiple-exon skipping as a secondary effect of the mutations

    SciTech Connect

    Fisher, C.W.; Fisher, C.R.; Chuang, J.L.; Lau, K.S.; Chuang, D.T.; Cox, R.P. )

    1993-02-01

    The authors have identified two novel mutant alleles in the transacylase (E2) gene of the human branched-chain [alpha]-keto acid dehydrogenase (BCKAD) complex in 6 of 38 patients with maple syrup urine disease (MSUD). One mutation, a 2-bp (AT) deletion in exon 2 of the E2 gene, causes a frameshift downstream of residue ([minus]26) in the mitochondrial targeting presequence. The second mutation, a G-to-T transversion in exon 6 of the E2 gene, produces a premature stop codon at Glu-163 (E163*). Transfection of constructs harboring the E163* mutation into an E2-deficient MSUD cell line produced a truncated E2 subunit. However, this mutant E2 chain is unable to assemble into a 24-mer cubic structure and is degraded in the cell. The 2-bp (AT) deletion and the E163* mutant alleles occur in either the homozygous or compound-heterozygous state in the 6 of 38 unrelated MSUD patients studied. Moreover, an array of precise single- and multiple-exon deletions were observed in many amplified E2 mutant cDNAs. The latter results appear to represent secondary effects on RNA processing that are associated with the MSUD mutations at the E2 locus. 30 refs., 8 figs.

  2. In vitro nonsense suppression in [psi+] and [psi-] cell-free lysates of Saccharomyces cerevisiae.

    PubMed Central

    Tuite, M F; Cox, B S; McLaughlin, C S

    1983-01-01

    An homologous in vitro assay for yeast nonsense suppressors was used to examine the effect of the cytoplasmically inherited genetic determinant [psi] on the efficiency of in vitro nonsense suppression. The efficiency of all three types of yeast tRNA-mediated nonsense suppressor (ochre, amber, and UGA) is much greater in cell-free lysates prepared from a sup+ [psi+] strain than in lysates prepared from an isogeneic sup+ [psi-] strain. Lysates prepared from a [psi-] strain, into which the [psi+] determinant was reintroduced by kar1-mediated cytoduction, support efficient suppression. Evidence is also presented that [psi-] lysates contain an inhibitor of in vitro nonsense suppression. Images PMID:6344070

  3. Mutations in ANTXR1 cause GAPO syndrome.

    PubMed

    Stránecký, Viktor; Hoischen, Alexander; Hartmannová, Hana; Zaki, Maha S; Chaudhary, Amit; Zudaire, Enrique; Nosková, Lenka; Barešová, Veronika; Přistoupilová, Anna; Hodaňová, Kateřina; Sovová, Jana; Hůlková, Helena; Piherová, Lenka; Hehir-Kwa, Jayne Y; de Silva, Deepthi; Senanayake, Manouri P; Farrag, Sameh; Zeman, Jiří; Martásek, Pavel; Baxová, Alice; Afifi, Hanan H; St Croix, Brad; Brunner, Han G; Temtamy, Samia; Kmoch, Stanislav

    2013-05-01

    The genetic cause of GAPO syndrome, a condition characterized by growth retardation, alopecia, pseudoanodontia, and progressive visual impairment, has not previously been identified. We studied four ethnically unrelated affected individuals and identified homozygous nonsense mutations (c.262C>T [p.Arg88*] and c.505C>T [p.Arg169*]) or splicing mutations (c.1435-12A>G [p.Gly479Phefs*119]) in ANTXR1, which encodes anthrax toxin receptor 1. The nonsense mutations predictably trigger nonsense-mediated mRNA decay, resulting in the loss of ANTXR1. The transcript with the splicing mutation theoretically encodes a truncated ANTXR1 containing a neopeptide composed of 118 unique amino acids in its C terminus. GAPO syndrome's major phenotypic features, which include dental abnormalities and the accumulation of extracellular matrix, recapitulate those found in Antxr1-mutant mice and point toward an underlying defect in extracellular-matrix regulation. Thus, we propose that mutations affecting ANTXR1 function are responsible for this disease's characteristic generalized defect in extracellular-matrix homeostasis. PMID:23602711

  4. Functions of the Nonsense-Mediated mRNA Decay Pathway in Drosophila Development

    PubMed Central

    Metzstein, Mark M; Krasnow, Mark A

    2006-01-01

    Nonsense-mediated mRNA decay (NMD) is a cellular surveillance mechanism that degrades transcripts containing premature translation termination codons, and it also influences expression of certain wild-type transcripts. Although the biochemical mechanisms of NMD have been studied intensively, its developmental functions and importance are less clear. Here, we describe the isolation and characterization of Drosophila “photoshop” mutations, which increase expression of green fluorescent protein and other transgenes. Mapping and molecular analyses show that photoshop mutations are loss-of-function mutations in the Drosophila homologs of NMD genes Upf1, Upf2, and Smg1. We find that Upf1 and Upf2 are broadly active during development, and they are required for NMD as well as for proper expression of dozens of wild-type genes during development and for larval viability. Genetic mosaic analysis shows that Upf1 and Upf2 are required for growth and/or survival of imaginal cell clones, but this defect can be overcome if surrounding wild-type cells are eliminated. By contrast, we find that the PI3K-related kinase Smg1 potentiates but is not required for NMD or for viability, implying that the Upf1 phosphorylation cycle that is required for mammalian and Caenorhabditis elegans NMD has a more limited role during Drosophila development. Finally, we show that the SV40 3′ UTR, present in many Drosophila transgenes, targets the transgenes for regulation by the NMD pathway. The results establish that the Drosophila NMD pathway is broadly active and essential for development, and one critical function of the pathway is to endow proliferating imaginal cells with a competitive growth advantage that prevents them from being overtaken by other proliferating cells. PMID:17196039

  5. Heterologous expression and nonsense suppression provide insights into agonist behavior at α6β2 nicotinic acetylcholine receptors.

    PubMed

    Post, Michael R; Limapichat, Walrati; Lester, Henry A; Dougherty, Dennis A

    2015-10-01

    The α6-containing subtypes of the nicotinic acetylcholine receptor (nAChR) are localized to presynaptic terminals of the dopaminergic pathways of the central nervous system. Selective ligands for these nAChRs are potentially useful in both Parkinson's disease and addiction. For these and other goals, it is important to distinguish the binding behavior of agonists at the α6-β2 binding site versus other subtypes. To study this problem, we apply nonsense suppression-based non-canonical amino acid mutagenesis. We report a combination of four mutations in α6β2 that yield high-level heterologous expression in Xenopus oocytes. By varying mRNA injection ratios, two populations were observed with unique characteristics, likely due to differing stoichiometries. Responses to nine known nAChR agonists were analyzed at the receptor, and their corresponding EC50 values and efficacies are reported. The system is compatible with nonsense suppression, allowing structure-function studies between Trp149 - a conserved residue on loop B found to make a cation-π interaction at several nAChR subtypes - and several agonists. These studies reveal that acetylcholine forms a strong cation-π interaction with the conserved tryptophan, while nicotine and TC299423 do not, suggesting a unique pharmacology for the α6β2 nAChR. PMID:25908401

  6. Participating in the Poetry Playground: Staging the Nonsense Wordplay in Children's Poetry.

    ERIC Educational Resources Information Center

    Tallant, Carole; Trimble, Frank

    1992-01-01

    Explores the challenges of performing children's nonsense poetry with, rather than to, an audience of children. Discusses different nonsense operations and offers a broad-based scheme for making performance decisions about what kind of nonverbal emphasis to use in performance. Includes examples with suggestions for performance. (SR)

  7. Hyperphosphorylation amplifies UPF1 activity to resolve stalls in nonsense-mediated mRNA decay

    PubMed Central

    Durand, Sébastien; Franks, Tobias M.; Lykke-Andersen, Jens

    2016-01-01

    Many gene expression factors contain repetitive phosphorylation sites for single kinases, but the functional significance is poorly understood. Here we present evidence for hyperphosphorylation as a mechanism allowing UPF1, the central factor in nonsense-mediated decay (NMD), to increasingly attract downstream machinery with time of residence on target mRNAs. Indeed, slowing NMD by inhibiting late-acting factors triggers UPF1 hyperphosphorylation, which in turn enhances affinity for factors linking UPF1 to decay machinery. Mutational analyses reveal multiple phosphorylation sites contributing to different extents to UPF1 activity with no single site being essential. Moreover, the ability of UPF1 to undergo hyperphosphorylation becomes increasingly important for NMD when downstream factors are depleted. This hyperphosphorylation-dependent feedback mechanism may serve as a molecular clock ensuring timely degradation of target mRNAs while preventing degradation of non-targets, which, given the prevalence of repetitive phosphorylation among central gene regulatory factors, may represent an important general principle in gene expression. PMID:27511142

  8. The nonsense-mediated decay pathway maintains synapse architecture and synaptic vesicle cycle efficacy

    PubMed Central

    Long, A. Ashleigh; Mahapatra, Cecon T.; Woodruff, Elvin A.; Rohrbough, Jeff; Leung, Hung-Tat; Shino, Shikoh; An, Lingling; Doerge, Rebecca W.; Metzstein, Mark M.; Pak, William L.; Broadie, Kendal

    2010-01-01

    A systematic Drosophila forward genetic screen for photoreceptor synaptic transmission mutants identified no-on-and-no-off transient C (nonC) based on loss of retinal synaptic responses to light stimulation. The cloned gene encodes phosphatidylinositol-3-kinase-like kinase (PIKK) Smg1, a regulatory kinase of the nonsense-mediated decay (NMD) pathway. The Smg proteins act in an mRNA quality control surveillance mechanism to selectively degrade transcripts containing premature stop codons, thereby preventing the translation of truncated proteins with dominant-negative or deleterious gain-of-function activities. At the neuromuscular junction (NMJ) synapse, an extended allelic series of Smg1 mutants show impaired structural architecture, with decreased terminal arbor size, branching and synaptic bouton number. Functionally, loss of Smg1 results in a ~50% reduction in basal neurotransmission strength, as well as progressive transmission fatigue and greatly impaired synaptic vesicle recycling during high-frequency stimulation. Mutation of other NMD pathways genes (Upf2 and Smg6) similarly impairs neurotransmission and synaptic vesicle cycling. These findings suggest that the NMD pathway acts to regulate proper mRNA translation to safeguard synapse morphology and maintain the efficacy of synaptic function. PMID:20826458

  9. A nonsense nucleotide substitution in the oculocutaneous albinism II gene underlies the original pink-eyed dilution allele (Oca2(p)) in mice.

    PubMed

    Shoji, Haruka; Kiniwa, Yukiko; Okuyama, Ryuhei; Yang, Mu; Higuchi, Keiichi; Mori, Masayuki

    2015-01-01

    The original pink-eyed dilution (p) on chromosome 7 is a very old spontaneous mutation in mice. The oculocutaneous albinism II (Oca2) gene has previously been identified as the p gene. Oca2 transcripts have been shown to be absent in the skin of SJL/J mice with the original p mutant allele (Oca2(p)); however, the molecular genetic lesion underlying the original Oca2(p) allele has never been reported. The NCT mouse (commonly known as Nakano cataract mouse) has a pink-eyed dilution phenotype, which prompted us to undertake a molecular genetic analysis of the Oca2 gene of this strain. Our genetic linkage analysis suggests that the locus for the pink-eyed dilution phenotype of NCT is tightly linked to the Oca2 locus. PCR cloning and nucleotide sequence analysis indicates that the NCT mouse has a nonsense nucleotide substitution at exon 7 of the Oca2 gene. Examination of three mouse strains (NZW/NSlc, SJL/J, and 129X1/SvJJmsSlc) with the original Oca2(p) allele revealed the presence of a nonsense nucleotide substitution identical to that in the NCT strain. RT-PCR analysis revealed that the Oca2 transcripts were absent in the skin of NCT mice, suggesting intervention of the nonsense-mediated mRNA decay pathway. Collectively, the data in this study indicate that the nonsense nucleotide substitution in the Oca2 gene underlies the Oca2(p) allele. Our data also indicate that the NCT mouse can be used not only as a cataract model, but also as a model for human type II oculocutaneous albinism. PMID:25736709

  10. Mechanism and regulation of the nonsense-mediated decay pathway

    PubMed Central

    Hug, Nele; Longman, Dasa; Cáceres, Javier F.

    2016-01-01

    The Nonsense-mediated mRNA decay (NMD) pathway selectively degrades mRNAs harboring premature termination codons (PTCs) but also regulates the abundance of a large number of cellular RNAs. The central role of NMD in the control of gene expression requires the existence of buffering mechanisms that tightly regulate the magnitude of this pathway. Here, we will focus on the mechanism of NMD with an emphasis on the role of RNA helicases in the transition from NMD complexes that recognize a PTC to those that promote mRNA decay. We will also review recent strategies aimed at uncovering novel trans-acting factors and their functional role in the NMD pathway. Finally, we will describe recent progress in the study of the physiological role of the NMD response. PMID:26773057

  11. A deleterious RNF43 germline mutation in a severely affected serrated polyposis kindred

    PubMed Central

    Taupin, Douglas; Lam, Wesley; Rangiah, David; McCallum, Larissa; Whittle, Belinda; Zhang, Yafei; Andrews, Daniel; Field, Matthew; Goodnow, Christopher C; Cook, Matthew C

    2015-01-01

    We report a germline nonsense mutation within the extracellular domain of the RING finger ubiquitin ligase RNF43, segregating with a severe form of serrated polyposis within a kindred. The finding provides evidence that inherited RNF43 mutations define a familial cancer syndrome. PMID:27081527

  12. Hemophilia B: Molecular Pathogenesis and Mutation Analysis

    PubMed Central

    Goodeve, Anne C.

    2015-01-01

    Summary Hemophilia B is an X-chromosome-linked inherited bleeding disorder primarily affecting males, while those carrier females having reduced factor IX:C levels may also experience some bleeding issues. Genetic analysis has been undertaken for hemophilia B since the mid-1980s, both through linkage analysis to track inheritance of an affected allele and to enable determination of the familial mutation. Mutation analysis using PCR and Sanger sequencing along with dosage analysis for detection of large deletions/duplications enables mutation detection in more than 97% of hemophila B patients. Risk of inhibitory antibodies, reported in ~2% of hemophilia B patients can be predicted, especially in patients with large deletions and these individuals are also at risk of anaphylaxis, and nephrotic syndrome if they receive immune tolerance induction. Inhibitors also occur in patients with nonsense mutations, occasionally with small insertions/deletions, splice mutations and rarely with missense mutations (p.Gln237Lys and p.Gln241His). Hemophilia B results from several different mechanisms and those associated with hemophilia B Leyden, ribosome readthrough of nonsense mutations and apparently "silent" changes that do not alter amino acid coding are explored. Large databases of genetic variants in healthy individuals and patients with a range of disorders including hemophilia B are yielding useful information on sequence variant frequency to help establish possible variant pathogenicity whilst a growing range of algorithms is available to help predict pathogenicity for previously unreported variants. PMID:25851415

  13. Synthesis and activity of a novel inhibitor of nonsense-mediated mRNA decay.

    PubMed

    Gotham, Victoria J B; Hobbs, Melanie C; Burgin, Ryan; Turton, David; Smythe, Carl; Coldham, Iain

    2016-01-27

    During efforts to prepare the known compound , a new tetracyclic compound, called , was prepared in six steps. This compound was found to have good activity as an inhibitor of nonsense-mediated mRNA decay. PMID:26740124

  14. Beyond the fringe: when science moves from innovative to nonsense.

    PubMed

    Silver, Simon

    2014-01-01

    Microbiology has experienced examples of highly productive researchers who have gone beyond just interpreting their experimental results with hypotheses and published nonsense that was readily recognized as such by readers. Although the most discussed cases of this pathology come from physics, studies of single-celled microorganisms, virology, and immunology have provided many examples. Five cases are described here along with some generalizations. These are the Lamarckian inheritance of acquired characteristics reported by distinguished and experienced researchers, vectorless DNA transfer and incorporation of bacterial DNA into chromosomes of plants years before vector construction of genetically modified plants was invented, water with memory of immunoglobulin IgE, a new electromagnetic radiation method for identifying bacterial and viral pathogens by the discoverer of human immunodeficiency virus, and the claim of isolation of a new bacterial isolate with arsenic replacing phosphorus in DNA. These examples represent very dissimilar areas, and the only common factor is hubris on the part of experienced researchers. Secondarily, failure of peer review sometimes happens, and journal editors do not step in, sometimes even when alerted before publication. These failures of the publishing process teach us that unnecessary mistakes occur and should warn us all to watch our own enthusiasms. PMID:24106834

  15. Nonsense-mediated decay regulates key components of homologous recombination

    PubMed Central

    Janke, Ryan; Kong, Jeremy; Braberg, Hannes; Cantin, Greg; Yates, John R.; Krogan, Nevan J.; Heyer, Wolf-Dietrich

    2016-01-01

    Cells frequently experience DNA damage that requires repair by homologous recombination (HR). Proteins involved in HR are carefully coordinated to ensure proper and efficient repair without interfering with normal cellular processes. In Saccharomyces cerevisiae, Rad55 functions in the early steps of HR and is regulated in response to DNA damage through phosphorylation by the Mec1 and Rad53 kinases of the DNA damage response. To further identify regulatory processes that target HR, we performed a high-throughput genetic interaction screen with RAD55 phosphorylation site mutants. Genes involved in the mRNA quality control process, nonsense-mediated decay (NMD), were found to genetically interact with rad55 phospho-site mutants. Further characterization revealed that RAD55 transcript and protein levels are regulated by NMD. Regulation of HR by NMD extends to multiple targets beyond RAD55, including RAD51, RAD54 and RAD57. Finally, we demonstrate that loss of NMD results in an increase in recombination rates and resistance to the DNA damaging agent methyl methanesulfonate, suggesting this pathway negatively regulates HR under normal growth conditions. PMID:27001511

  16. Nonsense-mediated decay regulates key components of homologous recombination.

    PubMed

    Janke, Ryan; Kong, Jeremy; Braberg, Hannes; Cantin, Greg; Yates, John R; Krogan, Nevan J; Heyer, Wolf-Dietrich

    2016-06-20

    Cells frequently experience DNA damage that requires repair by homologous recombination (HR). Proteins involved in HR are carefully coordinated to ensure proper and efficient repair without interfering with normal cellular processes. In Saccharomyces cerevisiae, Rad55 functions in the early steps of HR and is regulated in response to DNA damage through phosphorylation by the Mec1 and Rad53 kinases of the DNA damage response. To further identify regulatory processes that target HR, we performed a high-throughput genetic interaction screen with RAD55 phosphorylation site mutants. Genes involved in the mRNA quality control process, nonsense-mediated decay (NMD), were found to genetically interact with rad55 phospho-site mutants. Further characterization revealed that RAD55 transcript and protein levels are regulated by NMD. Regulation of HR by NMD extends to multiple targets beyond RAD55, including RAD51, RAD54 and RAD57 Finally, we demonstrate that loss of NMD results in an increase in recombination rates and resistance to the DNA damaging agent methyl methanesulfonate, suggesting this pathway negatively regulates HR under normal growth conditions. PMID:27001511

  17. Heteroduplex analysis of the dystrophin gene: Application to point mutation and carrier detection

    SciTech Connect

    Prior, T.W.; Papp, A.C.; Snyder, P.J.; Sedra, M.S.; Western, L.M.; Bartolo, C.; Mendell, J.R.; Moxley, R.T.

    1994-03-01

    Approximately one-third of Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, the authors identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. The authors conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing. 29 refs., 4 figs.

  18. Mice homozygous for c.451C>T mutation in Cln1 gene recapitulate INCL phenotype

    PubMed Central

    Bouchelion, Ashleigh; Zhang, Zhongjian; Li, Yichao; Qian, Haohua; Mukherjee, Anil B

    2014-01-01

    Objective Nonsense mutations account for 5–70% of all genetic disorders. In the United States, nonsense mutations in the CLN1/PPT1 gene underlie >40% of the patients with infantile neuronal ceroid lipofuscinosis (INCL), a devastating neurodegenerative lysosomal storage disease. We sought to generate a reliable mouse model of INCL carrying the most common Ppt1 nonsense mutation (c.451C>T) found in the United States patient population to provide a platform for evaluating nonsense suppressors in vivo. Methods We knocked-in c.451C>T nonsense mutation in the Ppt1 gene in C57 embryonic stem (ES) cells using a targeting vector in which LoxP flanked the Neo cassette, which was removed from targeted ES cells by electroporating Cre. Two independently targeted ES clones were injected into blastocysts to generate syngenic C57 knock-in mice, obviating the necessity for extensive backcrossing. Results Generation of Ppt1-KI mice was confirmed by DNA sequencing, which showed the presence of c.451C>T mutation in the Ppt1 gene. These mice are viable and fertile, although they developed spasticity (a “clasping” phenotype) at a median age of 6 months. Autofluorescent storage materials accumulated throughout the brain regions and in visceral organs. Electron microscopic analysis of the brain and the spleen showed granular osmiophilic deposits. Increased neuronal apoptosis was particularly evident in cerebral cortex and abnormal histopathological and electroretinographic (ERG) analyses attested striking retinal degeneration. Progressive deterioration of motor coordination and behavioral parameters continued until eventual death. Interpretation Our findings show that Ppt1-KI mice reliably recapitulate INCL phenotype providing a platform for testing the efficacy of existing and novel nonsense suppressors in vivo. PMID:25574475

  19. Identification of a nonsense mutation in CWC15 associated with decreased reproductive efficiency in Jersey cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the recent advent of genomic tools for cattle, several recessive conditions affecting fertility have been identified and selected against, such as deficiency of uridine monophosphate synthase, complex vertebral malformation, and brachyspina. The current report refines the location of a recessiv...

  20. Phase 3 Extension Study of Ataluren (PTC124) in Patients With Nonsense Mutation Dystrophinopathy

    ClinicalTrials.gov

    2014-10-15

    Muscular Dystrophy, Duchenne; Muscular Dystrophies; Muscular Disorders, Atrophic; Muscular Diseases; Musculoskeletal Diseases; Neuromuscular Diseases; Nervous System Diseases; Genetic Diseases, X-Linked; Genetic Diseases, Inborn

  1. Phase 3 Study of Ataluren in Patients With Nonsense Mutation Duchenne Muscular Dystrophy

    ClinicalTrials.gov

    2016-08-02

    Muscular Dystrophy, Duchenne; Muscular Dystrophies; Muscular Disorders, Atrophic; Muscular Diseases; Musculoskeletal Diseases; Neuromuscular Diseases; Nervous System Diseases; Genetic Diseases, X-Linked; Genetic Diseases, Inborn

  2. A nonsense mutation in the tyrosinase gene causes albinism in water buffalo

    PubMed Central

    2012-01-01

    Background Oculocutaneous albinism (OCA) is an autosomal recessive hereditary pigmentation disorder affecting humans and several other animal species. Oculocutaneous albinism was studied in a herd of Murrah buffalo to determine the clinical presentation and genetic basis of albinism in this species. Results Clinical examinations and pedigree analysis were performed in an affected herd, and wild-type and OCA tyrosinase mRNA sequences were obtained. The main clinical findings were photophobia and a lack of pigmentation of the hair, skin, horns, hooves, mucosa, and iris. The results of segregation analysis suggest that this disease is acquired through recessive inheritance. In the OCA buffalo, a single-base substitution was detected at nucleotide 1,431 (G to A), which leads to the conversion of tryptophan into a stop codon at residue 477. Conclusion This premature stop codon produces an inactive protein, which is responsible for the OCA buffalo phenotype. These findings will be useful for future studies of albinism in buffalo and as a possible model to study diseases caused by a premature stop codon. PMID:22817390

  3. "After birth" abortion: a biomedical and conceptual nonsense.

    PubMed

    Benagiano, Giuseppe; Landeweerd, Laurens; Brosens, Ivo

    2013-07-01

    Recently, two authors suggested that killing a healthy newborn might be morally permissible, subsuming it under the heading of 'after birth abortion'. Their proposed new definition implies that infanticide should be permitted whenever II trimester abortion for social reasons is. The suggestion stirred public outcry; nonetheless it needs to be analyzed since some 20% of countries allow II trimester abortion for social reasons and 5% do this on demand. A proper delimitation of the definition of "abortion" is thus very important to ensure careful application; for this reason we have attempted a critical analysis of their arguments. In the area of pregnancy termination different moral standards are apparently applied in different countries, but many reasons exist why the equation between II trimester abortion for social reasons and the killing of healthy neonates is to be morally rejected in all cases. The "inversed reification" of the concept of infanticide as a more abstract, euphemistic 'after birth abortion' blurs the fundamental difference between a non-viable fetus and a viable neonate. The best-known and most widely utilized (although illegal) "social reason" for "late abortion" and "infanticide" is a pregnancy with a female fetus or neonate. If infanticide for neonates were to be considered morally permissible, specifically it is this practice that would be applied. And this should be rejected on two levels: conceptual, through a critique of the exclusive use of one specific notion of personhood, and pragmatic through refusal of gender-discriminatory forms of infanticide (the killing of female neonates). In conclusion, having investigated the new concept we have concluded that the term "after birth abortion" is biologically and conceptually nonsensical. PMID:23495749

  4. Correlation between connexin 32 gene mutations and clinical phenotype in X-linked dominant Charcot-Marie-Tooth neuropathy

    SciTech Connect

    Ionasescu, V.; Ionasescu, R.; Searby, C.

    1996-06-14

    We studied the relationship between the genotype and clinical phenotype in 27 families with dominant X-linked Charcot-Marie-Tooth (CMTX1) neuropathy. Twenty-two families showed mutations in the coding region of the connexin32 (cx32) gene. The mutations include four nonsense mutations, eight missense mutations, two medium size deletions, and one insertion. Most missense mutations showed a mild clinical phenotype (five out of eight), whereas all nonsense mutations, the larger of the two deletions, and the insertion that produced frameshifts showed severe phenotypes. Five CMTX1 families with mild clinical phenotype showed no point mutations of the cx32 gene coding region. Three of these families showed positive genetic linkage with the markers of the Xq13.1 region. The genetic linkage of the remaining two families could not be evaluated because of their small size. 25 refs., 1 fig., 1 tab.

  5. A model of protein translation including codon bias, nonsense errors, and ribosome recycling.

    PubMed

    Gilchrist, Michael A; Wagner, Andreas

    2006-04-21

    We present and analyse a model of protein translation at the scale of an individual messenger RNA (mRNA) transcript. The model we develop is unique in that it incorporates the phenomena of ribosome recycling and nonsense errors. The model conceptualizes translation as a probabilistic wave of ribosome occupancy traveling down a heterogeneous medium, the mRNA transcript. Our results show that the heterogeneity of the codon translation rates along the mRNA results in short-scale spikes and dips in the wave. Nonsense errors attenuate this wave on a longer scale while ribosome recycling reinforces it. We find that the combination of nonsense errors and codon usage bias can have a large effect on the probability that a ribosome will completely translate a transcript. We also elucidate how these forces interact with ribosome recycling to determine the overall translation rate of an mRNA transcript. We derive a simple cost function for nonsense errors using our model and apply this function to the yeast (Saccharomyces cervisiae) genome. Using this function we are able to detect position dependent selection on codon bias which correlates with gene expression levels as predicted a priori. These results indirectly validate our underlying model assumptions and confirm that nonsense errors can play an important role in shaping codon usage bias. PMID:16171830

  6. Novel mutations in PDE6B causing human retinitis pigmentosa

    PubMed Central

    Cheng, Lu-Lu; Han, Ru-Yi; Yang, Fa-Yu; Yu, Xin-Ping; Xu, Jin-Ling; Min, Qing-Jie; Tian, Jie; Ge, Xiang-Lian; Zheng, Si-Si; Lin, Ye-Wen; Zheng, Yi-Han; Qu, Jia; Gu, Feng

    2016-01-01

    AIM To identify the genetic defects of a Chinese patient with sporadic retinitis pigmentosa (RP). METHODS Ophthalmologic examinations were performed on the sporadic RP patient, 144 genes associated with retinal diseases were scanned with capture next generation sequencing (CNGS) approach. Two heterozygous mutations in PDE6B were confirmed in the pedigree by Sanger sequencing subsequently. The carrier frequency of PDE6B mutations of reported PDE6B mutations based on the available two public exome databases (1000 Genomes Project and ESP6500 Genomes Project) and one in-house exome database was investigated. RESULTS We identified compound heterozygosity of two novel nonsense mutations c.1133G>A (p.W378X) and c.2395C>T (p.R799X) in PDE6B, one reported causative gene for RP. Neither of the two mutations in our study was presented in three exome databases. Two mutations (p.R74C and p.T604I) in PDE6B have relatively high frequencies in the ESP6500 and in-house databases, respectively, while no common dominant mutation in each of the database or across all databases. CONCLUSION We demonstrates that compound heterozygosity of two novel nonsense mutations in PDE6B could lead to RP. These results collectively point to enormous potential of next-generation sequencing in determining the genetic etiology of RP and how various mutations in PDE6B contribute to the genetic heterogeneity of RP. PMID:27588261

  7. Exon skipping through the creation of a putative exonic splicing silencer as a consequence of the cystic fibrosis mutation R553X.

    PubMed

    Aznarez, Isabel; Zielenski, Julian; Rommens, Johanna M; Blencowe, Benjamin J; Tsui, Lap-Chee

    2007-05-01

    Nonsense mutations that occur more than 50 bases upstream of terminal spliced junctions are generally thought to lead to degradation of the corresponding transcripts by the process of nonsense-mediated mRNA decay. It has also been proposed that some nonsense mutations may affect splicing by the process of nonsense-associated altered splicing (NAS), or by the disruption of a splicing regulatory element. In this study, the effect of the R553X mutation on the splicing of exon 11 of the cystic fibrosis transmembrane conductance regulator gene was investigated. Evidence that R553X causes exon 11 to skip through the creation of a putative exonic splicing silencer (ESS) was provided. The putative ESS appears to be active when located immediately upstream of a 5' splice site. These findings argue against the possibility that R553X-associated exon 11 skipping is caused by NAS. The study further suggests that aminoglycoside antibiotic treatment would not be effective for patients with the R553X mutation, owing to the skipping of exon 11, and further emphasises the need for detailed mechanistic characterisation of the consequences of nonsense disease mutations. PMID:17475917

  8. Polypyrimidine tract binding protein 1 protects mRNAs from recognition by the nonsense-mediated mRNA decay pathway

    PubMed Central

    Ge, Zhiyun; Quek, Bao Lin; Beemon, Karen L; Hogg, J Robert

    2016-01-01

    The nonsense-mediated mRNA decay (NMD) pathway degrades mRNAs containing long 3'UTRs to perform dual roles in mRNA quality control and gene expression regulation. However, expansion of vertebrate 3'UTR functions has required a physical expansion of 3'UTR lengths, complicating the process of detecting nonsense mutations. We show that the polypyrimidine tract binding protein 1 (PTBP1) shields specific retroviral and cellular transcripts from NMD. When bound near a stop codon, PTBP1 blocks the NMD protein UPF1 from binding 3'UTRs. PTBP1 can thus mark specific stop codons as genuine, preserving both the ability of NMD to accurately detect aberrant mRNAs and the capacity of long 3'UTRs to regulate gene expression. Illustrating the wide scope of this mechanism, we use RNA-seq and transcriptome-wide analysis of PTBP1 binding sites to show that many human mRNAs are protected by PTBP1 and that PTBP1 enrichment near stop codons correlates with 3'UTR length and resistance to NMD. DOI: http://dx.doi.org/10.7554/eLife.11155.001 PMID:26744779

  9. From Genotype to Phenotype: Nonsense Variants in SLC13A1 Are Associated with Decreased Serum Sulfate and Increased Serum Aminotransferases

    PubMed Central

    Tise, Christina G.; Perry, James A.; Anforth, Leslie E.; Pavlovich, Mary A.; Backman, Joshua D.; Ryan, Kathleen A.; Lewis, Joshua P.; O’Connell, Jeffrey R.; Yerges-Armstrong, Laura M.; Shuldiner, Alan R.

    2016-01-01

    Using genomic applications to glean insights into human biology, we systematically searched for nonsense single nucleotide variants (SNVs) that are rare in the general population but enriched in the Old Order Amish (Amish) due to founder effect. We identified two nonlinked, nonsense SNVs (R12X and W48X) in SLC13A1 (allele frequencies 0.29% and 0.74% in the Amish; enriched 1.2-fold and 3.7-fold, compared to the outbred Caucasian population, respectively). SLC13A1 encodes the apical sodium-sulfate cotransporter (NaS1) responsible for sulfate (re)absorption in the kidneys and intestine. SLC13A1 R12X and W48X were independently associated with a 27.6% (P = 2.7 × 10−8) and 27.3% (P = 6.9 × 10−14) decrease in serum sulfate, respectively (P = 8.8 × 10-20 for carriers of either SLC13A1 nonsense SNV). We further performed the first exome- and genome-wide association study (ExWAS/GWAS) of serum sulfate and identified a missense variant (L348P) in SLC26A1, which encodes the basolateral sulfate-anion transporter (Sat1), that was associated with decreased serum sulfate (P = 4.4 × 10−12). Consistent with sulfate’s role in xenobiotic detoxification and protection against acetaminophen-induced hepatotoxicity, SLC13A1 nonsense SNV carriers had higher aminotransferase levels compared to noncarriers. Furthermore, SLC26A1 L348P was associated with lower whole-body bone mineral density (BMD) and higher serum calcium, consistent with the osteochondrodysplasia exhibited by dogs and sheep with naturally occurring, homozygous, loss-of-function mutations in Slc13a1. This study demonstrates the power and translational potential of systematic identification and characterization of rare, loss-of-function variants and warrants additional studies to better understand the importance of sulfate in human physiology, disease, and drug toxicity. PMID:27412988

  10. Teaching Children to Fluently Decode Nonsense Words in Lists: Generalized Effects to Oral Reading Fluency of Connected Text

    ERIC Educational Resources Information Center

    Werder, Candace Susan

    2012-01-01

    The present study examined the generalized effects of training children to fluently blend nonsense words containing target vowel teams on their reading of untrained real words in lists and passages. Eight second-grade students participated. Nonsense words containing each of 3 target vowel teams ("aw," "oi," and "au")…

  11. Truncating mutations in APP cause a distinct neurological phenotype.

    PubMed

    Klein, Steven; Goldman, Alexander; Lee, Hane; Ghahremani, Shahnaz; Bhakta, Viraj; Nelson, Stanley F; Martinez-Agosto, Julian A

    2016-09-01

    Dominant missense mutations in the amyloid β (Aβ) precursor protein (APP) gene have been implicated in early onset Alzheimer disease. These mutations alter protein structure to favor the pathologic production of Aβ. We report that homozygous nonsense mutations in APP are associated with decreased somatic growth, microcephaly, hypotonia, developmental delay, thinning of the corpus callosum, and seizures. We compare the phenotype of this case to those reported in mouse models and demonstrate multiple similarities, strengthening the role of amyloid precursor protein in normal brain function and development. Ann Neurol 2016;80:456-460. PMID:27422356

  12. A new mutation in the CSB gene in a Chinese patient with mild Cockayne syndrome

    PubMed Central

    Luo, Yu; Ling, Yan; Chen, Jiachao; Xu, Xi; Chen, Chen; Leng, Fei; Cheng, Jing; Chen, Min; Lu, Zhiqiang

    2014-01-01

    Key Clinical Message Cockayne syndrome (CS) is a rare autosomal recessive genetic disease characterized by growth failure and progressive neurological degeneration. Here we report a mild form of CS patient who was homozygous for the C526T transition resulting in a new nonsense mutation, which converts Arg176 to a stop codon. PMID:25356239

  13. Method for quantitative analysis of nonsense-mediated mRNA decay at the single cell level.

    PubMed

    Pereverzev, Anton P; Gurskaya, Nadya G; Ermakova, Galina V; Kudryavtseva, Elena I; Markina, Nadezhda M; Kotlobay, Alexey A; Lukyanov, Sergey A; Zaraisky, Andrey G; Lukyanov, Konstantin A

    2015-01-01

    Nonsense-mediated mRNA decay (NMD) is a ubiquitous mechanism of degradation of transcripts with a premature termination codon. NMD eliminates aberrant mRNA species derived from sources of genetic variation such as gene mutations, alternative splicing and DNA rearrangements in immune cells. In addition, recent data suggest that NMD is an important mechanism of global gene expression regulation. Here, we describe new reporters to quantify NMD activity at the single cell level using fluorescent proteins of two colors: green TagGFP2 and far-red Katushka. TagGFP2 was encoded by mRNA targeted to either the splicing-dependent or the long 3'UTR-dependent NMD pathway. Katushka was used as an expression level control. Comparison of the fluorescence intensities of cells expressing these reporters and cells expressing TagGFP2 and Katushka from corresponding control NMD-independent vectors allowed for the assessment of NMD activity at the single cell level using fluorescence microscopy and flow cytometry. The proposed reporter system was successfully tested in several mammalian cell lines and in transgenic Xenopus embryos. PMID:25578556

  14. Male Readership Differences in Liquor Magazine Ads Employing Nonsensical and Sexual Humor.

    ERIC Educational Resources Information Center

    Reid, Leonard N.; And Others

    A study examined the attention getting value of nonsensical and sexual humor used in liquor advertisements to determine if one was more effective than the other in attracting male magazine readers. Thirty-two Starch-scored liquor ads taken from 1976 and 1977 issues of "Time,""Newsweek," and "Sports Illustrated" were analyzed by three male readers.…

  15. Notes on a Bit of Psychological Nonsense: "Race Differences in Intelligence"

    ERIC Educational Resources Information Center

    Schoenfeld, William N.

    1974-01-01

    The issue of race differences in intelligence, especially with respect to American black and white populations, is adjudged to be "nonsensical" in terms of the framing of the question, the populations sampled, the testing instruments utilized, and the concept of "intelligence" postulated. (Author/EH)

  16. Number Sense and Number Nonsense: Understanding the Challenges of Learning Math

    ERIC Educational Resources Information Center

    Krasa, Nancy; Shunkwiler, Sara

    2009-01-01

    How do children learn math--and why do some children struggle with it? The answers are in "Number Sense and Number Nonsense," a straightforward, reader-friendly book for education professionals and an invaluable multidisciplinary resource for researchers. More than a first-ever research synthesis, this highly accessible book brings math…

  17. Making Sense of Nonsense Word Fluency: Determining Adequate Progress in Early First-Grade Reading

    ERIC Educational Resources Information Center

    Good, Roland H., III; Baker, Scott K.; Peyton, Julia A.

    2009-01-01

    In this article, we examine the contribution of initial skill and slope of progress on alphabetic principle to end of first-grade reading outcomes. Initial skill and slope were measured using DIBELS Nonsense Word Fluency. Reading outcomes were measured at the end of first grade with DIBELS Oral Reading Fluency. Students in Oregon Reading First…

  18. Leveraging Rules of Nonsense-Mediated mRNA Decay for Genome Engineering and Personalized Medicine.

    PubMed

    Popp, Maximilian W; Maquat, Lynne E

    2016-06-01

    Nonsense-mediated mRNA decay (NMD) is a eukaryotic mRNA quality control and regulatory process that plays direct roles in human health and disease. In this Minireview, we discuss how understanding the molecular events that trigger NMD can facilitate strategic targeting of genes via CRISPR/Cas9 technologies and also inform disease diagnostics and treatments. PMID:27259145

  19. Monitoring Early Reading Development in First Grade: Word Identification Fluency Versus Nonsense Word Fluency

    ERIC Educational Resources Information Center

    Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.

    2004-01-01

    This study contrasts the validity of 2 early reading curriculum-based measurement (CBM) measures: word identification fluency and nonsense word fluency. At-risk children (n = 151) were assessed (a) on criterion reading measures in the fall and spring of first grade and (b) on the 2 CBM measures each week for 7 weeks and twice weekly for an…

  20. Mutations alter secretion of fukutin-related protein.

    PubMed

    Lu, Pei J; Zillmer, Allen; Wu, XiaoHua; Lochmuller, Hanns; Vachris, Judy; Blake, Derek; Chan, Yiumo Michael; Lu, Qi L

    2010-02-01

    Mutations in the fukutin-related protein (FKRP) gene cause limb-girdle muscular dystrophy type 2I (LGMD2I) as well as other severe muscle disorders, including Walker-Warburg syndrome, muscle-eye-brain disease, and congenital muscular dystrophy type 1C. The FKRP gene encodes a putative glycosyltransferase, but its precise localization and functions have yet to be determined. In the present study, we demonstrated that normal FKRP is secreted into culture medium and mutations alter the pattern of secretion in CHO cells. L276I mutation associated with mild disease phenotype was shown to reduce the level of secretion whereas P448L and C318Y mutations associated with severe disease phenotype almost abolished the secretion. However, a truncated FKRP mutant protein lacking the entire C-terminal 185 amino acids due to the E310X nonsense mutation was able to secrete as efficiently as the normal FKRP. The N-terminal signal peptide sequence is apparently cleaved from the secreted FKRP proteins. Alteration of the secretion pathway by different mutations and spontaneous read-through of nonsense mutation may contribute to wide variations in phenotypes associated with FKRP-related diseases. PMID:19900540

  1. APC germline mutations in families with familial adenomatous polyposis.

    PubMed

    De Queiroz Rossanese, Lillian Barbosa; De Lima Marson, Fernando Augusto; Ribeiro, José Dirceu; Coy, Claudio Saddy Rodrigues; Bertuzzo, Carmen Silvia

    2013-11-01

    Adenomatous polyposis coli (APC) germline mutations are responsible for the occurrence of familial adenomatous polyposis (FAP). Somatic mutations lead to malignant transformation of adenomas. In this context, considering the significance of APC germline mutations in FAP, we aimed to identify APC germline mutations. In the present study, 20 FAP patients were enrolled. The determination of APC germline mutations was performed using sequencing, and the mutations were compared with clinical markers (gender, age at diagnosis, smoking habits, TNM stage, Astler‑Coller stage, degree of differentiation of adenocarcinoma). The data were compared using the SPSS program, with the Fisher's exact test and χ2 test, considering α=0.05. According to the main results in our sample, 16 alleles with deleterious mutations (80% of the patients) were identified while 7 (35%) patients had no deleterious mutations. There was a predominance of nonsense (45% of the patients) and frameshift (20% of the patients) mutations. There was no statistical significance between the APC germline mutations identified and the clinical variables considered in our study. Only TNM stage was associated with the presence of deleterious mutations. Patients with deleterious mutations had an OR, 0.086 (IC=0.001-0.984); TNM stage I+II in comparison with III+IV, when compared with the patients with no deleterious mutations identified. In this context, as a conclusion, we demonstrated the molecular heterogeneity of APC germline mutations in FAP and the difficulty to perform molecular diagnostics in a Brazilian population, considering the admixed population analyzed. PMID:23970361

  2. Progranulin mutation analysis: Identification of one novel mutation in exon 12 associated with frontotemporal dementia.

    PubMed

    Aswathy, Peethambaran Mallika; Jairani, Pushparajan Sulajamani; Raghavan, Sheela Kumari; Verghese, Joe; Gopala, Srinivas; Srinivas, Priya; Mathuranath, Pavagada Sivasankara

    2016-03-01

    Progranulin (PGRN) mutations account for an average of 15% of familial frontotemporal dementia (FTD) cases and 20% of total FTD cases worldwide. Here, we investigated the frequency of PGRN mutations in FTD patients (n = 116) from a clinical cohort of south India and detected one novel mutation located on exon 12 in a familial behavioral variant FTD patient (accounting for ∼1% of total FTD cases and 6% of familial FTD cases). This mutation was found to introduce a premature termination codon and the prematurely terminated messenger RNA may probably undergo nonsense-mediated decay. In enzyme-linked immunosorbent assay, the proband showed significantly reduced level of plasma PGRN (28 ng/mL) compared with controls (150 ± 38 ng/mL), which implicates haploinsufficiency as the pathogenic mechanism. PMID:26724960

  3. TP53 Mutational Spectrum in Endometrioid and Serous Endometrial Cancers.

    PubMed

    Schultheis, Anne M; Martelotto, Luciano G; De Filippo, Maria R; Piscuglio, Salvatore; Ng, Charlotte K Y; Hussein, Yaser R; Reis-Filho, Jorge S; Soslow, Robert A; Weigelt, Britta

    2016-07-01

    Endometrial carcinomas (ECs) are heterogeneous at the genetic level. Although TP53 mutations are highly recurrent in serous endometrial carcinomas (SECs), these are also present in a subset of endometrioid endometrial carcinomas (EECs). Here, we sought to define the frequency, pattern, distribution, and type of TP53 somatic mutations in ECs by performing a reanalysis of the publicly available data from The Cancer Genome Atlas (TCGA). A total of 228 EECs (n=186) and SECs (n=42) from the TCGA data set, for which an integrated genomic characterization was performed, were interrogated for the presence and type of TP53 mutations, and for mutations in genes frequently mutated in ECs. TP53 mutations were found in 15% of EECs and 88% of SECs, and in 91% of copy-number-high and 35% of polymerase (DNA directed), epsilon, catalytic subunit (POLE) integrative genomic subtypes. In addition to differences in prevalence, variations in the type and pattern of TP53 mutations were observed between histologic types and between integrative genomic subtypes. TP53 hotspot mutations were significantly more frequently found in SECs (46%) than in EECs (15%). TP53-mutant EECs significantly more frequently harbored a co-occurring PTEN mutation than TP53-mutant SECs. Finally, a subset of TP53-mutant ECs (22%) was found to harbor frameshift or nonsense mutations. Given that nonsense and frameshift TP53 mutations result in distinct p53 immunohistochemical results that require careful interpretation, and that EECs and SECs display different patterns, types, and distributions of TP53 mutations, the use of the TP53/p53 status alone for the differential diagnosis of EECs and SECs may not be sufficient. PMID:26556035

  4. Diverse mutations in patients with Menkes disease often lead to exon skipping

    SciTech Connect

    Das, S.; Levinson, Levinson, B.; Whitney, S.; Vulpe, C.; Packman, S.; Gitschier, J.

    1994-11-01

    Fibroblast cultures from 12 unrelated patients with classical Menkes disease were analyzed for mutations in the MNK gene, by reverse transcription-PCR (RT-PCR) and chemical cleavage mismatch detection. Mutations were observed in 10 patients, and in each case a different mutation was present. All of the mutations would be predicted to have adverse effects on protein expression. Mutations that resulted in splicing abnormalities, detected by RT-PCR alone, were observed in six patients and included two splice-site changes, a nonsense mutation, a missense mutation, a small duplication, and a small deletion. Chemical cleavage analysis of the remaining six patients revealed the presence of one missense mutation. A valine/leucine polymorphism was also observed. These findings, combined with the prior observation of deletions in 15%-20% of Menkes patients, suggest that Southern blot hybridization and RT-PCR will identify mutations in the majority of patients. 26 refs., 3 figs., 2 tabs.

  5. Spectrum of mutations in alpha-mannosidosis.

    PubMed Central

    Berg, T; Riise, H M; Hansen, G M; Malm, D; Tranebjaerg, L; Tollersrud, O K; Nilssen, O

    1999-01-01

    alpha-Mannosidosis is an autosomal recessive disorder caused by deficiency of lysosomal alpha-mannosidase (LAMAN). The resulting intracellular accumulation of mannose-containing oligosaccharides leads to mental retardation, hearing impairment, skeletal changes, and immunodeficiency. Recently, we reported the first alpha-mannosidosis-causing mutation affecting two Palestinian siblings. In the present study 21 novel mutations and four polymorphic amino acid positions were identified by the screening of 43 patients, from 39 families, mainly of European origin. Disease-causing mutations were identified in 72% of the alleles and included eight splicing, six missense, and three nonsense mutations, as well as two small insertions and two small deletions. In addition, Southern blot analysis indicated rearrangements in some alleles. Most mutations were private or occurred in two or three families, except for a missense mutation resulting in an R750W substitution. This mutation was found in 13 patients, from different European countries, and accounted for 21% of the disease alleles. Although there were clinical variations among the patients, no significant LAMAN activity could be detected in any of the fibroblast cultures. In addition, no correlation between the types of mutations and the clinical manifestations was evident. PMID:9915946

  6. Same. beta. -globin gene mutation is present on nine different. beta. -thalassemia chromosomes in a Sardinian population

    SciTech Connect

    Pirastu, M.; Galanello, R.; Doherty, M.A.; Tuveri, T.; Cao, A.; Kan, Y.W.

    1987-05-01

    The predominant ..beta..-thalassemia in Sardinia is the ..beta../sup 0/ type in which no ..beta..-globin chains are synthesized in the homozygous state. The authors determined the ..beta..-thalassemia mutations in this population by the oligonucleotide-probe method and defined the chromosome haplotypes on which the mutation resides. The same ..beta../sup 39(CAG..-->..TAG)/ nonsense mutation was found on nine different chromosome haplotypes. Although this mutation may have arisen more than once, the multiple haplotypes could also be generated by crossing over and gene conversion events. These findings underscore the frequency of mutational events in the ..beta..-globin gene region.

  7. Quality assurance controls in research data base management: nonsense codes in hierarchical file structures

    SciTech Connect

    Farrell, M.P.; Strand, R.H.; Magoun, A.D.; Pennington, C.H.; Schramm, H.; Cobb, S.P.; Daniels, K.

    1980-01-01

    In complex studies using multiple data bases composed of hierarchical file structures, there is a high probability that errors may be perpetuated into summary reports unless some form of quality assurance is integrated into the research data base management program. In studies that substitute numeric codes for variable values, this problem of error propagation is even more acute. This paper addresses the problem of error propagation in those studies employing a coding scheme to represent longer alphanumeric values. Several approaches are available that minimize errors in coding variables. Numeric codes with embedded information allocated to positions within the value codes are widely used. Such smart codes require a full knowledge of the universe the variables describe as well as the potential classification schemes for each variable. Nonsense codes, or codes without embedded information, efficiently circumvent the problems associated with smart codes. Alphanumeric variable values are assigned a sequential numeric code as new values are encountered in the data base. With nonsense codes, the management approach is open-ended and does not require a knowledge of the number of potential classification levels for the variables. Experience indicates that coding errors appear to be less frequent with nonsense codes. The use of the FORMAT procedure in SAS/version 79.2 complements the nonsense code approach using variable labeling. Current restrictions in the use of the FORMAT statement and the sort order of the labels in BY statements or PRINT requests can be circumvented by using the PUT function to assign format values to a new character variable. 1 figure.

