Science.gov

Sample records for normal colonic epithelial

  1. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    SciTech Connect

    Youakim, A.; Herscovics, A.

    1985-11-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-(2-TH)mannose or L-(5,6-TH)fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with (2-TH)mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with (2-TH)mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-(1,6-TH)glucosamine and L-(1- UC)fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced TH-labeled N-acetylglucosamine and N-acetylgalactosamine.

  2. Modulation of distal colonic epithelial barrier function by dietary fibre in normal rats

    PubMed Central

    Mariadason, J; Catto-Smith, A; Gibson, P

    1999-01-01

    BACKGROUND—Dietary fibre influences the turnover and differentiation of the colonic epithelium, but its effects on barrier function are unknown. 
AIMS—To determine whether altering the type and amount of fibre in the diet affects paracellular permeability of intestinal epithelium, and to identify the mechanisms of action. 
METHODS—Rats were fed isoenergetic low fibre diets with or without supplements of wheat bran (10%) or methylcellulose (10%), for four weeks. Paracellular permeability was determined by measurement of conductance and 51Cr-EDTA flux across tissue mounted in Ussing chambers. Faecal short chain fatty acid (SCFA) concentrations were assessed by gas chromatography, epithelial kinetics stathmokinetically, and mucosal brush border hydrolase activities spectrophotometrically. 
RESULTS—Body weight was similar across the dietary groups. Conductance and 51Cr-EDTA flux were approximately 25% higher in animals fed no fibre, compared with those fed wheat bran or methylcellulose in the distal colon, but not in the caecum or jejunum. Histologically, there was no evidence of epithelial injury or erosion associated with any diet. The fibres exerted different spectra of effects on luminal SCFA concentrations and pH, and on mucosal indexes, but both bulked the faeces, were trophic to the epithelium, and stimulated expression of a marker of epithelial differentiation. 
CONCLUSIONS—Both a fermentable and a non-fermentable fibre reduce paracellular permeability specifically in the distal colon, possibly by promoting epithelial cell differentiation. The mechanisms by which the two fibres exert their effects are likely to be different. 

 Keywords: colon; differentiation; epithelium; fibre; paracellular permeability; proliferation PMID:10026327

  3. Histochemical studies of the colonic epithelial glycoproteins of the normal rabbit.

    PubMed

    Reid, P E; Walker, D C; Terpin, T; Owen, D A

    1988-10-01

    Two general classes of glycoproteins have been identified in the colonic epithelial cells of New Zealand white rabbits. Each is associated with an ultrastructurally distinct secretory cell. The first of these classes is found in cells, termed vesiculated columnar cells, characterized by electron-translucent vesicles, a small rough endoplasmic reticulum-Golgi complex and prominent microvilli. The glycoproteins of the vesiculated cells contain abundant O-sulphate ester, sialic acids with ester substituents at positions C-8 or C-9 (or with two or three side chain substituents) and neutral sugars with vicinal diols whose periodate oxidation is prevented by an O-acyl ester substituent(s). The second class of glycoproteins occurs in goblet cells characterized by electron-dense vesicles, an abundant rough endoplasmic reticulum, a well-developed Golgi apparatus and few, if any, microvilli. Goblet cells along the entire length of the crypts contain neutral sugars with periodate-oxidisable vicinal diols and a ferriferricyanide-reactive component. Cells in the upper halves of the crypts also contain components that are sulphated, Schiff-reactive and acid-fast. In the lower halves of the crypts, the goblet cells contain smaller quantities of the above components plus sialic acids, some of which possibly have an O-acyl substituent located at position C-8 or C-9 (or which have two or three side chain O-acyl substituents). It is suggested that the function of the glycoproteins from the vesiculated columnar cells is protective and that from the goblet cells is lubricative. PMID:2464561

  4. Nuclear microscopy of rat colon epithelial cells

    NASA Astrophysics Data System (ADS)

    Ren, M.; Rajendran, Reshmi; Ng, Mary; Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank; Jenner, Andrew Michael

    2011-10-01

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  5. Epithelial NAIPs protect against colonic tumorigenesis.

    PubMed

    Allam, Ramanjaneyulu; Maillard, Michel H; Tardivel, Aubry; Chennupati, Vijaykumar; Bega, Hristina; Yu, Chi Wang; Velin, Dominique; Schneider, Pascal; Maslowski, Kendle M

    2015-03-01

    NLR family apoptosis inhibitory proteins (NAIPs) belong to both the Nod-like receptor (NLR) and the inhibitor of apoptosis (IAP) families. NAIPs are known to form an inflammasome with NLRC4, but other in vivo functions remain unexplored. Using mice deficient for all NAIP paralogs (Naip1-6(Δ/Δ)), we show that NAIPs are key regulators of colorectal tumorigenesis. Naip1-6(Δ/Δ) mice developed increased colorectal tumors, in an epithelial-intrinsic manner, in a model of colitis-associated cancer. Increased tumorigenesis, however, was not driven by an exacerbated inflammatory response. Instead, Naip1-6(Δ/Δ) mice were protected from severe colitis and displayed increased antiapoptotic and proliferation-related gene expression. Naip1-6(Δ/Δ) mice also displayed increased tumorigenesis in an inflammation-independent model of colorectal cancer. Moreover, Naip1-6(Δ/Δ) mice, but not Nlrc4-null mice, displayed hyper-activation of STAT3 and failed to activate p53 18 h after carcinogen exposure. This suggests that NAIPs protect against tumor initiation in the colon by promoting the removal of carcinogen-elicited epithelium, likely in a NLRC4 inflammasome-independent manner. Collectively, we demonstrate a novel epithelial-intrinsic function of NAIPs in protecting the colonic epithelium against tumorigenesis. PMID:25732303

  6. Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells.

    PubMed

    Wu, Ya C; Wang, Xiao J; Yu, Le; Chan, Francis K L; Cheng, Alfred S L; Yu, Jun; Sung, Joseph J Y; Wu, William K K; Cho, Chi H

    2012-01-01

    Hydrogen sulfide (H(2)S) is a gaseous bacterial metabolite that reaches high levels in the large intestine. In the present study, the effect of H(2)S on the proliferation of normal and cancerous colon epithelial cells was investigated. An immortalized colon epithelial cell line (YAMC) and a panel of colon cancer cell lines (HT-29, SW1116, HCT116) were exposed to H(2)S at concentrations similar to those found in the human colon. H(2)S inhibited normal and cancerous colon epithelial cell proliferation as measured by MTT assay. The anti-mitogenic effect of H(2)S was accompanied by G(1)-phase cell cycle arrest and the induction of the cyclin-dependent kinase inhibitor p21(Cip). Moreover, exposure to H(2)S led to features characteristic of autophagy, including increased formation of LC3B(+) autophagic vacuoles and acidic vesicular organelles as determined by immunofluorescence and acridine orange staining, respectively. Abolition of autophagy by RNA interference targeting Vps34 or Atg7 enhanced the anti-proliferative effect of H(2)S. Further mechanistic investigation revealed that H(2)S stimulated the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Inhibition of AMPK significantly reversed H(2)S-induced autophagy and inhibition of cell proliferation. Collectively, we demonstrate that H(2)S inhibits colon epithelial cell proliferation and induces protective autophagy via the AMPK pathway. PMID:22679478

  7. Small molecule and RNAi induced phenotype transition of expanded and primary colonic epithelial cells

    PubMed Central

    Sharbati, Jutta; Hanisch, Carlos; Pieper, Robert; Einspanier, Ralf; Sharbati, Soroush

    2015-01-01

    Recent progress in mammalian intestinal epithelial cell culture led to novel concepts of tissue modeling. Especially the development of phenotypically stable cell lines from individual animals enables an investigation of distinct intestinal loci and disease states. We here report primary and prolonged culture of normal porcine epithelial cells from colon for cell line development. In addition, a novel primary three-dimensional intestinal culture system is presented, which generated organoids composed of a highly polarized epithelial layer lining a core of subepithelial tissue. Cellular characterization of monolayer cell lines revealed epithelial identity and pointed to a proliferative crypt cell phenotype. We evaluated both RNAi and chemical approaches to induce epithelial differentiation in generated cell lines by targeting promoters of epithelial to mesenchymal transition (EMT). By in silico prediction and ectopic expression, miR-147b was proven to be a potent trigger of intestinal epithelial cell differentiation. Our results outline an approach to generate phenotypically stable cell lines expanded from primary colonic epithelial cultures and demonstrate the relevance of miR-147b and chemical inhibitors for promoting epithelial differentiation features. PMID:26223582

  8. A20 restricts wnt signaling in intestinal epithelial cells and suppresses colon carcinogenesis.

    PubMed

    Shao, Ling; Oshima, Shigeru; Duong, Bao; Advincula, Rommel; Barrera, Julio; Malynn, Barbara A; Ma, Averil

    2013-01-01

    Colon carcinogenesis consists of a multistep process during which a series of genetic and epigenetic adaptations occur that lead to malignant transformation. Here, we have studied the role of A20 (also known as TNFAIP3), a ubiquitin-editing enzyme that restricts NFκB and cell death signaling, in intestinal homeostasis and tumorigenesis. We have found that A20 expression is consistently reduced in human colonic adenomas than in normal colonic tissues. To further investigate A20's potential roles in regulating colon carcinogenesis, we have generated mice lacking A20 specifically in intestinal epithelial cells and interbred these with mice harboring a mutation in the adenomatous polyposis coli gene (APC(min)). While A20(FL/FL) villin-Cre mice exhibit uninflamed intestines without polyps, A20(FL/FL) villin-Cre APC(min/+) mice contain far greater numbers and larger colonic polyps than control APC(min) mice. We find that A20 binds to the β-catenin destruction complex and restricts canonical wnt signaling by supporting ubiquitination and degradation of β-catenin in intestinal epithelial cells. Moreover, acute deletion of A20 from intestinal epithelial cells in vivo leads to enhanced expression of the β-catenin dependent genes cyclinD1 and c-myc, known promoters of colon cancer. Taken together, these findings demonstrate new roles for A20 in restricting β-catenin signaling and preventing colon tumorigenesis. PMID:23671587

  9. Epithelial cell adhesion and gastrointestinal colonization of Lactobacillus in poultry.

    PubMed

    Spivey, Megan A; Dunn-Horrocks, Sadie L; Duong, Tri

    2014-11-01

    Administration of probiotic Lactobacillus cultures is an important alternative to the use of antibiotic growth promoters and has been demonstrated to improve animal health, growth performance, and preharvest food safety in poultry production. Whereas gastrointestinal colonization is thought to be critical to their probiotic functionality, factors important to Lactobacillus colonization in chickens are not well understood. In this study we investigate epithelial cell adhesion in vitro and colonization of Lactobacillusin vivo in broiler chickens. Adhesion of Lactobacillus cultures to epithelial cells was evaluated using the chicken LMH cell line. Lactobacillus cultures were able adhere effectively to LMH cells relative to Bacillus subtilis and Salmonella Typhimurium. Epithelial cell adhesion was similar for Lactobacillus crispatus TDCC 75, L. cristpatus TDCC 76, and Lactobacillus gallinarum TDCC 77, and all 3 were more adherent than L. gallinarum TDCC 78. However, when colonization was evaluated in the ileum and cecum of broiler chicks, L. crispatus TDCC 75 and L. gallinarum TDCC 77 were more persistent than L. crispatus TDCC 76 and L. gallinarum TDCC 78. The reduction of growth in medium supplemented with oxgal was greater for L. gallinarum TDCC 78 than L. gallinarum TDCC 77, suggesting that whereas adhesion was similar for the 2 strains, the difference in colonization between L. gallinarum strains may be due in part to their bile sensitivity. This study demonstrates that whereas adhesion to epithelial cells may be important in predicting gastrointestinal colonization, other factors including bile tolerance may also contribute to the colonization of Lactobacillus in poultry. Additionally, the chicken LMH cell line is expected to provide a platform for investigating mechanisms of Lactobacillus adhesion to epithelial tissue and evaluating the probiotic potential Lactobacillus in poultry. PMID:25239531

  10. Generation of MHC class I-restricted cytotoxic T cell lines and clones against colonic epithelial cells from ulcerative colitis.

    PubMed

    Yonamine, Y; Watanabe, M; Kinjo, F; Hibi, T

    1999-01-01

    We established CTL lines and clones against colonic epithelial cells from PBLs of patients with ulcerative colitis by continuous stimulation with HLA-A locus-matched colonic epithelial cell lines. We developed a nonradioactive europium release cytotoxicity assay to detect CTLs. PBLs from 3 of 12 patients but not from any of 14 normal controls who shared at least one haplotype of HLA-A locus with two colonic epithelial cell lines, CW2 and ACM, showed increased cytotoxicity against these lines. Three CTL lines established from the PBLs of patients showed increased cytotoxicity against HLA-A locus-matched CW2 or ACM but not against matched lung or esophagus cell lines. The phenotypes of CTL lines were alpha beta-TCR+ CD3+ CD8+ CD16-. The CTL line MS showed increased cytotoxicity against freshly isolated colonic epithelial cells but not against cells with a different HLA-A locus. Two CTL clones were generated from MS and clone 3-2, expressing CD3+ CD8+ CD4- CD56-, showed high MHC class I-restricted cytotoxicity against the colonic epithelial cells. These results indicated that CTLs against colonic epithelial cells may contribute to epithelial cell damage in ulcerative colitis. PMID:10080107

  11. Claudin-7 expression induces mesenchymal to epithelial transformation (MET) to inhibit colon tumorigenesis.

    PubMed

    Bhat, A A; Pope, J L; Smith, J J; Ahmad, R; Chen, X; Washington, M K; Beauchamp, R D; Singh, A B; Dhawan, P

    2015-08-27

    In normal colon, claudin-7 is one of the highly expressed claudin proteins and its knockdown in mice results in altered epithelial cell homeostasis and neonatal death. Notably, dysregulation of the epithelial homeostasis potentiates oncogenic transformation and growth. However, the role of claudin-7 in the regulation of colon tumorigenesis remains poorly understood. Using a large colorectal cancer (CRC) patient database and mouse models of colon cancer, we found claudin-7 expression to be significantly downregulated in cancer samples. Most notably, forced claudin-7 expression in poorly differentiated and highly metastatic SW620 colon cancer cells induced epithelial characteristics and inhibited their growth in soft agar and tumor growth in vivo. By contrast, knockdown of claudin-7 in HT-29 or DLD-1 cells induced epithelial-to-mesenchymal transition (EMT), colony formation, xenograft-tumor growth in athymic mice and invasion. Importantly, a claudin-7 signature gene profile generated by overlapping the DEGs (differentially expressed genes in a high-throughput transcriptome analysis using claudin-7-manipulated cells) with human claudin-7 signature genes identified high-risk CRC patients. Furthermore, Rab25, a colon cancer suppressor and regulator of the polarized cell trafficking constituted one of the highly upregulated DEGs in claudin-7 overexpressing cells. Notably, silencing of Rab25 expression counteracted the effects of claudin-7 expression and not only increased proliferation and cell invasion but also increased the expression of p-Src and mitogen-activated protein kinase-extracellular signal-regulated kinase 1/2 that were suppressed upon claudin-7 overexpression. Of interest, CRC cell lines, which exhibited decreased claudin-7 expression, also exhibited promoter DNA hypermethylation, a modification associated with transcriptional silencing. Taken together, our data demonstrate a previously undescribed role of claudin-7 as a colon cancer suppressor and suggest

  12. Epithelial impedance analysis in experimentally induced colon cancer.

    PubMed Central

    Davies, R J; Joseph, R; Kaplan, D; Juncosa, R D; Pempinello, C; Asbun, H; Sedwitz, M M

    1987-01-01

    Epithelial impedance analysis was used to measure the alterations in resistance of the large bowel in a murine model of large bowel cancer. The technique was able to resolve the epithelial resistance from the total resistance of the bowel wall. A progressive decrease in resistance of the bowel epithelium occurs during carcinogenesis induced with dimethyhydrazine. About a 21% decrease in epithelial resistance from 22.0 +/- 1.3 omega.cm-2 to 17.5 +/- 1.1 omega cm-2 (p less than 0.025) was observed after 20 wk of carcinogen administration. The sensitivity of the technique in detecting altered epithelial resistance in premalignant bowel mucosa was improved by examining the impedance profile in a sodium-free Ringer's solution where the epithelium of control colons had a resistance of 24.4 +/- 1.8 omega.cm-2 compared with 19.0 +/- 1.1 omega.cm-2 (p less than 0.02) in colons from animals treated for only 4 wk with the carcinogen. Epithelial impedance analysis would seem to be a sensitive technique capable of identifying changes in the electrical properties or the large bowel early in disease states. PMID:3427187

  13. Inhibitory effect of succinic acid on epithelial cell proliferation of colonic mucosa in rats.

    PubMed

    Inagaki, Akiko; Ichikawa, Hirofumi; Sakata, Takashi

    2007-08-01

    Microbial breakdown of carbohydrates in the large intestine mainly produces short-chain fatty acids (SCFA). SCFA stimulate epithelial cell proliferation of the digestive tract in vivo. Succinic acid sometimes accumulates in the colonic lumen. However, the effect of succinic acid on colonic epithelial cell proliferation is unknown. Thus, we planned to clarify the influence of succinic acid on colonic epithelial cell proliferation in vivo. We continuously administered infusate with or without succinic acid (100 mM) into the distal colon of rats for 6 d and measured accumulated mitosis per crypt of distal colon of these rats. Succinic acid infused into rat colons significantly inhibited colonic cell proliferation and reduced crypt size. These results clearly indicated the inhibitory effects of succinic acid on colonic epithelial cell proliferation in vivo. PMID:17934246

  14. Aldosterone induces myofibroblast EGF secretion to regulate epithelial colonic permeability.

    PubMed

    Miró, Lluïsa; Pérez-Bosque, Anna; Maijó, Mònica; Amat, Concepció; Naftalin, Richard J; Moretó, Miquel

    2013-05-01

    In vivo studies show that raised aldosterone (Aldo) during low-Na adaptation regulates the growth of pericryptal myofibroblasts and reduces the permeability of the colonic epithelium. The aim of this study was to reproduce in vitro the in vivo condition of increased Aldo using human CCD-18Co myofibroblasts and T84 colonic epithelial cells to measure myofibroblast and epithelial proliferation and the expression of intercellular junction proteins. Proliferation was quantified by measuring 5-bromo-2'-deoxyuridine incorporation. The myofibroblast expression of EGF, VEGFa, and transforming growth factor-β1 (TGF-β1) was measured by real-time PCR and the expression of junctional complex proteins by Western blot. Aldo stimulated the proliferation of myofibroblasts by 70% (P < 0.05) and increased EGF mRNA expression by 30% (P < 0.05) without affecting VEGFa and TGF-β1. EGF concentration in the incubation medium increased by 30% (P < 0.05) 24 h after Aldo addition, and these effects were prevented by the addition of spironolactone. Myofibroblast proliferation in response to Aldo was mediated by EGF receptor (EGFR) and involved both MAPKK and phosphatidylinositol 3-kinase pathways. When T84 cells were incubated with medium from myofibroblasts stimulated with Aldo (conditioned medium), the expression of β-catenin and claudin IV was increased by 30% (P < 0.05) and proliferation by 40% (P < 0.05). T84 proliferation decreased when α-EGF, or the EGFR antagonist AG1478, was present. Results in vivo indicate that rats fed a low-salt diet showed an increased expression of EGF and EGFR in the colonic mucosa. These results support the view that changes in colonic permeability during low-Na adaptation are mediated by the EGF secreted by myofibroblasts in response to raised Aldo. PMID:23467299

  15. The Toll-interleukin-1 receptor member SIGIRR regulates colonic epithelial homeostasis, inflammation, and tumorigenesis.

    PubMed

    Xiao, Hui; Gulen, Muhammet Fatih; Qin, Jinzhong; Yao, Jianhong; Bulek, Katarzyna; Kish, Danielle; Altuntas, Cengiz Zubeyir; Wald, David; Ma, Caixia; Zhou, Hang; Tuohy, Vincent K; Fairchild, Robert L; de la Motte, Carol; Cua, Daniel; Vallance, Bruce A; Li, Xiaoxia

    2007-04-01

    Despite constant contact with the large population of commensal bacteria, the colonic mucosa is normally hyporesponsive to these potentially proinflammatory signals. Here we report that the single immunoglobulin IL-1 receptor-related molecule (SIGIRR), a negative regulator for Toll-IL-1R signaling, plays a critical role in gut homeostasis, intestinal inflammation, and colitis-associated tumorigenesis by maintaining the microbial tolerance of the colonic epithelium. SIGIRR-deficient (Sigirr(-/-)) colonic epithelial cells displayed commensal bacteria-dependent homeostatic defects, as shown by constitutive upregulation of inflammatory genes, increased inflammatory responses to dextran sulfate sodium (DSS) challenge, and increased Azoxymethane (AOM)+DSS-induced colitis-associated tumorigenesis. Gut epithelium-specific expression of the SIGIRR transgene in the SIGIRR-deficient background reduced the cell survival of the SIGIRR-deficient colon epithelium, abrogated the hypersensitivity of the Sigirr(-/-) mice to DSS-induced colitis, and reduced AOM+DSS-induced tumorigenesis. Taken together, our results indicate that epithelium-derived SIGIRR is critical in controlling the homeostasis and innate immune responses of the colon to enteric microflora. PMID:17398123

  16. Epithelial cell cultures from normal and cancerous human tissues.

    PubMed

    Owens, R B; Smith, H S; Nelson-Rees, W A; Springer, E L

    1976-04-01

    Thirty epithelial cell strains were isolated from human carcinomas and normal epithelial tissues by collagenase digestion and selective removal of fibroblasts with trypsin-Versene. Most strains were obtained from metastatic carcinomas or epithelia of the urinary and intestinal tracts. The success rate for growth of both neoplastic and normal tissues (excluding skin) was 38%. Six of these strains showed gross morphologic and chromosome changes typical of malignant cells. Nine resembled normal epithelium. The other 15 exhibited some degree of morphologic change from normal. PMID:176412

  17. Physiological concentrations of bile acids down-regulate agonist induced secretion in colonic epithelial cells.

    PubMed

    Keating, Niamh; Mroz, Magdalena S; Scharl, Michael M; Marsh, Christine; Ferguson, Gail; Hofmann, Alan F; Keely, Stephen J

    2009-08-01

    In patients with bile acid malabsorption, high concentrations of bile acids enter the colon and stimulate Cl(-) and fluid secretion, thereby causing diarrhoea. However, deoxycholic acid (DCA), the predominant colonic bile acid, is normally present at lower concentrations where its role in regulating transport is unclear. Thus, the current study set out to investigate the effects of physiologically relevant DCA concentrations on colonic epithelial secretory function. Cl(-) secretion was measured as changes in short-circuit current across voltage-clamped T(84) cell monolayers. At high concentrations (0.5-1 mM), DCA acutely stimulated Cl(-) secretion but this effect was associated with cell injury, as evidenced by decreased transepithelial resistance (TER) and increased lactate dehydrogenase (LDH) release. In contrast, chronic (24 hrs) exposure to lower DCA concentrations (10-200 microM) inhibited responses to Ca(2+) and cAMP-dependent secretagogues without altering TER, LDH release, or secretagogue-induced increases in intracellular second messengers. Other bile acids - taurodeoxycholic acid, chenodeoxycholic acid and cholic acid - had similar antisecretory effects. DCA (50 microM) rapidly stimulated phosphorylation of the epidermal growth factor receptor (EGFr) and both ERK and p38 MAPKs (mitogen-activated protein kinases). The EGFr inhibitor, AG1478, and the protein synthesis inhibitor, cycloheximide, reversed the antisecretory effects of DCA, while the MAPK inhibitors, PD98059 and SB203580, did not. In summary, our studies suggest that, in contrast to its acute prosecretory effects at pathophysiological concentrations, lower, physiologically relevant, levels of DCA chronically down-regulate colonic epithelial secretory function. On the basis of these data, we propose a novel role for bile acids as physiological regulators of colonic secretory capacity. PMID:19583809

  18. Physiological concentrations of bile acids down‐regulate agonist induced secretion in colonic epithelial cells

    PubMed Central

    Keating, Niamh; Mroz, Magdalena S.; Scharl, Michael M.; Marsh, Christine; Ferguson, Gail; Hofmann, Alan F.

    2009-01-01

    Abstract In patients with bile acid malabsorption, high concentrations of bile acids enter the colon and stimulate Cl− and fluid secretion, thereby causing diarrhoea. However, deoxycholic acid (DCA), the predominant colonic bile acid, is normally present at lower concentrations where its role in regulating transport is unclear. Thus, the current study set out to investigate the effects of physiologically relevant DCA concentrations on colonic epithelial secretory function. Cl− secretion was measured as changes in short‐circuit current across voltage‐clamped T84 cell monolayers. At high concentrations (0.5–1 mM), DCA acutely stimulated Cl− secretion but this effect was associated with cell injury, as evidenced by decreased transepithelial resistance (TER) and increased lactate dehydrogenase (LDH) release. In contrast, chronic (24 hrs) exposure to lower DCA concentrations (10–200 μM) inhibited responses to Ca2+ and cAMP‐dependent secretagogues without altering TER, LDH release, or secretagogue‐induced increases in intracellular second messengers. Other bile acids – taurodeoxycholic acid, chenodeoxycholic acid and cholic acid – had similar antisecretory effects. DCA (50 μM) rapidly stimulated phosphorylation of the epidermal growth factor receptor (EGFr) and both ERK and p38 MAPKs (mitogen‐activated protein kinases). The EGFr inhibitor, AG1478, and the protein synthesis inhibitor, cycloheximide, reversed the antisecretory effects of DCA, while the MAPK inhibitors, PD98059 and SB203580, did not. In summary, our studies suggest that, in contrast to its acute prosecretory effects at pathophysiological concentrations, lower, physiologically relevant, levels of DCA chronically down‐regulate colonic epithelial secretory function. On the basis of these data, we propose a novel role for bile acids as physiological regulators of colonic secretory capacity. PMID:19583809

  19. A Nasal Epithelial Receptor for Staphylococcus aureus WTA Governs Adhesion to Epithelial Cells and Modulates Nasal Colonization

    PubMed Central

    Faulstich, Manuela; Grau, Timo; Severin, Yannik; Unger, Clemens; Hoffmann, Wolfgang H.; Rudel, Thomas; Autenrieth, Ingo B.; Weidenmaier, Christopher

    2014-01-01

    Nasal colonization is a major risk factor for S. aureus infections. The mechanisms responsible for colonization are still not well understood and involve several factors on the host and the bacterial side. One key factor is the cell wall teichoic acid (WTA) of S. aureus, which governs direct interactions with nasal epithelial surfaces. We report here the first receptor for the cell wall glycopolymer WTA on nasal epithelial cells. In several assay systems this type F-scavenger receptor, termed SREC-I, bound WTA in a charge dependent manner and mediated adhesion to nasal epithelial cells in vitro. The impact of WTA and SREC-I interaction on epithelial adhesion was especially pronounced under shear stress, which resembles the conditions found in the nasal cavity. Most importantly, we demonstrate here a key role of the WTA-receptor interaction in a cotton rat model of nasal colonization. When we inhibited WTA mediated adhesion with a SREC-I antibody, nasal colonization in the animal model was strongly reduced at the early onset of colonization. More importantly, colonization stayed low over an extended period of 6 days. Therefore we propose targeting of this glycopolymer-receptor interaction as a novel strategy to prevent or control S. aureus nasal colonization. PMID:24788600

  20. Lithium chloride induces mesenchymal‑to‑epithelial reverting transition in primary colon cancer cell cultures.

    PubMed

    Costabile, Valeria; Duraturo, Francesca; Delrio, Paolo; Rega, Daniela; Pace, Ugo; Liccardo, Raffaella; Rossi, Giovanni Battista; Genesio, Rita; Nitsch, Lucio; Izzo, Paola; De Rosa, Marina

    2015-05-01

    Epithelial‑to‑mesenchymal transition (EMT) confers stem cell‑like phenotype and more motile properties to carcinoma cells. During EMT, the expression of E‑cadherin decreases, resulting in loss of cell‑cell adhesion and increased migration. Expression of Twist1 and other pleiotropic transcription factors, such as Snail, is known to activate EMT. We established primary colon cancer cell cultures from samples of operated patients and validated cultures by cytogenetic and molecular biology approaches. Western blot assay, quantitative real‑time PCR and immunofluorescence were performed to investigate the expression of E‑cadherin, vimentin, β‑catenin, cytokeratin‑20 and ‑18, Twist1, Snail, CD44, cyclooxygenase‑2 (COX2), Sox2, Oct4 and Nanog. Moreover, cell differentiation was induced by incubation with LiCl‑containing medium for 10 days. We observed that these primary colorectal cancer (CRC) cells lost expression of the E‑cadherin epithelial marker, which was instead expressed in cancer and normal colon mucosa of the same patient, while overexpressed vimentin (mesenchymal marker), Twist1, Snail (EMT markers) and COX2. Cytokeratin‑18 was expressed both in tissues and cell cultures. Expression of stem cell markers, such as CD44, Oct4 and Nanog, were also observed. Following differentiation with the glycogen synthase kinase 3β (GSK3β) inhibitor LiCl, the cells began to express E‑cadherin and, at once, Twist1 and Snail expression was strongly downregulated, suggesting a MET‑reverting process. In conclusion, we established primary colon mesenchymal cancer cell cultures expressing mesenchymal and epithelial biomarkers together with high level of EMT transcription factors. We propose that they could represent a good model for studying EMT and its reverting mechanism, the mesenchymal‑to‑epithelial transition (MET). Our observation indicates that LiCl, a GSK3β inhibitor, induces MET in vitro, suggesting that LiCl and GSK3β could represent

  1. A link between lipid metabolism and epithelial-mesenchymal transition provides a target for colon cancer therapy

    PubMed Central

    Sánchez-Martínez, Ruth; Álvarez-Fernández, Mónica; Vargas, Teodoro; Molina, Susana; García, Belén; Herranz, Jesús; Moreno-Rubio, Juan; Reglero, Guillermo; Pérez-Moreno, Mirna; Feliu, Jaime; Malumbres, Marcos; de Molina, Ana Ramírez

    2015-01-01

    The alterations in carbohydrate metabolism that fuel tumor growth have been extensively studied. However, other metabolic pathways involved in malignant progression, demand further understanding. Here we describe a metabolic acyl-CoA synthetase/stearoyl-CoA desaturase ACSL/SCD network causing an epithelial-mesenchymal transition (EMT) program that promotes migration and invasion of colon cancer cells. The mesenchymal phenotype produced upon overexpression of these enzymes is reverted through reactivation of AMPK signaling. Furthermore, this network expression correlates with poorer clinical outcome of stage-II colon cancer patients. Finally, combined treatment with chemical inhibitors of ACSL/SCD selectively decreases cancer cell viability without reducing normal cells viability. Thus, ACSL/SCD network stimulates colon cancer progression through conferring increased energetic capacity and invasive and migratory properties to cancer cells, and might represent a new therapeutic opportunity for colon cancer treatment. PMID:26451612

  2. IL1{beta}-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells

    SciTech Connect

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-11-15

    COX-2 is a major inflammatory mediator implicated in colorectal inflammation and cancer. However, the exact origin and role of COX-2 on colorectal inflammation and carcinogenesis are still not well defined. Recently, we reported that COX-2 and iNOS signalings interact in colonic CCD18Co fibroblasts. In this article, we investigated whether activation of COX-2 signaling by IL1{beta} in primary colonic fibroblasts obtained from normal and cancer patients play a critical role in regulation of proliferation and invasiveness of human colonic epithelial cancer cells. Our results demonstrated that COX-2 level was significantly higher in cancer associated fibroblasts than that in normal fibroblasts with or without stimulation of IL-1{beta}, a powerful stimulator of COX-2. Using in vitro assays for estimating proliferative and invasive potential, we discovered that the proliferation and invasiveness of the epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts than with normal fibroblasts, with or without stimulation of IL1{beta}. Further analysis indicated that the major COX-2 product, prostaglandin E{sub 2}, directly enhanced proliferation and invasiveness of the epithelial cancer cells in the absence of fibroblasts. Moreover, a selective COX-2 inhibitor, NS-398, blocked the proliferative and invasive effect of both normal and cancer associate fibroblasts on the epithelial cancer cells, with or without stimulation of IL-1{beta}. Those results indicate that activation of COX-2 signaling in the fibroblasts plays a major role in promoting proliferation and invasiveness of the epithelial cancer cells. In this process, PKC is involved in the activation of COX-2 signaling induced by IL-1{beta} in the fibroblasts.

  3. STAT3 in Epithelial Cells Regulates Inflammation and Tumor Progression to Malignant State in Colon1

    PubMed Central

    Nguyen, Andrew V; Wu, Yuan-Yuan; Liu, Qiang; Wang, Donghai; Nguyen, Stephanie; Loh, Ricky; Pang, Joey; Friedman, Kenneth; Orlofsky, Amos; Augenlicht, Leonard; Pollard, Jeffrey W; Lin, Elaine Y

    2013-01-01

    Chronic inflammation is an important risk factor for the development of colorectal cancer; however, the mechanism of tumorigenesis especially tumor progression to malignancy in the inflamed colon is still unclear. Our study shows that epithelial signal transducer and activator of transcription 3 (STAT3), persistently activated in inflamed colon, is not required for inflammation-induced epithelial overproliferation and the development of early-stage tumors; however, it is essential for tumor progression to advanced malignancy. We found that one of the mechanisms that epithelial STAT3 regulates in tumor progression might be to modify leukocytic infiltration in the large intestine. Activation of epithelial STAT3 promotes the infiltration of the CD8+ lymphocyte population but inhibits the recruitment of regulatory T (Treg) lymphocytes. The loss of Stat3 in epithelial cells promoted the expression of cytokines/chemokines including CCL19, CCL28, and RANTES, which are known to be able to recruit Treg lymphocytes. Linked to these changes was the pathway mediated by sphingosine 1-phosphate receptor 1 and sphingosine 1-phosphate kinases, which is activated in colonic epithelial cells in inflamed colon with functional STAT3 but not in epithelial cells deleted of STAT3. Our data suggest that epithelial STAT3 plays a critical role in inflammation-induced tumor progression through regulation of leukocytic recruitment especially the infiltration of Treg cells in the large intestine. PMID:24027425

  4. IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis.

    PubMed

    Zindl, Carlene L; Lai, Jen-Feng; Lee, Yun Kyung; Maynard, Craig L; Harbour, Stacey N; Ouyang, Wenjun; Chaplin, David D; Weaver, Casey T

    2013-07-30

    IL-22 plays an important role in mucosal epithelial cell homeostasis. Using a dextran sodium sulfate-induced mouse model of acute colitis, we observed an IL-23-dependent up-regulation of IL-22 in the middle and distal colon at the onset of epithelial cell damage. This heightened IL-22 correlated with an influx of innate immune cells, suggesting an important role in colonic epithelial protection. Freshly isolated colon-infiltrating neutrophils produced IL-22 contingent upon IL-23 signaling, and IL-22 production was augmented by TNF-α. Importantly, the depletion of neutrophils resulted in diminished IL-22 levels in the colon, and the transfer of IL-22-competent neutrophils to Il22a-deficient mice protected the colonic epithelium from dextran sodium sulfate-induced damage. In addition, IL-22-producing neutrophils targeted colonic epithelial cells to up-regulate the antimicrobial peptides, RegIIIβ and S100A8. This study establishes a role for neutrophils in providing IL-22-dependent mucosal epithelial support that contributes to the resolution of colitis. PMID:23781104

  5. Different expression of calgizzarin (S100A11) in normal colonic epithelium, adenoma and colorectal carcinoma.

    PubMed

    Melle, Christian; Ernst, Günther; Schimmel, Bettina; Bleul, Annett; Mothes, Henning; Kaufmann, Roland; Settmacher, Utz; Von Eggeling, Ferdinand

    2006-01-01

    The aim of the study was to detect proteomic markers usable to distinguish colorectal carcinoma from colon adenoma for a better understanding of the molecular mechanisms in the process of tumourigenesis. Therefore, we microdissected colon carcinoma tissue, epithelial colon adenoma tissue as well as normal adjacent colon epithelium and determined protein profiles by SELDI-TOF MS. A multitude of significantly different signals was detected. For their identification colon biopsis were lysed and subjected to a two-dimensional gel electrophoresis for separation. Subsequently, we identified nearly 100 proteins by tryptic digestion, peptide fingerprint mapping and database search. Calgizzarin (S100A11; S100C) identified by peptide fingerprint mapping correlated very well with a significantly differentially expressed signal found in prior protein profiling. Using an immunodepletion assay we confirmed the identity of this signal as calgizzarin. To localise calgizzarin in tissues we performed immunohistochemistry. For further confirmation of the identity of calgizzarin we re-analysed IHC-positive as well as IHC-negative tissue sections on ProteinChip arrays. This work demonstrates that biomarkers in colorectal cancer can be detected, identified and assessed by a proteomic approach comprising tissue-microdissection, protein profiling and immunological techniques. PMID:16327996

  6. Human colonic crypts in culture: segregation of immunochemical markers in normal versus adenoma-derived

    PubMed Central

    Dame, Michael K; Jiang, Yan; Appelman, Henry D; Copley, Kelly D; McClintock, Shannon D; Aslam, Muhammad Nadeem; Attili, Durga; Elmunzer, B Joseph; Brenner, Dean E; Varani, James; Turgeon, D Kim

    2014-01-01

    In order to advance a culture model of human colonic neoplasia, we developed methods for the isolation and in vitro maintenance of intact colonic crypts from normal human colon tissue and adenomas. Crypts were maintained in three-dimensional Matrigel culture with a simple, serum-free, low Ca2+ (0.15 mM) medium. Intact colonic crypts from normal human mucosa were viably maintained for 3–5 days with preservation of the in situ crypt-like architecture, presenting a distinct base and apex. Abnormal structures from adenoma tissue could be maintained through multiple passages (up to months), with expanding buds/tubules. Immunohistochemical markers for intestinal stem cells (Lgr5), growth (Ki67), differentiation (E-cadherin, cytokeratin 20 (CK20) and mucin 2 (MUC2)) and epithelial turnover (Bax, cleaved Caspase-3), paralleled the changes in function. The epithelial cells in normal crypts followed the physiological sequence of progression from proliferation to differentiation to dissolution in a spatially and temporally appropriate manner. Lgr5 expression was seen in a few basal cells of freshly isolated crypts, but was not detected after 1–3 days in culture. After 24 h in culture, crypts from normal colonic tissue continued to show strong Ki67 and MUC2 expression at the crypt base, with a gradual decrease over time such that by days 3–4 Ki67 was not expressed. The differentiation marker CK20 increased over the same period, eventually becoming intense throughout the whole crypt. In adenoma-derived structures, expression of markers for all stages of progression persisted for the entire time in culture. Lgr5 showed expression in a few select cells after months in culture. Ki67 and MUC2 were largely associated with the proliferative budding regions while CK20 was localized to the parent structure. This ex vivo culture model of normal and adenomatous crypts provides a readily accessible tool to help understand the growth and differentiation process in human colonic

  7. Differential DNA methylation patterns of homeobox genes in proximal and distal colon epithelial cells.

    PubMed

    Barnicle, Alan; Seoighe, Cathal; Golden, Aaron; Greally, John M; Egan, Laurence J

    2016-04-01

    Region and cell-type specific differences in the molecular make up of colon epithelial cells have been reported. Those differences may underlie the region-specific characteristics of common colon epithelial diseases such as colorectal cancer and inflammatory bowel disease. DNA methylation is a cell-type specific epigenetic mark, essential for transcriptional regulation, silencing of repetitive DNA and genomic imprinting. Little is known about any region-specific variations in methylation patterns in human colon epithelial cells. Using purified epithelial cells and whole biopsies (n= 19) from human subjects, we generated epigenome-wide DNA methylation data (using the HELP-tagging assay), comparing the methylation signatures of the proximal and distal colon. We identified a total of 125 differentially methylated sites (DMS) mapping to transcription start sites of protein-coding genes, most notably several members of the homeobox (HOX) family of genes. Patterns of differential methylation were validated with MassArray EpiTYPER. We also examined DNA methylation in whole biopsies, applying a computational technique to deconvolve variation in methylation within cell types and variation in cell-type composition across biopsies. Including inferred epithelial proportions as a covariate in differential methylation analysis applied to the whole biopsies resulted in greater overlap with the results obtained from purified epithelial cells compared with when the covariate was not included. Results obtained from both approaches highlight region-specific methylation patterns ofHOXgenes in colonic epithelium. Regional variation in methylation patterns has implications for the study of diseases that exhibit regional expression patterns in the human colon, such as inflammatory bowel disease and colorectal cancer. PMID:26812987

  8. Interferon-gamma sensitizes colonic epithelial cell lines to physiological and therapeutic inducers of colonocyte apoptosis.

    PubMed

    O'Connell, J; Bennett, M W; Nally, K; O'Sullivan, G C; Collins, J K; Shanahan, F

    2000-12-01

    Homeostasis in the colonic epithelium is achieved by a continuous cycle of proliferation and apoptosis, in which imbalances are associated with disease. Inflammatory bowel disease (IBD) and colon cancer are associated with either excessive or insufficient apoptosis of colonic epithelial cells, respectively. By using two colonic epithelial cell lines, HT29 and SW620, we investigated how the epithelial cell's sensitivity to apoptosis was regulated by the proinflammatory cytokine interferon-gamma (IFN-gamma). We found that IFN-gamma sensitized HT29 cells, and to a lesser extent SW620, to diverse inducers of apoptosis of physiologic or therapeutic relevance to the colon. These apoptosis inducers included Fas (CD95/APO-1) ligand (FasL), short-chain fatty acids, and chemotherapeutic drugs. The extent of IFN-gamma-mediated apoptosis sensitization in these two cell lines correlated well with the degree of IFN-gamma-mediated upregulation of the proapoptotic protease caspase-1. Although IFN-gamma alone effectively sensitized HT29 cells to apoptosis, inclusion of the protein synthesis inhibitor cyclohexamide (CHX) during apoptotic challenge was necessary for maximal sensitization of SW620. The requirement of CHX to sensitize SW620 cells to apoptosis implies a need to inhibit translation of antiapoptotic proteins absent from HT29. In particular, the antiapoptotic protein Bcl-2 was strongly expressed in SW620 cells but absent from HT29. Our results indicate that IFN-gamma increases the sensitivity of colonic epithelial cells to diverse apoptotic stimuli in concert, via upregulation of caspase-1. Our findings implicate caspase-1 and Bcl-2 as important central points of control determining the general sensitivity of colonic epithelial cells to apoptosis. PMID:11056003

  9. Distribution of histocompatibility and leucocyte differentiation antigens in normal human colon and in benign and malignant colonic neoplasms.

    PubMed

    Csiba, A; Whitwell, H L; Moore, M

    1984-11-01

    Monoclonal antibodies (McAbs) directed against the framework determinants of Class I and Class II products of the major histocompatibility complex (MHC) and against leucocyte differentiation antigens were used in an indirect immunoperoxidase technique to study their expression in normal, benign (adenomatous polyps) and malignant disease of the colon. Class I products (detected by the McAb 2A1) were strongly expressed on all cell types in normal and benign tissues but some carcinomas exhibited a heterogenous pattern of epithelial cell staining and 4/15 were completely negative. Class II products (detected by TDR31.1) were strongly expressed on cells (mainly B lymphocytes) within the lamina propria. In carcinomas TDR31.1 staining was mainly interstitial, but in 2/15, DR + epithelial cells were also detected. In normal and benign tissues, leucocytes (reactive with 2D1) found predominantly in the lamina propria, comprised T cells mainly of the helper/inducer (OKT4) subset, DR + cells in approx. equivalent proportion and a few OKM1+ cells mostly of macrophage morphology. Occasional intraepithelial lymphocytes were of cytotoxic/suppressor (OKT8) phenotype. In malignant neoplasms, there was wide inter and intra-tumour variation in the proportion of leucocytes which were heterogeneous with respect to cell type and confined mainly to the stroma. T cells were consistently predominant, but B cells and macrophages were also present. Two neoplasms showed unequivocal evidence of a shift (relative to peripheral blood) in favour of the OKT8+ subset, but in the majority of tumours OKT4+; and OKT8+ cells were present in roughly similar proportions. Natural killer cells (monitored with Leu7, HNK1) were virtually undetectable in both normal and malignant tissues. There were no apparent correlations between the extent and type of leucocyte infiltration, tumour differentiation or expression of MHC products. Some implications for the extrapolation of in vitro data on leucocyte function

  10. Stimulation of epithelial cell proliferation of isolated distal colon of rats by continuous colonic infusion of ammonia or short-chain fatty acids is nonadditive.

    PubMed

    Ichikawa, H; Sakata, T

    1998-05-01

    Dietary fibers accelerate colonic epithelial cell proliferation at least in part by modulating bacterial metabolism in the large intestine. Ammonia and short-chain fatty acids (SCFA) are major metabolites of hindgut bacteria and are believed to affect epithelial cell kinetics of the colon. However, the effect of luminal ammonia itself and the possible interaction of ammonia with SCFA on colonic epithelial cell proliferation have not yet been studied. The colon of rats was surgically isolated and continuously administered infusates with saline, ammonia, SCFA or both into the isolated colon for 7 d in a two-way factorial design. On d 7, vincrystine sulfate was administered intravenously to cause metaphase arrest. The activity of epithelial cell proliferation in the distal colon was estimated by using a stathmokinetic method and by histologic examination. The crypt size was significantly larger in rats given infusates containing SCFA than in rats given infusates without SCFA. Infusion of ammonia or SCFA significantly stimulated colonic epithelial cell proliferation compared with the saline infusion. Infusion of both ammonia and SCFA resulted in accumulated mitoses per crypt that did not differ from the other three infusions although the value tended to be lower than when SCFA alone were infused. Thus, stimulation of epithelial cell proliferation by ammonia and SCFA is not additive, and the interaction between them should be considered when the effects of dietary fibers on gut epithelial proliferation are investigated. PMID:9566991

  11. The influence of aqueous extracts of selected Potentilla species on normal human colon cells.

    PubMed

    Tomczyk, Michał; Paduch, Roman; Wiater, Adrian; Pleszczyńska, Małgorzata; Kandefer-Szerszeń, Martyna; Szczodrak, Janusz

    2013-01-01

    Potentilla L. (Rosaceae) species have been used in traditional medicine in Asia, Europe and Northern America. This study analyzed the biological activity of aqueous extracts of Potentilla species (Rosaceae): Dasiphora fruticosa (syn. P. fruticosa), P. norvegica, P. pensylvanica, P. thuringiaca, P. crantzii and P. nepalensis. The activities were tested using MTT, NR and DPPH assays on normal human colon epithelium (CCD 841 CoTr) and colon myofibroblast (CCD-18Co) cells. Moreover, cell morphology using the May-Grünwald-Giemsa method, IL-6 by ELISA, and nitric oxide (NO) analysis with the Griess method in culture supernatants were performed after 24 h. Extracts were tested at dose levels between 25 and 250 microg/mL. For ELISA, 15 microg/mL was chosen. All extracts suppressed the metabolism of myofibroblasts, while epithelial cells' mitochondrial dehydrogenase activity decreased after incubation with extracts. All extracts showed a free radical scavenging (DPPH) effect in a concentration-dependent manner. The most potent was the extract from D. fruticosa, while the least action was observed for P. thuringiaca. Potentilla extracts stimulated, IL-6 production in tested cells but the level of the cytokine was found to decrease in epithelial cells. Pre-incubation of cells with LPS resulted in increased IL-6 secretion. Modulation of NO production after extract addition and cell pre-incubation with LPS was also observed. Potentilla extracts may be interesting natural factors modulating the main features of cells forming the colon wall, and thus may be potentially useful in the prophylaxis or healing of colon disorders. PMID:23757943

  12. Cytotoxicity of Shiga toxin for primary cultures of human colonic and ileal epithelial cells.

    PubMed Central

    Moyer, M P; Dixon, P S; Rothman, S W; Brown, J E

    1987-01-01

    Shiga toxin purified from Shigella dysenteriae 1 was cytotoxic to cultured epithelial cells from human colon and ileum. The cytotoxicity, which affected only about 50% of treated cells, was neutralized by rabbit antiserum monospecific for Shiga toxin and mediated by protein synthesis inhibition. PMID:3570477

  13. Mesenchymal Stem Cell Therapy Stimulates Endogenous Host Progenitor Cells to Improve Colonic Epithelial Regeneration

    PubMed Central

    Sémont, Alexandra; Demarquay, Christelle; Bessout, Raphaëlle; Durand, Christelle; Benderitter, Marc; Mathieu, Noëlle

    2013-01-01

    Patients who undergo pelvic radiotherapy may develop severe and chronic complications resulting from gastrointestinal alterations. The lack of curative treatment highlights the importance of novel and effective therapeutic strategies. We thus tested the therapeutic benefit of mesenchymal stem cells (MSC) treatment and proposed molecular mechanisms of action. MSC efficacy was tested in an experimental model of radiation-induced severe colonic ulceration histologically similar to that observed in patients. In this model, MSC from bone marrow were administered intravenously, immediately or three weeks (established lesions) after irradiation. MSC therapy reduces radiation-induced colonic ulceration and increases animal survival. MSC treatment induces therapeutic efficacy whatever the time of cell infusion. Infused-MSC engraft in the colon but also increase endogenous MSC mobilization in blood that have lasting benefits over time. In vitro analysis demonstrates that the MSC effect is mediated by paracrine mechanisms through the non-canonical WNT (Wingless integration site) pathway. In irradiated rat colons, MSC treatment increases the expression of the non-canonical WNT4 ligand by epithelial cells. The epithelial regenerative process is improved after MSC injection by stimulation of colonic epithelial cells positive for SOX9 (SRY-box containing gene 9) progenitor/stem cell markers. This study demonstrates that MSC treatment induces stimulation of endogenous host progenitor cells to improve the regenerative process and constitutes an initial approach to arguing in favor of the use of MSC to limit/reduce colorectal damage induced by radiation. PMID:23922953

  14. Growth Control in Colon Epithelial Cells: Gadolinium Enhances Calcium-Mediated Growth Regulation

    PubMed Central

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K.

    2013-01-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1–5 µM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet. PMID:23008064

  15. EDAC: Epithelial defence against cancer-cell competition between normal and transformed epithelial cells in mammals.

    PubMed

    Kajita, Mihoko; Fujita, Yasuyuki

    2015-07-01

    During embryonic development or under certain pathological conditions, viable but suboptimal cells are often eliminated from the cellular society through a process termed cell competition. Cell competition was originally identified in Drosophila where cells with different properties compete for survival; 'loser' cells are eliminated from tissues and consequently 'winner' cells become dominant. Recent studies have shown that cell competition also occurs in mammals. While apoptotic cell death is the major fate for losers in Drosophila, outcompeted cells show more variable phenotypes in mammals, such as cell death-independent apical extrusion and cellular senescence. Molecular mechanisms underlying these processes have been recently revealed. Especially, in epithelial tissues, normal cells sense and actively eliminate the neighbouring transformed cells via cytoskeletal proteins by the process named epithelial defence against cancer (EDAC). Here, we introduce this newly emerging research field: cell competition in mammals. PMID:25991731

  16. Interleukin-8 stimulates the migration of human colonic epithelial cells in vitro.

    PubMed

    Wilson, A J; Byron, K; Gibson, P R

    1999-09-01

    The migration of colonic epithelial cells (restitution) is an important event in the repair of mucosal injuries. Interleukin-8 (IL-8) is a physiological initiator of the chemotactic migration of leucocytes. This study aimed to determine whether IL-8 had a similar effect on migration in an in vitro model of wounded colonic epithelium. Cell migration over 24 h was assessed in circular wounds made in confluent monolayers of the human colon cancer cell line LIM1215. This migration was stimulated in a concentration-dependent manner by IL-8, with maximal effects of approx. 1.75-fold above basal migration. The motogenic effect of IL-8 was mediated independently of effects on cell proliferation. In contrast, it was partially dependent upon gene transcription and protein synthesis and involved the activation of pertussis-toxin-sensitive G-proteins. The short-chain fatty acids, acetate, propionate, butyrate and valerate, the activator of protein kinase C (phorbol-12-myristate-13-acetate) and tumour necrosis factor-alpha (TNF-alpha) all stimulated the secretion of IL-8. However, only the motogenic effect of TNF-alpha was dependent upon IL-8. In conclusion, IL-8 stimulated cell migration in an in vitro model of colonic epithelium, whereas the motogenic effect of at least one physiologically relevant factor was dependent upon an increase in its endogenous levels. If IL-8 stimulates colonic epithelial restitution in vivo, this would have ramifications for the control of repair processes following wounding of the colonic mucosa. PMID:10464065

  17. Native cellular fluorescence characteristics of normal and malignant epithelial cells from human larynx

    NASA Astrophysics Data System (ADS)

    Parmeswearan, Diagaradjane; Ganesan, Singaravelu; Nalini, R.; Aruna, Prakasa R.; Veeraganesh, V.; Alfano, Robert R.

    1997-08-01

    Many applications of native fluorescence spectroscopy of intrinsic biomolecules such as Try, Tyr, Phe, NADH and FAD are reported on both the characterization and the discrimination of malignant tissues from the normal. In the field of diagnostic oncology, extensive studies have been made to distinguish the normal from malignant condition in breast, cervix, colon and bronchus. From the studies made by Alfano and co-workers, it was found that the emission at 340 and 440 nm under UV excitation have shown statistically significant difference between normal and malignant tissues. As tissues are highly complex in nature, it is worth to known whether the changes arise from cells or from other extracellular tissue components, so as to enable us to have better understanding on the transformation mechanism of normal into malignant and to go for an improved approach in the effective optical diagnosis. In this context, the present study addresses the question of whether there are differences in the native cellular fluorescence characteristics between normal and malignant epithelial cells from human larynx. With this aim, the UV fluorescence emission spectra in the wavelength region of excitation between 270 - 310 nm and the excitation spectra for 340 nm emission were measured and analyzed. In order to quantify the altered fluorescence signal between the normal and malignant cells, different ratio parameters were introduced.

  18. In vivo measurement of DNA synthesis rates of colon epithelial cells in carcinogenesis

    SciTech Connect

    Kim, Sylvia Jeewon; Turner, Scott; Killion, Salena; Hellerstein, Marc K. . E-mail: march@nature.berkeley.edu

    2005-05-27

    We describe here a highly sensitive technique for measuring DNA synthesis rates of colon epithelial cells in vivo. Male SD rats were given {sup 2}H{sub 2}O (heavy water). Colon epithelial cells were isolated, DNA was extracted, hydrolyzed to deoxyribonucleosides, and the deuterium enrichment of the deoxyribose moiety was determined by gas chromatographic/mass spectrometry. Turnover time of colon crypts and the time for migration of cells from basal to top fraction of the crypts were measured. These data were consistent with cell cycle analysis and bromodeoxyuridine labeling. By giving different concentrations of a promoter, dose-dependent increases in DNA synthesis rates were detected, demonstrating the sensitivity of the method. Administration of a carcinogen increased DNA synthesis rates cell proliferation in all fractions of the crypt. In conclusion, DNA synthesis rates of colon epithelial cells can be measured directly in vivo using stable-isotope labeling. Potential applications in humans include use as a biomarker for cancer chemoprevention studies.

  19. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development.

    PubMed

    Uchiyama, Kazuhiko; Sakiyama, Toshio; Hasebe, Takumu; Musch, Mark W; Miyoshi, Hiroyuki; Nakagawa, Yasushi; He, Tong-Chuan; Lichtenstein, Lev; Naito, Yuji; Itoh, Yoshito; Yoshikawa, Toshikazu; Jabri, Bana; Stappenbeck, Thaddeus; Chang, Eugene B

    2016-01-01

    Proliferation and spatial development of colonic epithelial cells are highly regulated along the crypt vertical axis, which, when perturbed, can result in aberrant growth and carcinogenesis. In this study, two key factors were identified that have important and counterbalancing roles regulating these processes: pericrypt myofibroblast-derived Wnt-5a and the microbial metabolite butyrate. Cultured YAMC cell proliferation and heat shock protein induction were analzyed after butryate, conditioned medium with Wnt5a activity, and FrzB containing conditioned medium. In vivo studies to modulate Hsp25 employed intra-colonic wall Hsp25 encoding lentivirus. To silence Wnt-5a in vivo, intra-colonic wall Wnt-5a silencing RNA was used. Wnt-5a, secreted by stromal myofibroblasts of the lower crypt, promotes proliferation through canonical β-catenin activation. Essential to this are two key requirements: (1) proteolytic conversion of the highly insoluble ~40 kD Wnt-5a protein to a soluble 36 mer amino acid peptide that activates epithelial β-catenin and cellular proliferation, and (2) the simultaneous inhibition of butyrate-induced Hsp25 by Wnt-5a which is necessary to arrest the proliferative process in the upper colonic crypt. The interplay and spatial gradients of these factors insures that crypt epithelial cell proliferation and development proceed in an orderly fashion, but with sufficient plasticity to adapt to physiological perturbations including inflammation. PMID:27561676

  20. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development

    PubMed Central

    Uchiyama, Kazuhiko; Sakiyama, Toshio; Hasebe, Takumu; Musch, Mark W.; Miyoshi, Hiroyuki; Nakagawa, Yasushi; He, Tong-Chuan; Lichtenstein, Lev; Naito, Yuji; Itoh, Yoshito; Yoshikawa, Toshikazu; Jabri, Bana; Stappenbeck, Thaddeus; Chang, Eugene B.

    2016-01-01

    Proliferation and spatial development of colonic epithelial cells are highly regulated along the crypt vertical axis, which, when perturbed, can result in aberrant growth and carcinogenesis. In this study, two key factors were identified that have important and counterbalancing roles regulating these processes: pericrypt myofibroblast-derived Wnt-5a and the microbial metabolite butyrate. Cultured YAMC cell proliferation and heat shock protein induction were analzyed after butryate, conditioned medium with Wnt5a activity, and FrzB containing conditioned medium. In vivo studies to modulate Hsp25 employed intra-colonic wall Hsp25 encoding lentivirus. To silence Wnt-5a in vivo, intra-colonic wall Wnt-5a silencing RNA was used. Wnt-5a, secreted by stromal myofibroblasts of the lower crypt, promotes proliferation through canonical β-catenin activation. Essential to this are two key requirements: (1) proteolytic conversion of the highly insoluble ~40 kD Wnt-5a protein to a soluble 36 mer amino acid peptide that activates epithelial β-catenin and cellular proliferation, and (2) the simultaneous inhibition of butyrate-induced Hsp25 by Wnt-5a which is necessary to arrest the proliferative process in the upper colonic crypt. The interplay and spatial gradients of these factors insures that crypt epithelial cell proliferation and development proceed in an orderly fashion, but with sufficient plasticity to adapt to physiological perturbations including inflammation. PMID:27561676

  1. Human colon epithelial cells productively infected with human immunodeficiency virus show impaired differentiation and altered secretion.

    PubMed Central

    Fantini, J; Yahi, N; Baghdiguian, S; Chermann, J C

    1992-01-01

    Selected strains of the human immunodeficiency virus (HIV) types 1 and 2 are able to infect human colon epithelial cells in vitro, suggesting a mechanism for the anal route of HIV transmission. In some cases, HIV is not produced by infected colon cells but can be rescued after coculture with T-lymphoid cells. One of the HIV strains (HIV1-NDK) replicated well in colonic cells. A transmission electron microscope study demonstrated two major structural perturbations in producer colon cells: an unusual number of secretion bodies and the appearance of intracellular lumina with disorganized microvilli, indicating a defect in brush border assembly and differentiation. Either abnormality could account for HIV-induced enteropathy consisting of chronic diarrhea and malabsorption in the absence of enteric pathogens. Moreover, HT29 cells infected with HIV provide a unique model for selection of enterotropic HIV strains. Images PMID:1727501

  2. Use of the lectin from Amaranthus caudatus as a histochemical probe of proliferating colonic epithelial cells.

    PubMed

    Boland, C R; Chen, Y F; Rinderle, S J; Resau, J H; Luk, G D; Lynch, H T; Goldstein, I J

    1991-01-15

    A newly isolated lectin, Amaranthus caudatus agglutinin (also called amaranthin or ACA), which binds to the Thomsen-Friedenreich antigen (T-antigen) and its sialylated variants, was used as a histochemical probe for proliferating cells in sections of human colonic tissues. Binding inhibition studies revealed that ACA binds to different sites on histological sections when compared to peanut agglutinin, which also recognizes the T-antigen. ACA bound selectively to the cells at the base of the colonic crypt [46 +/- 4% (SEM) of glands] which is the zone of proliferation in this tissue and preferentially labeled cytoplasmic and apical membrane glycoconjugates. Only 7 +/- 2% of the upper portions of the colonic crypts were labeled (P less than 0.001 compared to the base), and this was largely a result of extensive labeling in 2 of 23 samples studies. A marked increase in histochemical labeling by ACA was seen in adenomatous polyps and adenocarcinomas of the colon, in which 82 +/- 7 and 97 +/- 2% of the glandular units were labeled, respectively. Transitional mucosa and connective tissue adjacent to cancers were also labeled by ACA. Neuraminidase studies indicated that removal of sialic acid residues enhanced binding by peanut agglutinin, but not ACA, to glycoconjugates in cancer specimens. Specimens of colonic tissue from patients with familial adenomatous polyposis (FAP) were examined with ACA; 83 +/- 7% of adenomatous glands and 60 +/- 7% of glands in flat, normal-appearing tissue were labeled. Colonic tissues from persons at 50% risk for hereditary nonpolyposis colorectal cancer (HNPCC), FAP, and normal colons were studied and given "weighted average" labelling scores that ranged from 0-400 to accommodate variable intensity and distribution of labeling. Normal colons had a weighted average score of 65 +/- 33; FAP tissues had a score of 224 +/- 76 (P less than 0.001 compared to normal colon) and HNPCC tissues had a score of 74 +/- 70 (P less than 0.05 compared to

  3. Malignant transformation of colonic epithelial cells by a colon-derived long noncoding RNA

    SciTech Connect

    Franklin, Jeffrey L.; Rankin, Carl R.; Levy, Shawn; Snoddy, Jay R.; Zhang, Bing; Washington, Mary Kay; Thomson, J. Michael; Whitehead, Robert H.; Coffey, Robert J.

    2013-10-11

    Highlights: •Non-coding RNAs are found in the colonic crypt progenitor compartment. •Colonocytes transformed by ncNRFR are highly invasive and metastatic. •ncNRFR has a region similar to the miRNA, let-7 family. •ncNRFR expression alters let-7 activity as measured by reporter construct. •ncNRFR expression upregulates let-7b targets. -- Abstract: Recent progress has been made in the identification of protein-coding genes and miRNAs that are expressed in and alter the behavior of colonic epithelia. However, the role of long non-coding RNAs (lncRNAs) in colonic homeostasis is just beginning to be explored. By gene expression profiling of post-mitotic, differentiated tops and proliferative, progenitor-compartment bottoms of microdissected adult mouse colonic crypts, we identified several lncRNAs more highly expressed in crypt bottoms. One identified lncRNA, designated non-coding Nras functional RNA (ncNRFR), resides within the Nras locus but appears to be independent of the Nras coding transcript. Stable overexpression of ncNRFR in non-transformed, conditionally immortalized mouse colonocytes results in malignant transformation, as determined by growth in soft agar and formation of highly invasive tumors in nude mice. Moreover, ncNRFR appears to inhibit the function of the tumor suppressor let-7. These results suggest precise regulation of ncNRFR is necessary for proper cell growth in the colonic crypt, and its misregulation results in neoplastic transformation.

  4. Cellular inhibitor of apoptosis protein 2 controls human colonic epithelial restitution, migration, and Rac1 activation.

    PubMed

    Seidelin, Jakob Benedict; Larsen, Sylvester; Linnemann, Dorte; Vainer, Ben; Coskun, Mehmet; Troelsen, Jesper Thorvald; Nielsen, Ole Haagen

    2015-01-15

    Identification of pathways involved in wound healing is important for understanding the pathogenesis of various intestinal diseases. Cellular inhibitor of apoptosis protein 2 (cIAP2) regulates proliferation and migration in nonepithelial cells and is expressed in human colonocytes. The aim of the study was to investigate the role of cIAP2 for wound healing in the normal human colon. Wound tissue was generated by taking rectosigmoidal biopsies across an experimental ulcer in healthy subjects after 5, 24, and 48 h. In experimental ulcers, the expression of cIAP2 in regenerating intestinal epithelial cells (IECs) was increased at the wound edge after 24 h (P < 0.05), returned to normal after reepithelialization, and correlated with the inflammatory reaction in the experimental wounds (P < 0.001). cIAP2 was induced in vitro in regenerating Caco2 IECs after wound infliction (P < 0.01). Knockdown of cIAP2 caused a substantial impairment of the IEC regeneration through inhibition of migration (P < 0.005). cIAP2 overexpression lead to formation of migrating IECs and upregulation of expression of RhoA and Rac1 as well as GTP-activation of Rac1. Transforming growth factor-β1 enhanced the expression of cIAP2 but was not upregulated in wounds in vivo and in vitro. NF-κB and MAPK pathways did not affect cIAP2 expression. cIAP2 is in conclusion a regulator of human intestinal wound healing through enhanced migration along with activation of Rac1, and the findings suggest that cIAP2 could be a future therapeutic target to improve intestinal wound healing. PMID:25394657

  5. Normal and Abnormal Epithelial Differentiation in the Female Reproductive Tract

    PubMed Central

    Kurita, Takeshi

    2011-01-01

    In mammals, the female reproductive tract (FRT) develops from a pair of paramesonephric or Müllerian ducts (MDs), which arise from coelomic epithelial cells of mesodermal origin. During development, the MDs undergo a dynamic morphogenetic transformation from simple tubes consisting of homogeneous epithelium and surrounding mesenchyme into several distinct organs namely the oviduct, uterus, cervix and vagina. Following the formation of anatomically distinctive organs, the uniform MD epithelium (MDE) differentiates into diverse epithelial cell types with unique morphology and functions in each organ. Classic tissue recombination studies, in which the epithelium and mesenchyme isolated from the newborn mouse FRT were recombined, have established that the organ specific epithelial cell fate of MDE is dictated by the underlying mesenchyme. The tissue recombination studies have also demonstrated that there is a narrow developmental window for the epithelial cell fate determination in MD-derived organs. Accordingly, the developmental plasticity of epithelial cells is mostly lost in mature FRT. If the signaling that controls epithelial differentiation is disrupted at the critical developmental stage, the cell fate of MD-derived epithelial tissues will be permanently altered and can result in epithelial lesions in adult life. A disruption of signaling that maintains epithelial cell fate can also cause epithelial lesions in the FRT. In this review, the pathogenesis of cervical/vaginal adenoses and uterine squamous metaplasia is discussed as examples of such incidences. PMID:21612855

  6. Cingulin, a specific protein component of tight junctions, is expressed in normal and neoplastic human epithelial tissues.

    PubMed Central

    Citi, S.; Amorosi, A.; Franconi, F.; Giotti, A.; Zampi, G.

    1991-01-01

    Cingulin is a 140-kd protein localized on the cytoplasmic face of avian tight junctions. The expression of cingulin in human normal and neoplastic colonic tissue has been investigated with an antiserum against chicken cingulin. Human cingulin shares its apparent molecular mass and localization with avian cingulin. In normal colonic epithelium, villous adenomas, and differentiated adenocarcinomas, cingulin staining is observed in the junctional region of the polarized cells lining the surface, the crypts, and the glandular lumina. In poorly differentiated adenocarcinomas, labeling also is observed at the interface between cancer tissue and stroma, or in clumps of malignant cells, forming a pattern that highlights the presence of small, compressed lumina. The cingulin content of four adenocarcinomas, estimated by immunoblotting and densitometry, was higher than that of the normal tissue (150% to 230%). Cingulin was detected in a metastasis from a colon adenocarcinoma but not in nonepithelial tissues and neoplasias, suggesting that cingulin may be a useful marker in the characterization of colonic and probably other epithelial neoplasias. Images Figure 1 Figure 2 Figure 3 PMID:2012170

  7. Molecular changes in the expression of human colonic nutrient transporters during the transition from normality to malignancy.

    PubMed

    Lambert, D W; Wood, I S; Ellis, A; Shirazi-Beechey, S P

    2002-04-22

    Healthy colonocytes derive 60-70% of their energy supply from short-chain fatty acids, particularly butyrate. Butyrate has profound effects on differentiation, proliferation and apoptosis of colonic epithelial cells by regulating expression of various genes associated with these processes. We have previously shown that butyrate is transported across the luminal membrane of the colonic epithelium via a monocarboxylate transporter, MCT1. In this paper, using immunohistochemistry and in situ hybridisation histochemistry, we have determined the profile of MCT1 protein and mRNA expression along the crypt to surface axis of healthy human colonic tissue. There is a gradient of MCT1 protein expression in the apical membrane of the cells along the crypt-surface axis rising to a peak in the surface epithelial cells. MCT1 mRNA is expressed along the crypt-surface axis and is most abundant in cells lining the crypt. Analysis of healthy colonic tissues and carcinomas using immunohistochemistry and Western blotting revealed a significant decline in the expression of MCT1 protein during transition from normality to malignancy. This was reflected in a corresponding reduction in MCT1 mRNA expression, as measured by Northern analysis. Carcinoma samples displaying reduced levels of MCT1 were found to express the high affinity glucose transporter, GLUT1, suggesting that there is a switch from butyrate to glucose as an energy source in colonic epithelia during transition to malignancy. The expression levels of MCT1 in association with GLUT1 could potentially be used as determinants of the malignant state of colonic tissue. PMID:11953883

  8. Aberrant, ectopic expression of VEGF and VEGF receptors 1 and 2 in malignant colonic epithelial cells. Implications for these cells growth via an autocrine mechanism

    SciTech Connect

    Ahluwalia, Amrita; Jones, Michael K.; Szabo, Sandor; Tarnawski, Andrzej S.

    2013-08-09

    Highlights: •Malignant colonic epithelial cells express VEGF and its receptors. •Cultured colon cancer cells secrete VEGF into the medium. •Inhibition of VEGF receptor significantly decreases colon cancer cell proliferation. •VEGF is critical for colon cancer cell growth. -- Abstract: Vascular endothelial growth factor A (referred to as VEGF) is implicated in colon cancer growth. Currently, the main accepted mechanism by which VEGF promotes colon cancer growth is via the stimulation of angiogenesis, which was originally postulated by late Judah Folkman. However, the cellular source of VEGF in colon cancer tissue; and, the expression of VEGF and its receptors VEGF-R1 and VEGF-R2 in colon cancer cells are not fully known and are subjects of controversy. Material and methods: We examined and quantified expression of VEGF, VEGF-R1 and VEGF-R2 in three different human colonic tissue arrays containing sections of adenocarcinoma (n = 43) and normal mucosa (n = 41). In human colon cancer cell lines HCT116 and HT29 and normal colon cell lines NCM356 and NCM460, we examined expression of VEGF, VEGF-R1 and VEGF-R2 mRNA and protein, VEGF production and secretion into the culture medium; and, the effect of a potent, selective inhibitor of VEGF receptors, AL-993, on cell proliferation. Results: Human colorectal cancer specimens had strong expression of VEGF in cancer cells and also expressed VEGF-R1 and VEGF-R2.In vitro studies showed that human colon cancer cell lines, HCT116 and HT29, but not normal colonic cell lines, express VEGF, VEGF-R1 and VEGF-R2 and secrete VEGF into the medium up to a concentration 2000 pg/ml within 48 h. Furthermore, we showed that inhibition of VEGF receptors using a specific VEGF-R inhibitor significantly reduced proliferation (by >50%) of cultured colon cancer cell lines. Conclusions: Our findings support the contention that VEGF generated by colon cancer cells stimulates their growth directly through an autocrine mechanism that is

  9. Role of urokinase and its receptor in basal and stimulated colonic epithelial cell migration in vitro

    PubMed Central

    Wilson, A; Gibson, P

    2000-01-01

    BACKGROUND—Migration of colonic epithelial cells is important for mucosal repair following injury. The urokinase (u-PA) system regulates migration in other cell types.
AIM—To examine the role of u-PA and its receptor (u-PAR) in colonic epithelial cell migration.
METHODS—Migration was assessed over 24 hours in circular wounds made in confluent monolayers of LIM1215 and Caco-2 human colon cancer cells. The function of u-PA and u-PAR was ablated with antisense oligonucleotides to block expression, with synthetic u-PA peptides to block interaction, and with aprotinin to block u-PA mediated proteolysis.
RESULTS—Migration was stimulated two to threefold by exogenous u-PA, an effect dependent on u-PAR binding but independent of u-PA mediated mitogenesis and proteolysis. Expression of u-PA and u-PAR was inhibited by 80% by the appropriate antisense oligonucleotide. Basal migration and the motogenic effects of butyrate, epidermal growth factor, and phorbol-12-myristate-13-acetate were suppressed by the u-PAR antisense oligonucleotide (40-60%) but were at best minimally affected following inhibition of u-PA expression and binding. 
CONCLUSIONS—In an in vitro model of wounded colonic epithelium, u-PAR promotes cell migration through mechanisms that are not exclusively dependent on u-PA binding. Therefore, u-PA and u-PAR may contribute to colonic mucosal repair in vivo.


Keywords: colon; migration; urokinase; urokinase receptor; epidermal growth factor; butyrate; protein kinase C PMID:10861271

  10. Are dietary fiber-induced alterations in colonic epithelial cell proliferation predictive of fiber's effect on colon cancer?

    PubMed

    Whiteley, L O; Klurfeld, D M

    2000-01-01

    Alterations in cell proliferation of the colon have been observed as a result of changes in amount and type of dietary fiber and in relation to risk of developing colon cancer. Although some human observational and intervention studies contribute to the database, most information results from experiments on rodents. Because of numerous contradictory reports linking dietary fiber, cell proliferation, and colon cancer, we undertook a critical review of existing methods in an attempt to explain the inconsistencies. Although there may be some individual types of dietary fiber that protect against chemically induced colon cancer, dietary fiber as a single entity does not appear to afford any consistent protection. Because of significant differences in experimental protocols among laboratories, it is not yet possible to state with certainty that increases in cell proliferation, induced by fiber consumption, are predictive of increased tumorigenesis. Much of what has been observed and interpreted as elevation of risk may simply be normal homeostatic changes in cell proliferation. Even though fermentation to short-chain fatty acids is a mechanistically attractive hypothesis to explain why fiber modulates cytokinetics, data do not consistently support short-chain fatty acids as biological intermediates in risk of colon cancer. The state of the art in this field has not yet progressed to the point where a clear effect of dietary fiber on cytokinetics and colon carcinogenesis can be assessed with any degree of certainty. Additional markers of apoptosis, differentiation, and cell-cell communication may be required for a more accurate analysis of the relation among fiber, cytokinetics, and colon cancer. PMID:10890023

  11. Targeted colonic claudin-2 expression renders resistance to epithelial injury, induces immune suppression, and protects from colitis.

    PubMed

    Ahmad, R; Chaturvedi, R; Olivares-Villagómez, D; Habib, T; Asim, M; Shivesh, P; Polk, D B; Wilson, K T; Washington, M K; Van Kaer, L; Dhawan, P; Singh, A B

    2014-11-01

    Expression of claudin-2, a tight junction protein, is highly upregulated during inflammatory bowel disease (IBD) and, due to its association with epithelial permeability, has been postulated to promote inflammation. Notably, claudin-2 has also been implicated in the regulation of intestinal epithelial proliferation. However, precise role of claudin-2 in regulating colonic homeostasis remains unclear. Here, we demonstrate, using Villin-Claudin-2 transgenic mice, that increased colonic claudin-2 expression augments mucosal permeability as well as colon and crypt length. Most notably, despite leaky colon, Cl-2TG mice were significantly protected against experimental colitis. Importantly, claudin-2 expression increased colonocyte proliferation and provided protection against colitis-induced colonocyte death in a PI-3Kinase/Bcl-2-dependent manner. However, Cl-2TG mice also demonstrated marked suppression of colitis-induced increases in immune activation and associated signaling, suggesting immune tolerance. Accordingly, colons from naive Cl-2TG mice harbored significantly increased numbers of regulatory (CD4(+)Foxp3(+)) T cells than WT littermates. Furthermore, macrophages isolated from Cl-2TG mouse colon exhibited immune anergy. Importantly, these immunosuppressive changes were associated with increased synthesis of the immunoregulatory cytokine TGF-β by colonic epithelial cells in Cl-2TG mice compared with WT littermates. Taken together, our findings reveal a critical albeit complex role of claudin-2 in intestinal homeostasis by regulating epithelial permeability, inflammation and proliferation and suggest novel therapeutic opportunities. PMID:24670427

  12. Epithelial IL-22RA1-Mediated Fucosylation Promotes Intestinal Colonization Resistance to an Opportunistic Pathogen

    PubMed Central

    Pham, Tu Anh N.; Clare, Simon; Goulding, David; Arasteh, Julia M.; Stares, Mark D.; Browne, Hilary P.; Keane, Jacqueline A.; Page, Andrew J.; Kumasaka, Natsuhiko; Kane, Leanne; Mottram, Lynda; Harcourt, Katherine; Hale, Christine; Arends, Mark J.; Gaffney, Daniel J.; Dougan, Gordon; Lawley, Trevor D.

    2014-01-01

    Summary Our intestinal microbiota harbors a diverse microbial community, often containing opportunistic bacteria with virulence potential. However, mutualistic host-microbial interactions prevent disease by opportunistic pathogens through poorly understood mechanisms. We show that the epithelial interleukin-22 receptor IL-22RA1 protects against lethal Citrobacter rodentium infection and chemical-induced colitis by promoting colonization resistance against an intestinal opportunistic bacterium, Enterococcus faecalis. Susceptibility of Il22ra1−/− mice to C. rodentium was associated with preferential expansion and epithelial translocation of pathogenic E. faecalis during severe microbial dysbiosis and was ameloriated with antibiotics active against E. faecalis. RNA sequencing analyses of primary colonic organoids showed that IL-22RA1 signaling promotes intestinal fucosylation via induction of the fucosyltransferase Fut2. Additionally, administration of fucosylated oligosaccharides to C. rodentium-challenged Il22ra1−/− mice attenuated infection and promoted E. faecalis colonization resistance by restoring the diversity of anaerobic commensal symbionts. These results support a model whereby IL-22RA1 enhances host-microbiota mutualism to limit detrimental overcolonization by opportunistic pathogens. PMID:25263220

  13. HDAC inhibitors induce epithelial-mesenchymal transition in colon carcinoma cells.

    PubMed

    Ji, Meiying; Lee, Eun Jeoung; Kim, Ki Bae; Kim, Yangmi; Sung, Rohyun; Lee, Sang-Jeon; Kim, Don Soo; Park, Seon Mee

    2015-05-01

    The effects of histone deacetylase (HDAC) inhibitors on epithelial-mesenchymal transition (EMT) differ in various types of cancers. We investigated the EMT phenotype in four colon cancer cell lines when challenged with HDAC inhibitors trichostatin A (TSA) and valproic acid (VPA) with or without transforming growth factor-β1 (TGF-β1) treatment. Four colon cancer cell lines with different phenotypes in regards to tumorigenicity, microsatellite stability and DNA mutation were used. EMT phenotypes were assessed by the expression of E-cadherin and vimentin using western blot analysis, immunofluorescence, quantitative real-time RT-PCR following treatment with TSA (100 or 200 nM) or VPA (0.5 mM) with or without TGF-β1 (5 ng/ml) for 24 h. Biological EMT phenotypes were also evaluated by cell morphology, migration and invasion assays. TSA or VPA induced mesenchymal features in the colon carcinoma cells by a decrease in E-cadherin and an increase in vimentin expression at the mRNA and protein levels. Confocal microscopy revealed membranous attenuation or nuclear translocation of E-cadherin and enhanced expression of vimentin. These responses occurred after 6 h and increased until 24 h. Colon cancer cells changed from a round or rectangular shape to a spindle shape with increased migration and invasion ability following TSA or VPA treatment. The susceptibility to EMT changes induced by TSA or VPA was comparable in microsatellite stable (SW480 and HT29) and microsatellite unstable cells (DLD1 and HCT116). TSA or VPA induced a mesenchymal phenotype in the colon carcinoma cells and these effects were augmented in the presence of TGF-β1. HDAC inhibitors require careful caution before their application as new anticancer drugs for colon cancers. PMID:25813246

  14. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion.

