Science.gov

Sample records for normal neurological development

  1. Normal development.

    PubMed

    Girard, Nadine; Koob, Meriam; Brunel, Herv

    2016-01-01

    Numerous events are involved in brain development, some of which are detected by neuroimaging. Major changes in brain morphology are depicted by brain imaging during the fetal period while changes in brain composition can be demonstrated in both pre- and postnatal periods. Although ultrasonography and computed tomography can show changes in brain morphology, these techniques are insensitive to myelination that is one of the most important events occurring during brain maturation. Magnetic resonance imaging (MRI) is therefore the method of choice to evaluate brain maturation. MRI also gives insight into the microstructure of brain tissue through diffusion-weighted imaging and diffusion tensor imaging. Metabolic changes are also part of brain maturation and are assessed by proton magnetic resonance spectroscopy. Understanding and knowledge of the different steps in brain development are required to be able to detect morphologic and structural changes on neuroimaging. Consequently alterations in normal development can be depicted. PMID:27430460

  2. Human Neurological Development: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Pelligra, R. (Editor)

    1978-01-01

    Neurological development is considered as the major human potential. Vision, vestibular function, intelligence, and nutrition are discussed as well as the treatment of neurological disfunctions, coma, and convulsive seizures.

  3. Functions of noncoding RNAs in neural development and neurological diseases

    PubMed Central

    Bian, Shan; Sun, Tao

    2011-01-01

    The development of the central nervous system (CNS) relies on precisely orchestrated gene expression regulation. Dysregualtion of both genetic and environmental factors can affect proper CNS development and results in neurological diseases. Recent studies have shown that similar to protein coding genes, noncoding RNA molecules have a significant impact on normal CNS development and on causes and progression of human neurological disorders. In this review, we have highlighted discoveries of functions of noncoding RNAs, in particular microRNAs and long noncoding RNAs, in neural development and neurological diseases. Emerging evidence has shown that microRNAs play an essential role in many aspects of neural development, such as proliferation of neural stem cells and progenitors, neuronal differentiation, maturation and synaptogenesis. Misregulation of microRNAs is associated with some mental disorders and neurodegeneration diseases. In addition, long noncoding RNAs are found to play a role in neural development by regulating expression of protein coding genes. Therefore, examining noncoding RNA-mediated gene regulations has revealed novel mechanisms of neural development and provided new insights into the etiology of human neurological diseases. PMID:21969146

  4. Normal Psychosexual Development

    ERIC Educational Resources Information Center

    Rutter, Michael

    1971-01-01

    Normal sexual development is reviewed with respect to physical maturation, sexual interests, sex drive", psychosexual competence and maturity, gender role, object choice, children's concepts of sexual differences, sex role preference and standards, and psychosexual stages. Biologic, psychoanalytic and psychosocial theories are briefly considered.…

  5. Development of an oximeter for neurology

    NASA Astrophysics Data System (ADS)

    Aleinik, A.; Serikbekova, Z.; Zhukova, N.; Zhukova, I.; Nikitina, M.

    2016-06-01

    Cerebral desaturation can occur during surgery manipulation, whereas other parameters vary insignificantly. Prolonged intervals of cerebral anoxia can cause serious damage to the nervous system. Commonly used method for measurement of cerebral blood flow uses invasive catheters. Other techniques include single photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI). Tomographic methods frequently use isotope administration, that may result in anaphylactic reactions to contrast media and associated nerve diseases. Moreover, the high cost and the need for continuous monitoring make it difficult to apply these techniques in clinical practice. Cerebral oximetry is a method for measuring oxygen saturation using infrared spectrometry. Moreover reflection pulse oximetry can detect sudden changes in sympathetic tone. For this purpose the reflectance pulse oximeter for use in neurology is developed. Reflectance oximeter has a definite advantage as it can be used to measure oxygen saturation in any part of the body. Preliminary results indicate that the device has a good resolution and high reliability. Modern applied schematics have improved device characteristics compared with existing ones.

  6. Neurological damage disrupts normal sex differences in psychophysiological responsiveness to music.

    PubMed

    Belfi, Amy M; Chen, Kuan-Hua; Schneider, Brett; Tranel, Daniel

    2016-01-01

    Men and women often display different physiological responses to emotional stimuli, and these responses can be affected by brain damage. Here, we investigated how brain damage differentially affects electrodermal responses based on sex. We studied neurologically normal, healthy adults and a sample of neurological patients. Participants listened to music, an emotional stimulus that reliably elicits skin conductance responses (SCRs). Electrodermal activity was recorded while participants listened to musical clips. When analyzing the data without regard to sex, there were no differences between healthy and brain-damaged participants in their SCRs. However, we found a significant interaction between brain injury status and sex. For men, brain damage significantly reduced SCRs. For women, there were no differences between brain-damaged participants and neurologically healthy participants. These findings illustrate the importance of including demographic variables, such as sex, when investigating brain-behavior relationships with a psychophysiological dependent variable. PMID:26681613

  7. [Neurological development disorders in very low birth weight newborns].

    PubMed

    Domínguez-Dieppa, F; Soriano-Puig, J A; Roca-Molina, M; Dueñas-Gómez, E

    1992-04-01

    Thirty very low birth weight newborns (less than 1,500 g) were evaluated at term from the neurological point of view, and were followed-up during the first 2 years of life by a multidisciplinary team, in order to detect long term sequelaes. There were 3 patients with major neurological disorders, and one third presented minor alterations. Neurological evaluation at term was a good sequelae predictor. No significative differences were found in perinatal variables: birthweight, gestational age, Apgar's score, ventilotherapy and with presence of intraventricular hemorrhage when normal outcome prematures were compared with those with neurological disorders. Blindness or deafness were not detected. It's important to continue the follow-up study up to the school age. PMID:1305391

  8. [Course and neurological/behavioral development of preterm children].

    PubMed

    Marret, S; Chollat, C; de Quelen, R; Pinto Cardoso, G; Abily-Donval, L; Chadie, A; Torre, S; Vanhulle, C; Mellier, D; Charollais, A; Ancel, P-Y

    2015-02-01

    Preterm birth remains a public health priority given that one child out of ten is born before 37 weeks of gestation. Survival without major neonatal morbidity has increased in high-income countries, in particular in France and in cases of extreme preterm birth before 27 weeks of gestation. Rate of severe handicaps, such as cerebral palsy, is probably decreasing, but specific cognitive disabilities in a variety of domains remain frequent, interfering with normal learning abilities at school and explaining the high rate of special education needs. Prevalence of sequelae increases when gestational age at birth decreases. However, because there are more moderate to late preterm children compared to very preterm children, the absolute number of children with specific cognitive or neurological disabilities is equivalent in these two groups. Better characterization of the development in a recent cohort of very preterm children is necessary to improve the early detection of variations in normal neurodevelopment and to propose trials with remediation actions targeting working memory and language for example. These protocols could decrease the rates of learning disabilities at school. PMID:25541510

  9. Normal growth and development

    MedlinePlus

    ... DIET Poor nutrition can cause problems with a child's intellectual development. A child with a poor diet may be ... care provider if you have concerns about your child's growth and development. Related topics include: Developmental milestones record - 4 months ...

  10. Infant Mental Development and Neurological Status, Family Socio-Economic Status, and Intelligence at Age Four.

    ERIC Educational Resources Information Center

    Ireton, Harold; And Others

    The relationship of infant mental development (Bayley Mental Scale, eight months) to four year Binet IQ was explored in the context of the study sample's neurological and socioeconomic characteristics for a sample of 536 full-term children. The Minnesota sample was approximately normal or average in terms of infant mental scores, infant…

  11. Regional cerebral blood flow and anxiety: a correlation study in neurologically normal patients

    SciTech Connect

    Rodriguez, G.; Cogorno, P.; Gris, A.; Marenco, S.; Mesiti, C.; Nobili, F.; Rosadini, G.

    1989-06-01

    Regional CBF (rCBF) was evaluated by the /sup 133/Xe inhalation method in 60 neurologically normal patients (30 men and 30 women) and hemispheric and regional values were correlated with anxiety measurements collected by a self-rating questionnaire before and after the examination. Statistically significant negative correlations between rCBF and anxiety measures were found. rCBF reduction for high anxiety levels is in line with results previously reported by others and could be related to lower performance levels for moderately high anxiety scores as those reported in the present population. This could perhaps be explained by rearrangement of flow from cortical zones to deeper areas of the brain, classically known to be implicated in the control of emotions. However, these results should be interpreted cautiously, since they were obtained in patients and not in normal subjects.

  12. Clinical NMR imaging of the brain in children: normal and neurologic disease

    SciTech Connect

    Johnson, M.A,; Pennock, J.M.; Bydder, G.M.; Steiner, R.E.; Thomas, D.J.; Hayward, R.; Bryant, D.R.T.; Payne, J.A.; Levene, M.I.; Whitelaw, A.; Dubowitz, L.M.S.; Dubowitz, V.

    1983-11-01

    The results of initial clinical nuclear magnetic resonance imaging of the brain in eight normal and 52 children with a wide variety of neurologic diseases were reviewed. The high level of gray-white matter contrast available with inversion-recovery sequences provided a basis for visualizing normal myelination as well as delays or deficits in this process. The appearances seen in cases of parenchymal hemorrhage, cerebral infarction, and proencephalic cysts are described. Ventricular enlargement was readily identified and marginal edema was demonstrated with spin-echo sequences. Abnormalities were seen in cerebral palsy, congenital malformations, Hallervorden-Spatz disease, aminoaciduria, and meningitis. Space-occupying lesions were identified by virtue of their increased relaxation times and mass effects. Nuclear magnetic resonance imaging has considerable potential in pediatric neuroradiologic practice, in some conditions supplying information not available by computed tomography or sonography.

  13. Normal psychomotor development.

    PubMed

    Cioni, Giovanni; Sgandurra, Giuseppina

    2013-01-01

    "Psychomotor" development refers to changes in a child's cognitive, emotional, motor, and social capacities from the beginning of life throughout fetal and neonatal periods, infancy, childhood, and adolescence. It occurs in a variety of domains and a wide range of theories makes understanding children's development a challenging undertaking. Different models have tried to interpret the origins of human behavior, the pattern of developmental changes over time, and the individual and contextual factors that could direct child development. No single theory has been able to account for all aspects of child development, but each of them may contribute an important piece to the child development puzzle. Although theories sometimes disagree, much of their information is complementary rather than contradictory. The knowledge of child typical development and related theories and models is greatly useful for clinical practice, leading to recognition of developmental disorders and the ways in which they can be approached and treated. In this chapter, traditional and more modern concepts around functional development of psychomotor abilities are reported, firstly more in general and then specifically in the motor domain. PMID:23622146

  14. Toxic threats to neurologic development of children.

    PubMed

    Schettler, T

    2001-12-01

    Learning disabilities, attention deficit hyperactivity disorder, developmental delays, and emotional and behavioral problems are among childhood disabilities of increasing concern. Interacting genetic, environmental, and social factors are important determinants of childhood brain development and function. For many reasons, however, studying neurodevelopmental vulnerabilities in children is challenging. Moreover, inadequate incidence and trend data interfere with full understanding of the magnitude of the problem. Despite these difficulties, extensive laboratory and clinical studies of several neurodevelopmental toxicants, including lead, mercury, polychlorinated biphenyls, alcohol, and nicotine, demonstrate the unique vulnerability of the developing brain to environmental agents at exposure levels that have no lasting effect in adults. Historically, understanding the effects of these toxicants on the developing brain has emerged slowly while generations of children are exposed to unsafe levels. Unfortunately, with few exceptions, neurodevelopmental toxicity data are missing for most industrial chemicals in widespread use, even when populationwide exposures are documented. The personal, family, and communitywide costs of developmental disabilities are profound. In addition to the need for more research, a preventive public health response requires mitigation of exposures to potential neurodevelopmental toxicants when available evidence establishes the plausibility of harm, despite residual toxicologic uncertainties. PMID:11744499

  15. Sustained normalization of neurological disease after intracranial gene therapy in a feline model**

    PubMed Central

    McCurdy, Victoria J.; Johnson, Aime K.; Gray-Edwards, Heather; Randle, Ashley N.; Brunson, Brandon L.; Morrison, Nancy E.; Salibi, Nouha; Johnson, Jacob A.; Hwang, Misako; Beyers, Ronald J.; Leroy, Stanley G.; Maitland, Stacy; Denney, Thomas S.; Cox, Nancy R.; Baker, Henry J.; Sena-Esteves, Miguel; Martin, Douglas R.

    2015-01-01

    Progressive debilitating neurological defects characterize feline GM1 gangliosidosis, a lysosomal storage disease caused by deficiency of lysosomal β-galactosidase. No effective therapy exists for affected children, who often die before age 5. In the current study, an adeno-associated viral vector carrying the therapeutic gene was injected bilaterally into two brain targets (thalamus and deep cerebellar nuclei) of a feline model of GM1 gangliosidosis. Gene therapy normalized β-galactosidase activity and storage throughout the brain and spinal cord. The mean survival of 12 treated GM1 animals was >38 months compared to 8 months for untreated animals. Seven of the 8 treated animals remaining alive demonstrated normalization of disease, with abrogation of many symptoms including gait deficits and postural imbalance. Sustained correction of the GM1 gangliosidosis disease phenotype after limited intracranial targeting by gene therapy in a large animal model suggests that this approach may be useful for treating the human version of this lysosomal storage disorder. PMID:24718858

  16. Liposomes and nanotechnology in drug development: focus on neurological targets

    PubMed Central

    Ramos-Cabrer, Pedro; Campos, Francisco

    2013-01-01

    Neurological diseases represent a medical, social, and economic problem of paramount importance in developed countries. Although their etiology is generally known, developing therapeutic interventions for the central nervous system is challenging due to the impermeability of the blood–brain barrier. Thus, the fight against neurological diseases usually struggles “at the gates” of the brain. Flooding the bloodstream with drugs, where only a minor fraction reaches its target therapeutic site, is an inefficient, expensive, and dangerous procedure, because of the risk of side effects at nontargeted sites. Currently, advances in the field of nanotechnology have enabled development of a generation of multifunctional molecular platforms that are capable of transporting drugs across the blood–brain barrier, targeting specific cell types or functional states within the brain, releasing drugs in a controlled manner, and enabling visualization of processes in vivo using conventional imaging systems. The marriage between drug delivery and molecular imaging disciplines has resulted in a relatively new discipline, known as theranostics, which represents the basis of the concept of personalized medicine. In this study, we review the concepts of the blood–brain barrier and the strategies used to traverse/bypass it, the role of nanotechnology in theranostics, the wide range of nanoparticles (with emphasis on liposomes) that can be used as stealth drug carriers, imaging probes and targeting devices for the treatment of neurological diseases, and the targets and targeting strategies envisaged in the treatment of different types of brain pathology. PMID:23486739

  17. [Neonatal reflexes variability in the normal full term neonate during the neurological exam].

    PubMed

    Carratalá, F; Moya, M

    It has been stated that findings in neonatal neurological examinations can play a role as a pointer to adverse developmental outcome. The description of the examinations, and their presence or absence differed among authors without clear reference to their physiological variability ranges. We approached the study of some neonatal behaviours and reflexes in 143 examinations made on 113 healthy newborn babies from the maternity wards by looking at the influence that perinatal environmental factors which are considered normal, can play in these examinations. The results showed that the flexion answer of the Babinski reflex increased significantly between the first and third day of life (c2= 4.4478; p= 0.03495) in the same way there was an increase in the stepping reflex (c2= 3.999; p= 0.04552) in the righting reflex (c2= 4.9342; p= 0.02633) and in the supporting reaction (c2= 11.7874; p= 0.0006). This was significantly reduced in the caesarean section deliveries (c2= 7.1209; p= 0.0076). Head reaction was only detectable during the Brazelton behavioural states 1 to 3 (c2= 3.8911; p= 0.04854) and the same thing happened with the stepping reflex (c2= 4.9370; p= 0.02629). We discuss the utility of neonatal reflexes scoring scales in predicting the neurodevelopmental outcome of the newborn baby. PMID:12040520

  18. Immune responses at brain barriers and implications for brain development and neurological function in later life

    PubMed Central

    Stolp, Helen B.; Liddelow, Shane A.; Sá-Pereira, Inês; Dziegielewska, Katarzyna M.; Saunders, Norman R.

    2013-01-01

    For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognized that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signaling or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signaling at the brain barriers that may be an important part of the body's response to damage or infection. This signaling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed. PMID:23986663

  19. Early treatment of a child with NAGS deficiency using N-carbamyl glutamate results in a normal neurological outcome.

    PubMed

    Van Leynseele, Anouk; Jansen, Anna; Goyens, Philippe; Martens, Geert; Peeters, Stefaan; Jonckheere, An; De Meirleir, Linda

    2014-12-01

    Acute hyperammonemia has a variety of etiologies and clinical manifestations. If not treated early in neonates, it leads to irreversible brain damage or death. We present a 7-day-old female patient who was brought to the emergency department with drownsiness and vomiting. Metabolic work-up revealed a blood ammonia level of 290 μmol/L (normal <100 μmol/L in neonates) with a compensated respiratory alkalosis, normal glycaemia and lactate and absence of urinary ketones. Oral feeding was stopped, an infusion of 20 % glucose was started, and sodium benzoate and arginine hydrochloride were given. After a drop of ammonemia within 12 h of treatment, it started rising again. N-carbamylglutamate (NCG) was added resulting in a rapid normalisation of ammonemia. Feedings were progressively reintroduced, the ammonia levels remained low. The results of the metabolic work-up were compatible with carbamyl phosphate synthase 1 (CPS1) or N-acetyl glutamate synthase (NAGS) deficiency. Genetic analysis confirmed the latter diagnosis with a homozygous mutation c. 1450T > C (p.W484R) in exon 6 of the NAGS gene in the patient and a carrier state in both parents. At the age of 9 months, the child is growing well with normal neurological development, under treatment with NCG 100 mg/kg/day and a normal diet. Conclusion: This case highlights the importance of keeping a high index of suspicion and early testing for ammonia levels in neonates/children with unexplained encephalopathy. In neonates with congenital hyperammonemia, NCG should always be started together with the standard management of hyperammonemia until all laboratory investigations are complete or indicate another disease. PMID:24233332

  20. The Relationship of Family Background Factors and Neurological Status to Hyperactivity in a Normal Class Setting.

    ERIC Educational Resources Information Center

    Clarkson, Frank E.; Hayden, Benjamin S.

    Boys, aged 6-10 in regular classes, who were judged as hyperactive by their teachers were compared with matched non-hyperkinetic boys in terms of family background information and neurological functioning. Parent interview data were obtained on 109 hyperkinetic and 135 control Ss, while 121 hyperkinetic and 142 control Ss underwent pediatric…

  1. Dorsal and ventral stream sensitivity in normal development and hemiplegia.

    PubMed

    Gunn, Alison; Cory, Elizabeth; Atkinson, Janette; Braddick, Oliver; Wattam-Bell, John; Guzzetta, Andrea; Cioni, Giovanni

    2002-05-01

    Form and motion coherence thresholds can provide comparable measures of global visual processing in the ventral and dorsal streams respectively. Normal development of thresholds was tested in 360 normally developing children aged 4-11 and in normal adults. The two tasks showed similar developmental trends, with some greater variability and a slight delay in motion coherence compared to form coherence performance, in reaching adult levels. To examine the proposal of dorsal stream vulnerability related to specific developmental disorders, we compared 24 children with hemiplegic cerebral palsy with the normally developing group. Hemiplegic children performed significantly worse than controls on the motion coherence task for their age, but not on the form coherence task; however, within this group no specific brain area was significantly associated with poor motion compared to form coherence performance. These results suggest that extrastriate mechanisms mediating these thresholds normally develop in parallel, but that the dorsal stream has a greater, general vulnerability to early neurological impairment. PMID:11997698

  2. Functional neuroimaging of human central auditory processing in normal subjects and patients with neurological and neuropsychiatric disorders.

    PubMed

    Engelien, A; Stern, E; Silbersweig, D

    2001-02-01

    Auditory sensory processing in the human cerebral cortex is disturbed in several neurological and neuropsychiatric disorders, ranging from devastating perceptual deficits in neuropsychological syndromes such as cortical deafness and auditory agnosia to the problem of involuntary hallucinatory perception in schizophrenia. With modern non-invasive functional imaging techniques (e.g., PET, fMRI, and MEG), the normal auditory cortical functional anatomy can now be studied in humans in vivo, as well as its disruption in pathological conditions. This article will summarize current knowledge on human central auditory perception in health and disease, with an emphasis on recent functional neuroimaging studies, in the context of clinical and basic neuroscientific knowledge. New strategies include a focus on the role of other, non-temporal brain areas for auditory processing, particularly in the frontal lobes, and the combined use of techniques offering both precise spatial and temporal resolution. One step towards this goal has been the recent development of a silent, event-related fMRI scanning technique. PMID:11320447

  3. The use of an electronic von Frey device for evaluation of sensory threshold in neurologically normal dogs and those with acute spinal cord injury.

    PubMed

    Moore, S A; Hettlich, B F; Waln, A

    2013-08-01

    The utility and inter-session repeatability of sensory threshold measurements using an electronic von Frey anesthesiometer (VFA) were assessed in a group of six neurologically normal dogs. Sensory threshold values obtained in neurologically normal dogs were compared to those of dogs with acute spinal cord injury (SCI) caused by intervertebral disc extrusion (n=6) and to a group of neurologically normal dogs with cranial cruciate ligament rupture (CCLR; n=6). Sensory threshold values in neurologically normal dogs were 155.8 ± 37.7 g and 154.7 ± 67.2 g for the left and right pelvic limbs, respectively. The difference in mean sensory threshold values obtained for the group when two distinct testing sessions were compared was not statistically significant (P>0.05). Mean sensory threshold values for the group with SCI were significantly higher than those for neurologically normal dogs at 351.1 ± 116.5 g and 420.3 ± 157.7 g for the left and right pelvic limbs, respectively (P=0.01). A comparison of sensory threshold values for the group with CCLR and neurologically normal dogs was not statistically significant (P>0.05). The modified dorsal technique for VFA described here represents a reliable method to assess sensory threshold in neurologically normal dogs and in those with SCI. PMID:23246235

  4. Frontiers in therapeutic development of allopregnanolone for Alzheimer’s disease and other neurological disorders

    PubMed Central

    Irwin, Ronald W.; Solinsky, Christine M.; Brinton, Roberta Diaz

    2014-01-01

    Allopregnanolone (Allo), a neurosteroid, has emerged as a promising promoter of endogenous regeneration in brain. In a mouse model of Alzheimer’s disease, Allo induced neurogenesis, oligodendrogenesis, white matter generation and cholesterol homeostasis while simultaneously reducing β-amyloid and neuroinflammatory burden. Allo activates signaling pathways and gene expression required for regeneration of neural stem cells and their differentiation into neurons. In parallel, Allo activates systems to sustain cholesterol homeostasis and reduce β-amyloid generation. To advance Allo into studies for chronic human neurological conditions, we examined translational and clinical parameters: dose, regimen, route, formulation, outcome measures, and safety regulations. A treatment regimen of once per week at sub-sedative doses of Allo was optimal for regeneration and reduction in Alzheimer’s pathology. This regimen had a high safety profile following chronic exposure in aged normal and Alzheimer’s mice. Formulation of Allo for multiple routes of administration has been developed for both preclinical and clinical testing. Preclinical evidence for therapeutic efficacy of Allo spans multiple neurological diseases including Alzheimer’s, Parkinson’s, multiple sclerosis, Niemann-Pick, diabetic neuropathy, status epilepticus, and traumatic brain injury. To successfully translate Allo as a therapeutic for multiple neurological disorders, it will be necessary to tailor dose and regimen to the targeted therapeutic mechanisms and disease etiology. Treatment paradigms conducted in accelerated disease models in young animals have a low probability of successful translation to chronic diseases in adult and aged humans. Gender, genetic risks, stage and burden of disease are critical determinants of efficacy. This review focuses on recent advances in development of Allo for Alzheimer’s disease (AD) that have the potential to accelerate therapeutic translation for multiple unmet

  5. [Development of motoricity as functional-neurologic diagnosis].

    PubMed

    Göllnitz, G

    1970-01-01

    Movement is one of the characteristic features of a living organism. The movements of human beings are controlled by the brain via the nervous system. Disturbances in the development of the brain therefore also manifest themselves in the organization and course of motoricity. The normal and pathological development of the child--from birth through to maturation--therefore also shows itself in the differentiation of motoricity and psychomotoricity. In the first three years of life the organization of motor coordination is even the most reliable indicator of normal somatic and psychic development and of the functional capacity of the central nervous system. The author discuss at length: The development of tonicity. The diagnostically most significant reflex mechanisms of neonates; time of occurrence and disappearance within the framework of the integration of voluntary movements. Motometric studies for determining the various coordinative capacities, the discussion centering on: The motor functions of the maturation test. Examinations of small children using the methods developed by Griffith, Brunet-Lézine. Metric scale according to Oseretzky, mimic scale according to Kwint. Disturbances of writing motoricity. Coordinative examinations on juveniles and adolescents. The motor diagnosis may be carried out without the need for using a larger number of apparatus and instruments and--provided broad methods of examination and longitudinal-section controls are employed--permits to obtain results, the reliability of which is not at present surpassed by those obtained using any other method. PMID:5006291

  6. Development of a neurology rotation for internal medicine residents in Haiti.

    PubMed

    Berkowitz, Aaron L; Martineau, Louine; Morse, Michelle E; Israel, Kerling

    2016-01-15

    In many low-income countries where there are few or no neurologists, patients with neurologic diseases are cared for by primary care physicians who receive no formal training in neurology. Here, we report our experience creating a neurology rotation for internal medicine residents in rural Haiti through a collaboration between a public academic medical center in Haiti and a visiting neurologist. We describe the structure of the rotation and the factors that led to its development. PMID:26723993

  7. The Relationship of Development and Normalization.

    ERIC Educational Resources Information Center

    Pieper, Elizabeth J.

    1979-01-01

    The author concludes that, without changing practice to reflect both the philosophical concepts of normalization and the psychological concepts of development, such handicapped people will continue to suffer the traditional trade-offs of normalization at the sacrifice of development, or development at the cost of normalization. (DLS)

  8. The Effect of Neurological Dysfunction on the Social and Emotional Development of Young Children.

    ERIC Educational Resources Information Center

    Parette, Howard P., Jr.; Hourcade, Jack J.

    The literature review examines the relationship of neurological impairment in young children with their social and emotional development. It identifies disorders of interaction and/or attachment and disorders of independence/dependence as specific maladaptive social and emotional states associated with neurological impairment. Three theoretical…

  9. Normal Development of Brain Circuits

    PubMed Central

    Tau, Gregory Z; Peterson, Bradley S

    2010-01-01

    Spanning functions from the simplest reflex arc to complex cognitive processes, neural circuits have diverse functional roles. In the cerebral cortex, functional domains such as visual processing, attention, memory, and cognitive control rely on the development of distinct yet interconnected sets of anatomically distributed cortical and subcortical regions. The developmental organization of these circuits is a remarkably complex process that is influenced by genetic predispositions, environmental events, and neuroplastic responses to experiential demand that modulates connectivity and communication among neurons, within individual brain regions and circuits, and across neural pathways. Recent advances in neuroimaging and computational neurobiology, together with traditional investigational approaches such as histological studies and cellular and molecular biology, have been invaluable in improving our understanding of these developmental processes in humans in both health and illness. To contextualize the developmental origins of a wide array of neuropsychiatric illnesses, this review describes the development and maturation of neural circuits from the first synapse through critical periods of vulnerability and opportunity to the emergent capacity for cognitive and behavioral regulation, and finally the dynamic interplay across levels of circuit organization and developmental epochs. PMID:19794405

  10. On the taste of "Bouba" and "Kiki": An exploration of word-food associations in neurologically normal participants.

    PubMed

    Gallace, Alberto; Boschin, Erica; Spence, Charles

    2011-03-01

    We investigated whether there are reliable crossmodal associations between foods/flavours and words in neurologically normal individuals. Participants were given a range of foods to taste, and had to rate each one along a number of dimensions. These included scales anchored with the words "takete/maluma" and "bouba/kiki". The results highlight the existence of robust crossmodal associations between complex foods/flavours and words in normal (i.e., nonsynesthetic) individuals. For example, crisps (potato chips) and cranberry sauce are rated as being more "takete" than brie cheese, while mint chocolate is rated as more "kiki" than regular chocolate. On the basis of these results, we suggest that our brains can extract supramodal/conceptual properties from foods/flavours (just as has been demonstrated previously using auditory and visual stimuli) and meaningfully match them crossmodally. The possibility that this process is based on the global Gestalt of a food rather than on any specific sensory qualities is also discussed. PMID:24168422

  11. A Prospective Study of Asymptomatic Intracranial Atherosclerotic Stenosis in Neurologically Normal Volunteers in a Japanese Cohort

    PubMed Central

    Matsui, Ryukichi; Nakagawa, Tomonori; Takayoshi, Hiroyuki; Onoda, Keiichi; Oguro, Hiroaki; Nagai, Atsushi; Yamaguchi, Shuhei

    2016-01-01

    Atherosclerotic stenosis of major intracranial arteries is a leading cause of ischemic stroke in Asia. However, the long-term prognosis of asymptomatic intracranial atherosclerotic stenosis (ICAS) in healthy volunteers has not been fully examined. Here, we conducted a longitudinal study to examine the prognosis of healthy volunteers with asymptomatic ICAS and to determine the risk factors for ICAS, including asymptomatic brain parenchymal lesions. We studied 2,807 healthy Japanese volunteers with no history of stroke (mean age, 62.0 years). They were followed for a mean interval of 64.5 months. The degree of ICAS and the presence of asymptomatic brain lesions were assessed by using magnetic resonance imaging. Asymptomatic ICAS was detected in 166 volunteers (5.9%) at the initial examination. Moderate and mild stenoses were observed in 1.5 and 4.4% of patients, respectively. Significant risk factors for ICAS were older age and a history of hypertension and/or dyslipidemia. During follow-up, ischemic stroke developed in 32 volunteers. Seven strokes occurred in the ICAS group, whose stroke incidence rate was higher than that in the non-ICAS group (0.78 vs. 0.18% per year). According to a Cox regression analysis, asymptomatic ICAS was an independent risk factor for future ischemic stroke after adjustment for age. Furthermore, after asymptomatic brain lesions were taken into account, ICAS was still a significant risk factor for stroke onset. In conclusion, even mild to moderate asymptomatic ICAS was a significant risk factor for future stroke, independent of asymptomatic brain lesions, in a healthy Japanese population. Mild to moderate ICAS might be a therapeutic target for stroke prevention. PMID:27047445

  12. Duplication of HEY2 in Cardiac and Neurologic Development

    PubMed Central

    Jordan, Valerie K.; Rosenfeld, Jill A.; Lalani, Seema R.; Scott, Daryl A.

    2015-01-01

    HEY2 is a basic helix-loop-helix (bHLH) transcription factor that plays an important role in the developing mammalian heart and brain. In humans, nonsynonymous mutations in HEY2 have been described in patients with atrial ventricular septal defects, and a subset of individuals with chromosomal deletions involving HEY2 have cardiac defects and cognitive impairment. Less is known about the potential effects of HEY2 overexpression. Here, we describe a female child with tetralogy of Fallot who developed severe right ventricular outflow tract obstruction due to a combination of infundibular and valvular pulmonary stenosis. She was also noted to have hypotonia, lower extremity weakness, fine motor delay and speech delay. A copy number variation (CNV) detection analysis followed by real-time quantitative PCR analysis revealed a single gene duplication of HEY2. This is the only duplication involving HEY2 identified in our database of over 70,000 individuals referred for CNV analysis. In the developing heart, overexpression of HEY2 is predicted to cause decreased expression of the cardiac transcription factor GATA4 which, in turn, has been shown to cause tetralogy of Fallot. In mice, misexpression of Hey2 in the developing brain leads to inhibition of neurogenesis and promotion of gliogenesis. Hence, duplication of HEY2 may be a contributing factor to both the congenital heart defects and the neurodevelopmental problems evident in our patient. These results suggest that individuals with HEY2 duplications should be screened for congenital heart defects and monitored closely for evidence of developmental delay and/or cognitive impairment. PMID:25832314

  13. Neurological channelopathies

    PubMed Central

    Graves, T; Hanna, M

    2005-01-01

    Ion channels are membrane-bound proteins that perform key functions in virtually all human cells. Such channels are critically important for the normal function of the excitable tissues of the nervous system, such as muscle and brain. Until relatively recently it was considered that dysfunction of ion channels in the nervous system would be incompatible with life. However, an increasing number of human diseases associated with dysfunctional ion channels are now recognised. Such neurological channelopathies are frequently genetically determined but may also arise through autoimmune mechanisms. In this article clinical, genetic, immunological, and electrophysiological aspects of this expanding group of neurological disorders are reviewed. Clinical situations in which a neurological channelopathy should enter into the differential diagnosis are highlighted. Some practical guidance on how to investigate and treat this complex group of disorders is also included. PMID:15640425

  14. Developing retinal biomarkers of neurological disease: an analytical perspective

    PubMed Central

    MacCormick, Ian JC; Czanner, Gabriela; Faragher, Brian

    2015-01-01

    The inaccessibility of the brain poses a problem for neuroscience. Scientists have traditionally responded by developing biomarkers for brain physiology and disease. The retina is an attractive source of biomarkers since it shares many features with the brain. Some even describe the retina as a ‘window’ to the brain, implying that retinal signs are analogous to brain disease features. However, new analytical methods are needed to show whether or not retinal signs really are equivalent to brain abnormalities, since this requires greater evidence than direct associations between retina and brain. We, therefore propose a new way to think about, and test, how clearly one might see the brain through the retinal window, using cerebral malaria as a case study. PMID:26174843

  15. Dynamic mapping of normal human hippocampal development.

    PubMed

    Gogtay, Nitin; Nugent, Tom F; Herman, David H; Ordonez, Anna; Greenstein, Deanna; Hayashi, Kiralee M; Clasen, Liv; Toga, Arthur W; Giedd, Jay N; Rapoport, Judith L; Thompson, Paul M

    2006-01-01

    The hippocampus, which plays an important role in memory functions and emotional responses, has distinct subregions subserving different functions. Because the volume and shape of the hippocampus are altered in many neuropsychiatric disorders, it is important to understand the trajectory of normal hippocampal development. We present the first dynamic maps to reveal the anatomical sequence of normal human hippocampal development. A novel hippocampal mapping technique was applied to a database of prospectively obtained brain magnetic resonance imaging (MRI) scans (100 scans in 31 children and adolescents), scanned every 2 yr for 6-10 yr between ages 4 and 25. Our results establish that the structural development of the human hippocampus is remarkably heterogeneous, with significant differences between posterior (increase over time) and anterior (loss over time) subregions. These distinct developmental trajectories of hippocampal subregions may parallel differences in their functional development. PMID:16826559

  16. Maternal Intimate Partner Violence: Relationships with Language and Neurological Development of Infants and Toddlers.

    PubMed

    Udo, Ifeyinwa E; Sharps, Phyllis; Bronner, Yvonne; Hossain, Mian B

    2016-07-01

    Objectives This longitudinal study examined the influence of Intimate Partner Violence (IPV) experience of pregnant women participating in the Domestic Violence Enhanced Home Visitation Program on the language and neurological development of infants and toddlers. Methods A total of 210 infants and toddlers born to women reporting low, moderate, and high levels of IPV were included in the analysis. Logistic regression analysis was used to determine the bivariate association between maternal IPV and risk of language and neurological delay of infants and toddlers and between covariates and language and neurological delay. Generalized estimating equation models with logit link was used to predict the risk of language and neurological delay of infants and toddlers as a result of maternal IPV. Results Infants and toddlers born to women exposed to moderate levels of IPV had increased odds of language delay compared to infants and toddlers of women who experienced low levels of violence (OR 5.31, 95 % CI 2.94, 9.50, p < 0.001). Infants and toddlers born to women who experienced moderate and high levels of IPV were at higher risk of neurological delay respectively, compared to infants and toddlers of women who experienced low levels of IPV (OR 5.42, 95 % CI 2.99, 9.82, p < 0.001 and OR 2.57, 95 % CI 1.11, 5.61, p = 0.026). Conclusions for Practice Maternal IPV is associated with increased risk of language and neurological delay of infants and toddlers. These findings have implications for health care for women and infants exposed to IPV. Clinicians including pediatricians working with pregnant women should screen for IPV throughout pregnancy to identify women and children at risk. Interventions to reduce maternal IPV and early intervention services for infants and toddlers exposed to IPV are necessary for optimal maternal and child health. PMID:26992715

  17. Neurological and neuropsychological effects of cerebral spinal fluid shunting in children with assumed arrested ("normal pressure") hydrocephalus.

    PubMed Central

    Torkelson, R D; Leibrock, L G; Gustavson, J L; Sundell, R R

    1985-01-01

    Normocephalic children found to have ventriculomegaly during evaluation of long-standing (4.5-8.5 years) neurological disorder were tested for academic achievement, intellectual quotient and neuropsychological functioning. Radioactive iodinated serum cisternography, pre and post-shunt electrophysiological studies (visual evoked responses, brainstem auditory evoked potentials, sleep electroencephalograms) and radiological studies (skull radiographs computed tomography) were recorded. Four children who have been followed more than one year after insertion of ventricular-peritoneal shunts are presented. All demonstrated improvement in psychometric findings along with some improvement in CT scan and EEG studies. The most marked initial changes were noted on measures of neuropsychological performance, accompanied later by improvement in measures of intelligence. Achievement test scores showed no consistent pattern of change. This sample suggests that there is a group of asymptomatic children with apparent clinically stable (arrested) hydrocephalus in whom abnormal neuropsychological testing indicates the need for cerebrospinal fluid shunting, with subsequent improvement. Images PMID:4031932

  18. [Psychomotor development and its disorders: between normal and pathological development].

    PubMed

    Vericat, Agustina; Bibiana Orden, Alicia

    2013-10-01

    This article discusses some aspects of psychomotor development and its disorders, with special emphasis on psychomotor retardation. Diagnostic classifications of psychomotor problems, such as DSM-IV and CIE-10, are referred to and their advantages and disadvantages are analyzed. The concept of normality as a synonym for the statistical mean in the context of psychomotor disorders is also analyzed in order to consider its dynamic and variability, thereby avoiding the normality/pathology opposition, while some issues, such as the social and cultural aspects, are highlighted, making it possible to rethink the universality and relativity of psychomotor development. PMID:24061024

  19. Does aggressive and expectant management of severe preeclampsia affect the neurologic development of the infant?

    PubMed Central

    Ertekin, Arif Aktuğ; Kapudere, Bilge; Eken, Meryem Kurek; İlhan, Gülşah; Dırman, Şükriye; Sargın, Mehmet Akif; Deniz, Engin; Karatekin, Güner; Çöğendez, Ebru; Api, Murat

    2015-01-01

    Objective: To compare and evaluate the influences of expectant and aggressive management of severe preeclampsia on the first year neurologic development of the infants in pregnancies between 27 and 34 weeks of pregnancy. Methods: Seventy women with severe preeclampsia between 27 and 34 weeks of gestation were included in the study. 37 patients were managed aggressively (Group 1) and 33 patients were managed expectantly (Group 2). Glucocorticoids, magnesium sulfate infusion and antihypertensive drugs were administered to each group. After glucocorticoid administration was completed Group 1 was delivered either by cesarean section or vaginal delivery. In Group 2 magnesium sulfate infusion was stopped after glucocorticoid administration was completed. Antihypertensive drugs were given, bed rest and intensive fetal monitorization were continued in this group. Results: The average weeks of gestation, one minute and five minute apgar scores and hospitalization time in intensive care unit were similar in both groups (P > 0.05). Three neonatal complications in Group 2 and five in Group 1 were detected according to the Denver Developmental Screening Test-II and one pathologic case was detected in both groups following neurologic examination. Neonatal mortality was seen in seven patients in Group 1 and one in Group 2. There were no significant differences between groups in terms of neonatal mortality and morbidity and maternal morbidity (P > 0.05). The average latency period was 3.45 ± 5.48 days in Group 2 and none in Group 1. Conclusion: There was no significant difference in the first year neurological development of infants whose mothers underwent either expectant and aggressive management for severe preeclampsia. PMID:26770571

  20. Sports neurology topics in neurologic practice

    PubMed Central

    Conidi, Francis X.; Drogan, Oksana; Giza, Christopher C.; Kutcher, Jeffery S.; Alessi, Anthony G.; Crutchfield, Kevin E.

    2014-01-01

    Summary We sought to assess neurologists' interest in sports neurology and learn about their experience in treating sports-related neurologic conditions. A survey was sent to a random sample of American Academy of Neurology members. A majority of members (77%) see at least some patients with sports-related neurologic issues. Concussion is the most common sports-related condition neurologists treat. More than half of survey participants (63%) did not receive any formal or informal training in sports neurology. At least two-thirds of respondents think it is very important to address the following issues: developing evidence-based return-to-play guidelines, identifying risk factors for long-term cognitive-behavioral sequelae, and developing objective diagnostic criteria for concussion. Our findings provide an up-to-date view of the subspecialty of sports neurology and identify areas for future research. PMID:24790800

  1. Defects During Mecp2 Null Embryonic Cortex Development Precede the Onset of Overt Neurological Symptoms.

    PubMed

    Bedogni, Francesco; Cobolli Gigli, Clementina; Pozzi, Davide; Rossi, Riccardo Lorenzo; Scaramuzza, Linda; Rossetti, Grazisa; Pagani, Massimiliano; Kilstrup-Nielsen, Charlotte; Matteoli, Michela; Landsberger, Nicoletta

    2016-06-01

    MeCP2 is associated with several neurological disorders; of which, Rett syndrome undoubtedly represents the most frequent. Its molecular roles, however, are still unclear, and data from animal models often describe adult, symptomatic stages, while MeCP2 functions during embryonic development remain elusive. We describe the pattern and timing of Mecp2 expression in the embryonic neocortex highlighting its low but consistent expression in virtually all cells and show the unexpected occurrence of transcriptional defects in the Mecp2 null samples at a stage largely preceding the onset of overt symptoms. Through the deregulated expression of ionic channels and glutamatergic receptors, the lack of Mecp2 during early neuronal maturation leads to the reduction in the neuronal responsiveness to stimuli. We suggest that such features concur to morphological alterations that begin affecting Mecp2 null neurons around the perinatal age and become evident later in adulthood. We indicate MeCP2 as a key modulator of the transcriptional mechanisms regulating cerebral cortex development. Neurological phenotypes of MECP2 patients could thus be the cumulative result of different adverse events that are already present at stages when no obvious signs of the pathology are evident and are worsened by later impairments affecting the central nervous system during maturation and maintenance of its functionality. PMID:25979088

  2. Parent development in clinical child neurological assessment process: encounters with the assimilation model.

    PubMed

    Tikkanen, Soile; Stiles, William B; Leiman, Mikael

    2011-09-01

    Child neurological diagnostic procedures involve extensive encounters with a multi-professional team and may have therapeutic effects. This study explored the therapeutic potential of the diagnostic process using the assimilation model as the conceptual frame of reference. The process of assimilation was tracked across nine consecutive encounters during the assessment of a 4-year-old girl who was referred to the child neurological team due to contact and communication problems. All parent-professional dialogues were transcribed and analyzed using dialogical sequence analysis, which yielded a core problematic reciprocal pattern that was named "controlling in relation to defiant and uncontrolled." Parent development in finding alternative patterns to excessive control was traced using the assimilation model. We could identify assimilation stages in parent development, from disowning the impact of their own actions and mainly seeing the problem as belonging to the child into a more flexible and self-related understanding of the problem. The parents also described more accommodating ways of managing the child at the follow-up. Benefits and limitations in applying the assimilation model in a non-therapy context are discussed. PMID:21767079

  3. Hypoxic adaptation during development: relation to pattern of neurological presentation and cognitive disability.

    PubMed

    Kirkham, Fenella J; Datta, Avijit K

    2006-07-01

    Children with acute hypoxic-ischaemic events (e.g. stroke) and chronic neurological conditions associated with hypoxia frequently present to paediatric neurologists. Failure to adapt to hypoxia may be a common pathophysiological pathway linking a number of other conditions of childhood with cognitive deficit. There is evidence that congenital cardiac disease, asthma and sleep disordered breathing, for example, are associated with cognitive deficit, but little is known about the mechanism and whether there is any structural change. This review describes what is known about how the brain reacts and adapts to hypoxia, focusing on epilepsy and sickle cell disease (SCD). We prospectively recorded overnight oxyhaemoglobin saturation (SpO2) in 18 children with intractable epilepsy, six of whom were currently or recently in minor status (MS). Children with MS were more likely to have an abnormal sleep study defined as either mean baseline SpO2 <94% or >4 dips of >4% in SpO2/hour (p = .04). In our series of prospectively followed patients with SCD who subsequently developed acute neurological symptoms and signs, mean overnight SpO2 was lower in those with cerebrovascular disease on magnetic resonance angiography (Mann-Whitney, p = .01). Acute, intermittent and chronic hypoxia may have detrimental effects on the brain, the clinical manifestations perhaps depending on rapidity of presentation and prior exposure. PMID:16764614

  4. Physical Development: What's Normal? What's Not?

    MedlinePlus

    ... Normal? What’s Not? Page Content Article Body ​Two boys or girls exactly the same age can start or end ... in Girls: What to Expect . Growth in both boys and girls slows considerably soon after puberty is complete. Having ...

  5. Neurological Sequelae of Lupus

    MedlinePlus

    ... Page Synonym(s): Lupus - Neurological Sequelae, Systemic Lupus Erythematosus Table of Contents (click to jump to sections) What ... health problems and have a normal lifespan with periodic doctor visits and treatments with various drugs. What ...

  6. Development of a Kinect-based exergaming system for motor rehabilitation in neurological disorders

    NASA Astrophysics Data System (ADS)

    Estepa, A.; Sponton Piriz, S.; Albornoz, E.; Martínez, C.

    2016-04-01

    The development of videogames for physical therapy, known as exergames, has gained much interest in the last years. In this work, a sytem for rehabilitation and clinical evaluation of neurological patients is presented. The Microsoft Kinect device is used to track the full body of patients, and three games were developed to exercise and assess different aspects of balance and gait rehabilitation. The system provides visual feedback by means of an avatar that follows the movements of the patients, and sound and visual stimuli for giving orders during the experience. Also, the system includes a database and management tools for further analysis and monitoring of therapies. The results obtained show, on the one side, a great reception and interest of patients to use the system. On the other side, the specialists considered very useful the data collected and the quantitative analysis provided by the system, which was then adopted for the clinical routine.

  7. Annotation: Development of Facial Expression Recognition from Childhood to Adolescence--Behavioural and Neurological Perspectives

    ERIC Educational Resources Information Center

    Herba, Catherine; Phillips, Mary

    2004-01-01

    Background: Intact emotion processing is critical for normal emotional development. Recent advances in neuroimaging have facilitated the examination of brain development, and have allowed for the exploration of the relationships between the development of emotion processing abilities, and that of associated neural systems. Methods: A literature…

  8. Neurological and biological foundations of children's social and emotional development: an integrated literature review.

    PubMed

    Nelson, Helen Jean; Kendall, Garth Edward; Shields, Linda

    2014-08-01

    This article provides an integrated review of the expert literature on developmental processes that combine social, biological, and neurological pathways, and the mechanisms through which these pathways may influence school success and health. It begins with a historical overview of the current understanding of how attachment relationships and social environments influence brain development and plasticity and are, therefore, central to the physical and mental health of individuals and populations. It then expands on the effect of plasticity in relation to behavior and learning at school. This article concludes with a discussion of the role the school nurse may play in supporting health and learning by recognizing signs of relational stress and by advocating for prevention strategies. PMID:24257899

  9. Placental Pathology, Perinatal Death, Neonatal Outcome, and Neurological Development: A Systematic Review

    PubMed Central

    Roescher, Annemiek M.; Timmer, Albert; Erwich, Jan Jaap H. M.; Bos, Arend F.

    2014-01-01

    Background The placenta plays a crucial role during pregnancy for growth and development of the fetus. Less than optimal placental performance may result in morbidity or even mortality of both mother and fetus. Awareness among pediatricians, however, of the benefit of placental findings for neonatal care, is limited. Objectives To provide a systematic overview of the relation between placental lesions and neonatal outcome. Data sources Pubmed database, reference lists of selected publications and important research groups in the field. Study appraisal and synthesis methods We systematically searched the Pubmed database for literature on the relation between placental lesions and fetal and neonatal mortality, neonatal morbidity and neurological outcome. We conducted three separate searches starting with a search for placental pathology and fetal and neonatal mortality, followed by placental pathology and neonatal morbidity, and finally placental pathology and neurological development. We limited our search to full-text articles published in English from January 1995 to October 2013. We refined our search results by selecting the appropriate articles from the ones found during the initial searches. The first selection was based on the title, the second on the abstract, and the third on the full article. The quality of the selected articles was determined by using the Newcastle-Ottawa Quality Assessment Scale. Results Placental lesions are one of the main causes of fetal death, where placental lesions consistent with maternal vascular underperfusion are most important. Several neonatal problems are also associated with placental lesions, whereby ascending intrauterine infection (with a fetal component) and fetal thrombotic vasculopathy constitute the greatest problem. Conclusions The placenta plays a key role in fetal and neonatal mortality, morbidity, and outcome. Pediatricians should make an effort to obtain the results of placental examinations. PMID:24586764

  10. Neurology and neurologic practice in China

    PubMed Central

    2011-01-01

    In the wake of dramatic economic success during the past 2 decades, the specialized field of neurology has undergone a significant transformation in China. With an increase in life expectancy, the problems of aging and cognition have grown. Lifestyle alterations have been associated with an epidemiologic transition both in the incidence and etiology of stroke. These changes, together with an array of social issues and institution of health care reform, are creating challenges for practicing neurologists throughout China. Notable problems include overcrowded, decrepit facilities, overloaded physician schedules, deteriorating physician-patient relationships, and an insufficient infrastructure to accommodate patients who need specialized neurologic care. Conversely, with the creation of large and sophisticated neurology centers in many cities across the country, tremendous opportunities exist. Developments in neurologic subspecialties enable delivery of high-quality care. Clinical and translational research based on large patient populations as well as highly sophisticated technologies are emerging in many neurologic centers and pharmaceutical companies. Child neurology and neurorehabilitation will be fast-developing subdisciplines. Given China's extensive population, the growth and progress of its neurology complex, and its ever-improving quality control, it is reasonable to anticipate that Chinese neurologists will contribute notably to unraveling the pathogenic factors causing neurologic diseases and to providing new therapeutic solutions. PMID:22123780

  11. Mice with mutations of Dock7 have generalized hypopigmentation and white-spotting but show normal neurological function.

    PubMed

    Blasius, Amanda L; Brandl, Katharina; Crozat, Karine; Xia, Yu; Khovananth, Kevin; Krebs, Philippe; Smart, Nora G; Zampolli, Antonella; Ruggeri, Zaverio M; Beutler, Bruce A

    2009-02-24

    The classical recessive coat color mutation misty (m) arose spontaneously on the DBA/J background and causes generalized hypopigmentation and localized white-spotting in mice, with a lack of pigment on the belly, tail tip, and paws. Here we describe moonlight (mnlt), a second hypopigmentation and white-spotting mutation identified on the C57BL/6J background, which yields a phenotypic copy of m/m coat color traits. We demonstrate that the 2 mutations are allelic. m/m and mnlt/mnlt phenotypes both result from mutations that truncate the dedicator of cytokinesis 7 protein (DOCK7), a widely expressed Rho family guanine nucleotide exchange factor. Although Dock7 is transcribed at high levels in the developing brain and has been implicated in both axon development and myelination by in vitro studies, we find no requirement for DOCK7 in neurobehavioral function in vivo. However, DOCK7 has non-redundant role(s) related to the distribution and function of dermal and follicular melanocytes. PMID:19202056

  12. The Development of Normal and Autistic Children: A Comparative Study.

    ERIC Educational Resources Information Center

    Wenar, Charles; And Others

    1986-01-01

    Evaluation of 195 normal children (aged 1-5 years), 160 normal children (aged 3-24 months), and 41 autistic children (aged 5-11 years) on the eight psychological variables of the Behavioral Rating Instrument for Autistic and Other Atypical Children indicated certain autistic behaviors are not normal at any stage of development. (Author/CB)

  13. Chapter 2. Normal Plant Appearance and Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most often, agronomists evaluate crop health by examining aboveground plant growth and canopy appearance. It is important to know when stresses occur relative to critical events in the development of the crop. This enables an agronomist to more effectively and efficiently employ management practices...

  14. Chapter 38: American neurology.

    PubMed

    Freemon, Frank R

    2010-01-01

    The great formative event in the history of North America, the Civil War of 1861 to 1865, was the stimulus for the development of clinical neurology and the neurosciences. The first neurological research center on the continent was the US Army hospital at Turner's Lane, Philadelphia, PA. Silas Weir Mitchell and his colleagues described causalgia (reflex sympathetic dystrophy), phantom limb sensation, and Horner's syndrome (before Horner). The medical leader of the Northern army was William Hammond. After the conclusion of hostilities, he began a huge clinical practice in New York City. In the United States, clinical neurology began in private practice, unlike Europe, where neurology began in institutions. Hammond's textbook, which first used the term athetosis, was used by a generation of physicians who encountered patients with neurological signs and symptoms. Early in the 20th century, neurological institutions were formed around universities; probably the most famous was the Montreal Neurological Institute founded by Wilder Penfield. The US federal government sponsored extensive research into the function and dysfunction of the nervous system through the Neurological Institute of Neurological Diseases and Blindness, later called the National Institute of Neurological Diseases and Stroke. The government officially classified the final 10 years of the 20th century as the Decade of the Brain and provided an even greater level of research funding. PMID:19892141

  15. [Sleep and neurological diseases].

    PubMed

    Mayer, G

    2016-06-01

    Knowledge of the physiology of sleep-wake regulation can contribute to an understanding of the pathophysiology and symptoms of neurological diseases and is helpful for initiating specific therapies for sleep-wake cycle stabilization. Based on historically important observations on the close relationship between sleep and neurological diseases, new insights and developments in selected neurological entities are presented in this review article. PMID:27167889

  16. Current neurology

    SciTech Connect

    Appel, S.H. )

    1988-01-01

    The topics covered in this book include: Duchenne muscular dystrophy: DNA diagnosis in practice; Central nervous system magnetic resonance imaging; and Magnetic resonance spectroscopy of neurologic diseases.

  17. Adolescent brain development in normality and psychopathology

    PubMed Central

    LUCIANA, MONICA

    2014-01-01

    Since this journal’s inception, the field of adolescent brain development has flourished, as researchers have investigated the underpinnings of adolescent risk-taking behaviors. Explanations based on translational models initially attributed such behaviors to executive control deficiencies and poor frontal lobe function. This conclusion was bolstered by evidence that the prefrontal cortex and its interconnections are among the last brain regions to structurally and functionally mature. As substantial heterogeneity of prefrontal function was revealed, applications of neuroeconomic theory to adolescent development led to dual systems models of behavior. Current epidemiological trends, behavioral observations, and functional magnetic resonance imaging based brain activity patterns suggest a quadratic increase in limbically mediated incentive motivation from childhood to adolescence and a decline thereafter. This elevation occurs in the context of immature prefrontal function, so motivational strivings may be difficult to regulate. Theoretical models explain this patterning through brain-based accounts of subcortical–cortical integration, puberty-based models of adolescent sensation seeking, and neurochemical dynamics. Empirically sound tests of these mechanisms, as well as investigations of biology–context interactions, represent the field’s most challenging future goals, so that applications to psychopathology can be refined and so that developmental cascades that incorporate neurobiological variables can be modeled. PMID:24342843

  18. [The growing spine : Normal and abnormal development].

    PubMed

    Stücker, R

    2016-06-01

    Growth of the pediatric spine occurs in phases. The first 5 years of life are characterized by rapid growth. The lower extremities and trunk contribute equally to the entire growth by 50 % each. In the following years, until the onset of puberty, a steady but reduced rate of growth is observed. During these years a T1-S1 growth of only 1 cm per year can be detected and the spine contributes only one third to the entire growth. Puberty consists of an acceleration phase lasting 2 years. In the first year of this phase the growth peak of the extremities and in the following year the growth peak of the spine can be noticed. The ensuing deceleration phase of puberty lasts for 3 years. During that period the development of the Risser sign, menarche, and fusion of the trochanter epiphysis are taking place. Clinical parameters such as sitting height, standing height, and arm span may be used to evaluate growth. Important radiological parameters include the Risser sign, the determination of skeletal age according to Greulich and Pyle, and the T1-T12 height. The use of the olecranon method during the ascending phase of puberty can be recommended. Problems of the developing spine may include malformations, developmental disruptions or deformations. According to their manifestations they have a different prognosis, which can be estimated by knowledge of residual growth and the typical course of spinal growth in childhood. PMID:27250620

  19. The Preoperative Neurological Evaluation

    PubMed Central

    Probasco, John; Sahin, Bogachan; Tran, Tung; Chung, Tae Hwan; Rosenthal, Liana Shapiro; Mari, Zoltan; Levy, Michael

    2013-01-01

    Neurological diseases are prevalent in the general population, and the neurohospitalist has an important role to play in the preoperative planning for patients with and at risk for developing neurological disease. The neurohospitalist can provide patients and their families as well as anesthesiologists, surgeons, hospitalists, and other providers guidance in particular to the patient’s neurological disease and those he or she is at risk for. Here we present considerations and guidance for the neurohospitalist providing preoperative consultation for the neurological patient with or at risk of disturbances of consciousness, cerebrovascular and carotid disease, epilepsy, neuromuscular disease, and Parkinson disease. PMID:24198903

  20. The crystal structure of human GlnRS provides basis for the development of neurological disorders

    PubMed Central

    Ognjenović, Jana; Wu, Jiang; Matthies, Doreen; Baxa, Ulrich; Subramaniam, Sriram; Ling, Jiqiang; Simonović, Miljan

    2016-01-01

    Cytosolic glutaminyl-tRNA synthetase (GlnRS) is the singular enzyme responsible for translation of glutamine codons. Compound heterozygous mutations in GlnRS cause severe brain disorders by a poorly understood mechanism. Herein, we present crystal structures of the wild type and two pathological mutants of human GlnRS, which reveal, for the first time, the domain organization of the intact enzyme and the structure of the functionally important N-terminal domain (NTD). Pathological mutations mapping in the NTD alter the domain structure, and decrease catalytic activity and stability of GlnRS, whereas missense mutations in the catalytic domain induce misfolding of the enzyme. Our results suggest that the reduced catalytic efficiency and a propensity of GlnRS mutants to misfold trigger the disease development. This report broadens the spectrum of brain pathologies elicited by protein misfolding and provides a paradigm for understanding the role of mutations in aminoacyl-tRNA synthetases in neurological diseases. PMID:26869582

  1. The crystal structure of human GlnRS provides basis for the development of neurological disorders

    DOE PAGESBeta

    Ognjenovic, Jana; Wu, Jiang; Matthies, Doreen; Baxa, Ulrich; Subramaniam, Sriram; Ling, Jiqiang; Simonovic, Miljan

    2016-02-10

    Cytosolic glutaminyl-tRNA synthetase (GlnRS) is the singular enzyme responsible for translation of glutamine codons. Compound heterozygous mutations in GlnRS cause severe brain disorders by a poorly understood mechanism. Herein, we present crystal structures of the wild type and two pathological mutants of human GlnRS, which reveal, for the first time, the domain organization of the intact enzyme and the structure of the functionally important N-terminal domain (NTD). Pathological mutations mapping in the NTD alter the domain structure, and decrease catalytic activity and stability of GlnRS, whereas missense mutations in the catalytic domain induce misfolding of the enzyme. Our results suggestmore » that the reduced catalytic efficiency and a propensity of GlnRS mutants to misfold trigger the disease development. As a result, this report broadens the spectrum of brain pathologies elicited by protein misfolding and provides a paradigm for understanding the role of mutations in aminoacyl-tRNA synthetases in neurological diseases. Keywords« less

  2. Hypoxic Adaptation during Development: Relation to Pattern of Neurological Presentation and Cognitive Disability

    ERIC Educational Resources Information Center

    Kirkham, Fenella J.; Datta, Avijit K.

    2006-01-01

    Children with acute hypoxic-ischaemic events (e.g. stroke) and chronic neurological conditions associated with hypoxia frequently present to paediatric neurologists. Failure to adapt to hypoxia may be a common pathophysiological pathway linking a number of other conditions of childhood with cognitive deficit. There is evidence that congenital…

  3. Developing Visualization Support System for Teaching/Learning Database Normalization

    ERIC Educational Resources Information Center

    Folorunso, Olusegun; Akinwale, AdioTaofeek

    2010-01-01

    Purpose: In tertiary institution, some students find it hard to learn database design theory, in particular, database normalization. The purpose of this paper is to develop a visualization tool to give students an interactive hands-on experience in database normalization process. Design/methodology/approach: The model-view-controller architecture…

  4. Neurologic deficit

    MedlinePlus

    ... neurologic deficit refers to abnormal function of a body area due to weaker function of the brain, spinal cord, muscles, or nerves. Examples include: Abnormal reflexes Inability to speak Decreased sensation Loss of balance ...

  5. Neurological Assessment.

    PubMed

    Fritz, Deborah; Musial, Maryann K

    2016-01-01

    Reasons for completing a neurological exam include: detecting life-threatening conditions, identifying nervous system dysfunction and the effects of this dysfunction on activities of daily living, comparing current data to previous exams to determine trends, and to provide a database upon which to base collaborative care across disciplines. In this third article of a four-part series, subjective and objective assessment of the neurological exam is reviewed. PMID:26645839

  6. Neurological assessment.

    PubMed

    Maher, Ann Butler

    2016-08-01

    Neurological system assessment is an important skill for the orthopaedic nurse because the nervous system has such an overlap with the musculoskeletal system. Nurses whose scope of practice includes such advanced evaluation, e.g. nurse practitioners, may conduct the examination described here but the information will also be useful for nurses caring for patients who have abnormal neurological assessment findings. Within the context of orthopaedic physical assessment, possible neurological findings are evaluated as they complement the patient's history and the examiner's findings. Specific neurological assessment is integral to diagnosis of some orthopaedic conditions such as carpal tunnel syndrome. In other situations such as crushing injury to the extremities, there is high risk of associated neurological or neurovascular injury. These patients need anticipatory examination and monitoring to prevent complications. This article describes a basic neurological assessment; emphasis is on sensory and motor findings that may overlap with an orthopaedic presentation. The orthopaedic nurse may incorporate all the testing covered here or choose those parts that further elucidate specific diagnostic questions suggested by the patient's history, general evaluation and focused musculoskeletal examination. Abnormal findings help to suggest further testing, consultation with colleagues or referral to a specialist. PMID:27118633

  7. Normal development and experimental embryology: Edmund Beecher Wilson and Amphioxus.

    PubMed

    Lowe, James W E

    2016-06-01

    This paper concerns the concept of normal development, and how it is enacted in experimental procedures. To that end, I use an historical case study to assess the three ways in which normal development is and has been produced, used, and interpreted in the practice of experimental biology. I argue that each of these approaches involves different processes of abstraction, which manage biological variation differently. I then document the way in which Edmund Beecher Wilson, a key contributor to late-nineteenth century experimental embryology, approached the study of normal development and show that his work does not fit any of the three established categories in the taxonomy. On the basis of this new case study, I present a new interpretation of normal development as a methodological norm which operates as a technical condition in various experimental systems. I close by suggesting the questions, and ways of investigating developmental biology, that are opened up by this perspective. PMID:27054569

  8. Achondrogenesis type II with normally developed extremities: a case report.

    PubMed

    Kocakoc, Ercan; Kiris, Adem

    2002-07-01

    We present a case of achondrogenesis type II with normally developed extremities that was confirmed with postmortem ultrasonographic and radiographic examination. The length of the long bones may vary and the diagnosis of achondrogenesis should not be ruled out with normally developed extremities. Intrauterine sonographic examination of the vertebrae is very important and the absence of vertebral body ossification may be the unique finding of achondrogenesis type II. Axial ultrasonographic images and postmortem plain radiographs are useful to clarify the pathology. PMID:12124695

  9. The neurotechnological revolution: unlocking the brain's secrets to develop innovative technologies as well as treatments for neurological diseases.

    PubMed

    Banks, Jim

    2015-01-01

    The brain contains all that makes us human, but its complexity is the source of both inspiration and frailty. Aging population is increasingly in need of effective care and therapies for brain diseases, including stroke, Parkinson's disease and Alzheimer's disease. The world's scientific community working hard to unravel the secrets of the brain's computing power and to devise technologies that can heal it when it fails and restore critical functions to patients with neurological conditions. Neurotechnology is the emerging field that brings together the development of technologies to study the brain and devices that improve and repair brain function. What is certain is the momentum behind neurotechnological research is building, and whether through implants, BCIs, or innovative computational systems inspired by the human brain, more light will be shed on our most complex and most precious organ, which will no doubt lead to effective treatment for many neurological conditions. PMID:25782106

  10. The discovery of human auditory-motor entrainment and its role in the development of neurologic music therapy.

    PubMed

    Thaut, Michael H

    2015-01-01

    The discovery of rhythmic auditory-motor entrainment in clinical populations was a historical breakthrough in demonstrating for the first time a neurological mechanism linking music to retraining brain and behavioral functions. Early pilot studies from this research center were followed up by a systematic line of research studying rhythmic auditory stimulation on motor therapies for stroke, Parkinson's disease, traumatic brain injury, cerebral palsy, and other movement disorders. The comprehensive effects on improving multiple aspects of motor control established the first neuroscience-based clinical method in music, which became the bedrock for the later development of neurologic music therapy. The discovery of entrainment fundamentally shifted and extended the view of the therapeutic properties of music from a psychosocially dominated view to a view using the structural elements of music to retrain motor control, speech and language function, and cognitive functions such as attention and memory. PMID:25725919

  11. [The role of lactate acidosis in the development and treatment of various neurologic syndromes in children and adolescents].

    PubMed

    Arveladze, G A; Geladze, N M; Sanikidze, T B; Khachapuridze, N S; Bakhtadze, S Z

    2015-02-01

    The aim of the study was to detect the role of lactate acidosis, also to find the share of mitochondrial insufficiency in development of various neurologic syndromes in children and adolescents. The detection of cellular energetic metabolism and acid based imbalance is also important for finding the specific method of management. We have studied 200 patients with various degree of neurodevelopment delay with epilepsy and epileptic syndromes, headache, vertigo, early strokes, floppy infant syndrome, atrophy of ophthalmic nerve, cataracta, neurosensory deafness, systemic myopathy, cerebral palsy. In 27% of cases with various ages we have detected lactate acidosis and increase level of pyruvate. Mitochondrial insufficiency was seen in 8% of cases which gives us opportunity to find the specific method of treatment in this group of patients. Each patient with neurological symptoms requires correction of parameters of energetic and oxidative metabolism. PMID:25802453

  12. [Palliative care in neurology].