  8. Three novel ZBTB24 mutations identified in Japanese and Cape Verdean type 2 ICF syndrome patients.

    PubMed

    Nitta, Hirohisa; Unoki, Motoko; Ichiyanagi, Kenji; Kosho, Tomoki; Shigemura, Tomonari; Takahashi, Hiroshi; Velasco, Guillaume; Francastel, Claire; Picard, Capucine; Kubota, Takeo; Sasaki, Hiroyuki

    2013-07-01

    Immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome is a rare autosomal recessive disorder that shows DNA hypomethylation at pericentromeric satellite-2 and -3 repeats in chromosomes 1, 9 and 16. ICF syndrome is classified into two groups: type 1 (ICF1) patients have mutations in the DNMT3B gene and about half of type 2 (ICF2) patients have mutations in the ZBTB24 gene. Besides satellite-2 and -3 repeats, α-satellite repeats are also hypomethylated in ICF2. In this study, we report three novel ZBTB24 mutations in ICF2. A Japanese patient was homozygous for a missense mutation (C383Y), and a Cape Verdean patient was compound heterozygous for a nonsense mutation (K263X) and a frame-shift mutation (C327W fsX54). In addition, the second Japanese patient was homozygous for a previously reported nonsense mutation (R320X). The C383Y mutation abolished a C2H2 motif in one of the eight zinc-finger domains, and the other three mutations caused a complete or large loss of the zinc-finger domains. Our immunofluorescence analysis revealed that mouse Zbtb24 proteins possessing a mutation corresponding to either C383Y or R320X are mislocalized from pericentrometic heterochromatin, suggesting the importance of the zinc-finger domains in proper intranuclear localization of this protein. We further revealed that the proper localization of wild-type Zbtb24 protein does not require DNA methylation. PMID:23739126

  9. Detection and comparison of two types of ATP2C1 gene mutations in Chinese patients with Hailey-Hailey disease.

    PubMed

    Zhang, Dingwei; Li, Xiaoli; Xiao, Shengxiang; Huo, Jia; Wang, Shuang; Zhou, Pengjun

    2012-03-01

    The gene ATP2C1 is identified as the defective gene in Hailey-Hailey disease (HHD). The nonsense and missense are two common types of mutations and have, respectively, been detected in many HHD patients. The aims of our study were to identify the pathogenic ATP2C1 abnormality in Chinese HHD patients, and to compare nonsense and missense mutations in vivo to provide further understanding of the molecular and the physiological basis of HHD. The nucleotide sequencing of the ATP2C1 gene was performed in HHD patients, unaffected family members and 100 unrelated individuals. Meanwhile, we detected and analyzed the clinical manifestations, the expression of ATP2C1 mRNA and hSPCA1 protein in the two types of mutations. Three heterozygous mutations were identified, including a previously reported nonsense mutation (R799X), two novel missense mutations (D644G) and (R417K). The results of comparisons between two types of mutations showed that the common clinical features, the similarly low-level expressions of ATP2C1 mRNA and hSPCA1 protein, but the ATP2C1 mRNA expression of nonsense mutation was lower than missense mutation and even less than half the level of normal people. Our findings expand the known spectrum of ATP2C1 mutations in HHD. We supported the haploinsufficiency theory as prevalent mechanism in both types of mutations, and believed that the differences of ATP2C1 mRNA expressions in peripheral blood may relate with the type of mutation and reflect the state of illness of patients. PMID:22124882

  10. Mutation discovery for Mendelian traits in non-laboratory animals: a review of achievements up to 2012

    PubMed Central

    Nicholas, Frank W; Hobbs, Matthew

    2014-01-01

    Within two years of the re-discovery of Mendelism, Bateson and Saunders had described six traits in non-laboratory animals (five in chickens and one in cattle) that show single-locus (Mendelian) inheritance. In the ensuing decades, much progress was made in documenting an ever-increasing number of such traits. In 1987 came the first discovery of a causal mutation for a Mendelian trait in non-laboratory animals: a non-sense mutation in the thyroglobulin gene (TG), causing familial goitre in cattle. In the years that followed, the rate of discovery of causal mutations increased, aided mightily by the creation of genome-wide microsatellite maps in the 1990s and even more mightily by genome assemblies and single-nucleotide polymorphism (SNP) chips in the 2000s. With sequencing costs decreasing rapidly, by 2012 causal mutations were being discovered in non-laboratory animals at a rate of more than one per week. By the end of 2012, the total number of Mendelian traits in non-laboratory animals with known causal mutations had reached 499, which was half the number of published single-locus (Mendelian) traits in those species. The distribution of types of mutations documented in non-laboratory animals is fairly similar to that in humans, with almost half being missense or non-sense mutations. The ratio of missense to non-sense mutations in non-laboratory animals to the end of 2012 was 193:78. The fraction of non-sense mutations (78/271 = 0.29) was not very different from the fraction of non-stop codons that are just one base substitution away from a stop codon (21/61 = 0.34). PMID:24372556

  11. Two mutations in human BICC1 resulting in Wnt pathway hyperactivity associated with cystic renal dysplasia.

    PubMed

    Kraus, Marine R-C; Clauin, Séverine; Pfister, Yvan; Di Maïo, Massimo; Ulinski, Tim; Constam, Daniel; Bellanné-Chantelot, Christine; Grapin-Botton, Anne

    2012-01-01

    Bicaudal C homologue 1 (Bicc1) knockout in mice causes polycystic kidney disease and pancreas development defects, including a reduction in insulin-producing β-cells and ensuing diabetes. We therefore screened 137 patients with renal abnormalities or association of early-onset diabetes and renal disease for genetic alterations in BICC1. We identified two heterozygous mutations, one nonsense in the first K Homology (KH) domain and one missense in the sterile alpha motif (SAM) domain. In mice, Bicc1 blocks canonical Wnt signaling, mostly via its SAM domain. We show that the human BICC1, similar to its mouse counterpart, blocks canonical Wnt signaling. The nonsense mutation identified results in a complete loss of Wnt inhibitory activity. The point mutation in the SAM domain has a similar effect to a complete SAM domain deletion, resulting in a 22% loss of activity. PMID:21922595

  12. Mutations in PTPRQ are a cause of autosomal-recessive nonsyndromic hearing impairment DFNB84 and associated with vestibular dysfunction.

    PubMed

    Schraders, Margit; Oostrik, Jaap; Huygen, Patrick L M; Strom, Tim M; van Wijk, Erwin; Kunst, Henricus P M; Hoefsloot, Lies H; Cremers, Cor W R J; Admiraal, Ronald J C; Kremer, Hannie

    2010-04-01

    We identified overlapping homozygous regions within the DFNB84 locus in a nonconsanguineous Dutch family and a consanguineous Moroccan family with sensorineural autosomal-recessive nonsyndromic hearing impairment (arNSHI). The critical region of 3.17 Mb harbored the PTPRQ gene and mouse models with homozygous mutations in the orthologous gene display severe hearing loss. We show that the human PTPRQ gene was not completely annotated and that additional, alternatively spliced exons are present at the 5' end of the gene. Different PTPRQ isoforms are encoded with a varying number of fibronectin type 3 (FN3) domains, a transmembrane domain, and a phosphatase domain. Sequence analysis of the PTPRQ gene in members of the families revealed a nonsense mutation in the Dutch family and a missense mutation in the Moroccan family. The missense mutation is located in one of the FN3 domains. The nonsense mutation results in a truncated protein with only a small number of FN3 domains and no transmembrane or phosphatase domain. Hearing loss in the patients with PTPRQ mutations is likely to be congenital and moderate to profound and most severe in the family with the nonsense mutation. Progression of the hearing loss was observed in both families. The hearing loss is accompanied by vestibular dysfunction in all affected individuals. Although we show that PTPRQ is expressed in many tissues, no symptoms other than deafness were observed in the patients. PMID:20346435

  13. Ex vivo correction of selenoprotein N deficiency in rigid spine muscular dystrophy caused by a mutation in the selenocysteine codon

    PubMed Central

    Rederstorff, M.; Allamand, V.; Guicheney, P.; Gartioux, C.; Richard, P.; Chaigne, D.; Krol, A.; Lescure, A.

    2008-01-01

    Premature termination of translation due to nonsense mutations is a frequent cause of inherited diseases. Therefore, many efforts were invested in the development of strategies or compounds to selectively suppress this default. Selenoproteins are interesting candidates considering the idiosyncrasy of the amino acid selenocysteine (Sec) insertion mechanism. Here, we focused our studies on SEPN1, a selenoprotein gene whose mutations entail genetic disorders resulting in different forms of muscular diseases. Selective correction of a nonsense mutation at the Sec codon (UGA to UAA) was undertaken with a corrector tRNASec that was engineered to harbor a compensatory mutation in the anticodon. We demonstrated that its expression restored synthesis of a full-length selenoprotein N both in HeLa cells and in skin fibroblasts from a patient carrying the mutated Sec codon. Readthrough of the UAA codon was effectively dependent on the Sec insertion machinery, therefore being highly selective for this gene and unlikely to generate off-target effects. In addition, we observed that expression of the corrector tRNASec stabilized the mutated SEPN1 transcript that was otherwise more subject to degradation. In conclusion, our data provide interesting evidence that premature termination of translation due to nonsense mutations is amenable to correction, in the context of the specialized selenoprotein synthesis mechanism. PMID:18025044

  14. Spectrum of small mutations in the dystrophin coding region

    SciTech Connect

    Prior, T.W.; Bartolo, C.; Pearl, D.K.

    1995-07-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are caused by defects in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5` and central portion of the gene. The nondeletion/duplication cases are most likely the result of smaller mutations that cannot be identified by current diagnostic screening strategies. We screened {approximately} 80% of the dystrophin coding sequence for small mutations in 158 patients without deletions or duplications and identified 29 mutations. The study indicates that many of the DMD and the majority of the BMD small mutations lie in noncoding regions of the gene. All of the mutations identified were unique to single patients, and most of the mutations resulted in protein truncation. We did not find a clustering of small mutations similar to the deletion distribution but found > 40% of the small mutations 3` of exon 55. The extent of protein truncation caused by the 3` mutations did not determine the phenotype, since even the exon 76 nonsense mutation resulted in the severe DMD phenotype. Our study confirms that the dystrophin gene is subject to a high rate of mutation in CpG sequences. As a consequence of not finding any hotspots or prevalent small mutations, we conclude that it is presently not possible to perform direct carrier and prenatal diagnostics for many families without deletions or duplications. 71 refs., 2 figs., 2 tabs.

  15. Direct Transcriptional Consequences of Somatic Mutation in Breast Cancer.

    PubMed

    Shlien, Adam; Raine, Keiran; Fuligni, Fabio; Arnold, Roland; Nik-Zainal, Serena; Dronov, Serge; Mamanova, Lira; Rosic, Andrej; Ju, Young Seok; Cooke, Susanna L; Ramakrishna, Manasa; Papaemmanuil, Elli; Davies, Helen R; Tarpey, Patrick S; Van Loo, Peter; Wedge, David C; Jones, David R; Martin, Sancha; Marshall, John; Anderson, Elizabeth; Hardy, Claire; Barbashina, Violetta; Aparicio, Samuel A J R; Sauer, Torill; Garred, Øystein; Vincent-Salomon, Anne; Mariani, Odette; Boyault, Sandrine; Fatima, Aquila; Langerød, Anita; Borg, Åke; Thomas, Gilles; Richardson, Andrea L; Børresen-Dale, Anne-Lise; Polyak, Kornelia; Stratton, Michael R; Campbell, Peter J

    2016-08-16

    Disordered transcriptomes of cancer encompass direct effects of somatic mutation on transcription, coordinated secondary pathway alterations, and increased transcriptional noise. To catalog the rules governing how somatic mutation exerts direct transcriptional effects, we developed an exhaustive pipeline for analyzing RNA sequencing data, which we integrated with whole genomes from 23 breast cancers. Using X-inactivation analyses, we found that cancer cells are more transcriptionally active than intermixed stromal cells. This is especially true in estrogen receptor (ER)-negative tumors. Overall, 59% of substitutions were expressed. Nonsense mutations showed lower expression levels than expected, with patterns characteristic of nonsense-mediated decay. 14% of 4,234 rearrangements caused transcriptional abnormalities, including exon skips, exon reusage, fusions, and premature polyadenylation. We found productive, stable transcription from sense-to-antisense gene fusions and gene-to-intergenic rearrangements, suggesting that these mutation classes drive more transcriptional disruption than previously suspected. Systematic integration of transcriptome with genome data reveals the rules by which transcriptional machinery interprets somatic mutation. PMID:27498871

  16. Laminin 5 genes and Herlitz junctional epidermolysis bullosa: novel mutations and polymorphisms in the LAMB3 and LAMC2 genes. Mutations in brief no. 190. Online.

    PubMed

    Kon, A; Pulkkinen, L; Hara, M; Tamai, K; Tagami, H; Hashimoto, I; Uitto, J

    1998-01-01

    Herlitz junctional epidermolysis bullosa (H-JEB; OMIM #226700) is a lethal, autosomal recessive blistering disorder characterized by fragility of the skin and other specialized epithelia. Previously, mutations in the laminin 5 genes (LAMA3, LAMB3, and LAMC2) have been disclosed, most of them in LAMB3. In this study, we have examined the genetic basis of H-JEB in three families utilizing heteroduplex analysis and automated nucleotide sequencing. In one family, the proband was compound heterozygote for previously unpublished LAMB3 mutations, 1482delC and W95X. In two other families, the probands were found to be homozygous for novel nonsense mutations C553X and K822X in the LAMC2 gene. These mutations result in premature termination codons and predict truncation of the corresponding polypeptides. Also, during the search of laminin 5 mutations, 18 LAMB3 and LAMC2 polymorphisms were discovered, 9 of them being previously undescribed. Delineation of novel homozygous nonsense mutations in the LAMB3 and LAMC2 genes, with previous demonstrations of LAMA3 mutations, re-emphasizes the concept that stop codon mutations in both alleles of any of the three laminin 5 genes result in the severe H-JEB phenotype. PMID:10660342

  17. Mutated tumor alleles are expressed according to their DNA frequency

    PubMed Central

    Castle, John C.; Loewer, Martin; Boegel, Sebastian; Tadmor, Arbel D.; Boisguerin, Valesca; de Graaf, Jos; Paret, Claudia; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur

    2014-01-01

    The transcription of tumor mutations from DNA into RNA has implications for biology, epigenetics and clinical practice. It is not clear if mutations are in general transcribed and, if so, at what proportion to the wild-type allele. Here, we examined the correlation between DNA mutation allele frequency and RNA mutation allele frequency. We sequenced the exome and transcriptome of tumor cell lines with large copy number variations, identified heterozygous single nucleotide mutations and absolute DNA copy number, and determined the corresponding DNA and RNA mutation allele fraction. We found that 99% of the DNA mutations in expressed genes are expressed as RNA. Moreover, we found a high correlation between the DNA and RNA mutation allele frequency. Exceptions are mutations that cause premature termination codons and therefore activate nonsense-mediated decay. Beyond this, we did not find evidence of any wide-scale mechanism, such as allele-specific epigenetic silencing, preferentially promoting mutated or wild-type alleles. In conclusion, our data strongly suggest that genes are equally transcribed from all alleles, mutated and wild-type, and thus transcribed in proportion to their DNA allele frequency. PMID:24752137

  18. Mutated tumor alleles are expressed according to their DNA frequency.

    PubMed

    Castle, John C; Loewer, Martin; Boegel, Sebastian; Tadmor, Arbel D; Boisguerin, Valesca; de Graaf, Jos; Paret, Claudia; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur

    2014-01-01

    The transcription of tumor mutations from DNA into RNA has implications for biology, epigenetics and clinical practice. It is not clear if mutations are in general transcribed and, if so, at what proportion to the wild-type allele. Here, we examined the correlation between DNA mutation allele frequency and RNA mutation allele frequency. We sequenced the exome and transcriptome of tumor cell lines with large copy number variations, identified heterozygous single nucleotide mutations and absolute DNA copy number, and determined the corresponding DNA and RNA mutation allele fraction. We found that 99% of the DNA mutations in expressed genes are expressed as RNA. Moreover, we found a high correlation between the DNA and RNA mutation allele frequency. Exceptions are mutations that cause premature termination codons and therefore activate nonsense-mediated decay. Beyond this, we did not find evidence of any wide-scale mechanism, such as allele-specific epigenetic silencing, preferentially promoting mutated or wild-type alleles. In conclusion, our data strongly suggest that genes are equally transcribed from all alleles, mutated and wild-type, and thus transcribed in proportion to their DNA allele frequency. PMID:24752137

  19. Mutation Update and Review of Severe Methylenetetrahydrofolate Reductase Deficiency.

    PubMed

    Froese, D Sean; Huemer, Martina; Suormala, Terttu; Burda, Patricie; Coelho, David; Guéant, Jean-Louis; Landolt, Markus A; Kožich, Viktor; Fowler, Brian; Baumgartner, Matthias R

    2016-05-01

    Severe 5,10-methylenetetrahydrofolate reductase (MTHFR) deficiency is caused by mutations in the MTHFR gene and results in hyperhomocysteinemia and varying severity of disease, ranging from neonatal lethal to adult onset. Including those described here, 109 MTHFR mutations have been reported in 171 families, consisting of 70 missense mutations, 17 that primarily affect splicing, 11 nonsense mutations, seven small deletions, two no-stop mutations, one small duplication, and one large duplication. Only 36% of mutations recur in unrelated families, indicating that most are "private." The most common mutation is c.1530A>G (numbered from NM_005957.4, p.Lys510 = ) causing a splicing defect, found in 13 families; the most common missense mutation is c.1129C>T (p.Arg377Cys) identified in 10 families. To increase disease understanding, we report enzymatic activity, detected mutations, and clinical onset information (early, <1 year; or late, >1 year) for all published patients available, demonstrating that patients with early onset have less residual enzyme activity than those presenting later. We also review animal models, diagnostic approaches, clinical presentations, and treatment options. This is the first large review of mutations in MTHFR, highlighting the wide spectrum of disease-causing mutations. PMID:26872964

  20. Mutational Spectrum of DMD Mutations in Dystrophinopathy Patients: Application of Modern Diagnostic Techniques to a Large Cohort

    PubMed Central

    Flanigan, Kevin M.; Dunn, Diane; von Niederhausern, Andrew; Soltanzadeh, Payam; Gappmaier, Eduard; Howard, Michael T.; Sampson, Jacinda; Mendell, Jerry; Wall, Cheryl; King, Wendy; Pestronk, Alan; Florence, Julaine; Connolly, Anne; Mathews, Katherine D.; Stephan, Carrie; Laubenthal, Karla; Wong, Brenda; Morehart, Paula; Meyer, Amy; Finkel, Richard; Bonnemann, Carsten G.; Medne, Livija; Day, John W.; Dalton, Joline C.; Margolis, Marcia; Hinton, Veronica; Weiss, Robert B.

    2010-01-01

    Mutations in the DMD gene, encoding the dystrophin protein, are responsible for the dystrophinopathies Duchenne Muscular Dystrophy (DMD), Becker Muscular Dystrophy (BMD), and X-linked Dilated Cardiomyopathy (XLDC). Mutation analysis has traditionally been challenging, due to the large gene size (79 exons over 2.2 Mb of genomic DNA). We report a very large aggregate data set comprised of DMD mutations detected in samples from patients enrolled in the United Dystrophinopathy Project, a multicenter research consortium, and in referral samples submitted for mutation analysis with a diagnosis of dystrophinopathy. We report 1111 mutations in the DMD gene, including 891 mutations with associated phenotypes. These results encompass 506 point mutations (including 294 nonsense mutations) and significantly expand the number of mutations associated with the dystrophinopathies, highlighting the utility of modern diagnostic techniques. Our data supports the uniform hypermutability of CGA>TGA mutations, establishes the frequency of polymorphic muscle (Dp427m) protein isoforms and reveals unique genomic haplotypes associated with `private' mutations. We note that 60% of these patients would be predicted to benefit from skipping of a single DMD exon using antisense oligonucleotide therapy, and 62% would be predicted to benefit from an inclusive multi-exon skipping approach directed toward exons 45 through 55. PMID:19937601

  1. Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability

    PubMed Central

    Twigg, Stephen R.F.; Forecki, Jennifer; Goos, Jacqueline A.C.; Richardson, Ivy C.A.; Hoogeboom, A. Jeannette M.; van den Ouweland, Ans M.W.; Swagemakers, Sigrid M.A.; Lequin, Maarten H.; Van Antwerp, Daniel; McGowan, Simon J.; Westbury, Isabelle; Miller, Kerry A.; Wall, Steven A.; van der Spek, Peter J.; Mathijssen, Irene M.J.; Pauws, Erwin; Merzdorf, Christa S.; Wilkie, Andrew O.M.

    2015-01-01

    Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5–12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded. PMID:26340333

  2. Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability.

    PubMed

    Twigg, Stephen R F; Forecki, Jennifer; Goos, Jacqueline A C; Richardson, Ivy C A; Hoogeboom, A Jeannette M; van den Ouweland, Ans M W; Swagemakers, Sigrid M A; Lequin, Maarten H; Van Antwerp, Daniel; McGowan, Simon J; Westbury, Isabelle; Miller, Kerry A; Wall, Steven A; van der Spek, Peter J; Mathijssen, Irene M J; Pauws, Erwin; Merzdorf, Christa S; Wilkie, Andrew O M

    2015-09-01

    Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5-12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded. PMID:26340333

  3. [Mutational Analysis of Hemophilia B in Russia: Molecular-Genetic Study].

    PubMed

    Surin, V L; Demidova, E Yu; Selivanova, D S; Luchinina, Yu A; Salomashkina, V V; Pshenichnikova, O S; Likhacheva, E A

    2016-04-01

    Hemophilia B is a hereditary X-linked coagulation disorder. This pathology is caused by various defects in the factor IX gene, which is, being about 34 kb long and consisting of eight exons, localized in the Xq27 locus of the. X-chromosome long arm. Mutations were revealed in 56 unrelated patients with hemophilia B in this study by using direct sequencing of factor IX gene functionally important fragments. Forty-six mutations were found with prevailing missense mutations (n = 30). The rest of the mutations were nonsense (n = 4) and splicing (n = 4) mutations, large deletions (n = 3), microdeletions (n = 2), microinsertions (n = 2), and promoter mutations (n = 1). Eleven of 46 mutations were previously unknown for human populations. PMID:27529981

  4. Identification of two HEXA mutations causing infantile-onset Tay-Sachs disease in the Persian population.

    PubMed

    Haghighi, Alireza; Rezazadeh, Jamileh; Shadmehri, Azam Ahmadi; Haghighi, Amirreza; Kornreich, Ruth; Desnick, Robert J

    2011-09-01

    The β-hexosaminidase A (HEXA) mutations in the first reported cases of infantile Tay-Sachs disease in the Persian population were identified in two unrelated consanguineous families. The clinical diagnoses of the affected infants were confirmed by their markedly deficient levels of HEXA activity in plasma or peripheral leukocytes. The specific causative mutation in each family was determined by sequencing the HEXA alleles in both sets of related parents. Two mutations were identified: c.1A>G (p.MIV), which obliterated the initiating methionine in codon 1, and c.1177C>T (p.R393X), which predicted a termination codon or nonsense mutation. PMID:21796138

  5. Mutations in patients with osteogenesis imperfecta from consanguineous Indian families.

    PubMed

    Stephen, Joshi; Girisha, Katta Mohan; Dalal, Ashwin; Shukla, Anju; Shah, Hitesh; Srivastava, Priyanka; Kornak, Uwe; Phadke, Shubha R

    2015-01-01

    Osteogenesis imperfecta (OI) is a spectrum of genetic disorders with decreased bone density and bone fragility. Most of the cases of OI are inherited in autosomal dominant fashion with mutations in COL1A1 or COL1A2 genes. Over last few years, twelve genes for autosomal recessive OI have been identified. In this study we have evaluated seven patients with OI from consanguineous Indian families. Homozygosity mapping using SNP microarray was done and selected candidate genes were sequenced. Candidate genes were identified in four out of seven patients studied. Four mutations, namely; a homozygous non-sense (p.Q178*) and a deletion (p.F277del) mutations in SERPINF1 gene, a missense mutation (p.M101K) in PPIB gene and a nonsense mutation (p.E45*) in CRTAP gene were identified. In three patients for whom the regions of homozygosity did not reveal any known autosomal recessive OI genes, exome sequencing was performed and we identified a known missense mutation (p.G1012S) in COL1A2 gene in one of the patients. As WNT1 gene was not properly covered in exome sequencing in one patient, the gene was sequenced and a homozygous in-frame deletion of four amino acids (p.Phe176_Leu179del) was identified. In one of the three cases the exome sequencing did not reveal a mutation in any known OI genes, suggesting the possibility of mutations in an unidentified gene. The phenotypes of all the cases are described. This work proves the power of homozygosity mapping followed by candidate gene sequencing approach for clinical application in consanguineous families. PMID:25450603

  6. WISP3 mutational analysis in Indian patients diagnosed with progressive pseudorheumatoid dysplasia and report of a novel mutation at p.Y198*

    PubMed Central

    Santhanam, M.; Rajagopal, K.; Sugumar, L. K.; Balaji, V.

    2016-01-01

    Objectives To determine the pattern of mutations of the WISP3 gene in clinically identified progressive pseudorheumatoid dysplasia (PPD) in an Indian population. Patients and Methods A total of 15 patients with clinical features of PPD were enrolled in this study. Genomic DNA was isolated and polymerase chain reaction performed to amplify the WISP3 gene. Screening for mutations was done by conformation-sensitive gel electrophoresis, beginning with the fifth exon and subsequently proceeding to the remaining exons. Sanger sequencing was performed for both forward and reverse strands to confirm the mutations. Results In all, two of the 15 patients had compound heterozygous mutations: one a nonsense mutation c.156C>A (p.C52*) in exon 2, and the other a missense mutation c.677G>T (p.G226V) in exon 4. All others were homozygous, with three bearing a nonsense mutation c.156C>A (p.C52*) in exon 2, three a missense mutation c.233G>A (p.C78Y) in exon 2, five a missense mutation c.1010G>A (p.C337Y) in exon 5, one a nonsense mutation c.348C>A (p.Y116*) in exon 3, and one with a novel deletion mutation c.593_597delATAGA (p.Y198*) in exon 4. Conclusion We identified a novel mutation c.593_597delATAGA (p.Y198*) in the fourth exon of the WISP3 gene. We also confirmed c.1010G>A as one of the common mutations in an Indian population with progressive pseudorheumatoid dysplasia. Cite this article: V. Madhuri, M. Santhanam, K. Rajagopal, L. K. Sugumar, V. Balaji. WISP3 mutational analysis in Indian patients diagnosed with progressive pseudorheumatoid dysplasia and report of a novel mutation at p.Y198* Bone Joint Res 2016;5:301–306. DOI: 10.1302/2046-3758.57.2000520. PMID:27436824

  7. Nonsensical Scenes

    ERIC Educational Resources Information Center

    Lott, Debra

    2012-01-01

    The Dadaists were an unconventional group of artists who used their art to rebel against civilization in the early twentieth century. They experimented with a variety of media and often used machines as themes in their artwork. Dadaist artist Kurt Schwitters incorporated city refuse into his collages, including bus tickets, newspapers, cartons,…

  8. A novel OTX2 gene frameshift mutation in a child with microphthalmia, ectopic pituitary and growth hormone deficiency.

    PubMed

    Lonero, Antonella; Delvecchio, Maurizio; Primignani, Paola; Caputo, Roberto; Bargiacchi, Sara; Penco, Silvana; Mauri, Lucia; Andreucci, Elena; Faienza, Maria Felicia; Cavallo, Luciano

    2016-05-01

    OTX2 mutations are reported in patients with eye maldevelopment and in some cases with brain or pituitary abnormalities. We describe a child carrying a novel OTX2 heterozygous mutation. She presented microphthalmia, absence of retinal vascularization, vitreal spots and optic nerve hypoplasia in the right eye and mild macular dystrophy in the left eye. Midline brain structures and cerebral parenchyma were normal, except for the ectopic posterior pituitary gland. OTX2 sequencing showed a heterozygous c.402del mutation. Most of OTX2 mutations are nonsense or frameshift introducing a premature termination codon and resulting in a truncated protein. More rarely missense mutations occur. Our novel OTX2 mutation (c.402del) is a frameshift mutation (p.S135Lfs*43), never reported before, causing a premature codon stop 43 amino-acids downstream, which is predicted to generate a premature truncation. The mutation was associated with microphthalmia and ectopic posterior pituitary. PMID:26974134

  9. Mutations in E.coli 16s rRNA that enhance and decrease the activity of a suppressor tRNA.

    PubMed

    Prescott, C D; Kornau, H C

    1992-04-11

    The in vivo expression of mutations constructed within helix 34 of 16S rRNA has been examined together with a nonsense tRNA suppressor for their action at stop codons. The data revealed two novel results: in contrast to previous findings, some of the rRNA mutations affected suppression at UAA and UAG nonsense codons. Secondly, both an increase and a decrease in the efficiency of the suppressor tRNA were induced by the mutations. This is the first report that rRNA mutations decreased the efficiency of a suppressor tRNA. The data are interpreted as there being competition between the two release factors (RF-1 and RF-2) for an overlapping domain and that helix 34 influences this interaction. PMID:1374555

  10. Mutations in E.coli 16s rRNA that enhance and decrease the activity of a suppressor tRNA.

    PubMed Central

    Prescott, C D; Kornau, H C

    1992-01-01

    The in vivo expression of mutations constructed within helix 34 of 16S rRNA has been examined together with a nonsense tRNA suppressor for their action at stop codons. The data revealed two novel results: in contrast to previous findings, some of the rRNA mutations affected suppression at UAA and UAG nonsense codons. Secondly, both an increase and a decrease in the efficiency of the suppressor tRNA were induced by the mutations. This is the first report that rRNA mutations decreased the efficiency of a suppressor tRNA. The data are interpreted as there being competition between the two release factors (RF-1 and RF-2) for an overlapping domain and that helix 34 influences this interaction. PMID:1374555

  11. Two novel mutations involved in hereditary tyrosinemia type I

    SciTech Connect

    St-Louis, M.; Poudrier, J.; Phaneuf, D.

    1994-09-01

    The deficiency of fumarylacetoacetate hydrolase, the last enzyme in the tyrosine catabolic pathway is the cause of hereditary tyrosinemia type I (HT1), an autosomal recessive disease. The disease has been reported worldwide. The incidence is much higher in two clusters: the Saguenay- Lac St-Jean region (Quebec, Canada) and in Scandinavia. Seven mutations have been reported in the last two years. Here we describe two new missense mutations identified by direct sequencing of PCR products in two HT1 patients, a Norwegian (patient No. 1) and a French-Canadian (patient No. 2). The first mutation consists of a G to A transition at position 337 of the FAH gene which predicts a change from glycine to serine (G337S). The second mutation is an A to G transition at position 381 which predicts a change from arginine to glycine (R381G). Patient No. 1 seems heterozygous for the G337S mutation and for a splice mutation (IVS12+5G{r_arrow}A) which was previously described. Patient No. 2 was also found heterozygous for the R381G mutation and for a rare nonsense mutation (E357X) already reported. In vitro transcription and translation were performed on mutant cDNA to demonstrate the responsibility of these two mutations in causing the decreased amount of FAH detected by Western blot analysis.

  12. Mutation analysis of the gene involved in adrenoleukodystrophy

    SciTech Connect

    Oost, B.A. van; Ligtenberg, M.J.L.; Kemp, S.; Bolhuis, P.A.

    1994-09-01

    A gene responsible for the X-linked genetic disorder adrenoleukodystrophy (ALD) that is characterized by demyelination of the nervous system and adrenocortical insufficiency has been identified by positional cloning. The gene encodes an ATP-binding transporter which is located in the peroxisomal membrane. Deficiency of the gene leads to accumulation of unsaturated very long chain fatty acids due to impaired peroxisomal {beta}-oxidation. A systematic analysis of the open reading frame of the ALD gene unraveled the mutations in 28 different families using reverse transcriptase-PCR followed by direct sequencing. No entire gene deletions or drastic promoter mutations have been detected. Only in one family did the mutation involved multiple exons. The remaining mutations were subtle alterations leading to missense (about 50%) or nonsense mutations, frameshifts or splice acceptor site defects. In one patient a single codon was missing. Mutations affecting a single amino acid were concentrated in the region between the third and fourth putative membrane spanning fragments and in the ATP-binding domain. This overview of mutations aids in the determination of structural and functional important regions and facilitates the screening for mutations in other ALD patients. The detection of mutations in virtually all ALD families tested indicates that the isolated gene is the only gene responsible for ALD located in Xq28.

  13. Primary Ciliary Dyskinesia-Causing Mutations in Amish and Mennonite Communities

    PubMed Central

    Ferkol, Thomas W.; Puffenberger, Erik G.; Lie, Hauw; Helms, Cynthia; Strauss, Kevin A.; Bowcock, Anne; Carson, John L.; Hazucha, Milan; Morton, D. Holmes; Patel, Anand C.; Leigh, Margaret W.; Knowles, Michael R.; Zariwala, Maimoona A.

    2013-01-01

    Objective To determine whether individuals with primary ciliary dyskinesia (PCD) from unrelated Amish and Mennonite families harbor a single and unique founder mutation. Study design Subjects from Amish and Mennonite communities in several states were enrolled in the study. All subjects were clinically characterized, and nasal nitric oxide levels were measured. Nasal epithelial scrapings were collected from several subjects for ciliary ultrastructural analyses. DNA was isolated from patients with PCD and their unaffected first- and second-degree relatives. Genome-wide homozygosity mapping, linkage analyses, targeted mutation analyses, and exome sequencing were performed. Results All subjects from Old-Order Amish communities from Pennsylvania were homozygous for a nonsense mutant DNAH5 allele, c.4348C>T (p.Q1450X). Two affected siblings from an unrelated Mennonite family in Arkansas were homozygous for the same nonsense DNAH5 mutation. Children with PCD from an Amish family from Wisconsin had biallelic DNAH5 mutations, c.4348C>T (p.Q1450X) and c.10815delT (p.P3606HfsX23), and mutations in other genes associated with PCD were also identified in this community. Conclusion The Amish and Mennonite subjects from geographically dispersed and socially isolated communities had the same founder DNAH5 mutation, owing to the common heritage of these populations. However, disease-causing mutations in other PCD-associated genes were also found in affected individuals in these communities, illustrating the genetic heterogeneity in this consanguineous population. PMID:23477994

  14. Diversity of [beta]-globin mutations in Israeli ethnic groups reflects recent historic events

    SciTech Connect

    Filon, D.; Oron, V.; Krichevski, S.; Shaag, A.; Goldfarb, A.; Aker, M.; Rachmilewitz, E.A.; Rund, D.; Oppenheim, A. )

    1994-05-01

    The authors characterized nearly 500 [beta]-thalassemia genes from the Israeli population representing a variety of ethnic subgroups. They found 28 different mutations in the [beta]-globin gene, including three mutations ([beta][sup S], [beta][sup C], and [beta][sup O-Arab]) causing hemoglobinopathies. Marked genetic heterogeneity was observed in both the Arab (20 mutations) and Jewish (17 mutations) populations. On the other hand, two ethnic isolates - Druze and Samaritans - had a single mutation each. Fifteen of the [beta]-thalassemia alleles are Mediterranean in type, 5 originated in Kurdistan, 2 are of Indian origin, and 2 sporadic alleles came from Europe. Only one mutant allele-nonsense codon 37-appears to be indigenous to Israel. While human habitation in Israel dates back to early prehistory, the present-day spectrum of [beta]-globin mutations can be largely explained by migration events that occurred in the past millennium. 26 refs., 2 figs., 3 tabs.

  15. Nonsense mutations in the COX1 subunit impair the stability of respiratory chain complexes rather than their assembly

    PubMed Central

    Hornig-Do, Hue-Tran; Tatsuta, Takashi; Buckermann, Angela; Bust, Maria; Kollberg, Gittan; Rötig, Agnes; Hellmich, Martin; Nijtmans, Leo; Wiesner, Rudolf J

    2012-01-01

    Respiratory chain (RC) complexes are organized into supercomplexes forming ‘respirasomes'. The mechanism underlying the interdependence of individual complexes is still unclear. Here, we show in human patient cells that the presence of a truncated COX1 subunit leads to destabilization of complex IV (CIV) and other RC complexes. Surprisingly, the truncated COX1 protein is integrated into subcomplexes, the holocomplex and even into supercomplexes, which however are all unstable. Depletion of the m-AAA protease AFG3L2 increases stability of the truncated COX1 and other mitochondrially encoded proteins, whereas overexpression of wild-type AFG3L2 decreases their stability. Both full-length and truncated COX1 proteins physically interact with AFG3L2. Expression of a dominant negative AFG3L2 variant also promotes stabilization of CIV proteins as well as the assembled complex and rescues the severe phenotype in heteroplasmic cells. Our data indicate that the mechanism underlying pathogenesis in these patients is the rapid clearance of unstable respiratory complexes by quality control pathways, rather than their impaired assembly. PMID:22252130

  16. Connectivity Map Analysis of Nonsense-Mediated Decay–Positive BMPR2-Related Hereditary Pulmonary Arterial Hypertension Provides Insights into Disease Penetrance

    PubMed Central

    Flynn, Charles; Zheng, Siyuan; Yan, Ling; Hedges, Lora; Womack, Bethany; Fessel, Josh; Cogan, Joy; Austin, Eric; Loyd, James; West, James; Zhao, Zhongming

    2012-01-01

    The molecular mechanisms underlying the reduced penetrance seen in the nonsense-mediated decay–positive (NMD+) BMPR2 mutation–associated hereditary pulmonary arterial hypertension (HPAH) remain unknown. We reasoned that the cellular and genetic mechanisms behind this phenomenon could be uncovered by combining expression profiling with Connectivity Map (cMap) analysis. Cultured lymphocytes from 10 patients with HPAH and 10 matched familial control subjects, all with NMD+ BMPR2 mutations, were subjected to expression analysis. For each group, the expression data were combined before analysis. This generated a signature of 23 up-regulated and 12 down-regulated genes in patients with HPAH compared with control subjects (the “PAH penetrance signature”). Although gene set enrichment analysis of this signature was not uniquely informative, cMap analysis identified drugs with expression signatures similar to the PAH penetrance signature. Several of these drugs were predicted to influence reactive oxygen species (ROS) formation. This hypothesis was tested and confirmed in the same cells initially subjected to the expression analysis using quantitative biochemical detection of ROS concentration. We conclude that expression of the PAH penetrance signature represents an increased risk of developing clinical HPAH and that ROS formation may play a role in pathogenesis of HPAH. These results provide the first molecular insights into NMD+ BMPR2 related HPAH penetrance and highlight the potential utility of cMap analyses in pulmonary research. PMID:22312021

  17. Founding BRCA1 mutations in hereditary breast and ovarian cancer in southern Sweden

    SciTech Connect

    Johannsson, O.; Hakansson, S.; Johannson, U.

    1996-03-01

    Nine different germ-line mutations in the BRCA1 breast and ovarian cancer susceptibility gene were identified in 15 of 47 kindreds from southern Sweden, by use of SSCP and heteroduplex analysis of all exons and flanking intron region and by a protein-truncation test for exon 11, followed by direct sequencing. All but one of the mutations are predicted to give rise to premature translation termination and include seven frameshift insertions or deletions, a nonsense mutation, and a splice acceptor site mutation. The remaining mutation is a missense mutation (Cys61Gly) in the zinc-binding motif. Four novel Swedish founding mutations were identified: the nucleotide 2595 deletion A was found in five families, the C 1806 T nonsense mutation in three families, the 3166 insertion TGAGA in three families, and the nucleotide 1201 deletion 11 in two families. Analysis of the intragenic polymorphism D17S855 supports common origins of the mutations. Eleven of the 15 kindreds manifesting BRCA1 mutations were breast-ovarian cancer families, several of them with a predominant ovarian cancer phenotype. The set of 32 families in which no BRCA1 alterations were detected included 1 breast-ovarian cancer kindred manifesting clear linkage to the BRCA1 region and loss of the wild-type chromosome in associated tumors. Other tumor types found in BRCA1 mutation/haplotype carriers included prostatic, pancreas, skin, and lung cancer, a malignant melanoma, an oligodendroglioma, and a carcinosarcoma. In all, 12 of 16 kindreds manifesting BRCA1 mutation or linkage contained ovarian cancer, as compared with only 6 of the remaining 31 families (P < .001). The present study confirms the involvement of BRCA1 in disease predisposition for a subset of hereditary breast cancer families often characterized by ovarian cancers. 28 refs., 3 figs., 4 tabs.

  18. Base substitution mutations induced by metabolically activated aflatoxin B1.

    PubMed

    Foster, P L; Eisenstadt, E; Miller, J H

    1983-05-01

    We have determined the base substitutions generated by metabolically activated aflatoxin B1 in the lacI gene of a uvrB- strain of Escherichia coli. By monitoring over 70 different nonsense mutation sites, we show that activated aflatoxin B1 specifically induced GxC leads to TxA transversions. One possible pathway leading to this base change involves depurination at guanine residues. We consider this mechanism of mutagenesis in the light of our other findings that the carcinogens benzo[a]pyrene diol epoxide and N-acetoxyacetylaminofluorene also specifically induce GxC leads to TxA transversions. PMID:6405385

  19. An Examination of the Relation of Nonsense Word Fluency Initial Status and Gains to Reading Outcomes for Beginning Readers

    ERIC Educational Resources Information Center

    Fien, Hank; Park, Yonghan; Baker, Scott K.; Smith, Jean L. Mercier; Stoolmiller, Mike; Kame'enui, Edward J.

    2010-01-01

    A theory-based approach was used to investigate the relations among Nonsense Word Fluency (NWF) initial skill status in the fall of first grade, NWF growth across the school year, and end-of-year oral reading fluency and reading comprehension (RC) skill. Hypotheses were anchored to Perfetti's verbal efficiency theory and the role of automaticity…

  20. Effects of Temporal Sequencing and Auditory Discrimination on Children's Memory Patterns for Tones, Numbers, and Nonsense Words

    ERIC Educational Resources Information Center

    Gromko, Joyce Eastlund; Hansen, Dee; Tortora, Anne Halloran; Higgins, Daniel; Boccia, Eric

    2009-01-01

    The purpose of this study was to determine whether children's recall of tones, numbers, and words was supported by a common temporal sequencing mechanism; whether children's patterns of memory for tones, numbers, and nonsense words were the same despite differences in symbol systems; and whether children's recall of tones, numbers, and nonsense…

  1. Identification of Printed Nonsense Words for an Individual with Autism: A Comparison of Constant Time Delay and Stimulus Fading

    ERIC Educational Resources Information Center

    Redhair, Emily I.; McCoy, Kathleen M.; Zucker, Stanley H.; Mathur, Sarup R.; Caterino, Linda

    2013-01-01

    This study compared a stimulus fading (SF) procedure with a constant time delay (CTD) procedure for identification of consonant-vowel-consonant (CVC) nonsense words for a participant with autism. An alternating treatments design was utilized through a computer-based format. Receptive identification of target words was evaluated using a computer…

  2. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus.

    PubMed Central

    Rittig, S.; Robertson, G. L.; Siggaard, C.; Kovács, L.; Gregersen, N.; Nyborg, J.; Pedersen, E. B.

    1996-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation was unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons. Images Figure 3 PMID:8554046

  3. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus

    SciTech Connect

    Rittig, S.; Siggaard, C.; Pedersen, E.B.

    1996-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation was unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons. 63 refs., 5 figs., 6 tabs.

  4. High prevalence of mutations in peripherin/RDS in autosomal dominant macular dystrophies in a Spanish population

    PubMed Central

    Gamundi, María José; Hernan, Imma; Muntanyola, Marta; Trujillo, María José; García-Sandoval, Blanca; Ayuso, Carmen; Baiget, Montserrat

    2007-01-01

    Purpose Mutations in the peripherin/retinal degeneration slow (RDS) gene are a known cause of various types of central retinal dystrophies. The purpose of this study was to determine the prevalence of mutations in the peripherin/RDS gene in Spanish patients with different types of autosomal dominant macular dystrophy. Methods Ophthalmic and electrophysiological examination was performed in patients from 61 unrelated autosomal dominant macular dystrophy (adMD) Spanish families. Screening for mutations in the peripherin/RDS gene by denaturing gradient gel electrophoresis (DGGE) and direct genomic sequencing was performed in index patients and extended to the family when positive. Results We report four novel mutations in peripherin/RDS and a relatively high frequency (23%) of mutations in this gene in families with adMD. Thirteen different mutations were found in fifteen adMD families. Three novel missense, four nonsense and a cis-acting splicing mutation IVS2+2T>C, were found in a Spanish population while five more missense mutations were also reported in other populations. The Arg142Trp and Arg172Trp mutations, present in several populations, were both detected in two independent Spanish families. All the missense mutations produce an amino acid substitution in the second intradiscal loop of the peripherin, while the nonsense mutations presumably generate a truncated protein. Conclusions A high frequency (23%) of mutations in the peripherin/RDS gene was found in a cohort of 61 unrelated patients with various types of autosomal dominant central retinal dystrophies as compared with a low prevalence (1.3%) of mutations in this gene causing retinitis pigmentosa in a Spanish population. Different macular dystrophy phenotypes according to the mutations in peripherin/RDS are shown. However, a limited phenotype variation was observed for these mutations within the family. PMID:17653047

  5. Germline RECQL mutations in high risk Chinese breast cancer patients.

    PubMed

    Kwong, Ava; Shin, Vivian Y; Cheuk, Isabella W Y; Chen, Jiawei; Au, Chun H; Ho, Dona N; Chan, Tsun L; Ma, Edmond S K; Akbari, Mohammad R; Narod, Steven A

    2016-06-01

    Recently, RECQL was reported as a new breast cancer susceptibility gene. RECQL belongs to the RECQ DNA helicase family which unwinds double strand DNA and involved in the DNA replication stress response, telomere maintenance and DNA repair. RECQL deficient mice cells are prone to spontaneous chromosomal instability and aneuploidy, suggesting a tumor-suppressive role of RECQL in cancer. In this study, RECQL gene mutation screening was performed on 1110 breast cancer patients who were negative for BRCA1, BRCA2, TP53 and PTEN gene mutations and recruited from March 2007 to June 2015 in the Hong Kong Hereditary and High Risk Breast Cancer Program. Four different RECQL pathogenic mutations were identified in six of the 1110 (0.54 %) tested breast cancer patients. The identified mutations include one frame-shift deletion (c.974_977delAAGA), two splicing site mutations (c.394+1G>A, c.867+1G>T) and one nonsense mutation (c.796C>T, p.Gln266Ter). Two of the mutations (c.867+1G>T and p.Gln266Ter) were seen in more than one patients. This study provides the basis for existing of pathogenic RECQL mutations in Southern Chinese breast cancer patients. The significance of rare variants in RECQL gene in the estimation of breast cancer risk warranted further investigation in larger cohort of patients and in other ethnic groups. PMID:27125668

  6. Degradation of Gadd45 mRNA by nonsense-mediated decay is essential for viability

    PubMed Central

    Nelson, Jonathan O; Moore, Kristin A; Chapin, Alex; Hollien, Julie; Metzstein, Mark M

    2016-01-01

    The nonsense-mediated mRNA decay (NMD) pathway functions to degrade both abnormal and wild-type mRNAs. NMD is essential for viability in most organisms, but the molecular basis for this requirement is unknown. Here we show that a single, conserved NMD target, the mRNA coding for the stress response factor growth arrest and DNA-damage inducible 45 (GADD45) can account for lethality in Drosophila lacking core NMD genes. Moreover, depletion of Gadd45 in mammalian cells rescues the cell survival defects associated with NMD knockdown. Our findings demonstrate that degradation of Gadd45 mRNA is the essential NMD function and, surprisingly, that the surveillance of abnormal mRNAs by this pathway is not necessarily required for viability. DOI: http://dx.doi.org/10.7554/eLife.12876.001 PMID:26952209

  7. Homozygous FIBP nonsense variant responsible of syndromic overgrowth, with overgrowth, macrocephaly, retinal coloboma and learning disabilities.

    PubMed

    Thauvin-Robinet, C; Duplomb-Jego, L; Limoge, F; Picot, D; Masurel, A; Terriat, B; Champilou, C; Minot, D; St-Onge, J; Kuentz, P; Duffourd, Y; Thevenon, J; Rivière, J-B; Faivre, L

    2016-05-01

    The acidic fibroblast growth factor (FGF) intracellular binding protein (FIBP) interacts directly with the fibroblast growth factor FGF1. Although FIBP is known to be implicated in the FGF signaling pathway, its precise function remains unclear. Gain-of-function variants in several FGF receptors (FGFRs) are implicated in a wide spectrum of growth disorders from achondroplasia to overgrowth syndromes. In a unique case from a consanguineous union presenting with overgrowth, macrocephaly, retinal coloboma, large thumbs, severe varicose veins and learning disabilities, exome sequencing identified a homozygous nonsense FIBP variant. The patient's fibroblasts exhibit FIBP cDNA degradation and an increased proliferation capacity compared with controls. The phenotype defines a new multiple congenital abnormalities (MCA) syndrome, overlapping with the heterogeneous group of overgrowth syndromes with macrocephaly. The different clinical features can be explained by the alteration of the FGFR pathway. Taken together, these results suggest the implication of FIBP in a new autosomal recessive MCA. PMID:26660953

  8. Nonsense-mediated mRNA decay: novel mechanistic insights and biological impact.

    PubMed

    Karousis, Evangelos D; Nasif, Sofia; Mühlemann, Oliver

    2016-09-01

    Nonsense-mediated mRNA decay (NMD) was originally coined to define a quality control mechanism that targets mRNAs with truncated open reading frames due to the presence of a premature termination codon. Meanwhile, it became clear that NMD has a much broader impact on gene expression and additional biological functions beyond quality control are continuously being discovered. We review here the current views regarding the molecular mechanisms of NMD, according to which NMD ensues on mRNAs that fail to terminate translation properly, and point out the gaps in our understanding. We further summarize the recent literature on an ever-rising spectrum of biological processes in which NMD appears to be involved, including homeostatic control of gene expression, development and differentiation, as well as viral defense. WIREs RNA 2016, 7:661-682. doi: 10.1002/wrna.1357 For further resources related to this article, please visit the WIREs website. PMID:27173476

  9. Effects of noise on identification and serial recall of nonsense syllables in older and younger adults.

    PubMed

    Surprenant, Aimee M

    2007-03-01

    The present experiment investigated the hypothesis that age-related declines in cognitive functioning are partly due to a decrease in peripheral sensory functioning. In particular, it was suggested that some of the decline in serial recall for verbal material might be due to even small amounts of degradation due to noise or hearing loss. Older and younger individuals identified and recalled nonsense syllables in order at a number of different speech-to-noise ratios. Performance on the identification task was significantly correlated with performance on a subsequent serial recall task. However, this was restricted to the case in which the stimuli were presented in a substantial amount of noise. These data show that even small changes in sensory processing can lead to real and measurable declines in cognitive functioning as measured by a serial recall task. PMID:17364376

  10. Perception of emotional nonsense sentences in China, Egypt, Estonia, Finland, Russia, Sweden, and the USA.

    PubMed

    Waaramaa, Teija

    2015-10-01

    The present study focused on the identification of emotions in cross-cultural conditions on different continents and among subjects with divergent language backgrounds. The aim was to investigate whether the perception of the basic emotions from nonsense vocal samples was universal, dependent on voice quality, musicality, and/or gender. Listening tests for 350 participants were conducted on location in a variety of cultures: China, Egypt, Estonia, Finland, Russia, Sweden, and the USA. The results suggested that the voice quality parameters played a role in the identification of emotions without the linguistic content. Cultural background may affect the interpretation of the emotions more than the presumed universality. Musical interest tended to facilitate emotion identification. No gender differences were found. PMID:24861103

  11. Novel pathogenic mutations and skin biopsy analysis in Knobloch syndrome

    PubMed Central

    Suzuki, Oscar; Kague, Erika; Bagatini, Kelly; Tu, Hongmin; Heljasvaara, Ritva; Carvalhaes, Lorenza; Gava, Elisandra; de Oliveira, Gisele; Godoi, Paulo; Oliva, Glaucius; Kitten, Gregory; Pihlajaniemi, Taina; Passos-Bueno, Maria-Rita

    2009-01-01

    Purpose To facilitate future diagnosis of Knobloch syndrome (KS) and better understand its etiology, we sought to identify not yet described COL18A1 mutations in KS patients. In addition, we tested whether mutations in this gene lead to absence of the COL18A1 gene product and attempted to better characterize the functional effect of a previously reported missense mutation. Methods Direct sequencing of COL18A1 exons was performed in KS patients from four unrelated pedigrees. We used immunofluorescent histochemistry in skin biopsies to evaluate the presence of type XVIII collagen in four KS patients carrying two already described mutations: c.3277C>T, a nonsense mutation, and c.3601G>A, a missense mutation. Furthermore, we determined the binding properties of the mutated endostatin domain p.A1381T (c.3601G>A) to extracellular matrix proteins using ELISA and surface plasmon resonance assays. Results We identified four novel mutations in COL18A1, including a large deletion involving exon 41. Skin biopsies from KS patients revealed lack of type XVIII collagen in epithelial basement membranes and blood vessels. We also found a reduced affinity of p.A1381T endostatin to some extracellular matrix components. Conclusions COL18A1 mutations involved in Knobloch syndrome have a distribution bias toward the coding exons of the C-terminal end. Large deletions must also be considered when point mutations are not identified in patients with characteristic KS phenotype. We report, for the first time, lack of type XVIII collagen in KS patients by immunofluorescent histochemistry in skin biopsy samples. As a final point, we suggest the employment of this technique as a preliminary and complementary test for diagnosis of KS in cases when mutation screening either does not detect mutations or reveals mutations of uncertain effect, such as the p.A1381T change. PMID:19390655

  12. Mutations of GJB2 Encoding Connexin 26 Contribute to Nonsyndromic Moderate and Severe Hearing Loss in Pakistan

    PubMed Central

    Salman, Midhat; Bashir, Rasheeda; Imtiaz, Ayesha; Maqsood, Azra; Mujtaba, Ghulam; Iqbal, Muddassar; Naz, Sadaf

    2015-01-01

    Mutations of GJB2 which encodes connexin 26, contribute to 6–7% of profound deafness in Pakistan. We investigated the involvement of GJB2 mutations in a cohort of 84 pedigrees and 86 sporadic individuals with moderate or severe hearing loss. Individuals in eight consanguineous families and four sporadic cases (9.52% and 4.65%, respectively) were homozygous or compound heterozygous for p.W24X or p. W77X mutations in GJB2. These two variants are also among the most common mutations known to cause profound deafness in South Asia. The association of identical mutations with both profound and less severe phenotype of hearing loss suggests that alleles of other genes modify the phenotype due to these GJB2 nonsense mutations. Our study demonstrates that GJB2 mutations are an important contributor to aetiology of moderate to severe hearing loss in Pakistan. PMID:25636251

  13. High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease.

    PubMed

    Pottier, C; Hannequin, D; Coutant, S; Rovelet-Lecrux, A; Wallon, D; Rousseau, S; Legallic, S; Paquet, C; Bombois, S; Pariente, J; Thomas-Anterion, C; Michon, A; Croisile, B; Etcharry-Bouyx, F; Berr, C; Dartigues, J-F; Amouyel, P; Dauchel, H; Boutoleau-Bretonnière, C; Thauvin, C; Frebourg, T; Lambert, J-C; Campion, D

    2012-09-01

    Performing exome sequencing in 14 autosomal dominant early-onset Alzheimer disease (ADEOAD) index cases without mutation on known genes (amyloid precursor protein (APP), presenilin1 (PSEN1) and presenilin2 (PSEN2)), we found that in five patients, the SORL1 gene harbored unknown nonsense (n=1) or missense (n=4) mutations. These mutations were not retrieved in 1500 controls of same ethnic origin. In a replication sample, including 15 ADEOAD cases, 2 unknown non-synonymous mutations (1 missense, 1 nonsense) were retrieved, thus yielding to a total of 7/29 unknown mutations in the combined sample. Using in silico predictions, we conclude that these seven private mutations are likely to have a pathogenic effect. SORL1 encodes the Sortilin-related receptor LR11/SorLA, a protein involved in the control of amyloid beta peptide production. Our results suggest that besides the involvement of the APP and PSEN genes, further genetic heterogeneity, involving another gene of the same pathway is present in ADEOAD. PMID:22472873

  14. Mutations in the human GlyT2 gene define a presynaptic component of human startle disease

    PubMed Central

    Rees, Mark I.; Harvey, Kirsten; Pearce, Brian R.; Chung, Seo-Kyung; Duguid, Ian C.; Thomas, Philip; Beatty, Sarah; Graham, Gail E.; Armstrong, Linlea; Shiang, Rita; Abbott, Kim J.; Zuberi, Sameer M.; Stephenson, John B.P.; Owen, Michael J.; Tijssen, Marina A.J.; van den Maagdenberg, Arn M.J.M.; Smart, Trevor G.; Supplisson, Stéphane; Harvey, Robert J.