    PubMed Central

    Jung, H C; Eckmann, L; Yang, S K; Panja, A; Fierer, J; Morzycka-Wroblewska, E; Kagnoff, M F

    1995-01-01

    Pathogenic bacteria that penetrate the intestinal epithelial barrier stimulate an inflammatory response in the adjacent intestinal mucosa. The present studies asked whether colon epithelial cells can provide signals that are important for the initiation and amplification of an acute mucosal inflammatory response. Infection of monolayers of human colon epithelial cell lines (T84, HT29, Caco-2) with invasive strains of bacteria (Salmonella dublin, Shigella dysenteriae, Yersinia enterocolitica, Listeria monocytogenes, enteroinvasive Escherichia coli) resulted in the coordinate expression and upregulation of a specific array of four proinflammatory cytokines, IL-8, monocyte chemotactic protein-1, GM-CSF, and TNF alpha, as assessed by mRNA levels and cytokine secretion. Expression of the same cytokines was upregulated after TNF alpha or IL-1 stimulation of these cells. In contrast, cytokine gene expression was not altered after infection of colon epithelial cells with noninvasive bacteria or the noninvasive protozoan parasite, G. lamblia. Notably, none of the cell lines expressed mRNA for IL-2, IL-4, IL-5, IL-6, IL-12p40, IFN-gamma, or significant levels of IL-1 or IL-10 in response to the identical stimuli. The coordinate expression of IL-8, MCP-1, GM-CSF and TNF alpha appears to be a general property of human colon epithelial cells since an identical array of cytokines, as well as IL-6, also was expressed by freshly isolated human colon epithelial cells. Since the cytokines expressed in response to bacterial invasion or other proinflammatory agonists have a well documented role in chemotaxis and activation of inflammatory cells, colon epithelial cells appear to be programmed to provide a set of signals for the activation of the mucosal inflammatory response in the earliest phases after microbial invasion. Images PMID:7814646

  15. Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells

    PubMed Central

    Duary, Raj Kumar; Rajput, Yudhishthir Singh; Batish, Virender Kumar; Grover, Sunita

    2011-01-01

    Background & objectives: Adherence of bacteria to epithelial cells and mucosal surfaces is a key criterion for selection of probiotic. We assessed the adhesion property of selected indigenous probiotic Lactobacillus strains based on their hydrophobicity and ability to adhere to human epithelial cells. Methods: Five human faecal Lactobacillus isolates, one from buffalo milk and one from cheese were assessed for hydrophobicity following the microbial adhesion to hydrocarbons (MATH) method and colonization potentials based on their adherence to Caco2 and HT-29 colonic adenocarcinomal human intestinal epithelial cell lines. Lactobacillus strains that adhered to Caco2 and HT-29 cell lines were quantified by plating after trypsinization and simultaneously the adhered bacteria were also examined microscopically after staining with Geimsa stain and counted in different fields. Results: Among the tested faecal isolates, L. plantarum Lp91 showed maximum percentage hydrophobicity (35.73±0.40 for n-hexadecane and 34.26±0.63 for toluene) closely followed by L. plantarum Lp9 (35.53±0.29 for n-hexadecane and 33.00±0.57 for toluene). Based on direct adhesion to epithelial cells, L. plantarum Lp91 was the most adhesive strain to HT-29 and Caco2 cell lines with per cent adhesion values of 12.8 ± 1.56 and 10.2 ± 1.09, respectively. L. delbrukeii CH4, was the least adhesive with corresponding figures of 2.5 ± 0.37 and 2.6 ± 0.20 per cent on HT-29 and Caco2 cell lines. Adhesion of the six isolated Lactobacillus strain to HT-29 cell and Caco2 lines as recorded under microscope varied between 131.0 ± 13.9 (Lp75) to 342.7 ± 50.52 (Lp91) and 44.7 ± 9.29 (CH4) to 315.7± 35.4 (Lp91), respectively. Interpretation & conclusions: Two Indigenous probiotic Lactobacillus strains (Lp9, Lp91) demonstrated their ability to adhere to epithelial cell and exhibited strong hydrophobicity under in vitro conditions, and thus could have better prospects to colonize the gut with extended transit

  16. The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells.

    PubMed

    Andriamihaja, Mireille; Lan, Annaïg; Beaumont, Martin; Audebert, Marc; Wong, Ximena; Yamada, Kana; Yin, Yulong; Tomé, Daniel; Carrasco-Pozo, Catalina; Gotteland, Martin; Kong, Xiangfeng; Blachier, François

    2015-08-01

    p-Cresol that is produced by the intestinal microbiota from the amino acid tyrosine is found at millimolar concentrations in the human feces. The effects of this metabolite on colonic epithelial cells were tested in this study. Using the human colonic epithelial HT-29 Glc(-/+) cell line, we found that 0.8mM p-cresol inhibits cell proliferation, an effect concomitant with an accumulation of the cells in the S phase and with a slight increase of cell detachment without necrotic effect. At this concentration, p-cresol inhibited oxygen consumption in HT-29 Glc(-/+) cells. In rat normal colonocytes, p-cresol also inhibited respiration. Pretreatment of HT-29 Glc(-/+) cells with 0.8mM p-cresol for 1 day resulted in an increase of the state 3 oxygen consumption and of the cell maximal respiratory capacity with concomitant increased anion superoxide production. At higher concentrations (1.6 and 3.2mM), p-cresol showed similar effects but additionally increased after 1 day the proton leak through the inner mitochondrial membrane, decreasing the mitochondrial bioenergetic activity. At these concentrations, p-cresol was found to be genotoxic toward HT-29 Glc(-/+) and also LS-174T intestinal cells. Lastly, a decreased ATP intracellular content was observed after 3 days treatment. p-Cresol at 0.8mM concentration inhibits colonocyte respiration and proliferation. In response, cells can mobilize their "respiratory reserve." At higher concentrations, p-cresol pretreatment uncouples cell respiration and ATP synthesis, increases DNA damage, and finally decreases the ATP cell content. Thus, we have identified p-cresol as a metabolic troublemaker and as a genotoxic agent toward colonocytes. PMID:25881551

  17. Look-normal: the colonized child of developmental science.

    PubMed

    Varga, Donna

    2011-05-01

    This article provides an analysis of the techniques, methods, materials, and discourses of child study observation to illuminate its role in the sociohistorical colonization of childhood. Through analysis of key texts it explains how early 20th-century child study provided for the transcendence of historical, racial, and social contexts for understanding human development. The colonizing project of child study promoted the advancement of Eurocentric culture through a generic "White" development. What a child is and can be, and the meaning of childhood has been disembodied through observation, record keeping, and analytical processes in which time and space are abstracted from behavior, and development symbolized as a universal ideal. PMID:21688723

  18. Colonization of human epithelial cell lines by Corynebacterium ulcerans from human and animal sources.

    PubMed

    Hacker, Elena; Ott, Lisa; Hasselt, Kristin; Mattos-Guaraldi, Ana Luiza; Tauch, Andreas; Burkovski, Andreas

    2015-08-01

    Corynebacterium ulcerans is an emerging pathogen transmitted by a zoonotic pathway to humans. Despite rising numbers of infections and potentially fatal outcomes, data on the colonization of the human host are lacking up to now. In this study, adhesion of two C. ulcerans isolates to human epithelial cells, invasion of host cells and the function of two putative virulence factors with respect to these processes were investigated. C. ulcerans strains BR-AD22 and 809 were able to adhere to Detroit562 and HeLa cells, and invade these epithelial cell lines with a rate comparable to other pathogens as shown by scanning electron microscopy, fluorescence microscopy and replication assays. Infection led to detrimental effects on the cells as deduced from measurements of transepithelial resistance. Mutant strains of putative virulence factors phospholipase D and DIP0733 homologue CULC22_00609 generated in this study showed no influence on colonization under the experimental conditions tested. The data presented here indicate a high infectious potential of this emerging pathogen. PMID:26066797

  19. Mesenchymal Cancer Cell-Stroma Crosstalk Promotes Niche Activation, Epithelial Reversion, and Metastatic Colonization

    PubMed Central

    del Pozo Martin, Yaiza; Park, Danielle; Ramachandran, Anassuya; Ombrato, Luigi; Calvo, Fernando; Chakravarty, Probir; Spencer-Dene, Bradley; Derzsi, Stefanie; Hill, Caroline S.; Sahai, Erik; Malanchi, Ilaria

    2015-01-01

    Summary During metastatic colonization, tumor cells must establish a favorable microenvironment or niche that will sustain their growth. However, both the temporal and molecular details of this process remain poorly understood. Here, we found that metastatic initiating cells (MICs) exhibit a high capacity for lung fibroblast activation as a result of Thrombospondin 2 (THBS2) expression. Importantly, inhibiting the mesenchymal phenotype of MICs by blocking the epithelial-to-mesenchymal transition (EMT)-associated kinase AXL reduces THBS2 secretion, niche-activating ability, and, consequently, metastatic competence. Subsequently, disseminated metastatic cells revert to an AXL-negative, more epithelial phenotype to proliferate and decrease the phosphorylation levels of TGF-β-dependent SMAD2-3 in favor of BMP/SMAD1-5 signaling. Remarkably, newly activated fibroblasts promote this transition. In summary, our data reveal a crosstalk between cancer cells and their microenvironment whereby the EMT status initially triggers and then is regulated by niche activation during metastatic colonization. PMID:26670048

  20. Efficient gene delivery to the inflamed colon by local administration of recombinant adenoviruses with normal or modified fibre structure

    PubMed Central

    Wirtz, S; Galle, P; Neurath, M

    1999-01-01

    BACKGROUND/AIMS—Replication deficient recombinant adenoviruses represent an efficient means of transferring genes in vivo into a wide variety of dividing and quiescent cells from many different organs. Although the gastrointestinal tract is a potentially attractive target for gene therapy approaches, only a few studies on the use of viral gene transfer vehicles in the gut have been reported. The prospects of using recombinant adenoviruses for gene delivery into epithelial and subepithelial cells of the normal and inflamed colon are here analysed.
METHODS—An E1/E3 deleted recombinant adenovirus (denoted AdCMVβGal) and an adenovirus with modified fibre structure (denoted AdZ.F(pk7)) both expressing the bacterial lacZ gene under the control of a human cytomegalovirus promoter were used for reporter gene expression in vitro and in vivo. β-Galactosidase activity was determined by specific chemiluminescent reporter gene assay.
RESULTS—Intravenous or intraperitoneal injection of AdCMVβGal into healthy Balb/c mice caused strong reporter gene expression in the liver and spleen but not in the colon. In contrast, local administration of AdCMVβGal resulted in high reporter gene expression in colonic epithelial cells and lamina propria mononuclear cells. A local route of adenovirus administration in mice with experimental colitis induced by the hapten reagent trinitrobenzenesulphonic acid was next evaluated. Interestingly, rectal administration of AdCMVβGal caused a higher β-galactosidase activity in isolated lamina propria cells from infected mice with experimental colitis than in those from controls. Furthermore, isolated lamina propria cells from mice with colitis infected in vitro showed a significant increase in reporter gene activity compared with controls. Finally, AdZ.F(pk7) adenoviruses with modified fibre structure produced 10- to 40-fold higher reporter gene activity in spleen T cells and lamina propria mononuclear cells of colitic mice compared with

  1. Patterns of DNA methylation in the normal colon vary by anatomical location, gender, and age

    PubMed Central

    Kaz, Andrew M; Wong, Chao-Jen; Dzieciatkowski, Slavomir; Luo, Yanxin; Schoen, Robert E; Grady, William M

    2014-01-01

    Alterations in DNA methylation have been proposed to create a field cancerization state in the colon, where molecular alterations that predispose cells to transformation occur in histologically normal tissue. However, our understanding of the role of DNA methylation in field cancerization is limited by an incomplete characterization of the methylation state of the normal colon. In order to determine the colon’s normal methylation state, we extracted DNA from normal colon biopsies from the rectum, sigmoid, transverse, and ascending colon and assessed the methylation status of the DNA by pyrosequencing candidate loci as well as with HumanMethylation450 arrays. We found that methylation levels of repetitive elements LINE-1 and SAT-α showed minimal variability throughout the colon in contrast to other loci. Promoter methylation of EVL was highest in the rectum and progressively lower in the proximal segments, whereas ESR1 methylation was higher in older individuals. Genome-wide methylation analysis of normal DNA revealed 8388, 82, and 93 differentially methylated loci that distinguished right from left colon, males from females, and older vs. younger individuals, respectively. Although variability in methylation between biopsies and among different colon segments was minimal for repetitive elements, analyses of specific cancer-related genes as well as a genome-wide methylation analysis demonstrated differential methylation based on colon location, individual age, and gender. These studies advance our knowledge regarding the variation of DNA methylation in the normal colon, a prerequisite for future studies aimed at understanding methylation differences indicative of a colon field effect. PMID:24413027

  2. Interleukin-10 prevents epithelial cell apoptosis by regulating IFNγ and TNFα expression in rhesus macaque colon explants

    PubMed Central

    Pan, Diganta; Das, Arpita; Lala, Wendy; Kenway-Lynch, Carys S.; Liu, David X.; Veazey, Ronald S.; Pahar, Bapi

    2013-01-01

    Interleukin-10 (IL-10) is an important immunomodulatory cytokine that plays an obligate role in regulating inflammatory responses. Here we demonstrated the role of IL-10 in regulating crypts length and breadth as well as maintaining the survival of epithelial cells using rhesus colon explant cultures. Anti-IL-10 antibody treatment of colon explant cultures induced increased production of inflammatory cytokines/molecules like IFNγ, TNFα, CD107a and perforin as well as increased epithelial cell apoptosis compared to media controls tested. Our results suggest that IL-10 plays a crucial role in maintaining mucosal homeostasis by regulating mucosal IFNγ and TNFα cytokine production. PMID:23867612

  3. Interleukin-10 prevents epithelial cell apoptosis by regulating IFNγ and TNFα expression in rhesus macaque colon explants.

    PubMed

    Pan, Diganta; Das, Arpita; Lala, Wendy; Kenway-Lynch, Carys S; Liu, David X; Veazey, Ronald S; Pahar, Bapi

    2013-10-01

    Interleukin-10 (IL-10) is an important immunomodulatory cytokine that plays an obligate role in regulating inflammatory responses. Here we demonstrated the role of IL-10 in regulating crypts length and breadth as well as maintaining the survival of epithelial cells using rhesus colon explant cultures. Anti-IL-10 antibody treatment of colon explant cultures induced increased production of inflammatory cytokines/molecules like IFNγ, TNFα, CD107a and perforin as well as increased epithelial cell apoptosis compared to media controls tested. Our results suggest that IL-10 plays a crucial role in maintaining mucosal homeostasis by regulating mucosal IFNγ and TNFα cytokine production. PMID:23867612

  4. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon.

    PubMed

    Ijssennagger, Noortje; Belzer, Clara; Hooiveld, Guido J; Dekker, Jan; van Mil, Saskia W C; Müller, Michael; Kleerebezem, Michiel; van der Meer, Roelof

    2015-08-11

    Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in heme-induced hyperproliferation. To this end, mice were fed a purified control or heme diet (0.5 μmol/g heme) with or without broad-spectrum antibiotics for 14 d. Heme-induced hyperproliferation was shown to depend on the presence of the gut microbiota, because hyperproliferation was completely eliminated by antibiotics, although heme-induced luminal cytotoxicity was sustained in these mice. Colon mucosa transcriptomics revealed that antibiotics block heme-induced differential expression of oncogenes, tumor suppressors, and cell turnover genes, implying that antibiotic treatment prevented the heme-dependent cytotoxic micelles to reach the epithelium. Our results indicate that this occurs because antibiotics reinforce the mucus barrier by eliminating sulfide-producing bacteria and mucin-degrading bacteria (e.g., Akkermansia). Sulfide potently reduces disulfide bonds and can drive mucin denaturation and microbial access to the mucus layer. This reduction results in formation of trisulfides that can be detected in vitro and in vivo. Therefore, trisulfides can serve as a novel marker of colonic mucolysis and thus as a proxy for mucus barrier reduction. In feces, antibiotics drastically decreased trisulfides but increased mucin polymers that can be lysed by sulfide. We conclude that the gut microbiota is required for heme-induced epithelial hyperproliferation and hyperplasia because of the capacity to reduce mucus barrier function. PMID:26216954

  5. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon

    PubMed Central

    Ijssennagger, Noortje; Belzer, Clara; Hooiveld, Guido J.; Dekker, Jan; van Mil, Saskia W. C.; Müller, Michael; Kleerebezem, Michiel; van der Meer, Roelof

    2015-01-01

    Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in heme-induced hyperproliferation. To this end, mice were fed a purified control or heme diet (0.5 μmol/g heme) with or without broad-spectrum antibiotics for 14 d. Heme-induced hyperproliferation was shown to depend on the presence of the gut microbiota, because hyperproliferation was completely eliminated by antibiotics, although heme-induced luminal cytotoxicity was sustained in these mice. Colon mucosa transcriptomics revealed that antibiotics block heme-induced differential expression of oncogenes, tumor suppressors, and cell turnover genes, implying that antibiotic treatment prevented the heme-dependent cytotoxic micelles to reach the epithelium. Our results indicate that this occurs because antibiotics reinforce the mucus barrier by eliminating sulfide-producing bacteria and mucin-degrading bacteria (e.g., Akkermansia). Sulfide potently reduces disulfide bonds and can drive mucin denaturation and microbial access to the mucus layer. This reduction results in formation of trisulfides that can be detected in vitro and in vivo. Therefore, trisulfides can serve as a novel marker of colonic mucolysis and thus as a proxy for mucus barrier reduction. In feces, antibiotics drastically decreased trisulfides but increased mucin polymers that can be lysed by sulfide. We conclude that the gut microbiota is required for heme-induced epithelial hyperproliferation and hyperplasia because of the capacity to reduce mucus barrier function. PMID:26216954

  6. Inflammasome-independent NLRP3 is required for epithelial-mesenchymal transition in colon cancer cells.

    PubMed

    Wang, Hong; Wang, Yajing; Du, Qianming; Lu, Ping; Fan, Huimin; Lu, Jinrong; Hu, Rong

    2016-03-15

    Inflammasome NLRP3 plays a crucial role in the process of colitis and colitis--associated colon cancer. Even though much is known regarding the NLRP3 inflammasome that regulates pro-inflammatory cytokine release in innate immune cells, the role of NLRP3 in non-immune cells is still unclear. In this study, we showed that NLRP3 was highly expressed in mesenchymal-like colon cancer cells (SW620), and was upregulated by tumor necrosis factors-α (TNF-α) and transforming growth factor-β1 (TGF-β1) respectively, during EMT in colon cancer epithelial cells HCT116 and HT29. Knockdown of NLRP3 retained epithelial spindle-like morphology of HCT116 and HT29 cells and reversed the mesenchymal characteristic of SW620 cells, indicated by the decreased expression of vimentin and MMP9 and increased expression of E-cadherin. In addition, knockdown of NLRP3 in colorectal carcinoma cells displayed diminished cell migration and invasion. Interestingly, during the EMT process induced by TNF-α or TGF-β1, the cleaved caspase-1 and ASC speck were not detected, indicating that NLRP3 functions in an inflammasome-independent way. Further studies demonstrated that NLRP3 protein expression was regulated by NF-κB signaling in TNF-α or TGF-β1-induced EMT, as verified by the NF-κB inhibitor Bay 11-7082. Moreover, NLRP3 knockdown reduced the expression of Snail1, indicating that NLRP3 may promote EMT through regulating Snail1. In summary, our results showed that the NLRP3 expression, not the inflammasome activation, was required for EMT in colorectal cancer cells. PMID:26968633

  7. Bile acids modulate the Golgi membrane fission process via a protein kinase Ceta and protein kinase D-dependent pathway in colonic epithelial cells.

    PubMed

    Byrne, Anne-Marie; Foran, Eilis; Sharma, Ruchika; Davies, Anthony; Mahon, Ciara; O'Sullivan, Jacintha; O'Donoghue, Diarmuid; Kelleher, Dermot; Long, Aideen

    2010-04-01

    Deoxycholic acid (DCA) is a secondary bile acid that modulates signalling pathways in epithelial cells. DCA has been implicated in pathogenesis of colon carcinoma, particularly by activation of the protein kinase C (PKC) pathway. Ursodeoxycholic acid (UDCA), a tertiary bile acid, has been observed to have chemopreventive effects. The aim of this study was to investigate the effect of DCA and UDCA on the subcellular localization and activity of PKCeta and its downstream effects on Golgi structure in a colon cancer cell model. PKCeta expression was localized to the Golgi in HCT116 colon cancer cells. DCA induced fragmentation of the Golgi in these cells following activation of PKCeta and its downstream effector protein kinase D (PKD). Pretreatment of cells with UDCA or a glucocorticoid, dexamethasone, inhibited DCA-induced PKCeta/PKD activation and Golgi fragmentation. Knockdown of glucocorticoid receptor (GR) expression using small interfering RNA or inhibition using the GR antagonist mifepristone attenuated the inhibitory effect of UDCA on Golgi fragmentation. Elevated serum and faecal levels of DCA have been previously reported in patients with ulcerative colitis (UC) and colon cancer. Analysis of Golgi architecture in vivo using tissue microarrays revealed Golgi fragmentation in UC and colorectal cancer tissue. We have demonstrated that DCA can disrupt the structure of the Golgi, an organelle critical for normal cell function. Inhibition of this DCA-induced Golgi fragmentation by UDCA was mediated via the GR. This represents a potential mechanism of observed chemopreventive effects of UDCA in benign and malignant disease of the colon. PMID:20093383

  8. Intestinal Epithelial Toll-Like Receptor 4 Signaling Affects Epithelial Function and Colonic Microbiota and Promotes a Risk for Transmissible Colitis

    PubMed Central

    Dheer, Rishu; Santaolalla, Rebeca; Davies, Julie M.; Lang, Jessica K.; Phillips, Matthew C.; Pastorini, Cristhine; Vazquez-Pertejo, Maria T.

    2016-01-01

    Evidence obtained from gene knockout studies supports the role of Toll-like receptor 4 (TLR4) in intestinal inflammation and microbiota recognition. Increased epithelial TLR4 expression is observed in patients with inflammatory bowel disease. However, little is known of the effect of increased TLR4 signaling on intestinal homeostasis. Here, we examined the effect of increased TLR4 signaling on epithelial function and microbiota by using transgenic villin-TLR4 mice that overexpress TLR4 in the intestinal epithelium. Our results revealed that villin-TLR4 mice are characterized by increases in the density of mucosa-associated bacteria and bacterial translocation. Furthermore, increased epithelial TLR4 signaling was associated with an impaired epithelial barrier, altered expression of antimicrobial peptide genes, and altered epithelial cell differentiation. The composition of the colonic luminal and mucosa-associated microbiota differed between villin-TLR4 and wild-type (WT) littermates. Interestingly, WT mice cohoused with villin-TLR4 mice displayed greater susceptibility to acute colitis than singly housed WT mice did. The results of this study suggest that epithelial TLR4 expression shapes the microbiota and affects the functional properties of the epithelium. The changes in the microbiota induced by increased epithelial TLR4 signaling are transmissible and exacerbate dextran sodium sulfate-induced colitis. Together, our findings imply that host innate immune signaling can modulate intestinal bacteria and ultimately the host's susceptibility to colitis. PMID:26755160

  9. Intestinal Epithelial Toll-Like Receptor 4 Signaling Affects Epithelial Function and Colonic Microbiota and Promotes a Risk for Transmissible Colitis.

    PubMed

    Dheer, Rishu; Santaolalla, Rebeca; Davies, Julie M; Lang, Jessica K; Phillips, Matthew C; Pastorini, Cristhine; Vazquez-Pertejo, Maria T; Abreu, Maria T

    2016-03-01

    Evidence obtained from gene knockout studies supports the role of Toll-like receptor 4 (TLR4) in intestinal inflammation and microbiota recognition. Increased epithelial TLR4 expression is observed in patients with inflammatory bowel disease. However, little is known of the effect of increased TLR4 signaling on intestinal homeostasis. Here, we examined the effect of increased TLR4 signaling on epithelial function and microbiota by using transgenic villin-TLR4 mice that overexpress TLR4 in the intestinal epithelium. Our results revealed that villin-TLR4 mice are characterized by increases in the density of mucosa-associated bacteria and bacterial translocation. Furthermore, increased epithelial TLR4 signaling was associated with an impaired epithelial barrier, altered expression of antimicrobial peptide genes, and altered epithelial cell differentiation. The composition of the colonic luminal and mucosa-associated microbiota differed between villin-TLR4 and wild-type (WT) littermates. Interestingly, WT mice cohoused with villin-TLR4 mice displayed greater susceptibility to acute colitis than singly housed WT mice did. The results of this study suggest that epithelial TLR4 expression shapes the microbiota and affects the functional properties of the epithelium. The changes in the microbiota induced by increased epithelial TLR4 signaling are transmissible and exacerbate dextran sodium sulfate-induced colitis. Together, our findings imply that host innate immune signaling can modulate intestinal bacteria and ultimately the host's susceptibility to colitis. PMID:26755160

  10. LINE-1 hypomethylation in normal colon mucosa is associated with poor survival in Chinese patients with sporadic colon cancer.

    PubMed

    Zhuo, Changhua; Li, Qingguo; Wu, Yuchen; Li, Yiwei; Nie, Jia; Li, Dawei; Peng, Junjie; Lian, Peng; Li, Bin; Cai, Guoxiang; Li, Xinxiang; Cai, Sanjun

    2015-09-15

    Genetic and epigenetic pathways are not independent in colorectal cancer (CRC) carcinogenesis. We aimed to determine the influence of various molecular features on Chinese patients' colon cancer-specific survival (CCSS). Various genetic and epigenetic modifications were detected in paired tumor and normal mucosa tissue samples. The prognostic variables regarding patient CCSS were determined. Overall, 127 patients, including 83 males and 44 females, completed a median follow-up of 65 (3-85) months. A mean LINE-1 methylation rate of 64.62% (range, 9.45-86.93) was observed. Hypermethylation at the hMLH1 gene promoter was detected in 26 (20.47%) patients. KRAS was mutated in 52 (40.94%) patients. Sixteen (12.60%) patients were confirmed as microsatellite instability (MSI)-High, and 76 (59.84%) were found to have loss of heterozygosity at 18q. The LINE-1 methylation level, MSI status, perineural invasion and distant metastases were confirmed as independent prognostic factors for patient CCSS. A stratified survival analysis further revealed that certain subgroups of patients with LINE-1 hypomethylation had significantly worse survival (all p < 0.05). Our data revealed that both genetic and epigenetic abnormalities can concurrently exist during colonic tumorigenesis. As a global epigenetic change, LINE-1 hypomethylation in normal colon mucosa might be associated with a worse outcome in certain Chinese patients with colon cancer. PMID:26172297

  11. LINE-1 hypomethylation in normal colon mucosa is associated with poor survival in Chinese patients with sporadic colon cancer

    PubMed Central

    Wu, Yuchen; Li, Yiwei; Nie, Jia; Li, Dawei; Peng, Junjie; Lian, Peng; Li, Bin; Cai, Guoxiang; Li, Xinxiang; Cai, Sanjun

    2015-01-01

    Genetic and epigenetic pathways are not independent in colorectal cancer (CRC) carcinogenesis. We aimed to determine the influence of various molecular features on Chinese patients' colon cancer-specific survival (CCSS). Various genetic and epigenetic modifications were detected in paired tumor and normal mucosa tissue samples. The prognostic variables regarding patient CCSS were determined. Overall, 127 patients, including 83 males and 44 females, completed a median follow-up of 65 (3–85) months. A mean LINE-1 methylation rate of 64.62% (range, 9.45–86.93) was observed. Hypermethylation at the hMLH1 gene promoter was detected in 26 (20.47%) patients. KRAS was mutated in 52 (40.94%) patients. Sixteen (12.60%) patients were confirmed as microsatellite instability (MSI)-High, and 76 (59.84%) were found to have loss of heterozygosity at 18q. The LINE-1 methylation level, MSI status, perineural invasion and distant metastases were confirmed as independent prognostic factors for patient CCSS. A stratified survival analysis further revealed that certain subgroups of patients with LINE-1 hypomethylation had significantly worse survival (all p < 0.05). Our data revealed that both genetic and epigenetic abnormalities can concurrently exist during colonic tumorigenesis. As a global epigenetic change, LINE-1 hypomethylation in normal colon mucosa might be associated with a worse outcome in certain Chinese patients with colon cancer. PMID:26172297

  12. Interleukin-8 production by the human colon epithelial cell line HT-29: modulation by interleukin-13.

    PubMed Central

    Kolios, G.; Robertson, D. A.; Jordan, N. J.; Minty, A.; Caput, D.; Ferrara, P.; Westwick, J.

    1996-01-01

    1. We have determined which cytokines induce and modulate the production of the chemokine interleukin-8 (IL-8) by the human colonic epithelial cell line HT-29. 2. Growth arrested cell cultures were stimulated with the human recombinant cytokines interleukin-1 alpha (IL-1 alpha), tumour necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), interleukin-13 (IL-13), interleukin-10 (IL-10) or vehicle added alone or in combination. The production of IL-8 was determined by enzyme-linked immunosorbent assay (ELISA) and IL-8 messenger RNA expression by Northern blot analysis. 3. The production of IL-8 in unstimulated cells was undetectable by both ELISA and Northern blot analysis. 4. HT-29 cells produced IL-8 following stimulation with IL-1 alpha or TNF-alpha in a time- and a concentration-dependent manner, while IFN-gamma, IL-10 and IL-13 did not induce IL-8 production by HT-29 cells. 5. IL-13 was found to up-regulate significantly (P < 0.01) the IL-1 alpha but not the TNF-alpha-induced IL-8 generation by HT-29 cells. In contrast, IL-10 had no effect on either IL-1 alpha or TNF-alpha-induced IL-8 production. 6. Experiments using cycloheximide demonstrated that this synergistic effect of IL-13 and IL-1 alpha on IL-8 secretion was not through de novo protein synthesis. Using actinomycin-D, we demonstrated that the IL-13 up-regulation was at the level of transcription rather than messenger RNA stability. 7. These findings suggest that colonic epithelial cells have a functional IL-13 receptor, which is coupled to an up-regulation of IL-1 alpha, but not TNF-alpha induced IL-8 generation. Images Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:8886420

  13. Increased GADD gene expression in human colon epithelial cells exposed to deoxycholate.

    PubMed

    Scott, David W; Mutamba, Sophia; Hopkins, Robin G; Loo, George

    2005-01-01

    The colonic epithelium is often exposed to high concentrations of secondary bile acids, which stresses the epithelial cells, leading potentially to activation of stress-response genes. To examine this possibility in vitro, the purpose of this study was to determine if expression of certain growth arrest and DNA damage-inducible genes (GADD) is upregulated in human colonic epithelial cells exposed to deoxycholate (DOC). DNA macroarray screening of a small cluster of stress/apoptosis-related genes in DOC-treated HCT-116 colonocytes revealed clearly higher expression of only GADD45, which was confirmed by gene-specific relative RT-PCR analysis. Subsequently, it was found that DOC also increased GADD34 mRNA expression. However, mRNA expression of GADD153 was increased most markedly in DOC-treated HCT-116 colonocytes, which express wild-type p53. However, the upregulation of GADD34, GADD45, and GADD153 mRNA expression apparently did not require p53, based on the finding that DOC increased expression of all three GADD genes in HCT-15 colonocytes, which express mutant p53. In further studying GADD153 in particular, the effect of DOC on GADD153 mRNA was prevented by actinomycin-D (Act-D), but not by antioxidants or MAPK inhibitors. DOC also caused GADD153 protein to be expressed in close parallel with increased GADD153 mRNA expression. Induction of GADD153 protein by DOC was prevented by either anisomycin or cycloheximide. These findings suggest that DOC-induced upregulation of GADD153 mRNA expression occurred at the level of transcription without involving reactive oxygen species and MAPK signaling, and that the expression of GADD153 protein was due also to translation of pre-existing, and not just newly synthesized, mRNA. PMID:15316935

  14. Differential gene expression in normal and transformed human mammary epithelial cells in response to oxidative stress

    PubMed Central

    Cortes, Diego F; Sha, Wei; Hower, Valerie; Blekherman, Greg; Laubenbacher, Reinhard; Akman, Steven; Torti, Suzy V; Shulaev, Vladimir

    2011-01-01

    Oxidative stress plays a key role in breast carcinogenesis. To investigate whether normal and malignant breast epithelial cells differ in their responses to oxidative stress, we examined the global gene expression profiles of three cell types, representing cancer progression from a normal to a malignant stage, under oxidative stress. Normal human mammary epithelial cells (HMEC), an immortalized cell line (HMLER-1), and a tumorigenic cell line (HMLER-5), were exposed to increased levels of reactive oxygen species (ROS) by treatment with glucose oxidase. Functional analysis of the metabolic pathways enriched with differentially expressed genes demonstrates that normal and malignant breast epithelial cells diverge substantially in their response to oxidative stress. While normal cells exhibit the up-regulation of antioxidant mechanisms, cancer cells are unresponsive to the ROS insult. However, the gene expression response of normal HMEC cells under oxidative stress is comparable to that of the malignant cells under normal conditions, indicating that altered redox status is persistent in breast cancer cells, which makes them resistant to increased generation of ROS. This study discusses some of the possible adaptation mechanisms of breast cancer cells under persistent oxidative stress that differentiate them from the response to acute oxidative stress in normal mammary epithelial cells. PMID:21397008

  15. Commensal bacteria can enter colonic epithelial cells and induce proinflammatory cytokine secretion: a possible pathogenic mechanism of ulcerative colitis.

    PubMed

    Ohkusa, Toshifumi; Yoshida, Tsutomu; Sato, Nobuhiro; Watanabe, Sumio; Tajiri, Hisao; Okayasu, Isao

    2009-05-01

    Interleukin 2 (IL-2)- and IL-10-knockout mice develop spontaneous colitis under conventional but not germ-free conditions, suggesting that commensal bacteria play an important role in the pathogenesis of colitis. However, interactions between commensal bacteria and colonic epithelial cells have not been fully investigated. We therefore assessed the ability of various commensal bacteria and probiotics to adhere to and invade colonic epithelial cells. Effects of the bacteria on production of proinflammatory cytokines were also measured. Commensal bacteria, including mucosal organisms isolated from ulcerative colitis (UC) patients, such as Fusobacterium varium, reported as a possible pathogen in UC, Bacteroides vulgatus, Escherichia coli and Clostridium clostridioforme, as well as their type strains and probiotics, were assessed for their ability to adhere to and invade colonic epithelial cells using two cell lines, SW-480 and HT-29. Our experiments employed co-incubation, a combination of scanning and transmission electron microscopy and recovery of bacteria from infected-cell lysates. F. varium and several other commensal bacteria, but not probiotics, adhered to colonic epithelial cells and invaded their cytoplasm. ELISA and real-time PCR revealed that the host cells, particularly those invaded by F. varium, showed significant increases in IL-8 and TNF-alpha concentrations in supernatants, with elevation of IL-8, TNF-alpha, MCP-1 and IL-6 mRNAs. Furthermore, IL-8 and TNF-alpha expression and nuclear phosphorylated NF-kappaB p65 expression could be immunohistochemically confirmed in inflamed epithelium with cryptitis or crypt abscess in UC patients. Certain commensal bacteria can invade colonic epithelial cells, activating early intracellular signalling systems to trigger host inflammatory reactions. PMID:19369513

  16. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells.

    PubMed

    Lee, Jongdae; Mo, Ji-Hun; Katakura, Kyoko; Alkalay, Irit; Rucker, Adam N; Liu, Yu-Tsueng; Lee, Hyun-Ku; Shen, Carol; Cojocaru, Gady; Shenouda, Steve; Kagnoff, Martin; Eckmann, Lars; Ben-Neriah, Yinon; Raz, Eyal

    2006-12-01

    The mechanisms by which commensal bacteria suppress inflammatory signalling in the gut are still unclear. Here, we present a cellular mechanism whereby the polarity of intestinal epithelial cells (IECs) has a major role in colonic homeostasis. TLR9 activation through apical and basolateral surface domains have distinct transcriptional responses, evident by NF-kappaB activation and cDNA microarray analysis. Whereas basolateral TLR9 signals IkappaBalpha degradation and activation of the NF-kappaB pathway, apical TLR9 stimulation invokes a unique response in which ubiquitinated IkappaB accumulates in the cytoplasm preventing NF-kappaB activation. Furthermore, apical TLR9 stimulation confers intracellular tolerance to subsequent TLR challenges. IECs in TLR9-deficient mice, when compared with wild-type and TLR2-deficient mice, display a lower NF-kappaB activation threshold and these mice are highly susceptible to experimental colitis. Our data provide a case for organ-specific innate immunity in which TLR expression in polarized IECs has uniquely evolved to maintain colonic homeostasis and regulate tolerance and inflammation. PMID:17128265

  17. Lactic acid fermentation of germinated barley fiber and proliferative function of colonic epithelial cells in loperamide-induced rats.

    PubMed

    Jeon, Jeong Ryae; Choi, Joon Hyuk

    2010-08-01

    To develop a functional food from the dietary fiber fraction of germinated barley (Hordeum vulgare L.) (GBF), lactic acid fermentation was attempted using Lactobacillus acidophilus, Streptococcus thermophilus, and Bifidobacterium bifidus. The quality characteristics of the lactic acid-fermented product and its effect on gastrointestinal function in an animal model were examined. The anaerobic fermentation of 1% and 2% GBF yielded lactic acid bacteria at 8.9 +/- 1.0 x 10(8) and 1.6 +/- 0.2 x 10(9) colony-forming units/mL, and it was considered acceptable for consumption by sensory assessment. To determine the effect on gastrointestinal function, Sprague-Dawley rats were fed with three types of diets: a normal chow diet and chow diets supplemented with 10% lactic acid bacteria or a yogurt fermented with 2% GBF (GBFY). The rats fed GBFY for 6 weeks gained less body weight, excreted more fecal mass, and had improved gastrointestinal transit as examined with barium sulfate. The effect of GBFY on colonic epithelial proliferation was investigated through loperamide (LPM)-induced constipation in rats. The rats fed with GBFY for 6 weeks were intraperitoneally administered LPM twice daily for 7 days. GBFY supplementation decreased fecal excretion and moisture content in feces and depleted goblet cells as observed by hematoxylin and eosin stain. However, the rats supplemented with GBFY prior to the LPM administration had enhanced bowel movement, mucin secretion, and production of short-chain fatty acids compared with values for the LPM-alone group. Immunohistochemistry revealed that the GBFY supplement increased the numbers of nuclei stained positively for Ki-67 and extended from the base to the middle zone of crypts. These results indicate that GBFY alleviates constipation via the proliferation of the colonic crypts in LPM-administered rats. PMID:20673062

  18. Phyllanthus emblica Fruit Extract Activates Spindle Assembly Checkpoint, Prevents Mitotic Aberrations and Genomic Instability in Human Colon Epithelial NCM460 Cells.

    PubMed

    Guo, Xihan; Wang, Xu

    2016-01-01

    The fruit of Phyllanthus emblica Linn. (PE) has been widely consumed as a functional food and folk medicine in Southeast Asia due to its remarkable nutritional and pharmacological effects. Previous research showed PE delays mitotic progress and increases genomic instability (GIN) in human colorectal cancer cells. This study aimed to investigate the similar effects of PE by the biomarkers related to spindle assembly checkpoint (SAC), mitotic aberrations and GIN in human NCM460 normal colon epithelial cells. Cells were treated with PE and harvested differently according to the biomarkers observed. Frequencies of micronuclei (MN), nucleoplasmic bridge (NPB) and nuclear bud (NB) in cytokinesis-block micronucleus assay were used as indicators of GIN. Mitotic aberrations were assessed by the biomarkers of chromosome misalignment, multipolar division, chromosome lagging and chromatin bridge. SAC activity was determined by anaphase-to- metaphase ratio (AMR) and the expression of core SAC gene budding uninhibited by benzimidazoles related 1 (BubR1). Compared with the control, PE-treated cells showed (1) decreased incidences of MN, NPB and NB (p < 0.01); (2) decreased frequencies of all mitotic aberration biomarkers (p < 0.01); and (3) decreased AMR (p < 0.01) and increased BubR1 expression (p < 0.001). The results revealed PE has the potential to protect human normal colon epithelial cells from mitotic and genomic damages partially by enhancing the function of SAC. PMID:27598149

  19. T cell receptor-zeta and granzyme B expression in mononuclear cell infiltrates in normal colon mucosa and colon carcinoma.

    PubMed Central

    Mulder, W M; Bloemena, E; Stukart, M J; Kummer, J A; Wagstaff, J; Scheper, R J

    1997-01-01

    BACKGROUND: Whereas the presence of a lymphoid infiltrate has been associated with a favourable prognosis in colorectal carcinoma, the proliferative and cytotoxic responses of freshly isolated tumour infiltrating lymphocytes are frequently impaired. In mice, tumour induced immune suppression has been associated with a decreased expression of the zeta-chain of the T cell receptor (TCR)-CD3 complex, and loss of mRNA for granzyme B. AIM: To compare the expression of TCR-zeta and granzyme B in lymphocytes infiltrating normal colonic mucosa and Duke's A and D colorectal carcinomas. SPECIMENS: Paraffin wax embedded normal (n = 10) and malignant colonic mucosa (seven Dukes's A, nine Dukes's D). METHOD: Immunohistochemistry. RESULTS: The numbers of TCR-zeta + lymphocytes decreased from normal mucosa to Dukes's D carcinomas. In contrast, granzyme B+ lymphocytes were more frequent in Dukes's A carcinomas than in normal mucosa, but disappeared from advanced stage tumours. Granzyme B expressing cells were mainly CD3- (natural killer/lymphokine activated killer cells) in normal mucosa, but CD3+ in tumours, indicating the presence of activated cytotoxic T lymphocytes. In vitro culture of tumour infiltrating lymphocytes rapidly restored the expression of both molecules. CONCLUSION: The frequency of TCR-zeta + and granzyme B+ lymphocytes is decreased in advanced stage colorectal carcinomas. The restoration of expression during in vitro stimulation suggests the presence of tumour derived suppressive factors in situ. Images PMID:9155587

  20. Vasopressin regulation of epithelial colonic proliferation and permeability is mediated by pericryptal platelet-derived growth factor A.

    PubMed

    Miró, Lluïsa; Pérez-Bosque, Anna; Maijó, Mònica; Naftalin, Richard J; Moretó, Miquel

    2014-10-01

    Arginine vasopressin (AVP) has trophic effects on the rat distal colon, increasing the growth of pericryptal myofibroblasts and reducing the colonic crypt wall permeability. This study aimed to reproduce in vitro the effects of AVP observed in vivo using cultures of human CCD-18Co myofibroblasts and T84 colonic epithelial cells. Proliferation of myofibroblasts was quantified by bromodeoxyuridine incorporation; the expression of platelet-derived growth factor A (PDGFA), platelet-derived growth factor B, epidermal growth factor, transforming growth factor-β and vascular endothelial growth factor was measured by PCR and the expression of epithelial junction proteins by Western blot. Arginine vasopressin stimulated myofibroblast proliferation and the expression of PDGFA without affecting the expression of platelet-derived growth factor B, epidermal growth factor, transforming growth factor-β or vascular endothelial growth factor. These effects were prevented when AVP receptor inhibitors were present in the medium. Pre-incubation of CCD-18Co cells with anti-PDGF antibody or with an inhibitor of the PDGF receptor abolished the effects of AVP. When colonocytes were incubated with medium obtained from myofibroblasts incubated with AVP, both cell proliferation and the expression of epithelial junction proteins increased; however, direct incubation of colonocytes with AVP did not modify these variables. These results demonstrate that AVP stimulates myofibroblast proliferation and induces PDGFA secretion, implying that PDGFA mediates local myofibroblast proliferation by an autocrine feedback loop and regulates epithelial proliferation and permeability by a paracrine mechanism. PMID:25085844

  1. Mammary fibroblasts regulate morphogenesis of normal and tumorigenic breast epithelial cells by mechanical and paracrine signals

    PubMed Central

    Lühr, Inke; Friedl, Andreas; Overath, Thorsten; Tholey, Andreas; Kunze, Thomas; Hilpert, Felix; Sebens, Susanne; Arnold, Norbert; Rösel, Frank; Oberg, Hans-Heinrich; Maass, Nicolai; Mundhenke, Christoph; Jonat, Walter; Bauer, Maret

    2013-01-01

    Stromal factors play a critical role in the development of the mammary gland. Using a three dimensional-coculture model we demonstrate a significant role for stromal fibroblasts in the regulation of normal mammary epithelial morphogenesis and the control of tumor growth. Both soluble factors secreted by fibroblasts and fibroblast-derived modifications of the matrix compliance contribute to the regulation of epithelial cell morphogenesis. Readjustment of matrix tension by fibroblasts can even induce a phenotypic reversion of breast carcinoma cells. These data offer a basis to develop new strategies for the normalization of the tumor stroma as an innovative target in cancer therapy. PMID:22776560

  2. Capsaicin induces NKCC1 internalization and inhibits chloride secretion in colonic epithelial cells independently of TRPV1

    PubMed Central

    Tang, Xu; Weber, Christopher R.; Shen, Le; Turner, Jerrold R.; Matthews, Jeffrey B.

    2013-01-01

    Colonic chloride secretion is regulated via the neurohormonal and immune systems. Exogenous chemicals (e.g., butyrate, propionate) can affect chloride secretion. Capsaicin, the pungent ingredient of the chili peppers, exerts various effects on gastrointestinal function. Capsaicin is known to activate the transient receptor potential vanilloid type 1 (TRPV1), expressed in the mesenteric nervous system. Recent studies have also demonstrated its presence in epithelial cells but its role remains uncertain. Because capsaicin has been reported to inhibit colonic chloride secretion, we tested whether this effect of capsaicin could occur by direct action on epithelial cells. In mouse colon and model T84 human colonic epithelial cells, we found that capsaicin inhibited forskolin-dependent short-circuit current (FSK-Isc). Using PCR and Western blot, we demonstrated the presence of TRPV1 in colonic epithelial cells. In T84 cells, TRPV1 localized at the basolateral membrane and in vesicular compartments. In permeabilized monolayers, capsaicin activated apical chloride conductance, had no effect on basolateral potassium conductance, but induced NKCC1 internalization demonstrated by immunocytochemistry and basolateral surface biotinylation. AMG-9810, a potent inhibitor of TRPV1, did not prevent the inhibition of the FSK-Isc by capsaicin. Neither resiniferatoxin nor N-oleoyldopamine, two selective agonists of TRPV1, blocked the FSK-Isc. Conversely capsaicin, resiniferatoxin, and N-oleoyldopamine raised intracellular calcium ([Ca2+]i) in T84 cells and AMG-9810 blocked the rise in [Ca2+]i induced by capsaicin and resiniferatoxin suggesting the presence of a functional TRPV1 channel. We conclude that capsaicin inhibits chloride secretion in part by causing NKCC1 internalization, but by a mechanism that appears to be independent of TRPV1. PMID:23139219

  3. Capsaicin induces NKCC1 internalization and inhibits chloride secretion in colonic epithelial cells independently of TRPV1.

    PubMed

    Bouyer, Patrice G; Tang, Xu; Weber, Christopher R; Shen, Le; Turner, Jerrold R; Matthews, Jeffrey B

    2013-01-15

    Colonic chloride secretion is regulated via the neurohormonal and immune systems. Exogenous chemicals (e.g., butyrate, propionate) can affect chloride secretion. Capsaicin, the pungent ingredient of the chili peppers, exerts various effects on gastrointestinal function. Capsaicin is known to activate the transient receptor potential vanilloid type 1 (TRPV1), expressed in the mesenteric nervous system. Recent studies have also demonstrated its presence in epithelial cells but its role remains uncertain. Because capsaicin has been reported to inhibit colonic chloride secretion, we tested whether this effect of capsaicin could occur by direct action on epithelial cells. In mouse colon and model T84 human colonic epithelial cells, we found that capsaicin inhibited forskolin-dependent short-circuit current (FSK-I(sc)). Using PCR and Western blot, we demonstrated the presence of TRPV1 in colonic epithelial cells. In T84 cells, TRPV1 localized at the basolateral membrane and in vesicular compartments. In permeabilized monolayers, capsaicin activated apical chloride conductance, had no effect on basolateral potassium conductance, but induced NKCC1 internalization demonstrated by immunocytochemistry and basolateral surface biotinylation. AMG-9810, a potent inhibitor of TRPV1, did not prevent the inhibition of the FSK-I(sc) by capsaicin. Neither resiniferatoxin nor N-oleoyldopamine, two selective agonists of TRPV1, blocked the FSK-I(sc). Conversely capsaicin, resiniferatoxin, and N-oleoyldopamine raised intracellular calcium ([Ca(2+)](i)) in T84 cells and AMG-9810 blocked the rise in [Ca(2+)](i) induced by capsaicin and resiniferatoxin suggesting the presence of a functional TRPV1 channel. We conclude that capsaicin inhibits chloride secretion in part by causing NKCC1 internalization, but by a mechanism that appears to be independent of TRPV1. PMID:23139219

  4. Tissue-specific patterns of gene expression in the epithelium and stroma of normal colon in healthy individuals in an aspirin intervention trial.

    PubMed

    Thomas, Sushma S; Makar, Karen W; Li, Lin; Zheng, Yingye; Yang, Peiying; Levy, Lisa; Rudolph, Rebecca Y; Lampe, Paul D; Yan, Min; Markowitz, Sanford D; Bigler, Jeannette; Lampe, Johanna W; Potter, John D

    2015-12-01

    Regular aspirin use reduces colon adenoma and carcinoma incidence. UDP-glucuronosyltransferases (UGT) are involved in aspirin metabolism and clearance, and variant alleles in UGT1A6 have been shown to alter salicylic acid metabolism and risk of colon neoplasia. In a randomized, cross-over, placebo-controlled trial of 44 healthy men and women, homozygous for UGT1A6*1 or UGT1A6*2, we explored differences between global epithelial and stromal expression, using Affymetrix U133 + 2.0 microarrays and tested effects of 60-day aspirin supplementation (325 mg/d) on epithelial and stromal gene expression and colon prostaglandin E2 (PGE2) levels. We conducted a comprehensive study of differential gene expression between normal human colonic epithelium and stroma from healthy individuals. Although no statistically significant differences in gene expression were observed in response to aspirin or UGT1A6 genotype, we have identified the genes uniquely and reproducibly expressed in each tissue type and have analyzed the biologic processes they represent. Here we describe in detail how the data, deposited in the Gene Expression Omnibus (GEO) - accession number GSE71571 - was generated including the basic analysis as contained in the manuscript published in BMC Medical Genetics with the PMID 25927723 (Thomas et al., 2015 [9]). PMID:26697360

  5. Biobanking of Fresh-Frozen Human Adenocarcinomatous and Normal Colon Tissues: Which Parameters Influence RNA Quality?

    PubMed

    Galissier, Thibaut; Schneider, Christophe; Nasri, Saviz; Kanagaratnam, Lukshe; Fichel, Caroline; Coquelet, Christelle; Diebold, Marie-Danièle; Kianmanesh, Reza; Bellon, Georges; Dedieu, Stéphane; Marchal Bressenot, Aude; Boulagnon-Rombi, Camille

    2016-01-01

    Medical research projects become increasingly dependent on biobanked tissue of high quality because the reliability of gene expression is affected by the quality of extracted RNA. Hence, the present study aimed to determine if clinical, surgical, histological, and molecular parameters influence RNA quality of normal and tumoral frozen colonic tissues. RNA Quality Index (RQI) was evaluated on 241 adenocarcinomas and 115 matched normal frozen colon tissues collected between October 2006 and December 2012. RQI results were compared to patients' age and sex, tumor site, kind of surgery, anastomosis failure, adenocarcinoma type and grade, tumor cell percentage, necrosis extent, HIF-1α and cleaved caspase-3 immunohistochemistry, and BRAF, KRAS and microsatellites status. The RQI was significantly higher in colon cancer tissue than in matched normal tissue. RQI from left-sided colonic cancers was significantly higher than RQI from right-sided cancers. The RNA quality was not affected by ischemia and storage duration. According to histological control, 7.9% of the samples were unsatisfactory because of inadequate sampling. Biobanked tumoral tissues with RQI ≥5 had lower malignant cells to stromal cells ratio than samples with RQI <5 (p <0.05). Cellularity, necrosis extent and mucinous component did not influence RQI results. Cleaved caspase-3 and HIF-1α immunolabelling were not correlated to RQI. BRAF, KRAS and microsatellites molecular status did not influence RNA quality. Multivariate analysis revealed that the tumor location, the surgical approach (laparoscopy versus open colectomy) and the occurrence of anastomotic leakage were the only parameters influencing significantly RQI results of tumor samples. We failed to identify parameter influencing RQI of normal colon samples. These data suggest that RNA quality of colonic adenocarcinoma biospecimens is determined by clinical and surgical parameters. More attention should be paid during the biobanking procedure of

  6. Biobanking of Fresh-Frozen Human Adenocarcinomatous and Normal Colon Tissues: Which Parameters Influence RNA Quality?

    PubMed Central

    Galissier, Thibaut; Schneider, Christophe; Nasri, Saviz; Kanagaratnam, Lukshe; Fichel, Caroline; Coquelet, Christelle; Diebold, Marie-Danièle; Kianmanesh, Reza; Bellon, Georges; Dedieu, Stéphane; Marchal Bressenot, Aude

    2016-01-01

    Medical research projects become increasingly dependent on biobanked tissue of high quality because the reliability of gene expression is affected by the quality of extracted RNA. Hence, the present study aimed to determine if clinical, surgical, histological, and molecular parameters influence RNA quality of normal and tumoral frozen colonic tissues. RNA Quality Index (RQI) was evaluated on 241 adenocarcinomas and 115 matched normal frozen colon tissues collected between October 2006 and December 2012. RQI results were compared to patients’ age and sex, tumor site, kind of surgery, anastomosis failure, adenocarcinoma type and grade, tumor cell percentage, necrosis extent, HIF-1α and cleaved caspase-3 immunohistochemistry, and BRAF, KRAS and microsatellites status. The RQI was significantly higher in colon cancer tissue than in matched normal tissue. RQI from left-sided colonic cancers was significantly higher than RQI from right-sided cancers. The RNA quality was not affected by ischemia and storage duration. According to histological control, 7.9% of the samples were unsatisfactory because of inadequate sampling. Biobanked tumoral tissues with RQI ≥5 had lower malignant cells to stromal cells ratio than samples with RQI <5 (p <0.05). Cellularity, necrosis extent and mucinous component did not influence RQI results. Cleaved caspase-3 and HIF-1α immunolabelling were not correlated to RQI. BRAF, KRAS and microsatellites molecular status did not influence RNA quality. Multivariate analysis revealed that the tumor location, the surgical approach (laparoscopy versus open colectomy) and the occurrence of anastomotic leakage were the only parameters influencing significantly RQI results of tumor samples. We failed to identify parameter influencing RQI of normal colon samples. These data suggest that RNA quality of colonic adenocarcinoma biospecimens is determined by clinical and surgical parameters. More attention should be paid during the biobanking procedure of

  7. Cultivated Vaginal Microbiomes Alter HIV-1 Infection and Antiretroviral Efficacy in Colonized Epithelial Multilayer Cultures

    PubMed Central

    Pyles, Richard B.; Vincent, Kathleen L.; Baum, Marc M.; Elsom, Barry; Miller, Aaron L.; Maxwell, Carrie; Eaves-Pyles, Tonyia D.; Li, Guangyu; Popov, Vsevolod L.; Nusbaum, Rebecca J.; Ferguson, Monique R.

    2014-01-01

    There is a pressing need for modeling of the symbiotic and at times dysbiotic relationship established between bacterial microbiomes and human mucosal surfaces. In particular clinical studies have indicated that the complex vaginal microbiome (VMB) contributes to the protection against sexually-transmitted pathogens including the life-threatening human immunodeficiency virus (HIV-1). The human microbiome project has substantially increased our understanding of the complex bacterial communities in the vagina however, as is the case for most microbiomes, very few of the community member species have been successfully cultivated in the laboratory limiting the types of studies that can be completed. A genetically controlled ex vivo model system is critically needed to study the complex interactions and associated molecular dialog. We present the first vaginal mucosal culture model that supports colonization by both healthy and dysbiotic VMB from vaginal swabs collected from routine gynecological patients. The immortalized vaginal epithelial cells used in the model and VMB cryopreservation methods provide the opportunity to reproducibly create replicates for lab-based evaluations of this important mucosal/bacterial community interface. The culture system also contains HIV-1 susceptible cells allowing us to study the impact of representative microbiomes on replication. Our results show that our culture system supports stable and reproducible colonization by VMB representing distinct community state types and that the selected representatives have significantly different effects on the replication of HIV-1. Further, we show the utility of the system to predict unwanted alterations in efficacy or bacterial community profiles following topical application of a front line antiretroviral. PMID:24676219

  8. Aqueous Extracts of Selected Potentilla Species Modulate Biological Activity of Human Normal Colon Cells.

    PubMed

    Paduch, Roman; Wiater, Adrian; Locatelli, Marcello; Pleszczyńska, Malgorzata; Tomczyk, Michal

    2015-01-01

    Potentilla L. (Rosaceae) species have been used in traditional and in folk medicine for many years. This study characterized the activity of extracts from aerial parts of selected Potentilla species: P. argentea, P. anserina, P. grandiflora and P. erecta as well as one species of closely related to the genus Potentilla, Drymocallis rupestris (syn. P. rupestris). The biological activities were analyzed using MTT, NR and DPPH assays on CCD 841 CoTr and CCD-18Co cells. Moreover, cell morphology and cytoskeletal actin F-filaments organization and IL-6 and IL-10 levels by ELISA were analyzed after 24 h of incubation. Potentilla extracts at dose levels between 25 and 250 µg/mL were analyzed. For ELISA, 15 µg/mL and 30 μg/mL were chosen. When mitochondrial succinyl dehydrogenase activity was tested (MTT assay) only extract obtained from P. erecta at lower concentrations (up to 125 µg/mL) suppressed metabolism of myofibroblasts, while epithelial cells mitochondrial enzyme activity increased after incubation with all extracts. In Neutral Red (NR) method cellular membrane disturbance of both cell cultures was found after D. rupestris and P. grandiflora addition. Moreover, strong influence on epithelial cells was also found for P. anserina. All extracts showed similar, concentration-dependent free radical scavenging (DPPH) effect. Potentilla extracts, especially at lower concentration, decreased IL-6 production in myofibroblasts but the level of the cytokine was found to be stable in epithelial cells. IL-10 analysis revealed that P. argentea, D. rupestris, P. erecta extracts decrease cytokine level in myofibroblasts, while only when higher concentration were applied, decreased cytokine level produced by epithelial cells was found. F-actin filaments staining revealed that Potentilla extracts significantly influence on cellular cytoskeleton organization. Potentilla extracts influence on cells of human colon wall lining modulating the main features of them (viability

  9. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  10. Loss of EP2 receptor subtype in colonic cells compromise epithelial barrier integrity by altering claudin-4.

    PubMed

    Lejeune, Manigandan; Moreau, France; Chadee, Kris

    2014-01-01

    Prostaglandin E2 (PGE2) is a bioactive lipid mediator that exerts its biological function through interaction with four different subtypes of E-Prostanoid receptor namely EP1, EP2, EP3 and EP4. It has been known that EP2 receptor is differentially over-expressed in the epithelia of inflamed human colonic mucosa. However, the significance of the differential expression in altering epithelial barrier function is not known. In this study, we used Caco-2 cells expressing EP2 receptor, either high (EP2S) or low (EP2A), as a model epithelia and determined the barrier function of these cell monolayers by measuring the trans epithelial resistance (TER). Basal TER of EP2A (but not EP2S) monolayer was significantly lower suggesting a loss of colonic epithelial barrier integrity. In comparison, the TER of wild type Caco-2 was decreased in response to an EP2 receptor specific antagonist (AH-6809) indicating an important role for EP2 receptor in the maintenance of epithelial barrier function. The decrease TER in EP2A monolayer corresponded with a significant loss of the tight junction (TJ) protein claudin-4 without affecting other major TJ proteins. Similarly, EP2 receptor antagonism/siRNA based silencing significantly decreased claudin-4 expression in EP2S cells. Surprisingly, alteration in claudin-4 was not transcriptionally regulated in EP2A cells but rather undergoes increased proteosomal degradation. Moreover, among the TER compromising cytokines examined (IL-8, IL-1β, TNF-α, IFN-γ) only IFN-γ was significantly up regulated in EP2A cells. However, IFN-γ did not significantly decreased claudin-4 expression in Caco-2 cells indicating no role for IFN-γ in degrading claudin-4. We conclude that differential down-regulation of EP2 receptor play a major role in compromising colonic epithelial barrier function by selectively increasing proteosomal degradation of claudin-4. PMID:25396731

  11. Okadaic Acid Toxin at Sublethal Dose Produced Cell Proliferation in Gastric and Colon Epithelial Cell Lines

    PubMed Central

    del Campo, Miguel; Toledo, Héctor; Lagos, Néstor

    2013-01-01

    The aim of this study was to analyze the effect of Okadaic Acid (OA) on the proliferation of gastric and colon epithelial cells, the main target tissues of the toxin. We hypothesized that OA, at sublethal doses, activates multiple signaling pathways, such as Erk and Akt, through the inhibition of PP2A. To demonstrate this, we carried out curves of doses and time response against OA in AGS, MKN-45 and Caco 2 cell lines, and found an increase in the cell proliferation at sublethal doses, at 24 h or 48 h exposure. Indeed, cells can withstand high concentrations of the toxin at 4 h exposure, the time chosen considering the maximum time before total gastric emptying. We have proved that this increased proliferation is due to an overexpression of Cyclin B, a cyclin that promotes the passage from G2 to mitosis. In addition, we have demonstrated that OA induces activation of Akt and Erk in the three cells lines, showing that OA can activate pathways involved in oncogenesis. In conclusion, this study contributes to the knowledge about the possible effects of chronic OA consumption. PMID:24317467

  12. Vasoactive intestinal peptide stimulates protein phosphorylation in a colonic epithelial cell line

    SciTech Connect

    Cohn, J.A.

    1987-09-01

    The T/sub 84/ colonic epithelial cell line was used to examine protein phosphorylation during neurohumoral stimulation of ion transport. T/sub 84/ cell monolayers grown on collagen-coated filters were mounted in Ussing chambers to measure ion transport stimulated by vasoactive intestinal peptide. Maximal stimulation of active secretion occurred after 8-10 min of stimulation. Protein phosphorylation events accompanying stimulated secretion were detected using two-dimensional gel electrophoresis to resolve phosphoproteins from monolayers previously labeled using /sup 32/P/sub i/. Within 8 min of exposure to vasoactive intestinal peptide, several phosphorylation events were detected, including a two- to fivefold increase in /sup 32/P incorporation into four soluble proteins with apparent molecular weights of 17,000, 18,000, 23,000, and 37,000. The same phosphorylation response occurs in monolayers stimulated by dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP), suggesting that cAMP mediates these intracellular events. This study indicates that changes in protein phosphorylation accompany the secretory action of vasocactive intestinal peptide and suggests that T/sub 84/ cells offer a useful model for studying the possibility that such phosphorylation events regulate enterocyte ion transport.

  13. Colon epithelial cell differentiation is inhibited by constitutive c-myb expression or mutant APC plus activated RAS.

    PubMed

    Ramsay, Robert G; Ciznadija, Daniel; Sicurella, Catherine; Reyes, Nancy; Mitchelhill, Ken; Darcy, Phillip K; D'Abaco, Giovanna; Mantamadiotis, Theo

    2005-01-01

    Blocked differentiation is a hallmark of cancer cells and the restoration of differentiation programs in vivo is an actively pursued clinical aim. Understanding the key regulators of cyto-differentiation may focus therapies on molecules that reactivate this process. c-myb expression declines rapidly when human colon cancer epithelial cells are induced to differentiate with the physiologically relevant short-chain fatty acid, sodium butyrate. These cells show increased expression of alkaline phosphatase and cytokeratin 8. Similarly, murine Immorto-epithelial cells derived from wild-type colon cells also show c-myb mRNA declines when induced to differentiate with sodium butyrate. Immorto-cells harboring a single APC mutation are indistinguishable from wild-type cells with regard to differentiation, while addition of activated RAS alone markedly enhances differentiation. In marked contrast, complete differentiation arrest occurs when both APC and RAS are mutated. Expression of MybER, a 4-hydroxytamoxifen-activatable form of c-Myb, blocks differentiation in wildtype and APC mutant Immorto-cell lines as well as LIM1215 human colon carcinoma cells. These data identify two pathways of oncogenic change that lead to retarded epithelial cell differentiation, one involving the presence of a single APC mutation in conjunction with activated RAS or alternatively constitutive c-myb expression. PMID:15684716

  14. Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ashraf, Sumara; Ahmad, Shakil; Ikram, Masroor

    2015-05-01

    Mueller matrix polarimetry along with polar decomposition algorithm was employed for the characterization of ex vivo normal and adenocarcinoma human colon tissues by polarized light in the visible spectral range (425-725 nm). Six derived polarization metrics [total diattenuation (DT), retardance (RT), depolarization (ΔT), linear diattenuation (DL), retardance (δ), and depolarization (ΔL)] were compared for normal and adenocarcinoma colon tissue samples. The results show that all six polarimetric properties for adenocarcinoma samples were significantly higher as compared to the normal samples for all wavelengths. The Wilcoxon rank sum test illustrated that total retardance is a good candidate for the discrimination of normal and adenocarcinoma colon samples. Support vector machine classification for normal and adenocarcinoma based on the four polarization properties spectra (ΔT, ΔL, RT,and δ) yielded 100% accuracy, sensitivity, and specificity, while both DT and D showed 66.6%, 33.3%, and 83.3% accuracy, sensitivity, and specificity, respectively. The combination of polarization analysis and given classification methods provides a framework to distinguish the normal and cancerous tissues.

  15. Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry.

    PubMed

    Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ashraf, Sumara; Ahmad, Shakil; Ikram, Masroor

    2015-05-01

    Mueller matrix polarimetry along with polar decomposition algorithm was employed for the characterization of ex vivo normal and adenocarcinoma human colon tissues by polarized light in the visible spectral range (425-725 nm). Six derived polarization metrics [total diattenuation (DT ), retardance (RT ), depolarization(ΔT ), linear diattenuation (DL), retardance (δ), and depolarization (ΔL)] were compared for normal and adenocarcinoma colon tissue samples. The results show that all six polarimetric properties for adenocarcinoma samples were significantly higher as compared to the normal samples for all wavelengths. The Wilcoxon rank sum test illustrated that total retardance is a good candidate for the discrimination of normal and adenocarcinoma colon samples. Support vector machine classification for normal and adenocarcinoma based on the four polarization properties spectra (ΔT , ΔL, RT ,and δ) yielded 100% accuracy, sensitivity, and specificity, while both DTa nd DL showed 66.6%, 33.3%, and 83.3% accuracy, sensitivity, and specificity, respectively. The combination of polarization analysis and given classification methods provides a framework to distinguish the normal and cancerous tissues. PMID:26021717

  16. Antioxidant macromolecules in the epithelial lining fluid of the normal human lower respiratory tract.

    PubMed Central

    Cantin, A M; Fells, G A; Hubbard, R C; Crystal, R G

    1990-01-01

    We hypothesized that the alveolar structures may contain extracellular macromolecules with antioxidant properties to defend against oxidants. To evaluate this 51Cr-labeled human lung fibroblasts (HFL-1) and cat lung epithelial cells (AKD) were exposed to a H2O2-generating system and alveolar epithelial lining fluid (ELF) from healthy nonsmokers was tested for its ability to protect the lung cells from H2O2-mediated injury. The ELF provided marked antioxidant protection, with most from a H2O-soluble fraction in the 100-300-kD range. Plasma proteins with anti-H2O2 properties were in insufficient concentrations to provide the antioxidant protection observed. However, catalase, a normal intracellular antioxidant, was present in sufficient concentration to account for most of the observed anti-H2O2 properties of ELF. Depletion of ELF with an anticatalase antibody abolished the anti-H2O2 macromolecular defenses of ELF. Since catalase is not normally released by cells, a likely explanation for its presence in high concentrations in normal ELF is that it is released by lung inflammatory and parenchymal cells onto the epithelial surface of the lower respiratory tract during their normal turnover and collects there due to the slow turnover of ELF. It is likely that catalase in the ELF of normal individuals plays a role in protecting lung parenchymal cells against oxidants present in the extracellular milieu. Images PMID:2394842

  17. Empirical comparison of color normalization methods for epithelial-stromal classification in H and E images

    PubMed Central

    Sethi, Amit; Sha, Lingdao; Vahadane, Abhishek Ramnath; Deaton, Ryan J.; Kumar, Neeraj; Macias, Virgilia; Gann, Peter H.

    2016-01-01

    Context: Color normalization techniques for histology have not been empirically tested for their utility for computational pathology pipelines. Aims: We compared two contemporary techniques for achieving a common intermediate goal – epithelial-stromal classification. Settings and Design: Expert-annotated regions of epithelium and stroma were treated as ground truth for comparing classifiers on original and color-normalized images. Materials and Methods: Epithelial and stromal regions were annotated on thirty diverse-appearing H and E stained prostate cancer tissue microarray cores. Corresponding sets of thirty images each were generated using the two color normalization techniques. Color metrics were compared for original and color-normalized images. Separate epithelial-stromal classifiers were trained and compared on test images. Main analyses were conducted using a multiresolution segmentation (MRS) approach; comparative analyses using two other classification approaches (convolutional neural network [CNN], Wndchrm) were also performed. Statistical Analysis: For the main MRS method, which relied on classification of super-pixels, the number of variables used was reduced using backward elimination without compromising accuracy, and test - area under the curves (AUCs) were compared for original and normalized images. For CNN and Wndchrm, pixel classification test-AUCs were compared. Results: Khan method reduced color saturation while Vahadane reduced hue variance. Super-pixel-level test-AUC for MRS was 0.010–0.025 (95% confidence interval limits ± 0.004) higher for the two normalized image sets compared to the original in the 10–80 variable range. Improvement in pixel classification accuracy was also observed for CNN and Wndchrm for color-normalized images. Conclusions: Color normalization can give a small incremental benefit when a super-pixel-based classification method is used with features that perform implicit color normalization while the gain is

  18. Simple method for the preparation of single cell suspensions from normal and tumorous rat colonic mucosa.

    PubMed Central

    Perret, V; Lev, R; Pigman, W

    1977-01-01

    Viable single cell suspensions from rat colonic epithelium were obtained by using phosphate buffered saline containing 0-2 M mannitol. The method, which requires no prior enzyme treatment, provides undamaged cells in high yield within one hour. The procedure was also applied to neoplastic rat colonic tissue, which was induced by repeated intrarectal infusion of N-methyl-N-nitrosourea. Comparison between normal and neoplastic cells has shown that the latter have a higher nucleus: cytoplasm ratio and a higher metabolic activity. Images Figure PMID:873323

  19. Direct effect of croton oil on intestinal epithelial cells and colonic smooth muscle cells

    PubMed Central

    Wang, Xin; Lan, Mei; Wu, Han-Ping; Shi, Yong-Quan; Lu, Ju; Ding, Jie; Wu, Kai-Cun; Jin, Jian-Ping; Fan, Dai Ming

    2002-01-01

    AIM: To investigate the direct effect of croton oil (CO) on human intestinal epithelial cell (HIEC) and guinea pig colonic smooth muscle cells in vitro. METHODS: Growth curves of HIEC were drawn by MTT colorimetry. The dynamics of cell proliferation was analyzed with flow cytometry, and morphological changes were observed under light and electron microscopy after long-term (6 weeks) treatment with CO.Expression of cyclooxygenase-2 (COX-2) mRNA was detected by dot blot in HIEC treated with CO. Genes related to CO were screened by DD-PCR, and the direct effect of CO on the contractility of isolated guinea pig colonic smooth muscle cells was observed. RESULTS: High concentration (20-40 mg·L-1) CO inhibited cell growth significantly (1, 3, 5, 7 d OD sequence: (20 mg·L-1 ) 0.040 ± 0.003, 0.081 ± 0.012, 0.147 ± 0.022,0.024 ± 0.016; (40 mg·L-1) 0.033 ± 0.044, 0.056 ± 0.012, 0.104 ± 0.010, 0.189 ± 0.006; OD control 0.031 ± 0.008, 0.096 ± 0.012, 0.173 ± 0.009, 0.300 ± 0.016, P < 0.01), which appeared to be related directly to the dosage. Compared with the control, the fraction number of cells in G1 phase decreased from 0.60 to 0.58, while that in S phase increased from 0.30 to 0.34 and DNA index also increased after 6 weeks of treatment with CO (the dosage was increased gradually from 4 to 40 mg·L-1). Light microscopic observation revealed that cells had karyomegaly, less plasma and karyoplasm lopsidedness. Electron microscopy also showed an increase in cell proliferation and in the quantity of abnormal nuclei with pathologic mitosis. Expression of COX-2 mRNA decreased significantly in HIEC treated with CO. Thirteen differential cDNA fragments were cloned from HIEC treated with CO, one of which was 100 percent homologous with human mitochondrial cytochrome C oxidase subunit II. The length of isolated guinea pig colonic smooth muscle cells was significantly shortened after treatment with CO (P < 0.05). CONCLUSION: At a high CO concentration ( > 20 mg·L-1

  20. Breast Cancer Stem Cells Transition between Epithelial and Mesenchymal States Reflective of their Normal Counterparts

    PubMed Central

    Liu, Suling; Cong, Yang; Wang, Dong; Sun, Yu; Deng, Lu; Liu, Yajing; Martin-Trevino, Rachel; Shang, Li; McDermott, Sean P.; Landis, Melissa D.; Hong, Suhyung; Adams, April; D’Angelo, Rosemarie; Ginestier, Christophe; Charafe-Jauffret, Emmanuelle; Clouthier, Shawn G.; Birnbaum, Daniel; Wong, Stephen T.; Zhan, Ming; Chang, Jenny C.; Wicha, Max S.

    2013-01-01

    Summary Previous studies have suggested that breast cancer stem cells (BCSCs) mediate metastasis, are resistant to radiation and chemotherapy, and contribute to relapse. Although several BCSC markers have been described, it is unclear whether these markers identify the same or independent BCSCs. Here, we show that BCSCs exist in distinct mesenchymal-like (epithelial-mesenchymal transition [EMT]) and epithelial-like (mesenchymal-epithelial transition [MET]) states. Mesenchymal-like BCSCs characterized as CD24−CD44+ are primarily quiescent and localized at the tumor invasive front, whereas epithelial-like BCSCs express aldehyde dehydrogenase (ALDH), are proliferative, and are located more centrally. The gene-expression profiles of mesenchymal-like and epithelial-like BCSCs are remarkably similar across different molecular subtypes of breast cancer, and resemble those of distinct basal and luminal stem cells found in the normal breast. We propose that the plasticity of BCSCs that allows them to transition between EMT- and MET-like states endows these cells with the capacity for tissue invasion, dissemination, and growth at metastatic sites. PMID:24511467

  1. Loss of APC protein expressed by human colonic epithelial cells and the appearance of a specific low-molecular-weight form is associated with apoptosis in vitro.

    PubMed

    Browne, S J; Williams, A C; Hague, A; Butt, A J; Paraskeva, C

    1994-10-01

    APC (adenomatous polyposis coli) protein is differentially expressed in the normal colonic crypt and believed to be involved in colonic cell maturation. In this work we investigated whether expression of the APC protein is associated with cell death in colonic epithelial cells. We have previously reported an in vitro system to study apoptosis. Briefly, cells attached to the flask have a low frequency of apoptosis (1-3%), whereas cells that detach from the flask and float in the medium have a high proportion of apoptotic cells (36-96% depending on the cell line). The full-length 300-kDa or truncated APC protein, normally expressed by the attached cells (detected using the FE9 antibody), was found to be lost in the floating apoptotic cells in 8/11 colon tumour cell lines examined. In addition, the APC antibody FE9 detected a 90-kDa protein in the floating apoptotic cells of all cell lines investigated, which was not present in attached cells. Furthermore, loss of full-length APC and gain of the 90-kDa protein was observed in the apoptotic cells of 2 cell lines derived from other tissues: the SV40-transformed fibroblast cell line CMSV40fib and the lymphoblastoid B-cell line BJA-B. In cells repeatedly frozen and thawed, believed to induce necrotic cell death, full-length or truncated APC was also lost, though a 95-kDa protein distinct from that in apoptotic cells was observed. Specific loss of full-length or truncated APC (resulting in a 90-kDa protein in apoptotic cells but a 95-kDa protein in necrotic cells) is therefore associated with cell death. Our findings suggest a possible role for APC in cell survival. PMID:7927905

  2. Direct demonstration of increased expression of Thomsen-Friedenreich (TF) antigen in colonic adenocarcinoma and ulcerative colitis mucin and its concealment in normal mucin.

    PubMed Central

    Campbell, B J; Finnie, I A; Hounsell, E F; Rhodes, J M

    1995-01-01

    Increased binding of the lectin peanut agglutinin is a common feature in epithelial malignancy and hyperplasia. This may have considerable functional importance in the intestine by allowing interaction between the epithelium and mitogenic lectins of dietary or microbial origin. Peanut agglutinin binds the disaccharide Thomsen-Friedenreich (TF, T or core 1) blood group antigen, Gal beta (1-3) GalNAc alpha-, but is not totally specific for this site. Consequently, there has been controversy about the presence of this structure in colon cancer; studies with anti-TF monoclonal antibodies have failed to detect it. We have examined the presence of TF antigen in colonic mucus glycoprotein (mucin) using endo-alpha-N-acetylgalactosaminidase (O-Glycanase), which specifically catalyzes the hydrolysis of TF antigen from glycoconjugates. Samples of adenocarcinoma, inflammatory bowel disease (ulcerative colitis), and normal mucin were treated with O-glycanase, the liberated disaccharide was separated from the glycoprotein and analyzed using dual CarboPac PA-100 column high performance anion-exchange chromatography coupled with pulsed amperometric detection. O-Glycanase treatment released increased amounts of TF antigen from both colonic adenocarcinoma (8.0 +/- 3.9 ng/micrograms protein, n = 11; P < 0.0001 ANOVA) and ulcerative colitis mucin (3.3 +/- 0.3 ng/micrograms protein, n = 5; P = 0.04) compared with mucin samples from histologically normal mucosa distant from carcinoma (1.5 +/- 1.1 ng/micrograms protein, n = 9). However, after mild acid treatment to remove sialic acids and fucose, releasable TF antigen was increased in all nine of these histologically normal mucin samples (5.5 +/- 2.6 ng/micrograms protein, P < 0.0002). We conclude that TF antigen is an oncofetal antigen which is expressed in colon cancer, but is concealed by further glycosylation (sialylation and/or fucosylation) in the normal colonic mucosa. PMID:7860740

  3. Fluticasone Induces Epithelial Injury and Alters Barrier Function in Normal Subjects

    PubMed Central

    MacRedmond, Ruth E.; Singhera, Gurpreet K.; Wadsworth, Samuel J.; Attridge, Susan; Bahzad, Mohammed; Williams, Kristy; Coxson, Harvey O.; White, Steven R.; Dorscheid, Delbert R.

    2014-01-01

    Objective The airway epithelium has a number of roles pivotal to the pathogenesis of asthma, including provision of a physical and immune barrier to the inhaled environment. Dysregulated injury and repair responses in asthma result in loss of airway epithelial integrity. Inhaled corticosteroids are a corner stone of asthma treatment. While effective in controlling asthma symptoms, they fail to prevent airway remodeling. Direct cytopathic effects on the airway epithelium may contribute to this. Methods This study examined the effects of a 4-week treatment regimen of inhaled fluticasone 500 μg twice daily in healthy human subjects. Induced sputum was collected for cell counts and markers of inflammation. Barrier function was examined by diethylenetriaminepentacetic acid (DTPA) clearance measured by nuclear scintillation scan, and albumin concentration in induced sputum. Results Steroid exposure resulted in epithelial injury as measured by a significant increase in the number of airway epithelial cells in induced sputum. There was no change in airway inflammation by induced sputum inflammatory cell counts or cytokine levels. Epithelial shedding was associated with an increase in barrier function, as measured by both a decrease in DTPA clearance and decreased albumin in induced sputum. This likely reflects the normal repair response. Conclusion Inhaled corticosteroids cause injury to normal airway epithelium. These effects warrant further evaluation in asthma, where the dysregulated repair response may contribute to airway remodeling. PMID:25324978

  4. Human Normal Bronchial Epithelial Cells: A Novel In Vitro Cell Model for Toxicity Evaluation

    PubMed Central

    Huang, Haiyan; Xia, Bo; Liu, Hongya; Li, Jie; Lin, Shaolin; Li, Tiyuan; Liu, Jianjun; Li, Hui

    2015-01-01

    Human normal cell-based systems are needed for drug discovery and toxicity evaluation. hTERT or viral genes transduced human cells are currently widely used for these studies, while these cells exhibited abnormal differentiation potential or response to biological and chemical signals. In this study, we established human normal bronchial epithelial cells (HNBEC) using a defined primary epithelial cell culture medium without transduction of exogenous genes. This system may involve decreased IL-1 signaling and enhanced Wnt signaling in cells. Our data demonstrated that HNBEC exhibited a normal diploid karyotype. They formed well-defined spheres in matrigel 3D culture while cancer cells (HeLa) formed disorganized aggregates. HNBEC cells possessed a normal cellular response to DNA damage and did not induce tumor formation in vivo by xenograft assays. Importantly, we assessed the potential of these cells in toxicity evaluation of the common occupational toxicants that may affect human respiratory system. Our results demonstrated that HNBEC cells are more sensitive to exposure of 10~20 nm-sized SiO2, Cr(VI) and B(a)P compared to 16HBE cells (a SV40-immortalized human bronchial epithelial cells). This study provides a novel in vitro human cells-based model for toxicity evaluation, may also be facilitating studies in basic cell biology, cancer biology and drug discovery. PMID:25861018

  5. Human normal bronchial epithelial cells: a novel in vitro cell model for toxicity evaluation.

    PubMed

    Feng, Wenqiang; Guo, Juanjuan; Huang, Haiyan; Xia, Bo; Liu, Hongya; Li, Jie; Lin, Shaolin; Li, Tiyuan; Liu, Jianjun; Li, Hui

    2015-01-01

    Human normal cell-based systems are needed for drug discovery and toxicity evaluation. hTERT or viral genes transduced human cells are currently widely used for these studies, while these cells exhibited abnormal differentiation potential or response to biological and chemical signals. In this study, we established human normal bronchial epithelial cells (HNBEC) using a defined primary epithelial cell culture medium without transduction of exogenous genes. This system may involve decreased IL-1 signaling and enhanced Wnt signaling in cells. Our data demonstrated that HNBEC exhibited a normal diploid karyotype. They formed well-defined spheres in matrigel 3D culture while cancer cells (HeLa) formed disorganized aggregates. HNBEC cells possessed a normal cellular response to DNA damage and did not induce tumor formation in vivo by xenograft assays. Importantly, we assessed the potential of these cells in toxicity evaluation of the common occupational toxicants that may affect human respiratory system. Our results demonstrated that HNBEC cells are more sensitive to exposure of 10~20 nm-sized SiO2, Cr(VI) and B(a)P compared to 16HBE cells (a SV40-immortalized human bronchial epithelial cells). This study provides a novel in vitro human cells-based model for toxicity evaluation, may also be facilitating studies in basic cell biology, cancer biology and drug discovery. PMID:25861018

  6. Effects of pro-inflammatory cytokines, lipopolysaccharide and COX-2 mediators on human colonic neuromuscular function and epithelial permeability.

