Science.gov

Sample records for normal sleep circuitry

  1. Unraveling a new circuitry for sleep regulation in Parkinson's disease.

    PubMed

    Targa, Adriano D S; Rodrigues, Lais S; Noseda, Ana Carolina D; Aurich, Mariana F; Andersen, Monica L; Tufik, Sergio; da Cunha, Cláudio; Lima, Marcelo M S

    2016-09-01

    Sleep disturbances are among the most disabling non-motor symptoms in Parkinson's disease. The pedunculopontine tegmental nucleus and basal ganglia are likely involved in these dysfunctions, as they are affected by neurodegeneration in Parkinson's disease and have a role in sleep regulation. To investigate this, we promoted a lesion in the pedunculopontine tegmental nucleus or substantia nigra pars compacta of male rats, followed by 24 h of REM sleep deprivation. Then, we administrated a dopaminergic D2 receptor agonist, antagonist or vehicle directly in the striatum. After a period of 24 h of sleep-wake recording, we observed that the ibotenic acid infusion in the pedunculopontine tegmental nucleus blocked the so-called sleep rebound effect mediated by REM sleep deprivation, which was reversed by striatal D2 receptors activation. Rotenone infusion in the substantia nigra pars compacta also blocked the sleep rebound, however, striatal D2 receptors activation did not reverse it. In addition, rotenone administration decreased the time spent in NREM sleep, which was corroborated by positive correlations between dopamine levels in both substantia nigra pars compacta and striatum and the time spent in NREM sleep. These findings suggest a new circuitry for sleep regulation in Parkinson's disease, involving the triad composed by pedunculopontine nucleus, substantia nigra pars compacta and striatum, evidencing a potential therapeutic target for the sleep disturbances associated to this pathology. PMID:27091486

  2. Pre-sleep behaviour in normal subjects.

    PubMed

    Ellis; Lemmens; Parkes

    1995-12-01

    Behaviour in the 2-h period before sleep onset was evaluated in 90 subjects with normal sleep/wake habits using an anonymous self-report questionnaire. This determined the timing of events from the initial preparation for sleep. The nature of the pre-sleep environment, the level of physical activity, and patterns of feeding behaviour were recorded together with self-ratings of tiredness, mood and security. Estimated sleep duration and sleep quality were determined. Ninety of 120 subjects responded. Sleep 'preparatory latency', from the time of initial sleep preparation to sleep onset, was 77 +/- 48 min; bed time to sleep onset time (sleep latency) was 41 +/- 42 min; lights out to sleep onset latency was 26 +/- 45 min. The estimated total sleep time was 7 +/- 1 h. In the pre-sleep period, mean noise and illumination levels were low and environmental temperature rating was at the median point on a very cold-very hot scale (mean scale scores: 23, 28 and 50, respectively). All subjects went to the bathroom before going to bed. Twenty-five percent of normal subjects had a snack or meal in the 2-h period before sleep onset. Sixty percentage recorded setting an alarm, 27% had a bath or shower, 23% checked door locks or windows and 49% read in bed. Nine percent of subjects slept with a cat on the bed. Humans, like other animal species, show a complex behavioural sequence in the 2-h period before falling asleep. A constant environment with limited metabolic activity may predispose to thermoregulatory changes prior to sleep onset. PMID:10607159

  3. A global quantification of "normal" sleep schedules using smartphone data.

    PubMed

    Walch, Olivia J; Cochran, Amy; Forger, Daniel B

    2016-05-01

    The influence of the circadian clock on sleep scheduling has been studied extensively in the laboratory; however, the effects of society on sleep remain largely unquantified. We show how a smartphone app that we have developed, ENTRAIN, accurately collects data on sleep habits around the world. Through mathematical modeling and statistics, we find that social pressures weaken and/or conceal biological drives in the evening, leading individuals to delay their bedtime and shorten their sleep. A country's average bedtime, but not average wake time, predicts sleep duration. We further show that mathematical models based on controlled laboratory experiments predict qualitative trends in sunrise, sunset, and light level; however, these effects are attenuated in the real world around bedtime. Additionally, we find that women schedule more sleep than men and that users reporting that they are typically exposed to outdoor light go to sleep earlier and sleep more than those reporting indoor light. Finally, we find that age is the primary determinant of sleep timing, and that age plays an important role in the variability of population-level sleep habits. This work better defines and personalizes "normal" sleep, produces hypotheses for future testing in the laboratory, and suggests important ways to counteract the global sleep crisis. PMID:27386531

  4. Cerebral blood flow in normal and abnormal sleep and dreaming

    SciTech Connect

    Meyer, J.S.; Ishikawa, Y.; Hata, T.; Karacan, I.

    1987-07-01

    Measurements of regional or local cerebral blood flow (CBF) by the xenon-133 inhalation method and stable xenon computerized tomography CBF (CTCBF) method were made during relaxed wakefulness and different stages of REM and non-REM sleep in normal age-matched volunteers, narcoleptics, and sleep apneics. In the awake state, CBF values were reduced in both narcoleptics and sleep apneics in the brainstem and cerebellar regions. During sleep onset, whether REM or stage I-II, CBF values were paradoxically increased in narcoleptics but decreased severely in sleep apneics, while in normal volunteers they became diffusely but more moderately decreased. In REM sleep and dreaming CBF values greatly increased, particularly in right temporo-parietal regions in subjects experiencing both visual and auditory dreaming.

  5. Cardiovascular and respiratory dynamics during normal and pathological sleep

    NASA Astrophysics Data System (ADS)

    Penzel, Thomas; Wessel, Niels; Riedl, Maik; Kantelhardt, Jan W.; Rostig, Sven; Glos, Martin; Suhrbier, Alexander; Malberg, Hagen; Fietze, Ingo

    2007-03-01

    Sleep is an active and regulated process with restorative functions for physical and mental conditions. Based on recordings of brain waves and the analysis of characteristic patterns and waveforms it is possible to distinguish wakefulness and five sleep stages. Sleep and the sleep stages modulate autonomous nervous system functions such as body temperature, respiration, blood pressure, and heart rate. These functions consist of a sympathetic tone usually related to activation and to parasympathetic (or vagal) tone usually related to inhibition. Methods of statistical physics are used to analyze heart rate and respiration to detect changes of the autonomous nervous system during sleep. Detrended fluctuation analysis and synchronization analysis and their applications to heart rate and respiration during sleep in healthy subjects and patients with sleep disorders are presented. The observed changes can be used to distinguish sleep stages in healthy subjects as well as to differentiate normal and disturbed sleep on the basis of heart rate and respiration recordings without direct recording of brain waves. Of special interest are the cardiovascular consequences of disturbed sleep because they present a risk factor for cardiovascular disorders such as arterial hypertension, cardiac ischemia, sudden cardiac death, and stroke. New derived variables can help to find indicators for these health risks.

  6. Elicitation of sleep-onset REM periods in normal individuals using the sleep interruption technique (SIT).

    PubMed

    Takeuchi, Tomoka; Fukuda, Kazuhiko; Murphy, Timothy I

    2002-11-01

    Use of the sleep interruption technique (SIT) to elicit sleep onset REM periods (SOREMPs) in normal individuals is introduced along with its theoretical bases, empirical findings, and potential applications. Capitalizing upon the circadian and ultradian nature of REM sleep, the SIT has been developed to examine various psychophysiological characteristics related to REM sleep. The SIT allows us to: (1) obtain SOREMPs at the discretion of the researcher; (2) avoid the contaminating effects of preceding non-REM (NREM)-REM stage ordering on subsequent target sleep episodes; and (3) obtain many REM episodes in a short time by repeating the sleep interruptions. The SIT has been applied in several studies, such as examination of physiological precursors to REM periods, correlates of dream mechanisms, and induction of sleep paralysis in normal individuals. Guidelines for eliciting SOREMP using the SIT, including the parameters to be manipulated, are provided, e.g. NREM duration before sleep interruption, time of night of awakenings, duration of sleep interruption and tasks employed. Directions for further research such as determining optimal type of task to promote SOREMP occurrences, generalization of SOREMP as usual REM periods, and forms of SOREMP occurrences under different conditions in normal individuals and clinical patients are discussed. Finally, possible future uses of the SIT, including combining this technique with new technologies, are also suggested. PMID:14592142

  7. [Unusual behaviors in sleep as "compensatory" reactions, aimed at normalizing sleep-alertness cycles].

    PubMed

    Gol'bin, A Ts; Guzeva, V I; Shepoval'nikov, A N

    2013-01-01

    The present article is an attempt to perform a conceptual clinical and physiological analysis of a large spec- trum of sleep-related phenomena called parasomnias in children, based on data from three independent in- stitutions. Parasonmias appear in the process of falling asleep, at the time of sleep stage changes, and upon awakening. They are common for both healthy children and those with neurological and psychiatric disorders. Brief descriptions of clinical pictures of several groups of parasomnias and their polysomnographic characteristics are presented. Instances of stereotyped rhythmic movements (e.g. head rocking), paroxysmal somatic and behavioral episodes (night terrors and nightmares), "static" phenomena (sleep with open eyes, strange body positions), as well as somnambulism are specifically described. Common features of parasomnias as a group have been identified (the "Parasomnia syndrome"). It was found that sleep architecture frequently normalizes after a parasomnia episode, whereas parasomnias are self-liquidated after sleep matures (self-cure). The significance of gender differences in parasomnias have been reviewed. Possible compensatory physiological functions of parasomnias acting as "switches" or "stabilizers" of sleep stages to "off-set" deviated or immature sleep-wake mechanisms were discussed. PMID:25509175

  8. Self-reported consistency of normal habitual sleep durations of college students.

    PubMed

    Hicks, R A; Pellegrini, R J; Hawkins, J; Moore, J D

    1978-10-01

    A relationship between hours of sleep/night and the consistency of this normal daily sleep duration was observed for 763 college students who had rated themselves as good sleepers with stable and fairly well established patterns of sleep. Congruent with a limited literature, these data suggest that shorter sleep durations are likely, for college students, to be relatively recently acquired patterns of sleep. PMID:724383

  9. Quantitative genetic research on sleep: a review of normal sleep, sleep disturbances and associated emotional, behavioural, and health-related difficulties.

    PubMed

    Barclay, Nicola L; Gregory, Alice M

    2013-02-01

    Over the past 50 years, well over 100 twin studies have focussed on understanding factors contributing to variability in normal sleep-wake characteristics and sleep disturbances. Whilst we have gained a great deal from these studies, there is still much to be learnt. Twin studies can be used in multiple ways to answer questions beyond simply estimating heritability. This paper provides a comprehensive review of some of the most important findings from twin studies relating to sleep to date, with a focus on studies investigating genetic and environmental influences contributing to i) objective and subjective measures of normal sleep characteristics (e.g., sleep stage organisation, sleep quality); as well as sleep disturbances and disorders such as dyssomnias (e.g., insomnia, narcolepsy) and parasomnias (e.g., sleepwalking, bruxism); ii) the persistence of sleep problems from childhood to adulthood, and the possibility that the aetiological influences on sleep change with age; iii) the associations between sleep disturbances, emotional, behavioural and health-related problems; and iv) processes of gene-environment correlation and interaction. We highlight avenues for further research, emphasising the need to further consider the aetiology of longitudinal associations between sleep disturbances and psychopathology; the genetic and environmental overlap between sleep and numerous phenotypes; and processes of gene-environment interplay and epigenetics. PMID:22560641

  10. Sleep

    MedlinePlus

    ... sleep deprivation? What are sleep myths? What are sleep disorders? Can certain diseases/conditions disrupt sleep? What is ... sleep deprivation? What are sleep myths? What are sleep disorders? Can certain diseases/conditions disrupt sleep? What is ...

  11. Cataplexy with Normal Sleep Studies and Normal CSF Hypocretin: An Explanation?

    PubMed

    Drakatos, Panagis; Leschziner, Guy

    2016-03-01

    Patients with narcolepsy usually develop excessive daytime sleepiness (EDS) before or coincide with the occurrence of cataplexy, with the latter most commonly associated with low cerebrospinal fluid (CSF) hypocretin-1 levels. Cataplexy preceding the development of other features of narcolepsy is a rare phenomenon. We describe a case of isolated cataplexy in the context of two non-diagnostic multiple sleep latency tests and normal CSF-hypocretin-1 levels (217 pg/mL) who gradually developed EDS and low CSF-hypocretin-1 (< 110 pg/mL). PMID:26564387

  12. Effects of naloxone on upper airway collapsibility in normal sleeping subjects.

    PubMed Central

    Meurice, J. C.; Marc, I.; Sériès, F.

    1996-01-01

    BACKGROUND: To evaluate the possible influence of endorphin release on upper airway collapsibility the effects of naloxone, an opiate receptor antagonist, were measured. METHODS: The effects of naloxone on upper airway collapsibility were studied in five normal sleeping men in a pilot study. During a sleep fragmentation night the subjects received either naloxone or a volume matched saline placebo in a double blind crossover design. Critical pressure (Pcrit) was measured during a morning nap following sleep fragmentation. RESULTS: The plasma levels of endorphins increased during sleep fragmentation nights. Pcrit was significantly greater after placebo than after naloxone infusion. CONCLUSIONS: Naloxone may reduce upper airway collapsibility in normal sleeping subjects following sleep fragmentation. PMID:8795677

  13. Dynamics of sleep/wake determination--Normal and abnormal

    NASA Astrophysics Data System (ADS)

    Mahowald, Mark W.; Schenck, Carlos H.; O'Connor, Kevin A.