    2011-01-01

    Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) α1 subunit (GLRA1)1-3. Genetic heterogeneity has been confirmed in isolated sporadic cases with mutations in other postsynaptic glycinergic proteins including the GlyR β subunit (GLRB)4, gephyrin (GPHN)5 and RhoGEF collybistin (ARHGEF9)6. However, many sporadic patients diagnosed with hyperekplexia do not carry mutations in these genes2-7. Here we reveal that missense, nonsense and frameshift mutations in the presynaptic glycine transporter 2 (GlyT2) gene (SLC6A5)8 also cause hyperekplexia. Patients harbouring mutations in SLC6A5 presented with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnoea episodes. GlyT2 mutations result in defective subcellular localisation and/or decreased glycine uptake, with selected mutations affecting predicted glycine and Na+ binding sites. Our results demonstrate that SLC6A5 is a major gene for hyperekplexia and define the first neurological disorder linked to mutations in a Na+/Cl−-dependent transporter for a classical fast neurotransmitter. By analogy, we suggest that in other human disorders where defects in postsynaptic receptors have been identified, similar symptoms could result from defects in the cognate presynaptic neurotransmitter transporter. PMID:16751771

  15. Analysis of mutations in Menkes and X-linked cutis laxa patients

    SciTech Connect

    Das, S.; Levinson, B.; Gitschier, J.

    1994-09-01

    Menkes disease is an X-linked disorder of copper metabolism. The complex clinical phenotype is attribute to a deficiency of copper-containing enzymes resulting from a defect in copper transport. X-linked cutis laxa (XLCL), a mild, connective tissues disease may also be an allele of Menkes disease. A gene for the Menkes disease locus (MNK) has been isolated and found to code for a copper-transportion ATPase. Deletions in this gene have been observed in only 15-20% of patients by Southern blot analysis. We have analysed the MNK gene for mutations by RT-PCR and chemical cleavage mismatch detection in a group of 12 patients with severe Menkes phenotype and who were normal by Southern analysis. Mutations were observed in ten patients, and in each case, a different, debilitating mutation was present. Mutations that resulted in splicing abnormalities, detected by RT-PCR alone, were observed in six patients and included two splice site changes, a nonsense mutation, a missense mutation, a small duplication and a small deletion. Chemical cleavage analysis of the remaining six patients revealed the presence of one nonsense mutation, two adjacent 5 bp deletions and one missense mutation. A valine/leucine polymorphism was also observed. These findings, combined with the prior observation of large deletions in {approx}15% of patients, suggest that Southern blot hybridization and RT-PCR will identify mutations in the majority of patients. To date, no mutations have been found in 4 XLCL patients in the MNK coding region by chemical cleavage. However in 2 patients Southern blot changes have been detected with a 5{prime} UTR probe, suggesting mutations affecting regulatory elements.

  16. High prevalence of germline STK11 mutations in Hungarian Peutz-Jeghers Syndrome patients

    PubMed Central

    2010-01-01

    Background Peutz-Jeghers syndrome (PJS) is a rare autosomal dominantly inherited disease characterized by gastrointestinal hamartomatous polyposis and mucocutaneous pigmentation. The genetic predisposition for PJS has been shown to be associated with germline mutations in the STK11/LKB1 tumor suppressor gene. The aim of the present study was to characterize Hungarian PJS patients with respect to germline mutation in STK11/LKB1 and their association to disease phenotype. Methods Mutation screening of 21 patients from 13 PJS families were performed using direct DNA sequencing and multiplex ligation-dependent probe amplification (MLPA). Comparative semi-quantitative sequencing was applied to investigate the mRNA-level effects of nonsense and splice-affecting mutations. Results Thirteen different pathogenic mutations in STK11, including a high frequency of large genomic deletions (38%, 5/13), were identified in the 13 unrelated families studied. One of these deletions also affects two neighboring genes (SBNO2 and GPX4), located upstream of STK11, with a possible modifier effect. The majority of the point mutations (88%, 7/8) can be considered novel. Quantification of the STK11 transcript at the mRNA-level revealed that the expression of alleles carrying a nonsense or frameshift mutation was reduced to 30-70% of that of the wild type allele. Mutations affecting splice-sites around exon 2 displayed an mRNA processing pattern indicative of co-regulated splicing of exons 2 and 3. Conclusions A combination of sensitive techniques may assure a high (100%) STK11 mutation detection frequency in PJS families. Characterization of mutations at mRNA level may give a deeper insight into the molecular consequences of the pathogenic mutations than predictions made solely at the genomic level. PMID:21118512

  17. Senior-Loken syndrome secondary to NPHP5/IQCB1 mutation in an Iranian family

    PubMed Central

    Haghighi, Alireza; Al-Hamed, Mohamed; Al-Hissi, Safa; Hynes, Ann-Marie; Sharifian, Maryam; Roozbeh, Jamshid; Saleh-Gohari, Nasrollah

    2011-01-01

    Senior-Loken syndrome (SLS) is a rare autosomal recessive disease characterized by nephronophthisis and early-onset retinal degeneration. We used a large Iranian family with SLS to establish a molecular genetic diagnosis. Following clinical evaluation, we undertook homozygosity mapping in two affected family members and mutational analysis in known SLS genes coinciding with regions of homozygosity. In a region of homozygosity coinciding with a known SLS locus on chromosome 3q21.1, we found a homozygous non-sense mutation R332X in NPHP5/IQCB1. This is the first report of a molecular genetic diagnosis in an Iranian kindred with SLS. PMID:25984213

  18. Mutational analysis of the Drosophila DNA repair and recombination gene mei-9.

    PubMed Central

    Yildiz, Ozlem; Kearney, Hutton; Kramer, Benjamin C; Sekelsky, Jeff J

    2004-01-01

    Drosophila mei-9 is essential for several DNA repair and recombination pathways, including nucleotide excision repair (NER), interstrand crosslink repair, and meiotic recombination. To better understand the role of MEI-9 in these processes, we characterized 10 unique mutant alleles of mei-9. These include a P-element insertion that disrupts repair functions but not the meiotic function; three nonsense mutations, one of which has nearly wild-type levels of protein; three missense mutations, one of which disrupts the meiotic function but not repair functions; two small in-frame deletions; and one frameshift. PMID:15166153

  19. Fabry_CEP: a tool to identify Fabry mutations responsive to pharmacological chaperones.

    PubMed

    Cammisa, Marco; Correra, Antonella; Andreotti, Giuseppina; Cubellis, Maria Vittoria

    2013-01-01

    Fabry_CEP is a user-friendly web-application designed to help clinicians Choose Eligible Patients for the therapy with pharmacological chaperones. It provides a database and a predictive tool to evaluate the responsiveness of lysosomal alpha-galactosidase mutants to a small molecule drug, namely 1-Deoxy-galactonojirimycin. The user can introduce any missense/nonsense mutation in the coding sequence, learn whether it is has been tested and gain access to appropriate reference literature. In the absence of experimental data structural, functional and evolutionary analysis provides a prediction and the probability that a given mutation is responsive to the drug. PMID:23883437

  20. SRSF2 Mutations Contribute to Myelodysplasia Through Mutant-Specific Effects on Exon Recognition

    PubMed Central

    Kim, Eunhee; Ilagan, Janine O.; Liang, Yang; Daubner, Gerrit M.; Lee, Stanley C.-W.; Ramakrishnan, Aravind; Li, Yue; Chung, Young Rock; Micol, Jean-Baptiste; Murphy, Michele; Cho, Hana; Hana, Min-Kyung; Zebari, Ahmad S.; Aumann, Shlomzion; Park, Christopher Y.; Buonamici, Silvia; Smith, Peter G.; Deeg, H. Joachim; Lobry, Camille; Aifantis, Iannis; Modis, Yorgo; Allain, Frederic H.-T.; Halene, Stephanie; Bradley, Robert K.; Abdel-Wahab, Omar

    2015-01-01

    SUMMARY Mutations affecting spliceosomal proteins are the most common class of mutations in patients with myelodysplastic syndromes (MDS), yet their role in MDS pathogenesis has not been delineated. Here we report that mutations affecting the splicing factor SRSF2 directly impair hematopoietic differentiation in vivo, which is not due to SRSF2 loss of function. By contrast, SRSF2 mutations alter SRSF2’s normal sequence-specific RNA binding activity, thereby altering recognition of specific exonic splicing enhancer motifs to drive recurrent mis-splicing of key hematopoietic regulators. This includes SRSF2 mutation-dependent splicing of EZH2 that triggers nonsense-mediated decay, which, in turn, results in impaired hematopoietic differentiation. These data provide a mechanistic link between a mutant spliceosomal protein, alterations in splicing of key regulators, and impaired hematopoiesis. PMID:25965569

  1. Mutations in the SLC3A1 Transporter Gene in Cystinuria

    PubMed Central

    Pras, Elon; Raben, Nina; Golomb, Eliahu; Arber, Nadir; Aksentijevich, Ivona; Schapiro, Jonathan M.; Harel, Daniela; Katz, Giora; Liberman, Uri; Pras, Mordechai; Kastner, Daniel L.

    1995-01-01

    Cystinuria is an autosomal recessive disease characterized by the development of kidney stones. Guided by the identification of the SLC3A1 amino acid–transport gene on chromosome 2, we recently established genetic linkage of cystinuria to chromosome 2p in 17 families, without evidence for locus heterogeneity. Other authors have independently identified missense mutations in SLC3A1 in cystinuria patients. In this report we describe four additional cystinuria-associated mutations in this gene: a frameshift, a deletion, a transversion inducing a critical amino acid change, and a nonsense mutation. The latter stop codon was found in all of eight Ashkenazi Jewish carrier chromosomes examined. This report brings the number of disease-associated mutations in this gene to 10. We also assess the frequency of these mutations in our 17 cystinuria families. ImagesFigure 2Figure 3Figure 4 PMID:7539209

  2. Mutations in the SLC3A1 transporter gene in cystinuria

    SciTech Connect

    Pras, E.; Raben, N.; Aksentijevich, I.

    1995-06-01

    Cystinuria is an autosomal recessive disease characterized by the development of kidney stones. Guided by the identification of the SLC3A1 amino acid-transport gene on chromosome 2, we recently established genetic linkage of cystinuria to chromosome 2p in 17 families, without evidence for locus heterogeneity. Other authors have independently identified missense mutations in SLC3A1 in cystinuria patients. In this report we describe four additional cystinuria-associated mutations in this gene: a frameshift, a deletion, a transversion inducing a critical amino acid change, and a nonsense mutation. The latter stop codon was found in all of eight Ashkenazi Jewish carrier chromosomes examined. This report brings the number of disease-associated mutations in this gene to 10. We also assess the frequency of these mutations in our 17 cystinuria families. 24 refs., 4 figs., 1 tab.

  3. SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition.

    PubMed

    Kim, Eunhee; Ilagan, Janine O; Liang, Yang; Daubner, Gerrit M; Lee, Stanley C-W; Ramakrishnan, Aravind; Li, Yue; Chung, Young Rock; Micol, Jean-Baptiste; Murphy, Michele E; Cho, Hana; Kim, Min-Kyung; Zebari, Ahmad S; Aumann, Shlomzion; Park, Christopher Y; Buonamici, Silvia; Smith, Peter G; Deeg, H Joachim; Lobry, Camille; Aifantis, Iannis; Modis, Yorgo; Allain, Frederic H-T; Halene, Stephanie; Bradley, Robert K; Abdel-Wahab, Omar

    2015-05-11

    Mutations affecting spliceosomal proteins are the most common mutations in patients with myelodysplastic syndromes (MDS), but their role in MDS pathogenesis has not been delineated. Here we report that mutations affecting the splicing factor SRSF2 directly impair hematopoietic differentiation in vivo, which is not due to SRSF2 loss of function. By contrast, SRSF2 mutations alter SRSF2's normal sequence-specific RNA binding activity, thereby altering the recognition of specific exonic splicing enhancer motifs to drive recurrent mis-splicing of key hematopoietic regulators. This includes SRSF2 mutation-dependent splicing of EZH2, which triggers nonsense-mediated decay, which, in turn, results in impaired hematopoietic differentiation. These data provide a mechanistic link between a mutant spliceosomal protein, alterations in the splicing of key regulators, and impaired hematopoiesis. PMID:25965569

  4. Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences.

    PubMed Central

    Teraoka, S N; Telatar, M; Becker-Catania, S; Liang, T; Onengüt, S; Tolun, A; Chessa, L; Sanal, O; Bernatowska, E; Gatti, R A; Concannon, P

    1999-01-01

    Mutations resulting in defective splicing constitute a significant proportion (30/62 [48%]) of a new series of mutations in the ATM gene in patients with ataxia-telangiectasia (AT) that were detected by the protein-truncation assay followed by sequence analysis of genomic DNA. Fewer than half of the splicing mutations involved the canonical AG splice-acceptor site or GT splice-donor site. A higher percentage of mutations occurred at less stringently conserved sites, including silent mutations of the last nucleotide of exons, mutations in nucleotides other than the conserved AG and GT in the consensus splice sites, and creation of splice-acceptor or splice-donor sites in either introns or exons. These splicing mutations led to a variety of consequences, including exon skipping and, to a lesser degree, intron retention, activation of cryptic splice sites, or creation of new splice sites. In addition, 5 of 12 nonsense mutations and 1 missense mutation were associated with deletion in the cDNA of the exons in which the mutations occurred. No ATM protein was detected by western blotting in any AT cell line in which splicing mutations were identified. Several cases of exon skipping in both normal controls and patients for whom no underlying defect could be found in genomic DNA were also observed, suggesting caution in the interpretation of exon deletions observed in ATM cDNA when there is no accompanying identification of genomic mutations. PMID:10330348

  5. Novel GABRG2 mutations cause familial febrile seizures

    PubMed Central

    Boillot, Morgane; Morin-Brureau, Mélanie; Picard, Fabienne; Weckhuysen, Sarah; Lambrecq, Virginie; Minetti, Carlo; Striano, Pasquale; Zara, Federico; Iacomino, Michele; Ishida, Saeko; An-Gourfinkel, Isabelle; Daniau, Mailys; Hardies, Katia; Baulac, Michel; Dulac, Olivier; Leguern, Eric; Nabbout, Rima

    2015-01-01

    Objective: To identify the genetic cause in a large family with febrile seizures (FS) and temporal lobe epilepsy (TLE) and subsequently search for additional mutations in a cohort of 107 families with FS, with or without epilepsy. Methods: The cohort consisted of 1 large family with FS and TLE, 64 smaller French families recruited through a national French campaign, and 43 Italian families. Molecular analyses consisted of whole-exome sequencing and mutational screening. Results: Exome sequencing revealed a p.Glu402fs*3 mutation in the γ2 subunit of the GABAA receptor gene (GABRG2) in the large family with FS and TLE. Three additional nonsense and frameshift GABRG2 mutations (p.Arg136*, p.Val462fs*33, and p.Pro59fs*12), 1 missense mutation (p.Met199Val), and 1 exonic deletion were subsequently identified in 5 families of the follow-up cohort. Conclusions: We report GABRG2 mutations in 5.6% (6/108) of families with FS, with or without associated epilepsy. This study provides evidence that GABRG2 mutations are linked to the FS phenotype, rather than epilepsy, and that loss-of-function of GABAA receptor γ2 subunit is the probable underlying pathogenic mechanism. PMID:27066572

  6. The incidence of PAX6 mutation in patients with simple aniridia: an evaluation of mutation detection in 12 cases.

    PubMed Central

    Axton, R; Hanson, I; Danes, S; Sellar, G; van Heyningen, V; Prosser, J

    1997-01-01

    Twelve aniridia patients, five with a family history and seven presumed to be sporadic, were exhaustively screened in order to test what proportion of people with aniridia, uncomplicated by associated anomalies, carry mutations in the human PAX6 gene. Mutations were detected in 90% of the cases. Three mutation detection techniques were used to determine if one method was superior for this gene. The protein truncation test (PTT) was used on RT-PCR products, SSCP on genomic PCR amplifications, and chemical cleavage of mismatch on both RT-PCR and genomic amplifications. For RT-PCR products, only the translated portion of the gene was screened. On genomic products exons 1 to 13 (including 740 bp of the 3' untranslated sequence and all intron/exon boundaries) were screened, as was a neuroretina specific enhancer in intron 4. Ten of the possible 12 mutations in the five familial cases and five of the sporadic patients were found, all of which conformed to a functional outcome of haploinsufficiency. Five were splice site mutations (one in the donor site of intron 4, two in the donor site of intron 6, one in each of the acceptor sites of introns 8 and 9) and five were nonsense mutations in exons 8, 9, 10, 11, and 12. SSCP analysis of individually amplified exons, with which nine of the 10 mutations were seen, was the most useful detection method for PAX6. Images PMID:9138149

  7. Spectrum of AGL mutations in Chinese patients with glycogen storage disease type III: identification of 31 novel mutations.

    PubMed

    Lu, Chaoxia; Qiu, Zhengqing; Sun, Miao; Wang, Wei; Wei, Min; Zhang, Xue

    2016-07-01

    Glycogen storage disease type III (GSD III), a rare autosomal recessive disease characterized by hepatomegaly, fasting hypoglycemia, growth retardation, progressive myopathy and cardiomyopathy, is caused by deficiency of the glycogen debranching enzyme (AGL). Direct sequencing of human AGL cDNA and genomic DNA has enabled analysis of the underlying genetic defects responsible for GSD III. To date, the frequent mutations in different areas and populations have been described in Italy, Japan, Faroe Islands and Mediterranean area, whereas little has been performed in Chinese population. Here we report a sequencing-based mutation analysis in 43 Chinese patients with GSD III from 41 families. We identified 51 different mutations, including 15 splice-site (29.4%), 11 small deletions (21.6%), 12 nonsense (23.5%), 7 missense (13.7%), 5 duplication (9.8%) and 1 complex deletion/insertion (2.0%), 31 of which are novel mutations. The most common mutation is c.1735+1G>T (11.5%). The association of AGL missense and small in-frame deletion mutations with normal creatine kinase level was observed. Our study extends the spectrum of AGL mutations and suggests a genotype-phenotype correlation in GSD III. PMID:26984562

  8. De novo mutations revealed by whole exome sequencing are strongly associated with autism

    PubMed Central

    Sanders, Stephan J.; Murtha, Michael T.; Gupta, Abha R.; Murdoch, John D.; Raubeson, Melanie J.; Willsey, A. Jeremy; Ercan-Sencicek, A. Gulhan; DiLullo, Nicholas M.; Parikshak, Neelroop N.; Stein, Jason L.; Walker, Michael F.; Ober, Gordon T.; Teran, Nicole A.; Song, Youeun; El-Fishawy, Paul; Murtha, Ryan C.; Choi, Murim; Overton, John D.; Bjornson, Robert D.; Carriero, Nicholas J.; Meyer, Kyle A.; Bilguvar, Kaya; Mane, Shrikant M.; Šestan, Nenad; Lifton, Richard P.; Günel, Murat; Roeder, Kathryn; Geschwind, Daniel H.; Devlin, Bernie; State, Matthew W.

    2013-01-01

    Multiple studies have confirmed the contribution of rare de novo copy number variations (CNVs) to the risk for Autism Spectrum Disorders (ASD).1-3 While de novo single nucleotide variants (SNVs) have been identified in affected individuals,4 their contribution to risk has yet to be clarified. Specifically, the frequency and distribution of these mutations has not been well characterized in matched unaffected controls, data that are vital to the interpretation of de novo coding mutations observed in probands. Here we show, via whole-exome sequencing of 928 individuals, including 200 phenotypically discordant sibling pairs, that highly disruptive (nonsense and splice-site) de novo mutations in brain-expressed genes are associated with ASD and carry large effects (OR=5.65; CI: 1.44-22.2; p=0.01 asymptotic test). Based on mutation rates in unaffected individuals, we demonstrate that multiple independent de novo SNVs in the same gene among unrelated probands reliably identifies risk alleles, providing a clear path forward for gene discovery. Among a total of 279 identified de novo coding mutations, there is a single instance in probands, and none in siblings, in which two independent nonsense variants disrupt the same gene, SCN2A (Sodium Channel, Voltage-Gated, Type II, Alpha Subunit), a result that is highly unlikely by chance (p=0.005). PMID:22495306

  9. De Novo Mutations in CHAMP1 Cause Intellectual Disability with Severe Speech Impairment

    PubMed Central

    Hempel, Maja; Cremer, Kirsten; Ockeloen, Charlotte W.; Lichtenbelt, Klaske D.; Herkert, Johanna C.; Denecke, Jonas; Haack, Tobias B.; Zink, Alexander M.; Becker, Jessica; Wohlleber, Eva; Johannsen, Jessika; Alhaddad, Bader; Pfundt, Rolph; Fuchs, Sigrid; Wieczorek, Dagmar; Strom, Tim M.; van Gassen, Koen L.I.; Kleefstra, Tjitske; Kubisch, Christian; Engels, Hartmut; Lessel, Davor

    2015-01-01

    CHAMP1 encodes a protein with a function in kinetochore-microtubule attachment and in the regulation of chromosome segregation, both of which are known to be important for neurodevelopment. By trio whole-exome sequencing, we have identified de novo deleterious mutations in CHAMP1 in five unrelated individuals affected by intellectual disability with severe speech impairment, motor developmental delay, muscular hypotonia, and similar dysmorphic features including short philtrum and a tented upper and everted lover lip. In addition to two frameshift and one nonsense mutations, we found an identical nonsense mutation, c.1192C>T (p.Arg398∗), in two affected individuals. All mutations, if resulting in a stable protein, are predicted to lead to the loss of the functionally important zinc-finger domains in the C terminus of the protein, which regulate CHAMP1 localization to chromosomes and the mitotic spindle, thereby providing a mechanistic understanding for their pathogenicity. We thus establish deleterious de novo mutations in CHAMP1 as a cause of intellectual disability. PMID:26340335

  10. KRAS Mutation

    PubMed Central

    Franklin, Wilbur A.; Haney, Jerry; Sugita, Michio; Bemis, Lynne; Jimeno, Antonio; Messersmith, Wells A.

    2010-01-01

    Treatment of colon carcinoma with the anti-epidermal growth factor receptor antibody Cetuximab is reported to be ineffective in KRAS-mutant tumors. Mutation testing techniques have therefore become an urgent concern. We have compared three methods for detecting KRAS mutations in 59 cases of colon carcinoma: 1) high resolution melting, 2) the amplification refractory mutation system using a bifunctional self-probing primer (ARMS/Scorpion, ARMS/S), and 3) direct sequencing. We also evaluated the effects of the methods of sectioning and coring of paraffin blocks to obtain tumor DNA on assay sensitivity and specificity. The most sensitive and specific combination of block sampling and mutational analysis was ARMS/S performed on DNA derived from 1-mm paraffin cores. This combination of tissue sampling and testing method detected KRAS mutations in 46% of colon tumors. Four samples were positive by ARMS/S, but initially negative by direct sequencing. Cloned DNA samples were retested by direct sequencing, and in all four cases KRAS mutations were identified in the DNA. In six cases, high resolution melting abnormalities could not be confirmed as specific mutations either by ARMS/S or direct sequencing. We conclude that coring of the paraffin blocks and testing by ARMS/S is a sensitive, specific, and efficient method for KRAS testing. PMID:20007845

  11. Diverse growth hormone receptor gene mutations in Laron syndrome

    SciTech Connect

    Berg, M.A.; Francke, U. ); Gracia, R.; Rosenbloom, A.; Toledo, S.P.A. ); Chernausek, S. ); Guevara-Aguirre, J. ); Hopp, M. ); Rosenbloom, A.; Argente, J. ); Toledo, S.P.A. )

    1993-05-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), the authors analysed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. They amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). They identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71+1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, they determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. The authors conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. 35 refs., 3 figs., 1 tab.

  12. Molecular analysis of mucopolysaccharidosis IVA: Common mutations and racial difference

    SciTech Connect

    Tomatsu, S.; Hori, T.; Nakashima, Y.

    1994-09-01

    Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency in N-acetylgalactosamine -6-sulfate sulfatase (GALNS). Studies on the molecular basis of MPS IVA have been facilitated following cloning of the full-length cDNA and genomic DNA. In this study we detected mutations from 20 Caucasian and 19 Japanese MPS IVA patients using SSCP system and compared mutations of Caucasian origin with those of Japanese origin. The results showed the presence of 16 various mutations (3 small, deletions, 2 nonsense and 11 missense mutations) for Caucasian patients and 15 (1 deletion, 1 large alteration and 13 missense mutations) for Japanese. Moreover, two common mutations existed; one is double gene deletion characteristic for Japanese (6 alleles; 15%) and the other is a point mutation (1113F A{yields}T transition) characteristic for Caucasian (9 alleles; 22.5%). And the clear genotype/phenotype relationship among 1342delCA, IVS1(-2), P151S, Q148X, R386C, I113F, Q473X, W220G, P151L, A291T, R90W, and P77R, for a severe type, G96B N204K and V138A for a milder type, was observed. Only R386 mutation was seen in both of the populations. Further, the precise DNA analysis for double gene deletion of a common double gene deletion has been performed by defining the breakpoints and the results showed that one deletion was caused by homologous recombination due to Alu repetitive sequences and the other was due to nonhomologous recombination of short direct repeat. Haplotype analysis for six alleles with double deletion were different, indicating the different origin of this mutation or the frequent recombination events before a mutational event. Thus the mutations in GALNS gene are very heterogeneous and the racial difference is characteristic.

  13. The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations

    PubMed Central

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-01-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  14. CCR4 frameshift mutation identifies a distinct group of adult T cell leukaemia/lymphoma with poor prognosis.

    PubMed

    Yoshida, Noriaki; Miyoshi, Hiroaki; Kato, Takeharu; Sakata-Yanagimoto, Mamiko; Niino, Daisuke; Taniguchi, Hiroaki; Moriuchi, Yukiyoshi; Miyahara, Masaharu; Kurita, Daisuke; Sasaki, Yuya; Shimono, Joji; Kawamoto, Keisuke; Utsunomiya, Atae; Imaizumi, Yoshitaka; Seto, Masao; Ohshima, Koichi

    2016-04-01

    Adult T cell leukaemia/lymphoma (ATLL) is an intractable T cell neoplasm caused by human T cell leukaemia virus type 1. Next-generation sequencing-based comprehensive mutation studies have revealed recurrent somatic CCR4 mutations in ATLL, although clinicopathological findings associated with CCR4 mutations remain to be delineated. In the current study, 184 cases of peripheral T cell lymphoma, including 113 cases of ATLL, were subjected to CCR4 mutation analysis. This sequence analysis identified mutations in 27% (30/113) of cases of ATLL and 9% (4/44) of cases of peripheral T cell lymphoma not otherwise specified. Identified mutations included nonsense (NS) and frameshift (FS) mutations. No significant differences in clinicopathological findings were observed between ATLL cases stratified by presence of CCR4 mutation. All ATLL cases with CCR4 mutations exhibited cell-surface CCR4 positivity. Semi-quantitative CCR4 protein analysis of immunohistochemical sections revealed higher CCR4 expression in cases with NS mutations of CCR4 than in cases with wild-type (WT) CCR4. Furthermore, among ATLL cases, FS mutation was significantly associated with a poor prognosis, compared with NS mutation and WT CCR4. These results suggest that CCR4 mutation is an important determinant of the clinical course in ATLL cases, and that NS and FS mutations of CCR4 behave differently with respect to ATLL pathophysiology. PMID:26847489

  15. The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations.

    PubMed

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-04-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  16. Mutational characteristics of ANK1 and SPTB genes in hereditary spherocytosis.

    PubMed

    Park, J; Jeong, D-C; Yoo, J; Jang, W; Chae, H; Kim, J; Kwon, A; Choi, H; Lee, J W; Chung, N-G; Kim, M; Kim, Y

    2016-07-01

    The aim of this study was to describe the mutational characteristics in Korean hereditary spherocytosis (HS) patients. Relevant literatures including genetically confirmed cases with well-documented clinical summaries and relevant information were also reviewed to investigate the mutational gene- or domain-specific laboratory and clinical association. Twenty-five HS patients carried one heterozygous mutation of ANK1 (n = 13) or SPTB (n = 12) but not in SPTA1, SLC4A1, or EPB42. Deleterious mutations including frameshift, nonsense, and splice site mutations were identified in 91% (21/23), and non-hotspot mutations were dispersed across multiple exons. Genotype-phenotype correlation was clarified after combined analysis of the cases and the literature review; anemia was most severe in HS patients with mutations on the ANK1 spectrin-binding domain (p < 0.05), and SPTB mutations in HS patients spared the tetramerization domain in which mutations of hereditary elliptocytosis and pyropoikilocytosis are located. Splenectomy (17/75) was more frequent in ANK1 mutant HS (32%) than in HS with SPTB mutation (10%) (p = 0.028). Aplastic crisis occurred in 32.0% of the patients (8/25; 3 ANK1 and 5 SPTB), and parvovirus B19 was detected in 88%. The study clarifies ANK1 or SPTB mutational characteristics in HS Korean patients. The genetic association of laboratory and clinical aspects suggests comprehensive considerations for genetic-based management of HS. PMID:26830532

  17. Novel mutations in the RB1 gene from Chinese families with a history of retinoblastoma.

    PubMed

    Zhang, Leilei; Jia, Renbing; Zhao, Junyang; Fan, Jiayan; Zhou, YiXiong; Han, Bing; Song, Xin; Wu, Li; Zhang, He; Song, Huaidong; Ge, Shengfang; Fan, Xianqun

    2015-04-01

    Retinoblastoma is an aggressive eye cancer that develops during infancy and is divided into two clinical types, sporadic and heritable. RB1 has been identified as the only pathological gene responsible for heritable retinoblastoma. Here, we identified 11 RB1 germline mutations in the Han pedigrees of 17 bilateral retinoblastoma patients from China. Four mutations were nonsense mutations, five were splice site mutations, and two resulted in a frame shift due to an insertion or a deletion. Three of the mutations had not been previously reported, and the p.Q344L mutation occurred in two generations of retinoblastoma patients. We investigated phenotypic-genotypic relationships for the novel mutations and showed that these mutations affected the expression, location, and function of the retinoblastoma protein. Abnormal protein localization was observed after transfection of the mutant genes. In addition, changes in the cell cycle distribution and apoptosis rates were observed when the Saos-2 cell line was transfected with plasmids encoding the mutant RB1 genes. Our findings expand the spectrum of known RB1 mutations and will benefit the investigation of RB1 mutation hotspots. Genetic counseling can be offered to families with heritable RB1 mutations. PMID:25424699

  18. The Phenotype of a Germline Mutation in PIGA: The Gene Somatically Mutated in Paroxysmal Nocturnal Hemoglobinuria

    PubMed Central

    Johnston, Jennifer J.; Gropman, Andrea L.; Sapp, Julie C.; Teer, Jamie K.; Martin, Jodie M.; Liu, Cyndi F.; Yuan, Xuan; Ye, Zhaohui; Cheng, Linzhao; Brodsky, Robert A.; Biesecker, Leslie G.

    2012-01-01

    Phosphatidylinositol glycan class A (PIGA) is involved in the first step of glycosylphosphatidylinositol (GPI) biosynthesis. Many proteins, including CD55 and CD59, are anchored to the cell by GPI. Loss of CD55 and CD59 on erythrocytes causes complement-mediated lysis in paroxysmal nocturnal hemoglobinuria (PNH), a disease that manifests after clonal expansion of hematopoietic cells with somatic PIGA mutations. Although somatic PIGA mutations have been identified in many PNH patients, it has been proposed that germline mutations are lethal. We report a family with an X-linked lethal disorder involving cleft palate, neonatal seizures, contractures, central nervous system (CNS) structural malformations, and other anomalies. An X chromosome exome next-generation sequencing screen identified a single nonsense PIGA mutation, c.1234C>T, which predicts p.Arg412∗. This variant segregated with disease and carrier status in the family, is similar to mutations known to cause PNH as a result of PIGA dysfunction, and was absent in 409 controls. PIGA-null mutations are thought to be embryonic lethal, suggesting that p.Arg412∗ PIGA has residual function. Transfection of a mutant p.Arg412∗ PIGA construct into PIGA-null cells showed partial restoration of GPI-anchored proteins. The genetic data show that the c.1234C>T (p.Arg412∗) mutation is present in an affected child, is linked to the affected chromosome in this family, is rare in the population, and results in reduced, but not absent, biosynthesis of GPI anchors. We conclude that c.1234C>T in PIGA results in the lethal X-linked phenotype recognized in the reported family. PMID:22305531

  19. Nonsense-mediated mRNA decay in humans at a glance.

    PubMed

    Kurosaki, Tatsuaki; Maquat, Lynne E

    2016-02-01

    Nonsense-mediated mRNA decay (NMD) is an mRNA quality-control mechanism that typifies all eukaryotes examined to date. NMD surveys newly synthesized mRNAs and degrades those that harbor a premature termination codon (PTC), thereby preventing the production of truncated proteins that could result in disease in humans. This is evident from dominantly inherited diseases that are due to PTC-containing mRNAs that escape NMD. Although many cellular NMD targets derive from mistakes made during, for example, pre-mRNA splicing and, possibly, transcription initiation, NMD also targets ∼10% of normal physiological mRNAs so as to promote an appropriate cellular response to changing environmental milieus, including those that induce apoptosis, maturation or differentiation. Over the past ∼35 years, a central goal in the NMD field has been to understand how cells discriminate mRNAs that are targeted by NMD from those that are not. In this Cell Science at a Glance and the accompanying poster, we review progress made towards this goal, focusing on human studies and the role of the key NMD factor up-frameshift protein 1 (UPF1). PMID:26787741

  20. Quality control of transcription start site selection by nonsense-mediated-mRNA decay.

    PubMed

    Malabat, Christophe; Feuerbach, Frank; Ma, Laurence; Saveanu, Cosmin; Jacquier, Alain

    2015-01-01

    Nonsense-mediated mRNA decay (NMD) is a translation-dependent RNA quality-control pathway targeting transcripts such as messenger RNAs harboring premature stop-codons or short upstream open reading frame (uORFs). Our transcription start sites (TSSs) analysis of Saccharomyces cerevisiae cells deficient for RNA degradation pathways revealed that about half of the pervasive transcripts are degraded by NMD, which provides a fail-safe mechanism to remove spurious transcripts that escaped degradation in the nucleus. Moreover, we found that the low specificity of RNA polymerase II TSSs selection generates, for 47% of the expressed genes, NMD-sensitive transcript isoforms carrying uORFs or starting downstream of the ATG START codon. Despite the low abundance of this last category of isoforms, their presence seems to constrain genomic sequences, as suggested by the significant bias against in-frame ATGs specifically found at the beginning of the corresponding genes and reflected by a depletion of methionines in the N-terminus of the encoded proteins. PMID:25905671

  1. Inter-kingdom conservation of mechanism of nonsense-mediated mRNA decay

    PubMed Central

    Kerényi, Zoltán; Mérai, Zsuzsanna; Hiripi, László; Benkovics, Anna; Gyula, Péter; Lacomme, Christophe; Barta, Endre; Nagy, Ferenc; Silhavy, Dániel

    2008-01-01

    Nonsense-mediated mRNA decay (NMD) is a quality control system that degrades mRNAs containing premature termination codons. Although NMD is well characterized in yeast and mammals, plant NMD is poorly understood. We have undertaken the functional dissection of NMD pathways in plants. Using an approach that allows rapid identification of plant NMD trans factors, we demonstrated that two plant NMD pathways coexist, one eliminates mRNAs with long 3′UTRs, whereas a distinct pathway degrades mRNAs harbouring 3′UTR-located introns. We showed that UPF1, UPF2 and SMG-7 are involved in both plant NMD pathways, whereas Mago and Y14 are required only for intron-based NMD. The molecular mechanism of long 3′UTR-based plant NMD resembled yeast NMD, whereas the intron-based NMD was similar to mammalian NMD, suggesting that both pathways are evolutionarily conserved. Interestingly, the SMG-7 NMD component is targeted by NMD, suggesting that plant NMD is autoregulated. We propose that a complex, autoregulated NMD mechanism operated in stem eukaryotes, and that despite aspect of the mechanism being simplified in different lineages, feedback regulation was retained in all kingdoms. PMID:18451801

  2. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis

    PubMed Central

    Kalyna, Maria; Simpson, Craig G.; Syed, Naeem H.; Lewandowska, Dominika; Marquez, Yamile; Kusenda, Branislav; Marshall, Jacqueline; Fuller, John; Cardle, Linda; McNicol, Jim; Dinh, Huy Q.; Barta, Andrea; Brown, John W. S.

    2012-01-01

    Alternative splicing (AS) coupled to nonsense-mediated decay (NMD) is a post-transcriptional mechanism for regulating gene expression. We have used a high-resolution AS RT–PCR panel to identify endogenous AS isoforms which increase in abundance when NMD is impaired in the Arabidopsis NMD factor mutants, upf1-5 and upf3-1. Of 270 AS genes (950 transcripts) on the panel, 102 transcripts from 97 genes (32%) were identified as NMD targets. Extrapolating from these data around 13% of intron-containing genes in the Arabidopsis genome are potentially regulated by AS/NMD. This cohort of naturally occurring NMD-sensitive AS transcripts also allowed the analysis of the signals for NMD in plants. We show the importance of AS in introns in 5′ or 3′UTRs in modulating NMD-sensitivity of mRNA transcripts. In particular, we identified upstream open reading frames overlapping the main start codon as a new trigger for NMD in plants and determined that NMD is induced if 3′-UTRs were >350 nt. Unexpectedly, although many intron retention transcripts possess NMD features, they are not sensitive to NMD. Finally, we have shown that AS/NMD regulates the abundance of transcripts of many genes important for plant development and adaptation including transcription factors, RNA processing factors and stress response genes. PMID:22127866

  3. Missense mutation (E150K) of rhodopsin in autosomal recessive retinitis pigmentosa

    SciTech Connect

    Orth, U.; Oehlmann, R.; Gal, A.

    1994-09-01

    Missense or nonsense mutations of the rhodopsin gene have been implied in the pathogenesis of at least 3 different traits; autosomal dominant retinitis pigmentosa (adRP), congenital stationary night blindness (CSNB), and autosomal recessive retinitis pigmentosa (arRP). For the latter, a single patient has been reported with a nonsense mutation at codon 249 on both alleles. Heterozygous carriers of missense mutations of rhodopsin develop either adRP or CSNB depending on the particular amino acid substitution. Four of the 9 siblings from a consanguineous marriage in southern India were reported the have arRP. Mutational screening and sequencing of the rhodopsin gene revealed a G-to-A transition of the first nucleotide at codon 150 in exon II, which alters glutamate to lysine. The E150K mutation was present in the 4 patients in homozygous form, whereas the parents and 2 of the siblings were heterozygotes. Two-point analysis produced a Zmax=3.46 at theta=0.00. Two unaffected siblings who are heterozygotes for the E150K mutation underwent a thorough ophthalmological and psychophysical examination. No clinical abnormalities were found although these individuals were over forty, whereas the onset of RP in their affected siblings was in the second decade. Collectively, both the genetic and clinical findings strongly suggest that the E150K mutation of rhodopsin is recessive in this family. Glu150 forms part of the CD cytoplasmic loop of rhodopsin, which has been implicated in the binding and activation of transducin. We speculate that E150K leads to RP because the mutant protein may be incapable of activating transducin. It is tempting to speculate that, in addition to mutations in the genes for rhodopsin and the {beta}-subunit of PDE, mutations in the genes for transducin may also result in arRP.

  4. Germ-line p53 mutations in 15 families with Li-Fraumeni syndrome

    SciTech Connect

    Frebourg, T.; Barbier, N.; Yan, Yu-xin; Friend, S.H. |; Garber, J.E.; Dreyfus, M.; Li, F.P.; Fraumeni, J. Jr.

    1995-03-01

    Germ-line mutations of the tumor-suppressor gene p53 have been observed in some families with the Li-Fraumeni syndrome (LFS), a familial cancer syndrome in which affected relatives develop a diverse set of early-onset malignancies including breast carcinoma, sarcomas, and brain tumors. The analysis of the p53 gene in LFS families has been limited, in most studies to date, to the region between exon 5 and exon 9. In order to determine the frequency and distribution of germ-line p53 mutations in LFS, we sequenced the 10 coding exons of the p53 gene in lymphocytes and fibroblast cell lines derived from 14 families with the syndrome. Germ-line mutations were observed in eight families. Six mutations were missense mutations located between exons 5 and 8. One mutation was a nonsense mutation in exon 6, and one mutation was a splicing mutation in intron 4, generating aberrant shorter p53 RNA(s). In three families, a mutation of the p53 gene was observed in the fibroblast cell line derived from the proband. However, the mutation was not found in affected relatives in two families and in the blood from the one individual, indicating that the mutation probably occurred during cell culture in vitro. In four families, no mutation was observed. This study indicates that germ-line p53 mutations in LFS are mostly located between exons 5 and 8 and that {approximately}50% of patients with LFS have no germ-line mutations in the coding region of the p53 gene. The observation of p53 mutations occurring during primary cultures of human fibroblasts shows that analysis for germ-line p53 mutations must be performed on cells that have not been grown in vitro. 49 refs., 1 fig., 4 tabs.

  5. FERMT1 promoter mutations in patients with Kindler syndrome.

    PubMed

    Has, C; Chmel, N; Levati, L; Neri, I; Sonnenwald, T; Pigors, M; Godbole, K; Dudhbhate, A; Bruckner-Tuderman, L; Zambruno, G; Castiglia, D

    2015-09-01

    Mutations in the FERMT1 gene, encoding the focal adhesion protein kindlin-1 underlie the Kindler syndrome (KS), an autosomal recessive skin disorder with a phenotype comprising skin blistering, photosensitivity, progressive poikiloderma with extensive skin atrophy, and propensity to skin cancer. The FERMT1 mutational spectrum comprises gross genomic deletions, splice site, nonsense, and frameshift mutations, which are scattered over the coding region spanning exon 2-15. We now report three KS families with mutations affecting the promoter region of FERMT1. Two of these mutations are large deletions (∼38.0 and 1.9 kb in size) and one is a single nucleotide variant (c.-20A>G) within the 5' untranslated region (UTR). Each mutation resulted in loss of gene expression in patient skin or cultured keratinocytes. Reporter assays showed the functional relevance of the genomic regions deleted in our patients for FERMT1 gene transcription and proved the causal role of the c.-20A>G variant in reducing transcriptional activity. PMID:25156791

  6. Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: mutations in UGT76G1, a key gene of steviol glycosides synthesis.

    PubMed

    Yang, Yong-Heng; Huang, Su-Zhen; Han, Yu-Lin; Yuan, Hai-Yan; Gu, Chun-Sun; Zhao, Yan-Hai

    2014-07-01

    Steviol glycosides, extracted from the leaves of Stevia rebaudiana (Bert) Bertoni, are calorie-free sugar substitute of natural origin with intensely sweet (Boileau et al., 2012). Stevioside and rebaudioside A are the two main kinds of the diterpenic glycosides. We analyzed the concentration of stevioside and rebaudioside A in Stevia leaves of about 500 samples (hybrid progenies) and discovered a mutation plant "Z05" with very low levels of rebaudioside A. Because UGT76G1, a uridinediphosphate-dependent glycosyltransferases, is responsible for the conversion from stevioside to rebaudioside A (Richman et al., 2005), so mutation identification was done by sequencing the candidate gene, UGT76G1. In this study molecular analysis of two strains revealed a heterozygotic nonsense mutation of c.389T > G (p.L121X) in UGT76G1. Meanwhile, we found some amino acid substitutions significant change the protein structure. And the difference of enzyme activity between two strains proved the lack of functionality of UGT76G1 of the mutation "Z05". So the nonsense mutation and amino acid substitution mutation resulted in the low levels of rebaudioside A. PMID:24811677

  7. SPG11 mutations are common in familial cases of complicated hereditary spastic paraplegia (HSP)

    PubMed Central

    Paisan-Ruiz, Coro; Dogu, Okan; Yilmaz, Arda; Houlden, Henry; Singleton, Andrew

    2009-01-01

    Objective Autosomal recessive hereditary spastic paraplegia (ARHSP) with thin corpus callosum (TCC) is a common form of complex HSP. The genetic lesion underlying ARHSP-TCC was localized to chromosome 15q13-q15 and given the designation SPG11. Recently the gene encoding spatacsin (KIAA1840), has been shown to contain mutations that underlie the majority of ARHSP-TCC cases. Methods Here we present a complete analysis of the 40 coding exons of this gene in patients with sporadic (n = 25) or familial (20 probands) complex hereditary spastic paraplegia with and without thinning of the corpus callosum. Results We identified seven mutations, including deletions, insertions and nonsense mutations, which were all predicted to lead to premature truncation of the protein. Conclusion We conclude that mutations on KIAA1840 are frequent in complex ARHSP but an infrequent cause of sporadic complex HSP. PMID:18337587

  8. Mutations of the E-cadherin gene in human gynecologic cancers.

    PubMed

    Risinger, J I; Berchuck, A; Kohler, M F; Boyd, J

    1994-05-01

    Expression of the E-cadherin cell adhesion molecule is reduced in several types of human carcinomas, and the protein serves as an invasion suppressor in vitro. To determine if mutations of the E-cadherin gene (on chromosome 16q22) contribute to epithelial tumorigenesis, 135 carcinomas of the endometrium and ovary were examined for alterations in the E-cadherin coding region. Four mutations were identified: one somatic nonsense and one somatic missense mutation, both with retention of the wild-type alleles, and two missense mutations with somatic loss of heterozygosity in the tumour tissue. These data support the classification of E-cadherin as a human tumour suppressor gene. PMID:8075649

  9. Mutations of the adenomatous polyposis coli and p53 genes in a child with Turcot's syndrome.

    PubMed

    Barel, D; Cohen, I J; Mor, C; Stern, S; Shapiro, R; Shomrat, R; Galanti, Y; Legum, C; Zaizov, R; Avigad, S

    1998-10-23

    Turcot's syndrome is a rare heritable complex that is characterized by an association between a primary neuroepithelial tumor of the central nervous system and multiple colonic polyps. The aim of this study was to analyze genetic alterations in a case of Turcot's syndrome in a 10.5-year-old boy in whom a colorectal tumor developed 3.5 years following astrocytoma. An APC germline non-sense mutation at codon 1284 leading to a truncated protein was identified, as was a somatic p53 mutation in the colorectal carcinoma in exon 7, codon 244. The latter was not identified in the primary astrocytoma. However, immunohistochemistry revealed high p53 protein expression in both tumors, suggesting an additional p53 mutation in the primary astrocytic tumor. The diverse p53 mutations observed in this unique syndrome in two different sites and stages of the disease may shed light on the multistep progression of the malignant events. PMID:10397462

  10. Novel Mutation in Wolcott–Rallison Syndrome with Variable Expression in Two Omani Siblings

    PubMed Central

    Al-Sinani, Siham; Al-Yaarubi, Saif; Sharef, Sharef Waadallah; Al-Murshedi, Fathyia; Al-Maamari, Watfa

    2015-01-01

    Wolcott-Rallison syndrome (WRS) is an autosomal recessive disease, characterized by neonatal or early-onset non-autoimmune insulin-dependent diabetes. WRS, although rare, is recognized to be the most frequent cause of neonatal-onset diabetes. The majority of reported patients are from consanguineous families. Several mutations with variable expression of the syndrome are reported. Here we describe a six-year-old boy with WRS who was evaluated at Sultan Qaboos University Hospital and was found to have a novel homozygous nonsense mutation in the EIF2AK3 gene. His younger sister also had WRS but with milder expression. The mutation exhibited different clinical characteristics in the siblings proving that WRS patients phenotypic variability correlates poorly to genotype. This is the first case report of two Omani children with WRS and a report of a novel mutation. PMID:25960841

  11. Novel mutations in the COL2A1 gene in Japanese patients with Stickler syndrome.

    PubMed

    Kondo, Hiroyuki; Matsushita, Itsuka; Nagata, Tatsuo; Hayashi, Takaaki; Kakinoki, Masashi; Uchio, Eiichi; Kondo, Mineo; Ohji, Masahito; Kusaka, Shunji

    2016-01-01

    Stickler syndrome is an inherited connective tissue disorder that affects the eyes, cartilage and articular tissues. The phenotypes of Stickler syndrome include congenital high myopia, retinal detachment, premature joint degeneration, hearing impairment and craniofacial anomalies, such as cleft palate and midline facial hypoplasia. The disease is genetically heterogeneous, and the majority of the cases are caused by mutations in the COL2A1 gene. We examined 40 Japanese patients with Stickler syndrome from 23 families to determine whether they had mutations in the COL2A1 gene. This analysis was conducted by examining each patient's genomic DNA by Sanger sequencing. Five nonsense, 4 splicing and 8 deletion mutations in the COL2A1 gene were identified, accounting for 21 of the 23 families. Different mutations of the COL2A1 gene were associated with similar phenotypes but with different degrees of expressivity. PMID:27408751

  12. Novel mutations in the COL2A1 gene in Japanese patients with Stickler syndrome

    PubMed Central

    Kondo, Hiroyuki; Matsushita, Itsuka; Nagata, Tatsuo; Hayashi, Takaaki; Kakinoki, Masashi; Uchio, Eiichi; Kondo, Mineo; Ohji, Masahito; Kusaka, Shunji

    2016-01-01

    Stickler syndrome is an inherited connective tissue disorder that affects the eyes, cartilage and articular tissues. The phenotypes of Stickler syndrome include congenital high myopia, retinal detachment, premature joint degeneration, hearing impairment and craniofacial anomalies, such as cleft palate and midline facial hypoplasia. The disease is genetically heterogeneous, and the majority of the cases are caused by mutations in the COL2A1 gene. We examined 40 Japanese patients with Stickler syndrome from 23 families to determine whether they had mutations in the COL2A1 gene. This analysis was conducted by examining each patient’s genomic DNA by Sanger sequencing. Five nonsense, 4 splicing and 8 deletion mutations in the COL2A1 gene were identified, accounting for 21 of the 23 families. Different mutations of the COL2A1 gene were associated with similar phenotypes but with different degrees of expressivity. PMID:27408751

  13. The stop mutation R553X in the CFTR gene results in exon skipping

    SciTech Connect

    Hull, J.; Shackleton, S.; Harris, A. )

    1994-01-15

    Stop or nonsense mutations are known to disrupt gene function in a number of different ways. The authors have studied the effects of the stop mutation R553X in exon 11 of the CFTR gene by analyzing mRNA extracted from nasal epithelial cells harvested from patients with cystic fibrosis. Four patients who were compound heterozygotes for the R553X mutation were studied. Ten non-CF control subjects were also studied. In all four patients, full-length CFTR mRNA was identified, but only a very small proportion of this was derived from the R553X allele. A smaller transcript, lacking exon 11, was also seen in the R553X patients but not in the controls. Most of this transcript was derived from the R553X allele. These results suggest that the R553X mutation results in skipping of the exon in which it is located. 14 refs., 3 figs.