    PubMed

    Safdari, B K; Sia, T C; Wattchow, D A; Smid, S D

    2016-07-01

    Chronic colitis is associated with decreased colonic muscle contraction and loss of mucosal barrier function. Pro-inflammatory cytokines and bacterial lipopolysaccharide (LPS) are important in the generation and maintenance of inflammation. While colitis is associated with upregulated COX-2 -derived prostanoids and nitric oxide (NO), the direct activity of pro-inflammatory cytokines on human colonic neuromuscular function is less clear. This study investigated the effects of IBD-associated pro-inflammatory cytokines IL-17, TNF-α, IL-1β and LPS on human colonic muscle strip contractility, alone and following inhibition of COX-2 or nitric oxide production. In addition, human colonic epithelial Caco-2 cell monolayers were treated with LPS or COX-2 mediators including prostaglandins (PGE2, PGF2α) or their corresponding ethanolamides (PGE2-EA or PGF2α-EA) over 48h and trans-epithelial electrical resistance used to record permeability changes. Longitudinal muscle strips were obtained from healthy colonic resection margins and mounted in organ baths following IL-17, TNF-α, IL-1β and bacterial LPS incubations in an explant setting over 20h. Contraction in response to acetylcholine (ACh) was then measured, before and after either COX-2 inhibition (nimesulide; 10(-5)M) or nitric oxide synthase (NOS) inhibition (l-NNA; 10(-4)M). None of the cytokine or LPS explant incubations affected the potency or maximum cholinergic contraction in vitro, and subsequent COX-2 blockade with nimesulide revealed a significant but similar decrease in potency of ACh-evoked contraction in control, LPS and cytokine-incubated muscle strips. Pre-treatment with l-NNA provided no functional differences in the potency or maximum contractile responses to ACh in cytokine or LPS-incubated colonic longitudinal smooth muscle. Only PGE2 transiently increased Caco-2 monolayer permeability at 24h, while LPS (10μg/ml) increased permeability over 24-48h. These findings indicate that cholinergic

  7. NOD2 Expression is Regulated by microRNAs in Colonic Epithelial HCT116 Cells

    PubMed Central

    Chuang, Alice Y.; Chuang, Jim C.; Zhai, Zili; Wu, Feng; Kwon, John H.

    2016-01-01

    Background Crohn's disease (CD) is associated with defective sensing of pathogens in genetically susceptible individuals. Nucleotide-binding oligomerization domain containing 2 (NOD2) mutations in coding regions are strongly linked to CD pathogenesis. Our laboratory has reported that microRNAs (miRNAs) are differentially expressed in CD. However, miRNA regulation of NOD2 remains unknown. This study was designed to determine whether miRNAs regulate NOD2 expression as well as downstream nuclear factor kappaB activation and inflammatory responses in colonic epithelial HCT116 cells. Methods NOD2 and miRNA expression in stimulated HCT116 cells were assessed by quantitative reverse transcription–polymerase chain reaction. Regulation of NOD2 expression by miRNAs was determined by luciferase reporter construct assays and transfection of specific miRNA mimics. Regulation of NOD2 signaling and immune response by miRNAs was assessed by transfection of mimics followed by muramyl dipeptide stimulation. Results Muramyl dipeptide-induced increases in NOD2, interleukin-8, and CXCL3 expression were inversely associated with miRNA expression. Overexpression of miR-192, miR-495, miR-512, and miR-671 suppressed NOD2 expression, muramyl dipeptide-mediated NF-κB activation, and messenger RNA expressions of interleukin-8 and CXCL3 in HCT116 cells. A single-nucleotide polymorphism (rs3135500) located in the NOD2 3′-untranslated region significantly reduced miR-192 effects on NOD2 gene expression. Conclusions To our knowledge, this is the first report demonstrating that miRNAs regulate NOD2 and its signaling pathway. Four miRNAs downregulate NOD2 expression, suppress NF-κB activity, and inhibit interleukin-8 and CXCL3 messenger RNA expression. Treatment of CD with miRNAs may represent a potential anti-inflammatory therapeutic strategy in CD patients with and without NOD2 gene mutations. PMID:24297055

  8. Paraneoplastic Erythrocytosis of Colon Cancer, with Serum Erythropoietin within the Normal Reference Range

    PubMed Central

    Kitayama, Hiromitsu; Kondo, Tomohiro; Sugiyama, Junko; Hirayama, Michiaki; Oyamada, Yumiko; Tsuji, Yasushi

    2016-01-01

    Patient: Female, 75 Final Diagnosis: Erythropoietin-secreting colon cancer Symptoms: None Medication: — Clinical Procedure: Immunohistochemistry Specialty: Hematology Objective: Rare disease Background: Paraneoplastic erythrocytosis can be brought on by ectopic erythropoietin production usually in kidney, brain, and liver tumor with increase of serum erythropoietin level. We report here a paraneoplastic erythrocytosis of colon cancer with serum erythropoietin within the normal reference, which required an immunohistologic test for erythropoietin-antibody to be diagnosed. Case Report: Our case report was of a 75-year-old woman with erythrocytosis. Her hemoglobin and serum erythropoietin levels were 191 g/dL and 12.6 IU/L (reference range, 9.1–32.8), respectively. Colonoscopy revealed an advanced sigmoid colon tumor 20 mm in diameter. She underwent colectomy, and immunohistochemical examination showed the colon adenocarcinoma was focally positive for erythropoietin-antibody. One month after the surgery, her hemoglobin level decreased to 117 g/L. Conclusions: Colon cancer can cause paraneoplastic erythrocytosis, and it is important to consider not simply the absolute serum erythropoietin level but also the serum erythropoietin level relative to simultaneously measured hemoglobin level. We should include paraneoplastic erythrocytosis as a differential diagnosis in cases of high hemoglobin level unexplained by other diseases. PMID:27318703

  9. Scaffold-Free Coculture Spheroids of Human Colonic Adenocarcinoma Cells and Normal Colonic Fibroblasts Promote Tumorigenicity in Nude Mice123

    PubMed Central

    Park, Jong-il; Lee, Jisu; Kwon, Ju-Lee; Park, Hong-Bum; Lee, Su-Yel; Kim, Ji-Yeon; Sung, Jaekye; Kim, Jin Man; Song, Kyu Sang; Kim, Kyung-Hee

    2016-01-01

    The aim of this study was to form a scaffold-free coculture spheroid model of colonic adenocarcinoma cells (CACs) and normal colonic fibroblasts (NCFs) and to use the spheroids to investigate the role of NCFs in the tumorigenicity of CACs in nude mice. We analysed three-dimensional (3D) scaffold-free coculture spheroids of CACs and NCFs. CAC Matrigel invasion assays and tumorigenicity assays in nude mice were performed to examine the effect of NCFs on CAC invasive behaviour and tumorigenicity in 3D spheroids. We investigated the expression pattern of fibroblast activation protein-α (FAP-α) by immunohistochemical staining. CAC monocultures did not form densely-packed 3D spheroids, whereas cocultured CACs and NCFs formed 3D spheroids. The 3D coculture spheroids seeded on a Matrigel extracellular matrix showed higher CAC invasiveness compared to CACs alone or CACs and NCFs in suspension. 3D spheroids injected into nude mice generated more and faster-growing tumors compared to CACs alone or mixed suspensions consisting of CACs and NCFs. FAP-α was expressed in NCFs-CACs cocultures and xenograft tumors, whereas monocultures of NCFs or CACs were negative for FAP-α expression. Our findings provide evidence that the interaction between CACs and NCFs is essential for the tumorigenicity of cancer cells as well as for tumor propagation. PMID:26947885

  10. Aloe vera gel facilitates re-epithelialization of corneal alkali burn in normal and diabetic rats

    PubMed Central

    Atiba, Ayman; Wasfy, Tamer; Abdo, Walied; Ghoneim, Ahmed; Kamal, Tarek; Shukry, Mustafa

    2015-01-01

    Purpose To investigate the efficacy of topical applied aloe vera (AV) and to facilitate the repair of the standardized alkaline corneal ulcer in normal and diabetic rats. Materials and methods The corneal alkali-burn injury model was established unilaterally in Wistar rats by filter paper saturated with 0.01 M NaOH contacting the eyes for 45 seconds. Rats were divided into four groups: normal control (NC), normal AV (NAV), diabetic control (DC), and diabetic AV (DAV). NAV and DAV groups were treated with AV gel eye drops four times daily, and NC and DC groups were treated with normal saline for 3 days. Corneal epithelial wound closure and degree of edema were recorded using slit lamp and optical coherence tomography at 0, 24, 48, and 72 hours postwounding. Histological examination was conducted to evaluate the degree of inflammation and the healing effect. Results Corneal epithelial wound healing was better in the NAV group than in the NC group, and it was significantly higher in the DAV group than in the DC group (P<0.05). In comparison to the DC group, DAV treated with AV demonstrated a marked reduction in edema at 48 and 72 hours. Histologically, corneal re-epithelialization was complete and higher in DAV group than that in DC group; moreover, the inflammatory cells were increased in DC group than DAV group (P<0.05). Conclusion This study demonstrated the efficacy of AV for enhanced corneal re-epithelialization, as well as reduced inflammatory response after alkali burn in rats; therefore, it could be useful as a therapy for diabetic keratopathy. PMID:26604672

  11. Analysis of normal and diseased colon mucosa using ultraviolet resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Boustany, Nada N.; Manoharan, Ramasamy; Dasari, Ramachandra R.; Feld, Michael S.

    1996-04-01

    Ultraviolet resonance Raman (UVRR) spectroscopy was used to characterize normal and diseased colon mucosa in vitro. A tunable mode-locked Titanium:Sapphire laser operating at 76 MHz was used to irradiate normal and diseased colon tissue samples with 251 nm light generated from the third harmonic of the fundamental radiation. The Raman scattered light was collected and analyzed using a 1 meter spectrometer fitted with a UV coated, liquid nitrogen cooled CCD detector. The measured spectra show prominent bands that correspond to those of known tissue constituents including nucleic acids, aromatic amino acids and lipids. Using the Raman lineshapes measured from pure solutions of nucleotides, tryptophan, tyrosine, FAD, and from lipid-rich serosal fat, the colon spectra were modeled by a least square fitting algorithm whereby the colon spectra were assumed to be a linear combination of the pure biochemical lineshapes. The relative Raman scattering cross section of each biochemical was determined so that the relative concentration of each compound with respect to the others, could be extracted from a given tissue spectrum.

  12. Comprehensive site-specific whole genome profiling of stromal and epithelial colonic gene signatures in human sigmoid colon and rectal tissue.

    PubMed

    Knight, Jason M; Kim, Eunji; Ivanov, Ivan; Davidson, Laurie A; Goldsby, Jennifer S; Hullar, Meredith A J; Randolph, Timothy W; Kaz, Andrew M; Levy, Lisa; Lampe, Johanna W; Chapkin, Robert S

    2016-09-01

    The strength of associations between various exposures (e.g., diet, tobacco, chemopreventive agents) and colorectal cancer risk may partially depend on the complex interaction between epithelium and stroma across anatomic subsites. Currently, baseline data describing genome-wide coding and long noncoding gene expression profiles in the healthy colon specific to tissue type and location are lacking. Therefore, colonic mucosal biopsies from 10 healthy participants who were enrolled in a clinical study to evaluate effects of lignan supplementation on gut resiliency were used to characterize the site-specific global gene expression signatures associated with stromal vs. epithelial cells in the sigmoid colon and rectum. Using RNA-seq, we demonstrate that tissue type and location patterns of gene expression and upstream regulatory pathways are distinct. For example, consistent with a key role of stroma in the crypt niche, mRNAs associated with immunoregulatory and inflammatory processes (i.e., CXCL14, ANTXR1), smooth muscle contraction (CALD1), proliferation and apoptosis (GLP2R, IGFBP3), and modulation of extracellular matrix (MMP2, COL3A1, MFAP4) were all highly expressed in the stroma. In comparison, HOX genes (HOXA3, HOXD9, HOXD10, HOXD11, and HOXD-AS2, a HOXD cluster antisense RNA 2), and WNT5B expression were also significantly higher in sigmoid colon compared with the rectum. These findings provide strong impetus for considering colorectal tissue subtypes and location in future observational studies and clinical trials designed to evaluate the effects of exposures on colonic health. PMID:27401218

  13. Advances in understanding colonic function.

    PubMed

    Milla, Peter J

    2009-04-01

    The colon is an organ of conservation that salvages water, electrolytes, and energy. The organization of colonic function is determined by the roles played by the luminal flora, the function of the different mucosal epithelial cell types, immunocompetent cells, and the neuromusculature. These different components of the colon interact with one another and with the colonic flora, and different areas of the colon serve different functions. In the normal adult during the course of a day the colon absorbs approximately 1.5 L of fluid, but under the influence of aldosterone increases up to 5 to 6 L. Diarrhoea occurs when secretion exceeds absorptive processes by either small intestinal secretion overwhelming colonic salvage or salvage being impaired by reduced colonic absorption or increased colonic secretion. PMID:19300122

  14. TNFα/IFNγ Mediated Intestinal Epithelial Barrier Dysfunction Is Attenuated by MicroRNA-93 Downregulation of PTK6 in Mouse Colonic Epithelial Cells.

    PubMed

    Haines, Ricci J; Beard, Richard S; Eitner, Rebecca A; Chen, Liwei; Wu, Mack H

    2016-01-01

    Since inflammatory bowel diseases (IBD) represent significant morbidity and mortality in the US, the need for defining novel drug targets and inflammatory mechanisms would be of considerable benefit. Although protein tyrosine kinase 6 (PTK6, also known as breast tumor kinase BRK) has been primarily studied in an oncogenic context, it was noted that PTK6 null mice exhibited significantly enhanced colonic epithelial barrier function. Considering that the inflammatory functions of PTK6 have not yet been explored, we hypothesized that cytokines responsible for mediating IBD, such as TNFα/IFNγ, may solicit the action of PTK6 to alter barrier function. After first assessing critical mediators of TNFα/IFNγ driven epithelial barrier dysfunction, we further explored the possibility of PTK6 in this inflammatory context. In this report, we showed that PTK6 siRNA and PTK6 null young adult mouse colonic epithelial cells (YAMC) exhibited significant attenuation of TNFα/IFNγ induced barrier dysfunction as measured by electric cell-substrate impedance sensing (ECIS) assay and permeability assays. In addition, PTK6 null cells transfected with PTK6 cDNA displayed restored barrier dysfunction in response to TNFα/IFNγ, while the cells transfected with vector alone showed similar attenuation of barrier dysfunction. Furthermore, using subcellular fractionation and immunocytochemistry experiments, we found that PTK6 plays a role in FoxO1 nuclear accumulation leading to down-regulation of claudin-3, a tight junction protein. Moreover, we searched for relevant miRNA candidates putative for targeting PTK6 in order to identify and assess the impact of microRNA that target PTK6 with respect to TNFα/IFNγ induced barrier dysfunction. Subsequently, we assayed likely targets and determined their effectiveness in attenuating PTK6 expression as well as cytokine induced barrier dysfunction. Results showed that miR-93 reduced PTK6 expression and attenuated TNFα/IFNγ imposed decrease in

  15. TNFα/IFNγ Mediated Intestinal Epithelial Barrier Dysfunction Is Attenuated by MicroRNA-93 Downregulation of PTK6 in Mouse Colonic Epithelial Cells

    PubMed Central

    Beard, Richard S.; Eitner, Rebecca A.; Chen, Liwei; Wu, Mack H.

    2016-01-01

    Since inflammatory bowel diseases (IBD) represent significant morbidity and mortality in the US, the need for defining novel drug targets and inflammatory mechanisms would be of considerable benefit. Although protein tyrosine kinase 6 (PTK6, also known as breast tumor kinase BRK) has been primarily studied in an oncogenic context, it was noted that PTK6 null mice exhibited significantly enhanced colonic epithelial barrier function. Considering that the inflammatory functions of PTK6 have not yet been explored, we hypothesized that cytokines responsible for mediating IBD, such as TNFα/IFNγ, may solicit the action of PTK6 to alter barrier function. After first assessing critical mediators of TNFα/IFNγ driven epithelial barrier dysfunction, we further explored the possibility of PTK6 in this inflammatory context. In this report, we showed that PTK6 siRNA and PTK6 null young adult mouse colonic epithelial cells (YAMC) exhibited significant attenuation of TNFα/IFNγ induced barrier dysfunction as measured by electric cell-substrate impedance sensing (ECIS) assay and permeability assays. In addition, PTK6 null cells transfected with PTK6 cDNA displayed restored barrier dysfunction in response to TNFα/IFNγ, while the cells transfected with vector alone showed similar attenuation of barrier dysfunction. Furthermore, using subcellular fractionation and immunocytochemistry experiments, we found that PTK6 plays a role in FoxO1 nuclear accumulation leading to down-regulation of claudin-3, a tight junction protein. Moreover, we searched for relevant miRNA candidates putative for targeting PTK6 in order to identify and assess the impact of microRNA that target PTK6 with respect to TNFα/IFNγ induced barrier dysfunction. Subsequently, we assayed likely targets and determined their effectiveness in attenuating PTK6 expression as well as cytokine induced barrier dysfunction. Results showed that miR-93 reduced PTK6 expression and attenuated TNFα/IFNγ imposed decrease in

  16. Ultrasonic differentiation of normal versus malignant breast epithelial cells in monolayer cultures.

    PubMed

    Doyle, Timothy E; Goodrich, Jeffrey B; Ambrose, Brady J; Patel, Hemang; Kwon, Soonjo; Pearson, Lee H

    2010-11-01

    Normal and malignant mammary epithelial cells were studied using laboratory measurements, wavelet analysis, and numerical simulations of monolayer cell cultures to determine whether microscopic breast cancer can be detected in vitro with high-frequency ultrasound. Pulse-echo waveforms were acquired by immersing a broadband, unfocused 50-MHz transducer in the growth media of cell culture well plates and collecting the first reflection from the well bottoms. The simulations included a multilayer pulse-reflection model and a model of two-dimensional arrays of spherical cells and nuclei. The results show that normal and malignant cells produce time-domain signals and spectral features that are significantly different. PMID:21110531

  17. Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function.

    PubMed

    Heerdt, B G; Houston, M A; Augenlicht, L H

    1997-05-01

    Butyrate, a short-chain fatty acid produced during microbial fermentation of fiber, induces growth arrest, differentiation, and apoptosis of colonic epithelial cells in vitro, and our prior work has shown that this induction is tightly linked to mitochondrial activity. Here we demonstrate that 12 h following induction, SW620 human colonic carcinoma cells accumulate simultaneously in G0-G1 and G2-M of the cell cycle. Four h later, during this G0-G1 to G2-M arrest, cells begin to undergo apoptosis. Using a series of unrelated agents that modulate mitochondrial functions, we demonstrate that mitochondrial electron transport and membrane potential are critical in initiation of this butyrate-mediated growth arrest and apoptosis. Colonic tumorigenesis is characterized by abnormalities in proliferation, apoptosis, and mitochondrial activities. Thus, butyrate may reduce risk for colon cancer by inducing a pathway that enhances mitochondrial function, ultimately resulting in initiation of growth arrest and apoptosis of colonic epithelial cells. PMID:9149903

  18. Pre-existing Epithelial Diversity in Normal Human Livers: A Tissue-tethered Cytometric Analysis in Portal/Periportal Epithelial Cells

    PubMed Central

    Isse, Kumiko; Lesniak, Andrew; Grama, Kedar; Maier, John; Specht, Susan; Castillo-Rama, Marcela; Lunz, John; Roysam, Badrinath; Michalopoulos, George; Demetris, Anthony J.

    2012-01-01

    Routine light microscopy identifies two distinct epithelial cell populations in normal human livers: hepatocytes and biliary epithelial cells (BEC). Considerable epithelial diversity, however, arises during disease states when a variety of hepatocyte-BEC hybrid cells appear. This has been attributed to activation and differentiation of putative hepatic progenitor cells (HPC) residing in the Canals of Hering and/or metaplasia of pre-existing mature epithelial cells. A novel analytic approach consisting of multiplex labeling, high resolution whole slide imaging (WSI), and automated image analysis was used to determine if more complex epithelial cell phenotypes pre-existed in normal adult human livers, which might provide an alternative explanation for disease-induced epithelial diversity. “Virtually digested” WSI enabled quantitative cytometric analyses of individual cells displayed in a variety of formats (e.g. scatter plots) while still tethered to the WSI and tissue structure. We employed biomarkers specifically-associated with mature epithelial forms (HNF4α for hepatocytes, CK19 and HNF1β for BEC) and explored for the presence of cells with hybrid biomarker phenotypes. Results showed abundant hybrid cells in portal bile duct BEC, canals of Hering, and immediate periportal hepatocytes. These bi-potential cells likely serve as a reservoir for the epithelial diversity of ductular reactions, appearance of hepatocytes in bile ducts, and the rapid and fluid transition of BEC to hepatocytes, and vice versa. Conclusion Novel imaging and computational tools enable increased information extraction from tissue samples and quantify the considerable pre-existent hybrid epithelial diversity in normal human liver. This computationally-enabled tissue analysis approach offers much broader potential beyond the results presented here. PMID:23150208

  19. Differentiation of normal and cultured preneoplastic tracheal epithellal cells in rats: importance of epithelial mesenchymal interactions

    SciTech Connect

    Terzaghi, M.; Klein-Szanto, A.J.P.

    1980-11-01

    Changes in the dependence on mesenchymal tissues for survival and differentiation in inbred F344 female rats were investigated in tracheal epithelial cells exposed to 7,12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol 13-acetate (TPA). Fresh suspensions of normal tracheal epithelium or cultured preneoplastic cells were inoculated into isolated organ segments (trachea, esophagus, bladder, or small intestine) or into Dacron containers that were then implanted subdermally into isogenic recipients. At various times after cell inoculation and implantation, tissues were removed for histologic evaluation. Normal cells inoculated into frozen-thawed trachea, esophagus, bladder, and intestine yielded a regular mucociliary epithelium. Normal cell inocula did not, however, survive in trachea previously heated (100/sup 0/C), fixed in ethanol, or digested with collagenese; nor did normal cells survive in Dacron containers unless tracheal fibroblasts plus epithelial cells were inoculated together. DMBA- and TPA-exposed cell populations with increased growth capacity in vitro survived and differentiated on all of the above substrates. For survival and differentiation in vivo, preneoplastic cells appeared to have less stringent substrate requirements than did normal cells. Application of the described techniques to the study of changes occurring early in the development of neoplastic disease is discussed.

  20. Transcriptional Profiling of Neisseria meningitidis Interacting with Human Epithelial Cells in a Long-Term In Vitro Colonization Model

    PubMed Central

    Hey, Ariann; Hudson, Michael J.; Langford, Paul R.; Kroll, J. Simon

    2013-01-01

    Neisseria meningitidis is a commensal of humans that can colonize the nasopharyngeal epithelium for weeks to months and occasionally invades to cause life-threatening septicemia and meningitis. Comparatively little is known about meningococcal gene expression during colonization beyond those first few hours. In this study, the transcriptome of adherent serogroup B N. meningitidis strain MC58 was determined at intervals during prolonged cocultivation with confluent monolayers of the human respiratory epithelial cell line 16HBE14. At different time points up to 21 days, 7 to 14% of the meningococcal genome was found to be differentially regulated. The transcriptome of adherent meningococci obtained after 4 h of coculture was markedly different from that obtained after prolonged cocultivation (24 h, 96 h, and 21 days). Genes persistently upregulated during prolonged cocultivation included three genes (hfq, misR/phoP, and lrp) encoding global regulatory proteins. Many genes encoding known adhesins involved in epithelial adherence were upregulated, including those of a novel locus (spanning NMB0342 to NMB0348 [NMB0342-NMB0348]) encoding epithelial cell-adhesive function. Sixteen genes (including porA, porB, rmpM, and fbpA) encoding proteins previously identified by their immunoreactivity to sera from individuals colonized long term with serogroup B meningococci were also upregulated during prolonged cocultivation, indicating that our system models growth conditions in vivo during the commensal state. Surface-expressed proteins downregulated in the nasopharynx (and thus less subject to selection pressure) but upregulated in the bloodstream (and thus vulnerable to antibody-mediated bactericidal activity) should be interesting candidate vaccine antigens, and in this study, three new proteins fulfilling these criteria have been identified: NMB0497, NMB0866, and NMB1882. PMID:23980104

  1. Paraneoplastic Erythrocytosis of Colon Cancer, with Serum Erythropoietin within the Normal Reference Range.

    PubMed

    Kitayama, Hiromitsu; Kondo, Tomonhiro; Sugiyama, Junko; Hirayama, Michiaki; Oyamada, Yumiko; Tsuji, Yasushi

    2016-01-01

    BACKGROUND Paraneoplastic erythrocytosis can be brought on by ectopic erythropoietin production usually in kidney, brain, and liver tumor with increase of serum erythropoietin level. We report here a paraneoplastic erythrocytosis of colon cancer with serum erythropoietin within the normal reference, which required an immunohistologic test for erythropoietin-antibody to be diagnosed. CASE REPORT Our case report was of a 75-year-old woman with erythrocytosis. Her hemoglobin and serum erythropoietin levels were 191 g/dL and 12.6 IU/L (reference range, 9.1-32.8), respectively. Colonoscopy revealed an advanced sigmoid colon tumor 20 mm in diameter. She underwent colectomy, and immunohistochemical examination showed the colon adenocarcinoma was focally positive for erythropoietin-antibody. One month after the surgery, her hemoglobin level decreased to 117 g/L. CONCLUSIONS Colon cancer can cause paraneoplastic erythrocytosis, and it is important to consider not simply the absolute serum erythropoietin level but also the serum erythropoietin level relative to simultaneously measured hemoglobin level. We should include paraneoplastic erythrocytosis as a differential diagnosis in cases of high hemoglobin level unexplained by other diseases. PMID:27318703

  2. Inhibition of microRNA-31-5p protects human colonic epithelial cells against ionizing radiation

    NASA Astrophysics Data System (ADS)

    Kim, Sang Bum; Zhang, Lu; Barron, Summer; Shay, Jerry W.

    2014-04-01

    MicroRNAs (miRNAs), endogenous non-coding small RNAs, are sensitive to environmental changes, and their differential expression is important for adaptation to the environment. However, application of miRNAs as a clinical prognostic or diagnostic tool remains unproven. In this study we demonstrate a chronic/persistent change of miRNAs from the plasma of a colorectal cancer susceptible mouse model (CPC;Apc) about 250 days after exposure to a simulated solar particle event (SPE). Differentially expressed miRNAs were identified compared to unirradiated control mice, including miR-31-5p, which we investigated further. To address the cellular function of miR-31-5p, we transfected a miR-31-5p mimic (sense) or inhibitor (antisense) into immortalized human colonic epithelial cells followed by gamma-irradiation. A miR-31-5p mimic sensitized but a miR-31-5p inhibitor protected colonic epithelial cells against radiation induced killing. We found that the miR-31-5p mimic inhibited the induction of hMLH1 expression after irradiation, whereas the miR-31-5p inhibitor increased the basal level of hMLH1 expression. The miR-31-5p inhibitor failed to modulate radiosensitivity in an hMLH1-deficient HCT116 colon cancer cell line but protected HCT116 3-6 and DLD-1 (both hMLH1-positive) colon cancer cell lines. Our findings demonstrate that miR-31-5p has an important role in radiation responses through regulation of hMLH1 expression. Targeting this pathway could be a promising therapeutic strategy for future personalized anti-cancer radiotherapy.

  3. IL-2 production by intestinal lamina propria cells in normal inflamed and cancer-bearing colons.

    PubMed Central

    Pullman, W E; Doe, W F

    1992-01-01

    Biologically significant levels of IL-2 activity were produced by isolated lamina propria mononuclear cells (LPMC) from normal intestine (n = 12), cancer-bearing colons (n = 35) and inflammatory bowel disease (IBD) affected tissue (n = 12). The levels of IL-2 produced were similar for all three sources of LPMC (normal 252 +/- 48 U/ml, IBD-affected mucosa 197 +/- 42 U/ml and colon cancer 285 +/- 43 U/ml). These levels were significantly greater than those produced by peripheral blood mononuclear cells (20 +/- 5 U/ml, P less than 0.01) on a per cell basis. In mucosa from cancer-bearing colons the amount of IL-2 produced by LPMC was unaffected by the invasiveness of the colon cancer. LPMC IL-2 production was markedly suppressed by drugs used in IBD therapy. 5-Aminosalicylic acid (5-ASA) reduced activity in a dose-dependent fashion. At a dose equivalent to the faecal therapeutic level of 0.5 mg/ml activity, IL-2 production by LPMC was suppressed to 3.4% of controls. Similarly, exposure of LPMC to cyclosporin A (CyA) and hydrocortisone (HC) at therapeutic levels reduced IL-2 activity to less than 1% of controls. The major producers of IL-2 activity were shown to be CD3+ T lymphocytes and those bearing the activation markers IL-2R and TFR. Suppression of mucosal IL-2 production represents an important therapeutic mechanism of drugs used in the management of IBD including HC, 5-ASA and CyA. These results suggest that mucosal T cells produce appreciable levels of IL-2 activity that may be important in maintaining immune homeostasis in the normal intestine, provide anti-neoplastic cytotoxic activity and contribute to the inflammatory events that characterize the mucosal lesions of IBD. PMID:1563100

  4. The expression of CD44v6 in colon: from normal to malignant.

    PubMed

    Afify, Alaa; Durbin-Johnson, Blythe; Virdi, Avnit; Jess, Heidi

    2016-02-01

    CD44v6, an integral transmembrane protein belonging to a family of adhesion molecule receptors, plays an important role in tumor growth, progression and metastasis. The purpose of this study was to evaluate the expression of CD44v6 in normal, hyperplastic, adenomatous, and malignant colonic epithelium and to determine its correlation with tumor pathologic stage and lymph node metastasis. We examined the immunohistochemical expression of CD44v6 in normal colonic tissue (n = 25), hyperplastic polyps (n = 45), tubular adenomas (n = 57), tubulovillous adenomas (n = 25), villous adenomas (n = 9), adenocarcinomas stage I (n = 26), adenocarcinomas stage III (n = 26), and lymph node metastasis (n = 26). The percentage of positive cells and the staining intensity were assessed and scored. Statistical analysis was performed using logistic regression and McNemar test. All normal colonic tissue and hyperplastic polyps showed CD44v6 staining confined to the base of the crypt. In tubular adenomas, the dysplastic surface adenomatous epithelium expressed CD44v6 in 49 (86%) cases. CD44v6 was expressed in the glandular areas of tubulovillous adenomas in 21 (84%) cases and in the villous portion in 18 (72%) cases. All villous adenomas expressed CD44v6. CD44v6 was expressed in 23 (88%) cases of stage I adenocarcinomas, in 24 (92%) cases of stage III adenocarcinomas, and in 9 (35%) cases of metastatic adenocarcinomas. We concluded that the gain of CD44v6 expression in premalignant and malignant colonic lesions suggests that CD44v6 may be functionally involved in the adenoma-to-carcinoma progression. CD44v6 did not correlate to tumor pathologic stage and is lost during the acquisition of migratory function by metastatic tumor cells. PMID:26621455

  5. Diets High in Heat-Treated Soybean Meal Reduce the Histamine-Induced Epithelial Response in the Colon of Weaned Piglets and Increase Epithelial Catabolism of Histamine

    PubMed Central

    Kröger, Susan; Pieper, Robert; Schwelberger, Hubert G.; Wang, Jing; Villodre Tudela, Carmen; Aschenbach, Jörg R.; Van Kessel, Andrew G.; Zentek, Jürgen

    2013-01-01

    We examined the influence of dietary fermentable protein (fCP) and fermentable carbohydrates (fCHO) on the colonic epithelial response to histamine in pigs. Thirty-two weaned piglets were fed 4 diets in a 2 × 2 factorial design with low fCP/low fCHO, low fCP/high fCHO, high fCP/low fCHO and high fCP/high fCHO. After 21-23 days, the pigs were killed and tissue from the proximal colon was stimulated with carbachol, histamine, PGE2 or sodium hydrogen sulphide in Ussing chambers. Changes in short-circuit current and tissue conductance were measured. Diamine oxidase, histamine N-methyltransferase, stem cell growth factor receptor, Fc-epsilon receptor I and cystic fibrosis transmembrane conductance regulator gene expression was determined. Activities of diamine oxidase and histamine N-methyltransferase and numbers of colonic mast cells were measured. The change in the short-circuit current in response to histamine was lower (P = 0.002) and tended to be lower for PGE2 (P = 0.053) in high fCP groups compared to low fCP groups, irrespective of fCHO. Additionally, the change in tissue conductance after the application of histamine was lower (P = 0.005) in the high fCP groups. The expression of histamine N-methyltransferase mRNA (P = 0.033) and the activities of diamine oxidase (P = 0.001) and histamine N-methyltransferase (P = 0.006) were higher with high fCP in comparison with low fCP. The expression of mast cell markers, stem cell growth factor receptor (P = 0.005) and Fc-epsilon receptor I (P = 0.049) was higher with high fCP diets compared to diets low in fCP, whereas the mast cell count did not differ between groups. The expression of the cystic fibrosis transmembrane conductance regulator was reduced (P = 0.001) with high fCP diets compared to low fCP diets. The lower epithelial response to histamine and PGE2 and elevated epithelial histamine inactivation suggests an adaptation to high fCP diets. PMID:24260435

  6. Progesterone facilitates chromosome instability (aneuploidy) in p53 null normal mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Goepfert, T. M.; McCarthy, M.; Kittrell, F. S.; Stephens, C.; Ullrich, R. L.; Brinkley, B. R.; Medina, D.

    2000-01-01

    Mammary epithelial cells from p53 null mice have been shown recently to exhibit an increased risk for tumor development. Hormonal stimulation markedly increased tumor development in p53 null mammary cells. Here we demonstrate that mammary tumors arising in p53 null mammary cells are highly aneuploid, with greater than 70% of the tumor cells containing altered chromosome number and a mean chromosome number of 56. Normal mammary cells of p53 null genotype and aged less than 14 wk do not exhibit aneuploidy in primary cell culture. Significantly, the hormone progesterone, but not estrogen, increases the incidence of aneuploidy in morphologically normal p53 null mammary epithelial cells. Such cells exhibited 40% aneuploidy and a mean chromosome number of 54. The increase in aneuploidy measured in p53 null tumor cells or hormonally stimulated normal p53 null cells was not accompanied by centrosome amplification. These results suggest that normal levels of progesterone can facilitate chromosomal instability in the absence of the tumor suppressor gene, p53. The results support the emerging hypothesis based both on human epidemiological and animal model studies that progesterone markedly enhances mammary tumorigenesis.

  7. Single stage management of a unique variant of congenital pouch colon with triplet fistula and normal anus.

    PubMed

    Pandey, Vaibhav; Gangopadhyay, Ajay Narayan; Gupta, Dinesh Kumar; Sharma, Shiv Prasad

    2015-01-01

    Congenital pouch colon (CPC) in the female patient presents with highly variable and anomalous anatomy. We herein report the first case of CPC with uterus didelphys having normal anal opening, H-type vestibular fistula, two other fistulous communications between pouch colon and two vagina managed in a single stage with excellent postoperative outcome. PMID:26166988

  8. Single stage management of a unique variant of congenital pouch colon with triplet fistula and normal anus

    PubMed Central

    Pandey, Vaibhav; Gangopadhyay, Ajay Narayan; Gupta, Dinesh Kumar; Sharma, Shiv Prasad

    2015-01-01

    Congenital pouch colon (CPC) in the female patient presents with highly variable and anomalous anatomy. We herein report the first case of CPC with uterus didelphys having normal anal opening, H-type vestibular fistula, two other fistulous communications between pouch colon and two vagina managed in a single stage with excellent postoperative outcome. PMID:26166988

  9. Wild-type and IL10-null mice have differential colonic epithelial gene expression responses to dietary supplementation with synbiotic Bifidobacterium animalis subspecies lactis and inulin.

    PubMed

    Kuo, Shiu-Ming; Chan, Wan-Chun; Hu, Zihua

    2014-03-01

    Prebiotic plus probiotic (synbiotic) supplementations promote fermentation and have shown anti-inflammatory activity in colonic epithelium. However, in many instances, patients with inflammatory bowel disease (IBD) have demonstrated adverse effects after prebiotic supplementation at a dose well tolerated by normal individuals. To test the hypothesis that the host inflammation affects the colonic epithelial response to increased fermentation, the gene expression of colonic epithelium was analyzed. In a 1-way experimental design to test the effect of supplements in wild-type mice using the standard diet formulated by the American Institute of Nutrition (AIN-93G) as the control diet, fermentable fiber inulin (5%) in the absence or presence of the probiotic Bifidobacterium animalis subspecies lactis (Bb12) (10(8) CFU/kg diet) showed limited effects on gene expression as determined by whole-genome microarray. Bb12 supplementation alone was known not to increase fermentation and here instead significantly upregulated genes in nucleic acid metabolic processes. The effects of the synbiotic diet were then determined in mice exposed to LPS-induced inflammation in a 2-way experimental design testing the effect of diet and LPS. The microarray and quantitative reverse transcription-polymerase chain reaction analyses on the wild-type mice revealed that LPS-induced changes in the colonic epithelium were 4- to 10-fold less in the synbiotic diet group compared with the control diet group. Unlike the wild-type mice, anti-inflammatory cytokine interleukin 10 (IL10)-null mice (susceptible to IBD) given the synbiotic diet, compared with those given the control diet, had 3- to 40-fold increased expression of inflammation-related genes such as Cxcl1 (chemokine C-X-C motif ligand 1) and S100a9 (S100 calcium binding protein A9) in the absence and presence of LPS exposure. These contrasting intestinal epithelial responses to increased fermentation in wild-type and IL10-null mice are similar

  10. Cdx2 modulates proliferation in normal human intestinal epithelial crypt cells

    SciTech Connect

    Escaffit, Fabrice; Pare, Frederic; Gauthier, Remy; Rivard, Nathalie; Boudreau, Francois; Beaulieu, Jean-Francois . E-mail: Jean-Francois.Beaulieu@USherbrooke.ca

    2006-03-31

    The homeobox gene Cdx2 is involved in the regulation of the expression of intestine specific markers such as sucrase-isomaltase and lactase-phlorizin hydrolase. Previous studies performed with immortalized or transformed intestinal cell lines have provided evidence that Cdx2 can promote morphological and functional differentiation in these experimental models. However, no data exist concerning the implication of this factor in normal human intestinal cell physiology. In the present work, we have investigated the role of Cdx2 in normal human intestinal epithelial crypt (HIEC) cells that lack this transcription factor. The establishment of HIEC cells expressing Cdx2 in an inducible manner shows that forced expression of Cdx2 significantly alters the proliferation of intestinal crypt cells and stimulates dipeptidylpeptidase IV expression but is not sufficient to trigger intestinal terminal differentiation. These observations suggest that Cdx2 requires additional factors to activate the enterocyte differentiation program in normal undifferentiated cells.

  11. Can Villin be Used to Identify Malignant and Undifferentiated Normal Digestive Epithelial Cells?

    NASA Astrophysics Data System (ADS)

    Robine, S.; Huet, C.; Moll, R.; Sahuquillo-Merino, C.; Coudrier, E.; Zweibaum, A.; Louvard, D.

    1985-12-01

    We have investigated the presence of villin (a Ca2+-regulated actin binding protein) in various tissues (normal or malignant) and in established cell lines by using sensitive immunochemical techniques on cell extracts and immunofluorescence analysis on frozen sections. Our results show that villin is a marker that can be used to distinguish normal differentiated epithelial cells from the simple epithelia lining the gastrointestinal tract and renal tubules. Villin is found in the absorptive cells of the small and large intestines, in the duct cells of pancreas and biliary system, and in the cells of kidney proximal tubules. Furthermore, undifferentiated normal and tumoral cells of intestinal origin in vivo and in cell culture express villin. Therefore, expression of villin is seen in cells that do not necessarily display the morphological features characteristic of their terminally differentiated state, such as the microvilli-lined brush border. We suggest the possible clinical implications of using villin as a marker in the diagnosis of metastatic adenocarcinomas.

  12. Diagnostic Challenges Caused by Endoscopic Biopsy of Colonic Polyps: A Systematic Evaluation of Epithelial Misplacement With Review of Problematic Polyps From the Bowel Cancer Screening Program, United Kingdom.

    PubMed

    Panarelli, Nicole C; Somarathna, Thusitha; Samowitz, Wade S; Kornacki, Susan; Sanders, Scott A; Novelli, Marco R; Shepherd, Neil A; Yantiss, Rhonda K

    2016-08-01

    Endoscopic mucosal biopsy may misplace mucosal elements into the submucosa of colonic adenomas, mimicking invasive adenocarcinoma. Biopsy-related misplacement can be more challenging to recognize than typical misplaced epithelium (pseudoinvasion) in pedunculated polyps. We compared the features of 16 polyps with biopsy-related misplaced epithelium with those of 10 adenomas with pseudoinvasion and 10 adenomas with invasive adenocarcinoma and performed Ki67 and p53 immunostaining on all cases. Features of misplaced epithelium in polyps referred to the Bowel Cancer Screening Program Expert Board in the United Kingdom were also evaluated for the same morphologic features. Biopsy-related epithelial misplacement occurred in adenomas throughout the colon and often appeared infiltrative (69%), including epithelial cells singly dispersed within reactive fibroinflammatory stroma or granulation tissue (44%). Misplaced epithelium displayed only low-grade cytologic features and was associated with extruded mucin (75%), tattoo pigment (63%), and misplaced normal glands (38%); scant lamina propria and muscularis mucosae were often present (88% and 44%, respectively). Cases referred to the Bowel Cancer Screening Program Expert Board also contained infiltrative-appearing misplaced epithelium (91%) that was cytologically low grade (72%), contained nondysplastic glands (11%), and showed other signs of injury. In contrast, misplaced epithelium in pedunculated polyps always had a lobular contour with a rim of lamina propria, hemorrhage, and/or hemosiderin. Invasive carcinomas showed malignant cytology and desmoplasia; most (70%) lacked features of trauma. Ki67 and p53 staining was patchy and weak in the misplaced epithelium, whereas invasive carcinomas showed increased staining for one or both markers. Pathologists should be aware that endoscopically manipulated adenomas may contain misplaced epithelium that simulates malignancy. PMID:26975041

  13. CDDO-Me Protects Normal Lung and Breast Epithelial Cells but Not Cancer Cells from Radiation

    PubMed Central

    El-Ashmawy, Mariam; Delgado, Oliver; Cardentey, Agnelio; Wright, Woodring E.; Shay, Jerry W.

    2014-01-01

    Although radiation therapy is commonly used for treatment for many human diseases including cancer, ionizing radiation produces reactive oxygen species that can damage both cancer and healthy cells. Synthetic triterpenoids, including CDDO-Me, act as anti-inflammatory and antioxidant modulators primarily by inducing the transcription factor Nrf2 to activate downstream genes containing antioxidant response elements (AREs). In the present series of experiments, we determined if CDDO-Me can be used as a radioprotector in normal non-cancerous human lung and breast epithelial cells, in comparison to lung and breast cancer cell lines. A panel of normal non-cancerous, partially cancer progressed, and cancer cell lines from both lung and breast tissue was exposed to gamma radiation with and without pre-treatment with CDDO-Me. CDDO-Me was an effective radioprotector when given ∼18 hours before radiation in epithelial cells (average dose modifying factor (DMF) = 1.3), and Nrf2 function was necessary for CDDO-Me to exert these radioprotective effects. CDDO-Me did not protect cancer lines tested from radiation-induced cytotoxicity, nor did it protect experimentally transformed human bronchial epithelial cells (HBECs) with progressive oncogenic manipulations. CDDO-Me also protected human lymphocytes against radiation-induced DNA damage. A therapeutic window exists in which CDDO-Me protects normal cells from radiation by activating the Nrf2 pathway, but does not protect experimentally transformed or cancer cell lines. This suggests that use of this oral available, non-toxic class of drug can protect non-cancerous healthy cells during radiotherapy, resulting in better outcomes and less toxicity for patients. PMID:25536195

  14. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    SciTech Connect

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  15. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    SciTech Connect

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J.

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  16. Propagation of normal human epithelial cell populations using an in vivo culture system. Description and applications.

    PubMed

    Klein-Szanto, A J; Terzaghi, M; Mirkin, L D; Martin, D; Shiba, M

    1982-08-01

    A new model using xenotransplanted human epithelia was developed for the study of toxic and carcinogenic effects of chemicals. Epithelial cells from the respiratory tract of 4 male and 3 female premature and fullterm fetuses were enzymatically removed and inoculated into deepithelialized rat tracheas. These were sealed at both ends and transplanted subcutaneously into nude mice. After 3-4 weeks, a normal mucociliary epithelium covered the tracheal lumen. At this stage the epithelial cells could be isolated again and transplanted into new denuded rat tracheas. This passaging could be repeated up to six times, each permitting an amplification factor of approximately 3. Tracheal transplants containing cells of human origin (in vivo Passages 2-4) were treated with 7,12-dimethylbenz(a)anthracene. Hyperplasias, squamous metaplasias, and dysplasias were seen 1-8 weeks after initiation of treatment, indicating that the responses of human and rodent epithelial cells to polycyclic aromatic hydrocarbons are similar. Initial experiments with skin and esophageal epithelia suggest that other covering epithelia could also be used in this fashion for evaluation of toxicants and carcinogens that are likely to come into contact with these tissues. PMID:6821529

  17. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements

    SciTech Connect

    Band, V.; Zajchowski, D.; Kulesa, V.; Sager, R. )

    1990-01-01

    Human papilloma virus (HPV) types 16 and 18 are most commonly associated with cervical carcinoma in patients and induce immortalization of human keratinocytes in culture. HPV has not been associated with breast cancer. This report describes the immortalization of normal human mammary epithelial cells (76N) by plasmid pHPV18 or pHPV16, each containing the linearized viral genome. Transfectants were grown continuously for more than 60 passages, whereas 76N cells senesce after 18-20 passages. The transfectants also differ from 76N cells in cloning in a completely defined medium called D2 and growing a minimally supplemented defined medium (D3) containing epidermal growth factor. All transfectant tested contain integrated HPV DNA, express HPV RNA, and produce HPV E7 protein. HPV transfectants do not form tumors in a nude mouse assay. It is concluded that products of the HPV genome induce immortalization of human breast epithelial cells and reduce their growth factor requirements. This result raises the possibility that HPV might be involved in breast cancer. Furthermore, other tissue-specific primary epithelial cells that are presently difficult to grown and investigate may also be immortalized by HPV.

  18. Up-Regulation of MUC2 Mucin Expression by Serum Amyloid A3 Protein in Mouse Colonic Epithelial Cells

    PubMed Central

    SHIGEMURA, Hiroaki; ISHIGURO, Naotaka; INOSHIMA, Yasuo

    2014-01-01

    ABSTRACT Serum amyloid A (SAA) proteins are acute-phase proteins and are classified into multiple isoforms; however, the biological functions of each SAA isoform are not fully understood. In this study, to clarify the roles of SAA3 in the intestine, we characterized mRNA expression in mouse colonic epithelial CMT-93 cells treated with rotavirus, Toxoplasma, Staphylococcus aureus, and Escherichia coli, as well as lipopolysaccharide (LPS) and recombinant murine SAAs (rSAAs). E. coli together with LPS, but not the other pathogens, enhanced SAA3 mRNA expression. The mRNA expression of SAA3 by dead E. coli was higher than that by living E. coli, and the mRNA expression by E. coli and LPS increased in a dose-dependent manner. In contrast, mRNA expressions of SAA1 and/or SAA2 were not stimulated by any of the treatments. In comparisons of cell treatments with rSAA1 or rSAA3, rSAA3 significantly up-regulated the mRNA expression of mucin 2 (MUC2), a major component of the mucus layer of the intestines that acts as an epithelial cell barrier against pathogens, while MUC2 mRNA expression was not significantly increased by E. coli and LPS. Furthermore, treatment with rSAAs intensively induced tumor necrosis factor-α mRNA expression. These results suggest that SAA3 plays a role in host innate immunity in the colon by up-regulating MUC2 mucin production, which builds a physiological barrier of colonic epithelia against bacterial invasion. PMID:24694941

  19. Lipoxin A4 prevents tight junction disruption and delays the colonization of cystic fibrosis bronchial epithelial cells by Pseudomonas aeruginosa.

    PubMed

    Higgins, Gerard; Fustero Torre, Coral; Tyrrell, Jean; McNally, Paul; Harvey, Brian J; Urbach, Valerie

    2016-06-01

    The specialized proresolution lipid mediator lipoxin A4 (LXA4) is abnormally produced in cystic fibrosis (CF) airways. LXA4 increases the CF airway surface liquid height and stimulates airway epithelial repair and tight junction formation. We report here a protective effect of LXA4 (1 nM) against tight junction disruption caused by Pseudomonas aeruginosa bacterial challenge together with a delaying action against bacterial invasion in CF airway epithelial cells from patients with CF and immortalized cell lines. Bacterial invasion and tight junction integrity were measured by gentamicin exclusion assays and confocal fluorescence microscopy in non-CF (NuLi-1) and CF (CuFi-1) bronchial epithelial cell lines and in primary CF cultures, grown under an air/liquid interface, exposed to either a clinical or laboratory strains of P. aeruginosa LXA4 delayed P. aeruginosa invasion and transepithelial migration in CF and normal bronchial epithelial cell cultures. These protective effects of LXA4 were inhibited by the ALX/FPR2 lipoxin receptor antagonist BOC-2. LXA4 prevented the reduction in mRNA biosynthesis and protein abundance of the tight junction protein ZO-1 and reduced tight junction disruption induced by P. aeruginsosa inoculation. In conclusion, LXA4 plays a protective role in bronchial epithelium by stimulating tight junction repair and by delaying and reducing the invasion of CF bronchial epithelial cells by P. aeruginsosa. PMID:27084849

  20. Autofluorescence of normal and tumor mucosa of human colon: a comprehensive analysis

    NASA Astrophysics Data System (ADS)

    Bottiroli, Giovanni F.; Marchesini, Renato; Croce, Anna C.; Dal Fante, Marco; Cuzzoni, Carolina; Di Palma, Silvana; Spinelli, Pasquale

    1993-08-01

    Both 'in vivo' and 'ex vivo' spectrofluorometric studies of neoplastic and non-neoplastic mucosa of human colon have been carried out, in order to verify the potentials of tissue natural fluorescence as a possible parameter to distinguish normal from diseased tissues, Spectrofluorometric analysis performed at colonoscopy on patients affected by neoplasia, showed that adenocarcinoma, adenoma and non-neoplastic mucosa differ in the fluorescence emissions. The results have been interpreted according to the data obtained on cryostatic sections from biopsies by means of a microspectrofluorometric analysis carried out on each histological component.

  1. RSPO2 enriches LGR5+ spheroid colon cancer stem cells and promotes its metastasis by epithelial-mesenchymal transition

    PubMed Central

    Zhang, Shi; Han, Xiaoyan; Wei, Bo; Fang, Jiafeng; Wei, Hongbo

    2016-01-01

    Colon cancer stem cells (CCSCs) account for the tumorigenicity of colon cancer and promote its progression and metastasis. RSPO2, the agonist of canonical Wnt/beta-catenin pathway and serves as the growth factor of intestinal stem cells (ISCs), is considered playing an important role in CCSCs. However, the specific function of RSPO2 in CCSCs remains unclear. In this study, we demonstrated that RSPO2 was highly expressed in CCSCs-enriched HCT116 spheroid cells. Elevates the concentration of RSPO2 in medium in favor of enriching the LGR5+ cells and increasing the LGR5 expression in HCT116 spheroid cells, meanwhile silencing of RSPO2 by small interfering RNA inhibits LGR5 expression in HCT116 spheroid cells. In addition, RSPO2 promotes spheres formation but has little effect on the proliferation of HCT116 spheroid cells in vitro. Moreover, RSPO2 also promotes the invasion of HCT116 spheroid cells through enhancing Epithelial-mesenchymal transition (EMT). These findings suggests that RSPO2 is a potential growth factor for CCSCs, helps enriching the CCSCs by serum-free DMEM/F12 medium (SFM) culture and plays a vital role in the metastasis of colon cancer. PMID:27158331

  2. Epithelial-Mesenchymal Transition Associates with Maintenance of Stemness in Spheroid-Derived Stem-Like Colon Cancer Cells

    PubMed Central

    Fang, Jia-Feng; Zhang, Shi; Zhang, Fu-Cheng; Zhang, Hai-Bo; Lan, Tian-Yun; Lu, Hui-Qiong; Wei, Hong-Bo

    2013-01-01

    Despite earlier studies demonstrating characteristics of colon cancer stem cells (CCSCs) and the role of epithelial-mesenchymal transition (EMT) in tumor development, it remains controversial as to the relationship between CCSCs and EMT. In this study, in order to present an insight into this relationship in colon cancer, we developed HCT116 and HT29 sphere models, which are known to be the cells enriching cancer stem cells. Compared to their parental counterparts, spheroid cells displayed lower homotypic/heterotypic adhesion but higher in vitro migratory/invasive capacity, as well as higher tumorigenic and metastatic potential in vivo. The spheroid cells also demonstrated down-regulated E-cadherin and up-regulated α-SMA and Vimentin expression, which is the typical phenotype of EMT. In order to explore whether this phenomenon is associated to activation of Wnt/β-catenin pathway, we detected several key signaling molecules. Compared with their parental cells, HCT116 and HT29 spheroid cells demonstrated down-regulated expression of GSK3β, but up-regulated expression of Slug and Snail. And also, the up-regulation of nucleus β-catenin in spheroid cells indicated that the free β-catenin transferred from cytoplasm to cell nucleus. Our findings indicate that spheroid cells have the characteristics of colon cancer stem cells, and EMT may account for their stemness and malignancy. And persistent activation of Wnt/β-catenin pathway may play an important role in the EMT of CCSCs. PMID:24039918

  3. The Cinnamon-derived Dietary Factor Cinnamic Aldehyde Activates the Nrf2-dependent Antioxidant Response in Human Epithelial Colon Cells

    PubMed Central

    Wondrak, Georg T.; Villeneuve, Nicole F.; Lamore, Sarah D.; Bause, Alexandra S.; Jiang, Tao; Zhang, Donna D.

    2011-01-01

    Colorectal cancer (CRC) is a major cause of tumor-related morbidity and mortality worldwide. Recent research suggests that pharmacological intervention using dietary factors that activate the redox sensitive Nrf2/Keap1-ARE signaling pathway may represent a promising strategy for chemoprevention of human cancer including CRC. In our search for dietary Nrf2 activators with potential chemopreventive activity targeting CRC, we have focused our studies on trans-cinnamic aldehyde (cinnamaldeyde, CA), the key flavor compound in cinnamon essential oil. Here we demonstrate that CA and an ethanolic extract (CE) prepared from Cinnamomum cassia bark, standardized for CA content by GC-MS analysis, display equipotent activity as inducers of Nrf2 transcriptional activity. In human colon cancer cells (HCT116, HT29) and non-immortalized primary fetal colon cells (FHC), CA- and CE-treatment upregulated cellular protein levels of Nrf2 and established Nrf2 targets involved in the antioxidant response including heme oxygenase 1 (HO-1) and γ-glutamylcysteine synthetase (γ-GCS, catalytic subunit). CA- and CE-pretreatment strongly upregulated cellular glutathione levels and protected HCT116 cells against hydrogen peroxide-induced genotoxicity and arsenic-induced oxidative insult. Taken together our data demonstrate that the cinnamon-derived food factor CA is a potent activator of the Nrf2-orchestrated antioxidant response in cultured human epithelial colon cells. CA may therefore represent an underappreciated chemopreventive dietary factor targeting colorectal carcinogenesis. PMID:20657484

  4. Mr 40,000 human colonic epithelial protein expression in colonic mucosa and presence of circulating anti-Mr 40,000 antibodies in cotton top tamarins with spontaneous colitis.

    PubMed Central

    Das, K M; Vecchi, M; Squillante, L; Dasgupta, A; Henke, M; Clapp, N

    1992-01-01

    Saguinus oedipus, Callithrix jacchus, and Saguinus fuscicollis are three species of New World monkeys which develop a form of colitis that is similar to human ulcerative colitis. Only S oedipus, however, develop colon cancer. We examined intestinal tissues from these animals for the presence of an antigen cross reacting to the Mr 40,000 human colonic epithelial protein that acts as an autoantigen in ulcerative colitis. Using an anti-Mr 40,000 monoclonal antibody (7E12H12, IgM isotype), by an immunoperoxidase assay we showed that all colon specimens from S oedipus reacted with 7E12H12; however, the colonic tissue from C jacchus and S fuscicollis did not. In immunotransblot analysis eluted IgG antibody bound to human ulcerative colitis colon (CCA-IgG) reacted with Mr 40,000 protein(s) present in the extracts of colon from S oedipus animals and humans. Small intestinal tissue reacted neither with 7E12H12 nor with CCA-IgG. In S oedipus, the Mr 40,000 protein was localised exclusively to colonic epithelial cells. Preincubation of seven S oedipus colon specimens with eight of 10 sera from animals with acute or chronic colitis and 0 of four sera from animals without colitis almost completely inhibited the binding of 7E12H12 to the colonic epithelium. Four of these 10 sera inhibited the binding of 7E12H12 to the autologous colon. These results show the presence of circulating autoantibodies in S oedipus with colitis against an epitope(s) on Mr 40,000 protein shared by human and S oedipus colon. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:1740277

  5. Surface modification of microparticles causes differential uptake responses in normal and tumoral human breast epithelial cells

    NASA Astrophysics Data System (ADS)

    Patiño, Tania; Soriano, Jorge; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme

    2015-06-01

    The use of micro- and nanodevices as multifunctional systems for biomedical applications has experienced an exponential growth during the past decades. Although a large number of studies have focused on the design and fabrication of new micro- and nanosystems capable of developing multiple functions, a deeper understanding of their interaction with cells is required. In the present study, we evaluated the effect of different microparticle surfaces on their interaction with normal and tumoral human breast epithelial cell lines. For this, AlexaFluor488 IgG functionalized polystyrene microparticles (3 μm) were coated with Polyethyleneimine (PEI) at two different molecular weights, 25 and 750 kDa. The effect of microparticle surface properties on cytotoxicity, cellular uptake and endocytic pathways were assessed for both normal and tumoral cell lines. Results showed a differential response between the two cell lines regarding uptake efficiency and mechanisms of endocytosis, highlighting the potential role of microparticle surface tunning for specific cell targeting.

  6. Hepatocyte growth factor (HGF), heat shock proteins (HSPs) and multidrug resistance protein (MRP) expression in co-culture of colon tumor spheroids with normal cells after incubation with interleukin-1beta (IL-1beta) and/or camptothecin (CPT-11).

    PubMed

    Paduch, Roman; Jakubowicz-Gil, Joanna; Niedziela, Piotr

    2010-04-01

    Tumor chemoresistance and metastasis are some of the most important problems in colon cancer therapy. In the present study, co-cultures of human colon carcinoma cell spheroids, obtained from different grades of tumor, with human colon epithelium, myofibroblast and endothelial cell monolayers were performed. The purpose of these co-cultures was to reflect, in in vitro conditions, different stages of colon tumor development. In order to investigate the invasive capacities of the tumor cells and their resistance to chemotherapy, HGF, HSP27, HSP72 and MRP levels were analyzed after incubation of the co-cultures with IL-1beta and irinotecan (CPT-11) added as single agents or in combination. Myofibroblasts produced significantly higher amounts of HGF than epithelial cells. Tumor cells released trace amounts of this molecule. In cocultures, IL-1beta induced HGF release, while CPT-11 alone or combined with IL-1beta decreased HGF secretion. An immunoblotting analysis followed by densitometry revealed that the combination of IL-1beta plus CPT-11 added to the cocultures led to a decrease in HSPs and MRP levels. In conclusion, direct and paracrine interactions of colon tumor cell spheroids with normal cells and exogenously added CPT-11 change HSP27, HSP72 and MRP expression in comparison to monocultures. IL-1beta and CPT-11, dependent on whether they are added separately or jointly, differentially modulate HGF expression in monocultures of colon tumor spheroids or normal cells and their co-cultures. PMID:20726333

  7. Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques

    PubMed Central

    Wei, Hua-Jiang; Xing, Da; Lu, Jian-Jun; Gu, Huai-Min; Wu, Guo-Yong; Jin, Ying

    2005-01-01

    AIM: The purpose of the present study is to compare the optical properties of normal human colon mucosa/submucosa and muscle layer/chorion, and adenomatous human colon mucosa/submucosa and muscle layer/chorion in vitro at 476.5, 488, 496.5, 514.5 and 532 nm. We believe these differences in optical properties should help differential diagnosis of human colon tissues by using optical methods. METHODS: In vitro optical properties were investigated for four kinds of tissues: normal human colon mucosa/submucosa and muscle layer/chorion, and adenomatous human colon mucosa/submucosa and muscle layer/chorion. Tissue samples were taken from 13 human colons (13 adenomatous, 13 normal). From the normal human colons a total of 26 tissue samples, with a mean thickness of 0.40 mm, were used (13 from mucosa/submucosa and 13 from muscle layer/chorion), and from the adenomatous human bladders a total of 26 tissue samples, with a mean thickness of 0.40 mm, were used (13 from mucosa/submucosa and 13 from muscle layer/chorion). The measurements were performed using a double-integrating-sphere setup and the optical properties were assessed from these measurements using the adding-doubling method that was considered reliable. RESULTS: The results of measurement showed that there were significant differences in the absorption coefficients and scattering coefficients between normal and adenomatous human colon mucosa/submucosa at the same wavelength, and there were also significant differences in the two optical parameters between both colon muscle layer/chorion at the same wavelength. And there were large differences in the anisotropy factors between both colon mucosa/submucosa at the same wavelength, there were also large differences in the anisotropy factors between both colon muscle layer/chorion at the same wavelength. There were large differences in the value ranges of the absorption coefficients, scattering coefficients and anisotropy factors between both colon mucosa/submucosa, and

  8. Analysis of the depolarizing properties of normal and adenomatous polyps in colon mucosa for the early diagnosis of precancerous lesions

    NASA Astrophysics Data System (ADS)

    Ortega-Quijano, Noé; Fanjul-Vélez, Félix; de Cos-Pérez, Jesús; Arce-Diego, José Luis

    2011-09-01

    Optical characterization of biological tissues by means of polarimetric techniques is an area of growing interest. Polarized light can be used for malignant neoplasms detection. To our knowledge, few studies have so far focused on lesions that are prone to result in cancer. In this work we present a polarimetric study of depolarization in prepathological tissues. Specifically, we will focus on premalignant lesions in human colon due to their clinical relevance. Colonic adenoma, the potential precursor of malignant adenocarcinoma, provokes significant structural modifications in colon mucosa that affect light depolarization. The depolarizing properties of normal and adenomatous polyps mucosa are compared. The average linear degree of polarization is shown to present a strong dependence with the precancerous state of the colonic tissue. This method has the potential to enable an early diagnosis of colon cancer.

  9. Vitiligo patient-derived keratinocytes exhibit characteristics of normal wound healing via epithelial to mesenchymal transition.

    PubMed

    Banerjee, Poulomi; Venkatachalam, Sandhyaa; Mamidi, Murali Krishna; Bhonde, Ramesh; Shankar, Krupa; Pal, Rajarshi

    2015-05-01

    Vitiligo is an autoimmune disorder that leads to depigmentation of skin via melanocyte dysfunction. Keratinocyte-induced toxicity is one among the several etiological factors implicated for vitiligo, and hence, autologous keratinocyte grafting is projected as one of the primary mode of treatment for vitiligo. However, reports indicate that perilesional keratinocytes not only display signatures of apoptosis but also could secrete cytokines and mediators which have antagonistic effect on proliferation or survival. Therefore, we investigated how vitiligo patients' derived keratinocytes respond to surplus amounts of inflammatory cytokines and whether they recapitulate events that take place during conventional wound healing. The primary objective of our study was to determine whether keratinocytes isolated from a vitiligo patient would undergo epithelial-mesenchymal transition similar to their normal counterparts upon induction with inflammatory cytokines such as TGF-b1 and EGF. We found that these keratinocytes undergo EMT during wound repair accompanied with increase in the levels of mesenchymal markers and ECM proteins; decrease in the levels of epithelial markers and enhanced migratory ability. Besides, we also demonstrated that EMT induction leads to activation of SMAD and MAPK pathways via Ras, Raf, PAI 1, Snail, Slug and ZO1. To our knowledge, this is the first report on the characterization of primary keratinocytes isolated from vitiligo patients with respect to their wound healing capacity. PMID:25690925

  10. Isolation and Characterization of Intestinal Epithelial Cells from Normal and SIV-Infected Rhesus Macaques

    PubMed Central

    Pan, Diganta; Das, Arpita; Liu, David; Veazey, Ronald S.; Pahar, Bapi

    2012-01-01

    Impairment of intestinal epithelial barriers contributes to the progression of HIV/SIV infection and leads to generalized HIV-induced immune-cell activation during chronic infection. Rhesus macaques are the major animal model for studying HIV pathogenesis. However, detailed characterization of isolated rhesus epithelial cells (ECs) from intestinal tissues is not well defined. It is also not well documented whether isolated ECs had any other cell contaminants from intestinal tissues during the time of processing that might hamper interpretation of EC preparations or cultures. In this study, we identify and characterize ECs based on flow cytometry and immunohistochemistry methods using various enzymatic and mechanical isolation techniques to enrich ECs from intestinal tissues. This study shows that normal healthy ECs differentially express HLA-DR, CD23, CD27, CD90, CD95 and IL-10R markers. Early apoptosis and upregulation of ICAM-1 and HLA-DR in intestinal ECs are thought to be the key features in SIV mediated enteropathy. The data suggest that intestinal ECs might be playing an important role in mucosal immune responses by regulating the expression of different important regulatory and adhesion molecules and their function. PMID:22291924

  11. Expression and regulation of normal and polymorphic epithelial sodium channel by human lymphocytes.

    PubMed

    Bubien, J K; Watson, B; Khan, M A; Langloh, A L; Fuller, C M; Berdiev, B; Tousson, A; Benos, D J

    2001-03-16

    Gene expression, protein expression, and function of amiloride-sensitive sodium channels were examined in human lymphocytes from normal individuals and individuals with Liddle's disease. Using reverse transcriptase polymerase chain reactions, expression of all three cloned epithelial sodium channel (ENaC) subunits was detected in lymphocytes. Polyclonal antibodies to bovine alpha-ENaC bound to the plasma membrane of normal and Liddle's lymphocytes. A quantitative analysis of fluorescence-tagged ENaC antibodies indicated a 2.5-fold greater surface binding of the antibodies to Liddle's lymphocytes compared with normal lymphocytes. The relative binding intensity increased significantly (25%; p < 0.001) for both normal and Liddle's cells after treatment with 40 microM 8-CPT-cAMP. Amiloride-sensitive whole cell currents were recorded under basal and cAMP-treated conditions for both cell types. Liddle's cells had a 4.5-fold larger inward sodium conductance compared with normal cells. A specific 25% increase in the inward sodium current was observed in normal cells in response to cAMP treatment. Outside-out patches from both cell types under both treatment conditions revealed no obvious differences in the single channel conductance. The P(open) was 4.2 +/- 3.9% for patches from non-Liddle's cells, and 27.7 +/- 5.4% in patches from Liddle's lymphocytes. Biochemical purification of a protein complex, using the same antibodies used for the immunohistochemistry, yielded a functional sodium channel complex that was inhibited by amiloride when reconstituted into lipid vesicles and incorporated into planar lipid bilayers. These four independent methodologies yielded findings consistent with the hypotheses that human lymphocytes express functional, regulatable ENaC and that the mutation responsible for Liddle's disease induces excessive channel expression. PMID:11113130

  12. Human colon tissue in organ culture: preservation of normal and neoplastic characteristics

    PubMed Central

    Bhagavathula, Narasimharao; Mankey, Cohra; DaSilva, Marissa; Paruchuri, Tejaswi; Aslam, Muhammad Nadeem; Varani, James

    2009-01-01

    Normal and neoplastic human colon tissue obtained at surgery was used to establish conditions for organ culture. Optimal conditions included an atmosphere of 5% CO2 and 95% O2; tissue partially submerged with mucosa at the gas interface; and serum-free medium with 1.5 mM Ca2+ and a number of growth supplements. Histological, histochemical, and immunohistochemical features that distinguish normal and neoplastic tissue were preserved over a 2-d period. With normal tissue, this included the presence of elongated crypts with small, densely packed cells at the crypt base and mucin-containing goblet cells in the upper portion. Ki67 staining, for proliferating cells, was confined to the lower third of the crypt, while expression of extracellular calcium-sensing receptor was seen in the upper third and surface epithelium. E-cadherin and β-catenin were expressed throughout the epithelium and confined to the cell surface. In tumor tissue, the same disorganized, abnormal glandular structures seen at time zero were present after 2 d. The majority of cells in these structures were mucin-poor, but occasional goblet cells were seen and mucin staining was present. Ki67 staining was seen throughout the abnormal epithelium and calcium-sensing receptor expression was weak and variable. E-cadherin was seen at the cell surface (similar to normal tissue), but in some places, there was diffuse cytoplasmic staining. Finally, intense cytoplasmic and nuclear β-catenin staining was observed in cultured neoplastic tissue. PMID:19915935

  13. Fully unsupervised inter-individual IR spectral histology of paraffinized tissue sections of normal colon.

    PubMed

    Nguyen, Thi Nguyet Que; Jeannesson, Pierre; Groh, Audrey; Piot, Olivier; Guenot, Dominique; Gobinet, Cyril

    2016-05-01

    In label-free Fourier-transform infrared histology, spectral images are individually recorded from tissue sections, pre-processed and clustered. Each single resulting color-coded image is annotated by a pathologist to obtain the best possible match with tissue structures revealed after Hematoxylin-Eosin staining. However, the main limitations of this approach are the empirical choice of the number of clusters in unsupervised classification, and the marked color heterogeneity between the clustered spectral images. Here, using normal murine and human colon tissues, we developed an automatic multi-image spectral histology to simultaneously analyze a set of spectral images (8 images mice samples and 72 images human ones). This procedure consisted of a joint Extended Multiplicative Signal Correction (EMSC) to numerically deparaffinize the tissue sections, followed by an automated joint K-Means (KM) clustering using the hierarchical double application of Pakhira-Bandyopadhyay-Maulik (PBM) validity index. Using this procedure, the main murine and human colon histological structures were correctly identified at both the intra- and the inter-individual levels, especially the crypts, secreted mucus, lamina propria and submucosa. Here, we show that batched multi-image spectral histology procedure is insensitive to the reference spectrum but highly sensitive to the paraffin model of joint EMSC. In conclusion, combining joint EMSC and joint KM clustering by double PBM application allows to achieve objective and automated batched multi-image spectral histology. PMID:26872124

  14. TGF-β Signaling in Dendritic Cells Governs Colonic Homeostasis by Controlling Epithelial Differentiation and the Luminal Microbiota.

    PubMed

    Ihara, Sozaburo; Hirata, Yoshihiro; Serizawa, Takako; Suzuki, Nobumi; Sakitani, Kosuke; Kinoshita, Hiroto; Hayakawa, Yoku; Nakagawa, Hayato; Ijichi, Hideaki; Tateishi, Keisuke; Koike, Kazuhiko

    2016-06-01

    Dendritic cells (DCs) mediate host immune responses to gut microbes and play critical roles in inflammatory bowel disease. In this study, we examined the role of TGF-β signaling in DCs in colonic homeostasis. CD11c-cre Tgfbr2(fl/fl) mice developed spontaneous colitis, and CD11c-cre Tgfbr2(fl/+) mice exhibited susceptibility to dextran sulfate sodium-induced colitis. Colitis in these mice was characterized by goblet cell depletion and dysbiosis caused by Enterobacteriaceae enrichment. Wild-type mice gavaged with Enterobacteriaceae from CD11c-cre Tgfbr2(fl/fl) mice feces showed severe colitis after dextran sulfate sodium treatment, whereas those treated with Notch inhibitor exhibited attenuated colonic injury with increased goblet cell numbers, thickened mucus layer, and fewer fecal Enterobacteriaceae Wild-type mice transplanted with CD11c-cre Tgfbr2(fl/fl) bone marrow developed colitis showing increased Jagged1 and Jagged2 in DCs, increased Hes1 levels in epithelium, and goblet cell depletion. These findings suggest that TGF-β signaling in DCs regulates intestinal homeostasis by modulating epithelial cell differentiation and fecal microbiota. PMID:27183608

  15. Cloning and characterization of a new intestinal inflammation-associated colonic epithelial Ste20-related protein kinase isoform.

    PubMed

    Yan, Y; Nguyen, H; Dalmasso, G; Sitaraman, S V; Merlin, D

    2007-02-01

    Intestinal epithelial cells respond to inflammatory extracellular stimuli by activating mitogen activated protein kinase (MAPK) signaling, which mediates numerous pathophysiological effects, including intestinal inflammation. Here, we show that a novel isoform of SPS1-related proline alanine-rich kinase (SPAK/STE20) is involved in this inflammatory signaling cascade. We cloned and characterized a SPAK isoform from inflamed colon tissue, and found that this SPAK isoform lacked the characteristic PAPA box and alphaF loop found in SPAK. Based on genomic sequence analysis the lack of PAPA box and alphaF loop in colonic SPAK isoform was the result of specific splicing that affect exon 1 and exon 7 of the SPAK gene. The SPAK isoform was found in inflamed and non-inflamed colon tissues as well as Caco2-BBE cells, but not in other tissues, such as liver, spleen, brain, prostate and kidney. In vitro analyses demonstrated that the SPAK isoform possessed serine/threonine kinase activity, which could be abolished by a substitution of isoleucine for the lysine at position 34 in the ATP-binding site of the catalytic domain. Treatment of Caco2-BBE cells with the pro-inflammatory cytokine, interferon gamma, induced expression of the SPAK isoform. Over-expression of the SPAK isoform in Caco2-BBE cells led to nuclear translocation of an N-terminal fragment of the SPAK isoform, as well as activation of p38 MAP kinase signaling cascades and increased intestinal barrier permeability. These findings collectively suggest that pro-inflammatory cytokine signaling may induce expression of this novel SPAK isoform in intestinal epithelia, triggering the signaling cascades that govern intestinal inflammation. PMID:17321610

  16. Hyaluronan distribution in the normal epithelium of esophagus, stomach, and colon and their cancers.

    PubMed Central

    Wang, C.; Tammi, M.; Guo, H.; Tammi, R.

    1996-01-01

    The distribution of hyaluronan (HA) in normal gastrointestinal wall and in tumors originating from their epithelium was studied using a specific probe prepared from cartilage proteoglycan (bHABC, biotinylated hyaluronan binding complex). The normal stratified squamous epithelium of esophagus showed an intense HA staining in the basal and lower intermediate layers, whereas the simple epithelia in the stomach and large intestine were HA negative. Esophageal in situ carcinomas expressed HA also in the cell layers close to the luminal surface, in regions normally negative. Most of the invasive squamous cell carcinomas maintained their HA expression, but in very poorly differentiated types the tumor parenchyma was devoid of HA. In both gastric and colonic adenocarcinomas the tumor parenchyma showed no HA. The stromal tissue was intensely HA positive in all tumors. Cancer cells invading the intestinal smooth muscle were surrounded by copious amounts of HA, whereas the muscular layer was otherwise very poor in HA staining. These results show that relatively well differentiated carcinoma cells themselves retain the high or low HA expression pattern of their original epithelium, whereas tumors stimulate HA deposition in the surrounding stroma. Images Figure 1 Figure 2 Figure 3 PMID:8669472

  17. Desacetyl bisacodyl-induced epithelial Cl(-) secretion in rat colon and rectum.

    PubMed

    Fujita, Takuya; Karaki, Shin-ichiro; Tateoka, Takashi; Kuwahara, Atsukazu

    2016-01-01

    The purpose of this study was to clarify the mode of desacetyl bisacodyl (DAB)-induced secretory action in intestinal tissues using an Ussing chamber assay. DAB is the active metabolite of the laxative bisacodyl. In mucosal-submucosal preparations, mucosal application of DAB induced a transient decrease followed by subsequent increases in short-circuit current and tissue conductance in a concentration-dependent manner. DAB-induced responses occurred from the middle colon to the rectal segment but not in the proximal colon. Moreover, these responses were not observed under chloride (Cl(-))-free conditions or in the presence of DAB on the serosal side of the mucosalsubmucosal specimens. Treatment with tetrodotoxin had no effect on the DAB-induced responses; however, mucosal treatment with a COX inhibitor piroxicam resulted in the elimination of responses. These results suggest that DAB may contribute to the laxative action by inducing Cl(-) secretion which is associated with the COX signaling pathway. This study also demonstrated that the DAB target molecule is present on the mucosal side from the middle colon to the rectal segment. PMID:26912136

  18. Three-dimensional telomere architecture of esophageal squamous cell carcinoma: comparison of tumor and normal epithelial cells.

    PubMed

    Sunpaweravong, S; Sunpaweravong, P; Sathitruangsak, C; Mai, S

    2016-05-01

    Telomeres are repetitive nucleotide sequences (TTAGGG)n located at the ends of chromosomes that function to preserve chromosomal integrity and prevent terminal end-to-end fusions. Telomere loss or dysfunction results in breakage-bridge-fusion cycles, aneuploidy, gene amplification and chromosomal rearrangements, which can lead to genomic instability and promote carcinogenesis. Evaluating the hypothesis that changes in telomeres contribute to the development of esophageal squamous cell carcinoma (ESCC) and to determine whether there are differences between young and old patients, we compared the three-dimensional (3D) nuclear telomere architecture in ESCC tumor cells with that of normal epithelial cells obtained from the same patient. Patients were equally divided by age into two groups, one comprising those less than 45 years of age and the other consisting of those over 80 years of age. Tumor and normal epithelial cells located at least 10 cm from the border of the tumor were biopsied in ESCC patients. Hematoxylin and eosin staining was performed for each sample to confirm and identify the cancer and normal epithelial cells. This study was based on quantitative 3D fluorescence in situ hybridization (Q-FISH), 3D imaging and 3D analysis of paraffin-embedded slides. The 3D telomere architecture data were computer analyzed using 100 nuclei per slide. The following were the main parameters compared: the number of signals (number of telomeres), signal intensity (telomere length), number of telomere aggregates, and nuclear volume. Tumor and normal epithelial samples from 16 patients were compared. The normal epithelial cells had more telomere signals and higher intensities than the tumor cells, with P-values of P < 0.0001 and P = 0.0078, respectively. There were no statistically significant differences in the numbers of telomere aggregates or the nuclear volumes between the tumor and normal epithelial cells. Secondary analyses examined the effects of age on 3D telomere

  19. Normal Human Lung Epithelial Cells Inhibit Transforming Growth Factor-β Induced Myofibroblast Differentiation via Prostaglandin E2

    PubMed Central

    Epa, Amali P.; Thatcher, Thomas H.; Pollock, Stephen J.; Wahl, Lindsay A.; Lyda, Elizabeth; Kottmann, R. M.; Phipps, Richard P.; Sime, Patricia J.

    2015-01-01

    Introduction Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease with very few effective treatments. The key effector cells in fibrosis are believed to be fibroblasts, which differentiate to a contractile myofibroblast phenotype with enhanced capacity to proliferate and produce extracellular matrix. The role of the lung epithelium in fibrosis is unclear. While there is evidence that the epithelium is disrupted in IPF, it is not known whether this is a cause or a result of the fibroblast pathology. We hypothesized that healthy epithelial cells are required to maintain normal lung homeostasis and can inhibit the activation and differentiation of lung fibroblasts to the myofibroblast phenotype. To investigate this hypothesis, we employed a novel co-culture model with primary human lung epithelial cells and fibroblasts to investigate whether epithelial cells inhibit myofibroblast differentiation. Measurements and Main Results In the presence of transforming growth factor (TGF)-β, fibroblasts co-cultured with epithelial cells expressed significantly less α-smooth muscle actin and collagen and showed marked reduction in cell migration, collagen gel contraction, and cell proliferation compared to fibroblasts grown without epithelial cells. Epithelial cells from non-matching tissue origins were capable of inhibiting TGF-β induced myofibroblast differentiation in lung, keloid and Graves’ orbital fibroblasts. TGF-β promoted production of prostaglandin (PG) E2 in lung epithelial cells, and a PGE2 neutralizing antibody blocked the protective effect of epithelial cell co-culture. Conclusions We provide the first direct experimental evidence that lung epithelial cells inhibit TGF-β induced myofibroblast differentiation and pro-fibrotic phenotypes in fibroblasts. This effect is not restricted by tissue origin, and is mediated, at least in part, by PGE2. Our data support the hypothesis that the epithelium plays a crucial role in maintaining lung homeostasis

  20. Electroporation-assisted penetration of zinc oxide nanoparticles in ex vivo normal and cancerous human colon tissue

    NASA Astrophysics Data System (ADS)

    Zhou, L. P.; Wu, G. Y.; Wei, H. J.; Guo, Z. Y.; Yang, H. Q.; He, Y. H.; Xie, S. S.