    1991-10-01

    Virtually all members of the animal kingdom experience a relentless and powerful cycling of states of being: wakefulness, rapid eye movement sleep, and nonrapid eye movement sleep. Each of these states is composed of a number of physiologic variables generated in a variety of neural structures. The predictable oscillations of these states are driven by presumed neural pacemakers which are entrained to the 24 h geophysical environment by the light/dark cycle. Experiments in nature have indicated that wake/sleep rhythm perturbations may occur either involving desynchronization of the basic 24 h wake/sleep cycle within the geophysical 24 h cycle (circadian rhythm disturbances) or involving the rapid oscillation or incomplete declaration of state (such as narcolepsy). The use of phase spaces to describe states of being may be of interest in the description of state determination in both illness and health. Some fascinating clinical and experimental phenomena may represent bifurcations in the sleep/wake control system.

  14. Longitudinal Study of Sleep Behavior in Normal Infants during the First Year of Life

    PubMed Central

    Bruni, Oliviero; Baumgartner, Emma; Sette, Stefania; Ancona, Mario; Caso, Gianni; Di Cosimo, Maria Elisabetta; Mannini, Andrea; Ometto, Mariangela; Pasquini, Anna; Ulliana, Antonella; Ferri, Raffaele

    2014-01-01

    Study Objectives: To longitudinally examine sleep patterns, habits, and parent-reported sleep problems during the first year of life. Methods: Seven hundred four parent/child pairs participated in a longitudinal cohort study. Structured interview recording general demographic data, feeding habits, intercurrent diseases, family history, sleep habits, and parental evaluation of the infant's sleep carried out at 1, 3, 6, 9, and 12 months Results: Nocturnal, daytime, and total sleep duration showed a high inter-individual variability in the first year of life associated with changes in the first 6 months and stability from 6 to 12 months. Bedtime was at around 22:00 and remained stable at 6, 9, and 12 months of age. Approximately 20% of the infants had more than 2 awakenings and slept more often in the parent bed. Nearly 10% of the infants were considered as having a problematic sleep by parents and this significantly correlated with nocturnal awakenings and difficulties falling asleep. Conclusions: Sleep patterns change during the first year of life but most sleep variables (i.e., sleep latency and duration) show little variation from 6 to 12 months. Our data provide a context for clinicians to discuss sleep issues with parents and suggest that prevention efforts should focus to the first 3-6 months, since sleep patterns show stability from that time point to 12 months. Citation: Bruni O, Baumgartner E, Sette S, Ancona M, Caso G, Di Cosimo ME, Mannini A, Ometto M, Pasquini A, Ulliana A, Ferri R. Longitudinal study of sleep behavior in normal infants during the first year of life. J Clin Sleep Med 2014;10(10):1119-1127. PMID:25317093

  15. The preproghrelin gene is required for the normal integration of thermoregulation and sleep in mice.

    PubMed

    Szentirmai, Eva; Kapás, Levente; Sun, Yuxiang; Smith, Roy G; Krueger, James M

    2009-08-18

    Peptidergic mechanisms controlling feeding, metabolism, thermoregulation, and sleep overlap in the hypothalamus. Low ambient temperatures and food restriction induce hypothermic (torpor) bouts and characteristic metabolic and sleep changes in mice. We report that mice lacking the preproghrelin gene, but not those lacking the ghrelin receptor, have impaired abilities to manifest and integrate normal sleep and thermoregulatory responses to metabolic challenges. In response to fasting at 17 degrees C (a subthermoneutral ambient temperature), preproghrelin knockout mice enter hypothermic bouts associated with reduced sleep, culminating in a marked drop in body temperature to near-ambient levels. Prior treatment with obestatin, another preproghrelin gene product, attenuates the hypothermic response of preproghrelin knockout mice. Results suggest that obestatin is a component in the coordinated regulation of metabolism and sleep during torpor. PMID:19666521

  16. Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation.

    PubMed

    Bodosi, B; Gardi, J; Hajdu, I; Szentirmai, E; Obal, F; Krueger, J M

    2004-11-01

    To determine the relationships among plasma ghrelin and leptin concentrations and hypothalamic ghrelin contents, and sleep, cortical brain temperature (Tcrt), and feeding, we determined these parameters in rats in three experimental conditions: in free-feeding rats with normal diurnal rhythms, in rats with feeding restricted to the 12-h light period (RF), and in rats subjected to 5-h of sleep deprivation (SD) at the beginning of the light cycle. Plasma ghrelin and leptin displayed diurnal rhythms with the ghrelin peak preceding and the leptin peak following the major daily feeding peak in hour 1 after dark onset. RF reversed the diurnal rhythm of these hormones and the rhythm of rapid-eye-movement sleep (REMS) and significantly altered the rhythm of Tcrt. In contrast, the duration and intensity of non-REMS (NREMS) were hardly responsive to RF. SD failed to change leptin concentrations, but it promptly stimulated plasma ghrelin and induced eating. SD elicited biphasic variations in the hypothalamic ghrelin contents. SD increased plasma corticosterone, but corticosterone did not seem to influence either leptin or ghrelin. The results suggest a strong relationship between feeding and the diurnal rhythm of leptin and that feeding also fundamentally modulates the diurnal rhythm of ghrelin. The variations in hypothalamic ghrelin contents might be associated with sleep-wake activity in rats, but, unlike the previous observations in humans, obvious links could not be detected between sleep and the diurnal rhythms of plasma concentrations of either ghrelin or leptin in the rat. PMID:15475503

  17. Sleep and nocturnal acid reflux in normal subjects and patients with reflux oesophagitis.

    PubMed Central

    Freidin, N; Fisher, M J; Taylor, W; Boyd, D; Surratt, P; McCallum, R W; Mittal, R K

    1991-01-01

    Nocturnal gastro-oesophageal reflux may be important in the pathogenesis of reflux oesophagitis. This study aimed to determine whether: (1) gastro-oesophageal reflux occurs during sleep in patients with reflux oesophagitis and, if so, to explore the mechanism, and (2) the sleep pattern of patients with oesophagitis is different from that of control subjects. After a standard evening meal, simultaneous manometric, oesophageal pH, and polysomnographic recordings were obtained in 11 patients with endoscopic oesophagitis and 11 control subjects. Patients with gastrooesophageal reflux disease had significantly more total reflux episodes throughout the nocturnal monitoring period than control subjects (105 v 6). Ninety two of 105 episodes of gastro-oesophageal reflux in patients occurred during the awake state and 10 during sleep stage II. A number of reflux episodes occurred during brief periods of arousal from the various sleep stages. Of the 105 reflux events recorded in patients, 42 were induced by transient lower oesophageal sphincter relaxation, 20 by stress reflux, 22 by free reflux mechanisms, and in 21 the mechanism was unclear. The sleep pattern and the time spent in each sleep stage was not different between the two groups. It is concluded that the awake state is crucial for the occurrence of nocturnal reflux episodes in normal subjects as well as in patients with reflux oesophagitis and that the difference between the frequency of gastro-oesophageal reflux between normal subjects and patients cannot be explained by different sleep patterns. PMID:1752454

  18. The effect of sleep restriction on neurobehavioural functioning in normally developing children and adolescents: insights from the Attention, Behaviour and Sleep Laboratory.

    PubMed

    Cassoff, J; Bhatti, J A; Gruber, R

    2014-10-01

    In the current paper, we first introduce the research themes of the attention, behaviour and sleep (ABS) laboratory, namely, sleep and ADHD, sleep and obesity, and sleep and academic performance. We then focus in on the topic to be reviewed in the current paper - the association between sleep restriction and neurobehavioral functioning (NBF) in typically developing children. We review the research thus far conducted by the ABS lab specific to this topic and posit the unique methodological contributions of the ABS lab (e.g. home-based assessment of sleep architecture and patterns, extensive phenotyping, etc.) in terms of advancing this research area. In the second section of the paper, we review 13 studies investigating the causal association between experimental sleep restriction and NBF in normally developing pediatric populations. Eight of the 13 studies found that sleep restriction causes impairments in neurobehavioural functioning. However, given the inconsistency in outcome measures, experimental protocols and statistical power, the studies reviewed herein are difficult to interpret. Strategies used by the ABS including implementing home assessments of sleep, restricting sleep relative to the participants' typical sleep schedules, blinding raters who assess NBF, and using valid and reliable NBF assessments are an attempt to address the gaps in this research area and clarify the causal relationship between sleep restriction and NBF in typically developing children and adolescents. PMID:25110282

  19. Cyclic alternating patterns in normal sleep and insomnia: structure and content differences.

    PubMed

    Chouvarda, Ioanna; Mendez, Martin Oswaldo; Rosso, V; Bianchi, Anna M; Parrino, Liborio; Grassi, Andrea; Terzano, Mario Giovanni; Cerutti, Sergio; Maglaveras, Nicos

    2012-09-01

    This work aims to investigate new markers for the quantitative characterization of insomnia, in the context of sleep microstructure, as expressed by cyclic alternating pattern (CAP) sleep. The study group includes 11 subjects with normal sleep and 10 subjects with diagnosed primary insomnia. Differences between normal sleepers and insomniacs are investigated, in terms of dynamics and content of CAP events. The overall rate of CAP and of different phases is considered. The dynamic in the structure and alternation of CAP events is further studied in different scales by use of wavelet analysis, and calculation of energy/entropy features. The content of CAP events is studied in terms of electroencephalography (EEG) complexity analysis for the different types of events. Statistically significant differences are highlighted, both in structure and content. Besides confirming the increase in CAP rate, main findings regarding the microstructure difference in insomnia include: 1) as regards the deep sleep building phases, more irregular activation-deactivation patterns, with bigger deactivation time, i.e., distance between consecutive activation events, and appearing with higher EEG complexity in deactivation, and 2) a bigger duration of desynchronisation phases, with increased EEG complexity and more irregular patterns. This analysis extends previous findings on the relation between CAPrate increase and sleep instability mechanisms, proposing specific features of CAP that seem to play a role in insomnia (as consistently presented via classification analysis). This opens new perspectives for the understanding of the role of CAP in the quantitative characterization of sleep and its disorders. PMID:22855235

  20. Power spectral analysis of blood pressure fluctuations during sleep in normal and decerebrate cats.

    PubMed

    Kanamori, N; Sakai, K; Sei, H; Salvert, D; Vanni-Mercier, G; Yamamoto, M; Jouvet, M

    1994-03-01

    Arterial blood pressure fluctuations during sleep were investigated with power analysis technique in both normal and decerebrate cats. In the initial postoperative stage lasting about 3 to 4 days, intact cats displayed, during paradoxical sleep, phasic increases in arterial blood pressure which were superimposed on a tonic hypotension. In the later chronic stage, however, the animals showed the phasic hypertension being superimposed on the background of a tonic hypertension. Regardless of these stages, the blood pressure during paradoxical sleep exhibited a 1/f-like spectrum, expressed by the power spectral density which is inversely proportional to the Fourier frequency f. On the other hand, a power spectral profile of the blood pressure during slow wave sleep presented a white noise-like pattern within the same frequency range of 0.1-0.01 Hz. After brainstem transections at the pontomesencephalic border, the cats exhibited consistently a sustained fall in blood pressure during paradoxical sleep and the power spectral density of the blood pressure displayed a white noise-like pattern throughout the survival periods of one month or more. These observations indicate that the blood pressure fluctuations in the 1/f spectrum during paradoxical sleep originate in rostral brain structures. PMID:8042895

  1. No effects of short-term sleep restriction, in a controlled feeding setting, on lipid profiles in normal weight adults

    PubMed Central

    O’Keeffe, Majella; Roberts, Amy L.; Kelleman, Michael; RoyChoudhury, Arindam; St-Onge, Marie-Pierre

    2013-01-01

    Summary Short sleep has been associated with cardiovascular risk. The aim of this study was to determine the impact of short-term sleep restriction on lipid profiles and resting blood pressure factors in young, normal weight individuals (14 men, 13 women). Participants were randomized to 5 nights of either habitual (9 h) or short (4 h) sleep in a crossover design separated by a 3 wk washout period. There was no sleep x day interaction on lipid profile and blood pressure. Short-term sleep restriction does not alter lipid profiles and resting blood pressure in healthy, normal weight individuals. The association between short sleep and increased cardiovascular risk reported in the epidemiological literature may be the result of long-term sleep restriction and poor lifestyle choices. PMID:23682639

  2. Interpretation of Normalized Spectral Heart Rate Variability Indices In Sleep Research: A Critical Review

    PubMed Central

    Burr, Robert L.

    2007-01-01

    The normalized spectral heart rate variability (HRV) measures low-frequency (LF)nu and high-frequency (HF)nu are frequently used in contemporary sleep research studies to quantify modulation of the sympathetic and parasympathetic branches of the autonomic nervous system. The purpose of this tutorial and methodologic critique is to concisely demonstrate the structural algebraic redundancy inherent in the normalized spectral HRV measures with respect to each other, and also with respect to the well-known HRV index of sympathovagal balance, LF:HF ratio. The statistical problems and interpretational paradoxes related to the mathematical definitions of LFnu and HFnu are briefly outlined. Examples of use of normalized spectral HRV measures in recent articles from the sleep-relevant research literature are critically reviewed. LFnu, HFnu, and LF:HF ratio should be considered equivalent carriers of information about sympathovagal balance. Citation: Burr RL. Interpretation of normalized spectral heart rate variability indices in sleep research: a critical review. SLEEP 2007;30(7):913-919. PMID:17682663

  3. Reduced Sleep Acutely Influences Sedentary Behavior and Mood But Not Total Energy Intake in Normal-Weight and Obese Women.

