Sample records for normal bone scans

  1. Bone Densitometry (Bone Density Scan)

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Bone Densitometry (DEXA) Bone densitometry, also called dual-energy ... limitations of DEXA Bone Densitometry? What is a Bone Density Scan (DEXA)? Bone density scanning, also called ...

  2. Bone scan

    MedlinePlus

    ... scan is an imaging test used to diagnose bone diseases and find out how severe they are. How ... a 3-phase bone scan. To evaluate metastatic bone disease, images are taken only after the 3- to ...

  3. Three-phase bone scan in osteomyelitis and other musculoskeletal disorders.

    PubMed

    Sutter, C W; Shelton, D K

    1996-10-01

    The three-phase bone scan is very sensitive and is the study of choice in the evaluation of patients with suspected osteomyelitis and normal radiographs. If the underlying bone pathology, such as a healing fracture or degenerative disease, is detected on radiographs of the bone, the indium-111-labeled autologous leukocyte scan is the most cost-effective second study. When fracture of the long bones is clinically suspected but radiographs are normal and a delay in definitive diagnosis is acceptable, it is practical and economical to take follow-up films in 10 to 14 days. In cases requiring prompt diagnosis or when follow-up radiographic films are not diagnostic, the three-phase bone scan is the most cost-effective study. The three-phase bone scan is also used in the evaluation of occupational and sports injuries, including shin splints, stress and occult fractures, enthesiopathies and reflex sympathetic dystrophy.

  4. Bone scanning in lymphoma. [/sup 99m/Tc tracer technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schechter, J.P.; Jones, S.E.; Woolfenden, J.M.

    1976-09-01

    The results of bone scanning with the newer technetium-99m complexes were correlated with clinical, laboratory, and radiographic findings in 26 patients with malignant lymphoma (10 with Hodgkin's disease and 16 with non-Hodgkin's lymphomas). Abnormalities on bone scan compatible with lymphomatous involvement of the skeleton appeared to occur more commonly in patients with diffuse lymphomas than in patients with nodular lymphomas and were generally observed in the setting of advanced disease (15 of 23 patients). Twenty-seven (73 percent) of the 37 scans obtained were abnormal. Although abnormal scans were observed with the greatest frequency in patients with bone pain (11 ofmore » 11), bone marrow involvement (11 of 12), abnormal skeletal radiographs (11 of 11), and elevated serum alkaline phosphatase levels (5 of 6), bone scanning also detected lymphomatous involvement in patients free of pain or with normal laboratory tests. Moreover, conventional radiography was entirely normal in six (35 percent) of 17 patients with abnormal scans and revealed only nonspecific osteopenia in another two patients (12 percent). Serial bone scans in nine patients reflected their response to chemotherapy. Of the 37 scans, only one was judged falsely positive and one falsely negative. Bone scanning with /sup 99m/Tc complexes is a safe, simple, and sensitive screening procedure for detecting both extensive and focal lymphomatous involvement of the skeletal system and is a useful means of following such involvement in response to treatment.« less

  5. Bone scan in metabolic bone diseases. Review.

    PubMed

    Abdelrazek, Saeid; Szumowski, Piotr; Rogowski, Franciszek; Kociura-Sawicka, Agnieszka; Mojsak, Małgorzata; Szorc, Małgorzata

    2012-08-25

    Metabolic bone disease encompasses a number of disorders that tend to present a generalized involvement of the whole skeleton. The disorders are mostly related to increased bone turnover and increased uptake of radiolabelled diphosphonate. Skeletal uptake of 99mTc-labelled diphosphonate depends primarily upon osteoblastic activity, and to a lesser extent, skeletal vascularity. A bone scan image therefore presents a functional display of total skeletal metabolism and has valuable role to play in the assessment of patients with metabolic bone disorders. However, the bone scan appearances in metabolic bone disease are often non-specific, and their recognition depends on increased tracer uptake throughout the whole skeleton. It is the presence of local lesions, as in metastatic disease, that makes a bone scan appearance obviously abnormal. In the early stages, there will be difficulty in evaluating the bone scans from many patients with metabolic bone disease. However, in the more severe cases scan appearances can be quite striking and virtually diagnostic.

  6. Bone scanning in severe external otitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, W.J.; Shary, J.H. 3d.; Nichols, L.T.

    1986-11-01

    Technetium99 Methylene Diphosphate bone scanning has been considered an early valuable tool to diagnose necrotizing progressive malignant external otitis. However, to our knowledge, no formal studies have actually compared bone scans of otherwise young, healthy patients with severe external otitis to scans of patients with clinical presentation of malignant external otitis. Twelve patients with only severe external otitis were studied with Technetium99 Diphosphate and were compared to known cases of malignant otitis. All scans were evaluated by two neuroradiologists with no prior knowledge of the clinical status of the patients. Nine of the 12 patients had positive bone scans withmore » many scans resembling those reported with malignant external otitis. Interestingly, there was no consistent correlation between the severity of clinical presentation and the amount of Technetium uptake. These findings suggest that a positive bone scan alone should not be interpreted as indicative of malignant external otitis.« less

  7. Technical errors in planar bone scanning.

    PubMed

    Naddaf, Sleiman Y; Collier, B David; Elgazzar, Abdelhamid H; Khalil, Magdy M

    2004-09-01

    Optimal technique for planar bone scanning improves image quality, which in turn improves diagnostic efficacy. Because planar bone scanning is one of the most frequently performed nuclear medicine examinations, maintaining high standards for this examination is a daily concern for most nuclear medicine departments. Although some problems such as patient motion are frequently encountered, the degraded images produced by many other deviations from optimal technique are rarely seen in clinical practice and therefore may be difficult to recognize. The objectives of this article are to list optimal techniques for 3-phase and whole-body bone scanning, to describe and illustrate a selection of deviations from these optimal techniques for planar bone scanning, and to explain how to minimize or avoid such technical errors.

  8. Ewing sarcoma of the rib with normal blood flow and blood pool imagings on a 3-phase bone scan.

    PubMed

    Alfeeli, Mahmoud A; Naddaf, Sleiman Y; Syed, Ghulam M S

    2005-09-01

    Ewing sarcoma is the second most common pediatric malignant bone tumor. It usually presents as a hot spot on a 3-phase bone scan as a result of increased vascularity of the tumor and new bone formation. However, aggressive Ewing sarcoma can also appear as a cold lesion. We present the features of a Ewing sarcoma of the rib on a 3-phase bone scan in a child who was being investigated for rib fracture after trauma.

  9. Radionuclide bone scanning of osteosarcoma: falsely extended uptake patterns.

    PubMed

    Chew, F S; Hudson, T M

    1982-07-01

    The pathologic specimens of 18 osteosarcomas of long bones were examined to correlate histologic abnormalities with abnormalities seen on preoperative 99mTc pyrophosphate or methylene diphosphonate bone scans. Seven scans accurately represented the extent of the tumor. Eleven scans disclosed increased activity extending beyond the radiographic abnormalities. In eight of these, there was no occult tumor extension and in the other three, the scan activity did not accurately portray the skip metastases that were present. Therefore, these 11 scans demonstrated the falsely extended pattern of uptake beyond the true limits of the tumors. Pathologic slides were available for 10 of the 11 areas of bone that exhibited extended uptake. In two instances, there was no pathologic abnormality. In the other eight cases we found marrow hyperemia, medullary reactive bone, or periosteal new bone. This is the first description of these histologic abnormalities of medullary bone in areas of extended uptake on radionuclide bone scans.

  10. Bone scanning in the detection of occult fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batillas, J.; Vasilas, A.; Pizzi, W.F.

    1981-07-01

    The potential role of bone scanning in the early detection of occult fractures following acute trauma was investigated. Technetium 99m pyrophosphate bone scans were obtained in patients with major clinical findings and negative or equivocal roentgenograms following trauma. Bone scanning facilitated the prompt diagnosis of occult fractures in the hip, knee, wrist, ribs and costochondral junctions, sternum, vertebrae, sacrum, and coccyx. Several illustrative cases are presented. Roentgenographic confirmation occurred following a delay of days to weeks and, in some instances, the roentgenographic findings were subtle and could be easily overlooked. This study demonstrates bone scanning to be invaluable and definitivemore » in the prompt detection of occult fractures.« less

  11. A fundamental study of cryoablation on normal bone: diagnostic imaging and histopathology.

    PubMed

    Yoshimoto, Yuta; Azuma, Kazuo; Miya, Atsushi; Makino, Eiichi; Nakamoto, Hidekazu; Abe, Nobutaka; Kaburagi, Masashi; Ueda, Hisaki; Kuroda, Kohei; Tsuka, Takeshi; Sugiyama, Akihiko; Imagawa, Tomohiro; Murahata, Yusuke; Itoh, Norihiko; Osaki, Tomohiro; Shimizu, Tadashi; Okamoto, Yoshiharu

    2014-10-01

    Cryoablation is a minimally invasive cancer treatment. In this study, the effects of cryoablation on normal rabbit bone were evaluated using imaging and histopathological examinations. Cryoablation was performed using a Cryo-Hit (Galil Medical, Yokneam, Israel). Under anesthesia, one cryoablation needle was inserted at the center of the femur (day 0). To create an ice ball (2 x 3 cm), two 10-min freeze cycles were performed, separated by a 5-min thaw cycle. During cryoablation, changes in the bone and regional tissue were monitored using magnetic resonance imaging (MRI). MRI scans, computed tomography (CT) scans, and collections from the femur (for histopathological evaluation) were performed on days 7, 14, 28, and 56. In terms of the all rabbits' general conditions, we did not observe lameness, decreased appetite, or any other side effects during the experimental periods. Histopathological evaluations of the femur were performed using hematoxylin and eosin staining. MRI indicated inflammation around the ice ball on day 7. Subsequently, the area of inflammation gradually decreased from days 14 to 56. In the histopathological examination, necrosis of bone marrow cells and endosteum were observed from days 7 to 56. No regeneration of bone marrow cells was observed during the experimental period. On the other hand, cryoablation did not influence osteoblasts. Furthermore, there was no pathologic fracture during the experimental period. Our results suggest that cryoablation does not induce severe adverse effects on normal bone, and therefore has potential as a therapeutic option for bone tumors, including metastatic tumors to bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Radioisotope bone scanning in a case of sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinti, D.C.; Hawkins, H.B.; Slavin, J.D. Jr.

    1985-03-01

    The application of radioisotope scanning to osseous involvement from systemic sarcoidosis has been infrequently described in the scientific literature. Most commonly, the small bones of the hands and feet are affected if sarcoidosis involves the skeleton. Nonetheless, there are also occasional manifestations of sarcoid in the skull, long bones, and vertebral bodies. This paper describes a case of sarcoid involving the lung parenchyma with multiple lesions in the skull and ribs demonstrated by bone scanning with Tc-99m MDP. Following treatment with steroids, the bone scan showed complete resolution of the rib lesions and almost complete resolution of the lesions inmore » the calvarium.« less

  13. Strontium-85 Scanning of Suspected Bone Disease

    PubMed Central

    Parsons, Victor; Williams, Margery; Hill, David; Frost, Pamela; Lapham, Avril

    1969-01-01

    Strontium-85 scanning of suspected bone lesions in 81 patients has added to the criteria for the diagnosis of malignant and other lesions of bone. Of 46 patients with a previous history of malignant disease and skeletal symptoms negative radiological findings were recorded in 19, but nine of these had positive scans, eight of which when followed up over periods of up to four years proved to be metastatic. A similar prevalence of positive scans occurred in patients without a previous history of malignancy. Because of the anatomical localization of lesions made possible by this technique a tissue diagnosis was made in six patients, while fields of radiotherapy were altered in another seven. This technique can improve the management of patients with suspected bone disease. PMID:5761888

  14. The bone scan.

    PubMed

    Brenner, Arnold I; Koshy, June; Morey, Jose; Lin, Cheryl; DiPoce, Jason

    2012-01-01

    Bone imaging continues to be the second greatest-volume nuclear imaging procedure, offering the advantage of total body examination, low cost, and high sensitivity. Its power rests in the physiological uptake and pathophysiologic behavior of 99m technetium (99m-Tc) diphosphonates. The diagnostic utility, sensitivity, specificity, and predictive value of 99m-Tc bone imaging for benign conditions and tumors was established when only planar imaging was available. Currently, nearly all bone scans are performed as a planar study (whole-body, 3-phase, or regional), with the radiologist often adding single-photon emission computed tomography (SPECT) imaging. Here we review many current indications for planar bone imaging, highlighting indications in which the planar data are often diagnostically sufficient, although diagnosis may be enhanced by SPECT. (18)F sodium fluoride positron emission tomography (PET) is also re-emerging as a bone agent, and had been considered interchangeable with 99m-Tc diphosphonates in the past. In addition to SPECT, new imaging modalities, including (18)F fluorodeoxyglucose, PET/CT, CT, magnetic resonance, and SPECT/CT, have been developed and can aid in evaluating benign and malignant bone disease. Because (18)F fluorodeoxyglucose is taken up by tumor cells and Tc diphosphonates are taken up in osteoblastic activity or osteoblastic healing reaction, both modalities are complementary. CT and magnetic resonance may supplement, but do not replace, bone imaging, which often detects pathology before anatomic changes are appreciated. We also stress the importance of dose reduction by reducing the dose of 99m-Tc diphosphonates and avoiding unnecessary CT acquisitions. In addition, we describe an approach to image interpretation that emphasizes communication with referring colleagues and correlation with appropriate history to significantly improve our impact on patient care. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Characteristics of bone turnover in the long bone metaphysis fractured patients with normal or low Bone Mineral Density (BMD).

    PubMed

    Wölfl, Christoph; Schweppenhäuser, Daniela; Gühring, Thorsten; Takur, Caner; Höner, Bernd; Kneser, Ulrich; Grützner, Paul Alfred; Kolios, Leila

    2014-01-01

    The incidence of osteoporotic fractures increases as our population ages. Until now, the exact biochemical processes that occur during the healing of metaphyseal fractures remain unclear. Diagnostic instruments that allow a dynamic insight into the fracture healing process are as yet unavailable. In the present matched pair analysis, we study the time course of the osteoanabolic markers bone specific alkaline phosphatase (BAP) and transforming growth factor β1 (TGFβ1), as well as the osteocatabolic markers crosslinked C-telopeptide of type-I-collagen (β-CTX) and serum band 5 tartrate-resistant acid phosphatase (TRAP5b), during the healing of fractures that have a low level of bone mineral density (BMD) compared with fractures that have a normal BMD. Between March 2007 and February 2009, 30 patients aged older than 50 years who suffered a metaphyseal fracture were included in our study. BMDs were verified by dual energy Xray absorptiometry (DXEA) scans. The levels of BTMs were examined over an 8-week period. Osteoanabolic BAP levels in those with low levels of BMD were significantly different from the BAP levels in those with normal BMD. BAP levels in the former group increased constantly, whereas the latter group showed an initial strong decrease in BAP followed by slowly rising values. Osteocatabolic β-CTX increased in the bone of the normal BMD group constantly, whereas these levels decreased significantly in the bone of the group with low BMD from the first week. TRAP5b was significantly reduced in the low level BMD group. With this work, we conduct first insights into the molecular biology of the fracture healing process in patients with low levels of BMD that explains the mechanism of its fracture healing. The results may be one reason for the reduced healing qualities in bones with low BMD.

  16. Bone metastases from breast cancer at the time or radical mastectomy as detected by bone scan. Eight-year follow-up.

    PubMed

    Sklaroff, R B; Sklaroff, D M

    1976-07-01

    Sixty-four women with Stage II breast cancer who had Sr85 bone scans at the time of radical mastectomy were followed for 8 years in a prospective study. Those women with positive scans had a slight, but statistically significant, increased incidence of metastic disease, particularly for metastases to bone.However, 40% of those women with positive bone scans and negative roentgenograms survived 8 years without evidence of any metastatic disease. Therefore, it has not been shown at this time that bone scans should be obtained in order to exclude bone metastasis before regional therapy for breast cancer is instituted. Also, a significant percentage of women with negative bone scans developed both bone and soft tissue metastases. As many as 30% of asymptomatic women with a history of breast cancer and positive bone scans and negative bone roentgenograms may still harbor disease in bone after 8 years.

  17. Bone scan features in spontaneous knee pain.

    PubMed

    Vattimo, A; Merlo, F; Bertelli, P; Burroni, L

    1992-01-01

    In 21 patients with "spontaneous" knee pain, 99mTc-MDP bone scan was found to be more sensitive than clinical and radiographic examination in detecting alterations of the joint components. These alterations were shown by increased radionuclide uptake in the compartments where pain was present, which was most commonly the medial femorotibial compartment, although the femoropatellar compartment was also frequently affected. The authors conclude that bone scan should be the first imaging study performed on the knee in order to establish if further tests are necessary.

  18. Whole-Body Bone Scan Findings after High-Intensity Focused Ultrasound (HIFU) Treatment.

    PubMed

    Seo, Ye Young; O, Joo Hyun; Sohn, Hyung Sun; Choi, Eun Kyoung; Yoo, Ik Dong; Oh, Jin Kyoung; Han, Eun Ji; Jung, Seung Eun; Kim, Sung Hoon

    2011-12-01

    This study aims to examine the findings of (99m)Tc-diphosphonate bone scans in cancer patients with a history of HIFU treatment. Bone scan images of patients with a history of HIFU treatment for primary or metastatic cancer from January 2006 to July 2010 were retrospectively reviewed. Cases of primary bone tumor or HIFU treatment reaching only the superficial soft tissue layer were excluded. Bone scan images of 62 patients (26 female, 36 male; mean age 57 ± 9 years) were studied. HIFU treatment was performed in the liver (n = 40), pancreas (n = 16), and breast (n = 6). Mean interval time between HIFU treatment and bone scan was 106 ± 105 days (range: 1-572 days). Of 62 scans, 43 showed diffusely decreased uptake of bone within the path of HIFU treatment: antero-axillary and/or posterior arcs of right 5th to 11th ribs in 34 cases after treatment of hepatic lesions; anterior arcs of 2nd to 5th ribs in 5 cases after treatment for breast tumors; and posterior arcs of left 9th to 11th ribs or thoraco-lumbar vertebrae in 4 cases after treatment for pancreas tumor. Of 20 patients who had bone scans more than twice, five showed recovered uptake of the radiotracer in the involved ribs in the follow-up bone scan. Of 62 bone scans in patients with a history of HIFU treatment for primary or metastatic cancer, 69% presented diffusely decreased uptake in the bone in the path of HIFU treatment.

  19. Bone scans after total knee arthroplasty in asymptomatic patients. Cemented versus cementless

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, A.A.; Wyatt, R.W.; Daniels, A.U.

    1990-02-01

    The natural history of bone scans after total knee arthroplasty (TKA) was studied in 26 patients with 28 cemented TKAs and 29 patients with 31 cementless TKAs. The bone scans were examined at specified postoperative intervals. Radionuclide activity of the femoral, tibial, and patellar regions was measured. Six patients who developed pain postoperatively were excluded. Bone scans immediately postoperative and at three months demonstrated increased uptake, which gradually decreased to baseline levels at ten to 12 months. Radioisotope uptake was comparable in the cemented and cementless groups, but was highly variable in individual patients and in each of the follow-upmore » periods. A single postoperative bone scan cannot differentiate component loosening from early bone remodeling. Sequential bone scans, as a supplement to the clinical examination and conventional radiography, may prove useful in the diagnosis of TKA failure.« less

  20. Scanning electron microscopy of bone.

    PubMed

    Boyde, Alan

    2012-01-01

    This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.

  1. Normal bone and soft tissue distribution of fluorine-18-sodium fluoride and artifacts on 18F-NaF PET/CT bone scan: a pictorial review.

    PubMed

    Sarikaya, Ismet; Elgazzar, Abdelhamid H; Sarikaya, Ali; Alfeeli, Mahmoud

    2017-10-01

    Fluorine-18-sodium fluoride (F-NaF) PET/CT is a relatively new and high-resolution bone imaging modality. Since the use of F-NaF PET/CT has been increasing, it is important to accurately assess the images and be aware of normal distribution and major artifacts. In this pictorial review article, we will describe the normal uptake patterns of F-NaF in the bone tissues, particularly in complex structures, as well as its physiologic soft tissue distribution and certain artifacts seen on F-NaF PET/CT images.

  2. Occurrence and pattern of long bone fractures in growing dogs with normal and osteopenic bones.

    PubMed

    Kumar, K; Mogha, I V; Aithal, H P; Kinjavdekar, P; Singh, G R; Pawde, A M; Kushwaha, R B

    2007-11-01

    A retrospective study was undertaken to record the occurrence and pattern of long bone fractures, and the efficacy of Intramedullary (IM) Steinmann pin fixing in growing dogs. All the records of growing dogs during a 10-year-period were screened to record the cause of trauma, the age and sex of the animal, the bone involved, the type and location of the fracture, the status of fixation, alignment, maintenance of fixation and fracture healing. The results were analysed and comparisons were made between growing dogs with normal and osteopenic bones. Among the 310 cases of fractures recorded, the bones were osteopenic in 91 cases (29%). Minor trauma was the principal cause of fracture in dogs with osteopenia (25%), and indigenous breeds were most commonly affected (38%). Fractures in dogs with osteopenic bones were most commonly recorded in the age group of 2-4 months (53%), whereas fractures in normal dogs were almost equally distributed between 2 and 8 months of age. Male dogs were affected significantly more often in both groups. In osteopenic bones, most fractures were recorded in the femur (56%), and they were distributed equally along the length of the bone. Whereas in normal bones, fractures were almost equally distributed in radius/ulna, femur and tibia, and were more often recorded at the middle and distal third of long bones. Oblique fractures were most common in both groups; however, comminuted fractures were more frequent in normal bones, whereas incomplete fractures were more common in osteopenic bones. Ninety-nine fracture cases treated with IM pinning (66 normal, 33 osteopenic) were evaluated for the status of fracture reduction and healing. In a majority of the cases (61%) with osteopenic bones, the diameter of the pin was relatively smaller than the diameter of the medullary cavity (<70-75%), whereas in 68% of the cases in normal bones the pin diameter was optimum. The status of fracture fixing was satisfactory to good in significantly more

  3. Bone scanning in the adductor insertion avulsion syndrome.

    PubMed

    Mahajan, Madhuri Shimpi

    2013-05-01

    A thigh splint (adductor insertion avulsion syndrome) is a relatively uncommon diagnosis analogous to shin splints. This article reports a 19-year-old female patient NOT a regular athlete who presented with groin pain. Physical examination was non-specific; magnetic resonance imaging pelvis did not reveal any abnormality. Patient referred for whole body bone scan, especially to locate any abnormality in the spine. This study highlights the role of whole body bone scan in the evaluation of groin pain and importance of evaluation of whole lower extremity.

  4. [Stress fractures of the ribs with acute thoracic pain in a young woman, diagnosed by the bone scan].

    PubMed

    Georgitzikis, Athanasios; Siopi, Dimitra; Doumas, Argyrios; Mitka, Ekaterini; Antoniadis, Antonios

    2010-01-01

    We report the unusual case of a 29 -year old woman with emotional instability who presented with acute onset chest pain after severe chronic cough. The chest X-ray and the serological tests were normal but the CT scanning, and the bone scanning revealed multiple bilateral rib stress fractures, caused by severe coughing and physical activity and worsened by the patient's emotional instability.

  5. Bone Scanning in the Adductor Insertion Avulsion Syndrome

    PubMed Central

    Mahajan, Madhuri Shimpi

    2013-01-01

    A thigh splint (adductor insertion avulsion syndrome) is a relatively uncommon diagnosis analogous to shin splints. This article reports a 19-year-old female patient NOT a regular athlete who presented with groin pain. Physical examination was non-specific; magnetic resonance imaging pelvis did not reveal any abnormality. Patient referred for whole body bone scan, especially to locate any abnormality in the spine. This study highlights the role of whole body bone scan in the evaluation of groin pain and importance of evaluation of whole lower extremity. PMID:25126001

  6. Is there a role of whole-body bone scan in patients with esophageal squamous cell carcinoma

    PubMed Central

    2012-01-01

    Background Correct detection of bone metastases in patients with esophageal squamous cell carcinoma is pivotal for prognosis and selection of an appropriate treatment regimen. Whole-body bone scan for staging is not routinely recommended in patients with esophageal squamous cell carcinoma. The aim of this study was to investigate the role of bone scan in detecting bone metastases in patients with esophageal squamous cell carcinoma. Methods We retrospectively evaluated the radiographic and scintigraphic images of 360 esophageal squamous cell carcinoma patients between 1999 and 2008. Of these 360 patients, 288 patients received bone scan during pretreatment staging, and sensitivity, specificity, positive predictive value, and negative predictive value of bone scan were determined. Of these 360 patients, surgery was performed in 161 patients including 119 patients with preoperative bone scan and 42 patients without preoperative bone scan. Among these 161 patients receiving surgery, 133 patients had stages II + III disease, including 99 patients with preoperative bone scan and 34 patients without preoperative bone scan. Bone recurrence-free survival and overall survival were compared in all 161 patients and 133 stages II + III patients, respectively. Results The diagnostic performance for bone metastasis was as follows: sensitivity, 80%; specificity, 90.1%; positive predictive value, 43.5%; and negative predictive value, 97.9%. In all 161 patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0.009, univariately). In multivariate comparison, absence of preoperative bone scan (P = 0.012, odds ratio: 5.053) represented the independent adverse prognosticator for bone recurrence-free survival. In 133 stages II + III patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0

  7. Bone scan as a screening test for missed fractures in severely injured patients.

    PubMed

    Lee, K-J; Jung, K; Kim, J; Kwon, J

    2014-12-01

    In many cases, patients with severe blunt trauma have multiple fractures throughout the body. These fractures are not often detectable by history or physical examination, and their diagnosis can be delayed or even missed. Thus, screening test fractures of the whole body is required after initial management. We performed this study to evaluate the reliability of bone scans for detecting missed fractures in patients with multiple severe traumas and we analyzed the causes of missed fractures by using bone scan. A bone scan is useful as a screening test for fractures of the entire body of severe trauma patients who are passed the acute phase. We reviewed the electronic medical records of severe trauma patients who underwent a bone scan from September 2009 to December 2010. Demographic and medical data were compared and statistically analyzed to determine whether missed fractures were detected after bone scan in the two groups. A total of 382 patients who had an injury severity score [ISS] greater than 16 points with multiple traumas visited the emergency room. One hundred and thirty-one patients underwent bone scan and 81 patients were identified with missed fractures by bone scan. The most frequent location for missed fractures was the rib area (55 cases, 41.98%), followed by the extremities (42 cases, 32.06%). The missed fractures that required surgery or splint were most common in extremities (11 cases). In univariate analysis, higher ISS scores and mechanism of injury were related with the probability that missed fractures would be found with a bone scan. The ISS score was statistically significant in multivariate analysis. Bone scan is an effective method of detecting missed fractures among patients with multiple severe traumas. Level IV, retrospective study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. [Scanning electron microscopy of heat-damaged bone tissue].

    PubMed

    Harsanyl, L

    1977-02-01

    Parts of diaphyses of bones were exposed to high temperature of 200-1300 degrees C. Damage to the bone tissue caused by the heat was investigated. The scanning electron microscopic picture seems to be characteristic of the temperature applied. When the bones heated to the high temperature of 700 degrees C characteristic changes appear on the periostal surface, higher temperatura on the other hand causes damage to the compact bone tissue and can be observed on the fracture-surface. Author stresses the importance of this technique in the legal medicine and anthropology.

  9. Use of Bone Scan During Initial Prostate Cancer Workup, Downstream Procedures, and Associated Medicare Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falchook, Aaron D.; Salloum, Ramzi G.; Hendrix, Laura H.

    Purpose: For patients with a high likelihood of having metastatic disease (high-risk prostate cancer), bone scan is the standard, guideline-recommended test to look for bony metastasis. We quantified the use of bone scans and downstream procedures, along with associated costs, in patients with high-risk prostate cancer, and their use in low- and intermediate-risk patients for whom these tests are not recommended. Methods and Materials: Patients in the Surveillance, Epidemiology, and End Results (SEER)-Medicare database diagnosed with prostate cancer from 2004 to 2007 were included. Prostate specific antigen (PSA), Gleason score, and clinical T stage were used to define D'Amico riskmore » categories. We report use of bone scans from the date of diagnosis to the earlier of treatment or 6 months. In patients who underwent bone scans, we report use of bone-specific x-ray, computed tomography (CT), and magnetic resonance imaging (MRI) scans, and bone biopsy within 3 months after bone scan. Costs were estimated using 2012 Medicare reimbursement rates. Results: In all, 31% and 48% of patients with apparent low- and intermediate-risk prostate cancer underwent a bone scan; of these patients, 21% underwent subsequent x-rays, 7% CT, and 3% MRI scans. Bone biopsies were uncommon. Overall, <1% of low- and intermediate-risk patients were found to have metastatic disease. The annual estimated Medicare cost for bone scans and downstream procedures was $11,300,000 for low- and intermediate-risk patients. For patients with apparent high-risk disease, only 62% received a bone scan, of whom 14% were found to have metastasis. Conclusions: There is overuse of bone scans in patients with low- and intermediate-risk prostate cancers, which is unlikely to yield clinically actionable information and results in a potential Medicare waste. However, there is underuse of bone scans in high-risk patients for whom metastasis is likely.« less

  10. Making the invisible body visible. Bone scans, osteoporosis and women's bodily experiences.

    PubMed

    Reventlow, Susanne Dalsgaard; Hvas, Lotte; Malterud, Kirsti

    2006-06-01

    The imaging technology of bone scans allows visualization of the bone structure, and determination of a numerical value. Both these are subjected to professional interpretation according to medical (epidemiological) evidence to estimate the individual's risk of fractures. But when bodily experience is challenged by a visual diagnosis, what effect does this have on an individual? The aim of this study was to explore women's bodily experiences after a bone scan and to analyse how the scan affects women's self-awareness, sense of bodily identity and integrity. We interviewed 16 Danish women (aged 61-63) who had had a bone scan for osteoporosis. The analysis was based on Merleau-Ponty's perspective of perception as an embodied experience in which bodily experience is understood to be the existential ground of culture and self. Women appeared to take the scan literally and planned their lives accordingly. They appeared to believe that the 'pictures' revealed some truth in themselves. The information supplied by the scan fostered a new body image. The women interpreted the scan result (a mark on a curve) to mean bodily fragility which they incorporated into their bodily perception. The embodiment of this new body image produced new symptom interpretations and preventive actions, including caution. The result of the bone scan and its cultural interpretation triggered a reconstruction of the body self as weak with reduced capacity. Women's interpretation of the bone scan reorganized their lived space and time, and their relations with others and themselves. Technological information about osteoporosis appeared to leave most affected women more uncertain and restricted rather than empowered. The findings raise some fundamental questions concerning the use of medical technology for the prevention of asymptomatic disorders.

  11. Patterns of pulmonary perfusion scans in normal subjects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, J.M.; Moser, K.M.; Hartman, M.T.

    1981-01-01

    A vital factor conditioning the usage of the pulmonary perfusion (Q) scan in the evaluation of patients suspected of pulmonary embolism is the prevalence of abnormal Q scans in subjects free of cardiopulmonary disease. Because this prevalence has not been well defined, we performed Q scans in 80 nonsmoking subjects 18 to 29 yr of age having no known active cardiopulmonary disease. Each subject underwent a history, physical examination, electrocardiogram, spirometry, and PA chest roentgenogram, followed by a 6-view Q scan. Two subjects in whom a Q defect was suspected underwent a /sup 133/Xe equilibrium-washout ventilation (V) scan. All Qmore » scans were interpreted blindly and independently by 2 experienced readers. Seventy-nine of the 80 Q scans were read as normal. No subject demonstrated a lobar or segmental defect. One of the 80 subjects, who had a mild pectus excavatum, had a left upper lobe subsegmental defect, which was not seen on the V scan. Based on the statistical analysis of these data, no more than 3.68% of normal nonsmoking persons in this age group may have a lobar or segmental Q scan defect and no more than 6.77% may have a subsegmental defect (with 95% confidence). Therefore, our study indicated that Q scan defects, particularly lobar or segmental, are rarely present among normal nonsmokers in this age group.« less

  12. An evaluation of bone scans as screening procedures for occult metastases in primary breast cancer.

    PubMed Central

    Baker, R R; Holmes, E R; Alderson, P O; Khouri, N F; Wagner, H N

    1977-01-01

    Preoperative bone scans were obtained in 104 patients with operable breast cancer. Areas of increased radioactivity detected by the bone scan were correlated with appropriate radiographs. One of 64 patients (1.5%) with clinical Stage I and Stage II breast cancer had a metastatic lesion detected by the preoperative bone scan. In contrast, 10 of 41 patients (24%) with Stage III breast cancer had occult metastatic lesions detected by the preoperative bone scan. The majority of patients with abnormal bone scans and no radiographic evidence of a benign lesion to explain the cause of the increased radioactivity proved to have metastatic breast cancer on follow-examination. Even though 20% of patients with operable breast cancer will eventually develop bone metastases, our results indicate that preoperative bone scans are not an effective means of predicting which patients with Stage I and Stage II disease will develop metastatic breast cancer. Because of the considerably increased frequency of detection of occult metastases in patients with Stage III breast cancer, bone scans should be obtained routinely in the preoperative assessment of these patients. Images Figs. 1a and b. Figs. 2a and b. Figs. 3a-d. PMID:889378

  13. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2013-11-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.

  14. Bone growth and bone development in the presence of implants or after induced leg-lengthening studied using the Oxford Scanning Proton Microprobe

    NASA Astrophysics Data System (ADS)

    Pålsgård, Eva; Johansson, Carina; Li, Gang; Grime, Geoff W.; Triffitt, J. T.

    1997-07-01

    To respond to varying environmental demands the bone tissue in the body is under continual reconstruction throughout life. It is known that metallic elements are important for maintaining normal bone structure, but their roles are not well understood. More information about the effects of metal excess or deficiency is needed to help in the development of metallic bone implants and to improve the treatment of bone fractures and defects. The Oxford Scanning Proton Microprobe (SPM) is being applied in two studies involving metal ions in bone: (1) bone regrowth and bonding to titanium bone implants may be influenced by diffusion of Ti ions into the bone. We are using microPIXE to determine the metal ion content of bone developing in contact with implants of pure Nb, Ti and Ti alloys. (2) Bone lengthening as a surgical procedure is induced by fracturing the bone and allowing it to heal with a small gap between the fractured ends created by the use of external fixators. The gap can be slowly increased during the healing process to stimulate the production of new bone. The enzymes and other constituents of the developing bone need certain metals for their function. Using experimental animals we have studied the concentrations of the metals and whether a deficiency of trace metals limits the optimum rate of bone lengthening.

  15. [Radionuclide bone scan in patients with newly diagnosed prostate cancer. Clinical aspects and cost analysis].

    PubMed

    Klatte, T; Klatte, D; Böhm, M; Allhoff, E P

    2006-10-01

    The indication for a radionuclide bone scan in patients with newly diagnosed, untreated prostate cancer remains controversial. In this retrospective study we examined 406 patients who had received a staging bone scan irrespective of their PSA serum level and histology. We evaluated different guidelines and recommendations with respect to their usefulness. The costs were calculated according to EBM and GOA. We evaluated the classification systems of bone metastases according to Soloway, Crawford, and Rigaud. The bone scan was positive in 41 (10%) of 406 patients. The EAU guidelines turned out to be useful with respect to both clinical value and cost efficiency. The Rigaud classification of bone metastases predicted outcome better than the Soloway or Crawford classification. The EAU guidelines from 2005 are a useful tool to decide whether to perform a bone scan in patients with newly diagnosed, untreated prostate cancer. A bone scan should be performed if PSA levels exceed 20 ng/ml in patients with a G1/G2 histology, and in patients with G3 histology and locally advanced disease irrespective of PSA level. Bone scan metastases should be classified according to Rigaud.

  16. Utility of bone scanning in detecting occult skeletal metastases from cervical carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, R.D.; Alderson, P.O.; Rosenshein, N.B.

    1979-11-01

    Bone scans were obtained in 100 patients with carcinoma of the cervix in order to search for occult skeletal metastases. Scans revealed metastases in 4 patients with advanced stages of disease, but the scans in 79 patients with Stage 0, I, or II disease were negative. The scans in 14 patients showed renal asymmetry; 11 of these had obstructive uropathy due to tumor invasion or radiation therapy. Bone scanning does not seem warranted as a screening test in asymptomatic patients with Stage 0, I, or II carcinoma. If the test is done, renal symmetry should be carefully evaluated.

  17. Technetium phosphate bone scan in the diagnosis of septic arthritis in childhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundberg, S.B.; Savage, J.P.; Foster, B.K.

    1989-09-01

    The technetium phosphate bone scans of 106 children with suspected septic arthritis were reviewed to determine whether the bone scan can accurately differentiate septic from nonseptic arthropathy. Only 13% of children with proved septic arthritis had correct blind scan interpretation. The clinically adjusted interpretation did not identify septic arthritis in 30%. Septic arthritis was incorrectly identified in 32% of children with no evidence of septic arthritis. No statistically significant differences were noted between the scan findings in the septic and nonseptic groups and no scan findings correlated specifically with the presence or absence of joint sepsis.

  18. Growth plate closure: Apex view on bone scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giles, P.H.; Trochei, M.; Yeates, K.

    1984-01-01

    Angular deformities of the extremities in children following premature closure of the growth plate are well known. The deformities depend on the position of an osseus bridge which forms between the epiphysis and metaphysis. Several surgical procedures including resection of the osseus bridge have been described, however, delineation of the site of fusion is difficult to define. The commonest site of growth plate arrest is the distal femoral or proximal tibial growth plate. A new technique using the bone scan has been developed which accurately defines the area and position of these osseus bridges. Two hours after injection of technetiummore » 99m methylene diphosphonate apex views of the affected distal femoral growth plate were performed. The knee was flexed into its smallest angle. Using a pinhole collimator the gamma camera was angled to face the affected growth plate end on. The image was collected onto computer and analysed by: (I) regions of interest over segments of the growth plate to calculate the relative area of total growth plate affected: (II) generating histograms: (III) thresholding or performing isocontours to accentuate abnormal areas. The growth plate is normally uniformly increased when compared to the normal shaft of the bone. Fusion across the plate appears as an area of diminished uptake. The apex view gives a unique functional map of the growth plate such that abnormal areas are displayed, and the site, size and position of osseus fusion obtained. The technique has the potential for determining the metabolic activity of the growth plate before and after surgery. Serial studies will allow assessment of regneration of the plate and reformation of new osseus bridges.« less

  19. Do vegetarians have a normal bone mass?

    PubMed

    New, Susan A

    2004-09-01

    Public health strategies targeting the prevention of poor bone health on a population-wide basis are urgently required, with particular emphasis being placed on modifiable factors such as nutrition. The aim of this review was to assess the impact of a vegetarian diet on indices of skeletal integrity to address specifically whether vegetarians have a normal bone mass. Analysis of existing literature, through a combination of observational, clinical and intervention studies were assessed in relation to bone health for the following: lacto-ovo-vegetarian and vegan diets versus omnivorous, predominantly meat diets, consumption of animal versus vegetable protein, and fruit and vegetable consumption. Mechanisms of action for a dietary "component" effect were examined and other potential dietary differences between vegetarians and non-vegetarians were also explored. Key findings included: (i) no differences in bone health indices between lacto-ovo-vegetarians and omnivores; (ii) conflicting data for protein effects on bone with high protein consumption (particularly without supporting calcium/alkali intakes) and low protein intake (particularly with respect to vegan diets) being detrimental to the skeleton; (iii) growing support for a beneficial effect of fruit and vegetable intake on bone, with mechanisms of action currently remaining unclarified. The impact of a "vegetarian" diet on bone health is a hugely complex area since: 1) components of the diet (such as calcium, protein, alkali, vitamin K, phytoestrogens) may be varied; 2) key lifestyle factors which are important to bone (such as physical activity) may be different; 3) the tools available for assessing consumption of food are relatively weak. However, from data available and given the limitations stipulated above, "vegetarians" do certainly appear to have "normal" bone mass. What remains our challenge is to determine what components of a vegetarian diet are of particular benefit to bone, at what levels and under

  20. Practical use of bone scan in patients with an osteoporotic vertebral compression fracture.

    PubMed

    Jun, Deuk Soo; An, Byoung Keun; Yu, Chang Hun; Hwang, Kyung Hoon; Paik, Je Won

    2015-02-01

    Rib fractures are one of main causes of chest or flank pain when related to an osteoporotic vertebral compression fracture (OVCF). The authors investigated the incidence and risk factors of rib fracture in 284 patients with OVCF using bone scans and evaluated the feasibility as to whether bone scans could be utilized as a useful screening tool. Hot uptake lesions on ribs were found in 122 cases (43.0%). The factors analyzed were age, sex, number and locations of fractured vertebrae, BMD, and compression rates as determined using initial radiography. However, no statistical significances were found. In 16 cases (5.6%), there were concurrent multiple fractures of both the thoracic and lumbar spines not detected by single site MRI. Sixty cases (21.1%) of OVCF with the a compression rate of less than 15% could not be identified definitely by initial plain radiography, but were confirmed by bone scans. It is concluded that a bone scan has outstanding ability for the screening of rib fractures associated with OVCF. Non-adjacent multiple fractures in both thoracic and lumbar spines and fractures not identified definitely by plain radiography were detected on bone scans, which provided a means for determining management strategies and predicting prognosis.

  1. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    PubMed Central

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2012-01-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone’s mechanical strength and structural parameters, i.e., bulk Young’s modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young’s modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone’s structural integrity. PMID:23976803

  2. Evaluation of Efficacy of Bone Scan With SPECT/CT in the Management of Low Back Pain: A Study Supported by Differential Diagnostic Local Anesthetic Blocks.

    PubMed

    Jain, Anuj; Jain, Suruchi; Agarwal, Anil; Gambhir, Sanjay; Shamshery, Chetna; Agarwal, Amita

    2015-12-01

    Conventional radiologic modalities provide details only about the anatomic aspect of the various structures of the spine. Frequently the structures that show abnormal morphology may not be the cause of low back pain (LBP). Functional imaging in the form of bone scan along with single photon emission computerized tomography (SPECT/CT) may be helpful in identifying structures causing pain, whether morphologically normal or not. The objective of this study is to evaluate the role of bone scan with SPECT/CT in management of patients with LBP. This is randomized double-blinded controlled study performed on 80 patients with LBP aged 20 to 80 years, ASA physical status I to III. Patients were randomized into bone scan and control groups consisting of 40 patients each. On the basis of the clinical features and radiologic findings a clinical diagnosis was made. After making a clinical diagnosis, the patients in bone scan group were subjected to bone scan with SPECT/CT. On the basis of the finding of the bone scan and SPECT/CT, a new working diagnosis was made and intervention was performed according to the new working diagnosis. Diagnostic blocks in the control group were given based on clinical diagnosis. Controlled comparative diagnostic blocks were performed with local anesthetic. The pain score just after the diagnostic block and at the time of discharge (approximately 4 h later) was recorded; the pain relief was recorded in percentage. In both the groups, sacroilitis was the most common diagnosis followed by facet joint arthropathy. The number of patients obtaining pain relief of >50% was significantly higher in the bone scan-positive group as compared with the control group. Three new clinical conditions were identified in the bone scan group. These conditions were multiple myeloma, avascular necrosis of the femoral head, and ankylosing spondylitis. Bone scan with SPECT/CT was found to complement the clinical workup of patients with LBP. Inclusion of bone scan with

  3. Assessment of bone turnover markers and bone mineral density in normal short boys.

    PubMed

    Gayretli Aydin, Zeynep Gökçe; Bideci, Aysun; Emeksiz, Hamdi C; Çelik, Nurullah; Döğer, Esra; Bukan, Neslihan; Yildiz, Ummügülsüm; Camurdan, Orhun M; Cinaz, Peyami

    2015-11-01

    To investigate whether there is a change in bone turnover-related biochemical markers and bone mineral density of children with constitutional delay of growth and puberty (CDGP) in the prepubertal period. We measured serum calcium, phosphorus, alkaline phosphatase, parathormone, 25-OH vitamin D, osteocalcin, osteoprotogerin and urinary deoxypyridinoline levels (D-pyd), and bone mineral density (BMD) in 31 prepubertal boys with CDGP. These children were compared with 22 prepubertal boys with familial short stature (FSS) and 27 normal prepubertal boys. Urinary D-pyd was significantly high in CDGP group as compared to control group (p=0.010). Volumetric BMD did not significantly differ between CDGP, FSS, and control groups (p=0.450). Volumetric BMD and urinary D-pyd levels of FSS and control groups were similar. Mean or median levels of calcium, phosphorus, alkaline phosphatase, parathormone, and osteoprotegerin did not significantly differ between CDGP, FSS, and control groups. Our data suggest that prepubertal boys with CDPG have normal bone turnover. However, their significantly higher urinary D-pyd levels relative to those of FSS and control groups might be an indicator of later development of osteoporosis. Therefore, long-term follow-up studies monitoring bone mineral status of prepubertal boys with CDPG from prepuberty to adulthood are needed to better understand bone metabolism of these patients.

  4. Comparison of image enhancement methods for the effective diagnosis in successive whole-body bone scans.

    PubMed

    Jeong, Chang Bu; Kim, Kwang Gi; Kim, Tae Sung; Kim, Seok Ki

    2011-06-01

    Whole-body bone scan is one of the most frequent diagnostic procedures in nuclear medicine. Especially, it plays a significant role in important procedures such as the diagnosis of osseous metastasis and evaluation of osseous tumor response to chemotherapy and radiation therapy. It can also be used to monitor the possibility of any recurrence of the tumor. However, it is a very time-consuming effort for radiologists to quantify subtle interval changes between successive whole-body bone scans because of many variations such as intensity, geometry, and morphology. In this paper, we present the most effective method of image enhancement based on histograms, which may assist radiologists in interpreting successive whole-body bone scans effectively. Forty-eight successive whole-body bone scans from 10 patients were obtained and evaluated using six methods of image enhancement based on histograms: histogram equalization, brightness-preserving bi-histogram equalization, contrast-limited adaptive histogram equalization, end-in search, histogram matching, and exact histogram matching (EHM). Comparison of the results of the different methods was made using three similarity measures peak signal-to-noise ratio, histogram intersection, and structural similarity. Image enhancement of successive bone scans using EHM showed the best results out of the six methods measured for all similarity measures. EHM is the best method of image enhancement based on histograms for diagnosing successive whole-body bone scans. The method for successive whole-body bone scans has the potential to greatly assist radiologists quantify interval changes more accurately and quickly by compensating for the variable nature of intensity information. Consequently, it can improve radiologists' diagnostic accuracy as well as reduce reading time for detecting interval changes.

  5. Confocal laser scanning microscopy in study of bone calcification

    NASA Astrophysics Data System (ADS)

    Nishikawa, Tetsunari; Kokubu, Mayu; Kato, Hirohito; Imai, Koichi; Tanaka, Akio

    2012-12-01

    Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 μm/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  6. A Set of Image Processing Algorithms for Computer-Aided Diagnosis in Nuclear Medicine Whole Body Bone Scan Images

    NASA Astrophysics Data System (ADS)

    Huang, Jia-Yann; Kao, Pan-Fu; Chen, Yung-Sheng

    2007-06-01

    Adjustment of brightness and contrast in nuclear medicine whole body bone scan images may confuse nuclear medicine physicians when identifying small bone lesions as well as making the identification of subtle bone lesion changes in sequential studies difficult. In this study, we developed a computer-aided diagnosis system, based on the fuzzy sets histogram thresholding method and anatomical knowledge-based image segmentation method that was able to analyze and quantify raw image data and identify the possible location of a lesion. To locate anatomical reference points, the fuzzy sets histogram thresholding method was adopted as a first processing stage to suppress the soft tissue in the bone images. Anatomical knowledge-based image segmentation method was then applied to segment the skeletal frame into different regions of homogeneous bones. For the different segmented bone regions, the lesion thresholds were set at different cut-offs. To obtain lesion thresholds in different segmented regions, the ranges and standard deviations of the image's gray-level distribution were obtained from 100 normal patients' whole body bone images and then, another 62 patients' images were used for testing. The two groups of images were independent. The sensitivity and the mean number of false lesions detected were used as performance indices to evaluate the proposed system. The overall sensitivity of the system is 92.1% (222 of 241) and 7.58 false detections per patient scan image. With a high sensitivity and an acceptable false lesions detection rate, this computer-aided automatic lesion detection system is demonstrated as useful and will probably in the future be able to help nuclear medicine physicians to identify possible bone lesions.

  7. Assessment of the increased calcification of the jaw bone with CT-Scan after dental implant placement

    PubMed Central

    2011-01-01

    Purpose This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). Materials and Methods This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. Results The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. Conclusion CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement. PMID:21977476

  8. Assessment of the increased calcification of the jaw bone with CT-Scan after dental implant placement.

    PubMed

    Yunus, Barunawaty

    2011-06-01

    This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement.

  9. Cat-scratch disease. Subtle vertebral bone marrow abnormalities demonstrated by MR imaging and radionuclide bone scan.

    PubMed

    Wilson, J D; Castillo, M

    1995-01-01

    Cat-scratch disease (CSD) is a benign, self-limited cause of lymphadenitis occurring mainly in children and young adults. Its etiology is a delicate, small gram-negative pleomorphic bacillus. Less common manifestations of CSD are seen in 5% of patients and include Parinaud's oculoglandular syndrome (with enlargement of the preauricular nodes), parotid gland enlargement, encephalitis, radiculopathy, pneumonitis, erythema nodosum, thrombocytopenia, and lytic bone lesions. We describe a patient in whom magnetic resonance imaging initially detected subtle vertebral bone marrow abnormalities that correlated with the site of abnormality on a subsequent radionuclide bone scan.

  10. TC99m MDP bone scan in evaluation of painful scoliosis

    PubMed Central

    Nilegaonkar, Sujit; Sonar, Sameer; Ranade, Ashish; Khadilkar, Madhav

    2010-01-01

    A 18-year-old male presented with low back ache. The patient was investigated and was diagnosed to have painful scoliosis. X-ray and other examinations could not reveal any diagnosis. The patient was referred to undergo bone scan on clinical suspicion of osteoid osteoma and to rule out stress fracture if any. Planar bone scan was performed, which showed a lesion in L3 vertebra and was further evaluated with SPECT (Single photon emission computed tomography) study to characterize the lesion. On SPECT examination, the classical features of osteoid osteoma, the double density sign (11), was noted in the pars interarticularis region. These findings were confirmed by a CT scan, which showed a sclerotic lesion in pars interarticularis of L3 vertebra. The patient was posted for operation and was relieved of symptoms in the postoperative follow-up. PMID:21188068

  11. Normalization of CT scans reconstructed with different kernels to reduce variability in emphysema measurements

    NASA Astrophysics Data System (ADS)

    Gallardo Estrella, L.; van Ginneken, B.; van Rikxoort, E. M.

    2013-03-01

    Chronic Obstructive Pulmonary Disease (COPD) is a lung disease characterized by progressive air flow limitation caused by emphysema and chronic bronchitis. Emphysema is quantified from chest computed tomography (CT) scans as the percentage of attentuation values below a fixed threshold. The emphysema quantification varies substantially between scans reconstructed with different kernels, limiting the possibilities to compare emphysema quantifications obtained from scans with different reconstruction parameters. In this paper we propose a method to normalize scans reconstructed with different kernels to have the same characteristics as scans reconstructed with a reference kernel and investigate if this normalization reduces the variability in emphysema quantification. The proposed normalization splits a CT scan into different frequency bands based on hierarchical unsharp masking. Normalization is performed by changing the energy in each frequency band to the average energy in each band in the reference kernel. A database of 15 subjects with COPD was constructed for this study. All subjects were scanned at total lung capacity and the scans were reconstructed with four different reconstruction kernels. The normalization was applied to all scans. Emphysema quantification was performed before and after normalization. It is shown that the emphysema score varies substantially before normalization but the variation diminishes after normalization.

  12. Diverse bone scan abnormalitites in "shin splints".

    PubMed

    Spencer, R P; Levinson, E D; Baldwin, R D; Sziklas, J J; Witek, J T; Rosenberg, R

    1979-12-01

    Four young patients who presented with pain over the anterior compartment of the legs, gave a recent athletic history suggesting stress fractures. Although radiographs were initially normal in all four cases, the bone scintigrams were positive. The individual findings, however, were quite different. In one there was a single focal area of increased radioactivity in each of the tibias; the second patient had uneven uptake of radiotracer and several foci of accumulation in the fibulas; the third showed diffuse linear tibial uptake suggesting periosteal lesions; and the fourth case revealed uptake in the lateral malleolus and in bones of the foot.

  13. Lumbar Gout Tophus Mimicking Epidural Abscess with Magnetic Resonance Imaging, Bone, and Gallium Scans

    PubMed Central

    Vicente, Justo Serrano; Gómez, Alejandro Lorente; Moreno, Rafael Lorente; Torre, Jose Rafael Infante; Bernardo, Lucía García; Madrid, Juan Ignacio Rayo

    2018-01-01

    Gout is a common metabolic disorder, typically diagnosed in peripheral joints. Tophaceous deposits in lumbar spine are a very rare condition with very few cases reported in literature. The following is a case report of a 52-year-old patient with low back pain, left leg pain, and numbness. Serum uric acid level was in normal range. magnetic resonance imaging, bone scan, and gallium-67 images suggested an inflammatory-infectious process focus at L4. After a decompressive laminectomy at L4–L5 level, histological examination showed a chalky material with extensive deposition of amorphous gouty material surrounded by macrophages and foreign-body giant cells (tophaceous deposits). PMID:29643682

  14. Lumbar Gout Tophus Mimicking Epidural Abscess with Magnetic Resonance Imaging, Bone, and Gallium Scans.

    PubMed

    Vicente, Justo Serrano; Gómez, Alejandro Lorente; Moreno, Rafael Lorente; Torre, Jose Rafael Infante; Bernardo, Lucía García; Madrid, Juan Ignacio Rayo

    2018-01-01

    Gout is a common metabolic disorder, typically diagnosed in peripheral joints. Tophaceous deposits in lumbar spine are a very rare condition with very few cases reported in literature. The following is a case report of a 52-year-old patient with low back pain, left leg pain, and numbness. Serum uric acid level was in normal range. magnetic resonance imaging, bone scan, and gallium-67 images suggested an inflammatory-infectious process focus at L4. After a decompressive laminectomy at L4-L5 level, histological examination showed a chalky material with extensive deposition of amorphous gouty material surrounded by macrophages and foreign-body giant cells (tophaceous deposits).

  15. The role of whole-body bone scanning and clinical factors in detecting bone metastases in patients with non-small cell lung cancer.

    PubMed

    Erturan, Serdar; Yaman, Mustafa; Aydin, Günay; Uzel, Isil; Müsellim, Benan; Kaynak, Kamil

    2005-02-01

    Correct detection of bone metastases in patients with non-small cell lung cancer (NSCLC) is crucial for prognosis and selection of an appropriate treatment regimen. The aim of this study was to investigate the role of whole-body bone scanning (WBBS) and clinical factors in detecting bone metastases in NSCLC. One hundred twenty-five patients with a diagnosis made between 1998 and 2002 were recruited (squamous cell carcinoma, 54.4%; adenocarcinoma, 32.8%; non-small cell carcinoma, 8.8%; large cell carcinoma, 4%). Clinical factors suggesting bone metastasis (skeletal pain, elevated alkaline phosphatase, hypercalcemia) were evaluated. WBBS was performed in all patients, and additional MRI was ordered in 10 patients because of discordance between clinical factors and WBBS findings. Bone metastases were detected in 53% (n = 21) of 39 clinical factor-positive patients, 5.8% (n = 5) of 86 clinical factor-negative patients, and 20.8% of total patients. The existence of bone-specific clinical factors as indicators of metastasis presented 53.8% positive predictive value (PPV), 94.2% negative predictive value (NPV), and 81.6% accuracy. However, the findings of WBBS showed 73.5% PPV, 97.8% NPV, and 91.2% accuracy. Adenocarcinoma was the most common cell type found in patients with bone metastasis (39%). The routine bone scanning prevented two futile thoracotomies (8%) in 25 patients with apparently operable lung cancer. In spite of the high NPV of the bone-specific clinical factors and the high value obtained in the false-positive findings in the bone scan, the present study indicates that in patients for whom surgical therapy is an option, preoperative staging using WBBS can be helpful to avoid misstaging due to asymptomatic bone metastases.

  16. Diverse bone scan abnormalities in shin splints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, R.P.; Levinson, E.D.; Baldwin, R.D.

    1979-12-01

    Four young patients who presented with pain over the anterior compartment of the legs, gave a recent athletic history suggesting stress fractures. Although radiographs were initially normal in all four cases, the bone scintigrams were positive. The individual findings, however, were quite different. In one there was a single focal area of increased radioactivity in each of the tibias; the second patient had uneven uptake of radiotracer and several foci of accumulation in the fibulas; the third showed diffuse linear tibial uptake suggesting periosteal lesions; and the fourth case revealed uptake in the lateral malleolus and in bones of themore » foot.« less

  17. Individual A-Scan Signal Normalization Between Two Spectral Domain Optical Coherence Tomography Devices

    PubMed Central

    Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Ling, Yun; Bilonick, Richard A.; Kagemann, Larry; Sigal, Ian A.; Schuman, Joel S.

    2013-01-01

    Purpose. We developed a method to normalize optical coherence tomography (OCT) signal profiles from two spectral-domain (SD) OCT devices so that the comparability between devices increases. Methods. We scanned 21 eyes from 14 healthy and 7 glaucoma subjects with two SD-OCT devices on the same day, with equivalent cube scan patterns centered on the fovea (Cirrus HD-OCT and RTVue). Foveola positions were selected manually and used as the center for registration of the corresponding images. A-scan signals were sampled 1.8 mm from the foveola in the temporal, superior, nasal, and inferior quadrants. After oversampling and rescaling RTVue data along the Z-axis to match the corresponding Cirrus data format, speckle noise reduction and amplitude normalization were applied. For comparison between normalized A-scan profiles, mean absolute difference in amplitude in percentage was measured at each sampling point. As a reference, the mean absolute difference between two Cirrus scans on the same eye also was measured. Results. The mean residual of the A-scan profile amplitude was reduced significantly after signal normalization (12.7% vs. 6.2%, P < 0.0001, paired t-test). All four quadrants also showed statistically significant reduction (all P < 0.0001). Mean absolute difference after normalization was smaller than the one between two Cirrus scans. No performance difference was detected between health and glaucomatous eyes. Conclusions. The reported signal normalization method successfully reduced the A-scan profile differences between two SD-OCT devices. This signal normalization processing may improve the direct comparability of OCT image analysis and measurement on various devices. PMID:23611992

  18. Bone and gallium scanning in the pre-op evaluation of the infected dysvascular foot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, C.; Sakimura, I.; Dillon, A.

    1984-01-01

    The purpose of this study is to determine the value of bone and gallium scans in predicting healing levels in the dysvascular foot with an infection requiring amputation. Healing requires amputation at a level both free of infection and with adequate blood flow. Forty-one such patients had bone and gallium scans and Doppler studies prior to amputation at a level selected by the surgeon. Eight patients required multiple surgeries before healing was obtained. Bone and soft tissue infections were determined from scans and healing levels predicted (SPHL) as the most distal amputation level free from infection: toectomy, Reye's, transmetatarsal, calcanectomy,more » Syme's, below knee. Doppler healing levels (DPHL) were predicted using a standard ischemic index. Doppler alone predicted the final healing level (FHL) in 41% with 59% needing more proximal amputation. Scans alone predicted FHL in 64% with 26% needing more proximal amputation. Ten percent were distal to the SPHL and all healed. These scans showed infection at transition sites between amputation levels, and the more proximal level had been predicted. Using the more proximal of the DPHL and SPHL the FHL was predicted in 78% with another 12% having more proximal amputation for nursing reasons. In 10% amputation was performed between DPHL and SPHL or at the more distal level. In no case was successful surgery performed distal to the more distal SPHL or DPHL. Bone and gallium scans used with Doppler studies are useful in optimizing the choice of amputation level in the infected, dysvascular foot.« less

  19. The Effect of Changing Scan Mode on Trabecular Bone Score Using Lunar Prodigy.

    PubMed

    Chen, Weiwen; Slattery, Anthony; Center, Jacqueline; Pocock, Nicholas

    2016-10-01

    Trabecular bone score (TBS) is a measure of gray scale homogeneity that correlates with trabecular microarchitecture and is an independent predictor of fracture risk. TBS is being increasingly used in the assessment of patients at risk of osteoporosis and has recently been incorporated into FRAX ® . GE Lunar machines acquire spine scans using 1 of 3 acquisition modes depending on abdominal tissue thickness (thin, standard, and thick). From a database review, 30 patients (mean body mass index: 30.8, range 26.2-34.1) were identified who had undergone lumbar spine DXA scans (GE Lunar Prodigy, software 14.10; Lunar Radiation Corporation, Madison, WI) in both standard mode and thick mode, on the same day with no repositioning. Lumbar spine bone mineral density (L1-L4) and TBS were derived from the 30 paired spine scans. There was no significant difference in lumbar spine bone mineral density between the 2 scanning modes. There were, however, significant higher TBS values from the spine scans acquired in thick mode compared to the TBS values derived from spine acquisitions in standard mode (mean TBS difference: 0.24 [20%], standard deviation ±0.10). In conclusion, these preliminary data suggest that TBS values acquired in the GE Lunar Prodigy are dependent on the scanning mode used. Further evaluation is required to confirm the cause and develop appropriate protocols. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  20. Partial growth plate closure: apex view on bone scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howman-Giles, R.; Trochei, M.; Yeates, K.

    1985-01-01

    A new technique of using /sup 99m/Tc bone scan to assess partial closure of the growth plate is described. The site and degree of osseous fusion can be obtained by using the apex view. The technique has the potential of assessing serially the growth of a plate before and after surgery.

  1. Eldecalcitol normalizes bone turnover markers regardless of their pre-treatment levels.

    PubMed

    Shiraki, Masataka; Saito, Hitoshi; Matsumoto, Toshio

    2012-09-01

    Three-year treatment with eldecalcitol has been shown to improve lumbar and total hip bone mineral density (BMD), decrease bone turnover markers, and lower the incidences of vertebral and wrist fractures in patients with osteoporosis more than with treatment with alfacalcidol under vitamin D repletion. The purpose of this study was to determine whether there was a risk of eldecalcitol causing severely suppressed bone turnover in osteoporosis patients with low pre-treatment levels of bone turnover markers. Post-hoc analysis was conducted on the data from a 3-year, randomized, double-blind, active-comparator, clinical trial of eldecalcitol versus alfacalcidol under vitamin D repletion conducted in Japan. Enrolled patients with baseline measurements of bone turnover markers were stratified into tertiles according to their pre-treatment levels of serum bone-specific alkaline phosphatase, serum procollagen type I N-terminal propeptide, or urinary collagen-N-telopeptide. Eldecalcitol treatment rapidly reduced bone turnover markers, and kept them within the normal range. However, in the patients whose baseline values for bone turnover were low, eldecalcitol treatment did not further reduce bone turnover markers during the 3-year treatment period. Further long-term observation may be required to reach the conclusion. CLINICALTRIALS.GOV NUMBER: NCT00144456. Eldecalcitol normalizes, but does not overly suppress, bone turnover regardless of baseline levels of bone turnover markers. Thus, it is unlikely that eldecalcitol treatment will increase the risk of severely suppressed bone turnover and therefore deterioration of bone quality, at least for a treatment duration of 3 years.

  2. Quantitative bone scan lesion area as an early surrogate outcome measure indicative of overall survival in metastatic prostate cancer.

    PubMed

    Brown, Matthew S; Kim, Grace Hyun J; Chu, Gregory H; Ramakrishna, Bharath; Allen-Auerbach, Martin; Fischer, Cheryce P; Levine, Benjamin; Gupta, Pawan K; Schiepers, Christiaan W; Goldin, Jonathan G

    2018-01-01

    A clinical validation of the bone scan lesion area (BSLA) as a quantitative imaging biomarker was performed in metastatic castration-resistant prostate cancer (mCRPC). BSLA was computed from whole-body bone scintigraphy at baseline and week 12 posttreatment in a cohort of 198 mCRPC subjects (127 treated and 71 placebo) from a clinical trial involving a different drug from the initial biomarker development. BSLA computation involved automated image normalization, lesion segmentation, and summation of the total area of segmented lesions on bone scan AP and PA views as a measure of tumor burden. As a predictive biomarker, treated subjects with baseline BSLA [Formula: see text] had longer survival than those with higher BSLA ([Formula: see text] and [Formula: see text]). As a surrogate outcome biomarker, subjects were categorized as progressive disease (PD) if the BSLA increased by a prespecified 30% or more from baseline to week 12 and non-PD otherwise. Overall survival rates between PD and non-PD groups were statistically different ([Formula: see text] and [Formula: see text]). Subjects without PD at week 12 had longer survival than subjects with PD: median 398 days versus 280 days. BSLA has now been demonstrated to be an early surrogate outcome for overall survival in different prostate cancer drug treatments.

  3. Correcting (18)F-fluoride PET static scan measurements of skeletal plasma clearance for tracer efflux from bone.

    PubMed

    Siddique, Musib; Frost, Michelle L; Moore, Amelia E B; Fogelman, Ignac; Blake, Glen M

    2014-03-01

    The aim of the study was to examine whether (18)F-fluoride PET ((18)F-PET) static scan measurements of bone plasma clearance (Ki) can be corrected for tracer efflux from bone from the time of injection. The efflux of tracer from bone mineral to plasma was described by a first-order rate constant kloss. A modified Patlak analysis was applied to 60-min dynamic (18)F-PET scans of the spine and hip acquired during trials on the bone anabolic agent teriparatide to find the best-fit values of kloss at the lumbar spine, total hip and femoral shaft. The resulting values of kloss were used to extrapolate the modified Patlak plots to 120 min after injection and derive a sequence of static scan estimates of Ki at 4-min intervals that were compared with the Patlak Ki values from the 60-min dynamic scans. A comparison was made with the results of the standard static scan analysis, which assumes kloss=0. The best-fit values of kloss for the spine and hip regions of interest averaged 0.006/min and did not change when patients were treated with teriparatide. Static scan values of Ki calculated using the modified analysis with kloss=0.006/min were independent of time between 10 and 120 min after injection and were in close agreement with findings from the dynamic scans. In contrast, by 2 h after injection the static scan Ki values calculated using the standard analysis underestimated the dynamic scan results by 20%. Using a modified analysis that corrects for F efflux from bone, estimates of Ki from static PET scans can be corrected for time up to 2 h after injection. This simplified approach may obviate the need to perform dynamic scans and hence shorten the scanning procedure for the patient and reduce the cost of studies. It also enables reliable estimates of Ki to be obtained from multiple skeletal sites with a single injection of tracer.

  4. [A case of lung cancer producing granulocyte colony-stimulating factor with a significantly high uptake in the bones observed by a FDG-PET scan].

    PubMed

    Hidaka, Dai; Koshizuka, Hiroaki; Hiyama, Junichiro; Nakatsubo, Seita; Ikeda, Koutarou; Hayashi, Akihiro; Fujii, Akiko; Sawamoto, Ryouko; Misumi, Yukihiro; Miyagawa, Yousuke

    2009-03-01

    A 57-year-old man complaining of right shoulder pain was admitted. Chest enhanced CT scanning showed a mass shadow in the right upper lobe with chest wall invasion. The laboratory data on admission showed marked leukocytosis. A CT-guided lung biopsy was performed, and a histological examination of the biopsy specimen showed a spindle cell type pleomorphic carcinoma. Immunohistochemistry staining using an anti-granulocyte colony-stimulating factor (G-CSF) monoclonal antibody demonstrated many tumor cells containing G-CSF as well as an increased level of serum G-CSF. The diagnosis was determined to be lung cancer producing G-CSF. FDG-PET scanning showed a significantly high uptake in the right upper field and the bones throughout the body. After chemoradiation therapy, the patient underwent a right upper lobectomy with a chest wall resection. Since then, the leukocytosis and the high level of serum G-CSF normalized and the high uptake in the bones disappeared in the FDG-PET scan.

  5. Hardness of the subchondral bone of the patella in the normal state, in chondromalacia, and in osteoarthrosis.

    PubMed

    Björkström, S; Goldie, I F

    1982-06-01

    The hardness of bone is its property of withstanding the impact of a penetrating agent. It has been found that articular degenerative changes in, for example, the tibia (knee) are combined with a decrease in the hardness of the subchondral bone. In this investigation the hardness of subchondral bone in chondromalacia and osteoarthrosis of the patella has been analysed and compared with normal subchondral bone. Using an indentation method originally described by Brinell the hardness of the subchondral bone was evaluated in 7 normal patellae, in 20 with chondromalacia and in 33 with osteoarthrosis. A microscopic and microradiographic study of the subchondral bone was carried out simultaneously. Hardness was lowest in the normal material. The mean hardness value beneath the degenerated cartilage differed only slightly from that of the normal material, but the variation of values was increased. The hardness in bone in the chondromalacia area was lower than the hardness in bone covered by surrounding normal cartilage. The mean hardness value in bone beneath normal parts of cartilage in specimens with chondromalacia was higher than the mean hardness value of the normal material. In the microscopic and microradiographic examination it became evident that there was a relationship between trabecular structure and subchondral bone hardness; high values: coarse and solid structure; low values: slender and less regular structure.

  6. Morphobiochemical diagnosis of acute trabecular microfractures using gamma correction Tc-99m HDP pinhole bone scan with histopathological verification.

    PubMed

    Bahk, Yong-Whee; Hwang, Seok-Ha; Lee, U-Young; Chung, Yong-An; Jung, Joo-Young; Jeong, Hyeonseok S

    2017-11-01

    We prospectively performed gamma correction pinhole bone scan (GCPBS) and histopathologic verification study to make simultaneous morphobiochemical diagnosis of trabecular microfractures (TMF) occurred in the femoral head as a part of femoral neck fracture.Materials consisted of surgical specimens of the femoral head in 6 consecutive patients. The specimens were imaged using Tc-99m hydroxymethylene diphosphonate (HDP) pinhole scan and processed by the gamma correction. After cleansing with 10% formalin solution, injured specimen surface was observed using a surgical microscope to record TMF. Morphological findings shown in the photograph, naive pinhole bone scan, GCPBS, and hematoxylin-eosin (H&E) stain of the specimen were reciprocally correlated for histological verification and the usefulness of suppression and enhancement of Tc-99m HDP uptake was biochemically investigated in TMF and edema and hemorrhage using gamma correction.On the one hand, GCPBS was able to depict the calcifying calluses in TMF with enhanced Tc-99m HDP uptake. They were pinpointed, speckled, round, ovoid, rod-like, geographic, and crushed in shape. The smallest callus measured was 0.23 mm in this series. On the other hand, GCPBS biochemically was able to discern the calluses with enhanced high Tc-99m HDP uptake from the normal and edema dipped and hemorrhage irritated trabeculae with washed out uptake.Morphobiochemically, GCPBS can clearly depict microfractures in the femoral head produced by femoral neck fracture. It discerns the microcalluses with enhanced Tc-99m HDP uptake from the intact and edema dipped and hemorrhage irritated trabeculae with suppressed washed out Tc-99m HDP uptake. Both conventional pinhole bone scan and gamma correction are useful imaging means to specifically diagnose the microcalluses naturally formed in TMF.

  7. A single scan skeletonization algorithm: application to medical imaging of trabecular bone

    NASA Astrophysics Data System (ADS)

    Arlicot, Aurore; Amouriq, Yves; Evenou, Pierre; Normand, Nicolas; Guédon, Jean-Pierre

    2010-03-01

    Shape description is an important step in image analysis. The skeleton is used as a simple, compact representation of a shape. A skeleton represents the line centered in the shape and must be homotopic and one point wide. Current skeletonization algorithms compute the skeleton over several image scans, using either thinning algorithms or distance transforms. The principle of thinning is to delete points as one goes along, preserving the topology of the shape. On the other hand, the maxima of the local distance transform identifies the skeleton and is an equivalent way to calculate the medial axis. However, with this method, the skeleton obtained is disconnected so it is required to connect all the points of the medial axis to produce the skeleton. In this study we introduce a translated distance transform and adapt an existing distance driven homotopic algorithm to perform skeletonization with a single scan and thus allow the processing of unbounded images. This method is applied, in our study, on micro scanner images of trabecular bones. We wish to characterize the bone micro architecture in order to quantify bone integrity.

  8. Laser-scanned fluorescence of nonlased/normal, lased/normal, nonlased/carious, and lased/carious enamel

    NASA Astrophysics Data System (ADS)

    Zakariasen, Kenneth L.; Barron, Joseph R.; Paton, Barry E.

    1992-06-01

    Research has shown that low levels of CO2 laser irradiation raise enamel resistance to sub-surface demineralization. Additionally, laser scanned fluorescence analysis of enamel, as well a laser and white light reflection studies, have potential for both clinical diagnosis and comparative research investigations of the caries process. This study was designed to compare laser fluorescence and laser/white light reflection of (1) non-lased/normal with lased/normal enamel and (2) non-lased/normal with non-lased/carious and lased/carious enamel. Specimens were buccal surfaces of extracted third molars, coated with acid resistant varnish except for either two or three 2.25 mm2 windows (two window specimens: non-lased/normal, lased/normal--three window specimens: non-lased/normal, non-lased carious, lased/carious). Teeth exhibiting carious windows were immersed in a demineralizing solution for twelve days. Non-carious windows were covered with wax during immersion. Following immersion, the wax was removed, and fluorescence and laser/white light reflection analyses were performed on all windows utilizing a custom scanning laser fluorescence spectrometer which focuses light from a 25 mWatt He-Cd laser at 442 nm through an objective lens onto a cross-section >= 3 (mu) in diameter. For laser/white light reflection analyses, reflected light intensities were measured. A HeNe laser was used for laser light reflection studies. Following analyses, the teeth are sectioned bucco-lingually into 80 micrometers sections, examined under polarized light microscopy, and the lesions photographed. This permits comparison between fluorescence/reflected light values and the visualized decalcification areas for each section, and thus comparisons between various enamel treatments and normal enamel. The enamel specimens are currently being analyzed.

  9. Bone mineral mass and width in normal white women and men

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlenker, R.A.; Oltman, B.G.; Kotek, T.J.

    1976-06-01

    Bone mineral content (BMC) and width (W) have been measured in approximately 600 white women and 100 white men ranging from the teens to the 80s. Measurements were made using the /sup 125/I photon absorptiometric method at five pairs of contralateral sites with the arm in the prone position: the midshafts of the right and left radii and ulnae, the distal metaphyses of the right and left radii and ulnae, and the distal diaphyses of the right and left third proximal phalanges. Most subjects were from a group who had abnormally high body burdens of /sup 226/Ra. A large fractionmore » of radium intake to the body is deposited in the skeleton and these subjects were studied to determine if irradiation of bone by radium alpha particles affected the BMC. There was no relation of BMC to radiation dose, although for high doses there were depressions in BMC when scanning across osteolytic lesions. The data here are for subjects who had /sup 226/Ra body burdens less than 100 nCi plus persons who were unexposed to radium. Body burdens of 100 nCi /sup 226/Ra cause no radiographic skeletal abnormalities. This and the absence of a correlation between BMC and radiation dose indicated that our radium-exposed subjects had normal skeletons.« less

  10. Evaluation of in-vivo measurement errors associated with micro-computed tomography scans by means of the bone surface distance approach.

    PubMed

    Lu, Yongtao; Boudiffa, Maya; Dall'Ara, Enrico; Bellantuono, Ilaria; Viceconti, Marco

    2015-11-01

    In vivo micro-computed tomography (µCT) scanning is an important tool for longitudinal monitoring of the bone adaptation process in animal models. However, the errors associated with the usage of in vivo µCT measurements for the evaluation of bone adaptations remain unclear. The aim of this study was to evaluate the measurement errors using the bone surface distance approach. The right tibiae of eight 14-week-old C57BL/6 J female mice were consecutively scanned four times in an in vivo µCT scanner using a nominal isotropic image voxel size (10.4 µm) and the tibiae were repositioned between each scan. The repeated scan image datasets were aligned to the corresponding baseline (first) scan image dataset using rigid registration and a region of interest was selected in the proximal tibia metaphysis for analysis. The bone surface distances between the repeated and the baseline scan datasets were evaluated. It was found that the average (±standard deviation) median and 95th percentile bone surface distances were 3.10 ± 0.76 µm and 9.58 ± 1.70 µm, respectively. This study indicated that there were inevitable errors associated with the in vivo µCT measurements of bone microarchitecture and these errors should be taken into account for a better interpretation of bone adaptations measured with in vivo µCT. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.

    PubMed

    Aruwajoye, Olumide O; Kim, Harry K W; Aswath, Pranesh B

    2015-04-01

    Ischemic osteonecrosis of the femoral head (IOFH) can lead to excessive resorption of the trabecular bone and collapse of the femoral head as a structure. A well-known mineral component to trabecular bone is hydroxyapatite, which can be present in many forms due to ionic substitution, thus altering chemical composition. Unfortunately, very little is known about the chemical changes to bone apatite following IOFH. We hypothesized that the apatite composition changes in necrotic bone possibly contribute to increased osteoclast resorption and structural collapse of the femoral head. The purpose of this study was to assess the macroscopic and local phosphate composition of actively resorbed necrotic trabecular bone to isolate differences between areas of increased osteoclast resorption and normal bone formation. A piglet model of IOFH was used. Scanning electron microscopy (SEM), histology, X-ray absorbance near edge structure (XANES), and Raman spectroscopy were performed on femoral heads to characterize normal and necrotic trabecular bone. Backscattered SEM, micro-computed tomography and histology showed deformity and active resorption of necrotic bone compared to normal. XANES and Raman spectroscopy obtained from actively resorbed necrotic bone and normal bone showed increased carbonate-to-phosphate content in the necrotic bone. The changes in the apatite composition due to carbonate substitution may play a role in the increased resorption of necrotic bone due to its increase in solubility. Indeed, a better understanding of the apatite composition of necrotic bone could shed light on osteoclast activity and potentially improve therapeutic treatments that target excessive resorption of bone.

  12. High-Dose α-Tocopherol Supplementation Does Not Induce Bone Loss in Normal Rats

    PubMed Central

    Kasai, Shunji; Ito, Akemi; Shindo, Kaori; Toyoshi, Tohru; Bando, Masahiro

    2015-01-01

    Oxidative stress affects bone turnover. Preventative effects of antioxidants such as vitamin E on reduced bone mineral density and fractures associated with aging, osteoporosis, and smoking have been examined in animals and humans. The effects of vitamin E (α-tocopherol; αT) on bone health have yielded conflicting and inconclusive results from animal studies. In this study, to determine the bone effects of αT, we investigated the in vivo effects of αT on the bone mineral density, bone mass, bone microstructure, bone resorption, and osteogenesis through peripheral quantitative computed tomography (pQCT) measurements, micro-computed tomography (micro-CT) analyses, and bone histomorphometry of lumbar vertebrae and femurs in normal female Wistar rats fed diets containing αT in different quantities (0, 30, 120, or 600 mg/kg diet) for 8 weeks. To validate our hypotheses regarding bone changes, we examined ovariectomized rats as an osteoporosis model and control sham-operated rats in parallel. As expected, ovariectomized rats had reduced bone mineral density in lumbar vertebrae and the distal metaphyses of their femurs, reduced bone mass and deteriorated microstructure of cancellous bones in the vertebral body and distal femur metaphyses, and reduced bone mass due to resorption-dominant enhanced bone turnover in secondary cancellous bones in these sites. In comparison, αT administered to normal rats, even at the highest dose, did not induce reduced bone mineral density of lumbar vertebrae and femurs or a reduced bone mass or fragile microstructure of cancellous bones of the vertebral body and distal femur metaphyses. Instead, αT-fed rats showed a tendency for an osteogenesis-dominant bone mass increase in secondary cancellous bones in the vertebral body, in which active bone remodeling occurs. Thus, αT consumption may have beneficial effects on bone health. PMID:26147575

  13. Are serial bone scans useful for the follow-up of clinically localized, low to intermediate grade prostate cancer managed with watchful observation alone?