    2015-11-01

    In this study, we presented the research of the penetration of zinc oxide nanoparticles (ZnO NPs) (30 and 90 nm), and electroporation (EP) assisted penetration of the ZnO NPs in the human normal colon (NC) and adenomatous colon (AC) tissues studied with optical coherence tomography (OCT) and diffuse reflectance (DR) measurement. The results have shown that the attenuation coefficient of colon tissue after the application of 30 or 90 nm ZnO NPs alone decreased approximately by 28% and 14% for NC tissue, 35% and 22% for AC tissue, respectively; while the attenuation coefficient of colon tissue after combined application of 30 or 90 nm ZnO NPs/EP decreased approximately by 46% and 30% for NC tissue, and 53% and 42% for AC tissue, respectively. The results illustrate EP can significantly increase the penetration of ZnO NPs in the colon tissue, especially in AC tissue. Through the analysis of attenuation coefficient and reflectance intensity of the colon tissue, we find that the accumulation of the ZnO NPs in the colon tissue greatly influenced the tissue optical properties.

  1. Notch signaling is active in normal mouse middle ear epithelial cells

    PubMed Central

    LIU, XIANG; SHENG, HAI-BIN; MA, RUI; YANG, JUAN-MEI; LUO, WEN-WEI; YANG, XIAO-YU; REN, DONG-DONG; CHI, FANG-LU

    2016-01-01

    Mucous cell metaplasia/hyperplasia in the middle ear epithelium is associated with the occurrence of otitis media with effusion during infections. However, the mechanism by which Notch signaling regulates cell fate in the middle ear epithelium is unclear. The aim of the present study was to elucidate this mechanism by investigating the localization of Notch receptors, such as Notch1 and Notch2, and Notch ligands, such as Jagged1, in the normal mouse middle ear epithelium (NMMEE) using immunofluorescence. Furthermore, the mRNA expression levels of Notch receptors and ligands were evaluated using reverse transcription polymerase chain reaction (PCR). The effects of the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine tert-butyl ester (DAPT) on epithelial cell proliferation were determined using 5-ethynyl-2′-deoxyuridine (EdU) staining and immunofluorescence staining of the apoptosis marker caspase-3 and the epithelial proliferation marker pan-cytokeratine. In addition, the differentiation of the NMMEE cells was characterized by evaluating the mRNA expression levels of the mucous cell-associated genes Arg2, Muc2, Spdef, Spink4 and Tff1 using quantitative PCR. Notch1, Notch2 and Jagged1 were observed to be co-localized throughout the mouse middle ear epithelium. Furthermore, Notch1-4, Jagged1, Jagged2, Dll1 and Dll4 mRNAs were expressed in the NMMEE cells. The inhibition of Notch by DAPT resulted in fewer EdU-positive cells and the upregulation of the expression levels of various mucous cell-associated genes. The results indicate that DAPT suppresses the proliferation of NMMEE cells while promoting their differentiation into mucous cells. Therefore, DAPT may provide a specific therapeutic strategy for the reversal of multiple pathological processes that are associated with epithelium thickening in the middle ear. PMID:27168786

  2. E-Cigarette Affects the Metabolome of Primary Normal Human Bronchial Epithelial Cells

    PubMed Central

    Aug, Argo; Altraja, Siiri; Kilk, Kalle; Porosk, Rando; Soomets, Ursel; Altraja, Alan

    2015-01-01

    E-cigarettes are widely believed to be safer than conventional cigarettes and have been even suggested as aids for smoking cessation. However, while reasonable with some regards, this judgment is not yet supported by adequate biomedical research data. Since bronchial epithelial cells are the immediate target of inhaled toxicants, we hypothesized that exposure to e-cigarettes may affect the metabolome of human bronchial epithelial cells (HBEC) and that the changes are, at least in part, induced by oxidant-driven mechanisms. Therefore, we evaluated the effect of e-cigarette liquid (ECL) on the metabolome of HBEC and examined the potency of antioxidants to protect the cells. We assessed the changes of the intracellular metabolome upon treatment with ECL in comparison of the effect of cigarette smoke condensate (CSC) with mass spectrometry and principal component analysis on air-liquid interface model of normal HBEC. Thereafter, we evaluated the capability of the novel antioxidant tetrapeptide O-methyl-l-tyrosinyl-γ-l-glutamyl-l-cysteinylglycine (UPF1) to attenuate the effect of ECL. ECL caused a significant shift in the metabolome that gradually gained its maximum by the 5th hour and receded by the 7th hour. A second alteration followed at the 13th hour. Treatment with CSC caused a significant initial shift already by the 1st hour. ECL, but not CSC, significantly increased the concentrations of arginine, histidine, and xanthine. ECL, in parallel with CSC, increased the content of adenosine diphosphate and decreased that of three lipid species from the phosphatidylcholine family. UPF1 partially counteracted the ECL-induced deviations, UPF1’s maximum effect occurred at the 5th hour. The data support our hypothesis that ECL profoundly alters the metabolome of HBEC in a manner, which is comparable and partially overlapping with the effect of CSC. Hence, our results do not support the concept of harmlessness of e-cigarettes. PMID:26536230

  3. Reciprocal Paracrine Interactions Between Normal Human Epithelial and Mesenchymal Cells Protect Cellular DNA from Radiation-Induced Damage

    SciTech Connect

    Nakazawa, Yuka; Saenko, Vladimir Rogounovitch, Tatiana; Suzuki, Keiji; Mitsutake, Norisato; Matsuse, Michiko; Yamashita, Shunichi

    2008-06-01

    Purpose: To explore whether interactions between normal epithelial and mesenchymal cells can modulate the extent of radiation-induced DNA damage in one or both types of cells. Methods and Materials: Human primary thyrocytes (PT), diploid fibroblasts BJ, MRC-5, and WI-38, normal human mammary epithelial cells (HMEC), and endothelial human umbilical cord vein endothelial cells (HUV-EC-C), cultured either individually or in co-cultures or after conditioned medium transfer, were irradiated with 0.25 to 5 Gy of {gamma}-rays and assayed for the extent of DNA damage. Results: The number of {gamma}-H2AX foci in co-cultures of PT and BJ fibroblasts was approximately 25% lower than in individual cultures at 1 Gy in both types of cells. Reciprocal conditioned medium transfer to individual cultures before irradiation resulted in approximately a 35% reduction of the number {gamma}-H2AX foci at 1 Gy in both types of cells, demonstrating the role of paracrine soluble factors. The DNA-protected state of cells was achieved within 15 min after conditioned medium transfer; it was reproducible and reciprocal in several lines of epithelial cells and fibroblasts, fibroblasts, and endothelial cells but not in epithelial and endothelial cells. Unlike normal cells, human epithelial cancer cells failed to establish DNA-protected states in fibroblasts and vice versa. Conclusions: The results imply the existence of a network of reciprocal interactions between normal epithelial and some types of mesenchymal cells mediated by soluble factors that act in a paracrine manner to protect DNA from genotoxic stress.

  4. Butyrate delivered by butyrylated starch increases distal colonic epithelial apoptosis in carcinogen-treated rats.

    PubMed

    Clarke, Julie M; Young, Graeme P; Topping, David L; Bird, Anthony R; Cobiac, Lynne; Scherer, Benjamin L; Winkler, Jessica G; Lockett, Trevor J

    2012-01-01

    Animal studies show that increasing large bowel butyrate concentration through ingestion of butyrylated or resistant starches opposes carcinogen-induced tumorigenesis, which is consistent with population data linking greater fiber consumption with lowered colorectal cancer (CRC) risk. Butyrate has been shown to regulate the apoptotic response to DNA damage. This study examined the impact of increasing large bowel butyrate concentration by dietary butyrylated starch on the colonic epithelium of rats treated with the genotoxic carcinogen azoxymethane (AOM). Four groups of 10 male rats were fed AIN-93G based-diets containing either low amylose maize starch (LAMS), LAMS with 3% tributyrin, 10% high amylose maize starch (HAMS) or 10% butyrylated HAMS (HAMSB). HAMS and HAMSB starches were cooked by heating in water. After 4 weeks, rats were injected once with AOM and killed 6 h later. Rates of apoptosis and proliferation were measured in colonic epithelium. Short-chain fatty acid concentrations in large bowel digesta and hepatic portal venous plasma were higher in HAMSB than all other groups. Apoptotic rates in the distal colon were increased by HAMSB and correlated with luminal butyrate concentrations but cellular proliferation rates were unaffected by diet. The increase in apoptosis was most marked in the base and proliferative zone of the crypt. Regulation of luminal butyrate using HAMSB increases the rates of apoptotic deletion of DNA-damaged colonocytes. We propose this pro-apoptotic function of butyrate plays a major role reducing tumour formation in the AOM-treated rat and that these data support a potential protective role of butyrate in CRC. PMID:22080572

  5. Nitric oxide induces apoptosis in a human colonic epithelial cell line, T84

    PubMed Central

    Sandoval, M.; Liu, X.; Oliver, P. D.; Zhang, X.-J.; Clark, D. A.

    1995-01-01

    Chronic inflammation is associated with inducible nitric oxide synthase expression in infiltrating and resident cells (epithelia, neurons) and an exaggerated release of nitric oxide. NO can induce apoptosis in macrophages and tumour cell lines. We investigated whether NO induced cell death in an epithelial (T84) cell fine via apoptosis. Culture T84 cells were exposed to a bolus of NO (40 or 80 μM) dissolved in Hank's balanced salt solution (HBSS) supplemented with 10% fetal calf serum (FCS). After incubation for 4 h at 37°C in 5% CO2, cells were either stained for DNA fragmentation with the TdT-mediated dUTP–biotin nick end labelling (TUNEL) method, or cytosolic DNA fragments quantified by a cell death detection ELISA assay. Nitric oxide induced apoptosis in a dose-dependent manner which preceded frank cell death (failure to exclude Trypan blue). These data suggest that epithelial cell death may be NO dependent and via apoptosis, in states of gut inflammation. PMID:18475646

  6. Zinc Induced G2/M Blockage is p53 and p21 Dependent in Normal Human Bronchial Epithelial Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The involvement of the p53 and p21 signal pathway in the G2/M cell cycle progression of zinc supplemented normal human bronchial epithelial (NHBE) cells was examined using the siRNA approach. Cells were cultured for one passage in different concentrations of zinc: <0.4 microM (ZD) as zinc-deficient;...

  7. Activation of caspases in intestinal villus epithelial cells of normal and nematode infected rats

    PubMed Central

    Hyoh, Y; Ishizaka, S; Horii, T; Fujiwara, A; Tegoshi, T; Yamada, M; Arizono, N

    2002-01-01

    Background: Small intestinal epithelial cells (IEC) show apoptosis in physiological turnover of cells and in certain inflammatory diseases. Aims: To investigate the role of caspases in the progression of IEC apoptosis in vivo. Methods: IEC were separated along the villus-crypt axis from the jejunum of normal and Nippostrongylus brasiliensis infected rats at 4°C. Caspases were examined by a fluorometric assay method, histochemistry, and immunoblotting. Results: Villus cell rich IEC from normal rats exhibited a high level of caspase-3-like activity whereas activities of caspase-1, -8, and -9 were negligible. Immunoblotting analysis of villus cell rich IEC revealed partial cleavage of procaspase-3 into a 17 kDa molecule as well as cleavage of a caspase-3 substrate, poly(ADP-ribose) polymerase (PARP), whereas in crypt cell rich IEC, caspase-3 cleavage was less significant. Caspase-3 activity was also observed histochemically in villus epithelium on frozen sections of the normal small intestine. IEC prepared at 4°C did not reveal nuclear degradation whereas subsequent incubation in a suspension at 37°C induced intense nuclear degradation within one hour in accordance with increases in active caspase-3. This apoptosis was partially suppressed by the caspase inhibitor Z-VAD-fmk. Nematode infected animals showed villus atrophy together with significant increases in levels of caspase-3 in IEC but not of caspase-1, -8, or -9. Conclusion: Caspase-3 may have an important role in the physiological replacement of IEC as well as in progression of IEC apoptosis induced by nematode infection. PMID:11772970

  8. Influence of diet or intrarectal bile acid injections on colon epithelial cell proliferation in rats previously injected with 1,2-dimethylhydrazine

    SciTech Connect

    Glauert, H.P.; Bennink, M.R.

    1983-03-01

    The effects of varying colon bile acid concentrations on rat colon epithelial cell proliferation were studied. Bile acid concentrations were altered by intrarectally injecting either deoxycholic or lithocholic acid for 4 weeks or by increasing the dietary fat or fiber (wheat bran, agar, or carrageenan) intake for 4 weeks. 1,2-Dimethylhydrazine (DMH) was s.c. injected into half of the rats 1 week before treatments began. Colon epithelial cell proliferation was measured by (/sup 3/H)thymidine autoradiography of colon crypts. Rats injected with DMH had more DNA-synthesizing cells per crypt. Neither bile acid injection nor any of the diets altered the number of DNA-synthesizing cells per crypt. DMH injections, deoxycholic and lithocholic acid intrarectal injections, and dietary agar and wheat bran all increased the total number of cells per crypt. High fat diets and dietary carrageenan did not affect cell number. All diets containing fiber lowered total fecal bile acid concentrations, but increasing the fat content of the diet did not affect them. These results indicate that the bile acid injections and dietary agar and wheat bran induce a slight hyperplasia in the colon.

  9. Detection rate and outcome of colonic serrated epithelial changes in patients with ulcerative colitis or Crohn’s colitis

    PubMed Central

    Johnson, D. H.; Khanna, S.; Smyrk, T. C.; Loftus, E. V.; Anderson, K. S.; Mahoney, D. W.; Ahlquist, D. A.; Kisiel, J. B.

    2016-01-01

    SUMMARY Background Chronic ulcerative colitis (CUC) and colonic Crohn’s disease (CD) increase colorectal neoplasia (CRN) risk. While sessile serrated polyp (SSP) is a known cancer precursor, serrated epithelial changes (SEC) are of uncertain prevalence and neoplastic risk. Aim To assess the serrated lesion detection rates in CUC and CD and documented incidence of subsequent CRN in a retrospective, single-centre cohort study. Methods Patients were identified by a central diagnostic index and pathology review confirmed SEC, SSP, CUC and CD diagnoses from 2006–12. Matched controls were identified from among all CUC and CD patients having colonoscopy during the second half of the time period. All were followed for incident CRN, estimated by the Kaplan–Meier method. Results Between 2006 and 2012, 79 SEC and 10 SSP cases were identified. Detection rates were estimated to be 10/1000 and 2/1000 patients, for SEC and SSP respectively, among 4208 unique CUC or CD patients having colonoscopy from 2010–12. With only 10 cases, SSP patients were not further analysed. Cumulative incidence of subsequent CRN at 1 and 3 years was 12% (95% CI, 0–30%) and 30% (3–57%), respectively, in SEC patients compared to 4% (0–12%) and 9% (0–23%), respectively, in CUC or CD controls (P = 0.047, log-rank). However, this statistical difference was not significant after patients were stratified for history of prior or synchronous dysplasia (P = 0.09). Conclusions Serrated epithelial changes and sessile serrated polyps are uncommonly detected by colonoscopy in chronic ulcerative colitis and Crohn’s disease patients. Histology with changes of serrated epithelium may be associated with risk of subsequent colorectal neoplasia, however further studies are needed to explore this relationship. PMID:24779703

  10. Intestinal Microbial Dysbiosis and Colonic Epithelial Cell Hyperproliferation by Dietary α-Mangostin is Independent of Mouse Strain

    PubMed Central

    Gutierrez-Orozco, Fabiola; Thomas-Ahner, Jennifer M.; Galley, Jeffrey D.; Bailey, Michael T.; Clinton, Steven K.; Lesinski, Gregory B.; Failla, Mark L.

    2015-01-01

    Beverages and supplements prepared from mangosteen fruit are claimed to support gut health and immunity, despite the absence of supporting evidence from clinical trials. We recently reported that α-mangostin (α-MG), the most abundant xanthone in mangosteen fruit, altered the intestinal microbiome, promoted dysbiosis, and exacerbated colitis in C57BL/6J mice. The objective of this study was to determine whether induction of dysbiosis by dietary α-MG is limited to the C57BL/6J strain or represents a more generic response to chronic intake of the xanthone on the gut microbiota of mice. C3H, Balb/c, Nude FoxN1nu, and C57BL/6J mice, each demonstrating unique microbiomes, were fed standard diet or diet containing 0.1% α-MG for four weeks. Dietary α-MG significantly altered the cecal and colonic microbiota in all four strains of mice, promoting a reduction in generally assumed beneficial bacterial groups while increasing the abundance of pathogenic bacteria. Consumption of α-MG was associated with reduced abundance of Firmicutes and increased abundance of Proteobacteria. The abundance of Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae was reduced in α-MG-fed mice, while that of Enterobacteriaceae and Enterococcaceae was increased. Dietary α-MG also was associated with increased proliferation of colonic epithelial cells, infiltration of immune cells, infiltration of immune cells and increased fluid content in stool. These results suggest that ingestion of pharmacologic doses of xanthones in mangosteen-containing supplements may adversely alter the gut microbiota and should be used with caution. PMID:25621505

  11. Intestinal microbial dysbiosis and colonic epithelial cell hyperproliferation by dietary α-mangostin is independent of mouse strain.

    PubMed

    Gutierrez-Orozco, Fabiola; Thomas-Ahner, Jennifer M; Galley, Jeffrey D; Bailey, Michael T; Clinton, Steven K; Lesinski, Gregory B; Failla, Mark L

    2015-01-01

    Beverages and supplements prepared from mangosteen fruit are claimed to support gut health and immunity, despite the absence of supporting evidence from clinical trials. We recently reported that α-mangostin (α-MG), the most abundant xanthone in mangosteen fruit, altered the intestinal microbiome, promoted dysbiosis, and exacerbated colitis in C57BL/6J mice. The objective of this study was to determine whether induction of dysbiosis by dietary α-MG is limited to the C57BL/6J strain or represents a more generic response to chronic intake of the xanthone on the gut microbiota of mice. C3H, Balb/c, Nude FoxN1nu, and C57BL/6J mice, each demonstrating unique microbiomes, were fed standard diet or diet containing 0.1% α-MG for four weeks. Dietary α-MG significantly altered the cecal and colonic microbiota in all four strains of mice, promoting a reduction in generally assumed beneficial bacterial groups while increasing the abundance of pathogenic bacteria. Consumption of α-MG was associated with reduced abundance of Firmicutes and increased abundance of Proteobacteria. The abundance of Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae was reduced in α-MG-fed mice, while that of Enterobacteriaceae and Enterococcaceae was increased. Dietary α-MG also was associated with increased proliferation of colonic epithelial cells, infiltration of immune cells, infiltration of immune cells and increased fluid content in stool. These results suggest that ingestion of pharmacologic doses of xanthones in mangosteen-containing supplements may adversely alter the gut microbiota and should be used with caution. PMID:25621505

  12. Colonic epithelial cell proliferation in hereditary non-polyposis colorectal cancer

    PubMed Central

    Green, S; Chapman, P; Burn, J; Burt, A; Bennett, M; Appleton, D; Varma, J; Mathers, J

    1998-01-01

    Background—Despite the recent discovery of four genes responsible for up to 90% of all cases of hereditary non-polyposis colorectal cancer (HNPCC), there will still be families in whom predictive testing is not possible. A phenotypic biomarker would therefore be useful. An upwards shift of the proliferative compartment in colonic crypts is reported to be one of the earliest changes in premalignant mucosa. 
Aims—To assess the role of crypt cell proliferation as a phenotypic biomarker in HNPCC. 
Patients—Thirty five patients at 50% risk of carrying the HNPCC gene (21 of whom subsequently underwent predictive testing and hence gene carrier status was known) and 18controls. 
Methods—Crypt cell proliferation was measured at five sites in the colon using two different techniques. Labelling index was determined using the monoclonal antibody MIB1 and whole crypt mitotic index was measured using the microdissection and crypt squash technique. The distribution of proliferating cells within the crypts was also assessed. 
Results—There were no significant differences in the total labelling index or mean number of mitoses per crypt, nor in the distribution of proliferating cells within the crypt, between the study and control groups at any site. When the 21 patients in whom gene carrier status was known were analysed separately there were no significant differences in the measured indices of proliferation between the HNPCC gene carriers and non-gene carriers. 
Conclusion—Crypt cell proliferation is not a discriminative marker of gene carriage in HNPCC. 

 Keywords: cell proliferation; hereditary non-polyposis colorectal cancer PMID:9771410

  13. Molecular Mechanisms of Malignant Transformation by Low Dose Cadmium in Normal Human Bronchial Epithelial Cells

    PubMed Central

    Kluz, Thomas; Cohen, Lisa; Shen, Steven S.; Costa, Max

    2016-01-01

    Cadmium is a carcinogenic metal, the mechanisms of which are not fully understood. In this study, human bronchial epithelial cells were transformed with sub-toxic doses of cadmium (0.01, 0.05, and 0.1 μM) and transformed clones were characterized for gene expression changes using RNA-seq, as well as other molecular measurements. 440 genes were upregulated and 47 genes were downregulated in cadmium clones relative to control clones over 1.25-fold. Upregulated genes were associated mostly with gene ontology terms related to embryonic development, immune response, and cell movement, while downregulated genes were associated with RNA metabolism and regulation of transcription. Several embryonic genes were upregulated, including the transcription regulator SATB2. SATB2 is critical for normal skeletal development and has roles in gene expression regulation and chromatin remodeling. Small hairpin RNA knockdown of SATB2 significantly inhibited growth in soft agar, indicating its potential as a driver of metal-induced carcinogenesis. An increase in oxidative stress and autophagy was observed in cadmium clones. In addition, the DNA repair protein O6-methylguanine-DNA-methyltransferase was depleted by transformation with cadmium. MGMT loss caused significant decrease in cell viability after treatment with the alkylating agent temozolomide, demonstrating diminished capacity to repair such damage. Results reveal various mechanisms of cadmium-induced malignant transformation in BEAS-2B cells including upregulation of SATB2, downregulation of MGMT, and increased oxidative stress. PMID:27186882

  14. Tamoxifen Induces Expression of Immune Response-Related Genes in Cultured Normal Human Mammary Epithelial Cells

    PubMed Central

    Schild-Hay, Laura J.; Leil, Tarek A.; Divi, Rao L.; Olivero, Ofelia, A.; Weston, Ainsley; Poirier, Miriam C.

    2008-01-01

    Use of tamoxifen (TAM) is associated with a 50% reduction in breast cancer incidence and an increase in endometrial cancer incidence. Here, we documented TAM-induced gene expression changes in cultured normal human mammary epithelial cells (NHMEC strains numbered 5, 16 and 40), established from tissue taken at reduction mammoplasty from 3 individuals. Cells exposed to 0, 10 or 50 μM TAM for 48 hours were evaluated for (E)-α-(deoxyguanosin-N2-yl)-tamoxifen (dG-N2-TAM) adduct formation by TAM-DNA (DNA modified with dG-N2-TAM) chemiluminescence immunoassay (CIA), gene expression changes using NCI DNA-oligonucleotide microarray, and real time (RT)-PCR. At 48 hr, cells exposed to 10 μM and 50 μM TAM were 85.6% and 48.4% viable, respectively, and there were no measurable dG-N2-TAM adducts. For microarray, cells were exposed to 10 μM TAM and genes with expression changes of ≥ 3-fold were as follows: thirteen genes up-regulated and one down-related for strain 16; seventeen genes up-regulated for strain 5; and eleven genes up-regulated for strain 40. Interferon-inducible genes (IFITM1, IFIT1, IFNA1, MXI and GIP3), and a potassium ion channel (KCNJ1) were up-regulated in all 3 strains. No significant expression changes were found for genes related to estrogen or xenobiotic metabolism. RT-PCR revealed up-regulation of interferon α (IFNA1) and confirmed the TAM-induced up-regulation of the genes identified by microarray, with the exception of GIP3 and MX1, which were not up-regulated in strain 40. Induction of interferon-related genes in the three NHMEC strains suggests that, in addition to hormonal effects, TAM exposure may enhance immune response in normal breast tissue. PMID:19155303

  15. Epithelial-Mesenchymal Transition in Cancer: Parallels Between Normal Development and Tumor Progression

    PubMed Central

    Micalizzi, Douglas S.; Farabaugh, Susan M.

    2010-01-01

    From the earliest stages of embryonic development, cells of epithelial and mesenchymal origin contribute to the structure and function of developing organs. However, these phenotypes are not always permanent, and instead, under the appropriate conditions, epithelial and mesenchymal cells convert between these two phenotypes. These processes, termed Epithelial-Mesenchymal Transition (EMT), or the reverse Mesenchymal-Epithelial Transition (MET), are required for complex body patterning and morphogenesis. In addition, epithelial plasticity and the acquisition of invasive properties without the full commitment to a mesenchymal phenotype are critical in development, particularly during branching morphogenesis in the mammary gland. Recent work in cancer has identified an analogous plasticity of cellular phenotypes whereby epithelial cancer cells acquire mesenchymal features that permit escape from the primary tumor. Because local invasion is thought to be a necessary first step in metastatic dissemination, EMT and epithelial plasticity are hypothesized to contribute to tumor progression. Similarities between developmental and oncogenic EMT have led to the identification of common contributing pathways, suggesting that the reactivation of developmental pathways in breast and other cancers contributes to tumor progression. For example, developmental EMT regulators including Snail/Slug, Twist, Six1, and Cripto, along with developmental signaling pathways including TGF-β and Wnt/β-catenin, are misexpressed in breast cancer and correlate with poor clinical outcomes. This review focuses on the parallels between epithelial plasticity/EMT in the mammary gland and other organs during development, and on a selection of developmental EMT regulators that are misexpressed specifically during breast cancer. PMID:20490631

  16. Galectin-8 expression decreases in cancer compared with normal and dysplastic human colon tissue and acts significantly on human colon cancer cell migration as a suppressor

    PubMed Central

    Nagy, N; Bronckart, Y; Camby, I; Legendre, H; Lahm, H; Kaltner, H; Hadari, Y; Van Ham, P; Yeaton, P; Pector, J-C; Zick, Y; Salmon, I; Danguy, A; Kiss, R; Gabius, H-J

    2002-01-01

    Background and aims: Galectins are β-galactoside binding proteins. This ability may have a bearing on cell adhesion and migration/proliferation in human colon cancer cells. In addition to galectins-1 and -3 studied to date, other members of this family not investigated in detail may contribute to modulation of tumour cell features. This evident gap has prompted us to extend galectin analysis beyond the two prototypes. The present study deals with the quantitative determination of immunohistochemical expression of galectin-8 in normal, benign, and malignant human colon tissue samples and in four human colon cancer models (HCT-15, LoVo, CoLo201, and DLD-1) maintained both in vitro as permanent cell lines and in vivo as nude mice xenografts. The role of galectin-8 (and its neutralising antibody) in cell migration was investigated in HCT-15, LoVo, CoLo201, and DLD-1 cell lines. Methods: Immunohistochemical expression of galectin-8 and its overall ability to bind to sugar ligands (revealed glycohistochemically by means of biotinylated histochemically inert carrier bovine serum albumin with α- and β-d-galactose, α-d-glucose, and lactose derivatives as ligands) were quantitatively determined using computer assisted microscopy. The presence of galectin-8 mRNA in the four human colon cancer cell lines was examined by reverse transcriptase-polymerase chain reaction. In vitro, cellular localisation of exogenously added galectin-8 in the culture media of these colon cancer cells was visualised by fluorescence microscopy. In vitro galectin-8 mediated effects (and the influence of its neutralising antibody) on migration levels of living HCT-15, LoVo, CoLo201, and DLD-1 cells were quantitatively determined by computer assisted phase contrast microscopy. Results: A marked decrease in immunohistochemical expression of galectin-8 occurred with malignancy development in human colon tissue. Malignant colon tissue exhibited a significantly lower galectin-8 level than normal or

  17. Ecological determinants in microbial colonization of the murine gastrointestinal tract: adherence of Torulopsis pintolopesii to epithelial surfaces.

    PubMed Central

    Suegara, N; Siegel, J E; Savage, D C

    1979-01-01

    Torulopsis pintolopesii is a yeast indigenous to the gastrointestinal tracts of conventional mice and rats from many colonies. In such natively colonized animals, the organism forms layers on the surface of the epithelium in the secreting portion of the stomach and can be cultured from all areas of the gastrointestinal tract. When given in water or food to germfree mice or specific pathogen-free mice possessing an indigenous microbiota free of yeast, T. pintolopesii also can be cultured from all areas of the tract at population levels ranging from 10(5) to 10(8) cells per g (wet weight). Likewise, as in its native hosts, the organism forms layers on gastric surfaces in the associated animals. The layers form on the secreting surface in both the specific pathogen-free and monoassociated ex-germfree mice. In the latter animal, however, a layer of yeast also forms on the nonsecreting gastric surface. In tests of its capacity to adhere to gastrointestinal surfaces in vitro, the organism adheres to epithelia from all areas of the mouse tract. These findings support an hypothesis that the capacity of T. pintolopesii to adhere to epithelial surfaces may be only one determinant influencing it to form layers on the gastric secreting surface in its native hosts. PMID:157978

  18. Claudin-based barrier differentiation in the colonic epithelial crypt niche involves Hopx/Klf4 and Tcf7l2/Hnf4-α cascades.

    PubMed

    Lili, Loukia N; Farkas, Attila E; Gerner-Smidt, Christian; Overgaard, Christian E; Moreno, Carlos S; Parkos, Charles A; Capaldo, Christopher T; Nusrat, Asma

    2016-01-01

    Colonic enterocytes form a rapidly renewing epithelium and barrier to luminal antigens. During renewal, coordinated expression of the claudin family of genes is vital to maintain the epithelial barrier. Disruption of this process contributes to barrier compromise and mucosal inflammatory diseases. However, little is known about the regulation of this critical aspect of epithelial cell differentiation. In order to identify claudin regulatory factors we utilized high-throughput gene microarrays and correlation analyses. We identified complex expression gradients for the transcription factors Hopx, Hnf4a, Klf4 and Tcf7l2, as well as 12 claudins, during differentiation. In vitro confirmatory methods identified 2 pathways that stimulate claudin expression; Hopx/Klf4 activation of Cldn4, 7 and 15, and Tcf7l2/Hnf4a up-regulation of Cldn23. Chromatin immunoprecipitation confirmed a Tcf7l2/Hnf4a/Claudin23 cascade. Furthermore, Hnf4a conditional knockout mice fail to induce Cldn23 during colonocyte differentiation. In conclusion, we report a comprehensive screen of colonic claudin gene expression and discover spatiotemporal Hopx/Klf4 and Tcf7l2/Hnf4a signaling as stimulators of colonic epithelial barrier differentiation. PMID:27583195

  19. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150.

    PubMed

    Barbáchano, A; Fernández-Barral, A; Pereira, F; Segura, M F; Ordóñez-Morán, P; Carrillo-de Santa Pau, E; González-Sancho, J M; Hanniford, D; Martínez, N; Costales-Carrera, A; Real, F X; Pálmer, H G; Rojas, J M; Hernando, E; Muñoz, A

    2016-06-01

    SPROUTY-2 (SPRY2) is a modulator of tyrosine kinase receptor signaling with receptor- and cell type-dependent inhibitory or enhancing effects. Studies on the action of SPRY2 in major cancers are conflicting and its role remains unclear. Here we have dissected SPRY2 action in human colon cancer. Global transcriptomic analyses show that SPRY2 downregulates genes encoding tight junction proteins such as claudin-7 and occludin and other cell-to-cell and cell-to-matrix adhesion molecules in human SW480-ADH colon carcinoma cells. Moreover, SPRY2 represses LLGL2/HUGL2, PATJ1/INADL and ST14, main regulators of the polarized epithelial phenotype, and ESRP1, an epithelial-to-mesenchymal transition (EMT) inhibitor. A key action of SPRY2 is the upregulation of the major EMT inducer ZEB1, as these effects are reversed by ZEB1 knock-down by means of RNA interference. Consistently, we found an inverse correlation between the expression level of claudin-7 and those of SPRY2 and ZEB1 in human colon tumors. Mechanistically, ZEB1 upregulation by SPRY2 results from the combined induction of ETS1 transcription factor and the repression of microRNAs (miR-200 family, miR-150) that target ZEB1 RNA. Moreover, SPRY2 increased AKT activation by epidermal growth factor, whereas AKT and also Src inhibition reduced the induction of ZEB1. Altogether, these data suggest that AKT and Src are implicated in SPRY2 action. Collectively, these results show a tumorigenic role of SPRY2 in colon cancer that is based on the dysregulation of tight junction and epithelial polarity master genes via upregulation of ZEB1. The dissection of the mechanism of action of SPRY2 in colon cancer cells is important to understand the upregulation of this gene in a subset of patients with this neoplasia that have poor prognosis. PMID:26455323

  20. Lithocholic acid attenuates cAMP-dependent Cl- secretion in human colonic epithelial T84 cells.

    PubMed

    Ao, Mei; Domingue, Jada C; Khan, Nabihah; Javed, Fatima; Osmani, Kashif; Sarathy, Jayashree; Rao, Mrinalini C

    2016-06-01

    Bile acids (BAs) play a complex role in colonic fluid secretion. We showed that dihydroxy BAs, but not the monohydroxy BA lithocholic acid (LCA), stimulate Cl(-) secretion in human colonic T84 cells (Ao M, Sarathy J, Domingue J, Alrefai WA, Rao MC. Am J Physiol Cell Physiol 305: C447-C456, 2013). In this study, we explored the effect of LCA on the action of other secretagogues in T84 cells. While LCA (50 μM, 15 min) drastically (>90%) inhibited FSK-stimulated short-circuit current (Isc), it did not alter carbachol-stimulated Isc LCA did not alter basal Isc, transepithelial resistance, cell viability, or cytotoxicity. LCA's inhibitory effect was dose dependent, acted faster from the apical membrane, rapid, and not immediately reversible. LCA also prevented the Isc stimulated by the cAMP-dependent secretagogues 8-bromo-cAMP, lubiprostone, or chenodeoxycholic acid (CDCA). The LCA inhibitory effect was BA specific, since CDCA, cholic acid, or taurodeoxycholic acid did not alter FSK or carbachol action. While LCA alone had no effect on intracellular cAMP concentration ([cAMP]i), it decreased FSK-stimulated [cAMP]i by 90%. Although LCA caused a small increase in intracellular Ca(2+) concentration ([Ca(2+)]i), chelation by BAPTA-AM did not reverse LCA's effect on Isc LCA action does not appear to involve known BA receptors, farnesoid X receptor, vitamin D receptor, muscarinic acetylcholine receptor M3, or bile acid-specific transmembrane G protein-coupled receptor 5. LCA significantly increased ERK1/2 phosphorylation, which was completely abolished by the MEK inhibitor PD-98059. Surprisingly PD-98059 did not reverse LCA's effect on Isc Finally, although LCA had no effect on basal Isc, nystatin permeabilization studies showed that LCA both stimulates an apical cystic fibrosis transmembrane conductance regulator Cl(-) current and inhibits a basolateral K(+) current. In summary, 50 μM LCA greatly inhibits cAMP-stimulated Cl(-) secretion, making low doses of LCA of

  1. Induction of multidrug resistance downregulates the expression of CFTR in colon epithelial cells.

    PubMed

    Breuer, W; Slotki, I N; Ausiello, D A; Cabantchik, I Z

    1993-12-01

    The epithelial cell line HT-29, which constitutively expresses the cystic fibrosis transmembrane conductance regulator (CFTR), was induced to become drug resistant by cultivation in the presence of colchicine. The gradual acquisition of drug resistance was associated with a corresponding increase in the expression of the multidrug resistance P-glycoprotein (P-gp) and a marked (> 80%) decrease in the constitutive levels of CFTR protein, as determined by immunoblotting. The reduction in CFTR content occurred at the onset of acquisition of drug resistance when P-gp expression was still relatively low. Reversal of drug resistance by removal of colchicine from the culture medium led to a 70% decrease in P-gp levels and a concomitant 40% increase in CFTR. The levels of other membrane proteins such as Na(+)-K(+)-ATPase and alkaline phosphatase remained relatively constant (< 26% variation). We propose that a selective downregulation of CFTR is elicited by acquisition of the multidrug resistance (MDR) phenotype and that induction of P-gp expression leads to a reversible repression of CFTR biosynthesis. These findings provide an experimental foundation for the complementary patterns of expression of the CFTR and MDR1 genes observed in vivo. PMID:7506492

  2. IL-32θ inhibits stemness and epithelial-mesenchymal transition of cancer stem cells via the STAT3 pathway in colon cancer

    PubMed Central

    Bak, Yesol; Kwon, Taeho; Bak, In seon; Hong, Jintae; Yu, Dae-Yeul; Yoon, Do-Young

    2016-01-01

    Interleukin (IL)-32 is a well-known cytokine associated with inflammation, virus infections and cancer. IL-32θ is a newly identified isoform of IL-32, whose function has yet to be elucidated. In this study, we investigated IL-32θ function in colon cancer stem cells. Using samples from colon cancer patients, we found that the expression of IL-32θ mRNAs was significantly suppressed in tumor regions. We investigated the effects of IL-32θ on colon cancer. Ectopic expression of IL-32θ attenuated invasion, migration in vitro and in vivo tumorigenicity of colon cancer cells. IL-32θ inhibited epithelial-mesenchymal transition (EMT), resulting in the suppression of their migratory and invasive capabilities of HT29 colon cancer cells. In addition, IL-32θ altered various properties of CSCs, including sphere formation and expression of stemness related genes. IL-32θ directly bound to STAT3 and inhibited its nuclear translocation, leading to inhibited transcription of downstream factors, including Bmi1 and ZEB1. We showed that IL-32θ inhibited the STAT3-ZEB1 pathway and consequently inhibited key factors of stemness and EMT. Taken together, our findings reveal that IL-32θ can be a tumor suppressor, indicating that IL-32θ could possibly be used in therapies for colon cancer. PMID:26824417

  3. Assessment of Corneal Epithelial Thickness in Asymmetric Keratoconic Eyes and Normal Eyes Using Fourier Domain Optical Coherence Tomography.

    PubMed

    Catalan, S; Cadarso, L; Esteves, F; Salgado-Borges, J; Lopez, M; Cadarso, C

    2016-01-01

    Purpose. To compare the characteristics of asymmetric keratoconic eyes and normal eyes by Fourier domain optical coherence tomography (OCT) corneal mapping. Methods. Retrospective corneal and epithelial thickness OCT data for 74 patients were compared in three groups of eyes: keratoconic (n = 22) and normal fellow eyes (n = 22) in patients with asymmetric keratoconus and normal eyes (n = 104) in healthy subjects. Areas under the curve (AUC) of receiver operator characteristic (ROC) curves for each variable were compared across groups to indicate their discrimination capacity. Results. Three variables were found to differ significantly between fellow eyes and normal eyes (all p < 0.05): minimum corneal thickness, thinnest corneal point, and central corneal thickness. These variables combined showed a high discrimination power to differentiate fellow eyes from normal eyes indicated by an AUC of 0.840 (95% CI: 0.762-0.918). Conclusions. Our findings indicate that topographically normal fellow eyes in patients with very asymmetric keratoconus differ from the eyes of healthy individuals in terms of their corneal epithelial and pachymetry maps. This type of information could be useful for an early diagnosis of keratoconus in topographically normal eyes. PMID:27379181

  4. Assessment of Corneal Epithelial Thickness in Asymmetric Keratoconic Eyes and Normal Eyes Using Fourier Domain Optical Coherence Tomography

    PubMed Central

    Cadarso, L.; Esteves, F.; Salgado-Borges, J.; Lopez, M.; Cadarso, C.

    2016-01-01

    Purpose. To compare the characteristics of asymmetric keratoconic eyes and normal eyes by Fourier domain optical coherence tomography (OCT) corneal mapping. Methods. Retrospective corneal and epithelial thickness OCT data for 74 patients were compared in three groups of eyes: keratoconic (n = 22) and normal fellow eyes (n = 22) in patients with asymmetric keratoconus and normal eyes (n = 104) in healthy subjects. Areas under the curve (AUC) of receiver operator characteristic (ROC) curves for each variable were compared across groups to indicate their discrimination capacity. Results. Three variables were found to differ significantly between fellow eyes and normal eyes (all p < 0.05): minimum corneal thickness, thinnest corneal point, and central corneal thickness. These variables combined showed a high discrimination power to differentiate fellow eyes from normal eyes indicated by an AUC of 0.840 (95% CI: 0.762–0.918). Conclusions. Our findings indicate that topographically normal fellow eyes in patients with very asymmetric keratoconus differ from the eyes of healthy individuals in terms of their corneal epithelial and pachymetry maps. This type of information could be useful for an early diagnosis of keratoconus in topographically normal eyes. PMID:27379181

  5. Effects of Platinum Nanocolloid in Combination with Gamma Irradiation on Normal Human Esophageal Epithelial Cells.

    PubMed

    Li, Qiang; Tanaka, Yoshiharu; Saitoh, Yasukazu; Miwa, Nobuhiko

    2016-05-01

    Our previous study demonstrated that platinum nanocolloid (Pt-nc), combined with lower-dose gamma irradiation at 3, 5, and 7 Gy significantly decreased proliferation and accelerated apoptosis of the human esophageal squamous cell carcinoma-derived cell line KYSE-70. The aim of the present study was to determine, under the same conditions as our previous study where gamma rays combined with Pt-nc were carcinostatic to KYSE-70 cells, if we could induce a radioprotective or the radiation-sensitizing effect on the human normal esophageal epithelial cells (HEEpiC). HEEpiC were treated with various Pt-nc concentrations and then irradiated with various gamma-ray doses. The proliferative status of HEEpiC was evaluated using trypan blue dye-exclusion and WST-8 assays. The cellular and nucleic morphological features were determined using crystal violet and Hoechst 33342 stainings, respectively. The intracellular level of reactive oxygen species (ROS) in HEEpiC was evaluated with a nitro blue tetrazolium (NBT) assay. The apoptotic status was detected with caspase-3, Bax, and Bcl-2 by Western blotting. Either Pt-nc or gamma irradiation could inhibit the growth of HEEpiC; however, their combined use exerted a significant proliferation-inhibitory effect in a Pt-nc dose-dependent manner than gamma irradiation alone. Pt-nc resulted in radiation sensitization rather than radiation protection on HEEpiC in vitro similar to KYSE-70 cells, when Pt-nc was administrated alone or combined with gamma irradiation. Thus, Pt-nc has an inhibitory effect on cell proliferation, a facilitative effect on apoptosis, and a certain degree of toxicity against HEEpiC. PMID:27483929

  6. One-hit effects in cancer: Altered proteome of morphologically normal colon crypts in Familial Adenomatous Polyposis

    PubMed Central

    Yeung, Anthony T.; Patel, Bhavinkumar B.; Li, Xin-Ming; Seeholzer, Steven H.; Coudry, Renata A.; Cooper, Harry S.; Bellacosa, Alfonso; Boman, Bruce M.; Zhang, Tao; Litwin, Samuel; Ross, Eric A.; Conrad, Peggy; Crowell, James A.; Kopelovich, Levy; Knudson, Alfred

    2008-01-01

    We studied patients with Familial Adenomatous Polyposis (FAP), because they are virtually certain to develop colon cancer, and because much is known about the causative APC gene. We hypothesized that the inherited heterozygous mutation itself leads to changes in the proteome of morphologically normal crypts and the proteins that changed may represent targets for preventive and therapeutic agents. We determined the differential protein expression of morphologically normal colon crypts of FAP patients versus those of individuals without the mutation, using two-dimensional gel electrophoresis, mass spectrometry and validation by 2D gel Western blotting. Approximately 13% of 1,695 identified proteins were abnormally expressed in the morphologically normal crypts of APC mutation carriers, indicating that a colon crypt cell under the one-hit state is already abnormal. Many of the expression changes affect pathways consistent with the function of the APC protein, including apoptosis, cell adhesion, cell motility, cytoskeletal organization and biogenesis, mitosis, transcription and oxidative stress response. Thus, heterozygosity for a mutant APC tumor suppressor gene alters the proteome of normal-appearing crypt cells in a gene-specific manner, consistent with a detectable one-hit event. These changes may represent the earliest biomarkers of colorectal cancer development, potentially leading to the identification of molecular targets for cancer prevention. PMID:18794146

  7. Telomere length variation in normal epithelial cells adjacent to tumor: potential biomarker for breast cancer local recurrence

    PubMed Central

    Zhou, Xin; Meeker, Alan K.; Makambi, Kepher H.; Kosti, Ourania; Kallakury, Bhaskar V.S.; Sidawy, Mary K.; Loffredo, Christopher A.; Zheng, Yun-Ling

    2012-01-01

    A better understanding of the risk of local recurrence (LR) will facilitate therapeutic decision making in the management of early breast cancers. In the present study, we investigated whether telomere length in the normal breast epithelial cells surrounding the tumor is predictive of breast cancer LR; 152 women who were diagnosed with breast cancer at the Lombardi Comprehensive Cancer Center were included in this nested case–control study. Cases (patients had LR) and controls (patients had no LR) were matched on year of surgery, age at diagnosis and type of surgery. Telomere fluorescent in situ hybridization was used to determine the telomere length using formalin fixed paraffin-embedded breast tissues. Small telomere length variation (TLV), defined as the coefficient variation of telomere lengths among examined cells, in normal epithelial cells adjacent to the tumor was significantly associated with a 5-fold (95% confidence interval = 1.2–22.2) increased risk of breast cancer LR. When the subjects were categorized into quartiles, a significant inverse dose–response relationship was observed with lowest versus highest quartile odds ratio of 15.3 (Ptrend = 0.012). Patients who had large TLV had significantly better 10 year recurrence free survival rate compared with patients who had small TLV (80 versus 33%). The present study revealed that TLV in normal epithelial cells adjacent to tumor is a strong predictor of breast cancer LR. If confirmed by future studies, TLV in normal epithelial cells adjacent to tumor has the potential to become a promising biomarker for predicting breast cancer LR after breast conserving surgery. PMID:22072619

  8. Long-term exposure of MCF-12A normal human breast epithelial cells to ethanol induces epithelial mesenchymal transition and oncogenic features.

    PubMed

    Gelfand, Robert; Vernet, Dolores; Bruhn, Kevin; Vadgama, Jaydutt; Gonzalez-Cadavid, Nestor F

    2016-06-01

    Alcoholism is associated with breast cancer incidence and progression, and moderate chronic consumption of ethanol is a risk factor. The mechanisms involved in alcohol's oncogenic effects are unknown, but it has been speculated that they may be mediated by acetaldehyde. We used the immortalized normal human epithelial breast cell line MCF-12A to determine whether short- or long-term exposure to ethanol or to acetaldehyde, using in vivo compatible ethanol concentrations, induces their oncogenic transformation and/or the acquisition of epithelial mesenchymal transition (EMT). Cultures of MCF-12A cells were incubated with 25 mM ethanol or 2.5 mM acetaldehyde for 1 week, or with lower concentrations (1.0-2.5 mM for ethanol, 1.0 mM for acetaldehyde) for 4 weeks. In the 4-week incubation, cells were also tested for anchorage-independence, including isolation of soft agar selected cells (SASC) from the 2.5 mM ethanol incubations. Cells were analyzed by immunocytofluorescence, flow cytometry, western blotting, DNA microarrays, RT/PCR, and assays for miRs. We found that short-term exposure to ethanol, but not, in general, to acetaldehyde, was associated with transcriptional upregulation of the metallothionein family genes, alcohol metabolism genes, and genes suggesting the initiation of EMT, but without related phenotypic changes. Long-term exposure to the lower concentrations of ethanol or acetaldehyde induced frank EMT changes in the monolayer cultures and in SASC as demonstrated by changes in cellular phenotype, mRNA expression, and microRNA expression. This suggests that low concentrations of ethanol, with little or no mediation by acetaldehyde, induce EMT and some traits of oncogenic transformation such as anchorage-independence in normal breast epithelial cells. PMID:27035792

  9. Long-term exposure of MCF-12A normal human breast epithelial cells to ethanol induces epithelial mesenchymal transition and oncogenic features

    PubMed Central

    GELFAND, ROBERT; VERNET, DOLORES; BRUHN, KEVIN; VADGAMA, JAYDUTT; GONZALEZ-CADAVID, NESTOR F.

    2016-01-01

    Alcoholism is associated with breast cancer incidence and progression, and moderate chronic consumption of ethanol is a risk factor. The mechanisms involved in alcohol's oncogenic effects are unknown, but it has been speculated that they may be mediated by acetaldehyde. We used the immortalized normal human epithelial breast cell line MCF-12A to determine whether short- or long-term exposure to ethanol or to acetaldehyde, using in vivo compatible ethanol concentrations, induces their oncogenic transformation and/or the acquisition of epithelial mesenchymal transition (EMT). Cultures of MCF-12A cells were incubated with 25 mM ethanol or 2.5 mM acetaldehyde for 1 week, or with lower concentrations (1.0–2.5 mM for ethanol, 1.0 mM for acetaldehyde) for 4 weeks. In the 4-week incubation, cells were also tested for anchorage-independence, including isolation of soft agar selected cells (SASC) from the 2.5 mM ethanol incubations. Cells were analyzed by immunocytofluorescence, flow cytometry, western blotting, DNA microarrays, RT/PCR, and assays for miRs. We found that short-term exposure to ethanol, but not, in general, to acetaldehyde, was associated with transcriptional upregulation of the metallothionein family genes, alcohol metabolism genes, and genes suggesting the initiation of EMT, but without related phenotypic changes. Long-term exposure to the lower concentrations of ethanol or acetaldehyde induced frank EMT changes in the monolayer cultures and in SASC as demonstrated by changes in cellular phenotype, mRNA expression, and microRNA expression. This suggests that low concentrations of ethanol, with little or no mediation by acetaldehyde, induce EMT and some traits of oncogenic transformation such as anchorage-independence in normal breast epithelial cells. PMID:27035792

  10. Comparative evaluation of viral, nonviral and physical methods of gene delivery to normal and transformed lung epithelial cells.

    PubMed

    Gilbert, Jennifer L; Purcell, James; Strappe, Padraig; McCabe, Matthew; O'Brien, Timothy; O'Dea, Shirley

    2008-09-01

    Few studies have directly compared the efficiencies of gene delivery methods that target normal lung cells versus lung tumor cells. We report the first study directly comparing the efficiency and toxicity of viral [adeno-associated virus (AAV2, 5, 6) and lentivirus], nonviral (Effectene, SuperFect and Lipofectamine 2000) and physical [particle-mediated gene transfer (PMGT)] methods of gene delivery in normal mouse lung cells and in mouse adenocarcinoma cells. Lentivirus pseudotyped with the vesicular stomatitis virus glycoprotein was the most efficient gene transfer method for normal mouse airway epithelial cells [25.95 (+/-3.57) %] whereas AAV6 was most efficient for MLE-12 adenocarcinoma cells [68.2 (+/-3.2) %]. PMGT was more efficient in normal mouse airway epithelial cells than AAV5, Lipofectamine 2000 and SuperFect. AAV5 displayed the lowest transfection efficiency at less than 10% in both cell types. PMGT was the only method that resulted in significant toxicity. In summary, for all of the gene delivery methods examined here, lung tumor cells were transfected more easily than normal lung cells. Lipofectamine 2000 is potentially highly selective for lung tumor cells whereas AAV6 and lentivirus vesicular stomatitis virus glycoprotein may be useful for gene delivery strategies that require targeting of both normal and tumor cells. PMID:18690089

  11. The molecular and cellular response of normal and progressed human bronchial epithelial cells to HZE particles

    NASA Astrophysics Data System (ADS)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Larsen, Jill

    We have used a model of non-oncogenically immortalized normal human bronchial epithelial cells to determine the response of such cells to particles found outside the protection of the earth’s electromagnetic field. We have identified an enhanced frequency of cellular transformation, as measured by growth in soft agar, for both 56Fe and 28Si (1 GeV/n) that is maximal (4-6 fold) at 0.25 Gy and 0.40 Gy, respectively. At 4 months post-irradiation 38 individual soft agar clones were isolated. These clones were characterized extensively for cellular and molecular changes. Gene expression analysis suggested that these clones had down-regulated several genes associated with anti-oxidant pathways including GLS2, GPX1 and 4, SOD2, PIG3, and NQO1 amongst others. As a result, many of these transformed clones were exposed to high levels of intracellular radical oxygen species (ROS), although there appeared not to be any enhanced mitochondrial ROS. DNA repair pathways associated with ATM/ATR signaling were also upregulated. However, these transformants do not develop into tumors when injected into immune-compromised mice, suggesting that they have not progressed sufficiently to become oncogenic. Therefore we chose 6 soft agar clones for continuous culture for an additional 14 months. Amongst the 6 clones, only one clone showed any significant change in phenotype. Clone 3kt-ff.2a, propagated for 18 months, were 2-fold more radioresistant, had a shortened doubling time and the background rate of transformation more than doubled. Furthermore, the morphology of transformed clones changed. Clones from this culture are being compared to the original clone as well as the parental HBEC3KT and will be injected into immune-compromised mice for oncogenic potential. Oncogenically progressed HBECs, HBEC3KT cells that overexpress a mutant RAS gene and where p53 has been knocked down, designated HBEC3KTR53, responded quite differently to HZE particle exposure. First, these cells are more

  12. PAC exhibits potent anti-colon cancer properties through targeting cyclin D1 and suppressing epithelial-to-mesenchymal transition.

    PubMed

    Al-Qasem, Abeer; Al-Howail, Huda A; Al-Swailem, Mashael; Al-Mazrou, Amer; Al-Otaibi, Basem; Al-Jammaz, Ibrahim; Al-Khalaf, Huda H; Aboussekhra, Abdelilah

    2016-03-01

    Colorectal cancer (CRC) is a major cause of cancer morbidity and mortality worldwide. Although response rates and overall survival have been improved in recent years, resistance to multiple drug combinations is inevitable. Therefore, the development of more efficient drugs, with fewer side effects is urgently needed. To this end, we have investigated in the present report the effect of PAC, a novel cucumin analogue, on CRC cells both in vitro and in vivo. We have shown that PAC induces apoptosis, mainly via the internal mitochondrial route, and inhibits cell proliferation through delaying the cell cycle at G2/M phase. Interestingly, the pro-apoptotic effect was mediated through STAT3-dependent down-regulation of cyclin D1 and its downstream target survivin. Indeed, change in the expression level of cyclin D1 modulated the expression of survivin and the response of CRC cells to PAC. Furthermore, using the ChIP assay, we have shown PAC-dependent reduction in the binding of STAT3 to the cyclin D1 promoter in vivo. Additionally, PAC suppressed the epithelial-to-mesenchymal process through down-regulating the mesenchymal markers (N-cadherin, vimentin and Twist1) and inhibiting the invasion/migration abilities of the CRC cells via repressing the pro-migration/invasion protein kinases AKT and ERK1/2. In addition, PAC inhibited tumor growth and repressed the JAK2/STAT3, AKT/mTOR and MEK/ERK pathways as well as their common downstream effectors cyclin D1 and survivin in humanized CRC xenografts. Collectively, these results indicate that PAC has potent anti-CRC effects, and therefore could constitute an effective alternative chemotherapeutic agent, which may consolidate the adjuvant treatment of colon cancer. © 2015 Wiley Periodicals, Inc. PMID:25641341

  13. Growth of Normal Mouse Vaginal Epithelial Cells in and on Collagen Gels

    NASA Astrophysics Data System (ADS)

    Iguchi, Taisen; Uchima, Francis-Dean A.; Ostrander, Patricia L.; Bern, Howard A.

    1983-06-01

    Sustained growth in primary culture of vaginal epithelial cells from ovariectomized adult BALB/cCrg1 mice embedded within or seeded on collagen gel matrix was achieved in a serum-free medium composed of Ham's F-12 medium/Dulbecco's modified Eagle's medium, 1:1 (vol/vol), supplemented with insulin, bovine serum albumin fraction V, epidermal growth factor, cholera toxin, and transferrin. Three-dimensional growth of vaginal epithelial cells occurred inside the collagen gel matrix. Cell numbers increased 4- to 8-fold in collagen gel and about 4-fold on collagen gel after 9-10 days in culture. The effect of 17β -estradiol (0.00018-180 nM in gel or 0.018-180 nM on gel) and diethylstilbestrol (DES; 0.0186-186 nM in gel) on the growth of vaginal epithelial cells was examined. The addition of estrogen did not enhance the growth of vaginal epithelial cells during this time period either in the complete medium or in a suboptimal medium. Cultures on floating collagen gels in the serum-free medium are composed of 1-3 cell layers with superficial cornification. Estrogen does not appear to be a direct mitogen for vaginal epithelial cells, at least in this system.

  14. p120 catenin is required for normal tubulogenesis but not epithelial integrity in developing mouse pancreas

    PubMed Central

    Hendley, Audrey M.; Provost, Elayne; Bailey, Jennifer M.; Wang, Yue J.; Cleveland, Megan H.; Blake, Danielle; Bittman, Ross W.; Roeser, Jeffrey C.; Maitra, Anirban; Reynolds, Albert B.; Leach, Steven D.

    2015-01-01

    The intracellular protein p120 catenin aids in maintenance of cell-cell adhesion by regulating E-cadherin stability in epithelial cells. In an effort to understand the biology of p120 catenin in pancreas development, we ablated p120 catenin in mouse pancreatic progenitor cells, which resulted in deletion of p120 catenin in all epithelial lineages of the developing mouse pancreas: islet, acinar, centroacinar, and ductal. Loss of p120 catenin resulted in formation of dilated epithelial tubules, expansion of ductal epithelia, loss of acinar cells, and the induction of pancreatic inflammation. Aberrant branching morphogenesis and tubulogenesis were also observed. Throughout development, the phenotype became more severe, ultimately resulting in an abnormal pancreas comprised primarily of duct-like epithelium expressing early progenitor markers. In pancreatic tissue lacking p120 catenin, overall epithelial architecture remained intact; however, actin cytoskeleton organization was disrupted, an observation associated with increased cytoplasmic PKCζ. Although we observed reduced expression of adherens junction proteins E-cadherin, β-catenin, and α-catenin, p120 catenin family members p0071, ARVCF, and δ-catenin remained present at cell membranes in homozygous p120f/f pancreases, potentially providing stability for maintenance of epithelial integrity during development. Adult mice homozygous for deletion of p120 catenin displayed dilated main pancreatic ducts, chronic pancreatitis, acinar to ductal metaplasia (ADM), and mucinous metaplasia that resembles PanIN1a. Taken together, our data demonstrate an essential role for p120 catenin in pancreas development. PMID:25523391

  15. Inhibition of Transforming Growth Factor-{beta} Signaling in Normal Lung Epithelial Cells Confers Resistance to Ionizing Radiation

    SciTech Connect

    Reeves, Anna; Zagurovskaya, Marianna; Gupta, Seema; Shareef, Mohammed M.; Mohiuddin, Mohammed; Ahmed, Mansoor M. . E-mail: mmahmed@geisinger.edu

    2007-05-01

    Purpose: To address the functional role of radiation-induced transforming growth factor-{beta} (TGF-{beta}) signaling in a normal epithelial background, we selected a spontaneously immortalized lung epithelial cell line derived from the normal lung tissue of a dominant-negative mutant of the TGF-{beta} RII ({delta}RII) transgenic mouse that conditionally expressed {delta}RII under the control of the metallothionein promoter (MT-1), and assessed this cell line's response to radiation. Methods and Materials: A spontaneously immortalized lung epithelial cell culture (SILECC) was established and all analyses were performed within 50 passages. Colony-forming and terminal transferase dUPT nick end labeling (TUNEL) assays were used to assess clonogenic inhibition and apoptosis, respectively. Western-blot analysis was performed to assess the kinetics of p21, bax, and RII proteins. Transforming growth factor-{beta}-responsive promoter activity was measured using dual-luciferase reporter assay. Results: Exposure to ZnSO{sub 4} inhibited TGF-{beta} signaling induced either by recombinant TGF-{beta}1 or ionizing radiation. The SILECC, treated with either ZnSO{sub 4} or neutralizing antibody against TGF-{beta}, showed a significant increase in radio-resistance compared to untreated cells. Furthermore, the expression of {delta}RII inhibited the radiation-induced up-regulation of the TGF-{beta} effector gene p21{sup waf1/cip1}. Conclusions: Our findings imply that inhibition of radiation-induced TGF-{beta} signaling via abrogation of the RII function enhances the radio-resistance of normal lung epithelial cells, and this can be directly attributed to the loss of TGF-{beta} signaling function.

  16. Development, validation and implementation of an in vitro model for the study of metabolic and immune function in normal and inflamed human colonic epithelium.

    PubMed

    Pedersen, Gitte

    2015-01-01

    Ulcerative colitis (UC) and Crohn's disease (CD), collectively referred to as inflammatory bowel disease (IBD), are chronic immune disorders affecting the gastrointestinal tract. The aetiology of IBD remains an enigma, but increasing evidence suggests that the development of IBD may be triggered by a disturbance in the balance between gut commensal bacteria and host response in the intestinal mucosa. It is now known that epithelial cells have the capacity to secrete and respond to a range of immunological mediators and this suggests that these cells play a prominent role in the pathogenesis of IBD. Current knowledge about the intestinal epithelium has mainly been obtained using models based on animal cells, transformed human intestinal cell lines and isolated cells from resected colonic bowel segments. Species difference, malignant origin and confounders related to surgery, obviously make these cell models however less applicable for patophysiological studies. Consequently, there was a clear need for models of representative intestinal epithelial cells that would allow functional and dynamic studies of the differentiated human colonic epithelium in vitro. The primary purpose of this thesis was to explore and validate the optimal conditions for establishing a model based on short-term cultures of human colonic epithelial cells obtained from endoscopical biopsies. The cell cultures were accordingly used to describe the interplay between proinflammatory cytokines and colonic epithelium, with focus on alterations in viability, butyrate metabolism and secretion of a chemokine and metalloproteinases (MMP). Finally, the model was used to characterize expression and activation of receptors like toll like receptor (TLR)9 and peroxisome activated proliferators (PPAR)- known to be important players in regulation of innate and adaptive immune responses in human colonic epithelium. The results showed that it is possible to establish short-term cultures of representative, viable

  17. Dose-dependent stimulatory and inhibitory effects of luminal and serosal n-butyric acid on epithelial cell proliferation of pig distal colonic mucosa.

    PubMed

    Inagaki, Akiko; Sakata, Takashi

    2005-06-01

    Large bowel bacteria convert various carbohydrates into short-chain fatty acids (SCFA). SCFA stimulate epithelial cell proliferation of the large intestine in vivo and inhibit that of various cells in vitro. Supposing that too high concentration of SCFA on the serosal side is responsible for their inhibitory effect in vitro, we studied effects of luminal and serosal n-butyric acid (0, 0.1, 1, or 10 mmol/L, adjusted to neutral pH) on the epithelial cell proliferation rate of pig colonic mucosa in organ culture taking crypt cell production rate (CCPR) as the measure of proliferative activity. With 0 or 0.1 mmol/L n-butyric acid on the serosal side, luminal n-butyric acid increased CCPR at 1.0 mmol/L, and decreased CCPR at 10 mmol/L when compared to the luminal 0 mmol/L control. With 1.0 or 10 mmol/L serosal n-butyric acid, luminal n-butyric acid depressed CCPR dose-dependently. The above results indicated that n-butyric acid stimulated colonic epithelial cell proliferation at low concentration and inhibit it at high concentration with interaction effect to enhance the inhibitory action. The stimulatory effect of a low dose of serosal n-butyric acid may be responsible for the distant trophic effect of SCFA. PMID:16161765

  18. β-III tubulin modulates the behavior of Snail overexpressed during the epithelial-to-mesenchymal transition in colon cancer cells.

    PubMed

    Sobierajska, Katarzyna; Wieczorek, Katarzyna; Ciszewski, Wojciech M; Sacewicz-Hofman, Izabela; Wawro, Marta E; Wiktorska, Magdalena; Boncela, Joanna; Papiewska-Pajak, Izabela; Kwasniak, Pawel; Wyroba, Elzbieta; Cierniewski, Czeslaw S; Niewiarowska, Jolanta

    2016-09-01

    Class III β-tubulin (TUBB3) is a marker of drug resistance expressed in a variety of solid tumors. Originally, it was described as an important element of chemoresistance to taxanes. Recent studies have revealed that TUBB3 is also involved in an adaptive response to a microenvironmental stressor, e.g. low oxygen levels and poor nutrient supply in some solid tumors, independently of the microtubule targeting agent. Furthermore, it has been demonstrated that TUBB3 is a marker of biological aggressiveness associated with modulation of metastatic abilities in colon cancer. The epithelial-to-mesenchymal transition (EMT) is a basic cellular process by which epithelial cells lose their epithelial behavior and become invasive cells involved in cancer metastasis. Snail is a zinc-finger transcription factor which is able to induce EMT through the repression of E-cadherin expression. In the presented studies we focused on the analysis of the TUBB3 role in EMT-induced colon adenocarcinoma cell lines HT-29 and LS180. We observed a positive correlation between Snail presence and TUBB3 upregulation in tested adenocarcinoma cell lines. The cellular and behavioral analysis revealed for the first time that elevated TUBB3 level is functionally linked to increased cell migration and invasive capability of EMT induced cells. Additionally, the post-transcriptional modifications (phosphorylation, glycosylation) appear to regulate the cellular localization of TUBB3 and its phosphorylation, observed in cytoskeleton, is probably involved in cell motility modulation. PMID:27188792

  19. Expression of H type 1 antigen of ABO histo-blood group in normal colon and aberrant expressions of H type 2 and H type 3/4 antigens in colon cancer.

    PubMed

    Fujitani, N; Liu, Y; Toda, S; Shirouzu, K; Okamura, T; Kimura, H

    2000-05-01

    We have immunohistochemically examined the distribution of the H antigens of type 1, type 2 and type 3/4 chains of the ABO(H) histo-blood group system in human normal colon and in colon cancer using three monoclonal antibodies specific for each of the H type 1/2, H type 2, and the H type 3/4 chain. We unexpectedly found that mucosa of the normal colon from secretors but not that from nonsecretors expressed only H type 1 and did not express H type 2 or H type 3/4. The H type 1 was expressed in goblet cells. Positive goblet cells expressing H type 1 were decreased in number progressively from the proximal colon to the rectum. In tumors, 4 (57%) of 7 cancer tissues of the proximal colon from secretors expressed no H type 1, whereas all 8 cancer tissues of the distal colon from secretors expressed H type 1. The aberrant expressions of H type 2 and H type 3/4 (47 and 67%, respectively) were found in cancer tissues from both the proximal and the distal colon. Tumors from nonsecretors did not express any H antigens. Our results suggested that the expression of H type 1 in the normal colon and the aberrant expressions of H type 2 and H type 3/4 in colon cancer tissues were regulated by FUT2-encoded Se type alpha(1,2)fucosyltransferase. However, UEA-I-positive substance(s) rather than H type 2 were uniquely expressed throughout the normal colon and in colon cancers from both secretors and nonsecretors. PMID:11261842

  20. CSPP-L Associates with the Desmosome of Polarized Epithelial Cells and Is Required for Normal Spheroid Formation

    PubMed Central

    Sternemalm, Johan; Geimer, Stefan; Frikstad, Kari-Anne M.; Schink, Kay O.; Stokke, Trond; Patzke, Sebastian

    2015-01-01

    Deleterious mutations of the Centrosome/Spindle Pole associated Protein 1 gene, CSPP1, are causative for Joubert-syndrome and Joubert-related developmental disorders. These disorders are defined by a characteristic mal-development of the brain, but frequently involve renal and hepatic cyst formation. CSPP-L, the large protein isoform of CSPP1 localizes to microtubule ends of the mitotic mid-spindle and the ciliary axoneme, and is required for ciliogenesis. We here report the microtubule independent but Desmoplakin dependent localization of CSPP-L to Desmosomes in apical-basal polarized epithelial cells. Importantly, siRNA conferred depletion of CSPP-L or Desmoplakin promoted multi-lumen spheroid formation in 3D-cultures of non-ciliated human colon carcinoma Caco-2 cells. Multi-lumen spheroids of CSPP1 siRNA transfectants showed disrupted apical cell junction localization of the cytoskeleton organizing RhoGEF ECT2. Our results hence identify a novel, non-ciliary role for CSPP-L in epithelial morphogenesis. PMID:26241740

  1. Control of growth and squamous differentiation in normal human bronchial epithelial cells by chemical and biological modifiers and transferred genes

    SciTech Connect

    Pfeifer, A.M.; Lechner, J.F.; Masui, T.; Reddel, R.R.; Mark, G.E.; Harris, C.C.

    1989-03-01

    The majority of human lung cancers arise from bronchial epithelial cells. The normal pseudostratified bronchial epithelium is composed of basal, mucous, and ciliated cells. This multi-differentiated epithelium usually responds to xenobiotics and physical injury by undergoing basal cell hyperplasia, mucous cell hyperplasia, and squamous metaplasia. One step of the multistage process of carcinogenesis is thought to involve aberrations in control of the squamous metaplastic processes. Decreased responsiveness to regulators of terminal squamous differentiation may confer a selective clonal expansion advantage to an initiated cell. We studied the effects of endogenous (e.g., transforming growth factor beta 1 (TGF-beta 1) and serum) and exogenous (e.g., 12-O-tetradecanoyl-13-phorbol-acetate (TPA), tobacco smoke condensate, and aldehydes) modifiers of normal human bronchial epithelial (NHBE) cell in a serum-free culture system. NHBE cells are growth inhibited by all of these compounds and induced to undergo squamous differentiation by TGF-beta 1 or TPA. In contrast, lung carcinoma cell lines are relatively resistant to inducers of terminal squamous differentiation which may provide them with a selective growth advantage. Chemical agents and activated protooncogenes (ras,raf,myc) altered the response to endogenous and exogenous inducers of squamous differentiation and caused extended cellular lifespan, aneuploidy, and/or tumorigenicity. The data suggest a close relationship between dysregulation of terminal differentiation pathways and neoplastic transformation of human bronchial epithelial cells.

  2. GENE EXPRESSION PROFILING OF NORMAL HUMAN BRONCHIAL EPITHELIAL CELLS EXPOSED TO TRIVALENT ARSENICALS AND DIMETHYLTHIOARSINIC ACID

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans. However, the carcinogenic mode of action of arsenicals is unknown. We investigated, in human bronchial epithelial (BEAS2B) cells, the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsi...

  3. Cytomorphometric study of epithelial cells in normal and cataractous human lenses in relation with hyperglycemia.

    PubMed

    Laspias, Georgios A; Thomopoulou, Georgia-Heleni; Lazaris, Andreas C; Kavantzas, Nikolaos; Koutselini, Helen; Pagonis, Nikolaos; Tsapeli, Eugenia; Politi, Ekaterini

    2016-04-01

    The aim of the study is to evaluate and correlate the morphology and cell density of epithelial cells adhering to lens capsule surgically removed from the anterior central region with lens clarity and type of cataract present in patients with or without type 2 diabetes. Capsulorhexis specimens were obtained from patients who had undergone phacoemulsification cataract surgery. All the samples were centrifuged and stained by the aid of Papanicolaou technique and were observed under light microscope. We determinated the mean cell density, the degree of epithelial damage, and morphological indicators of cells such as cell area and the nucleus-plasma ratio. Patients with cataract demonstrated a statistical significant decrease in cell density and an heterogeneous cell picture in which enlarged cells dominated. In addition, type 2 diabetics with cataract had a significantly even lower mean epithelial cell density by the presence of larger cell area with smaller nucleus-plasma ratio. More pronounced alterations in the lens epithelium were correlated not only with the presence of cortical cataract, increased fasting blood sugar, and increased HbA1c but also with the prolonged duration of diabetes and the co-existence of diabetic retinopathy. It seems that density and morphology of the anterior lens epithelial cells determine the lens epithelium damage which is more profound in hyperglycemia and in cortical cataracts. The changes in lens epithelium seem to play an important role in cataractogenesis. PMID:26073139

  4. Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase

    NASA Astrophysics Data System (ADS)

    Wagner, John A.; Cozens, Alison L.; Schulman, Howard; Gruenert, Dieter C.; Stryer, Lubert; Gardner, Phyllis

    1991-02-01

    CYSTIC fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase1,2 and protein kinase C3,4. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels1-4. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2+-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2+-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.

  5. Scribble is required for normal epithelial cell-cell contacts and lumen morphogenesis in the mammalian lung.

    PubMed

    Yates, Laura L; Schnatwinkel, Carsten; Hazelwood, Lee; Chessum, Lauren; Paudyal, Anju; Hilton, Helen; Romero, M Rosario; Wilde, Jonathan; Bogani, Debora; Sanderson, Jeremy; Formstone, Caroline; Murdoch, Jennifer N; Niswander, Lee A; Greenfield, Andy; Dean, Charlotte H

    2013-01-15

    During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell-cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical-basal (A/B) polarity. However, the molecular mechanisms that maintain epithelial cohesion and lumen diameter in the mammalian lung are unknown. Here we show that Scribble, a protein implicated in planar cell polarity (PCP) signalling, is necessary for normal lung morphogenesis. Lungs of the Scrib mouse mutant Circletail (Crc) are abnormally shaped with fewer airways, and these airways often lack a visible, 'open' lumen. Mechanistically we show that Scrib genetically interacts with the core PCP gene Vangl2 in the developing lung and that the distribution of PCP pathway proteins and Rho mediated cytoskeletal modification is perturbed in Scrib(Crc/Crc) lungs. However A/B polarity, which is disrupted in Drosophila Scrib mutants, is largely unaffected. Notably, we find that Scrib mediates functions not attributed to other PCP proteins in the lung. Specifically, Scrib localises to both adherens and tight junctions of lung epithelia and knockdown of Scrib in lung explants and organotypic cultures leads to reduced cohesion of lung epithelial cells. Live imaging of Scrib knockdown lungs shows that Scrib does not affect bud bifurcation, as previously shown for the PCP protein Celsr1, but is required to maintain epithelial cohesion. To understand the mechanism leading to reduced cell-cell association, we show that Scrib associates with β-catenin in embryonic lung and the sub-cellular distribution of adherens and tight junction proteins is perturbed in mutant lung epithelia. Our data reveal that Scrib is required for normal lung epithelial organisation and lumen

  6. Effects of 1,25-dihydroxyvitamin D3 on colonic calcium transport in vitamin D-deficient and normal rats.

    PubMed

    Favus, M J; Langman, C B

    1984-03-01

    To determine whether prior vitamin D intake influences the intestinal calcium absorptive action of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], we measured in vitro the two unidirectional transepithelial fluxes of calcium across descending colon segments from rats fed either a vitamin D-deficient or normal diet and injected with either 10, 25, or 75 ng of 1,25(OH)2D3 or vehicle alone. Vitamin D deficiency abolished net calcium absorption [J net, -2 +/- 2 vs. 12 +/- 2 (SE) nmol X cm-2 X h-1, P less than 0.001], and 10 ng of 1,25(OH)2D3 raised J net to levels found in normal rats. Larger doses (25 and 75 ng) increased J net above levels in normal rats given the same dose. In normal rats only 75 ng of 1,25(OH)2D3 increased calcium J net above vehicle control values (12 +/- 2 vs. 38 +/- 4 nmol X cm-2 X h-1, P less than 0.001). Circulating 1,25(OH)2D3 measured by radioreceptor assay was well correlated with calcium transport. For each dose of 1,25(OH)2D3 higher serum 1,25(OH)2D3 levels were reached in vitamin D-deficient rats. Only the 75-ng dose increased circulating 1,25(OH)2D3 and colonic calcium transport in normal rats. Intravenous [3H]-1,25(OH)2D3 disappeared more rapidly from the circulation of normal rats, suggesting that accelerated metabolic degradative processes for 1,25(OH)2D3 may be present in normal but not in vitamin D-deficient rats and may account for the lack of a biological response to 1,25(OH)2D3 in normal animals. PMID:6546644

  7. Prolongation of Carrageenan-induced Inflammation in Human Colonic Epithelial Cells by Activation of an NFκB – BCL10 Loop

    PubMed Central

    Borthakur, Alip; Bhattacharyya, Sumit; Natarajan, Arivarasu A.; Kumar, Anoop; Dudeja, Pradeep K.; Tobacman, Joanne K.

    2013-01-01

    Carrageenan, a sulfated polysaccharide that is widely used as a food additive, induces inflammatory responses in animal models and human cells. The carrageenan-induced inflammatory cascades involve TLR4- and BCL10-dependent activation of NF-κB, leading to increased IL-8 production. Translocations involving BCL10 in the mucosa-associated lymphoid tissue (MALT) lymphomas are associated with constitutive activation of NF-κB. This report presents a mechanism by which carrageenan exposure leads to prolonged activation of both BCL10 and NF-κB in human colonic epithelial cells. Study findings demonstrate that nuclear RelA and RelB bind to an NF-κB binding motif in the BCL10 promoter in human colonic epithelial NCM460 and HT-29 cells. In vitro oligonucleotide binding assay, non-radioactive gel shift assay, and chromatin immunoprecipitation (ChIP) indicate binding of RelA and RelB to the BCL10 promoter. Prolonged inflammation follows activation of the BCL10-NFκB inflammatory loop in response to carrageenan, shown by increased BCL10, RelA, and IL-8 for 36 to 48 hours and increased RelB for 24 hours following withdrawal of carrageenan after 12 hours. In contrast, exposure to dextran sulfate sodium, which does not cause inflammation through TLR4 and BCL10 in the colonic epithelial cells, did not provoke prolonged activation of inflammation. The carrageenan-enhanced BCL10 promoter activity was blocked by caffeic acid phenethyl ester (CAPE) and MB-132 which inhibit NF-κB activation. These results indicate that NF-κB binding to the BCL10 promoter can lead to prolonged activation of the carrageenan-induced inflammatory cascade by a transcriptional mechanism involving an NF-κB – BCL10 loop. PMID:22579587

  8. Expression of a TGF-{beta} regulated cyclin-dependent kinase inhibitor in normal and immortalized airway epithelial cells

    SciTech Connect

    Tierney, L.A.; Bloomfield, C.; Johnson, N.F.

    1995-12-01

    Tumors arising from epithelial cells, including lung cancers are frequently resistant to factors that regulate growth and differentiation in normal in normal cells. Once such factor is transforming growth factor-{Beta} (TGF-{Beta}). Escape from the growth-inhibitory effects of TGF-{Beta} is thought to be a key step in the transformation of airway epithelial cells. most lung cancer cell lines require serum for growth. In contrast, normal human bronchial epithelial (NHBE) cells are exquisitely sensitive to growth-inhibitory and differentiating effects of TGF-{Beta}. The recent identification of a novel cyclin-dependent kinase inhibitor, p15{sup INK4B}, which is regulated by TGF-{Beta}, suggests a mechanism by which TGF-{Beta} mediates growth arrest in NHBE cells. The purpose of this study was two-fold: (1) to determine if p15{sup INK4B} is induced by TGF-{Beta} in NHBE cells or immortalized bronchial epithelial (R.1) cells and if that induction corresponds to a G1/S cell-cycle arrest; (2) to determine the temporal relationship between p15{sup INK4B} induction, cell-cycle arrest, and the phosphorylation state of the pRB because it is thought that p15{sup INK4B} acts indirectly by preventing phosphorylation of the RB gene product. In this study, expression of p15{sup INK4B} was examined in NHBE cells and R.1 cells at different time intervals following TGF-{Beta} treatment. The expression of this kinase inhibitor and its relationship to the cell and the pRb phosphorylation state were examined in cells that were both sensitive (NHBE) and resistant (R.1) to the effects of TGF-{Beta}. These results suggest that the cyclin-dependent kinase inhibitor, p15{sup INK4B}, is involved in airway epithelial cell differentiation and that loss or reduction of expression plays a role in the resistance of transformed or neoplastic cells to the growth-inhibitory effects of TGF-{Beta}.

  9. Human breast cancer cells and normal mammary epithelial cells: retinol metabolism and growth inhibition by the retinol metabolite 4-oxoretinol.