    PubMed

    Provinciali, Leandro; Tarquini, Daniela; De Falco, Fabrizio A; Carlini, Giulia; Zappia, Mario; Toni, Danilo

    2015-07-01

    Palliative care in neurology is characterized by the need of taking into account some distinguishing features which supplement and often differ from the general palliative approach to cancer or to severe organ failures. Such position is emphasized by a new concept of palliative assistance which is not limited to the "end of life" stage, as it was the traditional one, but is applied along the entire course of progressive, life-limiting, and disabling conditions. There are various reasons accounting for a differentiation of palliative care in neurology and for the development of specific expertise; the long duration of the advanced stages of many neurological diseases and the distinguishing features of some clinical problems (cognitive disorders, psychic disorders, etc.), in addition to the deterioration of some general aspects (nutrition, etc.), make the general criteria adopted for cancer, severe respiratory, hepatic or renal failures and heart failure inadequate. The neurological diseases which could benefit from the development of a specific palliative approach are dementia, cerebrovascular diseases, movement disorders, neuromuscular diseases, severe traumatic brain injury, brain cancers and multiple sclerosis, as well as less frequent conditions. The growing literature on palliative care in neurology provides evidence of the neurological community's increasing interest in taking care of the advanced and terminal stages of nervous system diseases, thus encouraging research, training and updating in such direction. This document aims to underline the specific neurological requirements concerning the palliative assistance. PMID:26228722

  13. Histone turnover and chromatin accessibility: Critical mediators of neurological development, plasticity, and disease

    PubMed Central

    Wenderski, Wendy; Maze, Ian

    2016-01-01

    In postmitotic neurons, nucleosomal turnover was long considered to be a static process that is inconsequential to transcription. However, our recent studies in human and rodent brain indicate that replication-independent (RI) nucleosomal turnover, which requires the histone variant H3.3, is dynamic throughout life and is necessary for activity-dependent gene expression, synaptic connectivity, and cognition. H3.3 turnover also facilitates cellular lineage specification and plays a role in suppressing the expression of heterochromatic repetitive elements, including mutagenic transposable sequences, in mouse embryonic stem cells. In this essay, we review mechanisms and functions for RI nucleosomal turnover in brain and present the hypothesis that defects in histone dynamics may represent a common mechanism underlying neurological aging and disease. PMID:26990528

  14. Development of suspended normal-metal-type tunneling junction refrigerator

    NASA Astrophysics Data System (ADS)

    Kashiwaya, Satoshi; Kashiwaya, Hiromi; Koyanagi, Masao; Tanaka, Yukio

    2016-09-01

    We have developed a suspended normal-metal-type superconducting-normal metal-superconductor tunneling junction refrigerator for the cooling of highly sensitive sensors operating at ultralow temperatures. The performance of the refrigerator is evaluated by comparing the experimental conductance with the numerical results of a theoretical formulation. The lowest temperature of 0.093 K at a bath temperature of 0.334 K indicates the successful operation of the refrigerator. The maximum cooling power of the present refrigerator estimated on the basis of the nonequilibrium stationary state model is 213 pW for a junction area of 40 × 7 µm2.

  15. Normal and abnormal spine and thoracic cage development

    PubMed Central

    Canavese, Federico; Dimeglio, Alain

    2013-01-01

    Development of the spine and thoracic cage consists of a complex series of events involving multiple metabolic processes, genes and signaling pathways. During growth, complex phenomena occur in rapid succession. This succession of events, this establishment of elements, is programmed according to a hierarchy. These events are well synchronized to maintain harmonious limb, spine and thoracic cage relationships, as growth in the various body segments does not occur simultaneously at the same magnitude or rate. In most severe cases of untreated progressive early-onset spinal deformities, respiratory insufficiency and pulmonary and cardiac hypertension (cor pulmonale), which characterize thoracic insufficiency syndrome (TIS), can develop, sometimes leading to death. TIS is the inability of the thorax to ensure normal breathing. This clinical condition can be linked to costo-vertebral malformations (e.g., fused ribs, hemivertebrae, congenital bars), neuromuscular diseases (e.g., expiratory congenital hypotonia), Jeune or Jarcho-Levin syndromes or to 50% to 75% fusion of the thoracic spine before seven years of age. Complex spinal deformities alter normal growth plate development, and vertebral bodies become progressively distorted, perpetuating the disorder. Therefore, many scoliotic deformities can become growth plate disorders over time. This review aims to provide a comprehensive review of how spinal deformities can affect normal spine and thoracic cage growth. Previous conceptualizations are integrated with more recent scientific data to provide a better understanding of both normal and abnormal spine and thoracic cage growth. PMID:24147251

  16. Neurology in Asia.

    PubMed

    Tan, Chong-Tin

    2015-02-10

    Asia is important as it accounts for more than half of the world population. The majority of Asian countries fall into the middle income category. As for cultural traditions, Asia is highly varied, with many languages spoken. The pattern of neurologic diseases in Asia is largely similar to the West, with some disease features being specific to Asia. Whereas Asia constitutes 60% of the world's population, it contains only 20% of the world's neurologists. This disparity is particularly evident in South and South East Asia. As for neurologic care, it is highly variable depending on whether it is an urban or rural setting, the level of economic development, and the system of health care financing. To help remedy the shortage of neurologists, most counties with larger populations have established training programs in neurology. These programs are diverse, with many areas of concern. There are regional organizations serving as a vehicle for networking in neurology and various subspecialties, as well as an official journal (Neurology Asia). The Asian Epilepsy Academy, with its emphasis on workshops in various locations, EEG certification examination, and fellowships, may provide a template of effective regional networking for improving neurology care in the region. PMID:25666629

  17. Laboratory Simulation of Shear Band Development in Growth Normal Fault

    NASA Astrophysics Data System (ADS)

    Chu, Sheng-Shin; Lin, Ming-Lang

    2013-04-01

    According to the studies about active faults in metropolitan Taipei area, it has been indicated that Shanchiao Fault at the western rim of Taipei Basin is a highly active normal fault. Slip of the fault can cause deformation of shallower soil layers and lead to the destruction of infrastructures, residential building foundations and utility lines near the influenced area. It was interpreted that Shanchiao Fault is a growth normal fault based on geological drilling and dating information. Therefore in this study, a geological structure similar to growth normal fault (such as Shanchiao Fault) was constructed to simulate the slip induced ground deformation after an additional layer of sedimentation formed above the deformed normal fault. In this study, a sand box under gravity condition was formulated with non-cohesive sands in order to investigate the propagation of shear bands and surface deformation of a growth normal fault. With the presence of sedimentation layer on top of the deformed soil layer due to normal fault, the shear band developed along the previous shear band and propagated upward to the sand surface with a much faster speed comparing to the case when there is no sedimentation layer (i.e. normal fault only). The offset ratio of 1.3~1.5% (defines as the fault tip offset displacement over the thickness of soil layer) for this particular growth fault simulation is required in order to develop a shear band toward the ground surface. Based on the test results, it is concluded that if there is any seismic activity of Shanchiao Fault, with a smaller offset displacement from the fault tip, although the depositional thickness of the upper layer is very thick, the shear band could still be propagated to the ground surface and cause severe damages to the important facilities and infrastructure with Taipei Basin. Therefore, seismic design integrated with the knowledge of near-ground deformation characteristics due to this type of fault need to be emphasized in

  18. Development of a nanomaterial bio-screening platform for neurological applications.

    PubMed

    Jenkins, Stuart Iain; Roach, Paul; Chari, Divya Maitreyi

    2015-01-01

    Nanoparticle platforms are being intensively investigated for neurological applications. Current biological models used to identify clinically relevant materials have major limitations, e.g. technical/ethical issues with live animal experimentation, failure to replicate neural cell diversity, limited control over cellular stoichiometries and poor reproducibility. High-throughput neuro-mimetic screening systems are required to address these challenges. We describe an advanced multicellular neural model comprising the major non-neuronal/glial cells of the central nervous system (CNS), shown to account for ~99.5% of CNS nanoparticle uptake. This model offers critical advantages for neuro-nanomaterials testing while reducing animal use: one primary source and culture medium for all cell types, standardized biomolecular corona formation and defined/reproducible cellular stoichiometry. Using dynamic time-lapse imaging, we demonstrate in real-time that microglia (neural immune cells) dramatically limit particle uptake in other neural subtypes (paralleling post-mortem observations after nanoparticle injection in vivo), highlighting the utility of the system in predicting neural handling of biomaterials. PMID:25101878

  19. Severe neurological crisis in a patient with hereditary tyrosinaemia type I after interruption of NTBC treatment.

    PubMed

    Schlump, J-U; Perot, C; Ketteler, K; Schiff, M; Mayatepek, E; Wendel, U; Spiekerkoetter, U

    2008-12-01

    Neurological crises do not occur in patients with tyrosinaemia type I treated with NTBC. We report an 8 month-old boy with severe neurological crisis after interruption of NTBC treatment including progressive ascending polyneuropathy and diaphragmatic paralysis, arterial hypertension, respiratory distress requiring mechanical ventilation who later also developed impaired liver function and tubulopathy. After re-introduction of NTBC the patient slowly regained normal neurological functions and recovered completely. PMID:18500574

  20. Learning abilities, NGF and BDNF brain levels in two lines of TNF-alpha transgenic mice, one characterized by neurological disorders, the other phenotypically normal.

    PubMed

    Aloe, L; Properzi, F; Probert, L; Akassoglou, K; Kassiotis, G; Micera, A; Fiore, M

    1999-09-01

    In this study we used two lines of transgenic mice overexpressing tumor necrosis factor alpha (TNF-alpha) in the central nervous system (CNS), one characterized by reactive gliosis, inflammatory demyelination and neurological deficits (Tg6074) the other showing no neurological or phenotypical alterations (TgK3) to investigate the effect of TNF-alpha on brain nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) levels and learning abilities. The results showed that the amount of NGF in the brain of Tg6074 and TgK3 transgenic mice is low in the hippocampus and in the spinal cord, increases in the hypothalamus of Tg6074 and showed no significant changes in the cortex. BDNF levels were low in the hippocampus and spinal cord of TgK3. BDNF increased in the hypothalamus of TgK3 and Tg6074 while in the cortex, BDNF increased only in Tg6074 mice. Transgenic mice also had memory impairments as revealed by the Morris Water Maze test. These findings indicate that TNF-alpha significantly influences BDNF and NGF synthesis, most probably in a dose-dependent manner. Learning abilities were also differently affected by overexpression of TNF-alpha, but were not associated with inflammatory activity. The possible functional implications of our findings are discussed. PMID:10517960

  1. Normal Ocular Development in Young Rhesus Monkeys (Macaca mulatta)

    PubMed Central

    Qiao-Grider, Ying; Hung, Li-Fang; Kee, Chea-su; Ramamirtham, Ramkumar; Smith, Earl L.

    2007-01-01

    Purpose The purpose of this study was to characterize normal ocular development in infant monkeys and to establish both qualitative and quantitative relationships between human and monkey refractive development. Methods The subjects were 214 normal rhesus monkeys. Cross-sectional data were obtained from 204 monkeys at about 3 weeks of age and longitudinal data were obtained from 10 representative animals beginning at about 3 weeks of age for a period of up to 5 years. Ocular development was characterized via refractive status, corneal power, crystalline lens parameters, and the eye’s axial dimensions, which were determined by retinoscopy, keratometry, phakometry and A-scan ultrasonography, respectively. Results From birth to about 5 years of age, the growth curves for refractive error and most ocular components (excluding lens thickness and equivalent lens index) followed exponential trajectories and were highly coordinated between the two eyes. However, overall ocular growth was not a simple process of increasing the scale of each ocular component in a proportional manner. Instead the rates and relative amounts of change varied within and between ocular structures. Conclusion The configuration and contribution of the major ocular components in infant and adolescent monkey eyes are qualitatively and quantitatively very comparable to those in human eyes and their development proceeds in a similar manner in both species. As a consequence, in both species the adolescent eye is not simply a scaled version of the infant eye. PMID:17416396

  2. Ire1 supports normal ER differentiation in developing Drosophila photoreceptors

    PubMed Central

    Xu, Zuyuan; Chikka, Madhusudana Rao; Xia, Hongai; Ready, Donald F.

    2016-01-01

    ABSTRACT The endoplasmic reticulum (ER) serves virtually all aspects of cell physiology and, by pathways that are incompletely understood, is dynamically remodeled to meet changing cell needs. Inositol-requiring enzyme 1 (Ire1), a conserved core protein of the unfolded protein response (UPR), participates in ER remodeling and is particularly required during the differentiation of cells devoted to intense secretory activity, so-called ‘professional’ secretory cells. Here, we characterize the role of Ire1 in ER differentiation in the developing Drosophila compound eye photoreceptors (R cells). As part of normal development, R cells take a turn as professional secretory cells with a massive secretory effort that builds the photosensitive membrane organelle, the rhabdomere. We find rough ER sheets proliferate as rhabdomere biogenesis culminates, and Ire1 is required for normal ER differentiation. Ire1 is active early in R cell development and is required in anticipation of peak biosynthesis. Without Ire1, the amount of rough ER sheets is strongly reduced and the extensive cortical ER network at the rhabdomere base, the subrhabdomere cisterna (SRC), fails. Instead, ER proliferates in persistent and ribosome-poor tubular tangles. A phase of Ire1 activity early in R cell development thus shapes dynamic ER. PMID:26787744

  3. Emotion processes in normal and abnormal development and preventive intervention.

    PubMed

    Izard, Carroll E; Fine, Sarah; Mostow, Allison; Trentacosta, Christopher; Campbell, Jan

    2002-01-01

    We present an analysis of the role of emotions in normal and abnormal development and preventive intervention. The conceptual framework stems from three tenets of differential emotions theory (DET). These principles concern the constructs of emotion utilization; intersystem connections among modular emotion systems, cognition, and action; and the organizational and motivational functions of discrete emotions. Particular emotions and patterns of emotions function differentially in different periods of development and in influencing the cognition and behavior associated with different forms of psychopathology. Established prevention programs have not emphasized the concept of emotion as motivation. It is even more critical that they have generally neglected the idea of modulating emotions, not simply to achieve self-regulation, but also to utilize their inherently adaptive functions as a means of facilitating the development of social competence and preventing psychopathology. The paper includes a brief description of a theory-based prevention program and suggestions for complementary targeted interventions to address specific externalizing and internalizing problems. In the final section, we describe ways in which emotion-centered preventions can provide excellent opportunities for research on the development of normal and abnormal behavior. PMID:12549703

  4. Associations Between Prolonged Intubation and Developing Post-extubation Dysphagia and Aspiration Pneumonia in Non-neurologic Critically Ill Patients

    PubMed Central

    Kim, Min Jung; Park, Young Sook; Song, You Hong

    2015-01-01

    Objective To identify the associations between the duration of endotracheal intubation and developing post-extubational supraglottic and infraglottic aspiration (PEA) and subsequent aspiration pneumonia. Methods This was a retrospective observational study from January 2009 to November 2014 of all adult patients who had non-neurologic critical illness, required endotracheal intubation and were referred for videofluoroscopic swallowing study. Demographic information, intensive care unit (ICU) admission diagnosis, severity of critical illness, duration of endotracheal intubation, length of stay in ICU, presence of PEA and severity of dysphagia were reviewed. Results Seventy-four patients were enrolled and their PEA frequency was 59%. Patients with PEA had significantly longer endotracheal intubation durations than did those without (median [interquartile range]: 15 [9-21] vs. 10 [6-15] days; p=0.02). In multivariate logistic regression analysis, the endotracheal intubation duration was significantly associated with PEA (odds ratio, 1.09; 95% confidence interval [CI], 1.01-1.18; p=0.04). Spearman correlation analysis of intubation duration and dysphagia severity showed a positive linear association (r=0.282, p=0.02). The areas under the receiver operating characteristic curves (AUCs) of endotracheal intubation duration for developing PEA and aspiration pneumonia were 0.665 (95% CI, 0.542-0.788; p=0.02) and 0.727 (95% CI, 0.614-0.840; p=0.001), respectively. Conclusion In non-neurologic critically ill patients, the duration of endotracheal intubation was independently associated with PEA development. Additionally, the duration was positively correlated with dysphagia severity and may be helpful for identifying patients who require a swallowing evaluation after extubation. PMID:26605174

  5. Genetic Analysis in Neurology

    PubMed Central

    Pittman, Alan; Hardy, John

    2014-01-01

    In recent years, neurogenetics research had made some remarkable advances owing to the advent of genotyping arrays and next-generation sequencing. These improvements to the technology have allowed us to determine the whole-genome structure and its variation and to examine its effect on phenotype in an unprecedented manner. The identification of rare disease-causing mutations has led to the identification of new biochemical pathways and has facilitated a greater understanding of the etiology of many neurological diseases. Furthermore, genome-wide association studies have provided information on how common genetic variability impacts on the risk for the development of various complex neurological diseases. Herein, we review how these technological advances have changed the approaches being used to study the genetic basis of neurological disease and how the research findings will be translated into clinical utility. PMID:23571731

  6. Genomic medicine and neurology.

    PubMed

    Vance, Jeffery M; Tekin, Demet

    2011-04-01

    The application of genetics to the understanding of neurology has been highly successful over the past several decades. During the past 10 years, tools were developed to begin genetic investigations into more common disorders such as Alzheimer disease, multiple sclerosis, autism, and Parkinson disease. The era of genomic medicine now has begun and will have an increasing effect on the daily care of common neurologic diseases. Thus it is important for neurologists to have a basic understanding of genomic medicine and how it differs from the traditional clinical genetics of the past. This article provides some basic information about genomic medicine and pharmacogenetics in neurology to help neurologists to begin to adopt these principles into their practice. PMID:22810818

  7. Paraneoplastic neurological syndromes

    PubMed Central

    Leypoldt, F; Wandinger, K-P

    2014-01-01

    Paraneoplastic neurological syndromes are immune-mediated erroneous attacks on the central or peripheral nervous systems, or both, directed originally against the tumour itself. They have been known for more than 40 years, but recently the discovery of new subgroups of paraneoplastic encephalitis syndromes with a remarkably good response to immune therapy has ignited new clinical and scientific interest. Knowledge of these subgroups and their associated autoantibodies is important in therapeutic decision-making. However, the abundance of new autoantibodies and syndromes can be confusing. This review paper summarizes current knowledge and new developments in the field of paraneoplastic neurological syndromes, their classification, pathophysiology and treatment. PMID:23937626

  8. Child neurology services in Africa.

    PubMed

    Wilmshurst, Jo M; Badoe, Eben; Wammanda, Robinson D; Mallewa, Macpherson; Kakooza-Mwesige, Angelina; Venter, Andre; Newton, Charles R

    2011-12-01

    The first African Child Neurology Association meeting identified key challenges that the continent faces to improve the health of children with neurology disorders. The capacity to diagnose common neurologic conditions and rare disorders is lacking. The burden of neurologic disease on the continent is not known, and this lack of knowledge limits the ability to lobby for better health care provision. Inability to practice in resource-limited settings has led to the migration of skilled professionals away from Africa. Referral systems from primary to tertiary are often unpredictable and chaotic. There is a lack of access to reliable supplies of basic neurology treatments such as antiepileptic drugs. Few countries have nationally accepted guidelines either for the management of epilepsy or status epilepticus. There is a great need to develop better training capacity across Africa in the recognition and management of neurologic conditions in children, from primary health care to the subspecialist level. PMID:22019842

  9. Child Neurology Services in Africa

    PubMed Central

    Wilmshurst, Jo M.; Badoe, Eben; Wammanda, Robinson D.; Mallewa, Macpherson; Kakooza-Mwesige, Angelina; Venter, Andre; Newton, Charles R.

    2013-01-01

    The first African Child Neurology Association meeting identified key challenges that the continent faces to improve the health of children with neurology disorders. The capacity to diagnose common neurologic conditions and rare disorders is lacking. The burden of neurologic disease on the continent is not known, and this lack of knowledge limits the ability to lobby for better health care provision. Inability to practice in resource-limited settings has led to the migration of skilled professionals away from Africa. Referral systems from primary to tertiary are often unpredictable and chaotic. There is a lack of access to reliable supplies of basic neurology treatments such as antiepileptic drugs. Few countries have nationally accepted guidelines either for the management of epilepsy or status epilepticus. There is a great need to develop better training capacity across Africa in the recognition and management of neurologic conditions in children, from primary health care to the subspecialist level. PMID:22019842

  10. X Chromosome Abnormalities and Cognitive Development: Implications for Understanding Normal Human Development.

    ERIC Educational Resources Information Center

    Walzer, Stanley

    1985-01-01

    Argues that knowledge from studies of individuals with sex chromosome abnormalities can further understanding of aspects of normal human development. Studies of XO girls, XXY boys, XXX girls, and males with a fragile X chromosome are summarized to demonstrate how results contribute to knowledge about normal cognitive development and about…

  11. PIPs in neurological diseases.

    PubMed

    Waugh, Mark G

    2015-08-01

    Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids. PMID:25680866

  12. Resting-state activity in development and maintenance of normal brain function

    PubMed Central

    Pizoli, Carolyn E.; Snyder, Abraham Z.; Shimony, Joshua S.; Limbrick, David D.; Schlaggar, Bradley L.; Smyth, Matthew D.

    2011-01-01

    One of the most intriguing recent discoveries concerning brain function is that intrinsic neuronal activity manifests as spontaneous fluctuations of the blood oxygen level–dependent (BOLD) functional MRI signal. These BOLD fluctuations exhibit temporal synchrony within widely distributed brain regions known as resting-state networks. Resting-state networks are present in the waking state, during sleep, and under general anesthesia, suggesting that spontaneous neuronal activity plays a fundamental role in brain function. Despite its ubiquitous presence, the physiological role of correlated, spontaneous neuronal activity remains poorly understood. One hypothesis is that this activity is critical for the development of synaptic connections and maintenance of synaptic homeostasis. We had a unique opportunity to test this hypothesis in a 5-y-old boy with severe epileptic encephalopathy. The child developed marked neurologic dysfunction in association with a seizure disorder, resulting in a 1-y period of behavioral regression and progressive loss of developmental milestones. His EEG showed a markedly abnormal pattern of high-amplitude, disorganized slow activity with frequent generalized and multifocal epileptiform discharges. Resting-state functional connectivity MRI showed reduced BOLD fluctuations and a pervasive lack of normal connectivity. The child underwent successful corpus callosotomy surgery for treatment of drop seizures. Postoperatively, the patient's behavior returned to baseline, and he resumed development of new skills. The waking EEG revealed a normal background, and functional connectivity MRI demonstrated restoration of functional connectivity architecture. These results provide evidence that intrinsic, coherent neuronal signaling may be essential to the development and maintenance of the brain's functional organization. PMID:21709227

  13. Bridging the Gap in Neurotherapeutic Discovery and Development: The Role of the National Institute of Neurological Disorders and Stroke in Translational Neuroscience.

    PubMed

    Mott, Meghan; Koroshetz, Walter

    2015-07-01

    The mission of the National Institute of Neurological Disorders and Stroke (NINDS) is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease. NINDS supports early- and late-stage therapy development funding programs to accelerate preclinical discovery and the development of new therapeutic interventions for neurological disorders. The NINDS Office of Translational Research facilitates and funds the movement of discoveries from the laboratory to patients. Its grantees include academics, often with partnerships with the private sector, as well as small businesses, which, by Congressional mandate, receive > 3% of the NINDS budget for small business innovation research. This article provides an overview of NINDS-funded therapy development programs offered by the NINDS Office of Translational Research. PMID:26081907

  14. Multi-Contrast Human Neonatal Brain Atlas: Application to Normal Neonate Development Analysis

    PubMed Central

    Oishi, Kenichi; Mori, Susumu; Donohue, Pamela K.; Ernst, Thomas; Anderson, Lynn; Buchthal, Steven; Faria, Andreia; Jiang, Hangyi; Li, Xin; Miller, Michael I.; van Zijl, Peter C.M.; Chang, Linda

    2011-01-01

    MRI is a sensitive method for detecting subtle anatomic abnormalities in the neonatal brain. To optimize the usefulness for neonatal and pediatric care, systematic research, based on quantitative image analysis and functional correlation, is required. Normalization-based image analysis is one of the most effective methods for image quantification and statistical comparison. However, the application of this methodology to neonatal brain MRI scans is rare. Some of the difficulties are the rapid changes in T1 and T2 contrasts and the lack of contrast between brain structures, which prohibits accurate cross-subject image registration. Diffusion tensor imaging (DTI), which provides rich and quantitative anatomical contrast in neonate brains, is an ideal technology for normalization–based neonatal brain analysis. In this paper, we report the development of neonatal brain atlases with detailed anatomic information derived from DTI and co-registered anatomical MRI. Combined with a diffeomorphic transformation, we were able to normalize neonatal brain images to the atlas space and three-dimensionally parcellate images into 122 regions. The accuracy of the normalization was comparable to the reliability of human raters. This method was then applied to babies of 37 to 53 post-conceptional weeks to characterize developmental changes of the white matter, which indicated a posterior-to-anterior and a central-to-peripheral direction of maturation. We expect that future applications of this atlas will include investigations of the effect of prenatal events and the effects of preterm birth or low birth weights, as well as clinical applications, such as determining imaging biomarkers for various neurological disorders. PMID:21276861

  15. Receptor Editing Occurs Frequently during Normal B Cell Development

    PubMed Central

    Retter, Marc W.; Nemazee, David

    1998-01-01

    Allelic exclusion is established in development through a feedback mechanism in which the assembled immunoglobulin (Ig) suppresses further V(D)J rearrangement. But Ig expression sometimes fails to prevent further rearrangement. In autoantibody transgenic mice, reactivity of immature B cells with autoantigen can induce receptor editing, in which allelic exclusion is transiently prevented or reversed through nested light chain gene rearrangement, often resulting in altered B cell receptor specificity. To determine the extent of receptor editing in a normal, non-Ig transgenic immune system, we took advantage of the fact that λ light chain genes usually rearrange after κ genes. This allowed us to analyze κ loci in IgMλ+ cells to determine how frequently in-frame κ genes fail to suppress λ gene rearrangements. To do this, we analyzed recombined VκJκ genes inactivated by subsequent recombining sequence (RS) rearrangement. RS rearrangements delete portions of the κ locus by a V(D)J recombinase-dependent mechanism, suggesting that they play a role in receptor editing. We show that RS recombination is frequently induced by, and inactivates, functionally rearranged κ loci, as nearly half (47%) of the RS-inactivated VκJκ joins were in-frame. These findings suggest that receptor editing occurs at a surprisingly high frequency in normal B cells. PMID:9763602

  16. Human Embryonic Stem Cells: A Model for the Study of Neural Development and Neurological Diseases

    PubMed Central

    Prajumwongs, Piya; Weeranantanapan, Oratai; Jaroonwitchawan, Thiranut; Noisa, Parinya

    2016-01-01

    Although the mechanism of neurogenesis has been well documented in other organisms, there might be fundamental differences between human and those species referring to species-specific context. Based on principles learned from other systems, it is found that the signaling pathways required for neural induction and specification of human embryonic stem cells (hESCs) recapitulated those in the early embryo development in vivo at certain degree. This underscores the usefulness of hESCs in understanding early human neural development and reinforces the need to integrate the principles of developmental biology and hESC biology for an efficient neural differentiation. PMID:27239201

  17. NEUROLOGICAL RESEARCH RELEVANT TO READING--1967.

    ERIC Educational Resources Information Center

    ISOM, JOHN B.

    ASPECTS OF NEUROLOGICAL RESEARCH ARE PRESENTED UNDER THE TOPICS OF NEUROLOGICAL GROWTH AND DEVELOPMENT, CEREBRAL DOMINANCE, "SPLIT-BRAIN" SYNDROME, AND SEQUENCING. THE FIRST TWO AREAS INDICATE THAT ASSESSMENT OF A CHILD'S NEUROLOGICAL DEVELOPMENT MUST TAKE INTO ACCOUNT VARIATION OF RATE AND DEGREE OF DEVELOPMENT, AND THAT THE SIGNIFICANCE OF…

  18. Improving Instruction in Middle Level Schools: Implications of Neurological Data for Curriculum Development.

    ERIC Educational Resources Information Center

    Toepfer, Conrad F., Jr.

    Implications of biophysicist Herman Epstein's research on brain growth periodization, which develop a neurobiological consideration of learning issues for middle school curricula, have created controversy among educators and stimulus for further research. This presentation (1) summarizes the writer's interpretations of these data and implications…

  19. The Influence of Lead Exposure and Toxicity to Children's Neurological Development and School Performance.

    ERIC Educational Resources Information Center

    Kimball, Sarah L.

    This report discusses the effects of lead exposure and toxicity on children's cognitive development and school performance and addresses the role of schools in prevention of lead poisoning. Sources of lead exposure include mining, smelting and refining activities, lead paint, leaded gasoline, and industrial emissions. The results of lead poisoning…

  20. Normal gut microbiota modulates brain development and behavior.

    PubMed

    Diaz Heijtz, Rochellys; Wang, Shugui; Anuar, Farhana; Qian, Yu; Björkholm, Britta; Samuelsson, Annika; Hibberd, Martin L; Forssberg, Hans; Pettersson, Sven

    2011-02-15

    Microbial colonization of mammals is an evolution-driven process that modulate host physiology, many of which are associated with immunity and nutrient intake. Here, we report that colonization by gut microbiota impacts mammalian brain development and subsequent adult behavior. Using measures of motor activity and anxiety-like behavior, we demonstrate that germ free (GF) mice display increased motor activity and reduced anxiety, compared with specific pathogen free (SPF) mice with a normal gut microbiota. This behavioral phenotype is associated with altered expression of genes known to be involved in second messenger pathways and synaptic long-term potentiation in brain regions implicated in motor control and anxiety-like behavior. GF mice exposed to gut microbiota early in life display similar characteristics as SPF mice, including reduced expression of PSD-95 and synaptophysin in the striatum. Hence, our results suggest that the microbial colonization process initiates signaling mechanisms that affect neuronal circuits involved in motor control and anxiety behavior. PMID:21282636

  1. Physes around the shoulder girdle: normal development and injury patterns.

    PubMed

    Anwar, I; Amiras, D; Khanna, M; Walker, M

    2016-07-01

    Traumatic injuries involving the scapula and clavicle in skeletally immature patients have unique characteristics that distinguish them from similar injuries in the mature skeleton. Fractures involving unossified cartilage and unfused epiphyses are difficult to appreciate on plain radiographs and computed tomography (CT) imaging. Knowledge of the developmental anatomy and normal radiological appearances during different stages of development of these bones is an essential prerequisite for the radiologist tasked with interpreting the imaging of such injuries in order to avoid potential diagnostic pitfalls. With increased availability and improved resolution of magnetic resonance imaging (MRI), we are now better able to distinguish between true joint dislocations and epiphyseal injuries. Making this distinction is important because it can have implications with regards to how the patient is managed and the prognosis. PMID:27114286

  2. Development of dopamine receptor radiopharmaceuticals for the study of neurological and psychiatric disorders

    SciTech Connect

    Dr. Jogeshwar Mukherjee

    2009-01-02

    Our goals in this grant application are directed towards the development of radiotracers that may allow the study of the high-affinity state (functional state) of the dopamine receptors. There have been numerous reports on the presence of two inter-convertible states of these (G-protein coupled) receptors in vitro. However, there is no report that establishes the presence of these separate affinity states in vivo. We have made efforts in this direction in order to provide such direct in vivo evidence about the presence of the high affinity state. This understanding of the functional state of the receptors is of critical significance in our overall diagnosis and treatment of diseases that implicate the G-protein coupled receptors. Four specific aims have been listed in the grant application: (1). Design and syntheses of agonists (2). Radiosyntheses of agonists (3). In vitro pharmacology of agonists (4). In vivo distribution and pharmacology of labeled derivatives. We have accomplished the syntheses and radiosyntheses of three agonist radiotracers labeled with carbon-11. In vitro and in vivo pharmacological experiments have been accomplished in rats and preliminary PET studies in non-human primates have been carried out. Various accomplishments during the funded years, briefly outlined in this document, have been disseminated by several publications in various journals and presentations in national and international meetings (Society of Nuclear Medicine, Society for Neuroscience and International Symposium on Radiopharmaceutical Chemistry).

  3. The Complexity Signature: Developing a Tool to Communicate Biopsychosocial Severity of Disease for Children with Chronic Neurological Complexity.

    PubMed

    Krieg, Sandro M; Sonanini, Sebastian; Sollmann, Nico; Focke, Axel; Gerstl, Lucia; Heinen, Florian

    2016-08-01

    Aim For children with medical complexity, interdisciplinary treatment approaches are required to address the various aspects defined within the biopsychosocial model. Methods The present study identifies dimensions of the biopsychosocial model to generate a standardized visualized severity score for chronic neurological diseases in children. We demonstrate the score's applicability and usefulness in clinical practice among clinicians with and without pediatric board certification with the aid of illustrative patient cases. The results are compared by Spearman correlation coefficient. Results Nine dimensions were identified as the basis for the development of the score, which consists of five grades of severity for each of the selected neuropediatric subsections. All board-certified pediatricians would recommend the application of the severity score in clinical routine. Furthermore, a good correlation was revealed between direct and indirect (severity score) assessment. Interpretation The severity score developed in this study takes into account biopsychosocial aspects of chronic diseases while being comprehensible and easily applicable in clinical routine-a biopsychosocial signature serving as an excellent, striking communication basis within the interdisciplinary team. However, upcoming studies including more patient cases are needed for further refinement. PMID:27228000

  4. DEVELOPMENT OF PERIRADICULAR LESIONS IN NORMAL AND DIABETIC RATS

    PubMed Central

    Armada-Dias, Luci; Breda, Jorge; Provenzano, José Claudio; Breitenbach, Marisa; Rôças, Isabela das Neves; Gahyva, Sérgio Márcio Motta; Siqueira, José Freitas

    2006-01-01

    Evidence suggests that diabetic patients are more significantly affected by problems of endodontic origin. This study sought to radiographically and histologically examine the development of periradicular inflammation in control and in diabetic rats after induction of pulpal infection. The pulps of the mandibular first molars of normal and streptozotocin-induced diabetic rats were exposed and left in contact with their oral cavities for 21 and 40 days. Afterwards, the animals were sacrificed, the mandibles were surgically removed, fixed in formalin and then radiographed in a standardized position. The radiographic images of the periradicular lesions were scanned and computerized images were evaluated for the total area of the lesions using a specific software. Representative specimens were also prepared for histopathological analysis. Radiographic analysis revealed that diabetic rats presented significantly larger periradicular lesions when compared with control rats, regardless of the experimental period (p<0.05). Histopathological examination of representative specimens revealed larger periradicular lesions and more severe inflammatory exudate in the group of diabetic rats when compared with the control group. Data from the present study indicated that diabetic rats can be more prone to develop large periradicular lesions, possibly due to reduction in the defense ability against microbial pathogens. PMID:19089060

  5. Acquisition of arbitrary conditional discriminations by young normally developing children.

    PubMed Central

    Pilgrim, C; Jackson, J; Galizio, M

    2000-01-01

    Three experiments investigated conditions designed to facilitate acquisition of arbitrary conditional discriminations in 3- to 6-year-old normally developing children. In Experiment 1, 6 subjects failed to master the arbitrary match-to-sample task under conditions of differential reinforcement alone, but 7 subjects did so when instructions or instructions and sample naming were added. In Experiment 2, sample naming introduced in a blocked-trial arrangement resulted in acquisition, but only when the sample name was a nonsense syllable provided by the experimenter (5 of 7 subjects) and not when the sample name was generated by the subject (0 of 5 subjects). Experiment 3 demonstrated the effectiveness of a training sequence involving thematically related stimuli as an intermediate step facilitating the transition from identity to novel arbitrary relations. The difficulties in mastering arbitrary conditional discriminations shown here imply that further analyses with young children will be particularly important in efforts to investigate the development of theoretically important stimulus relations. PMID:10784008

  6. Neurological complications of infantile osteopetrosis.

    PubMed

    Lehman, R A; Reeves, J D; Wilson, W B; Wesenberg, R L

    1977-11-01

    Seven cases of infantile osteopetrosis are presented. Five of these were available for detailed clinical examination and 2 for retrospective review, including autopsy slides. Neurological deficits in these patients are reviewed. Involvement of the central nervous system parenchyma was suggested by observations of delayed development, ocular abnormalities, and reflex changes as well as radiographic and autopsy findings. Cerebral atrophy was present in several of our patients as well as some reported in the literature and may account for the ventricular enlargement found in many of these patients. Though hydrocephalus may be present, it is unclear that this is frequent or that it can occur without antecedent intracranial hemorrhage. The large head size is not accounted for by calvarial thickening or by hydrocephalus. Despite our patients' small stature, pituitary function appeared to be normal. Surgical decompression may stabilize cranial nerve function, particularly when the optic nerves are involved. PMID:617576

  7. The neurological disease ontology

    PubMed Central

    2013-01-01

    Background We are developing the Neurological Disease Ontology (ND) to provide a framework to enable representation of aspects of neurological diseases that are relevant to their treatment and study. ND is a representational tool that addresses the need for unambiguous annotation, storage, and retrieval of data associated with the treatment and study of neurological diseases. ND is being developed in compliance with the Open Biomedical Ontology Foundry principles and builds upon the paradigm established by the Ontology for General Medical Science (OGMS) for the representation of entities in the domain of disease and medical practice. Initial applications of ND will include the annotation and analysis of large data sets and patient records for Alzheimer’s disease, multiple sclerosis, and stroke. Description ND is implemented in OWL 2 and currently has more than 450 terms that refer to and describe various aspects of neurological diseases. ND directly imports the development version of OGMS, which uses BFO 2. Term development in ND has primarily extended the OGMS terms ‘disease’, ‘diagnosis’, ‘disease course’, and ‘disorder’. We have imported and utilize over 700 classes from related ontology efforts including the Foundational Model of Anatomy, Ontology for Biomedical Investigations, and Protein Ontology. ND terms are annotated with ontology metadata such as a label (term name), term editors, textual definition, definition source, curation status, and alternative terms (synonyms). Many terms have logical definitions in addition to these annotations. Current development has focused on the establishment of the upper-level structure of the ND hierarchy, as well as on the representation of Alzheimer’s disease, multiple sclerosis, and stroke. The ontology is available as a version-controlled file at http://code.google.com/p/neurological-disease-ontology along with a discussion list and an issue tracker. Conclusion ND seeks to provide a formal

  8. Development of Communicative Gestures in Normally Developing Children between 8 and 18 Months: An Exploratory Study

    ERIC Educational Resources Information Center

    Veena, Kadiyali D; Bellur, Rajashekhar

    2015-01-01

    Children who have not developed speech tend to use gestures to communicate. Since gestures are not encouraged and suppressed in the Indian traditional context while speaking, this study focused on profiling the developing gestures in children to explore whether they use the gestures before development of speech. Eight normally developing…

  9. Untreated non-phenylketonuric-hyperphenylalaninaemia: intellectual and neurological outcome.

    PubMed

    Weglage, J; Ullrich, K; Pietsch, M; Fünders, B; Zass, R; Koch, H G

    1996-07-01

    The intellectual, neurological, and neuropsychological outcome of patients with non-phenylketonuric-hyperphenylalaninaemia (PKU-HPA) (serum phenylalanine levels under free diet < 600 mumol/l) has not been systematically studied so far. We therefore tested 28 patients (mean age = 21.8, SD = 4.2 years) for IQ (WAIS-R/WISC-R), school performance, job career, clinical neurological examination, fine motor performance (motor performance task), and selective and sustained attention (stroop task, Dot Pattern Exercise from the Sonneville visual attention task). In addition, cranial MRI (1.5 T unit) was obtained in 10 of these patients. Clinical-neurological examination revealed no significant abnormalities in the non-PKU-HPA patients. They also had a normal IQ (mean = 101.9, SD = 13.6). Compared to their healthy siblings, they attended a normal school and had a normal job career. The motor performance task revealed no deficits in fine motor abilities. The patients performed normally in the stroop task and the dot pattern exercise. Their MRIs were normal. Our results indicate that patients with non-PKU-HPA are not at risk for developing intellectual, neurological, and neuropsychological impairment, as described for patients with treated mild or classical phenylketonuria. From this point of view a dietary treatment is not necessary in patients with hyperphenylalaninaemia. PMID:8828604

  10. Visual-Motor Localizations in Normal and Subnormal Development.

    ERIC Educational Resources Information Center

    Anwar, Feriha

    1981-01-01

    Reports four experiments comparing the visual target localization performance of severely subnormal, moderately subnormal, and normal preschoolers, of like mental age, under conditions of visually guided or visually directed feedback. (SJL)

  11. Neurological Aspects of Reading Disability.

    ERIC Educational Resources Information Center

    Nelson, Louis R.

    The author, a neurologist, looks at the nature of reading disabilities. He suggests that many reading disabilities are the result of normal constitutional differences and that the term "minimal brain dysfunction" is rarely appropriate and does not help the remediation process. Noted are various theories which relate neurology and reading ability.…

  12. Protective Role of the Virus-Specific Immune Response for Development of Severe Neurologic Signs in Simian Immunodeficiency Virus-Infected Macaques

    PubMed Central

    Sopper, Sieghart; Sauer, Ursula; Hemm, Susanne; Demuth, Monika; Müller, Justus; Stahl-Hennig, Christiane; Hunsmann, Gerhard; ter Meulen, Volker; Dörries, Rüdiger

    1998-01-01

    The pathogenesis of human immunodeficiency virus-associated motor and cognitive disorders is poorly understood. In this context both a protective and a harmful role of the immune system has been discussed. This question was addressed in the present study by correlating the occurrence of neurologic disease in simian immunodeficiency virus (SIV)-infected macaques with disease progression and the humoral and cellular intrathecal antiviral immune response. Overt neurologic signs consisting of ataxia and apathy were observed at a much higher frequency in rapid progressor animals (6 of 12) than in slow progressors (1 of 7). Whereas slow progressors mounted a strong antiviral antibody (Ab) response as evidenced by enzyme-linked immunosorbent and immunospot assays, neither virus-specific Ab titers nor Ab-secreting cells could be found in the cerebrospinal fluid (CSF) or brain parenchyma of rapid progressors. Similarly, increased infiltration of CD8+ T cells and cytotoxic T lymphocytes specific for viral antigens were detected only in the CSF of slow progressors. The finding that neurologic signs develop frequently in SIV-infected macaques in the absence of an antiviral immune response demonstrates that the immune system does not contribute to the development of motor disorders in these animals. Moreover, the lower incidence of neurologic symptoms in slow progressors with a strong intrathecal immune response suggests a protective role of the virus-specific immunity in immunodeficiency virus-induced central nervous system disease. PMID:9811731

  13. Neurologic Diseases

    MedlinePlus

    The brain, spinal cord, and nerves make up the nervous system. Together they control all the workings of the body. When something goes wrong ... develops, such as spina bifida Degenerative diseases, where nerve cells are ... to the spinal cord and brain Seizure disorders, such as epilepsy ...

  14. Human T cell leukemia virus type I and neurologic disease: events in bone marrow, peripheral blood, and central nervous system during normal immune surveillance and neuroinflammation.

    PubMed

    Grant, Christian; Barmak, Kate; Alefantis, Timothy; Yao, Jing; Jacobson, Steven; Wigdahl, Brian

    2002-02-01

    Human T cell lymphotropic/leukemia virus type I (HTLV-I) has been identified as the causative agent of both adult T cell leukemia (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the exact sequence of events that occur during the early stages of infection are not known in detail, the initial route of infection may predetermine, along with host, environmental, and viral factors, the subset of target cells and/or the primary immune response encountered by HTLV-I, and whether an HTLV-I-infected individual will remain asymptomatic, develop ATL, or progress to the neuroinflammatory disease, HAM/TSP. Although a large number of studies have indicated that CD4(+) T cells represent an important target for HTLV-I infection in the peripheral blood (PB), additional evidence has accumulated over the past several years demonstrating that HTLV-I can infect several additional cellular compartments in vivo, including CD8(+) T lymphocytes, PB monocytes, dendritic cells, B lymphocytes, and resident central nervous system (CNS) astrocytes. More importantly, extensive latent viral infection of the bone marrow, including cells likely to be hematopoietic progenitor cells, has been observed in individuals with HAM/TSP as well as some asymptomatic carriers, but to a much lesser extent in individuals with ATL. Furthermore, HTLV-I(+) CD34(+) hematopoietic progenitor cells can maintain the intact proviral genome and initiate viral gene expression during the differentiation process. Introduction of HTLV-I-infected bone marrow progenitor cells into the PB, followed by genomic activation and low level viral gene expression may lead to an increase in proviral DNA load in the PB, resulting in a progressive state of immune dysregulation including the generation of a detrimental cytotoxic Tax-specific CD8(+) T cell population, anti-HTLV-I antibodies, and neurotoxic cytokines involved in disruption of myelin-producing cells and neuronal degradation

  15. Oligopeptidase A is required for normal phage P22 development.

    PubMed Central

    Conlin, C A; Vimr, E R; Miller, C G

    1992-01-01

    The opdA gene of Salmonella typhimurium encodes an endoprotease, oligopeptidase A (OpdA). Strains carrying opdA mutations were deficient as hosts for phage P22. P22 and the closely related phages L and A3 formed tiny plaques on an opdA host. Salmonella phages 9NA, KB1, and ES18.h1 were not affected by opdA mutations. Although opdA strains displayed normal doubling times and were infected by P22 as efficiently as opdA+ strains, the burst size of infectious particles from an opdA host was less than 1/10 of that from an opdA+ host. This decrease resulted from a reduced efficiency of plating of particles from an opdA infection. In the absence of a functional opdA gene, most of the P22 particles are defective. To identify the target of OpdA action, P22 mutants which formed plaques larger than wild-type plaques on an opdA mutant lawn were isolated. Marker rescue experiments using cloned fragments of P22 DNA localized these mutations to a 1-kb fragment. The nucleotide sequence of this fragment and a contiguous region (including all of both P22 gene 7 and gene 14) was determined. The mutations leading to opdA independence affected the region of gene 7 coding for the amino terminus of gp7, a protein required for DNA injection by the phage. Comparison of the nucleotide sequence with the N-terminal amino acid sequence of gp7 suggested that a 20-amino-acid peptide is removed from gp7 during phage development. Further experiments showed that this processing was opdA dependent and rapid (half-life, less than 2 min) and occurred in the absence of other phage proteins. The opdA-independent mutations lead to mutant forms of gp7 which function without processing. Images PMID:1522065

  16. Neurological and Biological Foundations of Children's Social and Emotional Development: An Integrated Literature Review

    ERIC Educational Resources Information Center

    Nelson, Helen Jean; Kendall, Garth Edward; Shields, Linda

    2014-01-01

    This article provides an integrated review of the expert literature on developmental processes that combine social, biological, and neurological pathways, and the mechanisms through which these pathways may influence school success and health. It begins with a historical overview of the current understanding of how attachment relationships and…

  17. Simulation in neurology.

    PubMed

    Micieli, Giuseppe; Cavallini, Anna; Santalucia, Paola; Gensini, Gianfranco

    2015-10-01

    Simulation is a frontier for disseminating knowledge in almost all the fields of medicine and it is attracting growing interest because it offers a means of developing new teaching and training models, as well as of verifying what has been learned in a critical setting that simulates clinical practice. The role of simulation in neurology, until now limited by the obvious physical limitations of the dummies used to train students and learners, is now increasing since, today, it allows anamnestic data to be related to the instrumental evidence necessary for diagnosis and therapeutic decision-making, i.e., to the findings of neurophysiological investigations (EEG, carotid and vertebral echography and transcranial Doppler, for example) and neuroradiological investigations (CT, MRI imaging), as well as vital parameter monitoring (ECG, saturimetry, blood pressure, respiratory frequency, etc.). Simulation, by providing learners with opportunities to discuss, with experts, different profiles of biological parameters (both during the simulation itself and in the subsequent debriefing session), is becoming an increasingly important tool for training those involved in evaluation of critical neurological patients (stroke, Guillan Barrè syndrome, myasthenia, status epilepticus, headache, vertigo, confusional status, etc.) and complex cases. In this SIMMED (Italian Society for Simulation in Medicine) position paper, the applications (present and, possibly, future) of simulation in neurology are reported. PMID:25926070

  18. Neurology of the geriatric patient.

    PubMed

    Fenner, W R

    1988-05-01

    Owing to improvements in health care, more animals are living to advanced ages. Many abnormal neurologic conditions can affect these patients, but those most commonly associated with advancing years include degenerative, neoplastic, and idiopathic processes. An understanding of the "normal" age-related changes seen on a neurologic examination must be kept in mind when evaluating geriatric patients. Special care and consideration of the patient and client are often required in managing these cases, especially because treatment protocols are often unsuccessful or do not exist, resulting in a prognosis that is often poor at best. PMID:3289252

  19. Neurologic manifestations of Kanzaki disease.

    PubMed

    Umehara, F; Matsumuro, K; Kurono, Y; Arimura, K; Osame, M; Kanzaki, T

    2004-05-11

    We describe the neurologic findings in a patient with alpha-N-acetylgalactosaminidase deficiency (Kanzaki disease). Clinical and electrophysiologic studies revealed sensory-motor polyneuropathy, and sural nerve pathology showed decreased density of myelinated fibers with axonal degeneration. The patient had mildly impaired intellectual function with abnormal brain MRI and sensory-neuronal hearing impairment with repeated episodes of vertigo attacks. These findings suggest that Kanzaki disease may develop neurologic complications in the CNS and peripheral nervous system. PMID:15136691

  20. Functional (Psychogenic) Cognitive Disorders: A Perspective from the Neurology Clinic.

    PubMed

    Stone, Jon; Pal, Suvankar; Blackburn, Daniel; Reuber, Markus; Thekkumpurath, Parvez; Carson, Alan

    2015-09-24

    Cognitive symptoms such as poor memory and concentration represent a common cause of morbidity among patients presenting to general practitioners and may result in referral for a neurological opinion. In many cases, these symptoms do not relate to an underlying neurological disease or dementia. In this article we present a personal perspective on the differential diagnosis of cognitive symptoms in the neurology clinic, especially as this applies to patients who seek advice about memory problems but have no neurological disease process. These overlapping categories include the following 'functional' categories: 1) cognitive symptoms as part of anxiety or depression; 2) "normal" cognitive symptoms that become the focus of attention; 3) isolated functional cognitive disorder in which symptoms are outwith 'normal' but not explained by anxiety; 4) health anxiety about dementia; 5) cognitive symptoms as part of another functional disorder; and 6) retrograde dissociative (psychogenic) amnesia. Other 'non-dementia' diagnoses to consider in addition are 1) cognitive symptoms secondary to prescribed medication or substance misuse; 2) diseases other than dementia causing cognitive disorders; 3) patients who appear to have functional cognitive symptoms but then go on to develop dementia/another neurological disease; and finally 4) exaggeration/malingering. We discuss previous attempts to classify the problem of functional cognitive symptoms, the importance of making a positive diagnosis for the patient, and the need for large cohort studies to better define and manage this large group of patients. PMID:26445274

  1. Consciousness: a neurological perspective.

    PubMed

    Cavanna, Andrea E; Shah, Sachin; Eddy, Clare M; Williams, Adrian; Rickards, Hugh

    2011-01-01

    Consciousness is a state so essentially entwined with human experience, yet so difficult to conceptually define and measure. In this article, we explore how a bidimensional model of consciousness involving both level of arousal and subjective awareness of the contents of consciousness can be used to differentiate a range of healthy and altered conscious states. These include the different sleep stages of healthy individuals and the altered states of consciousness associated with neurological conditions such as epilepsy, vegetative state and coma. In particular, we discuss how arousal and awareness are positively correlated in normal physiological states with the exception of REM sleep, while a disturbance in this relationship is characteristic of vegetative state, minimally conscious state, complex partial seizures and sleepwalking. PMID:21447904

  2. Ischemic perinatal stroke: summary of a workshop sponsored by the National Institute of Child Health and Human Development and the National Institute of Neurological Disorders and Stroke.

    PubMed

    Raju, Tonse N K; Nelson, Karin B; Ferriero, Donna; Lynch, John Kylan

    2007-09-01

    Ischemic perinatal stroke is a disorder associated with significant long-term neurologic morbidity. With an estimated incidence of 1 in 2300 to 5000 births, stroke is more likely to occur in the perinatal period than at any time in childhood. The incidence of ischemic perinatal stroke ranks second only to that of strokes in the elderly population. Although ischemic perinatal stroke is a well-recognized disorder, many aspects remain to be studied. There is no consensus on its terminology, definition, or classification. Several risk factors have been identified, but their precise roles in causing stroke are not well understood. There are no reliable predictors of ischemic perinatal stroke on which to base prevention or treatment strategies. To review these important issues and propose a research agenda, the National Institute of Child Health and Human Development and the National Institute of Neurological Disorders and Stroke convened a workshop in August 2006. This article provides a summary of the workshop. PMID:17766535

  3. Complex Neurological Phenotype in Mutant Mice Lacking Tsc2 in Excitatory Neurons of the Developing Forebrain123

    PubMed Central

    Crowell, Beth; Hwa Lee, Gum; Nikolaeva, Ina; Dal Pozzo, Valentina

    2015-01-01

    Abstract Mutations in the TSC1 and TSC2 genes cause tuberous sclerosis complex (TSC), a genetic disease often associated with epilepsy, intellectual disability, and autism, and characterized by the presence of anatomical malformations in the brain as well as tumors in other organs. The TSC1 and TSC2 proteins form a complex that inhibits mammalian target of rapamycin complex 1 (mTORC1) signaling. Previous animal studies demonstrated that Tsc1 or Tsc2 loss of function in the developing brain affects the intrinsic development of neural progenitor cells, neurons, or glia. However, the interplay between different cellular elements during brain development was not previously investigated. In this study, we generated a novel mutant mouse line (NEX-Tsc2) in which the Tsc2 gene is deleted specifically in postmitotic excitatory neurons of the developing forebrain. Homozygous mutant mice failed to thrive and died prematurely, whereas heterozygous mice appeared normal. Mutant mice exhibited distinct neuroanatomical abnormalities, including malpositioning of selected neuronal populations, neuronal hypertrophy, and cortical astrogliosis. Intrinsic neuronal defects correlated with increased mTORC1 signaling, whereas astrogliosis did not result from altered intrinsic signaling, since these cells were not directly affected by the gene knockout strategy. All neuronal and non-neuronal abnormalities were suppressed by continuous postnatal treatment with the mTORC1 inhibitor RAD001. The data suggest that the loss of Tsc2 and mTORC1 signaling activation in excitatory neurons not only disrupts their intrinsic development, but also disrupts the development of cortical astrocytes, likely through the mTORC1-dependent expression of abnormal signaling proteins. This work thus provides new insights into cell-autonomous and non-cell-autonomous functions of Tsc2 in brain development. PMID:26693177

  4. Normal and Abnormal Development in the Arabidopsis Vegetative Shoot Apex.

    PubMed Central

    Medford, JI; Behringer, FJ; Callos, JD; Feldmann, KA

    1992-01-01

    Vegetative development in the Arabidopsis shoot apex follows both sequential and repetitive steps. Early in development, the young vegetative meristem is flat and has a rectangular shape with bilateral symmetry. The first pair of leaf primordia is radially symmetrical and is initiated on opposite sides of the meristem. As development proceeds, the meristem changes first to a bilaterally symmetrical trapezoid and then to a radially symmetrical dome. Vegetative development from the domed meristem continues as leaves are initiated in a repetitive manner. Abnormal development of the vegetative shoot apex is described for a number of mutants. The mutants we describe fall into at least three classes: (1) lesions in the shoot apex that do not show an apparent alteration in the shoot apical meristem, (2) lesions in the apical meristem that also (directly or indirectly) alter leaf primordia, and (3) lesions in the apical meristem that alter meristem size and leaf number but not leaf morphology. These mutations provide tools both to genetically analyze vegetative development of the shoot apex and to learn how vegetative development influences floral development. PMID:12297656

  5. [Present and future of neurology in Spain].

    PubMed

    Illa Sendra, I; García De Yébenes Prous, J; Ramo Tello, C; Polo Esteban, J M; Molinuevo Guix, J L; Robles Bayón, A; Mulas Delgado, F; Alvarez Sabín, J; Aguilar Barbera, M; Berciano Blanco JA, J A; Blesa González, R; Carnero Pardo, C; Castillo Sánchez, J; Del Ser Quijano, T; Ferrer Abizanda, I; García-Albea Ristol, E; Gómez Isla, T; Graus Ribas, F; Jiménez Hernández, M D; Liaño Martínez, H; Matías Guiu-Guia, J; Zarranz Imirizaldu, J J; Paradas López, C; Elena Martínez, G; Maltas Pérez, G; Ponce Rodríguez, M T

    2001-11-01

    This is a document prepared by the Spanish Society of Neurology (SEN), which was given to the President of Spain (Mr. José María Aznar) last September with the main aim of examining the current situation of Neurology in our country. It analyses the present and future of Neurology in clinical assistance, teaching and research. To prepare this document the criteria of patients' associations has been considered, including the Declaration of Madrid which has been subscribed by thirty of these associations. In spite of its relevant development in the previous decades, the current situation of Neurology in Spain is far from the ideal. To reach the recommendable menber of 3 or 4 neurologists per 100,000 inhabitants it is necessary to duplicate the present number of neurologists which has been estimated around 2/100,000; this situation is especially urgent in some Autonomous Communities. The most important problems in neurological assistance are: inadequate follow-up of the chronic outpatients, low numbers of neurological beds and of duties of Neurology, as well as of neurological case of patients with urgent neurological disorders. It is also necessary to increase the number of professors of Neurology to adequately cover pregraduate teaching; again there are important differences in teaching positions among Autonomous Communities. Neurology residence should be prolonged from 4 to 5 years. Finally, it is necessary to support the appearance of superespecialised units and to promote a coordinated research with other close specialities including basic neuroscience. PMID:11742621

  6. Understanding normal development of adolescent sexuality: A bumpy ride

    PubMed Central

    Kar, Sujita Kumar; Choudhury, Ananya; Singh, Abhishek Pratap

    2015-01-01

    Adolescence, derived from the Latin word “adolescere” meaning “to grow up” is a critical developmental period. During adolescence, major biological as well as psychological developments take place. Development of sexuality is an important bio-psycho-social development, which takes an adult shape during this period. During adolescence, an individual's thought, perception as well as response gets colored sexually. Puberty is an important landmark of sexuality development that occurs in the adolescence. The myriad of changes that occurs in adolescents puts them under enormous stress, which may have adverse physical, as well as psychological consequences. Understanding adolescent sexuality has important clinical, legal, social, cultural, as well as educational implications. PMID:26157296

  7. Thermography in Neurologic Practice

    PubMed Central

    Neves, Eduardo Borba; Vilaça-Alves, José; Rosa, Claudio; Reis, Victor Machado

    2015-01-01

    One kind of medical images that has been developed in the last decades is thermal images. These images are assessed by infrared cameras and have shown an exponential development in recent years. In this sense, the aim of this study was to describe possibilities of thermography usage in the neurologic practice. It was performed a systematic review in Web of Knowledge (Thompson Reuters), set in all databases which used two combination of keywords as “topic”: “thermography” and “neurology”; and “thermography” and “neurologic”. The chronological period was defined from 2000 to 2014 (the least 15 years). Among the studies included in this review, only seven were with experimental design. It is few to bring thermography as a daily tool in clinical practice. However, these studies have suggested good results. The studies of review and an analyzed patent showed that the authors consider the thermography as a diagnostic tool and they recommend its usage. It can be concluded that thermography is already used as a diagnostic and monitoring tool of patients with neuropathies, particularly in complex regional pain syndrome, and stroke. And yet, this tool has great potential for future research about its application in diagnosis of other diseases of neurological origin. PMID:26191090

  8. Brain connectivity in normally developing children and adolescents.

    PubMed

    Khundrakpam, Budhachandra S; Lewis, John D; Zhao, Lu; Chouinard-Decorte, François; Evans, Alan C

    2016-07-01

    The developing human brain undergoes an astonishing sequence of events that continuously shape the structural and functional brain connectivity. Distinct regional variations in the timelines of maturational events (synaptogenesis and synaptic pruning) occurring at the synaptic level are reflected in brain measures at macroscopic resolution (cortical thickness and gray matter density). Interestingly, the observed brain changes coincide with cognitive milestones suggesting that the changing scaffold of brain circuits may subserve cognitive development. Recent advances in connectivity analysis propelled by graph theory have allowed, on one hand, the investigation of maturational changes in global organization of structural and functional brain networks; and on the other hand, the exploration of specific networks within the context of global brain networks. An emerging picture from several connectivity studies is a system-level rewiring that constantly refines the connectivity of the developing brain. PMID:27054487

  9. Paraneoplastic neurological syndromes.

    PubMed

    Honnorat, Jérôme; Antoine, Jean-Christophe

    2007-01-01

    Paraneoplastic neurological syndromes (PNS) can be defined as remote effects of cancer that are not caused by the tumor and its metastasis, or by infection, ischemia or metabolic disruptions. PNS are rare, affecting less than 1/10,000 patients with cancer. Only the Lambert-Eaton myasthenic syndrome is relatively frequent, occurring in about 1% of patients with small cell lung cancer. PNS can affect any part of the central and peripheral nervous system, the neuromuscular junction, and muscle. They can be isolated or occur in association. In most patients, the neurological disorder develops before the cancer becomes clinically overt and the patient is referred to the neurologist who has the charge of identifying a neurological disorder as paraneoplastic. PNS are usually severely disabling. The most common PNS are Lambert-Eaton myasthenic syndrome (LEMS), subacute cerebellar ataxia, limbic encephalitis (LE), opsoclonus-myoclonus (OM), retinopathies (cancer-associated retinopathy (CAR) and melanoma-associated retinopathy (MAR), Stiff-Person syndrome (SPS), chronic gastrointestinal pseudoobstruction (CGP), sensory neuronopathy (SSN), encephalomyelitis (EM) and dermatomyositis. PNS are caused by autoimmune processes triggered by the cancer and directed against antigens common to both the cancer and the nervous system, designated as onconeural antigens. Due to their high specificity (> 90%), the best way to diagnose a neurological disorder as paraneoplastic is to identify one of the well-characterized anti-onconeural protein antibodies in the patient's serum. In addition, as these antibodies are associated with a restricted range of cancers, they can guide the search for the underlying tumor at a stage when it is frequently not clinically overt. This is a critical point as, to date, the best way to stabilize PNS is to treat the cancer as soon as possible. Unfortunately, about one-third of patients do not have detectable antibodies and 5% to 10% have an atypical antibody

  10. Experience as a Component of Normal Development: Evolutionary Considerations.

    ERIC Educational Resources Information Center

    Greenough, William T.

    1991-01-01

    Suggests that experiential canalization is appropriately applied to constraints caused by the behavior of an organism or members of its species. When other aspects of the environment propel the organism to develop in certain ways, this process reflects adaptation to the environment. Conditions for evolution of experience as a guide to development…

  11. Neuroimaging Studies of Normal Brain Development and Their Relevance for Understanding Childhood Neuropsychiatric Disorders

    ERIC Educational Resources Information Center

    Marsh, Rachel; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    Neuroimaging findings which identify normal brain development trajectories are presented. Results show that early brain development begins with the neural tube formation and ends with myelintation. How disturbances in brain development patterns are related to childhood psychiatric disorders is examined.

  12. GABAA Receptors in Normal Development and Seizures: Friends or Foes?

    PubMed Central

    Galanopoulou, Aristea S

    2008-01-01

    GABAA receptors have an age-adapted function in the brain. During early development, they mediate excitatory effects resulting in activation of calcium sensitive signaling processes that are important for the differentiation of the brain. In more mature stages of development and in adults, GABAA receptors transmit inhibitory signals. The maturation of GABAA signaling follows sex-specific patterns, which appear to also be important for the sexual differentiation of the brain. The inhibitory effects of GABAA receptor activation have been widely exploited in the treatment of conditions where neuronal silencing is necessary. For instance, drugs that target GABAA receptors are the mainstay of treatment of seizures. Recent evidence suggests however that the physiology and function of GABAA receptors changes in the brain of a subject that has epilepsy or status epilepticus. This review will summarize the physiology of and the developmental factors regulating the signaling and function of GABAA receptors; how these may change in the brain that has experienced prior seizures; what are the implications for the age and sex specific treatment of seizures and status epilepticus. Finally, the implications of these changes for the treatment of certain forms of medically refractory epilepsies and status epilepticus will be discussed. PMID:19305785

  13. ECT IN NEUROLOGICAL COUNDITIONS

    PubMed Central

    Girish, K.; Gangadhar, B.N.; Janakiramaiah, N.

    2002-01-01

    It is a myth that electroconvulsive therapy (ECT) produces greater side effects and worsens the neurological condition when used in neurologically ill patients. With the advancement and sophistication in ECT practice standards and modification procedures, it can be safely administered either to treat selected neurological conditions or the co-morbid psychiatric illnesses without additional risks. However ECT should be administered only after thorough evaluation of risks and benefits in such individuals. PMID:21206577

  14. Occupational neurological disorders in Korea.

    PubMed

    Kim, Eun-A; Kang, Seong-Kyu

    2010-12-01

    The purpose of this article was to provide a literature review of occupational neurological disorders and related research in Korea, focusing on chemical hazards. We reviewed occupational neurological disorders investigated by the Occupational Safety and Health Research Institute of Korean Occupational Safety and Health Agency between 1992 and 2009, categorizing them as neurological disorders of the central nervous system (CNS), of the peripheral nervous system (PNS) or as neurodegenerative disorders. We also examined peer-reviewed journal articles related to neurotoxicology, published from 1984 to 2009. Outbreaks of occupational neurological disorder of the CNS due to inorganic mercury and carbon disulfide poisoning had helped prompt the development of the occupational safety and health system of Korea. Other major neurological disorders of the CNS included methyl bromide intoxication and chronic toxic encephalopathy. Most of the PNS disorders were n-hexane-induced peripheral neuritis, reported from the electronics industry. Reports of manganese-induced Parkinsonism resulted in the introduction of neuroimaging techniques to occupational medicine. Since the late 1990s, the direction of research has been moving toward degenerative disorder and early effect of neurotoxicity. To understand the early effects of neurotoxic chemicals in the preclinical stage, more follow-up studies of a longer duration are necessary. PMID:21258587

  15. Occupational Neurological Disorders in Korea

    PubMed Central

    Kang, Seong-Kyu

    2010-01-01

    The purpose of this article was to provide a literature review of occupational neurological disorders and related research in Korea, focusing on chemical hazards. We reviewed occupational neurological disorders investigated by the Occupational Safety and Health Research Institute of Korean Occupational Safety and Health Agency between 1992 and 2009, categorizing them as neurological disorders of the central nervous system (CNS), of the peripheral nervous system (PNS) or as neurodegenerative disorders. We also examined peer-reviewed journal articles related to neurotoxicology, published from 1984 to 2009. Outbreaks of occupational neurological disorder of the CNS due to inorganic mercury and carbon disulfide poisoning had helped prompt the development of the occupational safety and health system of Korea. Other major neurological disorders of the CNS included methyl bromide intoxication and chronic toxic encephalopathy. Most of the PNS disorders were n-hexane-induced peripheral neuritis, reported from the electronics industry. Reports of manganese-induced Parkinsonism resulted in the introduction of neuroimaging techniques to occupational medicine. Since the late 1990s, the direction of research has been moving toward degenerative disorder and early effect of neurotoxicity. To understand the early effects of neurotoxic chemicals in the preclinical stage, more follow-up studies of a longer duration are necessary. PMID:21258587

  16. Peer Preferences of At-Risk and Normally Developing Children in a Preschool Mainstream Classroom.

    ERIC Educational Resources Information Center

    Cavallaro, Sahli A.; Porter, Richard H.