    PubMed

    Yap, B K; Choo, R; Deboer, G; Klotz, L; Danjoux, C; Morton, G

    2003-05-01

    To assess the predictive value of serial bone scans as a surveillance tool for bone metastasis in men with clinically localized prostate cancer and managed with watchful observation. A prospective single-arm study was conducted to assess the feasibility of a watchful observation protocol with selective delayed intervention for patients with clinically localized prostate cancer, i.e. T1b-T2bN0M0, a Gleason score of Bone scintigraphy was repeated every year for the first 2 years, then every 2 years thereafter if the patient remained on watchful observation. When the follow-up PSA level was > 15 ng/mL the patient underwent bone scintigraphy every year. In all, 244 eligible patients were enrolled into the study. With a median follow-up of 30 months, 449 bone scans were taken (150 at baseline and 299 in follow-up evaluations); all 299 follow-up scans were negative for bone metastasis. Hence, the true rate of positive follow-up bone scans was estimated to be 0-1.0% (95% confidence). In all, 171 patients had at least one follow-up bone scan; of these, the number (%) of patients who had 1, 2, 3, 4 and >or= 5 follow-up scans was 89 (52), 53 (31), 17 (10), eight (4.7) and four (2.3), respectively. The PSA levels (ng/mL) corresponding to all follow-up bone scans were: 214 scans at PSA < 10, 61 at 10-14.9, 18 at 15-19.9 and six at >or= 20 (range 20.2-24.9). The probability of a negative bone scan was estimated to be 88-100% (95% confidence interval) when a PSA threshold of 15 ng/mL was used. The probability of positive findings in serial bone scans in untreated, localized, low to intermediate grade prostate cancer was low when the follow-up PSA level remained < 15 ng/mL. Avoiding bone scans in this group of patients would translate into a significant cost saving and

  14. Failure of technetium bone scanning to detect pseudarthroses in spinal fusion for scoliosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannon, K.M.; Wetta, W.J.

    1977-01-01

    A prospective study of 11 patients suggests that present techniques of technetium bone scanning do not assist in recognizing the presence of well-established pseudarthrosis in spinal fusions for scoliosis.

  15. The uptake by the canine tibia of the bone-scanning agent 99mTc-MDP before and after an osteotomy.

    PubMed

    Hughes, S; Khan, R; Davies, R; Lavender, P

    1978-11-01

    The residue and extraction of technetium-labelled methylene diphosphonate (99mTc-MDP), a substance used in bone scanning, was examined in the canine tibia and found to be low. Examination of washout curves suggested that there were four compartments in cortical bone, a vascular, a perivascular, a bone fluid and a bone compartment. After an osteotomy in the canine tibia the residue of 99mTc-MDP increased. This was believed to be due to an increase in the blood supply to the bone and to an associated increase in new bone available for exchange. Bone scanning in a fracture is therefore a reflection of the vascular status of the bone being examined and of the uptake by bone. This is dependent on there being an adequate blood supply to the bone and an increased number of mineral-binding sites.

  16. Survival and endogenous colony formation in irradiated mice grafted with normal or infectious mononucleosis bone marrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louwagie, A. C.; Verwilghen, R. L.

    1973-07-01

    Mice were exposed to 850 or 975 rad of whole-body radiation; three hr later mice were given normal human bone marrow, infectious mononucleosis bone marrow, or cells from malignant blood diseases. The surviving mice were killed at day 9 and the spleen nodules were counted. Some mice were also given antihuman antilymphocytic serum (ALS). In mice exposed to 975 rad, the highest survival was observed in mice grafted with infectious mononucleosis bone marrow, while none of the animals grafted with cells from malignant blood diseases survived 9 days. In mice exposed to 850 rad, grafting of normal or infectious mononucleosismore » bone marrow markedly decreased the survival. Endogenous spleen colonies were induced in all animals grafted with normal or infectious mononucleosis bone marrow. (HLW)« less

  17. Normal Bone Mineral Density Associates with Duodenal Mucosa Healing in Adult Patients with Celiac Disease on a Gluten-Free Diet.

    PubMed

    Larussa, Tiziana; Suraci, Evelina; Imeneo, Maria; Marasco, Raffaella; Luzza, Francesco

    2017-01-31

    Impairment of bone mineral density (BMD) is frequent in celiac disease (CD) patients on a gluten-free diet (GFD). The normalization of intestinal mucosa is still difficult to predict. We aim to investigate the relationship between BMD and duodenal mucosa healing (DMH) in CD patients on a GFD. Sixty-four consecutive CD patients on a GFD were recruited. After a median period of a 6-year GFD (range 2-33 years), patients underwent repeat duodenal biopsy and dual-energy X-ray absorptiometry (DXA) scan. Twenty-four patients (38%) displayed normal and 40 (62%) low BMD, 47 (73%) DMH, and 17 (27%) duodenal mucosa lesions. All patients but one with normal BMD (23 of 24, 96%) showed DMH, while, among those with low BMD, 24 (60%) did and 16 (40%) did not. At multivariate analysis, being older (odds ratio (OR) 1.1, 95% confidence interval (CI) 1.03-1.18) and having diagnosis at an older age (OR 1.09, 95% CI 1.03-1.16) were associated with low BMD; in turn, having normal BMD was the only variable independently associated with DMH (OR 17.5, 95% CI 1.6-192). In older CD patients and with late onset disease, BMD recovery is not guaranteed, despite a GFD. A normal DXA scan identified CD patients with DMH; thus, it is a potential tool in planning endoscopic resampling.

  18. Concise review: Insights from normal bone remodeling and stem cell-based therapies for bone repair.

    PubMed

    Khosla, Sundeep; Westendorf, Jennifer J; Mödder, Ulrike I

    2010-12-01

    There is growing interest in the use of mesenchymal stem cells for bone repair. As a major reason for normal bone remodeling is the removal of fatigue microcracks, advances in our understanding of this process may inform approaches to enhance fracture healing. Increasing evidence now indicates that physiological bone remodeling occurs in close proximity to blood vessels and that these vessels carry perivascular stem cells that differentiate into osteoblasts. Similarly, fracture healing is critically dependent on the ingrowth of blood vessels not only for a nutrient supply but also for the influx of osteoblasts. A number of animal and human studies have now shown the potential benefit of bone marrow-derived mesenchymal stem cells in enhancing bone repair. However, as in other tissues, the question of whether these cells improve fracture healing directly by differentiating into osteoblasts or indirectly by secreting paracrine factors that recruit blood vessels and the accompanying perivascular stem cells remains a major unresolved issue. Moreover, CD34+ cells, which are enriched for endothelial/hematopoietic cells, have also shown efficacy in various bone repair models, at least in part due to the induction of angiogenesis and recruitment of host progenitor cells. Thus, mesenchymal and nonmesenchymal stem/progenitor cells are attractive options for bone repair. It is possible that they contribute directly to bone repair, but it is also likely that they express paracrine factors in the appropriate amounts and combinations that promote and sustain the healing process.

  19. Correlative Light and Scanning X-Ray Scattering Microscopy of Healthy and Pathologic Human Bone Sections

    PubMed Central

    Giannini, C.; Siliqi, D.; Bunk, O.; Beraudi, A.; Ladisa, M.; Altamura, D.; Stea, S.; Baruffaldi, F.

    2012-01-01

    Scanning small and wide angle X-ray scattering (scanning SWAXS) experiments were performed on healthy and pathologic human bone sections. Via crystallographic tools the data were transformed into quantitative images and as such compared with circularly polarized light (CPL) microscopy images. SWAXS and CPL images allowed extracting information of the mineral nanocrystalline phase embedded, with and without preferred orientation, in the collagen fibrils, mapping local changes at sub-osteon resolution. This favorable combination has been applied for the first time to biopsies of dwarfism syndrome and Paget's disease to shed light onto the cortical structure of natural bone in healthy and pathologic sections. PMID:22666538

  20. Normalization of cortical bone density in children and adolescents with hyperthyroidism treated with antithyroid medication.

    PubMed

    Numbenjapon, N; Costin, G; Pitukcheewanont, P

    2012-09-01

    We assessed bone size and bone density (BD) measurements using computed tomography (CT) in children and adolescents with hyperthyroidism treated with antithyroid medication. We found that cortical BD appeared to improve at 1 year and normalize at 2 years in all tested patients. Our previous study demonstrated that cortical BD in children and adolescents with untreated hyperthyroidism was significantly decreased as compared to age-, sex- and ethnicity-matched healthy controls. The present report evaluated whether attainment of euthyroidism by medical antithyroid treatment was able to improve or normalize cortical BD in these patients. Anthropometrics and three-dimensional CT bone measurements including cross-sectional area (CSA), cortical bone area (CBA) and cortical BD at midshaft of the femur (cortical bone), and CSA and BD of L(1) to L(3) vertebrae (cancellous bone) in 15 children and adolescents after 1- and 2-year treatments with antithyroid medication were reviewed and compared to their pretreatment results. All patients were euthyroid at 1 and 2 years after medical antithyroid treatment. After adjusting for age, height, weight and Tanner stage, a significant increase in cortical BD in all patients (15/15) was found after 1 year of treatment (P < 0.001). Normalization of cortical BD was demonstrated in all tested patients (10/15) after 2 years. There were no significant changes in the other cancellous or cortical bone parameters. Cortical BD was improved at 1 year and normalized at 2 years in hyperthyroid patients rendered euthyroid with antithyroid medication.

  1. Growth, body composition, and bone density following pediatric liver transplantation.

    PubMed

    Sheikh, Amin; Cundy, Tim; Evans, Helen Maria

    2018-04-24

    Patients transplanted for cholestatic liver disease are often significantly fat-soluble vitamin deficient and malnourished pretransplant, with significant corticosteroid exposure post-transplant, with increasing evidence of obesity and metabolic syndrome post-LT. Our study aimed to assess growth, body composition, and BMD in patients post-pediatric LT. Body composition and bone densitometry scans were performed on 21 patients. Pre- and post-transplant anthropometric data were analyzed. Bone health was assessed using serum ALP, calcium, phosphate, and procollagen-1-N-peptide levels. Median ages at transplant and at this assessment were 2.7 and 10.6 years, respectively. Physiological markers of bone health, median z-scores for total body, and lumbar spine aBMD were normal. Bone area was normal for height and BMAD at L3 was normal for age, indicating, respectively, normal cortical and trabecular bone accrual. Median z-scores for weight, height, and BMI were 0.6, -0.9, 1.8 and 0.6, 0.1, 0.8 pre- and post-transplant, respectively. Total body fat percentages measured on 21 body composition scans revealed 2 underweight, 7 normal, 6 overweight, and 6 obese. Bone mass is preserved following pediatric LT with good catch-up height. About 52% of patients were either overweight/obese post-transplant, potentially placing them at an increased risk of metabolic syndrome and its sequelae in later life. BMI alone is a poor indicator of nutritional status post-transplant. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Follow-up bone scan in breast cancer patients: what is the appropriate interpretation of purely rib uptake?

    PubMed

    Seo, Minjung; Ko, Byung Kyun; Tae, Soon Young; Koh, Su-Jin; Noh, Young Ju; Choi, Hye-Jeong; Bae, Kyungkyg; Bang, Minseo; Jun, Sungmin; Park, Seol Hoon

    2016-12-01

    Although rib uptake is frequently detected in follow-up bone scans of breast cancer patients, few studies have assessed its clinical significance. Among 1208 breast cancer patients who underwent a bone scan between 2011 and 2014, 157 patients presented with newly detected rib uptake at follow-up. Patients who had underlying bone metastases (n=8) or had simultaneous new uptake in sites other than the rib (n=13) were excluded. The patients enrolled finally were those who had purely rib uptakes. The location, intensity, and final diagnosis of the uptake were evaluated by nuclear medicine physicians. A total of 275 new instances of rib uptake were detected in follow-up bone scans of 136 patients. These were more frequently located on the ipsilateral side of the breast cancer (61.1%) and the anterior arc (65.1%), and they presented as moderate to intense (93.1%) uptakes. Among these, 265 lesions in 130 patients turned out to be benign fractures (96.4%), whereas only 10 lesions in six patients were metastases. The proportion of metastases was significantly higher if the uptake was linear or if the patient had recurrence. It was marginally higher if the uptake was located in the posterior arc. The proportion of metastases within the radiation field was significantly lower in patients with a history of irradiation. Newly detected purely rib uptake on a follow-up bone scan in patients who have been treated for breast cancer is mostly because of fractures and rarely signals metastasis. However, if the patient has disease recurrence, metastasis should strongly be suspected, particularly when uptake is linear or located in the posterior arc.

  3. Novel use of gamma correction for precise (99m)Tc-HDP pinhole bone scan diagnosis and classification of knee occult fractures.

    PubMed

    Bahk, Yong-Whee; Jeon, Ho-Seung; Kim, Jang Min; Park, Jung Mee; Chung, Yong-An; Kim, E Edmund; Kim, Sung-Hoon; Chung, Soo-Kyo

    2010-08-01

    The aim of this study was to introduce gamma correction pinhole bone scan (GCPBS) to depict specific signs of knee occult fractures (OF) on (99m)Tc-hydroxydiphosphonate (HDP) scan. Thirty-six cases of six different types of knee OF in 27 consecutive patients (male = 20, female = 7, and age = 18-86 years) were enrolled. The diagnosis was made on the basis of a history of acute or subacute knee trauma, local pain, tenderness, cutaneous injury, negative conventional radiography, and positive magnetic resonance imaging (MRI). Because of the impracticability of histological verification of individual OF, MRI was utilized as a gold standard of diagnosis and classification. All patients had (99m)Tc-HDP bone scanning and supplementary GCPBS. GCPBS signs were correlated and compared with those of MRI. The efficacy of gamma correction of ordinary parallel collimator and pinhole collimator scans were collated. Gamma correction pinhole bone scan depicted the signs characteristic of six different types of OF. They were well defined stuffed globular tracer uptake in geographic I fractures (n = 9), block-like uptake in geographic II fractures (n = 7), simple or branching linear uptake in linear cancellous fractures (n = 4), compression in impacted fractures (n = 2), stippled-serpentine uptake in reticular fractures (n = 11), and irregular subcortical uptake in osteochondral fractures (n = 3). All fractures were equally well or more distinctly depicted on GCPBS than on MRI except geographic II fracture, the details of which were not appreciated on GCPBS. Parallel collimator scan also yielded to gamma correction, but the results were inferior to those of the pinhole scan. Gamma correction pinhole bone scan can depict the specific diagnostic signs in six different types of knee occult fractures. The specific diagnostic capability along with the lower cost and wider global availability of bone scanning would make GCPBS an effective alternative.

  4. Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging.

    PubMed

    Montazel, Jean-Luc; Divine, Marine; Lepage, Eric; Kobeiter, Hicham; Breil, Stephane; Rahmouni, Alain

    2003-12-01

    To determine the patterns of dynamic enhancement of normal spinal bone marrow in adults at gadolinium-enhanced magnetic resonance (MR) imaging and the changes that occur with aging. Dynamic contrast material-enhanced MR imaging of the thoracolumbar spine was performed in 71 patients. The maximum percentage of enhancement (Emax), enhancement slope, and enhancement washout were determined from bone marrow enhancement time curves (ETCs). The bone marrow signal intensity on T1-weighted spin-echo MR images was qualitatively classified into three grade categories. Quantitative ETC values were correlated with patient age and bone marrow fat content grade. Statistical analysis included mean t test comparison, analysis of variance, and regression analysis of the correlations between age and quantitative MR parameters. Emax, slope, and washout varied widely among the patients. Emax values were obtained within 1 minute after contrast material injection and ranged from 0% to 430%. Emax values were significantly higher in patients younger than 40 years than in those aged 40 years or older (P <.001). These values decreased with increasing age in a logarithmic relationship (r = 0.71). Emax values decreased as fat content increased, but some overlap among the fat content grades was noted. Analysis of variance revealed that Emax was significantly related to age (younger than 40 years vs 40 years or older) (P <.001) and fat content grade (P <.001) but not significantly related to sex. Dynamic contrast-enhanced MR imaging patterns of normal spinal bone marrow are dependent mainly on patient age and fat content.

  5. Pitfalls and Limitations of Radionuclide Planar and Hybrid Bone Imaging.

    PubMed

    Agrawal, Kanhaiyalal; Marafi, Fahad; Gnanasegaran, Gopinath; Van der Wall, Hans; Fogelman, Ignac

    2015-09-01

    The radionuclide (99m)Tc-MDP bone scan is one of the most commonly performed nuclear medicine studies and helps in the diagnosis of different pathologies relating to the musculoskeletal system. With its increasing utility in clinical practice, it becomes more important to be aware of various limitations of this imaging modality to avoid false interpretation. It is necessary to be able to recognize various technical, radiopharmaceutical, and patient-related artifacts that can occur while carrying out a bone scan. Furthermore, several normal variations of tracer uptake may mimic pathology and should be interpreted cautiously. There is an important limitation of a bone scan in metastatic disease evaluation as the inherent mechanism of tracer uptake is not specific for tumor but primarily relies on an osteoblastic response. Thus, it is crucial to keep in mind uptake in benign lesions, which can resemble malignant pathologies. The utility of a planar bone scan in benign orthopedic diseases, especially at sites with complex anatomy, is limited owing to lack of precise anatomical information. SPECT/CT has been significantly helpful in these cases. With wider use of PET/CT and reintroduction of the (18)F-fluoride bone scan, increasing knowledge of potential pitfalls on an (18)F-fluoride bone scan and (18)F-FDG-PET/CT will help in improving the accuracy of clinical reports. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. [Regional blood flow and bone uptake of methylene-diphosphonate-technetium-99m].

    PubMed

    Vattimo, A; Martini, G; Pisani, M

    1983-05-30

    Sudeck's atrophy of the foot is an acute, patchy osteoporosis that, on bone scan, shows an increase in both bone blood flow and local bone uptake of bone-seeking radionuclides. The purpose of this study was to evaluate the relationship between bone uptake of 99mTc-MDP and local bone blood flow. In some patients with Sudeck's atrophy of one foot we measured local bone blood flow and bone uptake of 99mTc-MDP. External counting of radioactivity, with a count-rate of 1 second was performed for 60 minutes after i.v. injection of a known dose of 99mTc-MDP in some patients with Sudeck's atrophy of the foot. The regions of interest (ROI) were selected on the basis of a bone scan performed 24 hours earlier. We assumed that the data recorded during the first seconds (7-10) reflect local blood flow and the data at 60 minutes reflect the bone uptake. The ratio between the local blood flow in the involved and healthy foot was higher than the local bone uptake ratio. The ratio between bone uptake and local bone blood flow was higher in the normal foot than in the affected one. These results suggest that the bone avidity for bone-seeking radionuclides is lower in Sudeck's atrophy than in normal bone.

  7. Acid-etching technique of non-decalcified bone samples for visualizing osteocyte-lacuno-canalicular network using scanning electron microscope.

    PubMed

    Lampi, Tiina; Dekker, Hannah; Ten Bruggenkate, Chris M; Schulten, Engelbert A J M; Mikkonen, Jopi J W; Koistinen, Arto; Kullaa, Arja M

    2018-01-01

    The aim of this study was to define the acid-etching technique for bone samples embedded in polymethyl metacrylate (PMMA) in order to visualize the osteocyte lacuno-canalicular network (LCN) for scanning electron microscopy (SEM). Human jaw bone tissue samples (N = 18) were collected from the study population consisting of patients having received dental implant surgery. After collection, the bone samples were fixed in 70% ethanol and non-decalcified samples embedded routinely into polymethyl metacrylate (PMMA). The PMMA embedded specimens were acid-etched in either 9 or 37% phosphoric acid (PA) and prepared for SEM for further analysis. PMMA embedded bone specimens acid-etched by 9% PA concentration accomplishes the most informative and favorable visualization of the LCN to be observed by SEM. Etching of PMMA embedded specimens is recommendable to start with 30 s or 40 s etching duration in order to find the proper etching duration for the samples examined. Visualizing osteocytes and LCN provides a tool to study bone structure that reflects changes in bone metabolism and diseases related to bone tissue. By proper etching protocol of non-decalcified and using scanning electron microscope it is possible to visualize the morphology of osteocytes and the network supporting vitality of bone tissue.

  8. TU-A-12A-08: Computing Longitudinal Material Changes in Bone Metastases Using Dual Energy Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidtlein, CR; Hwang, S; Veeraraghavan, H

    Purpose: This study demonstrates a methodology for tracking changes in metastatic bone disease using trajectories in material basis space in serial dual energy computed tomography (DECT) studies. Methods: This study includes patients with bone metastases from breast cancer that had clinical surveillance CT scans using a General Electric CT750HD in dual energy mode. A radiologist defined regions-of-interested (ROI) for bone metastasis, normal bone, and marrow across the serial DECT scans. Our approach employs a Radon transform to forward-projection the basis images, namely, water and iodine, into sinogram space. This data is then repartitioned into fat/bone and effective density/Z image pairsmore » using assumed energy spectrums for the x-ray energies. This approach both helps remove negative material densities and avoids adding spectrum-hardening artifacts. These new basis data sets were then reconstructed via filtered back-projection to create new material basis pair images. The trajectories of these pairs were then plotted in the new basis space providing a means to both visualize and quantitatively measure changes in the material properties of the tumors. Results: ROI containing radiologist defined metastatic bone disease showed well-defined trajectories in both fat/bone and effective density/Z space. ROI that contained radiologist defined normal bone and marrow did not exhibit any discernible trajectories and were stable from scan to scan. Conclusions: The preliminary results show that changes in material composition and effective density/Z image pairs were seen primarily in metastasis and not in normal tissue. This study indicates that by using routine clinical DECT it may be possible to monitor therapy response of bone metastases because healing or worsening bone metastases change material composition of bone. Additional studies are needed to further validate these results and to test for their correlation with outcome.« less

  9. Bone remodelling around HA-coated acetabular cups

    PubMed Central

    Nielsen, P. T.; Søballe, K.

    2006-01-01

    This study was designed to investigate bone remodelling around the cup in cementless THA. Previous studies indicate an advantage of better sealing of the bone-prosthesis interface by HA/TCP coating of implants, inhibiting polyethylene-induced osteolysis. One hundred patients gave informed consent to participate in a controlled randomized study between porous coated Trilogy versus Trilogy Calcicoat (HA/TCP coated). The cup was inserted in press-fit fixation. The femoral component was a cementless porous coated titanium alloy stem (Bi-Metric), with a modular 28-mm CrCo head. The Harris Hip Score (HHS) and bone mineral density (BMD) determined by DEXA scanning were used to study the effect. Measurements revealed no difference between the two groups after 3 years either in the clinical outcome or in terms of periprosthetic bone density. Patients with a body mass index above normal regained more bone mineral than patients with normal weight. This finding supports the assumption that load is beneficial to bone remodelling. PMID:16761153

  10. Image interpolation allows accurate quantitative bone morphometry in registered micro-computed tomography scans.

    PubMed

    Schulte, Friederike A; Lambers, Floor M; Mueller, Thomas L; Stauber, Martin; Müller, Ralph

    2014-04-01

    Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information.

  11. Sex-specific quantitative trait loci contribute to normal variation in bone structure at the proximal femur in men

    PubMed Central

    Peacock, Munro; Koller, Daniel L.; Lai, Dongbing; Hui, Siu; Foroud, Tatiana; Econs, Michael J.

    2006-01-01

    Bone structure is an important determinant of osteoporotic fracture. In women bone structure is highly heritable and several quantitative trait loci (QTL) have been reported. There are few comparable data in men. This study in men aimed at establishing the heritability of bone structure at the proximal femur, identifying QTL contributing to normal variation in bone structure, and determining which QTL might be sex-specific. Bone structure at the proximal femur was measured in 205 pairs of brothers age 18–61. Heritability was calculated and linkage analysis performed on phenotypes at the proximal femur. Heritability estimates ranged from 0.99 to 0.39. A genome wide scan identified suggestive QTL (LOD>2.2) for femoral shaft width on chromosome 14q (LOD=2.69 at position 99cM), calcar femorale at chromosome 2p (LOD= 3.97 at position 194cM) and at the X chromosome (LOD= 3.01 at position 77cM), femoral neck width on chromosome 5p (LOD=2.28 at position 0 cM), femoral head width on chromosome 11q (LOD=2.30 at position 131 cM) and 15q (LOD=3.11 at position 90 cM), and pelvic axis length on chromosome 4q (LOD= 4.16 at 99cM) and 17q (LOD=2.80 at position 112 cM). Comparison with published data in 437 pairs of premenopausal sisters from the same geographical region suggested that 3 of the 7 autosomal QTL were male-specific. This study demonstrates that bone structure at the proximal femur in healthy men is highly heritable. The occurrence of sex-specific genes in humans for bone structure has important implications for the pathogenesis and treatment of osteoporosis. PMID:16046210

  12. Bone Scan

    MedlinePlus

    ... your doctor might order additional imaging called single-photon emission computerized tomography (SPECT). This imaging can help ... radioactivity from the tracers is usually completely eliminated two days after the scan. Results A doctor who ...

  13. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects

    NASA Technical Reports Server (NTRS)

    Zerwekh, J. E.; Ruml, L. A.; Gottschalk, F.; Pak, C. Y.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    This study was undertaken to examine the effects of 12 weeks of skeletal unloading on parameters of calcium homeostasis, calcitropic hormones, bone histology, and biochemical markers of bone turnover in 11 normal subjects (9 men, 2 women; 34 +/- 11 years of age). Following an ambulatory control evaluation, all subjects underwent 12 weeks of bed rest. An additional metabolic evaluation was performed after 12 days of reambulation. Bone mineral density declined at the spine (-2.9%, p = 0.092) and at the hip (-3.8%, p = 0.002 for the trochanter). Bed rest prompted a rapid, sustained, significant increase in urinary calcium and phosphorus as well as a significant increase in serum calcium. Urinary calcium increased from a pre-bed rest value of 5.3 mmol/day to values as high as 73 mmol/day during bed rest. Immunoreactive parathyroid hormone and serum 1,25-dihydroxyvitamin D declined significantly during bed rest, although the mean values remained within normal limits. Significant changes in bone histology included a suppression of osteoblastic surface for cancellous bone (3.1 +/- 1.3% to 1.9 +/- 1.5%, p = 0.0142) and increased bone resorption for both cancellous and cortical bone. Cortical eroded surface increased from 3.5 +/- 1.1% to 7.3 +/- 4.0% (p = 0.018) as did active osteoclastic surface (0.2 +/- 0.3% to 0.7 +/- 0.7%, p = 0.021). Cancellous eroded surface increased from 2.1 +/- 1.1% to 4.7 +/- 2.2% (p = 0.002), while mean active osteoclastic surface doubled (0.2 +/- 0.2% to 0.4 +/- 0.3%, p = 0.020). Serum biochemical markers of bone formation (osteocalcin, bone-specific alkaline phosphatase, and type I procollagen extension peptide) did not change significantly during bed rest. Urinary biochemical markers of bone resorption (hydroxyproline, deoxypyridinoline, and N-telopeptide of type I collagen) as well as a serum marker of bone resorption (type I collagen carboxytelopeptide) all demonstrated significant increases during bed rest which declined toward normal

  14. Age-related changes in bone biochemical markers and their relationship with bone mineral density in normal Chinese women.

    PubMed

    Pi, Yin-Zhen; Wu, Xian-Ping; Liu, Shi-Ping; Luo, Xiang-Hang; Cao, Xing-Zhi; Xie, Hui; Liao, Er-Yuan

    2006-01-01

    Measurements of bone biochemical markers are increasingly being used to evaluate the state of bone turnover in the management of bone metabolic diseases, especially osteoporosis. However, changes in the bone turnover rate vary with age. The aim of this study was to establish the laboratory reference range of serum bone-specific alkaline phosphatase (sBAP), serum type I collagen cross-linked C-terminal telopeptide (sCTx), and urine CTx (uCTx), based on values from 665 healthy Chinese women aged 20-80 years. We measured the levels of sBAP, sCTx, serum alkaline phosphatase (sALP), and uCTx and evaluated the age-related changes and their relationship with bone mineral density (BMD) in the anteroposterior (AP) lumbar spine, hip, and left forearm. We found significant correlations between biochemical markers and age, with coefficients of determination (R (2)) of 0.358 for sBAP, 0.126 for sCTx, 0.125 for uCTx, and 0.336 for sALP. The net changes in different biochemical markers were inversely correlated with the rates of BMD loss in the AP lumbar spine. After correction for age, body weight, and height, the levels of the markers had significant negative correlations with the BMD of the AP lumbar spine, femoral neck, and ultradistal forearm. All four biochemical markers had the highest negative correlation with BMD of the AP lumbar spine (partial correlation coefficients of -0.366, -0.296, -0.290, and -0.258 for sBAP, sCTx, uCTx, and sALP, respectively). The mean and SD values of these markers in premenopausal and postmenopausal women with normal BMD values were used as the normal reference ranges. The reference ranges of sBAP, sCTx, and uCTx for pre- vs postmenopausal women were 17.3 +/- 6.23 vs 18.9 +/- 7.52 U/l, 3.18 +/- 1.49 vs 3.23 +/- 1.57 nmol/l, and 15.5 +/- 11.4 vs 16.2 +/- 12.4 nM bone collagen equivalents/mM urinary creatinine, respectively. Levels of the bone formation marker (sBAP) and bone resorption markers (sCTx, uCTx) increased rapidly in women with

  15. Total bone calcium in normal women: effect of age and menopause status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, J.C.; Goldgar, D.; Moy, A.

    1987-12-01

    Bone density in different regions of the skeleton was measured in 392 normal women aged 20-80 years by dual photon absorpiometry. In premenopausal women, aged 25-50 years, multiple regression analysis of regional bone density on age, height, and weight showed a small significant decrease in total bone density (less than 0.01) but no significant change in other regions of the skeleton. In postmenopausal women there were highly significant decreases in all regions of the skeleton (p less than 0.001), and bone density in these areas decreased as a logarithmic function of years since menopause. Based on multiple regression analyses, themore » decrease in spine density and total bone calcium was 2.5-3.0 times greater in the 25 years after menopause than the 25 years before menopause. The largest change, however, occurred in the first five years after menopause. During this time the estimated annual change in spine density and total bone calcium was about 10 times greater than that in the premenopausal period. These results demonstrate the important effect of the menopause in determining bone mass in later life.« less

  16. Fractographic examination of racing greyhound central (navicular) tarsal bone failure surfaces using scanning electron microscopy.

    PubMed

    Tomlin, J L; Lawes, T J; Blunn, G W; Goodship, A E; Muir, P

    2000-09-01

    The greyhound is a fatigue fracture model of a short distance running athlete. Greyhounds have a high incidence of central (navicular) tarsal bone (CTB) fractures, which are not associated with overt trauma. We wished to determine whether these fractures occur because of accumulation of fatigue microdamage. We hypothesized that bone from racing dogs would show site-specific microdamage accumulation, causing predisposition to structural failure. We performed a fractographic examination of failure surfaces from fractured bones using scanning electron microscopy and assessed microcracking observed at the failure surface using a visual analog scale. Branching arrays of microcracks were seen in failure surfaces of CTB and adjacent tarsal bones, suggestive of compressive fatigue failure. Branching arrays of microcracks were particularly prevalent in remodeled trabecular bone that had become compact. CTB fractures showed increased microdamage when compared with other in vivo fractures (adjacent tarsal bone and long bone fractures), and ex vivo tarsal fractures induced by monotonic loading (P < 0.02). It was concluded that greyhound racing and training often results in CTB structural failure, because of accumulation and coalescence of branching arrays of fatigue microcracks, the formation of which appears to be predisposed to adapted bone.

  17. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement.

    PubMed

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    99m Technetium-methylene diphosphonate ( 99m Tc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99m Tc-MDP-bone scan images. A set of 89 low contrast 99m Tc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t -test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful.

  18. Bone scan findings in hypervitaminosis D: case report. [/sup 99m/Tc tracer technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogelman, I.; McKillop, J.H.; Cowden, E.A.

    1977-12-01

    Bone scans in three patients showed generalized symmetrical increased uptake of radiopharmaceutical by the skeleton and absent or faint kidney images. It is thought that these appearances may be attributable to excess vitamin D, and other possible contributing factors, including the presence of renal osteodystrophy, are discussed.

  19. Comparison of DXA Scans and Conventional X-rays for Spine Morphometry and Bone Age Determination in Children.

    PubMed

    Hoyer-Kuhn, Heike; Knoop, Kai; Semler, Oliver; Kuhr, Kathrin; Hellmich, Martin; Schoenau, Eckhard; Koerber, Friederike

    2016-01-01

    Conventional lateral spine and hand radiographs are the standard tools to evaluate vertebral morphometry and bone age in children. Beside bone mineral density analyses, dual-energy X-ray absorptiometry (DXA) measurements with lower radiation exposure provide high-resolution scans which are not approved for diagnostic purposes. Data about the comparability of conventional radiographs and DXA in children are missing yet. The purpose of the trial was to evaluate whether conventional hand and spine radiographs can be replaced by DXA scans to diminish radiation exposure. Thirty-eight children with osteogenesis imperfecta or secondary osteoporosis or short stature (male, n=20; age, 5.0-17.0 yr) were included and assessed once by additional DXA (GE iDXA) of the spine or the left hand. Intraclass correlation coefficients (ICCs) were used to express agreement between X-ray and iDXA assessment. Evaluation of the spine morphometry showed reasonable agreement between iDXA and radiography (ICC for fish-shape, 0.75; for wedge-shape, 0.65; and for compression fractures, 0.70). Bone age determination showed excellent agreement between iDXA and radiography (ICC, 0.97). IDXA-scans of the spine in a pediatric population should be used not only to assess bone mineral density but also to evaluate anatomic structures and vertebral morphometry. Therefore, iDXA can replace some radiographs in children with skeletal diseases. Copyright © 2016 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  20. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    NASA Astrophysics Data System (ADS)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  1. Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients.

    PubMed

    Mayer, Markus A; Hornegger, Joachim; Mardin, Christian Y; Tornow, Ralf P

    2010-11-08

    Automated measurements of the retinal nerve fiber layer thickness on circular OCT B-Scans provide physicians additional parameters for glaucoma diagnosis. We propose a novel retinal nerve fiber layer segmentation algorithm for frequency domain data that can be applied on scans from both normal healthy subjects, as well as glaucoma patients, using the same set of parameters. In addition, the algorithm remains almost unaffected by image quality. The main part of the segmentation process is based on the minimization of an energy function consisting of gradient and local smoothing terms. A quantitative evaluation comparing the automated segmentation results to manually corrected segmentations from three reviewers is performed. A total of 72 scans from glaucoma patients and 132 scans from normal subjects, all from different persons, composed the database for the evaluation of the segmentation algorithm. A mean absolute error per A-Scan of 2.9 µm was achieved on glaucomatous eyes, and 3.6 µm on healthy eyes. The mean absolute segmentation error over all A-Scans lies below 10 µm on 95.1% of the images. Thus our approach provides a reliable tool for extracting diagnostic relevant parameters from OCT B-Scans for glaucoma diagnosis.

  2. Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients

    PubMed Central

    Mayer, Markus A.; Hornegger, Joachim; Mardin, Christian Y.; Tornow, Ralf P.

    2010-01-01

    Automated measurements of the retinal nerve fiber layer thickness on circular OCT B-Scans provide physicians additional parameters for glaucoma diagnosis. We propose a novel retinal nerve fiber layer segmentation algorithm for frequency domain data that can be applied on scans from both normal healthy subjects, as well as glaucoma patients, using the same set of parameters. In addition, the algorithm remains almost unaffected by image quality. The main part of the segmentation process is based on the minimization of an energy function consisting of gradient and local smoothing terms. A quantitative evaluation comparing the automated segmentation results to manually corrected segmentations from three reviewers is performed. A total of 72 scans from glaucoma patients and 132 scans from normal subjects, all from different persons, composed the database for the evaluation of the segmentation algorithm. A mean absolute error per A-Scan of 2.9 µm was achieved on glaucomatous eyes, and 3.6 µm on healthy eyes. The mean absolute segmentation error over all A-Scans lies below 10 µm on 95.1% of the images. Thus our approach provides a reliable tool for extracting diagnostic relevant parameters from OCT B-Scans for glaucoma diagnosis. PMID:21258556

  3. Content Validity of Temporal Bone Models Printed Via Inexpensive Methods and Materials.

    PubMed

    Bone, T Michael; Mowry, Sarah E

    2016-09-01

    Computed tomographic (CT) scans of the 3-D printed temporal bone models will be within 15% accuracy of the CT scans of the cadaveric temporal bones. Previous studies have evaluated the face validity of 3-D-printed temporal bone models designed to train otolaryngology residents. The purpose of the study was to determine the content validity of temporal bone models printed using inexpensive printers and materials. Four cadaveric temporal bones were randomly selected and clinical temporal bone CT scans were obtained. Models were generated using previously described methods in acrylonitrile butadiene styrene (ABS) plastic using the Makerbot Replicator 2× and Hyrel printers. Models were radiographically scanned using the same protocol as the cadaveric bones. Four images from each cadaveric CT series and four corresponding images from the model CT series were selected, and voxel values were normalized to black or white. Scan slices were compared using PixelDiff software. Gross anatomic structures were evaluated in the model scans by four board certified otolaryngologists on a 4-point scale. Mean pixel difference between the cadaver and model scans was 14.25 ± 2.30% at the four selected CT slices. Mean cortical bone width difference and mean external auditory canal width difference were 0.58 ± 0.66 mm and 0.55 ± 0.46 mm, respectively. Expert raters felt the mastoid air cells were well represented (2.5 ± 0.5), while middle ear and otic capsule structures were not accurately rendered (all averaged <1.8). These results suggest that these models would be sufficient adjuncts to cadaver temporal bones for training residents in cortical mastoidectomies, but less effective for middle ear procedures.

  4. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement

    PubMed Central

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    Purpose of the Study: 99mTechnetium-methylene diphosphonate (99mTc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99mTc-MDP-bone scan images. Materials and Methods: A set of 89 low contrast 99mTc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. Results: This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t-test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. Conclusion: GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful. PMID:29142344

  5. Is the assessment of the central skeleton sufficient for osseous staging in breast cancer patients? A retrospective approach using bone scans.

    PubMed

    Krammer, Julia; Engel, Dorothee; Schnitzer, Andreas; Kaiser, Clemens G; Dinter, Dietmar J; Brade, Joachim; Schoenberg, Stefan O; Wasser, Klaus

    2013-06-01

    By analyzing bone scans we aimed to determine whether the assessment of the central skeleton is sufficient for osseous staging in breast cancer patients. This might be of interest for future staging modalities, especially positron emission tomography/computed tomography, usually sparing the peripheral extremities, as well as the skull. In this retrospective study, a total of 837 bone scans for initial staging or restaging of breast cancer were included. A total of 291 bone scans in 172 patients were positive for bone metastases. The localization and distribution of the metastases were re-evaluated by two readers in consensus. The extent of the central skeleton involvement was correlated to the incidence of peripheral metastases. In all 172 patients bone metastases were seen in the central skeleton (including the proximal third of humerus and femur). In 34 patients (19.8 %) peripheral metastases of the extremities (distally of the proximal third of humerus and femur) could be detected. Sixty-four patients (37.2 %) showed metastases of the skull. Summarizing the metastases of the distal extremities and skull, 79 patients (45.9 %) had peripheral metastases. None of the patients showed peripheral metastases without any affliction of the central skeleton. The incidence of peripheral metastases significantly correlated with the extent of central skeleton involvement (p<0.001). Regarding bone scans, an isolated metastatic spread to the peripheral skeleton without any manifestation in the central skeleton seems to be the exception. Thus, the assessment of the central skeleton should be sufficient in osseous breast cancer staging and restaging. However, in case of central metastases, additional imaging of the periphery should be considered for staging and restaging.

  6. Hologic QDR 2000 whole-body scans: a comparison of three combinations of scan modes and analysis software

    NASA Technical Reports Server (NTRS)

    Spector, E.; LeBlanc, A.; Shackelford, L.

    1995-01-01

    This study reports on the short-term in vivo precision and absolute measurements of three combinations of whole-body scan modes and analysis software using a Hologic QDR 2000 dual-energy X-ray densitometer. A group of 21 normal, healthy volunteers (11 male and 10 female) were scanned six times, receiving one pencil-beam and one array whole-body scan on three occasions approximately 1 week apart. The following combinations of scan modes and analysis software were used: pencil-beam scans analyzed with Hologic's standard whole-body software (PB scans); the same pencil-beam analyzed with Hologic's newer "enhanced" software (EPB scans); and array scans analyzed with the enhanced software (EA scans). Precision values (% coefficient of variation, %CV) were calculated for whole-body and regional bone mineral content (BMC), bone mineral density (BMD), fat mass, lean mass, %fat and total mass. In general, there was no significant difference among the three scan types with respect to short-term precision of BMD and only slight differences in the precision of BMC. Precision of BMC and BMD for all three scan types was excellent: < 1% CV for whole-body values, with most regional values in the 1%-2% range. Pencil-beam scans demonstrated significantly better soft tissue precision than did array scans. Precision errors for whole-body lean mass were: 0.9% (PB), 1.1% (EPB) and 1.9% (EA). Precision errors for whole-body fat mass were: 1.7% (PB), 2.4% (EPB) and 5.6% (EA). EPB precision errors were slightly higher than PB precision errors for lean, fat and %fat measurements of all regions except the head, although these differences were significant only for the fat and % fat of the arms and legs. In addition EPB precision values exhibited greater individual variability than PB precision values. Finally, absolute values of bone and soft tissue were compared among the three combinations of scan and analysis modes. BMC, BMD, fat mass, %fat and lean mass were significantly different between

  7. Effect of foot shape on the three-dimensional position of foot bones.

    PubMed

    Ledoux, William R; Rohr, Eric S; Ching, Randal P; Sangeorzan, Bruce J

    2006-12-01

    To eliminate some of the ambiguity in describing foot shape, we developed three-dimensional (3D), objective measures of foot type based on computerized tomography (CT) scans. Feet were classified via clinical examination as pes cavus (high arch), neutrally aligned (normal arch), asymptomatic pes planus (flat arch with no pain), or symptomatic pes planus (flat arch with pain). We enrolled 10 subjects of each foot type; if both feet were of the same foot type, then each foot was scanned (n=65 total). Partial weightbearing (20% body weight) CT scans were performed. We generated embedded coordinate systems for each foot bone by assuming uniform density and calculating the inertial matrix. Cardan angles were used to describe five bone-to-bone relationships, resulting in 15 angular measurements. Significant differences were found among foot types for 12 of the angles. The angles were also used to develop a classification tree analysis, which determined the correct foot type for 64 of the 65 feet. Our measure provides insight into how foot bone architecture differs between foot types. The classification tree analysis demonstrated that objective measures can be used to discriminate between feet with high, normal, and low arches. Copyright (c) 2006 Orthopaedic Research Society.

  8. Radioisotope scanning in osseous sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, P.K.

    1980-01-01

    Technetium-99m (/sup 99m/Tc)-labeled pyrophosphate or diphosphonate compounds and gallium-67 citrate (/sup 67/Ga) are two radionuclide scanning agents that are in widespread use in clinical practice. Technetium-99m pyrophosphate is used extensively for bone scanning to detect metastatic bone disease, benign bone tumors, osteomyelitis, benign hypertrophic osteoarthropathy, and Paget's disease. Only two reports describe abnormal /sup 99m/Tc/ pyrophosphate bone scans in four patients with osseous sarcoidosis. Gallium-67 scans are used primarily to localize neoplastic or inflammatory lesions anywhere in the body. In recent years /sup 67/Ga scans have also been used to detect the presence of both pulmonary and extrapulmonary sarcoidosis, butmore » there are no reports describing abnormal uptake of gallium in patients with osseous sarcoidosis. This report describes experience with radioisotope scanning in two patients with osseous sarcoidosis.« less

  9. Evidence for arrested bone formation during spaceflight

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Bobyn, J. D.; Duvall, P.; Morey, E. R.; Baylink, D. J.; Spector, M.

    1982-01-01

    Addressing the question of whether the bone formed in space is unusual, the morphology of bone made at the tibial diaphysis of rats before, during, and after spaceflight is studied. Evidence of arrest lines in the bone formed in space is reported suggesting that bone formation ceases along portions of the periosteum during spaceflight. Visualized by microradiography, the arrest lines are shown to be less mineralized than the surrounding bone matrix. When viewed by scanning electron microscopy, it is seen that bone fractures more readily at the site of an arrest line. These observations are seen as suggesting that arrest lines are a zone of weakness and that their formation may result in decreased bone strength in spite of normalization of bone formation after flight. The occurrence, location, and morphology of arrest lines are seen as suggesting that they are a visible result of the phenomenon of arrested bone formation.

  10. Evaluation of the utility of 99m Tc-MDP bone scintigraphy versus MIBG scintigraphy and cross-sectional imaging for staging patients with neuroblastoma.

    PubMed

    Gauguet, Jean-Marc; Pace-Emerson, Tamara; Grant, Frederick D; Shusterman, Suzanne; DuBois, Steven G; Frazier, A Lindsay; Voss, Stephan D

    2017-11-01

    Accurate staging of neuroblastoma requires multiple imaging examinations. The purpose of this study was to determine the relative contribution of 99m Tc-methylene diphosphonate (MDP) bone scintigraphy (bone scan) versus metaiodobenzylguanidine scintigraphy (MIBG scan) for accurate staging of neuroblastoma. A medical record search by the identified patients with neuroblastoma from 1993 to 2012 who underwent both MIBG and bone scan for disease staging. Cross-sectional imaging was used to corroborate the scintigraphy results. Clinical records were used to correlate imaging findings with clinical staging and patient management. One hundred thirty-two patients underwent both MIBG and bone scan for diagnosis. All stage 1 (n = 12), 2 (n = 8), and 4S (n = 4) patients had a normal bone scan with no skeletal MIBG uptake. Six of 30 stage 3 patients had false (+) bone scans. In the 78 stage 4 patients, 58/78 (74%) were both skeletal MIBG(+)/bone scan (+). In 56 of the 58 cases, skeletal involvement detected with MIBG was equal to or greater than that detected by bone scan. Only 3/78 had (-) skeletal MIBG uptake and (+) bone scans; all 3 had other sites of metastatic disease. Five of 78 had (+) skeletal MIBG with a (-) bone scan, while 12/78 had no skeletal involvement by either MIBG or bone scan. In no case did a positive bone scan alone determine a stage 4 designation. In the staging of neuroblastoma, 99m Tc-MDP bone scintigraphy does not identify unique sites of disease that affect disease stage or clinical management, and in the majority of cases bone scans can be omitted from the routine neuroblastoma staging algorithm. © 2017 Wiley Periodicals, Inc.

  11. Characterizing the composition of bone formed during fracture healing using scanning electron microscopy techniques.

    PubMed

    Perdikouri, Christina; Tägil, Magnus; Isaksson, Hanna

    2015-01-01

    About 5-10% of all bone fractures suffer from delayed healing, which may lead to non-union. Bone morphogenetic proteins (BMPs) can be used to induce differentiation of osteoblasts and enhance the formation of the bony callus, and bisphosphonates help to retain the newly formed callus. The aim of this study was to investigate if scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) can identify differences in the mineral composition of the newly formed bone compared to cortical bone from a non-fractured control. Moreover, we investigate whether the use of BMPs and bisphosphonates-alone or combined-may have an effect on bone mineralization and composition. Twelve male Sprague-Dawley rats at 9 weeks of age were randomly divided into four groups and treated with (A) saline, (B) BMP-7, (C) bisphosphonates (Zoledronate), and (D) BMP-7 + Zoledronate. The rats were sacrificed after 6 weeks. All samples were imaged using SEM and chemically analyzed with EDS to quantify the amount of C, N, Ca, P, O, Na, and Mg. The Ca/P ratio was the primary outcome. In the fractured samples, two areas of interest were chosen for chemical analysis with EDS: the callus and the cortical bone. In the non-fractured samples, only the cortex was analyzed. Our results showed that the element composition varied to a small extent between the callus and the cortical bone in the fractured bones. However, the Ca/P ratio did not differ significantly, suggesting that the mineralization at all sites is similar 6 weeks post-fracture in this rat model.

  12. Friend or foe: high bone mineral density on routine bone density scanning, a review of causes and management.

    PubMed

    Gregson, Celia L; Hardcastle, Sarah A; Cooper, Cyrus; Tobias, Jonathan H

    2013-06-01

    A finding of high BMD on routine DXA scanning is not infrequent and most commonly reflects degenerative disease. However, BMD increases may also arise secondary to a range of underlying disorders affecting the skeleton. Although low BMD increases fracture risk, the converse may not hold for high BMD, since elevated BMD may occur in conditions where fracture risk is increased, unaffected or reduced. Here we outline a classification for the causes of raised BMD, based on identification of focal or generalized BMD changes, and discuss an approach to guide appropriate investigation by clinicians after careful interpretation of DXA scan findings within the context of the clinical history. We will also review the mild skeletal dysplasia associated with the currently unexplained high bone mass phenotype and discuss recent advances in osteoporosis therapies arising from improved understanding of rare inherited high BMD disorders.

  13. Friend or foe: high bone mineral density on routine bone density scanning, a review of causes and management

    PubMed Central

    Hardcastle, Sarah A.; Cooper, Cyrus; Tobias, Jonathan H.

    2013-01-01

    A finding of high BMD on routine DXA scanning is not infrequent and most commonly reflects degenerative disease. However, BMD increases may also arise secondary to a range of underlying disorders affecting the skeleton. Although low BMD increases fracture risk, the converse may not hold for high BMD, since elevated BMD may occur in conditions where fracture risk is increased, unaffected or reduced. Here we outline a classification for the causes of raised BMD, based on identification of focal or generalized BMD changes, and discuss an approach to guide appropriate investigation by clinicians after careful interpretation of DXA scan findings within the context of the clinical history. We will also review the mild skeletal dysplasia associated with the currently unexplained high bone mass phenotype and discuss recent advances in osteoporosis therapies arising from improved understanding of rare inherited high BMD disorders. PMID:23445662

  14. Bone mineral density and correlation factor analysis in normal Taiwanese children.

    PubMed

    Shu, San-Ging

    2007-01-01

    Our aim was to establish reference data and linear regression equations for lumbar bone mineral density (BMD) in normal Taiwanese children. Several influencing factors of lumbar BMD were investigated. Two hundred fifty-seven healthy children were recruited from schools, 136 boys and 121 girls, aged 4-18 years were enrolled on a voluntary basis with written consent. Their height, weight, blood pressure, puberty stage, bone age and lumbar BMD (L2-4) by dual energy x-ray absorptiometry (DEXA) were measured. Data were analyzed using Pearson correlation and stepwise regression tests. All measurements increased with age. Prior to age 8, there was no gender difference. Parameters such as height, weight, and bone age (BA) in girls surpassed boys between ages 8-13 without statistical significance (p> or =0.05). This was reversed subsequently after age 14 in height (p<0.05). BMD difference had the same trend but was not statistically significant either. The influencing power of puberty stage and bone age over BMD was almost equal to or higher than that of height and weight. All the other factors correlated with BMD to variable powers. Multiple linear regression equations for boys and girls were formulated. BMD reference data is provided and can be used to monitor childhood pathological conditions. However, BMD in those with abnormal bone age or pubertal development could need modifications to ensure accuracy.

  15. Detection of bone metastases in breast cancer patients in the PET/CT era: Do we still need the bone scan?

    PubMed

    Caglar, M; Kupik, O; Karabulut, E; Høilund-Carlsen, P F

    2016-01-01

    To examine the value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) for the detection of bone metastasis in breast cancer patients and assess whether whole body bone scan (BS) with (99m)Tc-methylene diphosphonate provides any additional information. Study group comprised 150 patients, mean age 52 years (range 27-85) with breast cancer, suspected of having bone metastases. All patients had undergone both FDG-PET/CT and BS with or without single photon emission tomography/computed tomography (SPECT/CT) within a period of 6 weeks. The final diagnosis of bone metastasis was established by histopathological findings, additional imaging, or clinical follow-up longer than 10 months. Cancer antigen 15-3 (CA15-3) and carcinoembryogenic antigen (CEA) were measured in all patients. Histologically 83%, 7% and 10% had infiltrating ductal, lobular and mixed carcinoma respectively. Confirmed bone metastases were present in 86 patients (57.3%) and absent in 64 (42.7%). Mean CA15-3 and CEA values in patients with bone metastases were 74.6ng/mL and 60.4U/mL respectively, compared to 21.3ng/mL and 3.2U/mL without metastases (p<0.001). The sensitivity of FDG-PET/CT for the detection of bone metastases was 97.6% compared to 89.5% with SPECT/CT. In 57 patients, FDG-PET/CT correctly identified additional pulmonary, hepatic, nodal and other soft tissue metastases, not detected by BS. Our findings suggest that FDG-PET/CT is superior to BS with or without SPECT/CT. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  16. Repeated irradiation from micro-computed tomography scanning at 2, 4 and 6 months of age does not induce damage to tibial bone microstructure in male and female CD-1 mice.

    PubMed

    Sacco, Sandra M; Saint, Caitlin; Longo, Amanda B; Wakefield, Charles B; Salmon, Phil L; LeBlanc, Paul J; Ward, Wendy E

    2017-01-01

    Long-term effects of repeated i n vivo micro-computed tomography (μCT) scanning at key stages of growth and bone development (ages 2, 4 and 6 months) on trabecular and cortical bone structure, as well as developmental patterns, have not been studied. We determined the effect of repetitive μCT scanning at age 2, 4 and 6 months on tibia bone structure of male and female CD-1 mice and characterized developmental changes. At 2, 4 and 6 months of age, right tibias were scanned using in vivo μCT (Skyscan 1176) at one of three doses of radiation per scan: 222, 261 or 460 mGy. Left tibias of the same mice were scanned only at 6 months to serve as non-irradiated controls to determine whether recurrent radiation exposure alters trabecular and cortical bone structure at the proximal tibia. In males, eccentricity was lower ( P <0.05) in irradiated compared with non-irradiated tibias (222 mGy group). Within each sex, all other structural outcomes were similar between irradiated and non-irradiated tibias regardless of dose. Trabecular bone loss occurred in all mice due to age while cortical development continued to age 6 months. In conclusion, repetitive μCT scans at various radiation doses did not damage trabecular or cortical bone structure of proximal tibia in male and female CD-1 mice. Moreover, scanning at 2, 4 and 6 months of age highlight the different developmental time course between trabecular and cortical bone. These scanning protocols can be used to investigate longitudinal responses of bone structures to an intervention.

  17. Neonatal Death Dwarfism in a Girl with Distinctive Bone Dysplasia Compatible with Grebe Chondrodysplasia: Analysis by CT Scan-based Phenotype.

    PubMed

    Al Kaissi, Ali; Chehida, Farid Ben; Ganger, Rudolf; Grill, Franz

    2014-01-01

    We report on a female fetus noted to have severe malformative type of skeletal dysplasia on ultrasonography done at 35 weeks gestation. The girl died shortly after birth. Clinical examination showed a fetus with severe dwarfism, extensive long and short bones, and bone deficiencies associated with multiple dislocations. Computed tomography (CT) scan-based phenotype showed a complex constellation of malformations consistent with the diagnosis of Grebe syndrome. Parents being first cousins (consanguineous marriage) strongly suggests autosomal recessive pattern of inheritance. To our knowledge, this is the first report of neonatal death dwarfism of Grebe syndrome analyzed by CT scan-based phenotype.

  18. First-trimester nasal bone length in a normal Latin American population.

    PubMed

    Casasbuenas, Alexandra; Wong, Amy E; Sepulveda, Waldo

    2009-02-01

    To report normative data of nasal bone length (NBL) in first-trimester singleton fetuses in a normal cohort of Latin American women. NBL was measured during routine first-trimester sonographic examination in 1040 singleton fetuses from an unselected population. NBL increased linearly with advancing gestational age (GA) [NBL (mm) = - 1.10 + 0.03 x GA (days), R(2) = 0.21; p < 0.001]. Similarly, there was a linear relationship between the NBL and crown-lump length (CRL) [NBL (mm) = 0.41 + 0.02 x CRL (mm), R(2) = 0.27; p < 0.001]. The NBLs at the 50th percentile in our population were 1.5, 1.7, and 1.9 mm at 11, 12, and 13 weeks of gestation, respectively. Whereas categorizing a nasal bone as absent or present can be subjective because of variations in echogenicity due to technique and equipment, measurement of NBL is a more objective approach to nasal bone assessment in screening for aneuploidy. Measurement of NBL in the first trimester is feasible and can be easily obtained at the time of nuchal translucency assessment. The normative data we report can provide a reference for defining nasal bone hypoplasia in the first trimester in the Latin American population. Copyright (c) 2008 John Wiley & Sons, Ltd.

  19. Bone mineral content in the senescent rat femur: an assessment using single photon absorptiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiebzak, G.M.; Smith, R.; Howe, J.C.

    1988-06-01

    The single photon absorptiometry technique was evaluated for measuring bone mineral content (BMC) of the excised femurs of the rat, and the system was used to examine the changes in cortical and trabecular bone from young adult (6 mo), mature adult (12 mo), and senescent (24 mo) male and female animals. BMC of the femur midshaft, representing cortical bone, apparently increased progressively with advancing age. The width of the femur at the scan site also increased with age. Normalizing the midshaft BMC by width partially compensated for the age-associated increase. However, when bone mineral values were normalized by the corticalmore » area at the scan site, to take into account the geometric differences in the femurs of different aged animals, maximum bone densities were found in the mature adult and these values decreased slightly in the femurs from senescent rats. In contrast, the BMC of the femur distal metaphysis, representing trabecular bone, decreased markedly in the aged rat. The loss of trabecular bone was also evident from morphological examination of the distal metaphysis. These findings indicated that bone mineral loss with age was site specific in the rat femur. These studies provided additional evidence that the rat might serve as a useful animal model for specific experiments related to the pathogenesis of age-associated osteopenia.« less

  20. Accuracy of DXA scanning of the thoracic spine: cadaveric studies comparing BMC, areal BMD and geometric estimates of volumetric BMD against ash weight and CT measures of bone volume.

    PubMed

    Sran, Meena M; Khan, Karim M; Keiver, Kathy; Chew, Jason B; McKay, Heather A; Oxland, Thomas R

    2005-12-01

    Biomechanical studies of the thoracic spine often scan cadaveric segments by dual energy X-ray absorptiometry (DXA) to obtain measures of bone mass. Only one study has reported the accuracy of lateral scans of thoracic vertebral bodies. The accuracy of DXA scans of thoracic spine segments and of anterior-posterior (AP) thoracic scans has not been investigated. We have examined the accuracy of AP and lateral thoracic DXA scans by comparison with ash weight, the gold-standard for measuring bone mineral content (BMC). We have also compared three methods of estimating volumetric bone mineral density (vBMD) with a novel standard-ash weight (g)/bone volume (cm3) as measured by computed tomography (CT). Twelve T5-T8 spine segments were scanned with DXA (AP and lateral) and CT. The T6 vertebrae were excised, the posterior elements removed and then the vertebral bodies were ashed in a muffle furnace. We proposed a new method of estimating vBMD and compared it with two previously published methods. BMC values from lateral DXA scans displayed the strongest correlation with ash weight (r=0.99) and were on average 12.8% higher (p<0.001). As expected, BMC (AP or lateral) was more strongly correlated with ash weight than areal bone mineral density (aBMD; AP: r=0.54, or lateral: r=0.71) or estimated vBMD. Estimates of vBMD with either of the three methods were strongly and similarly correlated with volumetric BMD calculated by dividing ash weight by CT-derived volume. These data suggest that readily available DXA scanning is an appropriate surrogate measure for thoracic spine bone mineral and that the lateral scan might be the scan method of choice.

  1. Biaxial Normal Strength Behavior in the Axial-Transverse Plane for Human Trabecular Bone—Effects of Bone Volume Fraction, Microarchitecture, and Anisotropy

    PubMed Central

    Sanyal, Arnav; Keaveny, Tony M.

    2013-01-01

    The biaxial failure behavior of the human trabecular bone, which has potential relevance both for fall and gait loading conditions, is not well understood, particularly for low-density bone, which can display considerable mechanical anisotropy. Addressing this issue, we investigated the biaxial normal strength behavior and the underlying failure mechanisms for human trabecular bone displaying a wide range of bone volume fraction (0.06–0.34) and elastic anisotropy. Micro-computer tomography (CT)-based nonlinear finite element analysis was used to simulate biaxial failure in 15 specimens (5 mm cubes), spanning the complete biaxial normal stress failure space in the axial-transverse plane. The specimens, treated as approximately transversely isotropic, were loaded in the principal material orientation. We found that the biaxial stress yield surface was well characterized by the superposition of two ellipses—one each for yield failure in the longitudinal and transverse loading directions—and the size, shape, and orientation of which depended on bone volume fraction and elastic anisotropy. However, when normalized by the uniaxial tensile and compressive strengths in the longitudinal and transverse directions, all of which depended on bone volume fraction, microarchitecture, and mechanical anisotropy, the resulting normalized biaxial strength behavior was well described by a single pair of (longitudinal and transverse) ellipses, with little interspecimen variation. Taken together, these results indicate that the role of bone volume fraction, microarchitecture, and mechanical anisotropy is mostly accounted for in determining the uniaxial strength behavior and the effect of these parameters on the axial-transverse biaxial normal strength behavior per se is minor. PMID:24121715

  2. CT Scans

    MedlinePlus

    ... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...

  3. Three-dimensional model of the skull and the cranial bones reconstructed from CT scans designed for rapid prototyping process.

    PubMed

    Skrzat, Janusz; Spulber, Alexandru; Walocha, Jerzy

    This paper presents the effects of building mesh models of the human skull and the cranial bones from a series of CT-scans. With the aid of computer so ware, 3D reconstructions of the whole skull and segmented cranial bones were performed and visualized by surface rendering techniques. The article briefly discusses clinical and educational applications of 3D cranial models created using stereolitographic reproduction.

  4. Identification of resident and inflammatory bone marrow derived cells in the sclera by bone marrow and haematopoietic stem cell transplantation

    PubMed Central

    Hisatomi, Toshio; Sonoda, Koh‐hei; Ishikawa, Fumihiko; Qiao, Hong; Nakamura, Takahiro; Fukata, Mitsuhiro; Nakazawa, Toru; Noda, Kousuke; Miyahara, Shinsuke; Harada, Mine; Kinoshita, Shigeru; Hafezi‐Moghadam, Ali; Ishibashi, Tatsuro; Miller, Joan W

    2007-01-01

    Aims To characterise bone marrow derived cells in the sclera under normal and inflammatory conditions, we examined their differentiation after transplantation from two different sources, bone marrow and haematopoietic stem cells (HSC). Methods Bone marrow and HSC from green fluorescent protein (GFP) transgenic mice were transplanted into irradiated wild‐type mice. At 1 month after transplantation, mice were sacrificed and their sclera examined by histology, immunohistochemistry (CD11b, CD11c, CD45), and transmission and scanning electron microscopy. To investigate bone marrow derived cell recruitment under inflammatory conditions, experimental autoimmune uveitis (EAU) was induced in transplanted mice. Results GFP positive cells were distributed in the entire sclera and comprised 22.4 (2.8)% (bone marrow) and 28.4 (10.9)% (HSC) of the total cells in the limbal zone and 18.1 (6.7)% (bone marrow) and 26.3 (3.4)% (HSC) in the peripapillary zone. Immunohistochemistry showed that GFP (+) CD11c (+), GFP (+) CD11b (+) cells migrated in the sclera after bone marrow and HSC transplantation. Transmission and scanning electron microscopy revealed antigen presenting cells among the scleral fibroblasts. In EAU mice, vast infiltration of GFP (+) cells developed into the sclera. Conclusion We have provided direct and novel evidence for the migration of bone marrow and HSC cells into the sclera differentiating into macrophages and dendritic cells. Vast infiltration of bone marrow and HSC cells was found to be part of the inflammatory process in EAU. PMID:17035278

  5. Fast Edge Detection and Segmentation of Terrestrial Laser Scans Through Normal Variation Analysis

    NASA Astrophysics Data System (ADS)

    Che, E.; Olsen, M. J.

    2017-09-01

    Terrestrial Laser Scanning (TLS) utilizes light detection and ranging (lidar) to effectively and efficiently acquire point cloud data for a wide variety of applications. Segmentation is a common procedure of post-processing to group the point cloud into a number of clusters to simplify the data for the sequential modelling and analysis needed for most applications. This paper presents a novel method to rapidly segment TLS data based on edge detection and region growing. First, by computing the projected incidence angles and performing the normal variation analysis, the silhouette edges and intersection edges are separated from the smooth surfaces. Then a modified region growing algorithm groups the points lying on the same smooth surface. The proposed method efficiently exploits the gridded scan pattern utilized during acquisition of TLS data from most sensors and takes advantage of parallel programming to process approximately 1 million points per second. Moreover, the proposed segmentation does not require estimation of the normal at each point, which limits the errors in normal estimation propagating to segmentation. Both an indoor and outdoor scene are used for an experiment to demonstrate and discuss the effectiveness and robustness of the proposed segmentation method.

  6. Outcomes of bone density measurements in coeliac disease.

    PubMed

    Bolland, Mark J; Grey, Andrew; Rowbotham, David S

    2016-01-29

    Some guidelines recommend that patients with newly diagnosed coeliac disease undergo bone density scanning. We assessed the bone density results in a cohort of patients with coeliac disease. We searched bone density reports over two 5-year periods in all patients from Auckland District Health Board (2008-12) and in patients under 65 years from Counties Manukau District Health Board (2009-13) for the term 'coeliac.' Reports for 137 adults listed coeliac disease as an indication for bone densitometry. The average age was 47 years, body mass index (BMI) 25 kg/m(2), and 77% were female. The median time between coeliac disease diagnosis and bone densitometry was 261 days. The average bone density Z-score was slightly lower than expected (Z-score -0.3 to 0.4) at the lumbar spine, total hip and femoral neck, but 88-93% of Z-scores at each site lay within the normal range. Low bone density was strongly related to BMI: the proportions with Z-score <-2 for BMI <20, 20-25, 25-30, and >30 kg/m(2) were 28%, 15%, 6% and 0% respectively. Average bone density was normal, suggesting that bone density measurement is not indicated routinely in coeliac disease, but could be considered on a case-by-case basis for individuals with strong risk factors for fracture.

  7. SPR4-peptide Alters Bone Metabolism of Normal and HYP Mice

    PubMed Central

    Zelenchuk, Lesya V; Hedge, Anne-Marie; Rowe, Peter S N

    2015-01-01

    Context ASARM-peptides are substrates and ligands for PHEX, the gene responsible for X-linked hypophosphatemic rickets (HYP). PHEX binds to the DMP1-ASARM-motif to form a trimeric-complex with α5β3-integrin on the osteocyte surface and this suppresses FGF23 expression. ASARM-peptide disruption of this complex increases FGF23 expression. We used a 4.2 kDa peptide (SPR4) that binds to ASARM-peptide and ASARM-motif to study DMP1-PHEX interactions and to assess SPR4 for treating inherited hypophosphatemic rickets. Design Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle into wild-type mice (WT) and HYP-mice for 4 weeks. Results Asymmetrically distributed mineralization defects occurred with WT-SPR4 femurs. Specifically, SPR4 induced negative effects on trabecular bone and increased bone volume and mineralization in cortical-bone. Markedly increased sclerostin and reduced active β-catenin occurred with HYP mice. SPR4-infusion suppressed sclerostin and increased active β-catenin in WT and HYP mice and improved HYP-mice trabecular mineralization defects but not cortical mineralization defects. Conclusions SPR4-peptide has bimodal activity and acts by: (1) preventing DMP1 binding to PHEX and (2) sequestering an inhibitor of DMP1-PHEX binding, ASARM-peptide. In PHEX defective HYP-mice the second pathway predominates. Although SPR4-peptide improved trabecular calcification defects, decreased sclerostin and increased active β-catenin it did not correct HYP-mice cortical mineralization defects on a normal phosphate diet. Thus, for inherited hypophosphatemic rickets patients on a normal phosphate diet, SPR4-peptide is not a useful therapeutic. PMID:25460577

  8. Synchrotron imaging reveals bone healing and remodelling strategies in extinct and extant vertebrates

    PubMed Central

    Anné, Jennifer; Edwards, Nicholas P.; Wogelius, Roy A.; Tumarkin-Deratzian, Allison R.; Sellers, William I.; van Veelen, Arjen; Bergmann, Uwe; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Ignatyev, Konstantin; Egerton, Victoria M.; Manning, Phillip L.

    2014-01-01

    Current understanding of bone healing and remodelling strategies in vertebrates has traditionally relied on morphological observations through the histological analysis of thin sections. However, chemical analysis may also be used in such interpretations, as different elements are known to be absorbed and used by bone for different physiological purposes such as growth and healing. These chemical signatures are beyond the detection limit of most laboratory-based analytical techniques (e.g. scanning electron microscopy). However, synchrotron rapid scanning–X-ray fluorescence (SRS–XRF) is an elemental mapping technique that uniquely combines high sensitivity (ppm), excellent sample resolution (20–100 µm) and the ability to scan large specimens (decimetre scale) approximately 3000 times faster than other mapping techniques. Here, we use SRS–XRF combined with microfocus elemental mapping (2–20 µm) to determine the distribution and concentration of trace elements within pathological and normal bone of both extant and extinct archosaurs (Cathartes aura and Allosaurus fragilis). Results reveal discrete chemical inventories within different bone tissue types and preservation modes. Chemical inventories also revealed detail of histological features not observable in thin section, including fine structures within the interface between pathological and normal bone as well as woven texture within pathological tissue. PMID:24806709

  9. Cortical bone thickening in Type A posterior atlas arch defects: experimental report.

    PubMed

    Sanchis-Gimeno, Juan A; Llido, Susanna; Guede, David; Martinez-Soriano, Francisco; Ramon Caeiro, Jose; Blanco-Perez, Esther

    2017-03-01

    To date, no information about the cortical bone microstructural properties in atlas vertebrae with posterior arch defects has been reported. To test if there is an increased cortical bone thickening in atlases with Type A posterior atlas arch defects in an experimental model. Micro-computed tomography (CT) study on cadaveric atlas vertebrae. We analyzed the cortical bone thickness, the cortical volume, and the medullary volume (SkyScan 1172 Bruker micro-CT NV, Kontich, Belgium) in cadaveric dry vertebrae with a Type A atlas arch defect and normal control vertebrae. The micro-CT study revealed significant differences in cortical bone thickness (p=.005), cortical volume (p=.003), and medullary volume (p=.009) values between the normal and the Type A vertebrae. Type A congenital atlas arch defects present a cortical bone thickening that may play a protective role against atlas fractures. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Bone diseases in rabbits with hyperparathyroidism: computed tomography, magnetic resonance imaging and histopathology.

    PubMed

    Bai, Rong-jie; Cong, De-gang; Shen, Bao-zhong; Han, Ming-jun; Wu, Zhen-hua

    2006-08-05

    Hyperparathyroidism (HPT) occurs at an early age and has a high disability rate. Unfortunately, confirmed diagnosis in most patients is done at a very late stage, when the patients have shown typical symptoms and signs, and when treatment does not produce any desirable effect. It has become urgent to find a method that would detect early bone diseases in HPT to obtain time for the ideal treatment. This study evaluated the accuracy of high field magnetic resonance imaging (MRI) combined with spiral computed tomography (SCT) scan in detecting early bone diseases in HPT, through imaging techniques and histopathological examinations on an animal model of HPT. Eighty adult rabbits were randomly divided into two groups with forty in each. The control group was fed normal diet (Ca:P = 1:0.7); the experimental group was fed high phosphate diet (Ca:P = 1:7) for 3, 4, 5, or 6-month intervals to establish the animal model of HPT. The staging and imaging findings of the early bone diseases in HPT were determined by high field MRI and SCT scan at the 3rd, 4th, 5th and 6th month. Each rabbit was sacrificed after high field MRI and SCT scan, and the parathyroid and bones were removed for pathological examination to evaluate the accuracy of imaging diagnosis. Parathyroid histopathological studies revealed hyperplasia, osteoporosis and early cortical bone resorption. The bone diseases in HPT displayed different levels of low signal intensity on T(1)WI and low to intermediate signal intensity on T(2)WI in bone of stage 0, I, II or III, but showed correspondingly absent, probable, osteoporotic and subperiosteal cortical resorption on SCT scan. High field MRI combined with SCT scan not only detects early bone diseases in HPT, but also indicates staging, and might be a reliable method of studying early bone diseases in HPT.

  11. Water/cortical bone decomposition: A new approach in dual energy CT imaging for bone marrow oedema detection. A feasibility study.

    PubMed

    Biondi, M; Vanzi, E; De Otto, G; Banci Buonamici, F; Belmonte, G M; Mazzoni, L N; Guasti, A; Carbone, S F; Mazzei, M A; La Penna, A; Foderà, E; Guerreri, D; Maiolino, A; Volterrani, L

    2016-12-01

    Many studies aimed at validating the application of Dual Energy Computed Tomography (DECT) in clinical practice where conventional CT is not exhaustive. An example is given by bone marrow oedema detection, in which DECT based on water/calcium (W/Ca) decomposition was applied. In this paper a new DECT approach, based on water/cortical bone (W/CB) decomposition, was investigated. Eight patients suffering from marrow oedema were scanned with MRI and DECT. Two-materials density decomposition was performed in ROIs corresponding to normal bone marrow and oedema. These regions were drawn on DECT images using MRI informations. Both W/Ca and W/CB were considered as material basis. Scatter plots of W/Ca and W/CB concentrations were made for each ROI in order to evaluate if oedema could be distinguished from normal bone marrow. Thresholds were defined on the scatter plots in order to produce DECT images where oedema regions were highlighted through color maps. The agreement between these images and MR was scored by two expert radiologists. For all the patients, the best scores were obtained using W/CB density decomposition. In all cases, DECT color map images based on W/CB decomposition showed better agreement with MR in bone marrow oedema identification with respect to W/Ca decomposition. This result encourages further studies in order to evaluate if DECT based on W/CB decomposition could be an alternative technique to MR, which would be important when short scanning duration is relevant, as in the case of aged or traumatic patients. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Rac1 Dosage Is Crucial for Normal Endochondral Bone Growth.

    PubMed

    Suzuki, Dai; Bush, Jason R; Bryce, Dawn-Marie; Kamijo, Ryutaro; Beier, Frank

    2017-10-01

    Rac1, a member of the small Rho GTPase family, plays multiple cellular roles. Studies of mice conditionally lacking Rac1 have revealed essential roles for Rac1 in various tissues, including cartilage and limb mesenchyme, where Rac1 loss produces dwarfism and long bone shortening. To gain further insight into the role of Rac1 in skeletal development, we have used transgenic mouse lines to express a constitutively active (ca) Rac1 mutant protein in a Cre recombinase-dependent manner. Overexpression of caRac1 in limb bud mesenchyme or chondrocytes leads to reduced body weight and shorter bones compared with control mice. Histological analysis of growth plates showed that caRac1;Col2-Cre mice displayed ectopic hypertrophic chondrocytes in the proliferative zone and enlarged hypertrophic zones. These mice also displayed a reduced proportion of proliferating cell nuclear antigen-positive cells in the proliferative zone and nuclear β-catenin localization in the ectopic hypertrophic chondrocytes. Importantly, overexpression of caRac1 partially rescued the phenotypes of Rac1fl/fl;Col2-Cre and Rac1fl/fl;Prx1-Cre conditional knockout mice, including body weight, bone length, and growth plate disorganization. These results suggest that tight regulation of Rac1 activity is necessary for normal cartilage development. Copyright © 2017 Endocrine Society.

  13. TU-F-12A-02: Quantitative Characterization of Normal Bone Marrow Proliferative Activity with FLT PET/CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisse, N; Jeraj, R

    Purpose: [F-18]FLT PET is a tool for assessing health of bone marrow by evaluating its proliferative activity. This study establishes a baseline quantitative characterization of healthy marrow proliferation to aid in diagnosis of hematological disease. Methods: 31 patients (20 male, 11 female, 41–76 years) being treated for solid cancers with no history of hematological disease, osseous metastatic disease, or radiation therapy received pre-treatment FLT PET/CT scans. Total bone marrow was isolated from whole body FLT PET images by manually removing organs and applying a standardize uptake value (SUV) threshold of 1.0. Because adult marrow is concentrated in the axial skeleton,more » quantitative total bone marrow analysis (QTBMA) was used to isolate marrow in the lumbar spine, thoracic spine, sacrum, and pelvis for analysis. SUV mean, SUV max, and SUV CV were used to quantify bone marrow proliferation. Correlations were explored between SUV and patient characteristics including age, weight, height, and BMI using the Spearman coefficient (ρ). Results: The population-averaged whole-skeleton SUV mean, SUV max, and SUV CV were 3.0±0.6, 18.4±5.7, and 0.6±0.1, respectively. Uptake values in the axial skeleton were similar to the whole-skeleton demonstrated by SUV mean in the thoracic spine (3.6±0.6), lumbar spine (3.3±0.5), sacrum (3.0±0.6), and pelvis regions (2.8±0.5). Whole-skeleton SUV max correlated with patient weight (ρ=0.47, p<0.01) and BMI (ρ=0.60, p<0.01), suggesting marrow activity is related to the body's burden. SUV measures in the thoracic spine, lumbar spine, sacrum, and pelvis were negatively correlated with age (ρ:−0.41 to −0.46, p≤0.02). These negative correlations reflect the fact that active marrow in the adult skeleton is localized in the axial skeleton and decreases with age. Conclusions: Normal bone marrow characterizations were determined using FLT PET. These results provide a baseline characterization against which

  14. In vivo competitive studies between normal and common gamma chain-defective bone marrow cells: implications for gene therapy.