    PubMed

    Chen, A C; Guo, X; Derguini, F; Gudas, L J

    1997-10-15

    To understand the signaling and growth-inhibitory effects of retinoids, we have examined the metabolism of [3H]retinol in a number of estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) human breast cancer cell lines. We have also assayed the metabolism of [3H]retinol in normal human mammary epithelial cells. The ER+ breast cancer cell lines MCF-7 and T47D produce [3H]4-oxoretinol from [3H]retinol; the production of [3H]4-oxoretinol is increased by initial culture in the presence of nonradiolabeled retinoic acid (RA) or N-(4-hydroxyphenyl)retinamide, indicating that these drugs enhance [3H]retinol metabolism to [3H]4-oxoretinol. No metabolism of [3H]retinol to [3H]RA in these ER+ tumor lines was detected. ER- breast cancer lines MDA-MB-231, MDA-MB-468, and BT20 do not metabolize [3H]retinol to [3H]4-oxoretinol. In the ER- tumor lines, most of the [3H]retinol remains unmetabolized during the 24-h culture period; MDA-MB-468 and BT20 metabolize some [3H]retinol to [3H]RA. Unlike the majority of the tumor lines, the normal human breast epithelial cell strains AD074 and MCF10A rapidly metabolize [3H]retinol to [3H]retinyl esters. No detectable [3H]RA is produced from [3H]retinol in AD074 and MCF10A cells. Thus, the normal breast epithelial strains, the ER+ tumor lines and the ER- tumor lines differ greatly in their pathways of [3H]retinol metabolism. The levels of cellular retinol binding protein-I mRNA expression are not correlated with the levels or types of various retinol metabolites. Whereas the normal breast epithelial cells and the ER+ tumor lines are growth inhibited by RA, N-(4-hydroxyphenyl)retinamide, and 4-oxoretinol, only the 4-oxoretinol is growth inhibitory in the ER- tumor lines. The cellular retinoic acid-binding protein II mRNA levels are not correlated with the growth inhibition by RA or 4-oxoretinol in the normal and tumor lines. PMID:9377581

  10. Norcantharidin Suppresses Colon Cancer Cell Epithelial-Mesenchymal Transition by Inhibiting the αvβ6-ERK-Ets1 Signaling Pathway

    PubMed Central

    Peng, Cheng; Li, Zequn; Niu, Zhengchuan; Niu, Wei; Xu, Zongquan; Gao, Huijie; Niu, Weibo; Wang, JiaYong; He, Zhaobin; Gao, Chao; Lin, Pengfei; Agrez, Michael; Zhang, Zongli; Niu, Jun

    2016-01-01

    Norcantharidin (NCTD) is an efficacious anti-cancer drug that has been used in China for many years, but its underlying mechanism of action is still not fully understood. In the present study, we found that NCTD could induce morphological changes in colon cancer cells, causing a transition from a spindle-shaped morphology to a typical round or oval shape, which was indicative of a mesenchymal-epithelial transition (MET) process. Next, we investigated the mechanism by which NCTD induced the MET process. Using a transwell assay, we found that NCTD could suppress the migratory and invasive ability of colon cancer cells in a dose-dependent manner. Moreover, NCTD suppressed the expression of integrin αvβ6, MMP-3, and MMP-9 as well as the polymerization of F-actin, further supporting its suppressive effect on migratory and invasive ability. Furthermore, the expression of αvβ6, N-cadherin, vimentin and phosphorylated ERK was decreased, while the expression of E-cadherin was up-regulated. We verified that phosphorylated Ets1 was down-regulated substantially after treatment with NCTD. Taken together, our data demonstrated that NCTD could inhibit the EMT process of colon cancer cells by inhibiting the αvβ6-ERK-Ets1 signaling pathway. This study revealed part of the mechanism through which NCTD could reverse the EMT process in colon cancer. PMID:26846153

  11. Oral epithelial stem cells – implications in normal development and cancer metastasis

    PubMed Central

    Papagerakis, Silvana; Pannone, Giuseppe; Zheng, Li; About, Imad; Taqi, Nawar; Nguyen, Nghia P.T.; Matossian, Margarite; McAlpin, Blake; Santoro, Angela; McHugh, Jonathan; Prince, Mark E.; Papagerakis, Petros

    2014-01-01

    Oral mucosa is continuously exposed to environmental forces and has to be constantly renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial stem cells necessary for tissue homeostasis. Despite considerable scientific advances in stem cell behavior in a number of tissues, fewer studies have been devoted to the stem cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the head and neck region, marked by their aggressiveness and invasiveness. Due to their highly tumorigenic properties, it has been suggested that CSC may be the critical population of cancer cells in the development of OSCC metastasis. This review presents a brief overview of epithelium stem cells with implications in oral health, and the clinical implications of the CSC concept in OSCC metastatic dissemination. PMID:24803391

  12. Growth Factor–dependent Activation of αvβ3 Integrin in Normal Epithelial Cells: Implications for Tumor Invasion

    PubMed Central

    Trusolino, Livio; Serini, Guido; Cecchini, Germana; Besati, Cristina; Ambesi-Impiombato, Francesco Saverio; Marchisio, Pier Carlo; De Filippi, Rosaria

    1998-01-01

    Integrin activation is a multifaceted phenomenon leading to increased affinity and avidity for matrix ligands. To investigate whether cytokines produced during stromal infiltration of carcinoma cells activate nonfunctional epithelial integrins, a cellular system of human thyroid clones derived from normal glands (HTU-5) and papillary carcinomas (HTU-34) was employed. In HTU-5 cells, αvβ3 integrin was diffused all over the membrane, disconnected from the cytoskeleton, and unable to mediate adhesion. Conversely, in HTU-34 cells, αvβ3 was clustered at focal contacts (FCs) and mediated firm attachment and spreading. αvβ3 recruitment at FCs and ligand-binding activity, essentially identical to those of HTU-34, occurred in HTU-5 cells upon treatment with hepatocyte growth factor/scatter factor (HGF/SF). The HTU-34 clone secreted HGF/SF and its receptor was constitutively tyrosine phosphorylated suggesting an autocrine loop responsible for αvβ3 activated state. Antibody-mediated inhibition of HGF/SF function in HTU-34 cells disrupted αvβ3 enrichment at FCs and impaired adhesion. Accordingly, activation of αvβ3 in normal cells was produced by HTU-34 conditioned medium on the basis of its content of HGF/SF. These results provide the first example of a growth factor–driven integrin activation mechanism in normal epithelial cells and uncover the importance of cytokine-based autocrine loops for the physiological control of integrin activation. PMID:9722624

  13. Susceptibility of human tonsillar epithelial cells to enterovirus 71 with normal cytokine response.

    PubMed

    Xie, Guang-Cheng; Guo, Ni-Jun; Grénman, Reidar; Wang, Hong; Wang, Ying; Vuorenmma, Minna; Zhang, Qing; Zhang, Shuang; Li, Hui-Ying; Pang, Li-Li; Li, Dan-Di; Jin, Miao; Sun, Xiao-Man; Kong, Xiang-Yu; Duan, Zhao-Jun

    2016-07-01

    A recent histopathologic study implicated human tonsillar crypt epithelium as an important site for EV71 replication in EV71-caused fatal cases. This study aimed to confirm the susceptibility of human tonsillar epithelium to EV71. Two human tonsillar epithelial cell lines (UT-SCC-60A and UT-SCC-60B) were susceptive to EV71, and PI3K/AKT, p38, ERK1/2, and JNK1/2 signal pathways were activated. Interferon-α, IL-8, IL-1β, IL-6 and IL-12p40 were induced and regulated by PI3K/AKT, p38, ERK1/2, and JNK1/2 signal pathways. PI3K/AKT pathway activation appeared to suppress the induction of TNF-α, which induced cell survival by inhibiting GSK-3β. The activation of NF-κB was observed but inhibited by these pathways in EV71 infection. Furthermore, ERK1/2 and JNK1/2 were essential for efficient EV71 replication. Human tonsillar epithelial cells support EV71 replication and display innate antiviral immunity in vitro, indicating that human tonsillar epithelial cells may be novel targets for EV71 infection and replication in vivo. PMID:27107253

  14. Characterization of Epithelial Progenitors in Normal Human Palatine Tonsils and Their HPV16 E6/E7-Induced Perturbation

    PubMed Central

    Kang, Sung Yoon Catherine; Kannan, Nagarajan; Zhang, Lewei; Martinez, Victor; Rosin, Miriam P.; Eaves, Connie J.

    2015-01-01

    Summary Human palatine tonsils are oropharyngeal lymphoid tissues containing multiple invaginations (crypts) in which the continuity of the outer surface epithelium is disrupted and the isolated epithelial cells intermingle with other cell types. We now show that primitive epithelial cells detectable in vitro in 2D colony assays and in a 3D culture system are CD44+NGFR+ and present in both surface and crypt regions. Transcriptome analysis indicated a high similarity between CD44+NGFR+ cells in both regions, although those isolated from the crypt contained a higher proportion of the most primitive (holo)clonogenic cells. Lentiviral transduction of CD44+NGFR+ cells from both regions with human papillomavirus 16-encoded E6/E7 prolonged their growth in 2D cultures and caused aberrant differentiation in 3D cultures. Our findings therefore reveal a shared, site-independent, hierarchical organization, differentiation potential, and transcriptional profile of normal human tonsillar epithelial progenitor cells. They also introduce a new model for investigating the mechanisms of their transformation. PMID:26527383

  15. Epithelial and Mesenchymal Cells in the Bovine Colonic Mucosa Differ in Their Responsiveness to Escherichia coli Shiga Toxin 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cells in the depth of the crypts in the bovine colon express CD77 molecules that potentially act as receptors for Shiga toxins (Stx). The implication of this finding for the intestinal colonization 25 of cattle with human pathogenic Stx-producing Escherichia coli (STEC) remains undefined. We used f...

  16. Transforming growth factor-β1 regulated phosphorylated AKT and interferon gamma expressions are associated with epithelial cell survival in rhesus macaque colon explants.

    PubMed

    Pahar, Bapi; Pan, Diganta; Lala, Wendy; Kenway-Lynch, Carys S; Das, Arpita

    2015-05-01

    Transforming growth factor-β1 (TGF-β1) is an important immunoregulatory cytokine that plays an obligate role in regulating T-cell functions. Here, we demonstrated the role of TGF-β1 in regulating the survival of intestinal epithelial cells (ECs) in rhesus colon explant cultures using either anti-TGF-β1 antibody or recombinant TGF-β1 proteins. Neutralization of endogenous TGF-β1 using anti-TGF-β1 antibodies induced apoptosis of both intestinal ECs and lamina propria (LP) cells. Additionally, endogenous TGF-β1 blocking significantly increased expression of IFNγ, TNFα, CD107a and Perforin in LP cells compared to media and isotype controls. A significant decrease in pAKT expression was detected in anti-TGF-β1 MAbs treated explants compared to isotype and rTGF-β1 protein treated explants. Our results demonstrated TGF-β1 regulated pAKT and IFNγ expressions were associated with epithelial cell survival in rhesus macaque colon explants and suggest a potential role of mucosal TGF-β1 in regulating intestinal homeostasis and EC integrity. PMID:25769244

  17. Transforming growth factor-β1 regulated phosphorylated AKT and interferon gamma expressions are associated with epithelial cell survival in rhesus macaque colon explants

    PubMed Central

    Pahar, Bapi; Pan, Diganta; Lala, Wendy; Kenway-Lynch, Carys S.; Das, Arpita

    2015-01-01

    Transforming growth factor-β1 (TGF-β1) is an important immunoregulatory cytokine that plays an obligate role in regulating T-cell functions. Here, we demonstrated the role of TGF-β1 in regulating the survival of intestinal epithelial cells (ECs) in rhesus colon explant cultures using either anti-TGF-β1 antibody or recombinant TGF-β1 proteins. Neutralization of endogenous TGF-β1 using anti-TGF-β1 antibodies induced apoptosis of both intestinal ECs and lamina propria (LP) cells. Additionally, endogenous TGF-β1 blocking significantly increased expression of IFNγ, TNFα, CD107a and Perforin in LP cells compared to media and isotype controls. A significant decrease in pAKT expression was detected in anti-TGF-β1 MAbs treated explants compared to isotype and rTGF-β1 protein treated explants. Our results demonstrated TGF-β1 regulated pAKT and IFNγ expressions were associated with epithelial cell survival in rhesus macaque colon explants and suggest a potential role of mucosal TGF-β1 in regulating intestinal homeostasis and EC integrity. PMID:25769244

  18. Epithelial Cell-Derived a Disintegrin and Metalloproteinase-17 Confers Resistance to Colonic Inflammation Through EGFR Activation

    PubMed Central

    Shimoda, Masayuki; Horiuchi, Keisuke; Sasaki, Aya; Tsukamoto, Tetsuya; Okabayashi, Koji; Hasegawa, Hirotoshi; Kitagawa, Yuko; Okada, Yasunori

    2016-01-01

    Epithelial regeneration is a key process for the recovery from ulcerative colitis (UC). Here we demonstrate that a disintegrin and metalloproteinase-17 (ADAM17), a main sheddase for tumor necrosis factor (TNF)-α, is essential for defensive epithelial properties against UC by promoting epithelial cell growth and goblet cell differentiation in mouse and human. Mice with systemic deletion of Adam17 developed severe dextran sulfate sodium-induced colitis when compared to mice with myeloid cell Adam17 deletion or control littermates. ADAM17 was predominantly expressed by regenerating epithelia in control mice, and its loss or inhibition attenuated epidermal growth factor receptor (EGFR) activation, epithelial proliferation, mucus production and barrier functions. Conversely, ectopic EGFR stimulation promoted epithelial regeneration thereby partially rescuing the severe colitis caused by ADAM17 deficiency. In UC patients, epithelial ADAM17 expression positively correlated with both cell proliferation and goblet cell number. These findings suggest that maintaining ADAM17–EGFR epithelial signaling is necessary for the recovery from UC and would be beneficial to therapeutic strategies targeting ADAM17-mediated TNF-α shedding. PMID:27077118

  19. Normal mammary epithelial cells promote carcinoma basement membrane invasion by inducing microtubule-rich protrusions

    PubMed Central

    Lee, Meng-Horng; Wu, Pei-Hsun; Gilkes, Daniele; Aifuwa, Ivie; Wirtz, Denis

    2015-01-01

    Recent work suggests that the dissemination of tumor cells may occur in parallel with, and even preceed, tumor growth. The mechanism for this early invasion is largely unknown. Here, we find that mammary epithelial cells (MECs) induce neighboring breast carcinoma cells (BCCs) to cross the basement membrane by secreting soluble laminin. Laminin continuously produced by MECs induce long membrane cellular protrusions in BCCs that promote their contractility and invasion into the surrounding matrix. These protrusions depend on microtubule bundles assembled de novo through laminin-integrin β1 signaling. These results describe how non-cancerous MECs can actively participate in the invasive process of BCCs. PMID:26334095

  20. Higher FOXP3-TSDR demethylation rates in adjacent normal tissues in patients with colon cancer were associated with worse survival

    PubMed Central

    2014-01-01

    Background The influence of natural regulatory T cells (nTregs) on the patients with colon cancer is unclear. Demethylated status of the Treg-specific demethylated region (TSDR) of the FOXP3 gene was reported to be a potential biomarker for the identification of nTregs. Methods The demethylation rate of the TSDR (TSDR-DMR) was calculated by using methylation-specific quantitative polymerase chain reaction (MS-qPCR) assay. The expression of TSDR-DMR and FOXP3 mRNA was investigated in various colorectal cancer cell lines. A total of 130 colon carcinoma samples were utilized to study the DMR at tumor sites (DMRT) and adjacent normal tissue (DMRN). The correlations between DMRs and clinicopathological variables of patients with colon cancer were studied. Results The TSDR-DMRs varied dramatically among nTregs (97.920 ± 0.466%) and iTregs (3.917 ± 0.750%). Significantly, DMRT (3.296 ± 0.213%) was higher than DMRN (1.605 ± 0.146%) (n = 130, p = 0.000). Higher DMRN levels were found in female patients (p = 0.001) and those with distant metastases (p = 0.017), and were also associated with worse recurrence-free survival in non-stage IV patients (low vs. high, p = 0.022). However, further Cox multivariate analysis revealed that the FOXP3-TSDR status does not have prognostic value. Conclusion MS-qPCR assays of FOXP3-TSDR can efficiently distinguish nTregs from non-nTregs. Abnormal recruitment of nTregs occurs in the local tumor microenvironment. Infiltration of tissue-resident nTregs may have a negative role in anti-tumor effects in patients with colon cancer; however, this role is limited and complicated. PMID:24938080

  1. Farnesoid X receptor signal is involved in deoxycholic acid-induced intestinal metaplasia of normal human gastric epithelial cells.

    PubMed

    Li, Shu; Chen, Xin; Zhou, Lu; Wang, Bang-Mao

    2015-11-01

    The farnesoid X receptor (FXR) signaling pathway is known to be involved in the metabolism of bile acid, glucose and lipid. In the present study, we demonstrated that 400 µmol/l deoxycholic acid (DCA) stimulation promotes the proliferation of normal human gastric epithelial cells (GES-1). In addition, DCA activated FXR and increased the expression of intestinal metaplasia genes, including caudal-related homeobox transcription factor 2 (Cdx2) and mucin 2 (MUC2). The treatment of FXR agonist GW4064/antagonist guggulsterone (Gug.) significantly increased/decreased the expression levels of FXR, Cdx2 and MUC2 protein in DCA-induced GES-1 cells. GW4064/Gug. also enhanced/reduced the nuclear factor-κB (NF-κB) activity and binding of the Cdx2 promoter region and NF-κB, the most common subunit p50 protein. Taken together, the results indicated that DCA is capable of modulating the expression of Cdx2 and the downstream MUC2 via the nuclear receptor FXR-NF-κB activity in normal gastric epithelial cells. FXR signaling pathway may therefore be involved in the intestinal metaplasia of human gastric mucosa. PMID:26324224

  2. Accumulation of abasic sites induces genomic instability in normal human gastric epithelial cells during Helicobacter pylori infection.

    PubMed

    Kidane, D; Murphy, D L; Sweasy, J B

    2014-01-01

    Helicobacter pylori infection of the human stomach is associated with inflammation that leads to the release of reactive oxygen and nitrogen species (RONs), eliciting DNA damage in host cells. Unrepaired DNA damage leads to genomic instability that is associated with cancer. Base excision repair (BER) is critical to maintain genomic stability during RONs-induced DNA damage, but little is known about its role in processing DNA damage associated with H. pylori infection of normal gastric epithelial cells. Here, we show that upon H. pylori infection, abasic (AP) sites accumulate and lead to increased levels of double-stranded DNA breaks (DSBs). In contrast, downregulation of the OGG1 DNA glycosylase decreases the levels of both AP sites and DSBs during H. pylori infection. Processing of AP sites during different phases of the cell cycle leads to an elevation in the levels of DSBs. Therefore, the induction of oxidative DNA damage by H. pylori and subsequent processing by BER in normal gastric epithelial cells has the potential to lead to genomic instability that may have a role in the development of gastric cancer. Our results are consistent with the interpretation that precise coordination of BER processing of DNA damage is critical for the maintenance of genomic stability. PMID:25417725

  3. Comparison of Proliferative Effect of Human Lactoferrin and Its Proteolytic Peptide on Normal and Transformed Epithelial Cells.

    PubMed

    Hwang, Sae-Mi; Chung, Il Yup; Jo, Jae-Hyung; Yoon, Tae-Joong; Lee, Hyune-Hwan

    2016-01-01

    Human lactoferrin (hLF) is an iron-binding glycoprotein with a variety of functions. hLF undergoes proteolytic cleavage to smaller peptides in the stomach following ingestion. In the present study, we evaluated the effects of hLF and its proteolytic product, human lactoferrin peptide (hLFP), on the proliferation of two epithelial cells, HEK293 normal cells and KATO III gastric carcinoma cells, using an MTT assay and expression of proliferative nuclear cell antigen (PCNA), a notable proliferation marker. When the two epithelial cells were stimulated with hLF and hLFP in the presence of fetal bovine serum (FBS), hLFP stimulated proliferation of both cell types at lower concentrations than hLF by two orders of magnitude. The cancer cells exhibited proliferative responses to both hLF and hLFP at lower concentrations by 2∼3 orders of magnitude than the normal cells. Either hLF or hLFP alone did not support appreciable proliferation of these cell lines in the absence or low concentrations of FBS. Bovine serum albumin or its proteolytic product failed to promote cellular proliferation even in the presence of 10 % FBS, indicating the specificity of the proliferative activity of hLF and hLFP. These data highlight feasibility of hLF and its peptide for adjuvants for tissue culture medium. PMID:26400493

  4. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes

    NASA Technical Reports Server (NTRS)

    Romanov, S. R.; Kozakiewicz, B. K.; Holst, C. R.; Stampfer, M. R.; Haupt, L. M.; Tlsty, T. D.

    2001-01-01

    Senescence and genomic integrity are thought to be important barriers in the development of malignant lesions. Human fibroblasts undergo a limited number of cell divisions before entering an irreversible arrest, called senescence. Here we show that human mammary epithelial cells (HMECs) do not conform to this paradigm of senescence. In contrast to fibroblasts, HMECs exhibit an initial growth phase that is followed by a transient growth plateau (termed selection or M0; refs 3-5), from which proliferative cells emerge to undergo further population doublings (approximately 20-70), before entering a second growth plateau (previously termed senescence or M1; refs 4-6). We find that the first growth plateau exhibits characteristics of senescence but is not an insurmountable barrier to further growth. HMECs emerge from senescence, exhibit eroding telomeric sequences and ultimately enter telomere-based crisis to generate the types of chromosomal abnormalities seen in the earliest lesions of breast cancer. Growth past senescent barriers may be a pivotal event in the earliest steps of carcinogenesis, providing many genetic changes that predicate oncogenic evolution. The differences between epithelial cells and fibroblasts provide new insights into the mechanistic basis of neoplastic transformation.

  5. Induction of scattering and cellular invasion by trefoil peptides in src- and RhoA-transformed kidney and colonic epithelial cells.

    PubMed

    Emami, S; Le Floch, N; Bruyneel, E; Thim, L; May, F; Westley, B; Rio, M; Mareel, M; Gespach, C

    2001-02-01

    Trefoil factors (TFFs) are protease-resistant peptides that promote epithelial cell migration and mucosal restitution during inflammatory conditions and wound healing in the gastrointestinal tract. To date, the molecular mechanism of TFFs action and their possible role in tumor progression are unclear. In the present study, we observed that premalignant human colonic PC/AA/C1 and canine kidney MDCK epithelial cells are not competent to invade collagen gels in response to exogenously added TFFs (pS2, spasmolytic polypeptide, and intestinal trefoil factor). In contrast, activated src and RhoA exert permissive induction of invasion by the TFFs that produce similar parallel dose-response curves in src-transformed MDCKts.src and PCmsrc cells (EC50=20-40 nM). Cell scattering is also induced by TFFs in MDCKts.src cells. Stable expression of the pS2 cDNA promotes constitutive invasiveness in MDCKts.src-pS2 cells and human colonic HCT8/S11-pS2 cells established from a sporadic tumor. Furthermore, we found that TFF-mediated cellular invasion is dependent of several signaling pathways implicated in cell transformation and survival, including phosphoinositide PI3'-kinase, phospholipase C, protein kinase C, and the rapamycin target TOR. Constitutive and intense expression of pS2 was revealed by Western blot analyses and immunohistochemistry in human colorectal tumors and their adjacent control mucosa during the neoplastic progression, from the adenoma to the liver metastases. Our studies indicated that TFFs can be involved in cell scattering and tumor invasion via autocrine loops and may serve as potential targets in the control of colon cancer progression. PMID:11156951

  6. Deleterious Effect of p-Cresol on Human Colonic Epithelial Cells Prevented by Proanthocyanidin-Containing Polyphenol Extracts from Fruits and Proanthocyanidin Bacterial Metabolites.

    PubMed

    Wong, Ximena; Carrasco-Pozo, Catalina; Escobar, Elizabeth; Navarrete, Paola; Blachier, Franςois; Andriamihaja, Mireille; Lan, Annaig; Tomé, Daniel; Cires, Marı́a José; Pastene, Edgar; Gotteland, Martin

    2016-05-11

    The protective effect of proanthocyanidin-containing polyphenol extracts from apples, avocados, cranberries, grapes, or proanthocyanidin microbial metabolites was evaluated in colonic epithelial cells exposed to p-cresol, a deleterious compound produced by the colonic microbiota from l-tyrosine. In HT29 Glc(-/+) cells, p-cresol significantly increased LDH leakage and decreased ATP contents, whereas in Caco-2 cell monolayers, it significantly decreased the transepithelial electrical resistance and increased the paracellular transport of FITC-dextran. The alterations induced by p-cresol in HT29 Glc(-/+) cells were prevented by the extracts from cranberries and avocados, whereas they became worse by extracts from apples and grapes. The proanthocyanidin bacterial metabolites decreased LDH leakage, ameliorating cell viability without improving intracellular ATP. All of the polyphenol extracts and proanthocyanidin bacterial metabolites prevented the p-cresol-induced alterations of barrier function. These results suggest that proanthocyanidin-containing polyphenol extracts and proanthocyanidin metabolites likely contribute to the protection of the colonic mucosa against the deleterious effects of p-cresol. PMID:27039931

  7. GPER mediates estrogen-induced signaling and proliferation in human breast epithelial cells and normal and malignant breast.

    PubMed

    Scaling, Allison L; Prossnitz, Eric R; Hathaway, Helen J

    2014-06-01

    17β-Estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor α. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized nontumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane-bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant

  8. GPER mediates estrogen-induced signaling and proliferations in human breast epithelial cells, and normal and malignant breast

    PubMed Central

    Scaling, Allison L.

    2014-01-01

    17β-estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor α. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized non-tumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant

  9. Hydrogen respiratory test: pilot examinations for evaluation of the small intestinal colonization by normal microflora.

    PubMed

    Korotkova, O V; Salinas, Yu E; Vasilieva, E A; Kozlov, A V; Yashina, N V; Loginov, I A; Dalin, M V

    2013-04-01

    Respiration hydrogen analyzer H2Rate has been used in pilot examinations of a group of students. This method for noninvasive diagnosis of small intestinal diseases promotes proper interpretation of the results. Free hydrogen level in the exhaled air increases as a result of lactulose (diagnostic agent) cleavage by enteric microflora within about 3 h. Based on the experimental data, the main groups with characteristic curves reflecting the time course of hydrogen concentrations have been distinguished. Excessive bacterial colonization of the intestine can correspond to emergence of characteristic peaks of hydrogen concentrations in the curve. Hydrogen concentrations in exhaled air can also be analyzed to evaluate the rate of the substrate propulsion in the middle compartment of the intestine. PMID:23658932

  10. Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization.

    PubMed

    Newhouse, Andrew E; Schrodt, Franziska; Liang, Haiying; Maynard, Charles A; Powell, William A

    2007-07-01

    The American elm (Ulmus americana L.) was once one of the most common urban trees in eastern North America until Dutch-elm disease (DED), caused by the fungus Ophiostoma novo-ulmi, eliminated most of the mature trees. To enhance DED resistance, Agrobacterium was used to transform American elm with a transgene encoding the synthetic antimicrobial peptide ESF39A, driven by a vascular promoter from American chestnut. Four unique, single-copy transgenic lines were produced and regenerated into whole plants. These lines showed less wilting and significantly less sapwood staining than non-transformed controls after O. novo-ulmi inoculation. Preliminary observations indicated that mycorrhizal colonization was not significantly different between transgenic and wild-type trees. Although the trees tested were too young to ensure stable resistance was achieved, these results indicate that transgenes encoding antimicrobial peptides reduce DED symptoms and therefore hold promise for enhancing pathogen resistance in American elm. PMID:17310333

  11. Rapid disruption of intestinal epithelial tight junction and barrier dysfunction by ionizing radiation in mouse colon in vivo: protection by N-acetyl-l-cysteine.

    PubMed

    Shukla, Pradeep K; Gangwar, Ruchika; Manda, Bhargavi; Meena, Avtar S; Yadav, Nikki; Szabo, Erzsebet; Balogh, Andrea; Lee, Sue Chin; Tigyi, Gabor; Rao, RadhaKrishna

    2016-05-01

    The goals of this study were to evaluate the effects of ionizing radiation on apical junctions in colonic epithelium and mucosal barrier function in mice in vivo. Adult mice were subjected to total body irradiation (4 Gy) with or without N-acetyl-l-cysteine (NAC) feeding for 5 days before irradiation. At 2-24 h postirradiation, the integrity of colonic epithelial tight junctions (TJ), adherens junctions (AJ), and the actin cytoskeleton was assessed by immunofluorescence microscopy and immunoblot analysis of detergent-insoluble fractions for TJ and AJ proteins. The barrier function was evaluated by measuring vascular-to-luminal flux of fluorescein isothiocyanate (FITC)-inulin in vivo and luminal-to-mucosal flux in vitro. Oxidative stress was evaluated by measuring protein thiol oxidation. Confocal microscopy showed that radiation caused redistribution of occludin, zona occludens-1, claudin-3, E-cadherin, and β-catenin, as well as the actin cytoskeleton as early as 2 h postirradiation, and this effect was sustained for at least 24 h. Feeding NAC before irradiation blocked radiation-induced disruption of TJ, AJ, and the actin cytoskeleton. Radiation increased mucosal permeability to inulin in colon, which was blocked by NAC feeding. The level of reduced-protein thiols in colon was depleted by radiation with a concomitant increase in the level of oxidized-protein thiol. NAC feeding blocked the radiation-induced protein thiol oxidation. These data demonstrate that radiation rapidly disrupts TJ, AJ, and the actin cytoskeleton by an oxidative stress-dependent mechanism that can be prevented by NAC feeding. PMID:26822914

  12. Validation of Normal Human Bronchial Epithelial Cells as a Model for Influenza A Infections in Human Distal Trachea

    PubMed Central

    Davis, A. Sally; Chertow, Daniel S.; Moyer, Jenna E.; Suzich, Jon; Sandouk, Aline; Dorward, David W.; Logun, Carolea; Shelhamer, James H.

    2015-01-01

    Primary normal human bronchial/tracheal epithelial (NHBE) cells, derived from the distal-most aspect of the trachea at the bifurcation, have been used for a number of studies in respiratory disease research. Differences between the source tissue and the differentiated primary cells may impact infection studies based on this model. Therefore, we examined how well-differentiated NHBE cells compared with their source tissue, the human distal trachea, as well as the ramifications of these differences on influenza A viral pathogenesis research using this model. We employed a histological analysis including morphological measurements, electron microscopy, multi-label immunofluorescence confocal microscopy, lectin histochemistry, and microarray expression analysis to compare differentiated NHBEs to human distal tracheal epithelium. Pseudostratified epithelial height, cell type variety and distribution varied significantly. Electron microscopy confirmed differences in cellular attachment and paracellular junctions. Influenza receptor lectin histochemistry revealed that α2,3 sialic acids were rarely present on the apical aspect of the differentiated NHBE cells, but were present in low numbers in the distal trachea. We bound fluorochrome bioconjugated virus to respiratory tissue and NHBE cells and infected NHBE cells with human influenza A viruses. Both indicated that the pattern of infection progression in these cells correlated with autopsy studies of fatal cases from the 2009 pandemic. PMID:25604814

  13. Detection of Epstein-Barr virus genome and latent infection gene expression in normal epithelia, epithelial dysplasia, and squamous cell carcinoma of the oral cavity.

    PubMed

    Kikuchi, Kentaro; Noguchi, Yoshihiro; de Rivera, Michelle Wendoline Garcia-Niño; Hoshino, Miyako; Sakashita, Hideaki; Yamada, Tsutomu; Inoue, Harumi; Miyazaki, Yuji; Nozaki, Tadashige; González-López, Blanca Silvia; Ide, Fumio; Kusama, Kaoru

    2016-03-01

    A relationship between Epstein-Barr virus (EBV) infection and cancer of lymphoid and epithelial tissues such as Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma (NPC), gastric carcinoma, and oral cancer has been reported. EBV is transmitted orally and infects B cells and epithelial cells. However, it has remained uncertain whether EBV plays a role in carcinogenesis of oral mucosal tissue. In the present study, we detected the EBV genome and latent EBV gene expression in normal mucosal epithelia, epithelial dysplasia, and oral squamous cell carcinoma (OSCC) to clarify whether EBV is involved in carcinogenesis of the oral cavity. We examined 333 formalin-fixed, paraffin-embedded tissue samples (morphologically normal oral mucosa 30 samples, gingivitis 32, tonsillitis 17, oral epithelial dysplasia 83, OSCC 150, and NPC 21). EBV latent infection genes (EBNA-2, LMP-1) were detected not only in OSCC (50.2 %, 10.7 %) but also in severe epithelial dysplasia (66.7 %, 44.4 %), mild to moderate epithelial dysplasia (43.1 %, 18.5 %), gingivitis (78.1 %, 21.9 %), and normal mucosa (83.3 %, 23.3 %). Furthermore, the intensity of EBV latent infection gene expression (EBER, LMP-1) was significantly higher in severe epithelial dysplasia (94.4 %, 72.2 %) than in OSCC (34.7 %, 38.7 %). These results suggest that EBV latent infection genes and their increased expression in severe epithelial dysplasia might play an important role in the dysplasia-carcinoma sequence in the oral cavity. PMID:26449822

  14. DNA demethylation in normal colon tissue predicts predisposition to multiple cancers.

    PubMed

    Kamiyama, H; Suzuki, K; Maeda, T; Koizumi, K; Miyaki, Y; Okada, S; Kawamura, Y J; Samuelsson, J K; Alonso, S; Konishi, F; Perucho, M

    2012-11-29

    Some colon cancer (CC) patients present synchronous cancers at diagnosis and others develop metachronous neoplasms, but the risk factors are unclear for non-hereditary CC. We showed previously that global DNA demethylation increased with aging and correlated with genomic damage in CC, and we show now that preferentially associates to CCs with wild-type p53. This study aimed to elucidate the extent of DNA hypomethylation in patients with single and multiple CC, its relationship with aging, and its potential as predictive tool. We compared by real-time methylation-specific PCR the relative demethylation level (RDL) of long interspersed nucleotide element-1 (LINE-1) sequences in matched cancer tissues and non-cancerous colonic mucosa (NCM) from patients with single and multiple right-sided CCs. Although no RDL difference was found in NCM from single CC patients and healthy volunteers (P=0.5), there was more demethylation (higher RDL) in NCM from synchronous cancer patients (P=1.1 × 10(-5)) multiple CCs also were more demethylated than single CCs (P=0.0014). High NCM demethylation was predictive for metachronous neoplasms (P=0.003). In multivariate logistic regression analyses RDL was the only independent predictor for metachronous (P=0.02) and multiple (P=4.9 × 10(-5)) tumors. The higher LINE-1 demethylation in NCM from patients with multiple (synchronous and metachronous) tumors (P=9.6 × 10(-7)) was also very significant in patients with tumors without (P=3.8 × 10(-6)), but not with (P=0.16) microsatellite instability. NCM demethylation increased with aging in patients with single tumors, but decreased in those with multiple tumors. Moreover, the demethylation difference between patients with single vs multiple tumors appeared higher in younger (P=3.6 × 10(-4)) than in older (P=0.0016) patients. These results predict that LINE-1 hypomethylation in NCM can be used as an epigenetic predictive biomarker for multiple CC risk. The stronger association of

  15. 1/f ruffle oscillations in plasma membranes of amphibian epithelial cells under normal and inverted gravitational orientations.

    PubMed

    Silva, H S; Martins, M L; Vilela, M J; Jaeger, Ruy; Kachar, B

    2006-10-01

    Membrane ruffle fluctuations of amphibian epithelial cells A6 (CCL102) cultured in normal and upside down oriented plates have been analyzed through video microscopy. Our results reveal that their edge ruffle fluctuations exhibit a stochastic dynamics with 1/f(alpha) power spectrum over at least two decades at low frequencies and long range correlated, self-affine lateral border profiles. In a few and small areas of the membrane, probably nearby focal contacts, we found periodic oscillations which could be induced by myosin driven contraction of stress fibers. Furthermore, whereas the different gravitational orientations had none or little effect on the structure (power spectra and surface roughness) of these membrane ruffle fluctuations, their dynamic parameters were differentially affected. Indeed, the decay time of ruffles remained unchanged, but the period of lamellipodia oscillations near the focal adhesion points was significantly altered in A6 cells cultured upside down. PMID:17155092

  16. Quantification of the global and local complexity of the epithelial-connective tissue interface of normal, dysplastic, and neoplastic oral mucosae using digital imaging.

    PubMed

    Abu Eid, Rasha; Landini, Gabriel

    2003-01-01

    This study aimed at quantifying the complexity of the epithelial-connective tissue interface (ECTI) in human normal mucosa, premalignant, and malignant lesions using fractal geometry. Two approaches were used to describe the complexity of 377 oral mucosa ECTI profiles. The box counting method was used to estimate their global fractal dimension, while local fractal dimensions were estimated using the mass radius relation at various local scales. The ECTI complexity significantly increased from normal through premalignant to malignant profiles in both global and local (over 283 microm) scales. Normal mucosa samples from different sites of the oral cavity also had different degrees of global complexity. Fractal geometry is a useful morphological marker of tissue complexity changes taking place during epithelial malignancy and premalignancy, and we propose it as a quantitative marker of epithelial complexity. PMID:14521264

  17. Ethylene bisdithiocarbamate pesticides cause cytotoxicity in transformed and normal human colon cells.

    PubMed

    Hoffman, Lisa; Hardej, Diane

    2012-09-01

    The effects of the fungicides Maneb, Mancozeb, and Zineb were investigated in transformed colon cells, HT-29, Caco2 and non-transformed cells, CCD-18Co. Significant decreases in viability were observed with Maneb and Mancozeb in HT-29 and CCD-18Co (80-260μM), and Caco2 cells (40-180μM). No significant decreases in viability were observed in all cell types up to 800μM with Zineb. MnCl(2) and ZnCl(2) exposure produced no loss of viability in all cell types up to 400μM. Light microscopy confirmed viability analysis. Lipid peroxidation was observed with Maneb and Mancozeb in cell types tested (60-200μM). Caspase 3/7, 8, and 9 activities were observed with Maneb and Mancozeb in cell types tested (40-200μM). Maneb and Mancozeb treated HT-29 and Caco2 cells demonstrated increases in manganese and zinc concentrations (20-200μM). The lack of toxicity observed with Zineb, MnCl(2), and ZnCl(2) suggests that both the metal moiety and the organic portion of these fungicides together contribute to toxicity. PMID:22824503

  18. Basement-membrane heparan sulphate with high affinity for antithrombin synthesized by normal and transformed mouse mammary epithelial cells.

    PubMed Central

    Pejler, G; David, G

    1987-01-01

    Basement-membrane proteoglycans, biosynthetically labelled with [35S]sulphate, were isolated from normal and transformed mouse mammary epithelial cells. Proteoglycans synthesized by normal cells contained mainly heparan sulphate and, in addition, small amounts of chondroitin sulphate chains, whereas transformed cells synthesized a relatively higher proportion of chondroitin sulphate. Polysaccharide chains from transformed cells were of lower average Mr and of lower anionic charge density compared with chains isolated from the untransformed counterparts, confirming results reported previously [David & Van den Berghe (1983) J. Biol. Chem. 258, 7338-7344]. A large proportion of the chains isolated from normal cells bound with high affinity to immobilized antithrombin, and the presence of 3-O-sulphated glucosamine residues, previously identified as unique markers for the antithrombin-binding region of heparin [Lindahl, Bäckström, Thunberg & Leder (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 6551-6555], could be demonstrated. A significantly lower proportion of the chains derived from transformed cells bound with high affinity to antithrombin, and a corresponding decrease in the amount of incorporated 3-O-sulphate was observed. PMID:2963617

  19. Nucleoside transport in human colonic epithelial cell lines: evidence for two Na+-independent transport systems in T84 and Caco-2 cells.

    PubMed

    Ward, J L; Tse, C M

    1999-06-01

    RT-PCR of RNA isolated from monolayers of the human colonic epithelial cell lines T84 and Caco-2 demonstrated the presence of mRNA for the two cloned Na+-independent equilibrative nucleoside transporters, ENT1 and ENT2, but not for the cloned Na+-dependent concentrative nucleoside transporters, CNT1 and CNT2. Uptake of [3H]uridine by cell monolayers in balanced Na+-containing and Na+-free media confirmed the presence of only Na+-independent nucleoside transport mechanisms. This uptake was decreased by 70-75% in the presence of 1 microM nitrobenzylthioinosine, a concentration that completely inhibits ENT1, and was completely blocked by the addition of 10 microM dipyridamole, a concentration that inhibits both ENT1 and ENT2. These findings indicate the presence in T84 and Caco-2 cells of two functional Na+-independent equilibrative nucleoside transporters, ENT1 and ENT2. PMID:10366666

  20. Unbiased Selection of Peptide-Peptoid Hybrids Specific for Lung Cancer Compared to Normal Lung Epithelial Cells.

    PubMed

    Matharage, Jaya M; Minna, John D; Brekken, Rolf A; Udugamasooriya, D Gomika

    2015-12-18

    To develop widely applicable diagnostic and potentially therapeutic approaches overcoming protein heterogeneity in human cancer, we have developed a technology to unbiasedly select high specificity compound(s) that bind any biomolecule (e.g., proteins, lipids, carbohydrates) presented on the cancer cell surface but not on normal cells. We utilized a peptidomimetic based on-bead two-color (OBTC) combinatorial cell screen that can detect differences between two cell surfaces at high accuracy by looking for beads (where each bead in the library had one peptide-peptoid hybrid on the surface) that only bound cancer but not normal cells. We screened a library of 393 216 compounds targeting HCC4017 lung adenocarcinoma cells (labeled in red) in the presence of HBEC30KT normal bronchial epithelial cells (labeled in green) derived from the same tissue of the same patient. This screen identified a peptide-peptoid hybrid called PPS1 which displayed high specific binding for HCC4017 cancer cells over HBEC30KT cells. Specificity was validated through on-bead, ELISA-like and magnetic bead pulldown studies, while a scrambled version of PPS1 did not show any binding. Of interest, the simple dimeric version (PPS1D1) displayed cytotoxic activity on HCC4017 cells, but not on normal HBEC30KT cells. PPS1D1 also strongly accumulated in HCC4017 lung cancer xenografts in mice over control constructs. We conclude that such combinatorial screens using tumor and normal cells from the same patient have significant potential to develop new reagents for cancer biology, diagnosis, and potentially therapy. PMID:26509598

  1. Assessing the Toxicities of Regulated and Unregulated Disinfection By-products in Normal Human Colon Cells.

    EPA Science Inventory

    The presence of over six hundred disinfection by-products (DBPs) and less than half of the total organic halides present in finished water has created a need for short-term in vitro assays to address toxicities that might be associated with human exposure. . We are using a normal...

  2. Development of a memetic clustering algorithm for optimal spectral histology: application to FTIR images of normal human colon.

    PubMed

    Farah, Ihsen; Nguyen, Thi Nguyet Que; Groh, Audrey; Guenot, Dominique; Jeannesson, Pierre; Gobinet, Cyril

    2016-05-23

    The coupling between Fourier-transform infrared (FTIR) imaging and unsupervised classification is effective in revealing the different structures of human tissues based on their specific biomolecular IR signatures; thus the spectral histology of the studied samples is achieved. However, the most widely applied clustering methods in spectral histology are local search algorithms, which converge to a local optimum, depending on initialization. Multiple runs of the techniques estimate multiple different solutions. Here, we propose a memetic algorithm, based on a genetic algorithm and a k-means clustering refinement, to perform optimal clustering. In addition, this approach was applied to the acquired FTIR images of normal human colon tissues originating from five patients. The results show the efficiency of the proposed memetic algorithm to achieve the optimal spectral histology of these samples, contrary to k-means. PMID:27110605

  3. AFM method to detect differences in adhesion of silica bids to cancer and normal epithelial cells

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor; Iyer, Swaminathan; Gaikwad, Ravi; Woodworth, Craig

    2009-03-01

    To date, the methods of detection of cancer cells have been mostly based on traditional techniques used in biology, such as visual identification of malignant changes, cell growth analysis, specific ligand-receptor labeling, or genetic tests. Despite being well developed, these methods are either insufficiently accurate or require a lengthy complicated analysis. A search for alternative methods for the detection of cancer cells may be a fruitful approach. Here we describe an AFM study that may result in a new method for detection of cancer cells in vitro. Here we use atomic force microscopy (AFM) to study adhesion of single silica beads to malignant and normal cells cultured from human cervix. We found that adhesion depends on the time of contact, and can be statistically different for malignant and normal cells. Using these data, one could develop an optical method of cancer detection based on adhesion of various silica beads.

  4. Colonic mucosal gene expression and genotype in irritable bowel syndrome patients with normal or elevated fecal bile acid excretion

    PubMed Central

    Carlson, Paula; Acosta, Andres; Busciglio, Irene

    2015-01-01

    The mucosal gene expression in rectosigmoid mucosa (RSM) in irritable bowel syndrome with diarrhea (IBS-D) is unknown. Our objectives were, first, to study mRNA expression [by RT2 PCR of 19 genes pertaining to tight junctions, immune activation, intestinal ion transport and bile acid (BA) homeostasis] in RSM in IBS-D patients (n = 47) and healthy controls (n = 17) and study expression of a selected protein (PDZD3) in 10 IBS-D patients and 4 healthy controls; second, to assess RSM mRNA expression according to genotype and fecal BA excretion (high ≥2,337 μmol/48 h); and third, to determine whether genotype or mucosal mRNA expression is associated with colonic transit or BA parameters. Fold changes were corrected for false detection rate for 19 genes studied (P < 0.00263). In RSM in IBS-D patients compared with controls, mRNA expression of GUC2AB, PDZD3, and PR2Y4 was increased, whereas CLDN1 and FN1 were decreased. One immune-related gene was upregulated (C4BP4) and one downregulated (CCL20). There was increased expression of a selected ion transport protein (PDZD3) on immunohistochemistry and Western blot in IBS-D compared with controls (P = 0.02). There were no significant differences in mucosal mRNA in 20 IBS-D patients with high compared with 27 IBS-D patients with normal BA excretion. GPBAR1 (P < 0.05) was associated with colonic transit. We concluded that mucosal ion transport mRNA (for several genes and PDZD3 protein) is upregulated and barrier protein mRNA downregulated in IBS-D compared with healthy controls, independent of genotype. There are no differences in gene expression in IBS-D with high compared with normal fecal BA excretion. PMID:25930081

  5. Colonic mucosal gene expression and genotype in irritable bowel syndrome patients with normal or elevated fecal bile acid excretion.

    PubMed

    Camilleri, Michael; Carlson, Paula; Acosta, Andres; Busciglio, Irene

    2015-07-01

    The mucosal gene expression in rectosigmoid mucosa (RSM) in irritable bowel syndrome with diarrhea (IBS-D) is unknown. Our objectives were, first, to study mRNA expression [by RT(2) PCR of 19 genes pertaining to tight junctions, immune activation, intestinal ion transport and bile acid (BA) homeostasis] in RSM in IBS-D patients (n = 47) and healthy controls (n = 17) and study expression of a selected protein (PDZD3) in 10 IBS-D patients and 4 healthy controls; second, to assess RSM mRNA expression according to genotype and fecal BA excretion (high ≥ 2,337 μmol/48 h); and third, to determine whether genotype or mucosal mRNA expression is associated with colonic transit or BA parameters. Fold changes were corrected for false detection rate for 19 genes studied (P < 0.00263). In RSM in IBS-D patients compared with controls, mRNA expression of GUC2AB, PDZD3, and PR2Y4 was increased, whereas CLDN1 and FN1 were decreased. One immune-related gene was upregulated (C4BP4) and one downregulated (CCL20). There was increased expression of a selected ion transport protein (PDZD3) on immunohistochemistry and Western blot in IBS-D compared with controls (P = 0.02). There were no significant differences in mucosal mRNA in 20 IBS-D patients with high compared with 27 IBS-D patients with normal BA excretion. GPBAR1 (P < 0.05) was associated with colonic transit. We concluded that mucosal ion transport mRNA (for several genes and PDZD3 protein) is upregulated and barrier protein mRNA downregulated in IBS-D compared with healthy controls, independent of genotype. There are no differences in gene expression in IBS-D with high compared with normal fecal BA excretion. PMID:25930081

  6. Dietary Soy Protein Inhibits DNA Damage and Cell Survival of Colon Epithelial Cells through Attenuated Expression of Fatty Acid Synthase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary intake of soy protein decreases tumor incidence in rat models of chemically induced colon cancer. We hypothesized that decreased expression of Fatty Acid Synthase (FASN) underlies, in part, the tumor preventive effects of soy protein, since FASN over-expression characterizes early tumorigene...

  7. Sulindac increases the expression of APC mRNA in malignant colonic epithelial cells: an in vitro study.

    PubMed Central

    Schnitzler, M; Dwight, T; Robinson, B G

    1996-01-01

    BACKGROUND--Sulindac is a non-steroidal anti-inflammatory drug which induces regression of colonic polyps in patients with familial adenomatous polyposis. Animal and in vitro studies have shown that both the sulphide metabolite of sulindac, which is able to inhibit cyclo-oxygenase, and the sulphone metabolite, which lacks this ability, are able to inhibit the growth of colonic carcinoma cells. The exact mechanism by which these effects occurs is not known. AIMS--To examine the effect of sulindac sulphide and sulindac sulphone on the expression of APC messenger RNA (mRNA), and on the proliferation of colonic carcinoma cells in vitro. METHODS--The colonic carcinoma cell line LIM 1215 was treated with sulindac sulphide and sulindac sulphone (10 microM or 100 microM) for 24 hours. Total RNA was extracted and APC mRNA was quantitated using competitive reverse transcription polymerase chain reaction. Measurements of cell number, cell proliferation, and prostaglandin E2 concentrations were also made. RESULTS--A significant increase in APC mRNA was observed after treatment with 10 microM of both sulindac sulphide and sulindac sulphone (control: 37.2 (19.7); 10 microM sulindac sulphide: 129 (112.8); 10 microM sulindac sulphone: 207.7 (102.9) pg/(g total RNA) (p < 0.05). Prostaglandin E2 concentrations were significantly reduced after treatment with sulindac sulphide, but not after sulindac sulphone. Both agents produced a dose dependent reduction in cell numbers and cell proliferation, which was more noticeable after treatment with sulindac sulphide. CONCLUSIONS--Both sulindac sulphide and sulindac sulphone inhibit the growth of carcinoma cells in vitro and cause an increase in APC mRNA. The effect of these agents on colonic carcinogenesis is not mediated entirely by means of an inhibition of prostaglandin biosynthesis. Images Figure 1 PMID:8707116

  8. The ethanolic extract of bark from Salix aegyptiaca L. inhibits the metastatic potential and epithelial to mesenchymal transition of colon cancer cell lines.

    PubMed

    Enayat, Shabnam; Banerjee, Sreeparna

    2014-01-01

    Willow bark extracts have been used for centuries as a natural pain killer. Recently their potential as anticancer agents has been reported. We have shown the high antioxidant activity, phenolic and flavonoid content in the ethanolic extract of bark (EEB) from Salix aegyptiaca, a species endogenous to the Middle East. We have also reported that incubation with EEB resulted in a reduction in cell proliferation through the induction of apoptosis and cell cycle arrest via the inhibition of phosphatidyl inositol 3-kinase/Protein kinase B and mitogen activated protein kinases signaling pathways as strongly as commercial inhibitors. The current study demonstrates the robust inhibition of anchorage-independent growth, motility, migration, and adhesion of colon cancer cell lines HCT-116 and HT-29 by EEB. These in vitro functional changes were accompanied by a restoration of E-cadherin expression, a reduction in EGFR, SNAI1, SNAI2, and Twist1 and the matrix metalloproteases MMP9 and MMP2. Many of these proteins are involved in the process of epithelial to mesenchymal transition, which is considered as a critical step in the progression of noninvasive tumor cells into malignant, metastatic carcinomas. We therefore propose that EEB from Salix aegyptiaca is a potent nutraceutical causing cancer chemoprevention by inhibiting epithelial to mesenchymal transition and can be consumed for its health promoting effects. PMID:25175673

  9. Bax is downregulated in inflamed colonic mucosa of ulcerative colitis

    PubMed Central

    Iimura, M; Nakamura, T; Shinozaki, S; Iizuka, B; Inoue, Y; Suzuki, S; Hayashi, N

    2000-01-01

    BACKGROUND AND AIMS—One form of epithelial cell injury in inflamed colonic mucosa in ulcerative colitis (UC) is reported to involve apoptosis of these cells. Bcl-2 family proteins Bax and Bcl-2 are the major regulators of apoptosis. The aim of this study was to elucidate the involvement of the Bax/Bcl-2 system in induction of apoptosis of the inflamed colonic epithelium in UC.
METHODS—Colonic epithelium was isolated from colonic biopsy specimens. Expression of CD95, Bax, Bcl-xL, and Bcl-2 proteins was determined by western blotting. Bax gene expression was assessed by both reverse transcription-polymerase chain reaction (RT-PCR) followed by Southern hybridisation and a real time PCR assay.
RESULTS—Equal levels of expression of CD95, Bcl-xL, and Bcl-2 proteins were noted in normal and UC colonic epithelia. Equal levels of expression of Bax protein and mRNA were noted in epithelia of normal colon and inactive UC. Levels of expression of Bax protein and mRNA were markedly reduced in inflamed UC colonic epithelium.
CONCLUSIONS—Our study showed for the first time downregulation of Bax in inflamed colonic epithelium of UC. The Bax/Bcl-2 system did not seem to be involved in induction of apoptosis of epithelial cells in the inflamed colonic mucosa of UC.


Keywords: ulcerative colitis; apoptosis; Bax; Bcl-2; Bcl-xL; CD95 PMID:10896914

  10. Kinetic analysis of the interaction between the monoclonal antibody A33 and its colonic epithelial antigen by the use of an optical biosensor. A comparison of immobilisation strategies.

    PubMed

    Catimel, B; Nerrie, M; Lee, F T; Scott, A M; Ritter, G; Welt, S; Old, L J; Burgess, A W; Nice, E C

    1997-07-25

    The interaction between the humanised A33 monoclonal antibody and the corresponding F(ab)'2 or Fab' fragments with the colonic epithelial A33 antigen, purified by micropreparative HPLC from membrane extracts of the colonic carcinoma cell line LIM 1215, has been studied with the BIAcore 2000 biosensor using surface plasmon resonance detection. The surface orientation of immobilised antibody and the Fab' fragment onto the biosensor surface was controlled using alternative immobilisation chemistries. This resulted in significantly higher molar binding activities compared with the conventional N-hydroxysuccinimide (NHS)/N-ethyl-N'-dimethylaminopropylcarbodiimide (EDC) chemistry. This increase in signal resulted in a concomitant increase in sensitivity of detection, which facilitates analysis of low levels of A33 antigen. The apparent association rate (ka) and dissociation rate (kd) constants obtained with the different immobilisation chemistries were determined. These analyses showed that the kinetic constants obtained for the IgG were not significantly affected by the method of immobilisation. F(ab)'2 and Fab' fragments immobilised using NHS/EDC chemistry showed significantly lower apparent affinity. By contrast the use of the thiol coupling chemistry with the Fab' fragment gave a five fold increase in observed KA, resulting in a similar affinity to that observed with the intact IgG molecule. PMID:9286074

  11. Distinct domain-dependent effect of syntaxin1A on amiloride-sensitive sodium channel (ENaC) currents in HT-29 colonic epithelial cells

    PubMed Central

    Saxena, Sunil K; Singh, Madhurima; Kaur, Simarna; George, Constantine

    2007-01-01

    The amiloride-sensitive epithelial sodium channel (ENaC), a plasma membrane protein mediates sodium reabsorption in epithelial tissues, including the distal nephron and colon. Syntaxin1A, a trafficking protein of the t-SNARE family has been reported to inhibit ENaC in the Xenopus oocyte expression and artificial lipid bilayer systems. The present report describes the regulation of the epithelial sodium channel by syntaxin1A in a human cell line that is physiologically relevant as it expresses both components and also responds to aldosterone stimulation. In order to evaluate the physiological significance of syntaxin1A interaction with natively expressed ENaC, we over-expressed HT-29 with syntaxin1A constructs comprising various motifs. Unexpectedly, we observed the augmentation of amiloride-sensitive currents with wild-type syntaxin1A full-length construct (1-288) in this cell line. Both γENaC and neutralizing syntaxin1A antibodies blocked native expression as amiloride-sensitive sodium currents were inhibited while munc18-1 antibody reversed this effect. The coiled-coiled domain H3 (194-266) of syntaxin1A inhibited, however the inclusion of the transmembrane domain to this motif (194-288) augmented amiloride sensitive currents. More so, data suggest that ENaC interacts with multiple syntaxin1A domains, which differentially regulate channel function. This functional modulation is the consequence of the physical enhancement of ENaC at the cell surface in cells over-expressed with syntaxin(s). Our data further suggest that syntaxin1A up-regulates ENaC function by multiple mechanisms that include PKA, PLC, PI3 and MAP Kinase (p42/44) signaling systems. We propose that syntaxin1A possesses distinct inhibitory and stimulatory domains that interact with ENaC subunits, which critically determines the overall ENaC functionality/regulation under distinct physiological conditions. PMID:17200691

  12. Effects of Supplemental Vitamin D and Calcium on Normal Colon Tissue and Circulating Biomarkers of Risk for Colorectal Neoplasms

    PubMed Central

    Bostick, Roberd M.

    2015-01-01

    This brief review, based on an invited presentation at the 17th Workshop on Vitamin D, is to summarize a line of the author’s research that has been directed at the intertwined missions of clarifying and/or developing vitamin D and calcium and as preventive agents against colorectal cancer in humans, understanding the mechanisms by which these agents may reduce risk for the disease, and developing ‘treatable’ biomarkers of risk for colorectal cancer. The biological plausibility and observational and clinical trial evidence for vitamin D and calcium in reducing risk for colorectal neoplasms, the development of pre-neoplastic biomarkers of risk for colorectal neoplasms, and the clinical trial findings from the author’s research group on the efficacy of vitamin D and calcium in modulating these biomarkers are summarized. Regarding the latter, we tested the efficacy of 800 IU (20 µg) of vitamin D3 and 2.0g of calcium daily, alone and combined vs. placebo over 6 months on modulating normal colon tissue and circulating hypothesis-based biomarkers of risk for colorectal neoplasms in a randomized, double-blind, placebo-controlled, 2×2 factorial design clinical trial (n = 92). The tissue-based biomarkers were measured in biopsies of normal-appearing rectal mucosa using immunohistochemistry with quantitative image analysis, and a panel of circulating inflammation markers was measured using enzyme-linked immunoassays (ELISA). Statistically significant proportional tissue increases in the vitamin D group relative to the placebo group were found in bax (51%), p21 (141%), APC (48%), E-cadherin (78%), MSH2 (179%), the CaSR (39%), and CYP27B1 (159%). In blood, there was a 77% statistically significant decrease in a summary inflammation z-score. The findings for calcium were similar to those for vitamin D. These findings indicate that supplemental vitamin D3 or calcium can favorably modulate multiple normal colon tissue and circulating hypothesis-based biomarkers of risk

  13. Effects of high levels of dietary zinc oxide on ex vivo epithelial histamine response and investigations on histamine receptor action in the proximal colon of weaned piglets.

    PubMed

    Kröger, S; Pieper, R; Aschenbach, J R; Martin, L; Liu, P; Rieger, J; Schwelberger, H G; Neumann, K; Zentek, J

    2015-11-01

    The aim of the study was to identify the effect of high dietary zinc oxide (ZnO) levels on the histamine-induced secretory-type response and histamine metabolism in the porcine proximal colon. After weaning at d 26, 3 diets with low (LZn), normal (NZn), and high (HZn) concentrations of zinc (57, 164, or 2,425 mg/kg) were fed to a total of 120 piglets. Digesta and tissue samples were taken from the ascending colon after 7 ± 1, 14 ± 1, 21 ± 1, and 28 ± 1 d. Partially stripped tissue was mounted in Ussing chambers, and histamine was applied either to the serosal or mucosal compartments. Tissue was pretreated with or without aminoguanidine and amodiaquine to block the histamine-degrading enzymes diamine oxidase (DAO) and histamine -methyltransferase (HMT), respectively. Gene expression and catalytic activity of DAO and HMT in the tissue were analyzed. The numbers of mast cells were determined in tissue samples, and histamine concentration was measured in the colon digesta. Colon tissue from another 12 piglets was used for functional studies on histamine H and H receptors by using the neuronal conduction blocker tetrodotoxin (TTX) and the H and H receptor blocker chloropyramine and famotidine, respectively. After serosal histamine application to colonic tissue in Ussing chambers, the change of short-circuit current (Δ) was not affected by pretreatment and was not different between Zn feeding groups. The Δ after mucosal histamine application was numerically lower ( = 0.168) in HZn compared to LZn and NZn pigs. Mast cell numbers increased from 32 to 46 d of life ( < 0.05). Further studies elucidated that the serosal histamine response was partly inhibited by chloropyramine or famotidine ( < 0.01). The response to mucosal histamine tended to be decreased when chloropyramine but not famotidine was applied from either the serosal or the mucosal side ( = 0.055). Tetrodotoxin alone or in combination with chloropyramine resulted in a similar reduction in the mucosal

  14. Comparison of gene expression of SOX2 and OCT4 in normal tissue, polyps, and colon adenocarcinoma using immunohistochemical staining

    PubMed Central

    Talebi, Ardeshir; Kianersi, Kianoosh; Beiraghdar, Mozhdeh

    2015-01-01

    Background: Cancer stem cells have been isolated and characterized in all common cancers. SOX2 and OCT4 are important genes to enhance the self-renewal ability as activate stem cells and inhibit the genes that start differentiation and thus maintain the self-renewal ability of stem cells. Also, the aim of this study is “Comparison of gene expression of SOX2 and OCT4 in normal tissue, polyps, and colon adenocarcinoma using immunohistochemical staining.” Materials and Methods: This cross-sectional study conducted on 20 patients so that for each patient, a sample of healthy tissue, dysplastic polyp tissue, and colon adenocarcinoma were provided as microscopic sections and staining on each tissue was performed through immunohistochemistry method by markers OCT4 and SOX2. The collected data were interred into SPSS version 18.0, (SPSS Inc., Chicago, IL, USA) software and the level of significance were considered as <0.05. Results: The study sample consisted of 20 patients including 11 men (55%) and 9 women (45%) with a mean age of 55.6 ± 9.88 years. There was no association between Oct4 and colorectal cancer (CRC) patients (P > 0.05), but there was a significant correlation between Sox2 expression and CRC (P < 0.05). Patients in many aspects such as race, type of polyp, presence of lymph node, grade and intensity of Sox2 in different types of patients’ tissues (P < 0.05). Conclusion: Regarding our findings, the expression of Sox2 would be a liable marker for evaluating of cancer progression and could be a treatment target of CRC cells. PMID:26645019

  15. Comparison study of distinguishing cancerous and normal prostate epithelial cells by confocal and polarization diffraction imaging

    NASA Astrophysics Data System (ADS)

    Jiang, Wenhuan; Lu, Jun Qing; Yang, Li V.; Sa, Yu; Feng, Yuanming; Ding, Junhua; Hu, Xin-Hua

    2016-07-01

    Accurate classification of malignant cells from benign ones can significantly enhance cancer diagnosis and prognosis by detection of circulating tumor cells (CTCs). We have investigated two approaches of quantitative morphology and polarization diffraction imaging on two prostate cell types to evaluate their feasibility as single-cell assay methods toward CTC detection after cell enrichment. The two cell types have been measured by a confocal imaging method to obtain their three-dimensional morphology parameters and by a polarization diffraction imaging flow cytometry (p-DIFC) method to obtain image texture parameters. The support vector machine algorithm was applied to examine the accuracy of cell classification with the morphology and diffraction image parameters. Despite larger mean values of cell and nuclear sizes of the cancerous prostate cells than the normal ones, it has been shown that the morphologic parameters cannot serve as effective classifiers. In contrast, accurate classification of the two prostate cell types can be achieved with high classification accuracies on measured data acquired separately in three measurements. These results provide strong evidence that the p-DIFC method has the potential to yield morphology-related "fingerprints" for accurate and label-free classification of the two prostate cell types.

  16. Comparison study of distinguishing cancerous and normal prostate epithelial cells by confocal and polarization diffraction imaging.

    PubMed

    Jiang, Wenhuan; Lu, Jun Qing; Yang, Li V; Sa, Yu; Feng, Yuanming; Ding, Junhua; Hu, Xin-Hua

    2016-07-01

    Accurate classification of malignant cells from benign ones can significantly enhance cancer diagnosis and prognosis by detection of circulating tumor cells (CTCs). We have investigated two approaches of quantitative morphology and polarization diffraction imaging on two prostate cell types to evaluate their feasibility as single-cell assay methods toward CTC detection after cell enrichment. The two cell types have been measured by a confocal imaging method to obtain their three-dimensional morphology parameters and by a polarization diffraction imaging flow cytometry (p-DIFC) method to obtain image texture parameters. The support vector machine algorithm was applied to examine the accuracy of cell classification with the morphology and diffraction image parameters. Despite larger mean values of cell and nuclear sizes of the cancerous prostate cells than the normal ones, it has been shown that the morphologic parameters cannot serve as effective classifiers. In contrast, accurate classification of the two prostate cell types can be achieved with high classification accuracies on measured data acquired separately in three measurements. These results provide strong evidence that the p-DIFC method has the potential to yield morphology-related “fingerprints” for accurate and label-free classification of the two prostate cell types. PMID:26616011

  17. Epithelial expression of interleukin-37b in inflammatory bowel disease.

    PubMed

    Imaeda, H; Takahashi, K; Fujimoto, T; Kasumi, E; Ban, H; Bamba, S; Sonoda, H; Shimizu, T; Fujiyama, Y; Andoh, A

    2013-06-01

    Interleukin (IL)-37 is a member of the IL-1 cytokine family. We investigated IL-37b expression in the inflamed mucosa of inflammatory bowel disease (IBD) patients. Furthermore, we analysed IL-37b expression in human colonic epithelial cells. The human colonic epithelial cell line T84 and human colonic subepithelial myofibroblasts (SEMFs) were used. IL-37b expression in the IBD mucosa was evaluated by immunohistochemistry. IL-37b mRNA and protein expression were determined by real time-polymerase chain reaction (PCR) and Western blotting, respectively. IL-37b was not detected in the normal colonic mucosa. In the inflamed mucosa of IBD patients, epithelial IL-37b expression was increased markedly. In ulcerative colitis (UC) and Crohn's disease (CD) patients, IL-37b expression was enhanced in the affected mucosa. In the intestinal epithelial cell line T84, the expression of IL-37b mRNA and protein was enhanced by tumour necrosis factor (TNF)-α. This IL-37b induction by TNF-α was mediated by nuclear factor (NF)-κB and activator protein (AP)-1 activation. Furthermore, IL-37b inhibited TNF-α-induced interferon-γ-inducible protein (IP)-10 expression significantly in human colonic SEMFs. Epithelial IL-37b expression was increased in IBD patients, especially UC patients. IL-37b may be involved in the pathophysiology of IBD as an anti-inflammatory cytokine and an inhibitor of both innate and acquired immune responses. PMID:23600829

  18. Ionizing Irradiation Not Only Inactivates Clonogenic Potential in Primary Normal Human Diploid Lens Epithelial Cells but Also Stimulates Cell Proliferation in a Subset of This Population

    PubMed Central

    Fujimichi, Yuki; Hamada, Nobuyuki

    2014-01-01

    Over the past century, ionizing radiation has been known to induce cataracts in the crystalline lens of the eye, but its mechanistic underpinnings remain incompletely understood. This study is the first to report the clonogenic survival of irradiated primary normal human lens epithelial cells and stimulation of its proliferation. Here we used two primary normal human cell strains: HLEC1 lens epithelial cells and WI-38 lung fibroblasts. Both strains were diploid, and a replicative lifespan was shorter in HLEC1 cells. The colony formation assay demonstrated that the clonogenic survival of both strains decreases similarly with increasing doses of X-rays. A difference in the survival between two strains was actually insignificant, although HLEC1 cells had the lower plating efficiency. This indicates that the same dose inactivates the same fraction of clonogenic cells in both strains. Intriguingly, irradiation enlarged the size of clonogenic colonies arising from HLEC1 cells in marked contrast to those from WI-38 cells. Such enhanced proliferation of clonogenic HLEC1 cells was significant at ≥2 Gy, and manifested as increments of ≤2.6 population doublings besides sham-irradiated controls. These results suggest that irradiation of HLEC1 cells not only inactivates clonogenic potential but also stimulates proliferation of surviving uniactivated clonogenic cells. Given that the lens is a closed system, the stimulated proliferation of lens epithelial cells may not be a homeostatic mechanism to compensate for their cell loss, but rather should be regarded as abnormal. This is because these findings are consistent with the early in vivo evidence documenting that irradiation induces excessive proliferation of rabbit lens epithelial cells and that suppression of lens epithelial cell divisions inhibits radiation cataractogenesis in frogs and rats. Thus, our in vitro model will be useful to evaluate the excessive proliferation of primary normal human lens epithelial cells that

  19. Arhgap17, a RhoGTPase activating protein, regulates mucosal and epithelial barrier function in the mouse colon

    PubMed Central

    Lee, So-young; Kim, Hwain; Kim, Kyoungmi; Lee, Hyunji; Lee, Seungbok; Lee, Daekee

    2016-01-01

    Coordinated regulation of the actin cytoskeleton by the Rho GTPase family is required for the maintenance of polarity in epithelial cells as well as for their proliferation and migration. A RhoGTPase-activating protein 17 (Arhgap17) is known to be involved in multiple cellular processes in vitro, including the maintenance of tight junctions and vesicle trafficking. However, the function of Arhgap17 has not been studied in the physiological context. Here, we generated Arhgap17-deficient mice and examined the effect in the epithelial and mucosal barriers of the intestine. Reporter staining revealed that Arhgap17 expression is limited to the luminal epithelium of intestine. Arhgap17-deficient mice show an increased paracellular permeability and aberrant localization of the apical junction complex in the luminal epithelium, but do not develop spontaneous colitis. The inner mucus layer is impervious to the enteric bacteria irrespective of Tff3 downregulation in the Arhgap17-deficient mice. Interestingly however, treatment with dextran sulfate sodium (DSS) causes an increased accumulation of DSS and TNF production in intraluminal cells and rapid destruction of the inner mucus layer, resulting in increased severity of colitis in mutant mice. Overall, these data reveal that Arhgap17 has a novel function in regulating transcellular transport and maintaining integrity of intestinal barriers. PMID:27229483

  20. MicroRNA profiles in colorectal carcinomas, adenomas and normal colonic mucosa: variations in miRNA expression and disease progression.

    PubMed

    Slattery, Martha L; Herrick, Jennifer S; Pellatt, Daniel F; Stevens, John R; Mullany, Lila E; Wolff, Erica; Hoffman, Michael D; Samowitz, Wade S; Wolff, Roger K

    2016-03-01

    MiRNAs are small, non-protein-coding RNA molecules that regulate gene expression either by post-transcriptionally suppressing mRNA translation or by mRNA degradation. We examine differentially expressed miRNAs in colorectal carcinomas, adenomas and normal colonic mucosa. Data come from population-based studies of colorectal cancer conducted in Utah and the Kaiser Permanente Medical Care Program. A total of 1893 carcinoma/normal-paired samples and 290 adenoma tissue samples were run on the Agilent Human miRNA Microarray V19.0 which contained 2006 miRNAs. We tested for significant differences in miRNA expression between paired carcinoma/adenoma/normal colonic tissue samples. Fewer than 600 miRNAs were expressed in >80% of people for colonic tissue; of these 86.5% were statistically differentially expressed between carcinoma and normal colonic mucosa using a false discovery rate of 0.05. Roughly half of these differentially expressed miRNAs showed a progression in levels of expression from normal to adenoma to carcinoma tissue. Other miRNAs appeared to be altered at the normal to adenoma stage, while others were only altered at the adenoma to carcinoma stage or only at the normal to carcinoma stage. Evaluation of the Agilent platform showed a high degree of repeatability (r = 0.98) and reasonable agreement with the NanoString platform. Our data suggest that miRNAs are highly dysregulated in colorectal tissue among individuals with colorectal cancer; the pattern of disruption varies by miRNA as tissue progresses from normal to adenoma to carcinoma. PMID:26740022

  1. Stimulation of the proliferation of human normal esophageal epithelial cells by fumonisin B1 and its mechanism

    PubMed Central

    WANG, SHAO-KANG; WANG, TING-TING; HUANG, GUI-LING; SHI, RUO-FU; YANG, LI-GANG; SUN, GUI-JU

    2014-01-01

    Previous epidemiological studies have demonstrated a correlation between fumonisin B1 (FB1) and human esophageal cancer in China, Iran and South Africa. The purpose of this study was to investigate the effects of FB1 on the proliferation, cell-cycle and apoptosis of normal human esophageal epithelial cells (HEECs) and to explore the molecular mechanisms of these effects. The proliferation of HEECs treated with FB1 was assessed using a colorimetric assay, while analyses of the cell cycle and apoptosis were performed using flow cytometry and the measurement of the protein expressions of genes associated with the cell cycle was conducted using western blotting. The results showed that FB1 stimulated the proliferation of HEECs, decreased the percentage of cells in the G0/G1 phase and reduced apoptosis. The western blotting results showed that FB1 significantly increased the protein expression of cyclin D1 and significantly decreased the protein expression of cyclin E, p21 and p27. The results indicated that FB1 stimulated the proliferation of HEECs by affecting the cell cycle and apoptosis. This mechanism was associated with changes in cyclin D1, cyclin E, p21 and p27 expression. PMID:24348764

  2. Actin stress fiber disruption and tropomysin isoform switching in normal thyroid epithelial cells stimulated by thyrotropin and phorbol esters

    SciTech Connect

    Roger, P.P.; Rickaert, F.; Lamy, F.; Authelet, M.; Dumont, J.E. )

    1989-05-01

    Thyrotropin (TSH), through cyclic AMP, promotes both proliferation and differentiation expression in dog thyroid epithelial cells in primary culture, whereas the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) also stimulates proliferation but antagonizes differentiating effects of TSH. In this study, within 20 min both factors triggered the disruption of actin-containing stress fibers. This process preceded distinct morphological changes: cytoplasmic retraction and arborization in response to TSH and cyclic AMP, cell shape distortion, and increased motility in response to TPA and diacylglycerol. TSH and TPA also induced a marked decrease in the synthesis of three high M{sub r} tropomyosin isoforms, which were not present in dog thyroid tissue but appeared in culture during cell spreading and stress fiber formation. The tropomyosin isoform switching observed here closely resembled similar processes in various cells transformed by oncogenic viruses. However, it did not correlate with differentiation or mitogenic activation. Contrasting with current hypothesis on this process in transformed cells, tropomyosin isoform switching in normal thyroid cells was preceded and thus might be caused by early disruption of stress fibers.

  3. Respiratory syncytial virus inhibits ciliagenesis in differentiated normal human bronchial epithelial cells: effectiveness of N-acetylcysteine.

    PubMed

    Mata, Manuel; Sarrion, Irene; Armengot, Miguel; Carda, Carmen; Martinez, Isidoro; Melero, Jose A; Cortijo, Julio

    2012-01-01

    Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. These alterations involve reactive oxygen species-dependent mechanisms. The antioxidant N-acetylcysteine (NAC) has proven useful in the management of COPD, reducing symptoms, exacerbations, and accelerated lung function decline. NAC inhibits RSV infection and mucin release in human A549 cells. The main objective of this study was to analyze the effects of NAC in modulating ciliary activity, ciliagenesis, and metaplasia in primary normal human bronchial epithelial cell (NHBEC) cultures infected with RSV. Our results indicated that RSV induced ultrastructural abnormalities in axonemal basal bodies and decreased the expression of β-tubulin as well as two genes involved in ciliagenesis, FOXJ1 and DNAI2. These alterations led to a decrease in ciliary activity. Furthermore, RSV induced metaplastic changes to the epithelium and increased the number of goblet cells and the expression of MUC5AC and GOB5. NAC restored the normal functions of the epithelium, inhibiting ICAM1 expression, subsequent RSV infection through mechanisms involving nuclear receptor factor 2, and the expression of heme oxygenase 1, which correlated with the restoration of the antioxidant capacity, the intracellular H(2)O(2) levels and glutathione content of NHBECs. The results presented in this study support the therapeutic use of NAC for the management of chronic respiratory diseases, including COPD. PMID:23118923

  4. Respiratory Syncytial Virus Inhibits Ciliagenesis in Differentiated Normal Human Bronchial Epithelial Cells: Effectiveness of N-Acetylcysteine

    PubMed Central

    Mata, Manuel; Sarrion, Irene; Armengot, Miguel; Carda, Carmen; Martinez, Isidoro; Melero, Jose A.; Cortijo, Julio

    2012-01-01

    Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. These alterations involve reactive oxygen species-dependent mechanisms. The antioxidant N-acetylcysteine (NAC) has proven useful in the management of COPD, reducing symptoms, exacerbations, and accelerated lung function decline. NAC inhibits RSV infection and mucin release in human A549 cells. The main objective of this study was to analyze the effects of NAC in modulating ciliary activity, ciliagenesis, and metaplasia in primary normal human bronchial epithelial cell (NHBEC) cultures infected with RSV. Our results indicated that RSV induced ultrastructural abnormalities in axonemal basal bodies and decreased the expression of β-tubulin as well as two genes involved in ciliagenesis, FOXJ1 and DNAI2. These alterations led to a decrease in ciliary activity. Furthermore, RSV induced metaplastic changes to the epithelium and increased the number of goblet cells and the expression of MUC5AC and GOB5. NAC restored the normal functions of the epithelium, inhibiting ICAM1 expression, subsequent RSV infection through mechanisms involving nuclear receptor factor 2, and the expression of heme oxygenase 1, which correlated with the restoration of the antioxidant capacity, the intracellular H2O2 levels and glutathione content of NHBECs. The results presented in this study support the therapeutic use of NAC for the management of chronic respiratory diseases, including COPD. PMID:23118923

  5. Intrinsic resistance triggered under acid loading within normal esophageal epithelial cells: NHE1- and ROS-mediated survival.

    PubMed

    Park, Sun Young; Lee, Yeon Joo; Cho, Eun Jeong; Shin, Chang Yell; Sohn, Uy Dong

    2015-07-01

    The transition to a pathological phenotype such as Barrett's esophagus occurs via induction of resistance upon repeated contact with gastric refluxate in esophagus. This study examined the molecular changes within normal esophageal epithelial cells (EECs) under short-term acid loading and the role of these changes in defensive resistance against acidic cytotoxicity. After primary cultured EECs were exposed to pH 4-acidified medium (AM4), cell viability was determined by the MTT assay. Reactive oxygen species (ROS) and NAD(P)H oxidase (NOX) activity were measured. Activation of the mitogen-activated protein kinases (MAPKs) MEK/ERK1/2, p38 and JNK; phosphoinositol-3-kinase (PI3K)/Akt, and nuclear factor-kappa B (NF-κB) were detected by Western blot analysis or immunofluorescence staining. AM4 incubation induced intracellular ROS generation accompanied by increase in NOX activity, which was further increased by Na(+) /H(+) exchange-1 (NHE1)-dependent inhibition but was prevented by inhibition of NOX or mitochondria complex I. AM4 also induced phosphorylation of MEK/ERK1/2, p38 MAPK, PI3K/Akt, and nuclear translocation of NF-κB, and all these effects, except for p38 MAPK phosphorylation, were abolished by inhibition of ROS. ROS-dependent PI3K/Akt activation, which mediates NF-κB nuclear translocation, was inhibited by protein tyrosine kinase (PTK) inhibitors and NHE1-specific inhibitor. All inhibitors of NHE, ROS, PTK, PI3K, or NF-κB further decreased AM4-induced cell viability. Acid loading in the presence of NHE1-dependent protection induced ROS generation by activating NOX and mitochondria complex I, which stimulated PTK/PI3K/Akt/NF-κB-dependent survival in EEC. Our data indicate that normal EEC initially respond to acid loading through intrinsic survival activation. PMID:25522216

  6. A common effect of angiotensin II and relaxin 2 on the PNT1A normal prostate epithelial cell line.

    PubMed

    Domińska, Kamila; Ochędalski, Tomasz; Kowalska, Karolina; Matysiak-Burzyńska, Zuzanna E; Płuciennik, Elżbieta; Piastowska-Ciesielska, Agnieszka W

    2016-09-01

    The prostate gland is a part of the male reproductive tract which produces both angiotensin II (Ang II) and relaxin 2 (RLN2). The present study analyzes the effect of both these peptide hormones at concentration 10(-8)M on viability, proliferation, adhesion, migration, and invasion of normal prostate epithelial cells (PNT1A). Improved survival in two- and three-dimensional cell cultures was noted as well as visual changes in colony size and structure in Geltrex™. Stimulatory influence on cell viability of each peptide applied single was lower than in combination. Enhanced survival of PNT1A cells appears to be associated with increased BCL2/BAX messenger RNA (mRNA) expression ratio. Modulation of cell spreading and cell-extracellular matrix adhesion dynamics were also altered as an influence of tested hormone application. However, long-term Ang II and RLN2 effects may lead to an increase of normal prostate cell migration and invasion abilities. Moreover, gelatin zymography revealed that both gelatinases A and B were augmented by Ang II treatment, whereas RLN2 significantly stimulated only MMP-9 secretion. These results support the hypothesis that deregulation of locally secreted peptide hormones such as Ang II and RLN2 may take part in the development of certain cancers, including prostate cancer. Moreover, the observed ability of relaxin 2 to act as a regulator of mRNA expression levels not only LGR7 but also classic angiotensin receptors suggested that renin-angiotensin system and relaxin family peptide system are functionally linked. PMID:27119161

  7. Profiling follicle stimulating hormone-induced gene expression changes in normal and malignant human ovarian surface epithelial cells.