  14. Next-generation sequencing identifies novel CACNA1A gene mutations in episodic ataxia type 2.

    PubMed

    Maksemous, Neven; Roy, Bishakha; Smith, Robert A; Griffiths, Lyn R

    2016-03-01

    Episodic Ataxia type 2 (EA2) is a rare autosomal dominantly inherited neurological disorder characterized by recurrent disabling imbalance, vertigo, and episodes of ataxia lasting minutes to hours. EA2 is caused most often by loss of function mutations of the calcium channel gene CACNA1A. In addition to EA2, mutations in CACNA1A are responsible for two other allelic disorders: familial hemiplegic migraine type 1 (FHM1) and spinocerebellar ataxia type 6 (SCA6). Herein, we have utilized next-generation sequencing (NGS) to screen the coding sequence, exon-intron boundaries, and Untranslated Regions (UTRs) of five genes where mutation is known to produce symptoms related to EA2, including CACNA1A. We performed this screening in a group of 31 unrelated patients with EA2 symptoms. Both novel and known mutations were detected through NGS technology, and confirmed through Sanger sequencing. Genetic testing showed in total 15 mutation bearing patients (48%), of which nine were novel mutations (6 missense and 3 small frameshift deletion mutations) and six known mutations (4 missense and 2 nonsense).These results demonstrate the efficiency of our NGS-panel for detecting known and novel mutations for EA2 in the CACNA1A gene, also identifying a novel missense mutation in ATP1A2 which is not a normal target for EA2 screening. PMID:27066515

  15. Phenylalanine hydroxylase gene mutations in the United States: report from the Maternal PKU Collaborative Study.

    PubMed Central

    Guldberg, P.; Levy, H. L.; Hanley, W. B.; Koch, R.; Matalon, R.; Rouse, B. M.; Trefz, F.; de la Cruz, F.; Henriksen, K. F.; Güttler, F.

    1996-01-01

    The major cause of hyperphenylalaninemia is mutations in the gene encoding phenylalanine hydroxylase (PAH). The known mutations have been identified primarily in European patients. The purpose of this study was to determine the spectrum of mutations responsible for PAH deficiency in the United States. One hundred forty-nine patients enrolled in the Maternal PKU Collaborative Study were subjects for clinical and molecular investigations. PAH gene mutations associated with phenylketonuria (PKU) or mild hyperphenylalaninemia (MHP) were identified on 279 of 294 independent mutant chromosomes, a diagnostic efficiency of 95%. The spectrum is composed of 71 different mutations, including 47 missense mutations, 11 splice mutations, 5 nonsense mutations, and 8 microdeletions. Sixteen previously unreported mutations were identified. Among the novel mutations, five were found in patients with MHP, and the remainder were found in patients with PKU. The most common mutations were R408W, IVS12nt1g-->a, and Y414C, accounting for 18.7%, 7.8%, and 5.4% of the mutant chromosomes, respectively. Thirteen mutations had relative frequencies of 1%-5%, and 55 mutations each had frequencies < or = 1%. The mutational spectrum corresponded to that observed for the European ancestry of the U.S. population. To evaluate the extent of allelic variation at the PAH locus within the United States in comparison with other populations, we used allele frequencies to calculate the homozygosity for 11 populations where >90% ascertainment of mutations has been obtained. The United States was shown to contain one of the most heterogeneous populations, with homozygosity values similar to Sicily and ethnically mixed sample populations in Europe. The extent of allelic heterogeneity must be a major determining factor in the choice of mutation-detection methodology for molecular diagnosis in PAH deficiency. Images Figure 1 PMID:8659548

  16. Mutations in the Proenteropeptidase Gene Are the Molecular Cause of Congenital Enteropeptidase Deficiency

    PubMed Central

    Holzinger, Andreas; Maier, Esther M.; Bück, Cornelius; Mayerhofer, Peter U.; Kappler, Matthias; Haworth, James C.; Moroz, Stanley P.; Hadorn, Hans-Beat; Sadler, J. Evan; Roscher, Adelbert A.

    2002-01-01

    Enteropeptidase (enterokinase [E.C.3.4.21.9]) is a serine protease of the intestinal brush border in the proximal small intestine. It activates the pancreatic proenzyme trypsinogen, which, in turn, releases active digestive enzymes from their inactive pancreatic precursors. Congenital enteropeptidase deficiency is a rare recessively inherited disorder leading, in affected infants, to severe failure to thrive. The genomic structure of the proenteropeptidase gene (25 exons, total gene size 88 kb) was characterized in order to perform DNA sequencing in three clinically and biochemically proved patients with congenital enteropeptidase deficiency who were from two families. We found compound heterozygosity for nonsense mutations (S712X/R857X) in two affected siblings and found compound heterozygosity for a nonsense mutation (Q261X) and a frameshift mutation (FsQ902) in the third patient. In accordance with the biochemical findings, all four defective alleles identified are predicted null alleles leading to a gene product not containing the active site of the enzyme. These data provide first evidence that proenteropeptidase-gene mutations are the primary cause of congenital enteropeptidase deficiency. PMID:11719902

  17. Rediscovery by Whole Genome Sequencing: Classical Mutations and Genome Polymorphisms in Neurospora crassa

    SciTech Connect

    McCluskey, Kevin; Wiest, Aric E.; Grigoriev, Igor V.; Lipzen, Anna; Martin, Joel; Schackwitz, Wendy; Baker, Scott E.

    2011-06-02

    Classical forward genetics has been foundational to modern biology, and has been the paradigm for characterizing the role of genes in shaping phenotypes for decades. In recent years, reverse genetics has been used to identify the functions of genes, via the intentional introduction of variation and subsequent evaluation in physiological, molecular, and even population contexts. These approaches are complementary and whole genome analysis serves as a bridge between the two. We report in this article the whole genome sequencing of eighteen classical mutant strains of Neurospora crassa and the putative identification of the mutations associated with corresponding mutant phenotypes. Although some strains carry multiple unique nonsynonymous, nonsense, or frameshift mutations, the combined power of limiting the scope of the search based on genetic markers and of using a comparative analysis among the eighteen genomes provides strong support for the association between mutation and phenotype. For ten of the mutants, the mutant phenotype is recapitulated in classical or gene deletion mutants in Neurospora or other filamentous fungi. From thirteen to 137 nonsense mutations are present in each strain and indel sizes are shown to be highly skewed in gene coding sequence. Significant additional genetic variation was found in the eighteen mutant strains, and this variability defines multiple alleles of many genes. These alleles may be useful in further genetic and molecular analysis of known and yet-to-be-discovered functions and they invite new interpretations of molecular and genetic interactions in classical mutant strains.

  18. Predominance of the recurrent mutation R635X in the LAMB3 gene in European patients with Herlitz junctional epidermolysis bullosa has implications for mutation detection strategy.

    PubMed

    Pulkkinen, L; Meneguzzi, G; McGrath, J A; Xu, Y; Blanchet-Bardon, C; Ortonne, J P; Christiano, A M; Uitto, J

    1997-08-01

    Junctional forms of epidermolysis bullosa (JEB) are characterized by tissue separation at the level of the lamina lucida. We have recently disclosed specific mutations in the LAMA3, LAMB3, and LAMC2 genes encoding the subunit polypeptides of the anchoring filament protein laminin 5 in 66 families with different variants of JEB. Examination of the JEB mutation database revealed recurrence of a particular C-->T substitution at nucleotide position 1903 (exon 14) of LAMB3, resulting in the mutation R635X. The inheritance of this nonsense mutation was noted on different genetic backgrounds, suggesting that R635X is a hotspot mutation. In this study, we have performed mutation evaluation in a European cohort of 14 families with the lethal, Herlitz type of JEB (H-JEB). The families were first screened for the presence of the R635X mutation by restriction enzyme digestion of the PCR product corresponding to exon 14. Four of the probands were found to be homozygous and six were heterozygous for R635X. The remaining alleles were subjected to mutation screening by PCR amplification of individual exons of LAMB3 and LAMC2, followed by heteroduplex analysis and nucleotide sequencing. In three families (six alleles), mutations in LAMC2 were disclosed. In the remaining eight alleles, additional pathogenetic LAMB3 mutations were found. None of the patients had LAMA3 mutation. Thus, LAMB3 mutations accounted for 22 of 28 JEB alleles (79%), and a total of 14 of 22 LAMB3 alleles (64%) harbored the R635X mutation, signifying its prevalence as a predominant genetic lesion underlying H-JEB in this European cohort of patients. This recurrent mutation will facilitate screening of additional JEB patients for the purpose of prenatal testing of fetuses at risk for recurrence. PMID:9242513

  19. Regulation of Natural mRNAs by the Nonsense-Mediated mRNA Decay Pathway

    PubMed Central

    Peccarelli, Megan

    2014-01-01

    The nonsense-mediated mRNA decay (NMD) pathway is a specialized mRNA degradation pathway that degrades select mRNAs. This pathway is conserved in all eukaryotes examined so far, and it triggers the degradation of mRNAs that prematurely terminate translation. Originally identified as a pathway that degrades mRNAs with premature termination codons as a result of errors during transcription, splicing, or damage to the mRNA, NMD is now also recognized as a pathway that degrades some natural mRNAs. The degradation of natural mRNAs by NMD has been identified in multiple eukaryotes, including Saccharomyces cerevisiae, Drosophila melanogaster, Arabidopsis thaliana, and humans. S. cerevisiae is used extensively as a model to study natural mRNA regulation by NMD. Inactivation of the NMD pathway in S. cerevisiae affects approximately 10% of the transcriptome. Similar percentages of natural mRNAs in the D. melanogaster and human transcriptomes are also sensitive to the pathway, indicating that NMD is important for the regulation of gene expression in multiple organisms. NMD can either directly or indirectly regulate the decay rate of natural mRNAs. Direct NMD targets possess NMD-inducing features. This minireview focuses on the regulation of natural mRNAs by the NMD pathway, as well as the features demonstrated to target these mRNAs for decay by the pathway in S. cerevisiae. We also compare NMD-targeting features identified in S. cerevisiae with known NMD-targeting features in other eukaryotic organisms. PMID:25038084

  20. A Nonsense Variant in COL6A1 in Landseer Dogs with Muscular Dystrophy.

    PubMed

    Steffen, Frank; Bilzer, Thomas; Brands, Jan; Golini, Lorenzo; Jagannathan, Vidhya; Wiedmer, Michaela; Drögemüller, Michaela; Drögemüller, Cord; Leeb, Tosso

    2015-12-01

    A novel canine muscular dystrophy in Landseer dogs was observed. We had access to five affected dogs from two litters. The clinical signs started at a few weeks of age, and the severe progressive muscle weakness led to euthanasia between 5 and 15 months of age. The pedigrees of the affected dogs suggested a monogenic autosomal-recessive inheritance of the trait. Linkage and homozygosity mapping indicated two potential genome segments for the causative variant on chromosomes 10 and 31 harboring a total of 4.8 Mb of DNA or 0.2% of the canine genome. Using the Illumina sequencing technology, we obtained a whole-genome sequence from one affected Landseer. Variants were called with respect to the dog reference genome and compared with the genetic variants of 170 control dogs from other breeds. The affected Landseer dog was homozygous for a single, private nonsynonymous variant in the critical intervals, a nonsense variant in the COL6A1 gene (Chr31:39,303,964G>T; COL6A1:c.289G>T; p.E97*). Genotypes at this variant showed perfect concordance with the muscular dystrophy phenotype in all five cases and more than 1000 control dogs. Variants in the human COL6A1 gene cause Bethlem myopathy or Ullrich congenital muscular dystrophy. We therefore conclude that the identified canine COL6A1 variant is most likely causative for the observed muscular dystrophy in Landseer dogs. On the basis of the nature of the genetic variant in Landseer dogs and their severe clinical phenotype these dogs represent a model for human Ullrich congenital muscular dystrophy. PMID:26438297

  1. A Nonsense Variant in COL6A1 in Landseer Dogs with Muscular Dystrophy

    PubMed Central

    Steffen, Frank; Bilzer, Thomas; Brands, Jan; Golini, Lorenzo; Jagannathan, Vidhya; Wiedmer, Michaela; Drögemüller, Michaela; Drögemüller, Cord; Leeb, Tosso

    2015-01-01

    A novel canine muscular dystrophy in Landseer dogs was observed. We had access to five affected dogs from two litters. The clinical signs started at a few weeks of age, and the severe progressive muscle weakness led to euthanasia between 5 and 15 months of age. The pedigrees of the affected dogs suggested a monogenic autosomal-recessive inheritance of the trait. Linkage and homozygosity mapping indicated two potential genome segments for the causative variant on chromosomes 10 and 31 harboring a total of 4.8 Mb of DNA or 0.2% of the canine genome. Using the Illumina sequencing technology, we obtained a whole-genome sequence from one affected Landseer. Variants were called with respect to the dog reference genome and compared with the genetic variants of 170 control dogs from other breeds. The affected Landseer dog was homozygous for a single, private nonsynonymous variant in the critical intervals, a nonsense variant in the COL6A1 gene (Chr31:39,303,964G>T; COL6A1:c.289G>T; p.E97*). Genotypes at this variant showed perfect concordance with the muscular dystrophy phenotype in all five cases and more than 1000 control dogs. Variants in the human COL6A1 gene cause Bethlem myopathy or Ullrich congenital muscular dystrophy. We therefore conclude that the identified canine COL6A1 variant is most likely causative for the observed muscular dystrophy in Landseer dogs. On the basis of the nature of the genetic variant in Landseer dogs and their severe clinical phenotype these dogs represent a model for human Ullrich congenital muscular dystrophy. PMID:26438297

  2. Recurrent and novel GLB1 mutations in India.

    PubMed

    Bidchol, Abdul Mueed; Dalal, Ashwin; Trivedi, Rakesh; Shukla, Anju; Nampoothiri, Sheela; Sankar, V H; Danda, Sumita; Gupta, Neerja; Kabra, Madhulika; Hebbar, Shrikiran A; Bhat, Ramesh Y; Matta, Divya; Ekbote, Alka V; Puri, Ratna Dua; Phadke, Shubha R; Gowrishankar, Kalpana; Aggarwal, Shagun; Ranganath, Prajnya; Sharda, Sheetal; Kamate, Mahesh; Datar, Chaitanya A; Bhat, Kamalakshi; Kamath, Nutan; Shah, Hitesh; Krishna, Shuba; Gopinath, Puthiya Mundyat; Verma, Ishwar C; Nagarajaram, H A; Satyamoorthy, Kapaettu; Girisha, Katta Mohan

    2015-08-10

    GM1 gangliosidosis is a lysosomal storage disorder caused by mutations in the GLB1 gene, leading to the deficiency of the enzyme β-d-galactosidase. In this study, we report molecular findings in 50 Asian Indian families with GM1 gangliosidosis. We sequenced all the exons and flanking intronic sequences of GLB1 gene. We identified 33 different mutations (20 novel and 13 previously reported). The novel mutations include 12 missense (p.M1?, p.E129Q, p.G134R, p.L236P, p.G262E, p.L297F, p.Y331C, p.G414V, p.K493N, p.L514P, p.P597L, p.T600I), four splicing (c.246-2A>G, c.397-2A>G, c.552+1G>T, c.956-2A>G), three indels (p.R22Qfs*8, p.L24Cfs*47, p.I489Qfs*4) and one nonsense mutation (p.Q452*). Most common mutations identified in this study were c.75+2InsT (14%) and p.L337P (10%). Known mutations accounted for 67% of allele frequency in our cohort of patients, suggesting that these mutations in GLB1 are recurrent across different populations. Twenty three mutations were localized in the TIM barrel domain, β-domain 1 and β-domain 2. In silico sequence and structure analysis of GLB1 reveal that all the novel mutations affect the function and structure of the protein. We hereby report on the largest series of patients with GM1 gangliosidosis and the first from India. PMID:25936995

  3. Screening analysis of candidate gene mutations in a kindred with polycystic liver disease

    PubMed Central

    Jin, Song; Cui, Kai; Sun, Zi-Qiang; Shen, Yang-Yang; Li, Pang; Wang, Zhen-Dan; Li, Fei-Fei; Gong, Ke-Nan; Li, Sheng

    2015-01-01

    AIM: To find potential mutable sites by detecting mutations of the candidate gene in a kindred with polycystic liver disease (PCLD). METHODS: First, we chose a kindred with PCLD and obtained five venous blood samples of this kindred after the family members signed the informed consent form. In the kindred two cases were diagnosed with PCLD, and the left three cases were normal individuals. All the blood samples were preserved at -85 °C. Second, we extracted the genomic DNA from the venous blood samples of the kindred using a QIAamp DNA Mini Kit and then performed long-range polymerase chain reaction (PCR) with different primers. The exons of PKD1 were all sequenced with the forward and reverse primers to ensure the accuracy of the results. Next, we purified the PCR products and directly sequenced them using Big Dye Terminator Chemistry version 3.1. The sequencing reaction was conducted with BiomekFX (Beckman). Finally, we analyzed the results. RESULTS: A total of 42 normal exons were identified in detecting mutations of the PKD1 gene. A synonymous mutation occurred in exon 5. The mutation was a homozygous T in the proband and was C in the reference sequence. This mutation was located in the third codon and did not change the amino acid encoded by the codon. Missense mutations occurred in exons 11 and 35. These mutations were located in the second codon; they changed the amino acid sequence and existed in the dbSNP library. A nonsense mutation occurred in exon 15. The mutation was a heterozygous CT in the proband and was C in the reference sequence. This mutation was located in the first codon and resulted in a termination codon. This mutation had an obvious influence on the encoded protein and changed the length of the protein from 4303 to 2246 amino acids. This was a new mutation that was not present in the dbSNP library. CONCLUSION: The nonsense mutation of exon 15 existed in the proband and in the third individual. Additionally, the proband was heterozygous

  4. R31C GNRH1 Mutation and Congenital Hypogonadotropic Hypogonadism

    PubMed Central

    Maione, Luigi; Albarel, Frederique; Bouchard, Philippe; Gallant, Megan; Flanagan, Colleen A.; Bobe, Regis; Cohen-Tannoudji, Joelle; Pivonello, Rosario; Colao, Annamaria; Brue, Thierry; Millar, Robert P.; Lombes, Marc; Young, Jacques; Guiochon-Mantel, Anne; Bouligand, Jerome

    2013-01-01

    Normosmic congenital hypogonadotropic hypogonadism (nCHH) is a rare reproductive disease leading to lack of puberty and infertility. Loss-of-function mutations of GNRH1 gene are a very rare cause of autosomal recessive nCHH. R31C GNRH1 is the only missense mutation that affects the conserved GnRH decapeptide sequence. This mutation was identified in a CpG islet in nine nCHH subjects from four unrelated families, giving evidence for a putative “hot spot”. Interestingly, all the nCHH patients carry this mutation in heterozygosis that strikingly contrasts with the recessive inheritance associated with frame shift and non-sense mutations. Therefore, after exclusion of a second genetic event, a comprehensive functional characterization of the mutant R31C GnRH was undertaken. Using different cellular models, we clearly demonstrate a dramatic reduction of the mutant decapeptide capacity to bind GnRH-receptor, to activate MAPK pathway and to trigger inositol phosphate accumulation and intracellular calcium mobilization. In addition it is less able than wild type to induce lh-beta transcription and LH secretion in gonadotrope cells. Finally, the absence of a negative dominance in vitro offers a unique opportunity to discuss the complex in vivo patho-physiology of this form of nCHH. PMID:23936060

  5. Mutations in TMEM76* Cause Mucopolysaccharidosis IIIC (Sanfilippo C Syndrome)

    PubMed Central

    Hřebíček, Martin; Mrázová, Lenka; Seyrantepe, Volkan; Durand, Stéphanie; Roslin, Nicole M.; Nosková, Lenka; Hartmannová, Hana; Ivánek, Robert; Čížková, Alena; Poupětová, Helena; Sikora, Jakub; Uřinovská, Jana; Stránecký, Viktor; Zeman, Jiří; Lepage, Pierre; Roquis, David; Verner, Andrei; Ausseil, Jérôme; Beesley, Clare E.; Maire, Irène; Poorthuis, Ben J. H. M.; van de Kamp, Jiddeke; van Diggelen, Otto P.; Wevers, Ron A.; Hudson, Thomas J.; Fujiwara, T. Mary; Majewski, Jacek; Morgan, Kenneth; Kmoch, Stanislav; Pshezhetsky, Alexey V.

    2006-01-01

    Mucopolysaccharidosis IIIC (MPS IIIC, or Sanfilippo C syndrome) is a lysosomal storage disorder caused by the inherited deficiency of the lysosomal membrane enzyme acetyl–coenzyme A:α-glucosaminide N-acetyltransferase (N-acetyltransferase), which leads to impaired degradation of heparan sulfate. We report the narrowing of the candidate region to a 2.6-cM interval between D8S1051 and D8S1831 and the identification of the transmembrane protein 76 gene (TMEM76), which encodes a 73-kDa protein with predicted multiple transmembrane domains and glycosylation sites, as the gene that causes MPS IIIC when it is mutated. Four nonsense mutations, 3 frameshift mutations due to deletions or a duplication, 6 splice-site mutations, and 14 missense mutations were identified among 30 probands with MPS IIIC. Functional expression of human TMEM76 and the mouse ortholog demonstrates that it is the gene that encodes the lysosomal N-acetyltransferase and suggests that this enzyme belongs to a new structural class of proteins that transport the activated acetyl residues across the cell membrane. PMID:17033958

  6. R368X mutation in MID1 among recurrent mutations in patients with X-linked Opitz G/BBB syndrome.

    PubMed

    Preiksaitiene, Egle; Krasovskaja, Natalija; Utkus, Algirdas; Kasnauskiene, Jurate; Meškienė, Raimonda; Paulauskiene, Iveta; Valevičienė, Nomeda R; Kučinskas, Vaidutis

    2015-01-01

    Opitz G/BBB syndrome is a genetically heterogeneous condition, with both autosomal dominant and X-linked forms. The MID1 gene is associated with X-linked Opitz G/BBB syndrome. Most mutations identified are unique, which makes it difficult to assess possible genotype/phenotype correlations. We report on a familial c.1102C>T (p.R368X) mutation in the MID1 gene, previously reported by Cox et al. (Hum Mol Genet 9:2553-2562, 2000), and document it as a recurrent mutation causing Opitz G/BBB syndrome. This mutation may result in various midline defects, including cleft lip/palate, laryngeal cleft, hypertelorism, Dandy-Walker malformation, ventricular septal defect and hypospadias in male patients, with intrafamilial variability. Seven other mutations (c.712G>T, c.829C>T, c.1108A>G, c.1444_1447dupAACA, c.1483C>T, c.1798dupC and entire gene deletions) have been previously reported as recurrent mutations. The presented family with the c.1102C>T mutation provides additional information about the clinical consequences of the nonsense mutation causing premature truncation of the protein at the level of the COS domain. PMID:25304119

  7. A novel mutation of the HNF1B gene associated with hypoplastic glomerulocystic kidney disease and neonatal renal failure: a case report and mutation update.

    PubMed

    Alvelos, Maria Inês; Rodrigues, Magda; Lobo, Luísa; Medeira, Ana; Sousa, Ana Berta; Simão, Carla; Lemos, Manuel Carlos

    2015-02-01

    Hepatocyte nuclear factor 1 beta (HNF1B) plays an important role in embryonic development, namely in the kidney, pancreas, liver, genital tract, and gut. Heterozygous germline mutations of HNF1B are associated with the renal cysts and diabetes syndrome (RCAD). Affected individuals may present a variety of renal developmental abnormalities and/or maturity-onset diabetes of the young (MODY). A Portuguese 19-month-old male infant was evaluated due to hypoplastic glomerulocystic kidney disease and renal dysfunction diagnosed in the neonatal period that progressed to stage 5 chronic renal disease during the first year of life. His mother was diagnosed with a solitary hypoplastic microcystic left kidney at age 20, with stage 2 chronic renal disease established at age 35, and presented bicornuate uterus, pancreatic atrophy, and gestational diabetes. DNA sequence analysis of HNF1B revealed a novel germline frameshift insertion (c.110_111insC or c.110dupC) in both the child and the mother. A review of the literature revealed a total of 106 different HNF1B mutations, in 236 mutation-positive families, comprising gross deletions (34%), missense mutations (31%), frameshift deletions or insertions (15%), nonsense mutations (11%), and splice-site mutations (8%). The study of this family with an unusual presentation of hypoplastic glomerulocystic kidney disease with neonatal renal dysfunction identified a previously unreported mutation of the HNF1B gene, thereby expanding the spectrum of known mutations associated with renal developmental disorders. PMID:25700310

  8. Whole-Exome Sequencing Identifies Novel Somatic Mutations in Chinese Breast Cancer Patients

    PubMed Central

    Zhang, Yanfeng; Cai, Qiuyin; Shu, Xiao-Ou; Gao, Yu-Tang; Li, Chun; Zheng, Wei; Long, Jirong

    2016-01-01

    Most breast cancer genomes harbor complex mutational landscapes. Somatic alterations have been predominantly discovered in breast cancer patients of European ancestry; however, little is known about somatic aberration in patients of other ethnic groups including Asians. In the present study, whole-exome sequencing (WES) was conducted in DNA extracted from tumor and matched adjacent normal tissue samples from eleven early onset breast cancer patients who were included in the Shanghai Breast Cancer Study. We discovered 159 somatic missense and ten nonsense mutations distributed among 167 genes. The most frequent 50 somatic mutations identified by WES were selected for validation using Sequenom MassARRAY system in the eleven breast cancer patients and an additional 433 tumor and 921 normal tissue/blood samples from the Shanghai Breast Cancer Study. Among these 50 mutations selected for validation, 32 were technically validated. Within the validated mutations, somatic mutations in the TRPM6, HYDIN, ENTHD1, and NDUFB10 genes were found in two or more tumor samples in the replication stage. Mutations in the ADRA1B, CBFB, KIAA2022, and RBM25 genes were observed once in the replication stage. To summarize, this study identified some novel somatic mutations for breast cancer. Future studies will need to be conducted to determine the function of these mutations/genes in the breast carcinogenesis. PMID:26870154

  9. Mutational analysis of TBK1 in Taiwanese patients with amyotrophic lateral sclerosis.

    PubMed

    Tsai, Pei-Chien; Liu, Yi-Chien; Lin, Kon-Ping; Liu, Yo-Tsen; Liao, Yi-Chu; Hsiao, Cheng-Tsung; Soong, Bing-Wen; Yip, Ping-Keung; Lee, Yi-Chung

    2016-04-01

    Mutations in the TBK1 gene were just recently identified to cause amyotrophic lateral sclerosis (ALS), and their role in ALS in various populations remains unclear. The aim of this study was to determine the frequency and spectrum of mutations in TBK1 in a Taiwanese ALS cohort of Han Chinese origin. Mutational analyses of TBK1 were carried out by direct nucleotide sequencing in a cohort of 207 unrelated patients with ALS. Among them, the genetic diagnoses of 168 patients remained elusive after mutations in SOD1, C9ORF72, TARDBP, FUS, ATXN2, OPTN, VCP, UBQLN2, SQSTM1, PFN1, HNRNPA1, HNRNPA2B1, MATR3, CHCHD10, and TUBA4A had been excluded. We identified one nonsense mutation, p.R444X (c.1330C>T), in one patient with apparently sporadic ALS-frontotemporal dementia. In vitro functional study demonstrated the p.R444X mutation resulting in a truncated TANK-binding kinase 1 (TBK1) protein product, low protein expression, and loss of kinase function and interaction with optineurin. The frequency of TBK1 mutations in ALS patients in Taiwan is, therefore, approximately 0.5% (1/207). This study reports a novel TBK1 mutation and stresses on the importance to consider TBK1 mutation as a possible etiology of ALS. PMID:26804609

  10. A novel large deletion mutation of FERMT1 gene in a Chinese patient with Kindler syndrome

    PubMed Central

    GAO, Ying; BAI, Jin-li; LIU, Xiao-yan; QU, Yu-jin; CAO, Yan-yan; WANG, Jian-cai; JIN, Yu-wei; WANG, Hong; SONG, Fang

    2015-01-01

    Kindler syndrome (KS; OMIM 173650) is a rare autosomal recessive skin disorder, which results in symptoms including blistering, epidermal atrophy, increased risk of cancer, and poor wound healing. The majority of mutations of the disease-determining gene (FERMT1 gene) are single nucleotide substitutions, including missense mutations, nonsense mutations, etc. Large deletion mutations are seldom reported. To determine the mutation in the FERMT1 gene associated with a 7-year-old Chinese patient who presented clinical manifestation of KS, we performed direct sequencing of all the exons of FERMT1 gene. For the exons 2–6 without amplicons, we analyzed the copy numbers using quantitative real-time polymerase chain reaction (qRT-PCR) with specific primers. The deletion breakpoints were sublocalized and the range of deletion was confirmed by PCR and direct sequencing. In this study, we identified a new 17-kb deletion mutation spanning the introns 1–6 of FERMT1 gene in a Chinese patient with severe KS phenotypes. Her parents were carriers of the same mutation. Our study reported a newly identified large deletion mutation of FERMT1 gene involved in KS, which further enriched the mutation spectrum of the FERMT1 gene. PMID:26537214

  11. Distinct Mutations in PlcR Explain Why Some Strains of the Bacillus cereus Group Are Nonhemolytic

    PubMed Central

    Slamti, Leyla; Perchat, Stéphane; Gominet, Myriam; Vilas-Bôas, Gislayne; Fouet, Agnès; Mock, Michèle; Sanchis, Vincent; Chaufaux, Josette; Gohar, Michel; Lereclus, Didier

    2004-01-01

    Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis are closely related species belonging to the Bacillus cereus group. B. thuringiensis and B. cereus generally produce extracellular proteins, including phospholipases and hemolysins. Transcription of the genes encoding these factors is controlled by the pleiotropic regulator PlcR. Disruption of plcR in B. cereus and B. thuringiensis drastically reduces the hemolytic, lecithinase, and cytotoxic properties of these organisms. B. anthracis does not produce these proteins due to a nonsense mutation in the plcR gene. We screened 400 B. thuringiensis and B. cereus strains for their hemolytic and lecithinase properties. Eight Hly− Lec− strains were selected and analyzed to determine whether this unusual phenotype was due to a mutation similar to that found in B. anthracis. Sequence analysis of the DNA region including the plcR and papR genes of these strains and genetic complementation of the strains with functional copies of plcR and papR indicated that different types of mutations were responsible for these phenotypes. We also found that the plcR genes of three B. anthracis strains belonging to different phylogenetic groups contained the same nonsense mutation, suggesting that this mutation is a distinctive trait of this species. PMID:15150241

  12. RAB23 Mutations in Carpenter Syndrome Imply an Unexpected Role for Hedgehog Signaling in Cranial-Suture Development and Obesity

    PubMed Central

    Jenkins, Dagan ; Seelow, Dominik ; Jehee, Fernanda S. ; Perlyn, Chad A. ; Alonso, Luís G. ; Bueno, Daniela F. ; Donnai, Dian ; Josifiova, Dragana ; Mathijssen, Irene M. J. ; Morton, Jenny E. V. ; Ørstavik, Karen Helene ; Sweeney, Elizabeth ; Wall, Steven A. ; Marsh, Jeffrey L. ; Nürnberg, Peter ; Passos-Bueno, Maria Rita ; Wilkie, Andrew O. M. 

    2007-01-01

    Carpenter syndrome is a pleiotropic disorder with autosomal recessive inheritance, the cardinal features of which include craniosynostosis, polysyndactyly, obesity, and cardiac defects. Using homozygosity mapping, we found linkage to chromosome 6p12.1-q12 and, in 15 independent families, identified five different mutations (four truncating and one missense) in RAB23, which encodes a member of the RAB guanosine triphosphatase (GTPase) family of vesicle transport proteins and acts as a negative regulator of hedgehog (HH) signaling. In 10 patients, the disease was caused by homozygosity for the same nonsense mutation, L145X, that resides on a common haplotype, indicative of a founder effect in patients of northern European descent. Surprisingly, nonsense mutations of Rab23 in open brain mice cause recessive embryonic lethality with neural-tube defects, suggesting a species difference in the requirement for RAB23 during early development. The discovery of RAB23 mutations in patients with Carpenter syndrome implicates HH signaling in cranial-suture biogenesis—an unexpected finding, given that craniosynostosis is not usually associated with mutations of other HH-pathway components—and provides a new molecular target for studies of obesity. PMID:17503333

  13. Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications.

    PubMed

    Rossetti, S; Strmecki, L; Gamble, V; Burton, S; Sneddon, V; Peral, B; Roy, S; Bakkaloglu, A; Komel, R; Winearls, C G; Harris, P C

    2001-01-01

    Mutation screening of the major autosomal dominant polycystic kidney disease (ADPKD) locus, PKD1, has proved difficult because of the large transcript and complex reiterated gene region. We have developed methods, employing long polymerase chain reaction (PCR) and specific reverse transcription-PCR, to amplify all of the PKD1 coding area. The gene was screened for mutations in 131 unrelated patients with ADPKD, using the protein-truncation test and direct sequencing. Mutations were identified in 57 families, and, including 24 previously characterized changes from this cohort, a detection rate of 52.3% was achieved in 155 families. Mutations were found in all areas of the gene, from exons 1 to 46, with no clear hotspot identified. There was no significant difference in mutation frequency between the single-copy and duplicated areas, but mutations were more than twice as frequent in the 3' half of the gene, compared with the 5' half. The majority of changes were predicted to truncate the protein through nonsense mutations (32%), insertions or deletions (29.6%), or splicing changes (6.2%), although the figures were biased by the methods employed, and, in sequenced areas, approximately 50% of all mutations were missense or in-frame. Studies elsewhere have suggested that gene conversion may be a significant cause of mutation at PKD1, but only 3 of 69 different mutations matched PKD1-like HG sequence. A relatively high rate of new PKD1 mutation was calculated, 1.8x10-5 mutations per generation, consistent with the many different mutations identified (69 in 81 pedigrees) and suggesting significant selection against mutant alleles. The mutation detection rate, in this study, of >50% is comparable to that achieved for other large multiexon genes and shows the feasibility of genetic diagnosis in this disorder. PMID:11115377

  14. Spectrum of CHD7 Mutations in 110 Individuals with CHARGE Syndrome and Genotype-Phenotype Correlation

    PubMed Central

    Lalani, Seema R.; Safiullah, Arsalan M.; Fernbach, Susan D.; Harutyunyan, Karine G.; Thaller, Christina; Peterson, Leif E.; McPherson, John D.; Gibbs, Richard A.; White, Lisa D.; Hefner, Margaret; Davenport, Sandra L. H.; Graham, John M.; Bacino, Carlos A.; Glass, Nancy L.; Towbin, Jeffrey A.; Craigen, William J.; Neish, Steven R.; Lin, Angela E.; Belmont, John W.

    2006-01-01

    CHARGE syndrome is a well-established multiple-malformation syndrome with distinctive consensus diagnostic criteria. Characteristic associated anomalies include ocular coloboma, choanal atresia, cranial nerve defects, distinctive external and inner ear abnormalities, hearing loss, cardiovascular malformations, urogenital anomalies, and growth retardation. Recently, mutations of the chromodomain helicase DNA-binding protein gene CHD7 were reported to be a major cause of CHARGE syndrome. We sequenced the CHD7 gene in 110 individuals who had received the clinical diagnosis of CHARGE syndrome, and we detected mutations in 64 (58%). Mutations were distributed throughout the coding exons and conserved splice sites of CHD7. Of the 64 mutations, 47 (73%) predicted premature truncation of the protein. These included nonsense and frameshift mutations, which most likely lead to haploinsufficiency. Phenotypically, the mutation-positive group was more likely to exhibit cardiovascular malformations (54 of 59 in the mutation-positive group vs. 30 of 42 in the mutation-negative group; P=.014), coloboma of the eye (55 of 62 in the mutation-positive group vs. 30 of 43 in the mutation-negative group; P=.022), and facial asymmetry, often caused by seventh cranial nerve abnormalities (36 of 56 in the mutation-positive group vs. 13 of 39 in the mutation-negative group; P=.004). Mouse embryo whole-mount and section in situ hybridization showed the expression of Chd7 in the outflow tract of the heart, optic vesicle, facio-acoustic preganglion complex, brain, olfactory pit, and mandibular component of the first branchial arch. Microarray gene-expression analysis showed a signature pattern of gene-expression differences that distinguished the individuals with CHARGE syndrome with CHD7 mutation from the controls. We conclude that cardiovascular malformations, coloboma, and facial asymmetry are common findings in CHARGE syndrome caused by CHD7 mutation. PMID:16400610

  15. Concurrent Mutations in ATM and Genes Associated with Common γ Chain Signaling in Peripheral T Cell Lymphoma

    PubMed Central

    Simpson, Haley M.; Khan, Rashid Z.; Song, Chang; Sharma, Deva; Sadashivaiah, Kavitha; Furusawa, Aki; Liu, Xinyue; Nagaraj, Sushma; Sengamalay, Naomi; Sadzewicz, Lisa; Tallon, Luke J.; Chen, Qing C.; Livak, Ferenc; Rapoport, Aaron P.; Kimball, Amy; Banerjee, Arnob

    2015-01-01

    Peripheral T cell lymphoma (PTCL) is a heterogeneous malignancy with poor response to current therapeutic strategies and incompletely characterized genetics. We conducted whole exome sequencing of matched PTCL and non-malignant samples from 12 patients, spanning 8 subtypes, to identify potential oncogenic mutations in PTCL. Analysis of the mutations identified using computational algorithms, CHASM, PolyPhen2, PROVEAN, and MutationAssessor to predict the impact of these mutations on protein function and PTCL tumorigenesis, revealed 104 somatic mutations that were selected as high impact by all four algorithms. Our analysis identified recurrent somatic missense or nonsense mutations in 70 genes, 9 of which contained mutations predicted significant by all 4 algorithms: ATM, RUNX1T1, WDR17, NTRK3, TP53, TRMT12, CACNA2D1, INTS8, and KCNH8. We observed somatic mutations in ATM (ataxia telangiectasia-mutated) in 5 out of the 12 samples and mutations in the common gamma chain (γc) signaling pathway (JAK3, IL2RG, STAT5B) in 3 samples, all of which also harbored mutations in ATM. Our findings contribute insights into the genetics of PTCL and suggest a relationship between γc signaling and ATM in T cell malignancy. PMID:26536348

  16. Concurrent Mutations in ATM and Genes Associated with Common γ Chain Signaling in Peripheral T Cell Lymphoma.

    PubMed

    Simpson, Haley M; Khan, Rashid Z; Song, Chang; Sharma, Deva; Sadashivaiah, Kavitha; Furusawa, Aki; Liu, Xinyue; Nagaraj, Sushma; Sengamalay, Naomi; Sadzewicz, Lisa; Tallon, Luke J; Chen, Qing C; Livak, Ferenc; Rapoport, Aaron P; Kimball, Amy; Banerjee, Arnob

    2015-01-01

    Peripheral T cell lymphoma (PTCL) is a heterogeneous malignancy with poor response to current therapeutic strategies and incompletely characterized genetics. We conducted whole exome sequencing of matched PTCL and non-malignant samples from 12 patients, spanning 8 subtypes, to identify potential oncogenic mutations in PTCL. Analysis of the mutations identified using computational algorithms, CHASM, PolyPhen2, PROVEAN, and MutationAssessor to predict the impact of these mutations on protein function and PTCL tumorigenesis, revealed 104 somatic mutations that were selected as high impact by all four algorithms. Our analysis identified recurrent somatic missense or nonsense mutations in 70 genes, 9 of which contained mutations predicted significant by all 4 algorithms: ATM, RUNX1T1, WDR17, NTRK3, TP53, TRMT12, CACNA2D1, INTS8, and KCNH8. We observed somatic mutations in ATM (ataxia telangiectasia-mutated) in 5 out of the 12 samples and mutations in the common gamma chain (γc) signaling pathway (JAK3, IL2RG, STAT5B) in 3 samples, all of which also harbored mutations in ATM. Our findings contribute insights into the genetics of PTCL and suggest a relationship between γc signaling and ATM in T cell malignancy. PMID:26536348

  17. Mutations in the GlyT2 Gene (SLC6A5) Are a Second Major Cause of Startle Disease*

    PubMed Central

    Carta, Eloisa; Chung, Seo-Kyung; James, Victoria M.; Robinson, Angela; Gill, Jennifer L.; Remy, Nathalie; Vanbellinghen, Jean-François; Drew, Cheney J. G.; Cagdas, Sophie; Cameron, Duncan; Cowan, Frances M.; Del Toro, Mireria; Graham, Gail E.; Manzur, Adnan Y.; Masri, Amira; Rivera, Serge; Scalais, Emmanuel; Shiang, Rita; Sinclair, Kate; Stuart, Catriona A.; Tijssen, Marina A. J.; Wise, Grahame; Zuberi, Sameer M.; Harvey, Kirsten; Pearce, Brian R.; Topf, Maya; Thomas, Rhys H.; Supplisson, Stéphane; Rees, Mark I.; Harvey, Robert J.

    2012-01-01

    Hereditary hyperekplexia or startle disease is characterized by an exaggerated startle response, evoked by tactile or auditory stimuli, leading to hypertonia and apnea episodes. Missense, nonsense, frameshift, splice site mutations, and large deletions in the human glycine receptor α1 subunit gene (GLRA1) are the major known cause of this disorder. However, mutations are also found in the genes encoding the glycine receptor β subunit (GLRB) and the presynaptic Na+/Cl−-dependent glycine transporter GlyT2 (SLC6A5). In this study, systematic DNA sequencing of SLC6A5 in 93 new unrelated human hyperekplexia patients revealed 20 sequence variants in 17 index cases presenting with homozygous or compound heterozygous recessive inheritance. Five apparently unrelated cases had the truncating mutation R439X. Genotype-phenotype analysis revealed a high rate of neonatal apneas and learning difficulties associated with SLC6A5 mutations. From the 20 SLC6A5 sequence variants, we investigated glycine uptake for 16 novel mutations, confirming that all were defective in glycine transport. Although the most common mechanism of disrupting GlyT2 function is protein truncation, new pathogenic mechanisms included splice site mutations and missense mutations affecting residues implicated in Cl− binding, conformational changes mediated by extracellular loop 4, and cation-π interactions. Detailed electrophysiology of mutation A275T revealed that this substitution results in a voltage-sensitive decrease in glycine transport caused by lower Na+ affinity. This study firmly establishes the combination of missense, nonsense, frameshift, and splice site mutations in the GlyT2 gene as the second major cause of startle disease. PMID:22700964

  18. Clinical expression and new SPINK5 splicing defects in Netherton syndrome: unmasking a frequent founder synonymous mutation and unconventional intronic mutations.

    PubMed

    Lacroix, Matthieu; Lacaze-Buzy, Laetitia; Furio, Laetitia; Tron, Elodie; Valari, Manthoula; Van der Wier, Gerda; Bodemer, Christine; Bygum, Anette; Bursztejn, Anne-Claire; Gaitanis, George; Paradisi, Mauro; Stratigos, Alexander; Weibel, Lisa; Deraison, Céline; Hovnanian, Alain

    2012-03-01

    Netherton syndrome (NS) is a severe skin disease caused by loss-of-function mutations in SPINK5 (serine protease inhibitor Kazal-type 5) encoding the serine protease inhibitor LEKTI (lympho-epithelial Kazal type-related inhibitor). Here, we disclose new SPINK5 defects in 12 patients, who presented a clinical triad suggestive of NS with variations in inter- and intra-familial disease expression. We identified a new and frequent synonymous mutation c.891C>T (p.Cys297Cys) in exon 11 of the 12 NS patients. This mutation disrupts an exonic splicing enhancer sequence and causes out-of-frame skipping of exon 11. Haplotype analysis indicates that this mutation is a founder mutation in Greece. Two other new deep intronic mutations, c.283-12T>A in intron 4 and c.1820+53G>A in intron 19, induced partial intronic sequence retention. A new nonsense c.2557C>T (p.Arg853X) mutation was also identified. All mutations led to a premature termination codon resulting in no detectable LEKTI on skin sections. Two patients with deep intronic mutations showed residual LEKTI fragments in cultured keratinocytes. These fragments retained some functional activity, and could therefore, together with other determinants, contribute to modulate the disease phenotype. This new founder mutation, the most frequent mutation described in European populations so far, and these unusual intronic mutations, widen the clinical and molecular spectrum of NS and offer new diagnostic perspectives for NS patients. PMID:22089833

  19. Normosmic Congenital Hypogonadotropic Hypogonadism Due to TAC3/TACR3 Mutations: Characterization of Neuroendocrine Phenotypes and Novel Mutations

    PubMed Central

    Voican, Adela; Amazit, Larbi; Trabado, Séverine; Fagart, Jérôme; Meduri, Geri; Brailly-Tabard, Sylvie; Chanson, Philippe; Lecomte, Pierre; Guiochon-Mantel, Anne; Young, Jacques

    2011-01-01

    Context TAC3/TACR3 mutations have been reported in normosmic congenital hypogonadotropic hypogonadism (nCHH) (OMIM #146110). In the absence of animal models, studies of human neuroendocrine phenotypes associated with neurokinin B and NK3R receptor dysfunction can help to decipher the pathophysiology of this signaling pathway. Objective To evaluate the prevalence of TAC3/TACR3 mutations, characterize novel TACR3 mutations and to analyze neuroendocrine profiles in nCHH caused by deleterious TAC3/TACR3 biallelic mutations. Results From a cohort of 352 CHH, we selected 173 nCHH patients and identified nine patients carrying TAC3 or TACR3 variants (5.2%). We describe here 7 of these TACR3 variants (1 frameshift and 2 nonsense deleterious mutations and 4 missense variants) found in 5 subjects. Modeling and functional studies of the latter demonstrated the deleterious consequence of one missense mutation (Tyr267Asn) probably caused by the misfolding of the mutated NK3R protein. We found a statistically significant (p<0.0001) higher mean FSH/LH ratio in 11 nCHH patients with TAC3/TACR3 biallelic mutations than in 47 nCHH patients with either biallelic mutations in KISS1R, GNRHR, or with no identified mutations and than in 50 Kallmann patients with mutations in KAL1, FGFR1 or PROK2/PROKR2. Three patients with TAC3/TACR3 biallelic mutations had an apulsatile LH profile but low-frequency alpha-subunit pulses. Pulsatile GnRH administration increased alpha-subunit pulsatile frequency and reduced the FSH/LH ratio. Conclusion The gonadotropin axis dysfunction associated with nCHH due to TAC3/TACR3 mutations is related to a low GnRH pulsatile frequency leading to a low frequency of alpha-subunit pulses and to an elevated FSH/LH ratio. This ratio might be useful for pre-screening nCHH patients for TAC3/TACR3 mutations. PMID:22031817

  20. Novel TCAP Mutation c.32C>A Causing Limb Girdle Muscular Dystrophy 2G

    PubMed Central

    Francis, Amirtharaj; Sunitha, Balaraju; Vinodh, Kandavalli; Polavarapu, Kiran; Katkam, Shiva Krishna; Modi, Sailesh; Bharath, M. M. Srinivas; Gayathri, Narayanappa; Nalini, Atchayaram; Thangaraj, Kumarasamy

    2014-01-01

    TCAP encoded telethonin is a 19 kDa protein, which plays an important role in anchoring titin in Z disc of the sarcomere, and is known to cause LGMD2G, a rare muscle disorder characterised by proximal and distal lower limb weakness, calf hypertrophy and loss of ambulation. A total of 300 individuals with ARLGMD were recruited for this study. Among these we identified 8 clinically well characterised LGMD2G cases from 7 unrelated Dravidian families. Clinical examination revealed predominantly proximo - distal form of weakness, scapular winging, muscle atrophy, calf hypertrophy and foot drop, immunoblot showed either complete absence or severe reduction of telethonin. Genetic analysis revealed a novel nonsense homozygous mutation c.32C>A, p.(Ser11*) in three patients of a consanguineous family and an 8 bp homozygous duplication c.26_33dupAGGTGTCG, p.(Arg12fs31*) in another patient. Both mutations possibly lead to truncated protein or nonsense mediated decay. We could not find any functionally significant TCAP mutation in the remaining 6 samples, except for two other polymorphisms, c.453A>C, p.( = ) and c.-178G>T, which were found in cases and controls. This is the first report from India to demonstrate TCAP association with LGMD2G. PMID:25055047

  1. Novel TCAP mutation c.32C>A causing limb girdle muscular dystrophy 2G.

    PubMed

    Francis, Amirtharaj; Sunitha, Balaraju; Vinodh, Kandavalli; Polavarapu, Kiran; Katkam, Shiva Krishna; Modi, Sailesh; Bharath, M M Srinivas; Gayathri, Narayanappa; Nalini, Atchayaram; Thangaraj, Kumarasamy

    2014-01-01

    TCAP encoded telethonin is a 19 kDa protein, which plays an important role in anchoring titin in Z disc of the sarcomere, and is known to cause LGMD2G, a rare muscle disorder characterised by proximal and distal lower limb weakness, calf hypertrophy and loss of ambulation. A total of 300 individuals with ARLGMD were recruited for this study. Among these we identified 8 clinically well characterised LGMD2G cases from 7 unrelated Dravidian families. Clinical examination revealed predominantly proximo-distal form of weakness, scapular winging, muscle atrophy, calf hypertrophy and foot drop, immunoblot showed either complete absence or severe reduction of telethonin. Genetic analysis revealed a novel nonsense homozygous mutation c.32C>A, p.(Ser11*) in three patients of a consanguineous family and an 8 bp homozygous duplication c.26_33dupAGGTGTCG, p.(Arg12fs31*) in another patient. Both mutations possibly lead to truncated protein or nonsense mediated decay. We could not find any functionally significant TCAP mutation in the remaining 6 samples, except for two other polymorphisms, c.453A>C, p.( = ) and c.-178G>T, which were found in cases and controls. This is the first report from India to demonstrate TCAP association with LGMD2G. PMID:25055047

  2. Hereditary Angioedema Due to C1 Inhibitor Deficiency in Serbia: Two Novel Mutations and Evidence of Genotype-Phenotype Association

    PubMed Central

    Andrejević, Slađana; Korošec, Peter; Šilar, Mira; Košnik, Mitja; Mijanović, Radovan; Bonači-Nikolić, Branka; Rijavec, Matija

    2015-01-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare autosomal dominant disease characterized by recurrent life-threatening oedemas and/or abdominal pain and caused by mutations affecting the C1 inhibitor gene, SERPING1. We sought to investigate the spectrum of SERPING1 mutations in Serbia and the possible genotype-phenotype association. C1-INH-HAE was diagnosed on the basis of clinical and laboratory criteria in 40 patients from 27 families; four were asymptomatic. Mutational analysis of the SERPING1 gene was performed by sequencing and multiplex ligation-dependent probe amplification. Disease-causing mutations in SERPING1 were identified in all patients. In C1-INH-HAE type I, we identified 19 different mutations, including 6 missense mutations, 6 nonsense mutations, 2 small deletions, 1 small insertion, 2 splicing defects and 2 large deletions. Two of the mutations (c.300C>T and c.1184_1185insTA) are reported here for the first time. All C1-INH-HAE type II patients from three families harboured the same substitution (c.1396C>T). Based on the type of mutation identified in the SERPING1 gene, patients were divided into two groups: group 1 (nonsense, frameshift, large deletions/insertions, splicing defect, and mutations at Arg444) or group 2 (missense, excluding mutations at Arg444). Significant differences were found in the clinical severity score (P = 0.005), prevalence of laryngeal (P = 0.040) and facial (P = 0.013) oedema, and long-term prophylaxis (P = 0.023) between the groups with different types of mutations. Because our population consisted of related subjects, differences in the severity score between mutation groups were further confirmed using the generalized estimating equation (P = 0.038). Our study identified 20 different disease-causing mutations, including two novel mutations, in all C1-INH-HAE patients, highlighting the heterogeneity of mutations in the SERPING1 gene. Furthermore, it appears that mutations with a clear effect

  3. A mutation in canine CLN5 causes neuronal ceroid lipofuscinosis in Border collie dogs.

    PubMed

    Melville, Scott A; Wilson, Carmen L; Chiang, Chiu S; Studdert, Virginia P; Lingaas, Frode; Wilton, Alan N

    2005-09-01

    Neuronal ceroid lipofuscinosis (NCL) is a neurodegenerative disease found in Border collie dogs, humans, and other animals. Disease gene studies in humans and animals provided candidates for the NCL gene in Border collies. A combination of linkage analysis and comparative genomics localized the gene to CFA22 in an area syntenic to HSA13q that contains the CLN5 gene responsible for the Finnish variant of human late infantile NCL. Sequencing of CLN5 revealed a nonsense mutation (Q206X) within exon 4 that correlated with NCL in Border collies. This truncation mutation should result in a protein product of a size similar to that of some mutations identified in human CLN5 and therefore the Border collie may make a good model for human NCL. A simple test was developed to enable screening of the Border collie population for carriers so the disease can be eliminated as a problem in the breed. PMID:16033706

  4. Arg924X homozygous mutation in insulin receptor gene in a Tunisian patient with Donohue syndrome.

    PubMed

    Azzabi, Ons; Jilani, Houweyda; Rejeb, Imen; Siala, Nadia; Elaribi, Yasmina; Hizem, Syrine; Selmi, Ines; Halioui, Sonia; Lascols, Olivier; Jemaa, Lamia Ben; Maherzi, Ahmed

    2016-06-01

    Donohue syndrome (DS) is a rare and lethal autosomal recessive disease caused by mutations in the insulin receptor (INSR) gene, manifesting marked insulin resistance, severe growth retardation, hypertrichosis, and characteristic dysmorphic features. We describe a new case of Donohue syndrome born at 37 weeks' gestation of unrelated parents and presented with intra-uterine growth retardation, nipple hypertrophy, macropenis, distended abdomen, hirsutism and dysmorphic features. The clinical course showed failure to thrive, and episodes of alternating hypoglycemia and hyperglycemia. Laboratory tests revealed direct hyperbilirubinemia. The diagnosis of Donohue syndrome was established based on the above clinical characteristics and determination of the INSR mutation. He was found to have homozygous nonsense mutation c. 2270 C>T (Arg924X) at exon 14 of the INSR gene. He later developed enterocolitis and died at 3 months old. Prenatal diagnosis was performed for the family via chorionic villous biopsy. We try to explain gastrointestinal dysfunction seen in our patient. PMID:26974131

  5. Variegate Porphyria in Western Europe: Identification of PPOX Gene Mutations in 104 Families, Extent of Allelic Heterogeneity, and Absence of Correlation between Phenotype and Type of Mutation

    PubMed Central

    Whatley, Sharon D.; Puy, Hervé; Morgan, Rhian R.; Robreau, Anne-Marie; Roberts, Andrew G.; Nordmann, Yves; Elder, George H.; Deybach, Jean-Charles

    1999-01-01

    Summary Variegate porphyria (VP) is a low-penetrance, autosomal dominant disorder characterized clinically by skin lesions and acute neurovisceral attacks that occur separately or together. It results from partial deficiency of protoporphyrinogen oxidase encoded by the PPOX gene. VP is relatively common in South Africa, where most patients have inherited the same mutation in the PPOX gene from a common ancestor, but few families from elsewhere have been studied. Here we describe the molecular basis and clinical features of 108 unrelated patients from France and the United Kingdom. Mutations in the PPOX gene were identified by a combination of screening (denaturing gradient gel electrophoresis, heteroduplex analysis, or denaturing high-performance liquid chromatography) and direct automated sequencing of amplified genomic DNA. A total of 60 novel and 6 previously reported mutations (25 missense, 24 frameshift, 10 splice site, and 7 nonsense) were identified in 104 (96%) of these unrelated patients, together with 3 previously unrecognized single-nucleotide polymorphisms. VP is less heterogeneous than other acute porphyrias; 5 mutations were present in 28 (26%) of the families, whereas 47 mutations were restricted to 1 family; only 2 mutations were found in both countries. The pattern of clinical presentation was identical to that reported from South Africa and was not influenced by type of mutation. Our results define the molecular genetics of VP in western Europe, demonstrate its allelic heterogeneity outside South Africa, and show that genotype is not a significant determinant of mode of presentation. PMID:10486317

  6. Reduced secretion and altered proteolytic processing caused by missense mutations in progranulin.

    PubMed

    Kleinberger, Gernot; Capell, Anja; Brouwers, Nathalie; Fellerer, Katrin; Sleegers, Kristel; Cruts, Marc; Van Broeckhoven, Christine; Haass, Christian

    2016-03-01

    Progranulin (GRN) is a secreted growth factor involved in various cellular functions, and loss-of-function mutations are a major cause of frontotemporal lobar degeneration (FTLD) with TDP-43 positive pathology. Most FTLD-related GRN mutations are nonsense mutations resulting in reduced GRN expression. Nonsynonymous GRN missense mutations have been described as risk factor for neurodegenerative brain diseases, but their pathogenic nature remains largely elusive. We identified a double missense mutation in GRN leading to amino acid changes p.D33E and p.G35R in an FTLD patient from Turkish origin. Biochemical and cell biological analysis of the double-mutation together with 2 so-far uncharacterized GRN missense mutations (p.C105R and p.V514M) revealed a reduced secretion efficiency of the GRN p.D33E/p.G35R and p.C105R proteins. Furthermore, loss of the conserved cysteine residue affects protein folding and altered proteolytic processing by neutrophil elastase and proteinase 3. Our data indicate that the described variants may cause a loss-of-function, albeit to a lesser extent than GRN null mutations, and hence could be considered as low-penetrant risk factors for neurodegenerative diseases. PMID:26811050

  7. Excess of De Novo Deleterious Mutations in Genes Associated with Glutamatergic Systems in Nonsyndromic Intellectual Disability

    PubMed Central

    Hamdan, Fadi F.; Gauthier, Julie; Araki, Yoichi; Lin, Da-Ting; Yoshizawa, Yuhki; Higashi, Kyohei; Park, A-Reum; Spiegelman, Dan; Dobrzeniecka, Sylvia; Piton, Amélie; Tomitori, Hideyuki; Daoud, Hussein; Massicotte, Christine; Henrion, Edouard; Diallo, Ousmane; Shekarabi, Masoud; Marineau, Claude; Shevell, Michael; Maranda, Bruno; Mitchell, Grant; Nadeau, Amélie; D'Anjou, Guy; Vanasse, Michel; Srour, Myriam; Lafrenière, Ronald G.; Drapeau, Pierre; Lacaille, Jean Claude; Kim, Eunjoon; Lee, Jae-Ran; Igarashi, Kazuei; Huganir, Richard L.; Rouleau, Guy A.; Michaud, Jacques L.