    PubMed

    Otsu, M; Sugamura, K; Candotti, F

    2000-09-20

    Corrective gene transfer into hematopoietic stem cells (HSCs) is being investigated as therapy for X-linked severe combined immunodeficiency (XSCID) and it is hoped that selective advantage of gene-corrected HSCs will help in achieving full immune reconstitution after treatment. Lines of evidence from the results of allogeneic bone marrow transplantation in patients with XSCID support this hypothesis that, however, has not been rigorously tested in an experimental system. We studied the competition kinetics between normal and XSCID bone marrow (BM) cells using a murine bone marrow transplantation (BMT) model. For easy chimerism determination, we used genetic marking with retrovirus-mediated expression of the enhanced green fluorescent protein (EGFP). We found that XSCID BM cells were able to compete with normal BM cells for engraftment of myeloid lineages in a dose-dependent manner, whereas we observed selective repopulation of T, B, and NK cells deriving from normal BM cells. This was true despite the evidence of competitive engraftment of XSCID lineage marker-negative/c-Kit-positive (Lin-/c-Kit+) cells in the bone marrow of treated animals. From these results we extrapolate that genetic correction of XSCID HSCs will result in selective advantage of gene-corrected lymphoid lineages with consequent restoration of lymphocyte populations and high probability of clinical benefit.

  15. Morphological and chemical analysis of bone substitutes by scanning electron microscopy and microanalysis by spectroscopy of dispersion energy.

    PubMed

    da Cruz, Gabriela Alessandra; de Toledo, Sérgio; Sallum, Enilson Antonio; de Lima, Antonio Fernando Martorelli

    2007-01-01

    This study evaluated the morphological and chemical composition of the following bone substitutes: cancellous and cortical organic bovine bone with macro and microparticle size ranging from 1.0 to 2.0 mm and 0.25 to 1.0 mm, respectively; inorganic bovine bone with particle size ranging from 0.25 to 1.0 mm; hydroxyapatite with particle size ranging from 0.75 to 1.0 mm; and demineralized freeze-dried bone allograft with particle size ranging from 0.25 to 0.5 mm. The samples were sputter-coated with gold in an ion coater, the morphology was observed and particle size was measured under vacuum by scanning electron microscopy (SEM). The chemical composition was evaluated by spectroscopy of dispersion energy (EDS) microanalysis using samples without coating. SEM analysis provided visual evidence that all examined materials have irregular shape and particle sizes larger than those informed by the manufacturer. EDS microanalysis detected the presence of sodium, calcium and phosphorus that are usual elements of the bone tissue. However, mineral elements were detected in all analyzed particles of organic bovine bone except for macro cancellous organic bovine bone. These results suggest that the examined organic bovine bone cannot be considered as a pure organic material.

  16. Scan-rescan precision of subchondral bone curvature maps from routine 3D DESS water excitation sequences: Data from the Osteoarthritis Initiative.

    PubMed

    Farber, Joshua M; Totterman, Saara M S; Martinez-Torteya, Antonio; Tamez-Peña, Jose G

    2016-02-01

    Subchondral bone (SCB) undergoes changes in the shape of the articulating bone surfaces and is currently recognized as a key target in osteoarthritis (OA) treatment. The aim of this study was to present an automated system that determines the curvature of the SCB regions of the knee and to evaluate its cross-sectional and longitudinal scan-rescan precision Six subjects with OA and six control subjects were selected from the Osteoarthritis Initiative (OAI) pilot study database. As per OAI protocol, these subjects underwent 3T MRI at baseline and every twelve months thereafter, including a 3D DESS WE sequence. We analyzed the baseline and twenty-four month images. Each subject was scanned twice at these visits, thus generating scan-rescan information. Images were segmented with an automated multi-atlas framework platform and then 3D renderings of the bone structure were created from the segmentations. Curvature maps were extracted from the 3D renderings and morphed into a reference atlas to determine precision, to generate population statistics, and to visualize cross-sectional and longitudinal curvature changes. The baseline scan-rescan root mean square error values ranged from 0.006mm(-1) to 0.013mm(-1), and from 0.007mm(-1) to 0.018mm(-1) for the SCB of the femur and the tibia, respectively. The standardized response of the mean of the longitudinal changes in curvature in these regions ranged from -0.09 to 0.02 and from -0.016 to 0.015, respectively. The fully automated system produces accurate and precise curvature maps of femoral and tibial SCB, and will provide a valuable tool for the analysis of the curvature changes of articulating bone surfaces during the course of knee OA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Trabecular bone microstructure is impaired in the proximal femur of human immunodeficiency virus-infected men with normal bone mineral density.

    PubMed

    Kazakia, Galateia J; Carballido-Gamio, Julio; Lai, Andrew; Nardo, Lorenzo; Facchetti, Luca; Pasco, Courtney; Zhang, Chiyuan A; Han, Misung; Parrott, Amanda Hutton; Tien, Phyllis; Krug, Roland

    2018-02-01

    There is evidence that human immunodeficiency virus (HIV) infection and antiretroviral therapy (ART) are independent risk factors for osteoporosis and fracture which is not solely explained by changes in bone mineral density. Thus, we hypothesized that the assessment of trabecular microstructure might play an important role for bone quality in this population and might explain the increased fracture risk. In this study, we have assessed bone microstructure in the proximal femur using high-resolution magnetic resonance imaging (MRI) as well as in the extremities using high resolution peripheral quantitative computed tomography (HR-pQCT) in HIV-infected men and healthy controls and compared these findings to those based on areal bone mineral density (aBMD) derived from dual X-ray absorptiometry (DXA) which is the standard clinical parameter for the diagnosis of osteoporosis. Eight HIV-infected men and 11 healthy age-matched controls were recruited and informed consent was obtained before each scan. High-resolution MRI of the proximal femur was performed using fully balanced steady state free precession (bSSFP) on a 3T system. Three volumes of interest at corresponding anatomic locations across all subjects were defined based on registrations of a common template. Four MR-based trabecular microstructural parameters were analyzed at each region: fuzzy bone volume fraction (f-BVF), trabecular number (Tb.N), thickness (Tb.Th), and spacing (Tb.Sp). In addition, the distal radius and distal tibia were imaged with HR-pQCT. Four HR-pQCT-based microstructural parameters were analyzed: trabecular bone volume fraction (BV/TV), Tb.N, Tb.Th, and Tb.Sp. Total hip and spine aBMD were determined from DXA. Microstructural bone parameters derived from MRI at the proximal femur and from HR-pQCT at the distal tibia showed significantly lower bone quality in HIV-infected patients compared to healthy controls. In contrast, DXA aBMD data showed no significant differences between HIV

  18. Stimulation of Mucosal Mast Cell Growth in Normal and Nude Rat Bone Marrow Cultures

    NASA Astrophysics Data System (ADS)

    Haig, David M.; McMenamin, Christine; Gunneberg, Christian; Woodbury, Richard; Jarrett, Ellen E. E.

    1983-07-01

    Mast cells with the morphological and biochemical properties of mucosal mast cells (MMC) appear and proliferate to form the predominant cell type in rat bone marrow cultures stimulated with factors from antigen- or mitogen-activated lymphocytes. Conditioned media causing a selective proliferation of MMC were derived from mesenteric lymph node cells of Nippostrongylus brasiliensis-infected rats restimulated in vitro with specific antigen or from normal or infected rat mesenteric lymph node cells stimulated with concanavalin A. MMC growth factor is not produced by T-cell-depleted mesenteric lymph node cells or by the mesenteric lymph node cells of athymic rats. By contrast, MMC precursors are present in the bone marrow of athymic rats and are normally receptive to the growth factor produced by the lymphocytes of thymus-intact rats. The thymus dependence of MMC hyperplasia is thus based on the requirement of a thymus-independent precursor for a T-cell-derived growth promoter.

  19. Remnant Woven Bone and Calcified Cartilage in Mouse Bone: Differences between Ages/Sex and Effects on Bone Strength

    PubMed Central

    Ip, Victoria; Toth, Zacharie; Chibnall, John; McBride-Gagyi, Sarah

    2016-01-01

    Introduction Mouse models are used frequently to study effects of bone diseases and genetic determinates of bone strength. Murine bones have an intracortical band of woven bone that is not present in human bones. This band is not obvious under brightfield imaging and not typically analyzed. Due to the band’s morphology and location it has been theorized to be remnant bone from early in life. Furthermore, lamellar and woven bone are well known to have differing mechanical strengths. The purpose of this study was to determine (i) if the band is from early life and (ii) if the woven bone or calcified cartilage contained within the band affect whole bone strength. Woven Bone Origin Studies In twelve to fourteen week old mice, doxycycline was used to label bone formed prior to 3 weeks old. Doxycycline labeling and woven bone patterns on contralateral femora matched well and encompassed an almost identical cross-sectional area. Also, we highlight for the first time in mice the presence of calcified cartilage exclusively within the band. However, calcified cartilage could not be identified on high resolution cone-beam microCT scans when examined visually or by thresholding methods. Mechanical Strength Studies Subsequently, three-point bending was used to analyze the effects of woven bone and calcified cartilage on whole bone mechanics in a cohort of male and female six and 13 week old Balb/C mice. Three-point bending outcomes were correlated with structural and compositional measures using multivariate linear regression. Woven bone composed a higher percent of young bones than older bones. However, calcified cartilage in older bones was twice that of younger bones, which was similar when normalized by area. Area and/or tissue mineral density accounted for >75% of variation for most strength outcomes. Percent calcified cartilage added significant predictive power to maximal force and bending stress. Calcified cartilage and woven bone could have more influence in genetic

  20. Use of technetium-99m methylene diphosphonate and gallium-67 citrate scans after intraarticular injection of Staphylococcus aureus into knee joints of rabbits with chronic antigen-induced arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahowald, M.L.; Raskind, J.R.; Peterson, L.

    1986-08-01

    Numerous clinical studies have questioned the ability of radionuclide scans to differentiate septic from aseptic joint inflammation. A clinical study may not be able to document an underlying disease process or duration of infection and, thus, may make conclusions about the accuracy of scan interpretations open to debate. In this study, the Dumonde-Glynn model of antigen-induced arthritis in rabbits was used as the experimental model to study technetium and gallium scans in Staphylococcus aureus infection of arthritic and normal joints. Gallium scans were negative in normal rabbits, usually negative in antigen-induced arthritis, but positive in septic arthritis. The bone scanmore » was usually negative in early infection but positive in late septic arthritis, a finding reflecting greater penetration of bacteria into subchondral bone because of the underlying inflammatory process.« less

  1. Normal Collagen and Bone Production by Gene-targeted Human Osteogenesis Imperfecta iPSCs

    PubMed Central

    Deyle, David R; Khan, Iram F; Ren, Gaoying; Wang, Pei-Rong; Kho, Jordan; Schwarze, Ulrike; Russell, David W

    2012-01-01

    Osteogenesis imperfecta (OI) is caused by dominant mutations in the type I collagen genes. In principle, the skeletal abnormalities of OI could be treated by transplantation of patient-specific, bone-forming cells that no longer express the mutant gene. Here, we develop this approach by isolating mesenchymal cells from OI patients, inactivating their mutant collagen genes by adeno-associated virus (AAV)-mediated gene targeting, and deriving induced pluripotent stem cells (iPSCs) that were expanded and differentiated into mesenchymal stem cells (iMSCs). Gene-targeted iMSCs produced normal collagen and formed bone in vivo, but were less senescent and proliferated more than bone-derived MSCs. To generate iPSCs that would be more appropriate for clinical use, the reprogramming and selectable marker transgenes were removed by Cre recombinase. These results demonstrate that the combination of gene targeting and iPSC derivation can be used to produce potentially therapeutic cells from patients with genetic disease. PMID:22031238

  2. Normal Range of Fetal Nasal Bone Length during the Second Trimester in an Afro-Caribbean Population and Likelihood Ratio for Trisomy 21 of Absent or Hypoplastic Nasal Bone.

    PubMed

    Gautier, Manuella; Gueneret, Michèle; Plavonil, Corinne; Jolivet, Eugénie; Schaub, Bruno

    2017-01-01

    To establish the normal reference range of fetal nasal bone length (NBL) during the second trimester in an Afro-Caribbean population and the likelihood ratio (LR) for fetal trisomy 21. Prenatal records of euploid, non-malformed singleton fetuses who underwent second-trimester ultrasonographic scans at 20-24 weeks of gestation were retrospectively analyzed for NBL and gestational age (GA). Only Afro-Caribbean couples were selected. The relationship between fetal NBL and GA was determined. The data of all fetuses with Down syndrome were provided by the French West Indies Register of Congenital Malformations (REMALAN). There was a significant linear association between fetal NBL and GA (R2 = 0. 354). The 50th percentile for NBL increased from 5.0 to 7.0 mm from week 20 to 24 of gestation. The nasal bone (NB) was absent or hypoplastic in 8.6% of the euploid fetuses and in 69.2% of the trisomy 21 fetuses. The LR for trisomy 21 of absent or hypoplastic NB in an Afro-Caribbean population was 8.02, but only 2.32 when this sign was isolated. The reference range for fetal NBL at 20-24 weeks of gestation in an Afro-Caribbean population and the LR for trisomy 21 of absent or hypoplastic NB differed from the other populations. © 2016 S. Karger AG, Basel.

  3. Indication for Computed Tomography Scan in Shoulder Instability: Sensitivity and Specificity of Standard Radiographs to Predict Bone Defects After Traumatic Anterior Glenohumeral Instability.

    PubMed

    Delage Royle, Audrey; Balg, Frédéric; Bouliane, Martin J; Canet-Silvestri, Fanny; Garant-Saine, Laurianne; Sheps, David M; Lapner, Peter; Rouleau, Dominique M

    2017-10-01

    Quantifying glenohumeral bone loss is key in preoperative surgical planning for a successful Bankart repair. Simple radiographs can accurately measure bone defects in cases of recurrent shoulder instability. Cohort study (diagnosis); Level of evidence, 2. A true anteroposterior (AP) view, alone and in combination with an axillary view, was used to evaluate the diagnostic properties of radiographs compared with computed tomography (CT) scan, the current gold standard, to predict significant bone defects in 70 patients. Sensitivity, specificity, and positive and negative predictive values were evaluated and compared. Detection of glenoid bone loss on plain film radiographs, with and without axillary view, had a sensitivity of 86% for both views and a specificity of 73% and 64% with and without the axillary view, respectively. For detection of humeral bone loss, the sensitivity was 8% and 17% and the specificity was 98% and 91% with and without the axillary view, respectively. Regular radiographs would have missed 1 instance of significant bone loss on the glenoid side and 20 on the humeral side. Interobserver reliabilities were moderate for glenoid detection (κ = 0.473-0.503) and poor for the humeral side (κ = 0.278-0.336). Regular radiographs showed suboptimal sensitivity, specificity, and reliability. Therefore, CT scan should be considered in the treatment algorithm for accurate quantification of bone loss to prevent high rates of recurrent instability.

  4. Measurement of the normalized broadband ultrasound attenuation in trabecular bone by using a bidirectional transverse transmission technique

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2015-01-01

    A new method for measuring the normalized broadband ultrasound attenuation (nBUA) in trabecular bone by using a bidirectional transverse transmission technique was proposed and validated with measurements obtained by using the conventional transverse transmission technique. There was no significant difference between the nBUA measurements obtained for 14 bovine femoral trabecular bone samples by using the bidirectional and the conventional transverse transmission techniques. The nBUA measured by using the two transverse transmission techniques showed strong positive correlations of r = 0.87 to 0.88 with the apparent bone density, consistent with the behavior in human trabecular bone invitro. We expect that the new method can be usefully applied for improved accuracy and precision in clinical measurements.

  5. Experiment K305: Quantitative analysis of selected bone parameters. Supplement 2: Bone elongation rate and bone mass in metaphysis of long bones

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Kimmel, D. B.; Smith, C.; Dell, R. B.

    1981-01-01

    The proximal humeral metaphysis of rats from time periods recovery plus zero days (R+0), recovery plus six days (R+6), and recovery plus twenty nine days (R+29) was analyzed. The volume of calcified cartilage and bone in flight and synchronous controls was reduced in groups R+0 and R+6, but was normal in group R+29. The number of functional bone cells (osteoblasts and osteoclasts) was decreased in proportion to the amount of bone in the early groups, and was normal in the last group. The fatty marrow volume was increased only in flight animals of groups R+0 and R+6, but was normal in the R+29 group. Accumulation of excess fatty marrow was seen only in flight animals. The decreased amount of bone and calcified cartilage is believed to be the result of a temporarily slowed or arrested production of calcified cartilage as a substrate for bone formation. This would have resulted from slowed bone elongation during flight and synchronous control conditions. Bone elongation returned to normal by twenty nine days after return.

  6. Hydrogen-rich saline prevents bone loss in diabetic rats induced by streptozotocin.

    PubMed

    Guo, Jialiang; Dong, Weichong; Jin, Lin; Wang, Pengcheng; Hou, Zhiyong; Zhang, Yingze

    2017-10-01

    As an antioxidant molecule, hydrogen has been received much more attention and reported to be used as the treatment strategy for various diseases. In this study, we hypothesize that systemic delivery of hydrogen saline water may improve the reservation of bone tissue in the tibias and femurs of osteoporotic rats caused by diabetes mellitus (DM), which is characterized by increased levels of oxidative stress and overproducing reactive oxygen species (ROS). The animals were divided into three groups of 12 animals and lavaged with normal saline (normal control and DM), or hydrogen saline water (DM + HRS). General status, blood glucose level, tibial and femoral mechanical strength, and micro-CT scans of the proximal tibia were recorded and analyzed. After 12 weeks, the glucose level was significantly decreased in the DM + HRS group compared with that of the DM group. Micro-CT scans showed that bone volume/total volume, connectivity density, trabecular thickness, and trabecular number were significantly increased compared with the DM group. Mechanical results of energy, stiffness and elastic modulus in the DM + HRS group were significantly higher than in the other groups for the tibia and femur. The results indicate that the systemic delivery of hydrogen saline water, which is safe and well tolerated, preserves bone volume and decreases fracture risks in streptozotocin-induced diabetic status rats, whose bone structure or inherent material properties of bone tissues are changed.

  7. Radioisotope scanning of brain, liver, lung and bone with a note on tumour localizing agents

    PubMed Central

    Lavender, J. P.

    1973-01-01

    Radioisotopic scanning of brain, liver, lungs and the skeleton is briefly reviewed with a survey of recent developments of clinical significance. In brain scanning neoplasm detection rates of greater than 90% are claimed. The true figure is probably 70-80%. Autopsy data shows a number of false negatives, particularly with vascular lesions. Attempts to make scanning more specific in differentiating neoplasm from vascular lesions by rapid sequence blood flow studies are reviewed. In liver scanning by means of colloids again high success rate is claimed but small metastases are frequently missed and the false negative scan rate is probably quite high. Lung scanning still has its main place in investigating pulmonary embolic disease. Ventilation studies using Xenon 133 are useful, particularly combined with perfusion studies. The various radiopharmaceuticals for use in bone scanning are reviewed. The appearance of technetium labelled phosphate compounds will probably allow much wider use of total skeletal scanning. Research into tumour localizing agents continues, the most recent and interesting being Gallium citrate and labelled bleomycin. Neither agent is predictable however although Gallium may have a place in Hodgkins disease and bronchogenic neoplasm and both may have a place in the detection of cerebral tumours. ImagesFig. 1Fig. 2Fig. 3p452-bFig. 3bFig. 4Fig. 5Fig. 5bFig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 12c & 12dFig. 13Fig. 13 b,c,dFig. 14Fig. 14bFig. 15Fig. 15bFig. 16Fig. 17Fig. 18 PMID:4602127

  8. Which metabolic imaging, besides bone scan with 99mTc-phosphonates, for detecting and evaluating bone metastases in prostatic cancer patients? An open discussion.

    PubMed

    Bombardieri, E; Setti, L; Kirienko, M; Antunovic, L; Guglielmo, P; Ciocia, G

    2015-12-01

    Prostate cancer bone metastases occur frequently in advanced cancer and this is matter of particular attention, due to the great impact on patient's management and considering that a lot of new emerging therapeutic options have been recently introduced. Imaging bone metastases is essential to localize lesions, to establish their size and number, to study characteristics and changes during therapy. Besides radiological imaging, nuclear medicine modalities can image their features and offer additional information about their metabolic behaviour. They can be classified according to physical characteristics, type of detection, mechanism of uptake, availability for daily use. The physiopathology of metastases formation and the mechanisms of tracer uptake are essential to understand the interpretation of nuclear medicine images. Therefore, radiopharmaceuticals for bone metastases can be classified in agents targeting bone (99mTc-phosphonates, 18F-fluoride) and those targeting prostatic cancer cells (18F-fluoromethylcholine, 11C-choline, 18F-fluorodeoxyglucose). The modalities using the first group of tracers are planar bone scan, SPECT or SPECT/CT with 99mTc-diphosphonates, and 18F-fluoride PET/CT, while the modalities using the second group include 18F/11C-choline derivatives PET/CT, 18F-FDG PET/CT and PET/CT scans with several other radiopharmaceuticals described in the literature, such as 18F/11C-acetate derivatives, 18F-fluoro-5α-dihydrotestosterone (FDHT), 18F-anti-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC), 18F-2'-fluoro-5-methyl-1-β-D-arabinofuranosyluracil (FMAU) and 68Ga-labeled-prostate specific membrane antigen (PMSA) PET/TC. However, since data on clinical validation for these last novel modalities are not conclusive and/or are not still sufficient in number, at present they can be still considered as promising tools under evaluation. The present paper considers the nuclear modalities today available for the clinical routine. This overview wants

  9. In vivo estimation of normal amygdala volume from structural MRI scans with anatomical-based segmentation.

    PubMed

    Siozopoulos, Achilleas; Thomaidis, Vasilios; Prassopoulos, Panos; Fiska, Aliki

    2018-02-01

    Literature includes a number of studies using structural MRI (sMRI) to determine the volume of the amygdala, which is modified in various pathologic conditions. The reported values vary widely mainly because of different anatomical approaches to the complex. This study aims at estimating of the normal amygdala volume from sMRI scans using a recent anatomical definition described in a study based on post-mortem material. The amygdala volume has been calculated in 106 healthy subjects, using sMRI and anatomical-based segmentation. The resulting volumes have been analyzed for differences related to hemisphere, sex, and age. The mean amygdalar volume was estimated at 1.42 cm 3 . The mean right amygdala volume has been found larger than the left, but the difference for the raw values was within the limits of the method error. No intersexual differences or age-related alterations have been observed. The study provides a method for determining the boundaries of the amygdala in sMRI scans based on recent anatomical considerations and an estimation of the mean normal amygdala volume from a quite large number of scans for future use in comparative studies.

  10. Miscellaneous indications in bone scintigraphy: metabolic bone diseases and malignant bone tumors.

    PubMed

    Cook, Gary J R; Gnanasegaran, Gopinath; Chua, Sue

    2010-01-01

    The diphosphonate bone scan is ideally suited to assess many global, focal or multifocal metabolic bone disorders and there remains a role for conventional bone scintigraphy in metabolic bone disorders at diagnosis, investigation of complications, and treatment response assessment. In contrast, the role of bone scintigraphy in the evaluation of primary malignant bone tumors has reduced with the improvement of morphologic imaging, such as computed tomography and magnetic resonance imaging. However, an increasing role for (18)F-fluorodeoxyglucose positron emission tomography and positron emission tomography/computed tomography is emerging as a functional assessment at diagnosis, staging, and neoadjuvant treatment response assessment.

  11. Disorders of bone and bone mineral metabolism.

    PubMed

    Komoroski, Monica; Azad, Nasrin; Camacho, Pauline

    2014-01-01

    Metabolic bone disorders are very common in the general population and untreated, they can cause a variety of neurologic symptoms. These diseases include osteoporosis, vitamin D deficiency, Paget's disease, and alterations in calcium, phosphorus, and magnesium metabolism. Diagnosis is made through analysis of metabolic bone blood chemistries as well as radiologic studies such as dual energy X-ray absorptiometry (DXA) scans, bone scans, and X-rays. Treatment options have advanced significantly in the past decade for osteoporosis and Paget's disease and mainly include antiresorptive therapy. New recommendations for treatment of primary hyperparathyroidism are discussed as well as therapy for calcium, phosphorus, and mineral disorders. © 2014 Elsevier B.V. All rights reserved.

  12. The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen–mineral structure

    PubMed Central

    Alexander, Benjamin; Daulton, Tyrone L.; Genin, Guy M.; Lipner, Justin; Pasteris, Jill D.; Wopenka, Brigitte; Thomopoulos, Stavros

    2012-01-01

    The nanometre-scale structure of collagen and bioapatite within bone establishes bone's physical properties, including strength and toughness. However, the nanostructural organization within bone is not well known and is debated. Widely accepted models hypothesize that apatite mineral (‘bioapatite’) is present predominantly inside collagen fibrils: in ‘gap channels’ between abutting collagen molecules, and in ‘intermolecular spaces’ between adjacent collagen molecules. However, recent studies report evidence of substantial extrafibrillar bioapatite, challenging this hypothesis. We studied the nanostructure of bioapatite and collagen in mouse bones by scanning transmission electron microscopy (STEM) using electron energy loss spectroscopy and high-angle annular dark-field imaging. Additionally, we developed a steric model to estimate the packing density of bioapatite within gap channels. Our steric model and STEM results constrain the fraction of total bioapatite in bone that is distributed within fibrils at less than or equal to 0.42 inside gap channels and less than or equal to 0.28 inside intermolecular overlap regions. Therefore, a significant fraction of bone's bioapatite (greater than or equal to 0.3) must be external to the fibrils. Furthermore, we observe extrafibrillar bioapatite between non-mineralized collagen fibrils, suggesting that initial bioapatite nucleation and growth are not confined to the gap channels as hypothesized in some models. These results have important implications for the mechanics of partially mineralized and developing tissues. PMID:22345156

  13. Coronal CT scan measurements and hearing evolution in enlarged vestibular aqueduct syndrome.

    PubMed

    Saliba, Issam; Gingras-Charland, Marie-Eve; St-Cyr, Karine; Décarie, Jean-Claude

    2012-04-01

    To assess the correlation between the enlarged vestibular aqueduct (EVA) diameter and (1) the hearing loss level (mild, moderate, severe and profound and (2) the hearing evolution. The secondary objective was to obtain measurement limits on the coronal plane of the temporal bone CT scan for the diagnosis of EVA. Retrospective study in a tertiary pediatric center. Mastoid CT scans were reviewed to measure the VA diameter at its midpoint and operculum on axial and coronal planes in a pathologic and normal population. We used their serial audiograms to assess the evolution of hearing. 101 EVA was identified out of 1812 temporal bones CT scan from our radiologic database in 8 years. Bone conduction was stable after a mean follow-up of 40.9 ± 32.9 months. PTA has been the most affected in time by the EVA (p=0.006). No correlation was identified between impedancemetry and the diameter of the EVA. On the diagnostic audiogram, 61% of hearing loss were in the mild and moderate hearing levels; at the end of the follow-up 64% of hearing loss are still in the mild and moderate hearing levels. The cut-off values for the coronal midpoint and operculum planes on the CT scan to diagnose an EVA are 2.4 mm and 4.34 mm respectively. Conductive or mixed hearing loss might be the first manifestation of EVA. Coronal CT scan cuts can provide additional information to evaluate EVA especially when axial cuts are not conclusive. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Bisphosphonates Improve Trabecular Bone Mass and Normalize Cortical Thickness in Ovariectomized, Osteoblast Connexin43 Deficient Mice

    PubMed Central

    Watkins, Marcus P.; Norris, Jin Yi; Grimston, Susan K.; Zhang, Xiaowen; Phipps, Roger J.; Ebetino, Frank H.; Civitelli, Roberto

    2012-01-01

    The gap junction protein, connexin43 (Cx43) controls both bone formation and osteoclastogenesis via osteoblasts and/or osteocytes. Cx43 has also been proposed to mediate an anti-apoptotic effect of bisphosphonates, potent inhibitors of bone resorption. We studied whether bisphosphonates are effective in protecting mice with a conditional Cx43 gene deletion in osteoblasts and osteocytes (cKO) from the consequences of ovariectomy on bone mass and strength. Ovariectomy resulted in rapid loss of trabecular bone followed by a slight recovery in wild type (WT) mice, and a similar degree of trabecular bone loss, albeit slightly delayed, occurred in cKO mice. Treatment with either risedronate (20µg/kg) or alendronate (40µg/kg) prevented ovariectomy-induced bone loss in both genotypes. In basal conditions, bones of cKO mice have larger marrow area, higher endocortical osteoclast number, and lower cortical thickness and strength relative to WT. Ovariectomy increased endocortical osteoclast number in WT but not in cKO mice. Both bisphosphonates prevented these increases in WT mice, and normalized endocortical osteoclast number, cortical thickness and bone strength in cKO mice. Thus, lack of osteoblast/osteocyte Cx43 does not alter bisphosphonate action on bone mass and strength in estrogen deficiency. These results support the notion that one of the main functions of Cx43 in cortical bone is to restrain osteoblast and/or osteocytes from inducing osteoclastogenesis at the endocortical surface. PMID:22750450

  15. Quantitative in vivo assessment of bone microarchitecture in the human knee using HR-pQCT.

    PubMed

    Kroker, Andres; Zhu, Ying; Manske, Sarah L; Barber, Rhamona; Mohtadi, Nicholas; Boyd, Steven K

    2017-04-01

    High-resolution peripheral quantitative computed tomography (HR-pQCT) is a novel imaging modality capable of visualizing bone microarchitecture in vivo at human peripheral sites such as the distal radius and distal tibia. This research has extended the technology to provide a non-invasive assessment of bone microarchitecture at the human knee by establishing new hardware, imaging protocols and data analysis. A custom leg holder was developed to stabilize a human knee centrally within a second generation HR-pQCT field of view. Five participants with anterior cruciate ligament reconstructions had their knee joint imaged in a continuous scan of 6cm axially. The nominal isotropic voxel size was 60.7μm. Bone mineral density and microarchitecture were assessed within the weight-bearing regions of medial and lateral compartments of the knee at three depths from the weight-bearing articular bone surface, including both the cortical and trabecular bone regions. Scan duration was approximately 18min per knee and produced 5GB of projection data and 10GB of reconstructed image data (2304×2304 image matrix, 1008 slices). Motion during the scan was minimized by the leg holder and was similar in magnitude as a scan of the distal tibia. Bone mineral density and microarchitectural parameters were assessed for 16 volumes of interest in the tibiofemoral joint. This is a new non-invasive in vivo assessment tool for bone microarchitecture in the human knee that provides an opportunity to gain insight into normal, injured and surgically reconstructed human knee bone architecture in cross-sectional or longitudinal studies. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  16. Scanning-electron-microscope study of normal-impingement erosion of ductile metals

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Salik, J.

    1980-01-01

    Scanning electron microscopy was used to characterize the erosion of annealed copper and aluminum surfaces produced by both single- and multiple-particle impacts. Macroscopic 3.2 mm diameter steel balls and microscopic, brittle erodant particles were projected by a gas gun system so as to impact at normal incidence at speeds up to 140 m/sec. During the impacts by the brittle erodant particles, at lower speeds the erosion behavior was similar to that observed for the larger steel balls. At higher velocities, particle fragmentation and the subsequent cutting by the radial wash of debris created a marked change in the erosion mechanism.

  17. Low Bone Density

    MedlinePlus

    ... Bone Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone ... to people with normal bone density. Detecting Low Bone Density A bone density test will determine whether ...

  18. Noninvasive markers of bone metabolism in the rhesus monkey: normal effects of age and gender

    NASA Technical Reports Server (NTRS)

    Cahoon, S.; Boden, S. D.; Gould, K. G.; Vailas, A. C.

    1996-01-01

    Measurement of bone turnover in conditions such as osteoporosis has been limited by the need for invasive iliac bone biopsy to reliably determine parameters of bone metabolism. Recent advances in the area of serum and urinary markers of bone metabolism have raised the possibility for noninvasive measurements; however, little nonhuman primate data exist for these parameters. The purpose of this experiment was to define the normal range and variability of several of the newer noninvasive bone markers which are currently under investigation in humans. The primary intent was to determine age and gender variability, as well as provide some normative data for future experiments in nonhuman primates. Twenty-four rhesus macaques were divided into equal groups of male and female according to the following age groupings: 3 years, 5-10 years, 15-20 years, and > 25 years. Urine was collected three times daily for a four-day period and measured for several markers of bone turnoverm including pyridinoline (PYD), deoxypyrodinoline (DPD), hydroxyproline, and creatinine. Bone mineral density measurements of the lumbar spine were performed at the beginning and end of the study period. Serum was also obtained at the time of bone densitometry for measurement of osteocalcin levels by radioimmunoassay. There were no significant differences in bone mineral density, urine PYD, or urine DPD based on gender. Bone density was lowest in the youngest animals, peaked in the 15-20-year group, but again decreased in the oldest animals. The osteocalcin, PYD, and DPD levels followed an inversely related pattern to bone density. The most important result was the relative age insensitivity of the ratio of PYD:DPD in monkeys up to age 20 years. Since bone density changes take months or years to become measurable and iliac biopsies are invasive, the PYD/DPD marker ratio may have important implications for rapid noninvasive measurement of the effects of potential treatments for osteoporosis in the non

  19. Skeletal scintigraphy and quantitative tracer studies in metabolic bone disease

    NASA Astrophysics Data System (ADS)

    Fogelman, Ignac

    Bone scan imaging with the current bone seeking radiopharmaceuticals, the technetium-99m labelled diphosphonates, has dramatically improved our ability to evaluate skeletal pathology. In this thesis, chapter 1 presents a review of the history of bone scanning, summarises present concepts as to the mechanism of uptake of bone seeking agents and briefly illustrates the role of bone scanning in clinical practice. In chapter 2 the applications of bone scan imaging and quantitative tracer techniques derived from the bone scan in the detection of metabolic bone disease are discussed. Since skeletal uptake of Tc-99m diphosphonate depends upon skeletal metabolism one might expect that the bone scan would be of considerable value in the assessment of metabolic bone disease. However in these disorders the whole skeleton is often diffusely involved by the metabolic process and simple visual inspection of the scan image may not reveal the uniformly increased uptake of tracer. Certain patterns of bone scan abnormality have, however, been reported in patients with primary hyperparathyroidism and renal osteo-dystrophy; the present studies extend these observations and introduce the concept of "metabolic features" which are often recognisable in conditions with generalised increased bone turnover. As an aid to systematic recognition of these features on a given bone scan image a semi-quantitative scoring system, the metabolic index, was introduced. The metabolic index allowed differentiation between various groups of patients with metabolic disorders and a control population. In addition, in a bone scan study of patients with acromegaly, it was found that the metabolic index correlated well with disease activity as measured by serum growth hormone levels. The metabolic index was, however, found to be a relatively insensitive means of identifying disease in individual patients. Patients with increased bone turnover will have an absolute increase in skeletal uptake of tracer. As a

  20. Tibolone increases bone mineral density but also relapse in breast cancer survivors: LIBERATE trial bone substudy

    PubMed Central

    2012-01-01

    Introduction The Livial Intervention Following Breast Cancer: Efficacy, Recurrence and Tolerability Endpoints (LIBERATE: Clinical http://Trials.gov number NCT00408863), a randomized, placebo-controlled, double-blind trial that demonstrated that tibolone (Livial), a tissue-selective hormone-replacement therapy (HRT), increased breast cancer (BC) recurrence HR 1.40 (95% CI, 1.14 to 1.70; P = 0.001). A subgroup of women was entered into a study of bone mineral density (BMD). Methods Women with surgically excised primary BC (T1-3, N0-2, M-0) within the last 5 years, complaining of vasomotor symptoms, were assigned to tibolone, 2.5 mg daily, or placebo treatment for a maximum of 5 years. The BMD substudy enrolled 763 patients, using dual-energy X-ray absorptiometry (DXA) scanning at baseline and at 2 years. Results In the bone substudy, 699 of 763 women were eligible (345 allocated to tibolone, and 354, to placebo). After undergoing DXA scans, 300 (43%) women had normal BMD; 317 (45%), osteopenia; and 82 (11.7%), osteoporosis. Low body-mass index (P < 0.001), Asian race (P < 0.001), and late age at menarche (P < 0.04) predicted low bone mass at baseline. Tibolone increased BMD by 3.2% at the lumbar spine and 2.9% at the hip compared with placebo (both P < 0.001). The majority of fractures (55%) occurred in osteopenic patients. Women with normal BMD had increased recurrence with tibolone, 22 (15.6%) of 141 compared with placebo, 11 (6.9%) of 159 (P = 0.016), whereas no increased BC recurrence was seen in women with low BMD; 15 (7.4%) of 204 taking tibolone versus 13 (6.7%) of 195 taking placebo. Conclusions Tibolone is contraindicated after BC treatment, as it increases BMD and BC recurrence. Risk of BC recurrence was elevated in BC women with normal BMD (compared with low) who took tibolone. PMID:22251615

  1. Viewing strategies for simple and chimeric faces: an investigation of perceptual bias in normals and schizophrenic patients using visual scan paths.

    PubMed

    Phillips, M L; David, A S

    1997-11-01

    Left hemi-face (LHF) perceptual bias of chimeric faces in normal right-handers is well-documented. We investigated mechanisms underlying this by measuring visual scan paths in right-handed normal controls (n = 9) and schizophrenics (n = 8) for simple, full-face photographs and schematic, happy-sad chimeric faces over 5 s. Normals viewed the left side/ LHF first, more so than the right of all stimuli. Schizophrenics viewed the LHF first more than the right of stimuli for which there was a LHF choice of predominant affect. Neither group demonstrated an overall LHF perceptual bias for the chimeric stimuli. Readjustment of the initial LHF bias in controls was probably a result of increased attention to stimulus detail with scanning, whereas the schizophrenics demonstrated difficulty in redirection of the initial focus of attention. The study highlights the role of visual scan paths as a marker of normal and abnormal attentional processes. Copyright 1997 Academic Press.

  2. Scanning electron microscopy of bone: instrument, specimen, and issues.

    PubMed

    Boyde, A; Jones, S J

    1996-02-01

    There are many ways available now to maximise and analyse the information that can be obtained on the structure and constitution of bone using SEM. This paper considers a range of methods and the problems that arise relating to instrumentation and methodology as they apply to the use of SEM in the study of bone. In addition to the review content, some novel technical approaches to the SEM of bone are considered here for the first time; these include low kV imaging for the detection of new surface bone packets (and residual demineralized matrix after resorption), low kV BSE imaging of uncoated, embedded, and unembedded samples, environmental SEM for the study of wet tissue, low distortion, very low magnification imaging for the study of cancellous bone architecture, the use of multiple detectors for fast electrons in improving the imaging of porous samples, and high resolution, low voltage imaging for the study of collagen degradation during bone resorption.

  3. Press-fit fixation using autologous bone in the tibial canal causes less enlargement of bone tunnel diameter in ACL reconstruction--a CT scan analysis three months postoperatively.

    PubMed

    Akoto, Ralph; Müller-Hübenthal, Jonas; Balke, Maurice; Albers, Malte; Bouillon, Bertil; Helm, Philip; Banerjee, Marc; Höher, Jürgen

    2015-08-19

    Bone tunnel enlargement is a phenomenon present in all anterior cruciate ligament (ACL)- reconstruction techniques. It was hypothesized that press-fit fixation using a free autograft bone plug reduces the overall tunnel size in the tibial tunnel. In a prospective cohort study twelve patients who underwent primary ACL reconstruction using an autologous quadriceps tendon graft and adding a free bone block for press-fit fixation (PF) in the tibial tunnel were matched to twelve patients who underwent ACL reconstruction with a hamstring graft and interference screw fixation (IF). The diameters of the bone tunnels were analysed by a multiplanar reconstruction technique (MPR) in a CT scan three months postoperatively. Manual and instrumental laxity (Lachman test, Pivot-shift test, Rolimeter) and functional outcome scores (International Knee Documentation Committee sore, Tegner activity level) were measured after one year follow up. In the PF group the mean bone tunnel diameter at the level of the joint entrance was not significantly enlarged. One and two centimeter distal to the bone tunnel diameter was reduced by 15% (p = .001). In the IF group the bone tunnel at the level of the joint entrance was enlarged by 14% (p = .001). One and two centimeter distal to the joint line the IF group showed a widening of the bone tunnel by 21% (p < .001) One and two centimeter below the joint line the bone tunnel was smaller in the PF group when compared to the IF group (p < .001). No significant difference for laxity test and functional outcome scores could be shown. This study demonstrates that press-fit fixation with free autologous bone plugs in the tibial tunnel results in significantly smaller diameter of the tibial tunnel compared to interference screw fixation.

  4. Evaluating the effect of a third-party implementation of resolution recovery on the quality of SPECT bone scan imaging using visual grading regression.

    PubMed

    Hay, Peter D; Smith, Julie; O'Connor, Richard A

    2016-02-01

    The aim of this study was to evaluate the benefits to SPECT bone scan image quality when applying resolution recovery (RR) during image reconstruction using software provided by a third-party supplier. Bone SPECT data from 90 clinical studies were reconstructed retrospectively using software supplied independent of the gamma camera manufacturer. The current clinical datasets contain 120×10 s projections and are reconstructed using an iterative method with a Butterworth postfilter. Five further reconstructions were created with the following characteristics: 10 s projections with a Butterworth postfilter (to assess intraobserver variation); 10 s projections with a Gaussian postfilter with and without RR; and 5 s projections with a Gaussian postfilter with and without RR. Two expert observers were asked to rate image quality on a five-point scale relative to our current clinical reconstruction. Datasets were anonymized and presented in random order. The benefits of RR on image scores were evaluated using ordinal logistic regression (visual grading regression). The application of RR during reconstruction increased the probability of both observers of scoring image quality as better than the current clinical reconstruction even where the dataset contained half the normal counts. Type of reconstruction and observer were both statistically significant variables in the ordinal logistic regression model. Visual grading regression was found to be a useful method for validating the local introduction of technological developments in nuclear medicine imaging. RR, as implemented by the independent software supplier, improved bone SPECT image quality when applied during image reconstruction. In the majority of clinical cases, acquisition times for bone SPECT intended for the purposes of localization can safely be halved (from 10 s projections to 5 s) when RR is applied.

  5. Excessive Vitamin E Intake Does Not Cause Bone Loss in Male or Ovariectomized Female Mice Fed Normal or High-Fat Diets.

    PubMed

    Ikegami, Hiroko; Kawawa, Rie; Ichi, Ikuyo; Ishikawa, Tomoko; Koike, Taisuke; Aoki, Yoshinori; Fujiwara, Yoko

    2017-10-01

    Background: Animal studies on the effects of vitamin E on bone health have yielded conflicting and inconclusive results, and to our knowledge, no studies have addressed the effect of vitamin E on bone in animals consuming a high-fat diet (HFD). Objective: This study aimed to evaluate the effect of excessive vitamin E on bone metabolism in normal male mice and ovariectomized female mice fed a normal diet (ND) or HFD. Methods: In the first 2 experiments, 7-wk-old male mice were fed an ND (16% energy from fat) containing 75 (control), 0 (vitamin E-free), or 1000 (high vitamin E) mg vitamin E/kg (experiment 1) or an HFD (46% energy from fat) containing 0, 200, 500, or 1000 mg vitamin E/kg (experiment 2) for 18 wk. In the third experiment, 7-wk-old sham-operated or ovariectomized female mice were fed the ND (75 mg vitamin E/kg) or HFD containing 0 or 1000 mg vitamin E/kg for 8 wk. At the end of the feeding period, blood and femurs were collected to measure bone turnover markers and analyze histology and microcomputed tomography. Results: In experiments 1 and 2, vitamin E intake had no effect on plasma alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) activity, or bone formation, resorption, or volume in femurs in mice fed the ND or HFDs. In experiment 3, bone volume was significantly reduced (85%) in ovariectomized mice compared with that in sham-operated mice ( P < 0.05), but it did not differ among mice fed the 3 diets. Plasma ALP and TRAP activities and bone formation and resorption in femur were similar among ovariectomized mice fed the HFD containing 0 or 1000 mg vitamin E/kg. Conclusions: The results suggest that excess vitamin E intake does not cause bone loss in normal male mice or in ovariectomized or sham-operated female mice, regardless of dietary fat content. © 2017 American Society for Nutrition.

  6. Precision of pQCT-measured total, trabecular and cortical bone area, content, density and estimated bone strength in children

    PubMed Central

    Duff, W.R.D.; Björkman, K.M.; Kawalilak, C.E.; Kehrig, A.M.; Wiebe, S.; Kontulainen, S.

    2017-01-01

    Objectives: To define pQCT precision errors, least-significant-changes, and identify associated factors for bone outcomes at the radius and tibia in children. Methods: We obtained duplicate radius and tibia pQCT scans from 35 children (8-14yrs). We report root-mean-squared coefficient of variation (CV%RMS) and 95% limits-of-agreement to characterize repeatability across scan quality and least-significant-changes for bone outcomes at distal (total and trabecular area, content and density; and compressive bone strength) and shaft sites (total area and content; cortical area content, density and thickness; and torsional bone strength). We used Spearman’s rho to identify associations between CV% and time between measurements, child’s age or anthropometrics. Results: After excluding unanalyzable scans (6-10% of scans per bone site), CV%RMS ranged from 4% (total density) to 19% (trabecular content) at the distal radius, 4% (cortical content) to 8% (cortical thickness) at the radius shaft, 2% (total density) to 14% (trabecular content) at the distal tibia and from 2% (cortical content) to 6% (bone strength) at the tibia shaft. Precision errors were within 95% limits-of-agreement across scan quality. Age was associated (rho -0.4 to -0.5, p <0.05) with CV% at the tibia. Conclusion: Bone density outcomes and cortical bone properties appeared most precise (CV%RMS <5%) in children. PMID:28574412

  7. Sex differences in parameters of bone strength in new recruits: beyond bone density.

    PubMed

    Evans, Rachel K; Negus, Charles; Antczak, Amanda J; Yanovich, Ran; Israeli, Eran; Moran, Daniel S

    2008-11-01

    Stress fracture (SF) injuries in new recruits have long been attributed to low bone mineral density (BMD). Low areal BMD assessed using two-dimensional dual-energy x-ray absorptiometry imaging, however, reflects structural density and is affected by smaller measures of bone geometry. Recent studies support a relationship between bone size and SF and indicate that slender bones are more susceptible to damage under identical loading conditions. Peripheral quantitative computed tomography (pQCT) is a three-dimensional imaging tool that provides measures of tissue density and geometry parameters of the tibia, a common site of SF. To evaluate sex differences in parameters of volumetric BMD (vBMD), geometry, and strength of the tibia in new recruits using a novel pQCT image analysis procedure. pQCT images were obtained from 128 healthy men and women (20 male, 108 female, aged 18-21 yr) entering a 4-month gender-integrated combat training program in the Israeli Defense Forces. Tibial scans taken at sites 4% (trabecular bone), 38%, and 66% (cortical bone) from the distal end plate were analyzed using MATLAB to assess whole-bone and regional parameters. Measures included vBMD, geometry (diameter, area, cortical thickness, and canal radius), and strength (moments of inertia and bone strength and slenderness indices). With the exception of normalized canal radius, which did not differ between sexes, all measures of bone geometry (P < 0.0001) and strength (P < 0.0001 to P = 0.07) were greater in men. Women exhibited 2.7% to 3.0% greater cortical vBMD than men, whereas trabecular vBMD was 8.4% lower in women (P < 0.001). These differences remained significant after adjusting for body size. Sex differences in bone geometry and mineralization of the tibia may contribute to a decreased ability to withstand the demands imposed by novel, repetitive exercise in untrained individuals entering recruit training.

  8. Association between Obesity and Bone Mineral Density by Gender and Menopausal Status.

    PubMed

    Salamat, Mohammad Reza; Salamat, Amir Hossein; Janghorbani, Mohsen

    2016-12-01

    We investigated whether there were gender differences in the effect of obesity on bone mineral density (BMD) based on menopausal status. We assessed 5,892 consecutive patients 20 to 91 years old who were referred for dual-energy X-ray absorptiometry (DXA) scans. All subjects underwent a standard BMD scan of the hip (total hip and femoral neck) and lumbar spine (L1 to L4) using a DXA scan and body size assessment. Body mass index was used to categorize the subjects as normal weight, overweight, and obese. BMD was higher in obese and overweight versus normal weight men, premenopausal women, and postmenopausal women. Compared to men ≥50 years and postmenopausal women with normal weight, the age-adjusted odds ratio of osteopenia was 0.19 (95% confidence interval [CI], 0.07 to 0.56) and 0.38 (95% CI, 0.29 to 0.51) for obese men ≥50 years and postmenopausal women. Corresponding summaries for osteoporosis were 0.26 (95% CI, 0.11 to 0.64) and 0.15 (95% CI, 0.11 to 0.20), respectively. Compared to men <50 years and premenopausal women with normal weight, the age-adjusted odds ratio of low bone mass was 0.22 (95% CI, 0.11 to 0.45) and 0.16 (95% CI, 0.10 to 0.26) for obese men <50 years and premenopausal women, respectively. Obesity is associated with BMD of the hip and lumbar spine and overweight and obese individuals have similar degrees of osteoporosis. This result was not significantly different based on gender and menopausal status, which could be an important issue for further investigation.

  9. Association between Obesity and Bone Mineral Density by Gender and Menopausal Status

    PubMed Central

    Salamat, Mohammad Reza; Salamat, Amir Hossein

    2016-01-01

    Background We investigated whether there were gender differences in the effect of obesity on bone mineral density (BMD) based on menopausal status. Methods We assessed 5,892 consecutive patients 20 to 91 years old who were referred for dual-energy X-ray absorptiometry (DXA) scans. All subjects underwent a standard BMD scan of the hip (total hip and femoral neck) and lumbar spine (L1 to L4) using a DXA scan and body size assessment. Body mass index was used to categorize the subjects as normal weight, overweight, and obese. Results BMD was higher in obese and overweight versus normal weight men, premenopausal women, and postmenopausal women. Compared to men ≥50 years and postmenopausal women with normal weight, the age-adjusted odds ratio of osteopenia was 0.19 (95% confidence interval [CI], 0.07 to 0.56) and 0.38 (95% CI, 0.29 to 0.51) for obese men ≥50 years and postmenopausal women. Corresponding summaries for osteoporosis were 0.26 (95% CI, 0.11 to 0.64) and 0.15 (95% CI, 0.11 to 0.20), respectively. Compared to men <50 years and premenopausal women with normal weight, the age-adjusted odds ratio of low bone mass was 0.22 (95% CI, 0.11 to 0.45) and 0.16 (95% CI, 0.10 to 0.26) for obese men <50 years and premenopausal women, respectively. Conclusion Obesity is associated with BMD of the hip and lumbar spine and overweight and obese individuals have similar degrees of osteoporosis. This result was not significantly different based on gender and menopausal status, which could be an important issue for further investigation. PMID:27834082

  10. Scanning Laser Polarimetry with Variable and Enhanced Corneal Compensation in Normal and Glaucomatous Eyes

    PubMed Central

    Sehi, Mitra; Guaqueta, Delia C.; Feuer, William J.; Greenfield, David S.

    2007-01-01

    Purpose To investigate whether correction for atypical birefringence pattern (ABP) using scanning laser polarimetry with enhanced corneal compensation (SLP-ECC) reduces the severity of ABP compared with variable corneal compensation (SLP-VCC), and improves the correlation with visual function. Design Prospective observational study. Methods Normal and glaucomatous eyes enrolled from 4 clinical sites underwent complete examination, automated perimetry, SLP-ECC and SLP-VCC. Eyes were characterized in 3 groups based upon the typical scan score (TSS): normal birefringence pattern (NBP) was defined as TSS 80, mild ABP as TSS 61–79, moderate-severe ABP as TSS 60. For each of 4 SLP parameters the area under the ROC curve (AUROC) was calculated to compare the ability of SLP-ECC and SLP-VCC to discriminate between normal and glaucomatous eyes. Results Eighty-four normal volunteers and 45 glaucoma patients were enrolled. Mean TSS was significantly (p<0.001) greater using SLP-ECC (98.0 ± 6.6) compared to SLP-VCC (83.4 ± 22.5). The frequency of moderate-severe ABP images was significantly (p<0.001, McNemar test) higher using SLP-VCC (18 of 129, 14%) compared to SLP-ECC (1 of 129, 0.8%). Two SLP-ECC parameters (TSNIT average and inferior average) had significantly (p=0.01, p<0.001) higher correlation (r=0.45, r=0.50 respectively) with MD compared to SLP-VCC (r=0.34, r=0.37). Among eyes with moderate-severe ABP (N = 18), inferior average obtained using SLP-ECC had significantly (p=0.03) greater AUROC (0.91 ± 0.07) compared with SLP-VCC (0.78 ± 0.11). Conclusions SLP-ECC significantly reduces the frequency and severity of ABP compared to SLP-VCC and improves the correlation between RNFL measures and visual function. PMID:17157800

  11. Subject-specific bone attenuation correction for brain PET/MR: can ZTE-MRI substitute CT scan accurately?

    PubMed

    Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude

    2017-09-21

    In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units ([Formula: see text]) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into [Formula: see text] was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of [Formula: see text] corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.

  12. Subject-specific bone attenuation correction for brain PET/MR: can ZTE-MRI substitute CT scan accurately?

    NASA Astrophysics Data System (ADS)

    Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude

    2017-10-01

    In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units (HU ) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into HU was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of 4~mm corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.

  13. Hyperparathyroidism Mimicking Metastatic Bone Disease: A Case Report and Review of Literature.

    PubMed

    Gupta, Monica; Singhal, Lalita; Kumar, Akshay

    2018-06-01

    Multiple osteolytic lesions are usually associated with metastatic involvement of the bone; however, metabolic bone diseases should also be included in the differential diagnosis. In this study, we describe a case of primary hyperparathyroidism (PHPT) with multiple osteolytic lesions that was diagnosed initially as having metastatic bone involvement. The laboratory results showed hypercalcemia and raised alkaline phosphatase along with fibrosis in the bone marrow biopsy with no increase in tumor markers and normal serum protein electrophoresis. The parathyroid hormone levels were high, which pointed toward a diagnosis of PHPT. Sestamibi scan revealed uptake at the level of the left inferior pole of the thyroid gland, which was suggestive of parathyroid adenoma. The possibility of hyperparathyroidism should be kept in mind when a patient presents with multiple osteolytic lesions and hypercalcemia.

  14. Nuclear scanning in necrotizing progressive ''malignant'' external otitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisier, S.C.; Lucente, F.E.; Som, P.M.

    1982-09-01

    The usefulness of radionuclear scanning in the treatment of 18 patients with necrotizing progressive ''malignant'' external otitis is discussed. A Tc 99-m bone scan, a valuable test since results are positive in early cases of osteomyelitis of the temporal bone and base of skull, showed increased uptake in all 18 patients. In 6 patients, Ga-67 citrate scans were obtained at the start of therapy and at 5-6 week intervals thereafter. The serial gallium scans were useful in evaluating the effectiveness of therapy since the uptake decrease with control of infection.

  15. The ability of multipotent mesenchymal stromal cells from the bone marrow of patients with leukemia to maintain normal hematopoietic progenitor cells.

    PubMed

    Sorokina, Tamara; Shipounova, Irina; Bigildeev, Alexey; Petinati, Nataliya; Drize, Nina; Turkina, Anna; Chelysheva, Ekaterina; Shukhov, Oleg; Kuzmina, Larisa; Parovichnikova, Elena; Savchenko, Valery

    2016-09-01

    The development of leukemia impairs normal hematopoiesis and marrow stromal microenvironment. The aim of the investigation was to study the ability of multipotent mesenchymal stromal cells (MSCs) derived from the bone marrow of patients with leukemia to maintain normal hematopoietic progenitor cells. MSCs were obtained from the bone marrow of 14 patients with acute lymphoblastic (ALL), 25 with myeloid (AML), and 15 with chronic myeloid (CML) leukemia. As a control, MSCs from 22 healthy donors were used. The incidence of cobblestone area forming cells (CAFC 7-8 d) in the bone marrow of healthy donor cultivated on the supportive layer of patients MSCs was measured. The ability of MSCs from AML and ALL patients at the moment of diagnosis to maintain normal CAFC was significantly decreased when compared to donors. After chemotherapy, the restoration of ALL patients' MSCs functions was slower than that of AML. CML MSCs maintained CAFC better than donors' at the moment of diagnosis and this ability increased with treatment. The ability of patients' MSCs to maintain normal hematopoietic progenitor cells was shown to change in comparison with MSCs from healthy donors and depended on nosology. During treatment, the functional capacity of patients' MSCs had been partially restored. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Vertebral sarcoidosis: demonstration of bone involvement by computerized axial tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinerstein, S.L.; Kovarsky, J.

    1984-08-01

    A report is given of a rare case of vertebral sarcoidosis with negative conventional spinal x-ray films, yet with typical cystic lesions of the spine found incidentally during abdominal computerized axial tomography (CAT). The patient was a 28-year-old black man, who was admitted for evaluation of a 1 1/2-year history of diffuse myalgias, intermittent fever to 102 F orally, bilateral hilar adenopathy, and leukopenia. A technetium polyphosphate bone scan revealed diffuse areas of increased uptake over the sternum, entire vertebral column, and pelvis. Conventional x-ray films of the cervical, thoracic, and lumbar spine, and an AP view of the pelvismore » were all normal. Chest x-ray film revealed only bilateral hilar adenopathy. During the course of an extensive negative evaluation for infection, an abdominal CAT scan was done, showing multiple, small, sclerotic-rimmed cysts at multiple levels of the lower thoracic and lumbar spine. Bone marrow biopsy revealed only changes consistent with anemia of chronic disease. Mediastinal lymph node biopsy revealed noncaseating granulomas. A tentative diagnosis of sarcoidosis was made, and treatment with prednisone, isoniazid and rifampin was begun. Within two weeks of initiation of prednisone therapy, the patient was symptom-free. A repeat technetium polyphosphate bone scan revealed only a small residual area of mildly increased uptake over the upper thoracic vertebrae.« less

  17. Phenomenon of formation of giant fat-containing cells in human bone marrow cultures induced by human serum factor: normal and leukemic patterns.

    PubMed

    Svet-Moldavskaya, I A; Zinzar, S N; Svet-Moldavsky, G J; Arlin, Z; Vergara, C; Koziner, B; Clarkson, B D; Holland, J F

    1983-08-01

    Normal human sera induce the formation of fat-containing cells (FCC) in human bone marrow cultures. A nearly complete monolayer of FCC is formed after 7-14 days of cultivation with 20% human sera in the medium. FCC-inducing activity (FCCIA) is nondialyzable through 14,900-dalton cutoff membrane and is stable at 56 degrees C for 30 min. Abundant FCCIA was found in 83% of normal human sera but in only 20% of sera from untreated patients with different hemopoietic disorders and in 32% of treated leukemic patients. It is suggested that FCCIA may be involved in regulation of the bone marrow microenvironment an that it varies in normal individuals and in patients with different diseases.

  18. Survival and characteristics of murine leukaemic and normal stem cells after hyperthermia: a murine model for human bone marrow purging.

    PubMed

    Gidáli, J; Szamosvölgyi, S; Fehér, I; Kovács, P

    1990-01-01

    The effect of hyperthermia in vitro on the survival and leukaemogenic effectiveness of WEHI 3-B cells and on the survival and transplantation efficiency of bone marrow cells was compared in a murine model system. Normal murine clonogenic haemopoietic cells (day 9 CFU-S and CFU-GM) proved to be significantly less sensitive to 42.5 degrees C hyperthermia (Do values: 54.3 and 41.1 min, respectively) than leukaemic clonogenic cells (CFU-L) derived from suspension culture or from bone marrow of leukaemic mice (Do: 17.8 min). Exposure for 120 min to 42.5 degrees C reduced the surviving fraction of CFU-L to 0.002 and that of CFU-S to 0.2. If comparable graft sizes were transplanted from normal or heat exposed bone marrow, 60-day survival of supralethally irradiated mice was similar. Surviving WEHI 3-B cells were capable of inducing leukaemia in vivo. The two log difference in the surviving fraction of CFU-L and CFU-S after 120 min exposure to 42.5 degrees C suggests that hyperthermia ex vivo may be a suitable purging method for autologous bone marrow transplantation.

  19. DPP IV inhibitor treatment attenuates bone loss and improves mechanical bone strength in male diabetic rats.

    PubMed

    Glorie, Lorenzo; Behets, Geert J; Baerts, Lesley; De Meester, Ingrid; D'Haese, Patrick C; Verhulst, Anja

    2014-09-01

    Dipeptidyl peptidase IV (DPP IV) modulates protein activity by removing dipeptides. DPP IV inhibitors are currently used to improve glucose tolerance in type 2 diabetes patients. DPP IV substrates not only increase insulin secretion but also affect bone metabolism. In this study, the effect of DPP IV inhibitor sitagliptin on bone was evaluated in normal and streptozotocin-induced diabetic rats. This study included 64 male Wistar rats divided into four groups (n = 16): two diabetic and two control groups. One diabetic and one control group received sitagliptin through drinking water. Tibiae were scanned every 3 wk using an in vivo μCT scanner. After 6 and 12 wk, rats were euthanized for histomorphometric analysis of bone parameters. The mechanical resistance of femora to fracture was assessed using a three-point bending test, and serum levels of bone metabolic markers were measured. Efficient DPP IV inhibition was achieved in sitagliptin-treated groups. Trabecular bone loss, the decrease in trabecular number, and the increase in trabecular spacing was attenuated through sitagliptin treatment in diabetic rats, as shown by in vivo μCT. Bone histomorphometry was in line with these results. μCT analysis furthermore showed that sitagliptin prevented cortical bone growth stagnation in diabetic rats, resulting in stronger femora during three-point bending. Finally, the serum levels of the resorption marker CTX-I were significantly lower in sitagliptin-treated diabetic animals compared with untreated diabetic animals. In conclusion, sitagliptin treatment attenuates bone loss and increases bone strength in diabetic rats probably through the reduction of bone resorption and independent of glycemic management. Copyright © 2014 the American Physiological Society.

  20. Hypercalciuric Bone Disease

    NASA Astrophysics Data System (ADS)

    Favus, Murray J.

    2008-09-01

    Hypercalciuria plays an important causal role in many patients with calcium oxalate (CaOx) stones. The source of the hypercalciuria includes increased intestinal Ca absorption and decreased renal tubule Ca reabsorption. In CaOx stone formers with idiopathic hypercalciuria (IH), Ca metabolic balance studies have revealed negative Ca balance and persistent hypercalciuria in the fasting state and during low dietary Ca intake. Bone resorption may also contribute to the high urine Ca excretion and increase the risk of bone loss. Indeed, low bone mass by DEXA scanning has been discovered in many IH patients. Thiazide diuretic agents reduce urine Ca excretion and may increase bone mineral density (BMD), thereby reducing fracture risk. Dietary Ca restriction that has been used unsuccessfully in the treatment of CaOx nephrolithiasis in the past may enhance negative Ca balance and accelerate bone loss. DEXA scans may demonstrate low BMD at the spine, hip, or forearm, with no predictable pattern. The unique pattern of bone histologic changes in IH differs from other causes of low DEXA bone density including postmenopausal osteoporosis, male hypogonadal osteoporosis, and glucocorticoid-induced osteoporosis. Hypercalciuria appears to play an important pathologic role in the development of low bone mass, and therefore correction of urine Ca losses should be a primary target for treatment of the bone disease accompanying IH.

  1. Serum 25-hydroxyvitamin D and bone turnover markers in Palestinian postmenopausal osteoporosis and normal women.

    PubMed

    Kharroubi, Akram; Saba, Elias; Smoom, Riham; Bader, Khaldoun; Darwish, Hisham

    2017-12-01

    This study evaluated the association of vitamin D and bone markers with the development osteoporosis in Palestinian postmenopausal women. Even though vitamin D deficiency was very high for the recruited subjects, it was not associated with osteoporosis except for bones of the hip. Age and obesity were the strongest determining factors of the disease. The purpose of this study was to investigate the association of bone mineral density (BMD) with serum vitamin D levels, parathyroid hormone (PTH), calcium, obesity, and bone turnover markers in Palestinian postmenopausal women. Three hundred eighty-two postmenopausal women (≥45 years) were recruited from various women clinics for BMD assessment (131 women had osteoporosis and 251 were normal and served as controls). Blood samples were obtained for serum calcium, PTH, 25(OH)D, bone formation (N-terminal propeptide (PINP)), and bone resorption (serum C-terminal telopeptide of type I collagen (CTX1)) markers. Women with osteoporosis had statistically significant lower mean weight, height, body mass index (BMI), and serum calcium (p < 0.05) compared to controls. No significant differences were detected between the mean values of bone turnover markers (CTX and PINP), 25(OH)D, and PTH of the two groups. Women with vitamin D deficiency (severe and insufficiency) represented 85.9% of the study subjects. Multiple and logistic regression showed that age and BMI significantly affected BMD and vitamin D had a significant association with BMD only at the lumbar spine. BMI was positively correlated with BMD and PTH but negatively correlated with vitamin D. Logistic regression showed that the odds ratio (OR) for having osteoporosis decreased with increasing BMI (overweight OR = 0.11, p = 0.053; obese OR = 0.05, p = 0.007). There was no direct correlation between BMD and PTH, bone turnover markers, and vitamin D except at the lumbar spine. A negative correlation between BMD and age and a positive correlation with BMI were

  2. In vivo short-term precision of hip structure analysis variables in comparison with bone mineral density using paired dual-energy X-ray absorptiometry scans from multi-center clinical trials.

    PubMed

    Khoo, Benjamin C C; Beck, Thomas J; Qiao, Qi-Hong; Parakh, Pallav; Semanick, Lisa; Prince, Richard L; Singer, Kevin P; Price, Roger I

    2005-07-01

    Hip structural analysis (HSA) is a technique for extracting strength-related structural dimensions of bone cross-sections from two-dimensional hip scan images acquired by dual energy X-ray absorptiometry (DXA) scanners. Heretofore the precision of the method has not been thoroughly tested in the clinical setting. Using paired scans from two large clinical trials involving a range of different DXA machines, this study reports the first precision analysis of HSA variables, in comparison with that of conventional bone mineral density (BMD) on the same scans. A key HSA variable, section modulus (Z), biomechanically indicative of bone strength during bending, had a short-term precision percentage coefficient of variation (CV%) in the femoral neck of 3.4-10.1%, depending on the manufacturer or model of the DXA equipment. Cross-sectional area (CSA), a determinant of bone strength during axial loading and closely aligned with conventional DXA bone mineral content, had a range of CV% from 2.8% to 7.9%. Poorer precision was associated with inadequate inclusion of the femoral shaft or femoral head in the DXA-scanned hip region. Precision of HSA-derived BMD varied between 2.4% and 6.4%. Precision of DXA manufacturer-derived BMD varied between 1.9% and 3.4%, arising from the larger analysis region of interest (ROI). The precision of HSA variables was not generally dependent on magnitude, subject height, weight, or conventional femoral neck densitometric variables. The generally poorer precision of key HSA variables in comparison with conventional DXA-derived BMD highlights the critical roles played by correct limb repositioning and choice of an adequate and appropriately positioned ROI.

  3. Bone Scan Index and Progression-free Survival Data for Progressive Metastatic Castration-resistant Prostate Cancer Patients Who Received ODM-201 in the ARADES Multicentre Study.

    PubMed

    Reza, Mariana; Jones, Robert; Aspegren, John; Massard, Christophe; Mattila, Leena; Mustonen, Mika; Wollmer, Per; Trägårdh, Elin; Bondesson, Eva; Edenbrandt, Lars; Fizazi, Karim; Bjartell, Anders

    2016-12-01

    ODM-201, a new-generation androgen receptor inhibitor, has shown clinical efficacy in prostate cancer (PCa). Quantitative methods are needed to accurately assess changes in bone as a measurement of treatment response. The Bone Scan Index (BSI) reflects the percentage of skeletal mass a given tumour affects. To evaluate the predictive value of the BSI in metastatic castration-resistant PCa (mCRPC) patients undergoing treatment with ODM-201. From a total of 134 mCRPC patients who participated in the Activity and Safety of ODM-201 in Patients with Progressive Metastatic Castration-resistant Prostate Cancer clinical trial and received ODM-201, we retrospectively selected all those patients who had bone scan image data of sufficient quality to allow for both baseline and 12-wk follow-up BSI-assessments (n=47). We used the automated EXINI bone BSI software (EXINI Diagnostics AB, Lund, Sweden) to obtain BSI data. We used the Cox proportional hazards model and Kaplan-Meier estimates to investigate the association among BSI, traditional clinical parameters, disease progression, and radiographic progression-free survival (rPFS). In the BSI assessments, at follow-up, patients who had a decrease or at most a 20% increase from BSI baseline had a significantly longer time to progression in bone (median not reached vs 23 wk, hazard ratio [HR]: 0.20; 95% confidence interval [CI], 0.07-0.58; p=0.003) and rPFS (median: 50 wk vs 14 wk; HR: 0.35; 95% CI, 0.17-0.74; p=0.006) than those who had a BSI increase >20% during treatment. The on-treatment change in BSI was significantly associated with rPFS in mCRPC patients, and an increase >20% in BSI predicted reduced rPFS. BSI for quantification of bone metastases may be a valuable complementary method for evaluation of treatment response in mCRPC patients. An increase in Bone Scan Index (BSI) was associated with shorter time to disease progression in patients treated with ODM-201. BSI may be a valuable method of complementing treatment

  4. Experiment M-6: Bone Demineralization

    NASA Technical Reports Server (NTRS)

    Mack, Pauline B.; Vose, George; Vogt, Fred B.; LaChance, Paul A.

    1966-01-01

    Densitometric evaluations of serial radiographs of "normal" subjects have often shown rather frequent changes in bone mass within relatively short periods of time. For this reason it was decided to make two pre-flight and two post flight radiographs of the Gemini V backup crew. In comparing the changes observed preflight and post flight as the conventional os calcis scanning site between the two crews, it was found that no changes greater than 4 percent were evident in either member of the backup crew. In comparing the changes observed preflight and postflight as the conventional o calcis scanning site between the two crews, it was found that no changes greater than 4 percent were evident in either member of the backup crew. This is in contract to the 15.1 and 8.9 percent losses observed in the prime crew. It has long been known that the skeletal system experiences a general loss of mineral under immobilization or extended bed rest. However, in both Gemini IV and Gemini V studies, bone mass losses were greater in both the os calcis and phalanx than were shown by the TWU bed-rest subjects during the same period of time. Although the bone mass losses in the 8-day Gemini V flight were generally greater than in the 4-day Gemini IV flight, the information to date is still insufficient to conclude that the losses tend to progress linearly with time, or whether a form of physiological adaptation may occur in longer space flights.

  5. Establishing a method to measure bone structure using spectral CT

    NASA Astrophysics Data System (ADS)

    Ramyar, M.; Leary, C.; Raja, A.; Butler, A. P. H.; Woodfield, T. B. F.; Anderson, N. G.

    2017-03-01

    Combining bone structure and density measurement in 3D is required to assess site-specific fracture risk. Spectral molecular imaging can measure bone structure in relation to bone density by measuring macro and microstructure of bone in 3D. This study aimed to optimize spectral CT methodology to measure bone structure in excised bone samples. MARS CT with CdTe Medipix3RX detector was used in multiple energy bins to calibrate bone structure measurements. To calibrate thickness measurement, eight different thicknesses of Aluminium (Al) sheets were scanned one in air and the other around a falcon tube and then analysed. To test if trabecular thickness measurements differed depending on scan plane, a bone sample from sheep proximal tibia was scanned in two orthogonal directions. To assess the effect of air on thickness measurement, two parts of the same human femoral head were scanned in two conditions (in the air and in PBS). The results showed that the MARS scanner (with 90μm voxel size) is able to accurately measure the Al (in air) thicknesses over 200μm but it underestimates the thicknesses below 200μm because of partial volume effect in Al-air interface. The Al thickness measured in the highest energy bin is overestimated at Al-falcon tube interface. Bone scanning in two orthogonal directions gives the same trabecular thickness and air in the bone structure reduced measurement accuracy. We have established a bone structure assessment protocol on MARS scanner. The next step is to combine this with bone densitometry to assess bone strength.

  6. Revascularization of diaphyseal bone segments by vascular bundle implantation.

    PubMed

    Nagi, O N

    2005-11-01

    Vascularized bone transfer is an effective, established treatment for avascular necrosis and atrophic or infected nonunions. However, limited donor sites and technical difficulty limit its application. Vascular bundle transplantation may provide an alternative. However, even if vascular ingrowth is presumed to occur in such situations, its extent in aiding revascularization for ultimate graft incorporation is not well understood. A rabbit tibia model was used to study and compare vascularized, segmental, diaphyseal, nonvascularized conventional, and vascular bundle-implanted grafts with a combination of angiographic, radiographic, histopathologic, and bone scanning techniques. Complete graft incorporation in conventional grafts was observed at 6 months, whereas it was 8 to 12 weeks with either of the vascularized grafts. The pattern of radionuclide uptake and the duration of graft incorporation between vascular segmental bone grafts (with intact endosteal blood supply) and vascular bundle-implanted segmental grafts were similar. A vascular bundle implanted in the recipient bone was found to anastomose extensively with the intraosseous circulation at 6 weeks. Effective revascularization of bone could be seen when a simple vascular bundle was introduced into a segment of bone deprived of its normal blood supply. This simple technique offers promise for improvement of bone graft survival in clinical circumstances.

  7. Smpd3 Expression in both Chondrocytes and Osteoblasts Is Required for Normal Endochondral Bone Development

    PubMed Central

    Li, Jingjing; Manickam, Garthiga; Ray, Seemun; Oh, Chun-do; Yasuda, Hideyo; Moffatt, Pierre

    2016-01-01

    Sphingomyelin phosphodiesterase 3 (SMPD3), a lipid-metabolizing enzyme present in bone and cartilage, has been identified to be a key regulator of skeletal development. A homozygous loss-of-function mutation called fragilitas ossium (fro) in the Smpd3 gene causes poor bone and cartilage mineralization resulting in severe congenital skeletal deformities. Here we show that Smpd3 expression in ATDC5 chondrogenic cells is downregulated by parathyroid hormone-related peptide through transcription factor SOX9. Furthermore, we show that transgenic expression of Smpd3 in the chondrocytes of fro/fro mice corrects the cartilage but not the bone abnormalities. Additionally, we report the generation of Smpd3flox/flox mice for the tissue-specific inactivation of Smpd3 using the Cre-loxP system. We found that the skeletal phenotype in Smpd3flox/flox; Osx-Cre mice, in which the Smpd3 gene is ablated in both late-stage chondrocytes and osteoblasts, closely mimics the skeletal phenotype in fro/fro mice. On the other hand, Smpd3flox/flox; Col2a1-Cre mice, in which the Smpd3 gene is knocked out in chondrocytes only, recapitulate the fro/fro mouse cartilage phenotype. This work demonstrates that Smpd3 expression in both chondrocytes and osteoblasts is required for normal endochondral bone development. PMID:27325675

  8. Relationship between Weight, Body Mass Index, and Bone Mineral Density in Men Referred for Dual-Energy X-Ray Absorptiometry Scan in Isfahan, Iran.

    PubMed

    Salamat, Mohammad Reza; Salamat, Amir Hossein; Abedi, Iraj; Janghorbani, Mohsen

    2013-01-01

    Objective. Although several studies have investigated the association between body mass index (BMI) and bone mineral density (BMD), the results are inconsistent. The aim of this study was to further investigate the relation between BMI, weight and BMD in an Iranian men population. Methods. A total of 230 men 50-79 years old were examined. All men underwent a standard BMD scans of hip (total hip, femoral neck, trochanter, and femoral shaft) and lumbar vertebrae (L2-L4) using a Dual-Energy X-ray Absorptiometry (DXA) scan and examination of body size. Participants were categorised in two BMI group: normal weight <25.0 kg/m(2) and overweight and obese, BMI ≥ 25 kg/m(2). Results. Compared to men with BMI ≥ 25, the age-adjusted odds ratio of osteopenia was 2.2 (95% CI 0.85, 5.93) and for osteoporosis was 4.4 (1.51, 12.87) for men with BMI < 25. It was noted that BMI and weight was associated with a high BMD, compatible with a diagnosis of osteoporosis. Conclusions. These data indicate that both BMI and weight are associated with BMD of hip and vertebrae and overweight and obesity decreased the risk for osteoporosis. The results of this study highlight the need for osteoporosis prevention strategies in elderly men as well as postmenopausal women.

  9. Removal of bone in CT angiography by multiscale matched mask bone elimination.

    PubMed

    Gratama van Andel, H A F; Venema, H W; Streekstra, G J; van Straten, M; Majoie, C B L M; den Heeten, G J; Grimbergen, C A

    2007-10-01

    For clear visualization of vessels in CT angiography (CTA) images of the head and neck using maximum intensity projection (MIP) or volume rendering (VR) bone has to be removed. In the past we presented a fully automatic method to mask the bone [matched mask bone elimination (MMBE)] for this purpose. A drawback is that vessels adjacent to bone may be partly masked as well. We propose a modification, multiscale MMBE, which reduces this problem by using images at two scales: a higher resolution than usual for image processing and a lower resolution to which the processed images are transformed for use in the diagnostic process. A higher in-plane resolution is obtained by the use of a sharper reconstruction kernel. The out-of-plane resolution is improved by deconvolution or by scanning with narrower collimation. The quality of the mask that is used to remove bone is improved by using images at both scales. After masking, the desired resolution for the normal clinical use of the images is obtained by blurring with Gaussian kernels of appropriate widths. Both methods (multiscale and original) were compared in a phantom study and with clinical CTA data sets. With the multiscale approach the width of the strip of soft tissue adjacent to the bone that is masked can be reduced from 1.0 to 0.2 mm without reducing the quality of the bone removal. The clinical examples show that vessels adjacent to bone are less affected and therefore better visible. Images processed with multiscale MMBE have a slightly higher noise level or slightly reduced resolution compared with images processed by the original method and the reconstruction and processing time is also somewhat increased. Nevertheless, multiscale MMBE offers a way to remove bone automatically from CT angiography images without affecting the integrity of the blood vessels. The overall image quality of MIP or VR images is substantially improved relative to images processed with the original MMBE method.

  10. Quantitative and qualitative analysis of bone flap resorption in patients undergoing cranioplasty after decompressive craniectomy.