    PubMed

    Ho, Shuk-Mei; Lau, Kin-Mang; Mok, Samuel Chi-Ho; Syed, Viqar

    2003-07-01

    Epidemiological data have implicated the pituitary gonadotropin follicle stimulating hormone (FSH) as both a risk factor for and a protective agent against epithelial ovarian cancer. Yet, little is known about how this hormone could play such opposing roles in ovarian carcinogenesis. Complementary DNA microarrays containing 2400 named genes were used to examine FSH-induced gene expression changes in ovarian cancer (OC) and immortalized normal human ovarian surface epithelial (HOSE) cell lines. Two-way t-statistics analyses of array data identified two distinct sets of FSH-regulated genes in HOSE and in established OC cell lines established from patients (OVCA cell lines). Among the HOSE cell lines, FSH increased expression of 57% of the 312 genes and downregulated 43%. In contrast, FSH diminished expression of 92% of the 177 genes in the OVCA cell lines. All but 18 of the genes affected by FSH in HOSE cell lines were different from those altered in OVCA cell lines. Among the 18 overlapping genes, nine genes exhibited the same direction of change following FSH challenge, while the other nine showed discordance in response between HOSE and OVCA cell lines. The FSH-induced differential expression of seven out of nine genes was confirmed by real-time RT-PCR. Gene-specific antisense oligonuleotides (ODNs) were used to inhibit the expression of genes encoding GTPase activating protein (rap1GAP), neogenin, and restin in HOSE and OVCA cells. Antisense ODNs to neogenin and restin, but not an antisense ODN to rap1GAP, were effective in inhibiting OVCA cell growth, diminishing proliferating cell nuclear antigen expression, and increasing caspase 3 activities. Furthermore, the ODN to rap1GAP was further shown to be ineffective in altering migration properties of OVCA cell lines. HOSE cell proliferation was not affected by treatment with any of the antisense ODNs. In summary, gene profiling data reveal for the first time that FSH may exert different biological actions on OVCA

  8. Expression of CCL20 and Its Corresponding Receptor CCR6 Is Enhanced in Active Inflammatory Bowel Disease, and TLR3 Mediates CCL20 Expression in Colonic Epithelial Cells

    PubMed Central

    Skovdahl, Helene Kolstad; Granlund, Atle van Beelen; Østvik, Ann Elisabet; Bruland, Torunn; Bakke, Ingunn; Torp, Sverre Helge; Damås, Jan Kristian; Sandvik, Arne Kristian

    2015-01-01

    Background The chemokine CCL20 and its receptor CCR6 are putative drug targets in inflammatory bowel disease, and CCL20 is a novel IBD predilection gene. Previous findings on the CCL20 response in these diseases are divergent. This study was undertaken to examine CCL20 and CCR6 during active and inactive disease, and mechanisms for CCL20 regulation by the innate immune system. As TLR3 has recently emerged as a possible mediator of CCL20 production, we hypothesised that this TLR plays an important role in enterocytic CCL20 production. Methods A large microarray study on colonic pinch biopsies from active and inactive ulcerative colitis and Crohn’s disease provided background information. CCL20 and CCR6 were localized and their expression levels assessed in biopsies using in situ hybridization and immunohistochemistry. Regulation of CCL20 was studied in the HT29 cell line using a panel of pattern recognition receptor ligands followed by a TLR3 siRNA assay. Results CCL20 and CCR6 mRNA abundances were increased during active inflammation (CCL20 5.4-fold in ulcerative colitis and 4.2-fold in Crohn’s disease; CCR6 1.8 and 2.0, respectively). CCL20 and CCR6 mRNA positive immune cells in lamina propria were more numerous, and CCL20 immunoreactivity increased massively in the epithelial cells during active inflammation for both diseases. TLR3 stimulation potently induced upregulation and release of CCL20 from HT29 cells, and TLR3 silencing reduced CCL20 mRNA and protein levels. Conclusions The CCL20-CCR6 axis is involved during active inflammation in both ulcerative colitis and Crohn’s disease. The epithelial cells seem particularly involved in the CCL20 response, and results from this study strongly suggest that the innate immune system is important for activation of the epithelium, especially through TLR3. PMID:26536229

  9. EFFECTS OF 300 mT STATIC MAGNETIC FIELD ON IL-8 SECRETION IN NORMAL HUMAN COLON MYOFIBROBLASTS.

    PubMed

    Gruchlik, Arkadiusz; Turek, Artur; Polechoński, Jacek; Dzierżewicz, Zofia

    2015-01-01

    Intestinal subepithelial myofibroblasts play a crucial role in the growth and development of the intestine. Colitis, small bowel injury, gastric ulcer disease and inflammatory bowel disease (IBD) accompany the increase in the count of activated myofibroblasts. In the last few years, the increasing production of electromagnetic (EMF) and static magnetic (SMF) fields due to the expanding use of electronic devices in everyday life, has led to a number of studies on the effects of these fields on living organisms. Because of its anti-inflammatory properties, EMF therapy may be of medical use as an IBD treatment. This mechanism has not been elucidated yet. In the present work normal human colon myofibroblasts were exposed to SMF with a flux density of 300 mT for 96 h and then the cells were cultured for 24 and 48 h with 25 mM sodium butyrate (NaB) and 10 mM 5-aminosalicylic acid (5-ASA) in either the presence or absence of SMF. Tumor necrosis factor α (TNF-α)--dependent IL-8 secretion was determined with ELISA kit. Cell viability was determined with XTT assay. It was shown that SMF has no effect on TNF-α--dependent IL-8 secretion in control cells and in cells cultured in the presence of 5-ASA and NaB. PMID:26647628

  10. Inactivation of α1-proteinase inhibitor by Candida albicans aspartic proteases favors the epithelial and endothelial cell colonization in the presence of neutrophil extracellular traps.

    PubMed

    Gogol, Mariusz; Ostrowska, Dominika; Klaga, Kinga; Bochenska, Oliwia; Wolak, Natalia; Aoki, Wataru; Ueda, Mitsuyoshi; Kozik, Andrzej; Rapala-Kozik, Maria

    2016-01-01

    Candida albicans, a causative agent of opportunistic fungal infections in immunocompromised patients, uses ten secreted aspartic proteases (SAPs) to deregulate the homeostasis of the host organism on many levels. One of these deregulation mechanisms involves a SAP-dependent disturbance of the control over proteolytic enzymes of the host by a system of dedicated proteinase inhibitors, with one important example being the neutrophil elastase and alpha1-proteinase inhibitor (A1PI). In this study, we found that soluble SAPs 1-4 and the cell membrane-anchored SAP9 efficiently cleaved A1PI, with the major cleavage points located at the C-terminal part of A1PI in a close vicinity to the reactive-site loop that plays a critical role in the inhibition mechanism. Elastase is released by neutrophils to the environment during fungal infection through two major processes, a degranulation or formation of neutrophil extracellular traps (NET). Both, free and NET-embedded elastase forms, were found to be controlled by A1PI. A local acidosis, resulting from the neutrophil activity at the infection sites, favors A1PI degradation by SAPs. The deregulation of NET-connected elastase affected a NET-dependent damage of epithelial and endothelial cells, resulting in the increased susceptibility of these host cells to candidal colonization. Moreover, the SAP-catalyzed cleavage of A1PI was found to decrease its binding affinity to a proinflammatory cytokine, interleukin-8. The findings presented here suggest a novel strategy used by C. albicans for the colonization of host tissues and overcoming the host defense. PMID:26641639

  11. Reference Gene Selection for qPCR Is Dependent on Cell Type Rather than Treatment in Colonic and Vaginal Human Epithelial Cell Lines

    PubMed Central

    Jacobsen, Annette V.; Yemaneab, Bisrat T.; Jass, Jana; Scherbak, Nikolai

    2014-01-01

    The ability of commensal bacteria to influence gene expression in host cells under the influence of pathogenic bacteria has previously been demonstrated, however the extent of this interaction is important for understanding how bacteria can be used as probiotics. Real-time quantitative polymerase chain reaction is the most sensitive tool for evaluating relative changes to gene expression levels. However as a result of its sensitivity an appropriate method of normalisation should be used to account for any variation incurred in preparatory experimental procedures. These variations may result from differences in the amount of starting material, quality of extracted RNA, or in the efficiency of the reverse transcriptase or polymerase enzymes. Selection of an endogenous control gene is the preferred method of normalisation, and ideally a proper validation of the gene's appropriateness for the study in question should be performed. In this study we used quantitative polymerase chain reaction data and applied four different algorithms (geNorm, BestKeeper, NormFinder, and comparative ΔCq) to evaluate eleven different genes as to their suitability as endogenous controls for use in studies involving colonic (HT-29) and vaginal (VK2/E6E7) human mucosal epithelial cells treated with probiotic and pathogenic bacteria. We found phosphoglycerate kinase 1 to be most appropriate for HT-29 cells, and ribosomal protein large P0 to be the best choice for VK2/E6E7 cells. We also showed that use of less stable reference genes can lead to less accurate quantification of expression levels of gene of interest (GOI) and also can result in decreased statistical significance for GOI expression levels when compared to control. Additionally, we found the cell type being analysed had greater influence on reference gene selection than the treatment performed. This study provides recommendations for stable endogenous control genes for use in further studies involving colonic and vaginal cell

  12. Ex vivo determination of glucose permeability and optical attenuation coefficient in normal and adenomatous human colon tissues using spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Qingliang; Zhou, Chuanqing; Wei, Huajiang; He, Yonghong; Chai, Xinyu; Ren, Qiushi

    2012-10-01

    Recent reports have suggested that spectral domain optical coherence tomography (SD-OCT) is a useful tool for quantifying the permeability of hyperosmotic agents in various tissues. We report our preliminary results on quantification of glucose diffusion and assessment of the optical attenuation change due to the diffusion of glucose in normal and adenomatous human colon tissues in vitro by using a SD-OCT and then calculated the permeability coefficients (PC) and optical attenuation coefficients (AC). The PC of a 30% aqueous solution of glucose was 3.37±0.23×10-6 cm/s in normal tissue and 5.65±0.16×10-6 cm/s in cancerous colon tissue. Optical AC in a normal colon ranged from 3.48±0.37 to 2.68±0.82 mm-1 and was significantly lower than those seen in the cancerous tissue (8.48±0.95 to 3.16±0.69 mm-1, p<0.05). The results suggest that quantitative measurements of using PC and AC from OCT images could be a potentially powerful method for colon cancer detection.

  13. Heat-killed probiotic bacteria differentially regulate colonic epithelial cell production of human β-defensin-2: dependence on inflammatory cytokines.

    PubMed

    Habil, N; Abate, W; Beal, J; Foey, A D

    2014-12-01

    The inducible antimicrobial peptide human β-defensin-2 (hBD-2) stimulated by pro-inflammatory cytokines and bacterial products is essential to antipathogen responses of gut epithelial cells. Commensal and probiotic bacteria can augment such mucosal defences. Probiotic use in the treatment of inflammatory bowel disease, however, may have adverse effects, boosting inflammatory responses. The aim of this investigation was to determine the effect of selected probiotic strains on hBD-2 production by epithelial cells induced by pathologically relevant pro-inflammatory cytokines and the role of cytokine modulators in controlling hBD-2. Caco-2 colonic intestinal epithelial cells were pre-incubated with heat-killed probiotics, i.e. Lactobacillus casei strain Shirota (LcS) or Lactobacillus fermentum strain MS15 (LF), followed by stimulation of hBD-2 by interleukin (IL)-1β and tumour necrosis factor alpha (TNF-α) in the absence or presence of exogenous IL-10 or anti-IL-10 neutralising antibody. Cytokines and hBD-2 mRNA and protein were analysed by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. LcS augmented IL-1β-induced hBD-2, whereas LF enhanced TNF-α- and suppressed IL-1β-induced hBD-2. LF enhanced TNF-α-induced TNF-α and suppressed IL-10, whereas augmented IL-1β-induced IL-10. LcS upregulated IL-1β-induced TNF-α mRNA and suppressed IL-10. Endogenous IL-10 differentially regulated hBD-2; neutralisation of IL-10 augmented TNF-α- and suppressed IL-1β-induced hBD-2. Exogenous IL-10, however, suppressed both TNF-α- and IL-1β-induced hBD-2; LcS partially rescued suppression in TNF-α- and IL-1β-stimulation, whereas LF further suppressed IL-1β-induced hBD-2. It can be concluded that probiotic strains differentially regulate hBD-2 mRNA expression and protein secretion, modulation being dictated by inflammatory stimulus and resulting cytokine environment. PMID:25116382

  14. Sd(a)-antigen-like structures carried on core 3 are prominent features of glycans from the mucin of normal human descending colon.

    PubMed Central

    Capon, C; Maes, E; Michalski, J C; Leffler, H; Kim, Y S

    2001-01-01

    This paper describes structural characterization by NMR, MS and degradative studies of mucin glycans from normal human descending colon obtained freshly at autopsy. The saccharides were mainly based on core 3 (GlcNAcbeta1-3GalNAc). Among the terminal saccharide determinants Sd(a)/Cad-antigen-like structures were prominent, and Lewis x, sialyl Lewis x and sulphated Lewis x were found as minor components, whereas blood group H and A antigenic determinants were absent. The saccharides were markedly different from those of mucins from colon cancers or colon cancer cell lines analysed so far, in which cores 1 and 2 are prominent features, and in which various other terminal determinants have been found, but not Sd(a)/Cad. PMID:11577689

  15. Human colonic epithelial cells detect and respond to C5a via apically expressed C5aR through the ERK pathway.

    PubMed

    Cao, Qi; McIsaac, Shayla M; Stadnyk, Andrew W

    2012-06-15

    Intestinal epithelial cells (IECs) exhibit numerous adaptations to maintain barrier function as well as play sentinel roles by expressing receptors for microbial products and antimicrobial peptides. The complement system is another important innate sensing and defense mechanism of the host against bacteria and increasing evidence shows that complement plays a role in colitis. The split component C5a is a potent proinflammatory molecule, and the C5a receptor (C5aR) CD88 has been reported on multiple cell types. Here, we examined the question of whether human colonic cell lines can detect activated complement via C5aR and what signaling pathway is critical in the subsequent responses. T84, HT29, and Caco2 cell lines all possessed mRNA and protein for C5aR and the decoy receptor C5L2. Polarized cells expressed the proteins on the apical cell membrane. C5a binding to the C5aR on human IECs activates the ERK pathway, which proved critical for a subsequent upregulation of IL-8 mRNA, increased permeability of monolayers, and enhanced proliferation of the cells. The fact that human IECs are capable of detecting complement activation in the lumen via this anaphylatoxin receptor highlights the potential for IECs to detect pathogens indirectly through complement activation and be primed to amplify the host response through heightened inflammatory mediator expression to further recruit immune cells. PMID:22496247

  16. IL-17A signaling in colonic epithelial cells inhibits pro-inflammatory cytokine production by enhancing the activity of ERK and PI3K.

    PubMed

    Guo, Xiaoqin; Jiang, Xingwei; Xiao, Yan; Zhou, Tingting; Guo, Yueling; Wang, Renxi; Zhao, Zhi; Xiao, He; Hou, Chunmei; Ma, Lingyun; Lin, Yanhua; Lang, Xiaoling; Feng, Jiannan; Chen, Guojiang; Shen, Beifen; Han, Gencheng; Li, Yan

    2014-01-01

    Our previous data suggested that IL-17A contributes to the inhibition of Th1 cell function in the gut. However, the underlying mechanisms remain unclear. Here we demonstrate that IL-17A signaling in colonic epithelial cells (CECs) increases TNF-α-induced PI3K-AKT and ERK phosphorylation and inhibits TNF-α induced expression of IL-12P35 and of a Th1 cell chemokine, CXCL11 at mRNA level. In a co-culture system using HT-29 cells and PBMCs, IL-17A inhibited TNF-α-induced IL-12P35 expression by HT-29 cells and led to decreased expression of IFN-γ and T-bet by PBMCs. Finally, adoptive transfer of CECs from mice with Crohn's Disease (CD) led to an enhanced Th1 cell response and exacerbated colitis in CD mouse recipients. The pathogenic effect of CECs derived from CD mice was reversed by co-administration of recombinant IL-17A. Our data demonstrate a new IL-17A-mediated regulatory mechanism in CD. A better understanding of this pathway might shed new light on the pathogenesis of CD. PMID:24586980

  17. Immortalization of Fetal Bovine Colon Epithelial Cells by Expression of Human Cyclin D1, Mutant Cyclin Dependent Kinase 4, and Telomerase Reverse Transcriptase: An In Vitro Model for Bacterial Infection.

    PubMed

    Kuroda, Kengo; Kiyono, Tohru; Isogai, Emiko; Masuda, Mizuki; Narita, Moe; Okuno, Katsuya; Koyanagi, Yukako; Fukuda, Tomokazu

    2015-01-01

    Cattle are the economically important animals in human society. They are essential for the production of livestock products such as milk and meats. The production efficiency of livestock products is negatively impacted by infection with zoonotic pathogens. To prevent and control infectious diseases, it is important to understand the interaction between cattle tissue and pathogenic bacteria. In this study, we established an in vitro infection model of an immortalized bovine colon-derived epithelial cell line by transducing the cells with lentiviral vectors containing genes encoding cell cycle regulators cyclin D1, mutant cyclin dependent kinase 4 (CDK4), and human telomerase reverse transcriptase (TERT). The established cell line showed continuous cell proliferation, expression of epithelial markers, and an intact karyotype, indicating that the cells maintained their original nature as colon-derived epithelium. Furthermore, we exposed the established cell line to two strains of Salmonella enterica and EHEC. Interestingly, S. Typhimurium showed higher affinity for the established cell line and invaded the cytoplasm than S. Enteritidis. Quantitative RT-PCR revealed that gene expression of Toll-like receptor 1 (TLR1), TLR 2 and TLR 3, whereas TLR 4, 5 and 6 were not detectable in established cells. Our established immortalized colon-derived epithelial cell should be a useful tool for studies evaluating the molecular mechanisms underlying bacterial infection. PMID:26624883

  18. Immortalization of Fetal Bovine Colon Epithelial Cells by Expression of Human Cyclin D1, Mutant Cyclin Dependent Kinase 4, and Telomerase Reverse Transcriptase: An In Vitro Model for Bacterial Infection

    PubMed Central

    Kuroda, Kengo; Kiyono, Tohru; Isogai, Emiko; Masuda, Mizuki; Narita, Moe; Okuno, Katsuya; Koyanagi, Yukako; Fukuda, Tomokazu

    2015-01-01

    Cattle are the economically important animals in human society. They are essential for the production of livestock products such as milk and meats. The production efficiency of livestock products is negatively impacted by infection with zoonotic pathogens. To prevent and control infectious diseases, it is important to understand the interaction between cattle tissue and pathogenic bacteria. In this study, we established an in vitro infection model of an immortalized bovine colon-derived epithelial cell line by transducing the cells with lentiviral vectors containing genes encoding cell cycle regulators cyclin D1, mutant cyclin dependent kinase 4 (CDK4), and human telomerase reverse transcriptase (TERT). The established cell line showed continuous cell proliferation, expression of epithelial markers, and an intact karyotype, indicating that the cells maintained their original nature as colon-derived epithelium. Furthermore, we exposed the established cell line to two strains of Salmonella enterica and EHEC. Interestingly, S. Typhimurium showed higher affinity for the established cell line and invaded the cytoplasm than S. Enteritidis. Quantitative RT-PCR revealed that gene expression of Toll-like receptor 1 (TLR1), TLR 2 and TLR 3, whereas TLR 4, 5 and 6 were not detectable in established cells. Our established immortalized colon-derived epithelial cell should be a useful tool for studies evaluating the molecular mechanisms underlying bacterial infection. PMID:26624883

  19. Kefir extracts suppress in vitro proliferation of estrogen-dependent human breast cancer cells but not normal mammary epithelial cells.

    PubMed

    Chen, Chujian; Chan, Hing Man; Kubow, Stan

    2007-09-01

    Anti-tumorigenic effects have been demonstrated in animal studies from the intake of kefir, a traditional fermented milk product believed to originate from the Caucasian mountains of Russia. In the present study, the antiproliferative effects of extracts of kefir, yogurt, and pasteurized cow's milk on human mammary cancer cells (MCF-7) and normal human mammary epithelial cells (HMECs) was investigated at doses of 0.31%, 0.63%, 1.25%, 2.5%, 5%, and 10% (vol/vol). After 6 days of culture, extracts of kefir-fermented milk depressed MCF-7 cell growth in a dose-dependent manner, showing 29% inhibition of proliferation at a concentration as low as 0.63%, whereas yogurt extracts began to show dose-dependent antiproliferative effects only at the 2.5% dose. Moreover, at the 2.5% dose, kefir extracts decreased the MCF-7 cell numbers by 56%, while yogurt extracts decreased MCF-7 cell proliferation by only 14%. No antiproliferative effects of kefir extracts were observed in the HMECs, while the yogurt extracts exerted antiproliferative effects on HMECs at the 5% and 10% doses. Unfermented milk extracts stimulated proliferation of MCF-7 cells and HMECs at concentrations above 0.31%. Peptide content and capillary electrophoresis analyses showed that kefir-mediated milk fermentation led to an increase in peptide concentrations and a change in peptide profiles relative to milk or yogurt. The present findings suggest that kefir extracts contain constituents that specifically inhibit the growth of human breast cancer cells, which might eventually be useful in the prevention or treatment of breast cancer. PMID:17887934

  20. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    PubMed

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antzack, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-04-01

    The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks

  1. Haplotype and diplotype analyses of variation in ERCC5 transcription cis-regulation in normal bronchial epithelial cells.

    PubMed

    Zhang, Xiaolu; Crawford, Erin L; Blomquist, Thomas M; Khuder, Sadik A; Yeo, Jiyoun; Levin, Albert M; Willey, James C

    2016-07-01

    Excision repair cross-complementation group 5 (ERCC5) gene plays an important role in nucleotide excision repair, and dysregulation of ERCC5 is associated with increased lung cancer risk. Haplotype and diplotype analyses were conducted in normal bronchial epithelial cells (NBEC) to better understand mechanisms responsible for interindividual variation in transcript abundance regulation of ERCC5 We determined genotypes at putative ERCC5 cis-regulatory SNPs (cis-rSNP) rs751402 and rs2296147, and marker SNPs rs1047768 and rs17655. ERCC5 allele-specific transcript abundance was assessed by a recently developed targeted sequencing method. Syntenic relationships among alleles at rs751402, rs2296147, and rs1047768 were assessed by allele-specific PCR followed by Sanger sequencing. We then assessed association of ERCC5 allele-specific expression at rs1047768 with haplotype and diplotype structure at cis-rSNPs rs751402 and rs2296147. Genotype analysis revealed significantly (P < 0.005) higher interindividual variation in allelic ratios in cDNA samples relative to matched gDNA samples at both rs1047768 and rs17655. By diplotype analysis, mean expression was higher at the rs1047768 alleles syntenic with rs2296147 T allele compared with rs2296147 C allele. Furthermore, mean expression was lower at rs17655 C allele, which is syntenic with G allele at a linked SNP rs873601 (D' = 0.95). These data support the conclusions that in NBEC, T allele at SNP rs2296147 upregulates ERCC5, variation at rs751402 does not alter ERCC5 regulation, and that C allele at SNP rs17655 downregulates ERCC5 Variation in ERCC5 transcript abundance associated with allelic variation at these SNPs could result in variation in NER function in NBEC and lung cancer risk. PMID:27235448

  2. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells

    PubMed Central

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antzack, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J.; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-01-01

    Abstract The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication

  3. Claudin-4 undergoes age-dependent change in cellular localization on pig jejunal villous epithelial cells, independent of bacterial colonization.

    PubMed

    Pasternak, J Alex; Kent-Dennis, Coral; Van Kessel, Andrew G; Wilson, Heather L

    2015-01-01

    Newborn piglets are immunologically naïve and must receive passive immunity via colostrum within 24 hours to survive. Mechanisms by which the newborn piglet gut facilitates uptake of colostral cells, antibodies, and proteins may include FcRn and pIgR receptor-mediated endocytosis and paracellular transport between tight junctions (TJs). In the present study, FcRn gene (FCGRT) was minimally expressed in 6-week-old gut and newborn jejunum but it was expressed at significantly higher levels in the ileum of newborn piglets. pIgR was highly expressed in the jejunum and ileum of 6-week-old animals but only minimally in neonatal gut. Immunohistochemical analysis showed that Claudin-5 localized to blood vessel endothelial cells. Claudin-4 was strongly localized to the apical aspect of jejunal epithelial cells for the first 2 days of life after which it was redistributed to the lateral surface between adjacent enterocytes. Claudin-4 was localized to ileal lateral surfaces within 24 hours after birth indicating regional and temporal differences. Tissue from gnotobiotic piglets showed that commensal microbiota did not influence Claudin-4 surface localization on jejunal or ileal enterocytes. Regulation of TJs by Claudin-4 surface localization requires further investigation. Understanding the factors that regulate gut barrier maturation may yield protective strategies against infectious diseases. PMID:25948883

  4. Reactive oxygen species mediate oxaliplatin-induced epithelial-mesenchymal transition and invasive potential in colon cancer.

    PubMed

    Jiao, Lin; Li, Dan-Dan; Yang, Chen-Lu; Peng, Rui-Qing; Guo, Yi-Qun; Zhang, Xiao-Shi; Zhu, Xiao-Feng

    2016-06-01

    Therapeutic benefits offered by common chemotherapy drugs, such as oxaliplatin, are limited due to the development of resistance, which contributes to treatment failure and metastasis. The epithelial-mesenchymal transition (EMT) is a key event contributing to the development of resistance to chemotherapeutics. Although the relationship between oxaliplatin and chemotherapy resistance has been described for decades, the molecular mechanisms have remained elusive. The aim of the present study was to investigate the underlying mechanisms of oxaliplatin-mediated metastasis. Here, we identify reactive oxygen species (ROS) as mediators that promote the oxaliplatin-induced EMT. Following oxaliplatin treatment, the messenger RNA (mRNA) levels of most peroxiredoxin family genes, except for peroxiredoxin 1 (prdx1) gene, were constant or even decreased, resulting in ROS abundance. And the antioxidant guardian Nrf2 was unconspicuously raised both transcriptionally and translationally with oxaliplatin treatment as compared to those induced by topotecan treatment, which has been proved with no induced metastasis. In addition, the study evaluated high levels of ROS leading to EMT via activation of the known oncogenes Akt and Snail. Using the Akt inhibitor LY294002 or knocking down Snail expression via RNA interference (RNAi) reversed the effects of oxaliplatin on the EMT and metastasis. Our studies establish a role for the ROS-Akt-Snail axis as a mechanism by which chemotherapeutics induce EMT and cancer metastasis. PMID:26733168

  5. Claudin-4 Undergoes Age-Dependent Change in Cellular Localization on Pig Jejunal Villous Epithelial Cells, Independent of Bacterial Colonization

    PubMed Central

    Van Kessel, Andrew G.; Wilson, Heather L.

    2015-01-01

    Newborn piglets are immunologically naïve and must receive passive immunity via colostrum within 24 hours to survive. Mechanisms by which the newborn piglet gut facilitates uptake of colostral cells, antibodies, and proteins may include FcRn and pIgR receptor-mediated endocytosis and paracellular transport between tight junctions (TJs). In the present study, FcRn gene (FCGRT) was minimally expressed in 6-week-old gut and newborn jejunum but it was expressed at significantly higher levels in the ileum of newborn piglets. pIgR was highly expressed in the jejunum and ileum of 6-week-old animals but only minimally in neonatal gut. Immunohistochemical analysis showed that Claudin-5 localized to blood vessel endothelial cells. Claudin-4 was strongly localized to the apical aspect of jejunal epithelial cells for the first 2 days of life after which it was redistributed to the lateral surface between adjacent enterocytes. Claudin-4 was localized to ileal lateral surfaces within 24 hours after birth indicating regional and temporal differences. Tissue from gnotobiotic piglets showed that commensal microbiota did not influence Claudin-4 surface localization on jejunal or ileal enterocytes. Regulation of TJs by Claudin-4 surface localization requires further investigation. Understanding the factors that regulate gut barrier maturation may yield protective strategies against infectious diseases. PMID:25948883

  6. Studies on the Thomsen-Friedenreich antigen in human colon with the lectin Amaranthin. Normal and neoplastic epithelium express only cryptic T antigen.

    PubMed

    Sata, T; Roth, J; Zuber, C; Stamm, B; Rinderle, S J; Goldstein, I J; Heitz, P U

    1992-02-01

    The lectin Amaranthin has been shown to be highly specific for the galactose beta 1,3 N-acetylgalactosamine-alpha and sialic acid alpha 2,3 galactose beta 1,3 N-acetylgalactosamine-alpha sequence which represents the Thomsen-Friedenreich (T) antigen and its cryptic form, respectively. Previously, we demonstrated the usefulness of gold-labeled Amaranthin for the histochemical detection of the T antigen and its cryptic form. Application of the galactose oxidase (GO)-Schiff sequence abolished lectin binding to the T antigen but not its cryptic form, and therefore permitted their differentiation. In the present study we have analyzed by light and electron microscopy the distribution and subcellular localization of Amaranthin binding sites in normal, dysplastic and neoplastic colonic epithelium. Furthermore, a monoclonal antibody raised against synthetic galactose bera 1,3 N-acetylgalactosamine-alpha-bovine serum albumin was applied as a reagent for the T antigen. In normal colonic mucosa, two different Amaranthin staining patterns existed: (a) reactivity restricted to the lower portion of the crypts which was principally observed in the left colon, and (b) reactivity along the entire length of the crypts and in the surface epithelium with goblet cell staining in the upper portion of the crypts which was principally observed in the right colon. This Amaranthin staining was resistant to GO-Schiff treatment. No immunostaining with the monoclonal anti-T antigen was observed. Investigation of transitional mucosa, adenocarcinomas of different degrees of differentiation and mucinous carcinomas as well as adenomas with different degrees of dysplasia all revealed positive Amaranthin staining. The lectin staining was resistant to GO-Schiff treatment, and immunolabeling with the monoclonal antibody against the T antigen was absent. These results indicate that only the cryptic form of the T antigen is expressed in normal, dysplastic and neoplastic human colonic epithelium. PMID

  7. Effects of 300 mT static magnetic field on IL-6 secretion in normal human colon myofibroblasts.

    PubMed

    Gruchlik, Arkadiusz; Wilczok, Adam; Chodurek, Ewa; Polechoński, Władysław; Wolny, Daniel; Dzierzewicz, Zofia

    2012-01-01

    Intestinal subepithelial myofibroblasts play crucial role in the growth and development of the intestine. Colitis, small bowel injury, gastric ulcer disease and inflammatory bowel disease (IBD) accompany the increase of number of activated myofibroblasts. In the last few years, the increasing production of electromagnetic (EMF) and static magnetic fields (SMF), due to the expanding use of electronic devices in everyday life, has led to a number of studies on the effects of these fields on living organisms. EMF therapy, because of its anti-inflammatory properties, may be used in medicine in IBD treatment. This mechanism has not been elucidated yet. In the present work normal human colon myofibroblasts CCD-18Co were exposed to SMF with a flux density of 300 mT. After 24 h incubation TNF-alpha-dependent IL-6 secretion was determined with ELISA kit (RandD Systems).The influence of magnetic field and its effect on cell proliferation were determined with TOX-2 (In Vitro Toxicology Assay Kit XTT Based, TOX-2, Sigma) and CyQUANT NF cell proliferation assay kit (Molecular Probes). It was shown that SMF inhibited TNF-alpha-dependent IL-6 secretion. The observed effects were statistically significant and depended on the time of incubation. Moreover, SMF triggered cell proliferation whereas it did not alter cell viability. IL-6 belongs to pro-inflammatory cytokines family and plays a crucial role in IBD. Inhibition of IL-6 secretion by SMF and lack of its cytotoxic effect seem to be advantageous whilst SMF is implicated in the treatment of inflammatory diseases associated by increase in number of activated myofibroblasts. PMID:23285697

  8. Chemoprevention of colon carcinogenesis by polyethylene glycol: suppression of epithelial proliferation via modulation of SNAIL/beta-catenin signaling.

    PubMed

    Roy, Hemant K; Kunte, Dhananjay P; Koetsier, Jennifer L; Hart, John; Kim, Young L; Liu, Yang; Bissonnette, Marc; Goldberg, Michael; Backman, Vadim; Wali, Ramesh K

    2006-08-01

    Polyethylene glycol (PEG) is one of the most potent chemopreventive agents against colorectal cancer; however, the mechanisms remain largely unexplored. In this study, we assessed the ability of PEG to target cyclin D1-beta-catenin-mediated hyperproliferation in the azoxymethane-treated rat model and the human colorectal cancer cell line, HT-29. Azoxymethane-treated rats were randomized to AIN-76A diet alone or supplemented with 5% PEG-8000. After 30 weeks, animals were euthanized and biopsies of aberrant crypt foci and uninvolved crypts were subjected to immunohistochemical and immunoblot analyses. PEG markedly suppressed both early and late markers of azoxymethane-induced colon carcinogenesis (fractal dimension by 80%, aberrant crypt foci by 64%, and tumors by 74%). In both azoxymethane-treated rats and HT-29 cells treated with 5% PEG-3350 for 24 hours, PEG decreased proliferation (45% and 52%, respectively) and cyclin D1 (78% and 56%, respectively). Because beta-catenin is the major regulator of cyclin D1 in colorectal cancer, we used the T-cell factor (Tcf)-TOPFLASH reporter assay to show that PEG markedly inhibited beta-catenin transcriptional activity. PEG did not alter total beta-catenin expression but rather its nuclear localization, leading us to assess E-cadherin expression (a major determinant of beta-catenin subcellular localization), which was increased by 73% and 71% in the azoxymethane-rat and HT-29 cells, respectively. We therefore investigated the effect of PEG treatment on levels of the negative regulator of E-cadherin, SNAIL, and observed a 50% and 75% decrease, respectively. In conclusion, we show, for the first time, a molecular mechanism through which PEG imparts its antiproliferative and hence profound chemopreventive effect. PMID:16928827

  9. Aeromonas hydrophila Beta-Hemolysin Induces Active Chloride Secretion in Colon Epithelial Cells (HT-29/B6)

    PubMed Central

    Epple, H. J.; Mankertz, J.; Ignatius, R.; Liesenfeld, O.; Fromm, M.; Zeitz, M.; Chakraborty, T.; Schulzke, J. D.

    2004-01-01

    The diarrheal mechanisms in Aeromonas enteritis are not completely understood. In this study we investigated the effect of aeromonads and of their secretory products on ion secretion and barrier function of monolayers of human intestinal cells (HT-29/B6). Ion secretion was determined as a short-circuit current (ISC) of HT-29/B6 monolayers mounted in Ussing-type chambers. Transepithelial resistance (Rt) served as a measure of permeability. A diarrheal strain of Aeromonas hydrophila (strain Sb) added to the mucosal side of HT-29/B6 monolayers induced a significant ISC (39 ± 3 μA/cm2) and decreased the Rt to ∼10% of the initial value. A qualitatively identical response was obtained with sterile supernatant of strain Sb, and Aeromonas supernatant also induced a significant ISC in totally stripped human colon. Tracer flux and ion replacement studies revealed the ISC to be mainly accounted for by electrogenic Cl− secretion. Supernatant applied serosally completely abolished basal ISC. The supernatant-induced ISC was inhibited by the protein kinase C inhibitor chelerythrine, whereas a protein kinase A inhibitor (H8) and a Ca2+ chelator (BAPTA-AM) had no effect. Physicochemical properties indicated that the supernatant's active compound was an aerolysin-related Aeromonas beta-hemolysin. Accordingly, identical ISC and Rt responses were obtained with Escherichia coli lysates harboring the cloned beta-hemolysin gene from strain SB or the aerA gene encoding for aerolysin. Sequence comparison revealed a 64% homology between aerolysin and the beta-hemolysin cloned from Aeromonas sp. strain Sb. In conclusion, beta-hemolysin secreted by pathogenic aeromonads induces active Cl− secretion in the intestinal epithelium, possibly by channel insertion into the apical membrane and by activation of protein kinase C. PMID:15271947

  10. Developmental pathways in colon cancer

    PubMed Central

    Bertrand, Fred E.; Angus, C. William; Partis, William J.; Sigounas, George

    2012-01-01

    A hallmark of cancer is reactivation/alteration of pathways that control cellular differentiation during developmental processes. Evidence indicates that WNT, Notch, BMP and Hedgehog pathways have a role in normal epithelial cell differentiation, and that alterations in these pathways accompany establishment of the tumorigenic state. Interestingly, there is recent evidence that these pathways are intertwined at the molecular level, and these nodes of intersection may provide opportunities for effective targeted therapies. This review will highlight the role of the WNT, Notch, BMP and Hedgehog pathways in colon cancer. PMID:23032367

  11. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death.

    PubMed

    Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori

    2016-05-01

    ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells. PMID:26918856

  12. Peptide YY expression is an early event in colonic endocrine cell differentiation: evidence from normal and transgenic mice.

    PubMed

    Upchurch, B H; Fung, B P; Rindi, G; Ronco, A; Leiter, A B

    1996-04-01

    The hormone peptide YY is produced by endocrine cells in the pancreas, ileum and colon. We have previously shown that peptide YY is coexpressed in all four islet cell types in the murine pancreas when they first appear, suggesting a common peptide YY-producing progenitor. In the colon, peptide YY has been frequently identified in glucagon-expressing L-type endocrine cells. Characterization of colonic endocrine tumors in transgenic mice expressing simian virus 40 large T antigen under the control of the peptide YY gene 5' flanking region revealed tumor cells producing not only peptide YY and glucagon, but also neurotensin, cholecystokinin, substance P, serotonin, secretin, and gastrin. This suggested that multiple enteroendocrine lineages were related to peptide YY-producing cells. Subsequent examination of the ontogeny of colonic endocrine differentiation in nontransgenic mice revealed that peptide YY was the first hormone to appear during development, at embryonic day 15.5. Between embryonic days 16.5 and 18.5, cells expressing glucagon, cholecystokinin, substance P, serotonin, secretin, neurotensin, gastrin and somatostatin first appeared and peptide YY was coexpressed in each cell type at this time. Peptide YY coexpression continued in a significant fraction of most enteroendocrine cell types throughout fetal and postnatal development and into adulthood, with the exception of serotonin-producing cells. This latter population of cells expanded dramatically after birth with rare coexpression of peptide YY. These studies indicate that expression of peptide YY is an early event in colonic endocrine differentiation and support the existence of a common progenitor for all endocrine cells in the colon. PMID:8620842

  13. The colon: from banal to brilliant.

    PubMed

    Sellers, Rani S; Morton, Daniel

    2014-01-01

    The colon serves as the habitat for trillions of microbes, which it must maintain, regulate, and sequester. This is managed by what is termed the mucosal barrier. The mucosal barrier separates the gut flora from the host tissues; regulates the absorption of water, electrolytes, minerals, and vitamins; and facilitates host-flora interactions. Colonic homeostasis depends on a complex interaction between the microflora and the mucosal epithelium, immune system, vasculature, stroma, and nervous system. Disruptions in the colonic microenvironment such as changes in microbial composition, epithelial cell function/proliferation/differentiation, mucus production/makeup, immune function, diet, motility, or blood flow may have substantial local and systemic consequences. Understanding the complex activities of the colon in health and disease is important in drug development, as xenobiotics can impact all segments of the colon. Direct and indirect effects of pharmaceuticals on intestinal function can produce adverse findings in laboratory animals and humans and can negatively impact drug development. This review will discuss normal colon homeostasis with examples, where applicable, of xenobiotics that disrupt normal function. PMID:24129758

  14. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition

    SciTech Connect

    Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Villadsen, Rene; Rank, Fritz; Bissell, Mina J.; Petersen, Ole William

    2001-10-04

    The signals that determine the correct polarity of breast epithelial structures in vivo are not understood. We have shown previously that luminal epithelial cells can be polarized when cultured within a reconstituted basement membrane gel. We reasoned that such cues in vivo may be given by myoepithelial cells. Accordingly, we used an assay where luminal epithelial cells are incorrectly polarized to test this hypothesis. We show that culturing human primary luminal epithelial cells within collagen-I gels leads to formation of structures with no lumina and with reverse polarity as judged by dual stainings for sialomucin, epithelial specific antigen or occludin. No basement membrane is deposited, and {beta}4-integrin staining is negative. Addition of purified human myoepithelial cells isolated from normal glands corrects the inverse polarity, and leads to formation of double-layered acini with central lumina. Among the laminins present in the human breast basement membrane (laminin-1, -5 and -10/11), laminin-1 was unique in its ability to substitute for myoepithelial cells in polarity reversal. Myoepithelial cells were purified also from four different breast cancer sources including a biphasic cell line. Three out of four samples either totally lacked the ability to interact with luminal epithelial cells, or conveyed only correction of polarity in a fraction of acini. This behavior was directly related to the ability of the tumor myoepithelial cells to produce {alpha}-1 chain of laminin. In vivo, breast carcinomas were either negative for laminin-1 (7/12 biopsies) or showed a focal, fragmented deposition of a less intensely stained basement membrane (5/12 biopsies). Dual staining with myoepithelial markers revealed that tumorassociated myoepithelial cells were either negative or weakly positive for expression of laminin-1, establishing a strong correlation between loss of laminin-1 and breast cancer. We conclude that the double-layered breast acinus may be

  15. Functional and pharmacological characterization of volume-regulated anion channels in human normal and cystic fibrosis bronchial and nasal epithelial cells.

    PubMed

    Stott, Jennifer B; deCourcey, Francine; Ennis, Madeleine; Zholos, Alexander V

    2014-10-01

    Volume-regulated anion channels (VRACs) are widely present in various cell types and have important functions ranging from regulatory volume decrease to control of cell proliferation and apoptosis. Here we aimed to compare the biophysical features and pharmacological profiles of VRAC currents in healthy and cystic fibrosis (CF) respiratory epithelial cells in order to characterize these currents both functionally and pharmacologically. Whole-cell electrophysiology was used to characterize the VRAC current in normal (16HBE14o-; HBE) and CF cell lines (CFBE14o-; CFBE), as well as in native human nasal epithelial cells. Application of hypotonic solution produced current responses of similar sizes in both HBE and CFBE cells. Biophysical properties of VRACs, such as instantaneous activation and deactivation upon voltage step, some inactivation at potentials positive to 40 mV and outwardly-rectifying I-V curves, were indistinguishable in both cell types. Extensive pharmacological analysis of the currents revealed a similar pharmacological profile in response to three blockers--NPPB, DCPIB and DIDS. Native primary human nasal epithelial cells from both healthy and CF volunteers also showed typical VRAC responses of comparable sizes. VRACs in these cells were more sensitive to external solution hypotonicity compared to HBE and CFBE cells. In all cell types studied robust VRAC currents could be induced at constant cell volume by G-protein activation with GTPγS infusion. This study provides the first extensive comparative functional and pharmacological analysis of VRAC currents in normal and CF airway epithelial cells and shows that VRACs are unimpaired molecularly or functionally in CF. PMID:25034811

  16. The use of laser microdissection in the identification of suitable reference genes for normalization of quantitative real-time PCR in human FFPE epithelial ovarian tissue samples.

    PubMed

    Cai, Jing; Li, Tao; Huang, Bangxing; Cheng, Henghui; Ding, Hui; Dong, Weihong; Xiao, Man; Liu, Ling; Wang, Zehua

    2014-01-01

    Quantitative real-time PCR (qPCR) is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M) were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD), an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA) and nonparametric (Kruskal-Wallis) tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP) and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene. PMID:24776823

  17. Colon diverticula - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100158.htm Colon diverticula - series To use the sharing features on ... 6 out of 6 Normal anatomy Overview The colon, or large intestine, is a muscular tube that ...

  18. Colon cancer - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100157.htm Colon cancer - Series To use the sharing features on ... 5 out of 5 Normal anatomy Overview The colon, or large intestine, is a muscular tube that ...

  19. Regulation of the RhoA/ROCK/AKT/β-catenin pathway by arginine-specific ADP-ribosytransferases 1 promotes migration and epithelial-mesenchymal transition in colon carcinoma.

    PubMed

    Song, Guang-Lin; Jin, Cong-Cong; Zhao, Wei; Tang, Yi; Wang, Ya-Lan; Li, Ming; Xiao, Ming; Li, Xian; Li, Qing-Shu; Lin, Xiao; Chen, Wen-Wen; Kuang, Jing

    2016-08-01

    Arginine-specific ADP-ribosytransferases 1 (ART1) is able to modify the arginine of specific proteins by mono-ADP-ribosylation. We previously reported that the expression of ART1 in human colon adenocarcinoma tissues was higher than in adjacent tissues. Herein, we primarily revealed that ART1 could regulate the epithelial-mesenchymal transition (EMT) and, therefore, the development of colon carcinoma. In CT26 cells, which overexpressed ART1 by lentiviral transfection, the following were promoted: alterations of spindle-like non-polarization, expression of EMT inducers and mesenchymal markers, migration, invasion and adhesion. However, epithelial marker expression was decreased. Correspondingly, knockdown of ART1 in CT26 cells had the opposite effects. The effect of ART1 on EMT and carcinoma metastasis was also verified in a liver metastasis model of BALB/c mice. To further explore the molecular mechanism of ART1 in EMT, CT26 cells were treated with several specific inhibitors and gene silencing. Our data suggest that ART1 could regulate EMT by regulating the RhoA/ROCK1/AKT/β-catenin pathway and its downstream factors (snail1, vimentin, N-cadherin and E-cadherin) and that it therefore plays an important role in the progression of colon carcinoma. PMID:27277835

  20. Thymic stromal lymphopoietin (TSLP) inhibits human colon tumor growth by promoting apoptosis of tumor cells

    PubMed Central

    Yang, Xuguang; Li, Bingji; Liu, Jie; He, Rui

    2016-01-01

    Thymic stromal lymphopoietin (TSLP) has recently been suggested in several epithelial cancers, either pro-tumor or anti-tumor. However, the role of TSLP in colon cancer remains unknown. We here found significantly decreased TSLP levels in tumor tissues compared with tumor-surrounding tissues of patients with colon cancer and TSLP levels negatively correlated with the clinical staging score of colon cancer. TSLPR, the receptor of TSLP, was expressed in all three colon cancer cell lines investigated and colon tumor tissues. The addition of TSLP significantly enhanced apoptosis of colon cancer cells in a TSLPR-dependent manner. Interestingly, TSLP selectively induced the apoptosis of colon cancer cells, but not normal colonic epithelial cells. Furthermore, we demonstrated that TSLP induced JNK and p38 activation and initiated apoptosis mainly through the extrinsic pathway, as caspase-8 inhibitor significantly reversed the apoptosis-promoting effect of TSLP. Finally, using a xenograft mouse model, we demonstrated that peritumoral administration of TSLP greatly reduced tumor growth accompanied with extensive tumor apoptotic response, which was abolished by tumor cell-specific knockdown of TSLPR. Collectively, our study reveals a novel anti-tumor effect of TSLP via direct promotion of the apoptosis of colon cancer cells, and suggests that TSLP could be of value in treating colon cancer. PMID:26919238

  1. Thyroid hormone regulates stromelysin expression, protease secretion and the morphogenetic potential of normal polarized mammary epithelial cells.

    PubMed Central

    López-Barahona, M; Fialka, I; González-Sancho, J M; Asunción, M; González, M; Iglesias, T; Bernal, J; Beug, H; Muñoz, A

    1995-01-01

    Stromelysins are a group of proteases which degrade the extracellular matrix and activate other secreted proteases. Stromelysin (ST)-1 and ST-2 genes are induced by tumor promoters, oncogenes and growth factors, and have been involved in acquisition of the malignant phenotype. We show here that the thyroid hormone (T3) increases ST-1 and ST-2 expression in a non-transformed mouse mammary epithelial cell line (EpH4) in a way that is dependent on the level of thyroid receptor/c-erbA (TR alpha-1) expression. In agreement with this, T3 increases the secreted stromelysin activity and enhances the gelatinolytic activity of type IV collagenase. We have also demonstrated that T3 affects the epithelial polarity of EpH4 cells, diminishing the transepithelial electrical resistance of monolayers cultured on permeable filters, causing an abnormal distribution of polarization markers and the disruption of the organized 3-D structures formed by these cells in type I collagen gels. These results indicate that the ligand-activated TR alpha-1 plays an important role in regulating the morphogenetic and invasive capacities of mammary epithelial cells. Because the c-erbA locus is altered in several types of carcinoma, an altered or deregulated TR alpha-1 expression may also be important for breast cancer development and metastasis. Images PMID:7720705

  2. Normal and Cystic Fibrosis Human Bronchial Epithelial Cells Infected with Pseudomonas aeruginosa Exhibit Distinct Gene Activation Patterns

    PubMed Central

    Balloy, Viviane; Varet, Hugo; Dillies, Marie-Agnès; Proux, Caroline; Jagla, Bernd; Coppée, Jean-Yves; Tabary, Olivier; Corvol, Harriet; Chignard, Michel; Guillot, Loïc

    2015-01-01

    Background and Aims In cystic fibrosis (CF), Pseudomonas aeruginosa is not eradicated from the lower respiratory tract and is associated with epithelial inflammation that eventually causes tissue damage. To identify the molecular determinants of an effective response to P. aeruginosa infection, we performed a transcriptomic analysis of primary human bronchial epithelial cells from healthy donors (CTRL) 2, 4, and 6 h after induced P. aeruginosa infection. Compared to noninfected cells, infected cells showed changes in gene activity, which were most marked 6 h postinfection and usually consisted in upregulation. Results By comparing for each time point of infection, the transcriptomic response of epithelial cells from CF patients and healthy donors, we identified 851, 638, 667, and 980 differentially expressed genes 0, 2, 4, and 6 h postinfection, respectively. Gene selection followed by bioinformatic analysis showed that most of the differentially expressed genes, either up- or downregulated, were in the protein-binding and catalytic gene-ontology categories. Finally, we established that the protein products of the genes exhibiting the greatest differential upregulation (CSF2, CCL2, TNF, CSF3, MMP1, and MMP10) between CF patients and CTRL were produced in higher amounts by infected cells from CF patients versus CTRL. Conclusions The differentially expressed genes in CF patients may constitute a signature for a detrimental inflammatory response and for an inefficient P. aeruginosa host-cell response. PMID:26485688

  3. Laminin alpha 5, a major transcript of normal and malignant rat liver epithelial cells, is differentially expressed in developing and adult liver.

    PubMed

    Seebacher, T; Medina, J L; Bade, E G

    1997-11-25

    The laminin family of extracellular matrix glycoproteins plays a major role in cell migration and differentiation and in tumor cell invasion. As previously shown, the laminin deposited by normal and malignant rat liver epithelial cells in their extracellular matrix (ECM) and into their ECM migration tracks does not contain a typical (EHS-like) alpha 1 heavy chain. By RT-PCR screening we have now identified two alpha chains among a total of five additional laminin chains produced by these cells. Three of the newly identified chains were not previously known for the rat. Their sequences have been deposited in the EMBL nucleotide sequence data bank. The alpha 5 chain now identified is expressed at comparably high levels by both the normal and the malignant liver epithelial cells. The chain is also expressed in fetal liver together with the alpha 2 and beta 2 chains, but it is only vestigially expressed in the mature organ as shown by RT-PCR. These results suggest for alpha 5 a role in development and production of the chain by only a small subset of cells in adult liver. At the level of detection used, no changes were observed in regenerating liver after partial hepatectomy. In addition to the alpha 5 chain, the cultured cells express the beta 1 and beta 2 light chains, indicating the expression of more than one laminin isoform by the same cell line. The expression of the alpha 5 chain and of the other new non-EHS isoform chains was also analyzed in various tissues. The malignant liver epithelial cells, but not their nontumorigenic parental cells, also express, in addition to the alpha 5 chain the alpha 2 chain, which is expressed at high level by the NBT II bladder carcinoma cell line, suggesting a relationship with malignancy. PMID:9417868

  4. Interleukin-17 is a potent immuno-modulator and regulator of normal human intestinal epithelial cell growth

    SciTech Connect

    Schwartz, S.; Beaulieu, J.F. . E-mail: frank.ruemmele@nck.ap-hop-paris.fr

    2005-11-18

    Upregulation of the T-cell derived cytokine interleukin (IL-17) was reported in the inflamed intestinal mucosa of patients with inflammatory bowel disorders. In this study, we analyzed the effect of IL-17 on human intestinal epithelial cell (HIEC) turnover and functions. Proliferation and apoptosis in response to IL-17 was monitored in HIEC (cell counts, [{sup 3}H]thymidine incorporation method, and annexinV-PI-apoptosis assay). Signalling pathways were analyzed by Western blots, electromobility shift assay, and immunofluorescence studies. IL-17 proved to be a potent inhibitor of HIEC proliferation without any pro-apoptotic/necrotic effect. The growth inhibitory effect of IL-17 was mediated via the p38 stress kinase. Consequently, the p38-SAPkinase-inhibitor SB203580 abrogated this anti-mitotic effect. In parallel, IL-17 provoked the degradation of I{kappa}B{alpha}, allowing nuclear translocation of the p65 NF-{kappa}B subunit and induction of the NF-{kappa}B-controlled genes IL-6 and -8. IL-17 potently blocks epithelial cell turnover while at the same time amplifying an inflammatory response in a positive feedback manner.

  5. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  6. Lamellipodia-based migrations of larval epithelial cells are required for normal closure of the adult epidermis of Drosophila

    PubMed Central

    Bischoff, Marcus

    2012-01-01

    Cell migrations are an important feature of animal development. They are, furthermore, essential to wound healing and tumour progression. Despite recent progress, it is still mysterious how cell migration is spatially and temporally regulated during morphogenesis and how cell migration is coordinated with other cellular behaviours to shape tissues and organs. The formation of the abdominal epithelium of Drosophila during metamorphosis provides an attractive system to study morphogenesis. Here, the diploid adult histoblasts replace the polyploid larval epithelial cells (LECs). Using in vivo 4D microscopy, I show that, besides apical constriction and apoptosis, the LECs undergo extensive coordinated migrations. The migrations follow a transition from a stationary (epithelial) to a migratory mode. The migratory behaviour is stimulated by autocrine Dpp signalling. Directed apical lamellipodia-like protrusions propel the cells. Initially, planar cell polarity determines the orientation of LEC migration. While LECs are migrating they also constrict apically, and changes in activity of the small GTPase Rho1 can favour one behaviour over the other. This study shows that the LECs play a more active role in morphogenesis than previously thought, with their migrations contributing to abdominal closure. It furthermore provides insights into how the migratory behaviour of cells is regulated during morphogenesis. PMID:22230614

  7. The Amount of Keratins Matters for Stress Protection of the Colonic Epithelium

    PubMed Central

    Asghar, M. Nadeem; Silvander, Jonas S. G.; Helenius, Terhi O.; Lähdeniemi, Iris A. K.; Alam, Catharina; Fortelius, Lina E.; Holmsten, Rickard O.; Toivola, Diana M.

    2015-01-01

    Keratins (K) are important for epithelial stress protection as evidenced by keratin mutations predisposing to human liver diseases and possibly inflammatory bowel diseases. A role for K8 in the colon is supported by the ulcerative colitis-phenotype with epithelial hyperproliferation and abnormal ion transport in K8-knockout (K8−/−) mice. The heterozygote knockout (K8+/−) colon appears normal but displays a partial ion transport-defect. Characterizing the colonic phenotype we show that K8+/− colon expresses ~50% less keratins compared to K8 wild type (K8+/+) but de novo K7 expression is observed in the top-most cells of the K8+/− and K8−/− crypts. The K8+/− colonic crypts are significantly longer due to increased epithelial hyperproliferation, but display no defects in apoptosis or inflammation in contrast to K8−/−. When exposed to colitis using the dextran sulphate sodium-model, K8+/− mice showed higher disease sensitivity and delayed recovery compared to K8+/+ littermates. Therefore, the K8+/− mild colonic phenotype correlates with decreased keratin levels and increased sensitivity to experimental colitis, suggesting that a sufficient amount of keratin is needed for efficient stress protection in the colonic epithelia. PMID:26000979

  8. Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations

    SciTech Connect

    Garbe, James C.; Vrba, Lukas; Sputova, Klara; Fuchs, Laura; Novak, Petr; Brothman, Arthur R.; Jackson, Mark; Chin, Koei; LaBarge, Mark A.; Watts, George; Futscher, Bernard W.; Stampfer, Martha R.

    2014-10-29

    Telomerase reactivation and immortalization are critical for human carcinoma progression. However, little is known about the mechanisms controlling this crucial step, due in part to the paucity of experimentally tractable model systems that can examine human epithelial cell immortalization as it might occur in vivo. We achieved efficient non-clonal immortalization of normal human mammary epithelial cells (HMEC) by directly targeting the 2 main senescence barriers encountered by cultured HMEC. The stress-associated stasis barrier was bypassed using shRNA to p16INK4; replicative senescence due to critically shortened telomeres was bypassed in post-stasis HMEC by c-MYC transduction. Thus, 2 pathologically relevant oncogenic agents are sufficient to immortally transform normal HMEC. The resultant non-clonal immortalized lines exhibited normal karyotypes. Most human carcinomas contain genomically unstable cells, with widespread instability first observed in vivo in pre-malignant stages; in vitro, instability is seen as finite cells with critically shortened telomeres approach replicative senescence. Our results support our hypotheses that: (1) telomere-dysfunction induced genomic instability in pre-malignant finite cells may generate the errors required for telomerase reactivation and immortalization, as well as many additional “passenger” errors carried forward into resulting carcinomas; (2) genomic instability during cancer progression is needed to generate errors that overcome tumor suppressive barriers, but not required per se; bypassing the senescence barriers by direct targeting eliminated a need for genomic errors to generate immortalization. Achieving efficient HMEC immortalization, in the absence of “passenger” genomic errors, should facilitate examination of telomerase regulation during human carcinoma progression, and exploration of agents that could prevent immortalization.

  9. Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations

    PubMed Central

    Garbe, James C; Vrba, Lukas; Sputova, Klara; Fuchs, Laura; Novak, Petr; Brothman, Arthur R; Jackson, Mark; Chin, Koei; LaBarge, Mark A; Watts, George; Futscher, Bernard W; Stampfer, Martha R

    2014-01-01

    Telomerase reactivation and immortalization are critical for human carcinoma progression. However, little is known about the mechanisms controlling this crucial step, due in part to the paucity of experimentally tractable model systems that can examine human epithelial cell immortalization as it might occur in vivo. We achieved efficient non-clonal immortalization of normal human mammary epithelial cells (HMEC) by directly targeting the 2 main senescence barriers encountered by cultured HMEC. The stress-associated stasis barrier was bypassed using shRNA to p16INK4; replicative senescence due to critically shortened telomeres was bypassed in post-stasis HMEC by c-MYC transduction. Thus, 2 pathologically relevant oncogenic agents are sufficient to immortally transform normal HMEC. The resultant non-clonal immortalized lines exhibited normal karyotypes. Most human carcinomas contain genomically unstable cells, with widespread instability first observed in vivo in pre-malignant stages; in vitro, instability is seen as finite cells with critically shortened telomeres approach replicative senescence. Our results support our hypotheses that: (1) telomere-dysfunction induced genomic instability in pre-malignant finite cells may generate the errors required for telomerase reactivation and immortalization, as well as many additional “passenger” errors carried forward into resulting carcinomas; (2) genomic instability during cancer progression is needed to generate errors that overcome tumor suppressive barriers, but not required per se; bypassing the senescence barriers by direct targeting eliminated a need for genomic errors to generate immortalization. Achieving efficient HMEC immortalization, in the absence of “passenger” genomic errors, should facilitate examination of telomerase regulation during human carcinoma progression, and exploration of agents that could prevent immortalization. PMID:25485586

  10. Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations

    DOE PAGESBeta

    Garbe, James C.; Vrba, Lukas; Sputova, Klara; Fuchs, Laura; Novak, Petr; Brothman, Arthur R.; Jackson, Mark; Chin, Koei; LaBarge, Mark A.; Watts, George; et al

    2014-10-29

    Telomerase reactivation and immortalization are critical for human carcinoma progression. However, little is known about the mechanisms controlling this crucial step, due in part to the paucity of experimentally tractable model systems that can examine human epithelial cell immortalization as it might occur in vivo. We achieved efficient non-clonal immortalization of normal human mammary epithelial cells (HMEC) by directly targeting the 2 main senescence barriers encountered by cultured HMEC. The stress-associated stasis barrier was bypassed using shRNA to p16INK4; replicative senescence due to critically shortened telomeres was bypassed in post-stasis HMEC by c-MYC transduction. Thus, 2 pathologically relevant oncogenic agentsmore » are sufficient to immortally transform normal HMEC. The resultant non-clonal immortalized lines exhibited normal karyotypes. Most human carcinomas contain genomically unstable cells, with widespread instability first observed in vivo in pre-malignant stages; in vitro, instability is seen as finite cells with critically shortened telomeres approach replicative senescence. Our results support our hypotheses that: (1) telomere-dysfunction induced genomic instability in pre-malignant finite cells may generate the errors required for telomerase reactivation and immortalization, as well as many additional “passenger” errors carried forward into resulting carcinomas; (2) genomic instability during cancer progression is needed to generate errors that overcome tumor suppressive barriers, but not required per se; bypassing the senescence barriers by direct targeting eliminated a need for genomic errors to generate immortalization. Achieving efficient HMEC immortalization, in the absence of “passenger” genomic errors, should facilitate examination of telomerase regulation during human carcinoma progression, and exploration of agents that could prevent immortalization.« less

  11. A comprehensive study of the contribution of Salmonella enterica serovar Typhimurium SPI2 effectors to bacterial colonization, survival, and replication in typhoid fever, macrophage, and epithelial cell infection models.

    PubMed

    Buckner, Michelle M C; Croxen, Matthew A; Arena, Ellen T; Finlay, B Brett

    2011-01-01

    Salmonella enterica serovars are Gram-negative bacterial pathogens responsible for human diseases including gastroenteritis and typhoid fever. After ingestion, Salmonella cross the intestinal epithelial barrier, where they are phagocytosed by macrophages and dendritic cells, which then enables their spread to systemic sites during cases of typhoid fever. Salmonella use two type 3 secretion systems encoded by Salmonella pathogenicity islands (SPI) 1 and 2 to inject virulence proteins into host cells to modify cellular functions. SPI1 is involved in host cell invasion and inflammation, whereas SPI2 is required for intracellular survival and replication within phagocytes, and systemic spread. In this study the contribution of nearly all known SPI2 effectors was examined in an in vivo model of murine typhoid fever and cell culture models of macrophage and epithelial cell infection. Unmarked, in-frame deletions of SPI2 effectors were engineered in S. enterica serovar Typhimurium and the ability of the 16 different mutants to colonize and replicate was examined. In the typhoid model, we found that ΔspvB and ΔspiC mutants were attenuated for colonization of intestinal and systemic sites, while the ΔsseF mutant was attenuated in systemic organs. In epithelial cells, all mutants replicated to the same extent as the wild-type. In macrophages, ΔspiC, ΔsteC, ΔspvB, ΔssseK1/K2/K3, ΔsifA, and ΔsifB strains replicated poorly in comparison to wild-type Salmonella. This study provides a thorough screen of the majority of the known SPI2 effectors evaluated under the same conditions in various models of infection, providing a foundation for comparative examination of the roles and interactions of these effectors. PMID:21540636

  12. Screening of an E. coli O157:H7 Bacterial Artificial Chromosome Library by Comparative Genomic Hybridization to Identify Genomic Regions Contributing to Growth in Bovine Gastrointestinal Mucus and Epithelial Cell Colonization

    PubMed Central

    Bai, Jianing; McAteer, Sean P.; Paxton, Edith; Mahajan, Arvind; Gally, David L.; Tree, Jai J.

    2011-01-01

    Enterohemorrhagic E. coli (EHEC) O157:H7 can cause serious gastrointestinal and systemic disease in humans following direct or indirect exposure to ruminant feces containing the bacterium. The main colonization site of EHEC O157:H7 in cattle is the terminal rectum where the bacteria intimately attach to the epithelium and multiply in the intestinal mucus. This study aimed to identify genomic regions of EHEC O157:H7 that contribute to colonization and multiplication at this site. A bacterial artificial chromosome (BAC) library was generated from a derivative of the sequenced E. coli O157:H7 Sakai strain. The library contains 1152 clones averaging 150 kbp. To verify the library, clones containing a complete locus of enterocyte effacement (LEE) were identified by DNA hybridization. In line with a previous report, these did not confer a type III secretion (T3S) capacity to the K-12 host strain. However, conjugation of one of the BAC clones into a strain containing a partial LEE deletion restored T3S. Three hundred eighty-four clones from the library were subjected to two different selective screens; one involved three rounds of adherence assays to bovine primary rectal epithelial cells while the other competed the clones over three rounds of growth in bovine rectal mucus. The input strain DNA was then compared with the selected strains using comparative genomic hybridization (CGH) on an E. coli microarray. The adherence assay enriched for pO157 DNA indicating the importance of this plasmid for colonization of rectal epithelial cells. The mucus assay enriched for multiple regions involved in carbohydrate utilization, including hexuronate uptake, indicating that these regions provide a competitive growth advantage in bovine mucus. This BAC-CGH approach provides a positive selection screen that complements negative selection transposon-based screens. As demonstrated, this may be of particular use for identifying genes with redundant functions such as adhesion and carbon

  13. Helminth co-infection in Helicobacter pylori infected INS-GAS mice attenuates gastric premalignant lesions of epithelial dysplasia and glandular atrophy and preserves colonization resistance of the stomach to lower bowel microbiota

    PubMed Central

    Whary, Mark T.; Muthupalani, Sureshkumar; Ge, Zhongming; Feng, Yan; Lofgren, Jennifer; Shi, Hai Ning; Taylor, Nancy S.; Correa, Pelayo; Versalovic, James; Wang, Timothy C.; Fox, James G.

    2014-01-01

    Higher prevalence of helminth infections in H. pylori infected children was suggested to potentially lower the life-time risk for gastric adenocarcinoma. In rodent models, helminth co-infection does not reduce Helicobacter-induced inflammation but delays progression of pre-malignant gastric lesions. Because gastric cancer in INS-GAS mice is promoted by intestinal microflora, the impact of Heligmosomoides polygyrus co-infection on H. pylori-associated gastric lesions and microflora were evaluated. Male INS-GAS mice co-infected with H. pylori and H. polygyrus for 5 months were assessed for gastrointestinal lesions, inflammation-related mRNA expression, FoxP3+ cells, epithelial proliferation, and gastric colonization with H. pylori and Altered Schaedler Flora. Despite similar gastric inflammation and high levels of proinflammatory mRNA, helminth co-infection increased FoxP3+ cells in the corpus and reduced H. pylori-associated gastric atrophy (p<0.04), dysplasia (p<0.02) and prevented H. pylori-induced changes in the gastric flora (p<0.05). This is the first evidence of helminth infection reducing H. pylori-induced gastric lesions while inhibiting changes in gastric flora, consistent with prior observations that gastric colonization with enteric microbiota accelerated gastric lesions in INS-GAS mice. Identifying how helminths reduce gastric premalignant lesions and impact bacterial colonization of the H. pylori infected stomach could lead to new treatment strategies to inhibit progression from chronic gastritis to cancer in humans. PMID:24513446

  14. Evaluations of thyme extract effects in human normal bronchial and tracheal epithelial cell lines and in human lung cancer cell line.

    PubMed

    Oliviero, Marinelli; Romilde, Iannarelli; Beatrice, Morelli Maria; Matteo, Valisi; Giovanna, Nicotra; Consuelo, Amantini; Claudio, Cardinali; Giorgio, Santoni; Filippo, Maggi; Massimo, Nabissi

    2016-08-25

    Thyme (Thymus vulgaris) is used traditionally to prepare herbal remedies possessing expectorant, mucolytic, antitussive and antispasmodic properties. The aim of the present study was to investigate the effects of a standardized hydroalcoholic extract of thyme on primary human airway (bronchial/tracheal) epithelial cell lines in a model of lung inflammation induced by LPS. In addition, the effects of thyme extract on human lung cancer cell line (H460) were analysed. Thyme extract showed significant anti-inflammatory properties by reducing the NF-κB p65 and NF-κB p52 transcription factors protein levels followed by the decrease of pro-inflammatory cytokines (IL-1 beta and IL-8), and Muc5ac secretion in human normal bronchial and tracheal epithelial cells. Moreover, the extract showed cytotoxic effects on H460 cancer cells, modulated the release of IL-1 beta, IL-8 and down-regulated NF-κB p65 and NF-κB p52 proteins. Taken together, these results substantiated the traditional uses of thyme in the treatment of respiratory diseases. Thyme extract might be an effective treatment of chronic diseases based on inflammatory processes when hypersecretion of mucus overwhelms the ciliary clearance and obstructs airways, causing morbidity and mortality. Moreover thyme extract, evaluated in H460 lung cancer cell line, demonstrated to induce cell cytotoxicity in addition to reduce inflammatory cell signals. PMID:27369807

  15. Nrf2 activators modulate oxidative stress responses and bioenergetic profiles of human retinal epithelial cells cultured in normal or high glucose conditions.

    PubMed

    Foresti, Roberta; Bucolo, Claudio; Platania, Chiara Maria Bianca; Drago, Filippo; Dubois-Randé, Jean-Luc; Motterlini, Roberto

    2015-09-01

    Retinal pigment epithelial cells exert an important supporting role in the eye and develop adaptive responses to oxidative stress or high glucose levels, as observed during diabetes. Endogenous antioxidant defences are mainly regulated by Nrf2, a transcription factor that is activated by naturally-derived and electrophilic compounds. Here we investigated the effect of the Nrf2 activators dimethylfumarate (DMF) and carnosol on antioxidant pathways, oxygen consumption rate and wound healing in human retinal pigment epithelial cells (ARPE-19) cultured in medium containing normal (NG, 5mM) or high (HG, 25 mM) glucose levels. We also assessed wound healing using an in vivo corneal epithelial injury model. We found that Nrf2 nuclear translocation and heme oxygenase activity increased in ARPE cells treated with 10 μM DMF or carnosol irrespective of glucose culture conditions. However, HG rendered retinal cells more sensitive to regulators of glutathione synthesis or inhibition and caused a decrease of both cellular and mitochondrial reactive oxygen species. Culture in HG also reduced ATP production and mitochondrial function as measured with the Seahorse XF analyzer and electron microscopy analysis revealed morphologically damaged mitochondria. Acute treatment with DMF or carnosol did not restore mitochondrial function in HG cells; conversely, the compounds reduced cellular maximal respiratory and reserve capacity, which were completely prevented by N-acetylcysteine thus suggesting the involvement of thiols in this effect. Interestingly, the scratch assay showed that wound closure was faster in cells cultured in HG than NG and was accelerated by carnosol. This effect was reversed by an inhibitor of heme oxygenase activity. Moreover, topical application of carnosol to the cornea of diabetic rats significantly accelerated wound healing. In summary, these data indicate that culture of retinal epithelial cells in HG does not affect the activation of the Nrf2/heme oxygenase

  16. Conditional Gene Inactivation Reveals Roles for Fgf10 and Fgfr2 in Establishing a Normal Pattern of Epithelial Branching in the Mouse Lung

    PubMed Central

    Abler, Lisa L.; Mansour, Suzanne L.; Sun, Xin

    2012-01-01

    Fibroblast growth factor 10 (FGF10) signaling through FGF receptor 2 (FGFR2) is required for lung initiation. While studies indicate that Fgf10 and Fgfr2 are also important at later stages of lung development, their roles in early branching events remain unclear. We addressed this question through conditional inactivation of both genes in mouse subsequent to lung initiation. Inactivation of Fgf10 in lung mesenchyme resulted in smaller lobes with a reduced number of branches. Inactivation of Fgfr2 in lung epithelium resulted in disruption of lobes and small epithelial outgrowths that arose arbitrarily along the main bronchi. In both mutants, there was an increase in cell death. Also, the expression patterns of key signaling molecules implicated in branching morphogenesis were altered and a proximal lung marker was expanded distally. Our results indicate that both Fgf10 and Fgfr2 are required for a normal branching program and for proper proximal-distal patterning of the lung. PMID:19618463

  17. Aldehyde dehydrogenase inhibitors: alpha,beta-acetylenic N-substituted aminothiolesters are reversible growth inhibitors of normal epithelial but irreversible apoptogens for cancer epithelial cells from human prostate in culture.

    PubMed

    Quash, Gerard; Fournet, Guy; Courvoisier, Charlotte; Martinez, Rosa M; Chantepie, Jacqueline; Paret, Marie Julie; Pharaboz, Julie; Joly-Pharaboz, Marie Odile; Goré, Jacques; André, Jean; Reichert, Uwe

    2008-05-01

    The pharmacomodulation of the N atom of alpha,beta-acetylenic aminothiolesters or the replacement of the thiolester moiety by more electrophilic groups did not permit any clear rationale to be established for improving the selective growth-inhibitory activity of this family of compounds over that of the previously synthesized alpha,beta-acetylenic aminothiolesters DIMATE and MATE [G. Quash, G. Fournet, J. Chantepie, J. Goré, C. Ardiet, D. Ardail, Y. Michal, U. Reichert, Biochem Pharmacol 64 (2002) 1279-92]. Hence DIMATE and MATE were investigated more thoroughly for selectivity and growth-inhibitory activity using human prostate epithelial normal cells (HPENC) on the one hand and human prostate epithelial cancer cells (DU145) on the other. Unequivocal evidence was obtained showing that both compounds were reversible growth inhibitors of HPENC but irreversible growth inhibitors of DU145. Growth-inhibition of DU145 was due to the induction of early apoptosis as revealed by the flow cytometric analytical profile of inhibitor-treated cells, of the decrease in the redox potential and increase in superoxide anion content of their mitochondria. Of the two intracellular enzymes: aldehyde dehydrogenases 1 and 3 (ALDH1 and ALDH3) targeted by DIMATE and MATE, ALDH3 was inhibited to the same extent by both compounds whereas ALDH1 was less susceptible to inhibition by MATE. As the induction of ALDH3 by xenobiotics is hormone-dependent, MATE, the more selective of the two inhibitors, is a useful tool not only for examining the role of the ALDH3 isoform in hormone-sensitive and resistant prostate cancer cells in culture but also for investigating if it can inhibit the growth of xenografts of prostate cancer in immunodeficient mice. PMID:17692435

  18. Phlogistic properties of peptidoglycan-polysaccharide polymers from cell walls of pathogenic and normal-flora bacteria which colonize humans.

    PubMed Central

    Schwab, J H

    1993-01-01

    PG-PS polymers which can induce experimental chronic inflammation in joints and other tissues can be isolated from the cell walls of human pathogens, such as group A streptococci, as well as from certain indigenous bacterial species which colonize the human intestinal tract. The structural and biological properties that are required for cell wall fragments to express this remarkable activity are still not well defined, but polymer size, resistance to tissue enzymes, and capacity to sustain activation of complement, macrophages, neutrophils, and T cells are properties associated with the most active preparations. There is increasing evidence that PG-PS structures with arthropathogenic activity occur in the human intestinal lumen and that these polymers can be translocated systemically. These observations support the concept that PG-PS, derived from a variety of bacterial species, can be part of the etiology of rheumatoid arthritis and other chronic inflammatory diseases. Since the PG component provides a common element to which all individuals are exposed, it follows that susceptibility is related to efficiency of disposal of bacterial cell wall debris, as well as to cytokine networks and immune cell function (51). PMID:8406849

  19. Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells

    SciTech Connect

    Marianne B. Sowa; Wilfried Goetz; Janet E. Baulch; Dinah N. Pyles; Jaroslaw Dziegielewski; Susannah Yovino; Andrew R. Snyder; Sonia M. de Toledo; Edouard I. Azzam; William F. Morgan

    2008-06-30

    Purpose: To investigate radiation induced bystander responses and to determine the role of gap junction intercellular communication and the radiation environment in propagating this response. Materials and Methods: We use medium transfer and targeted irradiation to examine radiation induced bystander effects in primary human fibroblast (AG1522) and human colon carcinoma (RKO36) cells. We examined the effect of variables such as gap junction intercellular communication, linear energy transfer (LET), and the role of the radiation environment in non-targeted responses. Endpoints included clonogenic survival, micronucleus formation and foci formation at histone 2AX over doses ranging from 10 to 100 cGy. Results: The results show no evidence of a low-LET radiation induced bystander response for the endpoints of clonogenic survival and induction of DNA damage. Nor do we see evidence of a high-LET, Fe ion radiation (1 GeV/n) induced bystander effect. However, direct comparison for 3.2 MeV α-particle exposures showed a statistically significant medium transfer bystander effect for this high-LET radiation. Conclusions: From our results, it is evident that there are many confounding factors influencing bystander responses as reported in the literature. Our observations reflect the inherent variability in biological systems and the difficulties in extrapolating from in vitro models to radiation risks in humans.

  20. Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells

    SciTech Connect

    Zhu, Yingting; Tissue Tech Inc., Miami, FL 33173 ; Zhu, Min; Lance, Peter

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Human colonic cancer associated fibroblasts are major sources of COX-2 and PGE{sub 2}. Black-Right-Pointing-Pointer The fibroblasts interact with human colonic epithelial cancer cells. Black-Right-Pointing-Pointer Activation of COX-2 signaling in the fibroblasts affects behavior of the epithelia. Black-Right-Pointing-Pointer Protein Kinase C controls the activation of COX-2 signaling. -- Abstract: COX-2 is a major regulator implicated in colonic cancer. However, how COX-2 signaling affects colonic carcinogenesis at cellular level is not clear. In this article, we investigated whether activation of COX-2 signaling by deoxycholic acid (DCA) in primary human normal and cancer associated fibroblasts play a significant role in regulation of proliferation and invasiveness of colonic epithelial cancer cells. Our results demonstrated while COX-2 signaling can be activated by DCA in both normal and cancer associated fibroblasts, the level of activation of COX-2 signaling is significantly greater in cancer associated fibroblasts than that in normal fibroblasts. In addition, we discovered that the proliferative and invasive potential of colonic epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts pre-treated with DCA than with normal fibroblasts pre-treated with DCA. Moreover, COX-2 siRNA attenuated the proliferative and invasive effect of both normal and cancer associate fibroblasts pre-treated with DCA on the colonic cancer cells. Further studies indicated that the activation of COX-2 signaling by DCA is through protein kinase C signaling. We speculate that activation of COX-2 signaling especially in cancer associated fibroblasts promotes progression of colonic cancer.

  1. Histopathology of cell mediated immune reaction in mouse colon--allograft rejection.

    PubMed Central

    Holden, R J; Ferguson, A

    1976-01-01

    Grafts of mouse fetal colon, implanted beneath the renal capsule of adult hosts, have been used to study the growth and development of colonic isografts and the rejection of colonic allografts. Isografts grew normally and maintained a structure similar to normal colon. Grafts between strains with H2 histocompatibility differences were rejected by 13 days after transplantation. Early progressive infiltration of the grafts by lymphoid cells was followed by increasing damage to, and subsequent loss of, the epithelial cell layer and destruction of the underlying muscle, changes which parallel those seen in rejection of skin and small bowel. The increase in survival time which is seen in allografts between strains with H2 identity was longer in the colon than has been seen in the skin or small bowel; none of the allografts of colon were completely rejected before 30 days, and some remained viable at 50 days. Comparison of the appearances of rejection in the colon with those of ulcerative colitis and colonic Crohn's disease does not show the striking similarity which is seen between small bowel rejection and coeliac disease. Many of the individual features of these diseases are, however, present in the course of colonic rejection. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:976806

  2. Isotropic 3D Nuclear Morphometry of Normal, Fibrocystic and Malignant Breast Epithelial Cells Reveals New Structural Alterations

    PubMed Central

    Nandakumar, Vivek; Kelbauskas, Laimonas; Hernandez, Kathryn F.; Lintecum, Kelly M.; Senechal, Patti; Bussey, Kimberly J.; Davies, Paul C. W.; Johnson, Roger H.; Meldrum, Deirdre R.

    2012-01-01

    Background Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria. Methodology We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure. Principal Findings We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations. Conclusions Our results provide a new perspective on nuclear structure variations

  3. Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon

    PubMed Central

    Rocha, Cecilia; Papon, Laura; Cacheux, Wulfran; Marques Sousa, Patricia; Lascano, Valeria; Tort, Olivia; Giordano, Tiziana; Vacher, Sophie; Lemmers, Benedicte; Mariani, Pascale; Meseure, Didier; Medema, Jan Paul; Bièche, Ivan; Hahne, Michael; Janke, Carsten

    2014-01-01

    TTLL3 and TTLL8 are tubulin glycine ligases catalyzing posttranslational glycylation of microtubules. We show here for the first time that these enzymes are required for robust formation of primary cilia. We further discover the existence of primary cilia in colon and demonstrate that TTLL3 is the only glycylase in this organ. As a consequence, colon epithelium shows a reduced number of primary cilia accompanied by an increased rate of cell division in TTLL3-knockout mice. Strikingly, higher proliferation is compensated by faster tissue turnover in normal colon. In a mouse model for tumorigenesis, lack of TTLL3 strongly promotes tumor development. We further demonstrate that decreased levels of TTLL3 expression are linked to the development of human colorectal carcinomas. Thus, we have uncovered a novel role for tubulin glycylation in primary cilia maintenance, which controls cell proliferation of colon epithelial cells and plays an essential role in colon cancer development. PMID:25180231

  4. Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon.