    1980-01-01

    Social interactions and peer preferences in a preschool mainstream classroom containing 20 normally developing and at-risk children were studied, using the ethological method of direct observation. Data on social play and gaze orientation indicated that normally developing children and at-risk children interacted primarily with children from their…

  17. Development of a patient reported outcome scale for fatigue in multiple sclerosis: The Neurological Fatigue Index (NFI-MS)

    PubMed Central

    2010-01-01

    Background Fatigue is a common and debilitating symptom in multiple sclerosis (MS). Best-practice guidelines suggest that health services should repeatedly assess fatigue in persons with MS. Several fatigue scales are available but concern has been expressed about their validity. The objective of this study was to examine the reliability and validity of a new scale for MS fatigue, the Neurological Fatigue Index (NFI-MS). Methods Qualitative analysis of 40 MS patient interviews had previously contributed to a coherent definition of fatigue, and a potential 52 item set representing the salient themes. A draft questionnaire was mailed out to 1223 people with MS, and the resulting data subjected to both factor and Rasch analysis. Results Data from 635 (51.9% response) respondents were split randomly into an 'evaluation' and 'validation' sample. Exploratory factor analysis identified four potential subscales: 'physical', 'cognitive', 'relief by diurnal sleep or rest' and 'abnormal nocturnal sleep and sleepiness'. Rasch analysis led to further item reduction and the generation of a Summary scale comprising items from the Physical and Cognitive subscales. The scales were shown to fit Rasch model expectations, across both the evaluation and validation samples. Conclusion A simple 10-item Summary scale, together with scales measuring the physical and cognitive components of fatigue, were validated for MS fatigue. PMID:20152031

  18. Neurologic presentations of AIDS.

    PubMed

    Singer, Elyse J; Valdes-Sueiras, Miguel; Commins, Deborah; Levine, Andrew

    2010-02-01

    The human immunodeficiency virus (HIV), the cause of AIDS, has infected an estimated 33 million individuals worldwide. HIV is associated with immunodeficiency, neoplasia, and neurologic disease. The continuing evolution of the HIV epidemic has spurred an intense interest in a hitherto neglected area of medicine, neuroinfectious diseases and their consequences. This work has broad applications for the study of central nervous system (CNS) tumors, dementias, neuropathies, and CNS disease in other immunosuppressed individuals. HIV is neuroinvasive (can enter the CNS), neurotrophic (can live in neural tissues), and neurovirulent (causes disease of the nervous system). This article reviews the HIV-associated neurologic syndromes, which can be classified as primary HIV neurologic disease (in which HIV is both necessary and sufficient to cause the illness), secondary or opportunistic neurologic disease (in which HIV interacts with other pathogens, resulting in opportunistic infections and tumors), and treatment-related neurologic disease (such as immune reconstitution inflammatory syndrome). PMID:19932385

  19. Neurology and orthopaedics

    PubMed Central

    Houlden, Henry; Charlton, Paul; Singh, Dishan

    2007-01-01

    Neurology encompasses all aspects of medicine and surgery, but is closer to orthopaedic surgery than many other specialities. Both neurological deficits and bone disorders lead to locomotor system abnormalities, joint complications and limb problems. The main neurological conditions that require the attention of an orthopaedic surgeon are disorders that affect the lower motor neurones. The most common disorders in this group include neuromuscular disorders and traumatic peripheral nerve lesions. Upper motor neurone disorders such as cerebral palsy and stroke are also frequently seen and discussed, as are chronic conditions such as poliomyelitis. The management of these neurological problems is often coordinated in the neurology clinic, and this group, probably more than any other, requires a multidisciplinary team approach. PMID:17308288

  20. Neurologic complications of infective endocarditis.

    PubMed

    Lerner, P I

    1985-03-01

    Neurologic complications continue to occur in approximately 30 per cent of all patients with infective endocarditis and represent a major factor associated with an increased mortality rate in that disease. Of these complications, cerebral embolism is the most common and the most important, occurring in as many as 30 per cent of all patients, most of whom ultimately die. Emboli that are infected also account for all the other complications (mycotic aneurysm, meningitis or meningoencephalitis, brain abscess) that may develop. Emboli are more common in patients with mitral valve infection and in those infected with more virulent organisms. Mycotic aneurysms (often preceded by an embolic event) occur more frequently and earlier in the course of acute endocarditis, rather than later, which is more common in the course of subacute disease. The management of a cerebral mycotic aneurysm depends on the presence or absence of hemorrhage, its anatomic location and the clinical course. Healing can occur during the course of effective antimicrobial therapy and thus will preclude the need for automatic surgery in all angiographically demonstrated aneurysms. The indication for surgical intervention must be evaluated on an individual basis. Meningitis is usually purulent when associated with virulent organisms, but the CSF may present an aseptic formula when associated with subarachnoid hemorrhage or multiple microscopic embolic lesions, infected or otherwise. Macroscopic brain abscesses are rare, but multiple microscopic abscesses are not uncommon in patients with acute endocarditis due to virulent organisms. Seizures are not uncommon in patients with infective endocarditis. Focal seizures are more commonly associated with acute emboli, whereas generalized seizures are more commonly associated with systemic metabolic factors. Penicillin neurotoxicity should be considered in seizure patients with compromised renal function who are receiving high doses of penicillin. The CSF tends

  1. Profile of neurological disorders in an adult neurology clinic in Kumasi, Ghana

    PubMed Central

    Sarfo, Fred Stephen; Akassi, John; Badu, Elizabeth; Okorozo, Aham; Ovbiagele, Bruce; Akpalu, Albert

    2016-01-01

    Background Although the burden of neurological disorders is highest among populations in developing countries there is a dearth of data on the clinical spectrum of these disorders. Objective To profile the frequency of neurologic disorders and basic demographic data in an adult neurology out-patient service commissioned in 2011 in Kumasi, Ghana. Methods The study was conducted at the neurology clinic of the Komfo Anokye Teaching Hospital in Kumasi, Ghana. Over a three year period, all medical records of patients enrolled at the out-patient neurology clinic was reviewed by a neurologist and neurological diagnoses classified according to ICD-10. Results 1812 adults enrolled for care in the neurology out-patient service between 2011 and 2013. This comprised of 882 males and 930 females (male: female ratio of 1.0: 1.1) with an overall median age of 54 (IQR, 39–69) years. The commonest primary neurological disorders seen were strokes, epilepsy and seizure disorders, and movement disorders at frequencies of 57.1%, 19.8%, and 8.2% respectively. Conclusions Cerebrovascular diseases, epilepsy and movement disorders were among the commonest neurological disorders and the major contributors to neurologic morbidity among Ghanaians in an urban neurology clinic. PMID:27110596

  2. The Long and the Short of it: Gene and Environment Interactions During Early Cortical Development and Consequences for Long-Term Neurological Disease

    PubMed Central

    Stolp, Helen; Neuhaus, Ain; Sundramoorthi, Rohan; Molnár, Zoltán

    2012-01-01

    Cortical development is a complex amalgamation of proliferation, migration, differentiation, and circuit formation. These processes follow defined timescales and are controlled by a combination of intrinsic and extrinsic factors. It is currently unclear how robust and flexible these processes are and whether the developing brain has the capacity to recover from disruptions. What is clear is that there are a number of cognitive disorders or conditions that are elicited as a result of disrupted cortical development, although it may take a long time for the full pathophysiology of the conditions to be realized clinically. The critical window for the manifestation of a neurodevelopmental disorder is prolonged, and there is the potential for a complex interplay between genes and environment. While there have been extended investigations into the genetic basis of a number of neurological and mental disorders, limited definitive associations have been discovered. Many environmental factors, including inflammation and stress, have been linked to neurodevelopmental disorders, and it may be that a better understanding of the interplay between genes and environment will speed progress in this field. In particular, the development of the brain needs to be considered in the context of the whole materno-fetal unit as the degree of the metabolic, endocrine, or inflammatory responses, for example, will greatly influence the environment in which the brain develops. This review will emphasize the importance of extending neurodevelopmental studies to the contribution of the placenta, vasculature, cerebrospinal fluid, and to maternal and fetal immune response. These combined investigations are more likely to reveal genetic and environmental factors that influence the different stages of neuronal development and potentially lead to the better understanding of the etiology of neurological and mental disorders such as autism, epilepsy, cerebral palsy, and schizophrenia. PMID:22701439

  3. William Shakespeare's neurology.

    PubMed

    Paciaroni, Maurizio; Bogousslavsky, Julien

    2013-01-01

    Many of Shakespeare's plays contain characters who appear to be afflicted by neurological or psychiatric disorders. Shakespeare, in his descriptive analysis of his protagonists, was contributing to the understanding of these disorders. In fact, Charcot frequently used Shakespearean references in his neurological teaching sessions, stressing how acute objective insight is essential to achieving expert clinical diagnosis. Charcot found in Shakespeare the same rigorous observational techniques for which he himself became famous. This chapter describes many of Shakespearean characters suffering from varied neurological disorders, including Parkinsonism, epilepsy, sleeping disturbances, dementia, headache, prion disease, and paralyses. PMID:24290473

  4. Neurological Symptoms of Hypophosphatasia.

    PubMed

    Taketani, Takeshi

    2015-01-01

    Hypophosphatasia (HPP) is a bone metabolic disorder caused by mutations in the liver/bone/kidney alkaline phosphatase gene (ALPL), which encodes tissue-nonspecific alkaline phosphatase (TNAP). This disease is characterized by disrupted bone and tooth mineralization, and reduced serum AP activity. Along with bone and tooth symptoms, many neurological symptoms, seizure, encephalopathy, intracranial hypertension, mental retardation, deafness, and growth hormone deficiency (GHD), are frequently found in HPP patients. Seizure occurs in severe HPP types soon after birth, and responds to pyridoxine, but is an indicator of lethal prognosis. Encephalopathy rarely presents in severe HPP types, but has severe sequelae. Intracranial hypertension complicated in mild HPP types develops after the age of 1 year and sometimes need neurosurgical intervention. Mental retardation, deafness and GHD are more frequently found in Japanese HPP patients. Mental retardation occurs in all HPP types. Deafness in perinatal lethal type is both conductive and sensorineural. GHD develops in all but perinatal lethal type and the diagnosis tends to delay. The pathogenesis of these neural features of HPP might be due to impairment of both vitamin B6 metabolism and central nervous system development by ALPL mutations. PMID:26219717

  5. Cystic fibrosis transmembrane conductance regulator protein (CFTR) expression in the developing human brain: comparative immunohistochemical study between patients with normal and mutated CFTR.

    PubMed

    Marcorelles, Pascale; Friocourt, Gaëlle; Uguen, Arnaud; Ledé, Françoise; Férec, Claude; Laquerrière, Annie

    2014-11-01

    Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein has recently been shown to be expressed in the human adult central nervous system (CNS). As CFTR expression has also been documented during embryonic development in several organs, such as the respiratory tract, the intestine and the male reproductive system, suggesting a possible role during development we decided to investigate the expression of CFTR in the human developing CNS. In addition, as some, although rare, neurological symptoms have been reported in patients with CF, we compared the expression of normal and mutated CFTR at several fetal stages. Immunohistochemistry was performed on brain and spinal cord samples of foetuses between 13 and 40 weeks of gestation and compared with five patients with cystic fibrosis (CF) of similar ages. We showed in this study that CFTR is only expressed in neurons and has an early and widespread distribution during development. Although we did not observe any cerebral abnormality in patients with CF, we observed a slight delay in the maturation of several brain structures. We also observed different expression and localization of CFTR depending on the brain structure or the cell maturation stage. Our findings, along with a literature review on the neurological phenotypes of patients with CF, suggest that this gene may play previously unsuspected roles in neuronal maturation or function. PMID:25062999

  6. [Neurology of hysteria (conversion disorder)].

    PubMed

    Sonoo, Masahiro

    2014-07-01

    Hysteria has served as an important driving force in the development of both neurology and psychiatry. Jean Martin Charcot's devotion to mesmerism for treating hysterical patients evoked the invention of psychoanalysis by Sigmund Freud. Meanwhile, Joseph Babinski took over the challenge to discriminate between organic and hysterical patients from Charcot and found Babinski's sign, the greatest milestone in modern neurological symptomatology. Nowadays, the usage of the term hysteria is avoided. However, new terms and new classifications are complicated and inconsistent between the two representative taxonomies, the DSM-IV and ICD-10. In the ICD-10, even the alternative term conversion disorder, which was becoming familiar to neurologists, has also disappeared as a group name. The diagnosis of hysteria remains important in clinical neurology. Extensive exclusive diagnoses and over investigation, including various imaging studies, should be avoided because they may prolong the disease course and fix their symptoms. Psychological reasons that seem to explain the conversion are not considered reliable. Positive neurological signs suggesting nonorganic etiologies are the most reliable measures for diagnosing hysteria, as Babinski first argued. Hysterical paresis has several characteristics, such as giving-way weakness or peculiar distributions of weakness. Signs to uncover nonorganic paresis utilizing synergy include Hoover's test and the Sonoo abductor test. PMID:24998831

  7. Normal Cerebellar Development by Qualitative and Quantitative MR Imaging: From the Fetus to the Adolescent.

    PubMed

    Brossard-Racine, Marie; Limperopoulos, Catherine

    2016-08-01

    This article presents an overview of published studies using conventional and quantitative MR imaging to describe normal development of the cerebellum prenatally and postnatally through 18 years of age. Normal cerebellar development and maturational processes are described here within the context of MR imaging morphology, microstructure, metabolism, and functional connectivity. In addition, strengths and weaknesses of these reviewed studies are critically appraised and new directions for future cerebellar MR imaging investigation are made. PMID:27423797

  8. Neurological manifestation of methyl bromide intoxication.

    PubMed

    Suwanlaong, Kanokrat; Phanthumchinda, Kammant

    2008-03-01

    Methyl bromide is a highly toxic gas with poor olfactory warning properties. It is widely used as insecticidal fumigant for dry foodstuffs and can be toxic to central and peripheral nervous systems. Most neurological manifestations of methyl bromide intoxication occur from inhalation. Acute toxicity characterized by headache, dizziness, abdominal pain, nausea, vomiting and visual disturbances. Tremor, convulsion, unconsciousness and permanent brain damage may occur in severe poisoning. Chronic exposure can cause neuropathy, pyramidal and cerebellar dysfunction, as well as neuropsychiatric disturbances. The first case of methyl bromide intoxication in Thailand has been described. The patient was a 24-year-old man who worked in a warehouse of imported vegetables fumigated with methyl bromide. He presented with unstable gait, vertigo and paresthesia of both feet, for two weeks. He had a history of chronic exposure to methyl bromide for three years. His fourteen co-workers also developed the same symptoms but less in severity. Neurological examination revealed ataxic gait, decreased pain and vibratory sense on both feet, impaired cerebellar signs and hyperactive reflex in all extremities. The serum concentration of methyl bromide was 8.18 mg/dl. Electrophysilogical study was normal. Magnetic resonance imaging of the brain (MRI) revealed bilateral symmetrical lesion of abnormal hypersignal intensity on T2 and fluid-attenuation inversion recovery (FLAIR) sequences at bilateral dentate nuclei of cerebellum and periventricular area of the fourth ventricle. This incident stresses the need for improvement of worker education and safety precautions during all stages of methyl bromide fumigation. PMID:18575299

  9. Focal neurological deficits

    MedlinePlus

    A focal neurologic deficit is a problem with nerve, spinal cord, or brain function. It affects a specific ... of the back, neck, or head Electromyogram (EMG)/ nerve conduction velocities (NCV) MRI of the back, neck, or head Spinal tap

  10. The neurological examination.

    PubMed

    April, R S

    1995-06-01

    This chapter describes methods of clinical history taking and examination of the PLDD candidate with lumbar radicular symptoms. It stresses features of the classical neurological examination of the back and lower extremities in a concise, systematic fashion. PMID:10150641

  11. Metabolic phenotyping and systems biology approaches to understanding neurological disorders.

    PubMed

    Dumas, Marc-Emmanuel; Davidovic, Laetitia

    2013-01-01

    The development of high-throughput metabolic profiling and the study of the metabolome are particularly important in brain research where small molecules or metabolites play fundamental signalling roles: neurotransmitters, signalling lipids, osmolytes and even ions. Metabolic profiling has shown that metabolic perturbations in the brain go beyond alterations of neurotransmission and that variations in brain metabolic homeostasis are associated with neurological disorders. In this report, we will focus on recent developments in the field of metabolic phenotyping that have contributed to unravelling the pathophysiology of neurological diseases. Also, we will highlight the necessity of implementing systems biology approaches to integrate metabolic data and tackle the structural and functional complexity of the brain in normal and pathological conditions. PMID:23755365

  12. Neurologic emergencies in pregnancy.

    PubMed

    Donaldson, J O

    1991-06-01

    Any one neurologic emergency is rare during pregnancy. As a group, neurologic disorders are a major cause of maternal mortality. Optimal management requires a multidisciplinary approach and ready access to the collective experience of other clinicians. This article discusses the management of status epilepticus, eclamptic hypertensive encephalopathy, stroke, including subarachnoid hemorrhage, myasthenic crisis, porphyric crisis, acute Guillain-Barré syndrome, autonomic hyperreflexia, malignant hyperthermia, chorea gravidarum, and Wernicke's encephalopathy. PMID:1945251

  13. Wikipedia and neurological disorders.

    PubMed

    Brigo, Francesco; Igwe, Stanley C; Nardone, Raffaele; Lochner, Piergiorgio; Tezzon, Frediano; Otte, Willem M

    2015-07-01

    Our aim was to evaluate Wikipedia page visits in relation to the most common neurological disorders by determining which factors are related to peaks in Wikipedia searches for these conditions. Millions of people worldwide use the internet daily as a source of health information. Wikipedia is a popular free online encyclopedia used by patients and physicians to search for health-related information. The following Wikipedia articles were considered: Alzheimer's disease; Amyotrophic lateral sclerosis; Dementia; Epilepsy; Epileptic seizure; Migraine; Multiple sclerosis; Parkinson's disease; Stroke; Traumatic brain injury. We analyzed information regarding the total article views for 90 days and the rank of these articles among all those available in Wikipedia. We determined the highest search volume peaks to identify possible relation with online news headlines. No relation between incidence or prevalence of neurological disorders and the search volume for the related articles was found. Seven out of 10 neurological conditions showed relations in search volume peaks and news headlines. Six out of these seven peaks were related to news about famous people suffering from neurological disorders, especially those from showbusiness. Identification of discrepancies between disease burden and health seeking behavior on Wikipedia is useful in the planning of public health campaigns. Celebrities who publicly announce their neurological diagnosis might effectively promote awareness programs, increase public knowledge and reduce stigma related to diagnoses of neurological disorders. PMID:25890773

  14. Effect of developer temperature and normality on chemically amplified photoresist dissolution

    NASA Astrophysics Data System (ADS)

    Maslow, Mark J.; Mack, Chris A.; Byers, Jeff D.

    1999-06-01

    The effects of developer temperature and developer normality on the dissolution behavior of a 248nm chemically amplified resist are examined using development rate measurements. Using a RDA-790 development rate measurement tool employing a 470nm Blue LED measurement wavelength, dissolution rats as a function of dose and depth into the resist were measured. Each data set was analyzed and the performance of rate versus t-BOC concentration was fit to appropriate models. The variation of these results with developer temperature has led to further temperature-dependent characterization of the dissolution modeling parameters. The variation of dissolution rate with developer normality has led to an initial characterization of the normality-dependent dissolution modeling parameters. The maximum dissolution rate Rmax is shown to exhibit two regions of Arrhenius behavior with a well defined activation energy for both. The dissolution selectivity parameter n proves to have a more complicated behavior.

  15. Effect of developer temperature and normality on conventional and chemically amplified photoresist dissolution

    NASA Astrophysics Data System (ADS)

    Mack, Chris A.; Maslow, Mark J.; Byers, Jeff D.

    1999-04-01

    The effects of developer temperature on several conventional resist and one chemically amplified resist, and the effects of developer normality on the dissolution behavior of a 248nm chemically amplified resist, are examined using development rate measurements. Using an RDA-790 development rate measurement tool, dissolution rates as a function of dose and depth into the resist were measured. Each data set was analyzed and the performance of rate versus dissolution inhibitor concentration was fit to appropriate models. The variation of these results with developer temperature has led to temperature-dependent characterization of the dissolution modeling parameters. The variation of dissolution rate with developer normality has led to an initial characterization of the normality-dependent dissolution modeling parameters.

  16. PKCλ/ι signaling—a common node for normal cellular development and breast oncogenesis

    PubMed Central

    Paul, Arindam; Paul, Soumen

    2015-01-01

    We recently demonstrated that PKCλ/ι signaling is an important contributor to breast cancer development. Strikingly, PKCλ/ι signaling is also important to balance self-renewal versus differentiation in pluripotent stem cells and is essential for embryonic development. This commentary highlights some key functions of PKCλ/ι signaling that are integral to both normal development and cancer progression. PMID:27308429

  17. A Comparative Study of Pre-Meaningful Vocalizations Produced by Normally Developing and Down's Syndrome Infants.

    ERIC Educational Resources Information Center

    Oller, D. Kimbrough; Smith, Bruce L.

    1981-01-01

    Premeaningful vocalizations produced by nine normally developing and 10 Down's syndrome infants were recorded as part of a longitudinal study of language development. Both groups began to produce canonical, reduplicated babbling at 8 to 8 1/2 months of age, and trends regarding consonantal and vocalic development for both groups were similar…

  18. State neurologic societies and the AAN

    PubMed Central

    Narayanaswami, Pushpa; Showers, Dave; Levi, Bruce; Showers, Melissa; Jones, Elaine C.; Busis, Neil A.; Comella, Cynthia L.; Pulst, Stefan M.; Hosey, Jonathan P.; Griggs, Robert C.

    2014-01-01

    Summary This report considers the recommendations of the State Society Task Force (SSTF), which evaluated how the relationship between the American Academy of Neurology (AAN) and neurologic societies of individual states can foster the care of patients with neurologic diseases. The task force also evaluated the role of state neurosociety and state medical society interactions in supporting the profession of neurology. The SSTF recommended that the AAN expand current support services to state neurosocieties and foster additional neurosociety development. Specific services to be considered by the AAN include online combined AAN/state neurosociety dues payment and enhanced Web support. The role of the AAN as a liaison between state neurosocieties and state medical societies is important to facilitate state level advocacy for neurology. PMID:25110622

  19. Validity of a Neurological Scoring System for Canine X-Linked Myotubular Myopathy

    PubMed Central

    Meisner, Allison; Mack, David; Goddard, Melissa; Coulter, Ian T.; Grange, Robert; Childers, Martin K.

    2015-01-01

    Abstract A simple clinical neurological test was developed to evaluate response to gene therapy in a preclinical canine model of X-linked myotubular myopathy (XLMTM). This devastating congenital myopathy is caused by mutation in the myotubularin (MTM1) gene. Clinical signs include muscle weakness, early respiratory failure, and ventilator dependence. A spontaneously occurring canine model has a similar clinical picture and histological abnormalities on muscle biopsy compared with patients. We developed a neuromuscular assessment score, graded on a scale from 10 (normal) to 1 (unable to maintain sternal recumbency). We hypothesize that this neurological assessment score correlates with genotype and established measures of disease severity and is reliable when performed by an independent observer. At 17 weeks of age, there was strong correlation between neurological assessment scores and established methods of severity testing. The neurological severity score correctly differentiated between XLMTM and wild-type dogs with good interobserver reliability, on the basis of strong agreement between neurological scores assigned by independent observers. Together, these data indicate that the neurological scoring system developed for this canine congenital neuromuscular disorder is reliable and valid. This scoring system may be helpful in evaluating response to therapy in preclinical testing in this disease model, such as response to gene therapy. PMID:26086764

  20. Validity of a Neurological Scoring System for Canine X-Linked Myotubular Myopathy.

    PubMed

    Snyder, Jessica M; Meisner, Allison; Mack, David; Goddard, Melissa; Coulter, Ian T; Grange, Robert; Childers, Martin K

    2015-06-01

    A simple clinical neurological test was developed to evaluate response to gene therapy in a preclinical canine model of X-linked myotubular myopathy (XLMTM). This devastating congenital myopathy is caused by mutation in the myotubularin (MTM1) gene. Clinical signs include muscle weakness, early respiratory failure, and ventilator dependence. A spontaneously occurring canine model has a similar clinical picture and histological abnormalities on muscle biopsy compared with patients. We developed a neuromuscular assessment score, graded on a scale from 10 (normal) to 1 (unable to maintain sternal recumbency). We hypothesize that this neurological assessment score correlates with genotype and established measures of disease severity and is reliable when performed by an independent observer. At 17 weeks of age, there was strong correlation between neurological assessment scores and established methods of severity testing. The neurological severity score correctly differentiated between XLMTM and wild-type dogs with good interobserver reliability, on the basis of strong agreement between neurological scores assigned by independent observers. Together, these data indicate that the neurological scoring system developed for this canine congenital neuromuscular disorder is reliable and valid. This scoring system may be helpful in evaluating response to therapy in preclinical testing in this disease model, such as response to gene therapy. PMID:26086764

  1. Neurological manifestations of malaria.

    PubMed

    Román, G C; Senanayake, N

    1992-03-01

    The involvement of the nervous system in malaria is reviewed in this paper. Cerebral malaria, the acute encephalopathy which complicates exclusively the infection by Plasmodium falciparum commonly affects children and adolescents in hyperendemic areas. Plugging of cerebral capillaries and venules by clumped, parasitized red cells causing sludging in the capillary circulation is one hypothesis to explain its pathogenesis. The other is a humoral hypothesis which proposes nonspecific, immune-mediated, inflammatory responses with release of vasoactive substances capable of producing endothelial damage and alterations of permeability. Cerebral malaria has a mortality rate up to 50%, and also a considerable longterm morbidity, particularly in children. Hypoglycemia, largely in patients treated with quinine, may complicate the cerebral symptomatology. Other central nervous manifestations of malaria include intracranial hemorrhage, cerebral arterial occlusion, and transient extrapyramidal and neuropsychiatric manifestations. A self-limiting, isolated cerebellar ataxia, presumably caused by immunological mechanisms, in patients recovering from falciparum malaria has been recognized in Sri Lanka. Malaria is a common cause of febrile seizures in the tropics, and it also contributes to the development of epilepsy in later life. Several reports of spinal cord and peripheral nerve involvement are also available. A transient muscle paralysis resembling periodic paralysis during febrile episodes of malaria has been described in some patients. The pathogenesis of these neurological manifestations remains unexplored, but offers excellent perspectives for research at a clinical as well as experimental level. PMID:1307475

  2. 75 FR 3475 - National Institute Of Neurological Disorders and Stroke; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... HUMAN SERVICES National Institutes of Health National Institute Of Neurological Disorders and Stroke.... App.), notice is hereby given of meetings of the National Advisory Neurological Disorders and Stroke... Neurological Disorders and Stroke Council; Training, Career Development, and Special Programs...

  3. 75 FR 53319 - National Institute of Neurological Disorders and Stroke; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... HUMAN SERVICES National Institutes of Health National Institute of Neurological Disorders and Stroke.... App.), notice is ] hereby given of meetings of the National Advisory Neurological Disorders and Stroke... Neurological Disorders and Stroke Council Training, Career Development, and Special Programs Subcommittee....

  4. The impact of continuous and ongoing professional development on the nursing process of taking care of neurological patients.

    PubMed

    Kopacević, Lenka; Mihelcić, Vesna Bozan; Antić, Sonja; Demarin, Vida

    2013-03-01

    Nurses distinguish continuous professional development intended for career improvement and personal development from continuous professional development intended for improvement of skills and knowledge. Too many requests are put in front of an individual unacceptably stretching it onto the life outside work. Students have various expectations from their education. Factors that motivate nurses to study are to improve knowledge, patient care and professional relations. Factors connected to personal development include boost of confidence and embracing of other values. Motivation for additional education is also connected to the change of work, practice improvement, self-confidence improvement, nursing career plans, and necessary intellectual stimulation. The reasons for which nurses decide to undertake further education are also desire for maintenance of clinical competence, but also enjoyment in studying itself. An employer who expects from nurses to opt for such a type of education or stimulate it is another common reason. PMID:23837270

  5. Neurology and Don Quixote.

    PubMed

    Palma, Jose-Alberto; Palma, Fermin

    2012-01-01

    Don Quixote de la Mancha, which is considered one of the most important and influential works of Western modern prose, contains many references of interest for almost all of the medical specialties. In this regard, numerous references to neurology can be found in Cervantes' immortal work. In this study, we aimed to read Don Quixote from a neurologist's point of view, describing the neurological phenomena scattered throughout the novel, including tremors, sleep disturbances, neuropsychiatric symptoms, dementia, epilepsy, paralysis, stroke, syncope, traumatic head injury, and headache; we relate these symptoms with depictions of those conditions in the medical literature of the time. We also review Cervantes' sources of neurological information, including the works by renowned Spanish authors such as Juan Huarte de San Juan, Dionisio Daza Chacón and Juan Valverde de Amusco, and we hypothesize that Don Quixote's disorder was actually a neurological condition. Although Cervantes wrote it four centuries ago, Don Quixote contains plenty of references to neurology, and many of the ideas and concepts reflected in it are still of interest. PMID:23006630

  6. Hemispheric Specialization in Normally and Slowly Developing Children: A Tachistoscopic and Dichaptic Evaluation.

    ERIC Educational Resources Information Center

    Williams, H. G.; And Others

    1980-01-01

    Both right-and left-handed normally developing 6-year-olds showed considerable evidence of bilateralization of hemispheric functions for spatial and verbal information processing; the slowly developing children (ages 5-9) exhibited unusual patterns of hemispheric specialization usually opposite those typically expected in children or adults.…

  7. Neurology of sex steroids and oral contraceptives.

    PubMed

    Schipper, H M

    1986-11-01

    Under normal circumstances, sex steroids interact with diverse neural substrates to modulate a host of activities essential to the preservation of the individual and the species. In addition, sex hormones play an important role in various human neurologic conditions including strokes, migraine, certain movement disorders and peripheral neuropathies, and possibly even the behavior of CNS neoplasms. PMID:3025581

  8. [Prevention of virus-related neurological diseases by vaccines].

    PubMed

    Takahashi, M

    1997-04-01

    Prevention of virus-related neurological diseases are surveyed. Patients of poliomyelitis has recently been drastically reduced by world-wide administrating live vaccines. In view of rare incidence of paralysis after giving live vaccine, adoption of inactivated vaccine has recently been reconsidered. A live varicella vaccine was developed and has been world-wide used for normal and high-risk children. Incidence of zoster in vaccinated acute leukemic children is several times higher in those who with rash after vaccination as compared with those without rash, and as no or few rash appears after vaccination of normal children, it is expected that vaccination of normal children would lead to reduction of zoster after their aging. Measles encephalitis has rapidly been reduced by world-wide use of live vaccines. Mouse-brain derived vaccine against Japanese encephalitis(JE) has been used in Asian countries. Development of tissue-culture derived JE vaccine is under way. PMID:9103901

  9. Neurological complications of transplantation.

    PubMed

    Pustavoitau, Aliaksei; Bhardwaj, Anish; Stevens, Robert

    2011-01-01

    Recipients of solid organ or hematopoietic cell transplants are at risk of life-threatening neurological disorders including encephalopathy, seizures, infections and tumors of the central nervous system, stroke, central pontine myelinolysis, and neuromuscular disorders-often requiring admission to, or occurring in, the intensive care unit (ICU). Many of these complications are linked directly or indirectly to immunosuppressive therapy. However, neurological disorders may also result from graft versus host disease, or be an expression of the underlying disease which prompted transplantation, as well as injury induced during radiation, chemotherapy, surgery, and ICU stay. In rare cases, neuroinfectious pathogens may be transmitted with the transplanted tissue or organ. Diagnosis may be a challenge because clinical symptoms and findings on neuroimaging lack specificity, and a biological specimen or tissue diagnosis is often needed for definitive diagnosis. Management is centered on preventing further neurological injury, etiology-targeted therapy, and balancing the benefits and toxicities of specific immunosuppressive agents. PMID:21764765

  10. Genomics in Neurological Disorders

    PubMed Central

    Han, Guangchun; Sun, Jiya; Wang, Jiajia; Bai, Zhouxian; Song, Fuhai; Lei, Hongxing

    2014-01-01

    Neurological disorders comprise a variety of complex diseases in the central nervous system, which can be roughly classified as neurodegenerative diseases and psychiatric disorders. The basic and translational research of neurological disorders has been hindered by the difficulty in accessing the pathological center (i.e., the brain) in live patients. The rapid advancement of sequencing and array technologies has made it possible to investigate the disease mechanism and biomarkers from a systems perspective. In this review, recent progresses in the discovery of novel risk genes, treatment targets and peripheral biomarkers employing genomic technologies will be discussed. Our major focus will be on two of the most heavily investigated neurological disorders, namely Alzheimer’s disease and autism spectrum disorder. PMID:25108264

  11. [Neurological complications in uremia].

    PubMed

    Fong, Chin-Shih

    2008-06-01

    Neurological complications due to the uremic state or hemodialysis, contribute to the important cause of mortality in patients with uremia. Despite continuous advances in uremic treatment, many neurological complications of uremia, like uremic encephalopathy, peripheral neuropathy and myopathy fail to fully respond to hemodialysis. Moreover, hemodialysis or kidney transplantation may even induce neurological complications. Hemodialysis can directly or indirectly be associated with Wernicke's encephalopathy, dialytic dementia, dysequilibrium syndrome, cerebrovascular accidents, osmotic myelinolysis and mononeuropathy. Renal transplantation can give rise to rejection encephalopathy and acute femoral neuropathy. The use of immunosuppressive drugs after renal transplantation can cause reversible posterior leukoencephalopathy encephalopathy. The clinical, pathophysiological and therapeutical aspects of central nervous system, peripheral nervous system and myopathy complications in uremia are reviewed. PMID:18686653

  12. Mammary Gland Growth Factors: Roles in Normal Development and in Cancer

    PubMed Central

    Hynes, Nancy E.; Watson, Christine J.

    2010-01-01

    Normal development of the mammary gland proceeds via interactions between the epithelium and the mesenchyme that start during embryogenesis and continue during pubertal outgrowth and differentiation. The function of specific peptide growth factors that bind members of the receptor tyrosine kinase family and the cytokine receptor family are required at each stage. In many cases the peptides are produced in one compartment and act on receptors in the other compartment. One of the striking differences between normal development and cancer is the loss of this cross-talk. Mammary tumor cells often produce a peptide and express the receptor on the same cell leading to autocrine activation of signaling pathways, a mechanism that is characteristic for cancer cells. We will discuss different peptides in the context of normal development and cancer in this review. PMID:20554705

  13. Preclinical models of muscle spasticity: valuable tools in the development of novel treatment for neurological diseases and conditions.

    PubMed

    Bespalov, Anton; Mus, Liudmila; Zvartau, Edwin

    2016-05-01

    Poor validity of preclinical animal models is one of the most commonly discussed explanations for the failures to develop novel drugs in general and in neuroscience in particular. However, there are several areas of neuroscience such as injury-induced spasticity where etiological factor can be adequately recreated and models can focus on specific pathophysiological mechanisms that likely contribute to spasticity syndrome in humans (such as motoneuron hyperexcitability and spinal hyperreflexia). Methods used to study spasticity in preclinical models are expected to have a high translational value (e.g., electromyogram (EMG)-based electrophysiological tools) and can efficiently assist clinical development programs. However, validation of these models is not complete yet. First, true predictive validity of these models is not established as clinically efficacious drugs have been used to reverse validate preclinical models while newly discovered mechanisms effective in preclinical models are yet to be fully explored in humans (e.g., 5-HT2C receptor inverse agonists, fatty acid amid hydrolase inhibitors). Second, further efforts need to be invested into cross-laboratory validation of study protocols and tools, adherence to the highest quality standards (blinding, randomization, pre-specified study endpoints, etc.), and systematic efforts to replicate key sets of data. These appear to be readily achievable tasks that will enable development not only of symptomatic but also of disease-modifying therapy of spasticity, an area that seems to be currently not in focus of research efforts. PMID:26861550

  14. Creativity and neurological disease.

    PubMed

    Acosta, Lealani Mae Y

    2014-08-01

    Although humans have long valued creativity, the generation of such innovation is still incompletely understood. Looking at the healthy brain, researchers have localized certain parts for a basic understanding of these mechanisms. By researching the brain affected by neurological disease, scientists have observed unique manifestations of creativity, such as in frontotemporal lobar degeneration, Alzheimer's disease, Parkinson's disease and parkinsonian spectrum disorders, and stroke, which help clarify these creative underpinnings. Incorporating both healthy and disease models of cerebral functioning, neurological and neuroscientific research from recent years has built on established theories and expanded current knowledge. PMID:24938215

  15. Neurologic effects of alcoholism.

    PubMed Central

    Diamond, I; Messing, R O

    1994-01-01

    Alcoholism, a worldwide disorder, is the cause of a variety of neurologic disorders. In this article we discuss the cellular pathophysiology of ethanol addition and abuse as well as evidence supporting and refuting the role of inheritance in alcoholism. A genetic marker for alcoholism has not been identified, but neurophysiologic studies may be promising. Some neurologic disorders related to longterm alcoholism are due predominantly to inadequate nutrition (the thiamine deficiency that causes Wernicke's encephalopathy), but others appear to involve the neurotoxicity of ethanol on brain (alcohol withdrawal syndrome and dementia) and peripheral nerves (alcoholic neuropathy and myopathy). Images PMID:7975567

  16. [Renogenic neurologic disorders].

    PubMed

    Barbas, I M; Kodzaev, Iu K; Rudenko, T V; Skoromets, A A

    1985-01-01

    A total of 137 patients with chronic diseases of the kidneys were examined, including 34 without and 103 with chronic renal insufficiency. The neurologic syndromes under study included encephalomyelopathy with a predominant damage to the coordination systems, polyneuropathy and myopathy. These neurological changes were expressed irrespective of chronic renal failure, while their degree directly correlated with its severity. Stabilography and tremorography proved adequate and objective methods of assessing coordination disorders and made it possible to detect the above changes at the preclinical stage. PMID:3002077

  17. Prevalence of neurological soft signs and their neuropsychological correlates in typically developing Chinese children and Chinese children with ADHD.

    PubMed

    Chan, Raymond C K; McAlonan, Grainne M; Yang, Binrang; Lin, Li; Shum, David; Manschreck, Theo C

    2010-01-01

    This study examined prevalence of soft signs in 214 typically developing Chinese children and investigated whether soft signs are associated with attention deficit hyperactivity disorder (ADHD) in this population. Chinese children with ADHD (N = 54) scored significantly higher than age-matched controls on all three soft signs subscales and motor coordination correlated significantly with Stroop interference. Logistic regression supported the utility of the soft sign scales in discriminating children with ADHD and controls. Children with ADHD had a significant excess of soft signs, which may be a useful marker of developmental disruption in this clinical condition. PMID:21038161

  18. Promoting normal development and self-efficacy in school-age children managing chronic conditions.

    PubMed

    Mickley, Kristyn L; Burkhart, Patricia V; Sigler, April N

    2013-06-01

    Chronic conditions can affect school-age children in more ways than just physically. Normal childhood maturation is critical at this age, yet daily management of chronic symptoms can be challenging. This article describes 4 common childhood chronic illnesses (asthma, seizure disorders, diabetes, and cystic fibrosis), and the impact these conditions have on the developing child. Self-efficacy, the belief that one can effectively perform necessary skills, is essential to self-management of chronic conditions and contributes in a positive way to the child's normal development. Implications for clinical practice and future research are discussed. PMID:23659816

  19. Development and application of methods for regional scaling and normalization in life-cycle impact assessment

    SciTech Connect

    Tolle, D.A.

    1995-12-31

    Life-cycle impact assessment (LCIA) is a technical, quantitative and/or qualitative method to classify, characterize, and valuate potential impacts on human health, ecosystems, and natural resources, based on the environmental burdens identified in a life-cycle inventory. Research described here for two LCIAs included development and application of regional scaling methods for the following 5 of 14 relevant impact categories: Suspended (PM{sub 10}) particulate effects, water use, acid deposition, smog creation, and eutrophication. Normalization is recommended after characterization, because aggregated sums per impact category need to be expressed in equivalent terms before assigning valuation weight factors. The normalization approach described here involves determination of factors that represent the total, geographically-relevant impact for a given impact category. The goal for the 14 normalization factors developed and applied to two LCIAS, was to make them scientifically defensible, while utilizing existing data on emission or resource extraction quantities for three spatial perspectives. Data on the total environmental burden for each inventory item under a given impact category were obtained for normalization factors. Since the boundaries of the two LCIAs were primarily in the US, the data for the regional or local impact category perspectives were restricted to appropriate areas in the US. Normalization factors were developed and applied in the two LCIAs for 11 impact categories involving chemical emissions, water use, solid waste volume, and resource extraction/production land use.

  20. A Human TREK-1/HEK Cell Line: A Highly Efficient Screening Tool for Drug Development in Neurological Diseases

    PubMed Central

    Moha ou Maati, Hamid; Peyronnet, Rémi; Devader, Christelle; Veyssiere, Julie; Labbal, Fabien; Gandin, Carine; Mazella, Jean; Heurteaux, Catherine; Borsotto, Marc

    2011-01-01

    TREK-1 potassium channels are involved in a number of physiopathological processes such as neuroprotection, pain and depression. Molecules able to open or to block these channels can be clinically important. Having a cell model for screening such molecules is of particular interest. Here, we describe the development of the first available cell line that constituvely expresses the TREK-1 channel. The TREK-1 channel expressed by the h-TREK-1/HEK cell line has conserved all its modulation properties. It is opened by stretch, pH, polyunsaturated fatty acids and by the neuroprotective molecule, riluzole and it is blocked by spadin or fluoxetine. We also demonstrate that the h-TREK-1/HEK cell line is protected against ischemia by using the oxygen-glucose deprivation model. PMID:22022421

  1. Ravel's neurological illness.

    PubMed

    Alonso, R J; Pascuzzi, R M

    1999-01-01

    In the last 10 years of his life, Maurice Ravel (1875-1937) experienced a gradually progressive decline in neurological function. Dr. Alajouanine examined Ravel, noting the presence of aphasia and apraxia with relative preservation of comprehension and memory. The exact diagnosis remains unclear, but the likelihood of a progressive degenerative disorder, such as frontotemporal dementia, is herein discussed. PMID:10718529

  2. Outpatients in Neurological Rehabilitation.

    ERIC Educational Resources Information Center

    Barnes, M. P.; Skeil, D. A.

    1996-01-01

    This paper describes the multidisciplinary approach used at a neurological rehabilitation clinic in England. Analysis of questionnaire responses from outpatients indicated general support for the multidisciplinary approach, though a significant minority felt intimidated by the large number of professionals seen simultaneously. Patients also…

  3. Infant neurologic assessment.

    PubMed

    Hobdell, E

    2001-08-01

    Infant neurologic assessment reflects the ongoing maturation of the central nervous system. Traditional approaches to assessment cannot be used. Key factors are accurate observation and flexibility in obtaining the data. A case example using a 4-month-old infant illustrates specific approaches to assessment. PMID:11497071

  4. Clinical neurological evaluation.

    PubMed

    Weiss, A H

    1995-06-01

    The importance of the neurological evaluation for PLDD procedures is discussed. Elements of the basic examination are outlined and the reason for specific methods of testing are offered. The physician should pay attention to patient complaints, mechanical signs, and patient capabilities. PMID:10150642

  5. Neurological Impress Method plus

    ERIC Educational Resources Information Center

    Flood, James; Lapp, Diane; Fisher, Douglas

    2005-01-01

    The purpose of these two studies was to redirect interest to the Neurological Impress Method, a multisensory approach to reading instruction that occurs between a teacher and a student, which has been largely forgotten in mainstream and special education circles over the past decades. In addition to its emphasis on oral reading, we included a…

  6. Neurological manifestations of filarial infections.

    PubMed

    Bhalla, Devender; Dumas, Michel; Preux, Pierre-Marie

    2013-01-01

    Filarial infections cause a huge public health burden wherever they are endemic. These filaria may locate anywhere in the human body. Their manifestations and pathogenic mechanisms, except the most common ones, are rarely investigated systematically. Their neurological manifestations, however, are being increasingly recognized particularly with onchocerciasis or Loa loa infections, Wuchereria bancrofti, or Mansonella perstans. The risk of developing these manifestations may also increase in cases that harbor multiple filariasis or coinfections, for instance as with Plasmodium. The microfilaria of Onchocerca and Loa loa are seen in cerebrospinal fluid. The pathogenesis of neurological manifestations of these infections is complex; however, pathogenic reactions may be caused by mechanical disruption, e.g., degeneration often followed by granulomas, causing fibrosis or mass effects on other tissues, vascular lesions, e.g., vascular block of cerebral vessels, or disordered inflammatory responses resulting in meningitis, encephalitis or localized inflammatory responses. The chances of having neurological manifestations may also depend upon the frequency and"heaviness"of infection over a lifetime. Hence, this type of infection should no longer be considered a disease of the commonly affected areas but one that may produce systemic effects or other manifestations, and these should be considered in populations where they are endemic. PMID:23829914

  7. Going high with preexisting neurological conditions.

    PubMed

    Baumgartner, Ralf W; Siegel, Adrian M; Hackett, Peter H

    2007-01-01

    This review presents the potential impact of high altitude exposure on preexisting neurological conditions in patients usually living at low altitude. The neurological conditions include permanent and transient ischemia of the brain, occlusive cerebral artery disease, cerebral venous thrombosis, intracranial hemorrhage and vascular malformations, multiple sclerosis, intracranial space-occupying lesions, dementia, extrapyramidal disorders, migraine and other headaches, and epileptic seizures. New developments in diagnostic work-up and treatment of preexisting neurological conditions are also mentioned where applicable. For each neurological disorder, the authors developed absolute and relative contraindications for a trip to high altitude. These recommendations are not based on the results of controlled randomized trials, but mainly on case reports, pathophysiological considerations, and extrapolations from the low altitude situation. PMID:17584004

  8. Membrane-localized estrogen receptor α is required for normal organ development and function.

    PubMed

    Pedram, Ali; Razandi, Mahnaz; Lewis, Michael; Hammes, Stephen; Levin, Ellis R

    2014-05-27

    Steroid receptors are found in discrete cellular locations, but it is unknown whether extranuclear pools are necessary for normal organ development. To assess this, we developed a point mutant estrogen receptor α (ERα) knockin mouse (C451A) that precludes palmitoylation and membrane trafficking of the steroid receptor in all organs. Homozygous knockin female mice (nuclear-only ERα [NOER]) show loss of rapid signaling that occurs from membrane ERα in wild-type mice. Multiple developmental abnormalities were found, including infertility, relatively hypoplastic uteri, abnormal ovaries, stunted mammary gland ductal development, and abnormal pituitary hormone regulation in NOER mice. These abnormalities were rescued in heterozygous NOER mice that were comparable to wild-type mice. mRNAs implicated in organ development were often poorly stimulated by estrogen only in homozygous NOER mice. We conclude that many organs require membrane ERα and resulting signal transduction to collaborate with nuclear ERα for normal development and function. PMID:24871949

  9. Effects of pre- and postnatal exposure to the UV-filter Octyl Methoxycinnamate (OMC) on the reproductive, auditory and neurological development of rat offspring

    SciTech Connect

    Axelstad, Marta; Boberg, Julie; Hougaard, Karin Sorig; Christiansen, Sofie; Jacobsen, Pernille Rosenskjold; Mandrup, Karen Riiber; Nellemann, Christine; Lund, Soren Peter; Hass, Ulla

    2011-02-01

    Octyl Methoxycinnamate (OMC) is a frequently used UV-filter in sunscreens and other cosmetics. The aim of the present study was to address the potential endocrine disrupting properties of OMC, and to investigate how OMC induced changes in thyroid hormone levels would be related to the neurological development of treated offspring. Groups of 14-18 pregnant Wistar rats were dosed with 0, 500, 750 or 1000 mg OMC/kg bw/day during gestation and lactation. Serum thyroxine (T{sub 4}), testosterone, estradiol and progesterone levels were measured in dams and offspring. Anogenital distance, nipple retention, postnatal growth and timing of sexual maturation were assessed. On postnatal day 16, gene expression in prostate and testes, and weight and histopathology of the thyroid gland, liver, adrenals, prostate, testes, epididymis and ovaries were measured. After weaning, offspring were evaluated in a battery of behavioral and neurophysiological tests, including tests of activity, startle response, cognitive and auditory function. In adult animals, reproductive organ weights and semen quality were investigated. Thyroxine (T{sub 4}) levels showed a very marked decrease during the dosing period in all dosed dams, but were less severely affected in the offspring. On postnatal day 16, high dose male offspring showed reduced relative prostate and testis weights, and a dose-dependent decrease in testosterone levels. In OMC exposed female offspring, motor activity levels were decreased, while low and high dose males showed improved spatial learning abilities. The observed behavioral changes were probably not mediated solely by early T{sub 4} deficiencies, as the observed effects differed from those seen in other studies of developmental hypothyroxinemia. At eight months of age, sperm counts were reduced in all three OMC-dosed groups, and prostate weights were reduced in the highest dose group. Taken together, these results indicate that perinatal OMC-exposure can affect both the

  10. Genetic variants associated with motion sickness point to roles for inner ear development, neurological processes and glucose homeostasis

    PubMed Central

    Hromatka, Bethann S.; Tung, Joyce Y.; Kiefer, Amy K.; Do, Chuong B.; Hinds, David A.; Eriksson, Nicholas

    2015-01-01

    Roughly one in three individuals is highly susceptible to motion sickness and yet the underlying causes of this condition are not well understood. Despite high heritability, no associated genetic factors have been discovered. Here, we conducted the first genome-wide association study on motion sickness in 80 494 individuals from the 23andMe database who were surveyed about car sickness. Thirty-five single-nucleotide polymorphisms (SNPs) were associated with motion sickness at a genome-wide-significant level (P < 5 × 10−8). Many of these SNPs are near genes involved in balance, and eye, ear and cranial development (e.g. PVRL3, TSHZ1, MUTED, HOXB3, HOXD3). Other SNPs may affect motion sickness through nearby genes with roles in the nervous system, glucose homeostasis or hypoxia. We show that several of these SNPs display sex-specific effects, with up to three times stronger effects in women. We searched for comorbid phenotypes with motion sickness, confirming associations with known comorbidities including migraines, postoperative nausea and vomiting (PONV), vertigo and morning sickness and observing new associations with altitude sickness and many gastrointestinal conditions. We also show that two of these related phenotypes (PONV and migraines) share underlying genetic factors with motion sickness. These results point to the importance of the nervous system in motion sickness and suggest a role for glucose levels in motion-induced nausea and vomiting, a finding that may provide insight into other nausea-related phenotypes like PONV. They also highlight personal characteristics (e.g. being a poor sleeper) that correlate with motion sickness, findings that could help identify risk factors or treatments. PMID:25628336

  11. Neurological diseases and pain

    PubMed Central

    2012-01-01

    Chronic pain is a frequent component of many neurological disorders, affecting 20–40% of patients for many primary neurological diseases. These diseases result from a wide range of pathophysiologies including traumatic injury to the central nervous system, neurodegeneration and neuroinflammation, and exploring the aetiology of pain in these disorders is an opportunity to achieve new insight into pain processing. Whether pain originates in the central or peripheral nervous system, it frequently becomes centralized through maladaptive responses within the central nervous system that can profoundly alter brain systems and thereby behaviour (e.g. depression). Chronic pain should thus be considered a brain disease in which alterations in neural networks affect multiple aspects of brain function, structure and chemistry. The study and treatment of this disease is greatly complicated by the lack of objective measures for either the symptoms or the underlying mechanisms of chronic pain. In pain associated with neurological disease, it is sometimes difficult to obtain even a subjective evaluation of pain, as is the case for patients in a vegetative state or end-stage Alzheimer's disease. It is critical that neurologists become more involved in chronic pain treatment and research (already significant in the fields of migraine and peripheral neuropathies). To achieve this goal, greater efforts are needed to enhance training for neurologists in pain treatment and promote greater interest in the field. This review describes examples of pain in different neurological diseases including primary neurological pain conditions, discusses the therapeutic potential of brain-targeted therapies and highlights the need for objective measures of pain. PMID:22067541

  12. Roles of Circular RNAs in Neurologic Disease

    PubMed Central

    Shao, Yiye; Chen, Yinghui

    2016-01-01

    Circular RNAs (circRNAs) are a novel type of endogenous noncoding RNA receiving increasing attention. They have been shown to act as a natural microRNA sponges that repress the activity of corresponding miRNAs by binding with them, thus regulating target genes. Numerous studies have shown that miRNAs are involved in the pathogenesis of neurological diseases. Therefore, circRNAs may act as important regulatory factors in the occurrence and development processes of neurological disease. PMID:27147959

  13. Self-Regulation during Pretend Play in Children with Intellectual Disability and in Normally Developing Children

    ERIC Educational Resources Information Center

    Vieillevoye, Sandrine; Nader-Grosbois, Nathalie

    2008-01-01

    This study investigated the symbolic behavior and the self-regulation in dyads of children with intellectual disability and of normally developing children. Specifically, these processes were studied in link with the children's characteristics (mental age, linguistic level, individual pretend play level). The sample included 80 participants, 40…

  14. Understanding Emotions from Standardized Facial Expressions in Autism and Normal Development

    ERIC Educational Resources Information Center

    Castelli, Fulvia

    2005-01-01

    The study investigated the recognition of standardized facial expressions of emotion (anger, fear, disgust, happiness, sadness, surprise) at a perceptual level (experiment 1) and at a semantic level (experiments 2 and 3) in children with autism (N= 20) and normally developing children (N= 20). Results revealed that children with autism were as…

  15. Development of Spatial Release from Masking in Mandarin-Speaking Children with Normal Hearing

    ERIC Educational Resources Information Center

    Yuen, Kevin C. P.; Yuan, Meng

    2014-01-01

    Purpose: This study investigated the development of spatial release from masking in children using closed-set Mandarin disyllabic words and monosyllabic words carrying lexical tones as test stimuli and speech spectrum-weighted noise as a masker. Method: Twenty-six children ages 4-9 years and 12 adults, all with normal hearing, participated in…

  16. Polyphenol oxidase affects normal nodule development in red clover (Trifolium pratense L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO) may have multiple functions in tissues, depending on its cellular or tissue localization. We used PPO RNAi transformants of red clover (Trifolium pratense) to determine the role PPO plays in normal development of plants, and especially in nitrogen-fixing nodules. In red clov...

  17. A Longitudinal Study of the Development of Stop Consonant Production in Normal and Down's Syndrome Children.

    ERIC Educational Resources Information Center

    Smith, Bruce L.; Stoel-Gammon, Carol

    1983-01-01

    The longitudinal study of four normal children, 18 to 36 months old, and five Down's syndrome (DS) children, 3 to 6 years old, analyzed the development of stop consonants and stop clusters. Although similar sound patterns were observed for the two groups, the DS children showed considerable performance delay. (DB)

  18. Development of the water window imaging X-ray microscope utilizing normal-incidence multilayer optics

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    A water-window imaging X-ray telescope configured with normal-incidence multilayer X-ray mirrors has been developed to obtain images with unprecedented spatial resolution and contrast of carbon-based microstructures within living cells. The narrow bandpass response inherent in multilayer X-ray optics is accurately tuned to wavelengths within the water window.

  19. The Dens: Normal Development, Developmental Variants and Anomalies, and Traumatic Injuries.

    PubMed

    O'Brien, William T; Shen, Peter; Lee, Paul

    2015-01-01

    Accurate interpretation of cervical spine imagining can be challenging, especially in children and the elderly. The biomechanics of the developing pediatric spine and age-related degenerative changes predispose these patient populations to injuries centered at the craniocervical junction. In addition, congenital anomalies are common in this region, especially those associated with the axis/dens, due to its complexity in terms of development compared to other vertebral levels. The most common congenital variations of the dens include the os odontoideum and a persistent ossiculum terminale. At times, it is necessary to distinguish normal development, developmental variants, and developmental anomalies from traumatic injuries in the setting of acute traumatic injury. Key imaging features are useful to differentiate between traumatic fractures and normal or variant anatomy acutely; however, the radiologist must first have a basic understanding of the spectrum of normal developmental anatomy and its anatomic variations in order to make an accurate assessment. This review article attempts to provide the basic framework required for accurate interpretation of cervical spine imaging with a focus on the dens, specifically covering the normal development and ossification of the dens, common congenital variants and their various imaging appearances, fracture classifications, imaging appearances, and treatment options. PMID:26199787

  20. The Dens: Normal Development, Developmental Variants and Anomalies, and Traumatic Injuries

    PubMed Central

    O’Brien, William T; Shen, Peter; Lee, Paul

    2015-01-01

    Accurate interpretation of cervical spine imagining can be challenging, especially in children and the elderly. The biomechanics of the developing pediatric spine and age-related degenerative changes predispose these patient populations to injuries centered at the craniocervical junction. In addition, congenital anomalies are common in this region, especially those associated with the axis/dens, due to its complexity in terms of development compared to other vertebral levels. The most common congenital variations of the dens include the os odontoideum and a persistent ossiculum terminale. At times, it is necessary to distinguish normal development, developmental variants, and developmental anomalies from traumatic injuries in the setting of acute traumatic injury. Key imaging features are useful to differentiate between traumatic fractures and normal or variant anatomy acutely; however, the radiologist must first have a basic understanding of the spectrum of normal developmental anatomy and its anatomic variations in order to make an accurate assessment. This review article attempts to provide the basic framework required for accurate interpretation of cervical spine imaging with a focus on the dens, specifically covering the normal development and ossification of the dens, common congenital variants and their various imaging appearances, fracture classifications, imaging appearances, and treatment options. PMID:26199787

  1. Communicative Interactions of Mildly Delayed and Normally Developing Preschool Children: Effects of Listener's Developmental Level.

    ERIC Educational Resources Information Center

    Guralnick, Michael J.; Paul-Brown, Diane

    1986-01-01

    The communicative interactions of 32 mildly delayed and normally developing preschoolers were recorded during free play in a mainstreamed program. Analyses of syntactic complexity, semantic diversity, functional aspects of speech, and the use of selected discourse devices indicated that mildly delayed children adjusted important characteristics of…

  2. On the Influence of Poverty Relief and Educational Aid on Normal University Students' Specialty Development

    ERIC Educational Resources Information Center

    Yun, Pei

    2008-01-01

    This paper explores the influence of poverty relief and educational aid on the development of normal university students in their specialty; in particular, it focuses on its influence on their teaching internship, their study of professional courses, and the formation of professional ethics. The implementation of poverty relief and educational…

  3. Neurology outside Paris following Charcot.

    PubMed

    Moulin, Thierry; Clarac, François; Petit, Henri; Broussolle, Emmanuel

    2011-01-01

    The Middle Ages saw the development of numerous universities in the different provinces that later became the kingdom of France. In 1794, Napoleon I established 3 medical schools in Paris, Montpellier and Strasbourg, which were transformed into medical faculties in 1808. France had always been a highly centralized country, but during the 19th century, this trend started to change with the creation of medical faculties in Nancy (1872), Lille (1877), Lyon (1878), Bordeaux (1879), Toulouse (1891), Algiers (1910) and Marseille (1930). Following the creation of the 12 foundation courses, specialized chairs were progressively established in Paris, but for a long time this remained restricted to the French capital. However, with the emergence of medicine as an academic discipline in several towns outside Paris, came the development of neurology. This was greatly influenced by former students of Jean-Martin Charcot, local personalities, and the interactions between the two. Leading figures included Albert Pitres in Bordeaux, Léon Ingelrans in Lille, Eugène Devic and Jules Froment in Lyon, Lucien Cornil in Marseille, Joseph Grasset in Montpellier, and Marcel Riser in Toulouse. The interaction between French and Germanic medical communities also developed at this turbulent time under the influence of several great physicians such as Wilhelm Waldeyer, Adolf Kussmaul, and later Jean Alexandre Barré in Strasbourg, and Hippolyte Bernheim in Nancy. There are a number of other university towns outside Paris in which the development of neurology was probably influenced by the same interactions with psychiatry. It would be worth carrying out a thorough analysis of these towns in order to present an exhaustive overview of the development of neurology in France. PMID:20938155

  4. Dependence of normal development of skeletal muscle in neonatal rats on load bearing

    NASA Technical Reports Server (NTRS)

    Ohira, Y.; Tanaka, T.; Yoshinaga, T.; Kawano, F.; Nomura, T.; Nonaka, I.; Allen, D. L.; Roy, R. R.; Edgerton, V. R.

    2000-01-01

    Antigravity function plays an important role in determining the morphological and physiological properties of the neuromuscular system. Inhibition of the normal development of the neuromuscular system is induced by hindlimb unloading during the neonatal period in rats. However, the role of gravitational loading on the development of skeletal muscle in rats is not well understood. It could be hypothesized that during the early postnatal period, i.e. when minimal weight-supporting activity occurs, the activity imposed by gravity would be of little consequence in directing the normal development of the skeletal musculature. We have addressed this issue by limiting the amount of postnatal weight-support activity of the hindlimbs of rats during the lactation period. We have focused on the development of three characteristics of the muscle fibers, i.e. size, myonuclear number and myosin heavy chain expression.

  5. Leech segmental repeats develop normally in the absence of signals from either anterior or posterior segments

    NASA Technical Reports Server (NTRS)

    Seaver, E. C.; Shankland, M.

    2000-01-01

    We have investigated whether the development of segmental repeats is autonomous in the embryo of the leech Helobdella robusta. The segmental tissues of the germinal band arise from progeny of five stem cells called teloblasts. Asymmetric divisions of the teloblasts form chains of segment founder cells (called primary blast cells) that divide in a stereotypical manner to produce differentiated descendants. Using two distinct techniques, we have looked for potential interactions between neighboring blast cell clones along the anterior-posterior axis. In one technique, we prevented the birth of primary blast cells by injection of DNase I into the teloblast, thereby depriving the last blast cell produced before the ablation of its normal posterior neighbors. We also ablated single blast cells with a laser microbeam, which allowed us to assess potential signals acting on either more anterior or more posterior primary blast cell clones. Our results suggest that interactions along the anterior-posterior axis between neighboring primary blast cell clones are not required for development of normal segmental organization within the blast cell clone. We also examined the possibility that blast cells receive redundant signals from both anterior and posterior neighboring clones and that either is sufficient for normal development. Using double blast cell laser ablations to isolate a primary blast cell clone by removal of both its anterior and its posterior neighbor, we found that the isolated clone still develops normally. These results reveal that the fundamental segmental repeat in the leech embryo, the primary blast cell clone, can develop normally in the apparent absence of signals from adjacent repeats along the anterior-posterior axis.

  6. Elevated temperature enhances normal early embryonic development in the coral Platygyra acuta under low salinity conditions

    NASA Astrophysics Data System (ADS)

    Chui, Apple Pui Yi; Ang, Put

    2015-06-01

    To better understand the possible consequences of climate change on reef building scleractinian corals in a marginal environment, laboratory experiments were conducted to examine the interactive effects of changes in salinity and temperature on percent fertilization success and early embryonic development of the coral Platygyra acuta. In the present study, a salinity of 24 psu (ambient 32 psu) reduced fertilization success by 60 %. Normal embryonic development was reduced by >80 % at 26 psu (ambient 33 psu) with 100 % abnormal development at 22 psu under ambient temperature. Elevated temperature (+3 °C) above the ambient spawning temperature did not show any negative effects on fertilization success. However, there was a trend for more abnormal embryos to develop at elevated temperature in the 2 d of the spawning event. The interactive effects between salinity and temperature are statistically significant only on normal embryonic development of P. acuta, but not on its fertilization success. Salinity was revealed to be the main factor affecting both fertilization success and normal embryonic development. Interestingly, the much lower fertilization success (76 %) observed in the second day of spawning (Trial 2) under ambient temperature recovered to 99 % success under elevated (+3 °C) temperature conditions. Moreover, elevated temperature enhanced normal early embryonic development under lowered salinity (26 psu). This antagonistic interactive effect was consistently observed in two successive nights of spawning. Overall, our results indicate that, in terms of its fertilization success and embryonic development, P. acuta is the most tolerant coral species to reduced salinity thus far reported in the literature. Elevated temperature, at least that within the tolerable range of the corals, could apparently alleviate the potential negative effects from salinity stresses. This mitigating role of elevated temperature appears not to have been reported on corals before.

  7. Astrocytes: The missing link in neurological disease?

    PubMed Central

    Lin, Chia-Ching John; Deneen, Benjamin

    2013-01-01

    The central nervous system (CNS) is comprised of numerous cell types that work in concert to facilitate proper function and homeostasis. Disruption of these carefully orchestrated networks results in neuronal dysfunction, manifesting itself in a variety of neurological disorders. While neuronal dysregulation is causative of symptoms manifest in the clinic, the etiology of these disorders is often more complex than simply a loss of neurons or intrinsic dysregulation of their function. In the adult brain, astrocytes comprise the most abundant cell type and play key roles in CNS physiology, therefore it stands to reason that dysregulation of normal astrocyte function contributes to the etiology and progression of varied neurological disorders. We review here some neurological disorders associated with an astrocyte factor and discuss how the related astrocyte dysfunction contributes to the etiology and/or progression of these disorders. PMID:24365571

  8. Nuclear Medicine Imaging in Pediatric Neurology

    PubMed Central

    Akdemir, Ümit Özgür; Atay Kapucu, Lütfiye Özlem

    2016-01-01

    Nuclear medicine imaging can provide important complementary information in the management of pediatric patients with neurological diseases. Pre-surgical localization of the epileptogenic focus in medically refractory epilepsy patients is the most common indication for nuclear medicine imaging in pediatric neurology. In patients with temporal lobe epilepsy, nuclear medicine imaging is particularly useful when magnetic resonance imaging findings are normal or its findings are discordant with electroencephalogram findings. In pediatric patients with brain tumors, nuclear medicine imaging can be clinically helpful in the diagnosis, directing biopsy, planning therapy, differentiating tumor recurrence from post-treatment sequelae, and assessment of response to therapy. Among other neurological diseases in which nuclear medicine has proved to be useful are patients with head trauma, inflammatory-infectious diseases and hypoxic-ischemic encephalopathy. PMID:27299282

  9. Premature death of TDP-43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis

    PubMed Central

    Esmaeili, Mohammad A; Panahi, Marzieh; Yadav, Shilpi; Hennings, Leah; Kiaei, Mahmoud

    2013-01-01

    Abnormal distribution, modification and aggregation of transactivation response DNA-binding protein 43 (TDP-43) are the hallmarks of multiple neurodegenerative diseases, especially frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Transgenic mouse lines overexpressing wild-type or mutant TDP-43 exhibit ALS-like symptom, motor abnormalities and early paralysis followed by death. Reports on lifespan and phenotypic behaviour in Prp-TDP-43 (A315T) vary, and these animals are not fully characterized. Although it has been proposed that the approximate 20% loss of motor neurons at end stage is responsible for the severe weakness and death in TDP-43 mice, this degree of neurologic damage appears insufficient to cause death. Hence we studied these mice to further characterize and determine the reason for the death. Our characterization of TDP-43 transgenic mice showed that these mice develop ALS-like symptoms that later become compounded by gastrointestinal (GI) complications that resulted in death. This is the first report of a set of pathological evidence in the GI track that is strong indicator for the cause of death of Prp-hTDP-43 (A315T) transgenic mice. PMID:23317354

  10. Premature death of TDP-43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis.

    PubMed

    Esmaeili, Mohammad A; Panahi, Marzieh; Yadav, Shilpi; Hennings, Leah; Kiaei, Mahmoud

    2013-02-01

    Abnormal distribution, modification and aggregation of transactivation response DNA-binding protein 43 (TDP-43) are the hallmarks of multiple neurodegenerative diseases, especially frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Transgenic mouse lines overexpressing wild-type or mutant TDP-43 exhibit ALS-like symptom, motor abnormalities and early paralysis followed by death. Reports on lifespan and phenotypic behaviour in Prp-TDP-43 (A315T) vary, and these animals are not fully characterized. Although it has been proposed that the approximate 20% loss of motor neurons at end stage is responsible for the severe weakness and death in TDP-43 mice, this degree of neurologic damage appears insufficient to cause death. Hence we studied these mice to further characterize and determine the reason for the death. Our characterization of TDP-43 transgenic mice showed that these mice develop ALS-like symptoms that later become compounded by gastrointestinal (GI) complications that resulted in death. This is the first report of a set of pathological evidence in the GI track that is strong indicator for the cause of death of Prp-hTDP-43 (A315T) transgenic mice. PMID:23317354

  11. Neurological manifestations of osteoid osteoma.

    PubMed Central

    Kiers, L; Shield, L K; Cole, W G

    1990-01-01

    The clinical and radiological features of 38 children with osteoid osteomas were analysed retrospectively. Twenty nine patients had lesions of the femur (n = 17) or tibia (n = 12). The mean duration from the onset of symptoms to diagnosis was 13.8 months. In seven patients the history of pain and abnormalities on examination suggested a possible neurological disorder. Fourteen of 29 patients (48%) with femoral or tibial osteomas had localised muscle atrophy, and 10 patients (34%) had diminished or absent deep tendon reflexes in the affected limb. Two patients had painless lesions. Six patients had normal plain radiographs. Delay in the diagnosis of osteoid osteoma may be prevented by the knowledge that pain may be referred or radicular, that the concomitant occurrence of muscle atrophy and depressed deep tendon reflexes are relatively common findings, and that the characteristic radiological features may only appear late in the course of the disease. Images Figure 1 Figure 2 PMID:2169226

  12. Control of Abnormal Synchronization in Neurological Disorders

    PubMed Central

    Popovych, Oleksandr V.; Tass, Peter A.