    PubMed

    Korhonen, Tommi K; Salokorpi, Niina; Niinimäki, Jaakko; Serlo, Willy; Lehenkari, Petri; Tetri, Sami

    2018-02-23

    OBJECTIVE Autologous bone cranioplasty after decompressive craniectomy entails a notable burden of difficult postoperative complications, such as infection and bone flap resorption (BFR), leading to mechanical failure. The prevalence and significance of asymptomatic BFR is currently unclear. The aim of this study was to radiologically monitor the long-term bone flap survival and bone quality change in patients undergoing autologous cranioplasty. METHODS The authors identified all 45 patients who underwent autologous cranioplasty at Oulu University Hospital, Finland, between January 2004 and December 2014. Using perioperative and follow-up CT scans, the volumes and radiodensities of the intact bone flap prior to surgery and at follow-up were calculated. Relative changes in bone flap volume and radiodensity were then determined to assess cranioplasty survival. Sufficient CT scans were obtainable from 41 (91.1%) of the 45 patients. RESULTS The 41 patients were followed up for a median duration of 3.79 years (25th and 75th percentiles = 1.55 and 6.66). Thirty-seven (90.2%) of the 41 patients had some degree of BFR and 13 (31.7%) had a remaining bone flap volume of less than 80%. Patients younger than 30 years of age had a mean decrease of 15.8% in bone flap volume compared with the rest of the cohort. Bone flap volume was not found to decrease linearly with the passing of time, however. The effects of lifestyle factors and comorbidities on BFR were nonsignificant. CONCLUSIONS In this study BFR was a very common phenomenon, occurring at least to some degree in 90% of the patients. Decreases in bone volume were especially prominent in patients younger than 30 years of age. Because the progression of resorption during follow-up was nonlinear, routine follow-up CT scans appear unnecessary in monitoring the progression of BFR; instead, clinical follow-up with mechanical stability assessment is advised. Partial resorption is most likely a normal physiological phenomenon

  11. Interspecies comparison of subchondral bone properties important for cartilage repair.

    PubMed

    Chevrier, Anik; Kouao, Ahou S M; Picard, Genevieve; Hurtig, Mark B; Buschmann, Michael D

    2015-01-01

    Microfracture repair tissue in young adult humans and in rabbit trochlea is frequently of higher quality than in corresponding ovine or horse models or in the rabbit medial femoral condyle (MFC). This may be related to differences in subchondral properties since repair is initiated from the bone. We tested the hypothesis that subchondral bone from rabbit trochlea and the human MFC are structurally similar. Trochlea and MFC samples from rabbit, sheep, and horse were micro-CT scanned and histoprocessed. Samples were also collected from normal and lesional areas of human MFC. The subchondral bone of the rabbit trochlea was the most similar to human MFC, where both had a relatively thin bone plate and a more porous and less dense character of subchondral bone. MFC from animals all displayed thicker bone plates, denser and less porous bone and thicker trabeculae, which may be more representative of older or osteoarthritic patients, while both sheep trochlear ridges and the horse lateral trochlea shared some structural features with human MFC. Since several cartilage repair procedures rely on subchondral bone for repair, subchondral properties should be accounted for when choosing animal models to study and test procedures that are intended for human cartilage repair. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Differential diagnosis of trampoline fracture from osteomyelitis by bone scan with pinhole collimator.

    PubMed

    Gauthé, Mathieu; Mestas, Danielle; Canavese, Federico; Samba, Antoine; Cachin, Florent

    2014-02-01

    A 2-year-old girl with recent history of trampoline fall presented to the A&E Department for complete functional impairment of the left lower extremity and fever. Blood examination revealed an inflammatory syndrome, while plain radiographs were normal. As magnetic resonance imaging was unavailable, a bone scintigraphy was performed. While standard acquisition found an intense uptake focused on the left proximal tibial metaphysis whose appearance was suggestive of acute hematogenous osteomyelitis, complementary acquisition with the pinhole collimator demonstrated that this abnormal uptake was clearly distinct from the cartilage growth plate. One month follow-up radiographs showed a fracture that confirmed the diagnosis of trampoline fracture.

  13. Bone mineral loss and recovery after 17 weeks of bed rest

    NASA Technical Reports Server (NTRS)

    Leblanc, A. D.; Schneider, V. S.; Evans, H. J.; Engelbretson, D. A.; Krebs, J. M.; LaBlanc, A. D. (Principal Investigator)

    1990-01-01

    The purpose of this work was to determine the rate and extent of bone loss and recovery from long-term disuse and in particular from disuse after exposure to weightlessness. For this purpose, bed rest is used to simulate the reduced stress and strain on the skeleton. This study reports on the bone loss and recovery after 17 weeks of continuous bed rest and 6 months of reambulation in six normal male volunteers. Bone regions measured were the lumbar spine, hip, tibia, forearm, calcaneus, total body, and segmental regions from the total-body scan. The total body, lumbar spine, femoral neck, trochanter, tibia, and calcaneus demonstrated significant loss, p less than 0.05. Expressed as the percentage change from baseline, these were 1.4, 3.9, 3.6, 4.6, 2.2, and 10.4, respectively. Although several areas showed positive slopes during reambulation, only the calcaneus was significant (p less than 0.05), with nearly 100% recovery. Segmental analysis of the total-body scans showed significant loss (p less than 0.05) in the lumbar spine, total spine, pelvis, trunk, and legs. During reambulation, the majority of the regions demonstrated positive slopes, although only the pelvis and trunk were significant (p less than 0.05). Potential redistribution of bone mineral was observed: during bed rest the bone mineral increased in the skull of all subjects. The change in total BMD and calcium from calcium balance were significantly (p less than 0.05) correlated, R = 0.88.

  14. Bone mineral density test

    MedlinePlus

    ... density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis - BMD ... most common and accurate way uses a dual-energy x-ray absorptiometry (DEXA) scan. DEXA uses low- ...

  15. Extended flow cytometry characterization of normal bone marrow progenitor cells by simultaneous detection of aldehyde dehydrogenase and early hematopoietic antigens: implication for erythroid differentiation studies

    PubMed Central

    Mirabelli, Peppino; Di Noto, Rosa; Lo Pardo, Catia; Morabito, Paolo; Abate, Giovanna; Gorrese, Marisa; Raia, Maddalena; Pascariello, Caterina; Scalia, Giulia; Gemei, Marica; Mariotti, Elisabetta; Del Vecchio, Luigi

    2008-01-01

    Background Aldehyde dehydrogenase (ALDH) is a cytosolic enzyme highly expressed in hematopoietic precursors from cord blood and granulocyte-colony stimulating factor mobilized peripheral blood, as well as in bone marrow from patients with acute myeloblastic leukemia. As regards human normal bone marrow, detailed characterization of ALDH+ cells has been addressed by one single study (Gentry et al, 2007). The goal of our work was to provide new information about the dissection of normal bone marrow progenitor cells based upon the simultaneous detection by flow cytometry of ALDH and early hematopoietic antigens, with particular attention to the expression of ALDH on erythroid precursors. To this aim, we used three kinds of approach: i) multidimensional analytical flow cytometry, detecting ALDH and early hematopoietic antigens in normal bone marrow; ii) fluorescence activated cell sorting of distinct subpopulations of progenitor cells, followed by in vitro induction of erythroid differentiation; iii) detection of ALDH+ cellular subsets in bone marrow from pure red cell aplasia patients. Results In normal bone marrow, we identified three populations of cells, namely ALDH+CD34+, ALDH-CD34+ and ALDH+CD34- (median percentages were 0.52, 0.53 and 0.57, respectively). As compared to ALDH-CD34+ cells, ALDH+CD34+ cells expressed the phenotypic profile of primitive hematopoietic progenitor cells, with brighter expression of CD117 and CD133, accompanied by lower display of CD38 and CD45RA. Of interest, ALDH+CD34- population disclosed a straightforward erythroid commitment, on the basis of three orders of evidences. First of all, ALDH+CD34- cells showed a CD71bright, CD105+, CD45- phenotype. Secondly, induction of differentiation experiments evidenced a clear-cut expression of glycophorin A (CD235a). Finally, ALDH+CD34- precursors were not detectable in patients with pure red cell aplasia (PRCA). Conclusion Our study, comparing surface antigen expression of ALDH+/CD34+, ALDH

  16. 3D Printed Pediatric Temporal Bone: A Novel Training Model.

    PubMed

    Longfield, Evan A; Brickman, Todd M; Jeyakumar, Anita

    2015-06-01

    Temporal bone dissection is a fundamental element of otologic training. Cadaveric temporal bones (CTB) are the gold standard surgical training model; however, many institutions do not have ready access to them and their cost can be significant: $300 to $500. Furthermore, pediatric cadaveric temporal bones are not readily available. Our objective is to develop a pediatric temporal bone model. Temporal bone model. Tertiary Children's Hospital. Pediatric patient model. We describe the novel use of a 3D printer for the generation of a plaster training model from a pediatric high- resolution CT temporal bone scan of a normal pediatric temporal bone. Three models were produced and were evaluated. The models utilized multiple colors (white for bone, yellow for the facial nerve) and were of high quality. Two models were drilled as a proof of concept and found to be an acceptable facsimile of the patient's anatomy, rendering all necessary surgical landmarks accurately. The only negative comments pertaining to the 3D printed temporal bone as a training model were the lack of variation in hardness between cortical and cancellous bone, noting a tactile variation from cadaveric temporal bones. Our novel pediatric 3D temporal bone training model is a viable, low-cost training option for previously inaccessible pediatric temporal bone training. Our hope is that, as 3D printers become commonplace, these models could be rapidly reproduced, allowing for trainees to print models of patients before performing surgery on the living patient.

  17. Accuracy of cancellous bone volume fraction measured by micro-CT scanning.

    PubMed

    Ding, M; Odgaard, A; Hvid, I

    1999-03-01

    Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner supplied algorithm (method I). A significant deviation of volume fraction from method I was found: both the y-intercept and the slope of the regression line were significantly different from those of the Archimedes-based volume fraction (p < 0.001). New individual thresholds were determined based on a calibration of volume fraction to the Archimedes-based volume fractions (method II). The mean thresholds of the two methods were applied to segment 20 randomly selected specimens. The results showed that volume fraction using the mean threshold of method I was underestimated by 4% (p = 0.001), whereas the mean threshold of method II yielded accurate values. The precision of the measurement was excellent. Our data show that care must be taken when applying thresholds in generating 3-D data, and that a fixed threshold may be used to obtain reliable volume fraction data. This fixed threshold may be determined from the Archimedes-based volume fraction of a subgroup of specimens. The threshold may vary between different materials, and so it should be determined whenever a study series is performed.

  18. Scanning electron microscopy (SEM) and X-ray dispersive spectrometry evaluation of direct laser metal sintering surface and human bone interface: a case series.

    PubMed

    Mangano, Carlo; Piattelli, Adriano; Raspanti, Mario; Mangano, Francesco; Cassoni, Alessandra; Iezzi, Giovanna; Shibli, Jamil Awad

    2011-01-01

    Recent studies have shown that direct laser metal sintering (DLMS) produces structures with complex geometry and consequently that allow better osteoconductive properties. The aim of this patient report was to evaluate the early bone response to DLMS implant surface retrieved from human jaws. Four experimental DLMS implants were inserted in the posterior mandible of four patients during conventional dental implant surgery. After 8 weeks, the micro-implants and the surrounding tissue were removed and prepared for scanning electron microscopy (SEM) and histomorphometric analysis to evaluate the bone-implant interface. The SEM and EDX evaluations showed a newly formed tissue composed of calcium and phosphorus. The bone-to-implant contact presented a mean of 60.5 ± 11.6%. Within the limits of this patient report, data suggest that the DLMS surfaces presented a close contact with the human bone after a healing period of 8 weeks.

  19. Comparison of macroscopic and microscopic (stereomicroscopy and scanning electron microscopy) features of bone lesions due to hatchet hacking trauma.

    PubMed

    Nogueira, Luísa; Quatrehomme, Gérald; Bertrand, Marie-France; Rallon, Christophe; Ceinos, Romain; du Jardin, Philippe; Adalian, Pascal; Alunni, Véronique

    2017-03-01

    This experimental study examined the lesions produced by a hatchet on human bones (tibiae). A total of 30 lesions were produced and examined macroscopically (naked eye) and by stereomicroscopy. 13 of them were also analyzed using scanning electron microscopy. The general shape of the lesion, both edges, both walls, the kerf floor and the extremities were described. The length and maximum width of the lesions were also recorded. The microscopic analysis of the lesions led to the description of a sharp-blunt mechanism. Specific criteria were identified (lateral pushing back, fragmentation of the upraising, fossa dug laterally to the edge and vertical striae) enabling the forensic expert to conclude that a hacking instrument was used. These criteria are easily identifiable using scanning electron microscopy, but can also be observed with stereomicroscopy. Overall, lateral pushing back and vertical striae visible using stereomicroscopy and scanning electron microscopy signal the use of a hacking tool.

  20. Simulation of bone resorption-repair coupling in vitro.

    PubMed

    Jones, S J; Gray, C; Boyde, A

    1994-10-01

    In the normal adult human skeleton, new bone formation by osteoblasts restores the contours of bone surfaces following osteoclastic bone resorption, but the evidence for resorption-repair coupling remains circumstantial. To investigate whether sites of prior resorption, more than the surrounding unresorbed surface, attract osteoblasts or stimulate them to proliferate or make new matrix, we developed a simple in vitro system in which resorption-repair coupling occurs. Resorption pits were produced in mammalian dentine or bone slabs by culturing chick bone-derived cells on them for 2-3 days. The chick cells were swept off and the substrata reseeded with rat calvarial osteoblastic cells, which make bone nodules in vitro, for periods of up to 8 weeks. Cell positions and new bone formation were investigated by ordinary light microscopy, fluorescence and reflection confocal laser microscopy, and SEM, in stained and unstained samples. There was no evidence that the osteoblasts were especially attracted to, or influenced by, the sites of resorption in dentine or bone before cell confluence was reached. Bone formation was identified by light microscopy by the accumulation of matrix, staining with alizarin and calcein and by von Kossa's method, and confirmed by scanning electron microscopy (SEM) by using backscattered electron (BSE) and transmitted electron imaging of unembedded samples and BSE imaging of micro-milled embedded material. These new bone patches were located initially in the resorption pits. The model in vitro system may throw new light on the factors that control resorption-repair coupling in the mineralised tissues in vivo.

  1. Fincke performs an ultrasound bone scan on Padalka using the ADUM in the U.S. Lab during Expedition 9

    NASA Image and Video Library

    2004-08-10

    ISS009-E-17439 (10 August 2004) --- Astronaut Edward M. (Mike) Fincke (foreground), Expedition 9 NASA ISS science officer and flight engineer, performs an ultrasound bone scan on cosmonaut Gennady I. Padalka, commander representing Russia's Federal Space Agency. The two are using the Advanced Diagnostic Ultrasound in Micro-G (ADUM) in the Destiny laboratory of the International Space Station (ISS). The ADUM keyboard, flat screen display and front control panel are visible at right.

  2. Occupational Radiation Exposure to the Extremities of Medical Staff during Hysterosalpingography and Radionuclide Bone Scan Procedures in Several Nigerian Hospitals.

    PubMed

    Jibiri, Nnamdi Norbert; Akintunde, Tawakalitu Oluwatoyin; Dambele, Musa Yusuf; Olowookere, Christopher Jimoh

    2016-10-05

    The practice of regular dose measurement helps to ascertain the level of occupational dose delivered to the staff involved in diagnostic procedures. This study was carried out to evaluate the dose exposed to the hands of radiologists and a radiologic technologist carrying out HSG and radionuclide bone scan examinations in several hospitals in Nigeria. Radiation doses exposed to the hands of radiologists and a technician carrying out hysterosalpingography (HSG) and bone scan procedures were measured using calibrated thermo-luminescent dosimeters. Five radiologists and a radiologic technologist were included in the study for dose measurement. The study indicates that each radiologist carried out approximately 2 examinations per week with the mean dose ranging between 0.49-0.62 mSv per week, resulting in an annual dose of 191 mSv. Similarly, the occupational dose delivered to both the left and right hands of a radiologic technologist administering 99mTc-methylene diphosphonate (MDP) without cannula and with cannula were 10.68 (720.2) and 13.82 (556.4) mSv per week (and per annum), respectively. It was determined that the left hand of the personnel received higher doses than their right hand. The estimated annual dose during HSG is far below the annual dose limit for deterministic effects, however, it is greater than 10% of the applicable annual dose limit. Hence, routine monitoring is required to ensure adequate protection of the personnel. The total annual dose received during the bone scan exceeds the annual dose limit for both hands, and the dose to either left or right hand is greater than the dose limit of 500 mSv/yr. The radiologists monitored are not expected to incur any deterministic effects during HSG examinations, however, accumulated doses arising from the scattered radiation to the eyes, legs, and neck could be substantial and might lead to certain effects. More staff are required to administer 99mTc-MDP in Nigerian institutions to prevent excessive doses

  3. Occupational Radiation Exposure to the Extremities of Medical Staff during Hysterosalpingography and Radionuclide Bone Scan Procedures in Several Nigerian Hospitals

    PubMed Central

    Jibiri, Nnamdi Norbert; Akintunde, Tawakalitu Oluwatoyin; Dambele, Musa Yusuf; Olowookere, Christopher Jimoh

    2016-01-01

    Objective: The practice of regular dose measurement helps to ascertain the level of occupational dose delivered to the staff involved in diagnostic procedures. This study was carried out to evaluate the dose exposed to the hands of radiologists and a radiologic technologist carrying out HSG and radionuclide bone scan examinations in several hospitals in Nigeria. Methods: Radiation doses exposed to the hands of radiologists and a technician carrying out hysterosalpingography (HSG) and bone scan procedures were measured using calibrated thermo-luminescent dosimeters. Five radiologists and a radiologic technologist were included in the study for dose measurement. Results: The study indicates that each radiologist carried out approximately 2 examinations per week with the mean dose ranging between 0.49-0.62 mSv per week, resulting in an annual dose of 191 mSv. Similarly, the occupational dose delivered to both the left and right hands of a radiologic technologist administering 99mTc-methylene diphosphonate (MDP) without cannula and with cannula were 10.68 (720.2) and 13.82 (556.4) mSv per week (and per annum), respectively. It was determined that the left hand of the personnel received higher doses than their right hand. Conclusion: The estimated annual dose during HSG is far below the annual dose limit for deterministic effects, however, it is greater than 10% of the applicable annual dose limit. Hence, routine monitoring is required to ensure adequate protection of the personnel. The total annual dose received during the bone scan exceeds the annual dose limit for both hands, and the dose to either left or right hand is greater than the dose limit of 500 mSv/yr. The radiologists monitored are not expected to incur any deterministic effects during HSG examinations, however, accumulated doses arising from the scattered radiation to the eyes, legs, and neck could be substantial and might lead to certain effects. More staff are required to administer 99mTc-MDP in

  4. Bone marrow blood vessel ossification and "microvascular dead space" in rat and human long bone.

    PubMed

    Prisby, Rhonda D

    2014-07-01

    Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4-6 month; n=8) and old (22-24 month; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner's Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via μCT to quantify microvascular ossification. Bone marrow blood vessels from the rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and "normal" vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p<0.05) in the old vs. young rats. Calcified and ossified vessel volumes per tissue volume and calcified vessel volume per patent vessel volume were augmented (p<0.05) 262%, 375% and 263%, respectively, in the old vs. young rats. Ossified and patent vessel number was higher (171%) and lower (40%), respectively, in the old vs. young rats. Finally, adipocyte volume per patent vessel volume was higher (86%) with age. This study is the first to report ossification of bone marrow blood vessels in rats and humans. Ossification presumably results in "microvascular dead space" in regard to loss of patency and vasomotor function as opposed to necrosis. Progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the

  5. Space flight and bone formation.

    PubMed

    Doty, St B

    2004-12-01

    Major physiological changes which occur during spaceflight include bone loss, muscle atrophy, cardiovascular and immune response alterations. When trying to determine the reason why bone loss occurs during spaceflight, one must remember that all these other changes in physiology and metabolism may also have impact on the skeletal system. For bone, however, the role of normal weight bearing is a major concern and we have found no adequate substitute for weight bearing which can prevent bone loss. During the study of this problem, we have learned a great deal about bone physiology and increased our knowledge about how normal bone is formed and maintained. Presently, we do not have adequate ground based models which can mimic the tissue loss that occurs in spaceflight but this condition closely resembles the bone loss seen with osteoporosis. Although a normal bone structure will respond to application of mechanical force and weight bearing by forming new bone, a weakened osteoporotic bone may have a tendency to fracture. The study of the skeletal system during weightless conditions will eventually produce preventative measures and form a basis for protecting the crew during long term space flight. The added benefit from these studies will be methods to treat bone loss conditions which occur here on earth.

  6. Space flight and bone formation

    NASA Technical Reports Server (NTRS)

    Doty, St B.

    2004-01-01

    Major physiological changes which occur during spaceflight include bone loss, muscle atrophy, cardiovascular and immune response alterations. When trying to determine the reason why bone loss occurs during spaceflight, one must remember that all these other changes in physiology and metabolism may also have impact on the skeletal system. For bone, however, the role of normal weight bearing is a major concern and we have found no adequate substitute for weight bearing which can prevent bone loss. During the study of this problem, we have learned a great deal about bone physiology and increased our knowledge about how normal bone is formed and maintained. Presently, we do not have adequate ground based models which can mimic the tissue loss that occurs in spaceflight but this condition closely resembles the bone loss seen with osteoporosis. Although a normal bone structure will respond to application of mechanical force and weight bearing by forming new bone, a weakened osteoporotic bone may have a tendency to fracture. The study of the skeletal system during weightless conditions will eventually produce preventative measures and form a basis for protecting the crew during long term space flight. The added benefit from these studies will be methods to treat bone loss conditions which occur here on earth.

  7. An introduction to Na(18)F bone scintigraphy: basic principles, advanced imaging concepts, and case examples.

    PubMed

    Bridges, Robert L; Wiley, Chris R; Christian, John C; Strohm, Adam P

    2007-06-01

    Na(18)F, an early bone scintigraphy agent, is poised to reenter mainstream clinical imaging with the present generations of stand-alone PET and PET/CT hybrid scanners. (18)F PET scans promise improved imaging quality for both benign and malignant bone disease, with significantly improved sensitivity and specificity over conventional planar and SPECT bone scans. In this article, basic acquisition information will be presented along with examples of studies related to oncology, sports medicine, and general orthopedics. The use of image fusion of PET bone scans with CT and MRI will be demonstrated. The objectives of this article are to provide the reader with an understanding of the history of early bone scintigraphy in relation to Na(18)F scanning, a familiarity with basic imaging techniques for PET bone scanning, an appreciation of the extent of disease processes that can be imaged with PET bone scanning, an appreciation for the added value of multimodality image fusion with bone disease, and a recognition of the potential role PET bone scanning may play in clinical imaging.

  8. Thermographic image analysis as a pre-screening tool for the detection of canine bone cancer

    NASA Astrophysics Data System (ADS)

    Subedi, Samrat; Umbaugh, Scott E.; Fu, Jiyuan; Marino, Dominic J.; Loughin, Catherine A.; Sackman, Joseph

    2014-09-01

    Canine bone cancer is a common type of cancer that grows fast and may be fatal. It usually appears in the limbs which is called "appendicular bone cancer." Diagnostic imaging methods such as X-rays, computed tomography (CT scan), and magnetic resonance imaging (MRI) are more common methods in bone cancer detection than invasive physical examination such as biopsy. These imaging methods have some disadvantages; including high expense, high dose of radiation, and keeping the patient (canine) motionless during the imaging procedures. This project study identifies the possibility of using thermographic images as a pre-screening tool for diagnosis of bone cancer in dogs. Experiments were performed with thermographic images from 40 dogs exhibiting the disease bone cancer. Experiments were performed with color normalization using temperature data provided by the Long Island Veterinary Specialists. The images were first divided into four groups according to body parts (Elbow/Knee, Full Limb, Shoulder/Hip and Wrist). Each of the groups was then further divided into three sub-groups according to views (Anterior, Lateral and Posterior). Thermographic pattern of normal and abnormal dogs were analyzed using feature extraction and pattern classification tools. Texture features, spectral feature and histogram features were extracted from the thermograms and were used for pattern classification. The best classification success rate in canine bone cancer detection is 90% with sensitivity of 100% and specificity of 80% produced by anterior view of full-limb region with nearest neighbor classification method and normRGB-lum color normalization method. Our results show that it is possible to use thermographic imaging as a pre-screening tool for detection of canine bone cancer.

  9. Three-phase bone scan and indium white blood cell scintigraphy following porous coated hip arthroplasty: A prospective study of the prosthetic tip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oswald, S.G.; Van Nostrand, D.; Savory, C.G.

    1989-08-01

    Although few reports address the use of three-phase bone scanning (TPBS) and {sup 111}In-labeled white blood cell (In-WBC) scintigraphy in hip arthroplasty utilizing a porous coated prosthesis, the literature suggests that scintigraphic patterns in the uncomplicated patient may differ from that seen in the cemented prosthesis. In an attempt to determine the scintigraphic natural history, 25 uncomplicated porous coated hip arthroplasties in 21 patients were prospectively studied with serial TPBS and In-WBC at approximately 7 days, and at 3, 6, 12, 18, and 24 mo postoperatively. This report deals with findings related to the prosthetic tip. Only one of 136more » flow studies were abnormal and only two of 136 blood-pool images demonstrated focally increased activity. All 25 prostheses (120 of 143 scans) demonstrated increased uptake on the bone phase images. The area about the tip was divided into three segments; increased uptake at 24 mo was noted in the medial, distal, and lateral segments in 16%, 72%, and 56% of prostheses, respectively. Twenty of 25 prostheses (82 of 142 scans) showed uptake on In-WBC scintigraphy, being noted in 48% of prostheses at 24 mo. We conclude that scintigraphic patterns in the uncomplicated patient with a porous coated prosthesis appear to differ from patterns described in cemented prostheses.« less

  10. Corneal thickness and elevation measurements using swept-source optical coherence tomography and slit scanning topography in normal and keratoconic eyes.

    PubMed

    Jhanji, Vishal; Yang, Bingzhi; Yu, Marco; Ye, Cong; Leung, Christopher K S

    2013-11-01

    To compare corneal thickness and corneal elevation using swept source optical coherence tomography and slit scanning topography. Prospective study. 41 normal and 46 keratoconus subjects. All eyes were imaged using swept source optical coherence tomography and slit scanning tomography during the same visit. Mean corneal thickness and best-fit sphere measurements were compared between the instruments. Agreement of measurements between swept source optical coherence tomography and scanning slit topography was analyzed. Intra-rater reproducibility coefficient and intraclass correlation coefficient were evaluated. In normal eyes, central corneal thickness measured by swept source optical coherence tomography was thinner compared with slit scanning topography (p < 0.0001) and ultrasound pachymetry (p = < .0001). Ultrasound pachymetry readings had better 95% limits of agreement with swept source optical coherence tomography than slit scanning topography. In keratoconus eyes, central corneal thickness was thinner on swept source optical coherence tomography than slit scanning topography (p = 0.081) and ultrasound pachymetry (p = 0.001). There were significant differences between thinnest corneal thickness, and, anterior and posterior best-fit sphere measurements between both instruments (p < 0.05 for all). Overall, reproducibility coefficients and intraclass correlation coefficients were significantly better with swept source optical coherence tomography for measurement of central corneal thickness, anterior best-fit sphere and, posterior best-fit sphere (all p < 0.001). Corneal thickness and elevation measurements were significantly different between swept source optical coherence tomography and slit scanning topography. With better reproducibility coefficients and intraclass correlation coefficients, swept source optical coherence tomography may provide a reliable alternative for measurement of corneal parameters. © 2013 The Authors. Clinical

  11. EVALUATION OF CALCIUM 47 IN NORMAL MAN AND ITS USE IN THE EVALUATION OF BONE HEALING FOLLOWING RADIATION THERAPY IN METASTATIC DESEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, L.W.; Croll, M.N.; Stanton, L.

    1962-02-01

    It was concluded that radioactlve Ca/sup 47/ is an isotope suitable for the study of calcium metabolism in the body. It is easily traced by external counting technics. Local uptake measurements as well as ratios over various areas of the skeleton can be determined, thus yielding useful diagnostic information. It is a safe agent for use. It is possible to differentiate normal bone from areas of diseased bone using it. It is not useful for scintiscanning. It is grossly applicable in the evaluation of effects of radiation therapy to local metastatic lesions in bone. These observations support the fact thatmore » bone- seeking isotopes may well be useful as diagnostic agents for the evaluation of subradiographic metastases. (auth)« less

  12. Bone microstructure in men assessed by HR-pQCT: Associations with risk factors and differences between men with normal, low, and osteoporosis-range areal BMD.

    PubMed

    Okazaki, Narihiro; Burghardt, Andrew J; Chiba, Ko; Schafer, Anne L; Majumdar, Sharmila

    2016-12-01

    The primary objective of this study was to analyze the relationships between bone microstructure and strength, and male osteoporosis risk factors including age, body mass index, serum 25-hydroxyvitamin D level, and testosterone level. A secondary objective was to compare microstructural and strength parameters between men with normal, low, and osteoporosis-range areal bone mineral density (aBMD). Seventy-eight healthy male volunteers (mean age 62.4 ± 7.8 years, range 50-84 years) were recruited. The participants underwent dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HR-pQCT) of the ultra-distal radius and tibia. From the HR-pQCT images, volumetric bone mineral density (BMD) and cortical and trabecular bone microstructure were evaluated, and bone strength and cortical load fraction (Ct.LF) were estimated using micro-finite element analysis (μFEA). Age was more strongly correlated with bone microstructure than other risk factors. Age had significant positive correlations with cortical porosity at both ultra-distal radius and tibia ( r  = 0.36, p  = 0.001, and r  = 0.47, p  < 0.001, respectively). At the tibia, age was negatively correlated with cortical BMD, whereas it was positively correlated with trabecular BMD. In μFEA, age was negatively correlated with Ct.LF, although not with bone strength. Compared with men with normal aBMD, men with low or osteoporosis-range aBMD had significantly poor trabecular bone microstructure and lower bone strength at the both sites, while there was no significant difference in cortical bone. Cortical bone microstructure was negatively affected by aging, and there was a suggestion that the influence of aging may be particularly important at the weight-bearing sites.

  13. Analysis of bone protein and mineral composition in bone disease using synchrotron infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Miller, Lisa M.; Hamerman, David; Chance, Mark R.; Carlson, Cathy S.

    1999-10-01

    Infrared (IR) microspectroscopy is an analytical technique that is highly sensitive to the chemical components in bone. The brightness of a synchrotron source permits the examination of individual regions of bone in situ at a spatial resolution superior to that of a conventional infrared source. At Beamlines U10B and U2B at the National Synchrotron Light Source, we are examining the role of bone chemical composition in bone disease. In osteoarthritis (OA), it has been demonstrated that the bone underlying the joint cartilage (subchondral bone) becomes thickened prior to cartilage breakdown. Using synchrotron infrared microspectroscopy, we have examined the chemical composition of the subchondral bone in histologically normal and OA monkeys. Results demonstrate that the subchondral bone of OA monkeys is significantly more mineralized than the normal bone, primarily due to an increase in carbonate concentration in the OA bone. High resolution analysis indicates that differences in carbonate content are uniform throughout the subchondral bone region, suggesting that high subchondral bone carbonate may be a marker for OA. Conversely, increases in phosphate content are more pronounced in the region near the marrow space, suggesting that, as the subchondral bone thickens, the bone also becomes more mineralized. Osteoporosis is a disease characterized by a reduction in bone mass and a skeleton that is more susceptible to fracture. To date, it is unclear whether bone remodeled after the onset of osteoporosis differs in chemical composition from older bone. Using fluorescence-assisted infrared microspectroscopy, we are comparing the composition of monkey bone remodeled at various time points after the onset of osteoporosis (induced by ovariectomy). We find that the chemical composition of bone remodeled one year after ovariectomy and one year prior to necropsy is similar to normal bone. On the other hand, bone remodeled two years after ovariectomy is less mature, indicated

  14. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  15. Scanning electron microscope analysis of gunshot defects to bone: an underutilized source of information on ballistic trauma.

    PubMed

    Rickman, John M; Smith, Martin J

    2014-11-01

    Recent years have seen increasing involvement by forensic anthropologists in the interpretation of skeletal trauma. With regard to ballistic injuries, there is now a large literature detailing gross features of such trauma; however, less attention has been given to microscopic characteristics. This article presents analysis of experimentally induced gunshot trauma in animal bone (Bos taurus scapulae) using full metal jacket (FMJ), soft point (SP), and captive bolt projectiles. The results were examined using scanning electron microscopy (SEM). Additional analysis was conducted on a purported parietal gunshot lesion in a human cranial specimen. A range of features was observed in these samples suggesting that fibrolamellar bone response to projectile impact is analogous to that observed in synthetic composite laminates. The results indicate that direction of bullet travel can be discerned microscopically even when it is ambiguous on gross examination. It was also possible to distinguish SP from FMJ lesions. SEM analysis is therefore recommended as a previously underexploited tool in the analysis of ballistic trauma. © 2014 American Academy of Forensic Sciences.

  16. PET Index of Bone Glucose Metabolism (PIBGM) Classification of PET/CT Data for Fever of Unknown Origin Diagnosis

    PubMed Central

    Yang, Jian; Liu, Xinxin; Ai, Danni; Fan, Jingfan; Zheng, Youjing; Li, Fang; Huo, Li; Wang, Yongtian

    2015-01-01

    Objectives Fever of unknown origin (FUO) remains a challenge in clinical practice. Fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is helpful in diagnosing the etiology of FUO. This paper aims to develop a completely automatic classification method based on PET/CT data for the computer-assisted diagnosis of FUO. Methods We retrospectively analyzed the FDG PET/CT scan of 175 FUO patients, 79 males and 96 females. The final diagnosis of all FUO patients was achieved through pathology or clinical evaluation, including 108 normal patients and 67 FUO patients. CT anatomic information was used to acquire bone functional information from PET images. The skeletal system of FUO patients was classified by analyzing the standardized uptake value (SUV) and the PET index of bone glucose metabolism (PIBGM). The SUV distributions in the bone marrow and the bone cortex were also studied in detail. Results The SUV and PIBGM of the bone marrow only slightly differed between the FUO patients and normal people, whereas the SUV of whole bone structures and the PIBGM of the bone cortex significantly differed between the normal people and FUO patients. The method detected 43 patients from 67 FUO patients, with sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 64.18%, 95%, 93.48%, 72.73%, and 83.33%, respectively. Conclusion The experimental results demonstrate that the study can achieve automatic classification of FUO patients by the proposed novel biomarker of PIBGM, which has the potential to be utilized in clinical practice. PMID:26076139

  17. Reduced vertebral bone density in hypercalciuric nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Pietschmann, F.; Breslau, N. A.; Pak, C. Y.

    1992-01-01

    Dual-energy x-ray absorptiometry and single-photon absorptiometry were used to determine bone density at the lumbar spine and radial shaft in 62 patients with absorptive hypercalciuria, 27 patients with fasting hypercalciuria, and 31 nonhypercalciuric stone formers. Lumbar bone density was significantly lower in patients with absorptive (-10%) as well as in those with fasting hypercalciuria (-12%), with 74 and 92% of patients displaying values below the normal mean, whereas only 48% of the nonhypercalciuric stone formers had bone density values below the normal mean. In contrast, radial bone density was similar in all three groups of renal stone formers investigated. The comparison of urinary chemistry in patients with absorptive hypercalciuria and low normal bone density compared to those with high normal bone density showed a significantly increased 24 h urinary calcium excretion on random diet and a trend toward a higher 24 h urinary uric acid excretion and a higher body mass index in patients with low normal bone density. Moreover, among the patients with absorptive hypercalciuria we found a statistically significant correlation between the spinal bone density and the 24 h sodium and sulfate excretion and the urinary pH. These results gave evidence for an additional role of environmental factors (sodium and animal proteins) in the pathogenesis of bone loss in absorptive hypercalciuria. In conclusion, our data suggest an osteopenia of trabecular-rich bone tissues in patients with fasting and absorptive hypercalciurias.

  18. Characterization of a 5-fluorouracil-enriched osteoprogenitor population of the murine bone marrow.

    PubMed

    Falla, N; Van Vlasselaer; Bierkens, J; Borremans, B; Schoeters, G; Van Gorp, U

    1993-12-15

    In the presence of beta-glycerophosphate and vitamin C, cultures of normal mouse bone marrow cells form three-dimensional structures that stain positive with the Von Kossa technique and express alkaline phosphatase (ALP), collagen type I, and osteocalcin. Little is known about the characteristics and frequency of the cells that contribute to this phenomenon. Most likely, mature osteoblastic cells do not contribute to the nodule formation because no osteocalcin expressing cells are detected in the flushed marrow by in situ hybridization. Limiting dilution analysis shows that, in normal bone marrow, 1 of 2.2 x 10(5) cells has the potency to form a bone nodule and to express ALP, collagen, and osteocalcin in a temporal fashion. Upon in vivo treatment with 5-fluorouracil (5-FU), this frequency increases 12-fold, eg, 1 in 1.75 x 10(4) cells shows osteogenic activity. In comparison, fibroblast colony forming cells occur at a frequency of 1 of 2.5 x 10(4) or 1 of 5 x 10(3) plated cells in normal or 5-FU-treated marrow, respectively. Using density centrifugation, the majority of the osteoprogenitor cells in 5-FU marrow are found in the low-density (1.066 to 1.067 g/mL) fractions. In addition, these cells bind to nylon wool but not to plastic and aggregate in the presence of wheat germ agglutinin and soybean agglutinin. Scanning and transmission electron microscopy shows that the bone nodules in 5-FU marrow cultures are composed of fibroblastoid cells embedded in a mineralized collagen matrix. In conclusion, our results show that a quiescent cell population in the murine bone marrow with fibroblastoid characteristics contributes to the formation of bone-like nodules in vitro.

  19. Determination of mechanical stiffness of bone by pQCT measurements: correlation with non-destructive mechanical four-point bending test data.

    PubMed

    Martin, Daniel E; Severns, Anne E; Kabo, J M J Michael

    2004-08-01

    Mechanical tests of bone provide valuable information about material and structural properties important for understanding bone pathology in both clinical and research settings, but no previous studies have produced applicable non-invasive, quantitative estimates of bending stiffness. The goal of this study was to evaluate the effectiveness of using peripheral quantitative computed tomography (pQCT) data to accurately compute the bending stiffness of bone. Normal rabbit humeri (N=8) were scanned at their mid-diaphyses using pQCT. The average bone mineral densities and the cross-sectional moments of inertia were computed from the pQCT cross-sections. Bending stiffness was determined as a function of the elastic modulus of compact bone (based on the local bone mineral density), cross-sectional moment of inertia, and simulated quasistatic strain rate. The actual bending stiffness of the bones was determined using four-point bending tests. Comparison of the bending stiffness estimated from the pQCT data and the mechanical bending stiffness revealed excellent correlation (R2=0.96). The bending stiffness from the pQCT data was on average 103% of that obtained from the four-point bending tests. The results indicate that pQCT data can be used to accurately determine the bending stiffness of normal bone. Possible applications include temporal quantification of fracture healing and risk management of osteoporosis or other bone pathologies.

  20. What Is Breast in the Bone?

    PubMed

    Shemanko, Carrie S; Cong, Yingying; Forsyth, Amanda

    2016-10-22

    The normal developmental program that prolactin generates in the mammary gland is usurped in the cancerous process and can be used out of its normal cellular context at a site of secondary metastasis. Prolactin is a pleiotropic peptide hormone and cytokine that is secreted from the pituitary gland, as well as from normal and cancerous breast cells. Experimental and epidemiologic data suggest that prolactin is associated with mammary gland development, and also the increased risk of breast tumors and metastatic disease in postmenopausal women. Breast cancer spreads to the bone in approximately 70% of cases with advanced breast cancer. Despite treatment, new bone metastases will still occur in 30%-50% of patients. Only 20% of patients with bone metastases survive five years after the diagnosis of bone metastasis. The breast cancer cells in the bone microenvironment release soluble factors that engage osteoclasts and/or osteoblasts and result in bone breakdown. The breakdown of the bone matrix, in turn, enhances the proliferation of the cancer cells, creating a vicious cycle. Recently, it was shown that prolactin accelerated the breast cancer cell-mediated osteoclast differentiation and bone breakdown by the regulation of breast cancer-secreted proteins. Interestingly, prolactin has the potential to affect multiple proteins that are involved in both breast development and likely bone metastasis, as well. Prolactin has normal bone homeostatic roles and, combined with the natural "recycling" of proteins in different tissues that can be used for breast development and function, or in bone function, increases the impact of prolactin signaling in breast cancer bone metastases. Thus, this review will focus on the role of prolactin in breast development, bone homeostasis and in breast cancer to bone metastases, covering the molecular aspects of the vicious cycle.

  1. A single injection of the anabolic bone agent, parathyroid hormone-collagen binding domain (PTH-CBD), results in sustained increases in bone mineral density for up to 12 months in normal female mice.

    PubMed

    Ponnapakkam, Tulasi; Katikaneni, Ranjitha; Suda, Hirofumi; Miyata, Shigeru; Matsushita, Osamu; Sakon, Joshua; Gensure, Robert C

    2012-09-01

    Parathyroid hormone (PTH) is the most effective osteoporosis treatment, but it is only effective if administered by daily injections. We fused PTH(1-33) to a collagen binding domain (PTH-CBD) to extend its activity, and have shown an anabolic bone effect with monthly dosing. We tested the duration of action of this compound with different routes of administration. Normal young C57BL/6J mice received a single intraperitoneal injection of PTH-CBD (320 μg/kg). PTH-CBD treated mice showed a 22.2 % increase in bone mineral density (BMD) at 6 months and 12.8 % increase at 12 months. When administered by subcutaneous injection, PTH-CBD again caused increases in BMD, 15.2 % at 6 months and 14.3 % at 12 months. Radiolabeled PTH-CBD was concentrated in bone and skin after either route of administration. We further investigated skin effects of PTH-CBD, and histological analysis revealed an apparent increase in anagen VI hair follicles. A single dose of PTH-CBD caused sustained increases in BMD by >10 % for 1 year in normal mice, regardless of the route of administration, thus showing promise as a potential osteoporosis therapy.

  2. An optimal set of landmarks for metopic craniosynostosis diagnosis from shape analysis of pediatric CT scans of the head

    NASA Astrophysics Data System (ADS)

    Mendoza, Carlos S.; Safdar, Nabile; Myers, Emmarie; Kittisarapong, Tanakorn; Rogers, Gary F.; Linguraru, Marius George

    2013-02-01

    Craniosynostosis (premature fusion of skull sutures) is a severe condition present in one of every 2000 newborns. Metopic craniosynostosis, accounting for 20-27% of cases, is diagnosed qualitatively in terms of skull shape abnormality, a subjective call of the surgeon. In this paper we introduce a new quantitative diagnostic feature for metopic craniosynostosis derived optimally from shape analysis of CT scans of the skull. We built a robust shape analysis pipeline that is capable of obtaining local shape differences in comparison to normal anatomy. Spatial normalization using 7-degree-of-freedom registration of the base of the skull is followed by a novel bone labeling strategy based on graph-cuts according to labeling priors. The statistical shape model built from 94 normal subjects allows matching a patient's anatomy to its most similar normal subject. Subsequently, the computation of local malformations from a normal subject allows characterization of the points of maximum malformation on each of the frontal bones adjacent to the metopic suture, and on the suture itself. Our results show that the malformations at these locations vary significantly (p<0.001) between abnormal/normal subjects and that an accurate diagnosis can be achieved using linear regression from these automatic measurements with an area under the curve for the receiver operating characteristic of 0.97.

  3. Growth hormone and bone health.

    PubMed

    Bex, Marie; Bouillon, Roger

    2003-01-01

    Growth hormone (GH) and insulin-like growth factor-I have major effects on growth plate chondrocytes and all bone cells. Untreated childhood-onset GH deficiency (GHD) markedly impairs linear growth as well as three-dimensional bone size. Adult peak bone mass is therefore about 50% that of adults with normal height. This is mainly an effect on bone volume, whereas true bone mineral density (BMD; g/cm(3)) is virtually normal, as demonstrated in a large cohort of untreated Russian adults with childhood-onset GHD. The prevalence of fractures in these untreated childhood-onset GHD adults was, however, markedly and significantly increased in comparison with normal Russian adults. This clearly indicates that bone mass and bone size matter more than true bone density. Adequate treatment with GH can largely correct bone size and in several studies also bone mass, but it usually requires more than 5 years of continuous treatment. Adult-onset GHD decreases bone turnover and results in a mild deficit, generally between -0.5 and -1.0 z-score, in bone mineral content and BMD of the lumbar spine, radius and femoral neck. Cross-sectional surveys and the KIMS data suggest an increased incidence of fractures. GH replacement therapy increases bone turnover. The three controlled studies with follow-up periods of 18 and 24 months demonstrated a modest increase in BMD of the lumbar spine and femoral neck in male adults with adult-onset GHD, whereas no significant changes in BMD were observed in women. GHD, whether childhood- or adult-onset, impairs bone mass and strength. Appropriate substitution therapy can largely correct these deficiencies if given over a prolonged period. GH therapy for other bone disorders not associated with primary GHD needs further study but may well be beneficial because of its positive effects on the bone remodelling cycle. Copyright 2003 S. Karger AG, Basel

  4. Enhancement pattern of the normal facial nerve at 3.0 T temporal MRI.

    PubMed

    Hong, H S; Yi, B-H; Cha, J-G; Park, S-J; Kim, D H; Lee, H K; Lee, J-D

    2010-02-01

    The purpose of this study was to evaluate the enhancement pattern of the normal facial nerve at 3.0 T temporal MRI. We reviewed the medical records of 20 patients and evaluated 40 clinically normal facial nerves demonstrated by 3.0 T temporal MRI. The grade of enhancement of the facial nerve was visually scaled from 0 to 3. The patients comprised 11 men and 9 women, and the mean age was 39.7 years. The reasons for the MRI were sudden hearing loss (11 patients), Méniàre's disease (6) and tinnitus (7). Temporal MR scans were obtained by fluid-attenuated inversion-recovery (FLAIR) and diffusion-weighted imaging of the brain; three-dimensional (3D) fast imaging employing steady-state acquisition (FIESTA) images of the temporal bone with a 0.77 mm thickness, and pre-contrast and contrast-enhanced 3D spoiled gradient record acquisition in the steady state (SPGR) of the temporal bone with a 1 mm thickness, were obtained with 3.0 T MR scanning. 40 nerves (100%) were visibly enhanced along at least one segment of the facial nerve. The enhanced segments included the geniculate ganglion (77.5%), tympanic segment (37.5%) and mastoid segment (100%). Even the facial nerve in the internal auditory canal (15%) and labyrinthine segments (5%) showed mild enhancement. The use of high-resolution, high signal-to-noise ratio (with 3 T MRI), thin-section contrast-enhanced 3D SPGR sequences showed enhancement of the normal facial nerve along the whole course of the nerve; however, only mild enhancement was observed in areas associated with acute neuritis, namely the canalicular and labyrinthine segment.

  5. Bone Mineral Density, Bone Turnover, and Systemic Inflammation in Non-cirrhotics with Chronic Hepatitis C.

    PubMed

    Lai, Jennifer C; Shoback, Dolores M; Zipperstein, Jacob; Lizaola, Blanca; Tseng, Samuel; Terrault, Norah A

    2015-06-01

    Whether chronic HCV, a disease characterized by systemic inflammation, impacts bone mineral density (BMD) independent of cirrhosis is unknown. We aimed to evaluate the association between BMD, systemic inflammation, and markers of bone turnover in chronic HCV without cirrhosis. Non-cirrhotics, 40-60 years old, with chronic HCV underwent measurement of: (1) BMD by dual-energy X-ray absorptiometry scan and (2) serum markers of systemic inflammation and bone turnover. By Chi-squared or t test, we compared those with normal versus low BMD. Of the 60 non-cirrhotics, 53 % were female and 53 % Caucasian. Mean (SD) age was 53.3 years (5.7), total bilirubin 0.7 mg/dL (0.3), creatinine 0.8 mg/dL (0.2), and body mass index 28.4 kg/m(2) (6.5). Low BMD was observed in 42 %: 30 % had osteopenia, 12 % had osteoporosis. Elevated tumor necrosis factor α, interleukin-6, and C-reactive protein levels were found in 26, 32, and 5 %, respectively, but did not differ by BMD group (p > 0.05). Patients with low BMD had higher serum phosphorus (4.1 vs. 3.5 mg/dL) and pro-peptide of type 1 collagen (P1NP; 73.1 vs. 47.5 ng/mL) [p < 0.05], but similar bone-specific alkaline phosphatase, serum C-telopeptide, and parathyroid hormone levels. Low BMD is prevalent in 40- to 60-year-old non-cirrhotics with chronic HCV, but not associated with systemic inflammatory markers. Elevated P1NP levels may help to identify those at increased risk of bone complications in this population. Chronic HCV should be considered a risk factor for bone loss, prompting earlier BMD assessments in both men and women.

  6. Bone scintigraphy and secondary osteomalacia due to nephrotoxicity in a chronic hepatitis B patient treated with tenofovir.

    PubMed

    Gómez Martinez, M V; Gallardo, F G; Pirogova, T; García-Samaniego, J

    2014-01-01

    Tenofovir is a nucleotide analogue used for the treatment of chronic hepatitis B and HIV infection. The safety of tenofovir is high but it has been described that tenofovir produces tubular toxicity and Fanconi's syndrome in some HIV-infected patients. To our knowledge this is the first documented case of bone involvement in Fanconi's syndrome in a patient treated with tenofovir for chronic hepatitis B without HIV coinfection. Bone scintigraphy has proven to be very useful for the diagnosis of secondary osteomalacia. Normalization of the bone scan after the withdrawal of the drug and the decline in alkaline phosphatase and phosphate serum levels reinforce the cause-effect relationship. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  7. Quantifying migration and polarization of murine mesenchymal stem cells on different bone substitutes by confocal laser scanning microscopy.

    PubMed

    Roldán, J C; Chang, E; Kelantan, M; Jazayeri, L; Deisinger, U; Detsch, R; Reichert, T E; Gurtner, G C

    2010-12-01

    Cell migration is preceded by cell polarization. The aim of the present study was to evaluate the impact of the geometry of different bone substitutes on cell morphology and chemical responses in vitro. Cell polarization and migration were monitored temporally by using confocal laser scanning microscopy (CLSM) to follow green fluorescent protein (GFP)±mesenchymal stem cells (MSCs) on anorganic cancellous bovine bone (Bio-Oss(®)), β-tricalcium phosphate (β-TCP) (chronOS(®)) and highly porous calcium phosphate ceramics (Friedrich-Baur-Research-Institute for Biomaterials, Germany). Differentiation GFP±MSCs was observed using pro-angiogenic and pro-osteogenic biomarkers. At the third day of culture polarized vs. non-polarized cellular sub-populations were clearly established. Biomaterials that showed more than 40% of polarized cells at the 3rd day of culture, subsequently showed an enhanced cell migration compared to biomaterials, where non-polarized cells predominated (p<0.003). This trend continued untill the 7th day of culture (p<0.003). The expression of vascular endothelial growth factor was enhanced in biomaterials where cell polarization predominated at the 7th day of culture (p=0.001). This model opens an interesting approach to understand osteoconductivity at a cellular level. MSCs are promising in bone tissue engineering considering the strong angiogenic effect before differentiation occurs. Copyright © 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. Phantom-less bone mineral density (BMD) measurement using dual energy computed tomography-based 3-material decomposition

    NASA Astrophysics Data System (ADS)

    Hofmann, Philipp; Sedlmair, Martin; Krauss, Bernhard; Wichmann, Julian L.; Bauer, Ralf W.; Flohr, Thomas G.; Mahnken, Andreas H.

    2016-03-01

    Osteoporosis is a degenerative bone disease usually diagnosed at the manifestation of fragility fractures, which severely endanger the health of especially the elderly. To ensure timely therapeutic countermeasures, noninvasive and widely applicable diagnostic methods are required. Currently the primary quantifiable indicator for bone stability, bone mineral density (BMD), is obtained either by DEXA (Dual-energy X-ray absorptiometry) or qCT (quantitative CT). Both have respective advantages and disadvantages, with DEXA being considered as gold standard. For timely diagnosis of osteoporosis, another CT-based method is presented. A Dual Energy CT reconstruction workflow is being developed to evaluate BMD by evaluating lumbar spine (L1-L4) DE-CT images. The workflow is ROI-based and automated for practical use. A dual energy 3-material decomposition algorithm is used to differentiate bone from soft tissue and fat attenuation. The algorithm uses material attenuation coefficients on different beam energy levels. The bone fraction of the three different tissues is used to calculate the amount of hydroxylapatite in the trabecular bone of the corpus vertebrae inside a predefined ROI. Calibrations have been performed to obtain volumetric bone mineral density (vBMD) without having to add a calibration phantom or to use special scan protocols or hardware. Accuracy and precision are dependent on image noise and comparable to qCT images. Clinical indications are in accordance with the DEXA gold standard. The decomposition-based workflow shows bone degradation effects normally not visible on standard CT images which would induce errors in normal qCT results.

  9. Effect of various factors on pull out strength of pedicle screw in normal and osteoporotic cancellous bone models.

    PubMed

    Varghese, Vicky; Saravana Kumar, Gurunathan; Krishnan, Venkatesh

    2017-02-01

    Pedicle screws are widely used for the treatment of spinal instability by spine fusion. Screw loosening is a major problem of spine fusion, contributing to delayed patient recovery. The present study aimed to understand the factor and interaction effects of density, insertion depth and insertion angle on pedicle screw pull out strength and insertion torque. A pull out study was carried out on rigid polyurethane foam blocks representing osteoporotic to normal bone densities according to the ASTM-1839 standard. It was found that density contributes most to pullout strength and insertion torque. The interaction effect is significant (p < 0.05) and contributes 8% to pull out strength. Axial pullout strength was 34% lower than angled pull out strength in the osteoporotic bone model. Insertion angle had no significant effect (p > 0.05) on insertion torque. Pullout strength and insertion torque had no significant correlation (p > 0.05) in the case of the extremely osteoporotic bone model. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Reaction of bone nanostructure to a biodegrading Magnesium WZ21 implant - A scanning small-angle X-ray scattering time study.

    PubMed

    Grünewald, T A; Ogier, A; Akbarzadeh, J; Meischel, M; Peterlik, H; Stanzl-Tschegg, S; Löffler, J F; Weinberg, A M; Lichtenegger, H C

    2016-02-01

    Understanding the implant-bone interaction is of prime interest for the development of novel biodegrading implants. Magnesium is a very promising material in the class of biodegrading metallic implants, owing to its mechanical properties and excellent immunologic response during healing. However, the influence of degrading Mg implants on the bone nanostructure is still an open question of crucial importance for the design of novel Mg implant alloys. This study investigates the changes in the nanostructure of bone following the application of a degrading WZ21 Mg implant (2wt% Y, 1wt% Zn, 0.25wt% Ca and 0.15wt% Mn) in a murine model system over the course of 15months by small angle X-ray scattering. Our investigations showed a direct response of the bone nanostructure after as little as 1month with a realignment of nano-sized bone mineral platelets along the bone-implant interface. The growth of new bone tissue after implant resorption is characterized by zones of lower mineral platelet thickness and slightly decreased order in the stacking of the platelets. The preferential orientation of the mineral platelets strongly deviates from the normal orientation along the shaft and still roughly follows the implant direction after 15months. We explain our findings by considering geometrical, mechanical and chemical factors during the process of implant resorption. The advancement of surgical techniques and the increased life expectancy have caused a growing demand for improved bone implants. Ideally, they should be bio-resorbable, support bone as long as necessary and then be replaced by healthy bone tissue. Magnesium is a promising candidate for this purpose. Various studies have demonstrated its excellent mechanical performance, degradation behaviour and immunologic properties. The structural response of bone, however, is not well known. On the nanometer scale, the arrangement of collagen fibers and calcium mineral platelets is an important indicator of structural

  11. The gut microbiota regulates bone mass in mice

    PubMed Central

    Sjögren, Klara; Engdahl, Cecilia; Henning, Petra; Lerner, Ulf H; Tremaroli, Valentina; Lagerquist, Marie K; Bäckhed, Fredrik; Ohlsson, Claes

    2012-01-01

    The gut microbiota modulates host metabolism and development of immune status. Here we show that the gut microbiota is also a major regulator of bone mass in mice. Germ-free (GF) mice exhibit increased bone mass associated with reduced number of osteoclasts per bone surface compared with conventionally raised (CONV-R) mice. Colonization of GF mice with a normal gut microbiota normalizes bone mass. Furthermore, GF mice have decreased frequency of CD4+ T cells and CD11b+/GR 1 osteoclast precursor cells in bone marrow, which could be normalized by colonization. GF mice exhibited reduced expression of inflammatory cytokines in bone and bone marrow compared with CONV-R mice. In summary, the gut microbiota regulates bone mass in mice, and we provide evidence for a mechanism involving altered immune status in bone and thereby affected osteoclast-mediated bone resorption. Further studies are required to evaluate the gut microbiota as a novel therapeutic target for osteoporosis. © 2012 American Society for Bone and Mineral Research. PMID:22407806

  12. Loosening of the total knee arthroplasty: detection by radionuclide bone scanning. [/sup 99m/Tc-methylene diphosphonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, J.C.; Hattner, R.S.; Murray, W.R.

    1980-07-01

    Pain after total knee arthroplasty is a common clinical problem in orthopedics, and prosthetic loosening, often requiring surgical revision, is usually the etiology. Since standard clinical and radiographic diagnostic measures have not proven totally satisfactory, a study of the utility of bone scintigraphy to assess stability of the knee prosthesis was done. Thirty-five patients with 39 prostheses were studied. Seventeen patients with 21 total knee arthroplasties served as controls and were asymptomatic, were stable at surgery, or improved with conservative management. Eighteen knees in 18 symptomatic patients composed the experimental group. Of these, 11 knees were loose at surgery andmore » seven have had surgery recommended. Scintigrams of the knees were obtained using /sup 99m/Tc-MDP, and ranked 0-3 corresponding to increasingly abnormal localization by three observers. Highly significant differences were observed between the abnormal and control groups (p<0.001). Reciprocal changes in sensitivity and specificity with increasingly stringent criteria were shown. While it is apparent that the bone scan cannot be used as the sole diagnostic method for evaluation of prosthetic stability, it does seem to be a useful adjunct along with clinical criteria and radiographic studies.« less

  13. Effect of odanacatib on root resorption and alveolar bone metabolism during orthodontic tooth movement.

    PubMed

    Wei, X X; Chu, J P; Zou, Y Z; Ru, N; Cui, S X; Bai, Y X

    2015-12-22

    The aim of this study was to investigate the effect of local administration of odanacatib (ODN) on orthodontic root resorption and the status of alveolar bone metabolism in rat molars. All specimens were scanned using microcomputed tomography and then the raw images were reconstructed. The total volume of the root resorption craters of the 60 g-NS (normal saline) group was higher than in the 60 g-ODN group and the control group. In the 60 g-NS group, the bone volume fraction values of alveolar bone were significantly decreased compared with the other 2 groups. There were no significant differences in the bone volume fraction values of the tibiae among the 3 groups. The results of tartrate-resistant acid phosphatase-positive (TRAP+) numbers showed that there was no difference between the 60 g-NS group and the 60 g-ODN group. The expression of cathepsin K was decreased significantly in the 60 g-ODN group. These results indicate that ODN reduces orthodontics-induced external root resorption and increases alveolar bone metabolism. This may be because ODN inhibits the activity of odontoclasts, but maintains the quantity of odontoclasts and enhances bone formation. ODN promotes local alveolar bone metabolism, but does not affect systemic bone metabolism.

  14. Correction of X-linked immunodeficient mice by competitive reconstitution with limiting numbers of normal bone marrow cells.

    PubMed

    Rohrer, J; Conley, M E

    1999-11-15

    Gene therapy for inherited disorders is more likely to succeed if gene-corrected cells have a proliferative or survival advantage compared with mutant cells. We used a competitive reconstitution model to evaluate the strength of the selective advantage that Btk normal cells have in Btk-deficient xid mice. Whereas 2,500 normal bone marrow cells when mixed with 497,500 xid cells restored serum IgM and IgG3 levels to near normal concentrations in 3 of 5 lethally irradiated mice, 25,000 normal cells mixed with 475,000 xid cells reliably restored serum IgM and IgG3 concentrations and the thymus-independent antibody response in all transplanted mice. Reconstitution was not dependent on lethal irradiation, because sublethally irradiated mice all had elevated serum IgM and IgG3 by 30 weeks postreconstitution when receiving 25,000 normal cells. Furthermore, the xid defect was corrected with as few as 10% of the splenic B cells expressing a normal Btk. When normal donor cells were sorted into B220(+)/CD19(+) committed B cells and B220(-)/CD19(-) cell populations, only the B220(-)/CD19(-) cells provided long-term B-cell reconstitution in sublethally irradiated mice. These findings suggest that even inefficient gene therapy may provide clinical benefit for patients with XLA.

  15. Subtraction micro-computed tomography of angiogenesis and osteogenesis during bone repair using synchrotron radiation with a novel contrast agent.

    PubMed

    Matsumoto, Takeshi; Goto, Daichi; Sato, Syota

    2013-09-01

    Quantitative three-dimensional (3D) imaging of angiogenesis during bone repair remains an experimental challenge. We developed a novel contrast agent containing 0.07- to 0.1-μm particles of zirconium dioxide (ZrCA) and established subtraction μCT using synchrotron radiation (sSRCT) for quantitative imaging of angiogenesis and bone repair. This method was applied to a rat model of tibial bone repair 3 days (DAY3; n = 2), 5 days (DAY5; n = 8), or 10 days (DAY10; n = 8) after drill-hole injury. Using the same drill-hole defect model, its potential use was illustrated by comparison of bone repair between hindlimbs subjected to mechanical unloading (n = 6) and normal weight bearing (n = 6) for 10 days. Following vascular casting with ZrCA, the defect site was scanned with 17.9- and 18.1-keV X-rays. In the latter, image contrast between ZrCA-filled vasculature and bone was enhanced owing to the sharp absorption jump of zirconium dioxide at 18.0 keV (k-edge). The two scan data sets were reconstructed with 2.74-μm voxel resolution, registered by mutual information, and digitally subtracted to extract the contrast-enhanced vascular image. K2HPO4 phantom solutions were scanned at 17.9 keV for quantitative evaluation of bone mineral. Angiogenesis had already started, but new bone formation was not found on DAY3. New bone emerged near the defect boundary on DAY5 and took the form of trabecular-like structure invaded by microvessels on DAY10. Vascular and bone volume fractions, blood vessel and bone thicknesses, and mineralization were higher on DAY10 than on DAY5. All these parameters were found to be decreased after 10 days of hindlimb unloading, indicating the possible involvement of angiogenesis in bone repair impairment caused by reduced mechanical stimuli. In conclusion, the combined technique of sSRCT and ZrCA vascular casting is suitable for quantitative 3D imaging of angiogenesis and its surrounding bone regeneration. This method will be useful for better

  16. Trapezium Bone Density-A Comparison of Measurements by DXA and CT.

    PubMed

    Breddam Mosegaard, Sebastian; Breddam Mosegaard, Kamille; Bouteldja, Nadia; Bæk Hansen, Torben; Stilling, Maiken

    2018-01-18

    Bone density may influence the primary fixation of cementless implants, and poor bone density may increase the risk of implant failure. Before deciding on using total joint replacement as treatment in osteoarthritis of the trapeziometacarpal joint, it is valuable to determine the trapezium bone density. The aim of this study was to: (1) determine the correlation between measurements of bone mineral density of the trapezium obtained by dual-energy X-ray absorptiometry (DXA) scans by a circumference method and a new inner-ellipse method; and (2) to compare those to measurements of bone density obtained by computerized tomography (CT)-scans in Hounsfield units (HU). We included 71 hands from 59 patients with a mean age of 59 years (43-77). All patients had Eaton-Glickel stage II-IV trapeziometacarpal (TM) joint osteoarthritis, were under evaluation for trapeziometacarpal total joint replacement, and underwent DXA and CT wrist scans. There was an excellent correlation (r = 0.94) between DXA bone mineral density measures using the circumference and the inner-ellipse method. There was a moderate correlation between bone density measures obtained by DXA- and CT-scans with (r = 0.49) for the circumference method, and (r = 0.55) for the inner-ellipse method. DXA may be used in pre-operative evaluation of the trapezium bone quality, and the simpler DXA inner-ellipse measurement method can replace the DXA circumference method in estimation of bone density of the trapezium.

  17. Anorexia Nervosa and Bone

    PubMed Central

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN) is a condition of severe low weight that is associated with low bone mass, impaired bone structure and reduced bone strength, all of which contribute to increased fracture risk., Adolescents with AN have decreased rates of bone accrual compared with normal-weight controls, raising addition concerns of suboptimal peak bone mass and future bone health in this age group. Changes in lean mass and compartmental fat depots, hormonal alterations secondary to nutritional factors contribute to impaired bone metabolism in AN. The best strategy to improve bone density is to regain weight and menstrual function. Oral estrogen-progesterone combinations are not effective in increasing bone density in adults or adolescents with AN, and transdermal testosterone replacement is not effective in increasing bone density in adult women with AN. However, physiologic estrogen replacement as transdermal estradiol with cyclic progesterone does increase bone accrual rates in adolescents with AN to approximate that in normal-weight controls, leading to a maintenance of bone density Z-scores. A recent study has shown that risedronate increases bone density at the spine and hip in adult women with AN. However, bisphosphonates should be used with great caution in women of reproductive age given their long half-life and potential for teratogenicity, and should be considered only in patients with low bone density and clinically significant fractures when non-pharmacological therapies for weight gain are ineffective. Further studies are necessary to determine the best therapeutic strategies for low bone density in AN. PMID:24898127

  18. The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli

    NASA Technical Reports Server (NTRS)

    Rubin, C.; Xu, G.; Judex, S.

    2001-01-01

    It is generally believed that mechanical signals must be large in order to be anabolic to bone tissue. Recent evidence indicates, however, that extremely low-magnitude (<10 microstrain) mechanical signals readily stimulate bone formation if induced at a high frequency. We examined the ability of extremely low-magnitude, high-frequency mechanical signals to restore anabolic bone cell activity inhibited by disuse. Adult female rats were randomly assigned to six groups: baseline control, age-matched control, mechanically stimulated for 10 min/day, disuse (hind limb suspension), disuse interrupted by 10 min/day of weight bearing, and disuse interrupted by 10 min/day of mechanical stimulation. After a 28 day protocol, bone formation rates (BFR) in the proximal tibia of mechanically stimulated rats increased compared with age-matched control (+97%). Disuse alone reduced BFR (-92%), a suppression only slightly curbed when disuse was interrupted by 10 min of weight bearing (-61%). In contrast, disuse interrupted by 10 min per day of low-level mechanical intervention normalized BFR to values seen in age-matched controls. This work indicates that this noninvasive, extremely low-level stimulus may provide an effective biomechanical intervention for the bone loss that plagues long-term space flight, bed rest, or immobilization caused by paralysis.

  19. Cholesteatomas of the temporal bone: role of computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.W.; Voorhees, R.L.; Lufkin, R.B.

    1983-09-01

    Computed tomography (CT) of the temporal bone was performed in 64 patients thought to have a cholesteatoma of the middle ear. Twenty had not had surgery before, while 44 had been operated on; special consideration was given to 21 patients who were scanned immediately before a second operation and had confirmation of the CT findings. Inflammatory disease without cholesteatoma was characterized by absence of erosion of the otic capsule or ossicular chain. Sharply circumscribed cholesteatomas were easily diagnosed by CT. When they were combined with scarring, granulation tissue, or postsurgical changes, the resulting soft-tissue masses were indistinguishable, although cholesteatoma maymore » be suspected if there is evidence of progressive bone erosion about the middle ear. CT can play a major role in postoperative follow-up by confirming that the ear is normal and demonstrating displacement of ossicular grafts or prostheses.« less

  20. A novel use of 3D printing model demonstrates the effects of deteriorated trabecular bone structure on bone stiffness and strength.

    PubMed

    Barak, Meir Max; Black, Margaret Arielle

    2018-02-01

    Trabecular bone structure is crucial to normal mechanical behavior of bones. Studies have shown that osteoporosis negatively affects trabecular bone structure, mainly by reducing bone volume fraction (BV/TV) and thus increasing fracture risk. One major limitation in assessing and quantifying the effect of this structural deterioration is that no two trabecular structures are identical. Thus, when we compare a group of healthy bones against a different group of bones that experienced resorption (i.e. decreased BV/TV) we only discover an "average" mechanical effect. It is impossible to quantify the mechanical effect of individual structural deterioration for each sample, simply because we never have the same sample in both states (intact and deteriorated structure). 3D printing is a new technology that can assist in overcoming this issue. Here we report a preliminary study that compares a healthy 3D printed trabecular bone model with the same model after bone resorption was simulated. Since the deteriorated structural bone model is derived from the healthy one, it is possible to directly estimate (percentage wise) the decrease of tissue stiffness and strength as a result of bone resorption for this specific structure. Our results demonstrate that a relatively small decrease in BV/TV (about 8%) leads to a dramatic decrease in structural strength (24%) and structural stiffness (17%), (P < 0.01). Structural strength decreased from an average of 9.14 ± 2.85MPa to 6.97 ± 2.44MPa, while structural stiffness decreased from an average of 282.5 ± 63.4N/mm to 233.8 ± 51.2N/mm. This study demonstrates that 3D printing is a novel and valuable tool for quantifying the effect of structural deterioration on the mechanical properties of trabecular bone. In the future, this approach may help us attain better personal fracture risk assessments by CT scanning, 3D printing and mechanically testing individual bone replicas from patients suffering excessive bone resorption. Copyright

  1. Differences in Bone Quality between High versus Low Turnover Renal Osteodystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Daniel S.; Pienkowski, David; Faugere, Marie-Claude

    2012-01-01

    Abnormal bone turnover is common in chronic kidney disease (CKD), but its effects on bone quality remain unclear. This study sought to quantify the relationship between abnormal bone turnover and bone quality. Iliac crest bone biopsies were obtained from CKD-5 patients on dialysis with low (n=18) or high (n=17) turnover, and from volunteers (n=12) with normal turnover and normal kidney function. Histomorphometric methods were used to quantify the microstructural parameters; Fourier transform infrared spectroscopy and nanoindentation were used to quantify the material and mechanical properties in bone. Reduced mineral-to-matrix ratio, mineral crystal size, stiffness and hardness were observed in bonemore » with high turnover compared to bone with normal or low turnover. Decreased cancellous bone volume and trabecular thickness were seen in bone with low turnover compared to bone with normal or high turnover. Bone quality, as defined by its microstructural, material, and mechanical properties, is related to bone turnover. These data suggest that turnover related alterations in bone quality may contribute to the known diminished mechanical competence of bone in CKD patients, albeit from different mechanisms for bone with high (material abnormality) vs. low (microstructural alteration) turnover. The present findings suggest that improved treatments for renal osteodystrophy should seek to avoid low or high bone turnover and aim for turnover rates as close to normal as possible.« less

  2. Normal ranges of fetal nasal bone length during the second trimester in an Iranian population.

    PubMed

    Rahimi-Sharbaf, Fatemeh; Tahmasebpour, Ahmad-Reza; Pirjani, Reihaneh; Ghaffari, Saeed Reza; Rahimi-Foroushani, Abbas

    2011-04-01

    To provide a normal reference range for nasal bone length (NBL) during the second trimester of pregnancy in an Iranian population. This cross-sectional study was performed on 3201 fetuses at 15 to 28 weeks of gestational age (GA). Both singleton and twin fetuses were evaluated. The relationship between NBL and GA was determined and percentile values for each gestational week were provided. NBL measurement was obtained in 98% of singleton and 96% of twin fetuses. There was a linear relationship between GA and NBL both in singleton (R(2) = 0.62) and in twin (R(2) = 0.74) fetuses. There was no significant difference between twins regarding NBL (p = 0.18). We have provided the normal reference range for NBL during the second trimester in an Iranian population. NBL in singleton and twin fetuses is similar and there is no significant difference between twins regarding NBL. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Determination of Small Animal Long Bone Properties Using Densitometry

    NASA Technical Reports Server (NTRS)

    Breit, Gregory A.; Goldberg, BethAnn K.; Whalen, Robert T.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Assessment of bone structural property changes due to loading regimens or pharmacological treatment typically requires destructive mechanical testing and sectioning. Our group has accurately and non-destructively estimated three dimensional cross-sectional areal properties (principal moments of inertia, Imax and Imin, and principal angle, Theta) of human cadaver long bones from pixel-by-pixel analysis of three non-coplanar densitometry scans. Because the scanner beam width is on the order of typical small animal diapbyseal diameters, applying this technique to high-resolution scans of rat long bones necessitates additional processing to minimize errors induced by beam smearing, such as dependence on sample orientation and overestimation of Imax and Imin. We hypothesized that these errors are correctable by digital image processing of the raw scan data. In all cases, four scans, using only the low energy data (Hologic QDR-1000W, small animal mode), are averaged to increase image signal-to-noise ratio. Raw scans are additionally processed by interpolation, deconvolution by a filter derived from scanner beam characteristics, and masking using a variable threshold based on image dynamic range. To assess accuracy, we scanned an aluminum step phantom at 12 orientations over a range of 180 deg about the longitudinal axis, in 15 deg increments. The phantom dimensions (2.5, 3.1, 3.8 mm x 4.4 mm; Imin/Imax: 0.33-0.74) were comparable to the dimensions of a rat femur which was also scanned. Cross-sectional properties were determined at 0.25 mm increments along the length of the phantom and femur. The table shows average error (+/- SD) from theory of Imax, Imin, and Theta) over the 12 orientations, calculated from raw and fully processed phantom images, as well as standard deviations about the mean for the femur scans. Processing of phantom scans increased agreement with theory, indicating improved accuracy. Smaller standard deviations with processing indicate increased

  4. Bone scintigraphy in the investigation of occult lameness in the dog.

    PubMed

    Schwarz, T; Johnson, V S; Voute, L; Sullivan, M

    2004-05-01

    99mTechnetium methylene diphosphonate (99mTc-MDP) scintigraphy was performed in 14 dogs of different breeds after clinical lameness examination, radiography and synovial fluid analysis failed to localise lameness to a specific area of pain. The scintigraphic protocol included an intravenous injection of 17 MBq 99mTc-MDP/kg bodyweight and vascular, soft tissue and bone phase scans in standardised positions with a low-energy all-purpose collimator. Confirmation of diagnosis was achieved in nine dogs by arthroscopy, repeated lesion-orientated radiography, computed tomography and response to treatment. In seven cases, bone phase scans showed single elbow uptakes, in two cases unilateral limb uptake, and in one case each a single shoulder and tibia uptake; in three cases there was no increased uptake. Vascular and soft tissue phase images did not reveal additional information. Diagnosis of humeral condyle fissures, a fragmented medial coronoid process, panosteitis and arthropathy was possible in nine cases. Skeletal pathology was ruled out in three normal scintigrams. In two dogs with unilateral uptake of multiple joints, no diagnostic benefit was gained from scintigraphy. The highly sensitive and relatively specific uptake allowed localisation and characterisation or exclusion of skeletal lesions in most dogs.

  5. Assessment of bone health in children with disabilities.

    PubMed

    Kecskemethy, Heidi H; Harcke, H Theodore

    2014-01-01

    Evaluating the bone health of children with disabilities is challenging and requires consideration of many factors in clinical decision-making. Feeding problems and growth deficits, immobility/inability to bear weight, effect of medications, and the nature of his or her disease can all directly affect a child's overall picture of bone health. Familiarity with the tools available to assess bone health is important for practitioners. The most commonly used method to assess bone density, dual energy x-ray absorptiometry, can be performed effectively when one appreciates the techniques that make scanning patients with disabilities possible. There are specific techniques that are especially useful for measuring bone density in children with disabilities; standard body sites are not always obtainable. Consideration of clinical condition and treatment must be considered when interpreting dual energy x-ray absorptiometry scans. Serial measurements have been shown to be effective in monitoring change in bone content and in providing information on which to base decisions regarding medical treatment.

  6. A nonparametric spatial scan statistic for continuous data.

    PubMed

    Jung, Inkyung; Cho, Ho Jin

    2015-10-20

    Spatial scan statistics are widely used for spatial cluster detection, and several parametric models exist. For continuous data, a normal-based scan statistic can be used. However, the performance of the model has not been fully evaluated for non-normal data. We propose a nonparametric spatial scan statistic based on the Wilcoxon rank-sum test statistic and compared the performance of the method with parametric models via a simulation study under various scenarios. The nonparametric method outperforms the normal-based scan statistic in terms of power and accuracy in almost all cases under consideration in the simulation study. The proposed nonparametric spatial scan statistic is therefore an excellent alternative to the normal model for continuous data and is especially useful for data following skewed or heavy-tailed distributions.

  7. The short-term effects of cisplatin chemotherapy on bone turnover.

    PubMed

    Young, D R; Virolainen, P; Inoue, N; Frassica, F J; Chao, E Y

    1997-11-01

    Cisplatin is an effective agent in the treatment of osteosarcoma of bone but little is known of its effects on normal bone turnover. Twenty-four dogs divided into three study groups were used to study the effect of cisplatin on normal bone turnover at the distant site of surgery. Group 1 served as the control group, group 2 received four cycles of cisplatin every 3 weeks before the surgery, and group 3 received four cycles postoperatively. The bone turnover rate was evaluated by measuring levels of systemic bone markers, osteocalcin, alkaline phospohatase, urine pyridinoline cross-links, and by determination histomorphometric indices. Histomorphological analysis showed poor correlation on bone formation with systemic bone markers at distant sites of surgery. Histomorphometrically normal bone turnover was affected by administration of cisplatin, but the effect was temporary, late, and less significant than what occurred at the surgical site. Our data showed that significant effects of cisplatin are observed at the site of active cellular induction and proliferation, such as implant-host interface, and less effects are seen at the sites of normal bone turnover.

  8. Onlay bone augmentation on mouse calvarial bone using a hydroxyapatite/collagen composite material with total blood or platelet-rich plasma.

    PubMed

    Ohba, Seigo; Sumita, Yoshinori; Umebayashi, Mayumi; Yoshimura, Hitoshi; Yoshida, Hisato; Matsuda, Shinpei; Kimura, Hideki; Asahina, Izumi; Sano, Kazuo

    2016-01-01

    The aim of this study was to assess newly formed onlay bone on mouse calvarial bone using a new artificial bone material, a hydroxyapatite/collagen composite, with total blood or platelet-rich plasma. The hydroxyapatite/collagen composite material with normal saline, total blood or platelet-rich plasma was transplanted on mouse calvarial bone. The mice were sacrificed and the specimens were harvested four weeks after surgery. The newly formed bone area was measured on hematoxylin and eosin stained specimens using Image J software. The hydroxyapatite/collagen composite materials with total blood or platelet-rich plasma induced a significantly greater amount of newly formed bone than that with normal saline. Moreover, bone marrow was observed four weeks after surgery in the transplanted materials with total blood or platelet-rich plasma but not with normal saline. However, there were no significant differences in the amount of newly formed bone between materials used with total blood versus platelet-rich plasma. The hydroxyapatite/collagen composite material was valid for onlay bone augmentation and this material should be soaked in total blood or platelet-rich plasma prior to transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. 3 Tesla (1) H MR spectroscopy of hip bone marrow in a healthy population, assessment of normal fat content values and influence of age and sex.

    PubMed

    Pansini, Vittorio; Monnet, Aurélien; Salleron, Julia; Hardouin, Pierre; Cortet, Bernard; Cotten, Anne

    2014-02-01

    To evaluate in a healthy population normal spectroscopic fat content (FC) values of the hip bone marrow and to assess the influence of age and sex on bone marrow conversion. Eighty volunteers (40 men; 40 women; ages: 20-60 years; divided into four consecutive groups) underwent acetabulum, femoral head, femoral neck, greater trochanter, and diaphysis localized (1) H MR spectroscopy. FC values of each anatomical site were obtained according to the following formula: Fat content = CH2 /(CH2  + Water)*100. To assess bone marrow conversion, a spectroscopic conversion index (SCI) was calculated as FC neck/FC greater trochanter. FC values showed a gradient as follows: greater trochanter > femoral head > femoral neck > diaphysis > acetabulum in every age group both in men and in women. SCI increased with age both in men and women, showing lower values in women for every age group. We obtained normal spectroscopic FC values from different areas of the hip, according to age and sex. These values may be used as reference values to evaluate, by the means of (1) H MR spectroscopy, pathological conditions affecting hip bone marrow. Copyright © 2013 Wiley Periodicals, Inc.