    2011-01-01

    Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder. PMID:21376300

  8. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability.

    PubMed

    Hamdan, Fadi F; Gauthier, Julie; Araki, Yoichi; Lin, Da-Ting; Yoshizawa, Yuhki; Higashi, Kyohei; Park, A-Reum; Spiegelman, Dan; Dobrzeniecka, Sylvia; Piton, Amélie; Tomitori, Hideyuki; Daoud, Hussein; Massicotte, Christine; Henrion, Edouard; Diallo, Ousmane; Shekarabi, Masoud; Marineau, Claude; Shevell, Michael; Maranda, Bruno; Mitchell, Grant; Nadeau, Amélie; D'Anjou, Guy; Vanasse, Michel; Srour, Myriam; Lafrenière, Ronald G; Drapeau, Pierre; Lacaille, Jean Claude; Kim, Eunjoon; Lee, Jae-Ran; Igarashi, Kazuei; Huganir, Richard L; Rouleau, Guy A; Michaud, Jacques L

    2011-03-11

    Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder. PMID:21376300

  9. Mutations in the CHD7 Gene: The Experience of a Commercial Laboratory

    PubMed Central

    Bartels, Cynthia F.; Scacheri, Cheryl; White, Lashonda

    2010-01-01

    CHARGE syndrome is an autosomal dominant multisystem disorder caused by mutation in the CHD7 gene, encoding chromodomain helicase DNA-binding protein 7. Molecular diagnostic testing for CHD7 mutation has been available in a clinical setting since 2005. We report here the results from the first 642 unrelated proband samples submitted for testing. Thirty-two percent (n = 203) of patient samples had a heterozygous pathogenic variant identified. The lower mutation rate than that published for well-characterized clinical samples is likely due to referral bias, as samples submitted for clinical testing may be for “rule-out” diagnoses, rather than solely to confirm clinical suspicion. We identified 159 unique pathogenic mutations, and of these, 134 mutations were each seen in a single individual and 25 mutations were found in two to five individuals (n = 69). Of the 203 mutations, only 9 were missense, with 107 nonsense, 69 frameshift, and 15 splice-site mutations likely leading to haploinsufficiency at the cellular level. An additional 72 variations identified in the 642 tested samples (11%) were considered to have unknown clinical significance. Copy number changes (deletion/duplication of the entire gene or one/several exons) were found to account for a very small number of cases (n = 3). This cohort represents the largest CHARGE syndrome sample size to date and is intended to serve as a resource for clinicians, genetic counselors, researchers, and other diagnostic laboratories. PMID:21158681

  10. Interplay between DMD point mutations and splicing signals in Dystrophinopathy phenotypes.

    PubMed

    Juan-Mateu, Jonàs; González-Quereda, Lidia; Rodríguez, Maria José; Verdura, Edgard; Lázaro, Kira; Jou, Cristina; Nascimento, Andrés; Jiménez-Mallebrera, Cecilia; Colomer, Jaume; Monges, Soledad; Lubieniecki, Fabiana; Foncuberta, Maria Eugenia; Pascual-Pascual, Samuel Ignacio; Molano, Jesús; Baiget, Montserrat; Gallano, Pia

    2013-01-01

    DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements. PMID:23536893

  11. Interplay between DMD Point Mutations and Splicing Signals in Dystrophinopathy Phenotypes

    PubMed Central

    Juan-Mateu, Jonàs; González-Quereda, Lidia; Rodríguez, Maria José; Verdura, Edgard; Lázaro, Kira; Jou, Cristina; Nascimento, Andrés; Jiménez-Mallebrera, Cecilia; Colomer, Jaume; Monges, Soledad; Lubieniecki, Fabiana; Foncuberta, Maria Eugenia; Pascual-Pascual, Samuel Ignacio; Molano, Jesús; Baiget, Montserrat; Gallano, Pia

    2013-01-01

    DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements. PMID:23536893

  12. Antisense-induced messenger depletion corrects a COL6A2 dominant mutation in Ullrich myopathy.

    PubMed

    Gualandi, Francesca; Manzati, Elisa; Sabatelli, Patrizia; Passarelli, Chiara; Bovolenta, Matteo; Pellegrini, Camilla; Perrone, Daniela; Squarzoni, Stefano; Pegoraro, Elena; Bonaldo, Paolo; Ferlini, Alessandra

    2012-12-01

    Collagen VI gene mutations cause Ullrich and Bethlem muscular dystrophies. Pathogenic mutations frequently have a dominant negative effect, with defects in collagen VI chain secretion and assembly. It is agreed that, conversely, collagen VI haploinsufficiency has no pathological consequences. Thus, RNA-targeting approaches aimed at preferentially inactivating the mutated COL6 messenger may represent a promising therapeutic strategy. By in vitro studies we obtained the preferential depletion of the mutated COL6A2 messenger, by targeting a common single-nucleotide polymorphism (SNP), cistronic with a dominant COL6A2 mutation. We used a 2'-O-methyl phosphorothioate (2'OMePS) antisense oligonucleotide covering the SNP within exon 3, which is out of frame. Exon 3 skipping has the effect of depleting the mutated transcript via RNA nonsense-mediated decay, recovering the correct collagen VI secretion and restoring the ability to form an interconnected microfilament network into the extracellular matrix. This novel RNA modulation approach to correcting dominant mutations may represent a therapeutic strategy potentially applicable to a great variety of mutations and diseases. PMID:22992134

  13. Mutations in the intellectual disability gene KDM5C reduce protein stability and demethylase activity

    PubMed Central

    Brookes, Emily; Laurent, Benoit; Õunap, Katrin; Carroll, Renee; Moeschler, John B.; Field, Michael; Schwartz, Charles E.; Gecz, Jozef; Shi, Yang

    2015-01-01

    Mutations in KDM5C are an important cause of X-linked intellectual disability in males. KDM5C encodes a histone demethylase, suggesting that alterations in chromatin landscape may contribute to disease. We used primary patient cells and biochemical approaches to investigate the effects of patient mutations on KDM5C expression, stability and catalytic activity. We report and characterize a novel nonsense mutation, c.3223delG (p.V1075Yfs*2), which leads to loss of KDM5C protein. We also characterize two KDM5C missense mutations, c.1439C>T (p.P480L) and c.1204G>T (p.D402Y) that are compatible with protein production, but compromise stability and enzymatic activity. Finally, we demonstrate that a c.2T>C mutation in the translation initiation codon of KDM5C results in translation re-start and production of a N-terminally truncated protein (p.M1_E165del) that is unstable and lacks detectable demethylase activity. Patient fibroblasts do not show global changes in histone methylation but we identify several up-regulated genes, suggesting local changes in chromatin conformation and gene expression. This thorough examination of KDM5C patient mutations demonstrates the utility of examining the molecular consequences of patient mutations on several levels, ranging from enzyme production to catalytic activity, when assessing the functional outcomes of intellectual disability mutations. PMID:25666439

  14. GPR143 Gene Mutations in Five Chinese Families with X-linked Congenital Nystagmus.

    PubMed

    Han, Ruifang; Wang, Xiaojuan; Wang, Dongjie; Wang, Liming; Yuan, Zhongfang; Ying, Ming; Li, Ningdong

    2015-01-01

    The ocular albinism type I (OA1) is clinically characterized by impaired visual acuity, nystagmus, iris hypopigmentation with translucency, albinotic fundus, and macular hypoplasia together with normally pigmented skin and hair. However, it is easily misdiagnosed as congenital idiopathic nystagmus in some Chinese patients with OA1 caused by the G-protein coupled receptor 143 (GPR143) gene mutations. Mutations in the FERM domain-containing 7 (FRMD7) gene are responsible for the X-linked congenital idiopathic nystagmus. In this study, five Chinese families initially diagnosed as X-linked congenital nystagmus were recruited and patients underwent ophthalmological examinations. After direct sequencing of the FRMD7 and GPR143 genes, five mutations in GPR143 gene were detected in each of the five families, including a novel nonsense mutation of c.333G>A (p.W111X), two novel splicing mutations of c.360+1G>C and c.659-1G>A, a novel small deletion mutation of c.43_50dupGACGCAGC (p.L20PfsX25), and a previously reported missense mutation of c.703G>A (p.E235K). Optical coherence tomography (OCT) examination showed foveal hypoplasia in all the affected patients with nystagmus. Our study further expands the GPR143 mutation spectrum and contributes to the study of GPR143 molecular pathogenesis. Molecular diagnosis and optical coherence tomography (OCT) are two useful tools for differential diagnosis. PMID:26160353

  15. Novel allelic mutations in murine Serca2 induce differential development of squamous cell tumors.

    PubMed

    Toki, Hideaki; Minowa, Osamu; Inoue, Maki; Motegi, Hiromi; Karashima, Yuko; Ikeda, Ami; Kaneda, Hideki; Sakuraba, Yoshiyuki; Saiki, Yuriko; Wakana, Shigeharu; Suzuki, Hiroshi; Gondo, Yoichi; Shiroishi, Toshihiko; Noda, Tetsuo

    2016-08-01

    Dominant mutations in the Serca2 gene, which encodes sarco(endo)plasmic reticulum calcium-ATPase, predispose mice to gastrointestinal epithelial carcinoma [1-4] and humans to Darier disease (DD) [14-17]. In this study, we generated mice harboring N-ethyl-N-nitrosourea (ENU)-induced allelic mutations in Serca2: three missense mutations and one nonsense mutation. Mice harboring these Serca2 mutations developed tumors that were categorized as either early onset squamous cell tumors (SCT), with development similar to null-type knockout mice [2,4] (aggressive form; M682, M814), or late onset tumors (mild form; M1049, M1162). Molecular analysis showed no aberration in Serca2 mRNA or protein expression levels in normal esophageal cells of any of the four mutant heterozygotes. There was no loss of heterozygosity at the Serca2 locus in the squamous cell carcinomas in any of the four lines. The effect of each mutation on Ca(2+)-ATPase activity was predicted using atomic-structure models and accumulated mutated protein studies, suggesting that putative complete loss of Serca2 enzymatic activity may lead to early tumor onset, whereas mutations in which Serca2 retains residual enzymatic activity result in late onset. We propose that impaired Serca2 gene product activity has a long-term effect on squamous cell carcinogenesis from onset to the final carcinoma stage through an as-yet unrecognized but common regulatory pathway. PMID:27131742

  16. Mutations in WNT9B are associated with Mayer-Rokitansky-Küster-Hauser syndrome.

    PubMed

    Waschk, D E J; Tewes, A-C; Römer, T; Hucke, J; Kapczuk, K; Schippert, C; Hillemanns, P; Wieacker, P; Ledig, S

    2016-05-01

    Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS) is a well-known malformation pattern of the Müllerian ducts (MDs) characterized by congenital absence of the uterus and vagina. To date, most cases remain unexplained at molecular level. As female Wnt9b-/- mice show a MRKHS-like phenotype, WNT9B has emerged as a promising candidate gene for this disease. We performed retrospective sequence analyses of WNT9B in 226 female patients with disorders of the MDs, including 109 patients with MRKHS, as well as in 135 controls. One nonsense mutation and five likely pathogenic missense mutations were detected in WNT9B. Five of these mutations were found in cases with MRKHS accounting for 4.6% of the patients with this phenotype. No pathogenic mutations were detected in the control group (p = 0.017). Interestingly, all of the MRKHS patients with a WNT9B mutation were classified as MRKHS type 1, representing 8.5% of the cases from this subgroup. In previous studies, two of the patients with a WNT9B mutation were found to carry either an additional deletion of LHX1 or a missense mutation in TBX6. We conclude that mutations in WNT9B were frequently associated with MRKHS in our cohort and some cases may be explained by a digenic disease model. PMID:26610373

  17. Mutational analysis of the androgen receptor gene in two Chinese families with complete androgen insensitivity syndrome

    PubMed Central

    WANG, SONG; XU, HAIKUN; AN, WEI; ZHU, DECHUN; LI, DEJUN

    2016-01-01

    Androgens are essential for normal male sex differentiation and are responsible for the normal development of male secondary sexual characteristics at puberty. The physiological effects of androgens are mediated by the androgen receptor (AR). Mutations in the AR gene are the most common cause of androgen insensitivity syndrome. The present study undertook a genetic analysis of the AR gene in two unrelated families affected by complete androgen insensitivity syndrome (CAIS) in China. In family 1, a previously reported nonsense mutation (G-to-A; p.W751X) was identified in exon 5 of the AR gene. In addition, a novel missense mutation was detected in exon 6 of the AR gene from family 2; this mutation resulted in a predicted amino acid change from phenylalanine to serine at codon 804 (T-to-C; p.F804S) in the ligand-binding domain (LBD) of AR. Computer simulation of the structural changes generated by the p.F804S substitution revealed marked conformational alterations in the hydrophobic core responsible for the stability and function of the AR-LBD. In conclusion, the present study identified two mutations from two unrelated Chinese families affected by CAIS. The novel mutation (p.F804S) may provide insights into the molecular mechanism underlying CAIS. Furthermore, it expands on the number of mutational hot spots in the international AR mutation database, which may be useful in the future for prenatal diagnosis and genetic counseling. PMID:27284311

  18. GPR143 Gene Mutations in Five Chinese Families with X-linked Congenital Nystagmus

    PubMed Central

    Han, Ruifang; Wang, Xiaojuan; Wang, Dongjie; Wang, Liming; Yuan, Zhongfang; Ying, Ming; Li, Ningdong

    2015-01-01

    The ocular albinism type I (OA1) is clinically characterized by impaired visual acuity, nystagmus, iris hypopigmentation with translucency, albinotic fundus, and macular hypoplasia together with normally pigmented skin and hair. However, it is easily misdiagnosed as congenital idiopathic nystagmus in some Chinese patients with OA1 caused by the G-protein coupled receptor 143 (GPR143) gene mutations. Mutations in the FERM domain–containing 7 (FRMD7) gene are responsible for the X-linked congenital idiopathic nystagmus. In this study, five Chinese families initially diagnosed as X-linked congenital nystagmus were recruited and patients underwent ophthalmological examinations. After direct sequencing of the FRMD7 and GPR143 genes, five mutations in GPR143 gene were detected in each of the five families, including a novel nonsense mutation of c.333G>A (p.W111X), two novel splicing mutations of c.360+1G>C and c.659-1G>A, a novel small deletion mutation of c.43_50dupGACGCAGC (p.L20PfsX25), and a previously reported missense mutation of c.703G>A (p.E235K). Optical coherence tomography (OCT) examination showed foveal hypoplasia in all the affected patients with nystagmus. Our study further expands the GPR143 mutation spectrum and contributes to the study of GPR143 molecular pathogenesis. Molecular diagnosis and optical coherence tomography (OCT) are two useful tools for differential diagnosis. PMID:26160353

  19. Germline mutation analysis of MLH1 and MSH2 in Malaysian Lynch syndrome patients

    PubMed Central

    Zahary, Mohd Nizam; Kaur, Gurjeet; Abu Hassan, Muhammad Radzi; Singh, Harjinder; Naik, Venkatesh R; Ankathil, Ravindran

    2012-01-01

    AIM: To investigate the protein expression profile of mismatch repair (MMR) genes in suspected cases of Lynch syndrome and to characterize the associated germline mutations. METHODS: Immunohistochemical analysis of tumor samples was performed to determine the protein expression profile of MMR protein. Germline mutation screening was carried out on peripheral blood samples. The entire exon regions of MLH1 and MSH2 genes were amplified by polymerase chain reaction, screened by denaturing high performance liquid chromatography (dHPLC) and analyzed by DNA sequencing to characterize the germline mutations. RESULTS: Three out of 34 tissue samples (8.8%) and four out of 34 tissue samples (11.8%) showed loss of nuclear staining by immunohistochemistry, indicating the absence of MLH1 and MSH2 protein expression in carcinoma cells, respectively. dHPLC analysis followed by DNA sequencing showed these samples to have germline mutations of MSH2 gene. However, no deleterious mutations were identified in any of the 19 exons or coding regions of MLH1 gene, but we were able to identify MLH1 promoter polymorphism, -93G > A (rs1800734), in 21 out of 34 patients (61.8%). We identified one novel mutation, transversion mutation c.2005G > C, which resulted in a missense mutation (Gly669Arg), a transversion mutation in exon 1, c.142G > T, which resulted in a nonsense mutation (Glu48Stop) and splice-site mutation, c.2006-6T > C, which was adjacent to exon 13 of MSH2 gene. CONCLUSION: Germline mutations were identified in four Malaysian Lynch syndrome patients. Immunohistochemical analysis of tumor tissue proved to be a good pre-screening test before proceeding to germline mutation analysis of DNA MMR genes. PMID:22371642

  20. Consequences of Marfan mutations to expression of fibrillin gene and to the structure of microfibrils

    SciTech Connect

    Peltonen, L.; Karttunen, L.; Rantamaeki, T.

    1994-09-01

    Marfan syndrome (MFS) is a dominantly inherited connective tissue disorder which is caused by mutations in the fibrillin-1 gene (FBN1). Over 40 family-specific FBN1 mutations have been identified. We have characterized 18 different heterozygous mutations including amino acid substitutions, premature stop, and splicing defects leading to deletions or one insertion, and one compound heterozygote with two differently mutated FBN1 alleles inherited from his affected parents. To unravel the consequences of FBN1 mutations to the transcription of FBN1 gene, we have measured the steady state levels of mRNA transcribed from the normal and mutated alleles. The missense mutations do not affect the transcription of the allele while the nonsense mutation leads to lower steady state amount of mutated allele. For the dissection of molecular pathogenesis of FBN1 mutations we have performed rotary shadowing of the microfibrils produced by the cell cultures from MFS patients. The cells from the neonatal patients with established mutations produced only disorganized fibrillin aggregates but no clearly defined microfibrils could be detected, suggesting a major role of this gene region coding for exons 24-26 in stabilization and organization of the bead structure of microfibrils. From the cells of a rare compound heterozygote case carrying two different mutations, no detectable microfibrils could be detected whereas the cells of his parents with heterozygous mutations were able to form identifiable but disorganized microfibrils. In the cells of an MFS case caused by a premature stop removing the C-terminus of fibrillin, the microfibril assembly takes place but the appropriate packing of the microfibrils is disturbed suggesting that C-terminae are actually located within the interbead domain of the microfibrils.

  1. Mutation spectrum of homogentisic acid oxidase (HGD) in alkaptonuria

    PubMed Central

    Vilboux, Thierry; Kayser, Michael; Introne, Wendy; Suwannarat, Pim; Bernardini, Isa; Fischer, Roxanne; O’Brien, Kevin; Kleta, Robert; Huizing, Marjan; Gahl, William A.

    2009-01-01

    Alkaptonuria (AKU) is a rare autosomal recessive metabolic disorder, characterized by accumulation of homogentisic acid, leading to darkened urine, pigmentation of connective tissue (ochronosis), joint and spine arthritis, and destruction of cardiac valves. AKU is due to mutations in the homogentisate dioxygenase gene, HGD, that converts homogentisic acid to maleylacetoacetic acid in the tyrosine catabolic pathway. Here we report a comprehensive mutation analysis of 93 patients enrolled in our study, as well as an extensive update of all previously published HGD mutations associated with AKU. Within our patient cohort, we identified 52 HGD variants, of which 22 were novel. This yields a total of 91 identified HGD variations associated with AKU to date, including 62 missense, 13 splice site, 10 frameshift, 5 nonsense and 1 no-stop mutation. Most HGD variants reside in exons 3, 6, 8 and 13. We assessed the potential effect of all missense variations on protein function, using 5 bioinformatic tools specifically designed for interpretation of missense variants (SIFT, POLYPHEN, PANTHER, PMUT and SNAP). We also analyzed the potential effect of splice site variants using two different tools (BDGP and NetGene2). This study provides valuable resources for molecular analysis of alkaptonuria and expands our knowledge of the molecular basis of this disease. PMID:19862842

  2. Exome Sequencing of Uterine Leiomyosarcomas Identifies Frequent Mutations in TP53, ATRX, and MED12.

    PubMed

    Mäkinen, Netta; Aavikko, Mervi; Heikkinen, Tuomas; Taipale, Minna; Taipale, Jussi; Koivisto-Korander, Riitta; Bützow, Ralf; Vahteristo, Pia

    2016-02-01

    Uterine leiomyosarcomas (ULMSs) are aggressive smooth muscle tumors associated with poor clinical outcome. Despite previous cytogenetic and molecular studies, their molecular background has remained elusive. To examine somatic variation in ULMS, we performed exome sequencing on 19 tumors. Altogether, 43 genes were mutated in at least two ULMSs. Most frequently mutated genes included tumor protein P53 (TP53; 6/19; 33%), alpha thalassemia/mental retardation syndrome X-linked (ATRX; 5/19; 26%), and mediator complex subunit 12 (MED12; 4/19; 21%). Unlike ATRX mutations, both TP53 and MED12 alterations have repeatedly been associated with ULMSs. All the observed ATRX alterations were either nonsense or frameshift mutations. ATRX protein levels were reliably analyzed by immunohistochemistry in altogether 44 ULMSs, and the majority of tumors (23/44; 52%) showed clearly reduced expression. Loss of ATRX expression has been associated with alternative lengthening of telomeres (ALT), and thus the telomere length was analyzed with telomere-specific fluorescence in situ hybridization. The ALT phenotype was confirmed in all ULMSs showing diminished ATRX expression. Exome data also revealed one nonsense mutation in death-domain associated protein (DAXX), another gene previously associated with ALT, and the tumor showed ALT positivity. In conclusion, exome sequencing revealed that TP53, ATRX, and MED12 are frequently mutated in ULMSs. ALT phenotype was commonly seen in tumors, indicating that ATR inhibitors, which were recently suggested as possible new drugs for ATRX-deficient tumors, could provide a potential novel therapeutic option for ULMS. PMID:26891131

  3. Exome Sequencing of Uterine Leiomyosarcomas Identifies Frequent Mutations in TP53, ATRX, and MED12

    PubMed Central

    Mäkinen, Netta; Aavikko, Mervi; Heikkinen, Tuomas; Taipale, Minna; Taipale, Jussi; Koivisto-Korander, Riitta; Bützow, Ralf; Vahteristo, Pia

    2016-01-01

    Uterine leiomyosarcomas (ULMSs) are aggressive smooth muscle tumors associated with poor clinical outcome. Despite previous cytogenetic and molecular studies, their molecular background has remained elusive. To examine somatic variation in ULMS, we performed exome sequencing on 19 tumors. Altogether, 43 genes were mutated in at least two ULMSs. Most frequently mutated genes included tumor protein P53 (TP53; 6/19; 33%), alpha thalassemia/mental retardation syndrome X-linked (ATRX; 5/19; 26%), and mediator complex subunit 12 (MED12; 4/19; 21%). Unlike ATRX mutations, both TP53 and MED12 alterations have repeatedly been associated with ULMSs. All the observed ATRX alterations were either nonsense or frameshift mutations. ATRX protein levels were reliably analyzed by immunohistochemistry in altogether 44 ULMSs, and the majority of tumors (23/44; 52%) showed clearly reduced expression. Loss of ATRX expression has been associated with alternative lengthening of telomeres (ALT), and thus the telomere length was analyzed with telomere-specific fluorescence in situ hybridization. The ALT phenotype was confirmed in all ULMSs showing diminished ATRX expression. Exome data also revealed one nonsense mutation in death-domain associated protein (DAXX), another gene previously associated with ALT, and the tumor showed ALT positivity. In conclusion, exome sequencing revealed that TP53, ATRX, and MED12 are frequently mutated in ULMSs. ALT phenotype was commonly seen in tumors, indicating that ATR inhibitors, which were recently suggested as possible new drugs for ATRX-deficient tumors, could provide a potential novel therapeutic option for ULMS. PMID:26891131

  4. Novel KIF7 Mutation in a Tunisian Boy with Acrocallosal Syndrome: Case Report and Review of the Literature

    PubMed Central

    Ibisler, Aysegül; Hehr, Ute; Barth, Andre; Koch, Margarete; Epplen, Jörg T.; Hoffjan, Sabine

    2015-01-01

    Acrocallosal syndrome (ACLS) is a rare autosomal recessive disorder characterized by agenesis of the corpus callosum, facial dysmorphism, postaxial polydactyly of the hands as well as preaxial polydactyly of the feet, and developmental delay. Mutations in the KIF7 gene, encoding a molecule within the Sonic hedgehog (SHH) pathway, have been identified as causative for ACLS but also for the fatal hydrolethalus syndrome and some cases of Joubert syndrome. We report here on a Tunisian boy who shows the clinical characteristics of ACLS and was found to have a novel homozygous KIF7 nonsense mutation. Further, we summarize the current knowledge about the clinical spectrum associated with KIF7 mutations as well as genetic and/or phenotypic overlap with ciliopathies and other mutations in the SHH pathway. PMID:26648833

  5. DGGE analysis of the coproporphyrinogen oxidase gene: two new mutations in DNA from Danish patients with hereditary coproporphyria.

    PubMed

    Petersen, N E; Käehne, M; Christiansen, L; Brock, A; Hother-Nielsen, O; Rasmussen, K

    2000-11-01

    The knowledge of at least 21 different mutations and several polymorphisms in the coproporphyrinogen oxidase (CPO) gene demonstrates that the molecular basis of hereditary coproporphyria is heterogeneous. We developed a DGGE-based assay for the analysis of exons 2 to 7, including 14-96 nucleotides of the flanking intronic sequences of the CPO gene. To render it suitable for the clinical diagnostic laboratory, we designed the assay to allow use of identical PCR conditions and the same DGGE gel for analyses of all the regions. Using this assay, and subsequent sequencing of gene regions containing interallelic variations, two novel mutations in the CPO gene were identified: a missense mutation (607G-->A), leading to the substitution of an alanine with a threonine, and a nonsense mutation (1281G-->A), giving rise to a stop codon 28 codons upstream to the wild-type stop codon. PMID:11202054

  6. Novel KIF7 Mutation in a Tunisian Boy with Acrocallosal Syndrome: Case Report and Review of the Literature.

    PubMed

    Ibisler, Aysegül; Hehr, Ute; Barth, Andre; Koch, Margarete; Epplen, Jörg T; Hoffjan, Sabine

    2015-10-01

    Acrocallosal syndrome (ACLS) is a rare autosomal recessive disorder characterized by agenesis of the corpus callosum, facial dysmorphism, postaxial polydactyly of the hands as well as preaxial polydactyly of the feet, and developmental delay. Mutations in the KIF7 gene, encoding a molecule within the Sonic hedgehog (SHH) pathway, have been identified as causative for ACLS but also for the fatal hydrolethalus syndrome and some cases of Joubert syndrome. We report here on a Tunisian boy who shows the clinical characteristics of ACLS and was found to have a novel homozygous KIF7 nonsense mutation. Further, we summarize the current knowledge about the clinical spectrum associated with KIF7 mutations as well as genetic and/or phenotypic overlap with ciliopathies and other mutations in the SHH pathway. PMID:26648833

  7. Spectrum of mutations in the COL4A5 collagen gene in X-linked Alport syndrome.

    PubMed Central

    Knebelmann, B.; Breillat, C.; Forestier, L.; Arrondel, C.; Jacassier, D.; Giatras, I.; Drouot, L.; Deschênes, G.; Grünfeld, J. P.; Broyer, M.; Gubler, M. C.; Antignac, C.

    1996-01-01

    Alport syndrome is a mainly X-linked hereditary disease of basement membranes that is characterized by progressive renal failure, deafness, and ocular lesions. It is associated with mutations of the COL4A5 gene located at Xq22 and encoding the alpha5 chain of type IV collagen. We have screened 48 of the 51 exons of the COL4A5 gene by SSCP analysis and have identified 64 mutations and 10 sequence variants among 131 unrelated Alport syndrome patients. This represents a mutation-detection rate of 50%. There were no hot-spot mutations and no recurrent mutations in our population. The identified mutations were 6 nonsense mutations, 12 frameshift mutations, 17 splice-site mutations, and 29 missense mutations, 27 of the latter being glycine substitutions in the collagenous domain. Two of these occurred on the same allele in one patient and segregated with the disease in the family. We showed that some of the glycine substitutions could be associated with the lack of immunological expression of the alpha3(IV)-alpha5(IV) collagen chains in the glomerular basement membrane. Images Figure 1 Figure 2 PMID:8940267

  8. Compound heterozygosity for KLF1 mutations associated with remarkable increase of fetal hemoglobin and red cell protoporphyrin

    PubMed Central

    Satta, Stefania; Perseu, Lucia; Moi, Paolo; Asunis, Isadora; Cabriolu, Annalisa; Maccioni, Liliana; Demartis, Franca Rosa; Manunza, Laura; Cao, Antonio; Galanello, Renzo

    2011-01-01

    The persistence of high fetal hemoglobin level in adults may ameliorate the clinical phenotype of beta-thalassemia and sickle cell anemia. Several genetic variants responsible for hereditary persistence of fetal hemoglobin, linked and not linked to the beta globin gene cluster, have been identified in patients and in normal individuals. Monoallelic loss of KLF1, a gene with a key role in erythropoiesis, has been recently reported to be responsible for persistence of high levels of fetal hemoglobin. In a Sardinian family, high levels of HbF (22.1–30.9%) were present only in compound heterozygotes for the S270X nonsense and K332Q missense mutations, while the isolated S270X nonsense (haploinsufficiency) or K332Q missense mutation were associated with normal HbF levels (<1.5%). Functionally, the K332Q Klf1 mutation impairs binding to the BCl11A gene and activation of the γ- and β-globin promoters. Moreover, we report for the first time the association of KLF1 mutations with very high levels of zinc protoporphyrin. PMID:21273267

  9. Mutations in the Glucose-6-Phosphatase-α (G6PC) Gene that Cause Type Ia Glycogen Storage Disease

    PubMed Central

    Chou, Janice Y.; Mansfield, Brian C.

    2008-01-01

    Glucose-6-phosphatase-α (G6PC) is a key enzyme in glucose homeostasis that catalyzes the hydrolysis of glucose-6-phosphate to glucose and phosphate in the terminal step of gluconeogenesis and glycogenolysis. Mutations in the G6PC gene, located on chromosome 17q21, result in glycogen storage disease type Ia (GSD-Ia), an autosomal recessive metabolic disorder. GSD-Ia patients manifest a disturbed glucose homeostasis, characterized by fasting hypoglycemia, hepatomegaly, nephromegaly, hyperlipidemia, hyperuricemia, lactic acidemia, and growth retardation. G6PC is a highly hydrophobic glycoprotein, anchored in the membrane of the endoplasmic reticulum with the active center facing into the lumen. To date, 54 missense, 10 nonsense, 17 insertion/deletion, and 3 splicing mutations in the G6PC gene have been identified in more than 550 patients. Of these, 50 missense, 2 nonsense, and 2 insertion/deletion mutations have been functionally characterized for their effects on enzymatic activity and stability. While GSD-Ia is not more prevalent in any ethnic group, mutations unique to Caucasian, oriental, and Jewish populations have been described. Despite this, GSD-Ia patients exhibit phenotypic heterogeneity and a stringent genotype-phenotype relationship does not exist. PMID:18449899

  10. Exome sequencing identified new mutations in a Marfan syndrome family

    PubMed Central

    2014-01-01

    Marfan syndrome is a common autosomal dominant hereditary connective tissue disorder. There is no cure for Marfan syndrome currently. Next-generation sequencing (NGS) technology is efficient to identify genetic lesions at the exome level. Here we carried out exome sequencing of two Marfan syndrome patients. Further Sanger sequencing validation in other five members from the same family was also implemented to confirm new variants which may contribute to the pathogenesis of the disease. Two new variants, including one nonsense SNP in the Marfan syndrome gene FBN1 and one missense mutation in exon 15 of LRP1, which may be related to the phenotype of the patients were identified. The exome sequencing analysis provides us a new insight into the molecular events governing pathogenesis of Marfan syndrome. Virtual slide http://www.diagnosticpathology.diagnomx.eu/vs/1229110069114125. PMID:24484584

  11. Novel Nonsense Variants c.58C>T (p.Q20X) and c.256G>T (p.E85X) in the CHEK2 Gene Identified in Breast Cancer Patients from Balochistan.

    PubMed

    Baloch, Abdul Hameed; Khosa, Ahmad Nawaz; Bangulzai, Nasrullah; Shuja, Jamila; Naseeb, Hafiz Khush; Jan, Mohammad; Marghazani, Illahi Bakhsh; Kakar, MasoodulHaq; Baloch, Dost Mohammad; Cheema, Abdul Majeed; Ahmad, Jamil

    2016-01-01

    Breast cancer is very common and the leading cause of cancer deaths among women globally. Hereditary cases account for 510% of the total burden and CHEK2, which plays crucial role in response to DNA damage to promote cell cycle arrest and repair or induce apoptosis, is considered as a moderate penetrance breast cancer risk gene. Our objective in the current study was to analyze mutations in related to breast cancer. A total of 271 individuals including breast cancer patients and normal subjects were enrolled and all 14 exons of CHEK2 were amplified and sequenced. The majority of the patients (>95%) were affected with invasive ductal carcinoma (IDC), 52.1% were diagnosed with grade III tumors and 56.2% and 27.5% with advanced stages III and IV. Two novel nonsense variants i.e. c.58C>T (P.Q20X) and c.256G>T (p.E85X) at exon 1 and 2 in two breast cancer patients were identified, both novel and not reported elsewhere. PMID:27510020

  12. A splice site mutation in HERC1 leads to syndromic intellectual disability with macrocephaly and facial dysmorphism: Further delineation of the phenotypic spectrum.

    PubMed

    Aggarwal, Shagun; Bhowmik, Aneek Das; Ramprasad, Vedam L; Murugan, Sakthivel; Dalal, Ashwin

    2016-07-01

    We report on a sib pair of Indian origin presenting with intellectual disability, dysmorphism, and macrocephaly. Exome sequencing revealed a homozygous splice site HERC1 mutation in both probands. Functional analysis revealed use of an alternate splice site resulting in formation of a downstream stop codon and nonsense mediated decay. In the light of recent reports of HERC1 mutations in two families with a similar phenotypic presentation, this report reiterates the pathogenic nature and clinical consequences of HERC1 disruption. © 2016 Wiley Periodicals, Inc. PMID:27108999

  13. Type of mutation in the neurofibromatosis type 2 gene (NF2) frequently determines severity of disease.

    PubMed Central

    Ruttledge, M. H.; Andermann, A. A.; Phelan, C. M.; Claudio, J. O.; Han, F. Y.; Chretien, N.; Rangaratnam, S.; MacCollin, M.; Short, P.; Parry, D.; Michels, V.; Riccardi, V. M.; Weksberg, R.; Kitamura, K.; Bradburn, J. M.; Hall, B. D.; Propping, P.; Rouleau, G. A.

    1996-01-01

    The gene predisposing to neurofibromatosis type 2 (NF2) on human chromosome 22 has revealed a wide variety of different mutations in NF2 individuals. These patients display a marked variability in clinical presentation, ranging from very severe disease with numerous tumors at a young age to a relatively mild condition much later in life. To investigate whether this phenotypic heterogeneity is determined by the type of mutation in NF2, we have collected clinical information on 111 NF2 cases from 73 different families on whom we have performed mutation screening in this gene. Sixty-seven individuals (56.2%) from 41 of these kindreds revealed 36 different putative disease-causing mutations. These include 26 proposed protein-truncating alterations (frameshift deletions/insertions and nonsense mutations), 6 splice-site mutations, 2 missense mutations, 1 base substitution in the 3' UTR of the NF2 cDNA, and a single 3-bp in-frame insertion. Seventeen of these mutations are novel, whereas the remaining 19 have been described previously in other NF2 individuals or sporadic tumors. When individuals harboring protein-truncating mutations are compared with cases with single codon alterations, a significant correlation (P < .001) with clinical outcome is observed. Twenty-four of 28 patients with mutations that cause premature truncation of the NF2 protein, schwannomin, present with severe phenotypes. In contrast, all 16 cases from three families with mutations that affect only a single amino acid have mild NF2. These data provide conclusive evidence that a phenotype/genotype correlation exists for certain NF2 mutations. PMID:8755919

  14. Mutation screening of PALB2 in clinically ascertained families from the Breast Cancer Family Registry.

    PubMed

    Nguyen-Dumont, Tú; Hammet, Fleur; Mahmoodi, Maryam; Tsimiklis, Helen; Teo, Zhi L; Li, Roger; Pope, Bernard J; Terry, Mary Beth; Buys, Saundra S; Daly, Mary; Hopper, John L; Winship, Ingrid; Goldgar, David E; Park, Daniel J; Southey, Melissa C

    2015-01-01

    Loss-of-function mutations in PALB2 are associated with an increased risk of breast cancer, with recent data showing that female breast cancer risks for PALB2 mutation carriers are comparable in magnitude to those for BRCA2 mutation carriers. This study applied targeted massively parallel sequencing to characterize the mutation spectrum of PALB2 in probands attending breast cancer genetics clinics in the USA. The coding regions and proximal intron-exon junctions of PALB2 were screened in probands not known to carry a mutation in BRCA1 or BCRA2 from 1,250 families enrolled through familial cancer clinics by the Breast Cancer Family Registry. Mutation screening was performed using Hi-Plex, an amplicon-based targeted massively parallel sequencing platform. Screening of PALB2 was successful in 1,240/1,250 probands and identified nine women with protein-truncating mutations (three nonsense mutations and five frameshift mutations). Four of the 33 missense variants were predicted to be deleterious to protein function by in silico analysis using two different programs. Analysis of tumors from carriers of truncating mutations revealed that the majority were high histological grade, invasive ductal carcinomas. Young onset was apparent in most families, with 19 breast cancers under 50 years of age, including eight under the age of 40 years. Our data demonstrate the utility of Hi-Plex in the context of high-throughput testing for rare genetic mutations and provide additional timely information about the nature and prevalence of PALB2 mutations, to enhance risk assessment and risk management of women at high risk of cancer attending clinical genetic services. PMID:25575445

  15. Mutation screening of PALB2 in clinically ascertained families from the Breast Cancer Family Registry

    PubMed Central

    Nguyen-Dumont, Tú; Hammet, Fleur; Mahmoodi, Maryam; Tsimiklis, Helen; Teo, Zhi L.; Li, Roger; Pope, Bernard J.; Terry, Mary Beth; Buys, Saundra S.; Daly, Mary; Hopper, John L.; Winship, Ingrid; Goldgar, David E.; Park, Daniel J.; Southey, Melissa C.

    2015-01-01

    Loss-of-function mutations in PALB2 are associated with an increased risk of breast cancer, with recent data showing that female breast cancer risks for PALB2 mutation carriers are comparable in magnitude to those for BRCA2 mutation carriers. This study applied targeted massively parallel sequencing to characterize the mutation spectrum of PALB2 in probands attending breast cancer genetics clinics in the USA. The coding regions and proximal intron–exon junctions of PALB2 were screened in probands not known to carry a mutation in BRCA1 or BCRA2 from 1,250 families enrolled through familial cancer clinics by the Breast Cancer Family Registry. Mutation screening was performed using Hi-Plex, an amplicon-based targeted massively parallel sequencing platform. Screening of PALB2 was successful in 1,240/1,250 probands and identified nine women with protein-truncating mutations (three nonsense mutations and five frameshift mutations). Four of the 33 missense variants were predicted to be deleterious to protein function by in silico analysis using two different programs. Analysis of tumors from carriers of truncating mutations revealed that the majority were high histological grade, invasive ductal carcinomas. Young onset was apparent in most families, with 19 breast cancers under 50 years of age, including eight under the age of 40 years. Our data demonstrate the utility of Hi-Plex in the context of high-throughput testing for rare genetic mutations and provide additional timely information about the nature and prevalence of PALB2 mutations, to enhance risk assessment and risk management of women at high risk of cancer attending clinical genetic services. PMID:25575445

  16. Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive nemaline myopathy.

    PubMed

    Lehtokari, Vilma-Lotta; Pelin, Katarina; Sandbacka, Maria; Ranta, Salla; Donner, Kati; Muntoni, Francesco; Sewry, Caroline; Angelini, Corrado; Bushby, Kate; Van den Bergh, Peter; Iannaccone, Susan; Laing, Nigel G; Wallgren-Pettersson, Carina

    2006-09-01

    Nemaline myopathy (NM) is a clinically and genetically heterogeneous disorder of skeletal muscle caused by mutations in at least five different genes encoding thin filament proteins of the striated muscle sarcomere. We have previously described 18 different mutations in the last 42 exons of the nebulin gene (NEB) in 18 families with NM. Here we report 45 novel NEB mutations detected by denaturing high-performance liquid chromatography (dHPLC) and sequence analysis of all 183 NEB exons in NM patients from 44 families. Altogether we have identified, including the deletion of exon 55 identified in the Ashkenazi Jewish population, 64 different mutations in NEB segregating with autosomal recessive NM in 55 families. The majority (55%) of the mutations in NEB are frameshift or nonsense mutations predicted to cause premature truncation of nebulin. Point mutations (25%) or deletions (3%) affecting conserved splice signals are predicted in the majority of cases to cause in-frame exon skipping, possibly leading to impaired nebulin-tropomyosin interaction along the thin filament. Patients in 18 families had one of nine missense mutations (14%) affecting conserved amino acids at or in the vicinity of actin or tropomyosin binding sites. In addition, we found the exon 55 deletion in four families. The majority of the patients (in 49/55 families) were shown to be compound heterozygous for two different mutations. The mutations were found in both constitutively and alternatively expressed exons throughout the NEB gene, and there were no obvious mutational hotspots. Patients with more severe clinical pictures tended to have mutations predicted to be more disruptive than patients with milder forms. PMID:16917880

  17. Mutation in LEMD3 (Man1) Associated with Osteopoikilosis and Late-Onset Generalized Morphea: A New Buschke-Ollendorf Syndrome Variant

    PubMed Central

    Korman, Benjamin; Wei, Jun; Laumann, Anne; Ferguson, Polly; Varga, John

    2016-01-01

    Introduction. Buschke-Ollendorf syndrome (BOS) is an uncommon syndrome characterized by osteopoikilosis and other bone abnormalities, accompanied by skin lesions, most frequently connective tissue nevi. BOS is caused by mutations in the LEMD3 gene, which encodes the inner nuclear membrane protein Man1. We describe a unique case of osteopoikilosis associated with late-onset localized scleroderma and familial LEMD3 mutations. Case Report. A 72-year-old woman presented with adult-onset diffuse morphea and bullous skin lesions. Evaluation revealed multiple hyperostotic lesions (osteopoikilosis) suggestive of BOS. DNA sequencing identified a previously undescribed nonsense mutation (Trp621X) in the LEMD3 gene encoding Man1. Two additional family members were found to have osteopoikilosis and carry the same LEMD3 mutation. Conclusions and Relevance. We report a unique familial LEMD3 mutation in an individual with osteopoikilosis and late-onset morphea. We propose that this constellation represents a novel syndromic variant of BOS. PMID:27382493

  18. Mutation in LEMD3 (Man1) Associated with Osteopoikilosis and Late-Onset Generalized Morphea: A New Buschke-Ollendorf Syndrome Variant.