    PubMed

    Romney, Lora; Larson, Michael J; Clark, Tyler; Tucker, Larry A; Bailey, Bruce W; LeCheminant, James D

    2016-01-01

    Using a crossover design, 22 normal-weight and 22 obese women completed two free-living sleep conditions: (a) Normal Sleep: night of ~8 hr time in bed; and (b) Reduced Sleep: night of < 5 hr time in bed). Outcome measures were energy intake, physical activity and sedentary time, and mood. Sleep time was 7.7 ± 0.3 and 4.8 ± 0.2 hrs during the Normal Sleep and Reduced Sleep conditions, respectively (F = 1791.94; p < 0.0001). Energy intake did not differ between groups or as a function of sleep condition (F = 2.46; p = 0.1244). Sedentary time was ~ 30 min higher after the Reduced Sleep condition (F = 4.98; p = 0.0318); other physical activity outcomes were not different by condition (p > 0.05). Total mood score, depression, anger, vigor, fatigue, and confusion were worse after Reduced Sleep (p < 0.05). Reducing sleep acutely and negatively influenced sedentary time and mood in normal-weight and obese women. PMID:26485109

  4. Sleep in space as a new medical frontier: the challenge of preserving normal sleep in the abnormal environment of space missions.

    PubMed

    Pandi-Perumal, Seithikurippu R; Gonfalone, Alain A

    2016-01-01

    Space agencies such as the National Aeronautics and Space Administration of the United States, the Russian Federal Space Agency, the European Space Agency, the China National Space Administration, the Japan Aerospace Exploration Agency, and Indian Space Research Organization, although differing in their local political agendas, have a common interest in promoting all applied sciences that may facilitate man's adaptation to life beyond the earth. One of man's most important adaptations has been the evolutionary development of sleep cycles in response to the 24 hour rotation of the earth. Less well understood has been man's biological response to gravity. Before humans ventured into space, many questioned whether sleep was possible at all in microgravity environments. It is now known that, in fact, space travelers can sleep once they leave the pull of the earth's gravity, but that the sleep they do get is not completely refreshing and that the associated sleep disturbances can be elaborate and variable. According to astronauts' subjective reports, the duration of sleep is shorter than that on earth and there is an increased incidence of disturbed sleep. Objective sleep recordings carried out during various missions including the Skylab missions, space shuttle missions, and Mir missions all support the conclusion that, compared to sleep on earth, the duration in human sleep in space is shorter, averaging about six hours. In the new frontier of space exploration, one of the great practical problems to be solved relates to how man can preserve "normal" sleep in a very abnormal environment. The challenge of managing fatigue and sleep loss during space mission has critical importance for the mental efficiency and safety of the crew and ultimately for the success of the mission itself. Numerous "earthly" examples now show that crew fatigue on ships, trucks, and long-haul jetliners can lead to inadequate performance and sometimes fatal consequences, a reality which has

  5. Sleep restriction increases the neuronal response to unhealthy food in normal-weight individuals

    PubMed Central

    St-Onge, M-P; Wolfe, S; Sy, M; Shechter, A; Hirsch, J

    2013-01-01

    Context Sleep restriction alters responses to food. However, the underlying neural mechanisms for this effect are not well understood. Objective The purpose of this study was to determine whether there is a neural system that is preferentially activated in response to unhealthy compared with healthy foods. Participants Twenty-five normal-weight individuals, who normally slept 7–9 h per night, completed both phases of this randomized controlled study. Intervention Each participant was tested after a period of five nights of either 4 or 9 h in bed. Functional magnetic resonance imaging (fMRI) was performed in the fasted state, presenting healthy and unhealthy food stimuli and objects in a block design. Neuronal responses to unhealthy, relative to healthy food stimuli after each sleep period were assessed and compared. Results After a period of restricted sleep, viewing unhealthy foods led to greater activation in the superior and middle temporal gyri, middle and superior frontal gyri, left inferior parietal lobule, orbitofrontal cortex, and right insula compared with healthy foods. These same stimuli presented after a period of habitual sleep did not produce marked activity patterns specific to unhealthy foods. Further, food intake during restricted sleep increased in association with a relative decrease in brain oxygenation level-dependent (BOLD) activity observed in the right insula. Conclusion This inverse relationship between insula activity and food intake and enhanced activation in brain reward and food-sensitive centers in response to unhealthy foods provides a model of neuronal mechanisms relating short sleep duration to obesity. PMID:23779051

  6. Parental Perception of Sleep Problems in Children of Normal Intelligence with Pervasive Developmental Disorders: Prevalence, Severity, and Pattern

    ERIC Educational Resources Information Center

    Couturier, Jennifer L.; Speechley, Kathy N.; Steele, Margaret; Norman, Ross; Stringer, Bernadette; Nicolson, Rob

    2005-01-01

    Objective: This study compares parents' perceptions of the prevalence, severity, and pattern of sleep problems in children of normal intelligence with pervasive developmental disorders (PDDs) with a normative comparison group of children. Method: A survey including the Children's Sleep Habits Questionnaire was mailed to a sample of parents of…

  7. Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals123

    PubMed Central

    St-Onge, Marie-Pierre; Roberts, Amy L; Chen, Jinya; Kelleman, Michael; O'Keeffe, Majella; RoyChoudhury, Arindam; Jones, Peter JH

    2011-01-01

    Background: Evidence suggests a relation between short sleep duration and obesity. Objective: We assessed energy balance during periods of short and habitual sleep in normal-weight men and women. Design: Fifteen men and 15 women aged 30–49 y with a body mass index (in kg/m2) of 22–26, who regularly slept 7–9 h/night, were recruited to participate in this crossover inpatient study. All participants were studied under short (4 h/night) and habitual (9 h/night) sleep conditions, in random order, for 5 nights each. Food intake was measured on day 5, and energy expenditure was measured with the doubly labeled water method over each period. Results: Participants consumed more energy on day 5 during short sleep (2813.6 ± 593.0 kcal) than during habitual sleep (2517.7 ± 593.0 kcal; P = 0.023). This effect was mostly due to increased consumption of fat (20.7 ± 37.4 g; P = 0.01), notably saturated fat (8.7 ± 20.4 g; P = 0.038), during short sleep. Resting metabolic rate (short sleep: 1455.4 ± 129.0 kcal/d; habitual sleep: 1486.5 ± 129.5 kcal/d; P = 0.136) and total energy expenditure (short sleep: 2589.2 ± 526.5 kcal/d; habitual sleep: 2611.1 ± 529.0 kcal/d; P = 0.832) did not differ significantly between sleep phases. Conclusions: Our data show that a reduction in sleep increases energy and fat intakes, which may explain the associations observed between sleep and obesity. If sustained, as observed, and not compensated by increased energy expenditure, the dietary intakes of individuals undergoing short sleep predispose to obesity. This trial is registered at clinicaltrials.gov as NCT00935402. PMID:21715510

  8. Mother-infant cosleeping, breastfeeding and sudden infant death syndrome: what biological anthropology has discovered about normal infant sleep and pediatric sleep medicine.

    PubMed

    McKenna, James J; Ball, Helen L; Gettler, Lee T

    2007-01-01

    Twenty years ago a new area of inquiry was launched when anthropologists proposed that an evolutionary perspective on infancy could contribute to our understanding of unexplained infant deaths. Here we review two decades of research examining parent-infant sleep practices and the variability of maternal and infant sleep physiology and behavior in social and solitary sleeping environments. The results challenge clinical wisdom regarding "normal" infant sleep, and over the past two decades the perspective of evolutionary pediatrics has challenged the supremacy of pediatric sleep medicine in defining what are appropriate sleep environments and behaviors for healthy human infants. In this review, we employ a biocultural approach that integrates diverse lines of evidence in order to illustrate the limitations of pediatric sleep medicine in adopting a view of infants that prioritizes recent western social values over the human infant's biological heritage. We review what is known regarding infant sleeping arrangements among nonhuman primates and briefly explore the possible paleoecological context within which early human sleep patterns and parent-infant sleeping arrangements might have evolved. The first challenges made by anthropologists to the pediatric and SIDS research communities are traced, and two decades of studies into the behavior and physiology of mothers and infants sleeping together are presented up to the present. Laboratory, hospital and home studies are used to assess the biological functions of shared mother-infant sleep, especially with regard to breastfeeding promotion and SIDS reduction. Finally, we encourage other anthropologists to participate in pediatric sleep research using the unique skills and insights anthropological data provide. By employing comparative, evolutionary and cross-cultural perspectives an anthropological approach stimulates new research insights that influence the traditional medical paradigm and help to make it more inclusive

  9. Changes in oxygen saturation and heart frequency during sleep in young normal subjects.

    PubMed Central

    Gimeno, F; Peset, R

    1984-01-01

    Changes in oxygen saturation and heart frequency were measured during sleep in a group of 21 normal subjects (9 women and 12 men) aged 19-25. At the time of the investigation all were non-smokers, they had no respiratory complaints, and indices of lung function (lung volumes, volume-pressure diagram, and diffusing capacity for carbon monoxide) were within normal limits. In contrast to published data, there were no major changes in oxygen saturation and no differences between men and women. PMID:6474401

  10. Long-term facilitation of genioglossus activity is present in normal humans during NREM sleep

    PubMed Central

    Chowdhuri, Susmita; Pierchala, Lisa; Aboubakr, Salah E.; Shkoukani, Mahdi; Badr, M. Safwan

    2008-01-01

    Episodic hypoxia (EH) is followed by increased ventilatory motor output in the recovery period indicative of long-term facilitation (LTF). We hypothesized that episodic hypoxia evokes LTF of genioglossus (GG) muscle activity in humans during non-rapid eye movement sleep (NREM) sleep. We studied 12 normal non-flow limited humans during stable NREM sleep. We induced 10 brief (3 minute) episodes of isocapnic hypoxia followed by 5 minutes of room air. Measurements were obtained during control, hypoxia, and at 5, 10, 20, 30 and 40 minutes of recovery, respectively, for minute ventilation (V̇I), supraglottic pressure (PSG), upper airway resistance (RUA) and phasic GG electromyogram (EMGGG). In addition, sham studies were conducted on room air. During hypoxia there was a significant increase in phasic EMGGG (202.7±24.1% of control, p<0.01) and in V̇I (123.0±3.3% of control, p<0.05); however, only phasic EMGGG demonstrated a significant persistent increase throughout recovery (198.9±30.9%, 203.6±29.9% and 205.4±26.4% of control, at 5, 10, and 20 minutes of recovery, respectively, p<0.01). In multivariate regression analysis, age and phasic EMGGG activity during hypoxia were significant predictors of EMGGG at recovery 20 minutes. No significant changes in any of the measured parameters were noted during sham studies. Conclusion: 1) EH elicits LTF of GG in normal non-flow limited humans during NREM sleep, without ventilatory or mechanical LTF. 2) GG activity during the recovery period correlates with the magnitude of GG activation during hypoxia, and inversely with age. PMID:17945544

  11. Heritability of Craniofacial Structures in Normal Subjects and Patients with Sleep Apnea

    PubMed Central

    Chi, Luqi; Comyn, Francois-Louis; Keenan, Brendan T.; Cater, Jacqueline; Maislin, Greg; Pack, Allan I.; Schwab, Richard J.

    2014-01-01

    Objectives: Accumulating evidence has shown that there is a genetic contribution to obstructive sleep apnea (OSA).The objectives were to use magnetic resonance imaging (MRI) cephalometry to (1) confirm heritability of craniofacial risk factors for OSA previously shown by cephalometrics; and (2) examine the heritability of new craniofacial structures that are measurable with MRI. Design: A sib pair “quad” design examining apneics, apneic siblings, controls, and control siblings. The study design used exact matching on ethnicity and sex, frequency matching on age, and statistical control for differences in age, sex, ethnicity, height, and weight. Setting: Academic medical center. Patients: We examined 55 apneic probands (apnea-hypopnea index [AHI]: 46.8 ± 33.5 events/h), 55 proband siblings (AHI: 11.1 ± 15.9 events/h), 55 controls (AHI: 2.2 ± 1.7 events/h), and 55 control siblings (AHI: 4.1 ± 4.0 events/h). Interventions: N/A. Measurements and Results: Five independent domains reflecting different aspects of the craniofacial structure were examined. We confirmed heritability of sella–nasion–subspinale (38%, P = 0.002), saddle angle (55%, P < 0.0001), mandibular length (24%, P = 0.02) and lower facial height (33%, P = 0.006) previously measured by cephalometry. In addition, the current study added new insights by demonstrating significant heritability of mandibular width (30%, P = 0.005), maxillary width (47%, P < 0.0001), distance from the hyoid bone to the retropogonion (36%, P = 0.0018) and size of the oropharyngeal space (31%, P = 0.004). Finally, our data indicate that heritability of the craniofacial structures is similar in normal patients and those with apnea. Conclusions: The data support our a priori hypothesis that the craniofacial structures that have been associated with obstructive sleep apnea (OSA) are heritable. We have demonstrated heritability for several intermediate craniofacial phenotypes for OSA. Thus, we believe that future studies

  12. Sleep deprivation amplifies striatal activation to monetary reward

    PubMed Central

    Mullin, Benjamin C.; Phillips, Mary L.; Siegle, Greg J.; Buysse, Daniel J.; Forbes, Erika E.; Franzen, Peter L.