  10. Moderate chronic kidney disease impairs bone quality in C57Bl/6J mice.

    PubMed

    Heveran, Chelsea M; Ortega, Alicia M; Cureton, Andrew; Clark, Ryan; Livingston, Eric W; Bateman, Ted A; Levi, Moshe; King, Karen B; Ferguson, Virginia L

    2016-05-01

    Chronic kidney disease (CKD) increases bone fracture risk. While the causes of bone fragility in CKD are not clear, the disrupted mineral homeostasis inherent to CKD may cause material quality changes to bone tissue. In this study, 11-week-old male C57Bl/6J mice underwent either 5/6th nephrectomy (5/6 Nx) or sham surgeries. Mice were fed a normal chow diet and euthanized 11weeks post-surgery. Moderate CKD with high bone turnover was established in the 5/6 Nx group as determined through serum chemistry and bone gene expression assays. We compared nanoindentation modulus and mineral volume fraction (assessed through quantitative backscattered scanning electron microscopy) at matched sites in arrays placed on the cortical bone of the tibia mid-diaphysis. Trabecular and cortical bone microarchitecture and whole bone strength were also evaluated. We found that moderate CKD minimally affected bone microarchitecture and did not influence whole bone strength. Meanwhile, bone material quality decreased with CKD; a pattern of altered tissue maturation was observed with 5/6 Nx whereby the newest 60μm of bone tissue adjacent to the periosteal surface had lower indentation modulus and mineral volume fraction than more interior, older bone. The variance of modulus and mineral volume fraction was also altered following 5/6 Nx, implying that tissue-scale heterogeneity may be negatively affected by CKD. The observed lower bone material quality may play a role in the decreased fracture resistance that is clinically associated with human CKD. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Moderate Chronic Kidney Disease Impairs Bone Quality in C57Bl/6J Mice

    PubMed Central

    Heveran, Chelsea M.; Ortega, Alicia M.; Cureton, Andrew; Clark, Ryan; Livingston, Eric; Bateman, Ted; Levi, Moshe; King, Karen B.; Ferguson, Virginia L.

    2016-01-01

    Chronic kidney disease (CKD) increases bone fracture risk. While the causes of bone fragility in CKD are not clear, the disrupted mineral homeostasis inherent to CKD may cause material quality changes to bone tissue. In this study, 11-week old male C57Bl/6J mice underwent either 5/6th nephrectomy (5/6 Nx) or sham procedures. Mice were fed a normal chow diet and euthanized 11 weeks post-surgery. Moderate CKD with high bone turnover was established in the 5/6 Nx group as determined through serum chemistry and bone gene expression assays. We compared nanoindentation modulus and mineral volume fraction (assessed through quantitative backscattered scanning electron microscopy) at matched sites in arrays placed on the cortical bone of the tibia mid-diaphysis. Trabecular and cortical bone microarchitecture (μCT) and whole bone strength were also evaluated. We found that moderate CKD minimally affected bone microarchitecture and did not influence whole bone strength. Meanwhile, bone material quality decreased with CKD; a pattern of altered tissue maturation was observed with 5/6 Nx whereby the newest 60 micrometers of bone tissue adjacent to the periosteal surface had lower indentation modulus and mineral volume fraction than more interior, older bone. The variance of modulus and mineral volume fraction were also altered following 5/6 Nx, implying that tissue-scale heterogeneity may be negatively affected by CKD. The observed lower bone material quality may play a role in the decreased fracture resistance that is clinically associated with human CKD. PMID:26860048

  12. A Bone-Thickness Map as a Guide for Bone-Anchored Port Implantation Surgery in the Temporal Bone

    PubMed Central

    Guignard, Jérémie; Arnold, Andreas; Weisstanner, Christian; Caversaccio, Marco; Stieger, Christof

    2013-01-01

    The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant’s location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map (n = 10) with conventional surgery without assistance (n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient’s safety during BAP surgery in the temporal bone. PMID:28788390

  13. A Bone-Thickness Map as a Guide for Bone-Anchored Port Implantation Surgery in the Temporal Bone.

    PubMed

    Guignard, Jérémie; Arnold, Andreas; Weisstanner, Christian; Caversaccio, Marco; Stieger, Christof

    2013-11-19

    The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant's location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map ( n = 10) with conventional surgery without assistance ( n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient's safety during BAP surgery in the temporal bone.

  14. [An experimental study on the implantation of a biomaterial with electro-activity for replacement of hard tissue in bone].

    PubMed

    Chen, L; Chen, Z; Zhang, M

    2001-12-01

    To assess the effects of a piezoelectric biological ceramic on osteogenesis. Hydroxyapatite (HA) and piezoelectric biological ceramics (hydroxyapatite and barium titanate, HABT) were implanted in the jawbones of 5 dogs, and for sample collection, the dogs were killed separately at 1 week, 2 weeks, 1 month, 2 months and 3 months after implantation. The samples from a rhesus monkey and a blank control were collected 34 months after implantation. The implanted samples and surrounding tissues were subjected to histological observations using light microscopy (LM) and scanning electronmicroscopy (SEM) were made. Compared with the control groups, the HABTs promoted osteogenesis significantly. One week after implantation, new bone tissues were found on the surface vertical to the longitudinal direction of HABT; more bone tissues were found after 2 weeks. HABTs induced the bone tissues to arrange orderly. After two years and ten months of implantation, the piezoelectric bioceramic and bone became monolithic, and the structure of bone was normal. HABTs could promote osteogenesis.

  15. Bone marrow lesions in hip osteoarthritis are characterized by increased bone turnover and enhanced angiogenesis.

    PubMed

    Shabestari, M; Vik, J; Reseland, J E; Eriksen, E F

    2016-10-01

    Bone marrow lesions (BML), previously denoted bone marrow edema, are detected as water signals by magnetic resonance imaging (MRI). Previous histologic studies were unable to demonstrate any edematous changes at the tissue level. Therefore, our aim was to investigate the underlying biological mechanisms of the water signal in MRI scans of bone affected by BML. Tetracycline labeling in addition to water sensitive MRI scans of 30 patients planned for total hip replacement surgery was undertaken. Twenty-one femoral heads revealed BML on MRI, while nine were negative and used as controls (CON). Guided by the MRI images cylindrical biopsies were extracted from areas with BML in the femoral heads. Tissue sections from the biopsies were subjected to histomorphometric image analyses of the cancellous bone envelope. Patients with BML exhibited an average 40- and 18-fold increase of bone formation rate and mineralizing surface, respectively. Additionally, samples with BML demonstrated 2-fold reduction of marrow fat and 28-fold increase of woven bone. Immunohistochemical analysis showed a 4-fold increase of angiogenesis markers CD31 and von Willebrand Factor (vWF) in the BML-group compared to CON. This study indicates that BML are characterized by increased bone turnover, vascularity and angiogenesis in keeping with it being a reparatory process. Thus, the water signal, which is the hallmark of BML on MRI, is most probably reflecting increased tissue vascularity accompanying increased remodeling activity. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Subchondral bone remodeling is related to clinical improvement after joint distraction in the treatment of ankle osteoarthritis

    PubMed Central

    Intema, F.; Thomas, T.P.; Anderson, D.D.; Elkins, J.M.; Brown, T.D.; Amendola, A.; Lafeber, F.P.J.G.; Saltzman, C.L.

    2011-01-01

    Objective In osteoarthritis (OA), subchondral bone changes alter the joint’s mechanical environment and potentially influence progression of cartilage degeneration. Joint distraction as a treatment for OA has been shown to provide pain relief and functional improvement through mechanisms that are not well understood. This study evaluated whether subchondral bone remodeling was associated with clinical improvement in OA patients treated with joint distraction. Method Twenty-six patients with advanced post-traumatic ankle OA were treated with joint distraction for three months using an Ilizarov frame in a referral center. Primary outcome measure was bone density change analyzed on CT scans. Longitudinal, manually segmented CT datasets for a given patient were brought into a common spatial alignment. Changes in bone density (Hounsfield Units (HU), relative to baseline) were calculated at the weight-bearing region, extending subchondrally to a depth of 8 mm. Clinical outcome was assessed using the ankle OA scale. Results Baseline scans demonstrated subchondral sclerosis with local cysts. At one and two years of follow-up, an overall decrease in bone density (−23% and −21%, respectively) was observed. Interestingly, density in originally low-density (cystic) areas increased. Joint distraction resulted in a decrease in pain (from 60 to 35, scale of 100) and functional deficit (from 67 to 36). Improvements in clinical outcomes were best correlated with disappearance of low-density (cystic) areas (r=0.69). Conclusions Treatment of advanced post-traumatic ankle OA with three months of joint distraction resulted in bone density normalization that was associated with clinical improvement. PMID:21324372

  17. Predicting Bone Mechanical Properties of Cancellous Bone from DXA, MRI, and Fractal Dimensional Measurements

    NASA Technical Reports Server (NTRS)

    Harrigan, Timothy P.; Ambrose, Catherine G.; Hogan, Harry A.; Shackleford, Linda; Webster, Laurie; LeBlanc, Adrian; Lin, Chen; Evans, Harlan

    1997-01-01

    This project was aimed at making predictions of bone mechanical properties from non-invasive DXA and MRI measurements. Given the bone mechanical properties, stress calculations can be made to compare normal bone stresses to the stresses developed in exercise countermeasures against bone loss during space flight. These calculations in turn will be used to assess whether mechanical factors can explain bone loss in space. In this study we assessed the use of T2(sup *) MRI imaging, DXA, and fractal dimensional analysis to predict strength and stiffness in cancellous bone.

  18. Visualization of postoperative anterior cruciate ligament reconstruction bone tunnels

    PubMed Central

    2011-01-01

    Background and purpose Non-anatomic bone tunnel placement is the most common cause of a failed ACL reconstruction. Accurate and reproducible methods to visualize and document bone tunnel placement are therefore important. We evaluated the reliability of standard radiographs, CT scans, and a 3-dimensional (3D) virtual reality (VR) approach in visualizing and measuring ACL reconstruction bone tunnel placement. Methods 50 consecutive patients who underwent single-bundle ACL reconstructions were evaluated postoperatively by standard radiographs, CT scans, and 3D VR images. Tibial and femoral tunnel positions were measured by 2 observers using the traditional methods of Amis, Aglietti, Hoser, Stäubli, and the method of Benereau for the VR approach. Results The tunnel was visualized in 50–82% of the standard radiographs and in 100% of the CT scans and 3D VR images. Using the intraclass correlation coefficient (ICC), the inter- and intraobserver agreement was between 0.39 and 0.83 for the standard femoral and tibial radiographs. CT scans showed an ICC range of 0.49–0.76 for the inter- and intraobserver agreement. The agreement in 3D VR was almost perfect, with an ICC of 0.83 for the femur and 0.95 for the tibia. Interpretation CT scans and 3D VR images are more reliable in assessing postoperative bone tunnel placement following ACL reconstruction than standard radiographs. PMID:21999625

  19. Alteration of blood clot structures by interleukin-1 beta in association with bone defects healing

    PubMed Central

    Wang, Xin; Friis, Thor E.; Masci, Paul P.; Crawford, Ross W.; Liao, Wenbo; Xiao, Yin

    2016-01-01

    The quality of hematomas are crucial for successful early bone defect healing, as the structure of fibrin clots can significantly influence the infiltration of cells, necessary for bone regeneration, from adjacent tissues into the fibrin network. This study investigated if there were structural differences between hematomas from normal and delayed healing bone defects and whether such differences were linked to changes in the expression of IL-1β. Using a bone defect model in rats, we found that the hematomas in the delayed healing model had thinner fibers and denser clot structures. Moreover, IL-1β protein levels were significantly higher in the delayed healing hematomas. The effects of IL-1β on the structural properties of human whole blood clots were evaluated by thrombelastograph (TEG), scanning electronic microscopy (SEM), compressive study, and thrombolytic assays. S-nitrosoglutathione (GSNO) was applied to modulate de novo hematoma structure and the impact on bone healing was evaluated in the delayed healing model. We found that GSNO produced more porous hematomas with thicker fibers and resulted in significantly enhanced bone healing. This study demonstrated that IL-1β and GSNO had opposing effects on clot architecture, the structure of which plays a pivotal role in early bone healing. PMID:27767056

  20. Combination of Heel-strike like Mechanical Loading with Deproteinized Cancellous Bone Scaffold Implantation to Repair Segmental Bone Defects in Rabbits.

    PubMed

    Huang, Guofeng; Liu, Guojun; Zhang, Feng; Gao, Jianting; Wang, Jiangze; Chen, Qi; Wu, Benwen; Ding, Zhenqi; Cai, Taoyi

    2017-01-01

    Under physiological conditions bone defects often occur at mechanical load bearing sites and bone substitutes used for regeneration should be similarly subjected to mechanical loading stress. In this study, we investigated whether a novel heel-strike like mechanical loading method can be used as a complementary therapy to promote bone regeneration following bone substitute grafting. To test this, three groups of rabbits with segmental bone defects in the tibia were implanted with bovine deproteinized cancellous bone scaffold (DCBS), with one group also receiving heel-strike like mechanical loading generated by a rap stress stimulator. From weeks 4-12 post-operation X-ray and micro-CT scanning showed that rabbits receiving combination therapy had significantly more callus at the bone defect. Moreover, bone defects in the combination group were completely replaced with new bone at week 12, while the DCBS implantation alone group healed only partially and rabbits receiving neither DCBS nor mechanical loading developed only small calluses throughout the observation period. Analysis of micro-CT scanning results demonstrated that new bone density in the combination group was significantly higher than the DCBS only group at weeks 4 and 12 ( p <0.05). H&E staining results also indicated a significantly higher percentage of new bone in the bone defect area and a lower percentage of residual scaffold in the combination group compared to the DCBS only group ( p <0.05). Thus, this heel-strike like mechanical loading method appears to accelerate bone regeneration following substitute implantation by restoring a local mechanical loading environment in segmental bone defects.

  1. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein

    PubMed Central

    Foster, B.L.; Ao, M.; Willoughby, C.; Soenjaya, Y.; Holm, E.; Lukashova, L.; Tran, A. B.; Wimer, H.F.; Zerfas, P.M.; Nociti, F.H.; Kantovitz, K.R.; Quan, B.D.; Sone, E.D.; Goldberg, H.A.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp−/− mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp−/− mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp−/− mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp−/− mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified

  2. Prognostic Value of Bone Marrow Tracer Uptake Pattern in Baseline PET Scans in Hodgkin Lymphoma: Results from an International Collaborative Study.

    PubMed

    Zwarthoed, Colette; El-Galaly, Tarec Cristoffer; Canepari, Maria; Ouvrier, Matthieu John; Viotti, Julien; Ettaiche, Marc; Viviani, Simonetta; Rigacci, Luigi; Trentin, Livio; Rusconi, Chiara; Luminari, Stefano; Cantonetti, Maria; Bolis, Silvia; Borra, Anna; Darcourt, Jacques; Salvi, Flavia; Subocz, Edyta; Tajer, Joanna; Kulikowski, Waldemar; Malkowski, Bogdan; Zaucha, Jan Maciej; Gallamini, Andrea

    2017-08-01

    PET/CT-ascertained bone marrow involvement (BMI) constitutes the single most important reason for upstaging by PET/CT in Hodgkin lymphoma (HL). However, BMI assessment in PET/CT can be challenging. This study analyzed the clinicopathologic correlations and prognostic meaning of different patterns of bone marrow (BM) 18 F-FDG uptake in HL. Methods: One hundred eighty newly diagnosed early unfavorable and advanced-stage HL patients, all scanned at baseline and after 2 adriamycin-bleomycin-vinblastine-dacarbazine (ABVD) courses with 18 F-FDG PET, enrolled in 2 international studies aimed at assessing the role of interim PET scanning in HL, were retrospectively included. Patients were treated with ABVD × 4-6 cycles and involved-field radiation when needed, and no treatment adaptation on interim PET scanning was allowed. Two masked reviewers independently reported the scans. Results: Thirty-eight patients (21.1%) had focal lesions (fPET + ), 10 of them with a single (unifocal) and 28 with multiple (multifocal) BM lesions. Fifty-three patients (29.4%) had pure strong (>liver) diffuse uptake (dPET + ) and 89 (48.4%) showed no or faint (≤liver) BM uptake (nPET + ). BM biopsy was positive in 6 of 38 patients (15.7%) for fPET + , in 1 of 53 (1.9%) for dPET + , and in 5 of 89 (5.6%) for nPET + dPET + was correlated with younger age, higher frequency of bulky disease, lower hemoglobin levels, higher leukocyte counts, and similar diffuse uptake in the spleen. Patients with pure dPET + had a 3-y progression-free survival identical to patients without any 18 F-FDG uptake (82.9% and 82.2%, respectively, P = 0.918). However, patients with fPET+ (either unifocal or multifocal) had a 3-y progression-free survival significantly inferior to patients with dPET+ and nPET+ (66.7% and 82.5%, respectively, P = 0.03). The κ values for interobserver agreement were 0.84 for focal uptake and 0.78 for diffuse uptake. Conclusion: We confirmed that 18 F-FDG PET scanning is a reliable tool for

  3. Normal distribution pattern and physiological variants of 68Ga-PSMA-11 PET/CT imaging.

    PubMed

    Demirci, Emre; Sahin, Onur Erdem; Ocak, Meltem; Akovali, Burak; Nematyazar, Jamal; Kabasakal, Levent

    2016-11-01

    Ga-PSMA-11 is a novel PET tracer suggested to be used for imaging of advanced prostate cancer. In this study, we aimed to present a detailed biodistribution of Ga-PSMA-11, including physiological and benign variants of prostate-specific membrane antigen (PSMA) imaging. We carried out a retrospective analysis of 40 patients who underwent PSMA PET/computed tomography (CT) imaging and who had no evidence of residual or metastatic disease on the scans. In addition, 16 patients who underwent PSMA PET/CT imaging with any indication other than prostate cancer were included in the study to evaluate physiological uptake in the normal prostate gland. The median, minimum-maximum, and mean standardized uptake value (SUV) values were calculated for visceral organs, bone marrow and lymph nodes, and mucosal areas. Any physiological variants or benign lesions with Ga-PSMA-11 were also noted. Ga-PSMA-11 uptake was noted in the kidneys, parotid and submandibular glands, duodenum, small intestines, spleen, liver, and lacrimal glands, and mucosal uptake in the nasopharynx, vocal cords, pancreas, stomach, mediastinal blood pool, thyroid gland, adrenal gland, rectum, vertebral bone marrow, and testes. Celiac ganglia showed slight Ga-PSMA-11 uptake in 24 of 40 patients without the presence of any other pathologic lymph nodes in abdominal and pelvic areas. Variable uptake of Ga-PSMA-11 was observed in calcified choroid plexus, a thyroid nodule, an adrenal nodule, axillary lymph nodes and celiac ganglia, occasional osteophytes, and gallbladder. The patient group with PSMA PET/CT for indications other than prostate cancer (n=16) showed a slight radiotracer uptake in normal prostate gland (SUVmax: 5.5±1.6, range: 3.5-8.3). This study shows normal distribution pattern, range of SUVs, and physiological variants of Ga-PSMA-11. In addition, several potential pitfalls were documented to prevent misinterpretations of the scan.

  4. Bone modeling and cell-material interface responses induced by nickel-titanium shape memory alloy after periosteal implantation.

    PubMed

    Ryhänen, J; Kallioinen, M; Tuukkanen, J; Lehenkari, P; Junila, J; Niemelä, E; Sandvik, P; Serlo, W

    1999-07-01

    The purpose of this study was to evaluate the new bone formation, modeling and cell-material interface responses induced by nickel-titanium shape memory alloy after periosteal implantation. We used a regional acceleratory phenomenon (RAP) model, in which a periosteal contact stimulus provokes an adaptive modelling response. NiTi has thermal shape memory and superelasticity properties uncommon in other implant alloys. So far, there are insufficient data concerning the biocompatibility of NiTi as a bone implant. NiTi was compared to stainless steel (stst) and Ti-6Al-4V. The test implant was placed in contact with the intact femur periosteum, but it was not fixed inside the bone. Histomorphometry with digital image analysis was used to determine the bone formation and resorption parameters. The ultrastructural features of cell-material adhesion were analysed with scanning electron microscopy (FESEM). A typical peri-implant bone wall modelation was seen due to the normal RAP. The maximum new woven bone formation started earlier (2 weeks) in the Ti-6Al-4V group than in the NiTi (P < 0.01) group, but also decreased earlier, and at 8 weeks the NiTi (P < 0.05) and stst (P < 0.005) groups had greater cortical bone width. At 12 and 26 weeks no statistical differences were seen in the histomorphometric values. The histological response of the soft tissues around the NiTi implant was also clearly non-toxic and non-irritating. Cell adhesion and focal contacts were similar between the materials studied by FESEM. We conclude that NiTi had no negative effect on total new bone formation or normal RAP after periosteal implantation during a 26-week follow-up.

  5. Percutaneous osteoplasty with a bone marrow nail for fractures of long bones: experimental study.

    PubMed

    Nakata, Kouhei; Kawai, Nobuyuki; Sato, Morio; Cao, Guang; Sahara, Shinya; Tanihata, Hirohiko; Takasaka, Isao; Minamiguchi, Hiroyuki; Nakai, Tomoki

    2010-09-01

    To develop percutaneous osteoplasty with the use of a bone marrow nail for fixation of long-bone fractures, and to evaluate its feasibility and safety in vivo and in vitro. Six long bones in three healthy swine were used in the in vivo study. Acrylic cement was injected through an 11-gauge bone biopsy needle and a catheter into a covered metallic stent placed within the long bone, creating a bone marrow nail. In the in vitro study, we determined the bending, tug, and compression strengths of the acrylic cement nails 9 cm long and 8 mm in diameter (N = 10). The bending strength of the artificially fractured bones (N = 6) restored with the bone marrow nail and cement augmentation was then compared with that of normal long bones (N = 6). Percutaneous osteoplasty with a bone marrow nail was successfully achieved within 1 hour for all swine. After osteoplasty, all swine regained the ability to run until they were euthanized. Blood tests and pathologic findings showed no adverse effects. The mean bending, tug, and compression strengths of the nail were 91.4 N/mm(2) (range, 75.0-114.1 N/mm(2)), 20.9 N/mm(2) (range, 6.6-30.4 N/mm(2)), and 103.0 N/mm(2) (range, 96.3-110.0 N/mm(2)), respectively. The bending strength ratio of artificially fractured bones restored with bone marrow nail and cement augmentation to normal long bone was 0.32. Percutaneous osteoplasty with use of a bone marrow nail and cement augmentation appears to have potential in treating fractures of non-weight-bearing long bones. Copyright 2010 SIR. Published by Elsevier Inc. All rights reserved.

  6. Bone and bone turnover.

    PubMed

    Crofton, Patricia M

    2009-01-01

    Children with cancer are exposed to multiple influences that may adversely affect bone health. Some treatments have direct deleterious effects on bone whilst others may have indirect effects mediated through various endocrine abnormalities. Most clinical outcome studies have concentrated on survivors of acute lymphoblastic leukaemia (ALL). There is now good evidence that earlier treatment protocols that included cranial irradiation with doses of 24 Gy or greater may result in growth hormone deficiency and low bone mineral density (BMD) in the lumbar spine and femoral neck. Under current protocols, BMD decreases during intensive chemotherapy and fracture risk increases. Although total body BMD may eventually return to normal after completion of chemotherapy, lumbar spine trabecular BMD may remain low for many years. The implications for long-term fracture risk are unknown. Risk factors for low BMD include high dose methotrexate, higher cumulative doses of glucocorticoids, male gender and low physical activity. BMD outcome in non-ALL childhood cancers has been less well studied but there is evidence that survivors of childhood brain or bone tumours, and survivors of bone marrow transplants for childhood malignancy, all have a high risk of long-term osteopenia. Long-term follow-up is required, with appropriate treatment of any endocrine abnormalities identified. Copyright (c) 2009 S. Karger AG, Basel.

  7. Atlas of computerized blood flow analysis in bone disease.

    PubMed

    Gandsman, E J; Deutsch, S D; Tyson, I B

    1983-11-01

    The role of computerized blood flow analysis in routine bone scanning is reviewed. Cases illustrating the technique include proven diagnoses of toxic synovitis, Legg-Perthes disease, arthritis, avascular necrosis of the hip, fractures, benign and malignant tumors, Paget's disease, cellulitis, osteomyelitis, and shin splints. Several examples also show the use of the technique in monitoring treatment. The use of quantitative data from the blood flow, bone uptake phase, and static images suggests specific diagnostic patterns for each of the diseases presented in this atlas. Thus, this technique enables increased accuracy in the interpretation of the radionuclide bone scan.

  8. Skeletal development of mice lacking bone sialoprotein (BSP)--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    PubMed

    Bouleftour, Wafa; Boudiffa, Maya; Wade-Gueye, Ndeye Marième; Bouët, Guénaëlle; Cardelli, Marco; Laroche, Norbert; Vanden-Bossche, Arnaud; Thomas, Mireille; Bonnelye, Edith; Aubin, Jane E; Vico, Laurence; Lafage-Proust, Marie Hélène; Malaval, Luc

    2014-01-01

    Adult Ibsp-knockout mice (BSP-/-) display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn)/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice, while impairing

  9. Disorders of Bone Remodeling

    PubMed Central

    Feng, Xu; McDonald, Jay M.

    2013-01-01

    The skeleton provides mechanical support for stature and locomotion, protects vital organs, and controls mineral homeostasis. A healthy skeleton must be maintained by constant bone modeling to carry out these crucial functions throughout life. Bone remodeling involves the removal of old or damaged bone by osteoclasts (bone resorption) and the subsequent replacement of new bone formed by osteoblasts (bone formation). Normal bone remodeling requires a tight coupling of bone resorption to bone formation to guarantee no alteration in bone mass or quality after each remodeling cycle. However, this important physiological process can be derailed by a variety of factors, including menopause-associated hormonal changes, age-related factors, changes in physical activity, drugs, and secondary diseases, which lead to the development of various bone disorders in both women and men. We review the major diseases of bone remodeling, emphasizing our current understanding of the underlying pathophysiological mechanisms. PMID:20936937

  10. LRP5 coding polymorphisms influence the variation of peak bone mass in a normal population of French-Canadian women.

    PubMed

    Giroux, Sylvie; Elfassihi, Latifa; Cardinal, Guy; Laflamme, Nathalie; Rousseau, François

    2007-05-01

    Bone mineral density has a strong genetic component but it is also influenced by environmental factors making it a complex trait to study. LRP5 gene was previously shown to be involved in rare diseases affecting bone mass. Mutations associated with gain-of-function were described as well as loss-of-function mutations. Following this discovery, many frequent LRP5 polymorphisms were tested against the variation of BMD in the normal population. Heel bone parameters (SOS, BUA) were measured by right calcaneal QUS in 5021 healthy French-Canadian women and for 2104 women, BMD evaluated by DXA at two sites was available (femoral neck (FN) and lumbar spine (LS)). Among women with QUS measures and those with DXA measures, 26.5% and 32.8% respectively were premenopausal, 9.2% and 10.7% were perimenopausal and 64.2% and 56.5% were postmenopausal. About a third of the peri- and postmenopausal women never received hormone therapy. Two single nucleotide coding polymorphisms (Val667Met and Ala1330Val) in LRP5 gene were genotyped by allele-specific PCR. All bone measures were tested individually for associations with each polymorphism by analysis of covariance with adjustment for non genetic risk factors. Furthermore, haplotype analysis was performed to take into account the strong linkage disequilibrium between the two polymorphisms. The two LRP5 polymorphisms were found to be associated with all five bone measures (L2L4 and femoral neck DXA as well as heel SOS, BUA and stiffness index) in the whole sample. Premenopausal women drove the association as expected from the proposed role of LRP5 in peak bone mass. Our results suggest that the Val667Met polymorphism is the causative variant but this remains to be functionally proven.

  11. EFFECTS OF CHEMICAL PROCESSING AND OXIDE ETHYLENE STERILIZATION ON CORTICAL AND CANCELLOUS RAT BONE: A LIGHT AND ELECTRON SCANNING MICROSCOPY STUDY

    PubMed Central

    Castiglia, Marcello Teixeira; da Silva, Juliano Voltarelli F.; Frezarim Thomazini, José Armendir; Volpon, José Batista

    2015-01-01

    To evaluate, under microscopic examination, the structural changes displayed by the trabecular and cortical bones after being processed chemically and sterilized by ethylene oxide. Methods: Samples of cancellous and cortical bones obtained from young female albinus rats (Wistar) were assigned to four groups according to the type of treatment: Group I- drying; Group II- drying and ethylene oxide sterilization; III- chemical treatment; IV- chemical treatment and ethylene oxide sterilization. Half of this material was analyzed under ordinary light microscope and the other half using scanning electron microscopy. Results: In all the samples, regardless the group, there was good preservation of the general morphology. For samples submitted to the chemical processing there was better preservation of the cellular content, whereas there was amalgamation of the fibres when ethylene oxide was used. Conclusion: Treatment with ethylene oxide caused amalgamation of the fibers, possibly because of heating and the chemical treatment contributed to a better cellular preservation of the osseous structure. PMID:26998450

  12. Binaural Hearing Ability With Bilateral Bone Conduction Stimulation in Subjects With Normal Hearing: Implications for Bone Conduction Hearing Aids.

    PubMed

    Zeitooni, Mehrnaz; Mäki-Torkko, Elina; Stenfelt, Stefan

    The purpose of this study is to evaluate binaural hearing ability in adults with normal hearing when bone conduction (BC) stimulation is bilaterally applied at the bone conduction hearing aid (BCHA) implant position as well as at the audiometric position on the mastoid. The results with BC stimulation are compared with bilateral air conduction (AC) stimulation through earphones. Binaural hearing ability is investigated with tests of spatial release from masking and binaural intelligibility level difference using sentence material, binaural masking level difference with tonal chirp stimulation, and precedence effect using noise stimulus. In all tests, results with bilateral BC stimulation at the BCHA position illustrate an ability to extract binaural cues similar to BC stimulation at the mastoid position. The binaural benefit is overall greater with AC stimulation than BC stimulation at both positions. The binaural benefit for BC stimulation at the mastoid and BCHA position is approximately half in terms of decibels compared with AC stimulation in the speech based tests (spatial release from masking and binaural intelligibility level difference). For binaural masking level difference, the binaural benefit for the two BC positions with chirp signal phase inversion is approximately twice the benefit with inverted phase of the noise. The precedence effect results with BC stimulation at the mastoid and BCHA position are similar for low frequency noise stimulation but differ with high-frequency noise stimulation. The results confirm that binaural hearing processing with bilateral BC stimulation at the mastoid position is also present at the BCHA implant position. This indicates the ability for binaural hearing in patients with good cochlear function when using bilateral BCHAs.

  13. The electron microscope appearance of the subchondral bone plate in the human femoral head in osteoarthritis and osteoporosis

    PubMed Central

    LI, BAOHUA; MARSHALL, DEBORAH; ROE, MARTIN; ASPDEN, RICHARD M.

    1999-01-01

    The subchondral bone plate supports the articular cartilage in diarthrodial joints. It has a significant mechanical function in transmitting loads from the cartilage into the underlying cancellous bone and has been implicated in the destruction of cartilage in osteoarthritis (OA) and its sparing in osteoporosis (OP), but little is known of its composition, structure or material properties. This study investigated the microscopic appearance and mineral composition of the subchondral bone plate in femoral heads from patients with OA or OP to determine how these correspond to changes in composition and stiffness found in other studies. Freeze-fractured full-depth samples of the subchondral bone plate from the femoral heads of patients with osteoarthritis, osteoporosis or a matched control group were examined using back scattered and secondary emission scanning electron microscopy. Other samples were embedded and polished and examined using back-scattered electron microscopy and electron probe microanalysis. The appearances of the samples from the normal and osteoporotic patients were very similar, with the subchondral bone plate overlayed by a layer of calcified cartilage. Osteoporotic samples presented a more uniform fracture surface and the relative thicknesses of the layers appeared to be different. In contrast, the OA bone plate appeared to be porous and have a much more textured surface. There were occasional sites of microtrabecular bone formation between the trabeculae of the underlying cancellous bone, which were not seen in the other groups, and more numerous osteoclast resorption pits. The calcified cartilage layer was almost absent and the bone plate was apparently thickened. The appearance of the osteoarthritic subchondral bone plate was, therefore, considerably different from both the normal and the osteoporotic, strongly indicative of abnormal cellular activity. PMID:10473297

  14. Bone chip-induced rhinosinusitis.

    PubMed

    Reilly, Brian K; Conley, David B

    2009-12-01

    This case report describes both the pathophysiology and management of chronic rhinosinusitis (CRS). Specifically, we report a case of chronic maxillary rhinosinusitis with a free-floating maxillary sinus calcification (bone chip). After obtaining the computed tomography scan, the patient underwent endoscopic sinus surgery, with removal of the uncinate, enlargement of the diseased natural ostium of the maxillary sinus, and removal of the diseased bone chip. This eliminated the nidus for infection, ultimately restoring mucociliary flow.

  15. Method for fusing bone

    DOEpatents

    Mourant, Judith R.; Anderson, Gerhard D.; Bigio, Irving J.; Johnson, Tamara M.

    1996-01-01

    Method for fusing bone. The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.

  16. Role of Cbl-PI3K Interaction during Skeletal Remodeling in a Murine Model of Bone Repair.

    PubMed

    Scanlon, Vanessa; Soung, Do Yu; Adapala, Naga Suresh; Morgan, Elise; Hansen, Marc F; Drissi, Hicham; Sanjay, Archana

    2015-01-01

    Mice in which Cbl is unable to bind PI3K (YF mice) display increased bone volume due to enhanced bone formation and repressed bone resorption during normal bone homeostasis. We investigated the effects of disrupted Cbl-PI3K interaction on fracture healing to determine whether this interaction has an effect on bone repair. Mid-diaphyseal femoral fractures induced in wild type (WT) and YF mice were temporally evaluated via micro-computed tomography scans, biomechanical testing, histological and histomorphometric analyses. Imaging analyses revealed no change in soft callus formation, increased bony callus formation, and delayed callus remodeling in YF mice compared to WT mice. Histomorphometric analyses showed significantly increased osteoblast surface per bone surface and osteoclast numbers in the calluses of YF fractured mice, as well as increased incorporation of dynamic bone labels. Furthermore, using laser capture micro-dissection of the fracture callus we found that cells lacking Cbl-PI3K interaction have higher expression of Osterix, TRAP, and Cathepsin K. We also found increased expression of genes involved in propagating PI3K signaling in cells isolated from the YF fracture callus, suggesting that the lack of Cbl-PI3K interaction perhaps results in enhanced PI3K signaling, leading to increased bone formation, but delayed remodeling in the healing femora.

  17. Cold lesions on bone imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sy, W.M.; Westring, D.W.; Weinberger, G.

    1975-11-01

    Photon-deficient foci or cold lesions were demonstrated on /sup 99m/Tc- polyphosphate bone imaging in eight individuals with various malignancies and one in sickle cell crisis. The bone radiographs of five of these persons failed to show corresponding bony changes at the time of the imaging. Most of the cold lesions observed on bone imaging were located in the denser and tubular bones. A postulate has been advanced regarding the factors that might influence the different gamma-imaging manifestations of radiographically demonstrable lytic lesions. The cases presented herein further emphasize the importance of recognizing the existence of cold areas in the imagesmore » of bones and the need to place these in proper perspective when interpreting scans. (auth)« less

  18. Relationships of bone characteristics in MYO9B deficient femurs.

    PubMed

    Kim, Do-Gyoon; Jeong, Yong-Hoon; McMichael, Brooke K; Bähler, Martin; Bodnyk, Kyle; Sedlar, Ryan; Lee, Beth S

    2018-08-01

    The objective of this study was to examine relationships among a variety of bone characteristics, including volumetric, mineral density, geometric, dynamic mechanical analysis, and static fracture mechanical properties. As MYO9B is an unconventional myosin in bone cells responsible for normal skeletal growth, bone characteristics of wild-type (WT), heterozygous (HET), and MYO9B knockout (KO) mice groups were compared as an animal model to express different bone quantity and quality. Forty-five sex-matched 12-week-old mice were used in this study. After euthanization, femurs were isolated and scanned using microcomputed tomography (micro-CT) to assess bone volumetric, tissue mineral density (TMD), and geometric parameters. Then, a non-destructive dynamic mechanical analysis (DMA) was performed by applying oscillatory bending displacement on the femur. Finally, the same femur was subject to static fracture testing. KO group had significantly lower length, bone mineral density (BMD), bone mass and volume, dynamic and static stiffness, and strength than WT and HET groups (p < 0.019). On the other hand, TMD parameters of KO group were comparable with those of WT group. HET group showed volumetric, geometric, and mechanical properties similar to WT group, but had lower TMD (p < 0.014). Non-destructive micro-CT and DMA parameters had significant positive correlations with strength (p < 0.015) without combined effect of groups and sex on the correlations (p > 0.077). This comprehensive characterization provides a better understanding of interactive behavior between the tissue- and organ-level of the same femur. The current findings elucidate that MYO9B is responsible for controlling bone volume to determine the growth rate and fracture risk of bone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Anthropometry of Arabian nose using computed tomography scanning.

    PubMed

    Alharethy, Sami; Al-Quniabut, Ibrahim; Jang, Yong Ju

    2017-01-01

    The nose plays a critical role in determining the external appearance of an individual. We studied the craniofacial anthropometrics by CT scanning since previous studies in the field were conducted in Saudi populations using photometric analysis. Obtain objective and quantitative data that can help surgeons plan cosmetic procedures for the nose. A cross-sectional analytical study. Department of Otorhinolaryngology, Head and Neck Surgery, King Abdulaziz University Hospital, King Saud University, Riyadh, Saudi Arabia from February 2015 to December 2015. Facial CT scans were performed on native Saudis who underwent CT of the paranasal sinuses. Three anthropometric parameters: the nasofrontal angle, the pyramidal angle, and the linear distance between the nasion and the tip of the nasal bone. In 160 native Saudis (86 males and 74 females) who underwent CT, the mean nasofrontal angle was 125.3° in males and 135.6° in females. The mean linear distance between the nasion and the tip of the nasal bone was 23.0 mm for males and 20.9 mm for females. The mean nasal pyramidal angle was 110.8° in males and 111.9° for females at the level of the nasal root, 105.6° in males and 104.8° in females at the mid-level of the nasal bone, and 116.8° males and 107.9° in females at the level of the tip of the nasal bone. Nasal bone lengths and angles can be obtained accurately from CT scans. These angles differ in different ethnic groups. The sample represents native Saudis but not a cross section of the Saudi population. The relatively small sample size is a limitation of the study, but we consider these to be initial findings.

  20. Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin

    NASA Astrophysics Data System (ADS)

    Archid, Rami; Patzelt, Alexa; Lange-Asschenfeldt, Bernhard; Ahmad, Sufian S.; Ulrich, Martina; Stockfleth, Eggert; Philipp, Sandra; Sterry, Wolfram; Lademann, Juergen

    2012-10-01

    An important and most likely active role in the pathogenesis of psoriasis has been attributed to changes in cutaneous blood vessels. The purpose of this study was to use confocal laser-scanning microscopy (CLSM) to investigate dermal capillaries in psoriatic and normal skin. The structures of the capillary loops in 5 healthy participants were compared with those in affected skin of 13 psoriasis patients. The diameters of the capillaries and papillae were measured for each group with CLSM. All investigated psoriasis patients showed elongated, widened, and tortuous microvessels in the papillary dermis, whereas all healthy controls showed a single capillary loop in each dermal papilla. The capillaries of the papillary loop and the dermal papilla were significantly enlarged in the psoriatic skin lesions (diameters 24.39±2.34 and 146.46±28.52 μm, respectively) in comparison to healthy skin (diameters 9.53±1.8 and 69.48±17.16 μm, respectively) (P<0.001). CLSM appears to represent a promising noninvasive technique for evaluating dermal capillaries in patients with psoriasis. The diameter of the vessels could be seen as a well-quantifiable indicator for the state of psoriatic skin. CLSM could be useful for therapeutic monitoring to delay possible recurrences.

  1. Porous polymethylmethacrylate as bone substitute in the craniofacial area.

    PubMed

    Bruens, Marco L; Pieterman, Herman; de Wijn, Joost R; Vaandrager, J Michael

    2003-01-01

    In craniofacial surgery, alloplastic materials are used for correcting bony defects. Porous polymethylmethacrylate (PMMA) is a biocompatible and nondegradable bone cement. Porous PMMA is formed by the classic bone cement formulation of methylmethacrylate liquid and PMMA powder in which an aqueous biodegradable carboxymethylcellulose gel is dispersed to create pores in the cement when cured. Pores give bone the opportunity to grow in, resulting in a better fixation of the prostheses. We evaluated the long-term results (n = 14), up to 20 years, of augmentations and defect fillings in the craniofacial area, with special interest in possible side effects and bone ingrowth. The evaluation consisted of a questionnaire, a physical examination, and a computed tomography (CT) scan. There were no side effects that could be ascribed to the porous PMMA. Twelve CT scans showed bone ingrowth into the prostheses, proving the validity behind the concept of porous PMMA.

  2. Reconstruction of radial bone defect in rat by calcium silicate biomaterials.

    PubMed

    Oryan, Ahmad; Alidadi, Soodeh

    2018-05-15

    Despite many attempts, an appropriate therapeutic method has not yet been found to enhance bone formation, mechanical strength and structural and functional performances of large bone defects. In the present study, the bone regenerative potential of calcium silicate (CS) biomaterials combined with chitosan (CH) as calcium silicate/chitosan (CSC) scaffold was investigated in a critical radial bone defect in a rat model. The bioimplants were bilaterally implanted in the defects of 20 adult Sprague-Dawley rats. The rats were euthanized and the bone specimens were harvested at the 56th postoperative day. The healed radial bones were evaluated by three-dimensional CT, radiology, histomorphometric analysis, biomechanics, and scanning electron microscopy. The XRD analysis of the CS biomaterial showed its similarity to wollastonite (β-SiCO 3 ). The degradation rate of the CSC scaffold was much higher and it induced milder inflammatory reaction when compared to the CH alone. More bone formation and higher biomechanical performance were observed in the CSC treated group in comparison with the CH treated ones in histological, CT scan and biomechanical examinations. Scanning electron microscopic observation demonstrated the formation of more hydroxyapatite crystals in the defects treated with CSC. This study showed that the CSC biomaterials could be used as proper biodegradable materials in the field of bone reconstruction and tissue engineering. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Evaluation of a short dynamic 18F-fluoride PET/CT scanning method to assess bone metabolic activity in spinal orthopedics.

    PubMed

    Peters, Marloes J M; Wierts, Roel; Jutten, Elisabeth M C; Halders, Servé G E A; Willems, Paul C P H; Brans, Boudewijn

    2015-11-01

    A complication after spinal fusion surgery is pseudarthrosis, but its radiological diagnosis is of limited value. (18)F-fluoride PET with its ability to assess bone metabolism activity could be of value. The goal of this study was to assess the clinical feasibility of calculating the static standardized uptake value (SUV) from a short dynamic scan without the use of blood sampling, thereby obtaining all dynamic and static parameters in a scan of only 30 min. This approach was tested on a retrospective patient population with persisting pain after spinal fusion surgery. In 16 patients, SUVs (SUV max, SUV mean) and kinetic parameters (K 1, k 2, k 3, v b, K i,NLR, K 1/k 2, k 3/(k 2 + k 3), K i,patlak) were derived from static and dynamic PET/CT scans of operated and control regions of the spine, after intravenous administration of 156-214 MBq (18)F-fluoride. Parameter differences between control and operated regions, as well as between pseudarthrosis and fused segments were evaluated. SUVmean at 30 and 60 min was calculated from kinetic parameters obtained from the dynamic data set (SUV mean,2TCM). Agreement between measured and calculated SUVs was evaluated through Bland-Altman plots. Overall, statistically significant differences between control and operated regions were observed for SUV max, SUV mean, K i,NLR, K i,patlak, K 1/k 2 and k 3/(k 2 + k 3). Diagnostic CT showed pseudarthrosis in 6/16 patients, while in 10/16 patients, segments were fused. Of all parameters, only those regarding the incorporation of bone [K i,NLR, K i,patlak, k 3/(k 2 + k 3)] differed statistically significant in the intervertebral disc space between the pseudarthrosis and fused patients group. The mean values of the patient-specific blood clearance rate [Formula: see text] differed statistically significant between the pseudarthrosis and the fusion group, with a p value of 0.011. This may correspond with the lack of statistical significance of the SUV values between pseudarthrosis and

  4. High-intensity exercise of short duration alters bovine bone density and shape.

    PubMed

    Hiney, K M; Nielsen, B D; Rosenstein, D; Orth, M W; Marks, B P

    2004-06-01

    The ability of short-duration high-intensity exercise to stimulate bone formation in confinement was investigated using immature Holstein bull calves as a model. Eighteen bull calves, 8 wk of age, were assigned to one of three treatment groups: 1) group-housed (GR, which served as a control), 2) confined with no exercise (CF), or 3) confined with exercise (EX). The exercise protocol consisted of running 50 m on a concrete surface once daily, 5 d/wk. Confined calves remained stalled for the 42-d duration of the trial. Blood samples were taken to analyze concentrations of osteocalcin and deoxypyridinoline, markers of bone formation and resorption. At the completion of the trial, calves were humanely killed, and both forelegs were collected. The fused third and fourth metacarpal bone was scanned using computed tomography for determination of cross-sectional geometry and bone mineral density. Three-point bending tests to failure were performed on metacarpal bones. The exercise protocol resulted in the formation of a rounder bone in EX as well as in increased dorsal cortex thickness compared with those in the GR and CF. The exercised calves had a significantly smaller medullary cavity than CF and GR (P < 0.01) and a larger percentage of cortical bone area than CF (P < 0.01). Dorsal, palmar, and total bone mineral density was greater in EX than in CF (P < 0.05), and palmar and total bone mineral densities were greater (P < 0.05) in EX than in GR. There was a trend for the bones of EX to have a higher fracture force than CF (P < 0.10). Osteocalcin concentrations normalized from d 0 were higher in EX than CF (P < 0.05). Therefore, the exercise protocol altered bone shape and seemed to increase bone formation comparison with the stalled and group-housed calves.

  5. Effects of acidification, lipid removal and mathematical normalization on carbon and nitrogen stable isotope compositions in beaked whale (Ziphiidae) bone.

    PubMed

    Tatsch, Ana Carolina C; Secchi, Eduardo R; Botta, Silvina

    2016-02-15

    The analysis of stable isotopes in tissues such as teeth and bones has been used to study long-term trophic ecology and habitat use in marine mammals. However, carbon isotope ratios (δ(13) C values) can be altered by the presence of (12) C-rich lipids and carbonates. Lipid extraction and acidification are common treatments used to remove these compounds. The impact of lipids and carbonates on carbon and nitrogen isotope ratios (δ(15) N values), however, varies among tissues and/or species, requiring taxon-specific protocols to be developed. The effects of lipid extraction and acidification and their interaction on carbon and nitrogen isotope values were studied for beaked whale (Ziphiidae) bone samples. δ(13) C and δ(15) N values were determined in quadruplicate samples: control, lipid-extracted, acidified and lipid-extracted followed by acidification. Samples were analyzed by means of elemental analysis isotope ratio mass spectrometry. Furthermore, the efficiency of five mathematical models developed for estimating lipid-normalized δ(13) C values from untreated δ(13) C values was tested. Significant increases in δ(13) C values were observed after lipid extraction. No significant changes in δ(13) C values were found in acidified samples. An interaction between both treatments was demonstrated for δ(13) C but not for δ(15) N values. No change was observed in δ(15) N values for lipid-extracted and/or acidified samples. Although all tested models presented good predictive power to estimate lipid-free δ(13) C values, linear models performed best. Given the observed changes in δ(13) C values after lipid extraction, we recommend a priori lipid extraction or a posteriori lipid normalization, through simple linear models, for beaked whale bones. Furthermore, acidification seems to be an unnecessary step before stable isotope analysis, at least for bone samples of ziphiids. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Nuclear Scans - Multiple Languages

    MedlinePlus

    ... Cantonese dialect) (繁體中文) French (français) Hindi (हिन्दी) Japanese (日本語) Korean (한국어) Russian (Русский) Somali (Af-Soomaali ) ... हिन्दी (Hindi) Bilingual PDF Health Information Translations Japanese (日本語) Expand Section Bone Scan - 日本語 (Japanese) Bilingual ...

  7. Comparison of Bone Grafts From Various Donor Sites in Human Bone Specimens.

    PubMed

    Kamal, Mohammad; Gremse, Felix; Rosenhain, Stefanie; Bartella, Alexander K; Hölzle, Frank; Kessler, Peter; Lethaus, Bernd

    2018-05-14

    The objective of the current study was to compare the three-dimensional (3D) morphometric microstructure in human cadaveric bone specimens taken from various commonly utilized donor sites for autogenous bone grafting. Autogenous bone grafts can be harvested from various anatomic sites and express heterogeneous bone quality with a specific 3D microstructure for each site. The long-term structural integrity and susceptibility to resorption of the graft depend on the selected donor bone. Micro-computed tomography generates high-resolution datasets of bone structures and calcifications making this modality versatile for microarchitecture analysis and quantification of the bone. Six bone specimens, 10 mm in length, where anatomically possible, were obtained from various anatomical sites from 10 human dentate cadavers (4 men, 6 women, mean age 69.5 years). Specimens were scanned using a micro-computed tomography device and volumetrically reconstructed. A virtual cylindrical inclusion was reconstructed to analyze the bone mineral density and structural morphometric analysis using bone indices: relative bone volume, surface density, trabecular thicknesses, and trabecular separation. Calvarial bone specimens showed the highest mineral density, followed by the chin, then mandibular ramus then the tibia, whereas iliac crest and maxillary tuberosity had lower bone mineral densities. The pairwise comparison revealed statistically significant differences in the bone mineral density and relative bone volume index in the calvaria, mandibular ramus, mandibular symphysis groups when compared with those in the iliac crest and maxillary tuberosity, suggesting higher bone quality in the former groups than in the latter; tibial specimens expressed variable results.

  8. An Intraoperative Site-specific Bone Density Device: A Pilot Test Case.

    PubMed

    Arosio, Paolo; Moschioni, Monica; Banfi, Luca Maria; Di Stefano, Anilo Alessio

    2015-08-01

    This paper reports a case of all-on-four rehabilitation where bone density at implant sites was assessed both through preoperative computed tomographic (CT) scans and using a micromotor working as an intraoperative bone density measurement device. Implant-supported rehabilitation is a predictable treatment option for tooth replacement whose success depends on the clinician's experience, the implant characteristics and location and patient-related factors. Among the latter, bone density is a determinant for the achievement of primary implant stability and, eventually, for implant success. The ability to measure bone density at the placement site before implant insertion could be important in the clinical setting. A patient complaining of masticatory impairment was presented with a plan calling for extraction of all her compromised teeth, followed by implant rehabilitation. A week before surgery, she underwent CT examination, and the bone density on the CT scans was measured. When the implant osteotomies were created, the bone density was again measured with a micromotor endowed with an instantaneous torque-measuring system. The implant placement protocols were adapted for each implant, according to the intraoperative measurements, and the patient was rehabilitated following an all-on-four immediate loading protocol. The bone density device provided valuable information beyond that obtained from CT scans, allowing for site-specific, intraoperative assessment of bone density immediately before implant placement and an estimation of primary stability just after implant insertion. Measuring jaw-bone density could help clinicians to select implant-placement protocols and loading strategies based on site-specific bone features.

  9. [Diet, nutrition and bone health].

    PubMed

    Miggiano, G A D; Gagliardi, L

    2005-01-01

    Nutrition is an important "modifiable" factor in the development and maintenance of bone mass and in the prevention of osteoporosis. The improvement of calcium intake in prepuberal age translates to gain in bone mass and, with genetic factor, to achievement of Peak Bone Mass (PBM), the higher level of bone mass reached at the completion of physiological growth. Individuals with higher PBM achieved in early adulthood will be at lower risk for developing osteoporosis later in life. Achieved the PBM, it is important maintain the bone mass gained and reduce the loss. This is possible adopting a correct behaviour eating associated to regular physical activity and correct life style. The diet is nutritionally balanced with caloric intake adequate to requirement of individual. This is moderate in protein (1 g/kg/die), normal in fat and the carbohydrates provide 55-60% of the caloric intake. A moderate intake of proteins is associated with normal calcium metabolism and presumably does'nt alter bone turnover. An adequate intake of alkali-rich foods may help promote a favorable effect of dietary protein on the skeleton. Lactose intolerance may determinate calcium malabsorption or may decrease calcium intake by elimination of milk and dairy products. Omega3 fatty acids may "down-regulate" pro-inflammatory cytokines and protect against bone loss by decreasing osteoclast activation and bone reabsorption. The diet is characterized by food containing high amount of calcium, potassium, magnesium and low amount of sodium. If it is impossible to reach the requirement with only diet, it is need the supplement of calcium and vitamin D. Other vitamins (Vit. A, C, E, K) and mineral (phosphorus, fluoride, iron, zinc, copper and boron) are required for normal bone metabolism, thus it is need adequate intake of these dietary components. It is advisable reduce ethanol, caffeine, fibers, phytic and ossalic acid intake. The efficacy of phytoestrogens is actually under investigation. Some

  10. High fat diet promotes achievement of peak bone mass in young rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fatmore » mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.« less

  11. Focal hot spot induced by a central subclavian line on bone scan.

    PubMed

    Moslehi, Masood; Cheki, Mohsen; Dehghani, Tohid; Eftekhari, Mansoureh

    2014-01-01

    The diagnostic accuracy of nuclear medicine reporting can be improved by awareness of these instrument-related artifacts. Both awareness and experience are also important when it comes to detecting and identifying normal (and abnormal) variants. We present a case of hot spot on the upper right chest in the region of right subclavicular region resulting from injection of radiotracer from central subclavian line. A 52-year-old woman with a history of left breast cancer and recent bone pain was referred to our nuclear medicine department for skeletal survey. Anterior views of chest show a focus of increased radiotracer uptake corresponding to anterior arch of one of the right second rib. The nuclear physician reported it as a focal rib bony lesion and recommended radiological evaluation. As technician later explained, physicians realized that injection site was a central subclavian line on the right side and hot spot on that region is due to injection site. The appearance of both skeletal and soft-tissue uptake depends heavily on imaging technique (such as the route of radiotracer administration) and the interpreting physicians should be aware of the impact of technical factors on image quality.

  12. Fixation Release and the Bone Bandaid: A New Bone Fixation Device Paradigm

    PubMed Central

    Shayesteh Moghaddam, Narges; Jahadakbar, Ahmadreza; Amerinatanzi, Amirhesam; Skoracki, Roman; Miller, Michael; Dean, David; Elahinia, Mohammad

    2017-01-01

    The current gold standard of care for mandibular segmental defeat reconstruction is the use of Ti-6Al-4V immobilization hardware and fibular double barrel graft. This method is often successful immediately at restoring mandible function, however the highly stiff fixation hardware causes stress shielding of the grafted bone and stress concentration in the fixation device over time which can lead to fixation device failure and revision surgery. The purpose of reconstructive surgery could be to create normal stress trajectories in the mandible following engraftment. We investigate the use of a two stage mechanism which separates the immobilization/healing and regenerative phases of mandibular segmental defect treatment. The device includes the use of a very stiff, Ti-6Al-4V, releasable mechanism which assures bone healing. Therefore it could be released once the reconstructed boney tissue and any of its ligamentous attachments have completely healed. Underneath the released Ti-6Al-4V plate would be a pre-loaded nitinol (NiTi) wire-frame apparatus that facilitates the normal stress-strain trajectory through the engrafted bone after the graft is healed in place and the Ti-6Al-4V fixation device has been released. Due to the use of NiTi wires forming a netting that connects vascularized bone and possibly bone chips, bone grafts are also more likely to be incorporate rather than to resorb. We first evaluated a healthy adult mandible during normal mastication to obtain the normal stress-strain distribution. Then, we developed the finite element (FE) model of the mandibular reconstruction (in the M1-3 region) with the proposed fixation device during the healing (locked state) and post-healing (released state) periods. To recreate normal stress trajectory in the reconstructed mandible, we applied the Response Surface Methodology (RMS) to optimize the Bone Bandaid geometry (i.e., wire diameters and location). The results demonstrate that the proposed mechanism immobilizes the

  13. Exceptional case of bone resorption in an osteo-odonto-keratoprosthesis. A scanning electron microscopy and X-ray microanalysis study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caiazza, S.; Falcinelli, G.; Pintucci, S.

    1990-01-01

    This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations,more » given the enhanced antibiotic-resistence of bacteria, is emphasized.« less

  14. [Number of teeth and hormonal profile of postmenopausal women with osteoporosis, osteopenia and normal bone mineral density--a preliminary study].

    PubMed

    Stagraczyński, Maciej; Kulczyk, Tomasz; Leszczyński, Piotr; Męczekalski, Błażej

    2015-10-01

    Profound hypoestrogenism causes increased risk of osteoporosis and bone fracture in menopause. This period of women life is also characterized by decrease number of teeth and deterioration of oral cavity health. The aim of the study was to assess the number of teeth, hormonal profile (Follicle-stimualting hormone (FSH), estradiol (E2), testosterone (T) and dehydroepiandrosterone sulphate (DHEA-S) and the bone mineral density (BMD) of the lumbar part of the spine in postmenopausal women with osteoporosis, osteopenia and normal BMD. The next step of the study was to determine whether there was a correlation between vertebral mineral bone density, the hormonal profile and the number of teeth. A total number of 47 women was involved in the study. Based on the results of densitometry tests (DEXA) of vertebral column the subjects were divided into 3 groups: 10 with osteoporosis, 20 with osteopenia and 17 with normal BMD. All the subjects had undergone a hormonal assessment which included blood serum estimation for FSH, E2, DHEA-S and T levels. Also the total number of teeth present was recorded. Serum estradiol and testosterone levels in postmenopausal women were found to be positively correlated with the number of teeth present. A negative correlation was found between age and the number of maxillary teeth in postmenopausal women with osteopenia. There was no influence of serum FSH, estradiol, testosterone and DHEA-S levels on vertebral BMD loss in postmenopausal women. There was no correlation between teeth number and BMD of vertebral column. Serum levels of estradiol and testosterone in postmenopausal women positively correlate with teeth numbers. Age is the main risk factor for teeth loss in postmenopausal women. © 2015 MEDPRESS.

  15. Bone growth and turnover in progesterone receptor knockout mice.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda

    2008-05-01

    The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and mCT analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 weeks of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain and tibia longitudinal bone growth was normal in PRKO mice. In contrast, total and cortical bone mass were increased in long bonesmore » of post-pubertal (12 and 26-week-old) PRKO mice, whereas cancellous bone mass was normal in the tibia but increased in the humerus. The striking 57% decrease in cancellous bone from the proximal tibia metaphysis which occurred between 6 and 26 weeks in WT mice was abolished in PRKO mice. The improved bone balance in aging PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice attenuates the accumulation of cortical bone mass during adolescence and is required for early age-related loss of cancellous bone.« less

  16. Accuracy of CT-based attenuation correction in PET/CT bone imaging

    NASA Astrophysics Data System (ADS)

    Abella, Monica; Alessio, Adam M.; Mankoff, David A.; MacDonald, Lawrence R.; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E.

    2012-05-01

    We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a 68Ga/68Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9 ± 0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers ranges from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important.

  17. Normalization of periodontal tissues in osteopetrotic mib mutant rats, treated with CSF-1

    NASA Technical Reports Server (NTRS)

    Wojtowicz, A.; Yamauchi, M.; Sotowski, R.; Ostrowski, K.

    1998-01-01

    The osteopetrotic mib mutation in rats causes defects in the skeletal bone tissue in young animals. These defects, i.e. slow bone remodelling, changes in both crystallinity and mineral content, are transient and undergo normalization, even without any treatment in 6-wk-old animals. Treatment with CSF-1 (colony stimulating factor-1) accelerates the normalization process in skeletal bones. The periodontal tissues around the apices of incisors show abnormalities caused by the slow remodelling process of the mandible bone tissue, the deficiency of osteoclasts and their abnormal morphology, as well as the disorganization of periodontal ligament fibres. In contrast to the skeletal tissues, these abnormalities would not undergo spontaneous normalization. Under treatment with colony stimulating factor 1 (CSF-1), the primitive bone trabeculae of mandible are resorbed and the normalization of the number of osteoclasts and their cytology occurs. The organization of the periodontal ligament fibres is partially restored, resembling the histological structure of the normal one.

  18. Assessment of Mechanical Performance of Bone Architecture Using Rapid Prototyping Models

    NASA Astrophysics Data System (ADS)

    Saparin, Peter; Woesz, Alexander; Thomsen, Jasper S.; Fratzl, Peter

    2008-06-01

    The aim of this on-going research project is to assess the influence of bone microarchitecture on the mechanical performance of trabecular bone. A testing chain consist-ing of three steps was established: 1) micro computed tomography (μCT) imaging of human trabecular bone; 2) building of models of the bone from a light-sensitive polymer using Rapid Prototyping (RP); 3) mechanical testing of the models in a material testing machine. A direct resampling procedure was developed to convert μCT data into the format of the RP machine. Standardized parameters for production and testing of the plastic models were established by use of regular cellular structures. Next, normal, osteoporotic, and extreme osteoporotic vertebral trabecular bone architectures were re-produced by RP and compression tested. We found that normal architecture of vertebral trabecular bone exhibit behaviour characteristic of a cellular structure. In normal bone the fracture occurs at much higher strain values that in osteoporotic bone. After the fracture a normal trabecular architecture is able to carry much higher loads than an osteoporotic architecture. However, no statistically significant differences were found in maximal stress during uniaxial compression of the central part of normal, osteoporotic, and extreme osteoporotic vertebral trabecular bone. This supports the hypothesis that osteoporotic trabecular bone can compensate for a loss of trabeculae by thickening the remaining trabeculae in the loading direction (compensatory hypertrophy). The developed approach could be used for mechanical evaluation of structural data acquired non-invasively and assessment of changes in performance of bone architecture.

  19. Variable corneal compensation improves discrimination between normal and glaucomatous eyes with the scanning laser polarimeter.

    PubMed

    Tannenbaum, Dana P; Hoffman, Douglas; Lemij, Hans G; Garway-Heath, David F; Greenfield, David S; Caprioli, Joseph

    2004-02-01

    The presently available scanning laser polarimeter (SLP) has a fixed corneal compensator (FCC) that neutralizes corneal birefringence only in eyes with birefringence that matches the population mode. A prototype variable corneal compensator (VCC) provides neutralization of individual corneal birefringence based on individual macular retardation patterns. The aim of this study was to evaluate the relative ability of the SLP with the FCC and with the VCC to discriminate between normal and glaucomatous eyes. Prospective, nonrandomized, comparative case series. Algorithm-generating set consisting of 56 normal eyes and 55 glaucomatous eyes and an independent data set consisting of 83 normal eyes and 56 glaucomatous eyes. Sixteen retardation measurements were obtained with the SLP with the FCC and the VCC from all subjects. Dependency of parameters on age, gender, ethnic origin, and eye side was sought. Logistic regression was used to evaluate how well the various parameters could detect glaucoma. Discriminant functions were generated, and the area under the receiver operating characteristic (ROC) curve was determined. Discrimination between normal and glaucomatous eyes on the basis of single parameters was significantly better with the VCC than with the FCC for 6 retardation parameters: nasal average (P = 0.0003), superior maximum (P = 0.0003), ellipse average (P = 0.002), average thickness (P = 0.003), superior average (P = 0.010), and inferior average (P = 0.010). Discriminant analysis identified the optimal combination of parameters for the FCC and for the VCC. When the discriminant functions were applied to the independent data set, areas under the ROC curve were 0.84 for the FCC and 0.90 for the VCC (P<0.021). When the discriminant functions were applied to a subset of patients with early visual field loss, areas under the ROC curve were 0.82 for the FCC and 0.90 for the VCC (P<0.016). Individual correction for corneal birefringence with the VCC significantly

  20. Analysis of bone marrow plasma cells in patients with solitary bone plasmacytoma.

    PubMed

    Bhaskar, Archana; Gupta, Ritu; Sharma, Atul; Kumar, Lalit; Jain, Paresh

    Local radiotherapy is the treatment of choice for solitary bone plasmacytoma (SBP) and the role of adjuvant systemic chemotherapy in preventing progression to multiple myeloma (MM) is controversial. The purpose of this study was to examine the presence of systemic disease in the form of neoplastic plasma cells (PC) in bone marrow of patients with SBP. Flow cytometric immunophenotyping of PC was carried out on bone marrow aspirate of 7 patients using monoclonal antibodies: CD19 FITC, CD45 FITC, CD20 FITC, CD52 PE, CD117 PE, CD56 PE, CD38 PerCP-Cy5.5, CD138 APC, anti-kappa (κ) FITC and anti-lambda (λ) PE. The neoplastic as well as normal PC were identified in bone marrow aspirate of all the patients at the time of diagnosis; the neoplastic PC ranged from 0.1%to 0.7% of all BM cells and 33.5% to 89.7% of total BMPC. The κ:λ ratio was normal in all the samples ranging from 0.5% to 1.6%. The present work shows the presence of systemic disease in the form of neoplastic PC in bone marrow of patients with SBP. Prospective studies would be required to study if the levels of neoplastic PC in the bone marrow may help us identify patients who are likely to progress to overt MM and benefit from systemic chemotherapy.

  1. Evaluation of tibolone administration in bone architectural by MicroCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, A. C. B.; Henriques, H. N.; Granjeiro, J. M.

    Elderly women are at higher risk for hip fracture because of additional and relatively rapid bone loss due to estrogen deficiency by loss of the ovarian function and a longer average life span than men. The early application of agents that suppress the increase in bone turnover due to estrogen deficiency is essential to prevent bone loss and reduce the risk of osteoporosis. Some advanced imaging techniques may be required to investigate osteoporosis. X-ray micro-computed tomography has been used to generate high-resolution 3D images of cancellous and cortical bone morphology from normal and pathologic human and animal specimens. The aimmore » of this study is to verify the effects of tibolone administration by evaluating the trabecular bone region. The experiment was performed on two groups of rats previously ovariectomized in which one received tibolone while the other did not. Tibolone administration (1 mg/day) began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs were collected. The scan was obtained using a Hamamatsu 10 Mp camera with a pixel size of 11.59 {mu}m and trabecular region in the right femoral head were quantified. All results were statistically evaluated with significance set at P<0.05%. Tibolone administration was shown to be beneficial in some analysis of the femoral head, performing higher bone volume and reducing the porosity when compared to ovariectomized. It can be concluded that tibolone administered to ovariectomized rats significantly preserved bone mass in the femoral head and microtomography was an efficient method to identify bone loss process and to evaluate potential therapies, as tibolone administration. (authors)« less

  2. Gastric cancer bone metastases together with osteopoikilosis diagnosed using bone scintigraphy and 18F-FDG PET/CT.

    PubMed

    Prado Wohlwend, S; Sánchez Vaño, R; Sopena Novales, P; Uruburu García, E; Aparisi Rodríguez, F; Martínez Carsí, C

    The coexistence of different bone diseases in the same patient involves a complex differential diagnosis. A patient is presented who was studied due to a renal mass that showed many sclerotic lesions in spine and limbs in conventional radiology and CT. These lesions were evaluated with 99m TC-HDP bone scintigraphy and 18 F-FDG PET/CT, which helped to obtain the definitive pathological diagnosis of osteopoikilosis (OP) co-existing with gastric cancer bone metastases. Of the different imaging scans performed, bone scintigraphy was particularly relevant due to its ability to discriminate between benign and metastatic bone disease. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  3. Bone mineral density in children with idiopathic nephrotic syndrome.

    PubMed

    El-Mashad, Ghada Mohamed; El-Hawy, Mahmoud Ahmed; El-Hefnawy, Sally Mohamed; Mohamed, Sanaa Mansour

    To assess bone mineral density (BMD) in children with idiopathic nephrotic syndrome (NS) and normal glomerular filtration rate (GFR). Cross-sectional case-control study carried out on 50 children: 25 cases of NS (16 steroid-sensitive [SSNS] and nine steroid-resistant [SRNS] under follow up in the pediatric nephrology unit of Menoufia University Hospital, which is tertiary care center, were compared to 25 healthy controls with matched age and sex. All of the participants were subjected to complete history taking, thorough clinical examination, laboratory investigations (serum creatinine, blood urea nitrogen [BUN], phosphorus [P], total and ionized calcium [Ca], parathyroid hormone [PTH], and alkaline phosphatase [ALP]). Bone mineral density was measured at the lumbar spinal region (L2-L4) in patients group using dual-energy X-ray absorptiometry (DXA). Total and ionized Ca were significantly lower while, serum P, ALP, and PTH were higher in SSNS and SRNS cases than the controls. Osteopenia was documented by DXA scan in 11 patients (44%) and osteoporosis in two patients (8%). Fracture risk was mild in six (24%), moderate in two (8%), and marked in three (12%) of patients. Bone mineralization was negatively affected by steroid treatment in children with NS. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  4. Measurement of Bone Growth in Osteopetrosis

    PubMed Central

    Sanger, V. L.; Frederickson, T. N.; Morrill, C. C.

    1964-01-01

    Day-old chicks were injected with 0.2 ml. of a suspension of lymphomatosis virus which was known to cause osteopetrosis in a high percentage of susceptible birds. A comparable number of uninoculated chicks were kept for controls. Alizarin red S was administered for the purpose of marking the bones in order to measure the rate of growth of normal bone and the osteopetrotic bone. The dye was given at 27, 41 and 55 days of age. In this experiment it was found that a layer of normal bone was formed on the surface of the tibia at a rate of 0.25 mm. per week but in the largest osteopetrotic lesion that was found in any chicken spongy bone was formed at a rate greater than 1 mm. per week. Alizarin red S was irritating to tissue and was toxic when given intravenously. ImagesFig. 1.Fig. 2. PMID:17649533

  5. Error Analysis: How Precise is Fused Deposition Modeling in Fabrication of Bone Models in Comparison to the Parent Bones?

    PubMed

    Reddy, M V; Eachempati, Krishnakiran; Gurava Reddy, A V; Mugalur, Aakash

    2018-01-01

    Rapid prototyping (RP) is used widely in dental and faciomaxillary surgery with anecdotal uses in orthopedics. The purview of RP in orthopedics is vast. However, there is no error analysis reported in the literature on bone models generated using office-based RP. This study evaluates the accuracy of fused deposition modeling (FDM) using standard tessellation language (STL) files and errors generated during the fabrication of bone models. Nine dry bones were selected and were computed tomography (CT) scanned. STL files were procured from the CT scans and three-dimensional (3D) models of the bones were printed using our in-house FDM based 3D printer using Acrylonitrile Butadiene Styrene (ABS) filament. Measurements were made on the bone and 3D models according to data collection procedures for forensic skeletal material. Statistical analysis was performed to establish interobserver co-relation for measurements on dry bones and the 3D bone models. Statistical analysis was performed using SPSS version 13.0 software to analyze the collected data. The inter-observer reliability was established using intra-class coefficient for both the dry bones and the 3D models. The mean of absolute difference is 0.4 that is very minimal. The 3D models are comparable to the dry bones. STL file dependent FDM using ABS material produces near-anatomical 3D models. The high 3D accuracy hold a promise in the clinical scenario for preoperative planning, mock surgery, and choice of implants and prostheses, especially in complicated acetabular trauma and complex hip surgeries.

  6. Bone Density, Microarchitecture, and Tissue Quality Long-term After Kidney Transplant.

    PubMed

    Pérez-Sáez, María José; Herrera, Sabina; Prieto-Alhambra, Daniel; Nogués, Xavier; Vera, María; Redondo-Pachón, Dolores; Mir, Marisa; Güerri, Roberto; Crespo, Marta; Díez-Pérez, Adolfo; Pascual, Julio

    2017-06-01

    Bone mineral density (BMD) measured by dual-energy x-ray absorptiometry is used to assess bone health in kidney transplant recipients (KTR). Trabecular bone score and in vivo microindentation are novel techniques that directly measure trabecular microarchitecture and mechanical properties of bone at a tissue level and independently predict fracture risk. We tested the bone status of long-term KTR using all 3 techniques. Cross-sectional study including 40 KTR with more than 10 years of follow-up and 94 healthy nontransplanted subjects as controls. Bone mineral density was measured at lumbar spine and the hip. Trabecular bone score was measured by specific software on the dual-energy x-ray absorptiometry scans of lumbar spine in 39 KTR and 77 controls. Microindentation was performed at the anterior tibial face with a reference-point indenter device. Bone measurements were standardized as percentage of a reference value, expressed as bone material strength index (BMSi) units. Multivariable (age, sex, and body mass index-adjusted) linear regression models were fitted to study the association between KTR and BMD/BMSi/trabecular bone score. Bone mineral density was lower at lumbar spine (0.925 ± 0.15 vs 0.982 ± 0.14; P = 0.025), total hip (0.792 ± 0.14 vs 0.902 ± 0.13; P < 0.001), and femoral neck (0.667 ± 0.13 vs 0.775 ± 0.12; P < 0.001) in KTR than in controls. BMSi was also lower in KTR (79.1 ± 7.7 vs 82.9 ± 7.8; P = 0.012) although this difference disappeared after adjusted model (P = 0.145). Trabecular bone score was borderline lower (1.21 ± 0.14 vs 1.3 ± 0.15; adjusted P = 0.072) in KTR. Despite persistent decrease in BMD, trabecular microarchitecture and tissue quality remain normal in long-term KTR, suggesting important recovery of bone health.

  7. Template-based automatic extraction of the joint space of foot bones from CT scan

    NASA Astrophysics Data System (ADS)

    Park, Eunbi; Kim, Taeho; Park, Jinah

    2016-03-01

    Clean bone segmentation is critical in studying the joint anatomy for measuring the spacing between the bones. However, separation of the coupled bones in CT images is sometimes difficult due to ambiguous gray values coming from the noise and the heterogeneity of bone materials as well as narrowing of the joint space. For fine reconstruction of the individual local boundaries, manual operation is a common practice where the segmentation remains to be a bottleneck. In this paper, we present an automatic method for extracting the joint space by applying graph cut on Markov random field model to the region of interest (ROI) which is identified by a template of 3D bone structures. The template includes encoded articular surface which identifies the tight region of the high-intensity bone boundaries together with the fuzzy joint area of interest. The localized shape information from the template model within the ROI effectively separates the bones nearby. By narrowing the ROI down to the region including two types of tissue, the object extraction problem was reduced to binary segmentation and solved via graph cut. Based on the shape of a joint space marked by the template, the hard constraint was set by the initial seeds which were automatically generated from thresholding and morphological operations. The performance and the robustness of the proposed method are evaluated on 12 volumes of ankle CT data, where each volume includes a set of 4 tarsal bones (calcaneus, talus, navicular and cuboid).

  8. Scanning Electron Microscope (SEM) Evaluation of the Interface between a Nanostructured Calcium-Incorporated Dental Implant Surface and the Human Bone.

    PubMed

    Mangano, Francesco; Raspanti, Mario; Maghaireh, Hassan; Mangano, Carlo

    2017-12-17

    Purpose . The aim of this scanning electron microscope (SEM) study was to investigate the interface between the bone and a novel nanostructured calcium-incorporated dental implant surface in humans. Methods . A dental implant (Anyridge ® , Megagen Implant Co., Gyeongbuk, South Korea) with a nanostructured calcium-incorporated surface (Xpeed ® , Megagen Implant Co., Gyeongbuk, South Korea), which had been placed a month earlier in a fully healed site of the posterior maxilla (#14) of a 48-year-old female patient, and which had been subjected to immediate functional loading, was removed after a traumatic injury. Despite the violent trauma that caused mobilization of the fixture, its surface appeared to be covered by a firmly attached, intact tissue; therefore, it was subjected to SEM examination. The implant surface of an unused nanostructured calcium-incorporated implant was also observed under SEM, as control. Results . The surface of the unused implant showed a highly-structured texture, carved by irregular, multi-scale hollows reminiscent of a fractal structure. It appeared perfectly clean and devoid of any contamination. The human specimen showed trabecular bone firmly anchored to the implant surface, bridging the screw threads and filling the spaces among them. Conclusions . Within the limits of this human histological report, the sample analyzed showed that the nanostructured calcium-incorporated surface was covered by new bone, one month after placement in the posterior maxilla, under an immediate functional loading protocol.

  9. Partial Reductions in Mechanical Loading Yield Proportional Changes in Bone Density, Bone Architecture, and Muscle Mass

    PubMed Central

    Ellman, Rachel; Spatz, Jordan; Cloutier, Alison; Palme, Rupert; Christiansen, Blaine A; Bouxsein, Mary L

    2014-01-01

    Although the musculoskeletal system is known to be sensitive to changes in its mechanical environment, the relationship between functional adaptation and below-normal mechanical stimuli is not well defined. We investigated bone and muscle adaptation to a range of reduced loading using the partial weight suspension (PWS) system, in which a two-point harness is used to offload a tunable amount of body weight while maintaining quadrupedal locomotion. Skeletally mature female C57Bl/6 mice were exposed to partial weight bearing at 20%, 40%, 70%, or 100% of body weight for 21 days. A hindlimb unloaded (HLU) group was included for comparison in addition to age-matched controls in normal housing. Gait kinematics was measured across the full range of weight bearing, and some minor alterations in gait from PWS were identified. With PWS, bone and muscle changes were generally proportional to the degree of unloading. Specifically, total body and hindlimb bone mineral density, calf muscle mass, trabecular bone volume of the distal femur, and cortical area of the femur midshaft were all linearly related to the degree of unloading. Even a load reduction to 70% of normal weight bearing was associated with significant bone deterioration and muscle atrophy. Weight bearing at 20% did not lead to better bone outcomes than HLU despite less muscle atrophy and presumably greater mechanical stimulus, requiring further investigation. These data confirm that the PWS model is highly effective in applying controllable, reduced, long-term loading that produces predictable, discrete adaptive changes in muscle and bone of the hindlimb. PMID:23165526

  10. Safe cervical spine clearance in adult obtunded blunt trauma patients on the basis of a normal multidetector CT scan--a meta-analysis and cohort study.