    PubMed

    Korman, Benjamin; Wei, Jun; Laumann, Anne; Ferguson, Polly; Varga, John

    2016-01-01

    Introduction. Buschke-Ollendorf syndrome (BOS) is an uncommon syndrome characterized by osteopoikilosis and other bone abnormalities, accompanied by skin lesions, most frequently connective tissue nevi. BOS is caused by mutations in the LEMD3 gene, which encodes the inner nuclear membrane protein Man1. We describe a unique case of osteopoikilosis associated with late-onset localized scleroderma and familial LEMD3 mutations. Case Report. A 72-year-old woman presented with adult-onset diffuse morphea and bullous skin lesions. Evaluation revealed multiple hyperostotic lesions (osteopoikilosis) suggestive of BOS. DNA sequencing identified a previously undescribed nonsense mutation (Trp621X) in the LEMD3 gene encoding Man1. Two additional family members were found to have osteopoikilosis and carry the same LEMD3 mutation. Conclusions and Relevance. We report a unique familial LEMD3 mutation in an individual with osteopoikilosis and late-onset morphea. We propose that this constellation represents a novel syndromic variant of BOS. PMID:27382493

  19. Overexpression of p53 protein in squamous cell carcinomas of head and neck without apparent gene mutations.

    PubMed

    Xu, L; Chen, Y T; Huvos, A G; Zlotolow, I M; Rettig, W J; Old, L J; Garin-Chesa, P

    1994-06-01

    Structural alterations of p53 and overexpression of the p53 protein are found in a large proportion of human cancers. In this study, we examined the frequency of p53 mutations and p53 overexpression in squamous cell carcinomas (SQCC) of head and neck. Expression of p53 was detected by immunochemistry (IHC) with monoclonal antibodies defining three distinct epitopes: PAb421 (species cross-reactive epitope on normal and mutated p53), PAb1801 (epitope on normal and mutated human p53), and PAb240 (conformational epitope of mutated p53 and denatured normal p53). Genetic alterations of p53 were identified by single-strand conformational polymorphism (SSCP) analysis and DNA sequencing in selected cases. IHC assays revealed nuclear p53 immunostaining in 53% of cases (32 of 60) with PAb1801, 38% (23 of 60) with PAb421, and 32% (19 of 60) with PAb240. Cases positive with PAb421 or PAb240 were also positive with PAb1801, whereas PAb421 and PAb240 identified overlapping but distinct tumor subsets. Areas of carcinoma in situ present in the tumor specimens showed nuclear p53 immunostaining in 11 of 26 cases. SSCP analysis for exons 5-9, the most common sites of p53 abnormalities, revealed mutations in 26% (15 of 58) of the evaluable cases. Comparison of the SSCP results with the IHC results for PAb1801 identified 11 cases that were positive by both methods, 4 cases with p53 mutations that were negative by IHC, 20 cases positive by IHC but without detectable p53 mutations, and 23 cases negative by both methods. IHC with PAb240, which is thought to be specific for mutated p53, was positive in 9 cases with demonstrable p53 mutations and in 9 cases with no detectable mutations. DNA sequence analysis of nine tumors identified point mutations, nonsense mutations, and frame-shift mutations. In conclusion, our study shows that p53 overexpression in SQCC of head and neck as detected by IHC is a frequent finding, and that overexpression is associated with common types of p53 mutations in

  20. Three Novel Mutations in Iranian Patients with Tay-Sachs Disease

    PubMed Central

    Jamali, Solmaz; Eskandari, Nasim; Aryani, Omid; Salehpour, Shadab; Zaman, Talieh; Kamalidehghan, Behnam; Houshmand, Massoud

    2014-01-01

    Background: Tay-Sachs disease (TSD), or GM2 gangliosidosis, is a lethal autosomal recessive neurodegenerative disorder, which is caused by a deficiency of beta-hexosaminidase A (HEXA), resulting in lysosomal accumulation of GM2 ganglioside. The aim of this study was to identify the TSD-causing mutations in an Iranian population. Methods: In this study, we examined 31 patients for TSD-causing mutations using PCR, followed by restriction enzyme digestion. Results: Molecular genetics analysis of DNA from 23 patients of TSD revealed mutations that has been previously reported, including four-base duplications c.1274_1277dupTATC in exon 11 and IVS2+1G>A, deletion TTAGGCAAGGGC in exon 10 as well as a few novel mutations, including C331G, which altered Gln>Glu in HEXB, A>G, T>C, and p.R510X in exon 14, which predicted a termination codon or nonsense mutation. Conclusion: In conclusion, with the discovery of these novel mutations, the genotypic spectrum of Iranian patients with TSD disease has been extended and could facilitate definition of disease-related mutations. PMID:24518553

  1. Genome-wide variation of the somatic mutation frequency in transgenic plants

    PubMed Central

    Kovalchuk, Igor; Kovalchuk, Olga; Hohn, Barbara

    2000-01-01

    In order to analyse the frequency of point mutations in whole plants, several constructs containing single nonsense mutations in the β-glucuronidase (uidA) gene were used to generate transgenic Arabidopsis thaliana plants. Upon histochemical staining of transgenic plants, sectors indicative of transgene reactivation appeared. Reversion frequencies were in the range of 10–7–10–8 events per base pair, exceeding the previous estimates for other eukaryotes at least 100-fold. The frequency was dependent on the position of the mutation substrate within the transgene and the position of the transgene within the Arabidopsis genome. An inverse relationship between the level of transgene transcription and mutation frequency was observed in single-copy lines. DNA-damaging factors induced the mutation frequency by a factor of up to 56 for UV-C, a factor of 3 for X-rays and a factor of 2 for methyl methanesulfonate. This novel plant mutation-monitoring system allowed us to measure the frequencies of point mutation in whole plants and may be used as an alternative or complement to study the mutagenicity of different environmental factors on the higher eukaryote’s genome. PMID:10970837

  2. Mutation Spectrum and Genotype–Phenotype Correlation in Cornelia de Lange Syndrome

    PubMed Central

    Mannini, Linda; Cucco, Francesco; Quarantotti, Valentina; Krantz, Ian D.; Musio, Antonio

    2013-01-01

    Cornelia de Lange syndrome (CdLS) is a clinically and genetically heterogeneous developmental disorder. Clinical features include growth retardation, intellectual disability, limb defects, typical facial dysmorphism, and other systemic involvement. The increased understanding of the genetic basis of CdLS has led to diagnostic improvement and expansion of the phenotype. Mutations in five genes (NIPBL, SMC1A, SMC3, RAD21, and HDAC8), all regulators or structural components of cohesin, have been identified. Approximately 60% of CdLS cases are due to NIPBL mutations, 5% caused by mutations in SMC1A, RAD21, and HDAC8 and one proband was found to carry a mutation in SMC3. To date, 311 CdLS-causing mutations are known including missense, nonsense, small deletions and insertions, splice site mutations, and genomic rearrangements. Phenotypic variability is seen both intra- and intergenically. This article reviews the spectrum of CdLS mutations with a particular emphasis on their correlation to the clinical phenotype. PMID:24038889

  3. Significant correlation of the SCN1A mutations and severe myoclonic epilepsy in infancy.

    PubMed

    Ohmori, Iori; Ouchida, Mamoru; Ohtsuka, Yoko; Oka, Eiji; Shimizu, Kenji

    2002-07-01

    To investigate the possible correlation between genotype and phenotype of epilepsy, we analyzed the voltage-gated sodium channel alpha1-subunit (SCN1A) gene, beta1-subunit (SCN1B) gene, and gamma-aminobutyric acid(A) receptor gamma2-subunit (GABRG2) gene in DNAs from peripheral blood cells of 29 patients with severe myoclonic epilepsy in infancy (SME) and 11 patients with other types of epilepsy. Mutations of the SCN1A gene were detected in 24 of the 29 patients (82.7%) with SME, although none with other types of epilepsy. The mutations included deletion, insertion, missense, and nonsense mutations. We could not find any mutations of the SCN1B and GABRG2 genes in all patients. Our data suggested that the SCN1A mutations were significantly correlated with SME (p<.0001). As we could not find SCN1A mutations in their parents, one of critical causes of SME may be de novo mutation of the SCN1A gene occurred in the course of meiosis in the parents. PMID:12083760

  4. Epidermolysis bullosa with pyloric atresia: novel mutations in the beta4 integrin gene (ITGB4).

    PubMed Central

    Pulkkinen, L.; Kim, D. U.; Uitto, J.

    1998-01-01

    Epidermolysis bullosa with pyloric atresia (EB-PA; OMIM 226730) is a clinically and genetically heterogeneous autosomal recessive blistering disorder, including lethal and nonlethal variants. Recently, expression of alpha6beta4 integrin, a transmembrane protein of the epithelial basement membranes, has been shown to be altered in these patients. In this work, we have explored the molecular pathology of the lethal form of EB-PA, and we describe novel ITGB4 mutations in five alleles of three patients. The mutation detection strategy included polymerase chain reaction amplification of each exon of ITGB4, followed by heteroduplex analysis and direct nucleotide sequencing. The novel mutations included a homozygous 2-bp deletion in exon 34 (4501delTC), compound heterozygosity for a 2-bp deletion within the paternal allele (120delTG) within exon 3 and a cysteine substitution in the maternal allele (C245G) within exon 7, and the paternal nonsense mutation within exon 4 (Q73X). Thus, three of four distinct mutations predicted truncated polypeptide chains, whereas the missense mutation in the extracellular domain of beta4 integrin may affect ligand binding or dimerization of alpha6 and beta4 integrin subunits. These mutations emphasize the critical importance of the alpha6beta4 integrin in providing stability to the association of epidermis to the underlying dermis at the cutaneous basement membrane zone. Images Figure 1 Figure2 Figure 3 Figure 4 Figure 5 PMID:9422533

  5. Hyperinsulinemic hypoglycemia syndrome associated with mutations in the human insulin receptor gene: report of two cases.

    PubMed

    Kuroda, Yohei; Iwahashi, Hiromi; Mineo, Ikuo; Fukui, Kenji; Fukuhara, Atsunori; Iwamoto, Ryuya; Imagawa, Akihisa; Shimomura, Iichiro

    2015-01-01

    Insulinoma and insulin or insulin receptor (IR) autoantibodies are the main causes of hyperinsulinemic hypoglycemia in adults, but the exact cause in other cases remains obscure. This study is to determine the genetic basis of hyperinsulinemic hypoglycemia in two cases without the above abnormalities. Sequence analysis of IR gene in two patients with adult-onset hyperinsulinemic hypoglycemia and their relatives were performed, and the mutant gene observed in one case was analyzed. Both cases had normal levels of fasting plasma glucose (FPG), fasting hyperinsulinemia, low insulin sensitivity, and hypoglycemia with excessive insulin secretion during oral glucose tolerance test (OGTT). Both reported adult-onset postprandial hypoglycemic symptoms. In one patient, a missense mutation (Arg256Cys) was detected in both alleles of the IR gene, and his parents had the same mutation in only one allele but no hypoglycemia. The other had a novel nonsense mutation (Trp1273X) followed by a mutation (Gln1274Lys) in one allele, and his 9-year old son had the same mutation in one allele, together with hyperinsulinemic hypoglycemia during OGTT. Overexpression experiments of the mutant gene found in Case 1 in mammalian cells showed abnormal processing of the IR protein and demonstrated reduced function of Akt/Erk phosphorylation by insulin in the cells. In two cases of hyperinsulinemic hypoglycemia in adults, we found novel mutations in IR gene considered to be linked to hypoglycemia. We propose a disease entity of adult-onset hyperinsulinemic hypoglycemia syndrome associated with mutations in IR gene. PMID:25753915

  6. The relation between first-graders' reading level and vowel production variability in real and nonsense words: A temporal analysis

    NASA Astrophysics Data System (ADS)

    Lydtin, Kimberly; Fowler, Anne; Bell-Berti, Fredericka

    2002-05-01

    The focus of this study is to determine if children who are poor readers produce vowels with greater variability than children with normal reading ability, since earlier research has indicated possible links between phonological difficulty, speech production variation, and reading problems. In continuation of our past research [K. Lydtin, A. Fowler, and F. Bell-Berti, J. Acoust. Soc. Am. 110, 2704 (2001)], where we looked at the spectral aspects of vowel production, we will report the results of our study of vowel duration and its variability in poor and good readers. The vowels chosen for this study are /smcapi/, /ɛ/, and /æ/ in real and nonsense words occurring in both blocked and random presentation. [Work supported by U.S. Dept. of Education, McNair Scholars Program.

  7. Nonsense-Mediated mRNA Decay: Degradation of Defective Transcripts Is Only Part of the Story

    PubMed Central

    He, Feng; Jacobson, Allan

    2016-01-01

    Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance mechanism that monitors cytoplasmic mRNA translation and targets mRNAs undergoing premature translation termination for rapid degradation. From yeasts to humans, activation of NMD requires the function of the three conserved Upf factors: Upf1, Upf2, and Upf3. Here, we summarize the progress in our understanding of the molecular mechanisms of NMD in several model systems and discuss recent experiments that address the roles of Upf1, the principal regulator of NMD, in the initial targeting and final degradation of NMD-susceptible mRNAs. We propose a unified model for NMD in which the Upf factors provide several functions during premature termination, including the stimulation of release factor activity and the dissociation and recycling of ribosomal subunits. In this model, the ultimate degradation of the mRNA is the last step in a complex premature termination process. PMID:26436458

  8. A frequent tyrosinase gene mutation associated with type I-A (tyroinase-negative) oculocutaneous albinism in Puerto Rico

    SciTech Connect

    Oetting, W.S.; Witkop, C.J. Jr.; Brown, S.A.; Fryer, J.P.; Bloom, K.E.; King, R.A. ); Colomer, R. )

    1993-01-01

    The authors have determined the mutations in the tyrosinase gene from 12 unrelated Puerto Rican individuals who have type I-A (tyrosinase-negative) oculocutaneous albinism (OCA). All but one individual are of Hispanic descent. Nine individuals were homozygous for a missense mutation (G47D) in exon I at codon 47. Two individuals were heterozygous for the G47D mutation, with one having a missense mutation at codon 373 (T373K) in the homologous allele and the other having an undetermined mutation in the homologous allele. One individual with negroid features was homozygous for a nonsense mutation (W236X). The population migration between Puerto Rico and the Canary Islands is well recognized. Analysis of three individuals with OCA from the Canary Islands showed that one was a compound heterozygote for the G47D mutation and for a novel missense mutation (L216M), one was homozygous for a missense mutation (P81L), and one was heterozygous for the missense mutation P81L. The G47D and P81L missense mutations have been previously described in extended families in the United States. Haplotypes were determined using four polymorphisms linked to the tyrosinase locus. Haplotype analysis showed that the G47D mutation occurred on a single haplotype, consistent with a common founder for all individuals having this mutation. Two different haplotypes were found associated with the P81L mutation, suggesting that this may be either a recurring mutation for the tyrosinase gene or a recombination between haplotypes. 28 refs., 1 fig., 3 tabs.

  9. Estimating mutation rate: how to count mutations?

    PubMed Central

    Fu, Yun-Xin; Huai, Haying

    2003-01-01

    Mutation rate is an essential parameter in genetic research. Counting the number of mutant individuals provides information for a direct estimate of mutation rate. However, mutant individuals in the same family can share the same mutations due to premeiotic mutation events, so that the number of mutant individuals can be significantly larger than the number of mutation events observed. Since mutation rate is more closely related to the number of mutation events, whether one should count only independent mutation events or the number of mutants remains controversial. We show in this article that counting mutant individuals is a correct approach for estimating mutation rate, while counting only mutation events will result in underestimation. We also derived the variance of the mutation-rate estimate, which allows us to examine a number of important issues about the design of such experiments. The general strategy of such an experiment should be to sample as many families as possible and not to sample much more offspring per family than the reciprocal of the pairwise correlation coefficient within each family. To obtain a reasonably accurate estimate of mutation rate, the number of sampled families needs to be in the same or higher order of magnitude as the reciprocal of the mutation rate. PMID:12807798

  10. Patterns and rates of exonic de novo mutations in autism spectrum disorders

    PubMed Central

    Neale, Benjamin M.; Kou, Yan; Liu, Li; Ma'ayan, Avi; Samocha, Kaitlin E.; Sabo, Aniko; Lin, Chiao-Feng; Stevens, Christine; Wang, Li-San; Makarov, Vladimir; Polak, Paz; Yoon, Seungtai; Maguire, Jared; Crawford, Emily L.; Campbell, Nicholas G.; Geller, Evan T.; Valladares, Otto; Shafer, Chad; Liu, Han; Zhao, Tuo; Cai, Guiqing; Lihm, Jayon; Dannenfelser, Ruth; Jabado, Omar; Peralta, Zuleyma; Nagaswamy, Uma; Muzny, Donna; Reid, Jeffrey G.; Newsham, Irene; Wu, Yuanqing; Lewis, Lora; Han, Yi; Voight, Benjamin F.; Lim, Elaine; Rossin, Elizabeth; Kirby, Andrew; Flannick, Jason; Fromer, Menachem; Shakir, Khalid; Fennell, Tim; Garimella, Kiran; Banks, Eric; Poplin, Ryan; Gabriel, Stacey; DePristo, Mark; Wimbish, Jack R.; Boone, Braden E.; Levy, Shawn E.; Betancur, Catalina; Sunyaev, Shamil; Boerwinkle, Eric; Buxbaum, Joseph D.; Cook, Edwin H.; Devlin, Bernie; Gibbs, Richard A.; Roeder, Kathryn; Schellenberg, Gerard D.; Sutcliffe, James S.; Daly, Mark J.

    2013-01-01

    Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified1,2. To identify further genetic risk factors, we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n= 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant and the overall rate of mutation is only modestly higher than the expected rate. In contrast, there is significantly enriched connectivity among the proteins encoded by genes harboring de novo missense or nonsense mutations, and excess connectivity to prior ASD genes of major effect, suggesting a subset of observed events are relevant to ASD risk. The small increase in rate of de novo events, when taken together with the connections among the proteins themselves and to ASD, are consistent with an important but limited role for de novo point mutations, similar to that documented for de novo copy number variants. Genetic models incorporating these data suggest that the majority of observed de novo events are unconnected to ASD, those that do confer risk are distributed across many genes and are incompletely penetrant (i.e., not necessarily causal). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5 to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case-control study provide strong evidence in favor of CHD8 and KATNAL2 as genuine autism risk factors. PMID:22495311

  11. Biallelic Mutations in GNB3 Cause a Unique Form of Autosomal-Recessive Congenital Stationary Night Blindness.

    PubMed

    Vincent, Ajoy; Audo, Isabelle; Tavares, Erika; Maynes, Jason T; Tumber, Anupreet; Wright, Thomas; Li, Shuning; Michiels, Christelle; Condroyer, Christel; MacDonald, Heather; Verdet, Robert; Sahel, José-Alain; Hamel, Christian P; Zeitz, Christina; Héon, Elise

    2016-05-01

    Congenital stationary night blindness (CSNB) is a heterogeneous group of non-progressive inherited retinal disorders with characteristic electroretinogram (ERG) abnormalities. Riggs and Schubert-Bornschein are subtypes of CSNB and demonstrate distinct ERG features. Riggs CSNB demonstrates selective rod photoreceptor dysfunction and occurs due to mutations in genes encoding proteins involved in rod phototransduction cascade; night blindness is the only symptom and eye examination is otherwise normal. Schubert-Bornschein CSNB is a consequence of impaired signal transmission between the photoreceptors and bipolar cells. Schubert-Bornschein CSNB is subdivided into complete CSNB with an ON bipolar signaling defect and incomplete CSNB with both ON and OFF pathway involvement. Both subtypes are associated with variable degrees of night blindness or photophobia, reduced visual acuity, high myopia, and nystagmus. Whole-exome sequencing of a family screened negative for mutations in genes associated with CSNB identified biallelic mutations in the guanine nucleotide-binding protein subunit beta-3 gene (GNB3). Two siblings were compound heterozygous for a deletion (c.170_172delAGA [p.Lys57del]) and a nonsense mutation (c.1017G>A [p.Trp339(∗)]). The maternal aunt was homozygous for the nonsense mutation (c.1017G>A [p.Trp339(∗)]). Mutational analysis of GNB3 in a cohort of 58 subjects with CSNB identified a sporadic case individual with a homozygous GNB3 mutation (c.200C>T [p.Ser67Phe]). GNB3 encodes the β subunit of G protein heterotrimer (Gαβγ) and is known to modulate ON bipolar cell signaling and cone transducin function in mice. Affected human subjects showed an unusual CSNB phenotype with variable degrees of ON bipolar dysfunction and reduced cone sensitivity. This unique retinal disorder with dual anomaly in visual processing expands our knowledge about retinal signaling. PMID:27063057

  12. Homozygosity mapping reveals mutations of GRXCR1 as a cause of autosomal-recessive nonsyndromic hearing impairment.

    PubMed

    Schraders, Margit; Lee, Kwanghyuk; Oostrik, Jaap; Huygen, Patrick L M; Ali, Ghazanfar; Hoefsloot, Lies H; Veltman, Joris A; Cremers, Frans P M; Basit, Sulman; Ansar, Muhammad; Cremers, Cor W R J; Kunst, Henricus P M; Ahmad, Wasim; Admiraal, Ronald J C; Leal, Suzanne M; Kremer, Hannie

    2010-02-12

    We identified overlapping homozygous regions within the DFNB25 locus in two Dutch and ten Pakistani families with sensorineural autosomal-recessive nonsyndromic hearing impairment (arNSHI). Only one of the families, W98-053, was not consanguineous, and its sibship pointed toward a reduced critical region of 0.9 Mb. This region contained the GRXCR1 gene, and the orthologous mouse gene was described to be mutated in the pirouette (pi) mutant with resulting hearing loss and circling behavior. Sequence analysis of the GRXCR1 gene in hearing-impaired family members revealed splice-site mutations in two Dutch families and a missense and nonsense mutation, respectively, in two Pakistani families. The splice-site mutations are predicted to cause frameshifts and premature stop codons. In family W98-053, this could be confirmed by cDNA analysis. GRXCR1 is predicted to contain a GRX-like domain. GRX domains are involved in reversible S-glutathionylation of proteins and thereby in the modulation of activity and/or localization of these proteins. The missense mutation is located in this domain, whereas the nonsense and splice-site mutations may result in complete or partial absence of the GRX-like domain or of the complete protein. Hearing loss in patients with GRXCR1 mutations is congenital and is moderate to profound. Progression of the hearing loss was observed in family W98-053. Vestibular dysfunction was observed in some but not all affected individuals. Quantitative analysis of GRXCR1 transcripts in fetal and adult human tissues revealed a preferential expression of the gene in fetal cochlea, which may explain the nonsyndromic nature of the hearing impairment. PMID:20137778

  13. Loss-of-Function Mutations in SERPINB8 Linked to Exfoliative Ichthyosis with Impaired Mechanical Stability of Intercellular Adhesions.

    PubMed

    Pigors, Manuela; Sarig, Ofer; Heinz, Lisa; Plagnol, Vincent; Fischer, Judith; Mohamad, Janan; Malchin, Natalia; Rajpopat, Shefali; Kharfi, Monia; Lestringant, Giles G; Sprecher, Eli; Kelsell, David P; Blaydon, Diana C

    2016-08-01

    SERPINS comprise a large and functionally diverse family of serine protease inhibitors. Here, we report three unrelated families with loss-of-function mutations in SERPINB8 in association with an autosomal-recessive form of exfoliative ichthyosis. Whole-exome sequencing of affected individuals from a consanguineous Tunisian family and a large Israeli family revealed a homozygous frameshift mutation, c.947delA (p.Lys316Serfs(∗)90), and a nonsense mutation, c.850C>T (p.Arg284(∗)), respectively. These two mutations are located in the last exon of SERPINB8 and, hence, would not be expected to lead to nonsense-mediated decay of the mRNA; nonetheless, both mutations are predicted to lead to loss of the reactive site loop of SERPINB8, which is crucial for forming the SERPINB8-protease complex. Using Sanger sequencing, a homozygous missense mutation, c.2T>C (p.Met1?), predicted to result in an N-terminal truncated protein, was identified in an additional family from UAE. Histological analysis of a skin biopsy from an individual homozygous for the variant p.Arg284(∗) showed disadhesion of keratinocytes in the lower epidermal layers plus decreased SERPINB8 levels compared to control. In vitro studies utilizing siRNA-mediated knockdown of SERPINB8 in keratinocytes demonstrated that in the absence of the protein, there is a cell-cell adhesion defect, particularly when cells are subjected to mechanical stress. In addition, immunoblotting and immunostaining revealed an upregulation of desmosomal proteins. In conclusion, we report mutations in SERPINB8 that are associated with exfoliative ichthyosis and provide evidence that SERPINB8 contributes to the mechanical stability of intercellular adhesions in the epidermis. PMID:27476651

  14. Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing

    PubMed Central

    Walsh, Tom; Lee, Ming K.; Casadei, Silvia; Thornton, Anne M.; Stray, Sunday M.; Pennil, Christopher; Nord, Alex S.; Mandell, Jessica B.; Swisher, Elizabeth M.; King, Mary-Claire

    2010-01-01

    Inherited loss-of-function mutations in the tumor suppressor genes BRCA1, BRCA2, and multiple other genes predispose to high risks of breast and/or ovarian cancer. Cancer-associated inherited mutations in these genes are collectively quite common, but individually rare or even private. Genetic testing for BRCA1 and BRCA2 mutations has become an integral part of clinical practice, but testing is generally limited to these two genes and to women with severe family histories of breast or ovarian cancer. To determine whether massively parallel, “next-generation” sequencing would enable accurate, thorough, and cost-effective identification of inherited mutations for breast and ovarian cancer, we developed a genomic assay to capture, sequence, and detect all mutations in 21 genes, including BRCA1 and BRCA2, with inherited mutations that predispose to breast or ovarian cancer. Constitutional genomic DNA from subjects with known inherited mutations, ranging in size from 1 to >100,000 bp, was hybridized to custom oligonucleotides and then sequenced using a genome analyzer. Analysis was carried out blind to the mutation in each sample. Average coverage was >1200 reads per base pair. After filtering sequences for quality and number of reads, all single-nucleotide substitutions, small insertion and deletion mutations, and large genomic duplications and deletions were detected. There were zero false-positive calls of nonsense mutations, frameshift mutations, or genomic rearrangements for any gene in any of the test samples. This approach enables widespread genetic testing and personalized risk assessment for breast and ovarian cancer. PMID:20616022

  15. Identification of novel MLC1 mutations in Chinese patients with megalencephalic leukoencephalopathy with subcortical cysts (MLC).

    PubMed

    Wang, Jingmin; Shang, Jing; Wu, Ye; Gu, Qiang; Xiong, Hui; Ding, Changhong; Wang, Liwen; Gao, Zhijie; Wu, Xiru; Jiang, Yuwu

    2011-02-01

    Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is an autosomal, recessively inherited disease caused by mutations in the MLC1 gene. Most of the previously published studies have been carried out in ethnic populations other than the Chinese. In this study, the analysis of clinical features and MLC1 mutation screening were performed in 13 Chinese patients for the first time. A total of 10 MLC1 mutations were identified in these patients, including five novel missense mutations (c.65G>A, p.R22Q; c.95C>T, p.A32V; c.218G>A, p.G73E; c.823G>A, p.A275T; c.832T>C, p.Y278H), one novel splicing mutation (c.772-1G>C in IVS9-1), one novel small deletion (c.907_930del, p.V303_L310del), one known nonsense mutation (c.593delCTCA, p.Y198X) and two known missense mutations (c.206C>T, p.S69L; c.353C>T, p.T118M). Mutation c.772-1G>C in IVS9-1, accounting for 27.3% (3/11) of the total number of genetically confirmed patients found in this study, is thus a putative hot-spot mutation in the present study group. The existence of a unique MLC1 mutation spectrum in Chinese MLC patients was shown. A systemic study to assess the mutation spectra in different populations should be undertaken. PMID:21160490

  16. Mutation Burden of Rare Variants in Schizophrenia Candidate Genes

    PubMed Central

    Girard, Simon L.; Dion, Patrick A.; Bourassa, Cynthia V.; Geoffroy, Steve; Lachance-Touchette, Pamela; Barhdadi, Amina; Langlois, Mathieu; Joober, Ridha; Krebs, Marie-Odile; Dubé, Marie-Pierre; Rouleau, Guy A.

    2015-01-01

    Background Schizophrenia (SCZ) is a very heterogeneous disease that affects approximately 1% of the general population. Recently, the genetic complexity thought to underlie this condition was further supported by three independent studies that identified an increased number of damaging de novo mutations DNM in different SCZ probands. While these three reports support the implication of DNM in the pathogenesis of SCZ, the absence of overlap in the genes identified suggests that the number of genes involved in SCZ is likely to be very large; a notion that has been supported by the moderate success of Genome-Wide Association Studies (GWAS). Methods To further examine the genetic heterogeneity of this disease, we resequenced 62 genes that were found to have a DNM in SCZ patients, and 40 genes that encode for proteins known to interact with the products of the genes with DNM, in a cohort of 235 SCZ cases and 233 controls. Results We found an enrichment of private nonsense mutations amongst schizophrenia patients. Using a kernel association method, we were able to assess for association for different sets. Although our power of detection was limited, we observed an increased mutation burden in the genes that have DNM. PMID:26039597

  17. Comprehensive analytical strategy for mutation screening in 21-hydroxylase deficiency.

    PubMed

    Krone, N; Roscher, A A; Schwarz, H P; Braun, A

    1998-10-01

    Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease with a wide range of clinical manifestations. It is most often caused by deficiency of steroid 21-hydroxylase, reflecting any of a wide range of mutations in the 21-hydroxylase (CYP21) gene. A major challenge in molecular diagnostics of CAH is the high homology between the CYP21 gene and the CYP21P pseudogene and the phenomenon of apparent gene conversion, which inactivates the functional gene. In this study we devised an improved stepwise diagnostic procedure involving nonradioactive Southern blotting and direct DNA sequencing. This strategy led to a successful elucidation of the molecular cause of the disease in 181 out of 182 unrelated alleles in a total of 91 clinically and biochemically characterized patients. We were able to identify all classical known disease-causing mutations of the 21-hydroxylase gene and a novel nonsense mutation (bp 670, A-->C, Y97X). Our method also allows the reliable, secure diagnosis of the heterozygous configuration and may therefore be used for pre-, peri-, and postnatal diagnosis of CAH, even when informative data of the index patient are lacking. Furthermore, it can be used to confirm the diagnosis of CAH in newborns detected in 17-hydroxyprogesterone screening programs. PMID:9761237

  18. Late-onset spastic paraplegia: Aberrant SPG11 transcripts generated by a novel splice site donor mutation.

    PubMed

    Kawarai, Toshitaka; Miyamoto, Ryosuke; Mori, Atsuko; Oki, Ryosuke; Tsukamoto-Miyashiro, Ai; Matsui, Naoko; Miyazaki, Yoshimichi; Orlacchio, Antonio; Izumi, Yuishin; Nishida, Yoshihiko; Kaji, Ryuji

    2015-12-15

    We identified a novel homozygous mutation in the splice site donor (SSD) of intron 30 (c.5866+1G>A) in consanguineous Japanese SPG11 siblings showing late-onset spastic paraplegia using the whole-exome sequencing. Phenotypic variability was observed, including age-at-onset, dysarthria and pes cavus. Coding DNA sequencing revealed that the mutation affected the recognition of the constitutive SSD of intron 30, splicing upstream onto a nearby cryptic SSD in exon 30. The use of constitutive splice sites of intron 29 was confirmed by sequencing. The mutant transcripts are mostly subject to degradation by the nonsense-mediated mRNA decay system. SPG11 transcripts, escaping from the nonsense-mediated mRNA decay pathway, would generate a truncated protein (p.Tyr1900Phefs5X) containing the first 1899 amino acids and followed by 4 aberrant amino acids. This study showed a successful clinical application of whole-exome sequencing in spastic paraplegia and demonstrated a further evidence of allelic heterogeneity in SPG11. The confirmation of aberrant transcript by splice site mutation is a prerequisite for a more precise molecular diagnosis. PMID:26671123

  19. Mutations in NGLY1 Cause an Inherited Disorder of the Endoplasmic Reticulum-Associated Degradation (ERAD) Pathway

    PubMed Central

    Enns, Gregory M.; Shashi, Vandana; Bainbridge, Matthew; Gambello, Michael J.; Zahir, Farah R.; Bast, Thomas; Crimian, Rebecca; Schoch, Kelly; Platt, Julia; Cox, Rachel; Bernstein, Jonathan; Scavina, Mena; Walter, Rhonda S.; Bibb, Audrey; Jones, Melanie; Hegde, Madhuri; Graham, Brett H.; Need, Anna C.; Oviedo, Angelica; Schaaf, Christian P.; Boyle, Sean; Butte, Atul J.; Chen, Rong; Clark, Michael J.; Haraksingh, Rajini; Cowan, Tina M.; He, Ping; Langlois, Sylvie; Zoghbi, Huda Y.; Snyder, Michael; Gibbs, Richard; Freeze, Hudson H.; Goldstein, David B.

    2014-01-01

    Purpose The endoplasmic reticulum-associated degradation (ERAD) pathway is responsible for the translocation of misfolded proteins across the ER membrane into the cytosol for subsequent degradation by the proteasome. In order to understand the spectrum of clinical and molecular findings in a complex neurological syndrome, we studied a series of eight patients with inherited deficiency of N-glycanase 1 (NGLY1), a novel disorder of cytosolic ERAD dysfunction. Methods Whole-genome, whole-exome or standard Sanger sequencing techniques were employed. Retrospective chart reviews were performed in order to obtain clinical data. Results All patients had global developmental delay, a movement disorder, and hypotonia. Other common findings included hypo- or alacrima (7/8), elevated liver transaminases (6/7), microcephaly (6/8), diminished reflexes (6/8), hepatocyte cytoplasmic storage material or vacuolization (5/6), and seizures (4/8). The nonsense mutation c.1201A>T (p.R401X) was the most common deleterious allele. Conclusions NGLY1 deficiency is a novel autosomal recessive disorder of the ERAD pathway associated with neurological dysfunction, abnormal tear production, and liver disease. The majority of patients detected to date carry a specific nonsense mutation that appears to be associated with severe disease. The phenotypic spectrum is likely to enlarge as cases with a more broad range of mutations are detected. PMID:24651605

  20. Familial cortical dysplasia type IIA caused by a germline mutation in DEPDC5.

    PubMed

    Scerri, Thomas; Riseley, Jessica R; Gillies, Greta; Pope, Kate; Burgess, Rosemary; Mandelstam, Simone A; Dibbens, Leanne; Chow, Chung W; Maixner, Wirginia; Harvey, Anthony Simon; Jackson, Graeme D; Amor, David J; Delatycki, Martin B; Crino, Peter B; Berkovic, Samuel F; Scheffer, Ingrid E; Bahlo, Melanie; Lockhart, Paul J; Leventer, Richard J

    2015-05-01

    Whole-exome sequencing of two brothers with drug-resistant, early-onset, focal epilepsy secondary to extensive type IIA focal cortical dysplasia identified a paternally inherited, nonsense variant of DEPDC5 (c.C1663T, p.Arg555*). This variant has previously been reported to cause familial focal epilepsy with variable foci in patients with normal brain imaging. Immunostaining of resected brain tissue from both brothers demonstrated mammalian target of rapamycin (mTOR) activation. This report shows the histopathological features of cortical dysplasia associated with a DEPDC5 mutation, confirms mTOR dysregulation in the malformed tissue and expands the spectrum of neurological manifestations of DEPDC5 mutations to include severe phenotypes with large areas of cortical malformation. PMID:26000329

  1. Mutations in the lipase-H gene causing autosomal recessive hypotrichosis and woolly hair.

    PubMed

    Mehmood, Sabba; Jan, Abid; Muhammad, Dost; Ahmad, Farooq; Mir, Hina; Younus, Muhammad; Ali, Ghazanfar; Ayub, Muhammad; Ansar, Muhammad; Ahmad, Wasim

    2015-08-01

    Hypotrichosis is characterised by sparse scalp hair, sparse to absent eyebrows and eyelashes, or absence of hair from other parts of the body. In few cases, the condition is associated with tightly curled woolly scalp hair. The present study searched for disease-causing sequence variants in the genes in four Pakistani lineal consanguineous families exhibiting features of hypotrichosis or woolly hair. A haplotype analysis established links in all four families to the LIPH gene located on chromosome 3q27.2. Subsequently, sequencing LIPH identified a novel non-sense mutation (c.328C>T; p.Arg110*) in one and a previously reported 2-bp deletion mutation (c.659_660delTA, p.Ile220ArgfsX29) in three other families. PMID:24628704

  2. Autosomal dominant epidermodysplasia verruciformis lacking a known EVER1 or EVER2 mutation

    PubMed Central

    McDermott, David H.; Gammon, Bryan; Snijders, Peter J.; Mbata, Ihunanya; Phifer, Beth; Hartley, A. Howland; Lee, Chyi-Chia Richard; Murphy, Philip M.; Hwang, Sam T.

    2012-01-01

    Epidermodysplasia verruciformis (EV) is a rare genodermatosis characterized by abnormal susceptibility to infection with specific human papillomavirus (HPV) serotypes. EV is a genetically heterogeneous disease, and autosomal recessive and X-linked inheritance patterns have been reported. Nonsense mutations in the genes EVER1 and EVER2 have been identified in over 75% of cases. We present EV in a father and son with typical histologic and clinical findings that occur in the absence of mutations in EVER1 or EVER2. EV in this father/son pair in a non-consanguinous pedigree is consistent with autosomal dominant inheritance. This is the first report of autosomal dominant transmission of EV, providing further evidence of the genetic heterogeneity of EV. PMID:19706093

  3. Expanding the MYBPC1 phenotypic spectrum: a novel homozygous mutation causes arthrogryposis multiplex congenita.

    PubMed

    Ekhilevitch, N; Kurolap, A; Oz-Levi, D; Mory, A; Hershkovitz, T; Ast, G; Mandel, H; Baris, H N

    2016-07-01

    Arthrogryposis multiplex congenita (AMC) is characterized by heterogeneous nonprogressive multiple joint contractures appearing at birth. We present a consanguineous Israeli-Druze family with several members presenting with AMC. A variable intra-familial phenotype and pected autosomal recessive inheritance prompted molecular diagnosis by whole-exome sequencing. Variant analysis focused on rare homozygous changes, revealed a missense variant in MYBPC1, NM_002465:c.556G>A (p.E286K), affecting the last nucleotide of Exon 8. This novel variant was not observed in the common variant databases and co-segregated as expected within the extended family. MYBPC1 encodes a slow skeletal muscle isoform, essential for muscle contraction. Heterozygous mutations in this gene are associated with distal arthrogryposis types 1b and 2, whereas a homozygous nonsense mutation is implicated in one family with lethal congenital contractural syndrome 4. We present a novel milder MYBPC1 homozygous phenotype. PMID:26661508

  4. A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy.

    PubMed

    Jonckheere, An I; Hogeveen, Marije; Nijtmans, Leo; van den Brand, Mariel; Janssen, Antoon; Diepstra, Heleen; van den Brandt, Frans; van den Heuvel, Bert; Hol, Frans; Hofste, Tom; Kapusta, Livia; Dillmann, U; Shamdeen, M; Smeitink, J; Smeitink, J; Rodenburg, Richard

    2009-01-01

    To identify the biochemical and molecular genetic defect in a 16-year-old patient presenting with apical hypertrophic cardiomyopathy and neuropathy suspected for a mitochondrial disorder.Measurement of the mitochondrial energy-generating system (MEGS) capacity in muscle and enzyme analysis in muscle and fibroblasts were performed. Relevant parts of the mitochondrial DNA were analysed by sequencing.A homoplasmic nonsense mutation m.8529G→A (p.Trp55X) was found in the mitochondrial ATP8 gene in the patient's fibroblasts and muscle tissue. Reduced complex V activity was measured in the patient's fibroblasts and muscle tissue, and was confirmed in cybrid clones containing patient-derived mitochondrial DNAWe describe the first pathogenic mutation in the mitochondrial ATP8 gene, resulting in an improper assembly and reduced activity of the complex V holoenzyme. PMID:21686774

  5. Homozygous beta zero-39 mutation with thalassemia intermedia in northern Sardinia: clinical, hematological and molecular analysis.

    PubMed

    Oggiano, L; Dore, F; Pistidda, P; Guiso, L; Manca, L; Masala, B; Pirastu, M; Rosatelli, C; Cao, A; Longinotti, M

    1988-01-01

    In this study, we investigated the clinical and hematological features and carried out alpha- and beta-globin gene analyses in 11 Sardinian adult beta zero-thalassemia homozygotes from Northern Sardinia who were not transfusion-dependent. Oligonucleotide analysis revealed in nine out of 11 patients the nonsense mutation at codon 39, which was associated either with haplotype II or IX (14/16 and 2/16 chromosomes, respectively). Haplotype II was linked to the A gamma T mutation. The G gamma globin level ranged from 50 to 70%. Four out of nine patients (44%) were heterozygous and 3/9 (33%) homozygous for the rightward deletional type of alpha-thalassemia; two (22%) had the normal alpha-gene complement. Patients who were alpha-thalassemia homozygotes (-alpha/-alpha) showed a more balanced globin chain synthesis ratio. This study confirms that alpha-thalassemia may ameliorate the clinical picture of homozygous beta zero-thalassemia. PMID:2905346

  6. PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans.

    PubMed

    Grall, Anaïs; Guaguère, Eric; Planchais, Sandrine; Grond, Susanne; Bourrat, Emmanuelle; Hausser, Ingrid; Hitte, Christophe; Le Gallo, Matthieu; Derbois, Céline; Kim, Gwang-Jin; Lagoutte, Laëtitia; Degorce-Rubiales, Frédérique; Radner, Franz P W; Thomas, Anne; Küry, Sébastien; Bensignor, Emmanuel; Fontaine, Jacques; Pin, Didier; Zimmermann, Robert; Zechner, Rudolf; Lathrop, Mark; Galibert, Francis; André, Catherine; Fischer, Judith

    2012-02-01

    Ichthyoses comprise a heterogeneous group of genodermatoses characterized by abnormal desquamation over the whole body, for which the genetic causes of several human forms remain unknown. We used a spontaneous dog model in the golden retriever breed, which is affected by a lamellar ichthyosis resembling human autosomal recessive congenital ichthyoses (ARCI), to carry out a genome-wide association study. We identified a homozygous insertion-deletion (indel) mutation in PNPLA1 that leads to a premature stop codon in all affected golden retriever dogs. We subsequently found one missense and one nonsense mutation in the catalytic domain of human PNPLA1 in six individuals with ARCI from two families. Further experiments highlighted the importance of PNPLA1 in the formation of the epidermal lipid barrier. This study identifies a new gene involved in human ichthyoses and provides insights into the localization and function of this yet uncharacterized member of the PNPLA protein family. PMID:22246504

  7. Phenotypic overlap among paroxysmal dyskinesia subtypes: Lesson from a family with PRRT2 gene mutation.

    PubMed

    Wang, Kang; Zhao, Xiaoyu; Du, Yue; He, Fangping; Peng, Guoping; Luo, Benyan

    2013-08-01

    Paroxysmal dyskinesia (PD) is a group of rare neurological conditions which was divided into paroxysmal kinesigenic dyskinesia (PKD), paroxysmal non-kinesigenic dyskinesia (PNKD) and paroxysmal exercise-induced dyskinesia (PED) according to their clinical features. PRRT2 gene was initially identified as the major gene responsible for PKD followed by presence of various PRRT2 mutations discovered in families with benign familial infantile convulsions (BFIC) and infantile convulsions and choreoathetosis (ICCA). We describe a family with characteristic PD showing overlaps in clinical pictures among the three PD subgroups, and a nonsense PRRT2 mutation c.649C>T (p.Arg217X) was also detected. This broadens the phenotypic spectrum in PRRT2-related disorders. In addition, an unusual exercise trigger observed in the proband, likely representing an underestimated occurrence, together with the current clinical PD classification is also elucidated. PMID:22902309

  8. A novel hemizygous SACS mutation identified by whole exome sequencing and SNP array analysis in a Chinese ARSACS patient.

    PubMed

    Liu, L; Li, X B; Zi, X H; Shen, L; Hu, Zh M; Huang, Sh X; Yu, D L; Li, H B; Xia, K; Tang, B S; Zhang, R X

    2016-03-15

    The array of autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) has expanded worldwide after the first description in the Charlevoix-Saguenay region of Québec. Here, we report a Chinese ARSACS patient presenting progressive peripheral neuropathy (CMTNS2=15) with horizontal gaze nystagmus and mild spastic gait. Genetic studies including whole exome sequencing (WES), Sanger sequencing and single nucleotide polymorphism (SNP) array analysis revealed a novel hemizygous nonsense mutation (c.11803C>T, p.Gln3935X) of SACS and a 1.33Mb deletion involved in SACS on chromosome 13q12.12 in the patient. Our findings highlight the necessity of SACS mutation screening in the gene panel of inherited peripheral neuropathies, and stress the need of testing copy number variation (CNV) in SACS mutation screening. PMID:26944128

  9. Mutation in Human Desmoplakin Domain Binding to Plakoglobin Causes a Dominant Form of Arrhythmogenic Right Ventricular Cardiomyopathy

    PubMed Central

    Rampazzo, Alessandra; Nava, Andrea; Malacrida, Sandro; Beffagna, Giorgia; Bauce, Barbara; Rossi, Valeria; Zimbello, Rosanna; Simionati, Barbara; Basso, Cristina; Thiene, Gaetano; Towbin, Jeffrey A.; Danieli, Gian A.

    2002-01-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVD/C) is a genetically heterogeneous disease characterized by progressive degeneration of the right ventricular myocardium and increased risk of sudden death. Here, we report on a genome scan in one Italian family in which the disease appeared unlinked to any of the six different ARVD loci reported so far; we identify a mutation (S299R) in exon 7 of desmoplakin (DSP), which modifies a putative phosphorylation site in the N-terminal domain binding plakoglobin. It is interesting that a nonsense DSP mutation was reported elsewhere in the literature, inherited as a recessive trait and causing a biventricular dilative cardiomyopathy associated with palmoplantar keratoderma and woolly hairs. Therefore, different DSP mutations might produce different clinical phenotypes, with different modes of inheritance. PMID:12373648

  10. Identification of eight mutations and three sequence variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene

    SciTech Connect

    Ghanem, N.; Costes, B.; Girodon, E.; Martin, J.; Fanen, P.; Goossens, M. )

    1994-05-15

    To determine cystic fibrosis (CF) defects in a sample of 224 non-[Delta]F508 CF chromosomes, the authors used denaturing gradient gel multiplex analysis of CF transmembrane conductance regulator gene segments, a strategy based on blind exhaustive analysis rather than a search for known mutations. This process allowed detection of 11 novel variations comprising two nonsense mutations (Q890X and W1204X), a splice defect (405 + 4 A [yields] G), a frameshift (3293delA), four presumed missense mutations (S912L, H949Y, L1065P, Q1071P), and three sequence polymorphisms (R31C or 223 C/T, 3471 T/C, and T1220I or 3791 C/T). The authors describe these variations, together with the associated phenotype when defects on both CF chromosomes were identified. 8 refs., 1 fig., 1 tab.

  11. Novel mutations in SKIV2L and TTC37 genes in Malaysian children with trichohepatoenteric syndrome.

    PubMed

    Lee, Way Seah; Teo, Kai Ming; Ng, Ruey Terng; Chong, Sze Yee; Kee, Boon Pin; Chua, Kek Heng

    2016-07-15

    Trichohepatoenteric syndrome (THES) is a rare autosomal recessive disorder that is classically associated with intractable diarrhea with an onset within the first few months of life. Herein, we investigated and reported novel mutations in two causal genes in 3 Malaysian cases. Genomic DNA was extracted from peripheral blood obtained from patients in two Malaysian Chinese families. The exons of SKIV2L and TTC37 genes were amplified and sequenced by bi-directional sequencing to identify the point mutations within the coding sequence. Three Chinese boys from two families with characteristic features and clinical course were diagnosed with THES. In family-1, two point mutations were identified in the SKIV2L gene (c.1891G>A and c.3187C>T). In family-2, a single-nucleotide duplication (c.3426dupA) was found in the TTC37 gene. These mutations cause the production of abnormal non-functional gene product leading to the clinical manifestations in the patients. We reported three point mutations, which have not been previously described in other patients with THES in SKIV2L and TTC37 genes, including one nonsense, one frameshift, and one missense mutations. PMID:27050310

  12. Functional Studies of MLC1 Mutations in Chinese Patients with Megalencephalic Leukoencephalopathy with Subcortical Cysts

    PubMed Central

    Shang, Jing; Kou, Liping; Guo, Mangmang; Wu, Ye; Gu, Qiang; Colman, David; Wu, Xiru; Jiang, Yuwu

    2012-01-01

    Megalencephalic leukoencephalopathy with subcortical cysts (MLC, MIM# 604004) is an autosomal recessive inherited disease mostly resulting from MLC1 mutations. In this study, we finished the functional analysis of MLC1 mutations identified recently in Chinese patients, including five newly described missense mutations (R22Q, A32V, G73E, A275T, Y278H), one known nonsense mutation (Y198X), and two known missense mutations (S69L, T118M). We found MLC1wt was localized to the cell periphery, whereas mutant R22Q, A32V, G73E, S69L and T118M were trapped in the lumen of endoplasmic reticulum (ER) when we transfected the wild-type and mutant MLC1 in U373MG cells. Compared to wild type, the mutant G73E, T118M, Y198X and A275T transcript decreased and all mutants except R22Q had lower protein expression in transfected U373MG cells. Therefore, we propose that all these eight MLC1 mutations had functional effect either on their protein/mRNA expression, or on their intracellular protein localization, or both. PMID:22416245

  13. Repair of Single-Point Mutations by Polypurine Reverse Hoogsteen Hairpins

    PubMed Central

    Solé, Anna; Villalobos, Xenia; Noé, Véronique

    2014-01-01

    Abstract Polypurine reverse Hoogsteen hairpins (PPRHs) are formed by two intramolecularly bound antiparallel homopurine domains linked by a five-thymidine loop. One of the homopurine strands binds with antiparallel orientation by Watson–Crick bonds to the polypyrimidine target sequence, forming a triplex. We had previously reported the ability of PPRHs to effectively bind dsDNA displacing the fourth strand away from the newly formed triplex. The main goal of this work was to explore the possibility of repairing a point mutation in mammalian cells using PPRHs as tools. These repair-PPRHs contain different combinations of extended sequences of DNA with the corrected nucleotide to repair the point mutation. As a model we used the dihydrofolate reductase gene. On the one hand, we demonstrate in vitro that PPRHs bind specifically to their polypyrimidine target sequence, opening the two strands of the dsDNA, and allowing the binding of a given repair oligonucleotide to the displaced strand of the DNA. Subsequently, we show at a cellular level (Chinese ovary hamster cells) that repair-PPRHs are able to correct a single-point mutation in a dihydrofolate reductase minigene bearing a nonsense mutation, both in an extrachromosomal location and when the mutated plasmid was stably transfected into the cells. Finally, this methodology was successfully applied to repair a single-point mutation at the endogenous locus, using the DA5 cell line with a deleted nucleotide in exon six of the dhfr gene. PMID:25222154

  14. Novel Patched 1 mutations in patients with nevoid basal cell carcinoma syndrome – case report

    PubMed Central

    Škodrić-Trifunović, Vesna; Stjepanović, Mihailo; Savić, Živorad; Ilić, Miroslav; Kavečan, Ivana; Jovanović Privrodski, Jadranka; Spasovski, Vesna; Stojiljković, Maja; Pavlović, Sonja

    2015-01-01

    Nevoid basal cell carcinoma syndrome (Gorlin syndrome) is a rare autosomal dominant disorder characterized by numerous basal cell carcinomas, keratocystic odontogenic tumors of the jaws, and diverse developmental defects. This disorder is associated with mutations in tumor suppressor gene Patched 1 (PTCH1). We present two patients with Gorlin syndrome, one sporadic and one familial. Clinical examination, radiological, and CT imaging, and mutation screening of PTCH1 gene were performed. Family members, as well as eleven healthy controls were included in the study. Both patients fulfilled the specific criteria for diagnosis of Gorlin syndrome. Molecular analysis of the first patient showed a novel frameshift mutation in exon 6 of PTCH1gene (c.903delT). Additionally, a somatic frameshift mutation in exon 21 (c.3524delT) along with germline mutation in exon 6 was detected in tumor-derived tissue sample of this patient. Analysis of the second patient, as well as two affected family members, revealed a novel nonsense germline mutation in exon 8 (c.1148 C>A). PMID:25727044

  15. Truncating and missense mutations in IGHMBP2 cause Charcot-Marie Tooth disease type 2.

    PubMed

    Cottenie, Ellen; Kochanski, Andrzej; Jordanova, Albena; Bansagi, Boglarka; Zimon, Magdalena; Horga, Alejandro; Jaunmuktane, Zane; Saveri, Paola; Rasic, Vedrana Milic; Baets, Jonathan; Bartsakoulia, Marina; Ploski, Rafal; Teterycz, Pawel; Nikolic, Milos; Quinlivan, Ros; Laura, Matilde; Sweeney, Mary G; Taroni, Franco; Lunn, Michael P; Moroni, Isabella; Gonzalez, Michael; Hanna, Michael G; Bettencourt, Conceicao; Chabrol, Elodie; Franke, Andre; von Au, Katja; Schilhabel, Markus; Kabzińska, Dagmara; Hausmanowa-Petrusewicz, Irena; Brandner, Sebastian; Lim, Siew Choo; Song, Haiwei; Choi, Byung-Ok; Horvath, Rita; Chung, Ki-Wha; Zuchner, Stephan; Pareyson, Davide; Harms, Matthew; Reilly, Mary M; Houlden, Henry

    2014-11-01

    Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-μ-binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 mutations in CMT2 were mainly loss-of-function nonsense in the 5' region of the gene in combination with a truncating frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels. PMID:25439726

  16. Alterations of the IKBKG locus and diseases: an update and a report of 13 novel mutations.

    PubMed

    Fusco, Francesca; Pescatore, Alessandra; Bal, Elodie; Ghoul, Aida; Paciolla, Mariateresa; Lioi, Maria Brigida; D'Urso, Michele; Rabia, Smail Hadj; Bodemer, Christine; Bonnefont, Jean Paul; Munnich, Arnold; Miano, Maria Giuseppina; Smahi, Asma; Ursini, Matilde Valeria

    2008-05-01

    Mutations in the inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma (IKBKG), also called nuclear factor-kappaB (NF-kB) essential modulator (NEMO), gene are the most common single cause of incontinentia pigmenti (IP) in females and anhydrotic ectodermal dysplasia with immunodeficiency (EDA-ID) in males. The IKBKG gene, located in the Xq28 chromosomal region, encodes for the regulatory subunit of the inhibitor of kappaB (IkB) kinase (IKK) complex required for the activation of the NF-kB pathway. Therefore, the remarkably heterogeneous and often severe clinical presentation reported in IP is due to the pleiotropic role of this signaling transcription pathway. A recurrent exon 4_10 genomic rearrangement in the IKBKG gene accounts for 60 to 80% of IP-causing mutations. Besides the IKBKG rearrangement found in IP females (which is lethal in males), a total of 69 different small mutations (missense, frameshift, nonsense, and splice-site mutations) have been reported, including 13 novel ones in this work. The updated distribution of all the IP- and EDA-ID-causing mutations along the IKBKG gene highlights a secondary hotspot mutation in exon 10, which contains only 11% of the protein. Furthermore, familial inheritance analysis revealed an unexpectedly high incidence of sporadic cases (>65%). The sum of the observations can aid both in determining the molecular basis of IP and EDA-ID allelic diseases, and in genetic counseling in affected families. PMID:18350553

  17. How the Leopard Hides Its Spots: ASIP Mutations and Melanism in Wild Cats

    PubMed Central

    Schneider, Alexsandra; David, Victor A.; Johnson, Warren E.; O'Brien, Stephen J.; Barsh, Gregory S.; Menotti-Raymond, Marilyn; Eizirik, Eduardo

    2012-01-01

    The occurrence of melanism (darkening of the background coloration) is documented in 13 felid species, in some cases reaching high frequencies at the population level. Recent analyses have indicated that it arose multiple times in the Felidae, with three different species exhibiting unique mutations associated with this trait. The causative mutations in the remaining species have so far not been identified, precluding a broader assessment of the evolutionary dynamics of melanism in the Felidae. Among these, the leopard (Panthera pardus) is a particularly important target for research, given the iconic status of the ‘black panther’ and the extremely high frequency of melanism observed in some Asian populations. Another felid species from the same region, the Asian golden cat (Pardofelis temminckii), also exhibits frequent records of melanism in some areas. We have sequenced the coding region of the Agouti Signaling Protein (ASIP) gene in multiple leopard and Asian golden cat individuals, and identified distinct mutations strongly associated with melanism in each of them. The single nucleotide polymorphism (SNP) detected among the P. pardus individuals was caused by a nonsense mutation predicted to completely ablate ASIP function. A different SNP was identified in P. temminckii, causing a predicted amino acid change that should also induce loss of function. Our results reveal two additional cases of species-specific mutations implicated in melanism in the Felidae, and indicate that ASIP mutations may play an important role in naturally-occurring coloration polymorphism. PMID:23251368

  18. How the leopard hides its spots: ASIP mutations and melanism in wild cats.

    PubMed

    Schneider, Alexsandra; David, Victor A; Johnson, Warren E; O'Brien, Stephen J; Barsh, Gregory S; Menotti-Raymond, Marilyn; Eizirik, Eduardo

    2012-01-01

    The occurrence of melanism (darkening of the background coloration) is documented in 13 felid species, in some cases reaching high frequencies at the population level. Recent analyses have indicated that it arose multiple times in the Felidae, with three different species exhibiting unique mutations associated with this trait. The causative mutations in the remaining species have so far not been identified, precluding a broader assessment of the evolutionary dynamics of melanism in the Felidae. Among these, the leopard (Panthera pardus) is a particularly important target for research, given the iconic status of the 'black panther' and the extremely high frequency of melanism observed in some Asian populations. Another felid species from the same region, the Asian golden cat (Pardofelis temminckii), also exhibits frequent records of melanism in some areas. We have sequenced the coding region of the Agouti Signaling Protein (ASIP) gene in multiple leopard and Asian golden cat individuals, and identified distinct mutations strongly associated with melanism in each of them. The single nucleotide polymorphism (SNP) detected among the P. pardus individuals was caused by a nonsense mutation predicted to completely ablate ASIP function. A different SNP was identified in P. temminckii, causing a predicted amino acid change that should also induce loss of function. Our results reveal two additional cases of species-specific mutations implicated in melanism in the Felidae, and indicate that ASIP mutations may play an important role in naturally-occurring coloration polymorphism. PMID:23251368

  19. Concentration of mutations causing Schmid metaphyseal chondrodysplasia in the NC1 domain of type X collagen

    SciTech Connect

    McIntosh, I.; Abbott, M.H.; Francomano, C.A.