    2013-01-01

    Background Sleep loss produces abnormal increases in reward-seeking, though the mechanisms underlying this phenomenon are poorly understood. The present study examined the influence of one night of sleep deprivation on neural responses to a monetary reward task in a sample of late adolescents/young adults. Methods Using a within-subjects crossover design, 27 healthy, right-handed late-adolescents/young adults (16 females, 11 males; mean age 23.1 years) completed functional magnetic resonance imaging following a night of sleep deprivation and following a night of normal sleep. Participants’ recent sleep history was monitored using actigraphy for one week prior to each sleep condition. Results Following sleep deprivation, participants exhibited increased activity in the ventral striatum and reduced deactivation in medial prefrontal cortex during the winning of monetary reward, relative to the same task following normal sleep conditions. Shorter total sleep time over the five nights before the sleep deprived testing condition was associated with reduced deactivation in the medial prefrontal cortex during reward. Conclusions These findings support the hypothesis that sleep loss produces aberrant functioning in reward neural circuitry, increasing the salience of positively-reinforcing stimuli. Aberrant reward functioning related to insufficient sleep may contribute to the development and maintenance of reward dysfunction-related disorders, such as compulsive gambling, eating, substance abuse, and mood disorders. PMID:23286303

  13. Oro-facial activities in sleep bruxism patients and in normal subjects: a controlled polygraphic and audio-video study.

    PubMed

    Dutra, K M C; Pereira, F J; Rompré, P H; Huynh, N; Fleming, N; Lavigne, G J

    2009-02-01

    To our knowledge, the large spectrum of sleep motor activities (SMA) present in the head and neck region has not yet been systematically estimated in normal and sleep bruxism (SB) subjects. We hypothesized that in the absence of audio-video signal recordings, normal and SB subjects would present a high level of SMA that might confound the scoring specificity of SB. A retrospective analysis of several SMA, including oro-facial activities (OFA) and rhythmic masticatory muscle activities (RMMA), was made from polygraphic and audio-video recordings of 21 normal subjects and 25 SB patients. Sleep motor activities were scored, blind to subject status, from the second night of sleep recordings. Discrimination of OFA included the following types of activities: lip sucking, head movements, chewing-like movements, swallowing, head rubbing and scratching, eye opening and blinking. These were differentiated from RMMA and tooth grinding. The frequency of SMA per hour of sleep was lower in normal subjects in comparison with SB patients (P < 0.001). Up to 85% of all SMA in normal subjects were related to OFA while 30% of SMA in SB patients were related to OFA scoring (P < 0.001). The frequency of RMMA was seven times higher in SB patients than in normal subjects (P < 0.001). Several SMA can be observed in normal and SB subjects. In the absence of audio-video signal recordings, the discrimination of various types of OFA is difficult to achieve and may lead to erroneous estimation of SB-related activities. PMID:18976258

  14. Sleep, Cognition, and Normal Aging: Integrating a Half-Century of Multidisciplinary Research

    PubMed Central

    Scullin, Michael K.; Bliwise, Donald L.

    2014-01-01

    Sleep is implicated in cognitive functioning in young adults. With increasing age there are substantial changes to sleep quantity and quality including changes to slow wave sleep, spindle density, and sleep continuity/fragmentation. A provocative question for the field of cognitive aging is whether such changes in sleep physiology affect cognition (e.g., memory consolidation). We review nearly a half-century of research studies across 7 diverse correlational and experimental literature domains, which historically have had little crosstalk. Broadly speaking, sleep and cognitive functions are often related in advancing age, though the prevalence of null effects (including correlations in the unexpected, negative direction) in healthy older adults indicates that age may be an effect modifier of these associations. We interpret the literature as suggesting that maintaining good sleep quality, at least in young adulthood and middle age, promotes better cognitive functioning and serves to protect against age-related cognitive declines. PMID:25620997

  15. Sleep, cognition, and normal aging: integrating a half century of multidisciplinary research.

    PubMed

    Scullin, Michael K; Bliwise, Donald L

    2015-01-01

    Sleep is implicated in cognitive functioning in young adults. With increasing age, there are substantial changes to sleep quantity and quality, including changes to slow-wave sleep, spindle density, and sleep continuity/fragmentation. A provocative question for the field of cognitive aging is whether such changes in sleep physiology affect cognition (e.g., memory consolidation). We review nearly a half century of research across seven diverse correlational and experimental domains that historically have had little crosstalk. Broadly speaking, sleep and cognitive functions are often related in advancing age, though the prevalence of null effects in healthy older adults (including correlations in the unexpected, negative direction) indicates that age may be an effect modifier of these associations. We interpret the literature as suggesting that maintaining good sleep quality, at least in young adulthood and middle age, promotes better cognitive functioning and serves to protect against age-related cognitive declines. PMID:25620997

  16. Snoring and Sleep Apnea

    MedlinePlus

    ... Find an ENT Doctor Near You Snoring and Sleep Apnea Snoring and Sleep Apnea Patient Health Information ... newsroom@entnet.org . Insight into sleeping disorders and sleep apnea Forty-five percent of normal adults snore ...

  17. New Data Pre-processing on Assessing of Obstructive Sleep Apnea Syndrome: Line Based Normalization Method (LBNM)

    NASA Astrophysics Data System (ADS)

    Akdemir, Bayram; Güneş, Salih; Yosunkaya, Şebnem

    Sleep disorders are a very common unawareness illness among public. Obstructive Sleep Apnea Syndrome (OSAS) is characterized with decreased oxygen saturation level and repetitive upper respiratory tract obstruction episodes during full night sleep. In the present study, we have proposed a novel data normalization method called Line Based Normalization Method (LBNM) to evaluate OSAS using real data set obtained from Polysomnography device as a diagnostic tool in patients and clinically suspected of suffering OSAS. Here, we have combined the LBNM and classification methods comprising C4.5 decision tree classifier and Artificial Neural Network (ANN) to diagnose the OSAS. Firstly, each clinical feature in OSAS dataset is scaled by LBNM method in the range of [0,1]. Secondly, normalized OSAS dataset is classified using different classifier algorithms including C4.5 decision tree classifier and ANN, respectively. The proposed normalization method was compared with min-max normalization, z-score normalization, and decimal scaling methods existing in literature on the diagnosis of OSAS. LBNM has produced very promising results on the assessing of OSAS. Also, this method could be applied to other biomedical datasets.

  18. The effect of total sleep deprivation on cognitive functions in normal adult male subjects.

    PubMed

    Kim, D J; Lee, H P; Kim, M S; Park, Y J; Go, H J; Kim, K S; Lee, S P; Chae, J H; Lee, C T

    2001-07-01

    This study was conducted to evaluate the effect of acute sleep deprivation on cognitive functions. A total of 18 healthy right handed males were deprived of sleep for 24 hours. Luria-Nebraska Neuropsychological Battery and calculation & digit-span subtest of K-WAIS were administered before and after sleep deprivation in order to examine the changes of cognitive functions. There were no differences in freedom from distractibility, tacile function, visual function, reading, writing, arithmetic and intellectual process function. However, the cognitive functions such as motor, rhythm, receptive & expressive speech, memory and complex verbal arithmetic function were decreased after sleep deprivation. All of these functions are known to be related to the right anterior hemisphere. For localization scales, the scores of right frontal and right temporal dysfunction scale were increased after sleep deprivation. These results indicate that sleep deprivation has a negative effect on cognitive functions, especially those associated with right anterior hemisphere or subcortical areas. PMID:11699337

  19. Sleep normalization and decrease in dissociative experiences: evaluation in an inpatient sample.

    PubMed

    van der Kloet, Dalena; Giesbrecht, Timo; Lynn, Steven Jay; Merckelbach, Harald; de Zutter, André

    2012-02-01

    We conducted a longitudinal study to investigate the relation between sleep experiences and dissociative symptoms in a mixed inpatient sample at a private clinic evaluated on arrival and at discharge 6 to 8 weeks later. Using hierarchical regression analyses and structural equation modeling, we found a link between sleep experiences and dissociative symptoms and determined that specifically decreases in narcoleptic experiences rather than insomnia accompany a reduction in dissociative symptoms. Although sleep improvements were associated with a general reduction in psychopathology, this reduction could not fully account for the substantial and specific effect that we found for dissociation. Our findings are consistent with Watson's (2001) hypothesis that disruptions in the sleep-wake cycle lead to intrusions of sleep phenomena into waking consciousness, resulting in dissociative experiences. Accordingly, sleep hygiene may contribute to the treatment or prevention of dissociative symptoms. PMID:21842964

  20. Stimulatory effect of butoctamide hydrogen succinate on REM sleep in normal humans.

    PubMed

    Mizuki, Y; Suetsugi, M; Hotta, H; Ushijima, I; Yamada, M

    1995-05-01

    1. The efficacy of butoctamide hydrogen succinate (BAHS) was compared with that of nitrazepam on the basis of the polysomnograms and the subjective assessments. 2. Twelve healthy male students were divided into three groups consisting of 4 subjects each with were administered BAHS 600 mg, nitrazepam 5 mg, and BAHS 600 mg + nitrazepam 5 mg, respectively. 3. Polygraphic recordings were made for 8 consecutive nights for each subject, and the polysomnograms were evaluated by computerized automatic analysis using the interval histogram method. 4. An inert placebo was administered on the first 3 nights and on the seventh and eighth nights, and the test article regimen was administered on the fourth, fifth and sixth nights. 5. The test articles and the placebo were administered orally at 22:30 hr, and the recording of polysomnograms was started at 23:00 hr and ended at 8:00 hr the next morning. 6. The subjects were requested to fill out the subjective assessment of sleep before falling asleep and after arising the next morning. 7. BAHS increased REM sleep and decreased stage 2 sleep significantly; however, it failed to affect stage 1, 3 or 4 sleep. 8. Nitrazepam increased significantly the total sleep time and stage 2 sleep but decreased significantly the stage 3 sleep and decreased slightly the stages 1, 4 and REM sleep. 9. The combined treatment with BAHS and nitrazepam did not alter the sleep parameters except for increasing the total sleep time. 10. No obvious changes were observed in the subjective assessments after administration of the drugs. 11. These findings suggest that BAHS results in a unique sleep pattern different from benzodiazepines, and that BAHS may be suitable for treating insomnia in elderly patients and those with drug abuse, manic-depressive illness or schizophrenia. PMID:7624490

  1. Long-Term Continuous Positive Airway Pressure Therapy Normalizes High Exhaled Nitric Oxide Levels in Obstructive Sleep Apnea

    PubMed Central

    Chua, Ai-Ping; Aboussouan, Loutfi S.; Minai, Omar A.; Paschke, Kelly; Laskowski, Daniel; Dweik, Raed A.

    2013-01-01

    Study Objectives: Upper airway inflammation and oxidative stress have been implicated in the pathogenesis of obstructive sleep apnea (OSA) and may be linked to cardiovascular consequences. We prospectively examined fraction of exhaled nitric oxide (FENO), a surrogate marker of upper airway inflammation using a portable nitric oxide analyzer (NIOX MINO). Design: In consecutive adult nonsmokers with suspected OSA, FENO was measured immediately before and after polysomnographic studies, and within 1-3 months following continuous positive airway pressure (CPAP) therapy. Measurement and Results: FENO levels were increased in the 75 patients with OSA compared to the 29 controls, both before sleep (13.4 ± 6.5 ppb vs. 6.5 ± 3.5; p < 0.001) and after sleep (19.0 ± 7.7 ppb vs. 6.9 ± 3.7; p < 0.001). Furthermore, in patients with OSA, FENO levels were significantly higher post-sleep than pre-sleep (19.0 ± 7.7 ppb vs. 13.4 ± 6.5; p < 0.001), while there was no significant overnight change in patients without OSA. The rise in FENO correlated with the apnea-hypopnea index (r = 0.65, p < 0.001), nadir oxygen saturation (r = 0.54, p < 0.001), and arousal index (r = 0.52, p < 0.001). Thirty-seven of these patients underwent CPAP titration and treatment. Successful titration was associated with a lower overnight increase in FENO (7.2 ± 3.3 vs. 11.0 ± 4.3, p = 0.02). FENO levels declined after 1-3 months of CPAP therapy (11.7 ± 4.4 ppb, p < 0.001). Conclusions: FENO levels are elevated in OSA, correlate with severity, and decrease after positive pressure therapy. This study supports the role of upper airway inflammation in OSA pathogenesis and a possible role for FENO in monitoring CPAP therapy. Citation: Chua AP; Aboussouan LS; Minai OA; Paschke K; Laskowski D; Dweik RA. Long-term continuous positive airway pressure therapy normalizes high exhaled nitric oxide levels in obstructive sleep apnea. J Clin Sleep Med 2013;9(6):529-535. PMID:23772184