    2014-01-01

    In the nervous system, synchronization processes play an important role, e.g., in the context of information processing and motor control. However, pathological, excessive synchronization may strongly impair brain function and is a hallmark of several neurological disorders. This focused review addresses the question of how an abnormal neuronal synchronization can specifically be counteracted by invasive and non-invasive brain stimulation as, for instance, by deep brain stimulation for the treatment of Parkinson’s disease, or by acoustic stimulation for the treatment of tinnitus. On the example of coordinated reset (CR) neuromodulation, we illustrate how insights into the dynamics of complex systems contribute to successful model-based approaches, which use methods from synergetics, non-linear dynamics, and statistical physics, for the development of novel therapies for normalization of brain function and synaptic connectivity. Based on the intrinsic multistability of the neuronal populations induced by spike timing-dependent plasticity (STDP), CR neuromodulation utilizes the mutual interdependence between synaptic connectivity and dynamics of the neuronal networks in order to restore more physiological patterns of connectivity via desynchronization of neuronal activity. The very goal is to shift the neuronal population by stimulation from an abnormally coupled and synchronized state to a desynchronized regime with normalized synaptic connectivity, which significantly outlasts the stimulation cessation, so that long-lasting therapeutic effects can be achieved. PMID:25566174

  13. Normalizing medicine: between "intersexuals" and individuals with "Disorders of Sex Development".

    PubMed

    Feder, Ellen K

    2009-06-01

    In this paper, I apply Michel Foucault's analysis of normalization to the 2006 announcement by the US and European Endocrinological Societies that variations on the term "hermaphrodite" and "intersex" would be replaced by the term, "Disorders of Sex Development" or DSD. I argue that the change should be understood as normalizing in a positive sense; rather than fighting for the demedicalization of conditions that have significant consequences for individuals' health, this change can promote the transformation of the conceptualization of intersex conditions from "disorders like no other" to "disorders like many others." Understood in these terms, I conclude, medical attention to those with atypical anatomies should be recast from a preoccupation with "normal appearance" to the concern with human flourishing that is the proper object of medical attention. PMID:19234791

  14. The neuroanatomy of prematurity: normal brain development and the impact of preterm birth.

    PubMed

    Ortinau, Cynthia; Neil, Jeffrey

    2015-03-01

    Brain development is a complex process of micro- and macrostructural events that include neuronal and glial proliferation and migration, myelination, and organizational development of cortical layers and circuitry. Recent progress in understanding these processes has provided insight into the pathophysiology of brain injury and alterations of cerebral development in preterm infants. A key factor of abnormalities in the preterm infant is the maturational stage of the brain at the time of birth. This review summarizes current data on normal brain development, patterns of brain injury in the preterm infant, and the associated axonal/neuronal disturbances that occur in the setting of this injury, often termed encephalopathy of prematurity. PMID:25043926

  15. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    PubMed Central

    Ducharme, Simon; Albaugh, Matthew D.; Nguyen, Tuong-Vi; Hudziak, James J.; Mateos-Pérez, J.M.; Labbe, Aurelie; Evans, Alan C.; Karama, Sherif

    2015-01-01

    This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753) from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear) was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015) [1]. PMID:26702424

  16. Post dengue neurological complication.

    PubMed

    Hasliza, A H; Tohid, H; Loh, K Y; Santhi, P

    2015-01-01

    Dengue infection is highly endemic in many tropical countries including Malaysia. However, neurological complications arising from dengue infection is not common; Gullain-Barre syndrome (GBS) is one of these infrequent complications. In this paper, we have reported a case in which a 39-year-old woman presented with a neurological complication of dengue infection without typical symptoms and signs of dengue fever. She had a history of acute gastroenteritis (AGE) followed by an upper respiratory tract infection (URTI) weeks prior to her presentation rendering GBS secondary to the post viral URTI and AGE as the most likely diagnosis. Presence of thrombocytopenia was the only clue for dengue in this case. PMID:27099661

  17. Neurology goes global

    PubMed Central

    Mateen, Farrah J.

    2014-01-01

    Summary In recent years, the need for additional neurologists and neurologic expertise in many low- and middle-income countries (LMIC) has become more apparent. Many organizations are committed to this unmet need, but the scope of the problem remains mostly underappreciated. Neurologists may be skeptical about their value in resource-limited settings, yet we are critically needed and can have a marked effect. International experiences, however, must be carried out in ethical, informed, and sustainable ways in tandem with local health care providers when possible. We present a brief overview of critical issues in global neurology, the importance of focusing on benefits to the LMIC, and options for volunteer opportunities in clinical service, education, research, and disaster relief. Finally, we offer practical pointers and resources for planning these experiences. PMID:25110621

  18. Neurology and detective writing.

    PubMed

    Kempster, Peter A; Lees, Andrew J

    2013-12-01

    When searching for clues to reach a diagnosis, neurologists often empathise with the detective who is trying to solve a case. The premise of this article is that detective stories have been part of the fabric of neurology ever since the time that it evolved into a discrete medical speciality. We will examine how this form of narrative has found expression in detective mystery fiction and popular science publications created by 20th century neurologist physician-writers. We will also investigate the power of the neurologist's alter ego, Sherlock Holmes: his relationship to founders of clinical neuroscience such as Jean-Martin Charcot, William Gowers and Sigmund Freud, and his influences on neurological practice and its literary traditions. PMID:24006370

  19. Key sleep neurologic disorders

    PubMed Central

    St. Louis, Erik K.

    2014-01-01

    Summary Sleep disorders are frequent comorbidities in neurologic patients. This review focuses on clinical aspects and prognosis of 3 neurologic sleep disorders: narcolepsy, restless legs syndrome/Willis-Ekbom disease (RLS/WED), and REM sleep behavior disorder (RBD). Narcolepsy causes pervasive, enduring excessive daytime sleepiness, adversely affecting patients' daily functioning. RLS/WED is characterized by an uncomfortable urge to move the legs before sleep, often evolving toward augmentation and resulting in daylong bothersome symptoms. RBD causes potentially injurious dream enactment behaviors that often signify future evolution of overt synucleinopathy neurodegeneration in as many as 81% of patients. Timely recognition, referral for polysomnography, and longitudinal follow-up of narcolepsy, RLS/WED, and RBD patients are imperatives for neurologists in providing quality comprehensive patient care. PMID:24605270

  20. Perimenopause as a neurological transition state.

    PubMed

    Brinton, Roberta D; Yao, Jia; Yin, Fei; Mack, Wendy J; Cadenas, Enrique

    2015-07-01

    Perimenopause is a midlife transition state experienced by women that occurs in the context of a fully functioning neurological system and results in reproductive senescence. Although primarily viewed as a reproductive transition, the symptoms of perimenopause are largely neurological in nature. Neurological symptoms that emerge during perimenopause are indicative of disruption in multiple estrogen-regulated systems (including thermoregulation, sleep, circadian rhythms and sensory processing) and affect multiple domains of cognitive function. Estrogen is a master regulator that functions through a network of estrogen receptors to ensure that the brain effectively responds at rapid, intermediate and long timescales to regulate energy metabolism in the brain via coordinated signalling and transcriptional pathways. The estrogen receptor network becomes uncoupled from the bioenergetic system during the perimenopausal transition and, as a corollary, a hypometabolic state associated with neurological dysfunction can develop. For some women, this hypometabolic state might increase the risk of developing neurodegenerative diseases later in life. The perimenopausal transition might also represent a window of opportunity to prevent age-related neurological diseases. This Review considers the importance of neurological symptoms in perimenopause in the context of their relationship to the network of estrogen receptors that control metabolism in the brain. PMID:26007613

  1. Mice lacking glutamate carboxypeptidase II develop normally, but are less susceptible to traumatic brain injury.

    PubMed

    Gao, Yang; Xu, Siyi; Cui, Zhenwen; Zhang, Mingkun; Lin, Yingying; Cai, Lei; Wang, Zhugang; Luo, Xingguang; Zheng, Yan; Wang, Yong; Luo, Qizhong; Jiang, Jiyao; Neale, Joseph H; Zhong, Chunlong

    2015-07-01

    Glutamate carboxypeptidase II (GCPII) is a transmembrane zinc metallopeptidase found mainly in the nervous system, prostate and small intestine. In the nervous system, glia-bound GCPII mediates the hydrolysis of the neurotransmitter N-acetylaspartylglutamate (NAAG) into glutamate and N-acetylaspartate. Inhibition of GCPII has been shown to attenuate excitotoxicity associated with enhanced glutamate transmission under pathological conditions. However, different strains of mice lacking the GCPII gene are reported to exhibit striking phenotypic differences. In this study, a GCPII gene knockout (KO) strategy involved removing exons 3-5 of GCPII. This generated a new GCPII KO mice line with no overt differences in standard neurological behavior compared to their wild-type (WT) littermates. However, GCPII KO mice were significantly less susceptible to moderate traumatic brain injury (TBI). GCPII gene KO significantly lessened neuronal degeneration and astrocyte damage in the CA2 and CA3 regions of the hippocampus 24 h after moderate TBI. In addition, GCPII gene KO reduced TBI-induced deficits in long-term spatial learning/memory tested in the Morris water maze and motor balance tested via beam walking. Knockout of the GCPII gene is not embryonic lethal and affords histopathological protection with improved long-term behavioral outcomes after TBI, a result that further validates GCPII as a target for drug development consistent with results from studies using GCPII peptidase inhibitors. PMID:25872793

  2. The neurologic examination.

    PubMed

    Averill, D R

    1981-08-01

    With practice, an orderly routine, and a basic understanding of neuroanatomy, the clinician should be able to tentatively localize lesions in the nervous system. Once the lesion is localized, ancillary studies are usually necessary to identify the disease process. In difficult cases when referral is impractical, an accurate description of the findings from the neurologic examination will greatly improve the value of consultation. PMID:6977917

  3. Palliative care and neurology

    PubMed Central

    Boersma, Isabel; Miyasaki, Janis; Kutner, Jean

    2014-01-01

    Palliative care is an approach to the care of patients and families facing progressive and chronic illnesses that focuses on the relief of suffering due to physical symptoms, psychosocial issues, and spiritual distress. As neurologists care for patients with chronic, progressive, life-limiting, and disabling conditions, it is important that they understand and learn to apply the principles of palliative medicine. In this article, we aim to provide a practical starting point in palliative medicine for neurologists by answering the following questions: (1) What is palliative care and what is hospice care? (2) What are the palliative care needs of neurology patients? (3) Do neurology patients have unique palliative care needs? and (4) How can palliative care be integrated into neurology practice? We cover several fundamental palliative care skills relevant to neurologists, including communication of bad news, symptom assessment and management, advance care planning, caregiver assessment, and appropriate referral to hospice and other palliative care services. We conclude by suggesting areas for future educational efforts and research. PMID:24991027

  4. [Neurological Disorders and Pregnancy].

    PubMed

    Berlit, P

    2016-02-01

    Neurological disorders caused by pregnancy and puerperium include the posterior reversible encephalopathy syndrome, the amniotic fluid embolism syndrome (AFES), the postpartum angiopathy due to reversible vasoconstriction syndrome, and the Sheehan syndrome. Hypertension and proteinuria are the hallmarks of preeclampsia, seizures define eclampsia. Hemolysis, elevated liver enzymes and low platelets constitute the HELLP syndrome. Vision disturbances including cortical blindness occur in the posterior reversible encephalopathy syndrome (PRES). The Sheehan syndrome presents with panhypopituitarism post partum due to apoplexia of the pituitary gland in severe peripartal blood loss leading to longstanding hypotension. Some neurological disorders occur during pregnancy and puerperium with an increased frequency. These include stroke, sinus thrombosis, the restless legs syndrome and peripheral nerve syndromes, especially the carpal tunnel syndrome. Chronic neurologic diseases need an interdisciplinary approach during pregnancy. Some anticonvulsants double the risk of birth defects. The highest risk exists for valproic acid, the lowest for lamotrigine and levetiracetam. For MS interval treatment, glatiramer acetate and interferones seem to be safe during pregnancy. All other drugs should be avoided. PMID:26953551

  5. WNT4 is required for normal ovarian follicle development and female fertility

    PubMed Central

    Boyer, Alexandre; Lapointe, Évelyne; Zheng, Xiaofeng; Cowan, Robert G.; Li, Huaiguang; Quirk, Susan M.; DeMayo, Francesco J.; Richards, JoAnne S.; Boerboom, Derek

    2010-01-01

    To study the role of WNT4 in the postnatal ovary, a mouse strain bearing a floxed Wnt4 allele was created and mated to the Amhr2tm3(cre)Bhr strain to target deletion of Wnt4 to granulosa cells. Wnt4flox/−;Amhr2tm3(cre)Bhr/+ mice had reduced ovary weights and produced smaller litters (P<0.05). Serial follicle counting demonstrated that Wnt4flox/−;Amhr2tm3(cre)Bhr/+ mice were born with a normal ovarian reserve and maintained normal numbers of small follicles until puberty but had only 25.2% of the normal number of healthy antral follicles. Some Wnt4flox/−;Amhr2tm3(cre)Bhr/+ mice had no antral follicles or corpora lutea and underwent premature follicle depletion. RT-PCR analyses of Wnt4flox/−;Amhr2tm3(cre)Bhr/+ granulosa cells and cultured granulosa cells that overexpress WNT4 demonstrated that WNT4 regulates the expression of Star, Cyp11a1, and Cyp19, steroidogenic genes previously identified as downstream targets of the WNT signaling effector CTNNB1. Decreased serum progesterone levels were found in immature, gonadotropin-treated Wnt4flox/−;Amhr2tm3(cre)Bhr/+ mice (P<0.05). WNT4- and CTNNB1-overexpressing cultured granulosa cells were analyzed by microarray for alterations in gene expression, which showed that WNT4 regulates additional genes involved in late follicle development via the WNT/CTNNB1 signaling pathway. Together, these data indicate that WNT4 is required for normal antral follicle development and may act by regulating granulosa cell functions including steroidogenesis.—Boyer, A., Lapointe, E., Zheng, X., Cowan, R. G., Li, H., Quirk, S. M., DeMayo, F. J., Richards, J. S., Boerboom, D. WNT4 is required for normal ovarian follicle development and female fertility. PMID:20371632

  6. Neurological complications of acute multifocal placoid pigment epitheliopathy.

    PubMed

    Brownlee, W J; Anderson, N E; Sims, J; Pereira, J A

    2016-09-01

    Acute multifocal placoid pigment epitheliopathy (AMPPE) is an autoimmune chorioretinal disease that can be complicated by neurological involvement. There is limited information on this potentially treatable condition in the neurological literature. The objective of this patient series is to describe the neurological complications of AMPPE. We retrospectively identified patients with neurological complications of AMPPE seen at Auckland Hospital between 2008 and 2013 and summarised cases in the literature between 1976 and 2013. We identified five patients with neurological complications of AMPPE at Auckland Hospital and 47 reported patients. These patients demonstrated a spectrum of neurological involvement including isolated headache, stroke or transient ischaemic attack, seizures, venous sinus thrombosis, optic neuritis, sensorineural hearing loss and peripheral vestibular disorder. We propose criteria to define AMPPE with neurological complications. A cerebrospinal fluid (CSF) lymphocytosis in a patient with isolated headache may predict the development of cerebrovascular complications of AMPPE. Patients with cerebrovascular complications of AMPPE have a poor prognosis with high rates of death and neurological disability among survivors. Predictors of poor outcome in those who develop neurological complications of AMPPE are a relapsing course, generalised seizures and multifocal infarction on MRI. All patients with neurological complications of AMPPE, including headache alone, should be investigated with an MRI brain and CSF examination. Patients with focal neurological symptoms should receive intravenous (IV) methylprednisolone followed by a tapering course of oral steroids for at least 3months. Patients with AMPPE and an isolated headache with a CSF pleocytosis should be treated with oral steroids. PMID:27183958

  7. Neuroimaging Studies of Normal Brain Development and Their Relevance for Understanding Childhood Neuropsychiatric Disorders

    PubMed Central

    Marsh, Rachel; Gerber, Andrew J.; Peterson, Bradley S.

    2009-01-01

    Objective To review the maturational events that occur during prenatal and postnatal brain development and to present neuroimaging findings from studies of healthy individuals that identify the trajectories of normal brain development. Method Histological and postmortem findings of early brain development are presented, followed by a discussion of anatomical, diffusion tensor, proton spectroscopy, and functional imaging findings from studies of healthy individuals, with special emphasis on longitudinal data. Results Early brain development occurs through a sequence of major events, beginning with the formation of the neural tube and ending with myelination. Brain development at a macroscopic level typically proceeds first in sensorimotor areas, spreading subsequently and progressively into dorsal and parietal, superior temporal, and dorsolateral prefrontal cortices throughout later childhood and adolescence. These patterns of anatomical development parallel increasing activity in frontal cortices that subserves the development of higher-order cognitive functions during late childhood and adolescence. Disturbances in these developmental patterns seem to be involved centrally in the pathogenesis of various childhood psychiatric disorders including childhood-onset schizophrenia, attention-deficit/hyperactivity disorder, developmental dyslexia, Tourette’s syndrome, and bipolar disorder. Conclusions Advances in imaging techniques have enhanced our understanding of normal developmental trajectories in the brain, which may improve insight into the abnormal patterns of development in various childhood psychiatric disorders. PMID:18833009

  8. Development and Growth of the Normal Cranial Vault : An Embryologic Review.

    PubMed

    Jin, Sung-Won; Sim, Ki-Bum; Kim, Sang-Dae

    2016-05-01

    Understanding the development of a skull deformity requires an understanding of the normal morphogenesis of the cranium. Craniosynostosis is the premature, pathologic ossification of one or more cranial sutures leading to skull deformities. A review of the English medical literature using textbooks and standard search engines was performed to gather information about the prenatal development and growth of the cranial vault of the neurocranium. A process of morphogenic sequencing begins during prenatal development and growth, continues postnatally, and contributes to the basis for the differential manner of growth of cranial vault bones. This improved knowledge might facilitate comprehension of the pathophysiology of craniosynostosis. PMID:27226848

  9. Development and Growth of the Normal Cranial Vault : An Embryologic Review

    PubMed Central

    Jin, Sung-Won; Kim, Sang-Dae

    2016-01-01

    Understanding the development of a skull deformity requires an understanding of the normal morphogenesis of the cranium. Craniosynostosis is the premature, pathologic ossification of one or more cranial sutures leading to skull deformities. A review of the English medical literature using textbooks and standard search engines was performed to gather information about the prenatal development and growth of the cranial vault of the neurocranium. A process of morphogenic sequencing begins during prenatal development and growth, continues postnatally, and contributes to the basis for the differential manner of growth of cranial vault bones. This improved knowledge might facilitate comprehension of the pathophysiology of craniosynostosis. PMID:27226848

  10. Neurological Impairment: Nomenclature and Consequences.

    ERIC Educational Resources Information Center

    Spears, Catherine E.; Weber, Robert E.

    Neurological impairment as discussed includes a range of disabilities referred to as neurological impairment: minimal brain dysfunction/damage, developmental disability, perceptual handicap, learning disability, hyperkinetic behavioral syndrome, and others. Defined are causes of neurological impairment and methods of diagnosis. Symptoms…

  11. The development of a normalization method for comparing nerve regeneration effectiveness among different graft types

    PubMed Central

    Chang, Wei; DeVince, Jeffrey; Green, Gabriella; Shah, Munish B.; Johns, Michael S.; Meng, Yan; Yu, Xiaojun

    2013-01-01

    The inability to compare directly different nerve grafts has been a significant factor hindering the advance of nerve graft development. Due to the abundance of variables that exist in nerve graft construction and multiple assessment types, there has been limited success in comparing nerve graft effectiveness among experiments. Using mathematical techniques on nerve conduction velocity (NCV) autograft data, a normalization function was empirically derived that normalizes differences in gap lengths. Further analysis allowed for the development of the Relative Regeneration Ratio (RRR). The RRR function allows researchers to directly compare nerve graft results based on the NCV data from their respective studies as long as the data was collected at the same post-operation time. This function also allows for comparisons between grafts tested at different gap lengths. Initial testing of this RRR function provided confidence that the function is accurate for a continuum of gap lengths and different nerve graft types. PMID:24118184

  12. Self-regulation during pretend play in children with intellectual disability and in normally developing children.

    PubMed

    Vieillevoye, Sandrine; Nader-Grosbois, Nathalie

    2008-01-01

    This study investigated the symbolic behavior and the self-regulation in dyads of children with intellectual disability and of normally developing children. Specifically, these processes were studied in link with the children's characteristics (mental age, linguistic level, individual pretend play level). The sample included 80 participants, 40 children with intellectual disability and 40 normally developing children, matched according to their mental age, ranged from 3 to 6 years old. First, a developmental assessment was performed (about cognitive, language and pretend play dimensions); then, in peers dyads, the children were elicited to pretend play by means of four kinds of material referring to four types of scripts (tea party, doctor, transportation, substitute objects eliciting creativity). The average symbolic behavior in individual and dyadic play contexts did not differ in both groups, but the average self-regulation in the group with intellectual disability was lower than in the normally developing group. Some positive partial correlations were obtained between mental age, language abilities, individual pretend play, dyadic pretend play and several self-regulatory strategies in both groups although they varied in importance between groups. Clusters analyses showed that individual and dyadic pretend play explained self-regulation in children of both groups. Specifically, in both groups, the higher was symbolic behavior in creativity context, the higher was self-regulation. PMID:17576048

  13. Learning with sublexical information from emerging reading vocabularies in exceptionally early and normal reading development.

    PubMed

    Thompson, G Brian; Fletcher-Flinn, Claire M; Wilson, Kathryn J; McKay, Michael F; Margrain, Valerie G

    2015-03-01

    Predictions from theories of the processes of word reading acquisition have rarely been tested against evidence from exceptionally early readers. The theories of Ehri, Share, and Byrne, and an alternative, Knowledge Sources theory, were so tested. The former three theories postulate that full development of context-free letter sounds and awareness of phonemes are required for normal acquisition, while the claim of the alternative is that with or without such, children can use sublexical information from their emerging reading vocabularies to acquire word reading. Results from two independent samples of children aged 3-5, and 5 years, with mean word reading levels of 7 and 9 years respectively, showed underdevelopment of their context-free letter sounds and phoneme awareness, relative to their word reading levels and normal comparison samples. Despite such underdevelopment, these exceptional readers engaged in a form of phonological recoding that enabled pseudoword reading, at the level of older-age normal controls matched on word reading level. Moreover, in the 5-year-old sample further experiments showed that, relative to normal controls, they had a bias toward use of sublexical information from their reading vocabularies for phonological recoding of heterophonic pseudowords with irregular consistent spelling, and were superior in accessing word meanings independently of phonology, although only if the readers were without exposure to explicit phonics. The three theories were less satisfactory than the alternative theory in accounting for the learning of the exceptionally early readers. PMID:25498743

  14. The beginnings of the Southern Child/Pediatric Neurology Society.

    PubMed

    Dyken, Paul Richard; Bodensteiner, John B

    2015-04-01

    The founding and early development of the Southern Pediatric Neurology Society was in many ways parallel to that of the Child Neurology Society. The organization started out as the Southern Child Neurology Society but the name was changed at the time of incorporation so as to avoid confusion of identity and purpose with the larger Child Neurology Society. Although there are archives of early days and the later development of the Southern Pediatric Neurology Society, the details have never been set down in a narrative explaining the events that led to the development of the organization. In this paper, we try to produce a written record of the history of the founding and early development of the Southern Pediatric Neurology Society. PMID:24646505

  15. The human brain and face: mechanisms of cranial, neurological and facial development revealed through malformations of holoprosencephaly, cyclopia and aberrations in chromosome 18.

    PubMed

    Gondré-Lewis, Marjorie C; Gboluaje, Temitayo; Reid, Shaina N; Lin, Stephen; Wang, Paul; Green, William; Diogo, Rui; Fidélia-Lambert, Marie N; Herman, Mary M

    2015-09-01

    The study of inborn genetic errors can lend insight into mechanisms of normal human development and congenital malformations. Here, we present the first detailed comparison of cranial and neuro pathology in two exceedingly rare human individuals with cyclopia and alobar holoprosencephaly (HPE) in the presence and absence of aberrant chromosome 18 (aCh18). The aCh18 fetus contained one normal Ch18 and one with a pseudo-isodicentric duplication of chromosome 18q and partial deletion of 18p from 18p11.31 where the HPE gene, TGIF, resides, to the p terminus. In addition to synophthalmia, the aCh18 cyclopic malformations included a failure of induction of most of the telencephalon - closely approximating anencephaly, unchecked development of brain stem structures, near absence of the sphenoid bone and a malformed neurocranium and viscerocranium that constitute the median face. Although there was complete erasure of the olfactory and superior nasal structures, rudiments of nasal structures derived from the maxillary bone were evident, but with absent pharyngeal structures. The second non-aCh18 cyclopic fetus was initially classified as a true Cyclops, as it appeared to have a proboscis and one median eye with a single iris, but further analysis revealed two eye globes as expected for synophthalmic cyclopia. Furthermore, the proboscis was associated with the medial ethmoid ridge, consistent with an incomplete induction of these nasal structures, even as the nasal septum and paranasal sinuses were apparently developed. An important conclusion of this study is that it is the brain that predicts the overall configuration of the face, due to its influence on the development of surrounding skeletal structures. The present data using a combination of macroscopic, computed tomography (CT) and magnetic resonance imaging (MRI) techniques provide an unparalleled analysis on the extent of the effects of median defects, and insight into normal development and patterning of the brain

  16. [Between neurology and psychiatry].

    PubMed

    Levine, Joseph; Toser, Doron; Zeev, Kaplan

    2014-06-01

    In this review we will discuss the broad spectrum of possible relationships between the fields of neurology and psychiatry alongside weighing the pros and cons of each alternative relationship. This is in the hope that such discussions will allow an informed decision regarding the construction of future relations between these two areas. The possible connections between the areas are discussed in light of possible relationships that exist between the two groups in the mathematical world with reference to the proposed solutions to the psychophysical mind-body problem. PMID:25095609

  17. Demonology, neurology, and medicine in Edwardian Britain.

    PubMed

    Hayward, Rhodri

    2004-01-01

    The idea of a conflict between demonology and psychiatry has been a foundational myth in the history of medicine. Nineteenth-century alienists such as J.-M. Charcot and Henry Maudsley developed critiques of supernatural phenomena in an attempt to pathologize religious experience. Modern historians have reanalyzed these critiques, representing them as strategies in medical professionalization. These accounts all maintain an oddly bifurcated approach to the perceived conflict, treating demonology, as a passive and unchanging set of practices, while medicine is depicted as an active and aggressive agent. An examination of early twentieth-century demonological literature reveals a very different story. Fundamentalists and Pentecostalists engaged with the problems of conversion and possession, developing sophisticated models of the normal and the pathological in spiritual experience. Their writings drew upon medical and psychiatric sources ranging widely from Pastorian germ theory to Jacksonian neurology. This article explores the points of contact between the medical and demonological communities in order to demonstrate the contested nature of biomedical innovation. PMID:15161086

  18. Cranial index of children with normal and abnormal brain development in Sokoto, Nigeria: A comparative study

    PubMed Central

    Musa, Muhammad Awwal; Zagga, Abdullahi Daudu; Danfulani, Mohammed; Tadros, Aziz Abdo; Ahmed, Hamid

    2014-01-01

    Background: Abnormal brain development due to neurodevelopmental disorders in children has always been an important concern, but yet has to be considered as a significant public health problem, especially in the low- and middle-income countries including Nigeria. Aims: The aim of this study is to determine whether abnormal brain development in the form of neurodevelopmental disorders causes any deviation in the cranial index of affected children. Materials and Methods: This is a comparative study on the head length, head width, and cranial index of 112 children (72 males and 40 females) diagnosed with at least one abnormal problem in brain development, in the form of a neurodevelopmental disorder (NDD), in comparison with that of 218 normal growing children without any form of NDD (121 males and 97 females), aged 0-18 years old seen at the Usmanu Danfodiyo University Teaching Hospital, Sokoto, over a period of six months, June to December, 2012. The head length and head width of the children was measured using standard anatomical landmarks and cranial index calculated. The data obtained was entered into the Microsoft excel worksheet and analyzed using SPSS version 17. Results: The mean Cephalic Index for normal growing children with normal brain development was 79.82 ± 3.35 and that of the children with abnormal brain development was 77.78 ± 2.95 and the difference between the two groups was not statistically significant (P > 0.05). Conclusion: It can be deduced from this present study that the cranial index does not change in children with neurodevelopmental disorders. PMID:24966551

  19. Nutrition in neurologically impaired children

    PubMed Central

    2009-01-01

    Malnutrition, either under- or overnutrition, is a common condition among neurologically impaired children. Energy needs are difficult to define in this heterogeneous population, and there is a lack of information on what normal growth should be in these children. Non-nutritional factors may influence growth, but nutritional factors such as insufficient caloric intake, excessive nutrient losses and abnormal energy metabolism also contribute to growth failure. Malnutrition is associated with significant morbidity, while nutritional rehabilitation improves overall health. Nutritional support should be an integral part of the management of neurologically impaired children, and should focus not only on improving nutritional status but also on improving quality of life for patients and their families. When considering nutritional intervention, oromotor dysfunction, gastroesophageal reflux and pulmonary aspiration must be addressed and a multidisciplinary team should be involved. Children at risk for nutrition-related problems should be identified early. An assessment of nutritional status should be performed at least yearly, and more frequently in infants and young children, or in children at risk for malnutrition. Oral intake should be optimized if safe, but enteral tube feedings should be initiated in children with oromotor dysfunction, leading to clinically significant aspiration, or in children unable to maintain an adequate nutritional status with oral intake. Nasogastric tube feeding should be used for short-term intervention, but if long-term nutritional intervention is required, a gastrostomy should be considered. Antireflux procedures should be reserved for children with significant gastroesophageal reflux. The patient’s response to nutritional intervention should be carefully monitored to avoid excessive weight gain after initiation of enteral nutrition, and paediatric formulas should be used to avoid micronutrient deficiencies. PMID:20592978

  20. WNT4 is required for normal ovarian follicle development and female fertility.

    PubMed

    Boyer, Alexandre; Lapointe, Evelyne; Zheng, Xiaofeng; Cowan, Robert G; Li, Huaiguang; Quirk, Susan M; DeMayo, Francesco J; Richards, JoAnne S; Boerboom, Derek

    2010-08-01

    To study the role of WNT4 in the postnatal ovary, a mouse strain bearing a floxed Wnt4 allele was created and mated to the Amhr2(tm3(cre)Bhr) strain to target deletion of Wnt4 to granulosa cells. Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) mice had reduced ovary weights and produced smaller litters (P<0.05). Serial follicle counting demonstrated that Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) mice were born with a normal ovarian reserve and maintained normal numbers of small follicles until puberty but had only 25.2% of the normal number of healthy antral follicles. Some Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) mice had no antral follicles or corpora lutea and underwent premature follicle depletion. RT-PCR analyses of Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) granulosa cells and cultured granulosa cells that overexpress WNT4 demonstrated that WNT4 regulates the expression of Star, Cyp11a1, and Cyp19, steroidogenic genes previously identified as downstream targets of the WNT signaling effector CTNNB1. Decreased serum progesterone levels were found in immature, gonadotropin-treated Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) mice (P<0.05). WNT4- and CTNNB1-overexpressing cultured granulosa cells were analyzed by microarray for alterations in gene expression, which showed that WNT4 regulates additional genes involved in late follicle development via the WNT/CTNNB1 signaling pathway. Together, these data indicate that WNT4 is required for normal antral follicle development and may act by regulating granulosa cell functions including steroidogenesis. PMID:20371632

  1. Normal weight individuals who develop type 2 diabetes: the personal fat threshold.

    PubMed

    Taylor, Roy; Holman, Rury R

    2015-04-01

    Type 2 diabetes (T2DM) is frequently regarded as a disease of obesity and its occurrence in individuals of normal body mass index (BMI) is often regarded as indicating a non-obesity-related subtype. However, the evidence for such a distinct, common subtype is lacking. The United Kingdom Prospective Diabetes Study (UKPDS) cohort of people diagnosed with T2DM in the 1970s and 1980s had a median BMI of only 28 kg/m2. UKPDS data form the basis of current understanding of the condition even though one in three of those studied had a BMI of less than 25 kg/m2. BMI, though, is a population measure and not a rigid personal guide. Weight loss is considered de rigueur for treating obese diabetic individuals, but it is not usually considered for those deemed to have a normal BMI. Given the new evidence that early T2DM can be reversed to normal glucose tolerance by substantial weight loss, it is important to explain why non-overweight people respond to this intervention as well as obese individuals. We hypothesize that each individual has a personal fat threshold (PFT) which, if exceeded, makes likely the development of T2DM. Subsequent weight loss to take the individual below their level of susceptibility should allow return to normal glucose control. Crucially, the hypothesized PFT is independent of BMI. It allows both understanding of development of T2DM in the non-obese and remission of diabetes after substantial weight loss in people who remain obese by definition. To illustrate this concept, we present the distribution curve of BMI at diagnosis for the UKPDS cohort, together with a diagram explaining individual behaviour within the population. The concept of PFT is of practical benefit in explaining the onset of diabetes and its logical management to the non-obese majority of people with T2DM. PMID:25515001

  2. Prefrontal GABA(A) receptor alpha-subunit expression in normal postnatal human development and schizophrenia.

    PubMed

    Duncan, Carlotta E; Webster, Maree J; Rothmond, Debora A; Bahn, Sabine; Elashoff, Michael; Shannon Weickert, Cynthia

    2010-07-01

    Cortical GABA deficits that are consistently reported in schizophrenia may reflect an etiology of failed normal postnatal neurotransmitter maturation. Previous studies have found prefrontal cortical GABA(A) receptor alpha subunit alterations in schizophrenia, yet their relationship to normal developmental expression profiles in the human cortex has not been determined. The aim of this study was to quantify GABA(A) receptor alpha-subunit mRNA expression patterns in human dorsolateral prefrontal cortex (DLPFC) during normal postnatal development and in schizophrenia cases compared to controls. Transcript levels of GABA(A) receptor alpha subunits were measured using microarray and qPCR analysis of 60 normal individuals aged 6weeks to 49years and in 37 patients with schizophrenia/schizoaffective disorder and 37 matched controls. We detected robust opposing changes in cortical GABA(A) receptor alpha1 and alpha5 subunits during the first few years of postnatal development, with a 60% decrease in alpha5 mRNA expression and a doubling of alpha1 mRNA expression with increasing age. In our Australian schizophrenia cohort we detected decreased GAD67 mRNA expression (p=0.0012) and decreased alpha5 mRNA expression (p=0.038) in the DLPFC with no significant change of other alpha subunits. Our findings confirm that GABA deficits (reduced GAD67) are a consistent feature of schizophrenia postmortem brain studies. Our study does not confirm alterations in cortical alpha1 or alpha2 mRNA levels in the schizophrenic DLPFC, as seen in previous studies, but instead we report a novel down-regulation of alpha5 subunit mRNA suggesting that post-synaptic alterations of inhibitory receptors are an important feature of schizophrenia but may vary between cohorts. PMID:20100621

  3. Bridging neuroanatomy, neuroradiology and neurology: three-dimensional interactive atlas of neurological disorders.

    PubMed

    Nowinski, W L; Chua, B C

    2013-06-01

    Understanding brain pathology along with the underlying neuroanatomy and the resulting neurological deficits is of vital importance in medical education and clinical practice. To facilitate and expedite this understanding, we created a three-dimensional (3D) interactive atlas of neurological disorders providing the correspondence between a brain lesion and the resulting disorder(s). The atlas contains a 3D highly parcellated atlas of normal neuroanatomy along with a brain pathology database. Normal neuroanatomy is divided into about 2,300 components, including the cerebrum, cerebellum, brainstem, spinal cord, arteries, veins, dural sinuses, tracts, cranial nerves (CN), white matter, deep gray nuclei, ventricles, visual system, muscles, glands and cervical vertebrae (C1-C5). The brain pathology database contains 144 focal and distributed synthesized lesions (70 vascular, 36 CN-related, and 38 regional anatomy-related), each lesion labeled with the resulting disorder and associated signs, symptoms, and/or syndromes compiled from materials reported in the literature. The initial view of each lesion was preset in terms of its location and size, surrounding surface and sectional (magnetic resonance) neuroanatomy, and labeling of lesion and neuroanatomy. In addition, a glossary of neurological disorders was compiled and for each disorder materials from textbooks were included to provide neurological description. This atlas of neurological disorders is potentially useful to a wide variety of users ranging from medical students, residents and nurses to general practitioners, neuroanatomists, neuroradiologists and neurologists, as it contains both normal (surface and sectional) brain anatomy and pathology correlated with neurological disorders presented in a visual and interactive way. PMID:23859280

  4. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases

    PubMed Central

    Cao, Dan-Dan; Li, Lu; Chan, Wai-Yee

    2016-01-01

    MicroRNAs (miRNAs) are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS) development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases. PMID:27240359

  5. Medical marijuana in neurology.

    PubMed

    Benbadis, Selim R; Sanchez-Ramos, Juan; Bozorg, Ali; Giarratano, Melissa; Kalidas, Kavita; Katzin, Lara; Robertson, Derrick; Vu, Tuan; Smith, Amanda; Zesiewicz, Theresa

    2014-12-01

    Constituents of the Cannabis plant, cannabinoids, may be of therapeutic value in neurologic diseases. The most abundant cannabinoids are Δ(9)-tetrahydrocannabinol, which possesses psychoactive properties, and cannabidiol, which has no intrinsic psychoactive effects, but exhibits neuroprotective properties in preclinical studies. A small number of high-quality clinical trials support the safety and efficacy of cannabinoids for treatment of spasticity of multiple sclerosis, pain refractory to opioids, glaucoma, nausea and vomiting. Lower level clinical evidence indicates that cannabinoids may be useful for dystonia, tics, tremors, epilepsy, migraine and weight loss. Data are also limited in regards to adverse events and safety. Common nonspecific adverse events are similar to those of other CNS 'depressants' and include weakness, mood changes and dizziness. Cannabinoids can have cardiovascular adverse events and, when smoked chronically, may affect pulmonary function. Fatalities are rare even with recreational use. There is a concern about psychological dependence, but physical dependence is less well documented. Cannabis preparations may presently offer an option for compassionate use in severe neurologic diseases, but at this point, only when standard-of-care therapy is ineffective. As more high-quality clinical data are gathered, the therapeutic application of cannabinoids will likely expand. PMID:25427150

  6. Coprophagia in neurologic disorders.

    PubMed

    Josephs, Keith A; Whitwell, Jennifer L; Parisi, Joseph E; Lapid, Maria I

    2016-05-01

    We report on the unusual behavior of coprophagia (eating one's own feces) in neurologic disorders. The Mayo Clinic Health Sciences-computerized clinical database was queried for all patients evaluated at our institution between 1995 and 2015 in which coprophagia was documented in the medical records. Twenty-six patients were identified of which 17 had coprophagia. Of the 17 patients, five were excluded due to age at onset less than 10 years, leaving 12 adult patients for this study. The median age at onset of coprophagia in the 12 patients was 55 years (range 20-88 years), and half were female. Additional behaviors were common including scatolia (fecal smearing), hypersexuality, aggression, and pica (eating objects of any kind). Coprophagia was associated with neurodegenerative dementia in six patients, developmental delay in two, and one each with seizures, steroid psychosis, frontal lobe tumor, and schizoaffective disorder. Brain imaging in the six patients with dementia showed moderate-to-severe medial temporal lobe atrophy, as well as mild frontal lobe atrophy. Autopsy examination was performed in one patient and revealed frontotemporal lobar degeneration pathology. Many different behavioral and pharmacologic therapies were implemented, yet only haloperidol was associated with discontinuation of the behavior. Coprophagia is associated with different neurologic disorders, particularly neurodegenerative dementias. The behavior may be related to medial temporal lobe atrophy, similar to the Klüver-Bucy syndrome. Haloperidol appears to be effective in treating the behavior, at least in some patients. PMID:27017341

  7. Flower development in normal tomato and a gibberellin-deficient (ga-2) mutant

    SciTech Connect

    Vester, J.E.; Zeevaart, J.A.D. )

    1988-01-01

    Flower buds of a tomato (Lycopersicon esculentum Mill.) gibberellin-deficient mutant (ga-2/ga-2) were initiated, but did not develop to maturity and eventually aborted. If GA{sub 1} was applied to a developing inflorescence or stem tip, completion of flower bud development and fruit set occurred. In development of the ga-2 flowers, the corolla and stamens did not elongate and the style was misshapen or extended past the tip of the anthers. Light microscope observation indicated that meiosis of both microsporocytes and megasporocytes did not occur. Cells of the sporogenous layer were initiated, but growth was arrested and they eventually degenerated. The ovary was normal in appearance. However, the megasporocytes degenerated, giving rise to a cavity in the ovule. Thus, although GA is not required for flower initiation in tomato, it is essential for meiosis of the microsporocytes and megasporocytes and elongation of the corolla and stamens.

  8. Apical Secretion of FSTL1 in the Respiratory Epithelium for Normal Lung Development

    PubMed Central

    Li, Xue; Liang, Jiurong; Jiang, Dianhua; Geng, Yan; Ning, Wen

    2016-01-01

    Follistatin-like 1 (FSTL1) is a secreted bone morphogenetic protein (BMP) antagonist, and it plays a crucial role in normal lung development. Deletion of Fstl1 leads to postnatal death in mice due to respiratory failure. To further explore the role of FSTL1 in mouse lung development, we created a transgene SFTPC-Fstl1 allele mouse displaying significant epithelial overexpression of Fstl1 in all stages of lung development. However, epithelial overexpression of Fstl1 did not alter lung morphogenesis, epithelial differentiation and lung function. Moreover, we found that FSTL1 function was blocked by the epithelial polarization, which was reflected by the remarkable apical secretion of FSTL1 and the basolateral BMP signaling. Taken together, this study demonstrates that tightly spatial interaction of FSTL1 and BMP signaling plays an essential role in lung development. PMID:27355685

  9. Apical Secretion of FSTL1 in the Respiratory Epithelium for Normal Lung Development.

    PubMed

    Li, Xiaohe; Fang, Yinshan; Li, Xue; Liang, Jiurong; Jiang, Dianhua; Geng, Yan; Ning, Wen

    2016-01-01

    Follistatin-like 1 (FSTL1) is a secreted bone morphogenetic protein (BMP) antagonist, and it plays a crucial role in normal lung development. Deletion of Fstl1 leads to postnatal death in mice due to respiratory failure. To further explore the role of FSTL1 in mouse lung development, we created a transgene SFTPC-Fstl1 allele mouse displaying significant epithelial overexpression of Fstl1 in all stages of lung development. However, epithelial overexpression of Fstl1 did not alter lung morphogenesis, epithelial differentiation and lung function. Moreover, we found that FSTL1 function was blocked by the epithelial polarization, which was reflected by the remarkable apical secretion of FSTL1 and the basolateral BMP signaling. Taken together, this study demonstrates that tightly spatial interaction of FSTL1 and BMP signaling plays an essential role in lung development. PMID:27355685

  10. cdk4 Deficiency Inhibits Skin Tumor Development but Does Not Affect Normal Keratinocyte Proliferation

    PubMed Central

    Rodriguez-Puebla, Marcelo L.; Miliani de Marval, Paula L.; LaCava, Margaret; Moons, David S.; Kiyokawa, Hiroaki; Conti, Claudio J.

    2002-01-01

    Most human tumors have mutations that result in deregulation of the cdk4/cyclin-Ink4-Rb pathway. Overexpression of D-type cyclins or cdk4 and inactivation of Ink4 inhibitors are common in human tumors. Conversely, lack of cyclin D1 expression results in significant reduction in mouse skin and mammary tumor development. However, complete elimination of tumor development was not observed in these models, suggesting that other cyclin/cdk complexes play an important role in tumorigenesis. Here we described the effects of cdk4 deficiency on mouse skin proliferation and tumor development. Cdk4 deficiency resulted in a 98% reduction in the number of tumors generated through the two-stage carcinogenesis model. The absence of cdk4 did not affect normal keratinocyte proliferation and both wild-type and cdk4 knockout epidermis are equally affected after topical treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), resulting in epidermal hyperplasia. In similar fashion, cdk4 knockout keratinocytes proliferated well in an in vivo model of wound-induced proliferation. Biochemical studies in mouse epidermis showed that cdk6 activity increased twofold in cdk4-deficient mice compared to wild-type siblings. These results suggest that therapeutic approaches to inhibit cdk4 activity could provide a target to inhibit tumor development with minimal or no effect in normal tissue. PMID:12163365

  11. Stromal androgen receptor roles in the development of normal prostate, benign prostate hyperplasia, and prostate cancer.

    PubMed

    Wen, Simeng; Chang, Hong-Chiang; Tian, Jing; Shang, Zhiqun; Niu, Yuanjie; Chang, Chawnshang

    2015-02-01

    The prostate is an androgen-sensitive organ that needs proper androgen/androgen receptor (AR) signals for normal development. The progression of prostate diseases, including benign prostate hyperplasia (BPH) and prostate cancer (PCa), also needs proper androgen/AR signals. Tissue recombination studies report that stromal, but not epithelial, AR plays more critical roles via the mesenchymal-epithelial interactions to influence the early process of prostate development. However, in BPH and PCa, much more attention has been focused on epithelial AR roles. However, accumulating evidence indicates that stromal AR is also irreplaceable and plays critical roles in prostate disease progression. Herein, we summarize the roles of stromal AR in the development of normal prostate, BPH, and PCa, with evidence from the recent results of in vitro cell line studies, tissue recombination experiments, and AR knockout animal models. Current evidence suggests that stromal AR may play positive roles to promote BPH and PCa progression, and targeting stromal AR selectively with AR degradation enhancer, ASC-J9, may allow development of better therapies with fewer adverse effects to battle BPH and PCa. PMID:25432062

  12. Stromal Androgen Receptor Roles in the Development of Normal Prostate, Benign Prostate Hyperplasia, and Prostate Cancer

    PubMed Central

    Wen, Simeng; Chang, Hong-Chiang; Tian, Jing; Shang, Zhiqun; Niu, Yuanjie; Chang, Chawnshang

    2016-01-01

    The prostate is an androgen-sensitive organ that needs proper androgen/androgen receptor (AR) signals for normal development. The progression of prostate diseases, including benign prostate hyperplasia (BPH) and prostate cancer (PCa), also needs proper androgen/AR signals. Tissue recombination studies report that stromal, but not epithelial, AR plays more critical roles via the mesenchymal-epithelial interactions to influence the early process of prostate development. However, in BPH and PCa, much more attention has been focused on epithelial AR roles. However, accumulating evidence indicates that stromal AR is also irreplaceable and plays critical roles in prostate disease progression. Herein, we summarize the roles of stromal AR in the development of normal prostate, BPH, and PCa, with evidence from the recent results of in vitro cell line studies, tissue recombination experiments, and AR knockout animal models. Current evidence suggests that stromal AR may play positive roles to promote BPH and PCa progression, and targeting stromal AR selectively with AR degradation enhancer, ASC-J9, may allow development of better therapies with fewer adverse effects to battle BPH and PCa. PMID:25432062

  13. Fellowship programs in behavioral neurology.

    PubMed

    Green, R C; Benjamin, S; Cummings, J L

    1995-03-01

    We sent a behavioral neurology fellowship questionnaire to each of the training directors of 160 neurology residency programs throughout the world, seeking information about programs offering advanced training in behavioral neurology (or similar fellowships in cognitive neurology, neurobehavior, or cognitive neuroscience). Response rate was 100%. Thirty-four respondents reported active fellowship programs in behavioral neurology, and 28 additional respondents indicated that a behavioral neurology fellowship was planned. Nine of the 34 programs (26.5%) defined themselves as exclusively or predominantly concerned with dementia and age-related neurobehavioral disorders. Directors of the 34 active fellowship programs estimated that their combined programs had graduated 199 fellows and were currently training fifty. Most fellowships concentrated on outpatient clinical training, with teaching required by 78.1% and research required by 81.8%. Specialty certification for behavioral neurology was favored by over 75% of behavioral neurology fellowship training directors but by only 30% of training directors in residency programs without behavioral neurology fellowships. Behavioral neurology training programs have grown dramatically in response to an increased recognition of the academic interest in and the clinical needs for these services. PMID:7898686

  14. Prevention of Neurologic Injuries in Equestrian Sports.

    ERIC Educational Resources Information Center

    Brooks, William H.; Bixby-Hammett, Doris M.

    1988-01-01

    Risk of neurological injuries accompanies horseback riding, especially for children and adolescents. This article describes the mechanisms of craniospinal injuries and suggests measures to lessen risks. Measures include: identifying individuals who should not ride, developing criteria for resumption of riding after injury, developing protective…

  15. Visuo-manual coordination in preterm infants without neurological impairments.

    PubMed

    Petkovic, Maja; Chokron, Sylvie; Fagard, Jacqueline

    2016-01-01

    The extent of and reasons for visuo-manual coordination deficits in moderate and late preterm born infants without neurological impairments are not well known. This paper presents a longitudinal study on the visuo-manual development of twelve preterm infants, born after 33-36 weeks of gestation without neurological complications, between the ages of 6 and 12 months. Visuo-manual integration and grasping were assessed using the Peabody Developmental Motor Scales, along with bimanual coordination and handedness tests. Visual function was examined once prior to the beginning of the study. Gross motor development was also evaluated every month. Preterm infants were compared to a control group of ten full-term infants according to corrected age. Compared to full-terms, the visual perception of preterm infants was close to normal, with only a measure of visual fixation lower than in full-terms. In contrast, preterm infants had delayed development of visuo-manual integration, grasping, bimanual coordination, and handedness even when compared using corrected age. Tonicity and gestational age at birth were the main variables associated to the delays. These results are discussed in terms of the possible factors underlying such delays. They need to be confirmed on a larger sample of preterm born children, and to be correlated with later development. This would allow developing markers of future neuropsychological impairments during childhood. PMID:26812594

  16. Regulation of Differentiation by Calcium-Sensing Receptor in Normal and Tumoral Developing Nervous System

    PubMed Central

    Mateo-Lozano, Silvia; García, Marta; Rodríguez-Hernández, Carlos J.; de Torres, Carmen

    2016-01-01

    During normal development of the nervous system (NS), neural progenitor cells (NPCs) produce specialized populations of neurons and glial cells upon cell fate restriction and terminal differentiation. These sequential processes require the dynamic regulation of thousands of genes. The calcium-sensing receptor (CaSR) is temporally and spatially regulated in both neurons and glial cells during development of the NS. In particular, CaSR expression and function have been shown to play a significant role during differentiation of NPCs toward the oligodendrocyte lineage and also in maturation of cerebellar granule cell precursors (GCPs). Moreover, CaSR regulates axonal and dendritic growth in both central and peripheral nervous systems (PNSs), a process necessary for proper construction of mature neuronal networks. On the other hand, several lines of evidence support a role for CaSR in promotion of cell differentiation and inhibition of proliferation in neuroblastoma, a tumor arising from precursor cells of developing PNS. Thus, among the variety of NS functions in which the CaSR participates, this mini-review focuses on its role in differentiation of normal and tumoral cells. Current knowledge of the mechanisms responsible for CaSR regulation and function in these contexts is also discussed, together with the therapeutic opportunities provided by CaSR allosteric modulators. PMID:27242543

  17. Celsr3 is required for normal development of GABA circuits in the inner retina.

    PubMed

    Lewis, Alaron; Wilson, Neil; Stearns, George; Johnson, Nicolas; Nelson, Ralph; Brockerhoff, Susan E

    2011-08-01

    The identity of the specific molecules required for the process of retinal circuitry formation is largely unknown. Here we report a newly identified zebrafish mutant in which the absence of the atypical cadherin, Celsr3, leads to a specific defect in the development of GABAergic signaling in the inner retina. This mutant lacks an optokinetic response (OKR), the ability to visually track rotating illuminated stripes, and develops a super-normal b-wave in the electroretinogram (ERG). We find that celsr3 mRNA is abundant in the amacrine and ganglion cells of the retina, however its loss does not affect synaptic lamination within the inner plexiform layer (IPL) or amacrine cell number. We localize the ERG defect pharmacologically to a late-stage disruption in GABAergic modulation of ON-bipolar cell pathway and find that the DNQX-sensitive fast b1 component of the ERG is specifically affected in this mutant. Consistently, we find an increase in GABA receptors on mutant ON-bipolar terminals, providing a direct link between the observed physiological changes and alterations in GABA signaling components. Finally, using blastula transplantation, we show that the lack of an OKR is due, at least partially, to Celsr3-mediated defects within the brain. These findings support the previously postulated inner retina origin for the b1 component and reveal a new role for Celsr3 in the normal development of ON visual pathway circuitry in the inner retina. PMID:21852962

  18. Differential Roles of ERα and ERβ in Normal and Neoplastic Development in the Mouse Mammary Gland

    PubMed Central

    Mehta, Rajendra G.; Hawthorne, Michael; Mehta, Rajeshwari R.; Torres, Karen E. O.; Peng, Xinjian; McCormick, David L.; Kopelovich, Levy

    2014-01-01

    The present experiments were performed to determine the roles of estrogen receptors α and β (ERα and ERβ) in normal and neoplastic development in the mouse mammary gland. In wild-type mice, in vivo administration of estradiol (E) + progesterone (P) stimulated mammary ductal growth and alveolar differentiation. Mammary glands from mice in which the ERβ gene has been deleted (βERKO mice) demonstrated normal ductal growth and differentiation in response to E + P. By contrast, mammary glands from mice in which the ERα gene has been deleted (αERKO mice) demonstrated only rudimentary ductal structures that did not differentiate in response to E + P. EGF demonstrates estrogen-like activity in the mammary glands of αERKO mice: treatment of αERKO mice with EGF + P (without E) supported normal mammary gland development, induced expression of progesterone receptor (PR), and increased levels of G-protein-coupled receptor (GPR30) protein. Mammary gland development in βERKO mice treated with EGF + P was comparable to that of wild-type mice receiving EGF + P; EGF had no statistically significant effects on the induction of PR or expression of GPR30 in mammary glands harvested from either wild-type mice or βERKO mice. In vitro exposure of mammary glands to 7,12-dimethylbenz[a]anthracene (DMBA) induced preneoplastic mammary alveolar lesions (MAL) in glands from wild-type mice and βERKO mice, but failed to induce MAL in mammary glands from αERKO mice. Microarray analysis of DMBA-treated mammary glands identified 28 functional pathways whose expression was significantly different in αERKO mice versus both βERKO and wild-type mice; key functions that were differentially expressed in αERKO mice included cell division, cell proliferation, and apoptosis. The data demonstrate distinct roles for ERα and ERβ in normal and neoplastic development in the mouse mammary gland, and suggest that EGF can mimic the ERα-mediated effects of E in this organ. PMID:25405629

  19. History of neurologic examination books.

    PubMed

    Boes, Christopher J

    2015-04-01

    The objective of this study was to create an annotated list of textbooks dedicated to teaching the neurologic examination. Monographs focused primarily on the complete neurologic examination published prior to 1960 were reviewed. This analysis was limited to books with the word "examination" in the title, with exceptions for the texts of Robert Wartenberg and Gordon Holmes. Ten manuals met the criteria. Works dedicated primarily to the neurologic examination without a major emphasis on disease description or treatment first appeared in the early 1900s. Georg Monrad-Krohn's "Blue Book of Neurology" ("Blue Bible") was the earliest success. These treatises served the important purpose of educating trainees on proper neurologic examination technique. They could make a reputation and be profitable for the author (Monrad-Krohn), highlight how neurology was practiced at individual institutions (McKendree, Denny-Brown, Holmes, DeJong, Mayo Clinic authors), and honor retiring mentors (Mayo Clinic authors). PMID:25829645

  20. Antisense Therapy in Neurology

    PubMed Central

    Lee, Joshua J.A.; Yokota, Toshifumi

    2013-01-01

    Antisense therapy is an approach to fighting diseases using short DNA-like molecules called antisense oligonucleotides. Recently, antisense therapy has emerged as an exciting and promising strategy for the treatment of various neurodegenerative and neuromuscular disorders. Previous and ongoing pre-clinical and clinical trials have provided encouraging early results. Spinal muscular atrophy (SMA), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), Duchenne muscular dystrophy (DMD), Fukuyama congenital muscular dystrophy (FCMD), dysferlinopathy (including limb-girdle muscular dystrophy 2B; LGMD2B, Miyoshi myopathy; MM, and distal myopathy with anterior tibial onset; DMAT), and myotonic dystrophy (DM) are all reported to be promising targets for antisense therapy. This paper focuses on the current progress of antisense therapies in neurology. PMID:25562650

  1. Neurology and diving.

    PubMed

    Massey, E Wayne; Moon, Richard E

    2014-01-01

    Diving exposes a person to the combined effects of increased ambient pressure and immersion. The reduction in pressure when surfacing can precipitate decompression sickness (DCS), caused by bubble formation within tissues due to inert gas supersaturation. Arterial gas embolism (AGE) can also occur due to pulmonary barotrauma as a result of breath holding during ascent or gas trapping due to disease, causing lung hyperexpansion, rupture and direct entry of alveolar gas into the blood. Bubble disease due to either DCS or AGE is collectively known as decompression illness. Tissue and intravascular bubbles can induce a cascade of events resulting in CNS injury. Manifestations of decompression illness can vary in severity, from mild (paresthesias, joint pains, fatigue) to severe (vertigo, hearing loss, paraplegia, quadriplegia). Particularly as these conditions are uncommon, early recognition is essential to provide appropriate management, consisting of first aid oxygen, targeted fluid resuscitation and hyperbaric oxygen, which is the definitive treatment. Less common neurologic conditions that do not require hyperbaric oxygen include rupture of a labyrinthine window due to inadequate equalization of middle ear pressure during descent, which can precipitate vertigo and hearing loss. Sinus and middle ear overpressurization during ascent can compress the trigeminal and facial nerves respectively, causing temporary facial hypesthesia and lower motor neuron facial weakness. Some conditions preclude safe diving, such as seizure disorders, since a convulsion underwater is likely to be fatal. Preventive measures to reduce neurologic complications of diving include exclusion of individuals with specific medical conditions and safe diving procedures, particularly related to descent and ascent. PMID:24365363

  2. Dicer1 Is Essential for Female Fertility and Normal Development of the Female Reproductive System

    PubMed Central

    Hong, Xiaoman; Luense, Lacey J.; McGinnis, Lynda K.; Nothnick, Warren B.; Christenson, Lane K.

    2008-01-01

    The ribonuclease III endonuclease, Dicer1 (also known as Dicer), is essential for the synthesis of the 19–25 nucleotide noncoding RNAs known as micro-RNAs (miRNAs). These miRNAs associate with the RNA-induced silencing complex to regulate gene expression posttranscriptionally by base pairing with 3′untranslated regions of complementary mRNA targets. Although it is established that miRNAs are expressed in the reproductive tract, their functional role and effect on reproductive disease remain unknown. The studies herein establish for the first time the reproductive phenotype of mice with loxP insertions in the Dicer1 gene (Dicer1fl/fl) when crossed with mice expressing Cre-recombinase driven by the anti-müllerian hormone receptor 2 promoter (Amhr2Cre/+). Adult female Dicer1fl/fl;Amhr2Cre/+ mice displayed normal mating behavior but failed to produce offspring when exposed to fertile males during a 5-month breeding trial. Morphological and histological assessments of the reproductive tracts of immature and adult mice indicated that the uterus and oviduct were hypotrophic, and the oviduct was highly disorganized. Natural mating of Dicer1fl/fl;Amhr2Cre/+ females resulted in successful fertilization as evidenced by the recovery of fertilized oocytes on d 1 pregnancy, which developed normally to blastocysts in culture. Developmentally delayed embryos were collected from Dicer1fl/fl; Amhr2Cre/+ mice on d 3 pregnancy when compared with controls. Oviductal transport was disrupted in the Dicer1fl/fl;Amhr2Cre/+ mouse as evidenced by the failure of embryos to enter the uterus on d 4 pregnancy. These studies implicate Dicer1/miRNA mediated posttranscriptional gene regulation in reproductive somatic tissues as critical for the normal development and function of these tissues and for female fertility. PMID:18703631

  3. Neurologic diseases in HIV-infected patients.

    PubMed

    Bilgrami, Mohammed; O'Keefe, Paul

    2014-01-01

    Since the introduction of highly active antiretroviral therapy there has been an improvement in the quality of life for people with HIV infection. Despite the progress made, about 70% of HIV patients develop neurologic complications. These originate either in the central or the peripheral nervous system (Sacktor, 2002). These neurologic disorders are divided into primary and secondary disorders. The primary disorders result from the direct effects of the virus and include HIV-associated neurocognitive disorder (HAND), HIV-associated vacuolar myelopathy (VM), and distal symmetric polyneuropathy (DSP). Secondary disorders result from marked immunosuppression and include opportunistic infections and primary central nervous system lymphoma (PCNSL). A differential diagnosis which can be accomplished by detailed history, neurologic examination, and by having a good understanding of the role of HIV in various neurologic disorders will help physicians in approaching these problems. The focus of this chapter is to discuss neuropathogenesis of HIV, the various opportunistic infections, primary CNS lymphoma, neurosyphilis, CNS tuberculosis, HIV-associated peripheral neuropathies, HIV-associated neurocognitive disorder (HAND), and vacuolar myelopathy (VM). It also relies on the treatment recommendations and guidelines for the above mentioned neurologic disorders proposed by the US Centers for Disease Control and Prevention (CDC) and the Infectious Diseases Society of America. PMID:24365422

  4. Approach to Neurometabolic Diseases from a Pediatric Neurological Point of View

    PubMed Central

    KARIMZADEH, Parvaneh

    2015-01-01

    Objective Neurometabolic disorders are an important group of diseases that mostly are presented in newborns and infants. Neurological manifestations are the prominent signs and symptoms in this group of diseases. Seizures are a common sign and are often refractory to antiepileptic drugs in untreated neurometabolic patients. The onset of symptoms for neurometabolic disorders appears after an interval of normal or near normal growth and development.Additionally, affected children may fare well until a catabolic crisis occurs. Patients with neurometabolic disorders during metabolic decompensation have severe clinical presentation, which include poor feeding, vomiting, lethargy, seizures, and loss of consciousness. This symptom is often fatal but severe neurological insult and regression in neurodevelopmental milestones can result as a prominent sign in patients who survived. Acute symptoms should be immediately treated regardless of the cause. A number of patients with neurometabolic disorders respond favorably and, in some instances, dramatically respond to treatment. Early detection and early intervention is invaluable in some patients to prevent catabolism and normal or near normal neurodevelopmental milestones. This paper discusses neurometabolic disorders, approaches to this group of diseases (from the view of a pediatric neurologist), clinical and neurological manifestations, neuroimaging and electroencephalography findings, early detection, and early treatment. PMID:25767534

  5. Differential requirements for eIF4E dose in normal development and cancer

    PubMed Central

    Truitt, Morgan L; Conn, Crystal S; Shi, Zhen; Pang, Xiaming; Tokuyasu, Taku; Coady, Alison M; Seo, Youngho; Barna, Maria; Ruggero, Davide

    2015-01-01

    SUMMARY eIF4E, the major cap-binding protein, has long been considered limiting for translating the mammalian genome. However, the requirement for eIF4E dose at an organismal level remains unexplored. By generating an Eif4e haploinsufficient mouse, we found that 50% reduction in eIF4E expression, while compatible with normal development and global protein synthesis, significantly impeded cellular transformation. Genome-wide translational profiling uncovered a translational program induced by oncogenic transformation and revealed a critical role for eIF4E dose specifically in translating a network of mRNAs enriched for a unique 5′UTR signature. In particular, we demonstrate that eIF4E dose is essential for translating mRNAs regulating reactive oxygen species that fuel transformation and cancer cell survival in vivo. Our findings indicate that cancer cells hijack the eIF4E level in excess for normal development to drive a translational program supporting tumorigenesis. PMID:26095252

  6. Neural correlates of deception in social contexts in normally developing children.

    PubMed

    Yokota, Susumu; Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Thyreau, Benjamin; Tanaka, Mari; Kawashima, Ryuta

    2013-01-01

    Deception is related to the ability to inhibit prepotent responses and to engage in mental tasks such as anticipating responses and inferring what another person knows, especially in social contexts. However, the neural correlates of deception processing, which requires mentalizing, remain unclear. Using functional magnetic resonance imaging (fMRI), we examined the neural correlates of deception, including mentalization, in social contexts in normally developing children. Healthy right-handed children (aged 8-9 years) were scanned while performing interactive games involving deception. The games varied along two dimensions: the type of reply (deception and truth) and the type of context (social and less social). Participants were instructed to deceive a witch and to tell the truth to a girl. Under the social-context conditions, participants were asked to consider what they inferred about protagonists' preferences from their facial expressions when responding to questions. Under the less-social-context conditions, participants did not need to consider others' preferences. We found a significantly greater response in the right precuneus under the social-context than under less-social-context conditions. Additionally, we found marginally greater activation in the right inferior parietal lobule (IPL) under the deception than under the truth condition. These results suggest that deception in a social context requires not only inhibition of prepotent responses but also engagement in mentalizing processes. This study provides the first evidence of the neural correlates of the mentalizing processes involved in deception in normally developing children. PMID:23730281

  7. Gene expression of Hsps in normal and abnormal embryonic development of mouse hindlimbs.

    PubMed

    Yan, Zhengli; Wei, Huimiao; Ren, Chuanlu; Yuan, Shishan; Fu, Hu; Lv, Yuan; Zhu, Yongfei; Zhang, Tianbao

    2015-06-01

    Heat shock proteins (Hsps), which have important biological functions, are a class of highly conserved genetic molecules with the capacity of protecting and promoting cells to repair themselves from damage caused by various stimuli. Our previous studies found that Hsp25, HspB2, HspB3, HspB7, Hsp20, HspB9, HspB10, and Hsp40 may be related to all-trans retinoic acid (atRA)-induced phocomelic and other abnormalities, while HspA12B, HspA14, Trap1, and Hsp105 may be forelimb development-related genes; Grp78 may play an important role in forelimb development. In this study, the embryonic phocomelic, oligodactylic model of both forelimbs and hindlimbs was developed by atRA administered per os to the pregnant mice on gestational day 11, and the expression of 36 members of Hsps family in normal and abnormal development of embryonic hindlimbs was measured by real-time fluorescent quantitative polymerase chain reaction (qRT-PCR). It is found that HspA1L, Hsp22, Hsp10, Hsp60, Hsp47, HspB2, HspB10, HspA12A, Apg1, HspB4, Grp78, and HspB9 probably performs a major function in limb development, and HspA13, Grp94 and Hsp110 may be hindlimb development-related genes. PMID:25352652

  8. The Normal Psychological Development Of the American Adolescent—A Review

    PubMed Central

    Judd, Lewis L.

    1967-01-01

    Adolescence is a time of life marked by emotional turbulence and turmoil, which creates problems for the adolescent, his family and society in general. The psychological development that occurs during this period can be organized into developmental tasks, which emphasize the purposefulness of adolescence. An awareness of the nine essential tasks of development can serve as a basis for assessing the appropriateness and the developmental level of adolescent behavior. The establishment of a realistic self-concept (identity) is the most basic task of adolescence. Behavioral experimentation, the process through which much of the emotional growth of adolescence occurs, also accounts for the majority of the paradoxical and perplexing actions that typify the adolescent. To be in a better position to understand today's teenagers, the physician should not judge normality or abnormality by adult standards, but should view adolescence in reference to its own processes and purposes. PMID:6078890

  9. [Cannabinoids in neurology--Brazilian Academy of Neurology].