    PubMed

    Raza, Mushahid; Elkhodair, Samer; Zaheer, Asif; Yousaf, Sohail

    2013-11-01

    A true gold standard to rule out a significant cervical spine injury in subset of blunt trauma patients with altered sensorium is still to be agreed upon. The objective of this study is to determine whether in obtunded adult patients with blunt trauma, a clinically significant injury to the cervical spine be ruled out on the basis of a normal multidetector cervical spine computed tomography. Comprehensive database search was conducted to include all the prospective and retrospective studies on blunt trauma patients with altered sensorium undergoing cervical spine multidetector CT scan as core imaging modality to "clear" the cervical spine. The studies used two main gold standards, magnetic resonance imaging of the cervical spine and/or prolonged clinical follow-up. The data was extracted to report true positive, true negatives, false positives and false negatives. Meta-analysis of sensitivity, specificity, negative and positive predictive values was performed using Meta Analyst Beta 3.13 software. We also performed a retrospective investigation comparing a robust clinical follow-up and/or cervical spine MR findings in 53 obtunded blunt trauma patients, who previously had undergone a normal multidetector CT scan of the cervical spine reported by a radiologist. A total of 10 studies involving 1850 obtunded blunt trauma patients with initial cervical spine CT scan reported as normal were included in the final meta-analysis. The cumulative negative predictive value and specificity of cervical spine CT of the ten studies was 99.7% (99.4-99.9%, 95% confidence interval). The positive predictive value and sensitivity was 93.7% (84.0-97.7%, 95% confidence interval). In the retrospective review of our obtunded blunt trauma patients, none was later diagnosed to have significant cervical spine injury that required a change in clinical management. In a blunt trauma patient with altered sensorium, a normal cervical spine CT scan is conclusive to safely rule out a clinically

  11. A Boon for Bone Research

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA studies for astronaut health in long-term space missions led to the development of the Mechanical Response Tissue Analyzer (MRTA), a research tool for astronaut disuse, osteoporosis and related bone disorders among the general population. Ames Research Center and Stanford University generated a workable device and with Gait Scan, Inc., refined and commercialized it. The MRTA is a portable dsinstrument that measures the bending stiffness of bones using electrically-induced vibration and detects and analyzes the frequencies of the resonating bone. Unlike some other methods, the MRTA uses no radiation and is fast, simple and relatively inexpensive.

  12. Texture classification of normal tissues in computed tomography using Gabor filters

    NASA Astrophysics Data System (ADS)

    Dettori, Lucia; Bashir, Alia; Hasemann, Julie

    2007-03-01

    The research presented in this article is aimed at developing an automated imaging system for classification of normal tissues in medical images obtained from Computed Tomography (CT) scans. Texture features based on a bank of Gabor filters are used to classify the following tissues of interests: liver, spleen, kidney, aorta, trabecular bone, lung, muscle, IP fat, and SQ fat. The approach consists of three steps: convolution of the regions of interest with a bank of 32 Gabor filters (4 frequencies and 8 orientations), extraction of two Gabor texture features per filter (mean and standard deviation), and creation of a Classification and Regression Tree-based classifier that automatically identifies the various tissues. The data set used consists of approximately 1000 DIACOM images from normal chest and abdominal CT scans of five patients. The regions of interest were labeled by expert radiologists. Optimal trees were generated using two techniques: 10-fold cross-validation and splitting of the data set into a training and a testing set. In both cases, perfect classification rules were obtained provided enough images were available for training (~65%). All performance measures (sensitivity, specificity, precision, and accuracy) for all regions of interest were at 100%. This significantly improves previous results that used Wavelet, Ridgelet, and Curvelet texture features, yielding accuracy values in the 85%-98% range The Gabor filters' ability to isolate features at different frequencies and orientations allows for a multi-resolution analysis of texture essential when dealing with, at times, very subtle differences in the texture of tissues in CT scans.

  13. Image processing, geometric modeling and data management for development of a virtual bone surgery system.

    PubMed

    Niu, Qiang; Chi, Xiaoyi; Leu, Ming C; Ochoa, Jorge

    2008-01-01

    This paper describes image processing, geometric modeling and data management techniques for the development of a virtual bone surgery system. Image segmentation is used to divide CT scan data into different segments representing various regions of the bone. A region-growing algorithm is used to extract cortical bone and trabecular bone structures systematically and efficiently. Volume modeling is then used to represent the bone geometry based on the CT scan data. Material removal simulation is achieved by continuously performing Boolean subtraction of the surgical tool model from the bone model. A quadtree-based adaptive subdivision technique is developed to handle the large set of data in order to achieve the real-time simulation and visualization required for virtual bone surgery. A Marching Cubes algorithm is used to generate polygonal faces from the volumetric data. Rendering of the generated polygons is performed with the publicly available VTK (Visualization Tool Kit) software. Implementation of the developed techniques consists of developing a virtual bone-drilling software program, which allows the user to manipulate a virtual drill to make holes with the use of a PHANToM device on a bone model derived from real CT scan data.

  14. Time domain optical coherence tomography investigation of bone matrix interface in rat femurs

    NASA Astrophysics Data System (ADS)

    Rusu, Laura-Cristina; Negruá¹±iu, Meda-Lavinia; Sinescu, Cosmin; Hoinoiu, Bogdan; Topala, Florin-Ionel; Duma, Virgil-Florin; Rominu, Mihai; Podoleanu, Adrian G.

    2013-08-01

    The materials used to fabricate scaffolds for tissue engineering are derived from synthetic polymers, mainly from the polyester family, or from natural materials (e.g., collagen and chitosan). The mechanical properties and the structural properties of these materials can be tailored by adjusting the molecular weight, the crystalline state, and the ratio of monomers in the copolymers. Quality control and adjustment of the scaffold manufacturing process are essential to achieve high standard scaffolds. Most scaffolds are made from highly crystalline polymers, which inevitably result in their opaque appearance. Their 3-D opaque structure prevents the observation of internal uneven surface structures of the scaffolds under normal optical instruments, such as the traditional light microscope. The inability to easily monitor the inner structure of scaffolds as well as the interface with the old bone poses a major challenge for tissue engineering: it impedes the precise control and adjustment of the parameters that affect the cell growth in response to various mimicked culture conditions. The aim of this paper is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on different artificial matrixes inserted in previously artificially induced defects. For this study, 15 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were Bioss and 4bone. These materials were inserted into the induced defects. The femurs were investigated at 1 week, 1 month, 2 month and three month after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The scanning

  15. [Comparative studies on the material performances of natural bone-like apatite from different bone sources].

    PubMed

    Fan, Xiaoxia; Ren, Haohao; Chen, Shutian; Wang, Guangni; Deng, Tianyu; Chen, Xingtao; Yan, Yonggang

    2014-04-01

    The compressive strength of the original bone tissue was tested, based on the raw human thigh bone, bovine bone, pig bone and goat bone. The four different bone-like apatites were prepared by calcining the raw bones at 800 degrees C for 8 hours to remove organic components. The comparison of composition and structure of bone-like apatite from different bone sources was carried out with a composition and structure test. The results indicated that the compressive strength of goat bone was similar to that of human thigh bone, reached (135.00 +/- 7.84) MPa; Infrared spectrum (IR), X-ray diffraction (XRD) analysis results showed that the bone-like apatite from goat bone was much closer to the structure and phase composition of bone-like apatite of human bones. Inductively Coupled Plasma (ICP) test results showed that the content of trace elements of bone-like apatite from goat bone was closer to that of apatite of human bone. Energy Dispersive Spectrometer (EDS) results showed that the Ca/P value of bone-like apatite from goat bone was also close to that of human bone, ranged to 1.73 +/- 0.033. Scanning electron microscopy (SEM) patterns indicated that the macrographs of the apatite from human bone and that of goat bone were much similar to each other. Considering all the results above, it could be concluded that the goat bone-like apatite is much similar to that of human bone. It can be used as a potential natural bioceramic material in terms of material properties.

  16. Method for fusing bone

    DOEpatents

    Mourant, J.R.; Anderson, G.D.; Bigio, I.J.; Johnson, T.M.

    1996-03-12

    The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.

  17. An investigation of the mineral in ductile and brittle cortical mouse bone.

    PubMed

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size

  18. Serial Scanning and Registration of High Resolution Quantitative Computed Tomography Volume Scans for the Determination of Local Bone Density Changes

    NASA Technical Reports Server (NTRS)

    Whalen, Robert T.; Napel, Sandy; Yan, Chye H.

    1996-01-01

    Progress in development of the methods required to study bone remodeling as a function of time is reported. The following topics are presented: 'A New Methodology for Registration Accuracy Evaluation', 'Registration of Serial Skeletal Images for Accurately Measuring Changes in Bone Density', and 'Precise and Accurate Gold Standard for Multimodality and Serial Registration Method Evaluations.'

  19. Nurse exposure doses resulted from bone scintigraphy patient

    NASA Astrophysics Data System (ADS)

    Tunçman, Duygu; Kovan, Bilal; Poyraz, Leyla; ćapali, Veli; Demir, Bayram; Türkmen, Cüneyt

    2016-03-01

    Bone scintigraphy is used for displaying the radiologic undiagnosed bone lesions in nuclear medicine. It's general indications are researching bone metastases, detection of radiographically occult fractures, staging and follow-up in primary bone tumors, diagnosis of paget's disease, investigation of loosening and infection in orthopedic implants. It is applied with using 99mTc labeled radiopharmaceuticals (e.g 99m Tc MDP,99mTc HEDP and 99mTc HMDP). 20 -25 mCi IV radiotracer was injected into vein and radiotracer emits gamma radiation. Patient waits in isolated room for about 3 hours then a gamma camera scans radiation area and creates an image. When some patient's situation is not good, patients are hospitalized until the scanning because of patients' close contact care need. In this study, measurements were taken from ten patients using Geiger Muller counter. After these measurements, we calculated nurse's exposure radiations from patient's routine treatment, examination and emergency station.

  20. Bone histomorphometry in de novo renal transplant recipients indicates a further decline in bone resorption 1 year posttransplantation.

    PubMed

    Evenepoel, Pieter; Behets, Geert J; Viaene, Liesbeth; D'Haese, Patrick C

    2017-02-01

    Renal transplantation is believed to have a major impact on bone health. The present prospective observational bone biopsy study aimed to define the natural history of bone histomorphometry parameters in contemporaneous de novo renal transplant recipients. Paired bone biopsies were performed at the time of transplantation and at one-year posttransplantation in an unselected cohort of 36 patients referred for deceased kidney replacement. Parameters of mineral metabolism and circulating bone turnover markers were monitored as well. Static parameters of bone formation and especially bone resorption being already low-normal in the majority of patients at the time of renal transplantation, further declined during the first posttransplant year. However, interindividual variation was substantial, and significance was reached only for bone resorption parameters. Bone mineralization and trabecular bone volume were within the normal range at the time of transplantation (83.3% and 91.7% of graft recipients, respectively) and showed little change one-year posttransplantation. Changes in osteoclast number were paralleled by changes in circulating tartrate-resistant acid phosphatase 5b levels. Finally, cumulative glucocorticoid dose, but not the posttransplantation parathyroid hormone level, associated with trabecular bone loss. Thus, the impact of renal transplantation on bone histomorphometry is limited with only bone resorption, being already low at the time of transplantation, showing a further decline. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  1. Osteomesopyknosis: report of a new case with bone histology.

    PubMed

    Hardouin, P; Flautre, B; Sutter, B; Leclet, H; Grardel, B; Fauquert, P

    1994-01-01

    A new case of osteomesopyknosis, a rare autosomal dominant axial osteosclerosis is reported, with 4 affected members of the same family. Biochemical investigations, bone mineral content (BMC) measurement, 99mTc HMDP bone scan and microscopy of iliac crest bone and femoral head have been performed on 1 subject. A marked increase of BMC was found, without abnormality of biochemical data. Microscopy of bone showed an increase of trabecular thickness, and a low rate of bone turnover. No abnormality of mineralization was found on microradiographs.

  2. Visualizing the root-PDL-bone interface using high-resolution microtomography

    NASA Astrophysics Data System (ADS)

    Dalstra, Michel; Cattaneo, Paolo M.; Herzen, Julia; Beckmann, Felix

    2008-08-01

    The root/periodontal ligament/bone (RPB) interface is important for a correct understanding of the load transfer mechanism of masticatory forces and orthodontic loads. It is the aim of this study to assess the three-dimensional structure of the RPB interface using high-resolution microtomography. A human posterior jaw segment, obtained at autopsy from a 22-year old male donor was first scanned using a tomograph at the HASYLAB/DESY synchrotron facility (Hamburg, Germany) at 31μm resolution. Afterwards the first molar and its surrounding bone were removed with a 10mm hollow core drill. From this cylindrical sample smaller samples were drilled out in the buccolingual direction with a 1.5mm hollow core drill. These samples were scanned at 4μm resolution. The scans of the entire segment showed alveolar bone with a thin lamina dura, supported by an intricate trabecular network. Although featuring numerous openings between the PDL and the bone marrow on the other side to allow blood vessels to transverse, the lamina dura seems smooth at this resolution. First at high resolution, however, it becomes evident that it is irregular with bony spiculae and pitted surfaces. Therefore the stresses in the bone during physiological or orthodontic loading are much higher than expected from a smooth continuous alveolus.

  3. Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones

    NASA Astrophysics Data System (ADS)

    Nakajima, Hideko Heidi; Dong, Wei; Olson, Elizabeth S.; Merchant, Saumil N.; Ravicz, Michael E.; Rosowski, John J.

    2009-02-01

    We present the first simultaneous sound pressure measurements in scala vestibuli and scala tympani of the cochlea in human cadaveric temporal bones. Micro-scale fiberoptic pressure sensors enabled the study of differential sound pressure at the cochlear base. This differential pressure is the input to the cochlear partition, driving cochlear waves and auditory transduction. Results showed that: pressure of scala vestibuli was much greater than scala tympani except at low and high frequencies where scala tympani pressure affects the input to the cochlea; the differential pressure proved to be an excellent measure of normal ossicular transduction of sound (shown to decrease 30-50 dB with ossicular disarticulation, whereas the individual scala pressures were significantly affected by non-ossicular conduction of sound at high frequencies); the middle-ear gain and differential pressure were generally bandpass in frequency dependence; and the middle-ear delay in the human was over twice that of the gerbil. Concurrent stapes velocity measurements allowed determination of the differential impedance across the partition and round-window impedance. The differential impedance was generally resistive, while the round-window impedance was consistent with a compliance in conjunction with distributed inertia and damping. Our techniques can be used to study inner-ear conductive pathologies (e.g., semicircular dehiscence), as well as non-ossicular cochlear stimulation (e.g., round-window stimulation) - situations that cannot be completely quantified by measurements of stapes velocity or scala-vestibuli pressure by themselves.

  4. The golden ratio of nasal width to nasal bone length.

    PubMed

    Goynumer, G; Yayla, M; Durukan, B; Wetherilt, L

    2011-01-01

    To calculate the ratio of fetal nasal width over nasal bone length at 14-39 weeks' gestation in Caucasian women. Fetal nasal bone length and nasal width at 14-39 weeks' gestation were measured in 532 normal fetuses. The mean and standard deviations of fetal nasal bone length, nasal width and their ratio to one another were calculated in normal fetuses according to the gestational age to establish normal values. A positive and linear correlation was detected between the nasal bone length and the gestational week, as between the nasal width and the gestational week. No linear growth pattern was found between the gestational week and the ratio of nasal width to nasal bone length, nearly equal to phi, throughout gestation. The ratio of nasal width to nasal bone length, approximately equal to phi, can be calculated at 14-38 weeks' gestation. This might be useful in evaluating fetal abnormalities.

  5. Bone aluminium in haemodialysed patients and in rats injected with aluminium chloride: relationship to impaired bone mineralisation.

    PubMed Central

    Ellis, H A; McCarthy, J H; Herrington, J

    1979-01-01

    Iliac bone aluminium was determined by neutron activation analysis in 34 patients with chronic renal failure and in eight control subjects. In 17 patients treated by haemodialysis there was a significant increase in the amount of aluminium (mean +/- SE = 152 +/- 30 ppm bone ash). In eight patients treated by haemodialysis and subsequent renal transplantation, bone aluminium was still significantly increased (92 +/- 4.5 ppm bone ash) but was less than in the haemodialysed patients. In some patients aluminium persisted in bone for many years after successful renal transplantation. There was no relationship between hyperparathyroidism and bone aluminium. Although no statistically significant relationship was found between the mineralisation status of bone and bone aluminium, patients dialysed for the longest periods tended to be those with the highest levels of aluminium, osteomalacia, and dialysis encephalopathy. In 20 rats given daily intraperitoneal injections of aluminium chloride for periods of up to three months, there was accumulation of aluminium in bone (163 +/- 9 ppm ash) to levels comparable to those obtained in the dialysis patients, and after about eight weeks osteomalacia developed. The increased bone aluminium and osteomalacia persisted after injections had been stopped for up to 49 days, although endochondral ossification was restored to normal. As a working hypothesis it is suggested that aluminium retained in the bone of the dialysis patients and the experimental animals interferes with normal mineralisation. Images Fig. 5 Fig. 6 PMID:389958

  6. Postradiation atrophy of mature bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erguen, H.; Howland, W.J.

    1980-01-01

    The growing number of oncological patients subjected to radiotherapy require the diagnostic radiologist to be aware of expected bone changes following irradiation and the differentiation of this entity from metastasis. The primary event of radiation damage to bone is atrophy and true necrosis of bone is uncommon. The postradiation atrophic changes of bone are the result of combined cellular and vascular damage, the former being more important. The damage to the osteoblast resulting in decreased matrix production is apparently the primary histopathologic event. Radiation damaged bone is susceptible to superimposed complications of fracture, infection, necrosis, and sarcoma. The primary radiographicmore » evidence of atrophy, localized osteopenia, is late in appearing, mainly because of the relative insensitivity of radiographs in detecting demineralization. Contrary to former views, the mature bone is quite radiosensitive and reacts quickly to even small doses of radiation. In vivo midrodensitometric analysis and radionuclide bone and bone marrow scans can reveal early changes following irradiation. The differentiation of postirradiation atrophy and metastasis may be difficult. Biopsy should be the last resort because of the possibility of causing true necrosis in atrophic bone by trauma and infection.« less

  7. Postradiation atrophy of mature bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergun, H.; Howland, W.J.

    1980-01-01

    The growing number of oncological patients subjected to radiotherapy require the diagnostic radiologist to be aware of expected bone changes following irradiation and the differentiation of this entity from metastasis. The primary event of radiation damage to bone is atrophy and true necrosis of bone is uncommon. The postradiation atrophic changes of bone are the result of combined cellular and vascular damage, the former being more important. The damage to the osteoblast resulting in decreased matrix production is apparently the primary histopathologic event. Radiation damaged bone is susceptible to superimposed complications of fracture, infection, necrosis, and sarcoma. The primary radiographicmore » evidence of atrophy, localized osteopenia, is late in appearing, mainly because of the relative insensitivity of radiographs in detecing demineralization. Contrary to former views, the mature bone is quite radiosensitive and reacts quickly to even small doses of radiation. In vivo midrodensitometric analysis and radionuclide bone and bone marrow scans can reveal early changes following irradiation. The differentiation of postirradiation atrophy and metastasis may be difficult. Biopsy should be the last resort because of the possibility of causing true necrosis in atrophic bone by trauma and infection.« less

  8. Sensitivity and specificity of ultrasonography in early diagnosis of metatarsal bone stress fractures: a pilot study of 37 patients.

    PubMed

    Banal, Frédéric; Gandjbakhch, Frédérique; Foltz, Violaine; Goldcher, Alain; Etchepare, Fabien; Rozenberg, Sylvie; Koeger, Anne-Claude; Bourgeois, Pierre; Fautrel, Bruno

    2009-08-01

    To date, early diagnosis of stress fractures depends on magnetic resonance imaging (MRI) or bone scan scintigraphy, as radiographs are usually normal at onset of symptoms. These examinations are expensive or invasive, time-consuming, and poorly accessible. A recent report has shown the ability of ultrasonography (US) to detect early stress fractures. Our objective was to evaluate sensitivity and specificity of US versus dedicated MRI (0.2 Tesla), taken as the gold standard, in early diagnosis of metatarsal bone stress fractures. A case-control study from November 2006 to December 2007 was performed. All consecutive patients with mechanical pain and swelling of the metatarsal region for less than 3 months and with normal radiographs were included. US and dedicated MRI examinations of the metatarsal bones were performed the same day by experienced rheumatologists with expertise in US and MRI. Reading was undertaken blind to the clinical assessment and MRI/US results. Forty-one feet were analyzed on US and dedicated MRI from 37 patients (28 women, 9 men, mean age 52.7 +/- 14.1 yrs). MRI detected 13 fractures in 12 patients. Sensitivity of US was 83%, specificity 76%, positive predictive value 59%, and negative predictive value 92%. Positive likehood ratio was 3.45, negative likehood ratio 0.22. In cases of normal radiographs, US is indicated in the diagnosis of metatarsal bone stress fractures, as it is a low cost, noninvasive, rapid, and easy technique with good sensitivity and specificity. From these data, we propose a new imaging algorithm including US.

  9. Horizontal Guided Bone Regeneration in the Esthetic Area with rhPDGF-BB and Anorganic Bovine Bone Graft: A Case Report.

    PubMed

    Chiantella, Giovanni Carlo

    2016-01-01

    The present article describes the treatment given to a patient who underwent horizontal ridge augmentation surgery in the maxillary anterior area due to the premature loss of the maxillary central incisors. The complete dehiscence of the buccal plate was detected after elevation of mucoperiosteal flaps. The lesion was overfilled with deproteinized bovine xenograft particles combined with recombinant human platelet-derived growth factor BB (rhPDGF-BB) and covered with a porcine collagen barrier hydrated with the same growth factor. The soft tissues healed with no adverse complications. After 12 months, reentry surgery was carried out to place endosseous implants. Complete bone regeneration with the presence of bone-like tissue was observed. Cross-sectional computed tomography scan images confirmed integration of the bone graft and reconstruction of the lost hard tissue volume. The implants were inserted in an optimal three-dimensional position, thus facilitating esthetic restoration. Two years after insertion of final crowns, cone beam computed tomography scans displayed the stability of regenerated hard tissues around the implants. Controlled clinical studies are necessary to determine the benefit of hydrating bovine bone particles and collagen barriers with rhPDGF-BB for predictable bone regeneration of horizontal lesions.

  10. Bone mineral density in postmenopausal Mexican-Mestizo women with normal body mass index, overweight, or obesity.

    PubMed

    Méndez, Juan Pablo; Rojano-Mejía, David; Pedraza, Javier; Coral-Vázquez, Ramón Mauricio; Soriano, Ruth; García-García, Eduardo; Aguirre-García, María Del Carmen; Coronel, Agustín; Canto, Patricia

    2013-05-01

    Obesity and osteoporosis are two important public health problems that greatly impact mortality and morbidity. Several similarities between these complex diseases have been identified. The aim of this study was to analyze if different body mass indexes (BMIs) are associated with variations in bone mineral density (BMD) among postmenopausal Mexican-Mestizo women with normal weight, overweight, or different degrees of obesity. We studied 813 postmenopausal Mexican-Mestizo women. A structured questionnaire for risk factors was applied. Height and weight were used to calculate BMI, whereas BMD in the lumbar spine (LS) and total hip (TH) was measured by dual-energy x-ray absorptiometry. We used ANCOVA to examine the relationship between BMI and BMDs of the LS, TH, and femoral neck (FN), adjusting for confounding factors. Based on World Health Organization criteria, 15.13% of women had normal BMI, 39.11% were overweight, 25.96% had grade 1 obesity, 11.81% had grade 2 obesity, and 7.99% had grade 3 obesity. The higher the BMI, the higher was the BMD at the LS, TH, and FN. The greatest differences in size variations in BMD at these three sites were observed when comparing women with normal BMI versus women with grade 3 obesity. A higher BMI is associated significantly and positively with a higher BMD at the LS, TH, and FN.

  11. [A long-term follow-up of treatment of adult unicameral bone cysts with allograft of lyophilized cancellous bone].

    PubMed

    Zhang, Yonggang; Wang, Yan; Cheng, Jiying

    2005-08-01

    To investigate the long-term clinical results of treatment of adult unicameral bone cyst with cancellous allograft. From 1993 to 1998, 15 patients with unicameral bone cyst were treated by allograft with lyophilized cancellous bone. Among 15 patients, there were 5 males and 10 females, aging 19-41 years with an average of 27 years. The average follow-up time was 7.5 years (6-11 years). The X-ray films were taken and the CT scanning were carried out. The X-ray films showed that the allograft particles became vague 2-3 months after operation, that the allograft particles fused and began to form new bone and the bone density increased 5 months after operation, and that new bone formation completed after 7 months of operation. At the end of follow-up, remodelling in new bone occurred. Recurrence was not found in all patients. The symptom of pain disappeared or relieved obviously. Allograft of lyophilized cancellous bone is an effective treatment for adult unicameral bone cysts.

  12. Finite element analysis of functionally graded bone plate at femur bone fracture site

    NASA Astrophysics Data System (ADS)

    Satapathy, Pravat Kumar; Sahoo, Bamadev; Panda, L. N.; Das, S.

    2018-03-01

    This paper focuses on the analysis of fractured Femur bone with functionally graded bone plate. The Femur bone is modeled by using the data from the CT (Computerized Tomography) scan and the material properties are assigned using Mimics software. The fracture fixation plate used here is composed of Functionally Graded Material (FGM). The functionally graded bone plate is considered to be composed of different layers of homogeneous materials. Finite element method approach is adopted for analysis. The volume fraction of the material is calculated by considering its variation along the thickness direction (z) according to a power law and the effective properties of the homogeneous layers are estimated. The model developed is validated by comparing numerical results available in the literature. Static analysis has been performed for the bone plate system by considering both axial compressive load and torsional load. The investigation shows that by introducing FG bone plate instead of titanium, the stress at the fracture site increases by 63 percentage and the deformation decreases by 15 percentage, especially when torsional load is taken into consideration. The present model yields better results in comparison with the commercially available bone plates.

  13. Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass

    NASA Technical Reports Server (NTRS)

    Elefteriou, Florent; Takeda, Shu; Liu, Xiuyun; Armstrong, Dawna; Karsenty, Gerard

    2003-01-01

    Using chemical lesioning we previously identified hypothalamic neurons that are required for leptin antiosteogenic function. In the course of these studies we observed that destruction of neurons sensitive to monosodium glutamate (MSG) in arcuate nuclei did not affect bone mass. However MSG treatment leads to hypogonadism, a condition inducing bone loss. Therefore the normal bone mass of MSG-treated mice suggested that MSG-sensitive neurons may be implicated in the control of bone mass. To test this hypothesis we assessed bone resorption and bone formation parameters in MSG-treated mice. We show here that MSG-treated mice display the expected increase in bone resorption and that their normal bone mass is due to a concomitant increase in bone formation. Correction of MSG-induced hypogonadism by physiological doses of estradiol corrected the abnormal bone resorptive activity in MSG-treated mice and uncovered their high bone mass phenotype. Because neuropeptide Y (NPY) is highly expressed in MSG-sensitive neurons we tested whether NPY regulates bone formation. Surprisingly, NPY-deficient mice had a normal bone mass. This study reveals that distinct populations of hypothalamic neurons are involved in the control of bone mass and demonstrates that MSG-sensitive neurons control bone formation in a leptin-independent manner. It also indicates that NPY deficiency does not affect bone mass.

  14. Detection of occult, undisplaced hip fractures with a dual-energy CT algorithm targeted to detection of bone marrow edema.

    PubMed

    Reddy, T; McLaughlin, P D; Mallinson, P I; Reagan, A C; Munk, P L; Nicolaou, S; Ouellette, H A

    2015-02-01

    The purpose of this study is to describe our initial clinical experience with dual-energy computed tomography (DECT) virtual non-calcium (VNC) images for the detection of bone marrow (BM) edema in patients with suspected hip fracture following trauma. Twenty-five patients presented to the emergency department at a level 1 trauma center between January 1, 2011 and January 1, 2013 with clinical suspicion of hip fracture and normal radiographs were included. All CT scans were performed on a dual-source, dual-energy CT system. VNC images were generated using prototype software and were compared to regular bone reconstructions by two musculoskeletal radiologists in consensus. Radiological and/or clinical diagnosis of fracture at 30-day follow-up was used as the reference standard. Twenty-one patients were found to have DECT-VNC signs of bone marrow edema. Eighteen of these 21 patients were true positive and three were false positive. A concordant fracture was clearly seen on bone reconstruction images in 15 of the 18 true positive cases. In three cases, DECT-VNC was positive for bone marrow edema where bone reconstruction CT images were negative. Four patients demonstrated no DECT-VNC signs of bone marrow edema: two cases were true negative, two cases were false negative. When compared with the gold standard of hip fracture determined at retrospective follow-up, the sensitivity of DECT-VNC images of the hip was 90 %, specificity was 40 %, positive predictive value was 86 %, and negative predictive value was 50 %. Our initial experience would suggest that DECT-VNC is highly sensitive but poorly specific in the diagnosis of hip fractures in patients with normal radiographs. The value of DECT-VNC primarily lies in its ability to help detect fractures which may be subtle or undetectable on bone reconstruction CT images.

  15. Distribution of Proliferating Bone Marrow in Adult Cancer Patients Determined Using FLT-PET Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayman, James A., E-mail: hayman@umich.ed; University of Michigan Health Systems, Ann Arbor, MI; Callahan, Jason W.

    2011-03-01

    Purpose: Given that proliferating hematopoietic stem cells are especially radiosensitive, the bone marrow is a potential organ at risk, particularly with the use of concurrent chemotherapy and radiotherapy. Existing data on bone marrow distribution have been determined from the weight and visual appearance of the marrow in cadavers. {sup 18}F-fluoro-L-deoxythymidine concentrates in bone marrow, and we used its intensity on positron emission tomography imaging to quantify the location of the proliferating bone marrow. Methods and Materials: The {sup 18}F-fluoro-L-deoxythymidine positron emission/computed tomography scans performed at the Peter MacCallum Cancer Centre between 2006 and 2009 on adult cancer patients were analyzed.more » At a minimum, the scans included the mid-skull through the proximal femurs. A software program developed at our institution was used to calculate the percentage of administered activity in 11 separately defined bony regions. Results: The study population consisted of 13 patients, 6 of whom were men. Their median age was 61 years. Of the 13 patients, 9 had lung cancer, 2 had colon cancer, and 1 each had melanoma and leiomyosarcoma; 6 had received previous, but not recent, chemotherapy. The mean percentage of proliferating bone marrow by anatomic site was 2.9% {+-} 2.1% at the skull, 1.9% {+-} 1.2% at the proximal humeri, 2.9% {+-} 1.3% at the sternum, 8.8% {+-} 4.7% at the ribs and clavicles, 3.8% {+-} 0.9% at the scapulas, 4.3% {+-} 1.6% at the cervical spine, 19.9% {+-} 2.6% at the thoracic spine, 16.6% {+-} 2.2% at the lumbar spine, 9.2% {+-} 2.3% at the sacrum, 25.3% {+-} 4.9% at the pelvis, and 4.5% {+-} 2.5% at the proximal femurs. Conclusion: Our modern estimates of bone marrow distribution in actual cancer patients using molecular imaging of the proliferating marrow provide updated data for optimizing normal tissue sparing during external beam radiotherapy planning.« less

  16. In vitro simulation of pathological bone conditions to predict clinical outcome of bone tissue engineered materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Duong Thuy Thi

    According to the Centers for Disease Control, the geriatric population of ≥65 years of age will increase to 51.5 million in 2020; 40% of white women and 13% of white men will be at risk for fragility fractures or fractures sustained under normal stress and loading conditions due to bone disease, leading to hospitalization and surgical treatment. Fracture management strategies can be divided into pharmaceutical therapy, surgical intervention, and tissue regeneration for fracture prevention, fracture stabilization, and fracture site regeneration, respectively. However, these strategies fail to accommodate the pathological nature of fragility fractures, leading to unwanted side effects, implant failures, and non-unions. Compromised innate bone healing reactions of patients with bone diseases are exacerbated with protective bone therapy. Once these patients sustain a fracture, bone healing is a challenge, especially when fracture stabilization is unsuccessful. Traditional stabilizing screw and plate systems were designed with emphasis on bone mechanics rather than biology. Bone grafts are often used with fixation devices to provide skeletal continuity at the fracture gap. Current bone grafts include autologous bone tissue and donor bone tissue; however, the quality and quantity demanded by fragility fractures sustained by high-risk geriatric patients and patients with bone diseases are not met. Consequently, bone tissue engineering strategies are advancing towards functionalized bone substitutes to provide fracture reconstruction while effectively mediating bone healing in normal and diseased fracture environments. In order to target fragility fractures, fracture management strategies should be tailored to allow bone regeneration and fracture stabilization with bioactive bone substitutes designed for the pathological environment. The clinical outcome of these materials must be predictable within various disease environments. Initial development of a targeted

  17. Bare Bones of Bioactive Glass

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Even in normal gravity, bioactive glass particles enhance bone growth in laboratory tests with flat tissue cultures. Ducheyne and his team believe that using the bioactive microcarriers in a rotating bioreactor in microgravity will produce improved, three-dimensional tissue cultures. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and University of Pennsylvania Center for Bioactive Materials and Tissue Engineering.

  18. Biomechanical testing of isolated bones: holographic study

    NASA Astrophysics Data System (ADS)

    Silvennoinen, Raimo; Nygren, Kaarlo; Karna, Markku

    1992-08-01

    Holographic nondestructive testing (HNDT) is used to investigate the complex structures of bones of various shapes and sizes subjected to forces. Three antlered deer skulls of different species were investigated and significant species-specific differences were observed. The HNDT method was also used to verify the advanced healing of an osteosynthetized sheep jawbone. Radioulnar bones of a normal and an orphaned moose calf were subjected to a bending test. The undernourished calf showed torsio displacement combined with the bending of the bone, which was not seen in the normal calf. The effects of the masticatory forces on the moose skull surface were studied by simulating masseter muscle contractions with jawbones in occlusion. The fringe patterns showed fast-moving bone surfaces on the naso- maxillo-lacrimal region.

  19. Lung function not affected by asbestos exposure in workers with normal Computed Tomography scan.

    PubMed

    Schikowsky, Christian; Felten, Michael K; Eisenhawer, Christian; Das, Marco; Kraus, Thomas

    2017-05-01

    It has been suggested that asbestos exposure affects lung function, even in the absence of asbestos-related pulmonary interstitial or pleural changes or emphysema. We analyzed associations between well-known asbestos-related risk factors, such as individual cumulative asbestos exposure, and key lung function parameters in formerly asbestos-exposed power industry workers (N = 207) with normal CT scans. For this, we excluded participants with emphysema, fibrosis, pleural changes, or any combination of these. The lung function parameters of FVC, FEV1, DLCO/VA, and airway resistance were significantly associated with the burden of smoking, BMI and years since end of exposure (only DLCO/VA). However, they were not affected by factors directly related to amount (eg, cumulative exposure) or duration of asbestos exposure. Our results confirm the well-known correlation between lung function, smoking habits, and BMI. However, we found no significant association between lung function and asbestos exposure. © 2017 Wiley Periodicals, Inc.

  20. Elastic intramedullary nailing and DBM-Bone marrow injection for the treatment of simple bone cysts

    PubMed Central

    Kanellopoulos, Anastasios D; Mavrogenis, Andreas F; Papagelopoulos, Panayiotis J; Soucacos, Panayotis N

    2007-01-01

    Background Simple or unicameral bone cysts are common benign fluid-filled lesions usually located at the long bones of children before skeletal maturity. Methods We performed demineralized bone matrix and iliac crest bone marrow injection combined with elastic intramedullary nailing for the treatment of simple bone cysts in long bones of 9 children with a mean age of 12.6 years (range, 4 to 15 years). Results Two of the 9 patients presented with a pathological fracture. Three patients had been referred after the failure of previous treatments. Four patients had large lesions with impending pathological fractures that interfered with daily living activities. We employed a ratio to ascertain the severity of the lesion. The extent of the lesion on the longitudinal axis was divided with the normal expected diameter of the long bone at the site of the lesion. The mean follow-up was 77 months (range, 5 to 8 years). All patients were pain free and had full range of motion of the adjacent joints at 6 weeks postoperatively. Review radiographs showed that all 7 cysts had consolidated completely (Neer stage I) and 2 cysts had consolidated partially (Neer stage II). Until the latest examination there was no evidence of fracture or re-fracture. Conclusion Elastic intramedullary nailing has the twofold benefits of continuous cyst decompression, and early immediate stability to the involved bone segment, which permits early mobilization and return to the normal activities of the pre-teen patients. PMID:17916249

  1. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice.

    PubMed

    Govey, Peter M; Zhang, Yue; Donahue, Henry J

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone's capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure.

  2. Bone pulsating metastasis due to renal cell carcinoma.

    PubMed

    Cınar, Murat; Derincek, Alihan; Karan, Belgin; Akpınar, Sercan; Tuncay, Cengiz

    2010-11-01

    Pulsation on the bone cortex surface is a rare condition. Pulsative palpation of the superficial-located bone tumors can be misperceived as an aneurysm. Fifty-eight-year-old man is presented with pulsating bone mass in his proximal tibia. During angiographic examination, hypervascular masses were diagnosed both at right kidney and at right proximal tibia. Renal cell carcinoma was diagnosed after abdominal CT scan. Proximal tibia biopsy was complicated with projectile bleeding.

  3. Purinergic signalling in bone

    PubMed Central

    Rumney, Robin M. H.; Wang, Ning; Agrawal, Ankita; Gartland, Alison

    2012-01-01

    Purinergic signaling in bone was first proposed in the early 1990s with the observation that extracellular ATP could modulate events crucial to the normal functioning of bone cells. Since then the expression of nearly all the P2Y and P2X receptors by osteoblasts and osteoclasts has been reported, mediating multiple processes including cell proliferation, differentiation, function, and death. This review will highlight the most recent developments in the field of purinergic signaling in bone, with a special emphasis on recent work resulting from the European Framework 7 funded collaboration ATPBone, as well as Arthritis Research UK and Bone Research Society supported projects. PMID:23049524

  4. The in vitro viability and growth of fibroblasts cultured in the presence of different bone grafting materials (NanoBone and Straumann Bone Ceramic).

    PubMed

    Kauschke, E; Rumpel, E; Fanghänel, J; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Different clinical applications, including dentistry, are making increasing demands on bone grafting material. In the present study we have analysed the viability, proliferation and growth characteristics of fibroblasts cultured in vitro together with two different bone grafting materials, NanoBone and Straumann Bone Ceramic, over a period of 24 and 28 days respectively. Viability was measured at least every 72 hours by using the alamarBlue assay, a test that measures quantitatively cell proliferation and viability but does not require cell fixation or extraction. After one week of culture fibroblast viability was as high as in controls for both grafting materials and remained high (> 90%) for the duration of the experiment. Cell growth was evaluated microscopically. Scanning electron microscopy revealed a dense fibroblast growth at the surface of both bone grafting materials after three weeks of in vitro culture. Generally, our in vitro analyses contribute to further insights into cell - scaffold interactions.

  5. Calcar bone graft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bargar, W.L.; Paul, H.A.; Merritt, K.

    1986-01-01

    A canine model was developed to investigate the use of an autogeneic iliac bone graft to treat the calcar deficiency commonly found at the time of revision surgery for femoral component loosening. Five large male mixed-breed dogs had bilateral total hip arthroplasty staged at three-month intervals, and were sacrificed at six months. Prior to cementing the femoral component, an experimental calcar defect was made, and a bicortical iliac bone graft was fashioned to fill the defect. Serial roentgenograms showed the grafts had united with no resorption. Technetium-99 bone scans showed more uptake at three months than at six months inmore » the graft region. Disulfine blue injection indicated all grafts were perfused at both three and six months. Thin section histology, fluorochromes, and microradiographs confirmed graft viability in all dogs. Semiquantitative grading of the fluorochromes indicated new bone deposition in 20%-50% of each graft at three months and 50%-80% at six months. Although the calcar bone graft was uniformly successful in this canine study, the clinical application of this technique should be evaluated by long-term results in humans.« less

  6. Abnormal bone formation induced by implantation of osteosarcoma-derived bone-inducing substance in the X-linked hypophosphatemic mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, H.; Masuhara, K.; Takaoka, K.

    1985-01-01

    The X-linked hypophosphatemic mouse (Hyp) has been proposed as a model for the human familial hypophosphatemia (the most common form of vitamin D-resistant rickets). An osteosarcoma-derived bone-inducing substance was subcutaneously implanted into the Hyp mouse. The implant was consistently replaced by cartilage tissue at 2 weeks after implantation. The cartilage matrix seemed to be normal, according to the histological examination, and 35sulphur (TVS) uptake was also normal. Up to 4 weeks after implantation the cartilage matrix was completely replaced by unmineralized bone matrix and hematopoietic bone marrow. Osteoid tissue arising from the implantation of bone inducing substance in the Hypmore » mouse showed no radiologic or histologic sign of calcification. These findings suggest that the abnormalities of endochondral ossification in the Hyp mouse might be characterized by the failure of mineralization in cartilage and bone matrix. Analysis of the effects of bone-inducing substance on the Hyp mouse may help to give greater insight into the mechanism and treatment of human familial hypophosphatemia.« less

  7. Severe hypocalcemia following bisphosphonate treatment in a patient with Paget's disease of bone.

    PubMed

    Whitson, Heather E; Lobaugh, Bruce; Lyles, Kenneth W

    2006-10-01

    Bisphosphonate therapy is a common and effective treatment for Paget's disease of bone, osteoporosis, hypercalcemia of malignancy and cancer metastatic to bone. Clinically significant hypocalcemia has not been reported in patients with Paget's disease of bone and normal parathyroid function treated with an aminobisphosphonate. We treated a 52-year-old woman with polyostotic Paget's disease of bone (serum alkaline phosphatase level-1971 IU/L [normal 31-110 IU/L]), who had not previously received bisphosphonates, with daily oral 30 mg risedronate, oral 1000 mg elemental calcium and oral 400 IU cholecalciferol. After 10 days of treatment, she developed severe hypocalcemia (5.4 mg/dL [normal 8.7-10.2 mg/dL]), requiring hospitalization and support with 5 days of intravenous calcium gluconate. On the day risedronate treatment began, her PTH was low normal at 14 pg/mL (normal 12-72 pg/mL), consistent with a relatively suppressed PTH axis due to high bone turnover. Her vitamin D level was within normal limits (serum 25(OH)D 19 ng/mL [normal 8-38 ng/mL]), although possibly not optimally repleted. We hypothesize that this case represents an example of hungry bone syndrome in a patient with extensive Paget's disease of bone who received risedronate, causing acute suppression of bone resorption while elevated bone formation rates continued. In the year following her recovery, the patient was successfully treated with slowly titrated anti-resorptive therapy (subcutaneous calcitonin followed by titrated doses of risedronate), and is now clinically well. Physicians should be aware of the potential for hypocalcemia when patients with polyostotic Paget's disease and markedly elevated indicators of bone remodeling are initiated on powerful anti-resorptive therapy.

  8. Bone age maturity assessment using hand-held device

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Gilsanz, Vicente; Liu, Xiaodong; Boechat, M. I.

    2004-04-01

    Purpose: Assessment of bone maturity is traditionally performed through visual comparison of hand and wrist radiograph with existing reference images in textbooks. Our goal was to develop a digital index based on idealized hand Xray images that can be incorporated in a hand held computer and used for visual assessment of bone age for patients. Material and methods: Due to the large variability in bone maturation in normals, we generated a set of "ideal" images obtained by computer combinations of images from our normal reference data sets. Software for hand-held PDA devices was developed for easy navigation through the set of images and visual selection of matching images. A formula based on our statistical analysis provides the standard deviation from normal based on the chronological age of the patient. The accuracy of the program was compared to traditional interpretation by two radiologists in a double blind reading of 200 normal Caucasian children (100 boys, 100 girls). Results: Strong correlations were present between chronological age and bone age (r > 0.9) with no statistical difference between the digital and traditional assessment methods. Determinations of carpal bone maturity in adolescents was slightly more accurate using the digital system. The users did praise the convenience and effectiveness of the digital Palm Index in clinical practice. Conclusion: An idealized digital Palm Bone Age Index provides a convenient and effective alternative to conventional atlases for the assessment of skeletal maturity.

  9. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    PubMed

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  10. Simulating Bone Loss in Microgravity Using Mathematical Formulations of Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Pennline, James A.

    2009-01-01

    Most mathematical models of bone remodeling are used to simulate a specific bone disease, by disrupting the steady state or balance in the normal remodeling process, and to simulate a therapeutic strategy. In this work, the ability of a mathematical model of bone remodeling to simulate bone loss as a function of time under the conditions of microgravity is investigated. The model is formed by combining a previously developed set of biochemical, cellular dynamics, and mechanical stimulus equations in the literature with two newly proposed equations; one governing the rate of change of the area of cortical bone tissue in a cross section of a cylindrical section of bone and one governing the rate of change of calcium in the bone fluid. The mechanical stimulus comes from a simple model of stress due to a compressive force on a cylindrical section of bone which can be reduced to zero to mimic the effects of skeletal unloading in microgravity. The complete set of equations formed is a system of first order ordinary differential equations. The results of selected simulations are displayed and discussed. Limitations and deficiencies of the model are also discussed as well as suggestions for further research.

  11. Trabecular bone adaptation to low-magnitude high-frequency loading in microgravity.

    PubMed

    Torcasio, Antonia; Jähn, Katharina; Van Guyse, Maarten; Spaepen, Pieter; Tami, Andrea E; Vander Sloten, Jos; Stoddart, Martin J; van Lenthe, G Harry

    2014-01-01

    Exposure to microgravity causes loss of lower body bone mass in some astronauts. Low-magnitude high-frequency loading can stimulate bone formation on earth. Here we hypothesized that low-magnitude high-frequency loading will also stimulate bone formation under microgravity conditions. Two groups of six bovine cancellous bone explants were cultured at microgravity on a Russian Foton-M3 spacecraft and were either loaded dynamically using a sinusoidal curve or experienced only a static load. Comparable reference groups were investigated at normal gravity. Bone structure was assessed by histology, and mechanical competence was quantified using μCT and FE modelling; bone remodelling was assessed by fluorescent labelling and secreted bone turnover markers. Statistical analyses on morphometric parameters and apparent stiffness did not reveal significant differences between the treatment groups. The release of bone formation marker from the groups cultured at normal gravity increased significantly from the first to the second week of the experiment by 90.4% and 82.5% in response to static and dynamic loading, respectively. Bone resorption markers decreased significantly for the groups cultured at microgravity by 7.5% and 8.0% in response to static and dynamic loading, respectively. We found low strain magnitudes to drive bone turnover when applied at high frequency, and this to be valid at normal as well as at microgravity. In conclusion, we found the effect of mechanical loading on trabecular bone to be regulated mainly by an increase of bone formation at normal gravity and by a decrease in bone resorption at microgravity. Additional studies with extended experimental time and increased samples number appear necessary for a further understanding of the anabolic potential of dynamic loading on bone quality and mechanical competence.

  12. Bone marrow invasion in multiple myeloma and metastatic disease.

    PubMed

    Vilanova, J C; Luna, A

    2016-04-01

    Magnetic resonance imaging (MRI) of the spine is the imaging study of choice for the management of bone marrow disease. MRI sequences enable us to integrate structural and functional information for detecting, staging, and monitoring the response the treatment of multiple myeloma and bone metastases in the spine. Whole-body MRI has been incorporated into different guidelines as the technique of choice for managing multiple myeloma and metastatic bone disease. Normal physiological changes in the yellow and red bone marrow represent a challenge in analyses to differentiate clinically significant findings from those that are not clinically significant. This article describes the findings for normal bone marrow, variants, and invasive processes in multiple myeloma and bone metastases. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  13. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    PubMed Central

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  14. Detection and evaluation of normal and malignant cells using laser-induced fluorescence spectroscopy.

    PubMed

    Khosroshahi, Mohamad E; Rahmani, Mahya

    2012-01-01

    The aim of this research is to study the normalized fluorescence spectra (intensity variations and area under the fluorescence signal), relative quantum yield, extinction coefficient and intracellular properties of normal and malignant human bone cells. Using Laser-Induced Fluorescence Spectroscopy (LIFS) upon excitation of 405 nm, the comparison of emission spectra of bone cells revealed that fluorescence intensity and the area under the spectra of malignant bone cells was less than that of normal. In addition, the area ratio and shape factor were changed. We obtained two emission bands in spectra of normal cells centered at about 486 and 575 nm and for malignant cells about 482 and 586 nm respectively, which are most likely attributed to NADH and riboflavins. Using fluorescein sodium emission spectrum, the relative quantum yield of bone cells is numerically determined.

  15. Nurse exposure doses resulted from bone scintigraphy patient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tunçman, Duygu, E-mail: duygutuncman@gmail.com; Demir, Bayram; Kovan, Bilal

    Bone scintigraphy is used for displaying the radiologic undiagnosed bone lesions in nuclear medicine. It’s general indications are researching bone metastases, detection of radiographically occult fractures, staging and follow-up in primary bone tumors, diagnosis of paget’s disease, investigation of loosening and infection in orthopedic implants. It is applied with using {sup 99m}Tc labeled radiopharmaceuticals (e.g {sup 99m} Tc MDP,{sup 99m}Tc HEDP and {sup 99m}Tc HMDP). 20 -25 mCi IV radiotracer was injected into vein and radiotracer emits gamma radiation. Patient waits in isolated room for about 3 hours then a gamma camera scans radiation area and creates an image. Whenmore » some patient’s situation is not good, patients are hospitalized until the scanning because of patients’ close contact care need. In this study, measurements were taken from ten patients using Geiger Muller counter. After these measurements, we calculated nurse’s exposure radiations from patient’s routine treatment, examination and emergency station.« less

  16. Bone density and brain atrophy in early Alzheimer's disease.

    PubMed

    Loskutova, Natalia; Honea, Robyn A; Vidoni, Eric D; Brooks, William M; Burns, Jeffrey M

    2009-01-01

    Studies suggest a link between bone loss and Alzheimer's disease. To examine bone mineral density (BMD) in early Alzheimer's disease (AD) and its relationship to brain structure and cognition, we evaluated 71 patients with early stage AD (Clinical Dementia Rating (CDR) 0.5 and 1) and 69 non-demented elderly control participants (CDR 0). Measures included whole body BMD by dual energy x-ray absorptiometry (DXA) and normalized whole brain volumes computed from structural MRI scans. Cognition was assessed with a standard neuropsychological test battery. Mean BMD was lower in the early AD group (1.11 +/- 0.13) compared to the non-demented control group (1.16 +/- 0.12, p = 0.02), independent of age, gender, habitual physical activity, smoking, depression, estrogen replacement, and apolipoprotein E4 carrier status. In the early AD group, BMD was related to whole brain volume (b = 0.18, p = 0.03). BMD was also associated with cognitive performance, primarily in tests of memory (logical memory [b = 0.15, p = 0.04], delayed logical memory [b = 0.16, p = 0.02], and the selective reminding task - free recall [b = 0.18, p = 0.009]). BMD is reduced in the earliest clinical stages of AD and associated with brain atrophy and memory decline, suggesting that central mechanisms may contribute to bone loss in early AD.

  17. Topography of Acoustical Properties of Long Bones: From Biomechanical Studies to Bone Health Assessment

    PubMed Central

    Tatarinov, Alexey; Sarvazyan, Armen

    2010-01-01

    The article presents a retrospective view on the assessment of long bones condition using topographical patterns of the acoustic properties. The application of ultrasonic point-contact transducers with exponential waveguides on a short acoustic base for detailed measurements in human long bones by the surface transmission was initiated during the 1980s in Latvia. The guided wave velocity was mapped on the surface of the long bones and the topographical patterns reflected the biomechanical peculiarities. Axial velocity profiles obtained in vivo by measurements along the medial surface of tibia varied due to aging, hypokinesia, and physical training. The method has been advanced at Artann Laboratories (West Trenton, NJ) by the introduction of multifrequency data acquisition and axial scanning. The model studies carried out on synthetic phantoms and in bone specimens confirmed the potential to evaluate separately changes of the bone material properties and of the cortical thickness by multifrequency acoustic measurements at the 0.1 to 1 MHz band. The bone ultrasonic scanner (BUSS) is an axial mode ultrasonometer developed to depict the acoustic profile of bone that will detect the onset of bone atrophy as a spatial process. Clinical trials demonstrated a high sensitivity of BUSS to osteoporosis and the capability to assess early stage of osteopenia. PMID:18599416

  18. Can Spatiotemporal Fluoride (18F-) Uptake be Used to Assess Bone Formation in the Tibia? A Longitudinal Study Using PET/CT.

    PubMed

    Lundblad, Henrik; Karlsson-Thur, Charlotte; Maguire, Gerald Q; Jonsson, Cathrine; Noz, Marilyn E; Zeleznik, Michael P; Weidenhielm, Lars

    2017-05-01

    When a bone is broken for any reason, it is important for the orthopaedic surgeon to know how bone healing is progressing. There has been resurgence in the use of the fluoride ( 18 F - ) ion to evaluate various bone conditions. This has been made possible by availability of positron emission tomography (PET)/CT hybrid scanners together with cyclotrons. Absorbed on the bone surface from blood flow, 18 F - attaches to the osteoblasts in cancellous bone and acts as a pharmacokinetic agent, which reflects the local physiologic activity of bone. This is important because it shows bone formation indicating that the bone is healing or no bone formation indicating no healing. As 18 F - is extracted from blood in proportion to blood flow and bone formation, it thus enables determination of bone healing progress. The primary objective of this study was to determine whether videos showing the spatiotemporal uptake of 18 F - via PET bone scans could show problematic bone healing in patients with complex tibia conditions. A secondary objective was to determine if semiquantification of radionuclide uptake was consistent with bone healing. This study investigated measurements of tibia bone formation in patients with complex fractures, osteomyelitis, and osteotomies treated with a Taylor Spatial Frame TM (TSF) by comparing clinical healing progress with spatiotemporal fluoride ( 18 F - ) uptake and the semiquantitative standardized uptake value (SUV). This procedure included static and dynamic image acquisition. For intrapatient volumes acquired at different times, the CT and PET data were spatially registered to bring the ends of the bones that were supposed to heal into alignment. To qualitatively observe how and where bone formation was occurring, time-sequenced volumes were reconstructed and viewed as a video. To semiquantify the uptake, the mean and maximum SUVs (SUVmean, SUVmax) were calculated for the ends of the bones that were supposed to heal and for normal bone, using a

  19. Does Guided Bone Regeneration Prevent Unfavorable Bone Shapes in Distraction Gap?

    PubMed

    Demetoglu, Umut; Alkan, Alper; Kiliç, Erdem; Ozturk, Mustafa; Bilge, Suheyb

    2018-03-01

    Complications related to distraction osteogenesis can cause degradation of newly regenerated bone. Additionally, an unfavorable shape of the regenerated bone at the distraction gap can reduce the quantity of regenerated bone. The aim of the present study was to report on the prevention of unfavorable shapes of regenerated bone using guided bone regeneration during distraction. Bilateral alveolar distraction was performed in 10 beagle dog mandibles. One side of the mandible formed the experimental group and the other side served as the control group. In the experimental group, guided bone regeneration was performed simultaneously with distraction osteogenesis. In the control group, only alveolar distraction was applied. At the end of a 1-week latent period, all mandibles were distracted 10 mm (1 mm/day). After the distraction period, 3 months were allowed for consolidation. After consolidation, all the dogs were euthanized, and the shape of the regenerated bone was determined to be either favorable or unfavorable. Densitometric evaluation and area measurements were performed using computed tomography scans. Statistical evaluation was performed using the independent t test, with a significance level of P < .05. In the experimental group, no unfavorable bone shape developed in the distraction gap, and the new bone had a surface and volume similar to those of the segments. In contrast, in the control group, 4 mandibles had an unfavorable bone shape in the distraction gap and 4 showed favorable bone healing with no defect. The surface area of the regenerating bone in the experimental group was significantly greater than that in the control group. Also, the surface area differed significantly between the experimental and control groups (P < .05). However, the densitometric values did not differ between the 2 groups (P < .05). Concomitant use of guided bone regeneration with distraction osteogenesis could be an optimal method for generating a favorable bone shape

  20. High fat diet promotes achievement of peak bone mass in young rats.

    PubMed

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R; Bhat, Manoj Kumar

    2014-12-05

    The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  1. Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases

    PubMed Central

    Hardaway, Aimalie L.; Herroon, Mackenzie K.; Rajagurubandara, Erandi

    2014-01-01

    Adipocytes are important but underappreciated components of bone marrow microenvironment, and their numbers greatly increase with age, obesity, and associated metabolic pathologies. Age and obesity are also significant risk factors for development of metastatic prostate cancer. Adipocytes are metabolically active cells that secrete adipokines, growth factors, and inflammatory mediators; influence behavior and function of neighboring cells; and have a potential to disturb local milleu and dysregulate normal bone homeostasis. Increased marrow adiposity has been linked to bone marrow inflammation and osteoporosis of the bone, but its effects on growth and progression of prostate tumors that have metastasized to the skeleton are currently not known. This review focuses on fat-bone relationship in a context of normal bone homeostasis and metastatic tumor growth in bone. We discuss effects of marrow fat cells on bone metabolism, hematopoiesis, and inflammation. Special attention is given to CCL2- and COX-2-driven pathways and their potential as therapeutic targets for bone metastatic disease. PMID:24398857

  2. Intraoperative /sup 99m/Tc bone imaging in the treatment of benign osteoblastic tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sty, J.; Simons, G.

    1982-05-01

    Benign bone tumors can be successfully treated by local resection with the use of intraoperative bone imaging. Intraoperative bone imaging provided accurate localization of an osteoid osteoma in a patella of a 16-year-old girl when standard radiographs failed to demonstrate the lesion. In a case of osteoblastoma of the sacrum in a 12-year old girl, intraoperative scanning was used repeatedly to guide completeness of resection. In these cases in which routine intraoperative radiographs would have failed, intraoperative scanning proved to be essential for success.

  3. Reconstruction of Canine Mandibular Bone Defects Using a Bone Transport Reconstruction Plate

    PubMed Central

    Elsalanty, Mohammed E.; Zakhary, Ibrahim; Akeel, Sara; Benson, Byron; Mulone, Timothy; Triplett, Gilbert R.; Opperman, Lynne A.

    2010-01-01

    Objectives Reconstruction of mandibular segmental bone defects is a challenging task. This study tests a new device used for reconstructing mandibular defects based on the principle of bone transport distraction osteogenesis. Methods Thirteen beagle dogs were divided into control and experimental groups. In all animals, a 3 cm defect was created on one side of the mandible. In eight control animals, the defect was stabilized with a reconstruction plate without further reconstruction and the animals were sacrificed two to three months after surgery. The remaining five animals were reconstructed with a bone transport reconstruction plate (BTRP), comprising a reconstruction plate with attached intraoral transport unit, and were sacrificed after one month of consolidation. Results Clinical evaluation, cone-beam CT densitometry, three-dimensional histomorphometry, and docking site histology revealed significant new bone formation within the defect in the distracted group. Conclusion The physical dimensions and architectural parameters of the new bone were comparable to the contralateral normal bone. Bone union at the docking site remains a problem. PMID:19770704

  4. Application of the World Health Organization Fracture Risk Assessment Tool to predict need for dual-energy X-ray absorptiometry scanning in postmenopausal women.

    PubMed

    Chao, An-Shine; Chen, Fang-Ping; Lin, Yu-Ching; Huang, Ting-Shuo; Fan, Chih-Ming; Yu, Yu-Wei

    2015-12-01

    To evaluate the efficacy of the World Health Organization Fracture Risk Assessment Tool, excluding bone mineral density (pre-BMD FRAX), in identifying Taiwanese postmenopausal women needing dual-energy X-ray absorptiometry (DXA) examination for further treatment. The pre-BMD FRAX score was calculated for 231 postmenopausal women who participated in public health education workshops in the local Keelung community, Taiwan. DXA scanning and vertebral fracture assessment (VFA) were arranged for women classified as intermediate or high risk for fracture using the pre-BMD FRAX fracture probability. Pre-BMD FRAX classified 26 women as intermediate risk and 37 as having high risk for fracture. Subsequent DXA scans for these 63 women showed that 36 were osteoporotic, 19 were osteopenic, and eight had normal bone density. Concurrent VFA revealed 25 spine factures in which 14 were osteoporotic, seven were osteopenic, and four had normal bone density. The efficacy of the pre-BMD FRAX score to identify those patients with low bone mass by DXA was 87.3% (55/63). When VFA was combined with BMD to identify those patients with high risk (osteopenia, osteoporosis, or spinal fracture), the efficacy of the pre-BMD score increased to 93.7% (59/63). According to the National Osteoporosis Foundation, the overall concordance between pre-BMD FRAX and BMD, expressed through the kappa index, was 0.967. Compared with the evaluation when BMD was used alone, there was a significant increase in efficacy in identifying women who need treatment using BMD plus VFA or FRAX plus BMD. Furthermore, the highest efficacy was achieved when FRAX with BMD and VFA was used. The pre-BMD FRAX score not only efficiently predicts postmenopausal patients who are potentially at risk and might require treatment but also reduces unnecessary DXA use. Concurrent VFA during DXA use increases spine fracture detection. This improvement in diagnostic efficacy allows clinicians to provide the most appropriate therapeutic

  5. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo

    PubMed Central

    Wei, Xiaowei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-01-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum–host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. PMID:26843518

  6. Prevent and cure disuse bone loss

    NASA Technical Reports Server (NTRS)

    Jee, Webster S. S.

    1994-01-01

    Anabolic agents like parathyroid hormone and postagladin E-like substances were studied in dogs and rats to determine their effectiveness in the prevention and cure of bone loss due to immobilization. It was determined that postagladin E2 administration prevented immobilization while at the same time it added extra bone in a dose responsive manner. Although bone mass returns, poor trabecular architecture remains after normal ambulation recovery from immobilization. Disuse related bone loss and poor trabecular architecture were cured by post-immobilization postagladin E2 treatment.

  7. Age dependence of the normal/abnormal difference of bone mineral density in osteoporotic women.

    PubMed

    Bagur, A; Vega, E; Mautalen, C

    1994-09-01

    Bone mineral density (BMD) is the major factor in bone strength and in the risk of suffering osteoporotic fractures. The aim of this study was to examine the normal/abnormal difference for antero-posterior (AP) spine, lateral spine, proximal femur and total body BMD to assess if age influences discrimination at three different decades between 50 and 80 years of age. The BMD was determined in 61 control women and 60 osteoporotic women (at least one vertebral wedge fracture readily visible in the lateral X-rays of the thoracic or lumbar spine). Measurements were made by DEXA with a total body scanner. The BMD of the whole group of osteoporotic women was markedly lower than that of age-matched controls at all skeletal areas (P < 0.001) except at the arms where the difference was smaller (P < 0.02). The Z-score (the difference between osteoporotic patients and age-matched control divided by the intrapopulation S.D.) was similar (approximately -1.7) over the AP spine, femoral neck, Ward's triangle, total body and legs. It was significantly lower at the arms (-0.8, P < 0.001), lateral spine (-1.4, P < 0.01) and trochanter (-1.3, P < 0.001) compared with the Z-score of the AP spine. The analysis of the results by decades of age disclosed that the higher Z-score on the 6th and 7th decades corresponded to the AP lumbar spine (approximately -2.0). A high descrimination was also observed for the femoral neck, Ward's triangle and legs while the Z-score of the lateral lumbar spine, total body, trochanter and arms were significantly lower than that of the AP lumbar spine. However on the 8th decade the Z-score of the AP lumbar spine diminished to -1.2 and was only significantly higher than the Z-score of the arms (P < 0.01). The study showed that, in women 50-60 years of age--the period where the majority of studies are made for prevention of osteoporosis, none of the other skeletal areas were superior to the AP spine in discrimination for spinal osteoporosis. Proximal femur and

  8. [Diagnosis of septic loosening of hip prosthesis with LeukoScan. SPECT scan with 99mTc-labeled monoclonal antibodies].

    PubMed

    Kaisidis, A; Megas, P; Apostolopoulos, D; Spiridonidis, T; Koumoundourou, D; Zouboulis, P; Lambiris, E; Vassilakos, P

    2005-05-01

    Diagnosis of septic loosening of hip endoprosthesis with antigranulocyte scintigraphy (AGS) was analysed. Twenty-one hip prostheses were studied using laboratory tests and, in cases of elevated values, three-phase bone scan (BS) and AGS. Elective SPECT/CT scans were performed. Histologic and microbiologic exams verified the diagnosis. The AGS analysis revealed sensitivity, specificity and accuracy of value 1, while positive and negative predictive values were also 1. BS showed sensitivity of 1 and specificity of 0.33. In three cases, SPECT/CT scans corroborated the AGS interpretation. This diagnostic algorithm proved effective in the detection of septic loosening of hip prostheses. AGS can be avoided without risk of infection being overlooked.

  9. Three Dimensional Cross-Sectional Properties From Bone Densitometry

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Bone densitometry has previously been used to obtain cross-sectional properties of bone in a single scan plane. Using three non-coplanar scans, we have extended the method to obtain the principal area Moments of inertia and orientations of the principal axes at each cross-section along the length of the scan. Various 5 aluminum phantoms were used to examine scanner characteristics to develop the highest accuracy possible for in vitro non-invasive analysis of mass distribution. Factors considered included X-ray photon energy, initial scan orientation, the included angle of the 3 scans, and Imin/Imax ratios. Principal moments of inertia were accurate to within 3.1% and principal angles were within 1 deg. of the expected value for phantoms scanned with included angles of 60 deg. and 90 deg. at the higher X-ray photon energy. Low standard deviations in error also 10 indicate high precision of calculated measurements with these included angles. Accuracy and precision decreased slightly when the included angle was reduced to 30 deg. The method was then successfully applied to a pair of excised cadaveric tibiae. The accuracy and insensitivity of the algorithms to cross-sectional shape and changing isotropy (Imin/Imax) values when various included angles are used make this technique viable for future in vivo studies.

  10. Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling.

    PubMed

    Mishina, Yuji; Starbuck, Michael W; Gentile, Michael A; Fukuda, Tomokazu; Kasparcova, Viera; Seedor, J Gregory; Hanks, Mark C; Amling, Michael; Pinero, Gerald J; Harada, Shun-ichi; Behringer, Richard R

    2004-06-25

    Bone morphogenetic proteins (BMPs) function during various aspects of embryonic development including skeletogenesis. However, their biological functions after birth are less understood. To investigate the role of BMPs during bone remodeling, we generated a postnatal osteoblast-specific disruption of Bmpr1a that encodes the type IA receptor for BMPs in mice. Mutant mice were smaller than controls up to 6 months after birth. Irregular calcification and low bone mass were observed, but there were normal numbers of osteoblasts. The ability of the mutant osteoblasts to form mineralized nodules in culture was severely reduced. Interestingly, bone mass was increased in aged mutant mice due to reduced bone resorption evidenced by reduced bone turnover. The mutant mice lost more bone after ovariectomy likely resulting from decreased osteoblast function which could not overcome ovariectomy-induced bone resorption. In organ culture of bones from aged mice, ablation of the Bmpr1a gene by adenoviral Cre recombinase abolished the stimulatory effects of BMP4 on the expression of lysosomal enzymes essential for osteoclastic bone resorption. These results demonstrate essential and age-dependent roles for BMP signaling mediated by BMPRIA (a type IA receptor for BMP) in osteoblasts for bone remodeling.

  11. Bone erosions in patients with chronic gouty arthropathy are associated with tophi but not bone oedema or synovitis: new insights from a 3 T MRI study.

    PubMed

    McQueen, Fiona M; Doyle, Anthony; Reeves, Quentin; Gao, Angela; Tsai, Amy; Gamble, Greg D; Curteis, Barbara; Williams, Megan; Dalbeth, Nicola

    2014-01-01

    Bone erosion has been linked with tophus deposition in gout but the roles of osteitis (MRI bone oedema) and synovitis remain uncertain. Our aims in this prospective 3 T MRI study were to investigate the frequency of these features in gout and determine their relation to one another. 3 T MRI scans of the wrist were obtained in 40 gout patients. Scans were scored independently by two radiologists for bone oedema, erosions, tophi and synovitis. Dual-energy CT (DECT) scans were scored for tophi in a subgroup of 10 patients. Interreader reliability was high for erosions and tophi [intraclass correlation coefficients (ICCs) 0.77 (95% CI 0.71, 0.87) and 0.71 (95% CI 0.52, 0.83)] and moderate for bone oedema [ICC = 0.60 (95% CI 0.36, 0.77)]. Compared with DECT, MRI had a specificity of 0.98 (95% CI 0.93, 0.99) and sensitivity of 0.63 (95% CI 0.48, 0.76) for tophi. Erosions were detected in 63% of patients and were strongly associated with tophi [odds ratio (OR) = 13.0 (95% CI 1.5, 113)]. In contrast, no association was found between erosions and bone oedema. Using concordant data, bone oedema was scored at 6/548 (1%) sites in 5/40 patients (12.5%) and was very mild (median carpal score = 1, maximum = 45). In logistic regression analysis across all joints nested within individuals, tophus, but not synovitis, was independently associated with erosion [OR = 156.5 (21.2, >999.9), P < 0.0001]. Erosions were strongly associated with tophi but not bone oedema or synovitis. MRI bone oedema was relatively uncommon and low grade. These findings highlight the unique nature of the osteopathology of gout.

  12. Primitive Sca-1 Positive Bone Marrow HSC in Mouse Model of Aplastic Anemia: A Comparative Study through Flowcytometric Analysis and Scanning Electron Microscopy

    PubMed Central

    Chatterjee, Sumanta; Basak, Pratima; Das, Prosun; Das, Madhurima; Pereira, Jacintha Archana; Dutta, Ranjan Kumar; Chaklader, Malay; Chaudhuri, Samaresh; Law, Sujata

    2010-01-01

    Self-renewing Hematopoietic Stem Cells (HSCs) are responsible for reconstitution of all blood cell lineages. Sca-1 is the “stem cell antigen” marker used to identify the primitive murine HSC population, the expression of which decreases upon differentiation to other mature cell types. Sca-1+ HSCs maintain the bone marrow stem cell pool throughout the life. Aplastic anemia is a disease considered to involve primary stem cell deficiency and is characterized by severe pancytopenia and a decline in healthy blood cell generation system. Studies conducted in our laboratory revealed that the primitive Sca-1+ BM-HSCs (bone marrow hematopoietic stem cell) are significantly affected in experimental Aplastic animals pretreated with chemotherapeutic drugs (Busulfan and Cyclophosphamide) and there is increased Caspase-3 activity with consecutive high Annexin-V positivity leading to premature apoptosis in the bone marrow hematopoietic stem cell population in Aplastic condition. The Sca-1bright, that is, “more primitive” BM-HSC population was more affected than the “less primitive” BM-HSC Sca-1dim  population. The decreased cell population and the receptor expression were directly associated with an empty and deranged marrow microenvironment, which is evident from scanning electron microscopy (SEM). The above experimental evidences hint toward the manipulation of receptor expression for the benefit of cytotherapy by primitive stem cell population in Aplastic anemia cases. PMID:21048851

  13. Non-invasive assessment of bone quantity and quality in human trabeculae using scanning ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Xia, Yi

    Fractures and associated bone fragility induced by osteoporosis and osteopenia are widespread health threat to current society. Early detection of fracture risk associated with bone quantity and quality is important for both the prevention and treatment of osteoporosis and consequent complications. Quantitative ultrasound (QUS) is an engineering technology for monitoring bone quantity and quality of humans on earth and astronauts subjected to long duration microgravity. Factors currently limiting the acceptance of QUS technology involve precision, accuracy, single index and standardization. The objective of this study was to improve the accuracy and precision of an image-based QUS technique for non-invasive evaluation of trabecular bone quantity and quality by developing new techniques and understanding ultrasound/tissue interaction. Several new techniques have been developed in this dissertation study, including the automatic identification of irregular region of interest (iROI) in bone, surface topology mapping (STM) and mean scattering spacing (MSS) estimation for evaluating trabecular bone structure. In vitro results have shown that (1) the inter- and intra-observer errors in QUS measurement were reduced two to five fold by iROI compared to previous results; (2) the accuracy of QUS parameter, e.g., ultrasound velocity (UV) through bone, was improved 16% by STM; and (3) the averaged trabecular spacing can be estimated by MSS technique (r2=0.72, p<0.01). The measurement errors of BUA and UV introduced by the soft tissue and cortical shells in vivo can be quantified by developed foot model and simplified cortical-trabecular-cortical sandwich model, which were verified by the experimental results. The mechanisms of the errors induced by the cortical and soft tissues were revealed by the model. With developed new techniques and understanding of sound-tissue interaction, in vivo clinical trail and bed rest study were preformed to evaluate the performance of QUS in

  14. Composition analysis by scanning femtosecond laser ultraprobing (CASFLU).

    DOEpatents

    Ishikawa, Muriel Y.; Wood, Lowell L.; Campbell, E. Michael; Stuart, Brent C.; Perry, Michael D.

    2002-01-01

    The composition analysis by scanning femtosecond ultraprobing (CASFLU) technology scans a focused train of extremely short-duration, very intense laser pulses across a sample. The partially-ionized plasma ablated by each pulse is spectrometrically analyzed in real time, determining the ablated material's composition. The steering of the scanned beam thus is computer directed to either continue ablative material-removal at the same site or to successively remove nearby material for the same type of composition analysis. This invention has utility in high-speed chemical-elemental, molecular-fragment and isotopic analyses of the microstructure composition of complex objects, e.g., the oxygen isotopic compositions of large populations of single osteons in bone.

  15. Application of synchrotron radiation computed microtomography for quantification of bone microstructure in human and rat bones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parreiras Nogueira, Liebert; Barroso, Regina Cely; Pereira de Almeida, Andre

    2012-05-17

    This work aims to evaluate histomorphometric quantification by synchrotron radiation computed microto-mography in bones of human and rat specimens. Bones specimens are classified as normal and pathological (for human samples) and irradiated and non-irradiated samples (for rat ones). Human bones are specimens which were affected by some injury, or not. Rat bones are specimens which were irradiated, simulating radiotherapy procedures, or not. Images were obtained on SYRMEP beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. The system generated 14 {mu}m tomographic images. The quantification of bone structures were performed directly by the 3D rendered images using a home-made software.more » Resolution yielded was excellent what facilitate quantification of bone microstructures.« less

  16. Effective masking levels for 500 and 2000 Hz bone conduction auditory steady state responses in infants and adults with normal hearing.

    PubMed

    Small, Susan A; Smyth, Aisling; Leon, Griselle

    2014-01-01

    Few studies have investigated effective masking levels (EMLs) needed to isolate the test ear for bone conduction assessments in infants. The objective of this study was to determine EMLs for 500 and 2000 Hz bone conduction auditory steady state responses (ASSRs) to amplitude (AM)/frequency-modulated (FM) stimuli for infants and adults with normal hearing. Maturational factors that contribute to infant-adult differences in EMLs will also be investigated. The present study and previously published 1000 and 4000 Hz EML data will be compared to investigate EML across four frequencies. These findings will provide a starting point for implementing clinical masking for infant bone conduction testing using physiological measures. Participants were 15 infants (7 to 35 weeks) and 15 adults (21 to 56 years) with normal hearing. Bone-conducted single ASSR stimuli (research MASTER) were 100% AM and 25% FM at 85 and 101 Hz for 500 and 2000 Hz carrier frequencies, respectively. They were presented at 25 and 35 dB HL for 500 Hz and at 35 and 45 dB HL for 2000 Hz for both infants and adults (approximately 10 and 20 dB SL at each frequency for infants). Air-conducted narrowband maskers were presented to both ears simultaneously. Real-ear to coupler differences were measured to account for differences in the sound pressure developed in infant and adult ear canals as a result of ear-canal size. Data analyses were conducted for mean EMLs across frequency (500 to 4000 Hz) and between age groups. Masked and unmasked ASSR amplitudes were compared for 500 and 2000 Hz. Both infants and adults required much more masking (25 to 33 dB) to eliminate responses at 500 compared with 2000 Hz. On average, infants required 16 dB more masking at 500 Hz and similar amounts of masking at 2000 Hz compared with adults. When adjusted for ear-canal size and bone conduction sensitivity, the pattern of results did not change. Across all four frequencies, infants showed a systematic decrease in mean EMLs with

  17. Solitary haemangioma of the shaft of long bones: resection and reconstruction with autologous bone graft.

    PubMed

    Li, Zhaoxu; Tang, Jicun; Ye, Zhaoming

    2013-04-01

    Bone haemangiomas are uncommon lesions, occurring in the skull or spine. A solitary haemangioma in the diaphysis of a long bone is rare. We retrospectively investigated six patients who presented with a solitary haemangioma in a long bone diaphysis. After segmental bone resection, the bone defect was replaced by a bone autograft. Patients were reviewed clinically and with radiographs. The mean follow-up was 6 years (range : 1-20 years). At the time of latest follow-up, no patient had a recurrence. Postoperative complications were one wound necrosis and one superficial wound infection. Union of the gap filling graft with the host bone was achieved in all patients at an average of 4 months (range: 3-8 months). The average Musculoskeletal Tumor Society functional score was 77% (range: 53%-90%) of normal at 6 months postoperatively, and 97% (range: 95%-99%) at the last follow-up evaluation. Segmental resection for solitary haemangioma and reconstruction with autologous bone graft can be considered as a suitable treatment option.

  18. Study of a temporal bone of Homo heildelbergensis.

    PubMed

    Urquiza, Rafael; Botella, Miguel; Ciges, Miguel

    2005-05-01

    The characteristic features of the Hh specimen conformed to those of other Pleistocene human fossils, indicating strong cranial structures and a heavy mandible. The mastoid was large and suggested a powerful sternocleidomastoid muscle. The inner ear and tympanic cavities were similar in size and orientation, suggesting that their functions were probably similar. Our observations suggest that the left ear of this Hh specimen was healthy. The large canaliculo-fenestral angle confirms that this ancestor was bipedal. It also strongly suggests that Hh individuals were predisposed to develop certain pathologies of the labyrinth capsule associated with bipedalism, in particular otosclerosis. We studied a temporal bone of Homo heidelbergensis (Hh) in order to investigate the clinical and physiological implications of certain morphological features, especially those associated with the evolutionary reorganization of the inner ear. The bone, found in a breach of a cave near MAáaga in southern Spain, together with Middle Upper Pleistocene faunal remains, is >300000 years old. Four analytical methods were employed. A 3D high-resolution surface laser scan was used for anatomical measurements. For the sectional analysis of the middle and inner ears of Hh we used high-resolution CT, simultaneously studying a normal temporal bone from Homo sapiens sapiens (Hss). To study the middle and inner ear spaces we used 3D reconstruction CT preceded by an intra-bone air shielding technique. To examine the tympanic cavities and measure the canaliculo fenestral angle, we used a special minimally invasive endoscopic procedure. The surface, sectional and 3D CT examinations showed that the Hh specimen was generally more robust and larger than the Hss specimen. It had a large glenoid fossa. The external meatus was wide and deep. The middle ear, and especially the mastoid, was large and widely pneumatized. There were no appreciable differences in the position and size of the labyrinthine spaces

  19. Environmental Factors Impacting Bone-Relevant Chemokines

    PubMed Central

    Smith, Justin T.; Schneider, Andrew D.; Katchko, Karina M.; Yun, Chawon; Hsu, Erin L.