  2. Sleep biological rhythms in normal infants and those at high risk for SIDS.

    PubMed

    Cornwell, Anne Christake; Feigenbaum, Peter

    2006-01-01

    The focus of this study was on daytime and nighttime sleep and wakefulness during the peak age for Sudden Infant Death Syndrome (SIDS), two to four months, to determine whether there are differences between at-risk for SIDS (R) and control (C) infants. Such differences may provide insight on the frequent occurrence of SIDS in the early morning hours, when most babies are asleep. This is the only study in which R and C infants were continuously monitored for long periods of time (24-48 h) and then followed and recorded at monthly intervals until the age of 4-6 months. Data analyses indicate that ultradian REM/NREM cyclicity becomes stabilized into a regular pattern at three months of age. Infants at this age convert from a polyphasic sleep/wakefulness pattern to a circadian one. Among the changes that occur is a lengthening of short sleep periods that consolidate at night and wake periods that consolidate in the daytime. The most striking effects are related to sleep state and vary according to age and sex. The lengthening of single sleep and wakeful periods is coupled with the maturation of the brain. The development of the central nervous system facilitates the synchronization of sleeping patterns with external light input and social entrainment. One or more biological clocks or oscillators may be responsible for these REM/NREM patterns and circadian cycles. These differences during the early morning hours, when the occurrence of SIDS peaks, may have important implications for understanding the pathophysiological mechanism of SIDS. PMID:17050210

  3. Analysis of A-phase transitions during the cyclic alternating pattern under normal sleep.

    PubMed

    Mendez, Martin Oswaldo; Chouvarda, Ioanna; Alba, Alfonso; Bianchi, Anna Maria; Grassi, Andrea; Arce-Santana, Edgar; Milioli, Guilia; Terzano, Mario Giovanni; Parrino, Liborio

    2016-01-01

    An analysis of the EEG signal during the B-phase and A-phases transitions of the cyclic alternating pattern (CAP) during sleep is presented. CAP is a sleep phenomenon composed by consecutive sequences of A-phases (each A-phase could belong to a possible group A1, A2 or A3) observed during the non-REM sleep. Each A-phase is separated by a B-phase which has the basal frequency of the EEG during a specific sleep stage. The patterns formed by these sequences reflect the sleep instability and consequently help to understand the sleep process. Ten recordings from healthy good sleepers were included in this study. The current study investigates complexity, statistical and frequency signal properties of electroencephalography (EEG) recordings at the transitions: B-phase-A-phase. In addition, classification between the onset-offset of the A-phases and B-phase was carried out with a kNN classifier. The results showed that EEG signal presents significant differences (p < 0.05) between A-phases and B-phase for the standard deviation, energy, sample entropy, Tsallis entropy and frequency band indices. The A-phase onset showed values of energy three times higher than B-phase at all the sleep stages. The statistical analysis of variance shows that more than 80 % of the A-phase onset and offset is significantly different from the B-phase. The classification performance between onset or offset of A-phases and background showed classification values over 80 % for specificity and accuracy and 70 % for sensitivity. Only during the A3-phase, the classification was lower. The results suggest that neural assembles that generate the basal EEG oscillations during sleep present an over-imposed coordination for a few seconds due to the A-phases. The main characteristics for automatic separation between the onset-offset A-phase and the B-phase are the energy at the different frequency bands. PMID:26253282

  4. Neurobiological aspects of sleep physiology.

    PubMed

    Moszczynski, Alex; Murray, Brian James

    2012-11-01

    Sleep is characterized by changes in neural firing and chemistry compared with wakefulness. Many neurologic diseases affect pathways that regulate control of sleep state and some primary sleep disorders have abnormalities of this circuitry. Nonrapid eye movement (NREM) and rapid eye movement (REM) sleep alternate in an approximately 90-minute cycle. Recent findings have expanded understanding of the control of sleep state, and will facilitate development of novel therapeutics to assist patients with a variety of disorders of sleep and wakefulness. Treatment of sleep and wake disorders can assist patients with a variety of neurologic problems. PMID:23099125

  5. Sexual circuitry in Drosophila.

    PubMed

    Auer, Thomas O; Benton, Richard

    2016-06-01

    The sexual behavior of Drosophila melanogaster is an outstanding paradigm to understand the molecular and neuronal basis of sophisticated animal actions. We discuss recent advances in our knowledge of the genetic hardwiring of the underlying neuronal circuitry, and how pertinent sensory cues are differentially detected and integrated in the male and female brain. We also consider how experience influences these circuits over short timescales, and the evolution of these pathways over longer timescales to endow species-specific sexual displays and responses. PMID:26851712

  6. New neurons in the adult brain: The role of sleep and consequences of sleep loss

    PubMed Central

    Meerlo, Peter; Mistlberger, Ralph E.; Jacobs, Barry L.; Heller, H. Craig; McGinty, Dennis

    2009-01-01

    Research over the last few decades has firmly established that new neurons are generated in selected areas of the adult mammalian brain, particularly the dentate gyrus of the hippocampal formation and the subventricular zone of the lateral ventricles. The function of adult-born neurons is still a matter of debate. In the case of the hippocampus, integration of new cells in to the existing neuronal circuitry may be involved in memory processes and the regulation of emotionality. In recent years, various studies have examined how the production of new cells and their development into neurons is affected by sleep and sleep loss. While disruption of sleep for a period shorter than one day appears to have little effect on the basal rate of cell proliferation, prolonged restriction or disruption of sleep may have cumulative effects leading to a major decrease in hippocampal cell proliferation, cell survival and neurogenesis. Importantly, while short sleep deprivation may not affect the basal rate of cell proliferation, one study in rats shows that even mild sleep restriction may interfere with the increase in neurogenesis that normally occurs with hippocampus-dependent learning. Since sleep deprivation also disturbs memory formation, these data suggest that promoting survival, maturation and integration of new cells may be an unexplored mechanism by which sleep supports learning and memory processes. Most methods of sleep deprivation that have been employed affect both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Available data favor the hypothesis that decreases in cell proliferation are related to a reduction in REM sleep, whereas decreases in the number of cells that subsequently develop into adult neurons may be related to reductions in both NREM and REM sleep. The mechanisms by which sleep loss affects different aspects of adult neurogenesis are unknown. It has been proposed that adverse effects of sleep disruption may be mediated by stress and

  7. Waking genioglossal electromyogram in sleep apnea patients versus normal controls (a neuromuscular compensatory mechanism).

    PubMed Central

    Mezzanotte, W S; Tangel, D J; White, D P

    1992-01-01

    Pharyngeal collapse in obstructive sleep apnea patients is likely a product of a sleep-related decrement in pharyngeal dilator muscle activity superimposed upon abnormal airway anatomy. We postulate that during wakefulness, increased pharyngeal dilator muscle activity in apnea patients compensates for diminished airway size thus maintaining patency. We studied the waking genioglossus (GG) electromyogram (EMG) activity in 11 OSA patients and 14 age-matched controls to determine if GG activity is higher in the awake state in apnea patients than controls. To make this determination, we developed a reproducible methodology whereby true maximal GG EMG could be defined and thus basal activity quantitated as a percentage of this maximal value. Therefore, direct comparisons of basal activity between individuals was possible. We observed apnea patients to have significantly greater basal genioglossal activity compared to controls (40.6 +/- 5.6% vs. 12.7 +/- 1.7% of maximum). This difference persisted when size-matched subsets were compared. This augmented GG activity in apnea patients could be reduced with positive airway pressure. We speculate that this neuromuscular compensation present during wakefulness in apnea patients may be lost during sleep leading to airway collapse. PMID:1569196

  8. Connectivity pattern differences bilaterally in the cerebellum posterior lobe in healthy subjects after normal sleep and sleep deprivation: a resting-state functional MRI study

    PubMed Central

    Liu, Xuming; Yan, Zhihan; Wang, Tingyu; Yang, Xiaokai; Feng, Feng; Fan, Luping; Jiang, Jian

    2015-01-01

    Objective The aim of this study was to use functional magnetic resonance imaging (fMRI) technique to explore the resting-state functional connectivity (rsFC) differences of the bilaterial cerebellum posterior lobe (CPL) after normal sleep (NS) and after sleep deprivation (SD). Methods A total of 16 healthy subjects (eight males, eight females) underwent an fMRI scan twice at random: once following NS and the other following 24 hours’ SD, with an interval of 1 month between the two scans. The fMRI scanning included resting state and acupuncture stimulation. The special activated regions located during the acupuncture stimulation were selected as regions of interest for rsFC analysis. Results Bilateral CPLs were positively activated by acupuncture stimulation. In the NS group, the left CPL showed rsFC with the bilateral CPL, bilateral frontal lobe (BFL), left precuneus and right inferior parietal lobule, while the right CPL showed rsFC with the bilateral temporal lobe, right cerebellum anterior lobe, right CPL, left frontal lobe, left anterior cingulate, right posterior cingulate, and bilateral inferior parietal lobule. In the SD group, the left CPL showed rsFC with the left posterior cingulate gyrus bilateral CPL, left precuneus, left precentral gyrus, BFL, and the left parietal lobe, while the right CPL showed rsFC with bilateral cerebellum anterior lobe, bilateral CPL, left frontal lobe and left temporal lobe. Compared with the NS group, the left CPL had increased rsFC in the SD group with the right inferior frontal gyrus, right fusiform gyrus, right cingulate gyrus, right thalamus, and bilateral precuneus, and decreased rsFC with the BFL, while the right CPL had increased rsFC with the left superior frontal gyrus and decreased rsFC with the left precentral gyrus, right superior temporal gyrus, and the BFL. Conclusion Bilateral CPL are possibly involved in acupuncture stimulation in different manners, and the right CPL showed more rsFC impairment. PMID:26064046

  9. Neural circuitry and immunity.

    PubMed

    Pavlov, Valentin A; Tracey, Kevin J

    2015-12-01

    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuro-immune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex, are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases define the emerging field of Bioelectronic Medicine. PMID:26512000

  10. Sleep in space as a new medical frontier: the challenge of preserving normal sleep in the abnormal environment of space missions

    PubMed Central

    Pandi-Perumal, Seithikurippu R.; Gonfalone, Alain A.

    2016-01-01

    Space agencies such as the National Aeronautics and Space Administration of the United States, the Russian Federal Space Agency, the European Space Agency, the China National Space Administration, the Japan Aerospace Exploration Agency, and Indian Space Research Organization, although differing in their local political agendas, have a common interest in promoting all applied sciences that may facilitate man’s adaptation to life beyond the earth. One of man’s most important adaptations has been the evolutionary development of sleep cycles in response to the 24 hour rotation of the earth. Less well understood has been man’s biological response to gravity. Before humans ventured into space, many questioned whether sleep was possible at all in microgravity environments. It is now known that, in fact, space travelers can sleep once they leave the pull of the earth’s gravity, but that the sleep they do get is not completely refreshing and that the associated sleep disturbances can be elaborate and variable. According to astronauts’ subjective reports, the duration of sleep is shorter than that on earth and there is an increased incidence of disturbed sleep. Objective sleep recordings carried out during various missions including the Skylab missions, space shuttle missions, and Mir missions all support the conclusion that, compared to sleep on earth, the duration in human sleep in space is shorter, averaging about six hours. In the new frontier of space exploration, one of the great practical problems to be solved relates to how man can preserve “normal” sleep in a very abnormal environment. The challenge of managing fatigue and sleep loss during space mission has critical importance for the mental efficiency and safety of the crew and ultimately for the success of the mission itself. Numerous "earthly" examples now show that crew fatigue on ships, trucks, and long-haul jetliners can lead to inadequate performance and sometimes fatal consequences, a reality

  11. Recognition of sleep paralysis among normal adults in Canada and in Japan.

    PubMed

    Fukuda, K; Ogilvie, R D; Takeuchi, T

    2000-06-01

    There were no differences between Canada and Japan in the prevalence and symptoms of sleep paralysis (SP), but many more Canadians considered SP to be a dream. The difference was considered to be derived from the fact that there is a common expression for SP in Japan but there is not one in Canada. Then, we investigated why there are individuals who consider SP to be a dream and others who do not, and found that many Japanese who regarded it as a dream did not report the symptom of 'unable to move', while in Canada, self-evaluation of spirituality was different between the two groups. PMID:11186082

  12. Extracorporeal Membrane Oxygenation Circuitry

    PubMed Central

    Horton, Stephen B.; McMullan, D. Michael; Bartlett, Robert H

    2013-01-01

    The extracorporeal membrane oxygenation (ECMO) circuit is made of a number of components that have been customized to provide adequate tissue oxygen delivery in patients with severe cardiac and/or respiratory failure for a prolonged period of time (days to weeks). A standard ECMO circuit consists of a mechanical blood pump, gas exchange device, and a heat exchanger all connected together with circuit tubing. ECMO circuits can vary from simple to complex and may include a variety of blood flow and pressure monitors, continuous oxyhemoglobin saturation monitors, circuit access sites and a bridge connecting the venous access and arterial infusion limbs of the circuit. Significant technical advancements have been made in the equipment available for short and long term ECMO applications. Contemporary ECMO circuits have greater biocompatibility and allow for more prolonged cardiopulmonary support time, while minimizing the procedure-related complications of bleeding, thrombosis and other physiologic derangements that were so common with the early application of ECMO. Modern era ECMO circuitry and components are simpler, safer, more compact and can be used across a wide variety of patient sizes from neonates to adults. PMID:23735989

  13. Cone-beam CT analysis of patients with obstructive sleep apnea compared to normal controls

    PubMed Central

    Cohen, Ruben; Looney, Stephen; Kalathingal, Sajitha; De Rossi, Scott

    2016-01-01

    Purpose To evaluate the upper airway dimensions of obstructive sleep apnea (OSA) and control subjects using a cone-beam computed tomography (CBCT) unit commonly applied in clinical practice in order to assess airway dimensions in the same fashion as that routinely employed in a clinical setting. Materials and Methods This was a retrospective analysis utilizing existing CBCT scans to evaluate the dimensions of the upper airway in OSA and control subjects. The CBCT data of sixteen OSA and sixteen control subjects were compared. The average area, average volume, total volume, and total length of the upper airway were computed. Width and anterior-posterior (AP) measurements were obtained on the smallest axial slice. Results OSA subjects had a significantly smaller average airway area, average airway volume, total airway volume, and mean airway width. OSA subjects had a significantly larger airway length measurement. The mean A-P distance was not significantly different between groups. Conclusion OSA subjects have a smaller upper airway compared to controls with the exception of airway length. The lack of a significant difference in the mean A-P distance may indicate that patient position during imaging (upright vs. supine) can affect this measurement. Comparison of this study with a future prospective study design will allow for validation of these results. PMID:27051634

  14. Science and Teachers: Cardboard Circuitry

    ERIC Educational Resources Information Center

    Science and Children, 1977

    1977-01-01

    Diagrams a quick, improvised cardboard circuitry for battery holder, bulb socket, and switches. Materials include corrugated cardboard, paper clips, and rubber bands. Assembly useful in determining the electrical conductivity of substances. (CS)

  15. Irregular sleep-wake syndrome

    MedlinePlus

    Sleep-wake syndrome - irregular ... routine during the day. The amount of total sleep time is normal, but the body clock loses ... have a different condition, such as shift work sleep disorder or jet lag syndrome.