    PubMed

    Brucki, Sonia M D; Frota, Norberto Anísio; Schestatsky, Pedro; Souza, Adélia Henriques; Carvalho, Valentina Nicole; Manreza, Maria Luiza Giraldes; Mendes, Maria Fernanda; Comini-Frota, Elizabeth; Vasconcelos, Cláudia; Tumas, Vitor; Ferraz, Henrique B; Barbosa, Egberto; Jurno, Mauro Eduardo

    2015-04-01

    The use of cannabidiol in some neurological conditions was allowed by Conselho Regional de Medicina de São Paulo and by Agência Nacional de Vigilância Sanitária (ANVISA). Specialists on behalf of Academia Brasileira de Neurologia prepared a critical statement about use of cannabidiol and other cannabis derivatives in neurological diseases. PMID:25992535

  10. Neurologic complications following pediatric renal transplantation.

    PubMed

    Ghosh, Partha S; Kwon, Charles; Klein, Melanie; Corder, Julie; Ghosh, Debabrata

    2014-06-01

    We reviewed neurologic complications after renal transplantation in children over a 20-year period. Neurologic complications were classified as early (within 3 months) and delayed (beyond 3 months). Of 115 children, 10 (8.7%) had complications. Early complications were found in 4.35% of patients: seizures in 4 (posterior reversible leukoencephalopathy syndrome due to immunosuppressant toxicity, sepsis/presumed meningitis, and indeterminate) and headaches in 1. One patient with seizures received levetiracetam for 6 months and 1 with headaches received amitriptyline prophylaxis. Late complications were noted in 4.35% of patients: seizures in 3 (posterior reversible leukoencephalopathy syndrome due to hypertension, hypertensive encephalopathy), headaches in 2, and tremors in 1. Two patients with seizures were treated with anti-epilepsy medications; 1 with migraine received cyproheptadine prophylaxis. Neurologic complications develop in children after renal transplantation. Seizures due to posterior reversible leukoencephalopathy syndrome were the commonest complication. Early detection and appropriate management of these complications is important. PMID:23752071

  11. Neurological disorders and inflammatory bowel diseases

    PubMed Central

    Casella, Giovanni; Tontini, Gian Eugenio; Bassotti, Gabrio; Pastorelli, Luca; Villanacci, Vincenzo; Spina, Luisa; Baldini, Vittorio; Vecchi, Maurizio

    2014-01-01

    Extraintestinal manifestations occur in about one-third of patients living with inflammatory bowel disease (IBD) and may precede the onset of gastrointestinal symptoms by many years. Neurologic disorders associated with IBD are not frequent, being reported in 3% of patients, but they often represent an important cause of morbidity and a relevant diagnostic issue. In addition, the increasing use of immunosuppressant and biological therapies for IBD may also play a pivotal role in the development of neurological disorders of different type and pathogenesis. Hence, we provide a complete and profound review of the main features of neurological complications associated with IBD, with particular reference to those related to drugs and with a specific focus on their clinical presentation and possible pathophysiological mechanisms. PMID:25083051

  12. Neurologic Complications in Treated HIV-1 Infection.

    PubMed

    Bhatia, Nisha S; Chow, Felicia C

    2016-07-01

    Effective combination antiretroviral therapy has transformed HIV infection into a chronic disease, with HIV-infected individuals living longer and reaching older age. Neurological disease remains common in treated HIV, however, due in part to ongoing inflammation and immune activation that persist in chronic infection. In this review, we highlight recent developments in our understanding of several clinically relevant neurologic complications that can occur in HIV infection despite treatment, including HIV-associated neurocognitive disorders, symptomatic CSF escape, cerebrovascular disease, and peripheral neuropathy. PMID:27170369

  13. Jean-Martin Charcot at the birth of Russian neurology.

    PubMed

    Vein, Alla A

    2011-01-01

    Russian neurology was virtually nonexistent in the middle of the 19th century which made a traineeship abroad an absolute necessity. Charcot and his school did not just offer professional training, but created the best minds, which would determine the direction of neurology and psychiatry in Russia for many decades. After returning home, young Russian doctors not only implemented everything they had learned in Western Europe, but proceeded to make their own original contributions. The most talented pupils of Charcot, including such prominent names as Kozhevnikov, Korsakov, Minor, Bekhterev and Darkshevich, became the founders of neurological schools in Russia. They laid the basis for the further development of neurology and psychiatry. Remarkably, though trained by the same teachers, each of these future 'founding fathers' of these neurological and psychiatric schools followed his own individual path which resulted in an undeniable diversity in Russian neurology and psychiatry during the period of their formation. PMID:21252555

  14. AAV-based Gene Therapy Prevents Neuropathology and Results in Normal Cognitive Development in the Hyperargininemic Mouse

    PubMed Central

    Lee, Eun K.; Hu, Chuhong; Bhargava, Ragini; Ponnusamy, Ravi; Park, Hana; Novicoff, Sarah; Rozengurt, Nora; Marescau, Bart; De Deyn, Pater; Stout, David; Schlichting, Lisa; Grody, Wayne W.; Cederbaum, Stephen D.; Lipshutz, Gerald S.

    2013-01-01

    Complete arginase I deficiency is the least severe urea cycle disorder, characterized by hyperargininemia and infrequent episodes of hyperammonemia. Patients suffer from neurological impairment with cortical and pyramidal tract deterioration, spasticity, loss of ambulation, and seizures, and is associated with intellectual disability. In mice, onset is heralded by weight loss beginning around day 15; gait instability follows progressing to inability to stand and development of tail tremor with seizure-like activity and death. Here we report that hyperargininemic mice treated neonatally with an adeno-associated virus expressing arginase and followed long-term lack any presentation consistent with brain dysfunction. Behavioral and histopathological evaluation demonstrated that treated mice are indistinguishable from littermates and that putative compounds associated with neurotoxicity are diminished. In addition, treatment results in near complete resolution of metabolic abnormalities early in life; however there is the development of some derangement later with decline in transgene expression. Ammonium challenging revealed that treated mice are affected by exogenous loading much greater than littermates. These results demonstrate that AAV-based therapy for hyperargininemia is effective and prevents development of neurological abnormalities and cognitive dysfunction in a mouse model of hyperargininemia; however nitrogen challenging reveals that these mice remain impaired in the handling of waste nitrogen. PMID:23388701

  15. Neurologic complications of HIV infection.

    PubMed

    Spudich, Serena S; Ances, Beau M

    2012-01-01

    The effects of HIV-1 in the nervous system are a topic of avid interest to investigators and clinicians focused on HIV, judging by the large and discriminating audience at the oral sessions and poster presentations relating to neuroscience at the 19th Conference on Retroviruses and Opportunistic Infections. Major areas of investigation at this year's conference included the use of neuropsychological testing and neuroimaging to assess the state of the central nervous system (CNS) and effects of antiretroviral therapy during HIV infection as well as basic and clinical studies of neuropathogenesis of HIV-associated neurocognitive disorder (HAND). Numerous important suggestions emerged during the meeting. Among them was the proposition that earlier initiation of therapy might benefit the CNS. Another was that the relationship between HIV and normal aging remains unclear and warrants further study. Still another was that ongoing abnormalities may persist despite treatment with antiretroviral therapy-including measurable brain microglial activation, detectable cerebrospinal fluid HIV, and progression of neurologic impairment. PMID:22710906

  16. The Maestro (Mro) Gene Is Dispensable for Normal Sexual Development and Fertility in Mice

    PubMed Central

    Smith, Lee; Willan, John; Warr, Nick; Brook, Frances A.; Cheeseman, Michael; Sharpe, Richard; Siggers, Pam; Greenfield, Andy

    2008-01-01

    The mammalian gonad arises as a bipotential primordium from which a testis or ovary develops depending on the chromosomal sex of the individual. We have previously used DNA microarrays to screen for novel genes controlling the developmental fate of the indifferent embryonic mouse gonad. Maestro (Mro), which encodes a HEAT-repeat protein, was originally identified as a gene exhibiting sexually dimorphic expression during mouse gonad development. Wholemount in situ hybridisation analysis revealed Mro to be expressed in the embryonic male gonad from approximately 11.5 days post coitum, prior to overt sexual differentiation. No significant expression was detected in female gonads at the same developmental stage. In order to address its physiological function, we have generated mice lacking Maestro using gene targeting. Male and female mice homozygous for a Mro null allele are viable and fertile. We examined gonad development in homozygous male embryos in detail and observed no differences when compared to wild-type controls. Immunohistochemical analysis of homozygous mutant testes of adult mice revealed no overt abnormalities. Expression profiling using DNA microarrays also indicated no significant differences between homozygote embryonic male gonads and controls. We conclude that Maestro is dispensable for normal male sexual development and fertility in laboratory mice; however, the Mro locus itself does have utility as a site for insertion of transgenes for future studies in the fields of sexual development and Sertoli cell function. PMID:19116663

  17. The development of hepatic stellate cells in normal and abnormal human fetuses – an immunohistochemical study

    PubMed Central

    Loo, Christine K C; Pereira, Tamara N; Pozniak, Katarzyna N; Ramsing, Mette; Vogel, Ida; Ramm, Grant A

    2015-01-01

    The precise embryological origin and development of hepatic stellate cells is not established. Animal studies and observations on human fetuses suggest that they derive from posterior mesodermal cells that migrate via the septum transversum and developing diaphragm to form submesothelial cells beneath the liver capsule, which give rise to mesenchymal cells including hepatic stellate cells. However, it is unclear if these are similar to hepatic stellate cells in adults or if this is the only source of stellate cells. We have studied hepatic stellate cells by immunohistochemistry, in developing human liver from autopsies of fetuses with and without malformations and growth restriction, using cellular Retinol Binding Protein-1 (cRBP-1), Glial Fibrillary Acidic Protein (GFAP), and α-Smooth Muscle Actin (αSMA) antibodies, to identify factors that influence their development. We found that hepatic stellate cells expressing cRBP-1 are present from the end of the first trimester of gestation and reduce in density throughout gestation. They appear abnormally formed and variably reduced in number in fetuses with abnormal mesothelial Wilms Tumor 1 (WT1) function, diaphragmatic hernia and in ectopic liver nodules without mesothelium. Stellate cells showed similarities to intravascular cells and their presence in a fetus with diaphragm agenesis suggests they may be derived from circulating stem cells. Our observations suggest circulating stem cells as well as mesothelium can give rise to hepatic stellate cells, and that they require normal mesothelial function for their development. PMID:26265759

  18. Anaerobic Infections in Children with Neurological Impairments.

    ERIC Educational Resources Information Center

    Brook, Itzhak

    1995-01-01

    Children with neurological impairments are prone to develop serious infection with anaerobic bacteria. The most common anaerobic infections are decubitus ulcers; gastrostomy site wound infections; pulmonary infections (aspiration pneumonia, lung abscesses, and tracheitis); and chronic suppurative otitis media. The unique microbiology of each of…

  19. Prenatal Antecedents of Newborn Neurological Maturation

    ERIC Educational Resources Information Center

    DiPietro, Janet A.; Kivlighan, Katie T.; Costigan, Kathleen A.; Rubin, Suzanne E.; Shiffler, Dorothy E.; Henderson, Janice L.; Pillion, Joseph P.

    2010-01-01

    Fetal neurobehavioral development was modeled longitudinally using data collected at weekly intervals from 24 to 38 weeks gestation in a sample of 112 healthy pregnancies. Predictive associations between 3 measures of fetal neurobehavioral functioning and their developmental trajectories to neurological maturation in the first weeks after birth…

  20. Normal development of the tomato clownfish Amphiprion frenatus: live imaging and in situ hybridization analyses of mesodermal and neurectodermal development.

    PubMed

    Ghosh, J; Wilson, R W; Kudoh, T

    2009-12-01

    The normal embryonic development of the tomato clownfish Amphiprion frenatus was analysed using live imaging and by in situ hybridization for detection of mesodermal and neurectodermal development. Both morphology of live embryos and tissue-specific staining revealed significant differences in the gross developmental programme of A. frenatus compared with better-known teleost fish models, in particular, initiation of somitogenesis before complete epiboly, initiation of narrowing of the neurectoderm (neurulation) before somitogenesis, relatively early pigmentation of melanophores at the 10-15 somite stage and a distinctive pattern of melanophore distribution. These results suggest evolutionary adaptability of the teleost developmental programme. The ease of obtaining eggs, in vitro culture of the embryo, in situ staining analyses and these reported characteristics make A. frenatus a potentially important model marine fish species for studying embryonic development, physiology, ecology and evolution. PMID:20738687

  1. LIM-homeobox gene Lhx5 is required for normal development of Cajal-Retzius cells.

    PubMed

    Miquelajáuregui, Amaya; Varela-Echavarría, Alfredo; Ceci, M Laura; García-Moreno, Fernando; Ricaño, Itzel; Hoang, Kimmi; Frade-Pérez, Daniela; Portera-Cailliau, Carlos; Tamariz, Elisa; De Carlos, Juan A; Westphal, Heiner; Zhao, Yangu

    2010-08-01

    Cajal-Retzius (C-R) cells play important roles in the lamination of the mammalian cortex via reelin secretion. The genetic mechanisms underlying the development of these neurons have just begun to be unraveled. Here, we show that two closely related LIM-homeobox genes Lhx1 and Lhx5 are expressed in reelin+ cells in various regions in the mouse telencephalon at or adjacent to sites where the C-R cells are generated, including the cortical hem, the mantle region of the septal/retrobulbar area, and the ventral pallium. Whereas Lhx5 is expressed in all of these reelin-expressing domains, Lhx1 is preferentially expressed in the septal area and in a continuous domain spanning from lateral olfactory region to caudomedial territories. Genetic ablation of Lhx5 results in decreased reelin+ and p73+ cells in the neocortical anlage, in the cortical hem, and in the septal, olfactory, and caudomedial telencephalic regions. The overall reduction in number of C-R cells in Lhx5 mutants is accompanied by formation of ectopic reelin+ cell clusters at the caudal telencephalon. Based on differential expression of molecular markers and by fluorescent cell tracing in cultured embryos, we located the origin of reelin+ ectopic cell clusters at the caudomedial telencephalic region. We also confirmed the existence of a normal migration stream of reelin+ cells from the caudomedial area to telencephalic olfactory territories in wild-type embryos. These results reveal a complex role for Lhx5 in regulating the development and normal distribution of C-R cells in the developing forebrain. PMID:20685998

  2. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development

    PubMed Central

    Kong, Qiusheng; Yuan, Jingxian; Gao, Lingyun; Zhao, Liqiang; Cheng, Fei; Huang, Yuan; Bie, Zhilong

    2015-01-01

    Gene expression analysis in watermelon (Citrullus lanatus) fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR) is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC), β-actin (ClACT), and alpha tubulin 5 (ClTUA5) as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND) was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1), a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology. PMID:26110539

  3. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development.

    PubMed

    Kong, Qiusheng; Yuan, Jingxian; Gao, Lingyun; Zhao, Liqiang; Cheng, Fei; Huang, Yuan; Bie, Zhilong

    2015-01-01

    Gene expression analysis in watermelon (Citrullus lanatus) fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR) is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC), β-actin (ClACT), and alpha tubulin 5 (ClTUA5) as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND) was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1), a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology. PMID:26110539

  4. Development of temporal and distance parameters of gait in normal children.

    PubMed

    Hillman, Susan J; Stansfield, Benedict W; Richardson, Alison M; Robb, James E

    2009-01-01

    Temporal and distance parameters of 33 normal children were obtained from instrumented gait analysis prospectively over five consecutive years. The parameters were normalised to minimise the confounding effects of increasing height and leg length. Rank correlations were performed on normalised speed, normalised stride length, normalised cadence and normalised walk ratio across consecutive pairs of years to examine the ranking of these parameters for an individual child over time. Consistent trends of increasing rank correlation were observed in normalised stride length and normalised walk ratio suggesting that individual children were continuing to adjust these gait parameters towards their own characteristic position within the normal range. Consistent trends were not observed in the rank correlations for normalised speed and normalised cadence. These findings support the concept that individual children predominantly adjusted their cadence to effect changes in speed, while the development of stride length was dictated by other factors specific to the individual child. Rank correlation coefficients for walk ratio between consecutive years increased from the ages of 7-11 years of age and hence walk ratio appears be a feature of gait that matures beyond the age of 7 years. This accords with the proposal that it is an invariant parameter for an individual. PMID:18701291

  5. [Sarcopenia and frailty in neurology].

    PubMed

    Maetzler, W; Drey, M; Jacobs, A H

    2015-04-01

    Sarcopenia and frailty are common geriatric syndromes and are associated with adverse health outcome and impaired health-related quality of life. Co-occurrences of these two syndromes with age-related neurological diseases are potentially high but not well investigated. Moreover, it is not well understood how these syndromes interact with neurological diseases, such as Parkinson's disease, Alzheimer's disease and stroke. This article introduces the currently most accepted concepts of sarcopenia and frailty, discusses the potential relevance of the syndromes for geriatric patients and presents examples of studies that investigated potential interactions between these geriatric and neurological syndromes and conditions. First results indicate that (i) the co-occurrence of these geriatric syndromes and age-related neurological diseases is high, (ii) sarcopenia and frailty can influence the clinical state of neurological diseases to a relevant extent and (iii) at least some common causes and pathophysiological processes confer the geriatric and neurological conditions. In conclusion, profound knowledge about the interaction of sarcopenia, frailty and age-associated neurological conditions is currently not available. Such knowledge would have an enormous potential for improved therapy of these neurological conditions. PMID:25787725

  6. Galnt1 Is Required for Normal Heart Valve Development and Cardiac Function

    PubMed Central

    Tian, E; Stevens, Sharon R.; Guan, Yu; Springer, Danielle A.; Anderson, Stasia A.; Starost, Matthew F.; Patel, Vyomesh; Ten Hagen, Kelly G.; Tabak, Lawrence A.

    2015-01-01

    Congenital heart valve defects in humans occur in approximately 2% of live births and are a major source of compromised cardiac function. In this study we demonstrate that normal heart valve development and cardiac function are dependent upon Galnt1, the gene that encodes a member of the family of glycosyltransferases (GalNAc-Ts) responsible for the initiation of mucin-type O-glycosylation. In the adult mouse, compromised cardiac function that mimics human congenital heart disease, including aortic and pulmonary valve stenosis and regurgitation; altered ejection fraction; and cardiac dilation, was observed in Galnt1 null animals. The underlying phenotype is aberrant valve formation caused by increased cell proliferation within the outflow tract cushion of developing hearts, which is first detected at developmental stage E11.5. Developing valves from Galnt1 deficient animals displayed reduced levels of the proteases ADAMTS1 and ADAMTS5, decreased cleavage of the proteoglycan versican and increased levels of other extracellular matrix proteins. We also observed increased BMP and MAPK signaling. Taken together, the ablation of Galnt1 appears to disrupt the formation/remodeling of the extracellular matrix and alters conserved signaling pathways that regulate cell proliferation. Our study provides insight into the role of this conserved protein modification in cardiac valve development and may represent a new model for idiopathic valve disease. PMID:25615642

  7. Long-term influence of normal variation in neonatal characteristics on human brain development

    PubMed Central

    Walhovd, Kristine B.; Fjell, Anders M.; Brown, Timothy T.; Kuperman, Joshua M.; Chung, Yoonho; Hagler, Donald J.; Roddey, J. Cooper; Erhart, Matthew; McCabe, Connor; Akshoomoff, Natacha; Amaral, David G.; Bloss, Cinnamon S.; Libiger, Ondrej; Schork, Nicholas J.; Darst, Burcu F.; Casey, B. J.; Chang, Linda; Ernst, Thomas M.; Frazier, Jean; Gruen, Jeffrey R.; Kaufmann, Walter E.; Murray, Sarah S.; van Zijl, Peter; Mostofsky, Stewart; Dale, Anders M.; Jernigan, Terry L.; McCabe, Connor; Chang, Linda; Akshoomoff, Natacha; Newman, Erik; Dale, Anders M.; Ernst, Thomas; Dale, Anders M.; Van Zijl, Peter; Kuperman, Joshua; Murray, Sarah; Bloss, Cinnamon; Schork, Nicholas J.; Appelbaum, Mark; Gamst, Anthony; Thompson, Wesley; Bartsch, Hauke; Jernigan, Terry L.; Dale, Anders M.; Akshoomoff, Natacha; Chang, Linda; Ernst, Thomas; Keating, Brian; Amaral, David; Sowell, Elizabeth; Kaufmann, Walter; Van Zijl, Peter; Mostofsky, Stewart; Casey, B.J.; Ruberry, Erika J.; Powers, Alisa; Rosen, Bruce; Kenet, Tal; Frazier, Jean; Kennedy, David; Gruen, Jeffrey

    2012-01-01

    It is now recognized that a number of cognitive, behavioral, and mental health outcomes across the lifespan can be traced to fetal development. Although the direct mediation is unknown, the substantial variance in fetal growth, most commonly indexed by birth weight, may affect lifespan brain development. We investigated effects of normal variance in birth weight on MRI-derived measures of brain development in 628 healthy children, adolescents, and young adults in the large-scale multicenter Pediatric Imaging, Neurocognition, and Genetics study. This heterogeneous sample was recruited through geographically dispersed sites in the United States. The influence of birth weight on cortical thickness, surface area, and striatal and total brain volumes was investigated, controlling for variance in age, sex, household income, and genetic ancestry factors. Birth weight was found to exert robust positive effects on regional cortical surface area in multiple regions as well as total brain and caudate volumes. These effects were continuous across birth weight ranges and ages and were not confined to subsets of the sample. The findings show that (i) aspects of later child and adolescent brain development are influenced at birth and (ii) relatively small differences in birth weight across groups and conditions typically compared in neuropsychiatric research (e.g., Attention Deficit Hyperactivity Disorder, schizophrenia, and personality disorders) may influence group differences observed in brain parameters of interest at a later stage in life. These findings should serve to increase our attention to early influences. PMID:23169628

  8. The RhoGEF Net1 is required for normal mammary gland development.

    PubMed

    Zuo, Yan; Berdeaux, Rebecca; Frost, Jeffrey A

    2014-12-01

    Neuroepithelial transforming gene 1 (Net1) is a RhoA subfamily-specific guanine nucleotide exchange factor that is overexpressed in human breast cancer and is required for breast cancer cell migration and invasion. However, the role of Net1 in normal mammary gland development or function has never been assessed. To understand the role of Net1 in the mammary gland, we have created a conditional Net1 knockout mouse model. Whole-body deletion of Net1 results in delayed mammary gland development during puberty characterized by slowed of ductal extension and reduced ductal branching. Epithelial cells within the developing ducts show reduced proliferation that is accompanied by diminished estrogen receptor-α expression and activity. Net1-deficient mammary glands also exhibit reduced phosphorylation of regulatory subunits of myosin light chain and myosin light-chain phosphatase, indicating that RhoA-dependent actomyosin contraction is compromised. Net1 deficiency also leads to disorganization of myoepithelial and ductal epithelial cells and increased periductal collagen deposition. Mammary epithelial cell transplantation experiments indicate that reduced ductal branching and disorganization are cell autonomous. These data identify for the first time a role for NET1 in vivo and indicate that NET1 expression is essential for the proliferation and differentiation of mammary epithelial cells in the developing mammary gland. PMID:25321414

  9. Reduced blood flow in normal white matter predicts development of leukoaraiosis.

    PubMed

    Bernbaum, Manya; Menon, Bijoy K; Fick, Gordon; Smith, Eric E; Goyal, Mayank; Frayne, Richard; Coutts, Shelagh B

    2015-10-01

    The purpose of this study was to investigate whether low cerebral blood flow (CBF) is associated with subsequent development of white matter hyperintensities (WMH). Patients were included from a longitudinal magnetic resonance (MR) imaging study of minor stroke/transient ischemic attack patients. Images were co-registered and new WMH at 18 months were identified by comparing follow-up imaging with baseline fluid-attenuated inversion recovery (FLAIR). Regions-of-interest (ROIs) were placed on FLAIR images in one of three categories: (1) WMH seen at both baseline and follow-up imaging, (2) new WMH seen only on follow-up imaging, and (3) regions of normal-appearing white matter at both time points. Registered CBF maps at baseline were used to measure CBF in the ROIs. A multivariable model was developed using mixed-effects logistic regression to determine the effect of baseline CBF on the development on new WMH. Forty patients were included. Mean age was 61±11 years, 30% were female. Low baseline CBF, female sex, and presence of diabetes were independently associated with the presence of new WMH on follow-up imaging. The odds of having new WMH on follow-up imaging reduces by 0.61 (95% confidence interval=0.57 to 0.65) for each 1 mL/100 g per minute increase in baseline CBF. We conclude that regions of white matter with low CBF develop new WMH on follow-up imaging. PMID:25966951

  10. Eculizumab in Typical Hemolytic Uremic Syndrome (HUS) With Neurological Involvement

    PubMed Central

    Pape, Lars; Hartmann, Hans; Bange, Franz Christoph; Suerbaum, Sebastian; Bueltmann, Eva; Ahlenstiel-Grunow, Thurid

    2015-01-01

    Abstract In typical hemolytic uremic syndrome (HUS) approximately 25% of patients show central nervous system (CNS) involvement often leading to serious long-term disabilities. We used the C5-complement inhibitor Eculizumab as rescue therapy. From 2011 to 2014, 11 children (median age 22 months, range 11–175) with enterohemorrhagic Escherichia coli-positive HUS requiring dialysis who had seizures (11/11) and/or were in a stupor or coma (10/11) were treated with Eculizumab. Two patients enrolled on the Safety and Efficacy Study of Eculizumab in Shiga-Toxin Producing E coli Hemolytic-Uremic Syndrome (STEC-HUS) each received 6 doses of Eculizumab, 3 patients 2 doses, and 6 patients 1 dose. Laboratory diagnostics of blood samples and magnetic resonance imaging (MRI) were performed as per center practice. Data were analyzed retrospectively. Cranial MRI was abnormal in 8 of 10 patients with findings in the basal ganglia and/or white matter. A 2-year-old boy with severe cardiac involvement and status epilepticus needed repeated cardio-pulmonary resuscitation and extracorporeal membrane oxygenation. He died 8 days after start of Eculizumab treatment. Two patients with hemorrhagic colitis and repeated seizures required artificial ventilation for 6 and 16 days, respectively. At the time of discharge, 1 patient showed severe neurological impairment and 1 mild neurological impairment. The 8 surviving patients experienced no further seizures after the first dose of Eculizumab. Three patients showed mild neurological impairment at discharge, whilst the remaining 5 showed no impairment. The platelets normalized 4 days (median) after the first dose of Eculizumab (range 0–20 days). The mean duration of dialysis after the first dose of Eculizumab was 14.1 ± 6.1 days. In children with typical HUS and CNS involvement early use of Eculizumab appears to improve neurological outcome. In severe HUS cases which progress rapidly with multiple organ involvement, late treatment with

  11. [Neurological interpretation of dreams] .

    PubMed

    Pareja, J A; Gil-Nagel, A

    2000-10-01

    Cerebral cortical activity is constant throughout the entire human life, but substantially changes during the different phases of the sleep-wake cycle (wakefulness, non-REM sleep and REM sleep), as well as in relation to available information. In particular, perception of the environment is closely linked to the wake-state, while during sleep perception turns to the internal domain or endogenous cerebral activity. External and internal information are mutually exclusive. During wakefulness a neuronal mechanism allows attention to focus on the environment whereas endogenous cortical activity is ignored. The opposite process is provided during sleep. The function external attention-internal attention is coupled with the two modes of brain function during wakefulness and during sleep, providing two possible cortical status: thinking and dreaming. Several neurological processes may influence the declaration of the three states of being or may modify their orderly oscillation through the sleep-wake cycle. In addition, endogenous information and its perception (dreams) may be modified. Disturbances of dreaming may configurate in different general clinical scenarios: lack of dreaming, excess of dreaming (epic dreaming), paroxysmal dreaming (epileptic), nightmares, violent dreaming, daytime-dreaming (hallucinations), and lucid dreaming. Sensorial deprivation, as well as the emergence of internal perception may be the underlying mechanism of hallucinations. The probable isomorphism between hallucinations and dreaming is postulated, analyzed and discussed. PMID:11143502

  12. Neurology of Volition

    PubMed Central

    Kranick, Sarah M.; Hallett, Mark

    2016-01-01

    Neurological disorders of volition may be characterized by deficits in willing and/or agency. When we move our bodies through space, it is the sense that we intended to move (willing) and that our actions were a consequence of this intention (self-agency) that gives us the sense of voluntariness and a general feeling of being “in control.” While it is possible to have movements that share executive machinery ordinarily used for voluntary movement but lack a sense of voluntariness, such as psychogenic movement disorders, it is also possible to claim volition for presumed involuntary movements (early chorea) or even when no movement is produced (anosognosia). The study of such patients should enlighten traditional models of how the percepts of volition are generated in the brain with regards to movement. We discuss volition and its components as multi-leveled processes with feedforward and feedback information flow, and dependence on prior expectations as well as external and internal cues. PMID:23329204

  13. Paraneoplastic neurological disorders.

    PubMed

    Blaes, Franz; Tschernatsch, Marlene

    2010-10-01

    The article provides an overview on the diagnosis and pathogenesis of paraneoplastic neurological disorders (PNDs), and subsequently the current therapeutic strategies in these patients. PNDs are nervous system dysfunctions in cancer patients, which are not due to a local effect of the tumor or its metastases. Most of these clinically defined syndromes in adults are associated with lung cancer, especially small-cell lung cancer, lymphoma and gynecological tumors. In a part of the PND, an overlapping of different clinical syndromes can be observed. Highly specific autoantibodies directed against onconeuronal antigens led to the current hypothesis of an autoimmune pathophysiology. Whereas the most central nervous PNDs are more T-cell-mediated, limbic encephalitis can be caused by pathogenic receptor autoantibodies. The PND of the neuromuscular junction and paraneoplastic autonomic neuropathy are mainly associated with receptor or ion channel autoantibodies. The childhood opsoclonus-myoclonus syndrome and the PNDs associated with receptor/ion channel autoantibodies often respond to immunosuppressive therapies, plasmapheresis and intravenous immunoglobulins. By contrast, most CNS PNDs associated with defined antineuronal antibodies directed against intracellular antigens only stabilize after tumor treatment. PMID:20925471

  14. Neurologic Itch Management.

    PubMed

    Şavk, Ekin

    2016-01-01

    Neurologic itch is defined as pruritus resulting from any dysfunction of the nervous system. Itch arising due to a neuroanatomic pathology is seen to be neuropathic. Causes of neuropathic itch range from localized entrapment of a peripheral nerve to generalized degeneration of small nerve fibers. Antipruritic medications commonly used for other types of itch such as antihistamines and corticosteroids lack efficacy in neuropathic itch. Currently there are no therapeutic options that offer relief in all types of neuropathic pruritus, and treatment strategies vary according to etiology. It is best to decide on the appropriate tests and procedures in collaboration with a neurologist during the initial work-up. Treatment of neuropathic itch includes general antipruritic measures, local or systemic pharmacotherapy, various physical modalities, and surgery. Surgical intervention is the obvious choice of therapy in cases of spinal or cerebral mass, abscess, or hemorrhagic stroke, and may provide decompression in entrapment neuropathies. Symptomatic treatment is needed in the vast majority of patients. General antipruritic measures should be encouraged. Local treatment agents with at least some antipruritic effect include capsaicin, local anesthetics, doxepin, tacrolimus, and botulinum toxin A. Current systemic therapy relies on anticonvulsants such as gabapentin and pregabalin. Phototherapy, transcutaneous electrical nerve stimulation, and physical therapy have also been of value in selected cases. Among the avenues to be explored are transcranial magnetic stimulation of the brain, new topical cannabinoid receptor agonists, various modes of acupuncture, a holistic approach with healing touch, and cell transplantation to the spinal cord. PMID:27578080

  15. History of neurologic examination books

    PubMed Central

    2015-01-01

    The objective of this study was to create an annotated list of textbooks dedicated to teaching the neurologic examination. Monographs focused primarily on the complete neurologic examination published prior to 1960 were reviewed. This analysis was limited to books with the word “examination” in the title, with exceptions for the texts of Robert Wartenberg and Gordon Holmes. Ten manuals met the criteria. Works dedicated primarily to the neurologic examination without a major emphasis on disease description or treatment first appeared in the early 1900s. Georg Monrad-Krohn's “Blue Book of Neurology” (“Blue Bible”) was the earliest success. These treatises served the important purpose of educating trainees on proper neurologic examination technique. They could make a reputation and be profitable for the author (Monrad-Krohn), highlight how neurology was practiced at individual institutions (McKendree, Denny-Brown, Holmes, DeJong, Mayo Clinic authors), and honor retiring mentors (Mayo Clinic authors). PMID:25829645

  16. Factors influencing the selection of toys for handicapped and normally developing preschool children.

    PubMed

    Fallon, M A; Harris, M B

    1989-06-01

    Factors influencing the selection and purchase of toys for children's use were investigated. Subjects were 73 parents or adult friends of normally developing or handicapped preschool children. In addition to providing demographic information about themselves, the subjects rated the importance of 17 factors influencing their selection and purchase of toys. Contrary to previous research, the sex of the child was reported to be of only minor importance in toy selection, as was the picture on the toy package. Two factors, safety and teaching new skills, were rated as extremely important. There were no significant differences in ratings as a result of sex, ethnicity, or whether or not the subjects were parents of a handicapped child. The findings suggest a substantial degree of agreement among parents about what they consider important when choosing toys for children. PMID:2527967

  17. Mammary Gland ECM Remodeling, Stiffness, and Mechanosignaling in Normal Development and Tumor Progression

    PubMed Central

    Schedin, Pepper; Keely, Patricia J.

    2011-01-01

    Cells of the mammary gland are in intimate contact with other cells and with the extracellular matrix (ECM), both of which provide not only a biochemical context, but a mechanical context as well. Cell-mediated contraction allows cells to sense the stiffness of their microenvironment, and respond with appropriate mechanosignaling events that regulate gene expression and differentiation. ECM composition and organization are tightly regulated throughout development of the mammary gland, resulting in corresponding regulation of the mechanical environment and proper tissue architecture. Mechanical regulation is also at play during breast carcinoma progression, as changes in ECM deposition, composition, and organization accompany breast carcinoma. These changes result in stiffer matrices that activate mechanosignaling pathways and thereby induce cell proliferation, facilitate local tumor cell invasion, and promote progression. Thus, understanding the role of forces in the mammary gland is crucial to understanding both normal developmental and pathological processes. PMID:20980442

  18. Cell death and neurodegeneration in the postnatal development of cerebellar vermis in normal and Reeler mice.

    PubMed

    Castagna, Claudia; Merighi, Adalberto; Lossi, Laura

    2016-09-01

    Programmed cell death (PCD) was demonstrated in neurons and glia in normal brain development, plasticity, and aging, but also in neurodegeneration. (Macro)autophagy, characterized by cytoplasmic vacuolization and activation of lysosomal hydrolases, and apoptosis, typically entailing cell shrinkage, chromatin and nuclear condensation, are the two more common forms of PCD. Their underlying intracellular pathways are partly shared and neurons can die following both modalities, according to the type of death-triggering stimulus. Reelin is an extracellular protein necessary for proper neuronal migration and brain lamination. In the mutant Reeler mouse, its absence causes neuronal mispositioning, with a notable degree of cerebellar hypoplasia that was tentatively related to an increase in PCD. We have carried out an ultrastructural analysis on the occurrence and type of postnatal PCD affecting the cerebellar neurons in normal and Reeler mice. In the forming cerebellar cortex, PCD took the form of apoptosis or autophagy and mainly affected the cerebellar granule cells (CGCs). Densities of apoptotic CGCs were comparable in both mouse strains at P0-P10, while, in mutants, they increased to become significantly higher at P15. In WT mice the density of autophagic neurons did not display statistically significant differences in the time interval examined in this study, whereas it was reduced in Reeler in the P0-P10 interval, but increased at P15. Besides CGCs, the Purkinje neurons also displayed autophagic features in both WT and Reeler mice. Therefore, cerebellar neurons undergo different types of PCD and a Reelin deficiency affects the type and degree of neuronal death during postnatal development of the cerebellum. PMID:26931496

  19. [Neurological soft signs in schizophrenia: correlations with age, sex, educational status and psychopathology].

    PubMed

    Panagiotidis, P; Kaprinis, G; Iacovides, A; Fountoulakis, K

    2013-01-01

    Though the pathobiology of schizophrenia can be examined in multiple levels, the organic notion of brain disease suggests that neurological features will be present. One straightforward, inexpensive method of investigating brain dysfunction in schizophrenia is thought the bedside assessment of neurological abnormalities with a standard neurological examination. Neurological abnormalities are traditionally classified as "hard signs" (impairments in basic motor, sensory, and reflex behaviors, which do not appear to be affected in schizophrenia) and "soft signs", which refer to more complex phenomena such as abnormalities in motor control, integrative sensory function, sensorimotor integration, and cerebral laterality. Additionally, neurological soft signs (NSS) are minor motor and sensory abnormalities that are considered to be normal in the course of early development but abnormal when elicited in later life or persist beyond childhood. Soft signs also, have no definitive localizing significance but are indicative of subtle brain dysfunction. Most authors believe that they are a reflection not only of deficient integration between the sensory and motor systems, but also of dysfunctional neuronal circuits linking subcortical brain structures such as the basal ganglia, the brain stem, and the limbic system. Throughout the last four decades, studies have consistently shown that NSS are more frequently present in patients with schizophrenia than in normal subjects and non-psychotic psychiatric patients. However, the functional relevance of NSS remains unclear and their specificity has often been challenged, even though there is indication for a relative specificity with regard to diagnosis, or symptomatology. Many studies have considered soft signs as categorical variables thus hampering the evaluation of fluctuation with symptomatology and/or treatment, whereas other studies included insufficient number of assessed signs, or lacked a comprehensive assessment of

  20. Development of the method and U.S. normalization database for Life Cycle Impact Assessment and sustainability metrics.

    PubMed

    Bare, Jane; Gloria, Thomas; Norris, Gregory

    2006-08-15

    Normalization is an optional step within Life Cycle Impact Assessment (LCIA) that may be used to assist in the interpretation of life cycle inventory data as well as life cycle impact assessment results. Normalization transforms the magnitude of LCI and LCIA results into relative contribution by substance and life cycle impact category. Normalization thus can significantly influence LCA-based decisions when tradeoffs exist. The U. S. Environmental Protection Agency (EPA) has developed a normalization database based on the spatial scale of the 48 continental U.S. states, Hawaii, Alaska, the District of Columbia, and Puerto Rico with a one-year reference time frame. Data within the normalization database were compiled based on the impact methodologies and lists of stressors used in TRACI-the EPA's Tool for the Reduction and Assessment of Chemical and other environmental Impacts. The new normalization database published within this article may be used for LCIA case studies within the United States, and can be used to assist in the further development of a global normalization database. The underlying data analyzed for the development of this database are included to allow the development of normalization data consistent with other impact assessment methodologies as well. PMID:16955915

  1. Normal development of the muscular region of the interventricular septum. II. The importance of myocardial proliferation.

    PubMed

    Contreras-Ramos, A; Sánchez-Gómez, C; Fierro-Pastrana, R; González-Márquez, H; Acosta-Vazquez, F; Arellano-Galindo, J

    2009-06-01

    In a first paper, we concluded that the muscular region of the interventricular septum is developed by the trabecular branches and showed evidence that the developing interventricular septum elongates in a direction opposite to that of atria. Nevertheless, to date the literature is lacking precise information on the importance of myocardial proliferation not only in this process but also in the morphogenesis of the ventricular cavities. The aim of this study was to determine the spatial and temporal distribution of high-intensity foci of cycling myocytes in the ventricular region of the heart of chicken embryos during cardiac septation. Histological studies, detection of the proliferating cell nuclear antigen by light and confocal microscopy and flow cytometric analysis were carried out. The results corroborate that the developing interventricular septum grows in a direction opposite to that of atria. A remoulding mechanism that results in fenestrated trabecular sheets and trabecular branching is discussed. Our findings allowed us to summarize the normal morphogenesis of the muscular region of the interventricular septum in a way that is different from that suggested by other researchers. PMID:19469768

  2. Thomsen-Friedenreich glycotope is expressed in developing and normal kidney but not in renal neoplasms.

    PubMed

    Toma, V; Zuber, C; Sata, T; Komminoth, P; Hailemariam, S; Eble, J N; Heitz, P U; Roth, J

    2000-06-01

    The Thomsen-Friedenreich glycotope (TF) is considered a general carcinoma autoantigen and is therefore of importance in cancer diagnosis and immunotherapy. We report the distribution of the TF glycotope in developing and adult human kidney and renal neoplasms. A monoclonal antibody and the lectin amaranthin were used to study the TF and its sialylated, masked form by immunohistochemistry and immunoblotting. In developing kidney, the TF was restricted to the loop of Henle, distal tubules, and peripheral collecting ducts, whereas its sialylated form was detectable in all epithelial differentiations derived from the 2 embryonic anlagen, the metanephrogenic blastema being unreactive. This pattern was essentially preserved in adult kidney, with TF labeling beginning in the thick ascending limb and extending into the collecting ducts of outer medulla. The sialylated TF glycotope was additionally observed in ascending thin limbs. The TF was exclusively expressed in the luminal cell surface and hence was inaccessible to immune reactions. Analysis of a spectrum of renal neoplasms failed to detect the TF, with the exception of occasional staining of tubules in nephroblastoma. Moreover, the sialylated TF was only detectable in oncocytoma, chromophobe renal cell carcinoma, cystic nephroma, nephroblastoma, and nephroblastomatosis complex and occasionally in type 1 papillary renal cell carcinoma. Thus, the TF and its sialylated form are expressed in normal developing and adult kidney. However, the TF does not seem to represent a tumor-associated glycotope in human kidney, nor does it appear to be of value in diagnosis and immunotherapy of renal neoplasms. PMID:10872656

  3. Teaching Clinical Neurology with the PLATO IV Computer System

    ERIC Educational Resources Information Center

    Parker, Alan; Trynda, Richard

    1975-01-01

    A "Neurox" program entitled "Canine Neurological Diagnosis" developed at the University of Illinois College of Veterinary Medicine enables a student to obtain the results of 78 possible neurological tests or associated questions on a single case. A lesson and possible adaptations are described. (LBH)

  4. Marrow hypoplasia associated with congenital neurologic anomalies in two siblings.

    PubMed

    Drachtman, R; Weinblatt, M; Sitarz, A; Gold, A; Kochen, J

    1990-10-01

    Two siblings with congenital neurologic structural anomalies and delayed-onset selective bone marrow hypoplasia in a previously undescribed constellation of symptoms are presented. Differences between these cases and other well known syndromes are discussed. The importance of this association is the implication that children with congenital neurologic abnormalities may be at increased risk for the development of hypoplastic hematopoietic conditions. PMID:2264478

  5. DSPP Is Essential for Normal Development of the Dental-Craniofacial Complex.

    PubMed

    Chen, Y; Zhang, Y; Ramachandran, A; George, A

    2016-03-01

    The craniofacial skeleton is derived from both neural crest cells and mesodermal cells; however, the majority of the bone, cartilage, and connective tissue is derived from the neural crest. Dentin sialophosphoprotein (DSPP) is a precursor protein that is expressed by the connective tissues of the craniofacial skeleton, namely, bone and dentin with high expression levels in the dentin matrix. Gene ablation studies have shown severe dental defects in DSPP-null mutant mice. Therefore, to elucidate the role of DSPP on the developing dental-craniofacial complex, we evaluated phenotypic changes in the structure of intramembranous bone and dentin mineralization using 3 different age groups of DSPP-null and wild-type mice. Results from micro-computed tomographic, radiographic, and optical microscopic analyses showed defective dentin, alveolar and calvarial bones, and sutures during development. The impaired mineralization of the cranial bone correlated well with low expression levels of Runx2, Col1, and OPN identified using calvarial cells from DSPP-null and wild-type mice in an in vitro culture system. However, the upregulation of MMP9, MMP2, FN, and BSP was observed. Interestingly, the null mice also displayed low serum phosphate levels, while calcium levels remained unchanged. Alizarin red and von Kossa staining confirmed the dysfunction in the terminal differentiation of osteoblasts obtained from the developing calvaria of DSPP-null mice. Immunohistochemical analysis of the developing molars showed changes in Runx2, Gli1, Numb, and Notch expression in the dental pulp cells and odontoblasts of DSPP-null mice when compared with wild-type mice. Overall, these observations provide insight into the role of DSPP in the normal development of the calvaria, alveolar bone, and dentin-pulp complex. PMID:26503913

  6. Chapter 17: cognitive assessment in neurology.

    PubMed

    Henderson, Victor W

    2010-01-01

    Modern interests in cognitive assessment began with Franz Gall's early 19th century theory of mental organology and Paul Broca's reports in the 1860s on patients with focal brain injury and aphemia. These workers spurred interest in assessing delimited mental abilities in relation to discrete cerebral areas. With roots in experimental and educational psychology, the intelligence testing movement added assessment tools that could be applied to neurological patients. Early- to mid-20th-century landmarks were Alfred Binet and Theodore Simon's intelligence scale, Howard Knox's nonverbal performance tests, and the intelligence quotient conceived by Lewis Terman and refined by David Wechsler. Also developed during this era were Henry Head's Serial Tests for aphasic patients and Kurt Goldstein's tests for brain-injured patients with impairments in "abstract attitude" and concept formation. Other investigators have contributed procedures for the evaluation of language functions, memory, visuospatial and visuoconstructive skills, praxis, and executive functions. A further milestone was the development of short standardized cognitive instruments for dementia assessment. Within a neurological arena, the historical emphasis has been on a flexible, process-driven approach to the service of neurological diagnosis and syndrome identification. Advances in clinical psychology, neurology, and the cognate clinical neurosciences continue to enrich assessment options. PMID:19892120

  7. Minor neurological signs and perceptual-motor difficulties in prematurely born children

    PubMed Central

    Jongmans, M.; Mercuri, E.; de Vries, L.; Dubowitz, L.; Henderson, S.

    1997-01-01

    AIM—To examine the spectrum of neurological dysfunction and perceptual-motor difficulties at school age in a cohort of prematurely born children, and the relation of these measures to neonatal brain lesions, intelligence quotient, and behavioural adjustment.
METHOD—One hundred and eighty three children were tested at the age of 6 years using Touwen's Examination of the Child with Minor Neurological Dysfunction, the Movement Assessment Battery for Children (Movement ABC), the Developmental Test of Visual-Motor Integration (VMI), British Ability Scales, and Rutter Scales.
RESULTS—Twenty six children had definite cerebral palsy and one was blind. Of the remaining 156, the proportions falling below the 15th centile point were 31% on Touwen's Examination, 44% on the Movement ABC, and 17% on the VMI. Forty two passed all three tests. No child with a normal ultrasound scan developed cerebral palsy, whereas nearly all those with major lesions did. Minor lesions, however, were not generally predictive of later outcome. Correlations between the tests were generally low.
CONCLUSIONS—These findings stress the need to assess neurological and perceptual motor functioning separately at school age and to monitor relationships with other aspects of development.

 Keywords: neurological signs; perceptual-motor difficulties; prematurity; follow up. PMID:9059179

  8. Critical role of p63 in the development of a normal esophageal and tracheobronchial epithelium.

    PubMed

    Daniely, Yaron; Liao, Grace; Dixon, Darlene; Linnoila, R Ilona; Lori, Adriana; Randell, Scott H; Oren, Moshe; Jetten, Anton M

    2004-07-01

    The trachea and esophagus originate from the foregut endoderm during early embryonic development. Their epithelia undergo a series of changes involving the differentiation of stem cells into unique cell types and ultimately forming the mature epithelia. In this study, we monitored the expression of p63 in the esophagus and the trachea during development and examined in detail morphogenesis in p63(-/-) mice. At embryonic day 15.5 (E15.5), the esophageal and tracheobronchial epithelia contain two to three layers of cells; however, only the progenitor cells express p63. These progenitor cells differentiate first into ciliated cells (p63(-)/beta-tubulin IV(+)) and after birth into mature basal cells (p63(+)/K14(+)/K5(+)/BS-I-B4(+)). In the adult pseudostratified, columnar tracheal epithelium, K14(+)/K5(+)/BS-I-B4(+) basal cells stain most intensely for p63, whereas ciliated and mucosecretory cells are negative. In stratified squamous esophageal epithelium and during squamous metaplasia in the trachea, cells in the basal layer stain strongest for p63, whereas p63 staining declines progressively in transient amplifying and squamous differentiated cells. Generally, p63 expression is restricted to human squamous cell carcinomas, and adenocarcinomas and Barrett's metaplasia do not stain for p63. Examination of morphogenesis in newborn p63(-/-) mice showed an abnormal persistence of ciliated cells in the esophagus. Significantly, in both tissues, lack of p63 expression results in the development of a highly ordered, columnar ciliated epithelium deficient in basal cells. These observations indicate that p63 plays a critical role in the development of normal esophageal and tracheobronchial epithelia and appears to control the commitment of early stem cells into basal cell progeny and the maintenance of basal cells. PMID:15189821

  9. Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia

    NASA Astrophysics Data System (ADS)

    Esau, Igor; Miles, Victoria V.; Davy, Richard; Miles, Martin W.; Kurchatova, Anna

    2016-08-01

    Exploration and exploitation of oil and gas reserves of northern West Siberia has promoted rapid industrialization and urban development in the region. This development leaves significant footprints on the sensitive northern environment, which is already stressed by the global warming. This study reports the region-wide changes in the vegetation cover as well as the corresponding changes in and around 28 selected urbanized areas. The study utilizes the normalized difference vegetation index (NDVI) from high-resolution (250 m) MODIS data acquired for summer months (June through August) over 15 years (2000-2014). The results reveal the increase of NDVI (or "greening") over the northern (tundra and tundra-forest) part of the region. Simultaneously, the southern, forested part shows the widespread decrease of NDVI (or "browning"). These region-wide patterns are, however, highly fragmented. The statistically significant NDVI trends occupy only a small fraction of the region. Urbanization destroys the vegetation cover within the developed areas and at about 5-10 km distance around them. The studied urbanized areas have the NDVI values by 15 to 45 % lower than the corresponding areas at 20-40 km distance. The largest NDVI reduction is typical for the newly developed areas, whereas the older areas show recovery of the vegetation cover. The study reveals a robust indication of the accelerated greening near the older urban areas. Many Siberian cities become greener even against the wider browning trends at their background. Literature discussion suggests that the observed urban greening could be associated not only with special tending of the within-city green areas but also with the urban heat islands and succession of more productive shrub and tree species growing on warmer sandy soils.

  10. Smpd3 Expression in both Chondrocytes and Osteoblasts Is Required for Normal Endochondral Bone Development.

    PubMed

    Li, Jingjing; Manickam, Garthiga; Ray, Seemun; Oh, Chun-do; Yasuda, Hideyo; Moffatt, Pierre; Murshed, Monzur

    2016-09-01

    Sphingomyelin phosphodiesterase 3 (SMPD3), a lipid-metabolizing enzyme present in bone and cartilage, has been identified to be a key regulator of skeletal development. A homozygous loss-of-function mutation called fragilitas ossium (fro) in the Smpd3 gene causes poor bone and cartilage mineralization resulting in severe congenital skeletal deformities. Here we show that Smpd3 expression in ATDC5 chondrogenic cells is downregulated by parathyroid hormone-related peptide through transcription factor SOX9. Furthermore, we show that transgenic expression of Smpd3 in the chondrocytes of fro/fro mice corrects the cartilage but not the bone abnormalities. Additionally, we report the generation of Smpd3(flox/flox) mice for the tissue-specific inactivation of Smpd3 using the Cre-loxP system. We found that the skeletal phenotype in Smpd3(flox/flox); Osx-Cre mice, in which the Smpd3 gene is ablated in both late-stage chondrocytes and osteoblasts, closely mimics the skeletal phenotype in fro/fro mice. On the other hand, Smpd3(flox/flox); Col2a1-Cre mice, in which the Smpd3 gene is knocked out in chondrocytes only, recapitulate the fro/fro mouse cartilage phenotype. This work demonstrates that Smpd3 expression in both chondrocytes and osteoblasts is required for normal endochondral bone development. PMID:27325675

  11. Neurotrophins are not required for normal embryonic development of olfactory neurons.

    PubMed

    Nef, S; Lush, M E; Shipman, T E; Parada, L F

    2001-06-01

    Neurons of the vertebrate olfactory epithelium (OE) regenerate continuously throughout life. The capacity of these neurons to regenerate and make new and precise synaptic connections in the olfactory bulb provides a useful model to study factors that may control or mediate neuronal regeneration. Expression and in vitro studies have suggested potential roles for the neurotrophins in the olfactory system. To directly examine whether neurotrophins are required for olfactory neuron development, we characterized in vivo the role of the neurotrophins in the primary olfactory system. For this, we generated mutant mice for TrkA, TrkB, TrkC, and also for BDNF and NT3 together with P2-IRES-tau-LacZ trangenic mice. Histochemical staining for beta-galactosidase at birth allowed in vivo analysis of the P2 subpopulation of olfactory neurons as well as their projections to the olfactory bulb. Our data indicate that Trk signaling is not required for normal embryonic development of the olfactory system. PMID:11356021

  12. Tactile stimulation during development alters the neuroanatomical organization of the optic nerve in normal rats.

    PubMed

    Horiquini-Barbosa, Everton; Lachat, João-José

    2016-06-01

    This study was designed to investigate the progressive effect of tactile stimulation in the cytoarchitecture of the optic nerve of normal rats during early postnatal development. We used 36 male pups which were randomly assigned to either the tactile-stimulated group (TS-stimulation for 3 min, once a day, from postnatal day (P) 1 to 32) or the non-tactile-stimulated (NTS) group. Morphological analysis were performed to evaluate the alterations caused by tactile stimulation, and morphometric analysis were carried out to determine whether the observed changes in optic nerve cytoarchitecture were significantly different between groups and at three different ages (P18, P22, and P32), thereby covering the entire progression of development of the optic nerve from its start to its completion. The rats of both groups presented similar increase in body weight. The morphometric analysis revealed no difference in the astrocyte density between age-matched groups; however, the oligodendrocyte density of TS group was higher compared to the NTS at P22, and P32, but not at P18. The optic nerve of TS group showed an increase of blood vessels and a reduction of damage fiber density when compared to the age-matched pups of NTS. Taken together, these findings support the view that tactile stimulation, an enriching experience, can positively affects the neuroanatomy of the brain, modifying its cellular components by progressive morphological and morphometric changes. PMID:26879768

  13. Role of CXCL12 and CXCR4 in normal cerebellar development and medulloblastoma.

    PubMed

    Ozawa, Patricia Midori Murobushi; Ariza, Carolina Batista; Ishibashi, Cintya Mayumi; Fujita, Thiago Cezar; Banin-Hirata, Bruna Karina; Oda, Julie Massayo Maeda; Watanabe, Maria Angelica Ehara

    2016-01-01

    Chemokines and its receptors have significant impact on physiological and pathological processes and studies concerning their association with tumor biology are subject of great interest in scientific community. CXCL12/CXCR4 axis has been widely studied due to its significant role in tumor microenvironment, but it is also important to development and maintenance of tissues and organs, for example, in the brain and cerebellum. Studies have demonstrated that CXCL12 and CXCR4 are required for normal cerebellar development and that dysfunction in this pathway may be involved with medulloblastoma pathogenesis. In this context, a new molecular subgroup has been suggested based on the importance of the association between CXCR4 overexpression and sonic hedgehog subgroup. Treatment using CXCR4 antagonists showed significant results, evidencing the important role and possible therapeutic capacity of CXCR4 in MB. This review summarizes studies on MB cell biology, focusing on a chemokine-receptor axis, CXCL12/CXCR4, that may have implications for treatment strategies once it can improve life expectancy and reduce neurocognitive sequelae of patients with this neoplasia. PMID:25400097

  14. Polyphenol oxidase affects normal nodule development in red clover (Trifolium pratense L.)

    PubMed Central

    Webb, K. Judith; Cookson, Alan; Allison, Gordon; Sullivan, Michael L.; Winters, Ana L.

    2014-01-01

    Polyphenol oxidase (PPO) may have multiple functions in tissues depending on its cellular or tissue localization. Here we use PPO RNAi transformants of red clover (Trifolium pratense) to determine the role PPO plays in normal development of plants, and especially in N2-fixing nodules. In red clover, PPO was not essential for either growth or nodule production, or for nodule function in plants grown under optimal, N-free conditions. However, absence of PPO resulted in a more reduced environment in all tissues, as measured by redox potential, and caused subtle developmental changes in nodules. Leaves and, to a lesser extent nodules, lacking PPO tended to accumulate phenolic compounds. A comparison of nodules of two representative contrasting clones by microscopy revealed that nodules lacking PPO were morphologically and anatomically subtly altered, and that phenolics accumulated in different cells and tissues. Developing nodules lacking PPO were longer, and there were more cell layers within the squashed cell layer (SCL), but the walls of these cells were less thickened and the cells were less squashed. Within the N2-fixing zone, bacteroids appeared more granular and were less tightly packed together, and were similar to developmentally compromised bacteroids elicited by catalase mutant rhizobia reported elsewhere. PMID:25566275

  15. Cytokine Therapies in Neurological Disease.

    PubMed

    Azodi, Shila; Jacobson, Steven

    2016-07-01

    Cytokines are a heterogeneous group of glycoproteins that coordinate physiological functions. Cytokine deregulation is observed in many neurological diseases. This article reviews current research focused on human clinical trials of cytokine and anticytokine therapies in the treatment of several neurological disease including stroke, neuromuscular diseases, neuroinfectious diseases, demyelinating diseases, and neurobehavioral diseases. This research suggests that cytokine therapy applications may play an important role in offering new strategies for disease modulation and treatment. Further, this research provides insights into the causal link between cytokine deregulation and neurological diseases. PMID:27388288

  16. Neurologic Manifestations of Blood Dyscrasias.

    PubMed

    Couriel, Daniel R; Ricker, Holly; Steinbach, Mary; Lee, Catherine J

    2016-08-01

    Neurologic manifestations are common in blood diseases, and they can be caused by the hematologic disorder or its treatment. This article discusses hematologic diseases in adult patients, and categorizes them into benign and malignant conditions. The more common benign hematologic diseases associated with neurologic manifestations include anemias, particularly caused by B12 deficiency and sickle cell disease, and a variety of disorders of hemostasis causing bleeding or thrombosis, including thrombotic microangiopathy. Malignant conditions like multiple myeloma, leukemias, and lymphomas can have neurologic complications resulting from direct involvement, or caused by the different therapies to treat these cancers. PMID:27443994

  17. Neurological effects of deep diving.

    PubMed

    Grønning, Marit; Aarli, Johan A

    2011-05-15

    Deep diving is defined as diving to depths more than 50 m of seawater (msw), and is mainly used for occupational and military purposes. A deep dive is characterized by the compression phase, the bottom time and the decompression phase. Neurological and neurophysiologic effects are demonstrated in divers during the compression phase and the bottom time. Immediate and transient neurological effects after deep dives have been shown in some divers. However, the results from the epidemiological studies regarding long term neurological effects from deep diving are conflicting and still not conclusive. Prospective clinical studies with sufficient power and sensitivity are needed to solve this very important issue. PMID:21377169

  18. Cardiac troponin T is necessary for normal development in the embryonic chick heart.

    PubMed

    England, Jennifer; Pang, Kar Lai; Parnall, Matthew; Haig, Maria Isabel; Loughna, Siobhan

    2016-09-01

    The heart is the first functioning organ to develop during embryogenesis. The formation of the heart is a tightly regulated and complex process, and alterations to its development can result in congenital heart defects. Mutations in sarcomeric proteins, such as alpha myosin heavy chain and cardiac alpha actin, have now been associated with congenital heart defects in humans, often with atrial septal defects. However, cardiac troponin T (cTNT encoded by gene TNNT2) has not. Using gene-specific antisense oligonucleotides, we have investigated the role of cTNT in chick cardiogenesis. TNNT2 is expressed throughout heart development and in the postnatal heart. TNNT2-morpholino treatment resulted in abnormal atrial septal growth and a reduction in the number of trabeculae in the developing primitive ventricular chamber. External analysis revealed the development of diverticula from the ventricular myocardial wall which showed no evidence of fibrosis and still retained a myocardial phenotype. Sarcomeric assembly appeared normal in these treated hearts. In humans, congenital ventricular diverticulum is a rare condition, which has not yet been genetically associated. However, abnormal haemodynamics is known to cause structural defects in the heart. Further, structural defects, including atrial septal defects and congenital diverticula, have previously been associated with conduction anomalies. Therefore, to provide mechanistic insights into the effect that cTNT knockdown has on the developing heart, quantitative PCR was performed to determine the expression of the shear stress responsive gene NOS3 and the conduction gene TBX3. Both genes were differentially expressed compared to controls. Therefore, a reduction in cTNT in the developing heart results in abnormal atrial septal formation and aberrant ventricular morphogenesis. We hypothesize that alterations to the haemodynamics, indicated by differential NOS3 expression, causes these abnormalities in growth in cTNT knockdown

  19. [Neurological syndromes, encephalitis].

    PubMed

    Yamamoto, Tomotaka; Tsuji, Shoji

    2010-06-01

    The remote effects of malignant tumors in most cases of paraneoplastic neurological syndromes(PNS)are mediated by autoimmune processes against antigens shared by the tumor cells and the nervous tissue(onconeural antigens). Onconeural (or paraneoplastic)antibodies are broadly categorized into two groups according to the location of the corresponding onconeural antigens, inside or on the surface of neurons. Antibodies established as clinically relevant diagnostic markers for PNS are designated as well-characterized onconeural antibodies (or classical antibodies)that target intracellular antigens(Hu, Yo, Ri, CV2/CRMP5,Ma2, and amphiphysin). They also serve as useful markers in detecting primary tumors. Recent identification of new antibodies as markers of subtypes of limbic encephalitis has also expanded the concept of autoimmune limbic encephalitis. These autoantibodies are directed to neuronal cell-surface antigens including neurotransmitter receptors(NMDA, AMPA, and GABAB receptors)and ion channels(VGKC). They are less frequently associated with cancer, so that they cannot be used as specific markers for PNS. Autoimmune limbic encephalitis with anti-neuronal cell surface antobodies and paraneoplastic limbic encephalitis with classical antibodies overlap in some clinical features but are pathophysiologically distinct. Classical antibodies are not simple tumor markers. They seem to be closely related to the disease mechanisms because specific intrathecal synthesis has been shown in PNS patients. However, attempts to produce an animal model of PNS by passive transfer of these antibodies have been unsuccessful, and there is no direct evidence demonstrating the pathogenic role of classical antibodies. Instead, some circumstantial evidence, including pathological studies showing extensive infiltrates of T cells in the CNS of the patients, supports the hypothesis that cytotoxic-T cell mechanisms cause irreversible neuronal damage. On the other hand, humoral immune

  20. Preliminary models of normal fault development in subduction zones: lithospheric strength and outer rise deformation

    NASA Astrophysics Data System (ADS)

    Naliboff, J. B.; Billen, M. I.

    2010-12-01

    A characteristic feature of global subduction zones is normal faulting in the outer rise region, which reflects flexure of the downgoing plate in response to the slab pull force. Variations in the patterns of outer rise normal faulting between different subduction zones likely reflects both the magnitude of flexural induced topography and the strength of the downgoing plate. In particular, the rheology of the uppermost oceanic lithosphere is likely to strongly control the faulting patterns, which have been well documented recently in both the Middle and South American trenches. These recent observations of outer rise faulting provide a unique opportunity to test different rheological models of the oceanic lithosphere using geodynamic numerical experiments. Here, we develop a new approach for modeling deformation in the outer rise and trench regions of downgoing slabs, and discuss preliminary 2-D numerical models examining the relationship between faulting patterns and the rheology of the oceanic lithosphere. To model viscous and brittle deformation within the oceanic lithosphere we use the CIG (Computational Infrastructure for Geodynamics) finite element code Gale, which is designed to solve long-term tectonic problems. In order to resolve deformation features on geologically realistic scales (< 1 km), we model only the portion of the subduction system seaward of the trench. Horizontal and vertical stress boundary conditions on the side walls drive subduction and reflect, respectively, the ridge-push and slab-pull plate-driving forces. The initial viscosity structure of the oceanic lithosphere and underlying asthenosphere follow a composite viscosity law that takes into account both Newtonian and non-Newtonian deformation. The viscosity structure is consequently governed primarily by the strain rate and thermal structure, which follows a half-space cooling model. Modification of the viscosity structure and development of discrete shear zones occurs during yielding

  1. Characterization of the equine blood-testis barrier during tubular development in normal and cryptorchid stallions.

    PubMed

    Rode, K; Sieme, H; Richterich, P; Brehm, R

    2015-09-15

    The formation of the blood-testis barrier (BTB) is defined as occurring with the first appearance of spermatocytes at around puberty and is vital for normal spermatogenesis. This barrier between two adjacent Sertoli cells (SCs) consists of a cell junctional protein complex, which includes tight junctions (TJs), adherens junctions, and gap junctions. In many mammalian species, BTB composition has already been investigated, whereas little is known about the equine BTB. In the present study, immunohistochemistry and qualitative Western Blot analysis were used to assess the expression and distribution patterns of the junctional proteins claudin-11 (TJ), zonula occludens-1 (TJ associated), N-cadherin (adherens junctions), and connexin 43 (gap junctions) in equine testes during tubular development and in testes of stallions exhibiting unilateral cryptorchidism. Therefore, testes of 21 warmblood stallions (aged 12 months-11 years) were obtained during routine surgical castration. In the normal adult equine testis, the junctional proteins are localized at the basolateral region of the seminiferous tubules forming a circumferential seal corresponding to the known BTB localization. N-cadherin is additionally expressed along the lateral SC surface. In immature seminiferous cords still lacking a lumen, a diffuse distribution pattern of the junctional proteins throughout the SC cytoplasm is visible. As lumen formation advances, the immunolocalization shifts progressively toward the basolateral SC membranes. Additionally, apoptotic germ cells were detected and quantified in prepubertal stallions using terminal deoxynucleotidyl transferase dUTP nick end labeling assay and correlated with junctional protein localization. In the retained testis of cryptorchid stallions, which exhibit an aberrant testicular morphology, a deviating expression of the junctional proteins is visible. The present data show for the first time that (1) the equine SC junctional complex contains claudin-11

  2. Evolution, Development, and Function of the Pulmonary Surfactant System in Normal and Perturbed Environments.

    PubMed

    Orgeig, Sandra; Morrison, Janna L; Daniels, Christopher B

    2015-01-01

    Surfactant lipids and proteins form a surface active film at the air-liquid interface of internal gas exchange organs, including swim bladders and lungs. The system is uniquely positioned to meet both the physical challenges associated with a dynamically changing internal air-liquid interface, and the environmental challenges associated with the foreign pathogens and particles to which the internal surface is exposed. Lungs range from simple, transparent, bag-like units to complex, multilobed, compartmentalized structures. Despite this anatomical variability, the surfactant system is remarkably conserved. Here, we discuss the evolutionary origin of the surfactant system, which likely predates lungs. We describe the evolution of surfactant structure and function in invertebrates and vertebrates. We focus on changes in lipid and protein composition and surfactant function from its antiadhesive and innate immune to its alveolar stability and structural integrity functions. We discuss the biochemical, hormonal, autonomic, and mechanical factors that regulate normal surfactant secretion in mature animals. We present an analysis of the ontogeny of surfactant development among the vertebrates and the contribution of different regulatory mechanisms that control this development. We also discuss environmental (oxygen), hormonal and biochemical (glucocorticoids and glucose) and pollutant (maternal smoking, alcohol, and common "recreational" drugs) effects that impact surfactant development. On the adult surfactant system, we focus on environmental variables including temperature, pressure, and hypoxia that have shaped its evolution and we discuss the resultant biochemical, biophysical, and cellular adaptations. Finally, we discuss the effect of major modern gaseous and particulate pollutants on the lung and surfactant system. PMID:26756637

  3. Normal and Abnormal Development of the Intrapericardial Arterial Trunks in Man and Mouse

    PubMed Central

    Anderson, Robert H.; Chaudhry, Bill; Mohun, Timothy J.; Bamforth, Simon D.; Hoyland, Darren; Phillips, Helen M.; Webb, Sandra; Moorman, Antoon F.J.; Brown, Nigel A.; Henderson, Deborah J.

    2014-01-01

    Aims The definitive cardiac outflow channels have three components: the intrapericardial arterial trunks; the arterial roots with valves; and the ventricular outflow tracts. We studied the normal and abnormal development of the most distal of these, the arterial trunks, comparing findings in mouse and man. Methods and Results Using lineage tracing and three-dimensional visualization by episcopic reconstruction and scanning electron microscopy, we studied embryonic day 9.5 to 12.5 mouse hearts, clarifying the development of the outflow tracts distal to the primordia of the arterial valves. We characterize a transient aortopulmonary foramen, located between the leading edge of a protrusion from the dorsal wall of the aortic sac and the distal margins of the two outflow cushions. The foramen is closed by fusion of the protrusion, with its cap of neural crest cells, with the neural crest cell-filled cushions; the resulting structure then functioning transiently as an aortopulmonary septum. Only subsequent to this closure is it possible to recognize, more proximally, the previously described aortopulmonary septal complex. The adjacent walls of the intrapericardial trunks are derived from the protrusion and distal parts of the outflow cushions, while the lateral walls are formed from intrapericardial extensions of pharyngeal mesenchyme derived from the second heart field. Conclusions We provide, for the first time, objective evidence of the mechanisms of closure of an aortopulmonary foramen that exists distally between the lumens of the developing intrapericardial arterial trunks. Our findings provide insights into the formation of aortopulmonary windows and the variants of common arterial trunk. PMID:22499773

  4. Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease.