    PubMed

    Rocha, Cecilia; Papon, Laura; Cacheux, Wulfran; Marques Sousa, Patricia; Lascano, Valeria; Tort, Olivia; Giordano, Tiziana; Vacher, Sophie; Lemmers, Benedicte; Mariani, Pascale; Meseure, Didier; Medema, Jan Paul; Bièche, Ivan; Hahne, Michael; Janke, Carsten

    2014-10-01

    TTLL3 and TTLL8 are tubulin glycine ligases catalyzing posttranslational glycylation of microtubules. We show here for the first time that these enzymes are required for robust formation of primary cilia. We further discover the existence of primary cilia in colon and demonstrate that TTLL3 is the only glycylase in this organ. As a consequence, colon epithelium shows a reduced number of primary cilia accompanied by an increased rate of cell division in TTLL3-knockout mice. Strikingly, higher proliferation is compensated by faster tissue turnover in normal colon. In a mouse model for tumorigenesis, lack of TTLL3 strongly promotes tumor development. We further demonstrate that decreased levels of TTLL3 expression are linked to the development of human colorectal carcinomas. Thus, we have uncovered a novel role for tubulin glycylation in primary cilia maintenance, which controls cell proliferation of colon epithelial cells and plays an essential role in colon cancer development. PMID:25180231

  5. Analysis of the coding sequence and expression of the coiled-coil α-helical rod protein 1 gene in normal and neoplastic epithelial cervical cells

    PubMed Central

    PACHOLSKA-BOGALSKA, JOANNA; MYGA-NOWAK, MAGDALENA; CIEPŁUCH, KATARZYNA; JÓZEFIAK, AGATA; KWAŒNIEWSKA, ANNA; GOźDZICKA-JÓZEFIAK, ANNA

    2012-01-01

    The role of the CCHCR1 (coiled-coil α-helical rod protein 1) protein in the cell is poorly understood. It is thought to be engaged in processes such as proliferation and differentiation of epithelial cells, tissue-specific gene transcription and steroidogenesis. It is supposed to participate in keratinocyte transformation. It has also been found that this protein interacts with the E2 protein of human papilloma virus type 16 (HPV16). The oncogenic HPV forms, such as HPV16, are known to be necessary but not sufficient agents in the development of cervical carcinoma. In the present study, the CCHCR1 gene coding sequence and its expression was analyzed in normal, precancerous and cervical cancer cells. Changes in the non-coding region were found in 20.3% of the examined probes from women with cervical cancer or precancerous lesions and in 16.67% of the control probes. Most of the detected changes were single nucleotide polymorphisms (SNPs). Changes in the coding region were found in 22.8% of the probes with cervical cancer and in 16.67% of the control probes and all of them were SNPs. The level of CCHCR1 transcripts was determined using the real-time PCR method and the highest gene expression was detected in the H-SIL group and slightly decreased in the cervical carcinoma cells, compared with the control probes. It suggests that CCHCR1 could have a role in the process of cervical epithelial cell transformation, but this suggestion must be confirmed experimentally. PMID:22218424

  6. Cooperation between HNF-1α, Cdx2, and GATA-4 in initiating an enterocytic differentiation program in a normal human intestinal epithelial progenitor cell line

    PubMed Central

    Benoit, Yannick D.; Paré, Fréderic; Francoeur, Caroline; Jean, Dominique; Tremblay, Eric; Boudreau, François; Escaffit, Fabrice

    2010-01-01

    In the intestinal epithelium, the Cdx, GATA, and HNF transcription factor families are responsible for the expression of differentiation markers such as sucrase-isomaltase. Although previous studies have shown that Cdx2 can induce differentiation in rat intestinal IEC-6 cells, no data are available concerning the direct implication of transcription factors on differentiation in human normal intestinal epithelial cell types. We investigated the role of Cdx2, GATA-4, and HNF-1α using the undifferentiated human intestinal epithelial crypt cell line HIEC. These transcription factors were tested on proliferation and expression of polarization and differentiation markers. Ectopic expression of Cdx2 or HNF-1α, alone or in combination, altered cell proliferation abilities through the regulation of cyclin D1 and p27 expression. HNF-1α and GATA-4 together induced morphological modifications of the cells toward polarization, resulting in the appearance of functional features such as microvilli. HNF-1α was also sufficient to induce the expression of cadherins and dipeptidylpeptidase, whereas in combination with Cdx2 it allowed the expression of the late differentiation marker sucrase-isomaltase. Large-scale analysis of gene expression confirmed the cooperative effect of these factors. Finally, although DcamKL1 and Musashi-1 expression were downregulated in differentiated HIEC, other intestinal stem cell markers, such as Bmi1, were unaffected. These observations show that, in cooperation with Cdx2, HNF-1α acts as a key factor on human intestinal cells to trigger the onset of their functional differentiation program whereas GATA-4 appears to promote morphological changes. PMID:20133952

  7. Colonic Polyps

    MedlinePlus

    ... Colonic polyps grow in the large intestine, or colon. Most polyps are not dangerous. However, some polyps ... member with polyps Have a family history of colon cancer Most colon polyps do not cause symptoms. ...

  8. Dynamics of colonization with group B streptococci in relation to normal flora in women during subsequent trimesters of pregnancy.

    PubMed

    Brzychczy-Włoch, Monika; Pabian, Wojciech; Majewska, Elzbieta; Zuk, Ma Gorzata; Kielbik, Jadwiga; Gosiewski, Tomasz; Bulanda, Ma Gorzata

    2014-07-01

    The main objective of the study was to compare the qualitative and quantitative composition of vaginal and rectal flora in GBS-positive (n=15) and GBS-negative (n=27) pregnant women examined in three subsequent trimesters of their pregnancy. Study samples consisted of vaginal and rectal smears and urine samples. GBS numbers were determined by the quantitatively cultured method [cfu/ml] and with the use of qPCR. Five GBS colonies were isolated per each positive sample and genotyped by PFGE and serotyping. The normal flora components: Lactobacillus, Bifidobacterium and Candida were quantitatively cultured. Carriage of GBS in subsequent trimesters in vagina/anus was variable and fluctuated between 17% and 28%. Quantitative GBS analyses showed that the vaginal population was at a constant level with the mean value equal to 3.94×104 cfu/ml, in contrast to the rectal population where the highest values appeared in the third trimester 4.37×105. The use of qPCR gave 7% more positive results for vaginal/rectal swabs. Genetic similarity analysis showed that one GBS clone was present in 73% of carriers during pregnancy, while in 27% of patients, 2 clones were found. H2O2-positive vaginal lactobacilli were detected in all women, while H2O2-negative lactobacilli and Bifidobacterium occurred more frequently in the anus in about 50% of women. Candida was present in the vagina in 30% of women. The analysis of women in three consecutive trimesters of pregnancy on the basis of a study group and control group showed no statistically significant differences in either the species (qualitative) or quantitative composition in vaginal and rectal flora in both of the groups. Therefore, GBS should be considered as a component of the microbiota and an opportunistic microorganism rather than a typical pathogen, because it does not distort the composition of women's normal genital tract flora. PMID:25180845

  9. Methylation of MGMT and ADAMTS14 in normal colon mucosa: biomarkers of a field defect for cancerization preferentially targeting elder African-Americans

    PubMed Central

    Alonso, Sergio; Dai, Yuichi; Yamashita, Kentaro; Horiuchi, Shina; Dai, Tomoko; Matsunaga, Akihiro; Sánchez-Muñoz, Rosa; Bilbao-Sieyro, Cristina; Díaz-Chico, Juan Carlos; Chernov, Andrei V.; Strongin, Alex Y.; Perucho, Manuel

    2015-01-01

    Somatic hypermethylation of the O6-methylguanine-DNA methyltransferase gene (MGMT) was previously associated with G > A transition mutations in KRAS and TP53 in colorectal cancer (CRC). We tested the association of MGMT methylation with G > A mutations in KRAS and TP53 in 261 CRCs. Sixteen cases, with and without MGMT hypermethylation, were further analyzed by exome sequencing. No significant association of MGMT methylation with G > A mutations in KRAS, TP53 or in the whole exome was found (p > 0.5 in all comparisons). The result was validated by in silico comparison with 302 CRCs from The Cancer Genome Atlas (TCGA) consortium dataset. Transcriptional silencing associated with hypermethylation and stratified into monoallelic and biallelic. We also found a significant clustering (p = 0.001) of aberrant hypermethylation of MGMT and the matrix metalloproteinase gene ADAMTS14 in normal colonic mucosa of CRC patients. This suggested the existence of an epigenetic field defect for cancerization disrupting the methylation patterns of several loci, including MGMT or ADAMTS14, that may lead to predictive biomarkers for CRC. Methylation of these loci in normal mucosa was more frequent in elder (p = 0.001) patients, and particularly in African Americans (p = 1 × 10−5), thus providing a possible mechanistic link between somatic epigenetic alterations and CRC racial disparities in North America. PMID:25638164

  10. Methylation of MGMT and ADAMTS14 in normal colon mucosa: biomarkers of a field defect for cancerization preferentially targeting elder African-Americans.

    PubMed

    Alonso, Sergio; Dai, Yuichi; Yamashita, Kentaro; Horiuchi, Shina; Dai, Tomoko; Matsunaga, Akihiro; Sánchez-Muñoz, Rosa; Bilbao-Sieyro, Cristina; Díaz-Chico, Juan Carlos; Chernov, Andrei V; Strongin, Alex Y; Perucho, Manuel

    2015-02-20

    Somatic hypermethylation of the O6-methylguanine-DNA methyltransferase gene (MGMT) was previously associated with G > A transition mutations in KRAS and TP53 in colorectal cancer (CRC). We tested the association of MGMT methylation with G > A mutations in KRAS and TP53 in 261 CRCs. Sixteen cases, with and without MGMT hypermethylation, were further analyzed by exome sequencing. No significant association of MGMT methylation with G > A mutations in KRAS, TP53 or in the whole exome was found (p > 0.5 in all comparisons). The result was validated by in silico comparison with 302 CRCs from The Cancer Genome Atlas (TCGA) consortium dataset. Transcriptional silencing associated with hypermethylation and stratified into monoallelic and biallelic. We also found a significant clustering (p = 0.001) of aberrant hypermethylation of MGMT and the matrix metalloproteinase gene ADAMTS14 in normal colonic mucosa of CRC patients. This suggested the existence of an epigenetic field defect for cancerization disrupting the methylation patterns of several loci, including MGMT or ADAMTS14, that may lead to predictive biomarkers for CRC. Methylation of these loci in normal mucosa was more frequent in elder (p = 0.001) patients, and particularly in African Americans (p = 1 × 10-5), thus providing a possible mechanistic link between somatic epigenetic alterations and CRC racial disparities in North America. PMID:25638164

  11. 1,25(OH)2D3 attenuates TGF-β1/β2-induced increased migration and invasion via inhibiting epithelial-mesenchymal transition in colon cancer cells.

    PubMed

    Chen, Shanwen; Zhu, Jing; Zuo, Shuai; Ma, Ju; Zhang, Junling; Chen, Guowei; Wang, Xin; Pan, Yisheng; Liu, Yucun; Wang, Pengyuan

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has been reported to inhibit proliferation and migration of multiple types of cancer cells. However, the mechanism underlying its anti-metastasis effect is not fully illustrated. In this study, the effect of 1,25(OH)2D3 on TGF-β1/β2-induced epithelial-mesenchymal transition (EMT) is tested in colon cancer cells. The results suggest that 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased invasion and migration of in SW-480 and HT-29 cells. 1,25(OH)2D3 also inhibited the cadherin switch in SW-480 and HT-29 cells. TGF-β1/β2-induced increased expression of EMT-related transcription factors was also inhibited by 1,25(OH)2D3. 1,25(OH)2D3 also inhibited the secretion of MMP-2 and MMP-9 and increased expression of F-actin induced by TGF-β1/β2 in SW-480 cells. Taken together, this study suggests that the suppression of EMT might be one of the mechanisms underlying the anti-metastasis effect of 1,25(OH)2D3 in colon cancer cells. PMID:26523511

  12. QuickView video preview software of colon capsule endoscopy: reliability in presenting colorectal polyps as compared to normal mode reading.

    PubMed

    Farnbacher, Michael J; Krause, Horst H; Hagel, Alexander F; Raithel, Martin; Neurath, Markus F; Schneider, Thomas

    2014-03-01

    OBJECTIVE. Colon capsule endoscopy (CCE) proved to be highly sensitive in detection of colorectal polyps (CP). Major limitation is the time-consuming video reading. The aim of this prospective, double-center study was to assess the theoretical time-saving potential and its possible impact on the reliability of "QuickView" (QV), in the presentation of CP as compared to normal mode (NM). METHODS. During NM reading of 65 CCE videos (mean patient´s age 56 years), all frames showing CPs were collected and compared to the number of frames presented by QV at increasing QV settings (10, 20, ... 80%). Reliability of QV in presenting polyps <6 mm and ≥6 mm (significant polyp), and identifying patients for subsequent therapeutic colonoscopy, capsule egestion rate, cleansing level, and estimated time-saving potential were assessed. RESULTS. At a 30% QV setting, the QV video presented 89% of the significant polyps and 86% of any polyps with ≥1 frame (per-polyp analysis) identified in NM before. At a 10% QV setting, 98% of the 52 patients with significant polyps could be identified (per-patient analysis) by QV video analysis. Capsule excretion rate was 74% and colon cleanliness was adequate in 85%. QV´s presentation rate correlates to the QV setting, the polyp size, and the number of frames per finding. CONCLUSIONS. Depending on its setting, the reliability of QV in presenting CP as compared to NM reading is notable. However, if no significant polyp is presented by QV, NM reading must be performed afterwards. The reduction of frames to be analyzed in QV might speed up identification of candidates for therapeutic colonoscopy. PMID:24325660

  13. Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L.

    PubMed

    Tanaka, Sachi; Yamamoto, Kana; Yamada, Kazuki; Furuya, Kanon; Uyeno, Yutaka

    2016-05-01

    This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10. PMID:26921420

  14. Enhancement of photodynamic therapy with 5-aminolaevulinic acid-induced porphyrin photosensitisation in normal rat colon by threshold and light fractionation studies.

    PubMed Central

    Messmann, H.; Mlkvy, P.; Buonaccorsi, G.; Davies, C. L.; MacRobert, A. J.; Bown, S. G.

    1995-01-01

    5-Aminolaevulinic acid (ALA)-induced prophyrin photosensitisation is an attractive option for photodynamic therapy (PDT) since skin photosensitivity is limited to 1-2 days. However, early clinical results on colon tumours using the maximum tolerated oral dose of 60 mg kg-1 showed only superficial necrosis, presumably owing to insufficient intratumoral porphyrin levels, although inadequate light dosimetry may also be a factor. We undertook experiments using ALA, 25-400 mg kg-1 intravenously, to establish the threshold doses required for a PDT effect. Laser light at 630 nm (100 mW, 10-200 J) was delivered to a single site in the colon of photosensitised normal Wistar rats at laparotomy. The animals were killed 3 days later and the area of PDT-induced necrosis measured. No lesion was seen with 25 mg kg-1. The lesion size increased with larger ALA doses and with the light dose but little benefit was seen from increasing the ALA dose above 200 mg kg-1 or the light dose above 100 J. Thus there is a fairly narrow window for optimum doses of drug and light. Further experiments showed that the PDT effect can be markedly enhanced by fractionating the light dose. A series of animals was sensitized with 200 mg kg-1 ALA and then treated with 25 J. With continuous irradiation, the lesion area was 13 mm2, but with a single interruption of 150 s the area rose to 94 mm2 with the same total energy. Results were basically similar for different intervals between fractions (10-900 s) and different numbers of fractions (2-25). This suggests that a single short interruption in the light irradiation may dramatically reduce the net light dose required to achieve extensive necrosis. Images Figure 3 PMID:7669566

  15. Differential accumulation and organ-specific metabolism of 5-aminolevulinic acid between cancer cells and normal epithelial and stromal cells

    NASA Astrophysics Data System (ADS)

    Krieg, Rene C.; Rauch, Joachim; Seidl, Juergen; Stepp, Herbert G.; Messmann, Helmut; Knuechel, Ruth

    2001-01-01

    To optimize conditions of photodynamic therapy (PDT) with ALA induced protoporphyrin IX (PPIX), topography of accumulation and metabolism of PPIX were analyzed in vitro. Adenocarcinoma cell lines, urothelial carcinoma cell lines, and a normal fibroblast cell line were cultured in plateau phase. ALA-induced PPIX accumulation, porphobilinogendeaminase-, ferrochelatase- activity, intracellular iron content, transferrin receptor expression and PPIX localization were determined using standard techniques. PBG activity as well as PPIX content were found higher in adenocarcinoma cells than in urothelial cells. Urothelial cell lines showed significant alterations in FC values in contrast to similar levels of FC in adenocarcinoma cell lines overall. Well differentiated cells showed higher iron content than lower differentiated cells. Transferrin receptor expression was found independent of PPIX content and intracellular iron content. In HT29, PPIX localizes mostly in the cell membrane, in SW480 and CaCo2 in mitochondria, and in urothelial cells mainly in cytosol. Data presented encourage the systematic and organ- related analysis of PPIX metabolism, since significant differences have been found between urothelial tumor cells and adenocarcinoma cells which may demand different strategies of therapy optimization and combination therapy regimens.

  16. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions

    PubMed Central

    Baranwal, Somesh

    2015-01-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. PMID:25792565

  17. Cytotoxicity of HBD3 for dendritic cells, normal human epidermal keratinocytes, hTERT keratinocytes, and primary oral gingival epithelial keratinocytes in cell culture conditions.

    PubMed

    Leelakanok, Nattawut; Fischer, Carol L; Bates, Amber M; Guthmiller, Janet M; Johnson, Georgia K; Salem, Aliasger K; Brogden, Kim A; Brogden, Nicole K

    2015-12-01

    Human β-defensin 3 (HBD3) is a prominent host defense peptide. In our recent work, we observed that HBD3 modulates pro-inflammatory agonist-induced chemokine and cytokine responses in human myeloid dendritic cells (DCs), often at 20.0 μM concentrations. Since HBD3 can be cytotoxic in some circumstances, it is necessary to assess its cytotoxicity for DCs, normal human epidermal keratinocytes (NHEKs), human telomerase reverse transcriptase (hTERT) keratinocytes, and primary oral gingival epithelial (GE) keratinocytes in different cell culture conditions. Cells, in serum free media with resazurin and in complete media with 10% fetal bovine serum and resazurin, were incubated with 5, 10, 20, and 40 μM HBD3. Cytotoxicity was determined by measuring metabolic conversion of resazurin to resorufin. The lethal dose 50 (LD50, mean μM±Std Err) values were determined from the median fluorescent intensities of test concentrations compared to live and killed cell controls. The LD50 value range of HBD3 was 18.2-35.9 μM in serum-free media for DCs, NHEKs, hTERT keratinocytes, and GE keratinocytes, and >40.0 μM in complete media. Thus, HBD3 was cytotoxic at higher concentrations, which must be considered in future studies of HBD3-modulated chemokine and cytokine responses in vitro. PMID:26367466

  18. Hyaluronidase 2 (HYAL2) is expressed in endothelial cells, as well as some specialized epithelial cells, and is required for normal hyaluronan catabolism.

    PubMed

    Chowdhury, Biswajit; Hemming, Richard; Faiyaz, Sana; Triggs-Raine, Barbara

    2016-01-01

    Hyaluronidase 2 (HYAL2) is a membrane-anchored protein that is proposed to initiate the degradation of hyaluronan (HA) in the extracellular matrix. The distribution of HYAL2 in tissues, and of HA in tissues lacking HYAL2, is largely unexplored despite the importance of HA metabolism in several disease processes. Herein, we use immunoblot and histochemical analyses to detect HYAL2 and HA in mouse tissues, as well as agarose gel electrophoresis to examine the size of HA. HYAL2 was detected in all tissues that were examined, including the brain. It was localized to the surface and cytoplasm of endothelial cells, as well as specialized epithelial cells in several tissues, including the skin. Accumulated HA, often of higher molecular mass than that in control tissues, was detected in tissues from Hyal2 (-/-) mice. The accumulating HA was located near to where HYAL2 is normally found, although in some tissues, it was distant from the site of HYAL2 localization. Overall, HYAL2 was highest in tissues that remove HA from the circulation (liver, lymph node and spleen), but the levels of HA accumulation in Hyal2 (-/-) mice were highest in tissues that catabolize locally synthesized HA. Our results support HYAL2's role as an extracellular enzyme that initiates HA breakdown in somatic tissues. However, our findings also suggest that HYAL2 contributes to HA degradation through other routes, perhaps as a soluble or secreted form. PMID:26515055

  19. Critical and Distinct Roles of p16 and Telomerase in Regulating the Proliferative Life Span of Normal Human Prostate Epithelial Progenitor Cells*S⃞

    PubMed Central

    Bhatia, Bobby; Jiang, Ming; Suraneni, Mahipal; Patrawala, Lubna; Badeaux, Mark; Schneider-Broussard, Robin; Multani, Asha S.; Jeter, Collene R.; Calhoun-Davis, Tammy; Hu, Limei; Hu, Jianhua; Tsavachidis, Spiridon; Zhang, Wei; Chang, Sandy; Hayward, Simon W.; Tang, Dean G.

    2008-01-01

    Normal human prostate (NHP) epithelial cells undergo senescence in vitro and in vivo, but the underlying molecular mechanisms remain obscure. Here we show that the senescence of primary NHP cells, which are immunophenotyped as intermediate basal-like cells expressing progenitor cell markers CD44, α2β1, p63, hTERT, and CK5/CK18, involves loss of telomerase expression, up-regulation of p16, and activation of p53. Using genetically defined manipulations of these three signaling pathways, we show that p16 is the primary determinant of the NHP cell proliferative capacity and that hTERT is required for unlimited proliferative life span. Hence, suppression of p16 significantly extends NHP cell life span, but both p16 inhibition and hTERT are required to immortalize NHP cells. Importantly, immortalized NHP cells retain expression of most progenitor markers, demonstrate gene expression profiles characteristic of proliferating progenitor cells, and possess multilineage differentiation potential generating functional prostatic glands. Our studies shed important light on the molecular mechanisms regulating the proliferative life span of NHP progenitor cells. PMID:18662989

  20. Enhancing HOTAIR/MiR-10b Drives Normal Liver Stem Cells Toward a Tendency to Malignant Transformation Through Inducing Epithelial- to-Mesenchymal Transition.

    PubMed

    Ye, Ping; Wang, Tao; Liu, Wei-Hui; Li, Xiu-Chuan; Tang, Li-Jun; Tian, Fu-Zhou

    2015-08-01

    Previously, other groups and our team consistently have demonstrated that the possible origination of liver cancer stem cells (LCSCs) is the malignant transformation from liver normal stem cells (LNSCs). However, this complex and multi-step process is far from clear due to the accumulation of various gene dysregulations. Because non-coding RNAs (ncRNAs) could regulate multiple genes, a family of genes, and even whole chromosomes, this study further investigated the effect of dysregulated short ncRNA microRNA-10b and long ncRNA HOX transcript antisense RNA (HOTAIR) between LNSCs and LCSCs on phenotype reversion. To clarify the role of ncRNA in malignant transformation of LNSCs, we used lentivirus transduction to enhance the miR-10b and HOTAIR expression levels in our previously isolated rat LNSCs. The malignant abilities of proliferation, invasiveness, and tumorigenesis were observed and compared in cells before and after ncRNAs enhancement. After microRNA-10b and HOTAIR were enhanced separately, several cancer stem cell (CSC)-like traits appeared in these LNSCs, including in vitro-enhanced proliferative capacity, expression of putative LCSC markers, progressive invasive ability, and even in vivo aggravation into and taking the place of normal liver tissue. Furthermore, strengthened expression of these ncRNAs partially degraded E-cadherin in LNSCs, which is one of the classic markers in epithelial-to-mesenchymal transition (EMT). HOTAIR or miR-10b enhanced in LNSCs may drive the LNSCs to a tendency toward malignant transformation. This study partially uncovers the mechanism by which miR-10b or HOTAIR promotes malignant transformation of LNSCs through down-regulating E-cadherin and inducing EMT. PMID:25708830

  1. [Simplified measurement of colonic transit time by one radiography of the abdomen and a single type of marker. Normal values in 82 volunteers related to the sexes].

    PubMed

    Danquechin Dorval, E; Barbieux, J P; Picon, L; Alison, D; Codjovi, P; Rouleau, P

    1994-01-01

    Assessment of total and segmental colonic transit times (CTT) in man using a single type of radiopaque marker and one abdominal X-ray has been validated but not extensively studied. The aims of our prospective study were to establish normal values of this method as a function of age, gender and fiber intake in healthy subjects. Eighty-two healthy volunteers (51 men, 31 women, mean age 38 yr, range 21-61) with normal stool frequency (between 3/day and 3/week) and no history of gastrointestinal disease or medication were enrolled and ingested 10 small (3 mm edge) radiopaque markers every morning for 6 consecutive days. On the 7th day, an abdominal X-ray was performed to calculate total and segmental (right, left, rectosigmoid) CTT according to Arhan's method (CCT = 2.4 N; N = number of markers in the considered zone). During the study the number of stools was recorded and fiber intake estimated on a questionnaire. Stool frequency, total and segmental CTT were evaluated for differences due to age, gender and/or fiber intake. In volunteers, total, left and rectosigmoid CTT were closely related to stool frequency (P = 0.0001) being longer in women than in men (P < 0.02). In contrast, right CTT was independent of gender or stool frequency. Finally, in this group CTT were independent of age and fiber intake. This study confirms the influence of gender on CTT and demonstrate the ability of this simple and non-invasive method (0.08 mrad surface exposure) to assess CTT. Its use as a diagnostic tool in self-defined constipated patients would be of interest in clinical practice. PMID:8013795

  2. Association of the epithelial-to-mesenchymal transition phenotype with responsiveness to the p21-activated kinase inhibitor, PF-3758309, in colon cancer models

    PubMed Central

    Pitts, Todd M.; Kulikowski, Gillian N.; Tan, Aik-Choon; Murray, Brion W.; Arcaroli, John J.; Tentler, John J.; Spreafico, Anna; Selby, Heather M.; Kachaeva, Maria I.; McPhillips, Kelly L.; Britt, Blair C.; Bradshaw-Pierce, Erica L.; Messersmith, Wells A.; Varella-Garcia, Marileila; Eckhardt, S. Gail

    2013-01-01

    The p21-activated kinase (PAK) family of serine/threonine kinases, which are overexpressed in several cancer types, are critical mediators of cell survival, motility, mitosis, transcription, and translation. In the study presented here, we utilized a panel of colorectal cancer (CRC) cell lines to identify potential biomarkers of sensitivity or resistance that may be used to individualize therapy to the PAK inhibitor PF-03758309. We observed a wide range of proliferative responses in the CRC cell lines exposed to PF-03758309, this response was recapitulated in other phenotypic assays such as anchorage-independent growth, three-dimensional (3D) tumor spheroid formation, and migration. Interestingly, we observed that cells most sensitive to PF-03758309 exhibited up-regulation of genes associated with a mesenchymal phenotype (CALD1, VIM, ZEB1) and cells more resistant had an up-regulation of genes associated with an epithelial phenotype (CLDN2, CDH1, CLDN3, CDH17) allowing us to derive an epithelial-to-mesenchymal transition (EMT) gene signature for this agent. We assessed the functional role of EMT-associated genes in mediating responsiveness to PF-3758309, by targeting known genes and transcriptional regulators of EMT. We observed that suppression of genes associated with the mesenchymal phenotype conferred resistance to PF-3758309, in vitro and in vivo. These results indicate that PAK inhibition is associated with a unique response phenotype in CRC and that further studies should be conducted to facilitate both patient selection and rational combination strategies with these agents. PMID:23543898

  3. Curcumin inhibits tumor epithelial-mesenchymal transition by downregulating the Wnt signaling pathway and upregulating NKD2 expression in colon cancer cells

    PubMed Central

    ZHANG, ZEWEI; CHEN, HAITAO; XU, CHAO; SONG, LU; HUANG, LULU; LAI, YUEBIAO; WANG, YUQI; CHEN, HANLU; GU, DANLIN; REN, LILI; YAO, QINGHUA

    2016-01-01

    Tumor invasion and metastasis are closely associated with epithelial-mesenchymal transition (EMT). EMT refers to epithelial cells under physiological and pathological conditions that are specific to mesenchymal transition. Curcumin inhibits EMT progression via Wnt signaling. The Wnt signaling pathway is a conservative EMT-related signaling pathway that is involved in the development of various tumors. In the present study, MTS assays were employed to analyze the proliferation of curcumin-treated cells. Naked cuticle homolog 2 (NKD2), chemokine receptor 4 (CXCR4) and antibodies associated with EMT were examined in SW620 colorectal cancer cell lines using western blot analysis and real-time qPCR. NKD2 small-interfering RNA (siRNA) and CXCR4 expression plasmid was synthesized and transfected into the colorectal cancer cell lines, and NKD2 and CXCR4 expression levels were detected. The results showed that curcumin significantly inhibited the proliferation of colorectal cancer cells and upregulated the expression of NKD2 in SW620 colorectal cancer cells and in the xenograft, resulting in the downregulation of key markers in the Wnt signaling. In addition, the progression of ETM was inhibited due to the overexpression of E-cadherin as well as the downregulation of vimentin. Curcumin also inhibited tumor metastasis by downregulating the expression of CXCR4 significantly. The results suggested involvement of the NKD2-Wnt-CXCR4 signaling pathway in colorectal cancer cells. In addition, curcumin is inhibit this signaling and the development of colorectal cancer. PMID:26985708

  4. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells.

    PubMed

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-11-18

    Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding mechanisms underlying muscarinic receptor agonist-induced promotion of colon cancer and, more importantly, indicates that blocking MMP1 expression and activation has therapeutic promise to stop or retard colon cancer invasion and dissemination. PMID:22027145

  5. Normalization of raised sodium absorption and raised calcium-mediated chloride secretion by adenovirus-mediated expression of cystic fibrosis transmembrane conductance regulator in primary human cystic fibrosis airway epithelial cells.

    PubMed Central

    Johnson, L G; Boyles, S E; Wilson, J; Boucher, R C

    1995-01-01

    Cystic fibrosis airway epithelia exhibit a spectrum of ion transport properties that differ from normal, including not only defective cAMP-mediated Cl- secretion, but also increased Na+ absorption and increased Ca(2+)-mediated Cl- secretion. In the present study, we examined whether adenovirus-mediated (Ad5) transduction of CFTR can correct all of these CF ion transport abnormalities. Polarized primary cultures of human CF and normal nasal epithelial cells were infected with Ad5-CBCFTR at an moi (10(4)) which transduced virtually all cells or Ad5-CMV lacZ as a control. Consistent with previous reports, Ad5-CBCFTR, but not Ad5-CMV lacZ, corrected defective CF cAMP-mediated Cl- secretion. Basal Na+ transport rates (basal Ieq) in CF airway epithelial sheets (-78.5 +/- 9.8 microA/cm2) were reduced to levels measured in normal epithelial sheets (-30.0 +/- 2.0 microA/cm2) by Ad5-CBCFTR (-36.9 +/- 4.8 microA/cm2), but not Ad5-CMV lacZ (-65.8 +/- 6.1 microA/cm2). Surprisingly, a significant reduction in delta Ieq in response to ionomycin, a measure of Ca(2+)-mediated Cl- secretion, was observed in CFTR-expressing (corrected) CF epithelial sheets (-6.9 +/- 11.8 microA/cm2) when compared to uninfected CF epithelial sheets (-76.2 +/- 15.1 microA/cm2). Dose response effects of Ad5-CBCFTR on basal Na+ transport rates and Ca(2+)-mediated Cl- secretion suggest that the mechanism of regulation of these two ion transport functions by CFTR may be different. In conclusion, efficient transduction of CFTR corrects hyperabsorption of Na+ in primary CF airway epithelial cells and restores Ca(2+)-mediated Cl- secretion to levels observed in normal airway epithelial cells. Moreover, assessment of these ion transport abnormalities may represent important endpoints for testing the efficacy of gene therapy for cystic fibrosis. Images PMID:7533790

  6. Colon cancer

    MedlinePlus

    Colorectal cancer; Cancer - colon; Rectal cancer; Cancer - rectum; Adenocarcinoma - colon; Colon - adenocarcinoma ... In the United States, colorectal cancer is one of the leading causes of deaths due to cancer. Early diagnosis can often lead to a complete cure. Almost ...

  7. Phospholipase Cϵ Activates Nuclear Factor-κB Signaling by Causing Cytoplasmic Localization of Ribosomal S6 Kinase and Facilitating Its Phosphorylation of Inhibitor κB in Colon Epithelial Cells.

    PubMed

    Wakita, Masahiro; Edamatsu, Hironori; Li, Mingzhen; Emi, Aki; Kitazawa, Sohei; Kataoka, Tohru

    2016-06-10

    Phospholipase Cϵ (PLCϵ), an effector of Ras and Rap small GTPases, plays a crucial role in inflammation by augmenting proinflammatory cytokine expression. This proinflammatory function of PLCϵ is implicated in its facilitative role in tumor promotion and progression during skin and colorectal carcinogenesis, although their direct link remains to be established. Moreover, the molecular mechanism underlying these functions of PLCϵ remains unknown except that PKD works downstream of PLCϵ. Here we show by employing the colitis-induced colorectal carcinogenesis model, where Apc(Min) (/+) mice are administered with dextran sulfate sodium, that PLCϵ knock-out alleviates the colitis and suppresses the following tumorigenesis concomitant with marked attenuation of proinflammatory cytokine expression. In human colon epithelial Caco2 cells, TNF-α induces sustained expression of proinflammatory molecules and sustained activation of nuclear factor-κB (NF-κB) and PKD, the late phases of which are suppressed by not only siRNA-mediated PLCϵ knockdown but also treatment with a lysophosphatidic acid (LPA) receptor antagonist. Also, LPA stimulation induces these events in an early time course, suggesting that LPA mediates TNF-α signaling in an autocrine manner. Moreover, PLCϵ knockdown results in inhibition of phosphorylation of IκB by ribosomal S6 kinase (RSK) but not by IκB kinases. Subcellular fractionation suggests that enhanced phosphorylation of a scaffolding protein, PEA15 (phosphoprotein enriched in astrocytes 15), downstream of the PLCϵ-PKD axis causes sustained cytoplasmic localization of phosphorylated RSK, thereby facilitating IκB phosphorylation in the cytoplasm. These results suggest the crucial role of the TNF-α-LPA-LPA receptor-PLCϵ-PKD-PEA15-RSK-IκB-NF-κB pathway in facilitating inflammation and inflammation-associated carcinogenesis in the colon. PMID:27053111

  8. Androgen Receptor (AR) Suppresses Normal Human Prostate Epithelial Cell Proliferation via AR/β-catenin/TCF-4 Complex Inhibition of c-MYC Transcription

    PubMed Central

    Antony, Lizamma; van der Schoor, Freek; Dalrymple, Susan L.; Isaacs, John T.

    2016-01-01

    INTRODUCTION Physiologic testosterone continuously stimulates prostate stromal cell secretion of paracrine growth factors (PGFs), which if unopposed would induce hyperplastic overgrowth of normal prostate epithelial cells (PrECs). METHODS Lentiviral shRNA stable knock down of c-MYC, β-catenin, or TCF-4 completely inhibits normal (i.e., non-transformed) human PrECs growth. c-MYC enhancer driven reporter expression and growth is inhibited by two chemically distinct molecules, which prevent β-catenin signaling either by blocking TCF-4 binding (i.e., toxoflavin) or by stimulating degradation (i.e., AVX939). Recombinant DKK1 protein at a dose, which inhibits activation of canonical Wnt signaling does not inhibit PrEC growth. Nuclear β-catenin translocation and PrEC growth is prevented by both lack of PGFs or Akt inhibitor-I. Growth inhibition induced by lack of PGFs, toxoflavin, or Akt inhibitor-I is overcome by constitutive c-MYC transcription. RESULTS In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen binding to AR suppressing c-MYC transcription, resulting in G0 arrest/terminal differentiation independent of Rb, p21, p27, FoxP3, or down regulation of growth factors receptors and instead involves androgen-induced formation of AR/β-catenin/TCF-4 complexes, which suppress c-MYC transcription. Such suppression does not occur when AR is mutated in its zinc-finger binding domain. DISCUSSION Proliferation of non-transformed human PrECs is dependent upon c-MYC transcription via formation/binding of β-catenin/TCF-4 complexes at both 5′ and 3′ c-MYC enhancers stimulated by Wnt-independent, PGF induced Akt signaling. In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen-induced formation of AR/β-catenin/TCF-4 complexes, which retains binding to 3′ c-MYC enhancer, but now suppresses c-MYC transcription. PMID:24913829

  9. Infection of Polarized Airway Epithelial Cells by Normal and Small-Colony Variant Strains of Staphylococcus aureus Is Increased in Cells with Abnormal Cystic Fibrosis Transmembrane Conductance Regulator Function and Is Influenced by NF-κB ▿

    PubMed Central

    Mitchell, Gabriel; Grondin, Gilles; Bilodeau, Ginette; Cantin, André M.; Malouin, François

    2011-01-01

    The infection of nonphagocytic host cells by Staphylococcus aureus and more particularly by small-colony variants (SCVs) may contribute to the persistence of this pathogen in the lungs of cystic fibrosis (CF) patients. The development of chronic infections is also thought to be facilitated by the proinflammatory status of CF airways induced by an activation of NF-κB. The aim of this study was to compare the infection of non-CF and CF-like airway epithelial cells by S. aureus strains (normal and SCVs) and to determine the impact of the interaction between cystic fibrosis transmembrane conductance regulator (CFTR) and NF-κB on the infection level of these cells by S. aureus. We developed an S. aureus infection model using polarized airway epithelial cells grown at the air-liquid interface and expressing short hairpin RNAs directed against CFTR to mimic the CF condition. A pair of genetically related CF coisolates with the normal and SCV phenotypes was characterized and used. Infection of both cell lines (non-CF and CF-like) was more productive with the SCV strain than with its normal counterpart. However, both normal and SCV strains infected more CF-like than non-CF cells. Accordingly, inhibition of CFTR function by CFTRinh-172 increased the S. aureus infection level. Experimental activation of NF-κB also increased the level of infection of polarized pulmonary epithelial cells by S. aureus, an event that could be associated with that observed when CFTR function is inhibited or impaired. This study supports the hypothesis that the proinflammatory status of CF tissues facilitates the infection of pulmonary epithelial cells by S. aureus. PMID:21708986

  10. Quantification of 18FDG in the Normal Colon-A First Step in Investigating Whether Its Presence Is a Marker of a Physiological Process.

    PubMed

    Bardhan, Karna D; Cullis, James; Williams, Nigel R; Arasaradnam, Ramesh P; Wilson, Adrian J

    2016-01-01

    The visibility of the colon in positron emission tomography (PET) scans of patients without gastrointestinal disease indicating the presence of 18F Fluorodeoxyglucose (18FDG) is well recognised, but unquantified and unexplained. In this paper a qualitative scoring system was applied to PET scans from 30 randomly selected patients without gastrointestinal disease to detect the presence of 18FDG in 4 different sections of the colon and then both the total pixel value and the pixel value per unit length of each section of the colon were determined to quantify the amount of 18FDG from a randomly selected subset of 10 of these patients. Analysis of the qualitative scores using a non-parametric ANOVA showed that all sections of the colon contained 18FDG but there were differences in the amount of 18FDG present between sections (p<0.05). Wilcoxon matched-pair signed-rank tests between pairs of segments showed statistically significant differences between all pairs (p<0.05) with the exception of the caecum and ascending colon and the descending colon. The same non-parametric statistical analysis of the quantitative measures showed no difference in the total amount of 18FDG between sections (p>0.05), but a difference in the amount/unit length between sections (p<0.01) with only the caecum and ascending colon and the descending colon having a statistically significant difference (p<0.05). These results are consistent since the eye is drawn to focal localisation of the 18FDG when qualitatively scoring the scans. The presence of 18FDG in the colon is counterintuitive since it must be passing from the blood to the lumen through the colonic wall. There is no active mechanism to achieve this and therefore we hypothesise that the transport is a passive process driven by the concentration gradient of 18FDG across the colonic wall. This hypothesis is consistent with the results obtained from the qualitative and quantitative measures analysed. PMID:26821281

  11. Effect of NF-κB p65 antisense oligodeoxynucleotide on transdifferentiation of normal human lens epithelial cells induced by transforming growth factor-β2

    PubMed Central

    Liu, Chao; Wu, Xiao-Li; Wu, Xin-Yi; Zhang, Zhen-Hua; Liu, Xiao-Hua

    2016-01-01

    AIM To study the inhibition of nuclear factor kappa-B p65 (NF-κB p65) antisense oligodeoxynucleotide (ASODN) on transdifferentiation of normal human lens epithelial cells induced by transforming growth factor-β2 (TGF-β2) in vitro. METHODS NF-κB p65 ASODN and NF-κB p65 missense oligodeoxynucleotide (MSODN) were designed and synthesized. Human lens epithelial cell line (HLE B-3) cells were prepared for study and divided into 7 groups. Control group was HLE B-3 cells cultured in vitro in dulbecco's modified eagle medium (DMEM). T1, T2, and T3 group were HLE B-3 cells cultured in vitro in DMEM with 10 ng/mL TGF-β2 for 6h, 12h, 24h respectively. A+T group was HLE B-3 cells cultured with 10 ng/mL TGF-β2 for 24h after transfected by NF-κB p65 ASODN for 24h. M+T group was HLE B-3 cells cultured with 10 ng/mL TGF-β2 for 24h after transfected by NF-κB p65 MSODN for 24h. The negative control group was HLE B-3 cells cultured with 10 ng/mL TGF-β2 for 24h after cultured with transfer agent (HiPerFect) for 24h. Cell morphology was observed at different time points using an inverted microscope. The expression of NF-κB p65 mRNA was detected with reverse transcription-polymerase chain reaction (RT-PCR), and the expression of α-smooth muscle actin (α-SMA) protein was assayed with ELISA. RESULTS With the TGF-β2 stimulation prolongation, the expression of NF-κB p65 mRNA and α-SMA protein increased in T1, T2, T3 groups compared with the control group, and the difference was statistically significant (P<0.05). NF-κB p65 ASODN lowered the expression of NF-κB p65 mRNA and α-SMA protein induced by TGF-β2. NF-κB p65 MSODN and HiPerFect did not lower the expression of NF-κB p65 mRNA and α-SMA protein induced by TGF-β2. The difference between control group and A+T group was not statistically significant (P>0.05), but the difference among A+T group and other groups was statistically significant (P<0.05). CONCLUSION NF-κB p65 ASODN could lower the expression of NF-κB p

  12. The epithelial polarity regulator LGALS9/galectin-9 induces fatal frustrated autophagy in KRAS mutant colon carcinoma that depends on elevated basal autophagic flux

    PubMed Central

    Wiersma, Valerie R; de Bruyn, Marco; Wei, Yunwei; van Ginkel, Robert J; Hirashima, Mitsuomi; Niki, Toshiro; Nishi, Nozomu; Zhou, Jin; Pouwels, Simon D; Samplonius, Douwe F; Nijman, Hans W; Eggleton, Paul; Helfrich, Wijnand; Bremer, Edwin

    2015-01-01

    Oncogenic mutation of KRAS (Kirsten rat sarcoma viral oncogene homolog) in colorectal cancer (CRC) confers resistance to both chemotherapy and EGFR (epidermal growth factor receptor)-targeted therapy. We uncovered that KRAS mutant (KRASmut) CRC is uniquely sensitive to treatment with recombinant LGALS9/Galectin-9 (rLGALS9), a recently established regulator of epithelial polarity. Upon treatment of CRC cells, rLGALS9 rapidly internalizes via early- and late-endosomes and accumulates in the lysosomal compartment. Treatment with rLGALS9 is accompanied by induction of frustrated autophagy in KRASmut CRC, but not in CRC with BRAF (B-Raf proto-oncogene, serine/threonine kinase) mutations (BRAFmut). In KRASmut CRC, rLGALS9 acts as a lysosomal inhibitor that inhibits autophagosome-lysosome fusion, leading to autophagosome accumulation, excessive lysosomal swelling and cell death. This antitumor activity of rLGALS9 directly correlates with elevated basal autophagic flux in KRASmut cancer cells. Thus, rLGALS9 has potent antitumor activity toward refractory KRASmut CRC cells that may be exploitable for therapeutic use. PMID:26086204

  13. Small colonic microsatellite unstable adenocarcinomas and high-grade epithelial dysplasias in sessile serrated adenoma polypectomy specimens: a study of eight cases.

    PubMed

    Goldstein, Neal S

    2006-01-01

    Eight sessile serrated adenoma (SSA), right colon polypectomies with focal invasive adenocarcinoma or high-grade dysplasia were studied to identify features indicating a high risk of transformation and characterize the morphologic features of serrated dysplasia; 6 cases had invasive adenocarcinoma; 2 were high-grade dysplasia. All 8 were microsatellite unstable-high and had absent hMLH1 nuclear immunoreactivity. The mean patient age at polypectomy was 69.5 years (range, 57.1-83.9 years). Mean polyp maximum dimension was 8.5 mm (range, 6-12 mm). The majority of each polyp was nonmalignant SSA. All 8 cases had an abrupt transition from benign to high-grade in situ or invasive malignancy. In the 6 invasive adenocarcinomas, the neoplasm extended directly down into the submucosa without lateral intramucosal spread. The mean maximum dimension of the invasive adenocarcinoma was 2.9 mm (range, 2-4 mm). All 8 cases had high-grade serrated-type dysplasia. The nonmalignant SSAs had marked expansion of the proliferative zone. Crypts adjacent to malignancy had moderately enlarged nuclei, irregular nuclear membranes, and overly prominent nucleoli. SSA crypts were lined by a variety of gastric-type cells; no cell type predominated. Foci of adjacent crypts had similar cytologic features. Small proximal SSAs can transform into adenocarcinoma without a component of adenomatous dysplasia. PMID:16483002

  14. Phototoxic aptamers selectively enter and kill epithelial cancer cells

    PubMed Central

    Ferreira, Cátia S. M.; Cheung, Melissa C.; Missailidis, Sotiris; Bisland, Stuart; Gariépy, Jean

    2009-01-01

    The majority of cancers arise from malignant epithelial cells. We report the design of synthetic oligonucleotides (aptamers) that are only internalized by epithelial cancer cells and can be precisely activated by light to kill such cells. Specifically, phototoxic DNA aptamers were selected to bind to unique short O-glycan-peptide signatures on the surface of breast, colon, lung, ovarian and pancreatic cancer cells. These surface antigens are not present on normal epithelial cells but are internalized and routed through endosomal and Golgi compartments by cancer cells, thus providing a focused mechanism for their intracellular delivery. When modified at their 5′ end with the photodynamic therapy agent chlorin e6 and delivered to epithelial cancer cells, these aptamers exhibited a remarkable enhancement (>500-fold increase) in toxicity upon light activation, compared to the drug alone and were not cytotoxic towards cell types lacking such O-glycan-peptide markers. Our findings suggest that these synthetic oligonucleotide aptamers can serve as delivery vehicles in precisely routing cytotoxic cargoes to and into epithelial cancer cells. PMID:19103663

  15. Functional Comparison of Human Colonic Carcinoma Cell Lines and Primary Small Intestinal Epithelial Cells for Investigations of Intestinal Drug Permeability and First-Pass Metabolism.

    PubMed

    Yamaura, Yoshiyuki; Chapron, Brian D; Wang, Zhican; Himmelfarb, Jonathan; Thummel, Kenneth E

    2016-03-01

    To further the development of a model for simultaneously assessing intestinal absorption and first-pass metabolism in vitro, Caco-2, LS180, T84, and fetal human small intestinal epithelial cells (fSIECs) were cultured on permeable inserts, and the integrity of cell monolayers, CYP3A4 activity, and the inducibility of enzymes and transporters involved in intestinal drug disposition were measured. Caco-2, T84, and fSIECs all formed tight junctions, as assessed by immunofluorescence microscopy for zonula occludens-1, which was well organized into circumscribing strands in T84, Caco-2, and fSIECs but was diffuse in LS180 cells. The transepithelial electrical resistance value for LS180 monolayers was lower than that for Caco-2, T84, and fSIECs. In addition, the apical-to-basolateral permeability of the paracellular marker Lucifer yellow across LS180 monolayers was greater than in fSIECs, T84, and Caco-2 monolayers. The transcellular marker propranolol exhibited similar permeability across all cells. With regard to metabolic capacity, T84 and LS180 cells showed comparable basal midazolam hydroxylation activity and was inducible by rifampin and 1α,25(OH)2D3 in LS180 cells, but only marginally so in T84 cells. The basal CYP3A4 activity of fSIECs and Caco-2 cells was much lower and not inducible. Interestingly, some of the drug transporters expressed in LS180 and Caco-2 cells were induced by either 1α,25(OH)2D3 or rifampin or both, but effects were limited in the other two cell lines. These results suggest that none of the cell lines tested fully replicated the drug disposition properties of the small intestine and that the search for an ideal screening tool must continue. PMID:26700954

  16. Multimodal nonlinear optical microscopy used to discriminate human colon cancer

    NASA Astrophysics Data System (ADS)

    Adur, Javier; Pelegati, Vitor B.; Bianchi, Mariana; de Thomaz, André A.; Baratti, Mariana O.; Carvalho, Hernandes F.; Casco, Víctor H.; Cesar, Carlos L.

    2013-02-01

    Colon cancer is one of the most diffused cancers in the Western World, ranking third worldwide in frequency of incidence after lung and breast cancers. Even if it is curable when detected and treated early, a more accurate premature diagnosis would be a suitable aim for both cancer prognostic and treatment. Combined multimodal nonlinear optical (NLO) microscopies, such as two-photon excitation fluorescence (TPEF), second-harmonic generation (SHG), third harmonic generation (THG), and fluorescence lifetime imaging microscopy (FLIM) can be used to detect morphological and metabolic changes associated with stroma and epithelial transformation in colon cancer disease. NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns between normal and malignant human colonic mucosa. Using a set of scoring methods significant differences both in the content, distribution and organization of stroma collagen fibrils, and lifetime components of NADH and FAD cofactors of human colon mucosa biopsies were found. Our results provide a framework for using NLO techniques as a clinical diagnostic tool for human colon cancer, and also suggest that the SHG and FLIM metrics could be applied to other intestinal disorders, which are characterized by abnormal cell proliferation and collagen assembly.

  17. Claudin-1 Regulates Intestinal Epithelial Homeostasis through the Modulation of Notch Signaling

    PubMed Central

    Pope, Jillian L.; Bhat, Ajaz. A.; Sharma, Ashok; Ahmad, Rizwan; Krishnan, Moorthy; Washington, Mary K.; Beauchamp, Robert D.; Singh, Amar B.; Dhawan, Punita

    2014-01-01

    Objective Claudin-1 expression is increased and dysregulated in colorectal cancer and causally associates with the dedifferentiation of colonic epithelial cells, cancer progression and metastasis. Here, we have sought to determine the role claudin-1 plays in the regulation of intestinal epithelial homeostasis. Design We have used a novel Villin-claudin-1 transgenic (Cl-1Tg) mouse as model (with intestinal claudin-1 overexpression). Effect of claudin-1 expression upon colonic epithelial differentiation, lineage commitment, and Notch signaling were determined using immunohistochemical, immunoblot and real time PCR analysis. The frequently used mouse model of DSS-colitis was used to model inflammation, injury and repair. Results In Cl-1Tg mice, normal colonocyte differentiation program was disrupted and goblet cell number and muc-2 expressions were significantly downregulated while Notch- and ERK1/2-signaling were upregulated, compared to the wild type (WT)-littermates. Cl-1Tg mice were also susceptible to colonic inflammation and demonstrated impaired recovery and hyperproliferation following the DSS-colitis. Our data further show that claudin-1 regulates Notch-signaling through the regulation of MMP-9 and p-ERK signaling to regulate proliferation and differentiation. Conclusion Claudin-1 helps regulate intestinal epithelial homeostasis through the regulation of Notch-signaling. An upregulated claudin-1 expression induces MMP-9 and p-ERK signaling to activate Notch-signaling, which in turn inhibits the goblet cell differentiation. Decreased goblet cell number decreases muc-2 expression and thus enhances susceptibility to mucosal inflammation. Claudin-1 expression also induces colonic epithelial proliferation in a Notch-dependent manner. Our findings may help understand the role of claudin-1 in the regulation of IBD and CRC. PMID:23766441

  18. Immunocytochemistry and Image Analysis of Beta-Catenin Redistribution in Normal Human Colon Cell Cultures Treated with Disinfection By-Products.

    EPA Science Inventory

    Epidemiological studies have shown an association between the consumption of chlorinated drinking water and increased risk for colon cancer. In vivo studies proved that rodents exposed to chlorination disinfection byproducts (DBPs) developed aberrant crypt foci (ACF) in t...

  19. Salmonella Infection Upregulates the Leaky Protein Claudin-2 in Intestinal Epithelial Cells

    PubMed Central

    Zhang, Yong-guo; Wu, Shaoping; Xia, Yinglin; Sun, Jun

    2013-01-01

    Background Tight junctions seal the space between adjacent epithelial cells. Mounting evidence suggests that tight junction proteins play a key role in the pathogenesis of human disease. Claudin is a member of the tight junction protein family, which has 24 members in humans. To regulate cellular function, claudins interact structurally and functionally with membrane and scaffolding proteins via their cytoplasmic domain. In particular, claudin-2 is known to be a leaky protein that contributes to inflammatory bowel disease and colon cancer. However, the involvement of claudin-2 in bacterial infection in the intestine remains unknown. Methods/Principal Findings We hypothesized that Salmonella elevates the leaky protein claudin-2 for its own benefit to facilitate bacterial invasion in the colon. Using a Salmonella-colitis mouse model and cultured colonic epithelial cells, we found that pathogenic Salmonella colonization significantly increases the levels of claudin-2 protein and mRNA in the intestine, but not that of claudin-3 or claudin-7 in the colon, in a time-dependent manner. Immunostaining studies showed that the claudin-2 expression along the crypt-villous axis postinfection. In vitro, Salmonella stimulated claudin-2 expression in the human intestinal epithelial cell lines SKCO15 and HT29C19A. Further analysis by siRNA knockdown revealed that claudin-2 is associated with the Salmonella-induced elevation of cell permeability. Epithelial cells with claudin-2 knockdown had significantly less internalized Salmonella than control cells with normal claudin-2 expression. Inhibitor assays demonstrated that this regulation is mediated through activation of the EGFR pathway and the downstream protein JNK. Conclusion/Significance We have shown that Salmonella targets the tight junction protein claudin-2 to facilitate bacterial invasion. We speculate that this disruption of barrier function contributes to a new mechanism by which bacteria interact with their host cells and

  20. [Physiological role of mucins in the colonic barrier integrity].

    PubMed

    Gaudier, Estelle; Hoebler, Christine

    2006-01-01

    Colonic mucus is a key element of colonic barrier as it is located at the frontier between luminal microflora and colonic mucosa itself. Colonic mucus is mainly composed of high molecular weight glycoproteins called mucins that can be either secreted or membrane-linked. The expression of various colonic mucins is altered in colorectal cancers or inflammations. The aim of this review is to highlight the crucial role played by colonic mucins in the maintenance of colonic barrier integrity, both because they are part of the protective mucus layer, and because they individually exert specific functions involved in epithelial barrier, like cell growth and differentiation, immunomodulation, signal transduction or cell adhesion. PMID:17075443

  1. Glutathione-S-transferase M1 regulation of diesel exhaust particle-induced pro-inflammatory mediator expression in normal human bronchial epithelial cells

    PubMed Central

    2012-01-01

    Background Diesel exhaust particles (DEP) contribute substantially to ambient particulate matter (PM) air pollution in urban areas. Inhalation of PM has been associated with increased incidence of lung disease in susceptible populations. We have demonstrated that the glutathione S-transferase M1 (GSTM1) null genotype could aggravate DEP-induced airway inflammation in human subjects. Given the critical role airway epithelial cells play in the pathogenesis of airway inflammation, we established the GSTM1 deficiency condition in primary bronchial epithelial cells from human volunteers with GSTM1 sufficient genotype (GSTM1+) using GSTM1 shRNA to determine whether GSTM1 deficiency could exaggerate DEP-induced expression of interleukin-8 (IL-8) and IL-1β proteins. Furthermore, the mechanisms underlying GSTM1 regulation of DEP-induced IL-8 and IL-1β expression were also investigated. Methods IL-8 and IL-1β protein levels were measured using enzyme-linked immunosorbent assay. GSTM1 deficiency in primary human bronchial epithelial cells was achieved using lentiviral GSTM1 shRNA particles and verified using real-time polymerase chain reaction and immunoblotting. Intracellular reactive oxygen species (ROS) production was evaluated using flow cytometry. Phosphorylation of protein kinases was detected using immunoblotting. Results Exposure of primary human bronchial epithelial cells (GSTM1+) to 25-100 μg/ml DEP for 24 h significantly increased IL-8 and IL-1β protein expression. Knockdown of GSTM1 in these cells further elevated DEP-induced IL-8 and IL-1β expression, implying that GSTM1 deficiency aggravated DEP-induced pro-inflammatory response. DEP stimulation induced the phosphorylation of extracellular signal-regulated kinase (ERK) and Akt, the downstream kinase of phosphoinositide 3-kinase (PI3K), in GSTM1+ bronchial epithelial cells. Pharmacological inhibition of ERK kinase and PI3K activity blocked DEP-induced IL-8 and IL-1β expression. DEP-induced ERK and Akt

  2. Functional ESCRT machinery is required for constitutive recycling of claudin-1 and maintenance of polarity in vertebrate epithelial cells.

    PubMed

    Dukes, Joseph D; Fish, Laura; Richardson, Judith D; Blaikley, Elizabeth; Burns, Samir; Caunt, Christopher J; Chalmers, Andrew D; Whitley, Paul

    2011-09-01

    Genetic screens in Drosophila have identified regulators of endocytic trafficking as neoplastic tumor suppressor genes. For example, Drosophila endosomal sorting complex required for transport (ESCRT) mutants lose epithelial polarity and show increased cell proliferation, suggesting that ESCRT proteins could function as tumor suppressors. In this study, we show for the for the first time to our knowledge that ESCRT proteins are required to maintain polarity in mammalian epithelial cells. Inhibition of ESCRT function caused the tight junction protein claudin-1 to accumulate in intracellular vesicles. In contrast E-cadherin and occludin localization was unaffected. We investigated the cause of this accumulation and show that claudin-1 is constitutively recycled in kidney, colon, and lung epithelial cells, identifying claudin-1 recycling as a newly described feature of diverse epithelial cell types. This recycling requires ESCRT function, explaining the accumulation of intracellular claudin-1 when ESCRT function is inhibited. We further demonstrate that small interfering RNA knockdown of the ESCRT protein Tsg101 causes epithelial monolayers to lose their polarized organization and interferes with the establishment of a normal epithelial permeability barrier. ESCRT knockdown also reduces the formation of correctly polarized three-dimensional cysts. Thus, in mammalian epithelial cells, ESCRT function is required for claudin-1 trafficking and for epithelial cell polarity, supporting the hypothesis that ESCRT proteins function as tumor suppressors. PMID:21757541

  3. Ectopic expression of the chemokine CXCL17 in colon cancer cells

    PubMed Central

    Ohlsson, Lina; Hammarström, Marie-Louise; Lindmark, Gudrun; Hammarström, Sten; Sitohy, Basel

    2016-01-01

    Background: The novel chemokine CXCL17 acts as chemoattractant for monocytes, macrophages and dendritic cells. CXCL17 also has a role in angiogenesis of importance for tumour development. Methods: Expression of CXCL17, CXCL10, CXCL9 and CCL2 was assessed in primary colon cancer tumours, colon carcinoma cell lines and normal colon tissue at mRNA and protein levels by real-time qRT–PCR, immunohistochemistry, two-colour immunofluorescence and immunomorphometry. Results: CXCL17 mRNA was expressed at 8000 times higher levels in primary tumours than in normal colon (P<0.0001). CXCL17 protein was seen in 17.2% of cells in tumours as compared with 0.07% in normal colon (P=0.0002). CXCL10, CXCL9 and CCL2 mRNAs were elevated in tumours but did not reach the levels of CXCL17. CXCL17 and CCL2 mRNA levels were significantly correlated in tumours. Concordant with the mRNA results, CXCL10- and CXCL9-positive cells were detected in tumour tissue, but at significantly lower numbers than CXCL17. Two-colour immunofluorescence and single-colour staining of consecutive sections for CXCL17 and the epithelial cell markers carcinoembryonic antigen and BerEP4 demonstrated that colon carcinoma tumour cells indeed expressed CXCL17. Conclusions: CXCL17 is ectopically expressed in primary colon cancer tumours. As CXCL17 enhances angiogenesis and attracts immune cells, its expression could be informative for prognosis in colon cancer patients. PMID:26889977

  4. Gastrin inhibits a novel, pathological colon cancer signaling pathway involving EGR1, AE2 and P-ERK

    PubMed Central

    Song, Ling-Jun; Liu, Rui-Jun; Zeng, Zhi; Alper, Seth L.; Cui, Heng-Jing; Lu, Yang; Zheng, Lin; Yan, Zhao-Wen; Fu, Guo-Hui

    2016-01-01

    Human anion exchanger 2 (AE2) is a plasma membrane protein that regulates intracellular pH and cell volume. AE2 contributes to transepithelial transport of chloride and bicarbonate in normal colon and other epithelial tissues. We now report that AE2 overexpression in colon cancer cells is correlated with expression of the nuclear proliferation marker, Ki67. Survival analysis of 24 patients with colon cancer in early stage or 33 patients with tubular adenocarcinoma demonstrated that expression of AE2 is correlated with poor prognosis. Cellular and molecular experiments indicated that AE2 expression promoted proliferation of colon cancer cells. In addition, we found that transcription factor EGR1 underlies AE2 upregulation, and the AE2 sequester p16INK4a (P16) in the cytoplasm of colon cancer cells. Cytoplasmic P16 enhanced ERK phosphorylation and promoted proliferation of colon cancer cells. Gastrin inhibited proliferation of colon cancer cells by suppressing expression of EGR1 and AE2 and by blocking ERK phosphorylation. Taken together, our data describe a novel EGR1/AE2/P16/P-ERK signaling pathway in colon carcinogenesis, with implications for pathologic prognosis and for novel therapeutic approaches. PMID:22228178

  5. Hydrogen Peroxide Contributes to the Epithelial Cell Death Induced by the Oral Mitis Group of Streptococci

    PubMed Central

    Okahashi, Nobuo; Sumitomo, Tomoko; Nakata, Masanobu; Sakurai, Atsuo; Kuwata, Hirotaka; Kawabata, Shigetada

    2014-01-01

    Members of the mitis group of streptococci are normal inhabitants of the commensal flora of the oral cavity and upper respiratory tract of humans. Some mitis group species, such as Streptococcus oralis and Streptococcus sanguinis, are primary colonizers of the human oral cavity. Recently, we found that hydrogen peroxide (H2O2) produced by S. oralis is cytotoxic to human macrophages, suggesting that streptococcus-derived H2O2 may act as a cytotoxin. Since epithelial cells provide a physical barrier against pathogenic microbes, we investigated their susceptibility to infection by H2O2-producing streptococci in this study. Infection by S. oralis and S. sanguinis was found to stimulate cell death of Detroit 562, Calu-3 and HeLa epithelial cell lines at a multiplicity of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited S. oralis cytotoxicity, and H2O2 alone was capable of eliciting epithelial cell death. Moreover, S. oralis mutants lacking the spxB gene encoding pyruvate oxidase, which are deficient in H2O2 production, exhibited reduced cytotoxicity toward Detroit 562 epithelial cells. In addition, enzyme-linked immunosorbent assays revealed that both S. oralis and H2O2 induced interleukin-6 production in Detroit 562 epithelial cells. These results suggest that streptococcal H2O2 is cytotoxic to epithelial cells, and promotes bacterial evasion of the host defense systems in the oral cavity and upper respiratory tracts. PMID:24498253

  6. Prostaglandin E2-induced colonic secretion in patients with and without colorectal neoplasia

    PubMed Central

    2010-01-01

    Background The pathogenesis for colorectal cancer remains unresolved. A growing body of evidence suggests a direct correlation between cyclooxygenase enzyme expression, prostaglandin E2 metabolism and neoplastic development. Thus further understanding of the regulation of epithelial functions by prostaglandin E2 is needed. We hypothesized that patients with colonic neoplasia have altered colonic epithelial ion transport and express functionally different prostanoid receptor levels in this respect. Methods Patients referred for colonoscopy were included and grouped into patients with and without colorectal neoplasia. Patients without endoscopic findings of neoplasia served as controls. Biopsy specimens were obtained from normally appearing mucosa in the sigmoid part of colon. Biopsies were mounted in miniaturized modified Ussing air-suction chambers. Indomethacin (10 μM), various stimulators and inhibitors of prostanoid receptors and ion transport were subsequently added to the chamber solutions. Electrogenic ion transport parameters (short circuit current and slope conductance) were recorded. Tissue pathology and tissue damage before and after experiments was assessed by histology. Results Baseline short circuit current and slope conductance did not differ between the two groups. Patients with neoplasia were significantly more sensitive to indomethacin with a decrease in short circuit current of 15.1 ± 2.6 μA·cm-2 compared to controls, who showed a decrease of 10.5 ± 2.1 μA·cm-2 (p = 0.027). Stimulation or inhibition with theophylline, ouabain, bumetanide, forskolin or the EP receptor agonists prostaglandin E2, butaprost, sulprostone and prostaglandin E1 (OH) did not differ significantly between the two groups. Histology was with normal findings in both groups. Conclusions Epithelial electrogenic transport is more sensitive to indomethacin in normal colonic mucosa from patients with previous or present colorectal neoplasia compared to colonic mucosa from

  7. Inhibition of SW620 human colon cancer cells by upregulating miRNA-145

    PubMed Central

    Li, Chen; Xu, Na; Li, Yu-Qiang; Wang, Yu; Zhu, Zhi-Tu

    2016-01-01

    AIM: To investigate the targeted inhibition of proliferation and migration of SW620 human colon cancer cells by upregulating miRNA-145 (miR-145). METHODS: Forty-five samples of colon cancer tissues and 45 normal control samples were obtained from the biological database of the First Affiliated Hospital of Liaoning Medical University. We performed quantitative analysis of miR-145 and N-ras expression in tissues; reverse transcriptase polymerase chain reaction analysis of miR-145 expression in SW620 colon cancer cells and normal colonic epithelial cells; construction of miR-145 lentiviral vector and determination of miR-145 expression in SW620 cells transduced with miR-145 vector; analysis of the effect of miR-145 overexpression on SW620 cell proliferation; analysis of the effect of miR-145 overexpression on SW620 cell migration using a wound healing assay; and analysis of the effect of miR-145 on N-ras expression using Western blotting. RESULTS: miR-145 expression was significantly downregulated in colon cancer tissues, with its expression in normal colonic tissues being 4-5-fold higher (two sample t test, P < 0.05), whereas N-ras expression showed the opposite trend. miR-145 expression in SW620 cells was downregulated, which was significantly lower compared to that in colonic epithelial cells (two sample t test, P < 0.05). miR-145 vector and control were successfully packaged; expression of miR-145 in SW620 cells transduced with miR-145 was 8.2-fold of that in control cells (two sample t test, P < 0.05). The proliferation of miR-145-transduced SW620 cells was significantly decreased compared to control cells (two sample t test, P < 0.05). At 48 h in the wound healing experiment, the migration indexes and controls were (97.27% ± 9.25%) and (70.22% ± 6.53%), respectively (two sample t test, P < 0.05). N-ras expression in miR-145-tranduced SW620 cells was significantly lower than others (one-way analysis of variance, P < 0.05). CONCLUSION: miR-145 is important in

  8. INPP4B is an oncogenic regulator in human colon cancer

    PubMed Central

    Guo, S T; Chi, M N; Yang, R H; Guo, X Y; Zan, L K; Wang, C Y; Xi, Y F; Jin, L; Croft, A; Tseng, H-Y; Yan, X G; Farrelly, M; Wang, F H; Lai, F; Wang, J F; Li, Y P; Ackland, S; Scott, R; Agoulnik, I U; Hondermarck, H; Thorne, R F; Liu, T; Zhang, X D; Jiang, C C

    2016-01-01

    Inositol polyphosphate 4-phosphatase type II (INPP4B) negatively regulates phosphatidylinositol 3-kinase signaling and is a tumor suppressor in some types of cancers. However, we have found that it is frequently upregulated in human colon cancer cells. Here we show that silencing of INPP4B blocks activation of Akt and serum- and glucocorticoid-regulated kinase 3 (SGK3), inhibits colon cancer cell proliferation and retards colon cancer xenograft growth. Conversely, overexpression of INPP4B increases proliferation and triggers anchorage-independent growth of normal colon epithelial cells. Moreover, we demonstrate that the effect of INPP4B on Akt and SGK3 is associated with inactivation of phosphate and tensin homolog through its protein phosphatase activity and that the increase in INPP4B is due to Ets-1-mediated transcriptional upregulation in colon cancer cells. Collectively, these results suggest that INPP4B may function as an oncogenic driver in colon cancer, with potential implications for targeting INPP4B as a novel approach to treat this disease. PMID:26411369

  9. Aspirin Prevents Colorectal Cancer by Normalizing EGFR Expression

    PubMed Central

    Li, Haitao; Zhu, Feng; Boardman, Lisa A.; Wang, Lei; Oi, Naomi; Liu, Kangdong; Li, Xiang; Fu, Yang; Limburg, Paul J.; Bode, Ann M.; Dong, Zigang

    2015-01-01

    Background Aspirin intake reduces the risk of colorectal cancer (CRC), but the molecular underpinnings remain elusive. Epidermal growth factor receptor (EGFR), which is overexpressed in about 80% of CRC cases, is implicated in the etiology of CRC. Here, we investigated whether aspirin can prevent CRC by normalizing EGFR expression. Methods Immunohistochemistry staining was performed on paraffin-embedded tissue sections from normal colon mucosa, adenomatous polyps from FAP patients who were classified as regular aspirin users or nonusers. The interplay between cyclooxygenase-2 (COX-2) and EGFR was studied in primary intestinal epithelial cells isolated from ApcMin mice, immortalized normal human colon epithelial cells (HCECs) as well as murine embryonic fibroblasts (MEFs). Results Immunohistochemistry staining results established that EGFR overexpression is an early event in colorectal tumorigenesis, which can be greatly attenuated by regular use of aspirin. Importantly, EGFR and COX-2 were co-overexpressed and co-localized with each other in FAP patients. Further mechanistic studies revealed that COX-2 overexpression triggers the activation of the c-Jun-dependent transcription factor, activator protein-1 (AP-1), which binds to the Egfr promoter. Binding facilitates the cellular accumulation of EGFR and lowers the threshold required for pre-neoplastic cells to undergo transformation. Conclusion Aspirin might exert its chemopreventive activity against CRC, at least partially, by normalizing EGFR expression in gastrointestinal precancerous lesions. PMID:26097892

  10. Aberrant Gene Expression Profile of Unaffected Colon Mucosa from Patients with Unifocal Colon Polyp

    PubMed Central

    Lian, Jingjing; Ma, Lili; Yang, Jiayin; Xu, Lili

    2015-01-01

    Background The aim of this study was to evaluate gene expression profiles in unaffected colon mucosa and polyp tissue from patients with unifocal colon polyp to investigate the potential mucosa impairment in normal-appearing colon mucosa from these patients. Material/Methods Colon polyp patients were prospectively recruited. We obtained colon biopsies from the normal-appearing sites and polyp tissue through colonoscopy. Gene expression analysis was performed using microarrays. Gene ontology and clustering were evaluated by bioinformatics. Results We detected a total of 711 genes (274 up-regulated and 437 down-regulated) in polyp tissue and 256 genes (170 up-regulated and 86 down-regulated) in normal-appearing colon mucosa, with at least a 3-fold of change compared to healthy controls. Heatmapping of the gene expression showed similar gene alteration patterns between unaffected colon mucosa and polyp tissue. Gene ontology analyses confirmed the overlapped molecular functions and pathways of altered gene expression between unaffected colon mucosa and polyp tissue from patients with unifocal colon polyp. The most significantly altered genes in normal-appearing tissues in polyp patients include immune response, external side of plasma membrane, nucleus, and cellular response to zinc ion. Conclusions Significant gene expression alterations exist in unaffected colon mucosa from patients with unifocal colon polyp. Unaffected colon mucosa and polyp tissue share great similarity and overlapping of altered gene expression profiles, indicating the potential possibility of recurrence of colon polyps due to underlying molecular abnormalities of colon mucosa in these patients. PMID:26675397

  11. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    SciTech Connect

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  12. Autonomous cure of damaged human intestinal epithelial cells by TLR2 and TLR4-dependent production of IL-22 in response to Spirulina polysaccharides.

    PubMed

    Tominaga, Akira; Konishi, Yuko; Taguchi, Takahiro; Fukuoka, Satoshi; Kawaguchi, Tokuichi; Noda, Tetsuo; Shimizu, Keiji

    2013-12-01

    In order to analyze the damage of human epithelial cells, we used human quasi-normal FPCK-1-1 cells derived from a colonic polyp in a patient with familial adenomatous polyposis as a monolayer, which is co-cultured with peptidoglycan (PGN)-stimulated THP-1 cells. Co-cultured FPCK-1-1 cells showed a decreased transepithelial electrical resistance (TER) and the lower level of claudin-2. When Spirulina complex polysaccharides were added one day before the start of the co-culture, there was no decrease of TER and claudin-2 (early phase damage). In contrast, when Spirulina complex polysaccharides were added to FPCK-1-1 cells after the level of TER had decreased, there was no recovery at the level of claudin-2, though the TER level recovered (late phase damage). The mucosa reconstitution is suggested to be involved in the recovery from the damaged status. Interestingly, autonomous recovery of FPCK-1-1 cells from both the early and late phase damage requires the production of IL-22, because anti-IL-22 antibodies inhibited recovery in these cases. Antibodies against either TLR2 or TLR4 inhibited the production of IL-22 from FPCK-1-1 colon epithelial cells, suggesting that signals through TLR2 and TLR4 are necessary for autonomous recovery of FPCK-1-1 colon epithelial cells by producing IL-22. In conclusion, we have established a useful model for the study of intestinal damage and recovery using human colon epithelial cells and our data suggest that damage to human colon epithelial cells can, at least in part, be recovered by the autonomous production of IL-22 in response to Spirulina complex polysaccharides. PMID:24126111

  13. Pharmacokinetic studies of mouse monoclonal antibodies to a rat colon carcinoma: I. Comparison of biodistribution in normal rats, syngeneic tumor-bearing rats, or tumor-bearing nude mice

    SciTech Connect

    Laborda, J.; Douillard, J.Y.; Burg, C.; Lizzio, E.F.; Ridge, J.; Levenbook, I.; Hoffman, T. )

    1990-06-01

    The pharmacokinetics of two iodine-131-({sup 131}I) labeled murine anti-rat colon carcinoma monoclonal antibodies (D3 and E4) were compared in normal Sprague Dawley rats, syngeneic BDIX rats, or nude mice bearing that tumor. Results of antibody uptake after i.v. administration were analyzed in terms of accumulation and localization indices for normal tissues and tumor. Statistically significant differences between rat and mouse tissue biodistribution were found. D3, which reacts in vitro with the tumor and several normal rat tissues, cleared quickly from the blood of rats and was specifically targeted to several normal tissues, notably the lung. Virtually no targeting to the tumor was observed. Nude mice, however, showed a slower blood clearance and specific antibody targeting only in the tumor. Similar results were seen after injection of another antibody, E4, which is tumor-specific in vitro. Data suggest that studies on the xenogeneic nude mouse model may not necessarily be relevant to the choice of monoclonal antibodies for clinical diagnostic imaging or therapy.

  14. Biological impact of cigarette smoke compared to an aerosol produced from a prototypic modified risk tobacco product on normal human bronchial epithelial cells.

    PubMed

    Kogel, U; Gonzalez Suarez, I; Xiang, Y; Dossin, E; Guy, P A; Mathis, C; Marescotti, D; Goedertier, D; Martin, F; Peitsch, M C; Hoeng, J

    2015-12-01

    Cigarette smoking causes serious and fatal diseases. The best way for smokers to avoid health risks is to quit smoking. Using modified risk tobacco products (MRTPs) may be an alternative to reduce the harm caused for those who are unwilling to quit smoking, but little is known about the toxic effects of MRTPs, nor were the molecular mechanisms of toxicity investigated in detail. The toxicity of an MRTP and the potential molecular mechanisms involved were investigated in high-content screening tests and whole genome transcriptomics analyses using human bronchial epithelial cells. The prototypic (p)MRTP that was tested had less impact than reference cigarette 3R4F on the cellular oxidative stress response and cell death pathways. Higher pMRTP aerosol extract concentrations had impact on pathways associated with the detoxification of xenobiotics and the reduction of oxidative damage. A pMRTP aerosol concentration up to 18 times higher than the 3R4F caused similar perturbation effects in biological networks and led to the perturbation of networks related to cell stress, and proliferation biology. These results may further facilitate the development of a systems toxicology-based impact assessment for use in future risk assessments in line with the 21st century toxicology paradigm, as shown here for an MRTP. PMID:26277032

  15. Treatment with novel AP-1 and NF-κB inhibitors restores the colonic endocrine cells to normal levels in rats with DSS-induced colitis

    PubMed Central

    EL-SALHY, MAGDY; UMEZAWA, KAZUO

    2016-01-01

    The aim of this study was to determine the effects of two anti-inflammatory agents on the abnormalities in colonic endocrine cells in dextran sodium sulfate (DSS)-induced colitis. Colitis was induced in male Wistar rats (n=45) using DSS; a further 15 rats without colitis were included in a healthy control group. The animals with DSS-induced colitis were randomly divided into 3 treatment groups as follows: i) DSS group, rats were treated with 0.5 ml of 0.5% carboxymethyl cellulose (CMC); ii) DSS-G group, rats were treated with 3-[(dodecyl thiocarbonyl)-methyl]-glutarimide (DTCM-G), a novel activator protein 1 (AP-1) inhibitor, 20 mg/kg in CMC; and iii) DSS-Q group, rats were treated with dehydroxymethylepoxyquinomicin, a nuclear factor κB (NF-κB) inhibitor, 15 mg/kg in CMC. The treatments were administered intraperitoneally, twice daily for 5 days, after which the animals were sacrificed and tissue samples from the colon were immunostained for chromogranin A (CgA), serotonin, peptide YY (PYY), enteroglucagon, pancreatic polypeptide (PP), somatostatin, leukocytes, B/T lymphocytes, B lymphocytes, T lymphocytes, macrophages/monocytes and mast cells. The densities of these endocrine and immune cells were quantified by computer-aided image analysis. The densities of CgA-, serotonin-, PYY- and enteroglucagon-producing cells were significantly higher, and those of PP- and somatostatin-producing cells were significantly lower in the DSS-G, DSS-Q and control groups than in the DSS group. The densities of all the immune cells were lower in the DSS-G, DSS-Q and control groups than in the DSS group. The densities of all endocrine cell types and immune cells in both the DSS groups treated with anti-inflammatory agents were restored to control levels. In conclusion, our data demonstrate that there is an interaction between endocrine and immune cells during inflammation. This interaction with subsequent changes in endocrine cells is responsible for the clinical manifestation of

  16. Curcumin and docosahexaenoic acid block insulin-induced colon carcinoma cell proliferation.

    PubMed

    Fenton, Jenifer I; McCaskey, Sarah J

    2013-03-01

    Diets high in fish and curcumin are associated with a decreased risk of CRC. Insulin resistance and obesity are associated with increased CRC risk and higher reoccurrence rates. We utilized cell culture to determine if dietary compounds could reduce insulin-induced cell proliferation comparing the response in normal and metastatic colon epithelial cells. We treated model normal murine colon epithelial cells (YAMC) and adenocarcinoma cells (MC38) with docosahexaenoic acid (DHA) or curcumin alone and then co-treatments of the diet-derived compound and insulin were combined. Cell proliferation was stimulated with insulin (1 ug/mL) to model insulin resistance in obesity. Despite the presence of insulin, proliferation was reduced in the MC38 cells treated with 10 μM curcumin (p<0.001) and 50 μM DHA (p<0.001). Insulin stimulated MAPK and MEK phosphorylation was inhibited by DHA and curcumin in MC38 cancer cells. Here we show that curcumin and DHA can block insulin-induced colon cancer cell proliferation in vitro via a MEK mediated mechanism. PMID:23266210

  17. EVALUATION OF THE CYTOTOXICITY OF DRINKING WATER DISINFECTION BYPRODUCTS (DBPS): TRIHALOMETHANES (THMS), HALONITROMETHANES (HNMS), AND HALOACETIC ACIDS (HAAS) IN NORMAL HUMAN COLON CELLS

    EPA Science Inventory

    Epidemiological studies have linked the consumption of chlorinated surface waters to an increased risk of colorectal cancer. THMs and HAAs were found to increase cancer in laboratory animals, but no toxicity studies exist for the recently identified HNMs. Normal Human colonocytes...