  16. Sleep for cognitive enhancement

    PubMed Central

    Diekelmann, Susanne

    2014-01-01

    Sleep is essential for effective cognitive functioning. Loosing even a few hours of sleep can have detrimental effects on a wide variety of cognitive processes such as attention, language, reasoning, decision making, learning and memory. While sleep is necessary to ensure normal healthy cognitive functioning, it can also enhance performance beyond the boundaries of the normal condition. This article discusses the enhancing potential of sleep, mainly focusing on the domain of learning and memory. Sleep is known to facilitate the consolidation of memories learned before sleep as well as the acquisition of new memories to be learned after sleep. According to a widely held model this beneficial effect of sleep relies on the neuronal reactivation of memories during sleep that is associated with sleep-specific brain oscillations (slow oscillations, spindles, ripples) as well as a characteristic neurotransmitter milieu. Recent research indicates that memory processing during sleep can be boosted by (i) cueing memory reactivation during sleep; (ii) stimulating sleep-specific brain oscillations; and (iii) targeting specific neurotransmitter systems pharmacologically. Olfactory and auditory cues can be used, for example, to increase reactivation of associated memories during post-learning sleep. Intensifying neocortical slow oscillations (the hallmark of slow wave sleep (SWS)) by electrical or auditory stimulation and modulating specific neurotransmitters such as noradrenaline and glutamate likewise facilitates memory processing during sleep. With this evidence in mind, this article concludes by discussing different methodological caveats and ethical issues that should be considered when thinking about using sleep for cognitive enhancement in everyday applications. PMID:24765066

  17. Neuroimmunologic aspects of sleep and sleep loss

    NASA Technical Reports Server (NTRS)

    Rogers, N. L.; Szuba, M. P.; Staab, J. P.; Evans, D. L.; Dinges, D. F.

    2001-01-01

    The complex and intimate interactions between the sleep and immune systems have been the focus of study for several years. Immune factors, particularly the interleukins, regulate sleep and in turn are altered by sleep and sleep deprivation. The sleep-wake cycle likewise regulates normal functioning of the immune system. Although a large number of studies have focused on the relationship between the immune system and sleep, relatively few studies have examined the effects of sleep deprivation on immune parameters. Studies of sleep deprivation's effects are important for several reasons. First, in the 21st century, various societal pressures require humans to work longer and sleep less. Sleep deprivation is becoming an occupational hazard in many industries. Second, to garner a greater understanding of the regulatory effects of sleep on the immune system, one must understand the consequences of sleep deprivation on the immune system. Significant detrimental effects on immune functioning can be seen after a few days of total sleep deprivation or even several days of partial sleep deprivation. Interestingly, not all of the changes in immune physiology that occur as a result of sleep deprivation appear to be negative. Numerous medical disorders involving the immune system are associated with changes in the sleep-wake physiology--either being caused by sleep dysfunction or being exacerbated by sleep disruption. These disorders include infectious diseases, fibromyalgia, cancers, and major depressive disorder. In this article, we will describe the relationships between sleep physiology and the immune system, in states of health and disease. Interspersed will be proposals for future research that may illuminate the clinical relevance of the relationships between sleeping, sleep loss and immune function in humans. Copyright 2001 by W.B. Saunders Company.

  18. Brain circuitry of compulsivity.

    PubMed

    van den Heuvel, Odile A; van Wingen, Guido; Soriano-Mas, Carles; Alonso, Pino; Chamberlain, Samuel R; Nakamae, Takashi; Denys, Damiaan; Goudriaan, Anna E; Veltman, Dick J

    2016-05-01

    Compulsivity is associated with alterations in the structure and the function of parallel and interacting brain circuits involved in emotional processing (involving both the reward and the fear circuits), cognitive control, and motor functioning. These brain circuits develop during the pre-natal period and early childhood under strong genetic and environmental influences. In this review we bring together literature on cognitive, emotional, and behavioral processes in compulsivity, based mainly on studies in patients with obsessive-compulsive disorder and addiction. Disease symptoms normally change over time. Goal-directed behaviors, in response to reward or anxiety, often become more habitual over time. During the course of compulsive disorders the mental processes and repetitive behaviors themselves contribute to the neuroplastic changes in the involved circuits, mainly in case of chronicity. On the other hand, successful treatment is able to normalize altered circuit functioning or to induce compensatory mechanisms. We conclude that insight in the neurobiological characteristics of the individual symptom profile and disease course, including the potential targets for neuroplasticity is an unmet need to advance the field. PMID:26711687

  19. Promoting healthy sleep.

    PubMed

    Price, Bob

    2016-03-01

    Nurses are accustomed to helping others with their sleep problems and dealing with issues such as pain that may delay or interrupt sleep. However, they may be less familiar with what constitutes a healthy night's sleep. This article examines what is known about the process and purpose of sleep, and examines the ways in which factors that promote wakefulness and sleep combine to help establish a normal circadian rhythm. Theories relating to the function of sleep are discussed and research is considered that suggests that sleep deficit may lead to metabolic risks, including heart disease, obesity, type 2 diabetes mellitus and several types of cancer. PMID:26959472

  20. Review of Disrupted Sleep Patterns in Smith-Magenis Syndrome and Normal Melatonin Secretion in a Patient with an Atypical Interstitial 17p11.2 Deletion

    PubMed Central

    Boudreau, Eilis A.; Johnson, Kyle P.; Jackman, Angela R.; Blancato, Jan; Huizing, Marjan; Bendavid, Claude; Jones, MaryPat; Chandrasekharappa, Settara C.; Lewy, Alfred J.; Smith, Ann C. M.; Magenis, R. Ellen

    2009-01-01

    Smith-Magenis syndrome (SMS) is a disorder characterized by multiple congenital anomalies and behavior problems, including abnormal sleep patterns. It is most commonly due to a 3.5 Mb interstitial deletion of chromosome 17 band p11.2. Secretion of melatonin, a hormone produced by the pineal gland, is the body’s signal for nighttime darkness. Published reports of 24-hour melatonin secretion patterns in two independent SMS cohorts (US & France) document an inverted endogenous melatonin pattern in virtually all cases (96%), suggesting that this finding is pathognomic for the syndrome. We report on a woman with SMS due to an atypical large proximal deletion (∼6Mb; cen<->TNFRSFproteinB) of chromosome band (17)(p11.1p11.2) who presents with typical sleep disturbances but a normal pattern of melatonin secretion. We further describe a melatonin light suppression test in this patient. This is the second reported patient with a normal endogenous melatonin rhythm in SMS associated with an atypical large deletion. These two patients are significant because they suggest that the sleep disturbances in SMS cannot be solely attributed to the abnormal diurnal melatonin secretion versus the normal nocturnal pattern. PMID:19530184

  1. Comparison of Detection of Normal Puberty in Boys by a Hormonal Sleep Test and a Gonadotropin-Releasing Hormone Agonist Test

    PubMed Central

    Bordini, Brian; Yu, Christine

    2012-01-01

    Context: The magnitude of sleep-related gonadotropin rise required to activate pubertal gonadal function is not established. Objective: Our objective was to determine the normal relationship between sleep-related pubertal hormone levels and pituitary-testicular responsiveness to a GnRH agonist (GnRHag) test across the pubertal transition. Design/Setting and Participants: We conducted a prospective study in a General Clinical Research Center with healthy 9- to 15-yr-old volunteer boys. Interventions: Interventions included overnight blood sampling followed by leuprolide acetate injection (10 μg/kg). Primary Outcome Variables: LH, FSH, and testosterone levels were evaluated. Results: LH levels during sleep and post-GnRHag rose steadily during the late prepubertal years. Sleep peak LH correlated highly with the LH response to GnRHag across groups (r = 0.913). A sleep peak LH level of at least 3.7 U/liter predicted pubertal testicular activation with 100% accuracy. LH of at least 14.8 and at least 19.0 U/liter 4 h after GnRHag, respectively, predicted puberty with 100% sensitivity/94% specificity and 100% specificity/94% sensitivity. Overweight pubertal boys had transiently prolonged responses to GnRHag. FSH rose during both waking and sleeping hours during the prepubertal years, and all pubertal boys had an FSH level of at least 0.9 U/liter awake and at least 1.2 U/liter asleep. Sleep LH was more closely related than FSH to testicular size. Conclusions: These data suggest that a critical LH level during sleep (≥3.7 U/liter) heralds the onset of pubertal virilization and that this level is predictable by LH of at least 14.8–19 U/liter 4 h after GnRHag. These data also suggest that LH stimulation of testicular androgen production plays a role in stimulating testicular tubule growth once a critical level of FSH is achieved. PMID:23043188

  2. Sleep and sleep disorders in older adults.

    PubMed

    Crowley, Kate

    2011-03-01

    A common but significant change associated with aging is a profound disruption to the daily sleep-wake cycle. It has been estimated that as many as 50% of older adults complain about difficulty initiating or maintaining sleep. Poor sleep results in increased risk of significant morbidity and mortality. Moreover, in younger adults, compromised sleep has been shown to have a consistent effect on cognitive function, which may suggest that sleep problems contribute to the cognitive changes that accompany older age. The multifactorial nature of variables affecting sleep in old age cannot be overstated. Changes in sleep have been thought to reflect normal developmental processes, which can be further compromised by sleep disturbances secondary to medical or psychiatric diseases (e.g., chronic pain, dementia, depression), a primary sleep disorder that can itself be age-related (e.g., Sleep Disordered Breathing and Periodic Limb Movements During Sleep), or some combination of any of these factors. Given that changes in sleep quality and quantity in later life have implications for quality of life and level of functioning, it is imperative to distinguish the normal age-related sleep changes from those originating from pathological processes. PMID:21225347

  3. Comparison of Detection of Normal Puberty in Girls by a Hormonal Sleep Test and a Gonadotropin-Releasing Hormone Agonist Test

    PubMed Central

    Bordini, Brian; Yu, Christine

    2013-01-01

    Context: The magnitude of sleep-related gonadotropin rise required to activate pubertal feminization is not established. Objective: The objective of the study was to determine the normal relationship of pubertal hormone responses to sleep and to GnRH agonist (GnRHag) challenge across the female pubertal transition. Design/Setting: This was a prospective study in a General Clinical Research Center. Participants: Sixty-two healthy 6- to 13-year-old volunteer girls participated in the study. Interventions: Interventions included overnight blood sampling followed by GnRHag (leuprolide acetate) injection. Primary Outcome Variables: The primary outcome variables included LH, FSH, and estradiol. Results: LH levels rose steadily during sleep and after GnRHag throughout the prepubertal years. The LH response to sleep and GnRHag correlated well across groups (eg, r = 0.807, peak vs 4 h post-GnRHag value); however, this correlation was less robust than in boys (r = 0.964, P < .01). Sleep peak LH of 1.3 U/L or greater had 85% sensitivity and 2.1 U/L or greater 96% specificity for detecting puberty (thelarche). The LH 1-hour post-GnRHag value of 3.2 U/L or greater had 95% sensitivity and 5.5 U/L or greater 96% specificity for detecting puberty. Girls entered puberty at lower LH levels than boys. FSH levels rose day and night during the prepubertal years to reach 1.0 U/L or greater during puberty but discriminated puberty poorly. Estradiol of 34 pg/mL or greater at 20–24 hours after GnRHag was 95% sensitive and 60 pg/mL or greater was 95% specific for puberty. Thirty-six percent of overweight early pubertal girls had meager hormonal evidence of puberty. Conclusions: These data suggest that sleep-related pubertal hormone levels critical for puberty are normally reflected in the responses to GnRHag testing across the normal female pubertal transition. Inconsistencies between clinical and hormonal staging may arise from peripubertal cyclicity of neuroendocrine function and from

  4. Nonlinear analysis of the change points between A and B phases during the Cyclic Alternating Pattern under normal sleep.