    PubMed

    Horii, Mariko; Li, Yingchun; Wakeland, Anna K; Pizzo, Donald P; Nelson, Katharine K; Sabatini, Karen; Laurent, Louise Chang; Liu, Ying; Parast, Mana M

    2016-07-01

    Trophoblast is the primary epithelial cell type in the placenta, a transient organ required for proper fetal growth and development. Different trophoblast subtypes are responsible for gas/nutrient exchange (syncytiotrophoblasts, STBs) and invasion and maternal vascular remodeling (extravillous trophoblasts, EVTs). Studies of early human placental development are severely hampered by the lack of a representative trophoblast stem cell (TSC) model with the capacity for self-renewal and the ability to differentiate into both STBs and EVTs. Primary cytotrophoblasts (CTBs) isolated from early-gestation (6-8 wk) human placentas are bipotential, a phenotype that is lost with increasing gestational age. We have identified a CDX2(+)/p63(+) CTB subpopulation in the early postimplantation human placenta that is significantly reduced later in gestation. We describe a reproducible protocol, using defined medium containing bone morphogenetic protein 4 by which human pluripotent stem cells (hPSCs) can be differentiated into CDX2(+)/p63(+) CTB stem-like cells. These cells can be replated and further differentiated into STB- and EVT-like cells, based on marker expression, hormone secretion, and invasive ability. As in primary CTBs, differentiation of hPSC-derived CTBs in low oxygen leads to reduced human chorionic gonadotropin secretion and STB-associated gene expression, instead promoting differentiation into HLA-G(+) EVTs in an hypoxia-inducible, factor-dependent manner. To validate further the utility of hPSC-derived CTBs, we demonstrated that differentiation of trisomy 21 (T21) hPSCs recapitulates the delayed CTB maturation and blunted STB differentiation seen in T21 placentae. Collectively, our data suggest that hPSCs are a valuable model of human placental development, enabling us to recapitulate processes that result in both normal and diseased pregnancies. PMID:27325764

  5. Dental morphologic characteristics of normal versus delayed developing dentitions with palatally displaced canines.

    PubMed

    Chaushu, Stella; Sharabi, Shaltiel; Becker, Adrian

    2002-04-01

    An earlier study reported on the delayed dental age in about 50% of patients with palatally displaced canines (PDC), suggesting the possible existence of 2 different PDC phenotypes. The present study aimed to determine whether the PDC subgroup with late dental age displays different dental features from the PDC subgroup with normal dental age, supporting the above assumption. The 3 dental parameters examined were mesiodistal and buccolingual tooth sizes, the presence of anomalous maxillary lateral incisors, and other congenitally missing teeth. Fifty-eight subjects with PDC, 37 girls and 21 boys, were divided according to dental age and compared with age- and sex-matched controls. The results revealed marked sexual dimorphism. Delayed dental development was twice as prevalent among the PDC males. The existence of 2 distinct PDC subgroups was supported for males only. One subgroup was characterized by delayed dental development, smaller-than-average teeth, and a marked increase in the prevalence of anomalous lateral incisors. The second subgroup more closely resembled the controls, presenting a timely developed dentition, a moderate and nonsignificant increase of anomalous lateral incisors, and a reduction in the dimensions of only the central incisors and the first molars. In females, although the prevalence of anomalous lateral incisors was slightly increased in the late dental age subgroup, tooth sizes were remarkably similar, negating the existence of 2 distinct subpopulations. Studying the overall PDC group as a single entity produced confusing results because important differences were obscured when the 2 sexes and the 2 dental age subgroups (in males) were combined. PMID:11997757

  6. Hmx1 is required for the normal development of somatosensory neurons in the geniculate ganglion.

    PubMed

    Quina, Lely A; Tempest, Lynne; Hsu, Yun-Wei A; Cox, Timothy C; Turner, Eric E

    2012-05-01

    Hmx1 is a variant homeodomain transcription factor expressed in the developing sensory nervous system, retina, and craniofacial mesenchyme. Recently, mutations at the Hmx1 locus have been linked to craniofacial defects in humans, rats, and mice, but its role in nervous system development is largely unknown. Here we show that Hmx1 is expressed in a subset of sensory neurons in the cranial and dorsal root ganglia which does not correspond to any specific sensory modality. Sensory neurons in the dorsal root and trigeminal ganglia of Hmx1dm/dm mouse embryos have no detectable Hmx1 protein, yet they undergo neurogenesis and express sensory subtype markers normally, demonstrating that Hmx1 is not globally required for the specification of sensory neurons from neural crest precursors. Loss of Hmx1 expression has no obvious effect on the early development of the trigeminal (V), superior (IX/X), or dorsal root ganglia neurons in which it is expressed, but results in marked defects in the geniculate (VII) ganglion. Hmx1dm/dm mouse embryos possess only a vestigial posterior auricular nerve, and general somatosensory neurons in the geniculate ganglion are greatly reduced by mid-gestation. Although Hmx1 is expressed in geniculate neurons prior to cell cycle exit, it does not appear to be required for neurogenesis, and the loss of geniculate neurons is likely to be the result of increased cell death. Fate mapping of neural crest-derived tissues indicates that Hmx1-expressing somatosensory neurons at different axial levels may be derived from either the neural crest or the neurogenic placodes. PMID:22586713

  7. Attentional Bias and the Development of Cerebral Dominance in Normal and Learning Disabled Children.

    ERIC Educational Resources Information Center

    Hynd, George W.; And Others

    The magnitude of the dichotic right ear advantage was assessed in 48 normal and 48 learning disabled (LD) children (mean age 8.3 years). Ss were matched according to age, sex, and handedness. An analysis of results indicated a significant right ear advantage in both the normal and LD children, but revealed no developmental trend for either group.…

  8. A Comparative Study of Language Development of Normal and Linguistically Deviant Retarded Children

    ERIC Educational Resources Information Center

    Nair, Smitha K.

    2011-01-01

    In this paper the author attempts to describe the actual linguistic problems of the retardates, compare their language with that of normal children and thereby tries to illustrate that although the language of retardates delay, they acquire language in the same sequence, as compared with the normal children. Three moderately retarded children with…

  9. Interpreting and Considering the Development of the Goal Orientation in the Transformation of Chinese Normal Universities

    ERIC Educational Resources Information Center

    Zhong, Chenyin

    2008-01-01

    As the teacher education in China gradually evolves from the closed one into an open one, and with the greater pressure from the competition among universities, the transformation of normal universities is an inevitable choice. The problems that normal universities need to face up to are the proper goal orientation and the setting of appropriate…

  10. Development of Normalization Factors for Canada and the United States and Comparison with European Factors.

    EPA Science Inventory

    In Life Cycle Assessment (LCA), normalization calculates the magnitude of an impact (midpoint or endpoint) relative to the total effect of a given reference. Using a country or a continent as a reference system is a first step towards global normalization. The goal of this work ...

  11. Development of Normalization Factors for Canada and the United States and Comparison with European Factors

    EPA Science Inventory

    In Life Cycle Assessment (LCA), normalization calculates the magnitude of an impact (midpoint or endpoint) relative to the total effect of a given reference. Using a country or a continent as a reference system is a first step towards global normalization. The goal of this wor...

  12. Neurologic Complications in Infective Endocarditis

    PubMed Central

    Morris, Nicholas A.; Matiello, Marcelo; Samuels, Martin A.

    2014-01-01

    Neurologic complications of infective endocarditis (IE) are common and frequently life threatening. Neurologic events are not always obvious. The prediction and management of neurologic complications of IE are not easily approached algorithmically, and the impact they have on timing and ability to surgically repair or replace the affected valve often requires a painstaking evaluation and joint effort across multiple medical disciplines in order to achieve the best possible outcome. Although specific recommendations are always tailored to the individual patient, there are some guiding principles that can be used to help direct the decision-making process. Herein, we review the pathophysiology, epidemiology, manifestations, and diagnosis of neurological complications of IE and further consider the impact they have on clinical decision making. PMID:25360207

  13. Historical perspective of Indian neurology

    PubMed Central

    Mishra, Shrikant; Trikamji, Bhavesh; Singh, Sandeep; Singh, Parampreet; Nair, Rajasekharan

    2013-01-01

    Objective: To chronicle the history of medicine and neurology in India with a focus on its establishment and evolution. Background: The history of neurology in India is divided into two periods: ancient and modern. The ancient period dates back to the mid-second millennium Before Christ (B.C.) during the creation of the Ayurvedic Indian system of Medicine, which detailed descriptions of neurological disorders called Vata Vyadhi. The early 20th century witnessed the birth of modern Indian medicine with the onset of formal physician training at the nation's first allopathic medical colleges located in Madras (1835), Calcutta (1835) and Mumbai (1848). Prior to India's independence from Britain in 1947, only 25 medical schools existed in the entire country. Today, there are over 355. In 1951, physicians across the field of neurology and neurosurgery united to create the Neurological Society of India (NSI). Four decades later in 1991, neurologists branched out to establish a separate organization called the Indian Academy of Neurology (IAN). Design/Methods: Information was gathered through literature review using PubMed, MD Consult, OVID, primary texts and research at various academic institutions in India. Results: Neurological disorders were first described in ancient India under Ayurveda. The transition to modern medicine occurred more recently through formal training at medical schools beginning in the 1930's. Early pioneers and founders of the NSI (1951) include Dr. Jacob Chandy, Dr. B Ramamurthi, Dr. S. T. Narasimhan and Dr. Baldev Singh. Later, Dr. J. S. Chopra, a prominent neurologist and visionary, recognized the need for primary centers of collaboration and subsequently established the IAN (1991). The future of Neurology in India is growing rapidly. Currently, there are 1100 practicing neurologists and more than 150 post-graduate trainees who join the ranks every year. As the number of neurologists rises across India, there is an increase in the amount of

  14. Addressing neurological disorders with neuromodulation.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2011-07-01

    Neurological disorders are becoming increasingly common in developed countries as a result of the aging population. In spite of medications, these disorders can result in progressive loss of function as well as chronic physical, cognitive, and emotional disability that ultimately places enormous emotional and economic on the patient, caretakers, and the society in general. Neuromodulation is emerging as a therapeutic option in these patients. Neuromodulation is a field, which involves implantable devices that allow for the reversible adjustable application of electrical, chemical, or biological agents to the central or peripheral nervous system with the objective of altering its functioning with the objective of achieving a therapeutic or clinically beneficial effect. It is a rapidly evolving field that brings together many different specialties in the fields of medicine, materials science, computer science and technology, biomedical, and neural engineering as well as the surgical or interventional specialties. It has multiple current and emerging indications, and an enormous potential for growth. The main challenges before it are in the need for effective collaboration between engineers, basic scientists, and clinicians to develop innovations that address specific problems resulting in new devices and clinical applications. PMID:21193369

  15. The Effect of Executive Function on Science Achievement Among Normally Developing 10-Year Olds

    NASA Astrophysics Data System (ADS)

    Lederman, Sheri G.

    Executive function (EF) is an umbrella term used to identify a set of discrete but interrelated cognitive abilities that enable individuals to engage in goal-directed, future-oriented action in response to a novel context. Developmental studies indicate that EF is predictive of reading and math achievement in middle childhood. The purpose of this study was to identify the association between EF and science achievement among normally developing 10 year olds. A sample of fifth grade students from a Northeastern suburban community participated in tests of EF, science, and intelligence. Consistent with adult models of EF, principal components analysis identified a three-factor model of EF organization in middle childhood, including cognitive flexibility, working memory, and inhibition. Multiple regression analyses revealed that executive function processes of cognitive flexibility, working memory, and inhibition were all predictive of science performance. Post hoc analyses revealed that high-performing science students differed significantly from low-performing students in both cognitive flexibility and working memory. These findings suggest that complex academic demands specific to science achievement rely on the emergence and maturation of EF components.

  16. The Septin CDCrel-1 Is Dispensable for Normal Development and Neurotransmitter Release

    PubMed Central

    Peng, Xiao-Rong; Jia, Zhengping; Zhang, Yu; Ware, Jerry; Trimble, William S.

    2002-01-01

    Septins are GTPases required for the completion of cytokinesis in a variety of organisms, yet their role in this process is not known. Septins may have additional functions since the mammalian septin CDCrel-1 is predominantly expressed in the nervous system, a largely postmitotic tissue. While relatively little is known about the function of this protein, we have previously shown that it is involved in regulated secretion. In addition, the gene encoding this protein maps to a locus often deleted in velo-cardiofacial and DiGeorge syndromes, and CDCrel-1 has recently been shown to be a direct target of the E3 ubiquitin ligase activity of Parkin, a causative agent in autosomal recessive forms of Parkinson’s disease. Here we show that CDCrel-1 expression rises at the time of synaptic maturation and that CDCrel-1 is present in a complex that includes the septins Nedd5 and CDC10. To investigate its function in the nervous system, we generated homozygotic CDCrel-1 null mice and showed that these mice appear normal with respect to synaptic properties and hippocampal neuron growth in vitro. Moreover, we found that while the expression of a number of synaptic proteins is not affected in the CDCrel-1 mutant mice, the expression of other septins is altered. Together, these data suggest that CDCrel-1 is not essential for neuronal development or function, and that changes in expression of other septins may account for its functional redundancy. PMID:11739749

  17. List intonation in pre-schoolers with normal and disordered language development.

    PubMed

    Snow, David

    2015-01-01

    The principal aim of this study was to evaluate pre-schoolers' expressive intonation in light of current debates about the underlying nature of language impairment (LI). Children with LI typically have deficits in grammar, a component of language that is phonologically represented on the segmental level. The hypothesis is that children with LI do not have deficits of this type when grammar is conveyed by intonation, a pitch-based component of language that is phonologically represented on the suprasegmental level. This study focused on the richly diversified suprasegmental patterns of sentences in which the speaker produces a series of items in a list. To address the hypothesis, list intonation in the speech of 4-year-olds with and without LI was acoustically analysed. Lists produced by children with LI were comparable to those produced by children with normal language development (NL). The results do not support the claim that LI stems from a poor understanding of grammatical principles. Rather, LI reflects an underlying impairment of segmental information processing. The discussion focuses on two characteristics of pitch contours which may account for the resilience of intonation in children with LI. Namely, steady state versus transient signals and universal symbol meanings versus arbitrary relationships between form and function. PMID:26308494

  18. Gsh-1, an orphan Hox gene, is required for normal pituitary development.

    PubMed Central

    Li, H; Zeitler, P S; Valerius, M T; Small, K; Potter, S S

    1996-01-01

    The anterior pituitary regulates the function of multiple organ systems as well as body growth, and in turn is controlled by peptides released by the hypothalamus. We find that mutation of the Gsh-1 homeobox gene results in pleiotropic effects on pituitary development and function. Homozygous mutants exhibit extreme dwarfism, sexual infantilism and significant perinatal mortality. The mutant pituitary is small in size and hypocellular, with severely reduced numbers of growth hormone- and prolactin-producing cells. Moreover, the pituitary content of a subset of pituitary hormones, including growth hormone, prolactin and luteinizing hormone, is significantly decreased. The hypothalamus, although morphologically normal, is also perturbed in mutants. The gsh-1 gene is shown to be essential for growth hormone-releasing hormone (GHRH) gene expression in the arcuate nucleus of the hypothalamus. Further, sequence and electrophoretic mobility shift data suggest the Gsh-1 and GHRH genes as potential targets regulated by the Gsh-1-encoded protein. The mutant phenotype indicates a critical role for Gsh-1 in the genetic hierarchy of the formation and function of the hypothalamic-pituitary axis. Images PMID:8631293

  19. Development and Decline of Memory Functions in Normal, Pathological and Healthy Successful Aging

    PubMed Central

    Sanfratello, L.; Adair, J. C.; Knoefel, J. E.; Caprihan, A.; Stephen, J. M.

    2011-01-01

    Many neuroimaging studies of age-related memory decline interpret resultant differences in brain activation patterns in the elderly as reflecting a type of compensatory response or regression to a simpler state of brain organization. Here we review a series of our own studies which lead us to an alternative interpretation, and highlights a couple of potential confounds in the aging literature that may act to increase the variability of results within age groups and across laboratories. From our perspective, level of cognitive functioning achieved by a group of elderly is largely determined by the health of individuals within this group. Individuals with a history of hypertension, for example, are likely to have multiple white matter insults which compromise cognitive functioning, independent of aging processes. The health of the elderly group has not been well-documented in most previous studies and elderly participants are rarely excluded, or placed into a separate group, due to health-related problems. In addition, recent results show that white matter tracts within the frontal and temporal lobes, regions critical for higher cognitive functions, continue to mature well into the 4th decade of life. This suggests that a young age group may not be the best control group for understanding aging effects on the brain since development is ongoing within this age range. Therefore, we have added a middle-age group to our studies in order to better understand normal development across the lifespan as well as effects of pathology on cognitive functioning in the aging brain. PMID:21452018

  20. The role of estrogens in normal and abnormal development of the prostate gland.

    PubMed

    Prins, Gail S; Huang, Liwei; Birch, Lynn; Pu, Yongbing

    2006-11-01

    Estrogens play a physiologic role during prostate development with regard to programming stromal cells and directing early morphogenic events. However, if estrogenic exposures are abnormally high during the critical developmental period, permanent alterations in prostate branching morphogenesis and cellular differentiation will result, a process referred to as neonatal imprinting or developmental estrogenization. These perturbations are associated with an increased incidence of prostatic lesions with aging, which include hyperplasia, inflammation, and dysplasia. To understand how early estrogenic exposures can permanently alter the prostate and predispose it to neoplasia, we examined the effects of estrogens on prostatic steroid receptors and key developmental genes. Transient and permanent alterations in prostatic AR, ERalpha, ERbeta, and RARs are observed. We propose that estrogen-induced alterations in these critical transcription factors play a fundamental role in initiating prostatic growth and differentiation defects by shifting the prostate from an androgen-dominated gland to one whose development is regulated by estrogens and retinoids. This in turn leads to specific disruptions in the expression patterns of key prostatic developmental genes that normally dictate morphogenesis and differentiation. Specifically, we find transient reductions in Nkx3.1 and permanent reductions in Hoxb-13, which lead to differentiation defects particularly within the ventral lobe. Prolonged developmental expression of Bmp-4 contributes to hypomorphic growth throughout the prostatic complex. Reduced expression of Fgf10 and Shh and their cognate receptors in the dorsolateral lobes leads to branching defects in those specific regions in response to neonatal estrogens. We hypothesize that these molecular changes initiated early in life predispose the prostate to the neoplastic state upon aging. PMID:17261752

  1. Hippocrates: the forefather of neurology.

    PubMed

    Breitenfeld, T; Jurasic, M J; Breitenfeld, D

    2014-09-01

    Hippocrates is one of the most influential medical doctors of all times. He started observing and experimenting in times of mysticism and magic. He carried a holistic and humanitarian approach to the patient with examination as the principal approach-inspection, palpation and auscultation are still the most important tools in diagnosing algorithms of today. He had immense experience with the human body most likely due to numerous wound treatments he had performed; some even believe he performed autopsies despite the negative trend at the time. Hippocrates identified the brain as the analyst of the outside world, the interpreter of consciousness and the center of intelligence and willpower. Interestingly, Hippocrates was aware of many valid concepts in neurology; his treatise On the Sacred Disease was the most important for understanding neurology and epilepsy. His other ideas pioneered modern day neurology mentioning neurological diseases like apoplexy, spondylitis, hemiplegia, and paraplegia. Today, 10 % of neurological Pubmed and 7 % of neuroscience Scopus reviews mention Corpus Hippocraticum as one of the sources. Therefore, Hippocrates may be considered as the forefather of neurology. PMID:25027011

  2. Neurological manifestations, diagnosis, and treatment of celiac disease: A comprehensive review

    PubMed Central

    2012-01-01

    Celiac disease or gluten sensitivity may initially present as one or more neurological signs and/or symptoms. On the other hand, it may be associated with or complicated by neurological manifestations. Neurological presentations are rare in children but as many as 36% of adult patients present with neurological changes. With severe malnutrition after progression of celiac disease, different vitamin deficiencies may develop. Such problems can in turn overlap with previous neurological abnormalities including ataxia, epilepsy, neuropathy, dementia, and cognitive disorders. In this study, we aimed to review the neurological aspects of celiac disease. Early diagnosis and treatment could prevent related disability in patients with celiac disease. PMID:24250863

  3. Chapter 40: history of neurology in France.

    PubMed

    Clarac, François; Boller, François

    2010-01-01

    The history of neurology in France is characterized by the very high degree of centralization in that country where "everything seems to happen in Paris," and yet the considerable degree of autonomous diversity in the evolution of some other medical schools such as Montpellier and Strasbourg. It could be argued that France saw the birth of clinical neurology as a separate discipline since Jean Martin Charcot at the Salpêtrière Hospital obtained a chair of diseases of the nervous system in 1892, a first in the history of the academic world. The chapter shows, however, that the work of Charcot was preceded by a long evolution in medical thinking, which culminated with the introduction of experimental medicine developed by Claude Bernard and François Magendie, and by the study of aphasia by Paul Broca and its localization of language in a specific area of the brain. Many of the great neurologists of France like Duchenne de Boulogne, Gilles de la Tourette, Joseph Babinski and Pierre Marie gravitated around Charcot while others like Charles-Edward Brown-Sequard and Jules Dejerine developed their talents independently. The history of Sainte-Anne Hospital further illustrates this independence. It also shows the relation between neurology and psychiatry with Henri Ey, Jean Delay and Pierre Deniker, who collaborated with Henri Laborit in the clinical development of chlorpromazine. Sainte Anne also saw the birth of modern neuropsychology with Henry Hécaen. Jean Talairach and his group developed human stereotaxic neurosurgery and a 3-dimensional brain atlas that is used around the world. The chapter also mentions institutions (the CNRS and INSERM) that have contributed to developments partially independently from medical schools. It concludes with a presentation of schools located outside of Paris that have played a significant role in the development of neurology. Six of the most important ones are described: Montpellier, Toulouse, Bordeaux, Strasbourg, Lyon, and

  4. Neurologic Disorders in Immunocompetent Patients with Autochthonous Acute Hepatitis E

    PubMed Central

    Perrin, H. Blasco; Cintas, P.; Abravanel, F.; Gérolami, R.; d'Alteroche, L.; Raynal, J.-N.; Alric, L.; Dupuis, E.; Prudhomme, L.; Vaucher, E.; Couzigou, P.; Liversain, J.-M.; Bureau, C.; Vinel, J.-P.; Kamar, N.; Izopet, J.

    2015-01-01

    Neurologic disorders, mainly Guillain-Barré syndrome and Parsonage–Turner syndrome (PTS), have been described in patients with hepatitis E virus (HEV) infection in industrialized and developing countries. We report a wider range of neurologic disorders in nonimmunocompromised patients with acute HEV infection. Data from 15 French immunocompetent patients with acute HEV infection and neurologic disorders were retrospectively recorded from January 2006 through June 2013. The disorders could be divided into 4 main entities: mononeuritis multiplex, PTS, meningoradiculitis, and acute demyelinating neuropathy. HEV infection was treated with ribavirin in 3 patients (for PTS or mononeuritis multiplex). One patient was treated with corticosteroids (for mononeuropathy multiplex), and 5 others received intravenous immunoglobulin (for PTS, meningoradiculitis, Guillain-Barré syndrome, or Miller Fisher syndrome). We conclude that pleiotropic neurologic disorders are seen in HEV-infected immunocompetent patients. Patients with acute neurologic manifestations and aminotransferase abnormalities should be screened for HEV infection. PMID:26490255

  5. Neurology in the Vietnam War.

    PubMed

    Gunderson, Carl H; Daroff, Robert B

    2016-01-01

    Between December 1965 and December 1971, the United States maintained armed forces in Vietnam never less than 180,000 men and women in support of the war. At one time, this commitment exceeded half a million soldiers, sailors, and airmen from both the United States and its allies. Such forces required an extensive medical presence, including 19 neurologists. All but two of the neurologists had been drafted for a 2-year tour of duty after deferment for residency training. They were assigned to Vietnam for one of those 2 years in two Army Medical Units and one Air Force facility providing neurological care for American and allied forces, as well as many civilians. Their practice included exposure to unfamiliar disorders including cerebral malaria, Japanese B encephalitis, sleep deprivation seizures, and toxic encephalitis caused by injection or inhalation of C-4 explosive. They and neurologists at facilities in the United States published studies on all of these entities both during and after the war. These publications spawned the Defense and Veterans Head Injury Study, which was conceived during the Korean War and continues today as the Defense and Veterans Head Injury Center. It initially focused on post-traumatic epilepsy and later on all effects of brain injury. The Agent Orange controversy arose after the war; during the war, it was not perceived as a threat by medical personnel. Although soldiers in previous wars had developed serious psychological impairments, post-traumatic stress disorder was formally recognized in the servicemen returning from Vietnam. PMID:27035455

  6. Gene Editing for Treatment of Neurological Infections.

    PubMed

    White, Martyn K; Kaminski, Rafal; Wollebo, Hassen; Hu, Wenhui; Malcolm, Thomas; Khalili, Kamel

    2016-07-01

    The study of neurological infections by viruses defines the field of neurovirology, which has emerged in the last 30 years and was founded upon the discovery of a number of viruses capable of infecting the human nervous system. Studies have focused on the molecular and biological basis of viral neurological diseases with the aim of revealing new therapeutic options. The first studies of neurovirological infections can be traced back to the discovery that some viruses have an affinity for the nervous system with research into rabies by Louis Pasteur and others in the 1880s. Today, the immense public health impact of neurovirological infections is illustrated by diseases such as neuroAIDS, progressive multifocal leukoencephalopathy, and viral encephalitis. Recent research has seen the development of powerful new techniques for gene editing that promise revolutionary opportunities for the development of novel therapeutic options. In particular, clustered regulatory interspaced short palindromic repeat-associated 9 system provides an effective, highly specific and versatile tool for targeting DNA viruses that are beginning to allow the development of such new approaches. In this short review, we discuss these recent developments, how they pertain to neurological infections, and future prospects. PMID:27150390

  7. Toward precision medicine in neurological diseases

    PubMed Central

    Tan, Lin; Jiang, Teng

    2016-01-01

    Technological development has paved the way for accelerated genomic discovery and is bringing precision medicine into view. The goal of precision medicine is to deliver optimally targeted and timed interventions tailored to an individual’s molecular drivers of disease. Neurological diseases are promisingly suited models for precision medicine because of the rapidly expanding genetic knowledge base, phenotypic classification, the development of biomarkers and the potential modifying treatments. Moving forward, it is crucial that through these integrated research platforms to provide analysis both for accurate personal genome analysis and gene and drug discovery. Here we describe our vision of how precision medicine can bring greater clarity to the clinical and biological complexity of neurological diseases. PMID:27127757

  8. Normal peripheral prostate stromal cells stimulate prostate cancer development: roles of c-kit signal

    PubMed Central

    Guo, Jian-Hua; Zhou, Juan; Zhao, Yang; Liu, Peng-Yue; Yao, Hai-Jun; Da, Jun; Zhang, Ming; Zhou, Zhe; Chen, Qi; Peng, Yu-Bing; Wang, Zhong

    2015-01-01

    Background: To investigated the peripheral stromal cell conditioned medium (CM) -stimulated c-kit-JAK2-STAT1 pathway in prostate cancer. Methods: CM harvested from normal prostate peripheral stromal cells was added to DU145 cells. DU145 cell viability and migration were measured by cell counting kit-8 reagent and Transwell analysis respectively. Colony and sphere formation efficiencies of DU145 cells co-cultured with CM from human prostate stromal cells were also measured. DU145cells were stably transfected with lentivirus-mediated shRNA for c-kit silencing. Results: C-kit expression in prostate cancer was found to be significantly higher than in benign prostatic hyperplasia and positively associated with Gleason scores. The growth, migration and capacity of clonogenic property of DU145 cells significantly increased upon exposure to peripheral stromal CM and then were inhibited after silencing the expression of c-kit. The levels of c-kit, pJAK2 and pSTAT1 were significantly induced by peripheral zone stromal CM compared with controls in serum free medium and the levels of pJAK2 and pSTAT1 decreased after c-kit silencing. Conclusions: C-kit hyper-expression promotes the development of prostate cancer. The peripheral stromal cell CM stimulated c-kit-JAK2-STAT1 pathway in prostate cancer cell viability, migration, and capacity of clonogenic property. This may lead to a greater understanding of the role of c-kit in prostate cancer and provide a potential therapeutic target for prostate cancer. PMID:26045890

  9. A model for the geomorphic development of normal-fault facets

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.; Hobley, D. E. J.; McCoy, S. W.

    2014-12-01

    Triangular facets are among the most striking landforms associated with normal faulting. The genesis of facets is of great interest both for the information facets contain about tectonic motion, and because the progressive emergence of facets makes them potential recorders of both geomorphic and tectonic history. In this report, we present observations of triangular facets in the western United States and in the Italian Central Apennines. Facets in these regions typically form quasi-planar surfaces that are aligned in series along and above the trace of an active fault. Some facet surfaces consist mainly of exposed bedrock, with a thin and highly discontinuous cover of loose regolith. Other facets are mantled by a several-decimeter-thick regolith cover. Over the course of its morphologic development, a facet slope segment may evolve from a steep (~60 degree) bedrock fault scarp, well above the angle of repose for soil, to a gentler (~20-40 degree) slope that can potentially sustain a coherent regolith cover. This evolutionary trajectory across the angle of repose renders nonlinear diffusion theory inapplicable. To formulate an alternative process-based theory for facet evolution, we use a particle-based approach that acknowledges the possibility for both short- and long-range sediment-grain motions, depending on the topography. The processes of rock weathering, grain entrainment, and grain motion are represented as stochastic state-pair transitions with specified transition rates. The model predicts that facet behavior can range smoothly along the spectrum from a weathering-limited mode to a transport-limited mode, depending on the ratio of fault-slip rate to bare-bedrock regolith production rate. The model also implies that facets formed along a fault with pinned tips should show systematic variation in slope angle that correlates with along-fault position and slip rate. Preliminary observations from central Italy and the eastern Basin and Range are consistent

  10. Management of male neurologic patients with infertility.

    PubMed

    Fode, Mikkel; Sønksen, Jens

    2015-01-01

    Many aspects of fertility rely on intact neurologic function and thus neurologic diseases can result in infertility. While research into general female fertility and alterations in male semen quality is limited, we have an abundance of knowledge regarding ejaculatory dysfunction following nerve injury. Normal ejaculation is the result of coordinated reflex activity involving both the sympathetic and somatic nervous systems. Nerve injury can result in retrograde ejaculation, and anejaculation. With retrograde ejaculation, the ejaculate is propelled into the bladder instead of out through the urethra. In mild cases this condition can be reversed by sympathomimetic medications and, in more severe cases, sperm cells can be extracted from the bladder following ejaculation. With anejaculation, the ejaculatory reflex is not activated by normal sexual stimulation. In such cases, the first choice of treatment is assisted ejaculation, preferably by penile vibratory stimulation. If vibratory stimulation is unsuccessful, then ejaculation can almost always be induced by electroejaculation. In cases where assisted ejaculation fails, sperm can be retrieved surgically from either the epididymis or from the testis. Once viable sperm cells have been obtained, these are used in assisted reproductive techniques, including intravaginal insemination, intrauterine insemination, and in vitro fertilization/intracytoplasmic sperm injection. PMID:26003259

  11. Normal-fault development in two-phase experimental models of shortening followed by extension and comparison to natural examples

    NASA Astrophysics Data System (ADS)

    Warrell, K. F.; Withjack, M. O.; Schlische, R. W.

    2014-12-01

    Field- and seismic-reflection-based studies have documented the influence of pre-existing thrust faults on normal-fault development during subsequent extension. Published experimental (analog) models of shortening followed by extension with dry sand as the modeling medium show limited extensional reactivation of moderate-angle thrust faults (dipping > 40º). These dry sand models provide insight into the influence of pre-existing thrusts on normal-fault development, but these models have not reactivated low-angle (< 35º) thrust faults as seen in nature. New experimental (analog) models, using wet clay over silicone polymer to simulate brittle upper crust over ductile lower crust, suggest that low-angle thrust faults from an older shortening phase can reactivate as normal faults. In two-phase models of shortening followed by extension, normal faults nucleate above pre-existing thrust faults and likely link with thrusts at depth to create listric faults, movement on which produces rollover folds. Faults grow and link more rapidly in two-phase than in single-phase (extension-only) models. Fewer faults with higher displacements form in two-phase models, likely because, for a given displacement magnitude, a low-angle normal fault accommodates more horizontal extension than a high-angle normal fault. The resulting rift basins are wider and shallower than those forming along high-angle normal faults. Features in these models are similar to natural examples. Seismic-reflection profiles from the outer Hebrides, offshore Scotland, show listric faults partially reactivating pre-existing thrust faults with a rollover fold in the hanging wall; in crystalline basement, the thrust is reactivated, and in overlying sedimentary strata, a new, high-angle normal fault forms. Profiles from the Chignecto subbasin of the Fundy basin, offshore Canada, show full reactivation of thrust faults as low-angle normal faults where crystalline basement rocks make up the footwall.

  12. The Brazilian Neurology centenary (1912-2012) and the common origin of the fields of Neurology and Psychiatry.

    PubMed

    Gomes, Marleide da Mota; Cavalcanti, Jose Luiz de Sá

    2013-01-01

    It is reported the Brazilian Neurology birth (1912), that has as the hallmark its first Neurology Cathedra of Rio de Janeiro, and the links between Neurology and Psychiatry, besides the main medical protagonists at that time in Rio de Janeiro: João Carlos Teixeira Brandão (1854-1921), first professor of the cathedra of Clinical Psychiatry and Nervous Diseases (1883-1921); Juliano Moreira (1873-1933), the founder of the Brazilian scientific Psychiatry and director of the Hospício Nacional de Alienados (National Hospice for the Insane) (1903-1930); Antônio Austregésilo Rodrigues de Lima (1876-1960), first professor of the cathedra of Neurology, considered the father of the Brazilian Neurology. Aloysio de Castro (1881-1959) was a great Brazilian neurosemiologist at that time. Austregésilo practiced both disciplines, Neurology and Psychiatry, and like Jean-Martin-Charcot, he was very interested in a typically psychiatric disorder, the hysteria. It is also considered in this paper the first Brazilian authors of Neurology and/or Psychiatric texts and the places where Neurology was initially developed by the main founders: Hospício Nacional de Alienados, Santa Casa de Misericórdia do Rio de Janeiro and Policlínica Geral do Rio de Janeiro. PMID:23338164

  13. Common variable immunodeficiency, impaired neurological development and reduced numbers of T regulatory cells in a 10-year-old boy with a STAT1 gain-of-function mutation.

    PubMed

    Kobbe, Robin; Kolster, Manuela; Fuchs, Sebastian; Schulze-Sturm, Ulf; Jenderny, Jutta; Kochhan, Lothar; Staab, Julia; Tolosa, Eva; Grimbacher, Bodo; Meyer, Thomas

    2016-07-25

    Recently, gain-of-function (GOF) mutations in the gene encoding signal transducer and activator of transcription 1 (STAT1) have been associated with chronic mucocutaneous candidiasis (CMC). This case report describes a 10-year-old boy presenting with signs of common variable immunodeficiency (CVID), failure to thrive, impaired neurological development, and a history of recurrent mucocutaneous Candida infections. Sequencing of the STAT1 gene identified a heterozygous missense mutation in exon 7 encoding the STAT1 coiled-coil domain (c.514T>C, p.Phe172Leu). In addition to hypogammaglobulinemia with B-cell deficiency, and a low percentage of Th17 cells, immunological analysis of the patient revealed a marked depletion of forkhead-box P3(+)-expressing regulatory T cells (Tregs). In vitro stimulation of T cells from the patient with interferon-α (IFNα) and/or IFNɣ resulted in a significantly increased expression of STAT1-regulated target genes such as MIG1, IRF1, MX1, MCP1/CCL2, IFI-56K, and CXCL10 as compared to IFN-treated cells from a healthy control, while no IFNα/ɣ-mediated up-regulation of the FOXP3 gene was found. These data demonstrate that the STAT1 GOF mutation F172L, which results in impaired stability of the antiparallel STAT1 dimer conformation, is associated with inhibited Treg cell development and neurological symptoms. PMID:27063510

  14. From accommodation zones to metamorphic core complexes: Tracking the progressive development of major normal fault systems

    SciTech Connect

    Faulds, J.E. . Dept. of Geology)

    1992-01-01

    The along-strike dimension in rifted continental crust is critical to assessing models of continental extension because individual normal faults or fault systems can potentially be traced from their tips in accommodation zones to their culminations in metamorphic core complexes. Accommodation zones and the linkages between the zones and core complexes have not been thoroughly studied or incorporated extensively into models of continental extension. Regionally extensive, gently dipping normal faults (i.e., detachment faults) that surface in metamorphic core complexes terminate and flip polarity in accommodation zones. Diametrical lateral transport of upper-plate rocks in positively dipping detachment terranes should presumably induce strike-slip faulting on segments of accommodation zones paralleling the extension direction. Most accommodation zones correspond, however, to belts of intermeshing conjugate normal faults with little strike-slip faulting. Normal faults simply terminate along-strike in the zones with little, if any, transfer of slip to strike-slip faults. Decreases in cumulative strain within individual normal fault systems toward some accommodation zones cannot alone account for the lack of strike-slip faulting. These findings pose a serious challenge to generally accepted notions of large-magnitude, lateral motion of parts of detachment terranes. Large-scale lateral translations of rifted continental crust may be governed more by discrete axes of extension than by detachment geometries. The dovetail-like interfingering of conjugate normal fault systems and attendant tilt-block domains observed in some accommodation zones (e.g., Colorado River extensional corridor, US) does suggest, however, that at least some major normal faults projecting into the zones from metamorphic core complexes have listric geometries that flatten out at relatively shallow depths.

  15. A Comparison Study of Gross Motor Development Skills of Normal, Hearing-Impaired and Down Syndrome Children.

    ERIC Educational Resources Information Center

    Bilir, Sule; And Others

    This study, conducted in Ankara, Turkey, compared motor development in 48 normal children (ages 3 to 6), 12 children (ages 5 to 7) with Down syndrome, and 33 children (ages 3 to 7) with hearing impairments. The Motor Development Section of the Portage Early Childhood Educational Program checklist was administered to all the children. Results…

  16. [Urgent neurologic states: experience at the Neurology Clinic in Sarajevo].

    PubMed

    Loncarević, Nedim; Dimitrijević, Jovan; Hrnjica, Mehmed; Hećo, Suad

    2004-01-01

    There is a quite good definition of medical care for patients suffering from chronicle neurological diseases. However the neurologist role in taking care of urgent cases is substantially less determined. This paper is analyzing one year efforts of the on duty neurological team in the Out Patient Department and Emergency Division of the Neurology Department in Sarajevo. During this period the on duty neurological team examined the total of 3939 patients, out of which 1022 patients where kept for treatment. The patients where most frequently assigned to the Emergency unit for following reasons: vascular incident of the Central Nervous System(1955 patients or 50%), cerebrovascular accident represented with 1290 or 33%, and TIA of the carotid and vertebrobasilar area 544 or 14% along with hypertensive encephalopathia, 118 or 3%. This is followed by the group of the short-term disturbance of consciousness (472 or 125), out of which the consciousness crises represented 257 or 7%, and epileptic crises 215 or 5%. Following are the lower percentages of the headaches (287 or 7%), radicular painful syndrome of cervical and lumbal area (209 or 5%), vertigo (183 or 5%), neurophatia (167 or 4%), etc. The more extensive number of patients admitted at the Emergency Division where suffering from brain stroke (800 or 78%), TIA was represented by a lower number (172 or 17%). Only 50 patients had other diagnosis. The ischemic stroke represented 674 or 81% with patients suffering from the brain stroke and the hemorrhagic stroke 153 or 19%. Today, the urgent neurological conditions represent a particular area of Neurology, not only neurologists need to know but also other medical doctors, to enable the patients to be forwarded on time to the appropriate care institution. PMID:15202312

  17. [Anesthetic management and neurological outcomes of patient for open heart surgery with infective endocarditis and neurological complications].

    PubMed

    Kuro, M; Ohsumi, H; Takaki, O; Uchida, O; Kitaguchi, K; Hayashi, Y; Onishi, Y; Nakajima, T; Kuriyama, Y; Kawazoe, K

    1994-11-01

    No reports have focused on neurological outcomes after open heart surgery of patients with infective endocarditis (IE) and neurological complications. We evaluated parameters related to anesthetic management and neurological outcomes. The subjects analyzed were 24 patients who had undergone valvular surgeries under hypothermic cardiopulmonary bypass from April 1978 to December 1990. The patients were divided into two groups according to the interval between onset of neurological complication and the time of operation: 1) acute group (within one month before the surgery: n = 11, 9.4 +/- 9 days; means +/- SD) and 2) chronic group (more than one month before the surgery: n = 13, 120 +/- 80 days). After heart surgery, 5 patients in the acute group showed newly developed neurological abnormality including death from hemorrhagic transformation, hemiplegia or aphasia. No patients in the chronic group had newly developed neurological abnormality related to the surgery. In the neurologically deteriorated patients of the acute group, interval from the onset of neurological complication to surgery was 3.5 +/- 4.5 days, whereas that of the remainders of the acute group was significantly longer (14.4 +/- 9.0 days). Intraoperative events and anesthetic management of these patients were also analyzed. However, there were no significant differences in the parameters such as cerebral perfusion pressure, arterial PaCO2, doses of anesthetics and use of vasopressors. Our results suggest that the most important factor which may influence neurological outcome was the interval between the onset of neurological abnormality and the time of operation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7861608

  18. Neurologic Complications in Percutaneous Nephrolithotomy

    PubMed Central

    Basiri, Abbas; Soltani, Mohammad Hossein; Kamranmanesh, Mohammadreza; Tabibi, Ali; Mohsen Ziaee, Seyed Amir; Nouralizadeh, Akbar; Sharifiaghdas, Farzaneh; Poorzamani, Mahtab; Gharaei, Babak; Ozhand, Ardalan; Lashay, Alireza; Ahanian, Ali; Aminsharifi, Alireza; Sichani, Mehrdad Mohammadi; Asl-Zare, Mohammad; Ali Beigi, Faramarz Mohammad; Najjaran, Vahid; Abedinzadeh, Mehdi

    2013-01-01

    Purpose Percutaneous nephrolithotomy (PCNL) has been the preferred procedure for the removal of large renal stones in Iran since 1990. Recently, we encountered a series of devastating neurologic complications during PCNL, including paraplegia and hemiplegia. There are several reports of neurologic complications following PCNL owing to paradoxical air emboli, but there are no reports of paraplegia following PCNL. Materials and Methods We retrospectively reviewed the medical records of patients who had undergone PCNL in 13 different endourologic centers and retrieved data related to neurologic complications after PCNL, including coma, paraplegia, hemiplegia, and quadriplegia. Results The total number of PCNL procedures in these 13 centers was 30,666. Among these procedures, 11 cases were complicated by neurologic events, and four of these cases experienced paraplegia. All events happened with the patient in the prone position with the use of general anesthesia and in the presence of air injection. There were no reports of neurologic complications in PCNL procedures performed with the patient under general anesthesia and in the prone position and with contrast injection. Conclusions It can be assumed that using room air to opacify the collecting system played a major role in the occurrence of these complications. Likewise, the prone position and general anesthesia may predispose to these events in the presence of air injection. PMID:23526482

  19. Influence of steel fibres on bond and development length of deformed bars in normal strength concrete

    NASA Astrophysics Data System (ADS)

    Tenzey, Ugyen

    Transverse reinforcement (stirrups) plays an important role in improving bond and anchorage of deformed bars in reinforced concrete structures. Steel fibres or steel fibre reinforced concrete (SFRC) can be used in lieu of stirrups to provide a similar beneficial effect. The application of steel fibres in lieu of stirrups is not recognized in codes of practice for concrete structures because of limited research for this type of application. The results of this study are based on 18 large scale test beams (250 mm wide by 300 mm high and 3.4 m long). Control cylinders and flexure prisms are used to obtain the required concrete material properties together with tension tests of the steel rebar. The focus of this research is to investigate the influence of steel fibres to enhance bond and development of deformed reinforcing bars in normal strength reinforced concrete beams. An attempt is also made to develop an understanding and rationale of the effect SFRC has on improving bond. Longitudinal reinforcement in most of the beams is lap spliced with different types of confinement in the spliced region (plain concrete, plain concrete with stirrups, SFRC, and SFRC with stirrups), and evaluated under third point loading to ensure the spliced bars are subjected to a constant tensile force in the region of constant moment. All of the beams with spliced reinforcement failed in bond before yielding of the longitudinal reinforcement. The SFRC mix uses steel fibres at an 80 kg/m3 dosage (1% by volume). The plain concrete beams without any transverse reinforcement failed suddenly without any warning. The presence of steel fibres did not affect the flexural cracking load of the specimens, but did provide a consistent increase in the load capacity at bond failure and ensure a more controlled failure. The spliced beams with SFRC exhibited a 22.5% increase in the bond failure load capacity compared with the plain concrete beams. The combined effect of fibres and transverse reinforcement

  20. Neurologic complications of scuba diving.

    PubMed

    Newton, H B

    2001-06-01

    Recreational scuba diving has become a popular sport in the United States, with almost 9 million certified divers. When severe diving injury occurs, the nervous system is frequently involved. In dive-related barotrauma, compressed or expanding gas within the ears, sinuses and lungs causes various forms of neurologic injury. Otic barotrauma often induces pain, vertigo and hearing loss. In pulmonary barotrauma of ascent, lung damage can precipitate arterial gas embolism, causing blockage of cerebral blood vessels and alterations of consciousness, seizures and focal neurologic deficits. In patients with decompression sickness, the vestibular system, spinal cord and brain are affected by the formation of nitrogen bubbles. Common signs and symptoms include vertigo, thoracic myelopathy with leg weakness, confusion, headache and hemiparesis. Other diving-related neurologic complications include headache and oxygen toxicity. PMID:11417773

  1. The neurological basis of occupation.

    PubMed

    Gutman, Sharon A; Schindler, Victoria P

    2007-01-01

    The purpose of the present paper was to survey the literature about the neurological basis of human activity and its relationship to occupation and health. Activities related to neurological function were organized into three categories: those that activate the brain's reward system; those that promote the relaxation response; and those that preserve cognitive function into old age. The results from the literature review correlating neurological evidence and activities showed that purposeful and meaningful activities could counter the effects of stress-related diseases and reduce the risk for dementia. Specifically, it was found that music, drawing, meditation, reading, arts and crafts, and home repairs, for example, can stimulate the neurogical system and enhance health and well-being, Prospective research studies are needed to examine the effects of purposeful activities on reducing stress and slowing the rate of cognitive decline. PMID:17623380

  2. Neurological complications of underwater diving.

    PubMed

    Rosińska, Justyna; Łukasik, Maria; Kozubski, Wojciech

    2015-01-01

    The diver's nervous system is extremely sensitive to high ambient pressure, which is the sum of atmospheric and hydrostatic pressure. Neurological complications associated with diving are a difficult diagnostic and therapeutic challenge. They occur in both commercial and recreational diving and are connected with increasing interest in the sport of diving. Hence it is very important to know the possible complications associated with this kind of sport. Complications of the nervous system may result from decompression sickness, pulmonary barotrauma associated with cerebral arterial air embolism (AGE), otic and sinus barotrauma, high pressure neurological syndrome (HPNS) and undesirable effect of gases used for breathing. The purpose of this review is to discuss the range of neurological symptoms that can occur during diving accidents and also the role of patent foramen ovale (PFO) and internal carotid artery (ICA) dissection in pathogenesis of stroke in divers. PMID:25666773

  3. [Child neurology and multimedia technology].

    PubMed

    Nihei, Kenji

    2002-01-01

    Methods of computer technology (intelligent technology, IT), such as multimedia and virtual reality, are utilized more and more in all medical fields including child neurology. Advances in the digitalization of individual medical data and multi-media technology have enabled patients to be able to obtain their own medical data by small media and to receive medical treatment at any hospitals even if they are located in distance place. Changes from a doctor oriented to patients oriented medicine is anticipated. It is necessary to store medical data from birth to adulthood and to accumulate epidemiological data of rare diseases such as metabolic diseases or degenerative diseases especially in child neurology, which highly require tele medicine and telecare at home. Moreover, IT may improve in the QOL of patients with neurological diseases and of their families. Cooperation of medicine and engineering is therefore necessary. Results of our experiments on telemedicine, telecare and virtual reality are described. PMID:11808201

  4. An interdisciplinary fetal/neonatal neurology program.

    PubMed

    Scher, Mark S

    2012-04-01

    A fetal/neonatal neurology program should encompass interdisciplinary service, educational and research objectives, merging curricula concerning maternal, placental, fetal and neonatal contributions to brain health and disease. This approach is anchored by research in early life programming that demonstrates that prenatal and postnatal factors influence long-term neurologic health. This concept also supports the design of neuroprotective interventions during critical periods of brain development when brain circuitries more optimally adapt to maturational challenges. Preventive, rescue and repair protocols will transform pediatric medical practices, to promote improved childhood outcomes. Inclusion of life-course science and research will identify medical and socioeconomic factors that favorably or adversely affect quality of life into adulthood. Greater awareness of the convergence of developmental origins of brain health and disease and developmental aging theories will influence public health policies, to encourage financial support for programs that will improve the quality of life for the child and adult. PMID:22290854

  5. Development of Planning Abilities in Normal Aging: Differential Effects of Specific Cognitive Demands

    ERIC Educational Resources Information Center

    Köstering, Lena; Stahl, Christoph; Leonhart, Rainer; Weiller, Cornelius; Kaller, Christoph P.

    2014-01-01

    In line with the frontal hypothesis of aging, the ability to plan ahead undergoes substantial change during normal aging. Although impairments on the Tower of London planning task were reported earlier, associations between age-related declines and specific cognitive demands on planning have not been studied. Here we investigated the impact of…

  6. The Development of the Distance Education College of East China Normal University: A Case Study

    ERIC Educational Resources Information Center

    Ye, Lixin; Su, Xiaobing; Yan, Hanbing

    2009-01-01

    Purpose: This paper aims to present a picture of the past and the present status of the Distance Education College (DEC) of East China Normal University (ECNU). It describes what the DEC has achieved in each phase, and probes into some essential problems that the DEC has attempted to solve. Design/methodology/approach: This article provides a…

  7. Word Frequency and Age Effects in Normally Developing Children's Phonological Processing.

    ERIC Educational Resources Information Center

    Troia, Gary A.; And Others

    1996-01-01

    A study of 11 kindergarten and 11 second-grade students evaluated the effects of target word frequency and age on normally achieving children's performance of naming and phonological awareness tasks. Results supported an explicit connection between lexical retrieval and phonological awareness, mediated by working memory. (CR)

  8. Neuroanatomical foundations of naming impairments across different neurologic conditions

    PubMed Central

    Gleichgerrcht, Ezequiel; Fridriksson, Julius

    2015-01-01

    The ability to name objects or abstract entities is an essential feature of speech and language, being commonly considered a central component of normal neurologic function. For this reason, the bedside testing of naming performance is part of the neurologic examination, especially since naming impairments can signify the early onset of a progressive disease or the occurrence of a more established problem. Modern neuroscience research suggests that naming relies on specific and distributed networks that operate in concert to support various processing stages, spanning from object recognition to spoken words. Likewise, studies evaluating the types of naming impairments in patients with neurologic conditions have contributed to the understanding of acquired forms of naming impairments and the underlying stages during normal language processing. In this article, we review the neurobiological mechanisms supporting naming, with a focus on the clinical application of these concepts. We provide an overview of the stages of cognitive processing that are hypothesized to support naming. For each stage, we explore the evidence revealing its neural basis, drawing parallels to clinical syndromes that commonly disrupt each stage. We review the patterns of naming impairment across various neurologic conditions, including classic language disorders, such as poststroke aphasia or primary progressive aphasia, as well as other diseases where language impairments may be subtle but helpful for the appropriate diagnosis. In this context, we provide a structured and practical guide for the bedside naming assessments rooted in modern neuroscience, aimed at supporting the evaluation and diagnosis of neurologic conditions that affect language. PMID:26115732

  9. Proust, neurology and Stendhal's syndrome.

    PubMed

    Teive, Hélio A G; Munhoz, Renato P; Cardoso, Francisco

    2014-01-01

    Marcel Proust is one of the most important French writers of the 20th century. His relationship with medicine and with neurology is possibly linked to the fact that his asthma was considered to be a psychosomatic disease classified as neurasthenia. Stendhal's syndrome is a rare psychiatric syndrome characterized by anxiety and affective and thought disturbances when a person is exposed to a work of art. Here, the authors describe neurological aspects of Proust's work, particularly the occurrence of Stendhal's syndrome and syncope when he as well as one of the characters of In Search of Lost Time see Vermeer's View of Delft during a visit to a museum. PMID:24642490

  10. Neurological complications of rabies vaccines.

    PubMed

    Tullu, Millind S; Rodrigues, Sean; Muranjan, Mamta N; Bavdekar, Sandeep B; Kamat, Jaishree R; Hira, Priya R

    2003-02-01

    The rabies vaccines containing neural elements are used in some countries including India. We report three cases that presented with various neurological complications following the use of these vaccines. The presenting manifestations included those of encephalitis, radiculitis and acute inflammatory demyelinating polyradiculoneuropathy. These neurological complications are highlighted so that scientific evidence compels the community to discontinue the use of the neural tissue rabies vaccines. Newer generation cell culture rabies vaccines should be preferred over the neural tissue rabies vaccines for post-exposure prophylaxis. PMID:12626831

  11. Neurologic Emergencies in the Elderly.

    PubMed

    Nentwich, Lauren M; Grimmnitz, Benjamin

    2016-08-01

    Neurologic diseases are a major cause of death and disability in elderly patients. Due to the physiologic changes and increased comorbidities that occur as people age, neurologic diseases are more common in geriatric patients and a major cause of death and disability in this population. This article discusses the elderly patient presenting to the emergency department with acute ischemic stroke, transient ischemic attack, intracerebral hemorrhage, subarachnoid hemorrhage, chronic subdural hematoma, traumatic brain injury, seizures, and central nervous system infections. This article reviews the subtle presentations, difficult workups, and complicated treatment decisions as they pertain to our older patients." PMID:27475016

  12. Chapter 15: Jean-Martin Charcot and the anatomo-clinical method of neurology.

    PubMed

    Goetz, Christopher G

    2010-01-01

    Jean-Martin Charcot (1825-1893) was the premier clinical neurologist of the 19th century. Charcot's research was anchored in the anatomo-clinical method, a two-part methodology that linked clinical signs with anatomical lesions. The first step of this method involved the careful documentation of clinical signs with longitudinal observation. At the time of death, the second step involved autopsy examination of the brain and spinal cord. With combined clinical and anatomical data, Charcot was able to suggest concrete clinical-anatomical correlations. This method helped to define the tracts and nuclei responsible for normal and abnormal neurological signs and was pivotal to a new classification of neurological diseases based on anatomy. The best-developed example of this method was Charcot's work with motor system degenerative disorders, specifically amyotrophic lateral sclerosis. These studies led to the international designation of amyotrophic lateral sclerosis as Charcot's disease. Other examples of the fruits of the anatomo-clinical method included several stroke syndromes and the linkage of specific signs to specific lesions in multiple sclerosis. The discipline fostered cortical localization theory, which moved neurologists away from the concept of the brain as a homogenous organ in preference to the concept that brain regions controlled specific motor, sensory and language functions. Charcot's attempts to apply his anatomo-clinical method to the knotty neurological diagnosis of hysteria led him to experiments and conclusions that drew criticism and even scorn from colleagues. These events tarnished Charcot's reputation at the close of his career. In the context of Charcot's extensive discoveries and lasting contributions, the anatomo-clinical method remains the anchor of modern neurological diagnosis and is Charcot's most important contribution to clinical neurology. PMID:19892118

  13. [Cerebrolysin in pediatric neurology practice].

    PubMed

    Petrukhin, A S; Pylaeva, O A

    2014-01-01

    Мany aspects of сerebrolysin treatment in a wide range of nervous system disorders in children are described. High efficacy and well tolerated therapy are revealed. These findings expand the perspectives of using сerebrolysin in pediatric neurology. PMID:24637827

  14. A Program for Neurological Organization.

    ERIC Educational Resources Information Center

    Bowers, Louis

    A program for neurological organization is explained and its purposes are stated. Hints are given for working with both child and parents; and form for evaluating measures of neuromotor fitness is included. Also provided is a checklist for rating motor exploration, including movements performed lying on the back, on the knees, or standing or on…

  15. Neurology Case Studies: Cerebrovascular Disease.

    PubMed

    Farooq, Muhammad U; Gorelick, Philip B

    2016-08-01

    This article discusses interesting vascular neurology cases including the management of intracranial stenosis, migraine headache and stroke risk, retinal artery occlusions associated with impaired hearing, intracranial occlusive disease, a heritable cause of stroke and vascular cognitive impairment, and an interesting clinico-neuroradiologic disorder associated with eclampsia. PMID:27445238

  16. [Paraneoplastic Neurological Syndrome with Dementia].

    PubMed

    Tanaka, Keiko

    2016-04-01

    Paraneoplastic neurological syndrome with limbic encephalopathy tends to progress rapidly, presenting with physical symptoms such as ataxia or sensory disturbance. However, some affected patients demonstrate amnesia, inactivity, or abnormal behavior, which lead to the diagnosis of dementia. It is important to perform an extensive differential diagnosis with autoantibody-examination and tumor survey, so as not to overlook potentially treatable dementia. PMID:27056857

  17. Fly model causes neurological rethink

    PubMed Central

    Sadanandappa, Madhumala K

    2013-01-01

    A Drosophila model for a neurological disorder called type 2B Charcot-Marie-Tooth disease reveals that it has its origins in a partial loss of function, rather than a gain of function, which points to the need for a new therapeutic approach. PMID:24336781

  18. Edgar Allan Poe and neurology.

    PubMed

    Teive, Hélio Afonso Ghizoni; Paola, Luciano de; Munhoz, Renato Puppi

    2014-06-01

    Edgar Allan Poe was one of the most celebrated writers of all time. He published several masterpieces, some of which include references to neurological diseases. Poe suffered from recurrent depression, suggesting a bipolar disorder, as well as alcohol and drug abuse, which in fact led to his death from complications related to alcoholism. Various hypotheses were put forward, including Wernicke's encephalopathy. PMID:24964115

  19. Neurological Complications of Lyme Disease

    MedlinePlus

    ... may begin with flu-like symptoms such as fever, chills, swollen lymph nodes, headaches, fatigue, muscle aches, and joint pain. Neurological complications most often occur in the second stage ... such as fever, stiff neck, and severe headache. Other problems, which ...

  20. Neurological Complications of Ebola Virus Infection.

    PubMed

    Billioux, Bridgette Jeanne; Smith, Bryan; Nath, Avindra

    2016-07-01

    Ebola virus disease is one of the deadliest pathogens known to man, with a mortality rate between 25-90% depending on the species and outbreak of Ebola. Typically, it presents with fever, headache, voluminous vomiting and diarrhea, and can progress to a hemorrhagic illness; neurologic symptoms, including meningoencephalitis, seizures, and coma, can also occur. Recently, an outbreak occurred in West Africa, affecting > 28,000 people, and killing > 11,000. Owing to the magnitude of this outbreak, and the large number (>17,000) of Ebola survivors, the medical and scientific communities are learning much more about the acute manifestations and sequelae of Ebola. A number of neurologic complications can occur after Ebola, such as seizures, memory loss, headaches, cranial nerve abnormalities, and tremor. Ebola may also persist in some immunologically privileged sites, including the central nervous system, and can rarely lead to relapse in disease. Owing to these findings, it is important that survivors are evaluated and monitored for neurologic symptoms. Much is unknown about this disease, and treatment remains largely supportive; however, with ongoing clinical and basic science, the mechanisms of how Ebola affects the central nervous system and how it persists after acute disease will hopefully become more clear, and better treatments and clinical practices for Ebola patients will be developed. PMID:27412684

  1. Neurological soft signs in psychometrically identified schizotypy.

    PubMed

    Kaczorowski, Jessica A; Barrantes-Vidal, Neus; Kwapil, Thomas R

    2009-12-01

    Patients with schizophrenia often exhibit structural brain abnormalities, as well as neurological soft signs (NSS), consistent with its conceptualization as a neurodevelopmental disorder. NSS are mild, presumably nonlocalizing, neurological impairments that are inferred from performance deficits in domains such as sensory integration, motor coordination, and motor sequencing. The vulnerability for schizophrenia is presumed to be expressed across a broad continuum of impairment referred to as schizotypy. It is hypothesized that nondisordered people along the schizotypy continuum should exhibit elevated rates of NSS. The present study examined the relation of psychometrically identified positive and negative schizotypy with NSS using the Neurological Evaluation Scale in a nonclinically ascertained sample of young adults (n=177). As hypothesized, negative, but not positive, schizotypy was related to increased NSS in tasks that assessed fine and gross motor coordination, motor sequencing, eye movement abnormalities, and memory recall. However, positive schizotypy was associated with increased NSS in tasks related to sensory integration dysfunction. In general, the positivexnegative schizotypy interaction term was unrelated to individual NSS tasks. The findings support: a) the theory that the vulnerability for schizophrenia is expressed across a broad continuum of subclinical and clinical impairment referred to as schizotypy; b) the multidimensional structure of schizotypy; and c) the notion that schizotypy is an appropriate construct for understanding the etiology and development of schizophrenia-spectrum disorders. PMID:19651490

  2. Sparring and Neurological Function in Professional Boxers

    PubMed Central

    Stiller, John W.; Yu, Steven S.; Brenner, Lisa A.; Langenberg, Patricia; Scrofani, Phillip; Pannella, Patrick; Hsu, Edbert B.; Roberts, Darryl W.; Monsell, Ray M. T.; Binks, Sidney W.; Guzman, Alvaro; Postolache, Teodor T.

    2014-01-01

    Despite increased interest regarding the potentially long-term negative impact of chronic traumatic brain injury, limited research has been conducted regarding such injuries and neurological outcomes in real world settings. To increase understanding regarding the relationship between sparring (e.g., training under the tutelage of an experienced boxing coach for the purpose of improving skills and/or fitness) and neurological functioning, professional boxers (n = 237) who competed in Maryland between 2003 and 2008 completed measures regarding sparring exposure (Cumulative Sparring Index, CSI) and performance on tests of cognition (Symbol Digit Modalities Test, SDMT) and balance (Sharpened Romberg Test, SRT). Measures were completed prior to boxing matches. Higher scores on the CSI (increased sparring exposure) were associated with poorer performance on both tests of cognition (SDMT) and balance (SRT). A threshold effect was noted regarding performance on the SDMT, with those reporting CSI values greater than about 150 experiencing a decline in cognition. A history of frequent and/or intense sparring may pose a significant risk for developing boxing associated neurological sequelae. Implementing administration of clinically meaningful tests before bouts, such as the CSI, SDMT, and/or the SRT, as well as documentation of results into the boxer’s physicals or medical profiles may be an important step for improving boxing safety. PMID:25101253

  3. Sparring and neurological function in professional boxers.

    PubMed

    Stiller, John W; Yu, Steven S; Brenner, Lisa A; Langenberg, Patricia; Scrofani, Phillip; Pannella, Patrick; Hsu, Edbert B; Roberts, Darryl W; Monsell, Ray M T; Binks, Sidney W; Guzman, Alvaro; Postolache, Teodor T

    2014-01-01

    Despite increased interest regarding the potentially long-term negative impact of chronic traumatic brain injury, limited research has been conducted regarding such injuries and neurological outcomes in real world settings. To increase understanding regarding the relationship between sparring (e.g., training under the tutelage of an experienced boxing coach for the purpose of improving skills and/or fitness) and neurological functioning, professional boxers (n = 237) who competed in Maryland between 2003 and 2008 completed measures regarding sparring exposure (Cumulative Sparring Index, CSI) and performance on tests of cognition (Symbol Digit Modalities Test, SDMT) and balance (Sharpened Romberg Test, SRT). Measures were completed prior to boxing matches. Higher scores on the CSI (increased sparring exposure) were associated with poorer performance on both tests of cognition (SDMT) and balance (SRT). A threshold effect was noted regarding performance on the SDMT, with those reporting CSI values greater than about 150 experiencing a decline in cognition. A history of frequent and/or intense sparring may pose a significant risk for developing boxing associated neurological sequelae. Implementing administration of clinically meaningful tests before bouts, such as the CSI, SDMT, and/or the SRT, as well as documentation of results into the boxer's physicals or medical profiles may be an important step for improving boxing safety. PMID:25101253

  4. Implicit Attitudes towards Children with Autism versus Normally Developing Children as Predictors of Professional Burnout and Psychopathology

    ERIC Educational Resources Information Center

    Kelly, Amanda; Barnes-Holmes, Dermot

    2013-01-01

    Tutors trained in applied behaviour analysis (n = 16) and mainstream school teachers (n = 16) were exposed to an Implicit Relational Assessment Procedure (IRAP) designed to assess implicit attitudes towards individuals with autism versus normally developing individuals. Participants also completed a range of explicit measures, including measures…

  5. Coal-seismic, desktop computer programs in BASIC; Part 6, Develop rms velocity functions and apply mute and normal movement

    USGS Publications Warehouse

    Hasbrouck, W.P.

    1983-01-01

    Processing of data taken with the U.S. Geological Survey's coal-seismic system is done with a desktop, stand-alone computer. Programs for this computer are written in the extended BASIC language utilized by the Tektronix 4051 Graphic System. This report presents computer programs used to develop rms velocity functions and apply mute and normal moveout to a 12-trace seismogram.

  6. Neurological complications of ankylosing spondylitis: neurophysiological assessment.

    PubMed

    Khedr, Eman M; Rashad, Sonia M; Hamed, Sherifa A; El-Zharaa, Fatma; Abdalla, Abdel Karim H

    2009-07-01

    Studies examined the neurological involvement of ankylosing spondylitis (AS) are limited. This study aimed to assess the frequency of myelopathy, radiculopathy and myopathy in AS correlating them to the clinical, radiological and laboratory parameters. Included were 24 patients with AS. Axial status was assessed using bath ankylosing spondylitis metrology index (BASMI). Patients underwent (a) standard cervical and lumbar spine and sacroiliac joint radiography, (b) somatosensory (SSEP) and magnetic motor (MEP) evoked potentials of upper and lower limbs, (c) electromyography (EMG) of trapezius and supraspinatus muscles. Patients' mean age and duration of illness were 36 and 5.99 years. Bath ankylosing spondylitis metrology index mean score was 4.6. Twenty-five percent (n = 6) of patients had neurological manifestations, 8.3% of them had myelopathy and 16.7% had radiculopathy. Ossification of the posterior (OPLL) and anterior (OALL) longitudinal ligaments were found in 8.3% (n = 2) and 4.2% (n = 1). About 70.8% (n = 17) had >or=1 neurophysiological test abnormalities. Twelve patients (50%) had SSEP abnormalities, seven had prolonged central conduction time (CCT) of median and/or ulnar nerves suggesting cervical myelopathy. Six had delayed peripheral or root latencies at Erb's or interpeak latency (Erb's-C5) suggesting radiculopathy. Motor evoked potentials was abnormal in 54% (n = 13). Twelve (50%) and five (20.8%) patients had abnormal MEP of upper limbs and lower limbs, respectively. About 50% (n = 12) had myopathic features of trapezius and supraspinatus muscles. Only 8.3% (n = 2) had neuropathic features. We concluded that subclinical neurological complications are frequent in AS compared to clinically manifest complications. Somatosensory evoked potential and MEP are useful to identify AS patients prone to develop neurological complications. PMID:19153738

  7. [The problem of suicide in neurologic rehabilitation].