  18. Giant colon lipoma

    PubMed Central

    Yaman, İsmail; Derici, Hayrullah; Demirpolat, Gülen

    2015-01-01

    Colon lipomas are rare, non-epithelial tumors. They are generally smaller than two centimeters and asymptomatic, they are incidentally diagnosed and do not require treatment. Large and symptomatic colon lipomas are rather rare. Its differential diagnosis is generally made by histopathological examination of the resected specimen. A fifty-year-old female patient presented with the symptoms of abdominal pain, swelling in the abdomen and loss of weight. During colonoscopy, there was a submucosal mass of 8×6 cm, which almost completely obstructed the lumen in the hepatic flexure and was covered by a mucosa that was sporadically ulcerated and necrotic in nature. In magnetic resonance imaging, an ovoid mass with a diameter of 8.5 cm at its widest dimension was detected, which had signal intensity similar to that of adipose tissue. Since the patient was symptomatic and differential diagnosis could not be made, she underwent laparoscopic right hemicolectomy. A submucosal lipoma was detected on histopathological examination of the specimen. The patient was discharged without any problems on post-operative day 7. Definite diagnosis of lipomas before surgery is challenging; they may be mistaken for malignancy, especially if the lesion is large and ulcerated. For large and symptomatic colon lipomas, surgery is required to both prevent complications and rule out malignancy. PMID:26170744

  19. MicroRNA-429 inhibits the migration and invasion of colon cancer cells by targeting PAK6/cofilin signaling.

    PubMed

    Tian, Xiangyang; Wei, Zibai; Wang, Jia; Liu, Ping; Qin, Yijun; Zhong, Meizuo

    2015-08-01

    MicroRNAs (miRs), a class of non-coding RNAs 18-25 nucleotides in length, can lead to mRNA degradation or inhibit protein translation by directly binding to the 3'-untranslational region (UTR) of their target mRNAs. The deregulation of miR-429 has been suggested to be involved in the development and progression of colon cancer. However, the detailed molecular mechanism involved remains to be determined. The aim of the present study was to investigate the role of miR-429 in the regulation of migration and invasion of colon cancer cells using RT-qPCR and western blotting. The results showed that the expression of miR-429 was reduced in colon cancer cell lines, when compared to a normal colon epithelial cell line. Treatment with DNA demethylation agent 5-aza-2'-deoxycytidine and histone deacetylase inhibitor phenylbutyrate (PBA), or transfection with the pre-miR-429 lentivirus plasmid led to the upregulation of miR-429 expression, as well as inhibition of migration and invasion in colon cancer cells. Investigation of the molecular mechanism showed that PAK6 was a novel target of miR-429, and the expression of PAK6 was upregulated in colon cancer tissues and cell lines, and was negatively regulated by miR-429 in colon cancer cells. Moreover, the cofilin signaling acted as a downstream effector of miR-429 in colon cancer cells. In conclusion, the results of the present study suggested that miR-429 inhibits the migration and invasion of colon cancer cells, partly at least, by mediating the expression of PAK6, as well as the activity of cofilin signaling. Therefore, miR-429 is as a potential molecular target for the treatment of colon cancer. PMID:26058485

  20. Colon cancer

    MedlinePlus

    ... red or processed meats Have colorectal polyps Have inflammatory bowel disease ( Crohn disease or ulcerative colitis ) Have a family history of colon cancer Have a personal history of breast cancer Some inherited diseases also increase the risk ...

  1. Distinct transcriptome profiles identified in normal human bronchial epithelial cells after exposure to γ-rays and different elemental particles of high Z and energy

    PubMed Central

    2013-01-01

    Background Ionizing radiation composed of accelerated ions of high atomic number (Z) and energy (HZE) deposits energy and creates damage in cells in a discrete manner as compared to the random deposition of energy and damage seen with low energy radiations such as γ- or x-rays. Such radiations can be highly effective at cell killing, transformation, and oncogenesis, all of which are concerns for the manned space program and for the burgeoning field of HZE particle radiotherapy for cancer. Furthermore, there are differences in the extent to which cells or tissues respond to such exposures that may be unrelated to absorbed dose. Therefore, we asked whether the energy deposition patterns produced by different radiation types would cause different molecular responses. We performed transcriptome profiling using human bronchial epithelial cells (HBECs) after exposure to γ-rays and to two different HZE particles (28Si and 56Fe) with different energy transfer properties to characterize the molecular response to HZE particles and γ-rays as a function of dose, energy deposition pattern, and time post-irradiation. Results Clonogenic assay indicated that the relative biological effectiveness (RBE) for 56Fe was 3.91 and for 28Si was 1.38 at 34% cell survival. Unsupervised clustering analysis of gene expression segregated samples according to the radiation species followed by the time after irradiation, whereas dose was not a significant parameter for segregation of radiation response. While a subset of genes associated with p53-signaling, such as CDKN1A, TRIM22 and BTG2 showed very similar responses to all radiation qualities, distinct expression changes were associated with the different radiation species. Gene enrichment analysis categorized the differentially expressed genes into functional groups related to cell death and cell cycle regulation for all radiation types, while gene pathway analysis revealed that the pro-inflammatory Acute Phase Response Signaling was

  2. Identification of biomarkers of radioresponse and subsequent progression towards lung cancer in normal human bronchial epithelial cells after HZE particle irradiation

    NASA Astrophysics Data System (ADS)

    Story, Michael; Ding, Liang-Hao; Park, Seongmi; Minna, John

    Using variants of a non-oncogenically immortalized human bronchial epithelial cell line HBEC3-KT, we have examined global gene expression patterns after low and high LET irradiation up to 24h post-IR. Using supervised analyses we have identified 427 genes whoes expression can be used to discriminate the cellular response to γ-vs Si or Fe particles even when the biological outcome, cell death, is equivalent. Furthermore, genetic background also determines gene expression response. When HBEC3-KT is compared to the HBEC3-KT cells line where mutant k-RAS is over-expressed and p53 has been knocked down, HBEC-3KTr53, principal component analysis clearly shows that the response of each cell resides in a different 3-D space, that is, basal gene expression patterns as well as the gene expression response are unique to each cell type. Using regression analysis to examine these 427 genes show clusters of genes whose temporal expression patterns are the same and which are unique to a given radiation type. Ultimately, this approach will allow for the interrogation of gene promoters to identify response elements that drive how cells respond to different radiation types. We are extending our examination to O particles and are now examining gene expression as a function of beam quality. We have made substantial progress in the determination of cellular transformation by HZE particles for these cell lines. (Transformation as defined by the ability to grow in soft agar.) For HBEC-3KT, the spontaneous transformation frequency is about 10- 7.ExposuretoeitherF eorSiparticlesinc KT r53celllinedidnotshowanyincreaseintransf ormationf requencyaf terdosesof upto1Gy, however, thesp 3KT.W ehavenowisolatedover160individualf ocithatf ormedinsof tagarf romcellculturesthatwereirradia termcultureandthenre-introducedintosof tagartoassurethattheabilitytogrowinsof tagarisclonal.T odatew 30 With these cell isolates in hand we will begin to determine tumorigenicity by subcutaneous injections in nude

  3. Statistical classification of multivariate flow cytometry data analyzed by manual gating: stem, progenitor, and epithelial marker expression in nonsmall cell lung cancer and normal lung.

    PubMed

    Normolle, Daniel P; Donnenberg, Vera S; Donnenberg, Albert D

    2013-01-01

    The use of supervised classification to extract markers from primary flow cytometry data is an emerging field that has made significant progress, spurred by the growing complexity of multidimensional flow cytometry. Whether the markers are extracted without supervision or by conventional gate and region methods, the number of candidate variables identified is typically larger than the number of specimens (p > n) and many variables are highly intercorrelated. Thus, comparison across groups or treatments to determine which markers are significant is challenging. Here, we utilized a data set in which 86 variables were created by conventional manual analysis of individual listmode data files, and compared the application of five multivariate classification methods to discern subtle differences between the stem/progenitor content of 35 nonsmall cell lung cancer and adjacent normal lung specimens. The methods compared include elastic-net, lasso, random forest, diagonal linear discriminant analysis, and best single variable (best-1). We described a broadly applicable methodology consisting of: 1) variable transformation and standardization; 2) visualization and assessment of correlation between variables; 3) selection of significant variables and modeling; and 4) characterization of the quality and stability of the model. The analysis yielded both validating results (tumors are aneuploid and have higher light scatter properties than normal lung), as well as leads that require followup: Cytokeratin+ CD133+ progenitors are present in normal lung but reduced in lung cancer; diploid (or pseudo-diploid) CD117+CD44+ cells are more prevalent in tumor. We anticipate that the methods described here will be broadly applicable to a variety of multidimensional cytometry problems. PMID:23239514

  4. Dimeric Le(a) (Le(a)-on-Le(a)) status of beta-haptoglobin in sera of colon cancer, chronic inflammatory disease and normal subjects.

    PubMed

    Park, Seung-Yeol; Yoon, Seon-Joo; Hakomori, Sen-Itiroh; Kim, Jin-Man; Kim, Ji-Yeon; Bernert, Bradford; Ullman, Thomas; Itzkowitz, Steven H; Kim, Jung Hoe

    2010-05-01

    The glycosyl epitope dimeric Lea (Lea-on-Lea), defined by mouse monoclonal antibody NCC-ST-421, was identified previously as tumor-associated antigen, expressed highly in various human cancer tissues and cell lines derived therefrom, but with minimal expression in various normal tissues. In the present study, we observed clearly higher expression of this epitope, defined by ST421, in beta-haptoglobin (beta-Hap) from sera of patients with colorectal cancer, compared to normal, healthy subjects or patients with chronic inflammatory processes (Crohn's disease, ulcerative colitis). We focused, therefore, on biochemical characterization of glycosyl epitope status expressed in beta-Hap. We concluded that the dimeric Lea epitope is carried by O-linked but not by N-linked structure, based on the following observations: i) Treatment of beta-Hap with alpha-L-fucosidase reduced its reactivity with ST421, but did not affect its reactivity with anti-Hap antibody. In contrast, treatment of purified beta-Hap with PNGase F, which releases N-linked glycans, had no effect on reactivity with ST421, but changed molecular mass from 40 kDa to 30 kDa. ii) Strong reactivity of Colo205 supernatant with ST421 was reduced clearly by pre-incubation of cells with benzyl-alpha-GalNAc. PMID:20372805

  5. The Bacteroides fragilis toxin fragilysin disrupts the paracellular barrier of epithelial cells.

    PubMed Central

    Obiso, R J; Azghani, A O; Wilkins, T D

    1997-01-01

    Bacteroides fragilis is a member of the normal colonic microflora of most mammals and is the most commonly isolated anaerobe from human clinical specimens. Some strains produce a toxin (fragilysin, a zinc-metalloproteinase) implicated as a cause of diarrheal disease in farm animals and humans. Studies in our laboratory confirm that the proteolytic activity of this toxin is responsible for the fluid secretion and tissue damage observed in vivo. In this study, we investigated the effects of fragilysin on the paracellular barrier of epithelial cells. Researchers suggest that, since the toxin rapidly intoxicates HT-29 cells, it may be internalized. However, we could not prevent cell rounding by using inhibitors of receptor-mediated endocytosis, which indicates that the toxin may act outside the cell. Based on these observations, we studied the effects of the highly purified B. fragilis fragilysin on the barrier function of cultured epithelial cells. Fragilysin rapidly increased the permeability of the paracellular barrier of epithelial cells to ions (decrease in electrical resistance across monolayers) and to larger molecules (increase in mannitol flux across monolayers). We tested a human colon cell line and cell lines from the lung and the kidney; the human colon cell line was most sensitive, but all three were affected in the same manner. Our studies show that B. fragilis fragilysin alters the barrier function of the epithelial lining, possibly by degrading the tight junction proteins, such as ZO-1. The proteolytic activity is required to cause this effect. The toxin's action has been assumed to be limited to the intestine; however, our studies show that fragilysin could also contribute to the pathogenesis of B. fragilis in extraintestinal infections. PMID:9119484

  6. Colonic mucin synthesis is increased by sodium butyrate.

    PubMed

    Finnie, I A; Dwarakanath, A D; Taylor, B A; Rhodes, J M

    1995-01-01

    The effects of sodium butyrate and sodium bromo-octanoate (an inhibitor of beta oxidation) on colonic mucus glycoprotein (mucin) synthesis have been assessed using tissue from colonic resection samples. Epithelial biopsy specimens were incubated for 16 hours in RPMI 1640 with glutamine, supplemented with 10% fetal calf serum and N-acetyl-[3H]-glucosamine ([3H]-Glc NAc), and differing concentrations of sodium butyrate. Incorporation of [3H] Glc NAc into mucin by normal epithelium at least 10 cm distant from colonic cancer was increased in the presence of sodium butyrate in a dose dependent manner, with maximum effect (476%) at a concentration of 0.1 mM (number of specimens = 24 from six patients, p < 0.001). The increase in response to butyrate was not seen when specimens were incubated in the presence of the beta oxidation inhibitor sodium bromo-octanoate 0.05 M. The striking increase in mucin synthesis that results when butyrate is added to standard nutrient medium suggests that this may be an important mechanism affecting the rate of mucin synthesis in vivo and may also explain the therapeutic effect of butyrate in colitis. PMID:7890244

  7. Neisseria meningitidis Lactate Permease Is Required for Nasopharyngeal Colonization

    PubMed Central

    Exley, Rachel M.; Goodwin, Linda; Mowe, Eva; Shaw, Jonathan; Smith, Harry; Read, Robert C.; Tang, Christoph M.

    2005-01-01

    Neisseria meningitidis is a human specific pathogen that is part of the normal nasopharyngeal flora. Little is known about the metabolic constraints on survival of the meningococcus during colonization of the upper airways. Here we show that glucose and lactate, both carbon energy sources for meningococcal growth, are present in millimolar concentrations within nasopharyngeal tissue. We used a mutant defective for the uptake of lactate (C311ΔlctP) to investigate the contribution of this energy source during colonization. Explants of nasopharyngeal tissue were inoculated with the wild-type strain (C311) and C311ΔlctP; the mutant was recovered at significantly lower levels (P = 0.01) than C311 18 h later. This defect was not due to changes in the expression of adhesins or initial adhesion in C311ΔlctP to epithelial cells. Instead, lactate appears to be important energy source for the bacterium during colonization and is necessary for growth of the bacterium in nasopharyngeal tissue. Studies with other strains defective for the uptake of specific nutrients should provide valuable information about the environment in which N. meningitidis persists during carriage. PMID:16113293

  8. The Chronic Kidney Disease - Colonic Axis.

    PubMed

    Pahl, Madeleine V; Vaziri, Nosratola D

    2015-01-01

    Chronic kidney disease (CKD) has long been known to cause significant gastrointestinal and colonic pathology. Recent advances in understanding of the role of colonic bacterial microbiome and its function and composition in health and disease have revealed previously unappreciated effects of CKD-associated colonic pathology on the development of uremic complications. CKD can result in profound changes in the microbiome composition and biosynthetic pattern, and the structure and function of the colon. Increases in bacteria that produce urease, uricase, p-cresol- and indole-forming enzymes and the depletion of bacteria that possess short chain fatty acid forming enzymes have been described in human and animal models. Disruption of the colonic epithelial tight junction in different animal models of CKD has been reported and is largely due to the conversion of luminal urea to ammonia by urease possessing bacteria. Together, these changes contribute to the pathogenesis of systemic inflammation and uremic toxicity by allowing the translocation of endotoxin and microbial fragments into the circulation. Additionally, colonic bacteria are the main source of several well-known pro-inflammatory uremic toxins such as indoxyl sulfate, P-cresol sulfate. This review is intended to provide an overview of the effects of CKD on the colonic microbiome and the intestinal epithelial barrier structure and function and their role in the pathogenesis the systemic inflammation and uremic toxicity. PMID:25855516

  9. Proliferative and morphologic changes in rat colon following bypass surgery.

    PubMed Central

    Barkla, D. H.; Tutton, P. J.

    1985-01-01

    In this study the proliferative and morphologic changes that occur in the colon of normal and dimethylhydrazine-treated rats following surgical bypass of the middle third of the colon are reported. Proliferative changes were measured by estimating accumulated mitotic indexes following vinblastine treatment and morphologic changes were observed with the use of light microscopy and scanning electron microscopy. Data were collected on Days 0, 7, 14, 30, and 72 after surgery. The results show that surgical bypass produces contrasting effects in the segments proximal to and distal to the suture line. In the proximal segment there was morphologic evidence of hyperplasia, although proliferative activity was unchanged except for an increase at 7 days in normal rats. In the distal segment there was a long-lived increase in the mitotic index, although morphologic changes were not seen. The results for DMH-treated rats were similar to those in normal rats. Groups of isolated dysplastic epithelial cells were often seen in the submucosa adjacent to sutures up to 72 days after surgery. Increased lymphoid infiltration was seen in segments proximal to but not distal to the suture line. It is hypothesized that the different responses of the proximal and distal segments may be related to the different embryologic origins of those segments. It is also hypothesized that the seeding of the submucosa with epithelial cells during suturing may be a factor in tumor recurrence. Images Figure 19 Figure 20 Figure 21 Figure 22 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 PMID:4014432

  10. Glycosylation and sulphation of colonic mucus glycoproteins in patients with ulcerative colitis and in healthy subjects.

    PubMed Central

    Morita, H; Kettlewell, M G; Jewell, D P; Kent, P W

    1993-01-01

    Studies have been made of mucus glycoprotein biosynthesis in different regions of the lower gastrointestinal tract in normal patients and those with ulcerative colitis (UC), active or inactive, by means of 3H-glucosamine (3H-GlcNH2)--35S-sulphate double labelling of epithelial biopsy specimens under culture conditions. The time based rate of 3H-GlcNH2 labelling of mucus in rectal tissue was similar to that in active or inactive UC whereas the rate of 35SO4(2) labelling was significantly increased in active disease. The 3H specific activities measuring the amount of isotopic incorporation into surface and tissue mucus glycoproteins were increased in patients with active UC compared with normal or inactive subjects. The 35S specific activities did not differ significantly between patients with active UC and those in remission. In the rectum, glycosylation of mucus glycoproteins decreases with the increasing age of the patient. Regional differences in 3H-labelling of mucus components are reported for ascending colon, transverse colon, sigmoid colon, and rectum. Sulphation (35S-labelling) was higher in all parts of the colon in left sided UC. Results point to accelerated glycosylation of core proteins in the active phase of UC. PMID:8344580

  11. Differential Secreted Proteome Approach in Murine Model for Candidate Biomarker Discovery in Colon Cancer

    PubMed Central

    Rangiah, Kannan; Tippornwong, Montri; Sangar, Vineet; Austin, David; Tétreault, Marie-Pier; Rustgi, Anil K.; Blair, Ian A.; Yu, Kenneth H.

    2009-01-01

    The complexity and heterogeneity of the plasma proteome have presented significant challenges in the identification of protein changes associated with tumor development. We used cell culture as a model system and identified differentially expressed, secreted proteins which may constitute serological biomarkers. A stable isotope labeling by amino acids in cell culture (SILAC) approach was used to label the entire secreted proteomes of the CT26 murine colon cancer cell line and normal young adult mouse colon (YAMC) cell line, thereby creating a stable isotope labeled proteome (SILAP) standard. This SILAP standard was added to unlabeled murine CT26 colon cancer cell or normal murine YAMC colon epithelial cell secreted proteome samples. A multidimensional approach combining isoelectric focusing (IEF), strong cation exchange (SCX) followed by reversed phase liquid chromatography was used for extensive protein and peptide separation. A total of 614 and 929 proteins were identified from the YAMC and CT26 cell lines, with 418 proteins common to both cell lines. Twenty highly abundant differentially expressed proteins from these groups were selected for liquid chromatography-multiple reaction monitoring/mass spectrometry (LC-MRM/MS) analysis in sera. Differential secretion into the serum was observed for several proteins when Apcmin mice were compared with control mice. These findings were then confirmed by Western blot analysis. PMID:19769411

  12. Cadmium, cobalt and lead cause stress response, cell cycle deregulation and increased steroid as well as xenobiotic metabolism in primary normal human bronchial epithelial cells which is coordinated by at least nine transcription factors.

    PubMed

    Glahn, Felix; Schmidt-Heck, Wolfgang; Zellmer, Sebastian; Guthke, Reinhard; Wiese, Jan; Golka, Klaus; Hergenröder, Roland; Degen, Gisela H; Lehmann, Thomas; Hermes, Matthias; Schormann, Wiebke; Brulport, Marc; Bauer, Alexander; Bedawy, Essam; Gebhardt, Rolf; Hengstler, Jan G; Foth, Heidi

    2008-08-01

    Workers occupationally exposed to cadmium, cobalt and lead have been reported to have increased levels of DNA damage. To analyze whether in vivo relevant concentrations of heavy metals cause systematic alterations in RNA expression patterns, we performed a gene array study using primary normal human bronchial epithelial cells. Cells were incubated with 15 microg/l Cd(II), 25 microg/l Co(II) and 550 microg/l Pb(II) either with individual substances or in combination. Differentially expressed genes were filtered out and used to identify enriched GO categories as well as KEGG pathways and to identify transcription factors whose binding sites are enriched in a given set of promoters. Interestingly, combined exposure to Cd(II), Co(II) and Pb(II) caused a coordinated response of at least seven stress response-related transcription factors, namely Oct-1, HIC1, TGIF, CREB, ATF4, SRF and YY1. A stress response was further corroborated by up regulation of genes involved in glutathione metabolism. A second major response to heavy metal exposure was deregulation of the cell cycle as evidenced by down regulation of the transcription factors ELK-1 and the Ets transcription factor GABP, as well as deregulation of genes involved in purine and pyrimidine metabolism. A third and surprising response was up regulation of genes involved in steroid metabolism, whereby promoter analysis identified up regulation of SRY that is known to play a role in sex determination. A forth response was up regulation of xenobiotic metabolising enzymes, particularly of dihydrodiol dehydrogenases 1 and 2 (AKR1C1, AKR1C2). Incubations with individual heavy metals showed that the response of AKR1C1 and AKR1C2 was predominantly caused by lead. In conclusion, we have shown that in vivo relevant concentrations of Cd(II), Co(II) and Pb(II) cause a complex and coordinated response in normal human bronchial epithelial cells. This study gives an overview of the most responsive genes. PMID:18654764

  13. Potential role of Escherichia coli DNA mismatch repair proteins in colon cancer.

    PubMed

    Khan, Shahanavaj

    2015-12-01

    The epithelium of gastrointestinal tract organizes many innate defense systems against microbial intruders such as integrity of epithelial, rapid eviction of infected cells, quick turnover of epithelial cell, intrinsic immune responses and autophagy. However, Enteropathogenic Escherichia coli (EPEC) are equipped with well developed infectious tricks that evade the host defense systems and utilize the gastrointestinal epithelium as a multiplicative foothold. During multiplication on and within the epithelium, EPEC secrete various toxins that can weaken, usurp, and use many host cellular systems. However, the possible mechanisms of pathogenesis are still poorly elusive. Recent study reveals the existence of EPEC in colorectal cancer patients and their potential role in depletion of DNA mismatch repair (MMR) proteins of host cell in colonic cell lines. The EPEC colonised intracellularly in colon mucosa of colorectal carcinoma whereas extracellular strain was detected in mucosa of normal colon cells. Interestingly, alteration in MutS, MutL complexes and MUTYH of mammalian cells may be involved in development of CRC. These data propose that MMR of E. coli may be potential therapeutic targets and early detection biomarkers for CRC. This article reviews the potential role of E. coli MutS, MutL and MutY protein in CRC aetiology. PMID:26014615

  14. Space colonization.

    PubMed

    2002-12-01

    NASA interest in colonization encompasses space tourism; space exploration; space bases in orbit, at L1, on the Moon, or on Mars; in-situ resource utilization; and planetary terraforming. Activities progressed during 2002 in areas such as Mars colonies, hoppers, and biomass; space elevators and construction; and in-situ consumables. PMID:12506926

  15. Epithelial Cell Adhesion Molecule

    PubMed Central

    Trzpis, Monika; McLaughlin, Pamela M.J.; de Leij, Lou M.F.H.; Harmsen, Martin C.

    2007-01-01

    The epithelial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of ∼40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally lower level than carcinoma cells. In early studies, EpCAM was proposed to be a cell-cell adhesion molecule. However, recent insights revealed a more versatile role for EpCAM that is not limited only to cell adhesion but includes diverse processes such as signaling, cell migration, proliferation, and differentiation. Cell surface expression of EpCAM may actually prevent cell-cell adhesion. Here, we provide a comprehensive review of the current knowledge on EpCAM biology in relation to other cell adhesion molecules. We discuss the implications of the newly identified functions of EpCAM in view of its prognostic relevance in carcinoma, inflammatory pathophysiology, and tissue development and regeneration as well as its role in normal epithelial homeostasis. PMID:17600130

  16. Berry Phenolic Compounds Increase Expression of Hepatocyte Nuclear Factor-1α (HNF-1α) in Caco-2 and Normal Colon Cells Due to High Affinities with Transcription and Dimerization Domains of HNF-1α

    PubMed Central

    Real Hernandez, Luis M.; Fan, Junfeng; Johnson, Michelle H.; Gonzalez de Mejia, Elvira

    2015-01-01

    Hepatocyte nuclear factor-1α (HNF-1α) is found in the kidneys, spleen, thymus, testis, skin, and throughout the digestive organs. It has been found to promote the transcription of various proteins involved in the management of type II diabetes, including dipeptidyl peptidase-IV (DPP-IV). Phenolic compounds from berries and citrus fruits are known to inhibit DPP-IV, but have not been tested for their interactions with wild-type HNF-1α. By studying the interactions of compounds from berries and citrus fruits have with HNF-1α, pre-transcriptional mechanisms that inhibit the expression of proteins such as DPP-IV may be elucidated. In this study, the interactions of berry phenolic compounds and citrus flavonoids with the dimerization and transcriptional domains of HNF-1α were characterized using the molecular docking program AutoDock Vina. The anthocyanin delphinidin-3-O-arabinoside had the highest binding affinity for the dimerization domain as a homodimer (-7.2 kcal/mol) and transcription domain (-8.3 kcal/mol) of HNF-1α. Anthocyanins and anthocyanidins had relatively higher affinities than resveratrol and citrus flavonoids for both, the transcription domain and the dimerization domain as a homodimer. The flavonoid flavone had the highest affinity for a single unit of the dimerization domain (-6.5 kcal/mol). Nuclear expression of HNF-1α was measured in Caco-2 and human normal colon cells treated with blueberry and blackberry anthocyanin extracts. All extracts tested increased significantly (P < 0.05) the nuclear expression of HNF-1α in Caco-2 cells by 85.2 to 260% compared to a control. The extracts tested increased significantly (P < 0.02) the nuclear expression of HNF-1α in normal colon cells by 48.6 to 243%. It was confirmed that delphinidin-3-O-glucoside increased by 3-fold nuclear HNF-1α expression in Caco-2 cells (P < 0.05). Anthocyanins significantly increased nuclear HNF-1α expression, suggesting that these compounds might regulate the genes HNF-1

  17. Serotonin and colonic motility.

    PubMed

    Kendig, D M; Grider, J R

    2015-07-01

    The role of serotonin (5-hydroxytryptamine [5-HT]) in gastrointestinal motility has been studied for over 50 years. Most of the 5-HT in the body resides in the gut wall, where it is located in subsets of mucosal cells (enterochromaffin cells) and neurons (descending interneurons). Many studies suggest that 5-HT is important to normal and dysfunctional gut motility and drugs affecting 5-HT receptors, especially 5-HT3 and 5-HT4 receptors, have been used clinically to treat motility disorders; however, cardiovascular side effects have limited the use of these drugs. Recently studies have questioned the importance and necessity of 5-HT in general and mucosal 5-HT in particular for colonic motility. Recent evidence suggests the importance of 5-HT3 and 5-HT4 receptors for initiation and generation of one of the key colonic motility patterns, the colonic migrating motor complex (CMMC), in rat. The findings suggest that 5-HT3 and 5-HT4 receptors are differentially involved in two different types of rat CMMCs: the long distance contraction (LDC) and the rhythmic propulsive motor complex (RPMC). The understanding of the role of serotonin in colonic motility has been influenced by the specific motility pattern(s) studied, the stimulus used to initiate the motility (spontaneous vs induced), and the route of administration of drugs. All of these considerations contribute to the understanding and the controversy that continues to surround the role of serotonin in the gut. PMID:26095115

  18. Keratin 8 knockdown leads to loss of the chloride transporter DRA in the colon.

    PubMed

    Asghar, M Nadeem; Priyamvada, Shubha; Nyström, Joel H; Anbazhagan, Arivarasu Natarajan; Dudeja, Pradeep K; Toivola, Diana M

    2016-06-01

    Keratins (K) are intermediate filament proteins important in protection from stress. The roles of keratins in the intestine are not clear, but K8 knockout (K8(-/-)) mice develop a Th2-type colonic inflammation, epithelial hyperproliferation, and mild diarrhea caused by a keratin level-dependent decrease in short-circuit current and net sodium and chloride absorption in the distal colon. The lack of K8 leads to mistargeting or altered levels of membrane proteins in colonocytes; however, the main transporter responsible for the keratin-related ion transport defect is unknown. We here analyzed protein and mRNA levels of candidate ion transporters CFTR, PAT-1, NHE-3, and DRA in ileum, cecum, and proximal and distal colon. Although no differences were observed for CFTR, PAT-1, or NHE-3, DRA mRNA levels were decreased by three- to fourfold and DRA protein was almost entirely lost in K8(-/-) cecum and proximal and distal colon compared with K8(+/+), whereas the levels in ileum were normal. In K8(+/-) mice, DRA mRNA levels were unaltered, while decreased DRA protein levels were detected in the proximal colon. Immunofluorescence staining confirmed the loss of DRA in K8(-/-) distal colon, while K8(+/-) displayed a similar but more patchy apical DRA distribution compared with K8(+/+) DRA was similarly decreased when K8 was knocked down in Caco-2 cells, confirming that K8 levels modulate DRA levels in an inflammation-independent manner. Taken together, the loss of DRA in the K8(-/-) mouse colon and cecum explains the dramatic chloride transport defect and diarrheal phenotype after K8 inactivation and identifies K8 as a novel regulator of DRA. PMID:27125276

  19. Mesalamine Suppresses the Expression of TC22, a Novel Tropomyosin Isoform Associated with Colonic Neoplasia

    PubMed Central

    Das, Koushik K.; Bajpai, Manisha; Kong, Yingxin; Liu, Jianying; Geng, Xin; Das, Kiron M.

    2009-01-01

    Although a protective role for mesalamine against colon cancer in ulcerative colitis has been shown epidemiologically, its molecular mechanism is unknown. We cloned and sequenced a novel human tropomyosin (hTM) isoform, TC22, which is an alternatively spliced variant of normal epithelial hTM isoform 5 (hTM5), identical apart from 25 C-terminal amino acids. TC22 is expressed in 100% of colorectal carcinoma but is not expressed in normal colon epithelial cells. To explore a molecular mechanism of chemoprevention, we examined the effect of mesalamine on TC22 expression using LS180 colon cancer cells. Expression of hTM5 and TC22 was investigated at the protein and gene levels by fluorescence-activated cell sorting and real-time reverse transcription-polymerase chain reaction. Small interference RNA (siRNA) against the TC22 variant were transfected into LS180 colon cancer cells, reducing protein and transcript levels by 45 to 50%. Mesalamine or sulfasalazine (2 mM), but not sulfapyridine, significantly (p < 0.02-0.006) reduced the expression of the TC22 transcript and significantly (p < 0.05 to <0.0002) reduced the expression of TC22 protein in a dose-dependent and reversible manner. Rosiglitazone, a specific peroxisome proliferator-activated receptor-γ (PPARγ) agonist, similarly and significantly (p < 0.002) reduced TC22 protein expression. A polymerase chain reaction array of 84 cancer-related genes performed on TC22 siRNA-transfected cells demonstrated a significant (more than two times) change in targets involved in apoptosis, adhesion, angiogenesis, and tissue remodeling. We conclude that mesalamine, sulfasalazine, and rosiglitazone significantly reduced the cellular expression of TC22, implicating PPARγ in this modulation. Similar suppression of TC22 by siRNA produced gene level changes on several critical carcinogenic pathways. These findings suggest a novel antineoplastic molecular effect of mesalamine. PMID:19369484

  20. Red meat and colon cancer: dietary haem, but not fat, has cytotoxic and hyperproliferative effects on rat colonic epithelium.

    PubMed

    Sesink, A L; Termont, D S; Kleibeuker, J H; Van Der Meer, R

    2000-10-01

    High intake of red meat is associated with an increased risk of colon cancer. It has been suggested that fat from red meat is responsible, because high fat intake increases the concentration of cytotoxic lipids in the colon. Experimental studies have not unequivocally supported such a role for fat, however. Recently, we showed that dietary haem, which is abundant in red meat, increased colonic cytotoxicity and epithelial proliferation. In this study, we wanted to clarify whether dietary fat affects colon cancer risk by itself or by modulating the detrimental effects of haem on the colonic epithelium. Rats were fed control or haem-supplemented diets with 10%, 25% or 40% of the energy derived from fat for 14 days. Faeces were collected for biochemical analyses. Colonic cytotoxicity was determined from the degree of lysis of erythrocytes by faecal water. Colonic epithelial proliferation was measured in vivo using [(3)H]thymidine incorporation. Increasing the fat content of the control diets stimulated faecal disposal of both fatty acids and bile acids. It also increased the concentration of fatty acids, but not that of bile acids, in faecal water in control rats. The cytolytic activity of faecal water and colonic epithelial proliferation were unaffected. Dietary haem increased faecal cation content and cytolytic activity of faecal water at all fat levels, suggesting that the colonic mucosa was exposed to high amounts of luminal irritants. This effect was smaller in rats on the low-fat diet. Dietary haem also increased colonic epithelial proliferation at all fat levels. The haem-induced effects were independent of fatty acids or bile acids in the faecal water. In western societies, 30-40% of ingested energy is supplied by dietary fat, so our results suggest that the association between consumption of red meat and risk of colon cancer is mainly due to its haem content, and is largely independent of dietary fat content. PMID:11023550

  1. Cancer-Associated Fibroblasts in a Human HEp-2 Established Laryngeal Xenografted Tumor Are Not Derived from Cancer Cells through Epithelial-Mesenchymal Transition, Phenotypically Activated but Karyotypically Normal

    PubMed Central

    Wang, Mei; Wu, Chun-Ping; Pan, Jun-Yan; Zheng, Wen-Wei; Cao, Xiao-Juan; Fan, Guo-Kang

    2015-01-01

    Cancer-associated fibroblasts (CAFs) play a crucial role in cancer progression and even initiation. However, the origins of CAFs in various cancer types remain controversial, and one of the important hypothesized origins is through epithelial-mesenchymal transition (EMT) from cancer cells. In this study, we investigated whether the HEp-2 laryngeal cancer cells are able to generate CAFs via EMT during tumor formation, which is now still unknown. The laryngeal xenografted tumor model was established by inoculating the HEp-2 laryngeal cancer cell line in nude mice. Primary cultured CAFs from the tumor nodules and matched normal fibroblasts (NFs) from the adjacent connective tissues were subcultured, purified, and verified by immunofluorescence. Migration, invasion, and proliferation potentials were compared between the CAFs and NFs. A co-culture of CAFs with HEp-2 cells and a co-injection of CAFs with HEp-2 cells in nude mice were performed to examine the cancer-promoting potential of CAFs to further verify their identity. Karyotypic analyses of the CAFs, NFs, and HEp-2 cells were conducted. A co-culture of NFs with HEp-2 cells was also performed to examine the expression of activated markers of CAFs. A pathological examination confirmed that the laryngeal xenografted tumor model was successfully established, containing abundant CAFs. Immunocytochemical staining verified the purities and identities of the CAFs and NFs. Although the CAFs manifested higher migration, invasion, proliferation, and cancer-promoting capacities compared with the NFs, an analysis of chromosomes revealed that both the CAFs and NFs showed typical normal mouse karyotypes. In addition, the NFs co-cultured with HEp-2 cells did not show induced expressions of activated markers of CAFs. Our findings reveal that the CAFs in the HEp-2 established laryngeal xenografted tumor are not of laryngeal cancer origin but of mouse origin, indicating that the HEp-2 laryngeal cancer cells cannot generate their

  2. Clinical utility of colonic manometry in slow transit constipation

    PubMed Central

    Singh, Siddharth; Heady, Sarah; Coss-Adame, Enrique; Rao, Satish S.C.

    2013-01-01

    Background and Aims The clinical significance of colorectal sensori-motor evaluation in patients with slow transit constipation (STC) is unclear. We investigated whether colonic manometric evaluation is useful for characterizing colonic sensorimotor dysfunction and for guiding therapy in STC. Methods 24-hour ambulatory colonic manometry was performed in 80 patients (70 females) with STC by placing a 6 sensor solid state probe, along with assessment of colonic sensation with barostat. Anorectal manometry was also performed. Manometrically, patients were categorized as having colonic neuropathy or myopathy based on gastrocolonic response, waking response and high amplitude propagated contractions (HAPC); and based on colonic sensation, as colonic hyposensitivity or hypersensitivity. Clinical response to pharmacological, biofeedback and surgical treatment was assessed at 1yr and correlated with manometric findings. Results 59% of patients had abnormal colonic manometry with features suggestive of neuropathy (26%), and myopathy (33%); 41% had normal colonic manometry. 74% patients had abnormal colonic sensation and 61% had overlapping dyssynergic defecation. Patients with neuropathy were more likely to have colonic hyposensitivity. 64% of patients with colonic myopathy or normal manometry improved with medical/biofeedback therapy when compared to 15% with colonic neuropathy (p<0.01). Selected patients with colonic neuropathy had excellent response to surgery, but many developed bacterial overgrowth. Conclusions Colonic manometry demonstrates significant colonic sensori-motor dysfunction in STC patients and reveals considerable pathophysiological heterogeneity. It can be useful for characterizing the underlying pathophysiology and for guiding clinical management in STC, especially surgery. PMID:23384415

  3. Reduced expression of β-catenin inhibitor Chibby in colon carcinoma cell lines

    PubMed Central

    Schuierer, Marion M; Graf, Elisabeth; Takemaru, Ken-Ichi; Dietmaier, Wolfgang; Bosserhoff, Anja-Katrin

    2006-01-01

    AIM: To analyse the Chibby expression and its function in colon carcinoma cell lines and colorectal carcinoma (CRC). METHODS: Chibby expression levels were investigated by quantitative RT-PCR in a panel of seven different colon carcinoma cell lines. By sequencing, we analysed mutational status of Chibby. To test whether Chibby exhibited effects on β-catenin signalling in colon carcinoma cells, we transfected SW480 cells with Chibby expression plasmid and, subsequently, analysed activity of β-catenin and tested for alterations in cellular phenotype. In addition, we examined Chibby mRNA levels in samples of colorectal carcinomas and adjacent normal tissues by using quantitative RT-PCR and hybridised gene chips with samples from CRC and normal tissues. RESULTS: Chibby mRNA expression was strongly down-regulated in colon carcinoma cell lines in comparison to normal colon epithelial cells and no mutation in any of the examined colon carcinoma cell lines was found. Further, we could show that Chibby inhibited β-catenin activity in TOPflash assays when over-expressed in SW480 cells. Proliferation and invasion assays with Chibby transfected SW480 cells did not reveal profound differences compared to control cells. In contrast to these in vitro data, quantitative RT-PCR analyses of Chibby mRNA levels in CRC tumor samples did not show significant differences to specimens in adjacent non-cancerous tissue. Consistent with these findings, gene chips analysing tissue samples of tumors and corresponding normal tissue did not show altered Chibby expression CONCLUSION: Altered Chibby expression might be observed in vitro in different colon carcinoma cell lines. However, this finding could not be confirmed in vitro in CRC tumors, indicating that Chibby is not likely to promote CRC tumor development or progression. As Chibby is an important inhibitor of ß-catenin signalling, our data implicate that the usability of colon carcinoma cell lines for in vitro studies analysing the Wnt

  4. Tubular Colonic Duplication Presenting as Rectovestibular Fistula

    PubMed Central

    Bendre, Pradnya; D'souza, Flavia; Ramchandra, Mukunda; Nage, Amol; Palse, Nitin

    2015-01-01

    Complete colonic duplication is a very rare congenital anomaly that may have different presentations according to its location and size. Complete colonic duplication can occur in about 15% of all gastrointestinal duplications. Double termination of tubular colonic duplication in the perineum is even more uncommon. We present a case of a Y-shaped tubular colonic duplication which presented with a rectovestibular fistula and a normal anus. Radiological evaluation and initial exploration for sigmoidostomy revealed duplicated colons with a common vascular supply. Endorectal mucosal resection of theduplicated distal segment till the colostomy site with division of the septum of the proximal segment and colostomy closure proved curative without compromise of the continence mechanism. Tubular colonic duplication should always be ruled out when a diagnosis of perineal canal is considered in cases of vestibular fistula alongwith a normal anus. PMID:26473141

  5. Tubular Colonic Duplication Presenting as Rectovestibular Fistula.

    PubMed

    Karkera, Parag J; Bendre, Pradnya; D'souza, Flavia; Ramchandra, Mukunda; Nage, Amol; Palse, Nitin

    2015-09-01

    Complete colonic duplication is a very rare congenital anomaly that may have different presentations according to its location and size. Complete colonic duplication can occur in about 15% of all gastrointestinal duplications. Double termination of tubular colonic duplication in the perineum is even more uncommon. We present a case of a Y-shaped tubular colonic duplication which presented with a rectovestibular fistula and a normal anus. Radiological evaluation and initial exploration for sigmoidostomy revealed duplicated colons with a common vascular supply. Endorectal mucosal resection of theduplicated distal segment till the colostomy site with division of the septum of the proximal segment and colostomy closure proved curative without compromise of the continence mechanism. Tubular colonic duplication should always be ruled out when a diagnosis of perineal canal is considered in cases of vestibular fistula alongwith a normal anus. PMID:26473141

  6. A comparison of linaclotide and lubiprostone dosing regimens on ion transport responses in human colonic mucosa.

    PubMed

    Kang, Sang Bum; Marchelletta, Ronald R; Penrose, Harrison; Docherty, Michael J; McCole, Declan F

    2015-03-01

    Linaclotide, a synthetic guanylyl cyclase C (GC-C) agonist, and the prostone analog, Lubiprostone, are approved to manage chronic idiopathic constipation and constipation-predominant irritable bowel syndrome. Lubiprostone also protects intestinal mucosal barrier function in ischemia. GC-C signaling regulates local fluid balance and other components of intestinal mucosal homeostasis including epithelial barrier function. The aim of this study was to compare if select dosing regimens differentially affect linaclotide and lubiprostone modulation of ion transport and barrier properties of normal human colonic mucosa. Normal sigmoid colon biopsies from healthy subjects were mounted in Ussing chambers. Tissues were treated with linaclotide, lubiprostone, or vehicle to determine effects on short-circuit current (I sc). Subsequent I sc responses to the cAMP agonist, forskolin, and the calcium agonist, carbachol, were also measured to assess if either drug caused desensitization. Barrier properties were assessed by measuring transepithelial electrical resistance. I sc responses to linaclotide and lubiprostone were significantly higher than vehicle control when administered bilaterally or to the mucosal side only. Single versus cumulative concentrations of linaclotide showed differences in efficacy while cumulative but not single dosing caused desensitization to forskolin. Lubiprostone reduced forskolin responses under all conditions. Linaclotide and lubiprostone exerted a positive effect on TER that was dependent on the dosing regimen. Linaclotide and lubiprostone increase ion transport responses across normal human colon but linaclotide displays increased sensitivity to the dosing regimen used. These findings may have implications for dosing protocols of these agents in patients with constipation. PMID:26038704

  7. Effects of acetaldehyde on brush border enzyme activities in human colon adenocarcinoma cell line Caco-2.

    PubMed

    Koivisto, T; Salaspuro, M

    1997-12-01

    The treatment of Caco-2 cells, a human colon adenocarcinoma cell line that closely resembles normal human small intestinal epithelial cells, with acetaldehyde resulted in significantly decreased activities of brush border enzymes sucrase, maltase, lactase, and gamma-glutamyltransferase; alkaline phosphatase activity was not affected. In the case of sucrase and maltase, the activities were also decreased by a combination of acetaldehyde and ethanol, although ethanol alone markedly increased them. The possibility that intraintestinal acetaldehyde, formed by intestinal microbes, might play a role in some small intestinal enzyme deficiencies observed earlier in alcoholics should therefore be considered. The mechanism by which acetaldehyde alters these enzyme activities remains unclear. The observation that acetaldehyde also disturbed cell polarization, an initial step in the process of differentiation in Caco-2 cells, indicates that acetaldehyde might decrease these enzyme activities by interfering with cell differentiation. Because ethanol and acetaldehyde metabolizing enzymes have not been previously studied from Caco-2 cells, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities were also measured from these cells, and their ALDH isoenzyme pattern was characterized. Like many cancerous cell lines, Caco-2 cells were found to express no ADH. They, however, possessed ALDH activity that was comparable with normal colonic mucosal activity and also expressed the same ALDH classes (ALDHs 1 to 3) than normal human colonic mucosa. PMID:9438518

  8. A comparison of linaclotide and lubiprostone dosing regimens on ion transport responses in human colonic mucosa

    PubMed Central

    Kang, Sang Bum; Marchelletta, Ronald R; Penrose, Harrison; Docherty, Michael J; McCole, Declan F

    2015-01-01

    Linaclotide, a synthetic guanylyl cyclase C (GC-C) agonist, and the prostone analog, Lubiprostone, are approved to manage chronic idiopathic constipation and constipation-predominant irritable bowel syndrome. Lubiprostone also protects intestinal mucosal barrier function in ischemia. GC-C signaling regulates local fluid balance and other components of intestinal mucosal homeostasis including epithelial barrier function. The aim of this study was to compare if select dosing regimens differentially affect linaclotide and lubiprostone modulation of ion transport and barrier properties of normal human colonic mucosa. Normal sigmoid colon biopsies from healthy subjects were mounted in Ussing chambers. Tissues were treated with linaclotide, lubiprostone, or vehicle to determine effects on short-circuit current (Isc). Subsequent Isc responses to the cAMP agonist, forskolin, and the calcium agonist, carbachol, were also measured to assess if either drug caused desensitization. Barrier properties were assessed by measuring transepithelial electrical resistance. Isc responses to linaclotide and lubiprostone were significantly higher than vehicle control when administered bilaterally or to the mucosal side only. Single versus cumulative concentrations of linaclotide showed differences in efficacy while cumulative but not single dosing caused desensitization to forskolin. Lubiprostone reduced forskolin responses under all conditions. Linaclotide and lubiprostone exerted a positive effect on TER that was dependent on the dosing regimen. Linaclotide and lubiprostone increase ion transport responses across normal human colon but linaclotide displays increased sensitivity to the dosing regimen used. These findings may have implications for dosing protocols of these agents in patients with constipation. PMID:26038704

  9. Conditional knockout of the leptin receptor in the colonic epithelium revealed the local effects of leptin receptor signaling in the progression of colonic tumors in mice.

    PubMed

    Higurashi, Takuma; Endo, Hiroki; Uchiyama, Takashi; Uchiyama, Shiori; Yamada, Eiji; Ohkubo, Hidenori; Sakai, Eiji; Takahashi, Hirokazu; Maeda, Shin; Wada, Koichiro; Natsumeda, Yutaka; Hippo, Yoshitaka; Nakajima, Atsushi; Nakagama, Hitoshi

    2014-09-01

    Leptin, secreted by the adipose tissue and known to be related to obesity, is considered to be involved in the onset and progression of colorectal cancer. However, the exact role of leptin in colorectal carcinogenesis is still unclear, as several controversial reports have been published on the various systemic effects of leptin. The aim of this study was to clarify the local and precise roles of leptin receptor (LEPR)-mediated signaling in colonic carcinogenesis using intestinal epithelium-specific LEPRb conditional knockout (cKO) mice. We produced and used colonic epithelium-specific LEPRb cKO mice to investigate the carcinogen-induced formation of aberrant crypt foci (ACF) and tumors in the colon, using their littermates as control. There were no differences in the body weight or systemic condition between the control and cKO mice. The tumor sizes and number of large-sized tumors were significantly lower in the cKO mice as compared with those in the control mice. On the other hand, there was no significant difference in the proliferative activity of the normal colonic epithelial cells or ACF formation between the control and cKO mice. In the control mice, marked increase of the LEPRb expression level was observed in the colonic tumors as compared with that in the normal epithelium; furthermore, signal transducer and activator of transcription (STAT3) was activated in the tumor cells. These findings suggest that STAT3 is one of the important molecules downstream of LEPRb, and LEPRb/STAT3 signaling controls tumor cell proliferation. We demonstrated the importance of local/regional LEPR-mediated signaling in colorectal carcinogenesis. PMID:24958593

  10. Murine breast carcinoma 4T1 cells are more sensitive to atranorin than normal epithelial NMuMG cells in vitro: Anticancer and hepatoprotective effects of atranorin in vivo.

    PubMed

    Solár, Peter; Hrčková, Gabriela; Koptašíková, Lenka; Velebný, Samuel; Solárová, Zuzana; Bačkor, Martin

    2016-04-25

    The aim of this study was to evaluate the anticancer effect of atranorin (ATR) on murine 4T1 breast carcinoma cells and compare its sensitivity with normal mammary epithelial NMuMG cells in vitro. Anti-tumor and hepatoprotective activity of ATR-therapy was examined on mouse model of 4T1-induced cancer disease. ATR significantly reduced clonogenic ability of carcinoma 4T1 cells at the concentration of 75 μM, but clonogenicity of normal NMuMG cells was not affected by any of ATR concentrations tested. Moreover, flow cytometric and BrdU incorporation analysis did not confirm the inhibited entry into S-phase of the cell cyle after ATR incubation, and on the contrary, it induced apoptosis associated with the activation of caspase-3 and PARP cleavage in 4T1 cells. Although ATR did not cause any significant changes in Bcl-xL protein expression in NMuMG cells, an apparent depletion of Bcl-xL protein in 4T1 cells after 48 h ATR therapy was confirmed. Based on this result as well as the result of the total cell number decline, we can conclude that 4T1 cells are more sensitive to ATR therapy than NMuMG cells. ATR administration resulted in significantly longer survival time of BALB/c mice inoculated with 4T1 cells, what was associated with reduced tumor size and the higher numbers of apoptotic 4T1 cells. No differences were recorded in the number of BrdU-positive tumor cells between ATR-treated group and controls. Results indicate that ATR has rather proapoptotic than antiproliferative effect on 4T1 cells in vitro and in vivo and normal NMuMG cells are less sensitive to ATR. Furthermore, our studies revealed protective effect of ATR against oxidative stress in the livers of the tumor-bearing mice. PMID:26969521

  11. Combination of Gefitinib and DNA Methylation Inhibitor Decitabine Exerts Synergistic Anti-Cancer Activity in Colon Cancer Cells

    PubMed Central

    Chen, Pin-jia; Huang, Guo-bin; Li, Bin; Zheng, De-qing; Yu, Xiu-rong; Luo, Xiao-yong

    2014-01-01

    Despite recent advances in the treatment of human colon cancer, the chemotherapy efficacy against colon cancer is still unsatisfactory. In the present study, effects of concomitant inhibition of the epidermal growth factor receptor (EGFR) and DNA methyltransferase were examined in human colon cancer cells. We demonstrated that decitabine (a DNA methyltransferase inhibitor) synergized with gefitinib (an EGFR inhibitor) to reduce cell viability and colony formation in SW1116 and LOVO cells. However, the combination of the two compounds displayed minimal toxicity to NCM460 cells, a normal human colon mucosal epithelial cell line. The combination was also more effective at inhibiting the AKT/mTOR/S6 kinase pathway. In addition, the combination of decitabine with gefitinib markedly inhibited colon cancer cell migration. Furthermore, gefitinib synergistically enhanced decitabine-induced cytotoxicity was primarily due to apoptosis as shown by Annexin V labeling that was attenuated by z-VAD-fmk, a pan caspase inhibitor. Concomitantly, cell apoptosis resulting from the co-treatment of gefitinib and decitabine was accompanied by induction of BAX, cleaved caspase 3 and cleaved PARP, along with reduction of Bcl-2 compared to treatment with either drug alone. Interestingly, combined treatment with these two drugs increased the expression of XIAP-associated factor 1 (XAF1) which play an important role in cell apoptosis. Moreover, small interfering RNA (siRNA) depletion of XAF1 significantly attenuated colon cancer cells apoptosis induced by the combination of the two drugs. Our findings suggested that gefitinib in combination with decitabine exerted enhanced cell apoptosis in colon cancer cells were involved in mitochondrial-mediated pathway and induction of XAF1 expression. In conclusion, based on the observations from our study, we suggested that the combined administration of these two drugs might be considered as a novel therapeutic regimen for treating colon cancer. PMID

  12. Carboxymethylcellulose-tetrahydrocurcumin conjugates for colon-specific delivery of a novel anti-cancer agent, 4-amino tetrahydrocurcumin.

    PubMed

    Plyduang, Thipapun; Lomlim, Luelak; Yuenyongsawad, Supreeya; Wiwattanapatapee, Ruedeekorn

    2014-10-01

    Several curcumin derivatives are now becoming increasingly of interest because of their bioactive attributes, especially their action as antioxidants and anti-carcinogenic activities. Tetrahydrocurcumin (THC), an active metabolite of curcumin, was selected to be a proper starting material for the work presented here as it is stable in physiological pH and has the typical pharmacological properties of curcumin. We have now reported that novel synthesized water-soluble polymeric macromolecule prodrugs can specifically deliver the drug to the colon. To study the drug loading and drug release, THC was conjugated with a hydrophilic polymer, carboxymethylcellulose (CMC) with the degree of substitution (DS) values of 0.7 and 1.2. THC was also attached to two different spacers including p-aminobenzoic acid (PABA) and p-aminohippuric acid (PAH) via an azo bond that was cleaved by the azoreductase activities of colonic bacteria. The novel active molecule, 4-amino-THC, was readily released from the conjugates in the colon (>62% within 24h) with only very small amounts released in the upper GI tract (<12% over 12h). The polymer conjugates showed chemical stability at various pH values along the gastrointestinal tract and increased water solubility of up to 5mg/mL. 4-Amino-THC demonstrated cytotoxic ability against the human colon adenocarcinoma cell lines (HT-29) with an IC50 of 28.67 ± 1.01 μg/mL, and even greater selectivity (∼ 4 folds) to inhibit HT-29 cells than to normal human colon epithelial cell lines while curcumin was a non-selective agent against both cell lines. Our study has demonstrated that the use of THC-CMC conjugates may be a promising colon-specific drug delivery system with its sustained release in the colon to be an effective treatment for colonic cancer. PMID:24859389

  13. Carrageenan Induces Cell Cycle Arrest in Human Intestinal Epithelial Cells in Vitro1–3

    PubMed Central

    Bhattacharyya, Sumit; Borthakur, Alip; Dudeja, Pradeep K.; Tobacman, Joanne K.

    2016-01-01

    Multiple studies in animal models have shown that the commonly used food additive carrageenan (CGN) induces inflammation and intestinal neoplasia. We performed the first studies to determine the effects of CGN exposure on human intestinal epithelial cells (IEC) in tissue culture and tested the effect of very low concentrations (1–10 mg/L) of undegraded, high-molecular weight CGN. These concentrations of CGN are less than the anticipated exposure of the human colon to CGN from the average Western diet. In the human colonic epithelial cell line NCM460 and in primary human colonic epithelial cells that were exposed to CGN for 1–8 d, we found increased cell death, reduced cell proliferation, and cell cycle arrest compared with unexposed control cells. After 6–8 d of CGN exposure, the percentage of cells reentering G0–G1 significantly decreased and the percentages of cells in S and G2-M phases significantly increased. Increases in activated p53, p21, and p15 followed CGN exposure, consistent with CGN-induced cell cycle arrest. Additional data, including DNA ladder, poly ADP ribose polymerase Western blot, nuclear DNA staining, and activities of caspases 3 and 7, indicated no evidence of increased apoptosis following CGN exposure and were consistent with CGN-induced necrotic cell death. These data document for the first time, to our knowledge, marked adverse effects of low concentrations of CGN on survival of normal human IEC and suggest that CGN exposure may have a role in development of human intestinal pathology. PMID:18287351

  14. The Intestinal Epithelial Cell Differentiation Marker Intestinal Alkaline Phosphatase (ALPi) Is Selectively Induced by Histone Deacetylase Inhibitors (HDACi) in Colon Cancer Cells in a Kruppel-like Factor 5 (KLF5)-dependent Manner*

    PubMed Central

    Shin, Joongho; Carr, Azadeh; Corner, Georgia A.; Tögel, Lars; Dávaos-Salas, Mercedes; Tran, Hoanh; Chueh, Anderly C.; Al-Obaidi, Sheren; Chionh, Fiona; Ahmed, Naseem; Buchanan, Daniel D.; Young, Joanne P.; Malo, Madhu S.; Hodin, Richard A.; Arango, Diego; Sieber, Oliver M.; Augenlicht, Leonard H.; Dhillon, Amardeep S.; Weber, Thomas K.; Mariadason, John M.

    2014-01-01

    The histone deacetylase inhibitor (HDACi) sodium butyrate promotes differentiation of colon cancer cells as evidenced by induced expression and enzyme activity of the differentiation marker intestinal alkaline phosphatase (ALPi). Screening of a panel of 33 colon cancer cell lines identified cell lines sensitive (42%) and resistant (58%) to butyrate induction of ALP activity. This differential sensitivity was similarly evident following treatment with the structurally distinct HDACi, MS-275. Resistant cell lines were significantly enriched for those harboring the CpG island methylator phenotype (p = 0.036, Chi square test), and resistant cell lines harbored methylation of the ALPi promoter, particularly of a CpG site within a critical KLF/Sp regulatory element required for butyrate induction of ALPi promoter activity. However, butyrate induction of an exogenous ALPi promoter-reporter paralleled up-regulation of endogenous ALPi expression across the cell lines, suggesting the presence or absence of a key transcriptional regulator is the major determinant of ALPi induction. Through microarray profiling of sensitive and resistant cell lines, we identified KLF5 to be both basally more highly expressed as well as preferentially induced by butyrate in sensitive cell lines. KLF5 overexpression induced ALPi promoter-reporter activity in resistant cell lines, KLF5 knockdown attenuated butyrate induction of ALPi expression in sensitive lines, and butyrate selectively enhanced KLF5 binding to the ALPi promoter in sensitive cells. These findings demonstrate that butyrate induction of the cell differentiation marker ALPi is mediated through KLF5 and identifies subsets of colon cancer cell lines responsive and refractory to this effect. PMID:25037223

  15. PAR2-dependent activation of GSK3β regulates the survival of colon stem/progenitor cells.

    PubMed

    Nasri, Imen; Bonnet, Delphine; Zwarycz, Bailey; d'Aldebert, Emilie; Khou, Sokchea; Mezghani-Jarraya, Raoudha; Quaranta, Muriel; Rolland, Corinne; Bonnart, Chrystelle; Mas, Emmanuel; Ferrand, Audrey; Cenac, Nicolas; Magness, Scott; Van Landeghem, Laurianne; Vergnolle, Nathalie; Racaud-Sultan, Claire

    2016-08-01

    Protease-activated receptors PAR1 and PAR2 play an important role in the control of epithelial cell proliferation and migration. However, the survival of normal and tumor intestinal stem/progenitor cells promoted by proinflammatory mediators may be critical in oncogenesis. The glycogen synthase kinase-3β (GSK3β) pathway is overactivated in colon cancer cells and promotes their survival and drug resistance. We thus aimed to determine PAR1 and PAR2 effects on normal and tumor intestinal stem/progenitor cells and whether they involved GSK3β. First, PAR1 and PAR2 were identified in colon stem/progenitor cells by immunofluorescence. In three-dimensional cultures of murine crypt units or single tumor Caco-2 cells, PAR2 activation decreased numbers and size of normal or cancerous spheroids, and PAR2-deficient spheroids showed increased proliferation, indicating that PAR2 represses proliferation. PAR2-stimulated normal cells were more resistant to stress (serum starvation or spheroid passaging), suggesting prosurvival effects of PAR2 Accordingly, active caspase-3 was strongly increased in PAR2-deficient normal spheroids. PAR2 but not PAR1 triggered GSK3β activation through serine-9 dephosphorylation in normal and tumor cells. The PAR2-triggered GSK3β activation implicates an arrestin/PP2A/GSK3β complex that is dependent on the Rho kinase activity. Loss of PAR2 was associated with high levels of GSK3β nonactive form, strengthening the role of PAR2 in GSK3β activation. GSK3 pharmacological inhibition impaired the survival of PAR2-stimulated spheroids and serum-starved cells. Altogether our data identify PAR2/GSK3β as a novel pathway that plays a critical role in the regulation of stem/progenitor cell survival and proliferation in normal colon crypts and colon cancer. PMID:27313176

  16. Enteric dysbiosis promotes antibiotic-resistant bacterial infection: systemic dissemination of resistant and commensal bacteria through epithelial transcytosis.

    PubMed

    Yu, Linda Chia-Hui; Shih, Yi-An; Wu, Li-Ling; Lin, Yang-Ding; Kuo, Wei-Ting; Peng, Wei-Hao; Lu, Kuo-Shyan; Wei, Shu-Chen; Turner, Jerrold R; Ni, Yen-Hsuan

    2014-10-15

    Antibiotic usage promotes intestinal colonization of antibiotic-resistant bacteria. However, whether resistant bacteria gain dominance in enteric microflora or disseminate to extraintestinal viscera remains unclear. Our aim was to investigate temporal diversity changes in microbiota and transepithelial routes of bacterial translocation after antibiotic-resistant enterobacterial colonization. Mice drinking water with or without antibiotics were intragastrically gavaged with ampicillin-resistant (Amp-r) nonpathogenic Escherichia coli (E. coli) and given normal water afterward. The composition and spatial distribution of intestinal bacteria were evaluated using 16S rDNA sequencing and fluorescence in situ hybridization. Bacterial endocytosis in epithelial cells was examined using gentamicin resistance assay and transmission electromicroscopy. Paracellular permeability was assessed by tight junctional immunostaining and measured by tissue conductance and luminal-to-serosal dextran fluxes. Our results showed that antibiotic treatment enabled intestinal colonization and transient dominance of orally acquired Amp-r E. coli in mice. The colonized Amp-r E. coli peaked on day 3 postinoculation and was competed out after 1 wk, as evidenced by the recovery of commensals, such as Escherichia, Bacteroides, Lachnospiraceae, Clostridium, and Lactobacillus. Mucosal penetration and extraintestinal dissemination of exogenous and endogenous enterobacteria were correlated with abnormal epithelial transcytosis but uncoupled with paracellular tight junctional damage. In conclusion, antibiotic-induced enteric dysbiosis predisposes to exogenous infection and causes systemic dissemination of both antibiotic-resistant and commensal enterobacteria through transcytotic routes across epithelial layers. These results may help explain the susceptibility to sepsis in antibiotic-resistant enteric bacterial infection. PMID:25059827

  17. Colon cancer - resources

    MedlinePlus

    Resources - colon cancer ... The following organizations are good resources for information on colon cancer : American Cancer Society -- www.cancer.org/cancer/colonandrectumcancer/index Colon Cancer Alliance -- www.ccalliance.org National ...

  18. Complete colonic duplication in children

    PubMed Central

    Khaleghnejad Tabari, Ahmad; Mirshemirani, Alireza; Khaleghnejad Tabari, Nasibeh

    2012-01-01

    Background: Complete colonic duplication is a very rare congenital anomaly that may have different presentations according to its location and size. Complete colonic duplication can occur in 15% of gastrointestinal duplication. We report two cases of complete colonic duplications, and their characteristics. Case Presentation: We present two patients with complete colonic duplication with different types and presentations. Case 1: A 2- year old boy presented to the clinic with abdominal protrusion, difficulty to defecate, chronic constipation and mucosal prolaps covered bulging (rectocele) since he was 6 months old. The patient had palpable pelvic mass with doughy consistency. Rectal exam confirmed perirectal mass with soft consistency. The patient underwent a surgical operation that had total tubular colorectal duplication with one blind end and was treated with simple fenestration of distal end, and was discharged without complication. After two years follow up, he had normal defecation and good weight gain. Case 2: A 2 –day old infant was referred with imperforate anus and complete duplication of recto-sigmoid colon, diphallus, double bladder, and hypospadiasis. After clinical and paraclinical investigations, he underwent operations in several stages in different periods, and was discharged without complications. After four years follow up, he led a normal life. Conclusion: The patients with complete duplication have to be examined carefully because of the high incidence of other systemic anomalies. Treatment includes simple resection of distal common wall, fenestration, and repair other associated anomalies. PMID:24358440

  19. Epithelial Sodium Channels in Pulmonary Epithelial Progenitor and Stem Cells

    PubMed Central

    Liu, Yang; Jiang, Bi-Jie; Zhao, Run-Zhen; Ji, Hong-Long

    2016-01-01

    Regeneration of the epithelium of mammalian lungs is essential for restoring normal function following injury, and various cells and mechanisms contribute to this regeneration and repair. Club cells, bronchioalveolar stem cells (BASCs), and alveolar type II epithelial cells (ATII) are dominant stem/progenitor cells for maintaining epithelial turnover and repair. Epithelial Na+ channels (ENaC), a critical pathway for transapical salt and fluid transport, are expressed in lung epithelial progenitors, including club and ATII cells. Since ENaC activity and expression are development- and differentiation-dependent, apically located ENaC activity has therefore been used as a functional biomarker of lung injury repair. ENaC activity may be involved in the migration and differentiation of local and circulating stem/progenitor cells with diverse functions, eventually benefiting stem cells spreading to re-epithelialize injured lungs. This review summarizes the potential roles of ENaC expressed in native progenitor and stem cells in the development and regeneration of the respiratory epithelium. PMID:27570489

  20. Role of dietary factors in cell replication and colon cancer.

    PubMed

    Jacobs, R

    1988-09-01

    Human studies and experimental data from animals suggest that high rates of colonic epithelial cell replication enhance the development of colon cancer. Vegetarians and individuals following a prudent diet have lower rates of colorectal cell proliferation than subjects at high risk for colon cancer. Animal studies show that colonic cell proliferation is stimulated by feeding in general and specifically by a number of dietary fibers, fats, bile acids, and short-chain fatty acids. Many of these growth factors also increase the induction of experimental tumorigenesis. On the other hand factors that reduce cell growth, including ascorbic acid and butylated hydroxyanisole, inhibit colon carcinogenesis. These results support the concept that dietary chemoprevention is feasible and could significantly reduce the rate of colon cancer development in high risk populations. PMID:3046307

  1. Qualitative and quantitative comparison of colonic microendoscopy image features to histopathology

    NASA Astrophysics Data System (ADS)

    Prieto, Sandra P.; Powless, Amy J.; Lai, Keith; Laryea, Jonathan A.; Mizell, Jason S.; Muldoon, Timothy J.

    2015-03-01

    Colorectal cancer is the second leading cause of cancer deaths in the United States, affecting more than 130,000 Americans every year1. Determining tumor margins prior to surgical resection is essential to providing optimal treatment and reducing recurrence rates. Colorectal cancer recurrence can occur in up to 20% of cases, commonly within three years after curative treatment. Typically, when colorectal cancers are resected, a margin of normal tissue on both sides of the tumor is required. The minimum margin required for colon cancer is 5 cm and for the lower rectum 2 cm. However, usually more normal tissue is taken on both sides of the tumor because the blood supply to the entire segment is removed with the surgery and therefore the entire segment must be removed. Anastomotic recurrences may result from inadequate margins. Pathologists look at the margins to ensure that there is no residual tumor and this is usually documented in the pathology report. We have developed a portable, point-of-care fiber bundle microendoscopy imaging system for detection of abnormalities in colonic epithelial microstructure. The system comprises a laptop, a modified fiber bundle image guide with a 1mm active area diameter and custom LabVIEW interface, and is approved for imaging surgically resected colon tissue at the University of Arkansas for Medical Sciences. The microendoscopy probe provides high-resolution images of superficial epithelial histology in real-time to assist surgical guidance and to localize occult regions of dysplasia which may not be visible. Microendoscopy images of freshly resected human colonic epithelium were acquired using the microendoscopy device and subsequently mosaicked using custom post-processing software. Architectural changes in the glands were mapped to histopathology H&E slides taken from the precise location of the microendoscopy images. Qualitatively, glandular distortion and placement of image guide was used to map normal and dysplastic areas of

  2. microRNA-17 Is the Most Up-Regulated Member of the miR-17-92 Cluster during Early Colon Cancer Evolution

    PubMed Central

    Knudsen, Kirsten Nguyen; Nielsen, Boye Schnack; Lindebjerg, Jan; Hansen, Torben Frøstrup; Holst, René; Sørensen, Flemming Brandt

    2015-01-01

    Deregulated microRNAs play a role in the development and progression of colon cancer, but little is known about their tissue and cell distribution in the continuum of normal mucosa through the premalignant adenoma to invasive adenocarcinoma. The aim of this study was to examine the expression pattern of the miR-17-92 cluster (miR-17, miR-18, miR-19, miR-20 and miR-92) as well as miR-21, miR-31, miR-135b, and miR-145 in early clinically diagnosed colon cancer. MicroRNAs were analysed by chromogenic in situ hybridisation in the normal-adenoma-adenocarcinoma sequence of nine adenocarcinomas developed in mucosal colon polyps. Subsequently, the expression of selected microRNAs was validated in 24 mucosal colon cancer polyps. Expression of miR-17 was confined to the epithelial cells, and the expression levels increased in the transitional zone from normal to adenomatous tissue. The miR-17-92 cluster members, miR-19b, miR-20a, and miR-92a, followed the same expression pattern, but miR-17 was the most predominant. An increased expression of miR-21 was found in the tumour-associated stroma with the most dramatic increase from adenoma to adenocarcinoma, while the number of positive miR-145 fibroblast-like cells in the normal lamina propria (stroma) decreased in a stepwise manner throughout the normal-adenoma-adenocarcinoma sequence. It is concluded that the expression of miR-17, miR-21, and miR-145 changes at early stages of the normal-adenoma-adenocarcinoma sequence. Thus, these microRNAs may play a role in the development of colon cancer. PMID:26465597

  3. Involvement of Smad3 phosphoisoform-mediated signaling in the development of colonic cancer in IL-10-deficient mice.

    PubMed

    Hachimine, Daisaku; Uchida, Kazushige; Asada, Masanori; Nishio, Akiyoshi; Kawamata, Seiji; Sekimoto, Go; Murata, Miki; Yamagata, Hideo; Yoshida, Katsunori; Mori, Shigeo; Tahashi, Yoshiya; Matsuzaki, Koichi; Okazaki, Kazuichi

    2008-06-01

    Chronic inflammation predisposes to cancer. Transforming growth factor (TGF)-beta, a multifunctional protein, suppresses the growth of normal colonic epithelial cells, whereas it stimulates the proliferation of cancer cells. Interleukin (IL)-10-deficient mice, which develop colitis and colorectal cancer, show an increased level of plasma TGF-beta. Although TGF-beta may be a key molecule in the development of colon cancer arising from chronic colitis in IL-10-deficient mice, the role of TGF-beta still remains unclear. TGF-beta activates not only TGF-beta type I receptor (TbetaRI) but also c-Jun N-terminal kinase (JNK), which converts the mediator Smad3 into two distinctive phosphoisoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). We studied C57BL/6-IL-10-deficient mice (n=18) at 4 to 32 weeks of age. We investigated histology, and pSmad2/3L, pSmad2/3C, and p53 by immunohistochemistry. pSmad3L staining was detected in the cancer cells in all 10 mice with colonic cancer and in the epithelial cells in 7 of 12 mice with colonic dysplasia, but not in the normal or colitic mice. pSmad3c was detected without any significant difference between stages. p53 was weakly stained in a few cancer cells in 5 out of 10 mice. Smad3L signaling plays an important role in the carcinogenesis of chronic colitis in IL-10-deficient mice. PMID:18497983

  4. Aldosterone and thyroid hormone interaction on the sodium and potassium transport pathways of rat colonic epithelium.

    PubMed

    Edmonds, C J; Willis, C L

    1990-01-01

    The effect of hypothyroidism on potassium adaptation (shown by increased potassium secretion in response to potassium loading) and on the action of aldosterone on potassium secretion and sodium fluxes was examined in the rat distal colon. Potassium adaptation, particularly the response to an acute potassium load, was impaired by hypothyroidism which also considerably reduced the rise of transepithelial electrical potential difference (p.d.) of total and transcellular (active) lumen-to-plasma sodium fluxes and of potassium secretion normally produced by aldosterone. These changes were, in part, corrected by a short period (3 days) of tri-iodothyronine replacement. Moreover in aldosterone-treated hypothyroid rats, amiloride in the lumen was considerably less effective in reducing the p.d. and sodium fluxes than in aldosterone-treated normal rats. The intracellular sodium transport pool was greater in the hypothyroid than in the normal rats (5.0 +/- 1.1 (S.E.M.) nmol/mg dry weight compared with 2.9 +/- 0.2 nmol/mg dry weight; P less than 0.02). Aldosterone increased the pool in the normal but not in the hypothyroid rats while amiloride had little effect on the pool in the aldosterone-treated hypothyroid rats but almost abolished it in aldosterone-treated normal rats. Aldosterone plays a major part in the adaptation of colonic sodium and potassium transport to sodium depletion or potassium excess; these adaptations were much impaired in hypothyroid animals. The present results are consistent with a deficiency in aldosterone induction of potassium- and amiloride-sensitive sodium pathways in the apical membrane of colonic epithelial cells in hypothyroid rats, a deficiency which limits the stimulant effect of aldosterone on sodium and potassium transport. PMID:2299278

  5. Epithelial organization, cell polarity and tumorigenesis.

    PubMed

    McCaffrey, Luke Martin; Macara, Ian G

    2011-12-01

    Epithelial cells comprise the foundation for the majority of organs in the mammalian body, and are the source of approximately 90% of all human cancers. Characteristically, epithelial cells form intercellular adhesions, exhibit apical/basal polarity, and orient their mitotic spindles in the plane of the epithelial sheet. Defects in these attributes result in the tissue disorganization associated with cancer. Epithelia undergo self-renewal from stem cells, which might in some cases be the cell of origin for cancers. The PAR polarity proteins are master regulators of epithelial organization, and are closely linked to signaling pathways such as Hippo, which orchestrate proliferation and apoptosis to control organ size. 3D ex vivo culture systems can now faithfully recapitulate epithelial organ morphogenesis, providing a powerful approach to study both normal development and the initiating events in carcinogenesis. PMID:21782440

  6. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

    PubMed Central

    Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ρlvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.

    2012-01-01

    Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459

  7. Toll-like Receptor Signaling Activation by Entamoeba histolytica Induces Beta Defensin 2 in Human Colonic Epithelial Cells: Its Possible Role as an Element of the Innate Immune Response

    PubMed Central

    Ayala-Sumuano, Jorge-Tonatiuh; Téllez-López, Victor M.; Domínguez-Robles, M. del Carmen; Shibayama-Salas, Mineko; Meza, Isaura

    2013-01-01

    Background Entamoeba histolytica, a protozoan parasite of humans, produces dysenteric diarrhea, intestinal mucosa damage and extraintestinal infection. It has been proposed that the intestinal microbiota composition could be an important regulatory factor of amebic virulence and tissue invasion, particularly if pathogenic bacteria are present. Recent in vitro studies have shown that Entamoeba histolytica trophozoites induced human colonic CaCo2 cells to synthesize TLR-2 and TLR-4 and proinflammatory cytokines after binding to the amebic Gal/GalNac lectin carbohydrate recognition domain. The magnitude of the inflammatory response induced by trophozoites and the subsequent cell damage were synergized when cells had previously been exposed to pathogenic bacteria. Methodology/Principal Findings We show here that E. histolytica activation of the classic TLR pathway in CaCo2 cells is required to induce β defensin-2 (HBD2) mRNA expression and production of a 5-kDa cationic peptide with similar properties to the antimicrobial HBD2 expressed by CaCo2 cells exposed to enterotoxigenic Escherichia coli. The induced peptide showed capacity to permeabilize membranes of bacteria and live trophozoites. This activity was abrogated by inhibition of TLR2/4-NFκB pathway or by neutralization with an anti-HBD2 antibody. Conclusions/Significance Entamoeba histolytica trophozoites bind to human intestinal cells and induce expression of HBD2; an antimicrobial molecule with capacity to destroy pathogenic bacteria and trophozoites. HDB2's possible role as a modulator of the course of intestinal infections, particularly in mixed ameba/bacteria infections, is discussed. PMID:23469306

  8. Wingless homolog Wnt11 suppresses bacterial invasion and inflammation in intestinal epithelial cells.

    PubMed

    Liu, Xingyin; Wu, Shaoping; Xia, Yinglin; Li, Xi Emma; Xia, Yuxuan; Zhou, Zhongren David; Sun, Jun

    2011-12-01

    Wnt11 plays an essential role in gastrointestinal epithelial proliferation, and previous investigations have focused on development and immune responses. However, the roles of how enteric bacteria regulate Wnt11 and how Wnt11 modulates the host response to pathogenic bacteria remain unexplored. This study investigated the effects of Salmonella infection on Wnt activation in intestinal epithelial cells. We found that Wnt11 mRNA and protein expression were elevated after Salmonella colonization. Wnt11 protein secretion in epithelial cells was also elevated after bacterial infection. Furthermore, we demonstrated that pathogenic Salmonella regulated Wnt11 expression and localization in vivo. We found a decrease in Salmonella invasion in cells with Wnt11 overexpression compared with cells with normal Wnt11 level. IL-8 mRNA in Wnt11-transfected cells was low; however, it was enhanced in cells with a low level of Wnt11 expression. Functionally, Wnt11 overexpression inhibited Salmonella-induced apoptosis. AvrA is a known bacterial effector protein that stabilizes β-catenin, the downstream regulator of Wnt signaling, and inhibits bacterially induced intestinal inflammation. We observed that Wnt11 expression, secretion, and transcriptional activity were regulated by Salmonella AvrA. Overall, Wnt11 is involved in the protection of the host intestinal cells by blocking the invasion of pathogenic bacteria, suppressing inflammation, and inhibiting apoptosis. Wnt11 is a novel and important contributor to intestinal homeostasis and host defense. PMID:21903761

  9. IL-1β stimulation of CCD-18co myofibroblasts enhances repair of epithelial monolayers through Wnt-5a.

    PubMed

    Raymond, Meera; Marchbank, Tania; Moyer, Mary P; Playford, Raymond J; Sanderson, Ian R; Kruidenier, Laurens

    2012-12-01

    Subepithelial myofibroblasts are involved in the initiation and coordination of intestinal epithelial repair, but the molecular signaling pathways are largely unknown. The cellular adaptations that occur during repair range from dedifferentiation and migration to proliferation and redifferentiation, in a way that is strongly reminiscent of normal crypt-to-villus epithelial maturation. We therefore hypothesized that Wnt/β-catenin signaling may have a pivotal role in intestinal epithelial wound repair. We used the established scratch wound method in Caco-2 cells and in nontransformed NCM460 cells to monitor the effects of IL-1β-stimulated colonic myofibroblasts (CCD-18co) on intestinal epithelial repair, with immunoblotting and immunodepletion to examine the conditioned media. Conditioned media from IL-1β-stimulated, but not -untreated, myofibroblasts increased Caco-2 wound closure twofold over 24 h. IL-1β-stimulated myofibroblasts downregulated the differentiation marker sucrase-isomaltase in the Caco-2 cells, whereas the proliferation marker c-myc was upregulated. Array expression profiling identified Wnt-5a as the Wnt-related gene that was most upregulated (28-fold) by IL-1β stimulation of CCDs. Recombinant Wnt-5a enhanced proliferation of Caco-2 and NCM460 cells. In scratch assays, it increased migration of the leading edge in both cell lines. Wnt-5a immunodepletion of the IL-1β-CCD conditioned media abrogated the ability to enhance the repair. Wnt-5a often acts through a noncanonical signal transduction pathway. Further experiments supported this pathway in epithelial wound healing: IL-1β-CCD-mediated repair was not affected by the addition of the canonical Wnt antagonist Dickkopf-1. Furthermore, media from stimulated myofibroblasts (but not Wnt-5a-depleted media) increased c-jun in Caco-2 cell nuclear extracts. Myofibroblast-mediated noncanonical Wnt-5a signaling is therefore important in the dedifferentiation and migration stages of epithelial wound

  10. Avenanthramides inhibit proliferation of human colon cancer cell lines in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High intake of whole grain food is associated with reduced risk of colon cancer, but the mechanism underlying this protection has yet to be elucidated. Chronic inflammation and associated cyclooxygenase-2 (COX-2) expression in the colon epithelium are causally related to epithelial carcinogenesis, p...

  11. In Vitro Spatial and Temporal Analysis of Mycoplasma pneumoniae Colonization of Human Airway Epithelium

    PubMed Central

    Prince, Oliver A.; Krunkosky, Thomas M.

    2014-01-01

    Mycoplasma pneumoniae is an important cause of respiratory disease, especially in school-age children and young adults. We employed normal human bronchial epithelial (NHBE) cells in air-liquid interface culture to study the interaction of M. pneumoniae with differentiated airway epithelium. These airway cells, when grown in air-liquid interface culture, polarize, form tight junctions, produce mucus, and develop ciliary function. We examined both qualitatively and quantitatively the role of mycoplasma gliding motility in the colonization pattern of developing airway cells, comparing wild-type M. pneumoniae and mutants thereof with moderate to severe defects in gliding motility. Adherenc