    PubMed

    Chouvarda, I; Mendez, M O; Alba, A; Bianchi, A M; Grassi, A; Arce-Santana, E; Rosso, V; Terzano, M G; Parrino, L

    2012-01-01

    This study analyzes the nonlinear properties of the EEG at transition points of the sequences that build the Cyclic Alternating Pattern (CAP). CAP is a sleep phenomenon built up by consecutive sequences of activations and non-activations observed during the sleep time. The sleep condition can be evaluated from the patterns formed by these sequences. Eleven recordings from healthy and good sleepers were included in this study. We investigated the complexity properties of the signal at the onset and offset of the activations. The results show that EEG signals present significant differences (p<0.05) between activations and non-activations in the Sample Entropy and Tsallis Entropy indices. These indices could be useful in the development of automatic methods for detecting the onset and offset of the activations, leading to significant savings of the physician's time by simplifying the manual inspection task. PMID:23366075

  5. Sleep disordered breathing at the extremes of age: infancy

    PubMed Central

    Tan, Hui-Leng

    2016-01-01

    Educational aims The reader will be able to: Understand normal sleep patterns in infancyAppreciate disorders of breathing in infancyAppreciate disorders of respiratory control Normal sleep in infancy is a time of change with alterations in sleep architecture, sleep duration, sleep patterns and respiratory control as an infant grows older. Interactions between sleep and respiration are key to the mechanisms by which infants are vulnerable to sleep disordered breathing. This review discusses normal sleep in infancy, as well as normal sleep breathing in infancy. Sleep disordered breathing (obstructive and central) as well as disorders of ventilatory control and infant causes of hypoventilation are all reviewed in detail. PMID:27064478

  6. Sleep disorders in children.

    PubMed

    Hoban, Timothy F

    2010-01-01

    Although sleep disorders such as insomnia and obstructive sleep apnea are common in both children and adults, the clinical features and treatments for these conditions differ considerably between these two populations. Whereas an adult with obstructive sleep apnea typically presents with a history of obesity, snoring, and prominent daytime somnolence, a child with the condition is more likely to present with normal body weight, tonsillar hypertrophy, and inattentiveness during school classes. The adult with suspected sleep apnea almost always undergoes a baseline polysomnogram and proceeds to treatment only if this test confirms the diagnosis, while many children with suspected sleep apnea are treated empirically with adenotonsillectomy without ever receiving a sleep study to verify the diagnosis. This article reviews sleep disorders in children, with a particular focus on age-related changes in sleep, conditions that primarily affect children, and disorders for which clinical manifestations and treatment differ substantially from the adult population. PMID:20146688

  7. Isolated sleep paralysis elicited by sleep interruption.

    PubMed

    Takeuchi, T; Miyasita, A; Sasaki, Y; Inugami, M; Fukuda, K

    1992-06-01

    We elicited isolated sleep paralysis (ISP) from normal subjects by a nocturnal sleep interruption schedule. On four experimental nights, 16 subjects had their sleep interrupted for 60 minutes by forced awakening at the time when 40 minutes of nonrapid eye movement (NREM) sleep had elapsed from the termination of rapid eye movement (REM) sleep in the first or third sleep cycle. This schedule produced a sleep onset REM period (SOREMP) after the interruption at a high rate of 71.9%. We succeeded in eliciting six episodes of ISP in the sleep interruptions performed (9.4%). All episodes of ISP except one occurred from SOREMP, indicating a close correlation between ISP and SOREMP. We recorded verbal reports about ISP experiences and recorded the polysomnogram (PSG) during ISP. All of the subjects with ISP experienced inability to move and were simultaneously aware of lying in the laboratory. All but one reported auditory/visual hallucinations and unpleasant emotions. PSG recordings during ISP were characterized by a REM/W stage dissociated state, i.e. abundant alpha electroencephalographs and persistence of muscle atonia shown by the tonic electromyogram. Judging from the PSG recordings, ISP differs from other dissociated states such as lucid dreaming, nocturnal panic attacks and REM sleep behavior disorders. We compare some of the sleep variables between ISP and non-ISP nights. We also discuss the similarities and differences between ISP and sleep paralysis in narcolepsy. PMID:1621022

  8. Sleep in traumatic brain injury.

    PubMed

    Vermaelen, James; Greiffenstein, Patrick; deBoisblanc, Bennett P

    2015-07-01

    More than one-half million patients are hospitalized annually for traumatic brain injury (TBI). One-quarter demonstrate sleep-disordered breathing, up to 50% experience insomnia, and half have hypersomnia. Sleep disturbances after TBI may result from injury to sleep-regulating brain tissue, nonspecific neurohormonal responses to systemic injury, ICU environmental interference, and medication side effects. A diagnosis of sleep disturbances requires a high index of suspicion and appropriate testing. Treatment starts with a focus on making the ICU environment conducive to normal sleep. Treating sleep-disordered breathing likely has outcome benefits in TBI. The use of sleep promoting sedative-hypnotics and anxiolytics should be judicious. PMID:26118920

  9. Sleep and Women

    MedlinePlus

    ... Benefits Side Effects Variations Tips Healthy Sleep Habits Sleep Disorders by Category Insomnias Insomnia Child Insomnia Short Sleeper ... Work SIDS Sleep apnea Sleep Debt Sleep Deprivation Sleep Disorders Sleep history Sleep hygiene sleep length Sleep Need ...

  10. Interaction between sleep-disordered breathing and apolipoprotein E genotype on cerebrospinal fluid biomarkers for Alzheimer's disease in cognitively normal elderly individuals.

    PubMed

    Osorio, Ricardo S; Ayappa, Indu; Mantua, Janna; Gumb, Tyler; Varga, Andrew; Mooney, Anne M; Burschtin, Omar E; Taxin, Zachary; During, Emmanuel; Spector, Nicole; Biagioni, Milton; Pirraglia, Elizabeth; Lau, Hiuyan; Zetterberg, Henrik; Blennow, Kaj; Lu, Shou-En; Mosconi, Lisa; Glodzik, Lidia; Rapoport, David M; de Leon, Mony J

    2014-06-01

    Previous studies have suggested a link between sleep disordered breathing (SDB) and dementia risk. In the present study, we analyzed the relationship between SDB severity, cerebrospinal fluid (CSF) Alzheimer's disease-biomarkers, and the ApoE alleles. A total of 95 cognitively normal elderly participants were analyzed for SDB severity, CSF measures of phosphorylated-tau (p-tau), total-tau (t-tau), and amyloid beta 42 (Aβ-42), as well as ApoE allele status. In ApoE3+ subjects, significant differences were found between sleep groups for p-tau (F[df2] = 4.3, p = 0.017), and t-tau (F[df2] = 3.3, p = 0.043). Additionally, among ApoE3+ subjects, the apnea and/or hypopnea with 4% O2-desaturation index was positively correlated with p-tau (r = 0.30, p = 0.023), t-tau (r = 0.31, p = 0.021), and Aβ-42 (r = 0.31, p = 0.021). In ApoE2+ subjects, the apnea and/or hypopnea with 4% O2-desaturation index was correlated with lower levels of CSF Aβ-42 (r = -0.71, p = 0.004), similarly to ApoE4+ subjects where there was also a trend toward lower CSF Aβ-42 levels. Our observations suggest that there is an association between SDB and CSF Alzheimer's disease-biomarkers in cognitively normal elderly individuals. Existing therapies for SDB such as continuous positive airway pressure could delay the onset to mild cognitive impairment or dementia in normal elderly individuals. PMID:24439479

  11. The interaction between sleep-disordered breathing and ApoE genotype on cerebrospinal fluid biomarkers for Alzheimer's disease in cognitively normal elderly

    PubMed Central

    Osorio, Ricardo S.; Ayappa, Indu; Mantua, Janna; Gumb, Tyler; Varga, Andrew; Mooney, Anne M.; Burschtin, Omar E.; Taxin, Zachary; During, Emmanuel; Spector, Nicole; Biagioni, Milton; Pirraglia, Elizabeth; Lau, Hiuyan; Zetterberg, Henrik; Blennow, Kaj; Lu, Shou-En; Mosconi, Lisa; Glodzik, Lidia; Rapoport, David M.; de Leon, Mony J.

    2014-01-01

    Background Previous studies have suggested a link between Sleep Disordered Breathing (SDB) and dementia risk. In the present study, we analyzed the relationship between SDB severity, cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers, and the ApoE alleles. Methods 95 cognitively normal elderly participants were analyzed for SDB severity, CSF measures of phosphorylated-tau (P-Tau), total-tau (T-Tau), and amyloid beta 42 (Aβ42), as well as ApoE allele status. Findings In ApoE3+ subjects, significant differences were found between sleep groups for P-Tau (F[df2]=4.3, p=0.017), and T-Tau (F[df2]=3.3, p=0.043). Additionally, among ApoE3+ subjects, the apnea/hypopnea with 4% O2-desaturation index (AHI4%) was positively correlated with P-Tau (r=0.30, p=0.023), T-Tau (r=0.31, p=0.021), and Aβ42 (r=0.31, p=0.021). In ApoE2+ subjects, AHI4% was correlated with lower levels of CSF Aβ42 (r=−0.71, p=0.004), similarly to ApoE4+ subjects where there was also a trend towards lower CSF Aβ42 levels Interpretation Our observations suggest that there is an association between SDB and CSF AD- biomarkers in cognitively normal elderly. Existing therapies for SDB such as CPAP could delay the onset to mild cognitive impairment or dementia in normal elderly. PMID:24439479

  12. Ganzfeld Stimulation or Sleep Enhance Long Term Motor Memory Consolidation Compared to Normal Viewing in Saccadic Adaptation Paradigm

    PubMed Central

    Voges, Caroline; Helmchen, Christoph; Heide, Wolfgang; Sprenger, Andreas

    2015-01-01

    Adaptation of saccade amplitude in response to intra-saccadic target displacement is a type of implicit motor learning which is required to compensate for physiological changes in saccade performance. Once established trials without intra-saccadic target displacement lead to de-adaptation or extinction, which has been attributed either to extra-retinal mechanisms of spatial constancy or to the influence of the stable visual surroundings. Therefore we investigated whether visual deprivation (“Ganzfeld”-stimulation or sleep) can partially maintain this motor learning compared to free viewing of the natural surroundings. Thirty-five healthy volunteers performed two adaptation blocks of 100 inward adaptation trials – interspersed by an extinction block – which were followed by a two-hour break with or without visual deprivation (VD). Using additional adaptation and extinction blocks short and long (4 weeks) term memory of this implicit motor learning were tested. In the short term, motor memory tested immediately after free viewing was superior to adaptation performance after VD. In the long run, however, effects were opposite: motor memory and relearning of adaptation was superior in the VD conditions. This could imply independent mechanisms that underlie the short-term ability of retrieving learned saccadic gain and its long term consolidation. We suggest that subjects mainly rely on visual cues (i.e., retinal error) in the free viewing condition which makes them prone to changes of the visual stimulus in the extinction block. This indicates the role of a stable visual array for resetting adapted saccade amplitudes. In contrast, visual deprivation (GS and sleep), might train subjects to rely on extra-retinal cues, e.g., efference copy or prediction to remap their internal representations of saccade targets, thus leading to better consolidation of saccadic adaptation. PMID:25867186

  13. Patients with obstructive sleep apnea exhibit genioglossus dysfunction that is normalized after treatment with continuous positive airway pressure.

    PubMed

    Carrera, M; Barbé, F; Sauleda, J; Tomás, M; Gómez, C; Agustí, A G

    1999-06-01

    Obstructive sleep apnea syndrome (OSAS) is characterized by repetitive episodes of pharyngeal closure during sleep. The pathogenesis of OSAS is unclear. We hypothesized that the genioglossus (GG), the most important pharyngeal dilator muscle, would be abnormal in patients with OSAS. Further, because treatment with continuous positive airway pressure (CPAP) is very effective clinically in these patients, we investigated the effects of CPAP upon the structure and function of the GG. We studied 16 patients with OSAS (nine of them at diagnosis and seven after having been under treatment with CPAP for at least 1 yr) and 11 control subjects in whom OSAS was excluded clinically. A biopsy of the GG was obtained in each subject, mounted in a tissue bath, and stimulated through platinum electrodes. The following measurements were obtained: maximal twitch tension, contraction time, half-relaxation time, the force-frequency relationship, and the response to a fatiguing protocol. The percentage of type I ("slow twitch") and type II ("fast twitch") fibers was also quantified. Patients with OSAS showed a greater GG fatigability than did control subjects (ANOVA, p < 0.001). Interestingly, this abnormality was entirely corrected by CPAP. Likewise, the percentage of type II fibers was significantly higher in patients with OSAS (59 +/- 4%) than in control subjects (39 +/- 4%, p < 0.001) and, again, these structural changes were corrected by CPAP (40 +/- 3%, p < 0.001). These results show that the function and structure of the GG is abnormal in patients with OSAS. Because these abnormalities are corrected by CPAP, we suggest that they are likely a consequence, not a cause, of the disease. PMID:10351945

  14. Sleep disorders in pregnancy

    PubMed Central

    Bourjeily, Ghada

    2009-01-01

    Sleep complaints are a common occurrence in pregnancy that are in part due to pregnancy-associated anatomic and physiological changes but may also be due to pathological causes. In the non-pregnant population, sleep deprivation has been associated with physical and cognitive issues; poor sleep may even be associated with adverse maternal outcomes. Maternal obesity, one of the most prevalent risk factors in obstetric practices, together with physiologic changes of pregnancy predispose to the development of sleep disordered breathing. Symptoms of sleep disordered breathing have also been associated with poor maternal outcomes. Management options of restless legs syndrome and narcolepsy pose a challenge in pregnancy; benefits of therapy need to be weighed against the potential harm to the fetus. This article briefly reviews the normal changes in pregnancy affecting sleep, gives an overview of certain sleep disorders occurring in pregnancy, and suggests management options specific for this population.