    PubMed

    Kallert, T W

    1994-05-01

    Associations between somatic as well as, in particular, neurological diseases and suicidal acts are outlined, with studies of different diseases having shown that they represent only one factor in motivating the suicidal act. Biographical predispositions and stressful variables from the current social situation are always added. Depressive and organic brain syndromes that can often be found during neurological rehabilitation are discussed in their significance as risk factors for suicidal behavior, also seeking to identify distinct phases of the rehabilitation process afflicted with high suicide risk. An active and carefully directed approach to exploration as well as grasping the psychopathological symptomatology are fundamental elements in the assessment of suicide risk. In this respect, observations of the patient's behaviour and information obtained from relatives are of special importance in neurological rehabilitation clinics. The "presuicidal syndrome" (Ringel) continues to be of high clinical value in assessing the psychodynamics of the individual patient in his development towards the suicidal act. Reflections of suicidal tendencies in countertransference reactions and the communication pathology of suicidal behaviour are more recent aspects that enrich the assessment of suicide risk. Therapeutic management of suicidal patients can firstly be characterized by the principle of specific diagnosis and treatment of the underlying disease; this means that optimum medical care even has a suicide-preventive function. The other principle considers the establishment of a therapeutical relationship as a must, and some critical points in the personal contact with suicidal patients are dealt with in some detail. Especially in neurological rehabilitation clinics, custodial aspects must not be neglected.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8052730

  8. The neurology of poverty.

    PubMed

    Alvarez, G

    1982-01-01

    An intellectual deficit is known to exist in populations where extreme poverty is rife and is thus seen extensively in the lower socio-economic strata of underdeveloped nations. Poverty is a complex entity whose sociological and economic indicators often bear little relevance to the biological agents which can affect the central nervous system. An attempt is made to express poverty in terms of identifiable defects, physiological in nature. Thus adverse socio-economic factors are converted into specific biological entities which, though necessary for adequate development of the brain, are restricted where there is poverty. A number of causative deficiencies, including nutritional, visual, auditory, tactile, vestibular, affective, and other stimuli are postulated. These interact and potentiate one another. Each is capable of an independent action on the brain and examples are given of some sensory deprivations as well as malnutrition and their possible mechanism of action. If the various deficiencies can independently harm the brain, then a number of separate specific functions should be affected; examples are offered. The nature of this intellectual deficit is probably a non-fulfillment of genetic potential of certain specific functions of the brain, which may exhibit limited variations between one community and another, depending on cultural differences. The deleterious effect of this intellectual impairment is seen most clearly in figures of school desertion, for example in Latin America. Analogous data for adults is scarce. PMID:7112171

  9. An unusual neurological consequence of massive wasp stings

    PubMed Central

    Volders, José; Smits, Marcel; Folkersma, Gerbrich; Tjan, David H.

    2012-01-01

    Although rare, central and peripheral neurological manifestations after single or multiple wasp stings have been reported. The authors describe a 45-year-old man who developed periods of sudden loss of consciousness with a Glasgow Coma Scale of 6 after being stung by fifty wasps. These periods were seen directly after being stung and were continuing months later. Different mechanisms and pathophysiological findings of neurological sequela reported after wasp stings are being reviewed. PMID:22744238

  10. "The choice for death" and neurology.

    PubMed

    Durnová, Anna; Gottweis, Herbert

    2010-07-01

    In the last decade, "end-of-life" issues have gained prominence in political and social debates in many countries. The deliberate ending of the life of a patient upon his/her own request has become a hotly contested topic. This paper discusses the implications of this debate and of corresponding policy and legal developments for neurology. We discuss the nomenclature of the "choices for death", euthanasia, doctor-assisted suicide and palliative care as well as the social dynamics underlying these developments. We suggest that we need a more nuanced and empirically based understanding of the process of the "choice for death and its implications for medical practice." PMID:20393857

  11. Normal faults, normal friction?

    NASA Astrophysics Data System (ADS)

    Collettini, Cristiano; Sibson, Richard H.

    2001-10-01

    Debate continues as to whether normal faults may be seismically active at very low dips (δ < 30°) in the upper continental crust. An updated compilation of dip estimates (n = 25) has been prepared from focal mechanisms of shallow, intracontinental, normal-slip earthquakes (M > 5.5; slip vector raking 90° ± 30° in the fault plane) where the rupture plane is unambiguously discriminated. The dip distribution for these moderate-to-large normal fault ruptures extends from 65° > δ > 30°, corresponding to a range, 25° < θr < 60°, for the reactivation angle between the fault and inferred vertical σ1. In a comparable data set previously obtained for reverse fault ruptures (n = 33), the active dip distribution is 10° < δ = θr < 60°. For vertical and horizontal σ1 trajectories within extensional and compressional tectonic regimes, respectively, dip-slip reactivation is thus restricted to faults oriented at θr ≤ 60° to inferred σ1. Apparent lockup at θr ≈ 60° in each dip distribution and a dominant 30° ± 5° peak in the reverse fault dip distribution, are both consistent with a friction coefficient μs ≈ 0.6, toward the bottom of Byerlee's experimental range, though localized fluid overpressuring may be needed for reactivation of less favorably oriented faults.

  12. Fasciola hepatica: development of the tegument of normal and gamma-irradiated flukes during infection in rats and mice.

    PubMed

    Burden, D J; Bland, A P; Hughes, D L; Hammet, N C

    1983-02-01

    Rats and mice were infected with either normal metacercariae or metacercariae gamma-irradiated at 3 krad. or 4 krad. Flukes were recovered at various times after infection and their teguments examined using a transmission electron microscope. In normal flukes, the secretory granules T0, T1 and T2 were all seen during tegumental development. The teguments of flukes from mice developed faster than the corresponding teguments in rats. T0 granules were present from day 0 to day 10 post-infection (p.i.) in mouse flukes and from day 0 to day 14 p.i. in rat flukes. T1 granules first appeared in mouse flukes by day 4 p.i. but not until day 8 p.i. in rat flukes. T2 granules were seen in mouse flukes 2 days p.i. but not before 6 days p.i. in rat flukes. gamma-Irradiation at 4 krad prevented normal tegumental development in flukes from both rats and mice. T0 granules were present at all times in flukes from either host. T1 granules were produced in mouse flukes but their appearance was delayed until day 6 p.i. No significant production of T2 granules occurred in flukes from either host. Parasite survival was also affected by gamma-irradiation and none of the flukes reached maturity. Flukes from rats died between 10 and 21 days p.i. and flukes from mice died between 14 and 28 days p.i. gamma-Irradiation of metacercariae at 3 krad. had an extremely variable effect on subsequent tegumental development in both rats and mice. Some flukes developed normally, some showed development associated with gamma-irradiation at 4 krad, whilst some showed intermediate development. PMID:6835695

  13. FT overexpression induces precocious flowering and normal reproductive development in Eucalyptus.

    PubMed

    Klocko, Amy L; Ma, Cathleen; Robertson, Sarah; Esfandiari, Elahe; Nilsson, Ove; Strauss, Steven H

    2016-02-01

    Eucalyptus trees are among the most important species for industrial forestry worldwide. However, as with most forest trees, flowering does not begin for one to several years after planting which can limit the rate of conventional and molecular breeding. To speed flowering, we transformed a Eucalyptus grandis × urophylla hybrid (SP7) with a variety of constructs that enable overexpression of FLOWERING LOCUS T (FT). We found that FT expression led to very early flowering, with events showing floral buds within 1-5 months of transplanting to the glasshouse. The most rapid flowering was observed when the cauliflower mosaic virus 35S promoter was used to drive the Arabidopsis thaliana FT gene (AtFT). Early flowering was also observed with AtFT overexpression from a 409S ubiquitin promoter and under heat induction conditions with Populus trichocarpa FT1 (PtFT1) under control of a heat-shock promoter. Early flowering trees grew robustly, but exhibited a highly branched phenotype compared to the strong apical dominance of nonflowering transgenic and control trees. AtFT-induced flowers were morphologically normal and produced viable pollen grains and viable self- and cross-pollinated seeds. Many self-seedlings inherited AtFT and flowered early. FT overexpression-induced flowering in Eucalyptus may be a valuable means for accelerating breeding and genetic studies as the transgene can be easily segregated away in progeny, restoring normal growth and form. PMID:26132805

  14. Few CT Scan Abnormalities Found Even in Neurologically Impaired Learning Disabled Children.

    ERIC Educational Resources Information Center

    Denckla, Martha Bridge; And Others

    1985-01-01

    Most of 32 learning disabled children (seven to 14 years old) with neurological lateralization characteristics marked by right and left hemispheres had a normal CT (computerized tomography) scan. (CL)

  15. Neurological and magnetic resonance imaging findings in children with developmental language impairment.

    PubMed

    Webster, Richard I; Erdos, Caroline; Evans, Karen; Majnemer, Annette; Saigal, Gaurav; Kehayia, Eva; Thordardottir, Elin; Evans, Alan; Shevell, Michael I

    2008-08-01

    Neurologic and radiologic findings in children with well-defined developmental language impairment have rarely been systematically assessed. Children aged 7 to 13 years with developmental language impairment or normal language (controls) underwent language, nonverbal cognitive, motor and neurological assessments, standardized assessment for subtle neurological signs, and magnetic resonance imaging. Nine children with developmental language impairment and 12 controls participated. No focal abnormalities were identified on standard neurological examination. Age and developmental language impairment were independent predictors of neurological subtle signs scores (r(2) = 0.52). Imaging abnormalities were identified in two boys with developmental language impairment and no controls (P = .17). Lesions identified were predicted neither by history nor by neurological examination. Previously unsuspected lesions were identified in almost 25% of children with developmental language impairment. Constraints regarding cooperation and sedation requirements may limit the clinical application of imaging modalities in this population. PMID:18660471

  16. Ictal kissing behavior: neurological and psychodynamic overview.

    PubMed

    Taşkıran, Emine; Özmen, Mine; Kılıc, Özge; Sentürk, Aslı; Özkara, Cigdem

    2013-11-01

    This study is based on the psychodynamic and neurological analysis of three Turkish patients who displayed ictal kissing automatism during their seizures. To unveil the probable underlying causes of their kissing behaviors, all patients underwent psychiatric interviews after being evaluated by ictal video-EEG recordings. The group consisted of two females (ages 35 and 29) and one male (age 26). In addition to prominent oral automatisms, each patient also displayed behaviors of kissing or blowing kisses to individuals at close proximity. Seizures were related to the right temporal lobe in two patients and the left temporal lobe in one patient. Magnetic resonance imaging showed mesial temporal sclerosis in two of the patients (one left, one right) and was normal in one. According to the DSM-IV-TR criteria, each of the three patients also suffered from major depression, while the psychodynamic interviews revealed traumatic childhood histories and intense unfulfilled affective needs. PMID:24029004

  17. [Neuropediatrics: epidemiological features and etiologies at the Dakar neurology service].

    PubMed

    Ndiaye, M; Sene-Diouf, F; Diop, A G; Ndao, A K; Ndiaye, M M; Ndiaye, I P

    1999-01-01

    Child neurology is a relatively young speciality of neurosciences which is at the frontier of Neurology and Paediatrics. Its development has been impulsed by the diagnosis techniques such as Neurobiology, Genetics, Neuroimaging and pedo-psychology. We conducted a retrospective survey among the in-patients from January 1980 to December 1997 in the service of Neurology of the University Hospital. Have been included children ranged from 0 to 15 years old without any racial, sexual or origin distinctive. In Neurology Department, children of 0 to 15 years old represent 10.06% of the in-patients received from 1980 to 1997. The mortality rate was 9.23%. The diseases are dominated by epilepsy and infantile encephalopathies with 31.02%, infectious diseases with 19.36% represented by tuberculosis, other bacterial, viral and parasitical etiologies, tumors with 10.36%, vascular pathology and degenerative disorders. PMID:11957278

  18. [Neurology].

    PubMed

    Sokolov, Arseny A; Rossetti, Andrea O; Michel, Patrik; Benninger, David; Nater, Bernard; Wider, Christian; Hirt, Lorenz; Kuntzer, Thierry; Démonet, Jean-François; Du Pasquier, Renaud A; Vingerhoets, François

    2016-01-13

    In 2015, cerebral stimulation becomes increasingly established in the treatment of pharmacoresistant epilepsy. Efficacy of endovascular treatment has been demonstrated for acute ischemic stroke. Deep brain stimulation at low frequency improves dysphagia and freezing of gait in Parkinson patients. Bimagrumab seems to increase muscular volume and force in patients with inclusion body myositis. In cluster-type headache, a transcutaneous vagal nerve stimulator is efficient in stopping acute attacks and also reducing their frequency. Initial steps have been undertaken towards modulating memory by stimulation of the proximal fornix. Teriflunomide is the first oral immunomodulatory drug for which efficacy has been shown in preventing conversion from clinical isolated syndrome to multiple sclerosis. PMID:26946707

  19. Neuromarketing and consumer neuroscience: contributions to neurology

    PubMed Central

    2013-01-01

    Background ‘Neuromarketing’ is a term that has often been used in the media in recent years. These public discussions have generally centered around potential ethical aspects and the public fear of negative consequences for society in general, and consumers in particular. However, positive contributions to the scientific discourse from developing a biological model that tries to explain context-situated human behavior such as consumption have often been neglected. We argue for a differentiated terminology, naming commercial applications of neuroscientific methods ‘neuromarketing’ and scientific ones ‘consumer neuroscience’. While marketing scholars have eagerly integrated neuroscientific evidence into their theoretical framework, neurology has only recently started to draw its attention to the results of consumer neuroscience. Discussion In this paper we address key research topics of consumer neuroscience that we think are of interest for neurologists; namely the reward system, trust and ethical issues. We argue that there are overlapping research topics in neurology and consumer neuroscience where both sides can profit from collaboration. Further, neurologists joining the public discussion of ethical issues surrounding neuromarketing and consumer neuroscience could contribute standards and experience gained in clinical research. Summary We identify the following areas where consumer neuroscience could contribute to the field of neurology: First, studies using game paradigms could help to gain further insights into the underlying pathophysiology of pathological gambling in Parkinson’s disease, frontotemporal dementia, epilepsy, and Huntington’s disease. Second, we identify compulsive buying as a common interest in neurology and consumer neuroscience. Paradigms commonly used in consumer neuroscience could be applied to patients suffering from Parkinson’s disease and frontotemporal dementia to advance knowledge of this important behavioral symptom

  20. A comparative study of monocot and dicot root development in normal /earth/ and hypogravity /space/ environments

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Galston, A. W.

    1982-01-01

    The anatomy and fine structure of roots from oat and mung bean seedlings grown under hypogravity conditions aboard NASA's Space Shuttle were examined and compared to those of roots from ground control plants grown under similar conditions. Oat roots from both sets of plants exhibited normal tissue organization and ultrastructural features, with the exception of cortex cell mitochondria, which characteristically showed a 'swollen' morphology. Flight-grown mung bean roots differed significantly from the controls in that root cap cells were somewhat disorganized and degraded in appearance, especially at the cap periphery. At the EM level, these cells exhibited a loss organelle integrity and a condensed cytoplasm. The potential significance of this finding for the putative gravity-sensing cap cells were noted.

  1. Neurotrophic factors and neurologic disease.

    PubMed Central

    Holtzman, D M; Mobley, W C

    1994-01-01

    Discovered only 40 years ago, nerve growth factor is the prototypic neurotrophic factor. By binding to specific receptors on certain neurons in the peripheral nervous system and brain, nerve growth factor acts to enhance their survival, differentiation, and maintenance. In recent years, many additional neurotrophic factors have been discovered; some are structurally related to nerve growth factor while others are distinct from it. The robust actions of neurotrophic factors have suggested their use in preventing or lessening the dysfunction and death of neurons in neurologic disorders. We review the progress in defining neurotrophic factors and their receptors and in characterizing their actions. We also discuss some of the uses of neurotrophic factors in animal models of disease. Finally, we discuss how neurotrophic factors could be implicated in the pathogenesis of neurologic disorders. Images PMID:7975562

  2. Clinical neurology and executive dysfunction.

    PubMed

    Filley, C M

    2000-01-01

    Executive function is a uniquely human ability that permits an individual to plan, carry out, and monitor a sequence of actions that is intended to accomplish a goal. This crucial neurobehavioral capacity depends on the integrity of the frontal lobes, most importantly the dorsolateral prefrontal cortices and their connections. Executive dysfunction is associated with a wide range of neurologic disorders that affect these regions. In this paper, executive dysfunction is considered from the perspective of behavioral neurology, and the lesion method is employed to illustrate this impairment in a diverse group of disorders. Frontal system damage leading to disturbed executive function is common and clinically significant. Recognition of this syndrome is critical for ensuring the correct diagnosis, accurate prognosis, and appropriate treatment of affected patients. Executive dysfunction also represents an intriguing aspect of brain-behavior relationships and offers important insights into one of the highest cerebral functions. PMID:10879543

  3. Neurological disorders and celiac disease.

    PubMed

    Casella, Giovanni; Bordo, Bianca M; Schalling, Renzo; Villanacci, Vincenzo; Salemme, Marianna; DI Bella, Camillo; Baldini, Vittorio; Bassotti, Gabrio

    2016-06-01

    Celiac disease (CD) determines neurologic manifestations in 10% of all CD patients. We describe the most common clinical manifestations as cerebellar ataxia, gluten encephalopathy, multiple sclerosis, peripheral neuropathies, sensorineural hearing loss, epilepsy, headache, depression, cognitive deficiencies and other less described clinical conditions. Our aim is to perform, as more as possible, a review about the most recent update on the topics in international literature. It is important to consider clinical neurological manifestations in celiac patients and to research these conditions also in the follow-up because they may start also one year after the start of gluten free diet (GFD) as peripheral neuropathy. The association with autism is analysed and possible new association with non-celiac gluten sensitivity (NCGS) are considered. PMID:26619901

  4. Recent imaging advances in neurology.

    PubMed

    Rocchi, Lorenzo; Niccolini, Flavia; Politis, Marios

    2015-09-01

    Over the recent years, the application of neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) has considerably advanced the understanding of complex neurological disorders. PET is a powerful molecular imaging tool, which investigates the distribution and binding of radiochemicals attached to biologically relevant molecules; as such, this technique is able to give information on biochemistry and metabolism of the brain in health and disease. MRI uses high intensity magnetic fields and radiofrequency pulses to provide structural and functional information on tissues and organs in intact or diseased individuals, including the evaluation of white matter integrity, grey matter thickness and brain perfusion. The aim of this article is to review the most recent advances in neuroimaging research in common neurological disorders such as movement disorders, dementia, epilepsy, traumatic brain injury and multiple sclerosis, and to evaluate their contribution in the diagnosis and management of patients. PMID:25808503

  5. Botulinum Toxin in Pediatric Neurology

    PubMed Central

    Abdallah, Enas Abdallah Ali

    2015-01-01

    Botulinum neurotoxins are natural molecules produced by anaerobic spore-forming bacteria called Clostradium boltulinum. The toxin has a peculiar mechanism of action by preventing the release of acetylcholine from the presynaptic membrane. Consequently, it has been used in the treatment of various neurological conditions related to muscle hyperactivity and/or spasticity. Also, it has an impact on the autonomic nervous system by acting on smooth muscle, leading to its use in the management of pain syndromes. The use of botulinum toxin in children separate from adults has received very little attention in the literature. This review presents the current data on the use of botulinum neurotoxin to treat various neurological disorders in children. PMID:27335961

  6. Neurological diseases in famous painters.

    PubMed

    Piechowski-Jozwiak, Bartlomiej; Bogousslavsky, Julien

    2013-01-01

    Visual art production involves multiple processes including basic motor skills, such as coordination of movements, visual-spatial processing, emotional output, sociocultural context, and creativity. Thus, the relationship between artistic output and brain diseases is particularly complex, and brain disorders may lead to impairment of artistic production in multiple domains. Neurological conditions may also occasionally modify artistic style and lead to surprisingly innovative features in people with an initial loss of creativity. This chapter focuses on anecdotal reports of various neurological disorders and their potential consequences on works produced by famous or well-established artists, including Carl Frederik Reutersward, Giorgio de Chirico, Krystyna Habura, Leo Schnug, Ignatius Brennan, and many others. PMID:24041285

  7. Optogenetic cell control in experimental models of neurological disorders.

    PubMed

    Tønnesen, Jan

    2013-10-15

    The complexity of the brain, in which different neuronal cell types are interspersed and complexly interconnected, has posed a major obstacle in identifying pathophysiological mechanisms underlying prevalent neurological disorders. This is largely based in the inability of classical experimental approaches to target defined neural populations at sufficient temporal and spatial resolution. As a consequence, effective clinical therapies for prevalent neurological disorders are largely lacking. Recently developed optogenetic probes are genetically expressed photosensitive ion channels and pumps that in principal overcome these limitations. Optogenetic probes allow millisecond resolution functional control over selected optogenetically transduced neuronal populations targeted based on promoter activity. This optical cell control scheme has already been applied to answer fundamental questions pertaining to neurological disorders by allowing researchers to experimentally intercept, or induce, pathophysiological neuronal signaling activity in a highly controlled manner. Offering high temporal resolution control over neural activity at high cellular specificity, optogenetic tools constitute a game changer in research aiming at understanding pathophysiological signaling mechanisms in neurological disorders and in developing therapeutic strategies to correct these. In this regard, recent experimental work has provided new insights in underlying mechanisms, as well as preliminary proof-of-principle for optogenetic therapies, of several neurological disorders, including Parkinson's disease, epilepsy and progressive blindness. This review synthesizes experimental work where optogenetic tools have been applied to explore pathologic neural network activity in models of neurological disorders. PMID:23871610

  8. A new neurological focus in neonatal intensive care.

    PubMed

    Bonifacio, Sonia L; Glass, Hannah C; Peloquin, Susan; Ferriero, Donna M

    2011-09-01

    Advances in the care of high-risk newborn babies have contributed to reduced mortality rates for premature and term births, but the surviving neonates often have increased neurological morbidity. Therapies aimed at reducing the neurological sequelae of birth asphyxia at term have brought hypothermia treatment into the realm of standard care. However, this therapy does not provide complete protection from neurological complications and a need to develop adjunctive therapies for improved neurological outcomes remains. In addition, the care of neurologically impaired neonates, regardless of their gestational age, clearly requires a focused approach to avoid further injury to the brain and to optimize the neurodevelopmental status of the newborn baby at discharge from hospital. This focused approach includes, but is not limited to, monitoring of the patient's brain with amplitude-integrated and continuous video EEG, prevention of infection, developmentally appropriate care, and family support. Provision of dedicated neurocritical care to newborn babies requires a collaborative effort between neonatologists and neurologists, training in neonatal neurology for nurses and future generations of care providers, and the recognition that common neonatal medical problems and intensive care have an effect on the developing brain. PMID:21808297

  9. The Ect2 Rho Guanine Nucleotide Exchange Factor Is Essential for Early Mouse Development and Normal Cell Cytokinesis and Migration

    PubMed Central

    Cook, Danielle R.; Solski, Patricia A.; Bultman, Scott J.; Kauselmann, Gunther; Schoor, Michael; Kuehn, Ralf; Friedman, Lori S.; Cowley, Dale O.; Van Dyke, Terry; Yeh, Jen Jen; Johnson, Leisa

    2011-01-01

    Ect2 is a member of the human Dbl family of guanine nucleotide exchange factors (RhoGEFs) that serve as activators of Rho family small GTPases. Although Ect2 is one of at least 25 RhoGEFs that can activate the RhoA small GTPase, cell culture studies using established cell lines determined that Ect2 is essential for mammalian cell cytokinesis and proliferation. To address the function of Ect2 in normal mammalian development, we performed gene targeting to generate Ect2 knockout mice. The heterozygous Ect2 +/– mice showed normal development and life span, indicating that Ect2 haplodeficiency was not deleterious for development or growth. In contrast, Ect2 –/– embryos were not found at birth or postimplantation stages. Ect2 –/– blastocysts were recovered at embryonic day 3.5 but did not give rise to viable outgrowths in culture, indicating that Ect2 is required for peri-implantation development. To further assess the importance of Ect2 in normal cell physiology, we isolated primary fibroblasts from Ect2 fl/fl embryos (MEFs) and ablated Ect2 using adenoviral delivery of Cre recombinase. We observed a significant increase in multinucleated cells and accumulation of cells in G2/M phase, consistent with a role for Ect2 in cytokinesis. Ect2 deficiency also caused enlargement of the cytoplasm and impaired cell migration. Finally, although Ect2-dependent activation of RhoA has been implicated in cytokinesis, Ect2 can also activate Rac1 and Cdc42 to cause growth transformation. Surprisingly, ectopic expression of constitutively activated RhoA, Rac1, or Cdc42, known substrates of Ect2, failed to phenocopy Ect2 and did not rescue the defect in cytokinesis caused by loss of Ect2. In summary, our results establish the unique role of Ect2 in development and normal cell proliferation. PMID:22701760

  10. Bravo! Neurology at the opera.

    PubMed

    Matthews, Brandy R

    2010-01-01

    Opera is a complex musical form that reflects the complexity of the human condition and the human brain. This article presents an introduction to the portrayal of medical professionals in opera, including one neurologist, as well as two characters in whom neurological disease contributes to the action of the musical drama. Consideration is also given to the neuroanatomy and neuropathology of opera singers with further speculation regarding the neural underpinnings of the passion of opera's audience. PMID:20375526

  11. Some neurological aspects of laughter.

    PubMed

    Pearce, J M S

    2004-01-01

    This brief survey of laughter attempts an analysis of its neurological mechanisms, evolution, role in social behaviour and its clinicopathological importance. The mechanisms of laughter, its physiological consequences and its demonstration by sound spectrography are considered. Something resembling laughter occurs in certain primates, and possibly rodents, though there are important differences. The evolution of laughter in a social context is appraised. Pathological laughter arises rarely, usually caused by diseases of the frontal or temporal lobes, and in hypothalamic hamartomata in children. PMID:15528918

  12. Phosphatidylglycerol biosynthesis is required for the development of embryos and normal membrane structures of chloroplasts and mitochondria in Arabidopsis.

    PubMed

    Tanoue, Ryo; Kobayashi, Megumi; Katayama, Kenta; Nagata, Noriko; Wada, Hajime

    2014-05-01

    Phosphatidylglycerophosphate (PGP) synthase, encoded by PGP1 and PGP2 in Arabidopsis, catalyzes a committed step in the biosynthesis of phosphatidylglycerol (PG). In this study, we isolated a pgp1pgp2 double mutant of Arabidopsis to study the function of PG. In this mutant, embryo development was delayed and the majority of seeds did not germinate. Thylakoid membranes did not develop in plastids, mitochondrial membrane structures were abnormal in the mutant embryos, and radiolabeling of phospholipids showed that radioactivity was not significantly incorporated into PG. These results demonstrated that PG biosynthesis is essential for the development of embryos and normal membrane structures of chloroplasts and mitochondria. PMID:24632290

  13. Neurological prognostication after cardiac arrest

    PubMed Central

    Sandroni, Claudio; Geocadin, Romergryko G.

    2016-01-01

    Purpose of review Prediction of neurological prognosis in patients who are comatose after successful resuscitation from cardiac arrest remains difficult. Previous guidelines recommended ocular reflexes, somatosensory evoked potentials and serum biomarkers for predicting poor outcome within 72h from cardiac arrest. However, these guidelines were based on patients not treated with targeted temperature management and did not appropriately address important biases in literature. Recent findings Recent evidence reviews detected important limitations in prognostication studies, such as low precision and, most importantly, lack of blinding, which may have caused a self-fulfilling prophecy and overestimated the specificity of index tests. Maintenance of targeted temperature using sedatives and muscle relaxants may interfere with clinical examination, making assessment of neurological status before 72 h or more after cardiac arrest unreliable. Summary No index predicts poor neurological outcome after cardiac arrest with absolute certainty. Prognostic evaluation should start not earlier than 72 h after ROSC and only after major confounders have been excluded so that reliable clinical examination can be made. Multimodality appears to be the most reasonable approach for prognostication after cardiac arrest. PMID:25922894

  14. Genomic medicine and neurological disease

    PubMed Central

    Boone, Philip M.; Wiszniewski, Wojciech; Lupski, James R.

    2011-01-01

    “Genomic medicine” refers to the diagnosis, optimized management, and treatment of disease—as well as screening, counseling, and disease gene identification—in the context of information provided by an individual patient’s personal genome. Genomic medicine, to some extent synonymous with “personalized medicine,” has been made possible by recent advances in genome technologies. Genomic medicine represents a new approach to health care and disease management that attempts to optimize the care of a patient based upon information gleaned from his or her personal genome sequence. In this review, we describe recent progress in genomic medicine as it relates to neurological disease. Many neurological disorders either segregate as Mendelian phenotypes or occur sporadically in association with a new mutation in a single gene. Heritability also contributes to other neurological conditions that appear to exhibit more complex genetics. In addition to discussing current knowledge in this field, we offer suggestions for maximizing the utility of genomic information in clinical practice as the field of genomic medicine unfolds. PMID:21594611

  15. Another Neurological Disorder Tied to Zika

    MedlinePlus

    ... fullstory_157678.html Another Neurological Disorder Tied to Zika It may cause meningoencephalitis, an infection and swelling ... list of neurological disorders potentially associated with the Zika virus continues to grow, health officials reported Wednesday. ...

  16. Von Hippel-Lindau protein in the RPE is essential for normal ocular growth and vascular development

    PubMed Central

    Lange, Clemens A. K.; Luhmann, Ulrich F. O.; Mowat, Freya M.; Georgiadis, Anastasios; West, Emma L.; Abrahams, Sabu; Sayed, Haroon; Powner, Michael B.; Fruttiger, Marcus; Smith, Alexander J.; Sowden, Jane C.; Maxwell, Patrick H.; Ali, Robin R.; Bainbridge, James W. B.

    2012-01-01

    Molecular oxygen is essential for the development, growth and survival of multicellular organisms. Hypoxic microenvironments and oxygen gradients are generated physiologically during embryogenesis and organogenesis. In the eye, oxygen plays a crucial role in both physiological vascular development and common blinding diseases. The retinal pigment epithelium (RPE) is a monolayer of cells essential for normal ocular development and in the mature retina provides support for overlying photoreceptors and their vascular supply. Hypoxia at the level of the RPE is closely implicated in pathogenesis of age-related macular degeneration. Adaptive tissue responses to hypoxia are orchestrated by sophisticated oxygen sensing mechanisms. In particular, the von Hippel-Lindau tumour suppressor protein (pVhl) controls hypoxia-inducible transcription factor (HIF)-mediated adaptation. However, the role of Vhl/Hif1a in the RPE in the development of the eye and its vasculature is unknown. In this study we explored the function of Vhl and Hif1a in the developing RPE using a tissue-specific conditional-knockout approach. We found that deletion of Vhl in the RPE results in RPE apoptosis, aniridia and microphthalmia. Increased levels of Hif1a, Hif2a, Epo and Vegf are associated with a highly disorganised retinal vasculature, chorioretinal anastomoses and the persistence of embryonic vascular structures into adulthood. Additional inactivation of Hif1a in the RPE rescues the RPE morphology, aniridia, microphthalmia and anterior vasoproliferation, but does not rescue retinal vasoproliferation. These data demonstrate that Vhl-dependent regulation of Hif1a in the RPE is essential for normal RPE and iris development, ocular growth and vascular development in the anterior chamber, whereas Vhl-dependent regulation of other downstream pathways is crucial for normal development and maintenance of the retinal vasculature. PMID:22627278

  17. Interpersonal Relatedness and Self-Definition in Normal and Disrupted Personality Development: Retrospect and Prospect

    ERIC Educational Resources Information Center

    Luyten, Patrick; Blatt, Sidney J.

    2013-01-01

    Two-polarities models of personality propose that personality development evolves through a dialectic synergistic interaction between two fundamental developmental psychological processes across the life span--the development of interpersonal relatedness on the one hand and of self-definition on the other. This article offers a broad review of…

  18. Motor Development in Deaf and Normal-Hearing Children: A Review of the Literature.

    ERIC Educational Resources Information Center

    Rittenhouse, Robert K.

    The paper reviews neuro-motor development in young children and analyzes the effect of deafness on motor performance. A theoretical overview considers responses of the newborn infant and discusses findings from studies on motor development in early childhood. Such environmental influences as interpersonal family relationships, socioeconomics, and…

  19. Understanding normal and abnormal development of the Wolffian/epididymal duct by using transgenic mice

    PubMed Central

    Murashima, Aki; Xu, Bingfang; Hinton, Barry T

    2015-01-01

    The development of the Wolffian/epididymal duct is crucial for proper function and, therefore, male fertility. The development of the epididymis is complex; the initial stages form as a transient embryonic kidney; then the mesonephros is formed, which in turn undergoes extensive morphogenesis under the influence of androgens and growth factors. Thus, understanding of its full development requires a wide and multidisciplinary view. This review focuses on mouse models that display abnormalities of the Wolffian duct and mesonephric development, the importance of these mouse models toward understanding male reproductive tract development, and how these models contribute to our understanding of clinical abnormalities in humans such as congenital anomalies of the kidney and urinary tract (CAKUT). PMID:26112482

  20. Understanding normal and abnormal development of the Wolffian/epididymal duct by using transgenic mice.

    PubMed

    Murashima, Aki; Xu, Bingfang; Hinton, Barry T

    2015-01-01

    The development of the Wolffian/epididymal duct is crucial for proper function and, therefore, male fertility. The development of the epididymis is complex; the initial stages form as a transient embryonic kidney; then the mesonephros is formed, which in turn undergoes extensive morphogenesis under the influence of androgens and growth factors. Thus, understanding of its full development requires a wide and multidisciplinary view. This review focuses on mouse models that display abnormalities of the Wolffian duct and mesonephric development, the importance of these mouse models toward understanding male reproductive tract development, and how these models contribute to our understanding of clinical abnormalities in humans such as congenital anomalies of the kidney and urinary tract (CAKUT). PMID:26112482

  1. Neurologic Parasitic Infections in Immigrants and Travelers

    PubMed Central

    Thakur, Kiran; Zunt, Joseph

    2012-01-01

    Infectious diseases are increasingly common in modern clinical practice and the contemporary neurologist must be aware of the clinical manifestations, potential complications, and management of common travel-related infections. The authors provide an approach to patients who present with neurologic symptoms, with a history of travel to or residence in tropical and developing countries. Although many other infections are important in this demographic, they focus on three parasitic infections that neurologists may encounter: cerebral malaria, neuroschistosomiasis, and neurocysticercosis. The epidemiology, pathophysiology, clinical manifestations, diagnostic evaluation, and treatment are discussed for each infection. PMID:21964842

  2. Genome-wide association studies in neurology

    PubMed Central

    Tan, Meng-Shan; Jiang, Teng

    2014-01-01

    Genome-wide association studies (GWAS) are a powerful tool for understanding the genetic underpinnings of human disease. In this article, we briefly review the role and findings of GWAS in common neurological diseases, including Stroke, Alzheimer’s disease, Parkinson’s disease, epilepsy, multiple sclerosis, migraine, amyotrophic lateral sclerosis, frontotemporal lobar degeneration, restless legs syndrome, intracranial aneurysm, human prion diseases and moyamoya disease. We then discuss the present and future implications of these findings with regards to disease prediction, uncovering basic biology, and the development of potential therapeutic agents. PMID:25568877

  3. Cost reduction in cardiopulmonary and neurology services.

    PubMed

    Wise, P D

    1997-01-01

    A plan was developed and implemented to reduce costs per unit of service in three departments (pulmonary, cardiology, and neurology services), which resulted in a 19% reduction in cost per RVU over two years. These savings were attained primarily by a reduction of supplies and the redesign of work practices, which resulted in a reduction of both personnel and purchased service expenses. The departments have continued to improved the quality of services provided while reducing the costs of these services through this proactive approach to cost-containment. PMID:10166017

  4. [Quantitative analysis of psychometric indicators among 20-40 years old Georgian men and women of normal physical development].

    PubMed

    Nadashvili, L A

    2006-05-01

    The aim of the work was to establish quantitative analysis of individual indicators and constitutional types among 20-40 years old Georgian men and women of normal physical development. The studied contingent was divided into 4 scales of age: 20-24 years old 65 women and 35 men; 25-29 years old 35 women and 25 men; 30-34 years old 10 women and 5 men; and 35-39 years old 10 women and 10 men. On the basis of the conducted research it was established that younger Georgian women of normal physical development are mainly sanguines, extroverts, express middle logic intellect, plastic-dynamic mood, constitutional and stable middle excitement, and are mainly harmonic and dynamic constitutional types. Younger Georgian men are sanguines, extroverts, express middle logic intellect plastic - dynamic and constitutional-stable mood, and are mainly harmonic and dynamic constitutional types. PMID:16783078

  5. NANOG promoter methylation and expression correlation during normal and malignant human germ cell development

    PubMed Central

    Nettersheim, Daniel; Bierman, Katharina; Gillis, Ad JM; Steger, Klaus; Looijenga, Leendert HJ

    2011-01-01

    Testicular germ cell tumors are the most frequent malignant tumors in young Caucasian males, with increasing incidence. The actual model of tumorigenesis is based on the theory that a block in maturation of fetal germ cells lead to formation of the intratubular germ cell neoplasia unclassified. Early fetal germ cells and undifferentiated germ cell tumors express pluripotency markers such as the transcription factor NANOG. It has been demonstrated that epigenetic modifications, such as promoter DNA methylation, are able to silence gene expression in normal and cancer cells. Here we show that OCT3/4-SOX2 mediated expression of NANOG can be silenced by methylation of promoter CpG-sites. We found that global methylation of DNA decreased from fetal spermatogonia to mature sperm. In contrast, CpGs in the NANOG promoter were found hypomethylated in spermatogonia and hypermethylated in sperm. This selective repression might reflect the cells need to suppress pluripotency in order to prevent malignant transformation. Finally, methylation of CpGs in the NANOG promoter in germ cell tumors and derived cell lines correlated to differentiation state. PMID:20930529

  6. Vision development in the monocular individual: implications for the mechanisms of normal binocular vision development and the treatment of infantile esotropia.

    PubMed Central

    Day, S

    1995-01-01

    PURPOSE: The purpose of this research is to study the vision development in monocular individuals so as to better understand normal binocular vision development and to refine the treatment of infants with infantile esotropia. METHODS: Thirty-six subjects with one clinically normal eye and one eye with no vision (no light perception or history of enucleation) are studied. In addition to measurement of standard parameters of development such as visual acuity, measurement of motion processing is made by both optokinetic and electrophysiologic techniques. A comparison is made of vision development among three populations: the monocular population, the normal population, and patients with a history of infantile esotropia. Such comparison is made to study the relative effects of interruption of binocularity and binocular competition. The monocular population represents individuals who have interruption of binocularity, whereas the infantile esotropia population has both interruption of binocularity and binocular competition. RESULTS: The OKN data suggest that the monucular population is more similar to the normal population than the esotropia population. The electrophysiologic data shows a statistically significant difference in the three populations. Motion processing is more fully developed in the monocular population than in the infantile esotropia population when compared to the normal population. CONCLUSIONS: 1. The development of motion processing appears to be particularly vulnerable to abnormal experience during the first year of life. 2. Monocular subjects have a less abnormal motion processing system when compared to patients with infantile esotropia even when monocularity is congenital. 3. The results indirectly support the premise that prealignment alternate occlusion is of benefit to the patient with infantile esotropia prior to realignment. 4. Development of the motion processing system does not necessarily parallel the development of other binocular

  7. Multivariate normality

    NASA Technical Reports Server (NTRS)

    Crutcher, H. L.; Falls, L. W.

    1976-01-01

    Sets of experimentally determined or routinely observed data provide information about the past, present and, hopefully, future sets of similarly produced data. An infinite set of statistical models exists which may be used to describe the data sets. The normal distribution is one model. If it serves at all, it serves well. If a data set, or a transformation of the set, representative of a larger population can be described by the normal distribution, then valid statistical inferences can be drawn. There are several tests which may be applied to a data set to determine whether the univariate normal model adequately describes the set. The chi-square test based on Pearson's work in the late nineteenth and early twentieth centuries is often used. Like all tests, it has some weaknesses which are discussed in elementary texts. Extension of the chi-square test to the multivariate normal model is provided. Tables and graphs permit easier application of the test in the higher dimensions. Several examples, using recorded data, illustrate the procedures. Tests of maximum absolute differences, mean sum of squares of residuals, runs and changes of sign are included in these tests. Dimensions one through five with selected sample sizes 11 to 101 are used to illustrate the statistical tests developed.

  8. Signaling Proteins and Transcription Factors in Normal and Malignant Early B Cell Development

    PubMed Central

    Pérez-Vera, Patricia; Reyes-León, Adriana; Fuentes-Pananá, Ezequiel M.

    2011-01-01

    B cell development starts in bone marrow with the commitment of hematopoietic progenitors to the B cell lineage. In murine models, the IL-7 and preBCR receptors, and the signaling pathways and transcription factors that they regulate, control commitment and maintenance along the B cell pathway. E2A, EBF1, PAX5, and Ikaros are among the most important transcription factors controlling early development and thereby conditioning mice homeostatic B cell lymphopoiesis. Importantly, their gain or loss of function often results in malignant development in humans, supporting conserved roles for these transcription factors. B cell acute lymphoblastic leukemia is the most common cause of pediatric cancer, and it is characterized by unpaired early B cell development resulting from genetic lesions in these critical signaling pathways and transcription factors. Fine mapping of these genetic abnormalities is allowing more specific treatments, more accurately predicting risk profiles for this disease, and improving survival rates. PMID:22046564

  9. Validation of Tuba1a as appropriate internal control for normalization of gene expression analysis during mouse lung development.

    PubMed

    Mehta, Aditi; Dobersch, Stephanie; Dammann, Reinhard H; Bellusci, Saverio; Ilinskaya, Olga N; Braun, Thomas; Barreto, Guillermo

    2015-01-01

    The expression ratio between the analysed gene and an internal control gene is the most widely used normalization method for quantitative RT-PCR (qRT-PCR) expression analysis. The ideal reference gene for a specific experiment is the one whose expression is not affected by the different experimental conditions tested. In this study, we validate the applicability of five commonly used reference genes during different stages of mouse lung development. The stability of expression of five different reference genes (Tuba1a, Actb Gapdh, Rn18S and Hist4h4) was calculated within five experimental groups using the statistical algorithm of geNorm software. Overall, Tuba1a showed the least variability in expression among the different stages of lung development, while Hist4h4 and Rn18S showed the maximum variability in their expression. Expression analysis of two lung specific markers, surfactant protein C (SftpC) and Clara cell-specific 10 kDA protein (Scgb1a1), normalized to each of the five reference genes tested here, confirmed our results and showed that incorrect reference gene choice can lead to artefacts. Moreover, a combination of two internal controls for normalization of expression analysis during lung development will increase the accuracy and reliability of results. PMID:25723738

  10. Functional symptoms in neurology: mimics and chameleons.

    PubMed

    Stone, Jon; Reuber, Markus; Carson, Alan

    2013-04-01

    The mimics and chameleons of functional symptoms in neurology could be a whole textbook of neurology. Nevertheless, there are some recurring themes when things go wrong, notably diagnostic bias introduced by the presence or absence of psychiatric comorbidity or life events, neurological diseases that look 'weird' and lack of appreciation of the more unusual features of functional symptoms themselves. PMID:23468561

  11. Ischemia may be the primary cause of the neurologic deficits in classic migraine

    SciTech Connect

    Skyhoj Olsen, T.; Friberg, L.; Lassen, N.A.

    1987-02-01

    This study investigates whether the cerebral blood flow reduction occurring in attacks of classic migraine is sufficient to cause neurologic deficits. Regional cerebral blood flow measured with the xenon 133 intracarotid injection technique was analyzed in 11 patients in whom a low-flow area developed during attacks of classic migraine. When measured with this technique, regional cerebral blood flow in focal low-flow areas will be overestimated because of the effect of scattered radiation (Compton scatter) on the recordings. In this study, this effect was particularly taken into account when evaluating the degree of blood flow reduction. During attacks of classic migraine, cerebral blood flow reductions averaging 52% were observed focally in the 11 patients. Cerebral blood flow levels known to be insufficient for normal cortical function (less than 16 to 23 mL/100 g/min) were measured in seven patients during the attacks. This was probably also the case in the remaining four patients, but the effect of scattered radiation made a reliable evaluation of blood flow impossible. It is concluded that the blood flow reduction that occurs during attacks of classic migraine is sufficient to cause ischemia and neurologic deficits. Hence, this study suggests a vascular origin of the prodromal neurologic deficits that may accompany attacks of classic migraine.

  12. Drosophila Eyes Absent Is Required for Normal Cone and Pigment Cell Development

    PubMed Central

    Karandikar, Umesh C.; Jin, Meng; Jusiak, Barbara; Kwak, SuJin; Chen, Rui; Mardon, Graeme

    2014-01-01

    In Drosophila, development of the compound eye is orchestrated by a network of highly conserved transcriptional regulators known as the retinal determination (RD) network. The retinal determination gene eyes absent (eya) is expressed in most cells within the developing eye field, from undifferentiated retinal progenitors to photoreceptor cells whose differentiation begins at the morphogenetic furrow (MF). Loss of eya expression leads to an early block in retinal development, making it impossible to study the role of eya expression during later steps of retinal differentiation. We have identified two new regulatory regions that control eya expression during retinal development. These two enhancers are necessary to maintain eya expression anterior to the MF (eya-IAM) and in photoreceptors (eya-PSE), respectively. We find that deleting these enhancers affects developmental events anterior to the MF as well as retinal differentiation posterior to the MF. In line with previous results, we find that reducing eya expression anterior to the MF affects several early steps during early retinal differentiation, including cell cycle arrest and expression of the proneural gene ato. Consistent with previous observations that suggest a role for eya in cell proliferation during early development we find that deletion of eya-IAM leads to a marked reduction in the size of the adult retinal field. On the other hand, deletion of eya-PSE leads to defects in cone and pigment cell development. In addition we find that eya expression is necessary to activate expression of the cone cell marker Cut and to regulate levels of the Hedgehog pathway effector Ci. In summary, our study uncovers novel aspects of eya-mediated regulation of eye development. The genetic tools generated in this study will allow for a detailed study of how the RD network regulates key steps in eye formation. PMID:25057928

  13. Neurologic complications of cerebral angiography in childhood moyamoya syndrome.

    PubMed

    Robertson, R L; Chavali, R V; Robson, C D; Barnes, P D; Eldredge, E A; Burrows, P E; Scott, R M

    1998-11-01

    Purpose. To determine the incidence of neurologic complications of cerebral angiography in children with moyamoya syndrome (MMS) as compared to children without MMS. Materials and methods. One-hundred-ninety consecutive cerebral angiograms obtained in 152 children were evaluated. Sixty of these angiograms were obtained in 40 children with MMS. Patients underwent neurologic evaluation prior to and after the procedure. For this study, a neurologic complication was defined as any new focal neurologic deficit or alteration in mental status occurring during the procedure or within the ensuing 24 hours. Results. There were 2 neurologic complications within 24 hours of angiography, one in the MMS group and one in the non-MMS group. One patient with MMS became mute following angiography. The symptom resolved within 12 hours. One patient without MMS being examined postoperatively for residual arteriovenous malformation developed intracranial hemorrhage requiring reexploration 12 hours after the angiogram. Using a two-tail Fisher's exact test, there was no significant statistical difference in the ischemic (P = 0.3) or hemorrhagic (P = 1.0) complication rates between the group of patients with MMS and the non-MMS groups. Conclusion. The risk of a neurologic complication from cerebral angiography in children with MMS is low and not statistically different from the risk in children with other cerebrovascular disorders. PMID:9799310

  14. p120 catenin is required for normal tubulogenesis but not epithelial integrity in developing mouse pancreas

    PubMed Central

    Hendley, Audrey M.; Provost, Elayne; Bailey, Jennifer M.; Wang, Yue J.; Cleveland, Megan H.; Blake, Danielle; Bittman, Ross W.; Roeser, Jeffrey C.; Maitra, Anirban; Reynolds, Albert B.; Leach, Steven D.

    2015-01-01

    The intracellular protein p120 catenin aids in maintenance of cell-cell adhesion by regulating E-cadherin stability in epithelial cells. In an effort to understand the biology of p120 catenin in pancreas development, we ablated p120 catenin in mouse pancreatic progenitor cells, which resulted in deletion of p120 catenin in all epithelial lineages of the developing mouse pancreas: islet, acinar, centroacinar, and ductal. Loss of p120 catenin resulted in formation of dilated epithelial tubules, expansion of ductal epithelia, loss of acinar cells, and the induction of pancreatic inflammation. Aberrant branching morphogenesis and tubulogenesis were also observed. Throughout development, the phenotype became more severe, ultimately resulting in an abnormal pancreas comprised primarily of duct-like epithelium expressing early progenitor markers. In pancreatic tissue lacking p120 catenin, overall epithelial architecture remained intact; however, actin cytoskeleton organization was disrupted, an observation associated with increased cytoplasmic PKCζ. Although we observed reduced expression of adherens junction proteins E-cadherin, β-catenin, and α-catenin, p120 catenin family members p0071, ARVCF, and δ-catenin remained present at cell membranes in homozygous p120f/f pancreases, potentially providing stability for maintenance of epithelial integrity during development. Adult mice homozygous for deletion of p120 catenin displayed dilated main pancreatic ducts, chronic pancreatitis, acinar to ductal metaplasia (ADM), and mucinous metaplasia that resembles PanIN1a. Taken together, our data demonstrate an essential role for p120 catenin in pancreas development. PMID:25523391

  15. The diffusion tensor imaging (DTI) component of the NIH MRI study of normal brain development (PedsDTI).

    PubMed

    Walker, Lindsay; Chang, Lin-Ching; Nayak, Amritha; Irfanoglu, M Okan; Botteron, Kelly N; McCracken, James; McKinstry, Robert C; Rivkin, Michael J; Wang, Dah-Jyuu; Rumsey, Judith; Pierpaoli, Carlo

    2016-01-01

    The NIH MRI Study of normal brain development sought to characterize typical brain development in a population of infants, toddlers, children and adolescents/young adults, covering the socio-economic and ethnic diversity of the population of the United States. The study began in 1999 with data collection commencing in 2001 and concluding in 2007. The study was designed with the final goal of providing a controlled-access database; open to qualified researchers and clinicians, which could serve as a powerful tool for elucidating typical brain development and identifying deviations associated with brain-based disorders and diseases, and as a resource for developing computational methods and image processing tools. This paper focuses on the DTI component of the NIH MRI study of normal brain development. In this work, we describe the DTI data acquisition protocols, data processing steps, quality assessment procedures, and data included in the database, along with database access requirements. For more details, visit http://www.pediatricmri.nih.gov. This longitudinal DTI dataset includes raw and processed diffusion data from 498 low resolution (3 mm) DTI datasets from 274 unique subjects, and 193 high resolution (2.5 mm) DTI datasets from 152 unique subjects. Subjects range in age from 10 days (from date of birth) through 22 years. Additionally, a set of age-specific DTI templates are included. This forms one component of the larger NIH MRI study of normal brain development which also includes T1-, T2-, proton density-weighted, and proton magnetic resonance spectroscopy (MRS) imaging data, and demographic, clinical and behavioral data. PMID:26048622

  16. "Is My Child Developing Normally?": A Critical Review of Web-Based Resources for Parents

    ERIC Educational Resources Information Center

    Williams, Nia; Mughal, Sabena; Blair, Mitch

    2008-01-01

    Early detection of developmental problems improves outcomes for parents and children. Parents want to be involved in assessment and need high-quality, accurate, and reliable data on child development to help monitor progress and inform decisions on referral. The aim of this paper is to review which websites are readily accessible to parents on…

  17. Epithelial-Mesenchymal Transition in Cancer: Parallels Between Normal Development and Tumor Progression

    PubMed Central

    Micalizzi, Douglas S.; Farabaugh, Susan M.

    2010-01-01

    From the earliest stages of embryonic development, cells of epithelial and mesenchymal origin contribute to the structure and function of developing organs. However, these phenotypes are not always permanent, and instead, under the appropriate conditions, epithelial and mesenchymal cells convert between these two phenotypes. These processes, termed Epithelial-Mesenchymal Transition (EMT), or the reverse Mesenchymal-Epithelial Transition (MET), are required for complex body patterning and morphogenesis. In addition, epithelial plasticity and the acquisition of invasive properties without the full commitment to a mesenchymal phenotype are critical in development, particularly during branching morphogenesis in the mammary gland. Recent work in cancer has identified an analogous plasticity of cellular phenotypes whereby epithelial cancer cells acquire mesenchymal features that permit escape from the primary tumor. Because local invasion is thought to be a necessary first step in metastatic dissemination, EMT and epithelial plasticity are hypothesized to contribute to tumor progression. Similarities between developmental and oncogenic EMT have led to the identification of common contributing pathways, suggesting that the reactivation of developmental pathways in breast and other cancers contributes to tumor progression. For example, developmental EMT regulators including Snail/Slug, Twist, Six1, and Cripto, along with developmental signaling pathways including TGF-β and Wnt/β-catenin, are misexpressed in breast cancer and correlate with poor clinical outcomes. This review focuses on the parallels between epithelial plasticity/EMT in the mammary gland and other organs during development, and on a selection of developmental EMT regulators that are misexpressed specifically during breast cancer. PMID:20490631

  18. Cerebral Cortex Expression of Gli3 Is Required for Normal Development of the Lateral Olfactory Tract

    PubMed Central

    Amaniti, Eleni-Maria; Kelman, Alexandra; Mason, John O.; Theil, Thomas

    2015-01-01

    Formation of the lateral olfactory tract (LOT) and innervation of the piriform cortex represent fundamental steps to allow the transmission of olfactory information to the cerebral cortex. Several transcription factors, including the zinc finger transcription factor Gli3, influence LOT formation by controlling the development of mitral cells from which LOT axons emanate and/or by specifying the environment through which these axons navigate. Gli3 null and hypomorphic mutants display severe defects throughout the territory covered by the developing lateral olfactory tract, making it difficult to identify specific roles for Gli3 in its development. Here, we used Emx1Cre;Gli3fl/fl conditional mutants to investigate LOT formation and colonization of the olfactory cortex in embryos in which loss of Gli3 function is restricted to the dorsal telencephalon. These mutants form an olfactory bulb like structure which does not protrude from the telencephalic surface. Nevertheless, mitral cells are formed and their axons enter the piriform cortex though the LOT is shifted medially. Mitral axons also innervate a larger target area consistent with an enlargement of the piriform cortex and form aberrant projections into the deeper layers of the piriform cortex. No obvious differences were found in the expression patterns of key guidance cues. However, we found that an expansion of the piriform cortex temporally coincides with the arrival of LOT axons, suggesting that Gli3 affects LOT positioning and target area innervation through controlling the development of the piriform cortex. PMID:26509897

  19. The Interface between Neighborhood Density and Optional Infinitives: Normal Development and Specific Language Impairment

    ERIC Educational Resources Information Center

    Hoover, Jill R.; Storkel, Holly L.; Rice, Mabel L.

    2012-01-01

    The effect of neighborhood density on optional infinitives was evaluated for typically developing (TD) children and children with Specific Language Impairment (SLI). Forty children, twenty in each group, completed two production tasks that assessed third person singular production. Half of the sentences in each task presented a dense verb, and…

  20. INSECTICIDE EFFECTS ON NORMAL DEVELOPMENT AND HATCH OF EMBRYOS OF 'PARATANYTARSUS PARTHENOGENETICUS' (DIPTERA: CHIRONOMIDAE)

    EPA Science Inventory

    Simple, low cost methods are needed to determine the effect of pesticides on non-target aquatic organisms. In this report, embryos of Paratanytarsus parthenogeneticus were exposed from deposition to hatch to five pesticides. Four of the five pesticides affected development or hat...

  1. Developing High Quality Decision-Making Discussions about Biological Conservation in a Normal Classroom Setting

    ERIC Educational Resources Information Center

    Grace, Marcus

    2009-01-01

    The conservation of biodiversity is an important socio-scientific issue that is often regarded as a precondition to sustainable development. The foundation for citizens' understanding of conservation issues can be laid down in formal school education. This research focuses on decision-making discussions about biological conservation issues among…

  2. Adenomatous Polyposis Coli (APC) Is Required for Normal Development of Skin and Thymus

    PubMed Central

    Kuraguchi, Mari; Wang, Xiu-Ping; Bronson, Roderick T; Rothenberg, Rebecca; Ohene-Baah, Nana Yaw; Lund, Jennifer J; Kucherlapati, Melanie; Maas, Richard L; Kucherlapati, Raju

    2006-01-01

    The tumor suppressor gene Apc (adenomatous polyposis coli) is a member of the Wnt signaling pathway that is involved in development and tumorigenesis. Heterozygous knockout mice for Apc have a tumor predisposition phenotype and homozygosity leads to embryonic lethality. To understand the role of Apc in development we generated a floxed allele. These mice were mated with a strain carrying Cre recombinase under the control of the human Keratin 14 (K14) promoter, which is active in basal cells of epidermis and other stratified epithelia. Mice homozygous for the floxed allele that also carry the K14-cre transgene were viable but had stunted growth and died before weaning. Histological and immunochemical examinations revealed that K14-cre–mediated Apc loss resulted in aberrant growth in many ectodermally derived squamous epithelia, including hair follicles, teeth, and oral and corneal epithelia. In addition, squamous metaplasia was observed in various epithelial-derived tissues, including the thymus. The aberrant growth of hair follicles and other appendages as well as the thymic abnormalities in K14-cre; ApcCKO/CKO mice suggest the Apc gene is crucial in embryonic cells to specify epithelial cell fates in organs that require epithelial–mesenchymal interactions for their development. PMID:17002498

  3. Calcitriol but no other metabolite of vitamin D is essential for normal bone growth and development in the rat.

    PubMed Central

    Parfitt, A M; Mathews, C H; Brommage, R; Jarnagin, K; DeLuca, H F

    1984-01-01

    To determine the relative importance of different metabolites of vitamin D in bone growth and development, weanling male rat pups suckled by vitamin D-deficient mothers were given either calcitriol (1,25-dihydroxycholecalciferol) by continuous subcutaneous infusion, oral calcidiol (25-hydroxycholecalciferol), or oral 24,24-difluoro-25-hydroxycholecalciferol, a synthetic compound that can undergo 1-hydroxylation but not 24-hydroxylation, as their sole source of vitamin D for 40 d. Pups raised in the same manner, but given no vitamin D, served as controls. The three metabolites compared were given in doses that restored normal plasma calcium levels and normal increments in body weight. After in vivo double tetracycline labeling, bone histomorphometry by standard methods was performed on one femur and one tail vertebra. There were no significant differences between the three metabolite-treated groups in length, periosteal or endosteal diameter, cortical cross-sectional area, cortical porosity, osteoid thickness and volume, appositional rate and bone formation rate in the femur, or in qualitative and quantitative indices of endochondral ossification in the tail vertebra. All three groups differed markedly from the untreated controls with respect to all measurements. Collectively, the data indicate that neither calcidiol nor any 24-hydroxylated metabolite of calcidiol is needed in the rat (other than as a precursor) for longitudinal or transverse bone growth, for normal endochondral ossification, or for normal periosteal and endosteal formation, mineralization, and resorption of bone. Calcitriol was fully active with respect to each of the indices listed when given in a manner resembling its continuous endogenous production by the kidney, suggesting that previous reports of incomplete skeletal response to calcitriol result from its rapid clearance and infrequent oral administration. We demonstrated that calcitriol is the only metabolite that is both necessary and

  4. Gene Therapy for Neurologic Manifestations of Mucopolysaccharidoses

    PubMed Central

    Wolf, Daniel A.; Banerjee, Sharbani; Hackett, Perry B.; Whitley, Chester B.; McIvor, R. Scott; Low, Walter C.

    2015-01-01

    Introduction Mucopolysaccharidoses are a family of lysosomal disorders caused by mutations in genes that encode enzymes involved in the catabolism of glycoaminoglycans. These mutations affect multiple organ systems and can be particularly deleterious to the nervous system. At the present time, enzyme replacement therapy and hematopoietic stem-cell therapy are used to treat patients with different forms of these disorders. However, to a great extent the nervous system is not adequately responsive to current therapeutic approaches. Areas Covered Recent advances in gene therapy show great promise for treating mucopolysaccharidoses. This article reviews the current state of the art for routes of delivery in developing genetic therapies for treating the neurologic manifestations of mucopolysaccharidoses. Expert Opinion Gene therapy for treating neurological manifestations of mucopolysaccharidoses can be achieved by intraventricular, intrathecal, intranasal, and systemic administration. The intraventricular route of administration appears to provide the most wide-spread distribution of gene therapy vectors to the brain. The intrathecal route of delivery results in predominant distribution to the caudal areas of the brain while the intranasal route of delivery results in good distribution to the rostral areas of brain. The systemic route of delivery via intravenous delivery can also achieve wide spread delivery to the CNS, however, the distribution to the brain is greatly dependent on the vector system. Intravenous delivery using lentiviral vectors appear to be less effective than adeno-associated viral (AAV) vectors. Moreover, some subtypes of AAV vectors are more effective than others in crossing the blood-brain-barrier. In summary, the recent advances in gene vector technology and routes of delivery to the CNS will facilitate the clinical translation of gene therapy for the treatment of the neurological manifestations of mucopolysaccharidoses. PMID:25510418

  5. The neurology of folic acid deficiency.

    PubMed

    Reynolds, E H

    2014-01-01

    The metabolism of folic acid and the metabolism of vitamin B12 are intimately linked such that deficiency of either vitamin leads to an identical megaloblastic anemia. The neurologic manifestations of folate deficiency overlap with those of vitamin B12 deficiency and include cognitive impairment, dementia, depression, and, less commonly, peripheral neuropathy and subacute combined degeneration of the spinal cord. In both deficiency states there is often dissociation between the neuropsychiatric and the hematologic complications. There is a similar overlap and dissociation between neurologic and hematologic manifestations of inborn errors of folate and vitamin B12 metabolism. Low folate and raised homocysteine levels are risk factors for dementia, including Alzheimer's disease, and depression. Even when folate deficiency is secondary to psychiatric illness due to apathy or poor diet it may eventually aggravate the underlying disorder in a vicious circle effect. Clinical responses to treatment with folates are usually slow over weeks and months, probably due to the efficient blood-brain barrier mechanism for the vitamin, perhaps in turn related to the experimentally demonstrated excitatory properties of folate derivatives. The inappropriate administration of folic acid in the presence of vitamin B12 deficiency may lead to both neurologic and, later, hematologic relapse. Impaired maternal folate intake and status increases the risk of neural tube defects. Periconceptual prophylactic administration of the vitamin reduces, but does not eliminate the risk of neural tube defects even in the absence of folate deficiency. Folates and vitamin B12 have fundamental roles in central nervous system function at all ages, especially in purine, thymidine, neucleotide, and DNA synthesis, genomic and nongenomic methylation and, therefore, in tissue growth, differentiation and repair. There is interest in the potential role of both vitamins in the prevention of disorders of central

  6. Efficacy of Intravenous Immunoglobulin in Neurological Diseases.

    PubMed

    Lünemann, Jan D; Quast, Isaak; Dalakas, Marinos C

    2016-01-01

    Owing to its anti-inflammatory efficacy in various autoimmune disease conditions, intravenous immunoglobulin (IVIG)-pooled IgG obtained from the plasma of several thousands individuals-has been used for nearly three decades and is proving to be efficient in a growing number of neurological diseases. IVIG therapy has been firmly established for the treatment of Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, and multifocal motor neuropathy, either as first-line therapy or adjunctive treatment. IVIG is also recommended as rescue therapy in patients with worsening myasthenia gravis and is beneficial as a second-line therapy for dermatomyositis and stiff-person syndrome. Subcutaneous rather than intravenous administration of IgG is gaining momentum because of its effectiveness in patients with primary immunodeficiency and the ease with which it can be administered independently from hospital-based infusions. The demand for IVIG therapy is growing, resulting in rising costs and supply shortages. Strategies to replace IVIG with recombinant products have been developed based on proposed mechanisms that confer the anti-inflammatory activity of IVIG, but their efficacy has not been tested in clinical trials. This review covers new developments in the immunobiology and clinical applications of IVIG in neurological diseases. PMID:26400261

  7. Emerging and Reemerging Neurologic Infections

    PubMed Central

    Glaser, Carol A.

    2014-01-01

    The list of emerging and reemerging pathogens that cause neurologic disease is expanding. Various factors, including population growth and a rise in international travel, have contributed to the spread of pathogens to previously nonendemic regions. Recent advances in diagnostic methods have led to the identification of novel pathogens responsible for infections of the central nervous system. Furthermore, new issues have arisen surrounding established infections, particularly in an increasingly immunocompromised population due to advances in the treatment of rheumatologic disease and in transplant medicine. PMID:25360203

  8. Neurological infections after neuraxial anesthesia.

    PubMed

    Reynolds, Felicity

    2008-03-01

    Infection is the commonest cause of serious neurologic sequelae of neuraxial anesthesia. The incidence depends on operator skill and patient population. Meningitis, a complication of dural puncture, is usually caused by viridans streptococci. The risk factors are dural puncture during labor, no mask and poor aseptic technique, vaginal infection and bacteremia. Epidural abscess is a complication of epidural catheterization, route of entry the catheter track and the organism usually the staphylococcus. Principal risk factors are prolonged catheterization, poor aseptic technique and traumatic insertion. Prevention includes wearing a mask, using a full sterile technique, avoiding prolonged catheterization and prescribing antibiotics in a high-risk situation. PMID:18319178

  9. Neurology in the market place.

    PubMed Central

    Williams, I R

    1992-01-01

    The White Paper, "Working for Patients", led to a change in the way in which hospitals were funded from April 1991. The changes will have profound effects on the future shape of health care in the United Kingdom. Neurologists will need to understand the new National Health Service if their patients are to benefit from the changes. If neurology is to survive as a specialty separate from general medicine it will have to show that it can provide quality care which is accessible, relevant, efficient and effective, at a price which Districts can afford. PMID:1564499

  10. Atypical neurological manifestations of malaria

    PubMed Central

    Singla, Neeraj; Gupta, Monica; Singh, Ram; Kumar, Ashwani

    2014-01-01

    Malaria is known as a great mimic. It can manifest subtly or abruptly, typically or atypically. This aspect of the disease can frequently mislead physicians. We present two patients of malaria with atypical neurological manifestations. The first patient of Plasmodium falciparum malaria presented with fever and altered sensorium; MRI of the brain suggested cerebral venous thrombosis. The second patient of Plasmodium vivax presented with fever, double vision and right eye lateral rectus palsy due to unilateral sixth cranial nerve involvement. Both patients were managed with antimalarials and supportive medical management, and had uneventful recoveries. PMID:25150266

  11. Ubiquitin Specific Protease 21 Is Dispensable for Normal Development, Hematopoiesis and Lymphocyte Differentiation

    PubMed Central

    Pannu, Jaspreet; Belle, Jad I.; Förster, Michael; Duerr, Claudia U.; Shen, Shiyang; Kane, Leanne; Harcourt, Katherine; Fritz, Jörg H.; Clare, Simon; Nijnik, Anastasia

    2015-01-01

    USP21 is a ubiquitin specific protease that catalyzes protein deubiquitination, however the identification of its physiological substrates remains challenging. USP21 is known to deubiquitinate transcription factor GATA3 and death-domain kinase RIPK1 in vitro, however the in vivo settings where this regulation plays a biologically significant role remain unknown. In order to determine whether USP21 is an essential and non-redundant regulator of GATA3 or RIPK1 activity in vivo, we characterized Usp21-deficient mice, focusing on mouse viability and development, hematopoietic stem cell function, and lymphocyte differentiation. The Usp21-knockout mice were found to be viable and fertile, with no significant dysmorphology, in contrast to the GATA3 and RIPK1 knockout lines that exhibit embryonic or perinatal lethality. Loss of USP21 also had no effect on hematopoietic stem cell function, lymphocyte development, or the responses of antigen presenting cells to TLR and TNFR stimulation. GATA3 levels in hematopoietic stem cells or T lymphocytes remained unchanged. We observed that aged Usp21-knockout mice exhibited spontaneous T cell activation, however this was not linked to altered GATA3 levels in the affected cells. The contrast in the phenotype of the Usp21-knockout line with the previously characterized GATA3 and RIPK1 knockout mice strongly indicates that USP21 is redundant for the regulation of GATA3 and RIPK1 activity during mouse development, in hematopoietic stem cells, and in lymphocyte differentiation. The Usp21-deficient mouse line characterized in this study may serve as a useful tool for the future characterization of USP21 physiological functions. PMID:25680095

  12. Morphogenesis of the inner ear at different stages of normal human development.

    PubMed

    Toyoda, Saki; Shiraki, Naoto; Yamada, Shigehito; Uwabe, Chigako; Imai, Hirohiko; Matsuda, Tetsuya; Yoneyama, Akio; Takeda, Tohoru; Takakuwa, Tetsuya

    2015-12-01

    This study examined the external morphology and morphometry of the human embryonic inner ear membranous labyrinth and documented its three-dimensional position in the developing embryo using phase-contrast X-ray computed tomography and magnetic resonance imaging. A total of 27 samples between Carnegie stage (CS) 17 and the postembryonic phase during trimester 1 (approximately 6-10 weeks after fertilization) were included. The otic vesicle elongated along the dorso-ventral axis and differentiated into the end lymphatic appendage and cochlear duct (CD) at CS 17. The spiral course of the CD began at CS18, with anterior and posterior semicircular ducts (SDs) forming prominent circles with a common crus. The spiral course of the CD comprised more than two turns at the postembryonic phase, at which time the height of the CD was evident. A linear increase was observed in the length of anterior, posterior, and lateral SDs, in that order, and the length of the CD increased exponentially over the course of development. Bending in the medial direction was observed between the cochlear and vestibular parts from the latero-caudal view, with the angle decreasing during development. The position of the inner ear was stable throughout the period of observation on the lateral to ventral side of the rhombencephalon, caudal to the pontine flexure, and adjacent to the auditory ganglia. The plane of the lateral semicircular canal was approximately 8.0°-14.6° with respect to the cranial caudal (z-)axis, indicating that the orientation of the inner ear changes during growth to adulthood. PMID:26369281

  13. Animal Models to Study Placental Development and Function throughout Normal and Dysfunctional Human Pregnancy

    PubMed Central

    Grigsby, Peta L.