    2017-01-01

    Chemokines play an important role in normal bone physiology and the pathophysiology of many bone diseases. The recent increased focus on the individual roles of this class of proteins in the context of bone has shown that members of the two major chemokine subfamilies—CC and CXC—support or promote the formation of new bone and the remodeling of existing bone in response to a myriad of stimuli. These chemotactic molecules are crucial in orchestrating appropriate cellular homing, osteoblastogenesis, and osteoclastogenesis during normal bone repair. Bone healing is a complex cascade of carefully regulated processes, including inflammation, progenitor cell recruitment, differentiation, and remodeling. The extensive role of chemokines in these processes and the known links between environmental contaminants and chemokine expression/activity leaves ample opportunity for disruption of bone healing by environmental factors. However, despite increased clinical awareness, the potential impact of many of these environmental factors on bone-related chemokines is still ill defined. A great deal of focus has been placed on environmental exposure to various endocrine disruptors (bisphenol A, phthalate esters, etc.), volatile organic compounds, dioxins, and heavy metals, though mainly in other tissues. Awareness of the impact of other less well-studied bone toxicants, such as fluoride, mold and fungal toxins, asbestos, and chlorine, is also reviewed. In many cases, the literature on these toxins in osteogenic models is lacking. However, research focused on their effects in other tissues and cell lines provides clues for where future resources could be best utilized. This review aims to serve as a current and exhaustive resource detailing the known links between several classes of high-interest environmental pollutants and their interaction with the chemokines relevant to bone healing. PMID:28261155

  20. Scanning Electron Microscopy-Energy-Dispersive X-Ray (SEM/EDX): A Rapid Diagnostic Tool to Aid the Identification of Burnt Bone and Contested Cremains.

    PubMed

    Ellingham, Sarah T D; Thompson, Tim J U; Islam, Meez

    2018-03-01

    This study investigates the use of Scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) as a diagnostic tool for the determination of the osseous origin of samples subjected to different temperatures. Sheep (Ovis aries) ribs of two experimental groups (fleshed and defleshed) were burned at temperatures of between 100°C and 1100°C in 100°C increments and subsequently analyzed with the SEM-EDX to determine the atomic percentage of present elements. Three-factor ANOVA analysis showed that neither the exposure temperature, nor whether the burning occurred with or without soft tissue present had any significant influence on the bone's overall elemental makeup (p > 0.05). The Ca/P ratio remained in the osseous typical range of between 1.6 and 2.58 in all analyzed samples. This demonstrates that even faced with high temperatures, the overall gross elemental content and atomic percentage of elements in bone remain stable, creating a unique "fingerprint" for osseous material, even after exposure to extreme conditions. © 2017 American Academy of Forensic Sciences.

  1. Measurement of bone mineral density in the tunnel regions for anterior cruciate ligament reconstruction by dual-energy X-ray absorptiometry, computed tomography scan, and the immersion technique based on Archimedes' principle.

    PubMed

    Tie, Kai; Wang, Hua; Wang, Xin; Chen, Liaobin

    2012-10-01

    To determine, for anterior cruciate ligament (ACL) reconstruction, whether the bone mineral density (BMD) of the femoral tunnel was higher than that of the tibial tunnel, to provide objective evidence for choosing the appropriate diameter of interference screws. Two groups were enrolled. One group comprised 30 normal volunteers, and the other comprised 9 patients with ACL rupture. Dual-energy X-ray absorptiometry was used to measure the BMD of the femoral and tibial tunnel regions of the volunteers' right knees by choosing a circular area covering the screw fixation region. The knees were also scanned by spiral computed tomography (CT), and the 3-dimensional reconstruction technique was used to determine the circular sections passing through the longitudinal axis of the femoral and tibial tunnels. Grayscale CT values of the cross-sectional area were measured. Cylindrical cancellous bone blocks were removed from the femoral and tibial tunnels during the ACL reconstruction for the patients. The volumetric BMD of the bone blocks was measured using a standardized immersion technique according to Archimedes' principle. As measured by dual-energy X-ray absorptiometry, the BMD of the femoral and tibial tunnel regions was 1.162 ± 0.034 g/cm(2) and 0.814 ± 0.038 g/cm(2), respectively (P < .01). The CT value of the femoral tunnel region was 211.7 ± 11.5 Hounsfield units, and the value of the tibial tunnel region was 104.9 ± 7.4 Hounsfield units (P < .01). The volumetric BMD of the bone block from the femoral tunnel (2.80 ± 0.88 g/cm(3)) was higher than the value from the tibial tunnel (1.88 ± 0.59 g/cm(3)) (P < .01). Comparing the data between male and female patients, we found no significant difference in both femoral and tibial tunnel regions. For ACL reconstruction, the BMD of the femoral tunnel is higher than that of the tibial tunnel. This implies that a proportionally larger-diameter interference screw should be used for fixation in the proximal tibia than that

  2. Healing properties of implants inserted concomitantly with anorganic bovine bone. A histomorphometric human study.

    PubMed

    Menicucci, G; Mussano, F; Schierano, G; Rizzati, A; Aimetti, M; Gassino, G; Traini, T; Carossa, S

    2013-03-01

    The present prospective, randomized, double-blind study evaluated the bone-forming process around implants inserted simultaneously with anorganic bovine bone (ABB) in sinus grafting. A total of 18 threaded mini-implants with Osseotite (O) and Nanotite (N) surfaces were placed in seven patients (nine sites). After 12 months, the implants were retrieved and processed for histological analysis. A total of 18 cutting and grinding sections were investigated with bright-field light microscopy, circularly polarized light microscopy (CPLM), confocal scanning laser microscope (CSLM), and scanning electron microscope (SEM) with energy dispersive spectrometer (EDS). The bone-to-implant contact rate in native crestal bone was 62.6 ± 0.4% for N implants and 54.3 ± 0.5% for the O implants (p = 0.001). The collagen fibre density, as assessed by CPLM, was 79.8 ± 6.0 nm for the N group and 74.6 ± 4.6 nm for the O group (p < 0.05). Line scan EDS starting from ABB to newly formed bone showed a decrease in calcium content and an increase of carbon while phosphorus content was constant. While the N surface improved the peri-implant endosseous healing properties in the native bone, when compared to the O surface, it did not improve the healing properties in the bone-graft area. © 2013 Australian Dental Association.

  3. The potential role of free chitosan in bone trauma and bone cancer management.

    PubMed

    Tan, Mei L; Shao, Peng; Friedhuber, Anna M; van Moorst, Mallory; Elahy, Mina; Indumathy, Sivanjah; Dunstan, Dave E; Wei, Yongzhong; Dass, Crispin R

    2014-09-01

    Bone defects caused by fractures or cancer-mediated destruction are debilitating. Chitosan is commonly used in scaffold matrices for bone healing, but rarely as a free drug. We demonstrate that free chitosan promotes osteoblast proliferation and osteogenesis in mesenchymal stem cells, increases osteopontin and collagen I expression, and reduces osteoclastogenesis. Chitosan inhibits invasion of endothelial cells, downregulating uPA/R, MT1-MMP, cdc42 and Rac1. Better healing of bone fractures with greater trabecular bone formation was observed in mice treated with chitosan. Chitosan induces apoptosis in osteotropic prostate and breast cancer cells via caspase-2 and -3 activation, and reduces their establishment in bone. Chitosan is pro-apoptotic in osteosarcoma cells, but not their normal counterpart, osteoblasts, or chondrosarcoma cells. Systemic delivery of chitosan does not perturb angiogenesis, bone volume or instinctive behaviour in pregnant mice, but decreases foetal length and changes pancreatic secretory acini. With certain controls in place, chitosan could be useful for bone trauma management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Aging and loading rate effects on the mechanical behavior of equine bone

    NASA Astrophysics Data System (ADS)

    Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.

    2008-06-01

    Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.

  5. Repeated oral administration of a cathepsin K inhibitor significantly suppresses bone resorption in exercising horses with evidence of increased bone formation and maintained bone turnover.

    PubMed

    Hussein, H; Dulin, J; Smanik, L; Drost, W T; Russell, D; Wellman, M; Bertone, A

    2017-08-01

    Our investigations evaluated the effect of VEL-0230, a highly specific irreversible inhibitor of cathepsin K (CatK). The objectives of our study were to determine whether repeated dosing of a CatK inhibitor (CatKI) produced a desired inhibition of the bone resorption biomarker (CTX-1), and document the effect of repeated dosing on bone homeostasis, structure, and dynamics of bone resorption and formation in horses. Twelve young exercising horses were randomized in a prospective, controlled clinical trial and received 4 weekly doses of a CatKI or vehicle. Baseline and poststudy nuclear scintigraphy, blood sampling and analysis of plasma bone biomarkers (CTX-1 and osteocalcin), poststudy bone fluorescent labeling, and bone biopsy were performed. Bone specimens were further processed for microcomputed tomography and bone histomorphometry. Each dose of this CatKI transiently inhibited plasma CTX-1 (reflecting inhibition of bone collagen resorption) and increased bone plasma osteocalcin concentrations, with no detectable adverse effect on normal bone turnover in the face of exercise. Bone morphology, density, and formation rate were not different between control and treated group. Further investigation of CatK inhibition in abnormal bone turnover is required in animals with bone diseases. © 2016 John Wiley & Sons Ltd.

  6. A case report of disabling bone pain after long-term kidney transplantation.

    PubMed

    Myint, T M M; Vucak-Dzumhur, M; Ebeling, P R; Elder, G J

    2014-02-01

    A 77-year-old man, who received a renal transplant 13 years before for IgA glomerulonephritis, was referred after he developed bilateral mid-tibial aching pain that did not improve with simple analgesia. He had recently been changed from low-dose cyclosporine to tacrolimus, but the pain did not improve when this was reversed. He had a history of focal prostatic adenocarcinoma, cryptococcal lung infection, osteoporosis treated with alendronate for 2 years and multiple squamous cell carcinomas, including one requiring left neck dissection and radiotherapy. Upon physical examination, he had gouty tophi and marked bilateral tibial tenderness but had no other clinical findings. Laboratory investigations included an elevated intact parathyroid hormone value of 7.9 pmol/L (1.6 to 6.9), bone specific alkaline phosphatase of 22 µg/L (3.7 to 20.9), urinary deoxypyridinoline/creatinine ratio of 7.2 nmol/mmol (2.5 to 5.4) and C-reactive protein. Chest X-ray and tibial X-rays were normal, but there was marrow oedema and a prominent periosteal reaction on magnetic resonance imaging. A radionuclide bone scan showed increased symmetrical, linear uptake in both tibiae and the left femur, and uptake was also noted in both clinically asymptomatic humeri. Tibial bone biopsy disclosed small deposits of poorly differentiated metastatic cancer and a follow-up chest CT revealed a lung lesion. It was concluded that the bone pain and periostitis was caused by primary lung cancer with metastatic disease to bone, and an associated hypertrophic osteoarthropathy.

  7. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo.

    PubMed

    Wei, Xiaowei; Zhao, Dewei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-03-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum-host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. © 2016 by the Society for Experimental Biology and Medicine.

  8. Appliance-induced osteopenia of dentoalveolar bone in the rat: effect of reduced bone strains on serum bone markers and the multifunctional hormone leptin.

    PubMed

    Vinoth, Jayaseelan K; Patel, Kaval J; Lih, Wei-Song; Seow, Yian-San; Cao, Tong; Meikle, Murray C

    2013-12-01

    To understand, in greater detail, the molecular mechanisms regulating the complex relationship between mechanical strain and alveolar bone metabolism during orthodontic treatment, passive cross-arch palatal springs were bonded to the maxillary molars of 6-wk-old rats, which were killed after 4 and 8 d. Outcome measures included serum assays for markers of bone formation and resorption and for the multifunctional hormone leptin, and histomorphometry of the inter-radicular bone. The concentration of the bone-formation marker alkaline phosphatase (ALP) was significantly reduced at both time points in the appliance group, accompanied by a 50% reduction in inter-radicular bone volume; however, osteocalcin (bone Gla protein) levels remained unaffected. Bone collagen deoxypyridinoline (DPD) crosslinks increased 2.3-fold at 4 d only, indicating a transient increase in bone resorption; in contrast, the level of the osteoclast-specific marker, tartrate-resistant acid phosphatase 5b (TRACP 5b), was unchanged. Leptin levels closely paralleled ALP reductions at both time points, suggesting an important role in the mechanostat negative-feedback loop required to normalize bone mass. These data suggest that an orthodontic appliance, in addition to remodeling the periodontal ligament (PDL)-bone interface, may exert unexpected side-effects on the tooth-supporting alveolar bone, and highlights the importance of recognizing that bone strains can have negative, as well as positive, effects on bone mass. © 2013 Eur J Oral Sci.

  9. Automated detection of analyzable metaphase chromosome cells depicted on scanned digital microscopic images

    NASA Astrophysics Data System (ADS)

    Qiu, Yuchen; Wang, Xingwei; Chen, Xiaodong; Li, Yuhua; Liu, Hong; Li, Shibo; Zheng, Bin

    2010-02-01

    Visually searching for analyzable metaphase chromosome cells under microscopes is quite time-consuming and difficult. To improve detection efficiency, consistency, and diagnostic accuracy, an automated microscopic image scanning system was developed and tested to directly acquire digital images with sufficient spatial resolution for clinical diagnosis. A computer-aided detection (CAD) scheme was also developed and integrated into the image scanning system to search for and detect the regions of interest (ROI) that contain analyzable metaphase chromosome cells in the large volume of scanned images acquired from one specimen. Thus, the cytogeneticists only need to observe and interpret the limited number of ROIs. In this study, the high-resolution microscopic image scanning and CAD performance was investigated and evaluated using nine sets of images scanned from either bone marrow (three) or blood (six) specimens for diagnosis of leukemia. The automated CAD-selection results were compared with the visual selection. In the experiment, the cytogeneticists first visually searched for the analyzable metaphase chromosome cells from specimens under microscopes. The specimens were also automated scanned and followed by applying the CAD scheme to detect and save ROIs containing analyzable cells while deleting the others. The automated selected ROIs were then examined by a panel of three cytogeneticists. From the scanned images, CAD selected more analyzable cells than initially visual examinations of the cytogeneticists in both blood and bone marrow specimens. In general, CAD had higher performance in analyzing blood specimens. Even in three bone marrow specimens, CAD selected 50, 22, 9 ROIs, respectively. Except matching with the initially visual selection of 9, 7, and 5 analyzable cells in these three specimens, the cytogeneticists also selected 41, 15 and 4 new analyzable cells, which were missed in initially visual searching. This experiment showed the feasibility of

  10. Long-chain omega-3 polyunsaturated fatty acid dietary intake is positively associated with bone mineral density in normal and osteopenic Spanish women

    PubMed Central

    Pedrera-Canal, Maria; Aliaga, Ignacio; Leal-Hernandez, Olga; Rico-Martin, Sergio; Canal-Macias, Maria L.

    2018-01-01

    The regular consumption of long-chain omega-3 polyunsaturated fatty acids (LCO3-PUFAs) results in general health benefits. The intake of LCO3-PUFAs has been reported to contribute to bone metabolism. We aimed to investigate the relationships between dietary intakes of LCO3-PUFAs and bone mineral density (BMD) in Spanish women aged 20–79 years old. A total of 1865 female subjects (20–79 years old) were enrolled, and lumbar (L2, L3, L3 and total spine), hip (femoral neck (FN), femoral trochanter (FT) and Ward’s triangle (WT)) bone mineral density (BMD) were measured by dual energy X-ray absorptiometry (DXA). Dietary intakes of total energy, calcium, vitamin D, alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and n-6 fatty acids (linoleic acid (LA) and arachidonic acid (AA)) were assessed by a self-administered food frequency questionnaire (FFQ). Spearman’s rank correlations between LCO3-PUFAs and BMD were estimated. Partial correlations controlling for age, weight, height, dietary calcium, vitamin D, menopausal status and energy were calculated. A multiple regression analysis was computed to assess significant associations with BMD in this population. After adjustment for potential confounding factors, there were positive correlations between ALA, EPA and DHA intake and BMD. According to the WHO diagnosis criteria for osteoporosis, in this population of normal and osteopenic women, the dietary intake of ALA was also significantly associated with BMD at the hip. In normal women, the dietary intake of DHA was also significantly associated with BMD at the lumbar spine. No significant associations between LCO3-PUFAs and BMD were detected in the lumbar spine of osteopenic or osteoporotic women. The dietary intake of LCO3-PUFAs was positively associated with BMD in Spanish women at both the hips and the lumbar spine. We highlight that the intake of LCO3-PUFAs is not significantly associated with BMD in osteoporotic women; however

  11. Duck gait: Relationship to hip angle, bone ash, bone density, and morphology.

    PubMed

    Robison, Cara I; Rice, Meredith; Makagon, Maja M; Karcher, Darrin M

    2015-05-01

    The rapid growth meat birds, including ducks, undergo requires skeletal integrity; however, fast growth may not be conducive to adequate bone structure. A relationship likely exists between skeletal changes and duck mobility. Reduced mobility in meat ducks may have impacts on welfare and production. This study examined the relationships among gait score, bone parameters, and hip angle. Commercial Pekin ducks, ages 14 d (n = 100), 21 d (n = 100), and 32 d (n = 100) were weighed and gait scored with a 3-point gait score system by an observer as they walked over a Tekscan gait analysis system. Gait was scored as GS0, GS1, or GS2 with a score of GS0 defined as good walking ability and a score of GS2 as poorest walking ability. Ducks were humanely euthanized, full body scanned using quantitative computed tomography (QCT), and the right femur and tibia were extracted. Leg bones were cleaned, measured, fat extracted, and ashed. QCT scans were rendered to create computerized 3D models where pelvic hip angles and bone density were measured. Statistical analysis was conducted using PROC MIXED with age and gait score in the model. Body weight increased with age, but within an age, body weight decreased as walking ability became worse (P < 0.01). As expected, linear increases in tibia and femur bone width and length were observed as the ducks aged (P < 0.01). Right and left hip angle increased with duck age (P < 0.01). Additionally, ducks with a GS2 had wider hip angles opposed to ducks with a GS0 (P < 0.01). Bone density increased linearly with both age and gait score (P < 0.05). Femur ash content was lowest in 32-day-old ducks and ducks with GS1 and GS2 (P < 0.0001). Tibia ash content increased with age, but decreased as gait score increased (P < 0.001). The observation that right hip angle changed with gait scores merits further investigation into the relationship between duck mobility and skeletal changes during growth. © 2015 Poultry Science Association Inc.

  12. Unicameral (simple) bone cysts.

    PubMed

    Baig, Rafath; Eady, John L

    2006-09-01

    Since their original description by Virchow, simple bone cysts have been studied repeatedly. Although these defects are not true neoplasms, simple bone cysts may create major structural defects of the humerus, femur, and os calcis. They are commonly discovered incidentally when x-rays are taken for other reasons or on presentation due to a pathologic fracture. Various treatment strategies have been employed, but the only reliable predictor of success of any treatment strategy is the age of the patient; those being older than 10 years of age heal their cysts at a higher rate than those under age 10. The goal of management is the formation of a bone that can withstand the stresses of use by the patient without evidence of continued bone destruction as determined by serial radiographic follow-up. The goal is not a normal-appearing x-ray, but a functionally stable bone.

  13. Improvement of adynamic bone disease after renal transplantation.

    PubMed

    Abdallah, K A; Jorgetti, V; Pereira, R C; Reis, L M dos; Pereira, L M; Corrêa, P H S; Borelli, A; Ianhez, L E; Moysés, R M A; David-Neto, E

    2006-01-01

    Low bone remodeling and relatively low serum parathyroid hormone (PTH) levels characterize adynamic bone disease (ABD). The impact of renal transplantation (RT) on the course of ABD is unknown. We studied prospectively 13 patients with biopsy-proven ABD after RT. Bone histomorphometry and bone mineral density (BMD) measurements were performed in the 1st and 12th months after RT. Serum PTH, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and osteocalcin were measured regularly throughout the study. Serum PTH levels were slightly elevated at transplantation, normalized at the end of the third month and remained stable thereafter. Bone biopsies performed in the first month after RT revealed low bone turnover in all patients, with positive bone aluminum staining in 5. In the 12th month, second biopsies were performed on 12 patients. Bone histomorphometric dynamic parameters improved in 9 and were completely normalized in 6, whereas no bone mineralization was detected in 3 of these 12 patients. At 12 months post-RT, no bone aluminum was detected in any patient. We also found a decrease in lumbar BMD and an increase in femoral BMD. Patients suffering from ABD, even those with a reduction in PTH levels, may present partial or complete recovery of bone turnover after successful renal transplantation. However, it is not possible to positively identify the mechanisms responsible for the improvement. Identifying these mechanisms should lead to a better understanding of the physiopathology of ABD and to the development of more effective treatments.

  14. [Preparation of nano-nacre artificial bone].

    PubMed

    Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying

    2008-12-01

    To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.

  15. Electron Micrographs of Quail Limb Bones formed in microgravity

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Electron micrographs of quail limb bones that formed under the influence of microgravity show decreased mineralization compared to bones formed in normal gravity. The letters B and C indicate bone and cartilage sides of the sample, respectively, with the arrows marking the junction between bone and cartilage cells. The asterisks indicate where mineralization begins. The bone that developed during spaceflight (top) shows less mineral compared to the control sample (bottom); the control sample clearly shows mineral deposits (dark spots) that are absent in the flight sample. Quail eggs are small and develop quickly, making them ideal for space experiments. In late 2001, the Avian Development Facility (ADF) made its first flight and carried eggs used in two investigations, development and function of the irner-ear balance system in normal and altered gravity environments, and skeletal development in embryonic quail.

  16. Disturbances of bone growth and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledesma-Medina, J.; Newman, B.; Oh, K.S.

    1988-03-01

    ''What is growth anyway. Can one talk about positive growth in childhood, neutral growth in maturity, and negative growth in old age. Our goal is to help promote normal positive growth in infants and children. To achieve this, we must be cognizant of the morphologic changes of both normal and abnormal bone formation as they are reflected in the radiographic image of the skeleton. The knowledge of the various causes and the pathophysiologic mechanisms of the disturbances of bone growth and development allows us to recognize the early radiographic manifestations. Endocrine and metabolic disorders affect the whole skeleton, but themore » early changes are best seen in the distal ends of the femurs, where growth rate is most rapid. In skeletal infections and in some vascular injuries two-or three-phase bone scintigraphy supercedes radiography early in the course of the disease. MRI has proved to be very helpful in the early detection of avascular bone necrosis, osteomyelitis, and tumor. Some benign bone tumors and many bone dysplasias have distinct and diagnostic radiographic findings that may preclude further studies. In constitutional diseases of bone, including chromosomal aberrations, skeletal surveys of the patient and all family members together with biochemical and cytogenetic studies are essential for both diagnosis and genetic counseling. Our role is to perform the least invasive and most informative diagnostic imaging modalities that corroborate the biochemical and histologic findings to establish the definitive diagnosis. Unrecognized, misdiagnosed, or improperly treated disturbance of bone growth can result in permanent deformity usually associated with disability. 116 references.« less

  17. Unicameral bone cyst in the spinous process of a thoracic vertebra.

    PubMed

    Tsirikos, Athanasios I; Bowen, J Richard

    2002-10-01

    Unicameral bone cysts affecting the spine are extremely rare and tend to be misdiagnosed. We report on a 17-year-old female patient who presented with a 2-year history of persistent low back pain. The radiographic evaluation and bone scan failed to reveal a pathologic process. Magnetic resonance of the painful area and subsequent computed tomography scan showed a well-circumscribed osteolytic lesion originating from the spinous process and extending into both laminae of T9 vertebra. Aneurysmal bone cyst or osteoblastoma was considered to be the most probable diagnosis. The patient underwent excisional biopsy of the tumor. The intraoperative findings were suggestive of solitary bone cyst, a diagnosis that was confirmed histologically. Because the tumor had not invaded the articular facets, no posterolateral spine fusion was required. The patient had an unremarkable postoperative clinical course. Her symptoms resolved and she returned to her previous level of physical activities. Unicameral bone cysts, although uncommon, should be included in the differential diagnosis of an osteolytic lesion involving the spine.

  18. Dilatational band formation in bone

    PubMed Central

    Poundarik, Atharva A.; Diab, Tamim; Sroga, Grazyna E.; Ural, Ani; Boskey, Adele L.; Gundberg, Caren M.; Vashishth, Deepak

    2012-01-01

    Toughening in hierarchically structured materials like bone arises from the arrangement of constituent material elements and their interactions. Unlike microcracking, which entails micrometer-level separation, there is no known evidence of fracture at the level of bone’s nanostructure. Here, we show that the initiation of fracture occurs in bone at the nanometer scale by dilatational bands. Through fatigue and indentation tests and laser confocal, scanning electron, and atomic force microscopies on human and bovine bone specimens, we established that dilatational bands of the order of 100 nm form as ellipsoidal voids in between fused mineral aggregates and two adjacent proteins, osteocalcin (OC) and osteopontin (OPN). Laser microdissection and ELISA of bone microdamage support our claim that OC and OPN colocalize with dilatational bands. Fracture tests on bones from OC and/or OPN knockout mice (OC−/−, OPN−/−, OC-OPN−/−;−/−) confirm that these two proteins regulate dilatational band formation and bone matrix toughness. On the basis of these observations, we propose molecular deformation and fracture mechanics models, illustrating the role of OC and OPN in dilatational band formation, and predict that the nanometer scale of tissue organization, associated with dilatational bands, affects fracture at higher scales and determines fracture toughness of bone. PMID:23129653

  19. Overexpression of bone sialoprotein leads to an uncoupling of bone formation and bone resorption in mice.

    PubMed

    Valverde, Paloma; Zhang, Jin; Fix, Amanda; Zhu, Ji; Ma, Wenli; Tu, Qisheng; Chen, Jake

    2008-11-01

    The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP.

  20. Overexpression of Bone Sialoprotein Leads to an Uncoupling of Bone Formation and Bone Resorption in Mice

    PubMed Central

    Valverde, Paloma; Zhang, Jin; Fix, Amanda; Zhu, Ji; Ma, Wenli; Tu, Qisheng; Chen, Jake

    2008-01-01

    The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP. PMID:18597627

  1. Pre-operative simulation of pediatric mastoid surgery with 3D-printed temporal bone models.

    PubMed

    Rose, Austin S; Webster, Caroline E; Harrysson, Ola L A; Formeister, Eric J; Rawal, Rounak B; Iseli, Claire E

    2015-05-01

    As the process of additive manufacturing, or three-dimensional (3D) printing, has become more practical and affordable, a number of applications for the technology in the field of pediatric otolaryngology have been considered. One area of promise is temporal bone surgical simulation. Having previously developed a model for temporal bone surgical training using 3D printing, we sought to produce a patient-specific model for pre-operative simulation in pediatric otologic surgery. Our hypothesis was that the creation and pre-operative dissection of such a model was possible, and would demonstrate potential benefits in cases of abnormal temporal bone anatomy. In the case presented, an 11-year-old boy underwent a planned canal-wall-down (CWD) tympano-mastoidectomy for recurrent cholesteatoma preceded by a pre-operative surgical simulation using 3D-printed models of the temporal bone. The models were based on the child's pre-operative clinical CT scan and printed using multiple materials to simulate both bone and soft tissue structures. To help confirm the models as accurate representations of the child's anatomy, distances between various anatomic landmarks were measured and compared to the temporal bone CT scan and the 3D model. The simulation allowed the surgical team to appreciate the child's unusual temporal bone anatomy as well as any challenges that might arise in the safety of the temporal bone laboratory, prior to actual surgery in the operating room (OR). There was minimal variability, in terms of absolute distance (mm) and relative distance (%), in measurements between anatomic landmarks obtained from the patient intra-operatively, the pre-operative CT scan and the 3D-printed models. Accurate 3D temporal bone models can be rapidly produced based on clinical CT scans for pre-operative simulation of specific challenging otologic cases in children, potentially reducing medical errors and improving patient safety. Copyright © 2015 Elsevier Ireland Ltd. All rights

  2. Validation of Long Bone Mechanical Properties from Densitometry

    NASA Technical Reports Server (NTRS)

    Whalen, R.; Katz, B.; Cleek, T.; Hargens, Alan R. (Technical Monitor)

    1995-01-01

    The objective of this study was to assess whether cross-sectional areal properties, calculated from densitometry, correlate to the true flexural properties. Right and left male embalmed tibiae were used in the study. Prior to scanning, the proximal end of each tibia was potted in a fixture with registration pins, flushed thoroughly with water under pressure to remove trapped air, and then placed in a constant thickness water bath attached to a precision indexer. Two sets of three scans of the entire tibia were taken with an Hologic QDR 1000/W densitometer at rotations of 0, 45, and 90 degrees about the tibia long axis. An aluminum step phantom and a bone step phantom, machined from bovine cortical bone, were also in the bath and scanned separately. Pixel attenuation data from the two sets of scans were averaged to reduce noise. Pixel data from the high energy beam were then converted to equivalent thicknesses using calibration equations. Cross-sectional areal properties (centroid, principal area moments and principal angle) along the length were computed from the three registered scans using methods developed in our laboratory. Flexural rigidities. Four strain gages were bonded around the circumference of each of 5 cross-sections encompassing the entire diaphysis. A known transverse load was then applied to the distal end and the bone was rotated 360 degrees in eight increments of 45 degrees each. Strains from the eight orientations were analyzed along with the known applied bending moments at each section to compute section centroids, curvatures, principal flexural rigidities and principal angle. Reference axes between the two methods were maintained within +/- 0.5 degrees using an electronic inclinometer. Principal angles (flexural - areal) differed by -2.0 +/- 4.0 degrees, and 1.0 +/- 2.5 degrees for the right and left tibia, respectively. Section principal flexural rigidities were highly correlated to principal areal moments (right: r(sup 2)= 0.997; left: r

  3. Biochemical markers of bone turnover in children with clinical bone fragility.

    PubMed

    Bowden, Sasigarn A; Akusoba, Chiazor I; Hayes, John R; Mahan, John D

    2016-06-01

    The role of biochemical bone turnover markers (BTMs) in assessing low bone mass and monitoring bisphosphonate treatment in pediatric patients with clinical bone fragility is not well established. The aim of the study was to examine the correlations of BTMs and the bone mineral density (BMD), and evaluate the effects of bisphosphonates therapy on BTMs in children with clinical bone fragility. Clinical data of 115 patients with clinical bone fragility (mean age 9.7±5.8 years), 102 of whom received bisphosphonates, were studied. Serum alkaline phosphatase (ALP), osteocalcin (OC), urine pyridinoline (PD) and deoxypyridinoline (DPD), BMD at baseline and subsequent years were analyzed. There was a significant negative correlation between urine PD and lumbar BMD (slope=-0.29, p<0.001). There were no correlations between BTMs and lumbar BMD Z-score. There was a significant positive correlation between serum OC and serum ALP, urine PD and DPD (p<0.001). Serum OC, urine PD and DPD index, as expressed as measured value/upper limit of normal value for age, decreased during the first 3 years of bisphosphonate therapy. In children with clinical bone fragility, BTMs correlated with each other, but not with lumbar BMD Z-score. While they were not reliable predictors of degree of low BMD, the bone markers showed suppression during bisphosphonate therapy and may be helpful in monitoring the response to therapy.

  4. Subchondral bone density distribution of the talus in clinically normal Labrador Retrievers.

    PubMed

    Dingemanse, W; Müller-Gerbl, M; Jonkers, I; Vander Sloten, J; van Bree, H; Gielen, I

    2016-03-15

    Bones continually adapt their morphology to their load bearing function. At the level of the subchondral bone, the density distribution is highly correlated with the loading distribution of the joint. Therefore, subchondral bone density distribution can be used to study joint biomechanics non-invasively. In addition physiological and pathological joint loading is an important aspect of orthopaedic disease, and research focusing on joint biomechanics will benefit veterinary orthopaedics. This study was conducted to evaluate density distribution in the subchondral bone of the canine talus, as a parameter reflecting the long-term joint loading in the tarsocrural joint. Two main density maxima were found, one proximally on the medial trochlear ridge and one distally on the lateral trochlear ridge. All joints showed very similar density distribution patterns and no significant differences were found in the localisation of the density maxima between left and right limbs and between dogs. Based on the density distribution the lateral trochlear ridge is most likely subjected to highest loads within the tarsocrural joint. The joint loading distribution is very similar between dogs of the same breed. In addition, the joint loading distribution supports previous suggestions of the important role of biomechanics in the development of OC lesions in the tarsus. Important benefits of computed tomographic osteoabsorptiometry (CTOAM), i.e. the possibility of in vivo imaging and temporal evaluation, make this technique a valuable addition to the field of veterinary orthopaedic research.

  5. Assessment of alveolar bone marrow fat content using 15 T MRI.

    PubMed

    Cortes, Arthur Rodriguez Gonzalez; Cohen, Ouri; Zhao, Ming; Aoki, Eduardo Massaharu; Ribeiro, Rodrigo Alves; Abu Nada, Lina; Costa, Claudio; Arita, Emiko Saito; Tamimi, Faleh; Ackerman, Jerome L

    2018-03-01

    Bone marrow fat is inversely correlated with bone mineral density. The aim of this study is to present a method to quantify alveolar bone marrow fat content using a 15 T magnetic resonance imaging (MRI) scanner. A 15 T MRI scanner with a 13-mm inner diameter loop-gap radiofrequency coil was used to scan seven 3-mm diameter alveolar bone biopsy specimens. A 3-D gradient-echo relaxation time (T1)-weighted pulse sequence was chosen to obtain images. All images were obtained with a voxel size (58 µm 3 ) sufficient to resolve trabecular spaces. Automated volume of the bone marrow fat content and derived bone volume fraction (BV/TV) were calculated. Results were compared with actual BV/TV obtained from micro-computed tomography (CT) scans. Mean fat tissue volume was 20.1 ± 11%. There was a significantly strong inverse correlation between fat tissue volume and BV/TV (r = -0.68; P = .045). Furthermore, there was a strong agreement between BV/TV derived from MRI and obtained with micro-CT (interclass correlation coefficient = 0.92; P = .001). Bone marrow fat of small alveolar bone biopsy specimens can be quantified with sufficient spatial resolution using an ultra-high-field MRI scanner and a T1-weighted pulse sequence. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Adaptation of bone to physiological stimuli.

    PubMed

    Judex, S; Gross, T S; Bray, R C; Zernicke, R F

    1997-05-01

    The ability of bone to alter its morphology in response to local physical stimuli is predicated upon the appropriate recruitment of bone cell populations. In turn, the ability to initiate cellular recruitment is influenced by numerous local and systemic factors. In this paper, we discuss data from three ongoing projects from our laboratory that examine how physiological processes influence adaptation and growth in the skeleton. In the first study, we recorded in vivo strains to quantify the locomotion-induced distribution of two parameters closely related to bone fluid flow strain rate and strain gradients. We found that the magnitude of these parameters (and thus the implied fluid flow) varies substantially within a given cross-section, and that while strain rate magnitude increases uniformly with elevated speed, strain gradients increase focally as gait speed is increased. Secondly, we examined the influence of vascular alterations on bone adaptation by assessing bone blood flow and bone mechanical properties in an in vivo model of trauma-induced joint laxity. A strong negative correlation (r2 = 0.8) was found between increased blood flow (76%) in the primary and secondary spongiosa and decreased stiffness (-34%) following 14 weeks of joint laxity. These data suggest that blood flow and/or vascular adaptation may interact closely with bone adaptation initiated by trauma. Thirdly, we examined the effect of a systemic influence upon skeletal health. After 4 weeks old rats were fed high fat-sucrose diets for 2 yr, their bone mechanical properties were significantly reduced. These changes were primarily due to interference with normal calcium absorption. In the aggregate, these studies emphasize the complexity of bone's normal physical environment, and also illustrate the potential interactions of local and systemic factors upon the process by which bone adapts to physical stimuli.

  7. Maternal Perinatal Diet Induces Developmental Programming of Bone Architecture

    PubMed Central

    Devlin, MJ; Grasemann, C; Cloutier, AM; Louis, L; Alm, C; Palmert, MR; Bouxsein, ML

    2013-01-01

    Maternal high fat diet can alter offspring metabolism via perinatal developmental programming. This study tests the hypothesis that maternal high fat diet also induces perinatal programming of offspring bone mass and strength. We compared skeletal acquisition in pups from C57Bl/6J mice fed high fat or normal diet from preconception through lactation. Three-week-old male and female pups from high fat (HF-N) and normal mothers (N-N) were weaned onto normal diet. Outcomes at 14 and 26 wks of age included body mass, body composition, whole body bone mineral content via pDXA, femoral cortical and trabecular architecture via μCT, and glucose tolerance. Female HF-N had normal body mass and glucose tolerance, with lower %body fat but higher serum leptin at 14 wks vs. N-N (p<0.05 for both). Whole body bone mineral content was 12% lower at 14 wks and 5% lower at 26 wks, but trabecular bone volume fraction was 20% higher at 14 wks in female HF-N vs. N-N (p<0.05 for all). Male HF-N had normal body mass and mildly impaired glucose tolerance, with lower %body fat at 14 wks and lower serum leptin at 26 wks vs. N-N (p<0.05 for both). Serum insulin was higher at 14 wks and lower at 26 wks in HF-N vs. N-N (p<0.05). Trabecular BV/TV was 34% higher and cortical bone area was 6% higher at 14 wks vs. N-N (p<0.05 for both). These data suggest maternal high fat diet has complex effects on offspring bone, supporting the hypothesis that maternal diet alters postnatal skeletal homeostasis. PMID:23503967

  8. Hyoid bone development: An assessment of optimal CT scanner parameters and 3D volume rendering techniques

    PubMed Central

    Cotter, Meghan M.; Whyms, Brian J.; Kelly, Michael P.; Doherty, Benjamin M.; Gentry, Lindell R.; Bersu, Edward T.; Vorperian, Houri K.

    2015-01-01

    The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared to corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. PMID:25810349

  9. Hyoid Bone Development: An Assessment Of Optimal CT Scanner Parameters and Three-Dimensional Volume Rendering Techniques.

    PubMed

    Cotter, Meghan M; Whyms, Brian J; Kelly, Michael P; Doherty, Benjamin M; Gentry, Lindell R; Bersu, Edward T; Vorperian, Houri K

    2015-08-01

    The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared with corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. © 2015 Wiley Periodicals, Inc.

  10. Development of a protocol to quantify local bone adaptation over space and time: Quantification of reproducibility.

    PubMed

    Lu, Yongtao; Boudiffa, Maya; Dall'Ara, Enrico; Bellantuono, Ilaria; Viceconti, Marco

    2016-07-05

    In vivo micro-computed tomography (µCT) scanning of small rodents is a powerful method for longitudinal monitoring of bone adaptation. However, the life-time bone growth in small rodents makes it a challenge to quantify local bone adaptation. Therefore, the aim of this study was to develop a protocol, which can take into account large bone growth, to quantify local bone adaptations over space and time. The entire right tibiae of eight 14-week-old C57BL/6J female mice were consecutively scanned four times in an in vivo µCT scanner using a nominal isotropic image voxel size of 10.4µm. The repeated scan image datasets were aligned to the corresponding baseline (first) scan image dataset using rigid registration. 80% of tibia length (starting from the endpoint of the proximal growth plate) was selected as the volume of interest and partitioned into 40 regions along the tibial long axis (10 divisions) and in the cross-section (4 sectors). The bone mineral content (BMC) was used to quantify bone adaptation and was calculated in each region. All local BMCs have precision errors (PE%CV) of less than 3.5% (24 out of 40 regions have PE%CV of less than 2%), least significant changes (LSCs) of less than 3.8%, and 38 out of 40 regions have intraclass correlation coefficients (ICCs) of over 0.8. The proposed protocol allows to quantify local bone adaptations over an entire tibia in longitudinal studies, with a high reproducibility, an essential requirement to reduce the number of animals to achieve the necessary statistical power. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Bone Density Development of the Temporal Bone Assessed by Computed Tomography.

    PubMed

    Takahashi, Kuniyuki; Morita, Yuka; Ohshima, Shinsuke; Izumi, Shuji; Kubota, Yamato; Horii, Arata

    2017-12-01

    The temporal bone shows regional differences in bone development. The spreading pattern of acute mastoiditis shows age-related differences. In infants, it spreads laterally and causes retroauricular swelling, whereas in older children, it tends to spread medially and causes intracranial complications. We hypothesized that bone maturation may influence the spreading pattern of acute mastoiditis. Eighty participants with normal hearing, aged 3 months to 42 years, participated in this study. Computed tomography (CT) values (Hounsfield unit [HU]) in various regions of the temporal bone, such as the otic capsule (OC), lateral surface of the mastoid cavity (LS), posterior cranial fossa (PCF), and middle cranial fossa (MCF), were measured as markers of bone density. Bone density development curves, wherein CT values were plotted against age, were created for each region. The age at which the CT value exceeded 1000 HU, which is used as an indicator of bone maturation, was calculated from the development curves and compared between the regions. The OC showed mature bone at birth, whereas the LS, PCF, and MCF showed rapid maturation in early childhood. However, there were significant regional differences in the ages of maturation: 1.7, 3.9, and 10.8 years for the LS, PCF, and MCF, respectively. To our knowledge, this is the first report to show regional differences in the maturation of temporal bone, which could partly account for the differences in the spreading pattern of acute mastoiditis in individuals of different ages.

  12. Chondroblastoma of the patella with aneurysmal bone cyst.

    PubMed

    Tan, Honglue; Yan, Mengning; Yue, Bing; Zeng, Yiming; Wang, You

    2014-01-01

    Chondroblastoma of the patella is rare. Aneurysmal bone cysts, which develop from a prior lesion such as a chondroblastoma, are seldom seen in the patella. The authors report a case of a 36-year-old man who presented with 2 years of right knee pain without calor, erythema, pain on palpation, or abnormal range of motion. Radiological studies suggested aneurysmal bone cyst. The lesion was excised with curettage and the residual cavity filled with autogenous bone graft. Histopathology revealed chondroblastoma associated with a secondary aneurysmal bone cyst. In the follow-up period, the patient demonstrated normal joint activities with no pain. Normal configuration of the patella and bone union were shown on plain radiographs. The authors present a review of the literature of all cases of patellar chondroblastoma with aneurysmal bone cyst. This case is the 14th report of aneurysmal bone cyst arising in a chondroblastoma of the patella. According to the literature, computed tomography and magnetic resonance imaging are useful in the study of these lesions. The pathologic diagnosis is based on the presence of chondroblastoma and aneurysmal bone cyst. Treatment of this lesion includes patellectomy, curettage alone, and curettage with bone grafting. Despite the risk of recurrence of this lesion in the patella, the authors first recommend curettage followed by filling the cavity with bone graft. To protect the anterior tension of the patella intraoperatively, the bone window should be made at the medial edge of the patella to perform the curettage and bone grafting.

  13. Healing of rabbit calvarial critical-sized defects using autogenous bone grafts and fibrin glue.

    PubMed

    Lappalainen, Olli-Pekka; Korpi, Riikka; Haapea, Marianne; Korpi, Jarkko; Ylikontiola, Leena P; Kallio-Pulkkinen, Soili; Serlo, Willy S; Lehenkari, Petri; Sándor, George K

    2015-04-01

    This study aimed to evaluate ossification of cranial bone defects comparing the healing of a single piece of autogenous calvarial bone representing a bone flap as in cranioplasty compared to particulated bone slurry with and without fibrin glue to represent bone collected during cranioplasty. These defect-filling materials were then compared to empty control cranial defects. Ten White New Zealand adult male rabbits had bilateral critical-sized calvarial defects which were left either unfilled as control defects or filled with a single full-thickness piece of autogenous bone, particulated bone, or particulated bone combined with fibrin glue. The defects were left to heal for 6 weeks postoperatively before termination. CT scans of the calvarial specimens were performed. Histomorphometric assessment of hematoxylin-eosin- and Masson trichrome-stained specimens was used to analyze the proportion of new bone and fibrous tissue in the calvarial defects. There was a statistically significant difference in both bone and soft tissue present in all the autogenous bone-grafted defect sites compared to the empty negative control defects. These findings were supported by CT scan findings. While fibrin glue combined with the particulated bone seemed to delay ossification, the healing was more complete compared to empty control non-grafted defects. Autogenous bone grafts in various forms such as solid bone flaps or particulated bone treated with fibrin glue were associated with bone healing which was superior to the empty control defects.

  14. Bone scintigraphy of the aged patient. 1. /sup 99m/Tc-polyphosphate bone scintigraphy (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, M.; Chiba, K.; Tanno, M.

    Application and evaluation of a new bone-seeking radiopharmaceuticai, / sup 99m/Tc-polyphosphate are reported. Analysis of the image by digital color display data analyzer (Phosdac) was performed. The subjects of the study were cases at Tokyo Metropolitan Geriatric Hospital ranging from 63 to 85 years old with several kinds of bone diseases. Polyphosphate kits (Diagnostic Isotopes, Inc.) were used to prepare /sup 99m/Tc, and a Rho/gamma HP gamma-camera was used for scintigraphy. The images obtained were analyzed by Phosdac to obtain clear image of the bone system. In the final preparation, presence of approximately 30% of free /sup 99m/Tc was noticedmore » by paper chromatography. /sup 99m/Tc- polyphosphate was cleared from the blood with a half time of about 60 min. Urinary excretion proved to be 40 to 60% within 24 hrs. The bone system was visualized rather clearly with high accumulation of the label in the diseased region in spite of the fact that geriatric cases had marked general osteoporotic tendencies. In some cases, ribs were clearly visualized, and different information from that of x-ray was obtained by scanning images. Data processing by Phosdac increased diagnostic accuracy by enhancing the difference of the density of the image as well as eliminating the background caused by free /sup 99m/TcO/sub 4/. In conclusion, /sup 99m/Tc-polyphosphate was proved to be useful for bone scanning in geriatric cases. A digital color display data analyzer was successfully applied for the processing of the original data. (auth)« less

  15. Inflammation, Fracture and Bone Repair

    PubMed Central

    Loi, Florence; Córdova, Luis A.; Pajarinen, Jukka; Lin, Tzu-hua; Yao, Zhenyu; Goodman, Stuart B.

    2016-01-01

    The reconstitution of lost bone is a subject that is germane to many orthopaedic conditions including fractures and non-unions, infection, inflammatory arthritis, osteoporosis, osteonecrosis, metabolic bone disease, tumors, and periprosthetic particle-associated osteolysis. In this regard, the processes of acute and chronic inflammation play an integral role. Acute inflammation is initiated by endogenous or exogenous adverse stimuli, and can become chronic in nature if not resolved by normal homeostatic mechanisms. Dysregulated inflammation leads to increased bone resorption and suppressed bone formation. Crosstalk amongst inflammatory cells (polymorphonuclear leukocytes and cells of the monocyte-macrophage-osteoclast lineage) and cells related to bone healing (cells of the mesenchymal stem cell-osteoblast lineage and vascular lineage) is essential to the formation, repair and remodeling of bone. In this review, the authors provide a comprehensive summary of the literature related to inflammation and bone repair. Special emphasis is placed on the underlying cellular and molecular mechanisms, and potential interventions that can favorably modulate the outcome of clinical conditions that involve bone repair. PMID:26946132

  16. What Happens to bone health during and after spaceflight?

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.; Evans, Harlan J.; Spector, Elisabeth R.; Maddocks, Mary J.; Smith, Scott A.; Shackelford, Linda C.; LeBlanc, Adrian D.

    2006-01-01

    Weightless conditions of space flight accelerate bone loss. There are no reports to date that address whether the bone that is lost during spaceflight could ever be recovered. Spaceinduced bone loss in astronauts is evaluated at the Johnson Space Center (JSC) by measurement of bone mineral density (BMD) by Dual-energy x-ray absorptiometry (DXA) scans. Astronauts are routinely scanned preflight and at various time points postflight (greater than or equal to Return+2 days). Two sets of BMD data were used to model spaceflight-induced loss and skeletal recovery in crewmembers following long-duration spaceflight missions (4-6 months). Group I was from astronauts (n=7) who were systematically scanned at multiple time points during the postflight period as part of a research protocol to investigate skeletal recovery. Group II came from a total of 49 sets of preflight and postflight data obtained by different protocols. These data were from 39 different crewmembers some of whom served on multiple flights. Changes in BMD (between pre- and postflight BMD) were plotted as a function of time (days-after-landing); plotted data were fitted to an exponential equation which enabled estimations of i) BMD change at day 0 after landing and ii) the number of days by which 50% of the lost bone is recovered (half-life). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. There was consistency between the models for BMD recovery. Based upon the exponential model of BMD restoration, recovery following long-duration missions appears to be substantially complete in crewmembers within 36 months following return to Earth.

  17. Histomorphometric Study of New Bone Formation Comparing Defect Healing with Three Bone Grafting Materials: The Effect of Osteoporosis on Graft Consolidation.

    PubMed

    Zhang, Qiao; Jing, Dai; Zhang, Yufeng; Miron, Richard J

    Bone grafting materials are frequently utilized in oral surgery and periodontology to fill bone defects and augment lost or missing bone. The purpose of this study was to compare new bone formation in bone defects created in both normal and osteoporotic animals loaded with three types of bone grafts from different origins. Forty-eight female Wistar rats were equally divided into control normal and ovariectomized animals. Bilateral 2.5-mm femur defects were created and filled with an equal weight of (1) natural bone mineral (NBM, BioOss) of bovine origin, (2) demineralized freeze-dried bone allograft (DFDBA, LifeNet), or (3) biphasic calcium phosphate (BCP, Vivoss). Following 3 and 6 weeks of healing, hematoxylin and eosin and TRAP staining was performed to determine new bone formation, material degradation, and osteoclast activity. All bone substitutes demonstrated osteoconductive potential at 3 and 6 weeks with higher osteoclast numbers observed in all ovariectomized animals. NBM displayed continual new bone formation with little to no sign of particle degradation, even in osteoporotic animals. DFDBA particles showed similar levels of new bone formation but rapid particle degradation rates with lower levels of mineralized tissue. BCP bone grafts demonstrated significantly higher new bone formation when compared with both NBM and DFDBA particles; however, the material was associated with higher osteoclast activity and particle degradation. Interestingly, in osteoporotic animals, BCP displayed synergistically and markedly more rapid rates of particle degradation. Recent modifications to synthetically fabricated materials were shown to be equally or more osteopromotive than NBM and DFDBA. However, the current BCP utilized demonstrated much faster resorption properties in osteoporotic animals associated with a decrease in total bone volume when compared with the slowly/nonresorbing NBM. The results from this study point to the clinical relevance of minimizing fast

  18. Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone.

    PubMed

    Weinand, Christian; Pomerantseva, Irina; Neville, Craig M; Gupta, Rajiv; Weinberg, Eli; Madisch, Ijad; Shapiro, Frederic; Abukawa, Harutsugi; Troulis, Maria J; Vacanti, Joseph P

    2006-04-01

    Trabecular bone is a material of choice for reconstruction after trauma and tumor resection and for correction of congenital defects. Autologous bone grafts are available in limited shapes and sizes; significant donor site morbidity is another major disadvantage to this approach. To overcome these limitations, we used a tissue engineering approach to create bone replacements in vitro, combining bone-marrow-derived differentiated mesenchymal stem cells (MSCs) suspended in hydrogels and 3-dimensionally printed (3DP) porous scaffolds made of beta-tricalcium-phosphate (beta-TCP). The scaffolds provided support for the formation of bone tissue in collagen I, fibrin, alginate, and pluronic F127 hydrogels during culturing in oscillating and rotating dynamic conditions. Histological evaluation including toluidine blue, alkaline phosphatase, and von Kossa staining was done at 1, 2, 4, and 6 weeks. Radiographic evaluation and high-resolution volumetric CT (VCT) scanning, expression of bone-specific genes and biomechanical compression testing were performed at 6 weeks. Both culture conditions resulted in similar bone tissue formation. Histologically collagen I and fibrin hydrogels specimens had superior bone tissue, although radiopacities were detected only in collagen I samples. VCT scan revealed density values in all but the Pluronic F127 samples, with Houndsfield unit values comparable to native bone in collagen I and fibrin glue samples. Expression of bone-specific genes was significantly higher in the collagen I samples. Pluronic F127 hydrogel did not support formation of bone tissue. All samples cultured in dynamic oscillating conditions had slightly higher mechanical strength than under rotating conditions. Bone tissue can be successfully formed in vitro using constructs comprised of collagen I hydrogel, MSCs, and porous beta-TCP scaffolds.

  19. Calcium and bones

    MedlinePlus

    ... as you get older. This can result in brittle, fragile bones that can break easily, even without a fall or other injury. The digestive system is normally very bad at absorbing calcium. Most people absorb only 15% to 20% of the calcium ...

  20. Symmetry analysis of talus bone

    PubMed Central

    Islam, K.; Dobbe, A.; Komeili, A.; Duke, K.; El-Rich, M.; Dhillon, S.; Adeeb, S.; Jomha, N. M.

    2014-01-01

    Objective The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Methods Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Results Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. Conclusions We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139–45. PMID:24802391

  1. T-bone plastique for treatment of brachy-turricephaly.

    PubMed

    Donauer, E; Bernardy, M; Neuenfeldt, D

    1993-01-01

    The "T-Bone Plastique", which is presented in this paper, allows a surgical correction even of extreme cases of brachy-turricephaly together with malformations of the occipital region in one operative session. Brachy-turricephaly is characterized by abnormal vertical height of the skull and a shortening of its anterior-posterior length, frequently combined with malformations of the occipital region. Resection of the prematurely closed coronal suture, bi-parietal trepanations with 90 degrees rotation and side-exchange of the parietal bone flaps, double transverse trepanation of the occipital bone and outward bending and shifting of the bone fragments enable a bony remodeling and normalization of the deformed skull. Using this operative technique in three children we achieved a significant improvement of the skull form with an aesthetically pleasing result, without any neurologic sequelae and with normal development of the children during follow-up.

  2. VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.

    PubMed

    Jabbarzadeh, Ehsan; Deng, Meng; Lv, Qing; Jiang, Tao; Khan, Yusuf M; Nair, Lakshmi S; Laurencin, Cato T

    2012-11-01

    Regenerative engineering approaches utilizing biomimetic synthetic scaffolds provide alternative strategies to repair and restore damaged bone. The efficacy of the scaffolds for functional bone regeneration critically depends on their ability to induce and support vascular infiltration. In the present study, three-dimensional (3D) biomimetic poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds were developed by sintering together PLAGA microspheres followed by nucleation of minerals in a simulated body fluid. Further, the angiogenic potential of vascular endothelial growth factor (VEGF)-incorporated mineralized PLAGA scaffolds were examined by monitoring the growth and phenotypic expression of endothelial cells on scaffolds. Scanning electron microscopy micrographs confirmed the growth of bone-like mineral layers on the surface of microspheres. The mineralized PLAGA scaffolds possessed interconnectivity and a compressive modulus of 402 ± 61 MPa and compressive strength of 14.6 ± 2.9 MPa. Mineralized scaffolds supported the attachment and growth and normal phenotypic expression of endothelial cells. Further, precipitation of apatite layer on PLAGA scaffolds resulted in an enhanced VEGF adsorption and prolonged release compared to nonmineralized PLAGA and, thus, a significant increase in endothelial cell proliferation. Together, these results demonstrated the potential of VEGF-incorporated biomimetic PLAGA sintered microsphere scaffolds for bone tissue engineering as they possess the combined effects of osteointegrativity and angiogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  3. Generation of clinical grade human bone marrow stromal cells for use in bone regeneration

    PubMed Central

    Robey, Pamela G.; Kuznetsov, Sergei A.; Ren, Jiaqiang; Klein, Harvey G.; Sabatino, Marianna; Stroncek, David F.

    2014-01-01

    In current orthopaedic practice, there is a need to increase the ability to reconstruct large segments of bone lost due to trauma, resection of tumors and skeletal deformities, or when normal regenerative processes have failed such as in non-unions and avascular necrosis. Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells), when used in conjunction with appropriate carriers, represent a means by which to achieve bone regeneration in such cases. While much has been done at the bench and in pre-clinical studies, moving towards clinical application requires the generation of clinical grade cells. What is described herein is an FDA-approved cell manufacturing procedure for the ex vivo expansion of high quality, biologically active human BMSCs. PMID:25064527

  4. Uremic toxin and bone metabolism.

    PubMed

    Iwasaki, Yoshiko; Yamato, Hideyuki; Nii-Kono, Tomoko; Fujieda, Ayako; Uchida, Motoyuki; Hosokawa, Atsuko; Motojima, Masaru; Fukagawa, Masafumi

    2006-01-01

    Patients with end-stage renal disease (ESRD) develop various kinds of abnormalities in bone and mineral metabolism, widely known as renal osteodystrophy (ROD). Although the pathogenesis of ESRD may be similar in many patients, the response of the bone varies widely, ranging from high to low turnover. ROD is classified into several types, depending on the status of bone turnover, by histomorphometric analysis using bone biopsy samples [1,2]. In the mild type, bone metabolism is closest to that of persons with normal renal function. In osteitis fibrosa, bone turnover is abnormally activated. This is a condition of high-turnover bone. A portion of the calcified bone loses its lamellar structure and appears as woven bone. In the cortical bone also, bone resorption by osteoclasts is active, and a general picture of bone marrow tissue infiltration and the formation of cancellous bone can be observed. In osteomalacia, the bone surface is covered with uncalcified osteoid. This condition is induced by aluminum accumulation or vitamin D deficiency. The mixed type possesses characteristics of both osteitis fibrosa and osteomalacia. The bone turnover is so markedly accelerated that calcification of the osteoid cannot keep pace. In the adynamic bone type, bone resorption and bone formation are both lowered. While bone turnover is decreased, there is little osteoid. The existence of these various types probably accounts for the diversity in degree of renal impairment, serum parathyroid hormone (PTH) level, and serum vitamin D level in patients with ROD. However, all patients share a common factor, i.e., the presence of a uremic condition.

  5. Osteolytic bone lesions, severe hypercalcemia without circulating blasts: unusual presentation of childhood acute lymphoblastic leukemia

    PubMed Central

    Bechir, Achour; Haifa, Regaieg; Atef, Ben Abdelkader; Emna, Bouslema; Asma, Achour; Nesrine, Ben Sayed; Yosra, Ben Youssef; Abdrrahim, Khelif

    2017-01-01

    Hypercalcemia and severe osteolytic lesions are rare complications of acute lymphoblastic leukemia (ALL) in childhood. We report a case of a 3 years old boy who presented with prolonged fever, nausea, vomiting and increasing lower limbs pain. Skeletal X-rays and CT scan showed severe osteolytic lesions of the skull and extremities. Her physical examination showed multiple cervical lymph nodes. In laboratory tests, he had severe hypercalcemia. Parathyroid hormone (PTH) was not elevated. Despite the absence of circulating blasts, bone marrow biopsy revealed B-precursor (ALL). Hypercalcemia was initially treated with intravenous isotonic sodium chloride solution and diuretics but the serum calcium level normalized only after the beginning of corticosteroids and chemotherapy. The child responded initially to chemotherapy and eventually relapsed and died of septic shock. Acute leukemia must be considered in differential diagnosis in patients with hypercalcemia. A detailed examination even when there no circulating blasts in their peripheral blood smear, and if in doubt bone marrow aspiration should must be taken into consideration. PMID:28690758

  6. Interpretation of normal anatomic structures on chest radiography: Comparison of Fuji Computed Radiography (FCR) 5501D with FCR 5000 and screen‐film system

    PubMed Central

    Nakashima, Kazuaki; Ashizawa, Kazuto; Ochi, Makoto; Hashmi, Rashid; Hayashi, Kuniaki; Gotoh, Shinichi; Honda, Sumihisa; Igarashi, Akito; Komaki, Takao

    2003-01-01

    The purpose of this study was to investigate the usefulness of Fuji Computed Radiography (FCR) 5501D by comparing it with FCR 5000 and a screen‐film system (S/F). Posteroanterior chest radiographs often patients with no abnormality on chest CT scans were obtained with FCR 5501D, FCR 5000, and S/F. Six observers (three radiologists and three radio‐technologists) evaluated the visibility of nine normal anatomic structures (including lungs, soft tissue, and bones) and overall visibility on each image. Observers scored using a five‐point scale on each structure. FCR 5000 showed a significantly higher score in soft tissue and bone structures, and overall visibility compared with S/F, but, there was no significant difference between them in the visibility of all four normal lung structures. Compared with S/F, the score for FCR 5501D was higher in eight of the nine normal structures, including three of the four lung structures (unobscured lung, retrocardiac lung, and subdiaphragmatic lung), and overall visibility. Compared with FCR 5000, the score for FCR 5501D was higher in three normal structures, including two of the four lung structures (unobscured lung and subdiaphragmatic lung), and overall visibility. FCR 5501D was the best among the three techniques to visualize normal anatomic structures, particularly the obscured and unobscured lung. © 2003 American College of Medical Physics. PACS number(s): 87.57.–s, 87.62.+n PMID:12540822

  7. Recent developments in metabolic bone diseases: a gnathic perspective.

    PubMed

    Raubenheimer, Erich J; Noffke, Claudia E; Hendrik, Hilde D

    2014-12-01

    Metabolic bone diseases often are asymptomatic and progress sub clinically. Many patients present at a late stage with catastrophic skeletal and extra skeletal complications. In this article, we provide an overview of normal bone remodeling and a synopsis of recent developments in the following conditions: osteoporosis, rickets/osteomalacia, endocrine-induced bone disease, chronic kidney disease-mineral bone disorder and Paget's disease of bone. Our discussion will emphasize the clinical and microscopic manifestations of these diseases in the jaws.

  8. Intractable bone marrow edema syndrome of the hip.

    PubMed

    Gao, Fuqiang; Sun, Wei; Li, Zirong; Guo, Wanshou; Kush, Nepali; Ozaki, Koji

    2015-04-01

    There is a need for an effective and noninvasive treatment for intractable bone marrow edema syndrome of the hip. Forty-six patients with intractable bone marrow edema syndrome of the hip were retrospectively studied to compare the short-term clinical effects of treatment with high-energy extracorporeal shock wave therapy vs femoral head core decompression. The postoperative visual analog scale score decreased significantly more in the extracorporeal shock wave therapy group compared with the femoral head core decompression group (P<.05). For unilateral lesions, postoperative Harris Hip Scores for all hips in the extracorporeal shock wave therapy group were more significantly improved than Harris Hip Scores for all hips in the femoral head core decompression group (P<.05). Patients who underwent extracorporeal shock wave therapy also resumed daily activities significantly earlier. Average overall operative time was similar in both groups. Symptoms disappeared significantly sooner in the extracorporeal shock wave therapy group in patients with both unilateral (P<.01) and bilateral lesions (P<.05). Hospital costs were significantly lower with extracorporeal shock wave therapy compared with femoral head core decompression. The intraoperative fluoroscopy radiation dose was lower in extracorporeal shock wave therapy than in femoral head core decompression for both unilateral (P<.05) and bilateral lesions (P<.01). On magnetic resonance imaging (MRI), bone marrow edema improved in all patients during the follow-up period. After extracorporeal shock wave therapy, all patients remained pain-free and had normal findings on posttreatment radiographs and MRI scans. Extracorporeal shock wave therapy appears to be a valid, reliable, and noninvasive tool for rapidly resolving intractable bone marrow edema syndrome of the hip, and it has a low complication rate and relatively low cost compared with other conservative and surgical treatment approaches. Copyright 2015, SLACK

  9. Bone Quest - A Space-Based Science and Health Education Unit

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; David-Street, Janis E.; Abrams, Steve A.

    2000-01-01

    This proposal addresses the need for effective and innovative science and health education materials that focus on space bone biology and its implications for bone health on Earth. The focus of these materials, bone biology and health, will increase science knowledge as well as health awareness. Current investigations of the bone loss observed after long-duration space missions provide a link between studies of bone health in space, and studies of osteoporosis, a disease characterized by bone loss and progressive skeletal weakness. The overall goal of this project is to design and develop web-based and print-based materials for high school science students, that will address the following: a) knowledge of normal bone biology and bone biology in a microgravity environment; b) knowledge of osteoporosis; c) knowledge of treatment modalities for space- and Earth-based bone loss; and d} bone-related nutrition knowledge and behavior. To this end, we propose to design and develop a Bone Biology Tutorial which will instruct students about normal bone biology, bone biology in a microgravity environment, osteoporosis - its definition, detection, risk factors, and prevention, treatment modalities for space- and Earth-based bone loss, and the importance of nutrition in bone health. Particular emphasis will be placed on current trends in . adolescent nutrition, and their relationships to bone health. Additionally, we propose to design and develop two interactive nutrition/health ' education activities that will allow students to apply the information provided in the Bone Biology Tutorial. In the first, students will apply constructs provided in the Bone Biology Tutorial to design "Bone Health Plans" for space travelers.

  10. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herlin, Maria, E-mail: maria.herlin@ki.se; Finnilä, Mikko A.J., E-mail: mikko.finnila@oulu.fi; Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr{sup −/−}) and wild-type (Ahr{sup +/+}) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serummore » levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr{sup +/+} mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr{sup −/−} mice displayed a slightly modified bone phenotype as compared with untreated Ahr{sup +/+} mice, while TCDD exposure caused only a few changes in bones of Ahr{sup −/−} mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr{sup +/+} mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR

  11. Influence of Body Weight on Bone Mass, Architecture, and Turnover

    PubMed Central

    Iwaniec, Urszula T.; Turner, Russell T.

    2016-01-01

    Weight-dependent loading of the skeleton plays an important role in establishing and maintaining bone mass and strength. This review focuses on mechanical signaling induced by body weight as an essential mechanism for maintaining bone health. In addition, the skeletal effects of deviation from normal weight are discussed. The magnitude of mechanical strain experienced by bone during normal activities is remarkably similar among vertebrates, regardless of size, supporting the existence of a conserved regulatory mechanism, or mechanostat, that senses mechanical strain. The mechanostat functions as an adaptive mechanism to optimize bone mass and architecture based on prevailing mechanical strain. Changes in weight, due to altered mass, weightlessness (spaceflight), and hypergravity (modeled by centrifugation), induce an adaptive skeletal response. However, the precise mechanisms governing the skeletal response are incompletely understood. Furthermore, establishing whether the adaptive response maintains the mechanical competence of the skeleton has proven difficult, necessitating development of surrogate measures of bone quality. The mechanostat is influenced by regulatory inputs to facilitate non-mechanical functions of the skeleton, such as mineral homeostasis, as well as hormones and energy/nutrient availability that support bone metabolism. While the skeleton is very capable of adapting to changes in weight, the mechanostat has limits. At the limits, extreme deviations from normal weight and body composition are associated with impaired optimization of bone strength to prevailing body size. PMID:27352896

  12. Micro-computed tomography assessment of human alveolar bone: bone density and three-dimensional micro-architecture.

    PubMed

    Kim, Yoon Jeong; Henkin, Jeffrey

    2015-04-01

    Micro-computed tomography (micro-CT) is a valuable means to evaluate and secure information related to bone density and quality in human necropsy samples and small live animals. The aim of this study was to assess the bone density of the alveolar jaw bones in human cadaver, using micro-CT. The correlation between bone density and three-dimensional micro architecture of trabecular bone was evaluated. Thirty-four human cadaver jaw bone specimens were harvested. Each specimen was scanned with micro-CT at resolution of 10.5 μm. The bone volume fraction (BV/TV) and the bone mineral density (BMD) value within a volume of interest were measured. The three-dimensional micro architecture of trabecular bone was assessed. All the parameters in the maxilla and the mandible were subject to comparison. The variables for the bone density and the three-dimensional micro architecture were analyzed for nonparametric correlation using Spearman's rho at the significance level of p < .05. A wide range of bone density was observed. There was a significant difference between the maxilla and mandible. All micro architecture parameters were consistently higher in the mandible, up to 3.3 times greater than those in the maxilla. The most linear correlation was observed between BV/TV and BMD, with Spearman's rho = 0.99 (p = .01). Both BV/TV and BMD were highly correlated with all micro architecture parameters with Spearman's rho above 0.74 (p = .01). Two aspects of bone density using micro-CT, the BV/TV and BMD, are highly correlated with three-dimensional micro architecture parameters, which represent the quality of trabecular bone. This noninvasive method may adequately enhance evaluation of the alveolar bone. © 2013 Wiley Periodicals, Inc.

  13. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    NASA Technical Reports Server (NTRS)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  14. Estimation of Risk of Normal-tissue Toxicity Following Gastric Cancer Radiotherapy with Photon- or Scanned Proton-beams.

    PubMed

    Mondlane, Gracinda; Ureba, Ana; Gubanski, Michael; Lind, Pehr A; Siegbahn, Albert

    2018-05-01

    Gastric cancer (GC) radiotherapy involves irradiation of large tumour volumes located in the proximities of critical structures. The advantageous dose distributions produced by scanned-proton beams could reduce the irradiated volumes of the organs at risk (OARs). However, treatment-induced side-effects may still appear. The aim of this study was to estimate the normal tissue complication probability (NTCP) following proton therapy of GC, compared to photon radiotherapy. Eight GC patients, previously treated with volumetric-modulated arc therapy (VMAT), were retrospectively planned with scanned proton beams carried out with the single-field uniform-dose (SFUD) method. A beam-specific planning target volume was used for spot positioning and a clinical target volume (CTV) based robust optimisation was performed considering setup- and range-uncertainties. The dosimetric and NTCP values obtained with the VMAT and SFUD plans were compared. With SFUD, lower or similar dose-volume values were obtained for OARs, compared to VMAT. NTCP values of 0% were determined with the VMAT and SFUD plans for all OARs (p>0.05), except for the left kidney (p<0.05), for which lower toxicity was estimated with SFUD. The NTCP reduction, determined for the left kidney with SFUD, can be of clinical relevance for preserving renal function after radiotherapy of GC. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. A unified theory of bone healing and nonunion: BHN theory.

    PubMed

    Elliott, D S; Newman, K J H; Forward, D P; Hahn, D M; Ollivere, B; Kojima, K; Handley, R; Rossiter, N D; Wixted, J J; Smith, R M; Moran, C G

    2016-07-01

    This article presents a unified clinical theory that links established facts about the physiology of bone and homeostasis, with those involved in the healing of fractures and the development of nonunion. The key to this theory is the concept that the tissue that forms in and around a fracture should be considered a specific functional entity. This 'bone-healing unit' produces a physiological response to its biological and mechanical environment, which leads to the normal healing of bone. This tissue responds to mechanical forces and functions according to Wolff's law, Perren's strain theory and Frost's concept of the "mechanostat". In response to the local mechanical environment, the bone-healing unit normally changes with time, producing different tissues that can tolerate various levels of strain. The normal result is the formation of bone that bridges the fracture - healing by callus. Nonunion occurs when the bone-healing unit fails either due to mechanical or biological problems or a combination of both. In clinical practice, the majority of nonunions are due to mechanical problems with instability, resulting in too much strain at the fracture site. In most nonunions, there is an intact bone-healing unit. We suggest that this maintains its biological potential to heal, but fails to function due to the mechanical conditions. The theory predicts the healing pattern of multifragmentary fractures and the observed morphological characteristics of different nonunions. It suggests that the majority of nonunions will heal if the correct mechanical environment is produced by surgery, without the need for biological adjuncts such as autologous bone graft. Cite this article: Bone Joint J 2016;98-B:884-91. ©2016 The British Editorial Society of Bone & Joint Surgery.

  16. The Biology of Bone and Ligament Healing.

    PubMed

    Cottrell, Jessica A; Turner, Jessica Cardenas; Arinzeh, Treena Livingston; O'Connor, J Patrick

    2016-12-01

    This review describes the normal healing process for bone, ligaments, and tendons, including primary and secondary healing as well as bone-to-bone fusion. It depicts the important mediators and cell types involved in the inflammatory, reparative, and remodeling stages of each healing process. It also describes the main challenges for clinicians when trying to repair bone, ligaments, and tendons with a specific emphasis on Charcot neuropathy, fifth metatarsal fractures, arthrodesis, and tendon sheath and adhesions. Current treatment options and research areas are also reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Endocrine Regulation of Bone and Energy Metabolism in Hibernating Mammals

    PubMed Central

    Doherty, Alison H.; Florant, Gregory L.; Donahue, Seth W.

    2014-01-01

    Precise coordination among organs is required to maintain homeostasis throughout hibernation. This is particularly true in balancing bone remodeling processes (bone formation and resorption) in hibernators experiencing nutritional deprivation and extreme physical inactivity, two factors normally leading to pronounced bone loss in non-hibernating mammals. In recent years, important relationships between bone, fat, reproductive, and brain tissues have come to light. These systems share interconnected regulatory mechanisms of energy metabolism that potentially protect the skeleton during hibernation. This review focuses on the endocrine and neuroendocrine regulation of bone/fat/energy metabolism in hibernators. Hibernators appear to have unique mechanisms that protect musculoskeletal tissues while catabolizing their abundant stores of fat. Furthermore, the bone remodeling processes that normally cause disuse-induced bone loss in non-hibernators are compared to bone remodeling processes in hibernators, and possible adaptations of the bone signaling pathways that protect the skeleton during hibernation are discussed. Understanding the biological mechanisms that allow hibernators to survive the prolonged disuse and fasting associated with extreme environmental challenges will provide critical information regarding the limit of convergence in mammalian systems and of skeletal plasticity, and may contribute valuable insight into the etiology and treatment of human diseases. PMID:24556365

  18. Halofuginone Attenuates Osteoarthritis by Rescuing Bone Remodeling in Subchondral Bone Through Oral Gavage

    PubMed Central

    Mu, Wenbo; Xu, Boyong; Ma, Hairong; Li, Jiao; Ji, Baochao; Zhang, Zhendong; Amat, Abdusami; Cao, Li

    2018-01-01

    Osteoarthritis (OA) is a common debilitating joint disorder worldwide without effective medical therapy. Articular cartilage and subchondral bone act in concert as a functional unit with the onset of OA. Halofuginone is an analog of the alkaloid febrifugine extracted from the plant Dichroa febrifuga, which has been demonstrated to exert inhibition of SMAD 2/3 phosphorylation downstream of the TGF-β signaling pathway and osteoclastogenesis. To investigate whether halofuginone (HF) alleviates OA after administration by oral gavage, 3-month-old male mice were allocated to the Sham group, vehicle-treated anterior cruciate ligament transection (ACLT) group, and HF-treated ACLT group. The immunostaining analysis indicated that HF reduced the number of matrix metalloproteinase 13 (MMP-13) and collagen X (Col X) positive cells in the articular cartilage. Moreover, HF lowered histologic OA score and prevented articular cartilage degeneration. The micro-computed tomography (μCT) scan showed that HF maintained the subchondral bone microarchitecture, demonstrated by the restoration of bone volume fraction (BV/TV), subchondral bone plate thickness (SBP.Th.), and trabecular pattern factor (Tb.Pf) to a level comparable to that of the Sham group. Immunostaining for CD31 and μCT based angiography showed that the number and volume of vessels in subchondral bone was restored by HF. HF administered by oral gavage recoupled bone remodeling and inhibited aberrant angiogenesis in the subchondral bone, further slowed the progression of OA. Therefore, HF administered by oral gavage could be a potential therapy for OA. PMID:29636687

  19. Does bone measurement on the radius indicate skeletal status. Concise communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazess, R.B.; Peppler, W.W.; Chesney, R.W.

    1984-03-01

    Single-photon (I-125) absorptiometry was used to measure bone mineral content (BMC) of the distal third of the radius, and dual-photon absorptiometry (Gd-153) was used to measure total-body bone mineral (TBBM), as well as the BMC of major skeletal regions. Measurements were done in normal females, normal males, osteoporotic females, osteoporotic males, and renal patients. The BMC of the radius predicted TBBM well in normal subjects, but was less satisfactory in the patient groups. The spinal BMC was predicted with even lower accuracy from radius measurement. The error in predicting areal density (bone mass per unit projected skeletal area) of themore » lumbar and thoracic spine from the radius BMC divided by its width was smaller, but the regressions differed significantly among normals, osteoporotics, and renal patients. There was a preferential spinal osteopenia in the osteoporotic group and in about half of the renal patients. Bone measurements on the radius can indicate overall skeletal status in normal subjects and to a lesser degree in patients, but these radius measurements are inaccurate, even on the average, as an indicator of spinal state.« less

  20. [Expression of S100A8 and A100A9 in giant cell tumor of bone and its relation with CT and MR imaging findings].

    PubMed

    Liao, Jin-sheng; Ding, Xiao-yi; Xu, Shun-liang

    2015-05-01

    To investigate the mRNA and protein expression levels of S100A8 and S100A9 in giant cell tumor (GCT) of bone, and its relation with radiological findings and biological behavior. Forty three patient with GCT of bone admitted in Ruijin Hospital Shanghai Jiaotong University School of Medicine from January 2009 to June 2012 were enrolled in the study. The expression levels of S100A8 and S100A9 mRNA and protein were detected by using semiquantitative RT-PCR and Western blotting in 43 specimens of GCT and 6 specimens of normal bone marrow. The CT and MRI findings of patients were retrospectively reviewed, its relation with tissue expression of S100A8 and S100A9 was analyzed. Among 43 GCT cases 40 showed positive expression of S100A8 and S100A9 mRNA and protein, and the expression levels were significantly higher than those in normal bone marrow P<0.05). The expression level of S100A8 protein was significantly different in bone GCT with different composition ratio on MRI (P<0.05).The expression level of S100A9 protein was significantly different in GCT with different degree of bone destruction on CT scan (P<0.05). The expression of S100A8 and S100A9 mRNA and protein is up-regulated in GCT of bone. The expression of S100A8 and S100A9 is associated with the real composition ratio and the degree of bone destruction, respectively, indicating that S100A8 and S100A9 may be involved in the biological behavior of bone GCT.

  1. A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone

    PubMed Central

    Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus

    2016-01-01

    In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm3) as compared to rhBMP-2 alone (10.9 ± 2.1 mm3) when analyzed using micro computed tomography (μ-CT) (p < 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone. PMID:27189411

  2. Prediction of low bone mass using a combinational approach of cortical and trabecular bone measures from dental panoramic radiographs.

    PubMed

    Kathirvelu, D; Anburajan, M

    2014-09-01

    The aim of this study is to extract cortical and trabecular features of the mandible and to develop a novel combinational model of mandibular cortical thickness, trabecular bone area and age in order to predict low bone mineral density or osteoporosis from a dental panoramic radiograph. The study involved 64 south Indian women (age = 52.5 ± 12.7 years) categorised into two groups (normal and low bone mineral density) based on total femur bone mineral density. The dental panoramic radiographs were obtained by a digital scanner, and measurement of total bone mineral density at the right femur was performed by a dual-energy X-ray absorptiometry scanner. The mandibular cortical thickness and panoramic mandibular index were measured bilaterally, and the mean values were considered. The region of interest of 128 × 128 pixels around the mental foramen region was manually cropped and subjected to pre-processing, normalisation and average threshold-based segmentation to determine trabecular bone area. Multiple linear regression analyses of cortical and trabecular measures along with age were performed to develop a combinational model to classify subjects as normal and low bone mineral density. The proposed approach demonstrated strong correlation (r = 0.76; p < 0.01) against the total bone mineral density and resulted in accuracy, sensitivity and positive predictive values of 0.84, 0.92 and 0.85, respectively; the receiver operating characteristic outcomes disclosed that the area under the curve was 0.89.Our results suggest that the proposed combinational model could be useful to diagnose subjects with low bone mineral density. © IMechE 2014.