    1994-09-01

    Schmid metaphyseal chondrodysplasia (SMCD, MIM 156500) is an autosomal dominant disorder of the osseous skeleton resulting in short stature, coxa vara and a waddling gait. Type X collagen is an extracellular matrix protein expressed exclusively by hypertrophic chondrocytes. We have previously identified four mutations in the type X collagen gene (COL10A1) in patients with SMCD. Each of these mutations, as well as another three reported by other investigators, are in the carboxy-terminal non-collagenous domain (NC1). Here, we present data for another three mutations each predicted to cause premature termination of translation within the NC1 domain. Two are nonsense mutations, Y628X and W651X, while the third is a frameshift resulting from the deletion of two nucleotides, 1856delCC. Each of these mutations occurred de novo, resulting in sporadic cases of SMCD. Four frameshift mutations have now been reported to initiate within 10bp of each other in the NC1 domain, namely 1865delC, 1856delCC, 1856del13 and 1866del10. These findings further support the hypothesis that SMCD is the result of the mutant type X collagen molecule being unable to participate in trimerization, although a dominant-negative model of disease pathogenesis has not been formally excluded.

  20. Different inactivating mutations of the mineralocorticoid receptor in fourteen families affected by type I pseudohypoaldosteronism.

    PubMed

    Sartorato, Paola; Lapeyraque, Anne-Laure; Armanini, Decio; Kuhnle, Ursula; Khaldi, Yasmina; Salomon, Rémi; Abadie, Véronique; Di Battista, Eliana; Naselli, Arturo; Racine, Alain; Bosio, Maurizio; Caprio, Massimiliano; Poulet-Young, Véronique; Chabrolle, Jean-Pierre; Niaudet, Patrick; De Gennes, Christiane; Lecornec, Marie-Hélène; Poisson, Elodie; Fusco, Anna Maria; Loli, Paola; Lombès, Marc; Zennaro, Maria-Christina

    2003-06-01

    We have analyzed the human mineralocorticoid receptor (hMR) gene in 14 families with autosomal dominant or sporadic pseudohypoaldosteronism (PHA1), a rare form of mineralocorticoid resistance characterized by neonatal renal salt wasting and failure to thrive. Six heterozygous mutations were detected. Two frameshift mutations in exon 2 (insT1354, del8bp537) and one nonsense mutation in exon 4 (C2157A, Cys645stop) generate truncated proteins due to premature stop codons. Three missense mutations (G633R, Q776R, L979P) differently affect hMR function. The DNA binding domain mutant R633 exhibits reduced maximal transactivation, although its binding characteristics and ED(50) of transactivation are comparable with wild-type hMR. Ligand binding domain mutants R776 and P979 present reduced or absent aldosterone binding, respectively, which is associated with reduced or absent ligand-dependent transactivation capacity. Finally, P979 possesses a transdominant negative effect on wild-type hMR activity, whereas mutations G633R and Q776R probably result in haploinsufficiency in PHA1 patients. We conclude that hMR mutations are a common feature of autosomal dominant PHA1, being found in 70% of our familial cases. Their absence in some families underscores the importance of an extensive investigation of the hMR gene and the role of precise diagnostic procedures to allow for identification of other genes potentially involved in the disease. PMID:12788847

  1. Expanded Genetic Codes Create New Mutational Routes to Rifampicin Resistance in Escherichia coli.

    PubMed

    Hammerling, Michael J; Gollihar, Jimmy; Mortensen, Catherine; Alnahhas, Razan N; Ellington, Andrew D; Barrick, Jeffrey E

    2016-08-01

    Until recently, evolutionary questions surrounding the nature of the genetic code have been mostly limited to the realm of conjecture, modeling, and simulation due to the difficulty of altering this fundamental property of living organisms. Concerted genome and protein engineering efforts now make it possible to experimentally study the impact of alternative genetic codes on the evolution of biological systems. We explored how Escherichia coli strains that incorporate a 21st nonstandard amino acid (nsAA) at the recoded amber (TAG) stop codon evolve resistance to the antibiotic rifampicin. Resistance to rifampicin arises from chromosomal mutations in the β subunit of RNA polymerase (RpoB). We found that a variety of mutations that lead to substitutions of nsAAs in the essential RpoB protein confer robust rifampicin resistance. We interpret these results in a framework in which an expanded code can increase evolvability in two distinct ways: by adding a new letter with unique chemical properties to the protein alphabet and by altering the mutational connectivity of amber-adjacent codons by converting a lethal nonsense mutation into a missense mutation. Finally, we consider the implications of these results for the evolution of alternative genetic codes. In our experiments, reliance on a mutation to a reassigned codon for a vital trait is not required for the long-term maintenance of an expanded genetic code and may even destabilize incorporation of an nsAA, a result that is consistent with the codon capture model of genetic code evolution. PMID:27189550

  2. TRPM1 Is Mutated in Patients with Autosomal-Recessive Complete Congenital Stationary Night Blindness

    PubMed Central

    Audo, Isabelle; Kohl, Susanne; Leroy, Bart P.; Munier, Francis L.; Guillonneau, Xavier; Mohand-Saïd, Saddek; Bujakowska, Kinga; Nandrot, Emeline F.; Lorenz, Birgit; Preising, Markus; Kellner, Ulrich; Renner, Agnes B.; Bernd, Antje; Antonio, Aline; Moskova-Doumanova, Veselina; Lancelot, Marie-Elise; Poloschek, Charlotte M.; Drumare, Isabelle; Defoort-Dhellemmes, Sabine; Wissinger, Bernd; Léveillard, Thierry; Hamel, Christian P.; Schorderet, Daniel F.; De Baere, Elfride; Berger, Wolfgang; Jacobson, Samuel G.; Zrenner, Eberhart; Sahel, José-Alain; Bhattacharya, Shomi S.; Zeitz, Christina

    2009-01-01

    Night vision requires signaling from rod photoreceptors to adjacent bipolar cells in the retina. Mutations in the genes NYX and GRM6, expressed in ON bipolar cells, lead to a disruption of the ON bipolar cell response. This dysfunction is present in patients with complete X-linked and autosomal-recessive congenital stationary night blindness (CSNB) and can be assessed by standard full-field electroretinography (ERG), showing severely reduced rod b-wave amplitude and slightly altered cone responses. Although many cases of complete CSNB (cCSNB) are caused by mutations in NYX and GRM6, in ∼60% of the patients the gene defect remains unknown. Animal models of human diseases are a good source for candidate genes, and we noted that a cCSNB phenotype present in homozygous Appaloosa horses is associated with downregulation of TRPM1. TRPM1, belonging to the family of transient receptor potential channels, is expressed in ON bipolar cells and therefore qualifies as an excellent candidate. Indeed, mutation analysis of 38 patients with CSNB identified ten unrelated cCSNB patients with 14 different mutations in this gene. The mutation spectrum comprises missense, splice-site, deletion, and nonsense mutations. We propose that the cCSNB phenotype in these patients is due to the absence of functional TRPM1 in retinal ON bipolar cells. PMID:19896113

  3. DEPDC5 mutations are not a frequent cause of familial temporal lobe epilepsy.

    PubMed

    Striano, Pasquale; Serioli, Elena; Santulli, Lia; Manna, Ida; Labate, Angelo; Dazzo, Emanuela; Pasini, Elena; Gambardella, Antonio; Michelucci, Roberto; Striano, Salvatore; Nobile, Carlo

    2015-10-01

    Mutations in the DEPDC5 (DEP domain-containing protein 5) gene are a major cause of familial focal epilepsy with variable foci (FFEVF) and are predicted to account for 12-37% of families with inherited focal epilepsies. To assess the clinical impact of DEPDC5 mutations in familial temporal lobe epilepsy, we screened a collection of Italian families with either autosomal dominant lateral temporal epilepsy (ADLTE) or familial mesial temporal lobe epilepsy (FMTLE). The probands of 28 families classified as ADLTE and 17 families as FMTLE were screened for DEPDC5 mutations by whole exome or targeted massive parallel sequencing. Putative mutations were validated by Sanger sequencing. We identified a DEPDC5 nonsense mutation (c.918C>G; p.Tyr306*) in a family with two affected members, clinically classified as FMTLE. The proband had temporal lobe seizures with prominent psychic symptoms (déjà vu, derealization, and forced thoughts); her mother had temporal lobe seizures, mainly featuring visceral epigastric auras and anxiety. In total, we found a single DEPDC5 mutation in one of (2.2%) 45 families with genetic temporal lobe epilepsy, a proportion much lower than that reported in other inherited focal epilepsies. PMID:26216793

  4. Whole Exome Sequencing Identifies Mutations in Usher Syndrome Genes in Profoundly Deaf Tunisian Patients

    PubMed Central

    Riahi, Zied; Bonnet, Crystel; Zainine, Rim; Lahbib, Saida; Bouyacoub, Yosra; Bechraoui, Rym; Marrakchi, Jihène; Hardelin, Jean-Pierre; Louha, Malek; Largueche, Leila; Ben Yahia, Salim; Kheirallah, Moncef; Elmatri, Leila; Besbes, Ghazi; Abdelhak, Sonia; Petit, Christine

    2015-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3) are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys), in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24), and a nonsense mutation, c.52A>T (p.Lys18*). Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss. PMID:25798947

  5. Expanded mutational spectrum in Cohen syndrome, tissue expression, and transcript variants of COH1.

    PubMed

    Seifert, Wenke; Holder-Espinasse, Muriel; Kühnisch, Jirko; Kahrizi, Kimia; Tzschach, Andreas; Garshasbi, Masoud; Najmabadi, Hossein; Walter Kuss, Andreas; Kress, Wolfram; Laureys, Geneviève; Loeys, Bart; Brilstra, Eva; Mancini, Grazia M S; Dollfus, Hélène; Dahan, Karin; Apse, Kira; Hennies, Hans Christian; Horn, Denise

    2009-02-01

    Cohen syndrome is characterised by mental retardation, postnatal microcephaly, facial dysmorphism, pigmentary retinopathy, myopia, and intermittent neutropenia. Mutations in COH1 (VPS13B) have been found in patients with Cohen syndrome from diverse ethnic origins. We have carried out mutation analysis in twelve novel patients with Cohen syndrome from nine families. In this series, we have identified 13 different mutations in COH1, twelve of these are novel including six frameshift mutations, four nonsense mutations, two splice site mutations, and a one-codon deletion. Since different transcripts of COH1 have been reported previously, we have analysed the expression patterns of COH1 splice variants. The transcript variant NM_152564 including exon 28b showed ubiquitous expression in all examined human tissues. In contrast, human brain and retina showed differential splicing of exon 28 (NM_017890). Moreover, analysis of mouse tissues revealed ubiquitous expression of Coh1 homologous to human NM_152564 in all examined tissues but no prevalent alternative splicing. PMID:19006247

  6. Mutation and the environment

    SciTech Connect

    Mendelsohn, M.L. ); Albertini, R.J. )

    1990-01-01

    This book is organized under the following headings: Plenary lectures; Brook mutational mechanisms; Adduction and DNA damage; Recombination and gene conversion; Repair: Prokoyote mechanisms and induction; Repair: Lower eukaryote and plant mechanisms; Repair: Higher eukaryote mechanisms and selectivity; Repair: Human genes and mechanisms; Mutation: Spectra and mechanisms; Mutation: Shuttle vectors; Mutation: Transgenic animals; New methods: Polymerase chain reaction.

  7. Identification of 31 novel mutations in the F8 gene in Spanish hemophilia A patients: structural analysis of 20 missense mutations suggests new intermolecular binding sites.

    PubMed

    Venceslá, Adoración; Corral-Rodríguez, María Angeles; Baena, Manel; Cornet, Mónica; Domènech, Montserrat; Baiget, Montserrat; Fuentes-Prior, Pablo; Tizzano, Eduardo F

    2008-04-01

    Hemophilia A (HA) is an X-linked bleeding disorder caused by a wide variety of mutations in the factor 8 (F8) gene, leading to absent or deficient factor VIII (FVIII). We analyzed the F8 gene of 267 unrelated Spanish patients with HA. After excluding patients with the common intron-1 and intron-22 inversions and large deletions, we detected 137 individuals with small mutations, 31 of which had not been reported previously. Eleven of these were nonsense, frameshift, and splicing mutations, whereas 20 were missense changes. We assessed the impact of the 20 substitutions based on currently available information about FV and FVIII structure and function relationship, including previously reported results of replacements at these and topologically equivalent positions. Although most changes are likely to cause gross structural perturbations and concomitant cofactor instability, p.Ala375Ser is predicted to affect cofactor activation. Finally, 3 further mutations (p.Pro64Arg, p.Gly494Val, and p.Asp2267Gly) appear to affect cofactor interactions with its carrier protein, von Willebrand factor, with the scavenger receptor low-density lipoprotein receptor-related protein (LRP), and/or with the substrate of the FVIIIapi*FIXa (Xase) complex, factor X. Characterization of these novel mutations is important for adequate genetic counseling in HA families, but also contributes to a better understanding of FVIII structure-function relationship. PMID:18184865

  8. Identification of 31 novel mutations in the F8 gene in Spanish hemophilia A patients: structural analysis of 20 missense mutations suggests new intermolecular binding sites

    PubMed Central

    Venceslá, Adoración; Corral-Rodríguez, María Ángeles; Baena, Manel; Cornet, Mónica; Domènech, Montserrat; Baiget, Montserrat; Fuentes-Prior, Pablo

    2008-01-01

    Hemophilia A (HA) is an X-linked bleeding disorder caused by a wide variety of mutations in the factor 8 (F8) gene, leading to absent or deficient factor VIII (FVIII). We analyzed the F8 gene of 267 unrelated Spanish patients with HA. After excluding patients with the common intron-1 and intron-22 inversions and large deletions, we detected 137 individuals with small mutations, 31 of which had not been reported previously. Eleven of these were nonsense, frameshift, and splicing mutations, whereas 20 were missense changes. We assessed the impact of the 20 substitutions based on currently available information about FV and FVIII structure and function relationship, including previously reported results of replacements at these and topologically equivalent positions. Although most changes are likely to cause gross structural perturbations and concomitant cofactor instability, p.Ala375Ser is predicted to affect cofactor activation. Finally, 3 further mutations (p.Pro64Arg, p.Gly494Val, and p.Asp2267Gly) appear to affect cofactor interactions with its carrier protein, von Willebrand factor, with the scavenger receptor low-density lipoprotein receptor–related protein (LRP), and/or with the substrate of the FVIIIapi•FIXa (Xase) complex, factor X. Characterization of these novel mutations is important for adequate genetic counseling in HA families, but also contributes to a better understanding of FVIII structure-function relationship. PMID:18184865

  9. A novel mutation of the RP1 gene (Lys778ter) associated with autosomal dominant retinitis pigmentosa

    PubMed Central

    Dietrich, K; Jacobi, F K; Tippmann, S; Schmid, R; Zrenner, E; Wissinger, B; Apfelstedt-Sylla, E

    2002-01-01

    Background: Besides the three known genes (RHO, RDS/Peripherin, NRL) involved in autosomal dominant retinitis pigmentosa (adRP), a fourth gene, RP1, has been recently identified. Initial reports suggest that mutations in the RP1 gene are the second most frequent cause of adRP. The clinical findings were described in a family with adRP and a novel mutation in the RP1 gene. Method: Index patients from 15 independent families with adRP in which RHO mutations had been excluded in previous examinations were screened for mutations in the RP1 gene by means of direct DNA sequencing. Evaluation of the RP1 phenotype in patients included funduscopy, kinetic perimetry, dark adapted final threshold test, standard electroretinography and, in one case, multifocal electroretinography. Results: One novel nonsense mutation (Lys778ter) in one of these 15 patients was detected. Cosegregation of the mutation with the disease phenotype could be established in the index patient's family. The phenotype comprises variable expression of clinical disease probably including one case of incomplete penetrance, a onset of symptoms beginning in adulthood, and evidence of regionally varying retinal function loss. Conclusion: The Lys778ter mutation localises inside the critical region harbouring all mutations described so far. The ophthalmic findings support previous observations that variation of disease expression appears as a typical feature of the RP1 phenotype. PMID:11864893

  10. Ten novel HMGCL mutations in 24 patients of different origin with 3-hydroxy-3-methyl-glutaric aciduria.

    PubMed

    Menao, Sebastián; López-Viñas, Eduardo; Mir, Cecilia; Puisac, Beatriz; Gratacós, Esther; Arnedo, María; Carrasco, Patricia; Moreno, Susana; Ramos, Mónica; Gil, María Concepción; Pié, Angeles; Ribes, Antonia; Pérez-Cerda, Celia; Ugarte, Magdalena; Clayton, Peter T; Korman, Stanley H; Serra, Dolors; Asins, Guillermina; Ramos, Feliciano J; Gómez-Puertas, Paulino; Hegardt, Fausto G; Casals, Nuria; Pié, Juan

    2009-03-01

    3-Hydroxy-3-methylglutaric aciduria is a rare autosomal recessive genetic disorder that affects ketogenesis and L-leucine catabolism. The clinical acute symptoms include vomiting, convulsions, metabolic acidosis, hypoketotic hypoglycaemia and lethargy. To date, 33 mutations in 100 patients have been reported in the HMGCL gene. In this study 10 new mutations in 24 patients are described. They include: 5 missense mutations: c.109G>A, c.425C>T, c.521G>A, c.575T>C and c.598A>T, 2 nonsense mutations: c.242G>A and c.559G>T, one small deletion: c.853delC, and 2 mutations in intron regions: c.497+4A>G and c.750+1G>A. Two prevalent mutations were detected, 109G>T (E37X) in 38% of disease alleles analyzed and c.504_505delCT in 10% of them. Although patients are mainly of European origin (71%) and mostly Spanish (54%), the group is ethnically diverse and includes, for the first time, patients from Pakistan, Palestine and Ecuador. We also present a simple, efficient method to express the enzyme and we analyze the possible functional effects of missense mutations. The finding that all identified missense mutations cause a >95% decrease in the enzyme activity, indicates that the disease appears only in very severe genotypes." PMID:19177531

  11. Update of the spectrum of GJB2 gene mutations in 152 Moroccan families with autosomal recessive nonsyndromic hearing loss.

    PubMed

    Bakhchane, Amina; Bousfiha, Amale; Charoute, Hicham; Salime, Sara; Detsouli, Mustapha; Snoussi, Khalid; Nadifi, Sellama; Kabine, Mostafa; Rouba, Hassan; Dehbi, Hind; Roky, Rachida; Charif, Majida; Barakat, Abdelhamid

    2016-06-01

    Deafness is one of the most common genetic diseases in humans and is subject to important genetic heterogeneity. The most common cause of non syndromic hearing loss (NSHL) is mutations in the GJB2 gene. This study aims to update and evaluate the spectrum of GJB2 allele variants in 152 Moroccan multiplex families with non syndromic hearing loss. Seven different mutations were detected: c.35delG, p.V37I, p.E47X, p.G200R, p.Del120E, p.R75Q, the last three mutations were described for the first time in Moroccan deaf patients, in addition to a novel nonsense mutation, the c.385G>T which is not referenced in any database. Sixty six families (43.42%) have mutations in the coding region of GJB2, while the homozygous c.35delG mutation still to date the most represented 51/152 (33.55%). The analysis of the geographical distribution of mutations located in GJB2 gene showed more allelic heterogeneity in the north and center compared to the south of Morocco. Our results showed that the GJB2 gene is a major contributor to non syndromic hearing loss in Morocco. Thus, this report of the GJB2 mutations spectrum all over Morocco has an important implication for establishing a suitable molecular diagnosis. PMID:27169813

  12. A Novel Mutation of the HNF1B Gene Associated With Hypoplastic Glomerulocystic Kidney Disease and Neonatal Renal Failure

    PubMed Central

    Alvelos, Maria Inês; Rodrigues, Magda; Lobo, Luísa; Medeira, Ana; Sousa, Ana Berta; Simão, Carla; Lemos, Manuel Carlos

    2015-01-01

    Abstract Hepatocyte nuclear factor 1 beta (HNF1B) plays an important role in embryonic development, namely in the kidney, pancreas, liver, genital tract, and gut. Heterozygous germline mutations of HNF1B are associated with the renal cysts and diabetes syndrome (RCAD). Affected individuals may present a variety of renal developmental abnormalities and/or maturity-onset diabetes of the young (MODY). A Portuguese 19-month-old male infant was evaluated due to hypoplastic glomerulocystic kidney disease and renal dysfunction diagnosed in the neonatal period that progressed to stage 5 chronic renal disease during the first year of life. His mother was diagnosed with a solitary hypoplastic microcystic left kidney at age 20, with stage 2 chronic renal disease established at age 35, and presented bicornuate uterus, pancreatic atrophy, and gestational diabetes. DNA sequence analysis of HNF1B revealed a novel germline frameshift insertion (c.110_111insC or c.110dupC) in both the child and the mother. A review of the literature revealed a total of 106 different HNF1B mutations, in 236 mutation-positive families, comprising gross deletions (34%), missense mutations (31%), frameshift deletions or insertions (15%), nonsense mutations (11%), and splice-site mutations (8%). The study of this family with an unusual presentation of hypoplastic glomerulocystic kidney disease with neonatal renal dysfunction identified a previously unreported mutation of the HNF1B gene, thereby expanding the spectrum of known mutations associated with renal developmental disorders. PMID:25700310

  13. Novel splice site mutation in the growth hormone receptor gene in Turkish patients with Laron-type dwarfism.

    PubMed

    Arman, Ahmet; Ozon, Alev; Isguven, Pinar S; Coker, Ajda; Peker, Ismail; Yordam, Nursen

    2008-01-01

    Growth hormone (GH) is involved in growth, and fat and carbohydrate metabolism. Interaction of GH with the GH receptor (GHR) is necessary for systemic and local production of insulin-like growth factor-I (IGF-I) which mediates GH actions. Mutations in the GHR cause severe postnatal growth failure; the disorder is an autosomal recessive genetic disease resulting in GH insensitivity, called Laron syndrome. It is characterized by dwarfism with elevated serum GH and low levels of IGF-I. We analyzed the GHR gene for mutations and polymorphisms in eight patients with Laron-type dwarfism from six families. We found three missense mutations (S40L, V125A, I526L), one nonsense mutation (W157X), and one splice site mutation in the extracellular domain of GHR. Furthermore, G168G and exon 3 deletion polymorphisms were detected in patients with Laron syndrome. The splice site mutation, which is a novel mutation, was located at the donor splice site of exon 2/ intron 2 within GHR. Although this mutation changed the highly conserved donor splice site consensus sequence GT to GGT by insertion of a G residue, the intron splicing between exon 2 and exon 3 was detected in the patient. These results imply that the splicing occurs arthe GT site in intron 2, leaving the extra inserted G residue at the end of exon 2, thus changing the open reading frame of GHR resulting in a premature termination codon in exon 3. PMID:18404972

  14. Identification of novel mutations in the VPS33B gene involved in arthrogryposis, renal dysfunction, and cholestasis syndrome.

    PubMed

    Seo, S H; Hwang, S M; Ko, J M; Ko, J S; Hyun, Y J; Cho, S I; Park, H; Kim, S Y; Seong, M-W; Park, S S

    2015-07-01

    Arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome is an autosomal recessive disorder caused by mutations in the VPS33B and VIPAS39. Here, we report novel mutations identified in four patients with ARC syndrome. We analyzed the entire coding regions of the VPS33B and VIPAS39 genes by direct sequencing. To detect novel splice site mutations, mRNA transcripts were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and sequencing. All four patients had compound heterozygous variants in the VPS33B gene. One patient had a previously reported splice site variant with unknown significance, c.239+5G>A, and a novel nonsense mutation, c.621G>A. The other three patients had the c.403+2T>A mutation, and each of them carried one of the splice site variants, c.239+5G>A or c.499-11G>A. c.239+5G>A and c.499-11G>A created novel splice sites which resulted in abnormal transcripts. No significant VIPAS39 mutation was detected in all patients. In patients suspected with ARC syndrome, mutation analysis of the VPS33B gene should be employed as a primary diagnostic test before performing invasive testing procedures such as organ biopsies. Performing mRNA analysis can be useful in predicting the pathogenic phenotype when the mutation seems to affect a normal splicing mechanism. PMID:24917129

  15. Mutational spectrum of the oral-facial-digital type I syndrome: a study on a large collection of patients.

    PubMed

    Prattichizzo, Clelia; Macca, Marina; Novelli, Valeria; Giorgio, Giovanna; Barra, Adriano; Franco, Brunella

    2008-10-01

    Oral-facial-digital type I (OFDI) syndrome is a male-lethal X-linked dominant developmental disorder belonging to the heterogeneous group of oral-facial-digital syndromes (OFDS). OFDI is characterized by malformations of the face, oral cavity, and digits. Central nervous system (CNS) abnormalities and cystic kidney disease can also be part of this condition. This rare genetic disorder is due to mutations in the OFD1 gene that encodes a centrosome/basal body protein necessary for primary cilium assembly and for left-right axis determination, thus ascribing OFDI to the growing number of disorders associated to ciliary dysfunction. We now report a mutation analysis study in a cohort of 100 unrelated affected individuals collected worldwide. Putative disease-causing mutations were identified in 81 patients (81%). We describe 67 different mutations, 64 of which represent novel mutations, including 36 frameshift, nine missense, 11 splice-site, and 11 nonsense mutations. Most of them concentrate in exons 3, 8, 9, 12, 13, and 16, suggesting that these exons may represent mutational hotspots. Phenotypic characterization of the patients provided a better definition of the clinical features of OFDI syndrome. Our results indicate that renal cystic disease is present in 60% of cases >18 years of age. Genotype-phenotype correlation did not reveal significant associations apart for the high-arched/cleft palate most frequently associated to missense and splice-site mutations. Our results contribute to further expand our knowledge on the molecular basis of OFDI syndrome. PMID:18546297

  16. Novel mutations in the USH1C gene in Usher syndrome patients

    PubMed Central

    Aparisi, María José; García-García, Gema; Jaijo, Teresa; Rodrigo, Regina; Graziano, Claudio; Seri, Marco; Simsek, Tulay; Simsek, Enver; Bernal, Sara; Baiget, Montserrat; Pérez-Garrigues, Herminio; Millán, José María

    2010-01-01

    Purpose Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by severe-profound sensorineural hearing loss, retinitis pigmentosa, and vestibular areflexia. To date, five USH1 genes have been identified. One of these genes is Usher syndrome 1C (USH1C), which encodes a protein, harmonin, containing PDZ domains. The aim of the present work was the mutation screening of the USH1C gene in a cohort of 33 Usher syndrome patients, to identify the genetic cause of the disease and to determine the relative involvement of this gene in USH1 pathogenesis in the Spanish population. Methods Thirty-three patients were screened for mutations in the USH1C gene by direct sequencing. Some had already been screened for mutations in the other known USH1 genes (myosin VIIA [MYO7A], cadherin-related 23 [CDH23], protocadherin-related 15 [PCDH15], and Usher syndrome 1G [USH1G]), but no mutation was found. Results Two novel mutations were found in the USH1C gene: a non-sense mutation (p.C224X) and a frame-shift mutation (p.D124TfsX7). These mutations were found in a homozygous state in two unrelated USH1 patients. Conclusions In the present study, we detected two novel pathogenic mutations in the USH1C gene. Our results suggest that mutations in USH1C are responsible for 1.5% of USH1 disease in patients of Spanish origin (considering the total cohort of 65 Spanish USH1 patients since 2005), indicating that USH1C is a rare form of USH in this population. PMID:21203349

  17. The Italian haemophilia B mutation database: a tool for genetic counselling, carrier detection and prenatal diagnosis

    PubMed Central

    Tagariello, Giuseppe; Belvini, Donata; Salviato, Roberta; Di Gaetano, Rosanna; Zanotto, Daniela; Radossi, Paolo; Risato, Renzo; Sartori, Roberto; Tassinari, Cristina

    2007-01-01

    Introduction The Italian database of factor IX gene (F9) mutations has been built since 2001 and is, so far, the most practical instrument for comprehensive genetic counselling, carrier detection and prenatal diagnosis. Over time the haemophilia B database has been enriched by entries on a larger number of patients and molecular genetic data identifying heterogeneous mutations spanning the entire F9. Methods Conformation sensitive gel electrophoresis is a variant of heteroduplex analysis, which has been applied for screening F9 for mutations, which are further fully characterised by direct sequencing of the amplified mutated regions. This project has involved 29 Italian haemophilia centres and provides data concerning the analysis of a cohort of 306 unrelated patients with haemophilia B (191 with severe, 67 with moderate and 48 with mild disease, including 8 patients with severe haemophilia B with inhibitors). The recorded data include levels of factor IX clotting activity, inhibitor status and clinical severity. Results Detailed analysis of the mutations revealed 164 different mutations, that are considered as unique molecular events (8 large deletions, 11 small deletions, 1 combined deletion/ insertion, 2 insertions, 104 missense, 20 nonsense, 14 mutations in a splicing site, 3 in the promoter and 1 silent). The data recorded in the Italian F9 mutation database provided the basis to study 85 families with haemophilia B, involving 180 females (20 obligate carriers, 106 carriers and 54 non-carriers) and enabled 14 prenatal diagnoses to be made in 12 females. Conclusions Genetic analysis is required to determine female carrier status reliably. Female relatives may request carrier analysis, when a male relative is first diagnosed as having haemophilia or when they are pregnant. At present, the data collected in the Italian national register of mutations in haemophilia B provide the opportunity to perform prompt and precise determination of carrier status and prenatal

  18. DMD Mutations in 576 Dystrophinopathy Families: A Step Forward in Genotype-Phenotype Correlations

    PubMed Central

    Rodriguez, Maria Jose; Baena, Manel; Verdura, Edgard; Nascimento, Andres; Ortez, Carlos; Baiget, Montserrat; Gallano, Pia

    2015-01-01

    Recent advances in molecular therapies for Duchenne muscular dystrophy (DMD) require precise genetic diagnosis because most therapeutic strategies are mutation-specific. To understand more about the genotype-phenotype correlations of the DMD gene we performed a comprehensive analysis of the DMD mutational spectrum in a large series of families. Here we provide the clinical, pathological and genetic features of 576 dystrophinopathy patients. DMD gene analysis was performed using the MLPA technique and whole gene sequencing in blood DNA and muscle cDNA. The impact of the DNA variants on mRNA splicing and protein functionality was evaluated by in silico analysis using computational algorithms. DMD mutations were detected in 576 unrelated dystrophinopathy families by combining the analysis of exonic copies and the analysis of small mutations. We found that 471 of these mutations were large intragenic rearrangements. Of these, 406 (70.5%) were exonic deletions, 64 (11.1%) were exonic duplications, and one was a deletion/duplication complex rearrangement (0.2%). Small mutations were identified in 105 cases (18.2%), most being nonsense/frameshift types (75.2%). Mutations in splice sites, however, were relatively frequent (20%). In total, 276 mutations were identified, 85 of which have not been previously described. The diagnostic algorithm used proved to be accurate for the molecular diagnosis of dystrophinopathies. The reading frame rule was fulfilled in 90.4% of DMD patients and in 82.4% of Becker muscular dystrophy patients (BMD), with significant differences between the mutation types. We found that 58% of DMD patients would be included in single exon-exon skipping trials, 63% from strategies directed against multiexon-skipping exons 45 to 55, and 14% from PTC therapy. A detailed analysis of missense mutations provided valuable information about their impact on the protein structure. PMID:26284620

  19. DMD Mutations in 576 Dystrophinopathy Families: A Step Forward in Genotype-Phenotype Correlations.

    PubMed

    Juan-Mateu, Jonas; Gonzalez-Quereda, Lidia; Rodriguez, Maria Jose; Baena, Manel; Verdura, Edgard; Nascimento, Andres; Ortez, Carlos; Baiget, Montserrat; Gallano, Pia

    2015-01-01

    Recent advances in molecular therapies for Duchenne muscular dystrophy (DMD) require precise genetic diagnosis because most therapeutic strategies are mutation-specific. To understand more about the genotype-phenotype correlations of the DMD gene we performed a comprehensive analysis of the DMD mutational spectrum in a large series of families. Here we provide the clinical, pathological and genetic features of 576 dystrophinopathy patients. DMD gene analysis was performed using the MLPA technique and whole gene sequencing in blood DNA and muscle cDNA. The impact of the DNA variants on mRNA splicing and protein functionality was evaluated by in silico analysis using computational algorithms. DMD mutations were detected in 576 unrelated dystrophinopathy families by combining the analysis of exonic copies and the analysis of small mutations. We found that 471 of these mutations were large intragenic rearrangements. Of these, 406 (70.5%) were exonic deletions, 64 (11.1%) were exonic duplications, and one was a deletion/duplication complex rearrangement (0.2%). Small mutations were identified in 105 cases (18.2%), most being nonsense/frameshift types (75.2%). Mutations in splice sites, however, were relatively frequent (20%). In total, 276 mutations were identified, 85 of which have not been previously described. The diagnostic algorithm used proved to be accurate for the molecular diagnosis of dystrophinopathies. The reading frame rule was fulfilled in 90.4% of DMD patients and in 82.4% of Becker muscular dystrophy patients (BMD), with significant differences between the mutation types. We found that 58% of DMD patients would be included in single exon-exon skipping trials, 63% from strategies directed against multiexon-skipping exons 45 to 55, and 14% from PTC therapy. A detailed analysis of missense mutations provided valuable information about their impact on the protein structure. PMID:26284620

  20. Seven Novel Mutations in Bulgarian Patients with Acute Hepatic Porphyrias (AHP).

    PubMed

    Dragneva, Sonya; Szyszka-Niagolov, Monika; Ivanova, Aneta; Mateva, Lyudmila; Izumi, Rumiko; Aoki, Yoko; Matsubara, Yoichi

    2014-01-01

    Acute intermittent porphyria (AIP), variegate porphyria (VP), and hereditary coproporphyria (HCP) are caused by mutations in the hydroxymethylbilane synthase (HMBS), protoporphyrinogen oxidase (PPOX), and coproporphyrinogen oxidase (CPOX) genes, respectively. This study aimed to identify mutations in seven Bulgarian families with AIP, six with VP, and one with HCP. A total of 33 subjects, both symptomatic (n = 21) and asymptomatic (n = 12), were included in this study. The identification of mutations was performed by direct sequencing of all the coding exons of the corresponding enzymes in the probands. The available relatives were screened for the possible mutations. A total of six different mutations in HMBS were detected in all seven families with AIP, three of which were previously described: c.76C>T [p.R26C] in exon 3, c.287C>T [p.S96F] in exon 7, and c.445C>T [p.R149X] in exon 9. The following three novel HMBS mutations were found: c.345-2A>C in intron 7-8, c.279-280insAT in exon 7, and c.887delC in exon 15. A total of three different novel mutations were identified in the PPOX gene in the VP families: c.441-442delCA in exon 5, c.917T>C [p.L306P] in exon 9, and c.1252T>C [p.C418R] in exon 12. A novel nonsense mutation, c.364G>T [p.E122X], in exon 1 of the CPOX gene was identified in the HCP family. This study, which identified mutations in Bulgarian families with AHP for the first time, established seven novel mutation sites. Seven latent carriers were also diagnosed and, therefore, were able to receive crucial counseling to prevent attacks. PMID:24997713

  1. The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins

    SciTech Connect

    Al-Saaidi, Rasha; Rasmussen, Torsten B.; Palmfeldt, Johan; Nissen, Peter H.; Beqqali, Abdelaziz; Hansen, Jakob; Pinto, Yigal M.; Boesen, Thomas; Mogensen, Jens; Bross, Peter

    2013-11-15

    Dilated cardiomyopathy (DCM) is a disease of the heart muscle characterized by cardiac chamber enlargement and reduced systolic function of the left ventricle. Mutations in the LMNA gene represent the most frequent known genetic cause of DCM associated with disease of the conduction systems. The LMNA gene generates two major transcripts encoding the nuclear lamina major components lamin A and lamin C by alternative splicing. Both haploinsuffiency and dominant negative effects have been proposed as disease mechanism for premature termination codon (PTC) mutations in LMNA. These mechanisms however are still not clearly established. In this study, we used a representative LMNA nonsense mutation, p.Arg321Ter, to shed light on the molecular disease mechanisms. Cultured fibroblasts from three DCM patients carrying this mutation were analyzed. Quantitative reverse transcriptase PCR and sequencing of these PCR products indicated that transcripts from the mutant allele were degraded by the nonsense-mediated mRNA decay (NMD) mechanism. The fact that no truncated mutant protein was detectable in western blot (WB) analysis strengthens the notion that the mutant transcript is efficiently degraded. Furthermore, WB analysis showed that the expression of lamin C protein was reduced by the expected approximately 50%. Clearly decreased lamin A and lamin C levels were also observed by immunofluorescence microscopy analysis. However, results from both WB and nano-liquid chromatography/mass spectrometry demonstrated that the levels of lamin A protein were more reduced suggesting an effect on expression of lamin A from the wild type allele. PCR analysis of the ratio of lamin A to lamin C transcripts showed unchanged relative amounts of lamin A transcript suggesting that the effect on the wild type allele was operative at the protein level. Immunofluorescence microscopy analysis showed no abnormal nuclear morphology of patient fibroblast cells. Based on these data, we propose that

  2. Dspp mutations disrupt mineralization homeostasis during odontoblast differentiation

    PubMed Central

    Jia, Jie; Bian, Zhuan; Song, Yaling

    2015-01-01

    The main pathological feature in isolated hereditary dentin disorders is the abnormality of dentin mineralization. Dentin sialophosphoprotein (DSPP) gene is the only identified causative gene for the disorders. The present study aims to explore the molecular association between Dspp mutations and the disrupted mineralization homeostasis during odontoblast differentiation. We generated lentivirus constructs with the mouse full-length wild type Dspp cDNA and 3 Dspp mutants and transfected them into mouse odontoblast-lineage cells (OLCs) which were then performed 21-day mineralization inducing differentiation. The formation of mineralized nodules was obviously fewer in mutants. Digital Gene Expression (DGE) showed that Dspp mutation affected the OLC differentiation in a degree. Further examination validated that Dspp (LV-Dspp) overexpressing OLCs possessed the ability to strictly orchestrate framework for mineralization inductors like Bmp2, Col1 and Runx2, and proliferative markers for mineralization like Alp and Ocn, as well as mineral homeostasis feedback regulators Mgp and Htra1. However, the missense mutation in Dspp signal peptide region (LV-M2) and the nonsense mutation (LV-M5) broke this orchestration. The results suggested that the mutant Dspp disrupt the dynamic homeostasis of mineralization during OLC differentiation. We are the first to use full-length mouse Dspp gene expression system to explore the mineralization mechanism by which inductors and inhibitors adjust each other during odontoblast differentiation. Our findings shed new light on association between Dspp and the dynamic homeostasis of mineralization inductors and inhibitors, and indicate the disruption of mineralization homeostasis might be a crucial reason for Dspp mutations resulting in dentin disorders. PMID:26807185

  3. Canine chondrodysplasia caused by a truncating mutation in collagen-binding integrin alpha subunit 10.

    PubMed

    Kyöstilä, Kaisa; Lappalainen, Anu K; Lohi, Hannes

    2013-01-01

    The skeletal dysplasias are disorders of the bone and cartilage tissues. Similarly to humans, several dog breeds have been reported to suffer from different types of genetic skeletal disorders. We have studied the molecular genetic background of an autosomal recessive chondrodysplasia that affects the Norwegian Elkhound and Karelian Bear Dog breeds. The affected dogs suffer from disproportionate short stature dwarfism of varying severity. Through a genome-wide approach, we mapped the chondrodysplasia locus to a 2-Mb region on canine chromosome 17 in nine affected and nine healthy Elkhounds (praw = 7.42×10(-6), pgenome-wide = 0.013). The associated locus contained a promising candidate gene, cartilage specific integrin alpha 10 (ITGA10), and mutation screening of its 30 exons revealed a nonsense mutation in exon 16 (c.2083C>T; p.Arg695*) that segregated fully with the disease in both breeds (p = 2.5×10(-23)). A 24% mutation carrier frequency was indicated in NEs and an 8% frequency in KBDs. The ITGA10 gene product, integrin receptor α10-subunit combines into a collagen-binding α10β1 integrin receptor, which is expressed in cartilage chondrocytes and mediates chondrocyte-matrix interactions during endochondral ossification. As a consequence of the nonsense mutation, the α10-protein was not detected in the affected cartilage tissue. The canine phenotype highlights the importance of the α10β1 integrin in bone growth, and the large animal model could be utilized to further delineate its specific functions. Finally, this study revealed a candidate gene for human chondrodysplasias and enabled the development of a genetic test for breeding purposes to eradicate the disease from the two dog breeds. PMID:24086591

  4. Microphthalmia-associated transcription factor mutations are associated with white-spotted coat color in swamp buffalo.

    PubMed

    Yusnizar, Y; Wilbe, M; Herlino, A O; Sumantri, C; Noor, R Rachman; Boediono, A; Andersson, L; Andersson, G

    2015-12-01

    A candidate gene analysis of the microphthalmia-associated transcription factor (MITF) gene was used in an attempt to identify the genetic basis for a white-spotted coat color phenotype in the Asian swamp buffalo (Bubalus bubalis carabanensis). Ninety-three buffaloes-32 solid, 38 spotted and 23 white individuals-were Sanger-sequenced for all MITF exons as well as highly conserved intronic and flanking regions. MITF cDNA representing skin and iris tissue from six spotted, nine solid and one white buffaloes was also Sanger-sequenced to confirm detected mutations. Two independent loss-of-function mutations, a premature stop codon (c.328C>T, p.Arg110*) and a donor splice-site mutation (c.840+2T>A, p.Glu281_Leu282Ins8), both of which cause white-spotted coat color in swamp buffaloes, were identified. The nonsense mutation leads to a premature stop codon in exon 3, and likely removal of the resulting mRNA via nonsense-mediated decay pathway, whereas the donor splice-site mutation leads to aberrant splicing of exon 8 that encodes part of a highly conserved region of MITF. The resulting insertion of eight amino acid residues is expected to perturb the leucine zipper part in the basic helix-loop-helix leucine zipper (bHLH-Zip) domain and will most likely influence dimerization and DNA binding capacity. Electrophoretic mobility shift assay was performed using mutant and wild-type MITF proteins and showed that the mutant MITF protein resulting from the splice-site mutation decreased in vitro DNA binding capacity compared to wild-type MITF. White-spotted buffalo bulls are sacrificed in funeral ceremonies in Tana Toraja, Indonesia, because they are considered holy, and our results show that genetic variation causes a tie to the cultural use of these buffaloes. PMID:26417640

  5. Effect of precisely identified mutations in the spoIIAC gene of Bacillus subtilis on the toxicity of the sigma-like gene product to Escherichia coli.

    PubMed

    Yudkin, M D; Harrison, D

    1987-09-01

    Yudkin (1986) has shown that the spoIIAC gene of Bacillus subtilis cannot be cloned in Escherichia coli in such an orientation that it is expressed. This toxicity of the gene product has been attributed to its close homology with the sigma subunit of the E. coli RNA polymerase. The effect of six individual mutations in spoIIAC has now been studied. All six mutant genes could be cloned in E. coli in an orientation that does not allow expression. When in the orientation that permits expression, one mutant gene could not be cloned, and a second substantially hampered growth; both mutations lie in the region that is believed to encode the DNA-binding domain of the protein. By contrast, two missense mutations in the region of the gene thought to encode the domain that binds to the core RNA polymerase rendered the protein harmless in E. coli, as did two nonsense mutations. PMID:3118147

  6. Characterization and Prognostic Value of Mutations in Exons 5 and 6 of the p53 Gene in Patients with Colorectal Cancers in Central Iran

    PubMed Central

    Golmohammadi, Rahim; Namazi, Mohammad J.; Nikbakht, Mehdi; Salehi, Mohammad

    2013-01-01

    Background/Aims We aimed to investigate the relation-ships among various mutations of the p53 gene and their protein products, histological characteristics, and disease prognosis of primary colorectal cancer in Isfahan, central Iran. Methods Sixty-one patients with colorectal adenocarcinoma were enrolled in the study. Mutations of the p53 gene were detected by single-stranded conformation polymorphism and DNA sequencing. The protein stability was evaluated by immunohistochemistry. Patients were followed up to 48 months. Results Twenty-one point mutations in exons 5 and 6 were detected in the tumor specimens of 14 patients (23%). Of those, 81% and 9.5% were missense and nonsense mutations, respectively. There were also two novel mutations in the intronic region between exons 5 and 6. In 11 mutated specimens, protein stability and protein accumulation were identified. There was a relationship between the type of mutation and protein accumulation in exons 5 and 6 of the p53 gene. The presence of the mutation was associated with an advanced stage of cancer (trend, p<0.009). Patients with mutated p53 genes had significantly lower survival rates than those with wild type p53 genes (p<0.01). Conclusions Mutations in exons 5 and 6 of the p53 gene are common genetic alterations in colorectal adenocarcinoma in central Iran and are associated with a poor prognosis of the disease. PMID:23710310

  7. p63 Gene Mutations in EEC Syndrome, Limb-Mammary Syndrome, and Isolated Split Hand–Split Foot Malformation Suggest a Genotype-Phenotype Correlation

    PubMed Central

    van Bokhoven, Hans; Hamel, Ben C. J.; Bamshad, Mike; Sangiorgi, Eugenio; Gurrieri, Fiorella; Duijf, Pascal H. G.; Vanmolkot, Kaate R. J.; van Beusekom, Ellen; van Beersum, Sylvia E. C.; Celli, Jacopo; Merkx, Gerard F. M.; Tenconi, Romano; Fryns, Jean Pierre; Verloes, Alain; Newbury-Ecob, Ruth A.; Raas-Rotschild, Annick; Majewski, Frank; Beemer, Frits A.; Janecke, Andreas; Chitayat, David; Crisponi, Giangiorgio; Kayserili, Hülya; Yates, John R. W.; Neri, Giovanni; Brunner, Han G.

    2001-01-01

    p63 mutations have been associated with EEC syndrome (ectrodactyly, ectodermal dysplasia, and cleft lip/palate), as well as with nonsyndromic split hand–split foot malformation (SHFM). We performed p63 mutation analysis in a sample of 43 individuals and families affected with EEC syndrome, in 35 individuals affected with SHFM, and in three families with the EEC-like condition limb-mammary syndrome (LMS), which is characterized by ectrodactyly, cleft palate, and mammary-gland abnormalities. The results differed for these three conditions. p63 gene mutations were detected in almost all (40/43) individuals affected with EEC syndrome. Apart from a frameshift mutation in exon 13, all other EEC mutations were missense, predominantly involving codons 204, 227, 279, 280, and 304. In contrast, p63 mutations were detected in only a small proportion (4/35) of patients with isolated SHFM. p63 mutations in SHFM included three novel mutations: a missense mutation (K193E), a nonsense mutation (Q634X), and a mutation in the 3′ splice site for exon 5. The fourth SHFM mutation (R280H) in this series was also found in a patient with classical EEC syndrome, suggesting partial overlap between the EEC and SHFM mutational spectra. The original family with LMS (van Bokhoven et al. 1999) had no detectable p63 mutation, although it clearly localizes to the p63 locus in 3q27. In two other small kindreds affected with LMS, frameshift mutations were detected in exons 13 and 14, respectively. The combined data show that p63 is the major gene for EEC syndrome, and that it makes a modest contribution to SHFM. There appears to be a genotype-phenotype correlation, in that there is a specific pattern of missense mutations in EEC syndrome that are not generally found in SHFM or LMS. PMID:11462173

  8. Down-regulation of C12orf59 is associated with a poor prognosis and VHL mutations in renal cell carcinoma

    PubMed Central

    Wu, Jianting; Li, Cailing; Luo, Liya; Xia, Lingling; Li, Xianxin; Gui, Yaoting; Cai, Zhiming; Li, Zesong

    2016-01-01

    C12orf59 is newly identified gene in kidney. However, the relation of C12orf59 expression and clinic features is unknown. Here, our study showed that C12orf59 was broadly expressed in normal human tissues with high expression levels in kidney while its expression is beyond detectable in a panel of cancer cell lines. C12orf59 expression in RCC was significantly decreased compared with corresponding adjacent noncancerous tissues (P < 0.01). The decreased C12orf59 expression was correlated with lymph node status (P < 0.05), distant metastases (P < 0.05), poor survival (P < 0.001) (HR 3.00; 95% CI, 1.29–7.53), VHL non-sense mutations or frame-shift mutations (P < 0.01), and UMPP gene non-sense mutations or frame-shift mutations (P = 0.01). Thus, we propose that the decreased C12orf59 expression status is a prognostic biomarker of ccRCC and cooperates with the loss of VHL all the while promoting renal carcinogenesis. PMID:26758419

  9. A brachytic dwarfism trait (dw) in peach trees is caused by a nonsense mutation within the gibberellic acid receptor PpeGID1c.