    2016-01-01

    Abnormalities of placental development and function are known to underlie many pathologies of pregnancy, including spontaneous preterm birth, fetal growth restriction and preeclampsia. A growing body of evidence also underscores the importance of placental dysfunction in the lifelong health of both mother and offspring. However, our knowledge regarding placental structure and function throughout pregnancy remains limited. Understanding the temporal growth and functionality of the human placenta throughout the entirety of gestation is important if we are to gain a better understanding of placental dysfunction. The utilization of new technologies and imaging techniques that could enable safe monitoring of placental growth and function in vivo has become a major focus area for the National Institutes of Child Health & Human Development, as evident by the establishment of the “Human Placenta Project”. Many of the objectives of the Human Placenta Project will necessitate pre-clinical studies and testing in appropriately designed animal models that can be readily translated to the clinical setting. This review will describe the advantages and limitations of relevant animals such as the guinea pig, sheep and non-human primate models that have been used to study the role of the placenta in fetal growth disorders, preeclampsia or other maternal diseases during pregnancy. PMID:26752715

  14. Animal Models to Study Placental Development and Function throughout Normal and Dysfunctional Human Pregnancy.

    PubMed

    Grigsby, Peta L

    2016-01-01

    Abnormalities of placental development and function are known to underlie many pathologies of pregnancy, including spontaneous preterm birth, fetal growth restriction, and preeclampsia. A growing body of evidence also underscores the importance of placental dysfunction in the lifelong health of both mother and offspring. However, our knowledge regarding placental structure and function throughout pregnancy remains limited. Understanding the temporal growth and functionality of the human placenta throughout the entirety of gestation is important if we are to gain a better understanding of placental dysfunction. The utilization of new technologies and imaging techniques that could enable safe monitoring of placental growth and function in vivo has become a major focus area for the National Institutes of Child Health and Human Development, as evident by the establishment of the "Human Placenta Project." Many of the objectives of the Human Placenta Project will necessitate preclinical studies and testing in appropriately designed animal models that can be readily translated to the clinical setting. This review will describe the advantages and limitations of relevant animals such as the guinea pig, sheep, and nonhuman primate models that have been used to study the role of the placenta in fetal growth disorders, preeclampsia, or other maternal diseases during pregnancy. PMID:26752715

  15. Mice lacking the cerebral cortex develop normal song: insights into the foundations of vocal learning.

    PubMed

    Hammerschmidt, Kurt; Whelan, Gabriela; Eichele, Gregor; Fischer, Julia

    2015-01-01

    Mouse models play an increasingly important role in the identification and functional assessment of speech-associated genes, with a focus on genes involved in vocal production, and possibly vocal learning. Moreover, mice reportedly show direct projections from the cortex to brainstem vocal motor neurons, implying a degree of volitional control over vocal output. Yet, deaf mice did not reveal differences in call structures compared to their littermates, suggesting that auditory input is not a prerequisite for the development of species-specific sounds. To elucidate the importance of cortical structures for the development of mouse ultrasonic vocalizations (USVs) in more detail, we studied Emx1-CRE;Esco2(fl/fl) mice, which lack the hippocampus and large parts of the cortex. We conducted acoustic analyses of the USVs of 28 pups during short-term isolation and 23 adult males during courtship encounters. We found no significant differences in the vocalizations of Emx1-CRE;Esco2(fl/fl) mice, and only minor differences in call type usage in adult mice, compared to control littermates. Our findings question the notion that cortical structures are necessary for the production of mouse USVs. Thus, mice might be less suitable to study the mechanisms supporting vocal learning than previously assumed, despite their value for studying the genetic foundations of neurodevelopment more generally. PMID:25744204

  16. Intrafollicular steroids and anti-mullerian hormone during normal and cystic ovarian follicular development in the cow.

    PubMed

    Monniaux, Danielle; Clemente, Nathalie di; Touzé, Jean-Luc; Belville, Corinne; Rico, Charlène; Bontoux, Martine; Picard, Jean-Yves; Fabre, Stéphane

    2008-08-01

    Development of follicular cysts is a frequent ovarian dysfunction in cattle. Functional changes that precede cyst formation are unknown, but a role for anti-Müllerian hormone (AMH) in the development of follicular cysts has been suggested in humans. This study aimed to characterize intrafollicular steroids and AMH during follicular growth in a strain of beef cows exhibiting a high incidence of occurrence of follicular cysts. Normal follicular growth and cyst development were assessed by ovarian ultrasonography scanning during the 8 days before slaughtering. Experimental regression of cysts was followed by rapid growth of follicles that reached the size of cysts within 3-5 days. These young cysts exhibited higher intrafollicular concentrations of testosterone, estradiol-17beta, and progesterone than large early dominant follicles did in normal ovaries, but they exhibited similar concentrations of AMH. Later-stage cysts were characterized by hypertrophy of theca interna cells, high intrafollicular progesterone concentration, and high steroidogenic acute regulatory protein mRNA expression in granulosa cells. Progesterone and AMH concentrations in the largest follicles (> or =10 mm) and cysts were negatively correlated (r = -0.45, P < 0.01). Smaller follicles (<10 mm) exhibited higher intrafollicular testosterone and estradiol-17beta concentrations in ovaries with cysts compared to normal ovaries. During follicular growth, AMH concentration dropped in follicles larger than 5 mm in diameter and in a similar way in ovaries with and without cysts. In conclusion, enhanced growth and steroidogenesis in antral follicles <10 mm preceded cyst formation in cow ovaries. Intrafollicular AMH was not a marker of cystic development in the cow, but low AMH concentrations in cysts were associated with luteinization. PMID:18448844

  17. Mammary Gland Specific Knockdown of the Physiological Surge in Cx26 during Lactation Retains Normal Mammary Gland Development and Function

    PubMed Central

    Stewart, Michael K. G.; Plante, Isabelle; Bechberger, John F.; Naus, Christian C.; Laird, Dale W.

    2014-01-01

    Connexin26 (Cx26) is the major Cx protein expressed in the human mammary gland and is up-regulated during pregnancy while remaining elevated throughout lactation. It is currently unknown if patients with loss-of-function Cx26 mutations that result in hearing loss and skin diseases have a greater susceptibility to impaired breast development. To investigate if Cx26 plays a critical role in mammary gland development and differentiation, a novel Cx26 conditional knockout mouse model was generated by crossing Cx26fl/fl mice with mice expressing Cre under the β-Lactoglobulin promoter. Conditional knockdown of Cx26 from the mammary gland resulted in a dramatic reduction in detectable gap junction plaques confirmed by a significant ∼65-70% reduction in Cx26 mRNA and protein throughout parturition and lactation. Interestingly, this reduction was accompanied by a decrease in mammary gland Cx30 gap junction plaques at parturition, while no change was observed for Cx32 or Cx43. Whole mount, histological and immunofluorescent assessment of breast tissue revealed comparatively normal lobuloalveolar development following pregnancy in the conditionally knockdown mice compared to control mice. In addition, glands from genetically-modified mice were capable of producing milk proteins that were evident in the lumen of alveoli and ducts at similar levels as controls, suggesting normal gland function. Together, our results suggest that low levels of Cx26 expression throughout pregnancy and lactation, and not the physiological surge in Cx26, is sufficient for normal gland development and function. PMID:24988191

  18. AP-Endonuclease 2 is necessary for normal B cell development and recovery of lymphoid progenitors after chemotherapeutic challenge

    PubMed Central

    Guikema, Jeroen E.J.; Gerstein, Rachel M.; Linehan, Erin K.; Cloherty, Erin K.; Evan-Browning, Eric; Tsuchimoto, Daisuke; Nakabeppu, Yusaku; Schrader, Carol E.

    2014-01-01

    B cell development involves rapid cellular proliferation, gene rearrangements, selection and differentiation, and provides a powerful model to study DNA repair processes in vivo. Analysis of the contribution of the base excision repair (BER) pathway in lymphocyte development has been lacking primarily due to the essential nature of this repair pathway. However, mice deficient for the BER enzyme, apurinic/apyrimidinic (AP) endonuclease 2 (APE2) protein develop relatively normally, but display defects in lymphopoiesis. Here we present an extensive analysis of bone marrow hematopoiesis in mice nullizygous for APE2 and find an inhibition of the pro-B to pre-B cell transition. We find that APE2 is not required for V(D)J-recombination, and that the turnover rate of APE2-deficient progenitor B cells is nearly normal. However, the production rate of pro- and pre-B cells is reduced due to a p53-dependent DNA damage response. FACS-purified progenitors from APE2-deficient mice differentiate normally in response to IL-7 in in vitro stromal cell co-cultures, but pro-B cells show defective expansion. Interestingly, APE2-deficient mice show a delay in recovery of B lymphocyte progenitors following bone marrow depletion by 5-fluorouracil, with the pro-B and pre-B cell pools still markedly decreased two weeks after a single treatment. Our data demonstrate that APE2 has an important role in providing protection from DNA damage during lymphoid development, which is independent from its ubiquitous and essential homolog APE1. PMID:21228350

  19. Society of Vascular and Interventional Neurology (SVIN) Stroke Interventional Laboratory Consensus (SILC) Criteria: A 7M Management Approach to Developing a Stroke Interventional Laboratory in the Era of Stroke Thrombectomy for Large Vessel Occlusions

    PubMed Central

    Shams, Tanzila; Zaidat, Osama; Yavagal, Dileep; Xavier, Andrew; Jovin, Tudor; Janardhan, Vallabh

    2016-01-01

    Brain attack care is rapidly evolving with cutting-edge stroke interventions similar to the growth of heart attack care with cardiac interventions in the last two decades. As the field of stroke intervention is growing exponentially globally, there is clearly an unmet need to standardize stroke interventional laboratories for safe, effective, and timely stroke care. Towards this goal, the Society of Vascular and Interventional Neurology (SVIN) Writing Committee has developed the Stroke Interventional Laboratory Consensus (SILC) criteria using a 7M management approach for the development and standardization of each stroke interventional laboratory within stroke centers. The SILC criteria include: (1) manpower: personnel including roles of medical and administrative directors, attending physicians, fellows, physician extenders, and all the key stakeholders in the stroke chain of survival; (2) machines: resources needed in terms of physical facilities, and angiography equipment; (3) materials: medical device inventory, medications, and angiography supplies; (4) methods: standardized protocols for stroke workflow optimization; (5) metrics (volume): existing credentialing criteria for facilities and stroke interventionalists; (6) metrics (quality): benchmarks for quality assurance; (7) metrics (safety): radiation and procedural safety practices. PMID:27610118

  20. Society of Vascular and Interventional Neurology (SVIN) Stroke Interventional Laboratory Consensus (SILC) Criteria: A 7M Management Approach to Developing a Stroke Interventional Laboratory in the Era of Stroke Thrombectomy for Large Vessel Occlusions.

    PubMed

    Shams, Tanzila; Zaidat, Osama; Yavagal, Dileep; Xavier, Andrew; Jovin, Tudor; Janardhan, Vallabh

    2016-06-01

    Brain attack care is rapidly evolving with cutting-edge stroke interventions similar to the growth of heart attack care with cardiac interventions in the last two decades. As the field of stroke intervention is growing exponentially globally, there is clearly an unmet need to standardize stroke interventional laboratories for safe, effective, and timely stroke care. Towards this goal, the Society of Vascular and Interventional Neurology (SVIN) Writing Committee has developed the Stroke Interventional Laboratory Consensus (SILC) criteria using a 7M management approach for the development and standardization of each stroke interventional laboratory within stroke centers. The SILC criteria include: (1) manpower: personnel including roles of medical and administrative directors, attending physicians, fellows, physician extenders, and all the key stakeholders in the stroke chain of survival; (2) machines: resources needed in terms of physical facilities, and angiography equipment; (3) materials: medical device inventory, medications, and angiography supplies; (4) methods: standardized protocols for stroke workflow optimization; (5) metrics (volume): existing credentialing criteria for facilities and stroke interventionalists; (6) metrics (quality): benchmarks for quality assurance; (7) metrics (safety): radiation and procedural safety practices. PMID:27610118

  1. Non-operative management is superior to surgical stabilization in spine injury patients with complete neurological deficits: A perspective study from a developing world country, Pakistan

    PubMed Central

    Shamim, Muhammad Shahzad; Ali, Syed Faizan; Enam, Syed Ather

    2011-01-01

    Background: Surgical stabilization of injured spine in patients with complete spinal cord injury is a common practice despite the lack of strong evidence supporting it. The aim of this study is to compare clinical outcomes and cost-effectiveness of surgical stabilization versus conservative management of spinal injury in patients with complete deficits, essentially from a developing country's point of view. Methods: A detailed analysis of patients with traumatic spine injury and complete deficits admitted at the Aga Khan University Hospital, Pakistan, from January 2004 till January 2010 was carried out. All patients presenting within 14 days of injury were divided in two groups, those who underwent stabilization procedures and those who were managed non-operatively. The two groups were compared with the endpoints being time to rehabilitation, length of hospital stay, 30 day morbidity/mortality, cost of treatment, and status at follow up. Results: Fifty-four patients fulfilled the inclusion criteria and half of these were operated. On comparing endpoints, patients in the operative group took longer time to rehabilitation (P-value = 0.002); had longer hospital stay (P-value = 0.006) which included longer length of stay in special care unit (P-value = 0.002) as well as intensive care unit (P-value = 0.004); and were associated with more complications, especially those related to infections (P-value = 0.002). The mean cost of treatment was also significantly higher in the operative group (USD 6,500) as compared to non-operative group (USD 1490) (P-value < 0.001). Conclusion: We recommend that patients with complete SCI should be managed non-operatively with a provision of surgery only if their rehabilitation is impeded due to pain or deformity. PMID:22145085

  2. Oral epithelial stem cells – implications in normal development and cancer metastasis

    PubMed Central

    Papagerakis, Silvana; Pannone, Giuseppe; Zheng, Li; About, Imad; Taqi, Nawar; Nguyen, Nghia P.T.; Matossian, Margarite; McAlpin, Blake; Santoro, Angela; McHugh, Jonathan; Prince, Mark E.; Papagerakis, Petros

    2014-01-01

    Oral mucosa is continuously exposed to environmental forces and has to be constantly renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial stem cells necessary for tissue homeostasis. Despite considerable scientific advances in stem cell behavior in a number of tissues, fewer studies have been devoted to the stem cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the head and neck region, marked by their aggressiveness and invasiveness. Due to their highly tumorigenic properties, it has been suggested that CSC may be the critical population of cancer cells in the development of OSCC metastasis. This review presents a brief overview of epithelium stem cells with implications in oral health, and the clinical implications of the CSC concept in OSCC metastatic dissemination. PMID:24803391

  3. Huntingtin Is Required for Normal Excitatory Synapse Development in Cortical and Striatal Circuits

    PubMed Central

    McKinstry, Spencer U.; Karadeniz, Yonca B.; Worthington, Atesh K.; Hayrapetyan, Volodya Y.; Ozlu, M. Ilcim; Serafin-Molina, Karol; Risher, W. Christopher; Ustunkaya, Tuna; Dragatsis, Ioannis; Zeitlin, Scott; Yin, Henry H.

    2014-01-01

    Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a poly-glutamine (poly-Q) stretch in the huntingtin (Htt) protein. Gain-of-function effects of mutant Htt have been extensively investigated as the major driver of neurodegeneration in HD. However, loss-of-function effects of poly-Q mutations recently emerged as potential drivers of disease pathophysiology. Early synaptic problems in the excitatory cortical and striatal connections have been reported in HD, but the role of Htt protein in synaptic connectivity was unknown. Therefore, we investigated the role of Htt in synaptic connectivity in vivo by conditionally silencing Htt in the developing mouse cortex. When cortical Htt function was silenced, cortical and striatal excitatory synapses formed and matured at an accelerated pace through postnatal day 21 (P21). This exuberant synaptic connectivity was lost over time in the cortex, resulting in the deterioration of synapses by 5 weeks. Synaptic decline in the cortex was accompanied with layer- and region-specific reactive gliosis without cell loss. To determine whether the disease-causing poly-Q mutation in Htt affects synapse development, we next investigated the synaptic connectivity in a full-length knock-in mouse model of HD, the zQ175 mouse. Similar to the cortical conditional knock-outs, we found excessive excitatory synapse formation and maturation in the cortices of P21 zQ175, which was lost by 5 weeks. Together, our findings reveal that cortical Htt is required for the correct establishment of cortical and striatal excitatory circuits, and this function of Htt is lost when the mutant Htt is present. PMID:25009276

  4. Dual transcriptional activities of SIX proteins define their roles in normal and ectopic eye development.

    PubMed

    Anderson, Abigail M; Weasner, Bonnie M; Weasner, Brandon P; Kumar, Justin P

    2012-03-01

    The SIX family of homeodomain-containing DNA-binding proteins play crucial roles in both Drosophila and vertebrate retinal specification. In flies, three such family members exist, but only two, Sine oculis (So) and Optix, are expressed and function within the eye. In vertebrates, the homologs of Optix (Six3 and Six6) and probably So (Six1 and Six2) are also required for proper eye formation. Depending upon the individual SIX protein and the specific developmental context, transcription of target genes can either be activated or repressed. These activities are thought to occur through physical interactions with the Eyes absent (Eya) co-activator and the Groucho (Gro) co-repressor, but the relative contribution that each complex makes to overall eye development is not well understood. Here, we attempt to address this issue by investigating the role that each complex plays in the induction of ectopic eyes in Drosophila. We fused the VP16 activation and Engrailed repressor domains to both So and Optix, and attempted to generate ectopic eyes with these chimeric proteins. Surprisingly, we find that So and Optix must initially function as transcriptional repressors to trigger the formation of ectopic eyes. Both factors appear to be required to repress the expression of non-retinal selector genes. We propose that during early phases of eye development, SIX proteins function, in part, to repress the transcription of non-retinal selector genes, thereby allowing induction of the retina to proceed. This model of repression-mediated induction of developmental programs could have implications beyond the eye and might be applicable to other systems. PMID:22318629

  5. MeCP2 Is Required for Normal Development of GABAergic Circuits in the Thalamus

    PubMed Central

    Zak, Joseph D.; Liu, Hong

    2010-01-01

    Methyl-CpG binding protein 2 (MeCP2) is highly expressed in neurons in the vertebrate brain, and mutations of the gene encoding MeCP2 cause the neurodevelopmental disorder Rett syndrome. This study examines the role of MeCP2 in the development and function of thalamic GABAergic circuits. Whole cell recordings were carried out in excitatory neurons of the ventrobasal complex (VB) of the thalamus and in inhibitory neurons of the reticular thalamic nucleus (RTN) in acute brain slices from mice aged P6 through P23. At P14–P16, the number of quantal GABAergic events was decreased in VB neurons but increased in RTN neurons of Mecp2-null mice, without any change in the amplitude or kinetics of quantal events. There was no difference between mutant and wild-type mice in paired-pulse ratios of evoked GABAergic responses in the VB or the RTN. On the other hand, unitary responses evoked by minimal stimulation were decreased in the VB but increased in the RTN of mutants. Similar changes in the frequency of quantal events were observed at P21–P23 in both the VB and RTN. At P6, however, quantal GABAergic transmission was altered only in the VB not the RTN. Immunostaining of vesicular GABA transporter showed opposite changes in the number of GABAergic synaptic terminals in the VB and RTN of Mecp2-null mice at P18–P20. The loss of MeCP2 had no significant effect on intrinsic properties of RTN neurons recorded at P15–P17. Our findings suggest that MeCP2 differentially regulates the development of GABAergic synapses in excitatory and inhibitory neurons in the thalamus. PMID:20200124

  6. MeCP2 is required for normal development of GABAergic circuits in the thalamus.

    PubMed

    Zhang, Zhong-Wei; Zak, Joseph D; Liu, Hong

    2010-05-01

    Methyl-CpG binding protein 2 (MeCP2) is highly expressed in neurons in the vertebrate brain, and mutations of the gene encoding MeCP2 cause the neurodevelopmental disorder Rett syndrome. This study examines the role of MeCP2 in the development and function of thalamic GABAergic circuits. Whole cell recordings were carried out in excitatory neurons of the ventrobasal complex (VB) of the thalamus and in inhibitory neurons of the reticular thalamic nucleus (RTN) in acute brain slices from mice aged P6 through P23. At P14-P16, the number of quantal GABAergic events was decreased in VB neurons but increased in RTN neurons of Mecp2-null mice, without any change in the amplitude or kinetics of quantal events. There was no difference between mutant and wild-type mice in paired-pulse ratios of evoked GABAergic responses in the VB or the RTN. On the other hand, unitary responses evoked by minimal stimulation were decreased in the VB but increased in the RTN of mutants. Similar changes in the frequency of quantal events were observed at P21-P23 in both the VB and RTN. At P6, however, quantal GABAergic transmission was altered only in the VB not the RTN. Immunostaining of vesicular GABA transporter showed opposite changes in the number of GABAergic synaptic terminals in the VB and RTN of Mecp2-null mice at P18-P20. The loss of MeCP2 had no significant effect on intrinsic properties of RTN neurons recorded at P15-P17. Our findings suggest that MeCP2 differentially regulates the development of GABAergic synapses in excitatory and inhibitory neurons in the thalamus. PMID:20200124

  7. Loss of all 3 Extended Synaptotagmins does not affect normal mouse development, viability or fertility.

    PubMed

    Tremblay, Michel G; Moss, Tom

    2016-09-01

    The extended synaptotagmins, E-Syt1, 2 and 3, are multiple C2 domain membrane proteins that are tethered to the endoplasmic reticulum and interact in a calcium dependent manner with plasma membrane phospholipids to form endoplasmic reticulum - plasma membrane junctions. These junctions have been implicated in the exchange of phospholipids between the 2 organelles. The E-Syts have further been implicated in receptor signaling and endocytosis and can interact directly with fibroblast growth factor and other cell surface receptors. Despite these multiple functions, the search for a requirement in vivo has been elusive. Most recently, we found that the genes for E-Syt2 and 3 could be inactivated without effect on mouse development, viability, fertility or morphology. We have now created insertion and deletion mutations in the last of the mouse E-Syt genes. We show that E-Syt1 is specifically expressed throughout the embryonic skeleton during the early stages of chrondrogenesis in a pattern quite distinct from that of E-Syt2 or 3. Despite this, E-Syt1 is also not required for mouse development and propagation. We further show that even the combined inactivation of all 3 E-Syt genes has no effect on mouse viability or fertility in the laboratory. However, this inactivation induces an enhancement in the expression of the genes encoding Orp5/8, Orai1, STIM1 and TMEM110, endoplasmic reticulum - plasma membrane junction proteins that potentially could compensate for E-Syt loss. Given the multiple functions suggested for the E-Syts and their evolutionary conservation, our unexpected findings suggest that they may only provide a survival advantage under specific conditions that have as yet to be identified. PMID:27399837

  8. Altered retinoid homeostasis catalyzed by a nicotine metabolite: Implications in macular degeneration and normal development

    PubMed Central

    Brogan, Andrew P.; Dickerson, Tobin J.; Boldt, Grant E.; Janda, Kim D.

    2005-01-01

    Retinoids (vitamin A) serve two distinct functions in higher animals: light absorption for vision and gene regulation for growth and development. Cigarette smoking is a contributing factor for diseases that affect vision such as age-related macular degeneration and increases the risk of birth defects; however, altered retinoid homeostasis has received little attention as a potential mechanism for smoking-associated toxicities. Herein, we demonstrate that nornicotine, a nicotine metabolite and component of cigarette smoke, catalyzes the Z-to-E alkene isomerization of unsaturated aldehydes and ketones, including retinals. Despite the recent explosion in the use of organic compounds as chemical catalysts, minimal effort has been devoted to biologically relevant organocatalysis. Our study demonstrates a system in which a lowest unoccupied molecular orbital-lowering intermediate similar to the endogenous protein rhodopsin effectively catalyzes isomerization under biologically relevant conditions. The product of retinal isomerization is all-E-retinal, which in the eye is a biosynthetic precursor to N-retinylidene-N-retinylethanolamine, a hallmark of age-related macular degeneration. Furthermore, 9-Z- and all-E-retinal isomers are biosynthetic precursors to 9-Z- and all-E-retinoic acids, ligands that mediate specific cellular responses by binding to transcriptional regulatory proteins critical in growth and development. Strict maintenance of retinal isomer composition is essential for proper transcriptional regulation. Nornicotine-catalyzed retinal isomerization implies an underlying molecular mechanism for age-related macular degeneration, the birth defects associated with smoking, and other smoking-associated abnormalities that stem from disruption of retinoid metabolism. PMID:16014706

  9. Loss of all 3 Extended Synaptotagmins does not affect normal mouse development, viability or fertility

    PubMed Central

    Tremblay, Michel G.; Moss, Tom

    2016-01-01

    ABSTRACT The extended synaptotagmins, E-Syt1, 2 and 3, are multiple C2 domain membrane proteins that are tethered to the endoplasmic reticulum and interact in a calcium dependent manner with plasma membrane phospholipids to form endoplasmic reticulum - plasma membrane junctions. These junctions have been implicated in the exchange of phospholipids between the 2 organelles. The E-Syts have further been implicated in receptor signaling and endocytosis and can interact directly with fibroblast growth factor and other cell surface receptors. Despite these multiple functions, the search for a requirement in vivo has been elusive. Most recently, we found that the genes for E-Syt2 and 3 could be inactivated without effect on mouse development, viability, fertility or morphology. We have now created insertion and deletion mutations in the last of the mouse E-Syt genes. We show that E-Syt1 is specifically expressed throughout the embryonic skeleton during the early stages of chrondrogenesis in a pattern quite distinct from that of E-Syt2 or 3. Despite this, E-Syt1 is also not required for mouse development and propagation. We further show that even the combined inactivation of all 3 E-Syt genes has no effect on mouse viability or fertility in the laboratory. However, this inactivation induces an enhancement in the expression of the genes encoding Orp5/8, Orai1, STIM1 and TMEM110, endoplasmic reticulum - plasma membrane junction proteins that potentially could compensate for E-Syt loss. Given the multiple functions suggested for the E-Syts and their evolutionary conservation, our unexpected findings suggest that they may only provide a survival advantage under specific conditions that have as yet to be identified. PMID:27399837

  10. Evaluation of Traumatic Spine by Magnetic Resonance Imaging and Correlation with Neurological Recovery

    PubMed Central

    Magu, Sarita; Yadav, Rohtas Kanwar; Bala, Manju

    2015-01-01

    Study Design Prospective study. Purpose To compare magnetic resonance imaging (MRI) findings with clinical profile and neurological status of the patient and to correlate the MRI findings with neurological recovery of the patients and predict the outcome. Overview of Literature Previous studies have reported poor neurological recovery in patients with cord hemorrhage, as compared to cord edema in spine injury patients. High canal compromise, cord compression along with higher extent of cord injury also carries poor prognostic value. Methods Neurological status of patients was assessed at the time of admission and discharge in as accordance with the American Spine Injury Association (ASIA) impairment scale. Mean stay in hospital was 14.11±5.74 days. Neurological status at admission and neurological recovery at discharge was compared with various qualitative cord findings and quantitative parameters on MRI. In 27 patients, long-term follow-up was done at mean time of 285.9±43.94 days comparing same parameters. Results Cord edema and normal cord was associated with favorable neurological outcome. Cord contusion showed lesser neurological recovery, as compared to cord edema. Cord hemorrhage was associated with worst neurological status at admission and poor neurological recovery. Mean canal compromise (MCC), mean spinal cord compression (MSCC) and lesion length values were higher in patients presenting with ASIA A impairment scale injury and showed decreasing trends towards ASIA E impairment scale injury. Patients showing neurological recovery had lower mean MCC, MSCC, and lesion length, as compared to patients showing no neurological recovery (p<0.05). Conclusions Cord hemorrhage, higher MCC, MSCC, and lesion length values have poor prognostic value in spine injury patients. PMID:26435794

  11. Neurological Complications of VZV Reactivation

    PubMed Central

    Nagel, Maria A.

    2014-01-01

    Purpose of the review Varicella zoster virus (VZV) reactivation results in zoster, which may be complicated by postherpetic neuralgia, myelitis, meningoencephalitis and VZV vasculopathy. This review highlights the clinical features, laboratory abnormalities, imaging changes and optimal treatment of each of those conditions. Because all of these neurological disorders produced by VZV reactivation can occur in the absence of rash, the virological tests proving that VZV caused disease are discussed. Recent findings After primary infection, VZV becomes latent in ganglionic neurons along the entire neuraxis. With a decline in VZV-specific cell-mediated immunity, VZV reactivates from ganglia and travels anterograde to the skin to cause zoster, which is often complicated by postherpetic neuralgia. VZV can also travel retrograde to produce meningoencephaltis, myelitis and stroke. When these complications occur without rash, VZV-induced disease can be diagnosed by detection of VZV DNA or anti-VZV antibody in CSF and treated with intravenous acyclovir. Summary Awareness of the expanding spectrum of neurological complications caused by VZV reactivation with and without rash will improve diagnosis and treatment. PMID:24792344

  12. Neurological complications in hyperemesis gravidarum.

    PubMed

    Zara, Gabriella; Codemo, Valentina; Palmieri, Arianna; Schiff, Sami; Cagnin, Annachiara; Citton, Valentina; Manara, Renzo

    2012-02-01

    Hyperemesis gravidarum can impair correct absorption of an adequate amount of thiamine and can cause electrolyte imbalance. This study investigated the neurological complications in a pregnant woman with hyperemesis gravidarum. A 29-year-old pregnant woman was admitted for hyperemesis gravidarum. Besides undernutrition, a neurological examination disclosed weakness with hyporeflexia, ophthalmoparesis, multidirectional nystagmus and optic disks swelling; the patient became rapidly comatose. Brain MRI showed symmetric signal hyperintensity and swelling of periaqueductal area, hypothalamus and mammillary bodies, medial and posterior portions of the thalamus and columns of fornix, consistent with Wernicke encephalopathy (WE). Neurophysiological studies revealed an axonal sensory-motor polyneuropathy, likely due to thiamine deficiency or critical illness polyneuropathy. Sodium and potassium supplementation and parenteral thiamine were administered with improvement of consciousness state in a few days. WE evolved in Korsakoff syndrome. A repeat MRI showed a marked improvement of WE-related alterations and a new hyperintense lesion in the pons, suggestive of central pontine myelinolysis. No sign or symptom due to involvement of the pons was present. PMID:21720901

  13. Neurologic infections in diabetes mellitus.

    PubMed

    Jay, Cheryl A; Solbrig, Marylou V

    2014-01-01

    Even at a time when HIV/AIDS and immunosuppressive therapy have increased the number of individuals living with significant immunocompromise, diabetes mellitus (DM) remains a major comorbid disorder for several rare but potentially lethal infections, including rhino-orbital-cerebral mucormycosis and malignant external otitis. DM is also a commonly associated condition in patients with nontropical pyomyositis, pyogenic spinal infections, Listeria meningitis, and blastomycosis. As West Nile virus spread to and across North America over a decade ago, DM appeared in many series as a risk factor for death or neuroinvasive disease. More recently, in several large international population-based studies, DM was identified as a risk factor for herpes zoster. The relationships among infection, DM, and the nervous system are multidirectional. Viral infections have been implicated in the pathogenesis of type 1 and type 2 DM, while parasitic infections have been hypothesized to protect against autoimmune disorders, including type 1 DM. DM-related neurologic disease can predispose to systemic infection - polyneuropathy is the predominant risk factor for diabetic foot infection. Because prognosis for many neurologic infections depends on timely institution of antimicrobial and sometimes surgical therapy, neurologists caring for diabetic patients should be familiar with the clinical features of the neuroinfectious syndromes associated with DM. PMID:25410222

  14. Neurologic complications after liver transplantation

    PubMed Central

    Živković, Saša A

    2013-01-01

    Neurologic complications are relatively common after solid organ transplantation and affect 15%-30% of liver transplant recipients. Etiology is often related to immunosuppressant neurotoxicity and opportunistic infections. Most common complications include seizures and encephalopathy, and occurrence of central pontine myelinolysis is relatively specific for liver transplant recipients. Delayed allograft function may precipitate hepatic encephalopathy and neurotoxicity of calcineurin inhibitors typically manifests with tremor, headaches and encephalopathy. Reduction of neurotoxic immunosuppressants or conversion to an alternative medication usually result in clinical improvement. Standard preventive and diagnostic protocols have helped to reduce the prevalence of opportunistic central nervous system (CNS) infections, but viral and fungal CNS infections still affect 1% of liver transplant recipients, and the morbidity and mortality in the affected patients remain fairly high. Critical illness myopathy may also affect up to 7% of liver transplant recipients. Liver insufficiency is also associated with various neurologic disorders which may improve or resolve after successful liver transplantation. Accurate diagnosis and timely intervention are essential to improve outcomes, while advances in clinical management and extended post-transplant survival are increasingly shifting the focus to chronic post-transplant complications which are often encountered in a community hospital and an outpatient setting. PMID:24023979

  15. Neurologic complications after liver transplantation.

    PubMed

    Zivković, Saša A

    2013-08-27

    Neurologic complications are relatively common after solid organ transplantation and affect 15%-30% of liver transplant recipients. Etiology is often related to immunosuppressant neurotoxicity and opportunistic infections. Most common complications include seizures and encephalopathy, and occurrence of central pontine myelinolysis is relatively specific for liver transplant recipients. Delayed allograft function may precipitate hepatic encephalopathy and neurotoxicity of calcineurin inhibitors typically manifests with tremor, headaches and encephalopathy. Reduction of neurotoxic immunosuppressants or conversion to an alternative medication usually result in clinical improvement. Standard preventive and diagnostic protocols have helped to reduce the prevalence of opportunistic central nervous system (CNS) infections, but viral and fungal CNS infections still affect 1% of liver transplant recipients, and the morbidity and mortality in the affected patients remain fairly high. Critical illness myopathy may also affect up to 7% of liver transplant recipients. Liver insufficiency is also associated with various neurologic disorders which may improve or resolve after successful liver transplantation. Accurate diagnosis and timely intervention are essential to improve outcomes, while advances in clinical management and extended post-transplant survival are increasingly shifting the focus to chronic post-transplant complications which are often encountered in a community hospital and an outpatient setting. PMID:24023979

  16. Neurological causes of taste disorders.

    PubMed

    Heckmann, J G; Lang, C J G

    2006-01-01

    In caring for patients with taste disorders, the clinical assessment should include complete examination of the cranial nerves and, in particular, gustatory testing. Neurophysiological methods such as blink reflex and masseter reflex allow the testing of trigeminofacial and trigeminotrigeminal pathways. Modern imaging methods (MRI and computed tomography) enable the delineation of the neuroanatomical structures which are involved in taste and their relation to the bony skull base. From a neurological point of view, gustatory disorders can result from damage at any location of the neural gustatory pathway from the taste buds via the peripheral (facial, glossopharyngeal and vagal nerve) and central nervous system (brainstem, thalamus) to its representation within the cerebral cortex. Etiopathogenetically, a large number of causes has to be considered, e.g. drugs and physical agents, cerebrovascular disorders including dissection of the carotid artery and pontine/thalamic lesions, space-occupying processes - in particular tumors compressing the cerebellopontine angle and the jugular foramen of the skull base - head trauma and skull base fractures, isolated cranial mononeuropathy (e.g. Bell's palsy) or polyneuropathy, epilepsy, dementia, multiple sclerosis and major depression. In addition to this, aging can also lead to diminished taste perception. Due to the broad differential diagnostic considerations, it is essential to look for additional, even mild, neurological signs and symptoms. Treatment must relate to the underlying cause. Zinc may be tried in idiopathic dysgeusia. PMID:16733343

  17. Autoimmune neurologic disorders in children.

    PubMed

    Lim, Ming; Gorman, Mark

    2016-01-01

    Autoimmune neurologic diseases are of major clinical importance in children. Antibody-mediated diseases of the central nervous system are now increasingly recognized in childhood, where the antibodies bind to cell surface epitopes on neuronal or glial proteins, and the patients demonstrate either focal or more generalized clinical signs depending on the extent of brain regions targeted by the antibodies. The antibodies are directed towards ion channels, receptors, and membrane proteins; and the diseases include limbic encephalitis and N-methyl-d-aspartate receptor-antibody encephalitis, among many others. Additionally there are conditions where the wider immune system is implicated. Neurologic features like seizures, movement disorders, autonomic dysfunction, and sleep disorders, with neuroimaging and electrophysiologic features, may indicate a specific antibody-mediated or immune disorder. Often, phenotypic overlap is observed between these conditions, and phenotypic variation seen in children with the same condition. Nevertheless, many patients benefit from immunotherapy with substantial improvement, although huge efforts are still required to optimize the outcome for many patients. In many patients no antibodies have yet been identified, even though they respond to immunotherapies. Here we describe the known antibodies and associated diseases, discuss conditions that are thought to be immune-mediated but have no known immunologic biomarker, and provide guidelines for the investigation and classification of these disorders. PMID:27112693

  18. Neurology and psychiatry in Babylon.

    PubMed

    Reynolds, Edward H; Wilson, James V Kinnier

    2014-09-01

    We here review Babylonian descriptions of neurological and psychiatric disorders, including epilepsy, stroke, psychoses, obsessive compulsive disorder, phobias, psychopathic behaviour, depression and anxiety. Most of these accounts date from the first Babylonian dynasty of the first half of the second millennium BC, within a millennium and a half of the origin of writing. The Babylonians were remarkably acute and objective observers of medical disorders and human behaviour. Their detailed descriptions are surprisingly similar to modern 19th and 20th century AD textbook accounts, with the exception of subjective thoughts and feelings which are more modern fields of enquiry. They had no knowledge of brain or psychological function. Some neuropsychiatric disorders, e.g. stroke or facial palsy, had a physical basis requiring the attention of a physician or asû, using a plant and mineral based pharmacology; some disorders such as epilepsy, psychoses, depression and anxiety were regarded as supernatural due to evil demons or spirits, or the anger of personal gods, and thus required the intervention of the priest or ašipu; other disorders such as obsessive compulsive disorder and psychopathic behaviour were regarded as a mystery. The Babylonians were the first to describe the clinical foundations of neurology and psychiatry. We discuss these accounts in relation to subsequent and more modern clinical descriptions. PMID:25037816

  19. C4.4A gene ablation is compatible with normal epidermal development and causes modest overt phenotypes.

    PubMed

    Kriegbaum, Mette Camilla; Jacobsen, Benedikte; Füchtbauer, Annette; Hansen, Gert Helge; Christensen, Ib Jarle; Rundsten, Carsten Friis; Persson, Morten; Engelholm, Lars Henning; Madsen, Andreas Nygaard; Di Meo, Ivano; Lund, Ida Katrine; Holst, Birgitte; Kjaer, Andreas; Lærum, Ole Didrik; Füchtbauer, Ernst-Martin; Ploug, Michael

    2016-01-01

    C4.4A is a modular glycolipid-anchored Ly6/uPAR/α-neurotoxin multidomain protein that exhibits a prominent membrane-associated expression in stratified squamous epithelia. C4.4A is also expressed in various solid cancer lesions, where high expression levels often are correlated to poor prognosis. Circumstantial evidence suggests a role for C4.4A in cell adhesion, migration, and invasion, but a well-defined biological function is currently unknown. In the present study, we have generated and characterized the first C4.4A-deficient mouse line to gain insight into the functional significance of C4.4A in normal physiology and cancer progression. The unchallenged C4.4A-deficient mice were viable, fertile, born in a normal Mendelian distribution and, surprisingly, displayed normal development of squamous epithelia. The C4.4A-deficient mice were, nonetheless, significantly lighter than littermate controls predominantly due to differences in fat mass. Congenital C4.4A deficiency delayed migration of keratinocytes enclosing incisional skin wounds in male mice. In chemically induced bladder carcinomas, C4.4A deficiency attenuated the incidence of invasive lesions despite having no effect on total tumour burden. This new C4.4A-deficient mouse line provides a useful platform for future studies on functional aspects of C4.4A in tumour cell invasion in vivo. PMID:27169360

  20. C4.4A gene ablation is compatible with normal epidermal development and causes modest overt phenotypes

    PubMed Central

    Kriegbaum, Mette Camilla; Jacobsen, Benedikte; Füchtbauer, Annette; Hansen, Gert Helge; Christensen, Ib Jarle; Rundsten, Carsten Friis; Persson, Morten; Engelholm, Lars Henning; Madsen, Andreas Nygaard; Di Meo, Ivano; Lund, Ida Katrine; Holst, Birgitte; Kjaer, Andreas; Lærum, Ole Didrik; Füchtbauer, Ernst-Martin; Ploug, Michael

    2016-01-01

    C4.4A is a modular glycolipid-anchored Ly6/uPAR/α-neurotoxin multidomain protein that exhibits a prominent membrane-associated expression in stratified squamous epithelia. C4.4A is also expressed in various solid cancer lesions, where high expression levels often are correlated to poor prognosis. Circumstantial evidence suggests a role for C4.4A in cell adhesion, migration, and invasion, but a well-defined biological function is currently unknown. In the present study, we have generated and characterized the first C4.4A-deficient mouse line to gain insight into the functional significance of C4.4A in normal physiology and cancer progression. The unchallenged C4.4A-deficient mice were viable, fertile, born in a normal Mendelian distribution and, surprisingly, displayed normal development of squamous epithelia. The C4.4A-deficient mice were, nonetheless, significantly lighter than littermate controls predominantly due to differences in fat mass. Congenital C4.4A deficiency delayed migration of keratinocytes enclosing incisional skin wounds in male mice. In chemically induced bladder carcinomas, C4.4A deficiency attenuated the incidence of invasive lesions despite having no effect on total tumour burden. This new C4.4A-deficient mouse line provides a useful platform for future studies on functional aspects of C4.4A in tumour cell invasion in vivo. PMID:27169360

  1. Cognitive strategies for locomotor navigation in normal development and cerebral palsy.

    PubMed

    Belmonti, Vittorio; Fiori, Simona; Guzzetta, Andrea; Cioni, Giovanni; Berthoz, Alain

    2015-04-01

    Visual-spatial impairment is a fundamental disorder in cerebral palsy (CP). However, current spatial testing is restricted to reaching space, whereas navigational space is seldom assessed. The Magic Carpet test, derived from the Corsi Block-tapping Task (CBT) for visual-spatial memory, is a new developmental test for navigation. The performances of the Magic Carpet test and CBT were assessed in 17 children with unilateral and bilateral spastic CP. The results were compared with an equal number of typically developing children, matched for age and sex. Magnetic resonance imaging scans of children with CP were scored according to a newly validated semi-quantitative classification. CBT span was significantly lower in CP, especially in bilateral forms, than in the comparison group, whereas the Magic Carpet test span did not significantly differ between the groups. CBT span, but not the Magic Carpet span, was related to gestational age at birth and to basic visual function. Both the CBT span and the Magic Carpet test were related to overall right-hemispheric impairment. In addition, CBT correlated with right periventricular impairment. In CP, navigation is differently impaired than visual spatial memory, and less tightly related to preterm birth, basic visual function, and deep white matter injury. The exploration of navigational space could prove useful in enhancing spatial representation and reference-frame manipulation in CP. PMID:25690114

  2. Polo-Like Kinase 3 Appears Dispensable for Normal Retinal Development Despite Robust Embryonic Expression

    PubMed Central

    Goetz, Jillian J.; Laboissonniere, Lauren A.; Wester, Andrea K.; Lynch, Madison R.; Trimarchi, Jeffrey M.

    2016-01-01

    During retinogenesis seven different cell types are generated in distinct yet overlapping timepoints from a population of retinal progenitor cells. Previously, we performed single cell transcriptome analyses of retinal progenitor cells to identify candidate genes that may play roles in the generation of early-born retinal neurons. Based on its expression pattern in subsets of early retinal cells, polo-like kinase 3 (Plk3) was identified as one such candidate gene. Further characterization of Plk3 expression by in situ hybridization revealed that this gene is expressed as cells exit the cell cycle. We obtained a Plk3 deficient mouse and investigated changes in the retina’s morphology and transcriptome through immunohistochemistry, in situ hybridization and gene expression profiling. These experiments have been performed initially on adult mice and subsequently extended throughout retinal development. Although morphological studies revealed no consistent changes in retinogenesis upon Plk3 loss, microarray profiling revealed potential candidate genes altered in Plk3-KO mice. Further studies will be necessary to understand the connection between these changes in gene expression and the loss of a protein kinase such as Plk3. PMID:26949938

  3. Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish.

    PubMed

    Parichy, David M; Elizondo, Michael R; Mills, Margaret G; Gordon, Tiffany N; Engeszer, Raymond E

    2009-12-01

    The zebrafish is a premier model organism yet lacks a system for assigning postembryonic fish to developmental stages. To provide such a staging series, we describe postembryonic changes in several traits that are visible under brightfield illumination or through vital staining and epiflourescent illumination. These include the swim bladder, median and pelvic fins, pigment pattern, scale formation, larval fin fold, and skeleton. We further identify milestones for placing postembryonic fish into discrete stages. We relate these milestones to changes in size and age and show that size is a better indicator of developmental progress than is age. We also examine how relationships between size and developmental progress vary with temperature and density, and we document the effects of histological processing on size. To facilitate postembryonic staging, we provide images of reference individuals that have attained specific developmental milestones and are of defined sizes. Finally, we provide guidelines for reporting stages that provide information on both discrete and continuous changes in growth and development. PMID:19891001

  4. Backdoor pathway for dihydrotestosterone biosynthesis: implications for normal and abnormal human sex development.

    PubMed

    Fukami, Maki; Homma, Keiko; Hasegawa, Tomonobu; Ogata, Tsutomu

    2013-04-01

    We review the current knowledge about the "backdoor" pathway for the biosynthesis of dihydrotestosterone (DHT). While DHT is produced from cholesterol through the conventional "frontdoor" pathway via testosterone, recent studies have provided compelling evidence for the presence of an alternative "backdoor" pathway to DHT without testosterone intermediacy. This backdoor pathway is known to exist in the tammar wallaby pouch young testis and the immature mouse testis, and has been suggested to be present in the human as well. Indeed, molecular analysis has identified pathologic mutations of genes involved in the backdoor pathway in genetic male patients with undermasculinized external genitalia, and urine steroid profile analysis has argued for the relevance of the activated backdoor pathway to abnormal virilization in genetic females with cytochrome P450 oxidoreductase deficiency and 21-hydroxylase deficiency. It is likely that the backdoor pathway is primarily operating in the fetal testis in a physiological condition to produce a sufficient amount of DHT for male sex development, and that the backdoor pathway is driven with a possible interaction between fetal and permanent adrenals in pathologic conditions with increased 17-hydroxyprogesterone levels. These findings provide novel insights into androgen biosynthesis in both physiological and pathological conditions. PMID:23073980

  5. Distribution of glial cells in the auditory brainstem: Normal development and effects of unilateral lesion

    PubMed Central

    Dinh, Minhan L.; Koppel, Scott J.; Korn, Matthew J.; Cramer, Karina S.

    2014-01-01

    Auditory brainstem networks facilitate sound source localization through binaural integration. A key component of this circuitry is the projection from the ventral cochlear nucleus (VCN) to the medial nucleus of the trapezoid body (MNTB), a relay nucleus that provides inhibition to the superior olivary complex. This strictly contralateral projection terminates in the large calyx of Held synapse. The formation of this pathway requires spatiotemporal coordination of cues that promote cell maturation, axon growth, and synaptogenesis. Here we have examined the emergence of distinct classes of glial cells, which are known to function in development and in response to injury. Immunofluorescence for several astrocyte markers revealed unique expression patterns. ALDH1L1 was expressed earliest in both nuclei, followed by S100β, during the first postnatal week. GFAP expression was seen in the second postnatal week. GFAP-positive cell bodies remained outside the boundaries of VCN and MNTB, with a limited number of labeled fibers penetrating into the margins of the nuclei. OLIG2 expression revealed the presence of oligodendrocytes in VCN and MNTB from birth until after hearing onset. In addition, IBA1-positive microglia were observed after the first postnatal week. Following hearing onset, all glial populations were found in MNTB. We then determined the distribution of glial cells following early (P2) unilateral cochlear removal, which results in formation of ectopic projections from the intact VCN to ipsilateral MNTB. We found that following perturbation, astrocytic markers showed expression near the ectopic ipsilateral calyx. Taken together, the developmental expression patterns are consistent with a role for glial cells in the maturation of the calyx of Held and suggest that these cells may have a similar role in maturation of lesion-induced connections. PMID:25158674

  6. Developmental acceleration of bradykinin-dependent relaxation by prenatal chronic hypoxia impedes normal development after birth.

    PubMed

    Blum-Johnston, Carla; Thorpe, Richard B; Wee, Chelsea; Romero, Monica; Brunelle, Alexander; Blood, Quintin; Wilson, Rachael; Blood, Arlin B; Francis, Michael; Taylor, Mark S; Longo, Lawrence D; Pearce, William J; Wilson, Sean M

    2016-02-01

    Bradykinin-induced activation of the pulmonary endothelium triggers nitric oxide production and other signals that cause vasorelaxation, including stimulation of large-conductance Ca(2+)-activated K(+) (BKCa) channels in myocytes that hyperpolarize the plasma membrane and decrease intracellular Ca(2+). Intrauterine chronic hypoxia (CH) may reduce vasorelaxation in the fetal-to-newborn transition and contribute to pulmonary hypertension of the newborn. Thus we examined the effects of maturation and CH on the role of BKCa channels during bradykinin-induced vasorelaxation by examining endothelial Ca(2+) signals, wire myography, and Western immunoblots on pulmonary arteries isolated from near-term fetal (∼ 140 days gestation) and newborn, 10- to 20-day-old, sheep that lived in normoxia at 700 m or in CH at high altitude (3,801 m) for >100 days. CH enhanced bradykinin-induced relaxation of fetal vessels but decreased relaxation in newborns. Endothelial Ca(2+) responses decreased with maturation but increased with CH. Bradykinin-dependent relaxation was sensitive to 100 μM nitro-L-arginine methyl ester or 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, supporting roles for endothelial nitric oxide synthase and soluble guanylate cyclase activation. Indomethacin blocked relaxation in CH vessels, suggesting upregulation of PLA2 pathways. BKCa channel inhibition with 1 mM tetraethylammonium reduced bradykinin-induced vasorelaxation in the normoxic newborn and fetal CH vessels. Maturation reduced whole cell BKCa channel α1-subunit expression but increased β1-subunit expression. These results suggest that CH amplifies the contribution of BKCa channels to bradykinin-induced vasorelaxation in fetal sheep but stunts further development of this vasodilatory pathway in newborns. This involves complex changes in multiple components of the bradykinin-signaling axes. PMID:26637638

  7. Dietary iron deficiency compromises normal development of elastic fibers in the aorta and lungs of chicks.

    PubMed

    Hill, Charles H; Ashwell, Chris M; Nolin, Shelly J; Keeley, Fred; Billingham, Catherine; Hinek, Aleksander; Starcher, Barry

    2007-08-01

    Elastic fibers play a key role in the structure and function of numerous organs that require elasticity. Elastogenesis is a complex process in which cells first produce a microfibrillar scaffold, composed of numerous structural proteins, upon which tropoelastin assembles to be cross-linked into polymeric elastin. Recently, it was demonstrated that low concentrations of free iron upregulate elastin gene expression in cultured fibroblasts. The present studies were conducted to assess whether low-iron diets would affect the deposition of elastic fibers in an in vivo model. One-day-old chicks were fed semipurified diets containing 1.3 (low), 12 (moderate), and 24 (control) mg/kg of iron. After 3 wk, chicks in the low-iron group were underweight and anemic. Their aortas were smaller with significantly thinner walls than control chicks, yet elastin or collagen content did not decrease relative to total protein. They also demonstrated a significantly lower stress-strain resistance than the controls. Electron microscopy demonstrated that aortic and lung smooth muscle cells were vacuolated and surrounded by loose extracellular matrix and disorganized elastic lamellae with diffuse and fragmented networks of elastic fibers and microfibrils. Immunohistology demonstrated that fibrillin-3 (FBN3) was disorganized and markedly reduced in amount in aortas of the low-iron chicks. Elastin messenger RNA levels were not downregulated in the tissues from the low-iron-fed chicks; however, there was a significant reduction in expression of the FBN1 and FBN3 genes compared with control chicks. The studies indicate that iron deficiency had a pronounced negative effect on elastic fiber development and suggests that fibrillin may have an important role in this pathology. PMID:17634261

  8. Neural substrates of a schizotypal spectrum in typically-developing children: Further evidence of a normal-pathological continuum.

    PubMed

    Evans, David W; Michael, Andrew M; Ularević, Mirko; Lusk, Laina G; Buirkle, Julia M; Moore, Gregory J

    2016-12-15

    Schizophrenia represents the extreme end of a distribution of traits that extends well into the general population. Using a recently developed measure of psychotic-like traits in children, we examined the neural substrates of psychotic (and other psychiatric) symptoms using structural magnetic resonance imaging (MRI). Twenty-eight typically-developing children (14 males) between the ages of 6-17 years underwent a 3T MRI scan. Parents completed the Psychiatric and Schizotypal Inventory for Children. Results revealed that caudate, amygdala, hippocampal and middle temporal gyrus volumes were associated with quantitative dimensions of psychiatric traits. Furthermore, results suggest a differential a sexually-dimorphic pattern of brain-schizotypy associations. These findings highlight brain-behavior continuities between clinical conditions such as schizophrenia and normal trait variation in typical development. PMID:27555534

  9. Neurologic Complications of Cancer and its Treatment

    PubMed Central

    Giglio, Pierre

    2013-01-01

    The central nervous system (CNS) and peripheral nervous system (PNS) are very susceptible to cancer and its treatment. The most direct involvement of the nervous system manifests in the development of primary brain and spinal cord tumors. Many cancers exhibit a propensity toward spread to the CNS, and brain metastases are common problems seen in malignancies such as lung, breast, and melanoma. Such spread may involve the brain or spine parenchyma or the subarachnoid space. In the PNS, spread is usually through direct infiltration of nerve roots, plexi, or muscle by neighboring malignancies. In some cases, cancer has sudden, devastating effects on the nervous system: epidural spinal cord compression or cord transection from pathologic fractures of vertebra involved by cancer; increased intracranial pressure from intracranial mass lesion growth and edema; and uncontrolled seizure activity as a result of intracranial tumors (status epilepticus), which are neuro-oncologic emergencies. The best known indirect or remote effects of cancer on the nervous system are the neurologic paraneoplastic syndromes. Cancer can also result in a hypercoagulable state causing cerebrovascular complications. Treatment of cancer can have neurologic complications. The commonest of these complications are radiation-induced injury to the brain, spine, and peripheral nerves and chemotherapy-induced peripheral neuropathy. The suppressant effect of cancer and its treatment on the body’s immune system can result in infectious complications within the nervous system. PMID:20425608

  10. Neurological caricatures since the 15th century.

    PubMed

    Lorusso, Lorenzo

    2008-01-01

    During the Renaissance, different artists began to draw medical illustrations from various viewpoints. Leonardo da Vinci was among those who sought to portray the emotional as well as the physical qualities of man. Other European artists described caricatural aspects of medical activities. In Northern Europe, Albrecht Durer, Hieronymus Bosch, and Pieter Brueghel were also famous for drawing caricatures. Later English artists, notably William Hogarth, Thomas Rowlandson, James Gillray, and the Cruikshanks, satirized life in general and the medical profession in particular. In Spain, Francisco Goya's works became increasingly macabre and satirical following his own mysterious illness and, in France, Honore Daumier used satire and humor to expose medical quackery. Also physicians such as Charles Bell and Jean-Martin Charcot were talented caricaturists. Their own personal artistic styles reflected their approach and gave a different "image" of neurology. Caricatures were popular portraits of developments in science and medicine and were frequently used whenever scientific language was too difficult to disseminate, in particular in the field of neurology. PMID:18629699

  11. Screening EEG in Aircrew Selection: Clinical Aerospace Neurology Perspective

    NASA Technical Reports Server (NTRS)

    Clark, Jonathan B.; Riley, Terrence

    2001-01-01

    As clinical aerospace neurologists we do not favor using screening EEG in pilot selection on unselected and otherwise asymptomatic individuals. The role of EEG in aviation screening should be as an adjunct to diagnosis, and the decision to disqualify a pilot should never be based solely on the EEG. Although a policy of using a screening EEG in an unselected population might detect an individual with a potentially increased relative risk, it would needlessly exclude many applicants who would probably never have a seizure. A diagnostic test performed on an asymptomatic individual without clinical indications, in a population with a low prevalence of disease (seizure) may be of limited or possibly detrimental value. We feel that rather than do EEGs on all candidates, a better approach would be to perform an EEG for a specific indication, such as family history of seizure, single convulsion (seizure) , history of unexplained loss of consciousness or head injury. Routine screening EEGs in unselected aviation applications are not done without clinical indication in the U.S. Air Force, Navy, or NASA. The USAF discontinued routine screening EEGs for selection in 1978, the U.S. Navy discontinued it in 1981 , and NASA discontinued it in 1995. EEG as an aeromedical screening tool in the US Navy dates back to 1939. The US Navy routinely used EEGs to screen all aeromedical personnel from 1961 to 1981. The incidence of epileptiform activity on EEG in asymptomatic flight candidates ranges from 0.11 to 2.5%. In 3 studies of asymptomatic flight candidates with epileptiform activity on EEG followed for 2 to 15 years, 1 of 31 (3.2%), 1 of 30 (3.3%), and 0 of 14 (0%) developed a seizure, for a cumulative risk of an individual with an epileptiform EEG developing a seizure of 2.67% (2 in 75). Of 28,658 student naval aviation personnel screened 31 had spikes and/or slow waves on EEG, and only 1 later developed a seizure. Of the 28,627 who had a normal EEG, 4 later developed seizures, or

  12. Atlantic Conjunctures in Anglo-American Neurology:

    PubMed Central

    Casper, Stephen T.

    2008-01-01

    Summary The emergence of neurology at Johns Hopkins presents a case study for reconsidering the international and institutional contexts of neurology generally. Using a variety of sources, Hopkins's interwar plans for neurology are presented and contextualized in the international environment of neurology, medical research, and philanthropy. During this period, neurology across the world, especially in Britain, was undergoing vast institutional changes. In order for Hopkins to remain at the forefront of excellence in both medicine and medical education, a program in neurology was deemed essential, and this would seem now to have been an unproblematic advance. Spearheading the project for the establishment of neurology at Hopkins was the dean of the medical school, Lewis H. Weed. Weed attempted from 1919 until 1942 to establish a department of neurology but had only limited success. The fact that finding support proved challenging for Weed and Johns Hopkins casts a provocative light on the broader historiography of neurology and illustrates the important role of the international context in defining neurology professionally. PMID:18791299

  13. [Can music therapy for patients with neurological disorders?].

    PubMed

    Myskja, Audun

    2004-12-16

    Recent developments in brain research and in the field of music therapy have led to the development of music-based methods specifically aimed at relieving symptoms of Parkinson's disease and other neurologic disorders. Rhythmic auditory stimulation uses external rhythmic auditory cues from song, music or metronome to aid patients improving their walking functioning and has been shown to be effective both within sessions and as a result of training over time. Melodic intonation therapy and related vocal techniques can improve expressive dysphasia and aid rehabilitation of neurologic disorders, particularly Parkinson's disease, stroke and developmental disorders. PMID:15608775

  14. Diagnosis and management of the neurological complications of falciparum malaria

    PubMed Central

    Mishra, Saroj K.; Newton, Charles R. J. C.

    2010-01-01

    Malaria is a major public health problem in the developing world owing to its high rates of morbidity and mortality. Of all the malarial parasites that infect humans, Plasmodium falciparum is most commonly associated with neurological complications, which manifest as agitation, psychosis, seizures, impaired consciousness and coma (cerebral malaria). Cerebral malaria is the most severe neurological complication; the condition is associated with mortality of 15–20%, and a substantial proportion of individuals with this condition develop neurocognitive sequelae. In this Review, we describe the various neurological complications encountered in malaria, discuss the underlying pathogenesis, and outline current management strategies for these complications. Furthermore, we discuss the role of adjunctive therapies in improving outcome. PMID:19347024

  15. Normal development of the muscular region of the interventricular septum--I. The significance of the ventricular trabeculations.

    PubMed

    Contreras-Ramos, A; Sánchez-Gómez, C; García-Romero, H L; Cimarosti, L O

    2008-10-01

    The structures that participate in normal ventricular septation, and to what extent they do so, are questions not yet clarified. Even less is known about how much each of the embryonic structures contributes to the topography of the mature interventricular septum (IVS). The aim of the present paper is to investigate the significance of ventricular trabeculations in the normal development of the muscular region (the middle and apical thirds) of the IVS and to determine the direction in which it grows during cardiac septation. Anatomical studies and in vivo labelling were carried out in chicken embryo hearts at stage 18HH, tracing the labels up to stage 36HH. We analysed the results by measuring the distance between the labelled structures at the beginning and end of the experiments. We demonstrate that the muscular region of the septum originates by the fusion of the ventricular trabeculations with evidence that during cardiac development, the IVS as well as the ventricular cavities grow in opposite direction to the atria. PMID:18460050

  16. Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development

    PubMed Central

    Bowers, Marisa; Zhang, Bin; Ho, Yinwei; Agarwal, Puneet; Chen, Ching-Cheng

    2015-01-01

    Hematopoietic stem cells (HSCs) reside in regulatory niches in the bone marrow (BM). Although HSC niches have been extensively characterized, the role of endosteal osteoblasts (OBs) in HSC regulation requires further clarification, and the role of OBs in regulating leukemic stem cells (LSCs) is not well studied. We used an OB visualization and ablation mouse model to study the role of OBs in regulating normal HSCs and chronic myelogenous leukemia (CML) LSCs. OB ablation resulted in increase in cells with a LSK Flt3−CD150+CD48− long-term HSC (LTHSC) phenotype but reduction of a more highly selected LSK Flt3−CD34−CD49b−CD229− LTHSC subpopulation. LTHSCs from OB-ablated mice demonstrated loss of quiescence and reduced long-term engraftment and self-renewal capacity. Ablation of OB in a transgenic CML mouse model resulted in accelerated leukemia development with reduced survival compared with control mice. The notch ligand Jagged-1 was overexpressed on CML OBs. Normal and CML LTHSCs cultured with Jagged-1 demonstrated reduced cell cycling, consistent with a possible role for loss of Jagged-1 signals in altered HSC and LSC function after OB ablation. These studies support an important role for OBs in regulating quiescence and self-renewal of LTHSCs and a previously unrecognized role in modulating leukemia development in CML. PMID:25742698

  17. Development of a high-speed nanoprofiler using normal vector tracing method for high-accuracy mirrors

    NASA Astrophysics Data System (ADS)

    Okuda, Kohei; Kitayama, Takao; Usuki, Koji; Kojima, Takuya; Okita, Kenya; Uchikoshi, Junichi; Higashi, Yasuo; Endo, Katsuyoshi

    2013-09-01

    High-precision optical elements are used in various fields. Ultraprecise aspherical mirrors that offer nanofocusing and high coherence are used to concentrate high-brightness X-rays in developing third-generation synchrotron radiation facilities. In industry, extreme ultraviolet (wavelength: 13.5 nm) lithography, which is used to fabricate semiconductor devices, uses high-accuracy aspherical mirrors for its projection optical systems. The demand for rapid progress in nanomeasurement technologies is increasing because it is difficult to realize next-generation ultraprecise mirrors with the required precision by conventional processing. The measuring method itself requires superhigh precision. We developed an innovative nanoprofiler that can directly measure the figure of high-accuracy mirrors without using a reference surface. The principle of our measuring method is to determine the normal vectors by causing the optical paths of the incident and reflected light at the measurement point to coincide; it is based on the straightness of laser light and the accuracy of rotational goniometers. From the acquired normal vectors and their coordinates, the three-dimensional shape is calculated by a reconstruction algorithm. We measured concave spherical mirrors and compared the results with those using a Fizeau interferometer. The profiles of the mirrors were consistent within the range of error in their middle portions. In addition, we evaluated the performance of an airflow control unit by measuring a concave spherical mirror. This unit suppressed the influence of environmental change, and drastically improved the repeatability.

  18. Endocrine disorders and the neurologic manifestations

    PubMed Central

    2014-01-01

    The nervous system and the endocrine system are closely interrelated and both involved intimately in maintaining homeostasis. Endocrine dysfunctions may lead to various neurologic manifestations such as headache, myopathy, and acute encephalopathy including coma. It is important to recognize the neurologic signs and symptoms caused by the endocrine disorders while managing endocrine disorders. This article provides an overview of the neurologic manifestations found in various endocrine disorders that affect pediatric patients. It is valuable to think about 'endocrine disorder' as a cause of the neurologic manifestations. Early diagnosis and treatment of hormonal imbalance can rapidly relieve the neurologic symptoms. Better understanding of the interaction between the endocrine system and the nervous system, combined with the knowledge about the pathophysiology of the neurologic manifestations presented in the endocrine disorders might allow earlier diagnosis and better treatment of the endocrine disorders. PMID:25654063

  19. Neuroimaging distinction between neurological and psychiatric disorders†

    PubMed Central

    Crossley, Nicolas A.; Scott, Jessica; Ellison-Wright, Ian; Mechelli, Andrea

    2015-01-01

    Background It is unclear to what extent the traditional distinction between neurological and psychiatric disorders reflects biological differences. Aims To examine neuroimaging evidence for the distinction between neurological and psychiatric disorders. Method We performed an activation likelihood estimation meta-analysis on voxel-based morphometry studies reporting decreased grey matter in 14 neurological and 10 psychiatric disorders, and compared the regional and network-level alterations for these two classes of disease. In addition, we estimated neuroanatomical heterogeneity within and between the two classes. Results Basal ganglia, insula, sensorimotor and temporal cortex showed greater impairment in neurological disorders; whereas cingulate, medial frontal, superior frontal and occipital cortex showed greater impairment in psychiatric disorders. The two classes of disorders affected distinct functional networks. Similarity within classes was higher than between classes; furthermore, similarity within class was higher for neurological than psychiatric disorders. Conclusions From a neuroimaging perspective, neurological and psychiatric disorders represent two distinct classes of disorders. PMID:26045351

  20. Brain banking for neurological disorders.

    PubMed

    Samarasekera, Neshika; Al-Shahi Salman, Rustam; Huitinga, Inge; Klioueva, Natasja; McLean, Catriona A; Kretzschmar, Hans; Smith, Colin; Ironside, James W

    2013-11-01

    Brain banks are used to gather, store, and provide human brain tissue for research and have been fundamental to improving our knowledge of the brain in health and disease. To maintain this role, the legal and ethical issues relevant to the operations of brain banks need to be more widely understood. In recent years, researchers have reported that shortages of high-quality brain tissue samples from both healthy and diseased people have impaired their efforts. Closer collaborations between brain banks and improved strategies for brain donation programmes will be essential to overcome these problems as the demand for brain tissue increases and new research techniques become more widespread, with the potential for substantial scientific advances in increasingly common neurological disorders. PMID:24074724