  3. Alkaline biodegradable implants for osteoporotic bone defects--importance of microenvironment pH.

    PubMed

    Liu, W; Wang, T; Yang, C; Darvell, B W; Wu, J; Lin, K; Chang, J; Pan, H; Lu, W W

    2016-01-01

    Change of microenvironment pH by biodegradable implants may ameliorate unbalanced osteoporotic bone remodeling. The present work demonstrated that a weak alkaline condition stimulated osteoblasts differentiation while suppressed osteoclast generation. In vivo, implants with an alkaline microenvironment pH (monitored by a pH microelectrode) exhibited a promising healing effect for the repair of osteoporotic bone defects. Under osteoporotic conditions, the response of the bone microenvironment to an endosseous implant is significantly impaired, and this substantially increases the risk of fracture, non-union and aseptic implant loosening. Acid-base equilibrium is an important factor influencing bone cell behaviour. The present purpose was to study the effect of a series of alkaline biodegradable implant materials on regeneration of osteoporotic bone defect, monitoring the microenvironment pH (μe-pH) over time. The proliferation and differentiation potential of osteoporotic rat bone marrow stromal cells and RAW 264.7 cells were examined under various pH conditions. Ovariectomized rat bone defects were filled with specific biodegradable materials, and μe-pH was measured by pH microelectrode. New osteoid and tartrate-resistant acid phosphatase-positive osteoclast-like cells were examined by Goldner's trichrome and TRAP staining, respectively. The intermediate layer between implants and new bone were studied using energy-dispersive X-ray spectroscopy (EDX) linear scanning. In vitro, weak alkaline conditions stimulated osteoporotic rat bone marrow stromal cells (oBMSC) differentiation, while inhibiting the formation of osteoclasts. In vivo, μe-pH differs from that of the homogeneous peripheral blood and exhibits variations over time particular to each material. Higher initial μe-pH was associated with more new bone formation, late response of TRAP-positive osteoclast-like cells and the development of an intermediate 'apatitic' layer in vivo. EDX suggested that

  4. A quantification strategy for missing bone mass in case of osteolytic bone lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fränzle, Andrea, E-mail: a.fraenzle@dkfz.de; Giske, Kristina; Bretschi, Maren

    Purpose: Most of the patients who died of breast cancer have developed bone metastases. To understand the pathogenesis of bone metastases and to analyze treatment response of different bone remodeling therapies, preclinical animal models are examined. In breast cancer, bone metastases are often bone destructive. To assess treatment response of bone remodeling therapies, the volumes of these lesions have to be determined during the therapy process. The manual delineation of missing structures, especially if large parts are missing, is very time-consuming and not reproducible. Reproducibility is highly important to have comparable results during the therapy process. Therefore, a computerized approachmore » is needed. Also for the preclinical research, a reproducible measurement of the lesions is essential. Here, the authors present an automated segmentation method for the measurement of missing bone mass in a preclinical rat model with bone metastases in the hind leg bones based on 3D CT scans. Methods: The affected bone structure is compared to a healthy model. Since in this preclinical rat trial the metastasis only occurs on the right hind legs, which is assured by using vessel clips, the authors use the left body side as a healthy model. The left femur is segmented with a statistical shape model which is initialised using the automatically segmented medullary cavity. The left tibia and fibula are segmented using volume growing starting at the tibia medullary cavity and stopping at the femur boundary. Masked images of both segmentations are mirrored along the median plane and transferred manually to the position of the affected bone by rigid registration. Affected bone and healthy model are compared based on their gray values. If the gray value of a voxel indicates bone mass in the healthy model and no bone in the affected bone, this voxel is considered to be osteolytic. Results: The lesion segmentations complete the missing bone structures in a reasonable way

  5. Infant formula promotes bone growth in neonatal piglets by enhancing osteoblastogenesis through bone morphogenic protein signaling

    USDA-ARS?s Scientific Manuscript database

    Relatively few studies have examined the effects of formula feeding relative to breast-feeding on bone in the neonate. Using peripheral quantitative CT scan and histomorphometric analysis, we demonstrated that neonatal piglets fed with soy-based formula (SF) and cow milk-based formula (MF) for 21 or...

  6. Bone mineralization in childhood and adolescence.

    PubMed

    Bachrach, L K

    1993-08-01

    Prevention of osteoporosis depends on establishing adequate peak bone mass in the first two decades of life. Achievement of this goal requires an understanding of factors that promote skeletal health. Genetic factors are important determinants of adult bone mass, but nonheritable variables, including body mass, calcium nutriture, sex steroids, and activity can strongly influence whether maximal bone mineral is achieved. Acquisition of bone mineral continues throughout childhood and adolescence, reaching a lifetime maximum in early adulthood. Adolescence is a particularly critical time for bone mineral accretion as more than half of the bone calcium is normally laid down during the teen years. Chronic illness, malnutrition, or endocrine deficiencies at this age may result in profound deficits in bone mass, which may not be fully reversible. These risk factors contribute to the osteopenia associated with anorexia nervosa, exercise-induced amenorrhea, delayed puberty, Turner's syndrome, and growth hormone deficiency.

  7. Brain CT scan indexes in the normal pressure hydrocephalus: predictive value in the outcome of patients and correlation to the clinical symptoms.

    PubMed

    Chatzidakis, Emmanuel M; Barlas, George; Condilis, Nicolas; Bouramas, Dimos; Anagnostopoulos, Demetrios; Volikas, Zacharias; Simopoulos, Konstantinos

    2008-01-01

    The aim of this study is to find out the correlation of the ventricular size of the brain, as it is estimated using brain computed tomography (CT) scan indexes in patients with normal pressure hydrocephalus (NPH), to: a) the clinical symptoms, and b) the results of cerebrospinal fluid (CSF) shunting procedures. We looked for any predictive value in the estimation of brain CT scan indexes, in patients as above, in whom a shunt is going to be placed. It is well known that it is very difficult to decide who is going to improve after shunting. We studied 40 cases of patients with the diagnosis "NPH" in whom the ventricular shunts were placed. Every symptom (motor disturbance, deficit of memory, incontinence) was separately evaluated preoperatively. The outcome of shunting was also evaluated and the patients were graded. The following CT scan indexes were estimated from the preoperative CT scans of the brain in every case: the ventricle-brain ratio (VBR), the bi-caudate and bi-frontal ratios, the third ventricle-Sylvian fissure (3V-SF) ratio, and the four largest cortical gyri. The method we have used for statistics is "one way analysis of variance", correlating the CT scan indexes to the symptoms of the patients preoperatively, and the outcome of them postoperatively. The main conclusion is that the size of the lateral ventricles of the brain preoperatively is not correlated to the outcome after CSF shunting surgery, but it is correlated to the symptoms of NPH preoperatively.

  8. Distribution Characteristics of Air-Bone Gaps – Evidence of Bias in Manual Audiometry

    PubMed Central

    Margolis, Robert H.; Wilson, Richard H.; Popelka, Gerald R.; Eikelboom, Robert H.; Swanepoel, De Wet; Saly, George L.

    2015-01-01

    Objective Five databases were mined to examine distributions of air-bone gaps obtained by automated and manual audiometry. Differences in distribution characteristics were examined for evidence of influences unrelated to the audibility of test signals. Design The databases provided air- and bone-conduction thresholds that permitted examination of air-bone gap distributions that were free of ceiling and floor effects. Cases with conductive hearing loss were eliminated based on air-bone gaps, tympanometry, and otoscopy, when available. The analysis is based on 2,378,921 threshold determinations from 721,831 subjects from five databases. Results Automated audiometry produced air-bone gaps that were normally distributed suggesting that air- and bone-conduction thresholds are normally distributed. Manual audiometry produced air-bone gaps that were not normally distributed and show evidence of biasing effects of assumptions of expected results. In one database, the form of the distributions showed evidence of inclusion of conductive hearing losses. Conclusions Thresholds obtained by manual audiometry show tester bias effects from assumptions of the patient’s hearing loss characteristics. Tester bias artificially reduces the variance of bone-conduction thresholds and the resulting air-bone gaps. Because the automated method is free of bias from assumptions of expected results, these distributions are hypothesized to reflect the true variability of air- and bone-conduction thresholds and the resulting air-bone gaps. PMID:26627469

  9. Evaluation of bone repair after application of a norbixin membrane scaffold with and without laser photobiomodulation (λ 780 nm).

    PubMed

    Alves, Adrielle Martins Monteiro; de Miranda Fortaleza, Lílian Melo; Filho, Antonio Luiz Martins Maia; Ferreira, Danniel Cabral Leão; da Costa, Charllyton Luis Sena; Viana, Vicente Galber Freitas; Santos, José Zilton Lima Verde; de Oliveira, Rauirys Alencar; de Meira Gusmão, Gustavo Oliveira; Soares, Luís Eduardo Silva

    2018-05-04

    Biocompatible membranes are widely used in medicine to stimulate bone repair. Several studies have demonstrated that laser photobiomodulation (PBM) also stimulates osteoblast proliferation and osteogenesis at the fracture site, leading to a greater deposition of bone mass and accelerating the process of bone consolidation. This work assessed the therapeutic effect of 780-nm laser PBM and a polystyrene membrane coated with norbixin and collagen (PSNC) on bone healing in rats with calvarial bone defect. Histological staining, Raman spectroscopy, and scanning electron microscopy (SEM) were used to evaluate the bone repair process. Four experimental treatment groups were compared: C, control; M, membrane only; L, laser PBM only; and ML, membrane + laser PBM. A bone defect was created in the calvaria of each animal, with each group subdivided into two subgroups that underwent euthanasia after 15 and 30 days treatment. The L and ML groups were irradiated (λ = 780 nm, ED = 6 J/cm 2 , P = 60 mW, t = 4 s) postoperatively on alternate days until they were euthanized. The bone concentration of hydroxyapatite (CHA) showed a clear gradation with increasing phosphate area in the order B (normal cortical bone) > L > M > ML > C for both periods. The PSNC membrane was effective in reducing the inflammatory process and served as a scaffold for bone repair. The laser PBM also showed positive effects on the bone repair process with increased deposition and organization of the newly formed bone. However, laser PBM failed to improve the bioactive properties of the membrane scaffold.

  10. Bone repair by periodontal ligament stem cellseeded nanohydroxyapatite-chitosan scaffold

    PubMed Central

    Ge, Shaohua; Zhao, Ning; Wang, Lu; Yu, Meijiao; Liu, Hong; Song, Aimei; Huang, Jing; Wang, Guancong; Yang, Pishan

    2012-01-01

    Background A nanohydroxyapatite-coated chitosan scaffold has been developed in recent years, but the effect of this composite scaffold on the viability and differentiation of periodontal ligament stem cells (PDLSCs) and bone repair is still unknown. This study explored the behavior of PDLSCs on a new nanohydroxyapatite-coated genipin-chitosan conjunction scaffold (HGCCS) in vitro as compared with an uncoated genipin-chitosan framework, and evaluated the effect of PDLSC-seeded HGCCS on bone repair in vivo. Methods Human PDLSCs were cultured and identified, seeded on a HGCCS and on a genipin-chitosan framework, and assessed by scanning electron microscopy, confocal laser scanning microscopy, MTT, alkaline phosphatase activity, and quantitative real-time polymerase chain reaction at different time intervals. Moreover, PDLSC-seeded scaffolds were used in a rat calvarial defect model, and new bone formation was assessed by hematoxylin and eosin staining at 12 weeks postoperatively. Results PDLSCs were clonogenic and positive for STRO-1. They had the capacity to undergo osteogenic and adipogenic differentiation in vitro. When seeded on HGCCS, PDLSCs exhibited significantly greater viability, alkaline phosphatase activity, and upregulated the bone-related markers, bone sialoprotein, osteopontin, and osteocalcin to a greater extent compared with PDLSCs seeded on the genipin-chitosan framework. The use of PDLSC-seeded HGCCS promoted calvarial bone repair. Conclusion This study demonstrates the potential of HGCCS combined with PDLSCs as a promising tool for bone regeneration. PMID:23091383

  11. Maternal perinatal diet induces developmental programming of bone architecture.

    PubMed

    Devlin, M J; Grasemann, C; Cloutier, A M; Louis, L; Alm, C; Palmert, M R; Bouxsein, M L

    2013-04-01

    Maternal high-fat (HF) diet can alter offspring metabolism via perinatal developmental programming. This study tests the hypothesis that maternal HF diet also induces perinatal programming of offspring bone mass and strength. We compared skeletal acquisition in pups from C57Bl/6J mice fed HF or normal diet from preconception through lactation. Three-week-old male and female pups from HF (HF-N) and normal mothers (N-N) were weaned onto normal diet. Outcomes at 14 and 26 weeks of age included body mass, body composition, whole-body bone mineral content (WBBMC) via peripheral dual-energy X-ray absorptiometry, femoral cortical and trabecular architecture via microcomputed tomography, and glucose tolerance. Female HF-N had normal body mass and glucose tolerance, with lower body fat (%) but higher serum leptin at 14 weeks vs. N-N (P<0.05 for both). WBBMC was 12% lower at 14 weeks and 5% lower at 26 weeks, but trabecular bone volume fraction was 20% higher at 14 weeks in female HF-N vs. N-N (P<0.05 for all). Male HF-N had normal body mass and mildly impaired glucose tolerance, with lower body fat (%) at 14 weeks and lower serum leptin at 26 weeks vs. N-N (P<0.05 for both). Serum insulin was higher at 14 weeks and lower at 26 weeks in HF-N vs. N-N (P<0.05). Trabecular BV/TV was 34% higher and cortical bone area was 6% higher at 14 weeks vs. N-N (P<0.05 for both). These data suggest that maternal HF diet has complex effects on offspring bone, supporting the hypothesis that maternal diet alters postnatal skeletal homeostasis.

  12. Bone tumor mimickers: A pictorial essay

    PubMed Central

    Mhuircheartaigh, Jennifer Ni; Lin, Yu-Ching; Wu, Jim S

    2014-01-01

    Focal lesions in bone are very common and many of these lesions are not bone tumors. These bone tumor mimickers can include numerous normal anatomic variants and non-neoplastic processes. Many of these tumor mimickers can be left alone, while others can be due to a significant disease process. It is important for the radiologist and clinician to be aware of these bone tumor mimickers and understand the characteristic features which allow discrimination between them and true neoplasms in order to avoid unnecessary additional workup. Knowing which lesions to leave alone or which ones require workup can prevent misdiagnosis and reduce patient anxiety. PMID:25114385

  13. AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE

    PubMed Central

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J.

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bone’s mechanical integrity. Skeletal disorders often affect bone’s mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim−/−) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1−/−) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim−/− and ductile Phospho1−/− bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim−/− were hypermineralized, while Phospho1−/− were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim−/− and Phospho1−/− has several similar trends at smaller length scales. This

  14. The Mechanics of Long Bone Fractures.

    DTIC Science & Technology

    1981-01-31

    r = .99) between wet density and ultimate bending strength for 37 specimens of human femoral bone. Evans (1973) studied embalmed human tibial...Work 2 2.2 Methods 6 2.2.1 Torsional Loading 6 2.2.2 The Effects of Combined Loading 10 2.2.3 Cancellous Bone Effects 11 2.3 Results 11 2.3.1...PROPERTIES 21 3.1 Previous Work 22 3.2 Methods 26 3.2.1 Cross Sectional Property Software 26 3.2.2 CT Scanning Procedure 28 3.2.3 Linear Dependency of

  15. Image analysis for dental bone quality assessment using CBCT imaging

    NASA Astrophysics Data System (ADS)

    Suprijanto; Epsilawati, L.; Hajarini, M. S.; Juliastuti, E.; Susanti, H.

    2016-03-01

    Cone beam computerized tomography (CBCT) is one of X-ray imaging modalities that are applied in dentistry. Its modality can visualize the oral region in 3D and in a high resolution. CBCT jaw image has potential information for the assessment of bone quality that often used for pre-operative implant planning. We propose comparison method based on normalized histogram (NH) on the region of inter-dental septum and premolar teeth. Furthermore, the NH characteristic from normal and abnormal bone condition are compared and analyzed. Four test parameters are proposed, i.e. the difference between teeth and bone average intensity (s), the ratio between bone and teeth average intensity (n) of NH, the difference between teeth and bone peak value (Δp) of NH, and the ratio between teeth and bone of NH range (r). The results showed that n, s, and Δp have potential to be the classification parameters of dental calcium density.

  16. A predictive bone drilling force model for haptic rendering with experimental validation using fresh cadaveric bone.

    PubMed

    Lin, Yanping; Chen, Huajiang; Yu, Dedong; Zhang, Ying; Yuan, Wen

    2017-01-01

    Bone drilling simulators with virtual and haptic feedback provide a safe, cost-effective and repeatable alternative to traditional surgical training methods. To develop such a simulator, accurate haptic rendering based on a force model is required to feedback bone drilling forces based on user input. Current predictive bone drilling force models based on bovine bones with various drilling conditions and parameters are not representative of the bone drilling process in bone surgery. The objective of this study was to provide a bone drilling force model for haptic rendering based on calibration and validation experiments in fresh cadaveric bones with different bone densities. Using a commonly used drill bit geometry (2 mm diameter), feed rates (20-60 mm/min) and spindle speeds (4000-6000 rpm) in orthognathic surgeries, the bone drilling forces of specimens from two groups were measured and the calibration coefficients of the specific normal and frictional pressures were determined. The comparison of the predicted forces and the measured forces from validation experiments with a large range of feed rates and spindle speeds demonstrates that the proposed bone drilling forces can predict the trends and average forces well. The presented bone drilling force model can be used for haptic rendering in surgical simulators.

  17. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation

    PubMed Central

    Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893

  18. Discrete tomography in an in vivo small animal bone study.

    PubMed

    Van de Casteele, Elke; Perilli, Egon; Van Aarle, Wim; Reynolds, Karen J; Sijbers, Jan

    2018-01-01

    This study aimed at assessing the feasibility of a discrete algebraic reconstruction technique (DART) to be used in in vivo small animal bone studies. The advantage of discrete tomography is the possibility to reduce the amount of X-ray projection images, which makes scans faster and implies also a significant reduction of radiation dose, without compromising the reconstruction results. Bone studies are ideal for being performed with discrete tomography, due to the relatively small number of attenuation coefficients contained in the image [namely three: background (air), soft tissue and bone]. In this paper, a validation is made by comparing trabecular bone morphometric parameters calculated from images obtained by using DART and the commonly used standard filtered back-projection (FBP). Female rats were divided into an ovariectomized (OVX) and a sham-operated group. In vivo micro-CT scanning of the tibia was done at baseline and at 2, 4, 8 and 12 weeks after surgery. The cross-section images were reconstructed using first the full set of projection images and afterwards reducing them in number to a quarter and one-sixth (248, 62, 42 projection images, respectively). For both reconstruction methods, similar changes in morphometric parameters were observed over time: bone loss for OVX and bone growth for sham-operated rats, although for DART the actual values were systematically higher (bone volume fraction) or lower (structure model index) compared to FBP, depending on the morphometric parameter. The DART algorithm was, however, more robust when using fewer projection images, where the standard FBP reconstruction was more prone to noise, showing a significantly bigger deviation from the morphometric parameters obtained using all projection images. This study supports the use of DART as a potential alternative method to FBP in X-ray micro-CT animal studies, in particular, when the number of projections has to be drastically minimized, which directly reduces

  19. The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density

    PubMed Central

    Jin, A.; Cobb, J.; Hansen, U.; Bhattacharya, R.; Reinhard, C.; Vo, N.; Atwood, R.; Li, J.; Karunaratne, A.; Wiles, C.

    2017-01-01

    Objectives Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Methods Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression. Results BP bone was 28% lower in strength than untreated hip fracture bone, and 48% lower in strength than non-fractured control bone (4.6 MPa vs 6.4 MPa vs 8.9 MPa). BP-treated bone had 24% more microcracks than naïve fractured bone and 51% more than non-fractured control (8.12/cm2 vs 6.55/cm2 vs 5.25/cm2). BP and naïve fracture bone exhibited similar trabecular microarchitecture, with significantly lower bone volume fraction and connectivity than non-fractured controls. Conclusion BP therapy had no detectable mechanical benefit in the specimens examined. Instead, its use was associated with substantially reduced bone strength. This low strength may be due to the greater accumulation of microcracks and a lack of any discernible improvement in bone volume or microarchitecture. This preliminary study suggests that the clinical impact of BP-induced microcrack accumulation may be significant. Cite this article: A. Jin, J. Cobb, U. Hansen, R. Bhattacharya, C

  20. Permeability study of cancellous bone and its idealised structures.

    PubMed

    Syahrom, Ardiyansyah; Abdul Kadir, Mohammed Rafiq; Harun, Muhamad Nor; Öchsner, Andreas

    2015-01-01

    Artificial bone is a suitable alternative to autografts and allografts, however their use is still limited. Though there were numerous reports on their structural properties, permeability studies of artificial bones were comparably scarce. This study focused on the development of idealised, structured models of artificial cancellous bone and compared their permeability values with bone surface area and porosity. Cancellous bones from fresh bovine femur were extracted and cleaned following an established protocol. The samples were scanned using micro-computed tomography (μCT) and three-dimensional models of the cancellous bones were reconstructed for morphology study. Seven idealised and structured cancellous bone models were then developed and fabricated via rapid prototyping technique. A test-rig was developed and permeability tests were performed on the artificial and real cancellous bones. The results showed a linear correlation between the permeability and the porosity as well as the bone surface area. The plate-like idealised structure showed a similar value of permeability to the real cancellous bones. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Advanced Ultrasonic Tomograph of Children's Bones

    NASA Astrophysics Data System (ADS)

    Lasaygues, Philippe; Lefebvre, Jean-Pierre; Guillermin, Régine; Kaftandjian, Valérie; Berteau, Jean-Philippe; Pithioux, Martine; Petit, Philippe

    This study deals with the development of an experimental device for performing ultrasonic computed tomography (UCT) on bone in pediatric degrees. The children's bone tomographs obtained in this study, were based on the use of a multiplexed 2-D ring antenna (1 MHz and 3 MHz) designed for performing electronic and mechanical scanning. Although this approach is known to be a potentially valuable means of imaging objects with similar acoustical impedances, problems arise when quantitative images of more highly contrasted media such as bones are required. Various strategies and various mathematical procedures for modeling the wave propagation based on Born approximations have been developed at our laboratory, which are suitable for use with pediatric cases. Inversions of the experimental data obtained are presented.

  2. Bone mineral density level by dual energy X-ray absorptiometry in rheumatoid arthritis.

    PubMed

    Makhdoom, Asadullah; Rahopoto, Muhammad Qasim; Awan, Shazia; Tahir, Syed Muhammad; Memon, Shazia; Siddiqui, Khaleeque Ahmed

    2017-01-01

    To observe the level of bone mineral density by Dual Energy X-ray Absorptiometry in rheumatoid arthritis patients. The observational study was conducted at Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan, from January 2011 to December 2014. Bone mineral density was measured from the femoral neck, ward's triangle and lumbar spine, in patients 25-55 years of age, who were diagnosed with rheumatoid arthritis. All the cases were assessed for bone mineral density from appendicular as well as axial skeleton. Data was collected through a designed proforma and analysis was performed using SPSS 21. Of the 229 rheumatoid arthritis patients, 33(14.4%) were males. Five (15.1%) males had normal bone density, 14(42.4%) had osteopenia and 14(42.4%) had osteoporosis. Of the 196(85.5%) females, 45(29.9%) had normal bone density, 72 (37.7%) had osteopenia and 79(40.30%) had osteoporosis. Of the 123(53.7%) patients aged 30-50 years, 38(30.9%) had normal bone density, 59(48.0%) had osteopenia, and 26(21.1%) had osteoporosis. Of the 106(46.3%) patients over 50 years, 12(11.3%) had normal bone density, 27 (25.5%) had osteopenia and 67(63.2%) had osteoporosis. Osteoporosis and osteopenia were most common among rheumatoid arthritis patients. Assessment of bone mineral density by Dual Energy X-ray Absorptiometry can lead to quick relief in the clinical symptoms with timely therapy.

  3. The Application of Bone Marrow Transplantation to the Treatment of Genetic Diseases

    NASA Astrophysics Data System (ADS)

    Parkman, Robertson

    1986-06-01

    Genetic diseases can be treated by transplantation of either normal allogeneic bone marrow or, potentially, autologous bone marrow into which the normal gene has been inserted in vitro (gene therapy). Histocompatible allogeneic bone marrow transplantation is used for the treatment of genetic diseases whose clinical expression is restricted to lymphoid or hematopoietic cells. The therapeutic role of bone marrow transplantation in the treatment of generalized genetic diseases, especially those affecting the central nervous system, is under investigation. The response of a generalized genetic disease to allogeneic bone marrow transplantation may be predicted by experiments in vitro. Gene therapy can be used only when the gene responsible for the disease has been characterized. Success of gene therapy for a specific genetic disease may be predicted by its clinical response to allogeneic bone marrow transplantation.

  4. Assessment of Regeneration of Bone in the Extracted Third Molar Sockets Augmented Using Xenograft (CollaPlugTN Zimmer) in Comparison with the Normal Healing on the Contralateral Side.

    PubMed

    Ranganathan, Murugan; Balaji, M; Krishnaraj, R; Narayanan, Vivek; Thangavelu, Annamalai

    2017-11-01

    Alveolar bone resorption is a significant clinical problem. Bone loss in third molar region following extraction or surgical removal not only leads to periodontal problems in second molar region but also it may lead to some serious problems like increased incidence of angle fractures. In order to reduce the risks following third molar surgery, the socket should be augmented with bone grafts. In recent days guided tissue regeneration is the most accepted and successful technique followed many authors and its efficacy has been proved. Based upon our clinical experience, the use of bio absorbable collagen wound dressing such as CollaPlug TN has achieved quick healing and more primary wound coverage. Amongst the graft materials collagen is preferable due to its high biocompatibility and hemostatic ability. This study was done to assess the regeneration of bone in the extracted third molar sockets using xenograft (CollaPlug TN -Zimmer) which was compared with the normal healing on the contra lateral side. The assessment was done to analyze post-operative healing complications and to compare the bone density formed between control site and implant site radiologically. On this basis of this study, the use of collaplugTN appears to be beneficial to the patient in postoperative wound healing and also for better bone formation. The use of this material was advantageous because of its simplicity of application cost effectiveness and availability. There is enhanced wound healing and early bone formation.

  5. Bone marrow adipocytes: a neglected target tissue for growth hormone.

    PubMed

    Gevers, Evelien F; Loveridge, Nigel; Robinson, Iain C A F

    2002-10-01

    Bone marrow (BM) contains numerous adipocytes. These share a common precursor with osteoblasts and chondrocytes, but their function is unknown. It is unclear what regulates the differentiation of these three different cell types, though their subsequent metabolic activity is under hormonal regulation. GH and estrogen stimulate bone growth and mineralization, by direct effects on chondrocytes and osteoblasts. GH also stimulates lipolysis in subcutaneous and visceral adipocytes. However, adipocytes in BM have largely been ignored as potential targets for GH or estrogen action. We have addressed this by measuring BM adipocyte number, perimeter and area as well as bone area and osteoblast activity in GH-deficient dwarf (dw/dw), normal, or ovariectomized (Ovx) rats, with or without GH, IGF-1, PTH, or estrogen treatment or high fat feeding. Marrow adipocyte numbers were increased 5-fold (P < 0.001) in dw/dw rats, and cell size was also increased by 20%. These values returned toward normal in dw/dw rats given GH but not when given IGF-1. Cancellous bone area and osteoblast number were significantly (P < 0.005) lower in dw/dw rats, though alkaline phosphatase (ALP) activity in individual osteoblasts was unchanged. GH treatment increased % osteoblast covered bone surface without affecting individual cell ALP activity. Ovariectomy in normal or dw/dw rats had no affect on marrow adipocyte number nor size, although estrogen treatment in ovariectomized (Ovx) normal rats did increase adipocyte number. Ovx decreased tibial cancellous bone area in normal rats (64%; P < 0.05) and decreased osteoblast ALP-activity (P < 0.01) but did not affect the percentage of osteoblast-covered bone surface. Estrogen replacement reversed these changes. While treatment with PTH by continuous sc infusion decreased cancellous bone (P < 0.05) and high fat feeding increased the size of BM adipocytes (P < 0.01), they did not affect BM adipocyte number. These results suggest that GH has a specific action

  6. Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tselikas, Lambros, E-mail: lambros.tselikas@gmail.com; Joskin, Julien, E-mail: j.joskin@gmail.com; Roquet, Florian, E-mail: florianroquet@hotmail.com

    2015-02-15

    PurposeThis study was designed to compare the accuracy of targeting and the radiation dose of bone biopsies performed either under fluoroscopic guidance using a cone-beam CT with real-time 3D image fusion software (FP-CBCT-guidance) or under conventional computed tomography guidance (CT-guidance).MethodsSixty-eight consecutive patients with a bone lesion were prospectively included. The bone biopsies were scheduled under FP-CBCT-guidance or under CT-guidance according to operating room availability. Thirty-four patients underwent a bone biopsy under FP-CBCT and 34 under CT-guidance. We prospectively compared the two guidance modalities for their technical success, accuracy, puncture time, and pathological success rate. Patient and physician radiation doses also were compared.ResultsAll biopsiesmore » were technically successful, with both guidance modalities. Accuracy was significantly better using FP-CBCT-guidance (3 and 5 mm respectively: p = 0.003). There was no significant difference in puncture time (32 and 31 min respectively, p = 0.51) nor in pathological results (88 and 88 % of pathological success respectively, p = 1). Patient radiation doses were significantly lower with FP-CBCT (45 vs. 136 mSv, p < 0.0001). The percentage of operators who received a dose higher than 0.001 mSv (dosimeter detection dose threshold) was lower with FP-CBCT than CT-guidance (27 vs. 59 %, p = 0.01).ConclusionsFP-CBCT-guidance for bone biopsy is accurate and reduces patient and operator radiation doses compared with CT-guidance.« less

  7. CALCIUM-47 IN THE STUDY OF BONE PHYSIOLOGY AND PATHOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerin, R.A.

    1962-06-01

    The use of Ca/sup 45/, Ca/sup 47/, Ga/sup 67/, and Sr/sup 85/ in the study of Ca metabolism of bone in human subjects is discussed. Ca/sup 47/ is considered to be most suitable because of its short half-life ( approximates 5 days) and high specific activity (10 mc/mg for Ca/sup 47/ Cl/sub 2/). Studies were conducted in 28 patients injected intravenously with Ca/sup 47/; uptake in various bones was followed by external scintillometry for periods up to 11 days later. In healthy subjects the distribution of activity was symmetrical, with highest uptake in sternum and manubrium and lower uptake inmore » cranium (particularly the occipital region), clavicle, and iliac crest. Epiphyses of the long bones showed less avidity for Ca/sup 47/, that in tibia being highest. Sternum fixed 2 to 21/2 more Ca/sup 47/ than the upper tibial epiphysis. This indicates that in the normal adult more Ca is taken up by spongy than compact bone. The Ca/sup 47/ content of bone increased rapidly, reaching a plateau by the 5th or 6th day in most bones and by the 10th day in some, such as clavicle. Studies in pathologic cases showed the very high, but transient, uptake by callus in fractures and and uptake in Paget's disease of bone that was 3 times normal. Higher than normal uptake was also noted in bone lesions in lymphogranulomatosis, where osteogenesis compensating for increased bone destruction could be detected. Pathologic states could also be detected by following the disappearance of Ca/sup 47/ from plasma, it being delayed by hypercalcemia associated with multiple cancer metastases in bone or accelerated by hypocalcemia, such as in Paget's disease. The rate of urinary excretion of radioactivity was also of diagnostic value. (H.H.D.)« less

  8. 3D reconstruction of highly fragmented bone fractures

    NASA Astrophysics Data System (ADS)

    Willis, Andrew; Anderson, Donald; Thomas, Thad; Brown, Thomas; Marsh, J. Lawrence

    2007-03-01

    A system for the semi-automatic reconstruction of highly fragmented bone fractures, developed to aid in treatment planning, is presented. The system aligns bone fragment surfaces derived from segmentation of volumetric CT scan data. Each fragment surface is partitioned into intact- and fracture-surfaces, corresponding more or less to cortical and cancellous bone, respectively. A user then interactively selects fracture-surface patches in pairs that coarsely correspond. A final optimization step is performed automatically to solve the N-body rigid alignment problem. The work represents the first example of a 3D bone fracture reconstruction system and addresses two new problems unique to the reconstruction of fractured bones: (1) non-stationary noise inherent in surfaces generated from a difficult segmentation problem and (2) the possibility that a single fracture surface on a fragment may correspond to many other fragments.

  9. Bone Composition Diagnostics: Photoacoustics Versus Ultrasound

    NASA Astrophysics Data System (ADS)

    Yang, Lifeng; Lashkari, Bahman; Mandelis, Andreas; Tan, Joel W. Y.

    2015-06-01

    Ultrasound (US) backscatter from bones depends on the mechanical properties and the microstructure of the interrogated bone. On the other hand, photoacoustics (PA) is sensitive to optical properties of tissue and can detect composition variation. Therefore, PA can provide complementary information about bone health and integrity. In this work, a comparative study of US backscattering and PA back-propagating signals from animal trabecular bones was performed. Both methods were applied using a linear frequency modulation chirp and matched filtering. A 2.2 MHz ultrasonic transducer was employed to detect both signals. The use of the frequency domain facilitates spectral analysis. The variation of signals shows that in addition to sensitivity to mineral changes, PA exhibits sensitivity to changes in the organic part of the bone. It is, therefore, concluded that the combination of both modalities can provide complementary detailed information on bone health than either method separately. In addition, comparison of PA and US depthwise images shows the higher penetration of US. Surface scan images exhibit very weak correlation between US and PA which could be caused by the different signal generation origins in mechanical versus optical properties, respectively.

  10. Skeletal stem cell and bone implant interactions are enhanced by LASER titanium modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisti, Karin E., E-mail: karinellensisti@gmail.com; Biomaterials Group, Institute of Chemistry, São Paulo State University; Federal University of Mato Grosso do Sul

    Purpose: To evaluate the osteo-regenerative potential of Titanium (Ti) modified by Light Amplification by Stimulated Emission of Radiation (LASER) beam (Yb-YAG) upon culture with human Skeletal Stem Cells (hSSCs{sup 1}). Methods: Human skeletal cell populations were isolated from the bone marrow of haematologically normal patients undergoing primary total hip replacement following appropriate consent. STRO-1{sup +} hSSC{sup 1} function was examined for 10 days across four groups using Ti discs: i) machined Ti surface group in basal media (Mb{sup 2}), ii) machined Ti surface group in osteogenic media (Mo{sup 3}), iii) LASER-modified Ti group in basal media (Lb{sup 4}) and, iv)more » LASER-modified Ti group in osteogenic media (Lo{sup 5}). Molecular analysis and qRT-PCR as well as functional analysis including biochemistry (DNA, Alkaline Phosphatase (ALP{sup 6}) specific activity), live/dead immunostaining (Cell Tracker Green (CTG{sup 7})/Ethidium Homodimer-1 (EH-1{sup 8})), and fluorescence staining (for vinculin and phalloidin) were undertaken. Inverted, confocal and Scanning Electron Microscopy (SEM) approaches were used to characterise cell adherence, proliferation, and phenotype. Results: Enhanced cell spreading and morphological rearrangement, including focal adhesions were observed following culture of hSSCs{sup 1} on LASER surfaces in both basal and osteogenic conditions. Biochemical analysis demonstrated enhanced ALP{sup 6} specific activity on the hSSCs{sup 1}-seeded on LASER-modified surface in basal culture media. Molecular analysis demonstrated enhanced ALP{sup 6} and osteopontin expression on titanium LASER treated surfaces in basal conditions. SEM, inverted microscopy and confocal laser scanning microscopy confirmed extensive proliferation and migration of human bone marrow stromal cells on all surfaces evaluated. Conclusions: LASER-modified Ti surfaces modify the behaviour of hSSCs.{sup 1} In particular, SSC{sup 1} adhesion, osteogenic gene

  11. Total Body Scanning with Strontium-85 in the Diagnosis of Metastatic Bone Disease

    PubMed Central

    Simpson, W. J.; Orange, R. P.

    1965-01-01

    To demonstrate skeletal metastases before radiographic changes were apparent, Sr85 scans were carried out on 46 patients who complained of sketetal pain but whose radiographs were negative. Positive scans were obtained in 34 patients, 20 of whom were subsequently shown to have metastases; three did not have skeletal metastases a year or more later; the outcome is unknown in 11 patients. Twelve patients had negative scans: three ultimately developed metastases, six did not, and three were inconclusive. Autoradiographs demonstrated Sr85 concentrations in areas of reactive osteogenesis. Although not specific for skeletal metastases, Sr85 scans are most helpful in substantiating this diagnosis when radiographic changes are absent. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:5839221

  12. Transient chondrogenic phase in the intramembranous pathway during normal skeletal development.

    PubMed

    Nah, H D; Pacifici, M; Gerstenfeld, L C; Adams, S L; Kirsch, T

    2000-03-01

    Calvarial and facial bones form by intramembranous ossification, in which bone cells arise directly from mesenchyme without an intermediate cartilage anlage. However, a number of studies have reported the emergence of chondrocytes from in vitro calvarial cell or organ cultures and the expression of type II collagen, a cartilage-characteristic marker, in developing calvarial bones. Based on these findings we hypothesized that a covert chondrogenic phase may be an integral part of the normal intramembranous pathway. To test this hypothesis, we analyzed the temporal and spatial expression patterns of cartilage characteristic genes in normal membranous bones from chick embryos at various developmental stages (days 12, 15 and 19). Northern and RNAse protection analyses revealed that embryonic frontal bones expressed not only the type I collagen gene but also a subset of cartilage characteristic genes, types IIA and XI collagen and aggrecan, thus resembling a phenotype of prechondrogenic-condensing mesenchyme. The expression of cartilage-characteristic genes decreased with the progression of bone maturation. Immunohistochemical analyses of developing embryonic chick heads indicated that type II collagen and aggrecan were produced by alkaline phosphatase activity positive cells engaged in early stages of osteogenic differentiation, such as cells in preosteogenic-condensing mesenchyme, the cambium layer of periosteum, the advancing osteogenic front, and osteoid bone. Type IIB and X collagen messenger RNAs (mRNA), markers for mature chondrocytes, were also detected at low levels in calvarial bone but not until late embryonic stages (day 19), indicating that some calvarial cells may undergo overt chondrogenesis. On the basis of our findings, we propose that the normal intramembranous pathway in chicks includes a previously unrecognized transient chondrogenic phase similar to prechondrogenic mesenchyme, and that the cells in this phase retain chondrogenic potential that can

  13. Potential anabolic effects of androgens on bone.

    PubMed

    Kearns, Ann E; Khosla, Sundeep

    2004-04-01

    Sex steroid hormones are essential to normal skeletal growth and maintenance throughout life in both men and women. The importance of estrogens to bone health in women becomes obvious at menopause when estrogen deficiency occurs and results in accelerated bone loss. After menopause, estrogen deficiency results in drastic changes in the androgen-estrogen ratio. Thus, the relative importance of androgens after menopause may increase. Androgens also appear to be important for bone health in pre-menopausal women. Evidence from human, animal, and laboratory studies is leading to a better understanding of the effects of androgens on bone in women.

  14. Bioreactor Cultivation of Anatomically Shaped Human Bone Grafts

    PubMed Central

    Temple, Joshua P.; Yeager, Keith; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana; Grayson, Warren L.

    2015-01-01

    In this chapter, we describe a method for engineering bone grafts in vitro with the specific geometry of the temporomandibular joint (TMJ) condyle. The anatomical geometry of the bone grafts was segmented from computed tomography (CT) scans, converted to G-code, and used to machine decellularized trabecular bone scaffolds into the identical shape of the condyle. These scaffolds were seeded with human bone marrow-derived mesenchymal stem cells (MSCs) using spinner flasks and cultivated for up to 5 weeks in vitro using a custom-designed perfusion bioreactor system. The flow patterns through the complex geometry were modeled using the FloWorks module of SolidWorks to optimize bioreactor design. The perfused scaffolds exhibited significantly higher cellular content, better matrix production, and increased bone mineral deposition relative to non-perfused (static) controls after 5 weeks of in vitro cultivation. This technology is broadly applicable for creating patient-specific bone grafts of varying shapes and sizes. PMID:24014312

  15. CT scans and 3D reconstructions of Florida manatee (Trichechus manatus latirostris) heads and ear bones.

    PubMed

    Chapla, Marie E; Nowacek, Douglas P; Rommel, Sentiel A; Sadler, Valerie M

    2007-06-01

    The auditory anatomy of the Florida manatee (Trichechus manatus latirostris) was investigated using computerized tomography (CT), three-dimensional reconstructions, and traditional dissection of heads removed during necropsy. The densities (kg/m3) of the soft tissues of the head were measured directly using the displacement method and those of the soft tissues and bone were calculated from CT measurements (Hounsfield units). The manatee's fatty tissue was significantly less dense than the other soft tissues within the head (p<0.05). The squamosal bone was significantly less dense than the other bones of the head (p<0.05). Measurements of the ear bones (tympanic, periotic, malleus, incus, and stapes) collected during dissection revealed that the ossicular chain was overly massive for the mass of the tympanoperiotic complex.

  16. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT.

    PubMed

    Parsa, Azin; Ibrahim, Norliza; Hassan, Bassam; van der Stelt, Paul; Wismeijer, Daniel

    2015-01-01

    The first purpose of this study was to analyze the correlation between bone volume fraction (BV/TV) and calibrated radiographic bone density Hounsfield units (HU) in human jaws, derived from micro-CT and multislice computed tomography (MSCT), respectively. The second aim was to assess the accuracy of cone beam computed tomography (CBCT) in evaluating trabecular bone density and microstructure using MSCT and micro-CT, respectively, as reference gold standards. Twenty partially edentulous human mandibular cadavers were scanned by three types of CT modalities: MSCT (Philips, Best, the Netherlands), CBCT (3D Accuitomo 170, J Morita, Kyoto, Japan), and micro-CT (SkyScan 1173, Kontich, Belgium). Image analysis was performed using Amira (v4.1, Visage Imaging Inc., Carlsbad, CA, USA), 3Diagnosis (v5.3.1, 3diemme, Cantu, Italy), Geomagic (studio(®) 2012, Morrisville, NC, USA), and CTAn (v1.11, SkyScan). MSCT, CBCT, and micro-CT scans of each mandible were matched to select the exact region of interest (ROI). MSCT HU, micro-CT BV/TV, and CBCT gray value and bone volume fraction of each ROI were derived. Statistical analysis was performed to assess the correlations between corresponding measurement parameters. Strong correlations were observed between CBCT and MSCT density (r = 0.89) and between CBCT and micro-CT BV/TV measurements (r = 0.82). Excellent correlation was observed between MSCT HU and micro-CT BV/TV (r = 0.91). However, significant differences were found between all comparisons pairs (P < 0.001) except for mean measurement between CBCT BV/TV and micro-CT BV/TV (P = 0.147). An excellent correlation exists between bone volume fraction and bone density as assessed on micro-CT and MSCT, respectively. This suggests that bone density measurements could be used to estimate bone microstructural parameters. A strong correlation also was found between CBCT gray values and BV/TV and their gold standards, suggesting the potential of this modality in bone quality assessment

  17. Role of Corticosteroids in Bone Loss During Space Flight

    NASA Technical Reports Server (NTRS)

    Wronski, Thomas J.; Halloran, Bernard P.; Miller, Scott C.

    1998-01-01

    The primary objective of this research project is to test the hypothesis that corticosteroids contribute to the adverse skeletal effects of space flight. To achieve this objective, serum corticosteroids, which are known to increase during space flight, must be maintained at normal physiologic levels in flight rats by a combination of adrenalectomy and corticosteroid supplementation via implanted hormone pellets. Bone analyses in these animals will then be compared to those of intact flight rats that, based on past experience, will undergo corticosteroid excess and bone loss during space flight. The results will reveal whether maintaining serum corticosteroids at physiologic levels in flight rats affects the skeletal abnormalities that normally develop during space flight. A positive response to this question would indicate that the bone loss and decreased bone formation associated with space flight are mediated, at least in part, by corticosteroid excess.

  18. New concept of 3D printed bone clip (polylactic acid/hydroxyapatite/silk composite) for internal fixation of bone fractures.

    PubMed

    Yeon, Yeung Kyu; Park, Hae Sang; Lee, Jung Min; Lee, Ji Seung; Lee, Young Jin; Sultan, Md Tipu; Seo, Ye Bin; Lee, Ok Joo; Kim, Soon Hee; Park, Chan Hum

    Open reduction with internal fixation is commonly used for the treatment of bone fractures. However, postoperative infection associated with internal fixation devices (intramedullary nails, plates, and screws) remains a significant complication, and it is technically difficult to fix multiple fragmented bony fractures using internal fixation devices. In addition, drilling in the bone to install devices can lead to secondary fracture, bone necrosis associated with postoperative infection. In this study, we developed bone clip type internal fixation device using three- dimensional (3D) printing technology. Standard 3D model of the bone clip was generated based on computed tomography (CT) scan of the femur in the rat. Polylacticacid (PLA), hydroxyapatite (HA), and silk were used for bone clip material. The purpose of this study was to characterize 3D printed PLA, PLA/HA, and PLA/HA/Silk composite bone clip and evaluate the feasibility of these bone clips as an internal fixation device. Based on the results, PLA/HA/Silk composite bone clip showed similar mechanical property, and superior biocompatibility compared to other types of the bone clip. PLA/HA/Silk composite bone clip demonstrated excellent alignment of the bony segments across the femur fracture site with well-positioned bone clip in an animal study. Our 3D printed bone clips have several advantages: (1) relatively noninvasive (drilling in the bone is not necessary), (2) patient-specific design (3) mechanically stable device, and (4) it provides high biocompatibility. Therefore, we suggest that our 3D printed PLA/HA/Silk composite bone clip is a possible internal fixation device.

  19. Three-dimensional virtual bone bank system for selecting massive bone allograft in orthopaedic oncology.

    PubMed

    Wu, Zhigang; Fu, Jun; Wang, Zhen; Li, Xiangdong; Li, Jing; Pei, Yanjun; Pei, Guoxian; Li, Dan; Guo, Zheng; Fan, Hongbin

    2015-06-01

    Although structural bone allografts have been used for years to treat large defects caused by tumour or trauma, selecting the most appropriate allograft is still challenging. The objectives of this study were to: (1) describe the establishment of a visual bone bank system and workflow of allograft selection, and (2) show mid-term follow-up results of patients after allograft implantation. Allografts were scanned and stored in Digital Imaging and Communications in Medicine (DICOM) files. Then, image segmentation was conducted and 3D model reconstructed to establish a visual bone bank system. Based on the volume registration method, allografts were selected after a careful matching process. From November 2010 to June 2013, with the help of the Computer-assisted Orthopaedic Surgery (CAOS) navigation system, the allografts were implanted in 14 patients to fill defects after tumour resection. By combining the virtual bone bank and CAOS, selection time was reduced and matching accuracy was increased. After 27.5 months of follow-up, the mean Musculoskeletal Tumor Society (MSTS) 93 functional score was 25.7 ± 1.1 points. Except for two patients with pulmonary metastases, 12 patents were alive without evidence of disease at the time this report was written. The virtual bone bank system was helpful for allograft selection, tumour excision and bone reconstruction, thereby improving the safety and effectiveness of limb-salvage surgery.

  20. Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning

    NASA Technical Reports Server (NTRS)

    Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor)

    2007-01-01

    Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.

  1. Correlations of External Landmarks With Internal Structures of the Temporal Bone.

    PubMed

    Piromchai, Patorn; Wijewickrema, Sudanthi; Smeds, Henrik; Kennedy, Gregor; O'Leary, Stephen

    2015-09-01

    The internal anatomy of a temporal bone could be inferred from external landmarks. Mastoid surgery is an important skill that ENT surgeons need to acquire. Surgeons commonly use CT scans as a guide to understanding anatomical variations before surgery. Conversely, in cases where CT scans are not available, or in the temporal bone laboratory where residents are usually not provided with CT scans, it would be beneficial if the internal anatomy of a temporal bone could be inferred from external landmarks. We explored correlations between internal anatomical variations and metrics established to quantify the position of external landmarks that are commonly exposed in the operating room, or the temporal bone laboratory, before commencement of drilling. Mathematical models were developed to predict internal anatomy based on external structures. From an operating room view, the distances between the following external landmarks were observed to have statistically significant correlations with the internal anatomy of a temporal bone: temporal line, external auditory canal, mastoid tip, occipitomastoid suture, and Henle's spine. These structures can be used to infer a low lying dura mater (p = 0.002), an anteriorly located sigmoid sinus (p = 0.006), and a more lateral course of the facial nerve (p < 0.001). In the temporal bone laboratory view, the mastoid tegmen and sigmoid sinus were also regarded as external landmarks. The distances between these two landmarks and the operating view external structures were able to further infer the laterality of the facial nerve (p < 0.001) and a sclerotic mastoid (p < 0.001). Two nonlinear models were developed that predicted the distances between the following internal structures with a high level of accuracy: the distance from the sigmoid sinus to the posterior external auditory canal (p < 0.001) and the diameter of the round window niche (p < 0.001). The prospect of encountering some of the more technically challenging anatomical

  2. [Study of radiation dose to the eye lens by multi-detector row computed tomography of the temporal bone].

    PubMed

    Hirakuri, Ayaka; Numasawa, Kanako; Takeishi, Hideki; Satomura, Minato; Takeda, Hiromitsu; Harada, Kuniaki; Asanuma, Osamu; Sakata, Motomichi

    2012-01-01

    The exposure of the eye lens caused by multi-detector row computed tomography (MDCT) of the temporal bone is a serious problem. Our aim was to evaluate the radiation dose to the eye lens by different scan baselines (orbitomeatal line; OML, acanthiomeatal line; AML) and examine the difference of the depiction of the temporal bone structures. Measurement of the exposure to the eye lens was performed by means of MDCT of the temporal bone with a radio-photoluminescence glass dosimeter using a rand phantom. Moreover, we studied only one volunteer (58-year-old male) who had no symptom and was not suspected of having any ear abnormalities with a two scan baseline. Visualization of the major anatomical structures of the temporal bone (the tympanic portion of the facial nerve canal, the body of the incus, stapes superstructures, vestibule etc.) was performed on the volunteer. The average absorbed dose was 6.42 mGy by the OML and 1.59 mGy by the AML, respectively. With regard to visualization of the temporal bone structures, all structures were of equal quality with the two scan baseline. With the AML line, the radiation dose to the eye lens was reduced to 75%. Therefore, the authors recommended an AML for use for MDCT of the temporal bone. In clinical practice, the optimization of scanning factor (kVp, mAs etc.) and the use of the radio-protection should be implemented for radiation dose reduction of the eye lens by MDCT of the temporal bone.

  3. Bone ingrowth in bFGF-coated hydroxyapatite ceramic implants.

    PubMed

    Schnettler, Reinhard; Alt, Volker; Dingeldein, Elvira; Pfefferle, Hans-Joachim; Kilian, Olaf; Meyer, Christof; Heiss, Christian; Wenisch, Sabine

    2003-11-01

    This experimental study was performed to evaluate angiogenesis, bone formation, and bone ingrowth in response to osteoinductive implants of bovine-derived hydroxyapatite (HA) ceramics either uncoated or coated with basic fibroblast growth factor (bFGF) in miniature pigs. A cylindrical bone defect was created in both femur condyles of 24 miniature pigs using a saline coated trephine. Sixteen of the 48 defects were filled with HA cylinders coated with 50 microg rhbFG, uncoated HA cylinders, and with autogenous transplants, respectively. Fluorochrome labelled histological analysis, histomorphometry, and scanning electron microscopy were performed to study angiogenesis, bone formation and bone ingrowth. Complete bone ingrowth into bFGF-coated HA implants and autografts was seen after 34 days compared to 80 days in the uncoated HA group. Active ring-shaped areas of fluorochrome labelled bone deposition with dynamic bone remodelling were found in all cylinders. New vessels could be found in all cylinders. Histomorphometric analysis showed no difference in bone ingrowth over time between autogenous transplants and bFGF-coated HA implants. The current experimental study revealed comparable results of bFGF-coated HA implants and autogenous grafts regarding angiogenesis, bone synthesis and bone ingrowth.

  4. Site specific measurements of bone formation using [18F] sodium fluoride PET/CT

    PubMed Central

    Puri, Tanuj; Siddique, Musib; Frost, Michelle L.; Moore, Amelia E. B.; Fogelman, Ignac

    2018-01-01

    Dynamic positron emission tomography (PET) imaging with fluorine-18 labelled sodium fluoride ([18F]NaF) allows the quantitative assessment of regional bone formation by measuring the plasma clearance of fluoride to bone at any site in the skeleton. Today, hybrid PET and computed tomography (CT) dual-modality systems (PET/CT) are widely available, and [18F]NaF PET/CT offers a convenient non-invasive method of studying bone formation at the important osteoporotic fracture sites at the hip and spine, as well as sites of pure cortical or trabecular bone. The technique complements conventional measurements of bone turnover using biochemical markers or bone biopsy as a tool to investigate new therapies for osteoporosis, and has a potential role as an early biomarker of treatment efficacy in clinical trials. This article reviews methods of acquiring and analyzing dynamic [18F]NaF PET/CT scan data, and outlines a simplified approach combining venous blood sampling with a series of short (3- to 5-minute) static PET/CT scans acquired at different bed positions to estimate [18F]NaF plasma clearance at multiple sites in the skeleton with just a single injection of tracer. PMID:29541623

  5. Site specific measurements of bone formation using [18F] sodium fluoride PET/CT.

    PubMed

    Blake, Glen M; Puri, Tanuj; Siddique, Musib; Frost, Michelle L; Moore, Amelia E B; Fogelman, Ignac

    2018-02-01

    Dynamic positron emission tomography (PET) imaging with fluorine-18 labelled sodium fluoride ([ 18 F]NaF) allows the quantitative assessment of regional bone formation by measuring the plasma clearance of fluoride to bone at any site in the skeleton. Today, hybrid PET and computed tomography (CT) dual-modality systems (PET/CT) are widely available, and [ 18 F]NaF PET/CT offers a convenient non-invasive method of studying bone formation at the important osteoporotic fracture sites at the hip and spine, as well as sites of pure cortical or trabecular bone. The technique complements conventional measurements of bone turnover using biochemical markers or bone biopsy as a tool to investigate new therapies for osteoporosis, and has a potential role as an early biomarker of treatment efficacy in clinical trials. This article reviews methods of acquiring and analyzing dynamic [ 18 F]NaF PET/CT scan data, and outlines a simplified approach combining venous blood sampling with a series of short (3- to 5-minute) static PET/CT scans acquired at different bed positions to estimate [ 18 F]NaF plasma clearance at multiple sites in the skeleton with just a single injection of tracer.

  6. Biochemical markers of bone turnover in diagnosis of myeloma bone disease.

    PubMed

    Dizdar, Omer; Barista, Ibrahim; Kalyoncu, Umut; Karadag, Omer; Hascelik, Gulsen; Cila, Aysenur; Pinar, Asli; Celik, Ismail; Kars, Ayse; Tekuzman, Gulten

    2007-03-01

    This study was designed to explore the value of markers of bone turnover, macrophage inflammatory protein-1alpha (MIP-1alpha), and osteopontin (OPN) in the diagnosis of myeloma bone disease. Twenty-five patients with newly diagnosed and untreated multiple myeloma (MM), and 22 age-, sex-, and bone mineral density-matched control subjects were enrolled. Levels of MIP-1alpha, OPN, carboxy-terminal telopeptide of Type-1 collagen (C-telopeptide or Ctx), deoxypyridinoline (DPD), Type-1 collagen propeptide (T1Pro), and bone-specific alkaline phosphatase (BALP) were assessed in both groups. Twenty-two of the patients had bone involvement documented by skeletal surveys and lumbar spinal magnetic resonance imaging. Levels of serum Ctx, OPN, MIP-1alpha, and urine DPD were significantly higher in MM patients with bone disease than in controls (P<0.01). Serum Ctx levels were elevated in 90.9% of patients with MM and 40.9% of controls (P<0.001). Urine DPD levels were elevated in 90.4% of the patients and 31.8% of the controls (P<0.001). The serum OPN and MIP-1alpha levels of the patients were significantly correlated with beta2-microglobulin and lactate dehydrogenase levels (P<0.05). Our study indicates that Ctx and DPD are sensitive markers of bone disease in MM, and higher than normal values suggest presence of bone disease rather than benign osteoporosis in MM. The utility of OPN and MIP-1alpha needs to be further investigated. Copyright (c) 2006 Wiley-Liss, Inc.

  7. Using precursor ion scan of 184 with liquid chromatography-electrospray ionization-tandem mass spectrometry for concentration normalization in cellular lipidomic studies.

    PubMed

    Chao, Hsi-Chun; Chen, Guan-Yuan; Hsu, Lih-Ching; Liao, Hsiao-Wei; Yang, Sin-Yu; Wang, San-Yuan; Li, Yu-Liang; Tang, Sung-Chun; Tseng, Yufeng Jane; Kuo, Ching-Hua

    2017-06-08

    Cellular lipidomic studies have been favored approaches in many biomedical research areas. To provide fair comparisons of the studied cells, it is essential to perform normalization of the determined concentration before lipidomic analysis. This study proposed a cellular lipidomic normalization method by measuring the phosphatidylcholine (PC) and sphingomyelin (SM) contents in cell extracts. To provide efficient analysis of PC and SM in cell extracts, flow injection analysis-electrospray ionization-tandem mass spectrometry (FIA-ESI-MS/MS) with a precursor ion scan (PIS) of m/z 184 was used, and the parameters affecting the performance of the method were optimized. Good linearity could be observed between the cell extract dilution factor and the reciprocal of the total ion chromatogram (TIC) area in the PIS of m/z 184 within the dilution range of 1- to 16-fold (R 2  = 0.998). The calibration curve could be used for concentration adjustment of the unknown concentration of a cell extract. The intraday and intermediate precisions were below 10%. The accuracy ranged from 93.0% to 105.6%. The performance of the new normalization method was evaluated using different numbers of HCT-116 cells. Sphingosine, ceramide (d18:1/18:0), SM (d18:1/18:0) and PC (16:1/18:0) were selected as the representative test lipid species, and the results showed that the peak areas of each lipid species obtained from different cell numbers were within a 20% variation after normalization. Finally, the PIS of 184 normalization method was applied to study ischemia-induced neuron injury using oxygen and glucose deprivation (OGD) on primary neuronal cultured cells. Our results showed that the PIS of 184 normalization method is an efficient and effective approach for concentration normalization in cellular lipidomic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Predictive validity of preoperative CT scans and the risk of pedicle screw loosening in spinal surgery.

    PubMed

    Bredow, Jan; Boese, C K; Werner, C M L; Siewe, J; Löhrer, L; Zarghooni, K; Eysel, P; Scheyerer, M J

    2016-08-01

    Pedicle screw fixation is the standard technique for the stabilization of the spine, a clinically relevant complication of which is screw loosening. This retrospective study investigates whether preoperative CT scanning can offer a predictor of screw loosening. CT-scan attenuation in 365 patients was evaluated to determine the mean bone density of each vertebral body. Screw loosening or dislocation was determined in CT scans postoperatively using the standard radiological criteria. Forty-five of 365 patients (12.3 %; 24 male, 21 female) suffered postoperative screw loosening (62 of 2038 screws) over a mean follow-up time of 50.8 months. Revision surgeries were necessary in 23 patients (6.3 %). The correlation between decreasing mean CT attenuation in Hounsfield Units (HU) and increasing patient age was significant (p < 0.001). Mean bone density was 116.3 (SD 53.5) HU in cases with screw loosening and 132.7 (SD 41.3) HU in cases in which screws remained fixed. The difference was statistically significant (p = 0.003). The determination of bone density with preoperative CT scanning can predict the risk of screw loosening and inform the decision to use cement augmentation to reduce the incidence of screw loosening.

  9. Increased concentrations of bone sialoprotein in joint fluid after knee injury.

    PubMed Central

    Lohmander, L S; Saxne, T; Heinegård, D

    1996-01-01

    OBJECTIVE: To detect evidence for localised changes in bone matrix metabolism after joint trauma and in post-traumatic osteoarthritis by quantification of bone sialoprotein in joint fluid and serum after knee injury in a cross sectional study. METHODS: Samples of knee joint fluid and serum were obtained from volunteers with normal knees (n = 19), patients with rupture of the anterior cruciate ligament isolated or combined with tear of a meniscus (n = 114), and patients with isolated meniscus lesions (n = 80). Concentrations of bone sialoprotein were determined by ELISA. Concentrations of other markers of joint tissue metabolism in these samples were determined in previous investigations. RESULTS: The median concentrations of bone sialoprotein in joint fluid from healthy volunteers was 122 ng ml-1 (range 41 to 183). Concentrations of bone sialoprotein were increased in both injury groups compared with the reference group (median for cruciate ligament injury 146 ng ml-1, range 72 to 339; median for meniscus injury 166 ng ml-1, range 75 to 376). After injury, bone sialoprotein increased quickly and remained increased for six months. Bone sialoprotein in joint fluid was increased only in samples from joints with normal or nearly normal (fibrillated) cartilage, and was within reference range in joints with radiographic signs of osteoarthritis. Bone sialoprotein concentrations in joints with cruciate ligament injury were positively correlated with levels of aggrecan and cartilage oligomeric matrix protein fragments, and with levels of stromelysin-1 and tissue inhibitor of metalloproteinase-1. The ratios between the concentrations of bone sialoprotein in joint fluid and serum were > 1 in the majority of the cruciate ligament injury cases. CONCLUSIONS: The release of significant amounts of bone sialoprotein into joint fluid in connection with acute joint trauma may be associated with injury to, and active remodelling of, the cartilage-bone interface and subchondral bone

  10. Bone Sialoproteins and Breast Cancer Detection

    DTIC Science & Technology

    2004-07-01

    used to follow proteolytic activity on more natural macromolecular substrates. These substrates are so highly substituted with fluorescein moieties that...uninformative for breast cancer, but does correlate with bone mineral density, parathyroid hormone and phosphorus . (Summary of Appendix II). Normal MEPE...calcium, phosphorus , vitamin D, as well as novel phosphatonin(s), and the bone and kidney organs. Candidate phosphaturic factors include MEPE; PHEX, a

  11. Prenasal thickness to nasal bone length ratio in normal and trisomy 21 fetuses at 11-14 weeks of gestation.

    PubMed

    Manegold-Brauer, Gwendolin; Bourdil, Lucas; Berg, Christoph; Schoetzau, Andreas; Gembruch, Ulrich; Geipel, Annegret

    2015-11-01

    To show the feasibility and to create a reference range for prenasal thickness (PT) and for the PT to nasal bone length (NBL) ratio in normal fetuses at 11-14 gestational weeks and to compare the findings to fetuses with trisomy 21. PT, NBL and PT/NBL ratio were measured retrospectively in stored two-dimensional images of 1155 normal fetuses and 44 fetuses with trisomy 21. Mid-sagittal images were acquired at first trimester ultrasound examinations and were selected from our digital database. The PT increased with CRL from 1.0 mm at 45-mm CRL to 1.6 mm at 84-mm CRL. The mean PT/NBL ratio was 0.6 and was not altered by CRL. The mean PT/NBL ratio in fetuses with trisomy 21 was significantly higher than in normal fetuses (p < 0.0001). For a cut-off value of 0.8 the PT/NBL yielded a sensitivity of 86.4% and a specificity of 98.4% for trisomy 21. The assessment of PT between 11 and 14 gestational weeks is feasible with high intraclass correlation. The PT to NBL ratio seems to be a promising marker for trisomy 21 in the first trimester and was superior to the isolated contribution of NBL and PT measurements. © 2015 John Wiley & Sons, Ltd.

  12. Bone mineral loss in young women with amenorrhoea.

    PubMed Central

    Davies, M C; Hall, M L; Jacobs, H S

    1990-01-01

    OBJECTIVE--To examine the impact of amenorrhoea on bone mineral density in women of reproductive age. DESIGN--Cross sectional study of 200 amenorrhoeic women compared with normally menstruating controls. SETTING--Teaching hospital outpatient clinic specialising in reproductive medicine. SUBJECTS--200 Women aged 16-40 with a past or current history of amenorrhoea from various causes and of a median duration of three years, and a control group of 57 age matched normal volunteers with no history of menstrual disorder. MAIN OUTCOME MEASURE--Bone mineral density in the lumbar spine (L1-L4) as measured by dual energy x ray absorptiometry. RESULTS--The amenorrhoeic group showed a mean reduction in bone mineral density of 15% (95% confidence interval 12% to 18%) as compared with controls (mean bone mineral density 0.89 (SD 0.12) g/cm2 v 1.05 (0.09) g/cm2 in controls). Bone loss was related to the duration of amenorrhoea and the severity of oestrogen deficiency rather than to the underlying diagnosis. Patients with a history of fracture had significantly lower bone density than those without a history of fracture. Ten patients had suffered an apparently atraumatic fracture. CONCLUSIONS--Amenorrhoea in young women should be investigated and treated to prevent bone mineral loss. Menopausal women with a past history of amenorrhoea should be considered to be at high risk of osteoporosis. PMID:2224267

  13. Histologic and morphologic evaluation of explanted bone anchors from bone-anchored hearing aids.

    PubMed

    Mlynski, Robert; Goldberg, Eva; Ebmeyer, Joerg; Scheich, Matthias; Gattenlöhner, Stefan; Schwager, Konrad; Hagen, Rudolf; Shehata-Dieler, Wafaa

    2009-05-01

    Bone-anchored hearing aids are a standard option in rehabilitation of patients with conductive or mixed hearing loss, and also CROS fitting. However, the skin-penetrating bone anchor repeatedly gives reason for discussion about the risk of infection of surrounding tissues as a major cause of malfunction. In the present study, explanted bone anchors with surrounding bone and soft tissue were examined and compared with the morphology of lost implants. The anchors originated from five patients. Two needed explantation due to deafness with the need of cochlea implantation. A third patient underwent explantation due to meningeal irritation by the bone anchor. Another patient lost the implant due to mechanical stress shortly after implantation. The last implant was lost in a child without apparent reason. All implants were clinically free of infection and had been stable for a median implantation period of 12 months. During the explantation procedure, the fixtures were recovered together with the attached soft tissue and bone. The specimens were examined by light microscopy or scanning electron microscopy (SEM). Sectioning for light microscopy was performed with a diamond-coated saw microtome. Histopathologic examination of the surrounding skin and subcutaneous soft tissue showed slight inflammation in one case only. The bone was regularly vital, presenting no signs of inflammation. The threads of the fixtures were filled with bone, with particularly strong attachment to the flank of traction. The SEM investigation exposed the ultrastructural interaction of bone with the implant surface. Filiform- and podocyte-like processes of osteocytes attach to the implant; lost implants did not reflect these features. Implant integration involves both osseointegration as well as soft tissue integration. Titanium oxide as the active implant surface promotes this integration even in unstable implants. The morphologic analysis exposed structural areas of the implant with weak bone

  14. Tissue-dependent differences in the asynchronous appearance of mast cells in normal mice and in congenic mast cell-deficient mice after infusion of normal bone marrow cells

    PubMed Central

    DU, T; FRIEND, D S; AUSTEN, K F; KATZ, H R

    1996-01-01

    The time courses of the appearance of tissue mast cells in six sites were compared in normal WBB6F1-+/+ mice (+/+) and in congenic mast cell-deficient WBB6F1-W/Wv mice (W/Wv) that received an intravenous infusion of bone marrow cells from +/+mice (BM→W/Wv). As assessed by morphometric analysis of Carnoy's solution-fixed, methylene blue-stained tissue sections, the density of mast cells in the stomach mucosa, stomach submucosa, and spleen of +/+ mice reached maximal levels by 8 weeks of age, whereas the density of mast cells in the skin, extraparenchymal airway walls, and lung parenchyma did not reach maximal levels until 18 weeks of age. When 8-week-old W/Wv mice were infused with 2×107 bone marrow cells from +/+ mice, mast cells appeared in the stomach mucosa and submucosa after 2.5 weeks, in the spleen and extraparenchymal airway walls after 5 weeks, and in the lung parenchyma after 10 weeks. Twenty weeks after bone marrow infusion, the mast cell densities in the spleen, stomach mucosa, and stomach submucosa were seven-, 13-, and five-fold greater, respectively, than those in age-matched +/+ mice, but were eight-, two-, and five-fold lower in the skin, extraparenchymal airway walls, and lung parenchyma, respectively. Thus, those tissues that in +/+ mice reached maximal mast cell densities earlier exhibited abnormally high mast cell densities in BM→W/Wv mice, and those that reached maximal mast cell densities later in +/+ mice had abnormally low mast cell densities in BM→W/Wv mice. Immunological and inflammatory responses are often compared in W/Wv and BM→W/Wv mice to assess mast cell dependency. Our results indicate that the capacity to restore a mast cell-dependent response in a particular tissue of the latter mice may relate to the local mast cell density and whether the immunological challenge activates mast cells only in that tissue or systematically with attendant widespread release of proinflammatory mediators. PMID:8565318

  15. Repair of bone segment defects with surface porous fiber-reinforced polymethyl methacrylate (PMMA) composite prosthesis: histomorphometric incorporation model and characterization by SEM.

    PubMed

    Hautamäki, Mikko P; Aho, Allan J; Alander, Pasi; Rekola, Jami; Gunn, Jarmo; Strandberg, Niko; Vallittu, Pekka K

    2008-08-01

    Polymer technology has provided solutions for filling of bone defects in situations where there may be technical or biological complications with autografts, allografts, and metal prostheses. We present an experimental study on segmental bone defect reconstruction using a polymethylmethacrylate-(PMMA-) based bulk polymer implant prosthesis. We concentrated on osteoconductivity and surface characteristics. A critical size segment defect of the rabbit tibia in 19 animals aged 18-24 weeks was reconstructed with a surface porous glass fiber-reinforced (SPF) prosthesis made of polymethylmethacrylate (PMMA). The biomechanical properties of SPF implant material were previously adjusted technically to mimic the properties of normal cortical bone. A plain PMMA implant with no porosity or fiber reinforcement was used as a control. Radiology, histomorphometry, and scanning electron microscopy (SEM) were used for analysis of bone growth into the prosthesis during incorporation. The radiographic and histological incorporation model showed good host bone contact, and strong formation of new bone as double cortex. Histomorphometric evaluation showed that the bone contact index (BCI) at the posterior surface interface was higher with the SPF implant than for the control. The total appositional bone growth over the posterior surface (area %) was also stronger for the SPF implant than for controls. Both bone growth into the porous surface and the BCI results were related to the quality, coverage, and regularity of the microstructure of the porous surface. Porous surface structure enhanced appositional bone growth onto the SPF implant. Under load-bearing conditions the implant appears to function like an osteoconductive prosthesis, which enables direct mobilization and rapid return to full weight bearing.

  16. Bone mineral measurement using dual energy x ray densitometry

    NASA Technical Reports Server (NTRS)

    Smith, Steven W.

    1989-01-01

    Bone mineral measurements before and after space missions have shown that weightlessness greatly accelerates bone demineralization. Bone mineral losses as high as 1 to 3 percent per month were reported. Highly precise instrumentation is required to monitor this loss and thereby test the efficacy of treatment. During the last year, a significant improvement was made in Dual-Photon Absorptiometry by replacing the radioactive source with an x ray tube. Advantages of this system include: better precision, lower patient dose, better spacial resolution, and shorter scan times. The high precision and low radiation dose of this technique will allow detection of bone mineral changes of less than 1 percent with measurements conducted directly at the sites of interest. This will allow the required bone mineral studies to be completed in a shorter time with greater confidence.

  17. Deterioration of Cortical Bone Microarchitecture: Critical Component of Renal Osteodystrophy Evaluation.

    PubMed

    Sharma, Ashish K; Toussaint, Nigel D; Masterson, Rosemary; Holt, Stephen G; Rajapakse, Chamith S; Ebeling, Peter R; Mohanty, Sindhu T; Baldock, Paul; Elder, Grahame J

    2018-05-23

    Cortical bone is a significant determinant of bone strength and its deterioration contributes to bone fragility. Thin cortices and increased cortical porosity have been noted in patients with chronic kidney disease (CKD), but the "Turnover Mineralization Volume" classification of renal osteodystrophy does not emphasize cortical bone as a key parameter. We aimed to assess trabecular and cortical bone microarchitecture by histomorphometry and micro-CT in patients with CKD G5 and 5D (dialysis). Transiliac bone biopsies were performed in 14 patients undergoing kidney transplantation (n = 12) and parathyroidectomy (n = 2). Structural parameters were analysed by histomorphometry and micro-CT including trabecular bone volume, thickness (TbTh), number (TbN) and separation and cortical thickness (CtTh) and porosity (CtPo). Indices of bone remodelling and mineralisation were obtained and relationships to bone biomarkers examined. Associations were determined by Spearman's or Pearson's rank correlation coefficients. By micro-CT, trabecular parameters were within normal ranges in most patients, but all patients showed very low CtTh (127 ± 44 µm) and high CtPo (60.3 ± 22.5%). CtPo was inversely related to TbN (r = -0.56; p = 0.03) by micro-CT and to TbTh (r = -0.60; p = 0.024) by histomorphometry and correlated to parathyroid hormone values (r = 0.62; p = 0.021). By histomorphometry, bone turnover was high in 50%, low in 21% and normal in 29%, while 36% showed abnormal patterns of mineralization. Significant positive associations were observed between osteoblast surface, osteoclast surface, mineralization surface and bone turnover markers. Deterioration of cortical -microarchitecture despite predominantly normal trabecular parameters reinforces the importance of comprehensive cortical evaluation in patients with CKD. © 2018 S. Karger AG, Basel.

  18. T1-201 chloride scintigraphy for bone tumors and soft part sarcomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terui, S.; Oyamada, H.; Nishikawa, K.

    1984-01-01

    The author investigated T1-201 chloride as a tumor scanning agent of both tumors and soft part sarcomas. Six bone tumors (2 with Ewing sarcoma, 3 with osteosarcoma and 1 with giant cell tumor) and 3 soft part sarcoma (1 with liposarcoma and 2 with malignant fibrous histiocytoma (MFH)) were examined. All but one MFH were untreated primary cases. The diagnosis was determined from biopsy specimen. One patient with Ewing sarcoma had bone metastases. All cases were subsequently received chemotherpeutic agents. Surgery or local irradiation were also used in treatment. T1-201 scintigraphy were performed with intravenous administration of 2 mCi ofmore » T1-201 chloride before initiation of therapy. In addition, follow-up examinations were done in 4 patients (2 with Ewing sarcoma and 2 with osteosarcoma) to study the effect of chemotherapy on T1-201 uptake by the tumor. Tc-99m bone scans were available for comparison in 6 tumor. Ga-67 citrate scans were also examined for the 3 soft part sarcomas. The untreated tumors even in the metastatic lesions of Ewing sarcoma were distinctly visualized with T1-201 in all cases. The distribution of T1-201 in the tumors was sometimes different from that of Tc-99m and similar to that of Ga-67. Of 3 out of the 4 follow-up patients, the post-therapy scan showed reduction in T1-201 uptake more markedly than Tc-99m uptake during effective chemotherapy. The other one patient had not responded to the treatment so that the scan showed no changes in T1-201 uptake. These findings indicate that the tumor imaging with T1-201 is useful in the diagnosis of these malignant tumors and may be of value in assessing the response of bone tumors to chemotherapy.« less

  19. Influence of bone density on the cement fixation of femoral hip resurfacing components.

    PubMed

    Bitsch, Rudi G; Jäger, Sebastian; Lürssen, Marcus; Loidolt, Travis; Schmalzried, Thomas P; Clarius, Michael

    2010-08-01

    In clinical outcome studies, small component sizes, female gender, femoral shape, focal bone defects, bad bone quality, and biomechanics have been associated with failures of resurfacing arthroplasties. We used a well-established experimental setup and human bone specimens to analyze the effects of bone density on cement fixation of femoral hip resurfacing components. Thirty-one fresh frozen femora were prepared for resurfacing using the original instruments. ASR resurfacing prostheses were implanted after dual-energy X-ray densitometer scans. Real-time measurements of pressure and temperature during implantation, analyses of cement penetration, and measurements of micro motions under torque application were performed. The associations of bone density and measurement data were examined calculating regression lines and multiple correlation coefficients; acceptability was tested with ANOVA. We found significant relations between bone density and micro motion, cement penetration, cement mantle thickness, cement pressure, and interface temperature. Mean bone density of the femora was 0.82 +/- 0.13 g/cm(2), t-score was -0.7 +/- 1.0, and mean micro motion between bone and femoral resurfacing component was 17.5 +/- 9.1 microm/Nm. The regression line between bone density and micro motion was equal to -56.7 x bone density + 63.8, R = 0.815 (p < 0.001). Bone density scans are most helpful for patient selection in hip resurfacing, and a better bone quality leads to higher initial component stability. A sophisticated cementing technique is recommended to avoid vigorous impaction and incomplete seating, since increasing bone density also results in higher cement pressures, lower cement penetration, lower interface temperatures, and thicker cement mantles. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Bone mineralization is elevated and less heterogeneous in adults with type 2 diabetes and osteoarthritis compared to controls with osteoarthritis alone

    PubMed Central

    Pritchard, J.M.; Papaioannou, A.; Tomowich, C.; Giangregorio, L.M.; Atkinson, S.A.; Beattie, K.A.; Adachi, J.D.; DeBeer, J.; Winemaker, M.; Avram, V.; Schwarcz, H.P.

    2016-01-01

    Purpose The purpose of this study was to determine whether trabecular bone mineralization differed in adults with type 2 diabetes compared to adults without type 2 diabetes. Methods Proximal femur specimens were obtained following a total hip replacement procedure from men and women ≥65 years of age with and without type 2 diabetes. A scanning electron microscope was used for quantitative backscattered electron imaging (qBEI) analysis of trabecular bone samples from the femoral neck. Gray scale images (pixel size=5.6 μm2) were uploaded to ImageJ software and gray level (GL) values were converted to calcium concentrations (weight [wt] % calcium [Ca]) using data obtained with energy dispersive X-ray spectrometry. The following bone mineralization density distribution (BMDD) outcomes were collected: the weighted mean bone calcium concentration (CaMEAN), the most frequently occurring bone calcium concentration (CaPEAK) and mineralization heterogeneity (CaWIDTH). Differences between groups were assessed using the Student’s t-test for normally distributed data and Mann–Whitney U-test for non-normally distributed data. An alpha value of <0.05 was considered significant. Results Thirty-five Caucasian participants were recruited (mean [standard deviation, SD] age, 75.5 [6.5] years): 14 adults with type 2 diabetes (years since type 2 diabetes diagnosis, 13.5 [7.4] years) and 21 adults without type 2 diabetes. In the adults with type 2 diabetes, bone CaMEAN was 4.9% greater (20.36 [0.98] wt.% Ca versus 19.40 [1.07] wt.% Ca, p=0.015) and CaWIDTH was 9.4% lower (median [interquartile range] 3.55 [2.99–4.12] wt.% Ca versus 3.95 [0.71] wt.% Ca, p<0.001) compared to controls. There was no between-group difference in CaPEAK (21.12 [0.97] wt.% Ca for type 2 diabetes versus 20.44 [1.30] wt.% Ca for controls, p=0.121). Conclusion The combination of elevated mean calcium concentration in bone and lower mineralization heterogeneity in adults with type 2 diabetes may have