    PubMed

    Hollender, Courtney A; Hadiarto, Toto; Srinivasan, Chinnathambi; Scorza, Ralph; Dardick, Chris

    2016-04-01

    Little is known about the genetic factors controlling tree size and shape. Here, we studied the genetic basis for a recessive brachytic dwarfism trait (dw) in peach (Prunus persica) that has little or no effect on fruit development. A sequencing-based mapping strategy positioned dw on the distal end of chromosome 6. Further sequence analysis and fine mapping identified a candidate gene for dw as a non-functional allele of the gibberellic acid receptor GID1c. Expression of the two GID1-like genes found in peach, PpeGID1c and PpeGID1b, was analyzed. GID1c was predominantly expressed in actively growing vegetative tissues, whereas GID1b was more highly expressed in reproductive tissues. Silencing of GID1c in plum via transgenic expression of a hairpin construct led to a dwarf phenotype similar to that of dw/dw peaches. In general, the degree of GID1c silencing corresponded to the degree of dwarfing. The results suggest that PpeGID1c serves a primary role in vegetative growth and elongation, whereas GID1b probably functions to regulate gibberellic acid perception in reproductive organs. Modification of GID1c expression could provide a rational approach to control tree size without impairing fruit development. PMID:26639453

  10. Mapping of the Proteinase B Structural Gene PRB1, in SACCHAROMYCES CEREVISIAE and Identification of Nonsense Alleles within the Locus

    PubMed Central

    Zubenko, George S.; Mitchell, Aaron P.; Jones, Elizabeth W.

    1980-01-01

    We report the mapping of the structural gene for proteinase B, PRB1. It is located 1.1 cM proximal to CAN1 on the left arm of chromosome V of Saccharomyces cerevisiae. We have identified 34 amber and 12 ochre mutations among the 126 prb1 mutations in our collection. PMID:7009321

  11. SBP2 binding affinity is a major determinant in differential selenoprotein mRNA translation and sensitivity to nonsense-mediated decay.

    PubMed

    Squires, Jeffrey E; Stoytchev, Ilko; Forry, Erin P; Berry, Marla J

    2007-11-01

    Selenoprotein mRNAs are potential targets for degradation via nonsense-mediated decay due to the presence of in-frame UGA codons that can be decoded as either selenocysteine or termination codons. When UGA decoding is inefficient, as occurs when selenium is limiting, termination occurs at these positions. Based on the predicted exon-intron structure, 14 of the 25 human selenoprotein mRNAs are predicted to be sensitive to nonsense-mediated decay. Among these, sensitivity varies widely, resulting in a hierarchy of preservation or degradation of selenoprotein mRNAs and, thus, of selenoprotein synthesis. Potential factors in dictating the hierarchy of selenoprotein synthesis are the Sec insertion sequence RNA-binding proteins, SBP2 and nucleolin. To investigate the mechanistic basis for this hierarchy and the role of these two proteins, we carried out knockdowns of SBP2 expression and assessed the effects on selenoprotein mRNA levels. We also investigated in vivo binding of selenoprotein mRNAs by SBP2 and nucleolin via immunoprecipitation of the proteins and quantitation of bound mRNAs. We report that SBP2 exhibits strong preferential binding to some selenoprotein mRNAs over others, whereas nucleolin exhibits minimal differences in binding. Thus, SBP2 is a major determinant in dictating the hierarchy of selenoprotein synthesis via differential selenoprotein mRNA translation and sensitivity to nonsense-mediated decay. PMID:17846120

  12. Mammalian heat shock p70 and histone H4 transcripts, which derive from naturally intronless genes, are immune to nonsense-mediated decay.

    PubMed Central

    Maquat, L E; Li, X

    2001-01-01

    Nonsense-mediated decay (NMD), also called mRNA surveillance, is an evolutionarily conserved pathway that degrades mRNAs that prematurely terminate translation. To date, the pathway in mammalian cells has been shown to depend on the presence of a cis-acting destabilizing element that usually consists of an exon-exon junction generated by the process of pre-mRNA splicing. Whether or not mRNAs that derive from naturally intronless genes, that is, mRNAs not formed by the process of splicing, are also subject to NMD has yet to be investigated. The possibility of NMD is certainly reasonable considering that mRNAs of Saccharomyces cerevisiae are subject to NMD even though most derive from naturally intronless genes. In fact, mRNAs of S. cerevisiae generally harbor a loosely defined splicing-independent destabilizing element that has been proposed to function in NMD analogously to the spliced exon-exon junction of mammalian mRNAs. Here, we demonstrate that nonsense codons introduced into naturally intronless genes encoding mouse heat shock protein 70 or human histone H4 fail to elicit NMD. Failure is most likely because each mRNA lacks a cis-acting destabilizing element, because insertion of a spliceable intron a sufficient distance downstream of a nonsense codon within either gene is sufficient to elicit NMD. PMID:11333024

  13. Novel inherited mutations and variable expressivity of BRCA1 alleles, including the founder mutation 185delAG in Ashkenazi Jewish families.

    PubMed

    Friedman, L S; Szabo, C I; Ostermeyer, E A; Dowd, P; Butler, L; Park, T; Lee, M K; Goode, E L; Rowell, S E; King, M C

    1995-12-01

    Thirty-seven families with four or more cases of breast cancer or breast and ovarian cancer were analyzed for mutations in BRCA1. Twelve different germ-line mutations, four novel and eight previously observed, were detected in 16 families. Five families of Ashkenazi Jewish descent carried the 185delAG mutation and shared the same haplotype at eight polymorphic markers spanning approximately 850 kb at BRCA1. Expressivity of 185delAG in these families varied, from early-onset breast cancer without ovarian cancer. Mutation 4184delTCAA occurred independently in two families. In one family, penetrance was complete, with females developing early-onset breast cancer or ovarian cancer and the male carrier developing prostatic cancer, whereas, in the other family, penetrance was incomplete and only breast cancer occurred, diagnosed at ages 38-81 years. Two novel nonsense mutations led to the loss of mutant BRCA1 transcript in families with 10 and 6 cases of early-onset breast cancer and ovarian cancer. A 665-nt segment of the BRCA1 3'-UTR and 1.3 kb of genomic sequence including the putative promoter region were invariant by single-strand conformation analysis in 13 families without coding-sequence mutations. Overall in our series, BRCA1 mutations have been detected in 26 families: 16 with positive BRCA1 lod scores, 7 with negative lod scores (reflecting multiple sporadic breast cancers), and 3 not tested for linkage. Three other families have positive lod scores for linkage to BRCA2, but 13 families without detected BRCA1 mutations have negative lod scores for both BRCA1 and BRCA2. PMID:8533757

  14. Chromatoid Body Protein TDRD6 Supports Long 3’ UTR Triggered Nonsense Mediated mRNA Decay

    PubMed Central

    Fanourgakis, Grigorios; Akpinar, Müge; Dahl, Andreas; Jessberger, Rolf

    2016-01-01

    Chromatoid bodies (CBs) are spermiogenesis-specific organelles of largely unknown function. CBs harbor various RNA species, RNA-associated proteins and proteins of the tudor domain family like TDRD6, which is required for a proper CB architecture. Proteome analysis of purified CBs revealed components of the nonsense-mediated mRNA decay (NMD) machinery including UPF1. TDRD6 is essential for UPF1 localization to CBs, for UPF1-UPF2 and UPF1-MVH interactions. Upon removal of TDRD6, the association of several mRNAs with UPF1 and UPF2 is disturbed, and the long 3’ UTR-stimulated but not the downstream exon-exon junction triggered pathway of NMD is impaired. Reduced association of the long 3’ UTR mRNAs with UPF1 and UPF2 correlates with increased stability and enhanced translational activity. Thus, we identified TDRD6 within CBs as required for mRNA degradation, specifically the extended 3’ UTR-triggered NMD pathway, and provide evidence for the requirement of NMD in spermiogenesis. This function depends on TDRD6-promoted assembly of mRNA and decay enzymes in CBs. PMID:27149095

  15. Insulin Signaling Augments eIF4E-Dependent Nonsense-Mediated mRNA Decay in Mammalian Cells.

    PubMed

    Park, Jungyun; Ahn, Seyoung; Jayabalan, Aravinth K; Ohn, Takbum; Koh, Hyun Chul; Hwang, Jungwook

    2016-07-01

    Nonsense-mediated mRNA decay (NMD) modulates the level of mRNA harboring a premature termination codon (PTC) in a translation-dependent manner. Inhibition of translation is known to impair NMD; however, few studies have investigated the correlation between enhanced translation and increased NMD. Here, we demonstrate that insulin signaling events increase translation, leading to an increase in NMD of eIF4E-bound transcripts. We provide evidence that (i) insulin-mediated enhancement of translation augments NMD and rapamycin abrogates this enhancement; (ii) an increase in AKT phosphorylation due to inhibition of PTEN facilitates NMD; (iii) insulin stimulation increases the binding of up-frameshift factor 1 (UPF1), most likely to eIF4E-bound PTC-containing transcripts; and (iv) insulin stimulation induces the colocalization of UPF1 and eIF4E in processing bodies. These results illustrate how extracellular signaling promotes the removal of eIF4E-bound NMD targets. PMID:26708722

  16. Smg6/Est1 licenses embryonic stem cell differentiation via nonsense-mediated mRNA decay

    PubMed Central

    Li, Tangliang; Shi, Yue; Wang, Pei; Guachalla, Luis Miguel; Sun, Baofa; Joerss, Tjard; Chen, Yu-Sheng; Groth, Marco; Krueger, Anja; Platzer, Matthias; Yang, Yun-Gui; Rudolph, Karl Lenhard; Wang, Zhao-Qi

    2015-01-01

    Nonsense-mediated mRNA decay (NMD) is a post-transcriptional mechanism that targets aberrant transcripts and regulates the cellular RNA reservoir. Genetic modulation in vertebrates suggests that NMD is critical for cellular and tissue homeostasis, although the underlying mechanism remains elusive. Here, we generate knockout mice lacking Smg6/Est1, a key nuclease in NMD and a telomerase cofactor. While the complete loss of Smg6 causes mouse lethality at the blastocyst stage, inducible deletion of Smg6 is compatible with embryonic stem cell (ESC) proliferation despite the absence of telomere maintenance and functional NMD. Differentiation of Smg6-deficient ESCs is blocked due to sustained expression of pluripotency genes, normally repressed by NMD, and forced down-regulation of one such target, c-Myc, relieves the differentiation block. Smg6-null embryonic fibroblasts are viable as well, but are refractory to cellular reprograming into induced pluripotent stem cells (iPSCs). Finally, depletion of all major NMD factors compromises ESC differentiation, thus identifying NMD as a licensing factor for the switch of cell identity in the process of stem cell differentiation and somatic cell reprograming. PMID:25770585

  17. Nonsense-Mediated Decay Restricts LncRNA Levels in Yeast Unless Blocked by Double-Stranded RNA Structure

    PubMed Central

    Wery, Maxime; Descrimes, Marc; Vogt, Nicolas; Dallongeville, Anne-Sophie; Gautheret, Daniel; Morillon, Antonin

    2016-01-01

    Summary Antisense long non-coding (aslnc)RNAs represent a substantial part of eukaryotic transcriptomes that are, in yeast, controlled by the Xrn1 exonuclease. Nonsense-Mediated Decay (NMD) destabilizes the Xrn1-sensitive aslncRNAs (XUT), but what determines their sensitivity remains unclear. We report that 3′ single-stranded (3′-ss) extension mediates XUTs degradation by NMD, assisted by the Mtr4 and Dbp2 helicases. Single-gene investigation, genome-wide RNA analyses, and double-stranded (ds)RNA mapping revealed that 3′-ss extensions discriminate the NMD-targeted XUTs from stable lncRNAs. Ribosome profiling showed that XUT are translated, locking them for NMD activity. Interestingly, mutants of the Mtr4 and Dbp2 helicases accumulated XUTs, suggesting that dsRNA unwinding is a critical step for degradation. Indeed, expression of anticomplementary transcripts protects cryptic intergenic lncRNAs from NMD. Our results indicate that aslncRNAs form dsRNA that are only translated and targeted to NMD if dissociated by Mtr4 and Dbp2. We propose that NMD buffers genome expression by discarding pervasive regulatory transcripts. PMID:26805575

  18. Characterization of SMG-9, an essential component of the nonsense-mediated mRNA decay SMG1C complex

    PubMed Central

    Fernández, Israel S.; Yamashita, Akio; Arias-Palomo, Ernesto; Bamba, Yumi; Bartolomé, Ruben A.; Canales, M. Angeles; Teixidó, Joaquín; Ohno, Shigeo; Llorca, Oscar

    2011-01-01

    SMG-9 is part of a protein kinase complex, SMG1C, which consists of the SMG-1 kinase, SMG-8 and SMG-9. SMG1C mediated phosphorylation of Upf1 triggers nonsense-mediated mRNA decay (NMD), a eukaryotic surveillance pathway that detects and targets for degradation mRNAs harboring premature translation termination codons. Here, we have characterized SMG-9, showing that it comprises an N-terminal 180 residue intrinsically disordered region (IDR) followed by a well-folded C-terminal domain. Both domains are required for SMG-1 binding and the integrity of the SMG1C complex, whereas the C-terminus is sufficient to interact with SMG-8. In addition, we have found that SMG-9 assembles in vivo into SMG-9:SMG-9 and, most likely, SMG-8:SMG-9 complexes that are not constituents of SMG1C. SMG-9 self-association is driven by interactions between the C-terminal domains and surprisingly, some SMG-9 oligomers are completely devoid of SMG-1 and SMG-8. We propose that SMG-9 has biological functions beyond SMG1C, as part of distinct SMG-9-containing complexes. Some of these complexes may function as intermediates potentially regulating SMG1C assembly, tuning the activity of SMG-1 with the NMD machinery. The structural malleability of IDRs could facilitate the transit of SMG-9 through several macromolecular complexes. PMID:20817927

  19. A novel multiple joint dislocation syndrome associated with a homozygous nonsense variant in the EXOC6B gene.

    PubMed

    Girisha, Katta Mohan; Kortüm, Fanny; Shah, Hitesh; Alawi, Malik; Dalal, Ashwin; Bhavani, Gandham SriLakshmi; Kutsche, Kerstin

    2016-08-01

    We report two brothers from a consanguineous couple with spondyloepimetaphyseal dysplasia (SEMD), multiple joint dislocations at birth, severe joint laxity, scoliosis, gracile metacarpals and metatarsals, delayed bone age and poorly ossified carpal and tarsal bones, probably representing a yet uncharacterized SEMD with laxity and dislocations. This condition has clinical overlap with autosomal dominantly inherited SEMD with joint laxity, leptodactylic type caused by recurrent missense variants in the kinesin family member 22 gene (KIF22). Single-nucleotide polymorphism array analysis and whole-exome sequencing in the two affected siblings revealed a shared homozygous nonsense variant [c.906T>A/p.(Tyr302*)] in EXOC6B as the most likely cause. EXOC6B encodes a component of the exocyst complex required for tethering secretory vesicles to the plasma membrane. As transport of vesicles from the golgi apparatus to the plasma membrane occurs through kinesin motor proteins along microtubule tracks, the function of EXOC6B is linked to KIF22 suggesting a common pathogenic mechanism in skeletal dysplasias with joint laxity and dislocations. PMID:26669664

  20. A feedback loop between nonsense-mediated decay and the retrogene DUX4 in facioscapulohumeral muscular dystrophy.

    PubMed

    Feng, Qing; Snider, Lauren; Jagannathan, Sujatha; Tawil, Rabi; van der Maarel, Silvère M; Tapscott, Stephen J; Bradley, Robert K

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is a muscular dystrophy caused by inefficient epigenetic repression of the D4Z4 macrosatellite array and somatic expression of the DUX4 retrogene. DUX4 is a double homeobox transcription factor that is normally expressed in the testis and causes apoptosis and FSHD when misexpressed in skeletal muscle. The mechanism(s) of DUX4 toxicity in muscle is incompletely understood. We report that DUX4-triggered proteolytic degradation of UPF1, a central component of the nonsense-mediated decay (NMD) machinery, is associated with profound NMD inhibition, resulting in global accumulation of RNAs normally degraded as NMD substrates. DUX4 mRNA is itself degraded by NMD, such that inhibition of NMD by DUX4 protein stabilizes DUX4 mRNA through a double-negative feedback loop in FSHD muscle cells. This feedback loop illustrates an unexpected mode of autoregulatory behavior of a transcription factor, is consistent with 'bursts' of DUX4 expression in FSHD muscle, and has implications for FSHD pathogenesis. PMID:25564732

  1. Heterozygous Loss-of-Function Mutations in DLL4 Cause Adams-Oliver Syndrome

    PubMed Central

    Meester, Josephina A.N.; Southgate, Laura; Stittrich, Anna-Barbara; Venselaar, Hanka; Beekmans, Sander J.A.; den Hollander, Nicolette; Bijlsma, Emilia K.; Helderman-van den Enden, Appolonia; Verheij, Joke B.G.M.; Glusman, Gustavo; Roach, Jared C.; Lehman, Anna; Patel, Millan S.; de Vries, Bert B.A.; Ruivenkamp, Claudia; Itin, Peter; Prescott, Katrina; Clarke, Sheila; Trembath, Richard; Zenker, Martin; Sukalo, Maja; Van Laer, Lut; Loeys, Bart; Wuyts, Wim

    2015-01-01

    Adams-Oliver syndrome (AOS) is a rare developmental disorder characterized by the presence of aplasia cutis congenita (ACC) of the scalp vertex and terminal limb-reduction defects. Cardiovascular anomalies are also frequently observed. Mutations in five genes have been identified as a cause for AOS prior to this report. Mutations in EOGT and DOCK6 cause autosomal-recessive AOS, whereas mutations in ARHGAP31, RBPJ, and NOTCH1 lead to autosomal-dominant AOS. Because RBPJ, NOTCH1, and EOGT are involved in NOTCH signaling, we hypothesized that mutations in other genes involved in this pathway might also be implicated in AOS pathogenesis. Using a candidate-gene-based approach, we prioritized DLL4, a critical NOTCH ligand, due to its essential role in vascular development in the context of cardiovascular features in AOS-affected individuals. Targeted resequencing of the DLL4 gene with a custom enrichment panel in 89 independent families resulted in the identification of seven mutations. A defect in DLL4 was also detected in two families via whole-exome or genome sequencing. In total, nine heterozygous mutations in DLL4 were identified, including two nonsense and seven missense variants, the latter encompassing four mutations that replace or create cysteine residues, which are most likely critical for maintaining structural integrity of the protein. Affected individuals with DLL4 mutations present with variable clinical expression with no emerging genotype-phenotype correlations. Our findings demonstrate that DLL4 mutations are an additional cause of autosomal-dominant AOS or isolated ACC and provide further evidence for a key role of NOTCH signaling in the etiology of this disorder. PMID:26299364

  2. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    SciTech Connect

    Kang, Qing-lin; Xu, Jia; Zhang, Zeng; He, Jin-wei; Lu, Lian-song; Fu, Wen-zhen; Zhang, Zhen-lin

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. Black-Right-Pointing-Pointer We identified three novel PHEX gene mutations in four unrelated families with XLH. Black-Right-Pointing-Pointer We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. Black-Right-Pointing-Pointer We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related gene with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.

  3. Inactivating Mutations in ESCO2 Cause SC Phocomelia and Roberts Syndrome: No Phenotype-Genotype Correlation

    PubMed Central

    Schüle, Birgitt; Oviedo, Angelica; Johnston, Kathreen; Pai, Shashidhar; Francke, Uta

    2005-01-01

    The rare, autosomal recessive Roberts syndrome (RBS) is characterized by tetraphocomelia, profound growth deficiency of prenatal onset, craniofacial anomalies, microcephaly, and mental deficiency. SC phocomelia (SC) has a milder phenotype, with a lesser degree of limb reduction and with survival to adulthood. Since heterochromatin repulsion (HR) is characteristic for both disorders and is not complemented in somatic-cell hybrids, it has been hypothesized that the disorders are allelic. Recently, mutations in ESCO2 (establishment of cohesion 1 homolog 2) on 8p21.1 have been reported in RBS. To determine whether ESCO2 mutations are also responsible for SC, we studied three families with SC and two families in which variable degrees of limb and craniofacial abnormalities, detected by fetal ultrasound, led to pregnancy terminations. All cases were positive for HR. We identified seven novel mutations in exons 3–8 of ESCO2. In two families, affected individuals were homozygous—for a 5-nucleotide deletion in one family and a splice-site mutation in the other. In three nonconsanguineous families, probands were compound heterozygous for a single-nucleotide insertion or deletion, a nonsense mutation, or a splice-site mutation. Abnormal splice products were characterized at the RNA level. Since only protein-truncating mutations were identified, regardless of clinical severity, we conclude that genotype does not predict phenotype. Having established that RBS and SC are caused by mutations in the same gene, we delineated the clinical phenotype of the tetraphocomelia spectrum that is associated with HR and ESCO2 mutations and differentiated it from other types of phocomelia that are negative for HR. PMID:16380922

  4. Guanine Holes Are Prominent Targets for Mutation in Cancer and Inherited Disease

    PubMed Central

    Bacolla, Albino; Temiz, Nuri A.; Yi, Ming; Ivanic, Joseph; Cer, Regina Z.; Donohue, Duncan E.; Ball, Edward V.; Mudunuri, Uma S.; Wang, Guliang; Jain, Aklank; Volfovsky, Natalia; Luke, Brian T.; Stephens, Robert M.; Cooper, David N.; Collins, Jack R.; Vasquez, Karen M.

    2013-01-01

    Single base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G•C bp in the context of all 64 5′-NGNN-3′ motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials). Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease. PMID:24086153

  5. Mutations in the consensus helicase domains of the Werner syndrome gene

    SciTech Connect

    Yu, Chang-En; Oshima, Junko; Wijsman, E.M.

    1997-02-01

    Werner syndrome (WS) is an autosomal recessive disease with a complex phenotype that is suggestive of accelerated aging. WS is caused by mutations in a gene, WRN, that encodes a predicted 1,432-amino-acid protein with homology to DNA and RNA helicases. Previous work identified four WS mutations in the 3{prime} end of the gene, which resulted in predicted truncated protein products of 1,060-1,247 amino acids but did not disrupt the helicase domain region (amino acids 569-859). Here, additional WS subjects were screened for mutations, and the intron-exon structure of the gene was determined. A total of 35 exons were defined, with the coding sequences beginning in the second exon. Five new WS mutations were identified: two nonsense mutations at codons 369 and 889; a mutation at a splice-junction site, resulting in a predicted truncated protein of 760 amino acids; a 1-bp deletion causing a frameshift; and a predicted truncated protein of 391 amino acids. Another deletion is >15 kb of genomic DNA, including exons 19-23; the predicted protein is 1,186 amino acids long. Four of these new mutations either partially disrupt the helicase domain region or result in predicted protein products completely missing the helicase region. These results confirm that mutations in the WRN gene are responsible for WS. Also, the location of the mutations indicates that the presence or absence of the helicase domain does not influence the WS phenotype and suggests that WS is the result of complete loss of function of the WRN gene product. 63 refs., 1 fig., 5 tabs.

  6. Smoothened (SMO) receptor mutations dictate resistance to vismodegib in basal cell carcinoma.

    PubMed

    Pricl, Sabrina; Cortelazzi, Barbara; Dal Col, Valentina; Marson, Domenico; Laurini, Erik; Fermeglia, Maurizio; Licitra, Lisa; Pilotti, Silvana; Bossi, Paolo; Perrone, Federica

    2015-02-01

    Basal cell carcinomas (BCCs) and a subset of medulloblastomas are characterized by loss-of-function mutations in the tumor suppressor gene, PTCH1. PTCH1 normally functions by repressing the activity of the Smoothened (SMO) receptor. Inactivating PTCH1 mutations result in constitutive Hedgehog pathway activity through uncontrolled SMO signaling. Targeting this pathway with vismodegib, a novel SMO inhibitor, results in impressive tumor regression in patients harboring genetic defects in this pathway. However, a secondary mutation in SMO has been reported in medulloblastoma patients following relapse on vismodegib to date. This mutation preserves pathway activity, but appears to confer resistance by interfering with drug binding. Here we report for the first time on the molecular mechanisms of resistance to vismodegib in two BCC cases. The first case, showing progression after 2 months of continuous vismodegib (primary resistance), exhibited the new SMO G497W mutation. The second case, showing a complete clinical response after 5 months of treatment and a subsequent progression after 11 months on vismodegib (secondary resistance), exhibited a PTCH1 nonsense mutation in both the pre- and the post-treatment specimens, and the SMO D473Y mutation in the post-treatment specimens only. In silico analysis demonstrated that SMO(G497W) undergoes a conformational rearrangement resulting in a partial obstruction of the protein drug entry site, whereas the SMO D473Y mutation induces a direct effect on the binding site geometry leading to a total disruption of a stabilizing hydrogen bond network. Thus, the G497W and D473Y SMO mutations may represent two different mechanisms leading to primary and secondary resistance to vismodegib, respectively. PMID:25306392

  7. Novel ENAM and LAMB3 Mutations in Chinese Families with Hypoplastic Amelogenesis Imperfecta

    PubMed Central

    Wang, Xin; Zhao, Yuming; Yang, Yuan; Qin, Man

    2015-01-01

    Amelogenesis imperfecta is a group of inherited diseases affecting the quality and quantity of dental enamel. To date, mutations in more than ten genes have been associated with non-syndromic amelogenesis imperfecta (AI). Among these, ENAM and LAMB3 mutations are known to be parts of the etiology of hypoplastic AI in human cases. When both alleles of LAMB3 are defective, it could cause junctional epidermolysis bullosa (JEB), while with only one mutant allele in the C-terminus of LAMB3, it could result in severe hypoplastic AI without skin fragility. We enrolled three Chinese families with hypoplastic autosomal-dominant AI. Despite the diagnosis falling into the same type, the characteristics of their enamel hypoplasia were different. Screening of ENAM and LAMB3 genes was performed by direct sequencing of genomic DNA from blood samples. Disease-causing mutations were identified and perfectly segregated with the enamel defects in three families: a 19-bp insertion mutation in the exon 7 of ENAM (c.406_407insTCAAAAAAGCCGACCACAA, p.K136Ifs*16) in Family 1, a single-base deletion mutation in the exon 5 of ENAM (c. 139delA, p. M47Cfs*11) in Family 2, and a LAMB3 nonsense mutation in the last exon (c.3466C>T, p.Q1156X) in Family 3. Our results suggest that heterozygous mutations in ENAM and LAMB3 genes can cause hypoplastic AI with markedly different phenotypes in Chinese patients. And these findings extend the mutation spectrum of both genes and can be used for mutation screening of AI in the Chinese population. PMID:25769099

  8. Functional Consequences and Structural Interpretation of Mutations of Human Choline Acetyltransferase

    PubMed Central

    Shen, Xin-Ming; Crawford, Thomas O.; Brengman, Joan; Acsadi, Gyula; Iannaconne, Susan; Karaca, Emin; Khoury, Chaouky; Mah, Jean K.; Edvardson, Shimon; Bajzer, Zeljko; Rodgers, David; Engel, Andrew G.

    2011-01-01

    Choline acetyltransferase (ChAT; EC 2.3.1.6) catalyzes synthesis of acetylcholine from acetyl-CoA and choline in cholinergic neurons. Mutations in CHAT (MIM # 118490) cause potentially lethal congenital myasthenic syndromes associated with episodic apnea (ChAT-CMS) (MIM # 254210). Here we analyze the functional consequences of 12 missense and 1 nonsense mutations of CHAT in 11 patients. Nine of the mutations are novel. We examine expression of the recombinant missense mutants in Bosc 23 cells, determine their kinetic properties and thermal stability, and interpret the functional effects of 11 mutations in the context of the atomic structural model of human ChAT. Five mutations (p.Trp421Ser, p.Ser498Pro, p.Thr553Asn, p.Ala557Thr, p.Ser572Trp) reduce enzyme expression to <50% of wild-type. Mutations with severe kinetic effects are located in the active-site tunnel (p.Met202Arg, p.Thr553Asn and p.Ala557Thr) or adjacent to the substrate binding site (p.Ser572Trp), or exert their effect allosterically (p.Trp421Ser and p.Ile689Ser). Two mutations with milder kinetic effects (p.Val136Met, p.Ala235Thr) are also predicted to act allosterically. One mutation (p.Thr608Asn) below the nucleotide binding site of CoA enhances dissociation of AcCoA from the enzyme-substrate complex. Two mutations introducing a proline residue into an α-helix (p.Ser498Pro and p.Ser704Pro) impair the thermal stability of ChAT. PMID:21786365

  9. Molecular and phenotypic spectrum of ASPM-related primary microcephaly: Identification of eight novel mutations.

    PubMed

    Abdel-Hamid, Mohamed S; Ismail, Manal F; Darwish, Hebatallh A; Effat, Laila K; Zaki, Maha S; Abdel-Salam, Ghada M H

    2016-08-01

    Autosomal recessive primary microcephaly (MCPH) is an abnormal proliferation of neurons during brain development that leads to a small brain size but architecturally normal in most instances. Mutations in the ASPM gene have been identified to be the most prevalent. Thirty-seven patients from 30 unrelated families with a clinical diagnosis of MCPH were enrolled in this study. Screening of ASPM gene mutations was performed by targeted linkage analysis followed by direct sequencing. Thirteen protein truncating mutations of the ASPM were identified in 15 families (50%), eight of which were novel mutations. The mutations detected were eight nonsense, four frameshift, and one splice site. Two of these mutations (p.R1327* and p.R3181*) were recurrent and shared similar haplotypes suggesting founder effect. Patients with ASPM mutations had mild to severe intellectual disability and variable degrees of simplified gyral pattern and small frontal lobe. In addition, hypoplasia of corpus callosum (18 patients), mildly small cerebellar vermis (10 patients), and relatively small pons (13 patients) were found in 85.7%, 47.6%, and 61.9%, respectively. Furthermore, one patient had porencephaly and another had a small midline cyst. Epilepsy was documented in two patients (9.5%). Non-neurologic abnormalities consisted of growth retardation (four patients), and co-incidental association of oculo-cutaneous albinism (one patient). Our study expands the mutation spectrum of ASPM. Moreover, the simplified gyral pattern and small frontal lobe together with hypoplastic corpus callosum, small cerebellum and pons enable ASPM mutated patients to be distinguished. © 2016 Wiley Periodicals, Inc. PMID:27250695

  10. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency

    SciTech Connect

    Goyette, P.; Frosst, P.; Rosenblatt, D.S.; Rozen. R.

    1995-05-01

    5-Methyltetrahydrofolate, the major form of folate in plasma, is a carbon donor for the remethylation of homocysteine to methionine. This form of folate is generated from 5,10-methylenetetrahydrofolate through the action of 5,10-methylenetetrahydrofolate reductase (MTHFR), a cytosolic flavoprotein. Patients with an autosomal recessive severe deficiency of MTHFR have homocystinuria and a wide range of neurological and vascular disturbances. We have recently described the isolation of a cDNA for MTHFR and the identification of two mutations in patients with severe MTHFR deficiency. We report here the characterization of seven novel mutations in this gene: six missense mutations and a 5{prime} splice-site defect that activates a cryptic splice in the coding sequence. We also present a preliminary analysis of the relationship between genotype and phenotype for all nine mutations identified thus far in this gene. A nonsense mutation and two missense mutations (proline to leucine and threonine to methionine) in the homozygous state are associated with extremely low activity (0%-3%) and onset of symptoms within the 1st year of age. Other missense mutations (arginine to cysteine and arginine to glutamine) are associated with higher enzyme activity and later onset of symptoms. 19 refs., 4 figs., 2 tabs.

  11. A missense mutation (G1506E) in the adhesion G domain of laminin-5 causes mild junctional epidermolysis bullosa.

    PubMed

    Scaturro, Maria; Posteraro, Patrizia; Mastrogiacomo, Alessandro; Zaccaria, Maria Letizia; De Luca, Naomi; Mazzanti, Cinzia; Zambruno, Giovanna; Castiglia, Daniele

    2003-09-12

    Laminin-5 is the major adhesion ligand for epithelial cells. Mutations in the genes encoding laminin-5 cause junctional epidermolysis bullosa (JEB), a recessive inherited disease characterized by extensive epithelial-mesenchymal disadhesion. We describe a JEB patient compound heterozygote for two novel mutations in the gene (LAMA3) encoding the laminin alpha3 chain. The maternal mutation (1644delG) generates mRNA transcripts that undergo nonsense-mediated decay. The paternal mutation results in the Gly1506-->Glu substitution (G1506E) within the C-terminal globular region of the alpha3 chain (G domain). Mutation G1506E affects the proper folding of the fourth module of the G domain and results in the retention of most of the mutated polypeptide within the endoplasmic reticulum (ER). However, scant amounts of the mutated laminin-5 are secreted, undergo physiologic extracellular maturation, and correctly localize within the cutaneous basement membrane zone in patient's skin. Our findings represent the first demonstration of an ER-retained mutant laminin-5 leading to a mild JEB phenotype. PMID:12943669

  12. Identification of mutations in regions corresponding to the two putative nucleotide (ATP)-binding folds of the cystic fibrosis gene.

    PubMed Central

    Kerem, B S; Zielenski, J; Markiewicz, D; Bozon, D; Gazit, E; Yahav, J; Kennedy, D; Riordan, J R; Collins, F S; Rommens, J M

    1990-01-01

    Additional mutations in the cystic fibrosis (CF) gene were identified in the regions corresponding to the two putative nucleotide (ATP)-binding folds (NBFs) of the predicted polypeptide. The patient cohort included 46 Canadian CF families with well-characterized DNA marker haplotypes spanning the disease locus and several other families from Israel. Eleven mutations were found in the first NBF, 2 were found in the second NBF, but none was found in the R-domain. Seven of the mutations were of the missense type affecting some of the highly conserved amino acid residues in the first NBF; 3 were nonsense mutations; 2 would probably affect mRNA splicing; 2 corresponded to small deletions, including another 3-base-pair deletion different from the major mutation (delta F508), which could account for 70% of the CF chromosomes in the population. Nine of these mutations accounted for 12 of the 31 non-delta F508 CF chromosomes in the Canadian families. The highly heterogeneous nature of the remaining CF mutations provides important insights into the structure and function of the protein, but it also suggests that DNA-based genetic screening for CF carrier status will not be straightforward. Images PMID:2236053

  13. Next-generation sequencing-based method shows increased mutation detection sensitivity in an Indian retinoblastoma cohort

    PubMed Central

    Singh, Jaya; Mishra, Avshesh; Pandian, Arunachalam Jayamuruga; Mallipatna, Ashwin C.; Khetan, Vikas; Sripriya, S.; Kapoor, Suman; Agarwal, Smita; Sankaran, Satish; Katragadda, Shanmukh; Veeramachaneni, Vamsi; Hariharan, Ramesh; Subramanian, Kalyanasundaram

    2016-01-01

    Purpose Retinoblastoma (Rb) is the most common primary intraocular cancer of childhood and one of the major causes of blindness in children. India has the highest number of patients with Rb in the world. Mutations in the RB1 gene are the primary cause of Rb, and heterogeneous mutations are distributed throughout the entire length of the gene. Therefore, genetic testing requires screening of the entire gene, which by conventional sequencing is time consuming and expensive. Methods In this study, we screened the RB1 gene in the DNA isolated from blood or saliva samples of 50 unrelated patients with Rb using the TruSight Cancer panel. Next-generation sequencing (NGS) was done on the Illumina MiSeq platform. Genetic variations were identified using the Strand NGS software and interpreted using the StrandOmics platform. Results We were able to detect germline pathogenic mutations in 66% (33/50) of the cases, 12 of which were novel. We were able to detect all types of mutations, including missense, nonsense, splice site, indel, and structural variants. When we considered bilateral Rb cases only, the mutation detection rate increased to 100% (22/22). In unilateral Rb cases, the mutation detection rate was 30% (6/20). Conclusions Our study suggests that NGS-based approaches increase the sensitivity of mutation detection in the RB1 gene, making it fast and cost-effective compared to the conventional tests performed in a reflex-testing mode. PMID:27582626

  14. Identification of mutations in regions corresponding to the two putative nucleotide (ATP)-binding folds of the cystic fibrosis gene

    SciTech Connect

    Kerem, B.; Zielenski, J.; Markiewicz, D.; Bozon, D.; Kennedy, D.; Rommens, J.M. ); Gazit, E. ); Yahav, J. ); Riordan, J.R. ); Collins, F.S. ); Tsui, Lapchee Univ. of Toronto, Ontario )

    1990-11-01

    Additional mutations in the cystic fibrosis (CF) gene were identified in the regions corresponding to the two putative nucleotide (ATP)-binding folds (NBFs) of the predicted polypeptide. The patient cohort included 46 Canadian CF families with well-characterized DNA marker haplotypes spanning the disease locus and several other families from Israel. Eleven mutations were found in the first NBF, 2 were found in the second NBF, but none was found in the R-domain. Seven of the mutations were of the missense type affecting some of the highly conserved amino acid residues in the first NBF; 3 were nonsense mutations; 2 would probably affect mRNA splicing; 2 corresponded to small deletions, including another 3-base-pair deletion different from the major mutation ({delta}F508), which could account for 70% of the CF chromosomes in the population. Nine of these mutations accounted for 12 of the 31 non-{delta}F508 CF chromosomes in the Canadian families. The highly heterogeneous nature of the remaining CF mutations provides important insights into the structure and function of the protein, but it also suggests that DNA-based genetic screening for CF carrier status will not be straightforward.

  15. BHD mutations, clinical and molecular genetic investigations of Birt–Hogg–Dubé syndrome: a new series of 50 families and a review of published reports

    PubMed Central

    Toro, J R; Wei, M-H; Glenn, G M; Weinreich, M; Toure, O; Vocke, C; Turner, M; Choyke, P; Merino, M J; Pinto, P A; Steinberg, S M; Schmidt, L S; Linehan, W M

    2008-01-01

    Background: Birt–Hogg–Dubé syndrome (BHDS) (MIM 135150) is an autosomal dominant predisposition to the development of follicular hamartomas (fibrofolliculomas), lung cysts, spontaneous pneumothorax, and kidney neoplasms. Germline mutations in BHD are associated with the susceptibility for BHDS. We previously described 51 BHDS families with BHD germline mutations. Objective: To characterise the BHD mutation spectrum, novel mutations and new clinical features of one previously reported and 50 new families with BHDS. Methods: Direct bidirectional DNA sequencing was used to screen for mutations in the BHD gene, and insertion and deletion mutations were confirmed by subcloning. We analysed evolutionary conservation of folliculin by comparing human against the orthologous sequences. Results: The BHD mutation detection rate was 88% (51/58). Of the 23 different germline mutations identified, 13 were novel consisting of: four splice site, three deletions, two insertions, two nonsense, one deletion/insertion, and one missense mutation. We report the first germline missense mutation in BHD c.1978A>G (K508R) in a patient who presented with bilateral multifocal renal oncocytomas. This mutation occurs in a highly conserved amino acid in folliculin. 10% (5/51) of the families had individuals without histologically confirmed fibrofolliculomas. Of 44 families ascertained on the basis of skin lesions, 18 (41%) had kidney tumours. Patients with a germline BHD mutation and family history of kidney cancer had a statistically significantly increased probability of developing renal tumours compared to patients without a positive family history (p = 0.0032). Similarly, patients with a BHD germline mutation and family history of spontaneous pneumothorax had a significantly increased greater probability of having spontaneous pneumothorax than BHDS patients without a family history of spontaneous pneumothorax (p = 0.011). A comprehensive review of published reports of cases with

  16. Novel insertion mutation of ABCB1 gene in an ivermectin-sensitive Border Collie.

    PubMed

    Han, Jae-Ik; Son, Hyoung-Won; Park, Seung-Cheol; Na, Ki-Jeong

    2010-12-01

    P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and seven ivermectin-tolerant family members of the Border Collie. When compared to the wild-type Beagle sequence, that of the ivermectin-sensitive Border Collie was found to have one insertion mutation and eight single nucleotide polymorphisms (SNPs) in the coding sequence of the ABCB1 gene. While the eight SNPs were also found in the family members' sequences, the insertion mutation was found only in the ivermectin-sensitive dog. These results suggest the possibility that the SNPs are species-specific features of the ABCB1 gene in Border Collies, and that the insertion mutation may be related to ivermectin intolerance. PMID:21113104

  17. Pseudoxanthoma elasticum: a clinical, pathophysiological and genetic update including 11 novel ABCC6 mutations

    PubMed Central

    Chassaing, N; Martin, L; Calvas, P; Le Bert, M; Hovnanian, A

    2005-01-01

    Pseudoxanthoma elasticum (PXE) is an inherited systemic disease of connective tissue primarily affecting the skin, retina, and cardiovascular system. It is characterised pathologically by elastic fibre mineralisation and fragmentation (so called "elastorrhexia"), and clinically by high heterogeneity in age of onset and the extent and severity of organ system involvement. PXE was recently associated with mutations in the ABCC6 (ATP binding cassette subtype C number 6) gene. At least one ABCC6 mutation is found in about 80% of patients. These mutations are identifiable in most of the 31 ABCC6 exons and consist of missense, nonsense, frameshift mutations, or large deletions. No correlation between the nature or location of the mutations and phenotype severity has yet been established. Recent findings support exclusive recessive inheritance. The proposed prevalence of PXE is 1/25 000, but this is probably an underestimate. ABCC6 encodes the protein ABCC6 (also known as MRP6), a member of the large ATP dependent transmembrane transporter family that is expressed predominantly in the liver and kidneys, and only to a lesser extent in tissues affected by PXE. The physiological substrates of ABCC6 remain to be determined, but the current hypothesis is that PXE should be considered to be a metabolic disease with undetermined circulating molecules interacting with the synthesis, turnover, or maintenance of elastic fibres. PMID:15894595

  18. Congenital erythropoietic porphyria: identification and expression of 10 mutations in the uroporphyrinogen III synthase gene.

    PubMed Central

    Xu, W; Warner, C A; Desnick, R J

    1995-01-01

    To investigate the molecular basis of the phenotypic heterogeneity in congenital erythropoietic porphyria, the mutations in the uroporphyrinogen III synthase gene from unrelated patients were determined. Six missense (L4F, Y19C, V82F, V99A, A104V, and G225S), a nonsense (Q249X), a frameshift (633insA), and two splicing mutations (IVS2+1 and IVS9 delta A + 4) were identified. When L4F, Y19C, V82F, V99A, A104V, 633insA, G225S, and Q249X were expressed in Escherichia coli, only the V82F, V99A, and A104V alleles expressed residual enzymatic activity. Of note, the V82F mutation, which occurs adjacent to the 5' donor site of intron 4, resulted in approximately 54% aberrantly spliced transcripts with exon 4 deleted. Thus, this novel exonic single-base substitution caused two lesions, a missense mutation and an aberrantly spliced transcript. Of the splicing mutations, the IVS2+1 allele produced a single transcript with exon 2 deleted, whereas the IVS9 delta A+4 allele was alternatively spliced, approximately 26% being normal transcripts and the remainder with exon 9 deleted. The amount of residual activity expressed by each allele provided a basis to correlate genotype with disease severity, thereby permitting genotype/phenotype predictions in this clinically heterogeneous disease. Images PMID:7860775

  19. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes.

    PubMed

    Schubert, Julian; Siekierska, Aleksandra; Langlois, Mélanie; May, Patrick; Huneau, Clément; Becker, Felicitas; Muhle, Hiltrud; Suls, Arvid; Lemke, Johannes R; de Kovel, Carolien G F; Thiele, Holger; Konrad, Kathryn; Kawalia, Amit; Toliat, Mohammad R; Sander, Thomas; Rüschendorf, Franz; Caliebe, Almuth; Nagel, Inga; Kohl, Bernard; Kecskés, Angela; Jacmin, Maxime; Hardies, Katia; Weckhuysen, Sarah; Riesch, Erik; Dorn, Thomas; Brilstra, Eva H; Baulac, Stephanie; Møller, Rikke S; Hjalgrim, Helle; Koeleman, Bobby P C; Jurkat-Rott, Karin; Lehman-Horn, Frank; Roach, Jared C; Glusman, Gustavo; Hood, Leroy; Galas, David J; Martin, Benoit; de Witte, Peter A M; Biskup, Saskia; De Jonghe, Peter; Helbig, Ingo; Balling, Rudi; Nürnberg, Peter; Crawford, Alexander D; Esguerra, Camila V; Weber, Yvonne G; Lerche, Holger

    2014-12-01

    Febrile seizures affect 2-4% of all children and have a strong genetic component. Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding syntaxin-1B, that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations and a de novo microdeletion encompassing STX1B were then identified in 449 familial or sporadic cases. Video and local field potential analyses of zebrafish larvae with antisense knockdown of stx1b showed seizure-like behavior and epileptiform discharges that were highly sensitive to increased temperature. Wild-type human syntaxin-1B but not a mutated protein rescued the effects of stx1b knockdown in zebrafish. Our results thus implicate STX1B and the presynaptic release machinery in fever-associated epilepsy syndromes. PMID:25362483

  20. Mutations in the human UBR1 gene and the associated phenotypic spectrum.

    PubMed

    Sukalo, Maja; Fiedler, Ariane; Guzmán, Celina; Spranger, Stephanie; Addor, Marie-Claude; McHeik, Jiad N; Oltra Benavent, Manuel; Cobben, Jan M; Gillis, Lynette A; Shealy, Amy G; Deshpande, Charu; Bozorgmehr, Bita; Everman, David B; Stattin, Eva-Lena; Liebelt, Jan; Keller, Klaus-Michael; Bertola, Débora Romeo; van Karnebeek, Clara D M; Bergmann, Carsten; Liu, Zhifeng; Düker, Gesche; Rezaei, Nima; Alkuraya, Fowzan S; Oğur, Gönül; Alrajoudi, Abdullah; Venegas-Vega, Carlos A; Verbeek, Nienke E; Richmond, Erick J; Kirbiyik, Ozgür; Ranganath, Prajnya; Singh, Ankur; Godbole, Koumudi; Ali, Fouad A M; Alves, Crésio; Mayerle, Julia; Lerch, Markus M; Witt, Heiko; Zenker, Martin

    2014-05-01

    Johanson-Blizzard syndrome (JBS) is a rare, autosomal recessive disorder characterized by exocrine pancreatic insufficiency, typical facial features, dental anomalies, hypothyroidism, sensorineural hearing loss, scalp defects, urogenital and anorectal anomalies, short stature, and cognitive impairment of variable degree. This syndrome is caused by a defect of the E3 ubiquitin ligase UBR1, which is part of the proteolytic N-end rule pathway. Herein, we review previously reported (n = 29) and a total of 31 novel UBR1 mutations in relation to the associated phenotype in patients from 50 unrelated families. Mutation types include nonsense, frameshift, splice site, missense, and small in-frame deletions consistent with the hypothesis that loss of UBR1 protein function is the molecular basis of JBS. There is an association of missense mutations and small in-frame deletions with milder physical abnormalities and a normal intellectual capacity, thus suggesting that at least some of these may represent hypomorphic UBR1 alleles. The review of clinical data of a large number of molecularly confirmed JBS cases allows us to define minimal clinical criteria for the diagnosis of JBS. For all previously reported and novel UBR1 mutations together with their clinical data, a mutation database has been established at LOVD. PMID:24599544

  1. FANCA Gene Mutations with 8 Novel Molecular Changes in Indian Fanconi Anemia Patients

    PubMed Central

    Solanki, Avani; Mohanty, Purvi; Shukla, Pallavi; Rao, Anita; Ghosh, Kanjaksha; Vundinti, Babu Rao

    2016-01-01

    Fanconi anemia (FA), a rare heterogeneous genetic disorder, is known to be associated with 19 genes and a spectrum of clinical features. We studied FANCA molecular changes in 34 unrelated and 2 siblings of Indian patients with FA and have identified 26 different molecular changes of FANCA gene, of which 8 were novel mutations (a small deletion c.2500delC, 4 non-sense mutations c.2182C>T, c.2630C>G, c.3677C>G, c.3189G>A; and 3 missense mutations; c.1273G>C, c.3679 G>C, and c.3992 T>C). Among these only 16 patients could be assigned FA-A complementation group, because we could not confirm single exon deletions detected by MLPA or cDNA amplification by secondary confirmation method and due to presence of heterozygous non-pathogenic variations or heterozygous pathogenic mutations. An effective molecular screening strategy should be developed for confirmation of these mutations and determining the breakpoints for single exon deletions. PMID:26799702

  2. Mutations in WDR62 gene in Pakistani families with autosomal recessive primary microcephaly

    PubMed Central

    2011-01-01

    Background Autosomal recessive primary microcephaly is a disorder of neurogenic mitosis that causes reduction in brain size. It is a rare heterogeneous condition with seven causative genes reported to date. Mutations in WD repeat protein 62 are associated with autosomal recessive primary microcephaly with cortical malformations. This study was initiated to screen WDR62 mutations in four consanguineous Pakistani families with autosomal recessive primary microcephaly. Methods As part of a large study to detect the genetic basis of primary microcephaly in Pakistan, homozygosity mapping and DNA sequencing was used to explore the genetic basis of autosomal recessive primary microcephaly in four families. Results Four out of 100 families recruited in the study revealed linkage to the MCPH2 locus on chromosome 19, which harbor WDR62 gene. DNA sequencing in these MCPH2 linked families result in the identification of a novel nonsense mutation (p.Q648X) and three previously known mutations. Conclusion Our data indicate that WDR62 mutations cause about 4% of autosomal recessive primary microcephaly in Pakistan. PMID:21961505

  3. Spondyloocular Syndrome: Novel Mutations in XYLT2 Gene and Expansion of the Phenotypic Spectrum.

    PubMed

    Taylan, Fulya; Costantini, Alice; Coles, Nicole; Pekkinen, Minna; Héon, Elise; Şıklar, Zeynep; Berberoğlu, Merih; Kämpe, Anders; Kıykım, Ertuğrul; Grigelioniene, Giedre; Tüysüz, Beyhan; Mäkitie, Outi

    2016-08-01

    Spondyloocular syndrome is an autosomal-recessive disorder with spinal compression fractures, osteoporosis, and cataract. Mutations in XYLT2, encoding isoform of xylosyltransferase, were recently identified as the cause of the syndrome. We report on 4 patients, 2 unrelated patients and 2 siblings, with spondyloocular syndrome and novel mutations in XYLT2. Exome sequencing revealed a homozygous nonsense mutation, NM_022167.3(XYLT2): c.2188C>T, resulting in a premature stop codon (p.Arg730*) in a female patient. The patient presents visual impairment, generalized osteoporosis, short stature with short trunk, spinal compression fractures, and increased intervertebral disc space and hearing loss. We extended our XYLT2 analysis to a cohort of 22 patients with generalized osteoporosis, mostly from consanguineous families. In this cohort, we found by Sanger sequencing 2 siblings and 1 single patient who were homozygous for missense mutations in the XYLT2 gene (p.Arg563Gly and p.Leu605Pro). The patients had osteoporosis, compression fractures, cataracts, and hearing loss. Bisphosphonate treatment in 1 patient resulted in almost complete normalization of vertebral structures by adolescence, whereas treatment response in the others was variable. This report together with a previous study shows that mutations in the XYLT2 gene result in a variable phenotype dominated by spinal osteoporosis, cataract, and hearing loss. © 2016 American Society for Bone and Mineral Research. PMID:26987875