  15. Sleep and respiratory physiology in children.

    PubMed

    Ross, Kristie R; Rosen, Carol L

    2014-09-01

    Maturational changes of breathing during sleep contribute to the unique features of childhood sleep disorders. The clinician's ability to evaluate common disorders related to sleep in children relies on an understanding of normal patterns of breathing during sleep across the ages. This article reviews respiratory physiology during sleep throughout childhood. Specific topics include an overview of respiration during sleep, normal parameters through childhood including respiratory rate, oxygen saturation, and measures of carbon dioxide, normal patterns of apneas throughout childhood, and features of breathing during sleep seen in term and preterm infants. PMID:25156762

  16. The Neuroprotective Aspects of Sleep

    PubMed Central

    Eugene, Andy R.; Masiak, Jolanta

    2015-01-01

    Sleep is an important component of human life, yet many people do not understand the relationship between the brain and the process of sleeping. Sleep has been proven to improve memory recall, regulate metabolism, and reduce mental fatigue. A minimum of 7 hours of daily sleep seems to be necessary for proper cognitive and behavioral function. The emotional and mental handicaps associated with chronic sleep loss as well as the highly hazardous situations which can be contributed to the lack of sleep is a serious concern that people need to be aware of. When one sleeps, the brain reorganizes and recharges itself, and removes toxic waste byproducts which have accumulated throughout the day. This evidence demonstrates that sleeping can clear the brain and help maintain its normal functioning. Multiple studies have been done to determine the effects of total sleep deprivation; more recently some have been conducted to show the effects of sleep restriction, which is a much more common occurrence, have the same effects as total sleep deprivation. Each phase of the sleep cycle restores and rejuvenates the brain for optimal function. When sleep is deprived, the active process of the glymphatic system does not have time to perform that function, so toxins can build up, and the effects will become apparent in cognitive abilities, behavior, and judgment. As a background for this paper we have reviewed literature and research of sleep phases, effects of sleep deprivation, and the glymphatic system of the brain and its restorative effect during the sleep cycle. PMID:26594659

  17. Sleep Disorders

    MedlinePlus

    ... the day, even if you have had enough sleep? You might have a sleep disorder. The most common kinds are Insomnia - a hard time falling or staying asleep Sleep apnea - breathing interruptions during sleep Restless legs syndrome - ...

  18. Sleep Problems

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Sleep Problems Share Tweet Linkedin Pin it More sharing ... PDF 474KB) En Español Medicines to Help You Sleep Tips for Better Sleep Basic Facts about Sleep ...

  19. Sleep Quiz

    MedlinePlus

    ... on. Photo: iStock Take the National Center on Sleep Disorders Research Sleep Quiz TRUE OR FALSE ? _____1. Sleep ... sleepy during the day, you may have a sleep disorder. _____4. Opening the car window or turning the ...

  20. Sleep Disorders

    MedlinePlus

    ... have had enough sleep? You might have a sleep disorder. The most common kinds are Insomnia - a hard ... problems called parasomnias. There are treatments for most sleep disorders. Sometimes just having regular sleep habits can help.

  1. Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization.

    PubMed

    Ray, Laura B; Sockeel, Stéphane; Soon, Melissa; Bore, Arnaud; Myhr, Ayako; Stojanoski, Bobby; Cusack, Rhodri; Owen, Adrian M; Doyon, Julien; Fogel, Stuart M

    2015-01-01

    A spindle detection method was developed that: (1) extracts the signal of interest (i.e., spindle-related phasic changes in sigma) relative to ongoing "background" sigma activity using complex demodulation, (2) accounts for variations of spindle characteristics across the night, scalp derivations and between individuals, and (3) employs a minimum number of sometimes arbitrary, user-defined parameters. Complex demodulation was used to extract instantaneous power in the spindle band. To account for intra- and inter-individual differences, the signal was z-score transformed using a 60 s sliding window, per channel, over the course of the recording. Spindle events were detected with a z-score threshold corresponding to a low probability (e.g., 99th percentile). Spindle characteristics, such as amplitude, duration and oscillatory frequency, were derived for each individual spindle following detection, which permits spindles to be subsequently and flexibly categorized as slow or fast spindles from a single detection pass. Spindles were automatically detected in 15 young healthy subjects. Two experts manually identified spindles from C3 during Stage 2 sleep, from each recording; one employing conventional guidelines, and the other, identifying spindles with the aid of a sigma (11-16 Hz) filtered channel. These spindles were then compared between raters and to the automated detection to identify the presence of true positives, true negatives, false positives and false negatives. This method of automated spindle detection resolves or avoids many of the limitations that complicate automated spindle detection, and performs well compared to a group of non-experts, and importantly, has good external validity with respect to the extant literature in terms of the characteristics of automatically detected spindles. PMID:26441604

  2. Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization

    PubMed Central

    Ray, Laura B.; Sockeel, Stéphane; Soon, Melissa; Bore, Arnaud; Myhr, Ayako; Stojanoski, Bobby; Cusack, Rhodri; Owen, Adrian M.; Doyon, Julien; Fogel, Stuart M.

    2015-01-01

    A spindle detection method was developed that: (1) extracts the signal of interest (i.e., spindle-related phasic changes in sigma) relative to ongoing “background” sigma activity using complex demodulation, (2) accounts for variations of spindle characteristics across the night, scalp derivations and between individuals, and (3) employs a minimum number of sometimes arbitrary, user-defined parameters. Complex demodulation was used to extract instantaneous power in the spindle band. To account for intra- and inter-individual differences, the signal was z-score transformed using a 60 s sliding window, per channel, over the course of the recording. Spindle events were detected with a z-score threshold corresponding to a low probability (e.g., 99th percentile). Spindle characteristics, such as amplitude, duration and oscillatory frequency, were derived for each individual spindle following detection, which permits spindles to be subsequently and flexibly categorized as slow or fast spindles from a single detection pass. Spindles were automatically detected in 15 young healthy subjects. Two experts manually identified spindles from C3 during Stage 2 sleep, from each recording; one employing conventional guidelines, and the other, identifying spindles with the aid of a sigma (11–16 Hz) filtered channel. These spindles were then compared between raters and to the automated detection to identify the presence of true positives, true negatives, false positives and false negatives. This method of automated spindle detection resolves or avoids many of the limitations that complicate automated spindle detection, and performs well compared to a group of non-experts, and importantly, has good external validity with respect to the extant literature in terms of the characteristics of automatically detected spindles. PMID:26441604

  3. Sleep physiology, abnormal States, and therapeutic interventions.

    PubMed

    Wickboldt, Alvah T; Bowen, Alex F; Kaye, Aaron J; Kaye, Adam M; Rivera Bueno, Franklin; Kaye, Alan D

    2012-01-01

    Sleep is essential. Unfortunately, a significant portion of the population experiences altered sleep states that often result in a multitude of health-related issues. The regulation of sleep and sleep-wake cycles is an area of intense research, and many options for treatment are available. The following review summarizes the current understanding of normal and abnormal sleep-related conditions and the available treatment options. All clinicians managing patients must recommend appropriate therapeutic interventions for abnormal sleep states. Clinicians' solid understanding of sleep physiology, abnormal sleep states, and treatments will greatly benefit patients regardless of their disease process. PMID:22778676

  4. Sleep Physiology, Abnormal States, and Therapeutic Interventions

    PubMed Central

    Wickboldt, Alvah T.; Bowen, Alex F.; Kaye, Aaron J.; Kaye, Adam M.; Rivera Bueno, Franklin; Kaye, Alan D.

    2012-01-01

    Sleep is essential. Unfortunately, a significant portion of the population experiences altered sleep states that often result in a multitude of health-related issues. The regulation of sleep and sleep-wake cycles is an area of intense research, and many options for treatment are available. The following review summarizes the current understanding of normal and abnormal sleep-related conditions and the available treatment options. All clinicians managing patients must recommend appropriate therapeutic interventions for abnormal sleep states. Clinicians' solid understanding of sleep physiology, abnormal sleep states, and treatments will greatly benefit patients regardless of their disease process. PMID:22778676

  5. Cued memory reactivation during sleep influences skill learning.

    PubMed

    Antony, James W; Gobel, Eric W; O'Hare, Justin K; Reber, Paul J; Paller, Ken A

    2012-08-01

    Information acquired during waking can be reactivated during sleep, promoting memory stabilization. After people learned to produce two melodies in time with moving visual symbols, we enhanced relative performance by presenting one melody during an afternoon nap. Electrophysiological signs of memory processing during sleep corroborated the notion that appropriate auditory stimulation that does not disrupt sleep can nevertheless bias memory consolidation in relevant brain circuitry. PMID:22751035

  6. Effects of adenoidectomy on markers of endothelial function and inflammation in normal-weight and overweight prepubescent children with sleep apnea

    PubMed Central

    Kelishadi, Roya; Nilforoushan, Neshat; Okhovat, Ahmadreza; Amra, Babak; Poursafa, Parinaz; Rogha, Mehrdad

    2011-01-01

    BACKGROUND: This trial study aimed to assess the effects of adenoidectomy on the markers of endothelial function and inflammation in normal-weight and overweight prepubescent children with obstructive sleep apnea (OSA). METHODS: This trial study was conducted in Isfahan, Iran in 2009. The study population was comprised of 90 prepubescent children (45 normal-weight and 45 overweight children), aged between 4-10 years old, who volunteered for adenoidectomy and had OSA documented by validated questionnaire. The assessment included filling questionnaire, physical examination, and laboratory tests; it was conducted before the surgery and was repeated two weeks and six months after the surgery. RESULTS: Out of the 90 children evaluated, 83 completed the 2-week evaluation and 72 patients continued with the study for the 6-month follow up. Markers of endothelial function, i.e., serum adhesion molecules including endothelial leukocyte adhesion molecule (E-selectin), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (sVCAM-1), and the markers of inflammation, i.e., interleukin-6, and high-sensitive C-reactive protein (hsCRP) decreased significantly in both normal-weight and overweight children after both two weeks and six months. After six months, the total and LDL-cholesterol showed a significant decrease in the overweight children. CONCLUSIONS: The findings of the study demonstrated that irrespective of the weight status, children with OSA had increased levels of the endothelial function and inflammation markers, which improved after OSA treatment by adenoidectomy. This might be a form of confirmatory evidence on the onset of atherogenesis from the early stages of the life, and the role of inflammation in the process. The reversibility of endothelial dysfunction after improvement of OSA underscores the importance of primordial and primary prevention of chronic diseases from the early stages of the life. PMID:22247723

  7. Signal conditioning circuitry design for instrumentation systems.

    SciTech Connect

    Larsen, Cory A.

    2012-01-01

    This report details the current progress in the design, implementation, and validation of the signal conditioning circuitry used in a measurement instrumentation system. The purpose of this text is to document the current progress of a particular design in signal conditioning circuitry in an instrumentation system. The input of the signal conditioning circuitry comes from a piezoresistive transducer and the output will be fed to a 250 ksps, 12-bit analog-to-digital converter (ADC) with an input range of 0-5 V. It is assumed that the maximum differential voltage amplitude input from the sensor is 20 mV with an unknown, but presumably high, sensor bandwidth. This text focuses on a specific design; however, the theory is presented in such a way that this text can be used as a basis for future designs.

  8. Sleep Quiz

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Sleep Quiz Past Issues / Summer 2007 Table of Contents ... on. Photo: iStock Take the National Center on Sleep Disorders Research Sleep Quiz TRUE OR FALSE ? _____1. ...

  9. Sleep Quiz

    MedlinePlus

    ... Home » About the NHLBI » Organization » National Center on Sleep Disorders Research (NCSDR) » Patient & Public Information » Sleep Quiz National Center on Sleep Disorders Research Research Professional Education Patient & Public Information Communications ...

  10. Sleep in Children with Williams Syndrome

    PubMed Central

    Mason, Thornton B.A.; Arens, Raanan; Sharman, Jaclyn; Bintliff-Janisak, Brooke; Schultz, Brian; Walters, Arthur S.; Cater, Jacqueline R.; Kaplan, Paige; Pack, Allan I.

    2011-01-01

    Objective To analyze sleep in children with Williams Syndrome (WS) compared to normal healthy controls in order to determine whether particular sleep features are characteristic of WS, and to explore associations between disturbed sleep and behavior. Methods 35 children with genetically-confirmed WS and 35 matched controls underwent overnight polysomnography and performance testing in the Sleep Center at the Children’s Hospital of Philadelphia. Parents completed questionnaires regarding the subjects’ sleep and behavior. Results WS subjects had significantly different sleep than controls, with decreased sleep efficiency, increased respiratory-related arousals, and increased slow wave sleep on overnight polysomnography. WS subjects were also noted to have more difficulty falling asleep, with greater restlessness and more arousals from sleep than controls. 52% of WS subjects had features of attention deficit- hyperactivity disorder. Conclusions Children with WS had significantly different sleep than controls in our sample. These differences demonstrated in our study may reflect genetic influences on sleep. PMID:21940205

  11. Sleeping worries away or worrying away sleep? Physiological evidence on sleep-emotion interactions.

    PubMed

    Talamini, Lucia M; Bringmann, Laura F; de Boer, Marieke; Hofman, Winni F

    2013-01-01

    Recent findings suggest that sleep might serve a role in emotional coping. However, most findings are based on subjective reports of sleep quality, while the relation with underlying sleep physiology is still largely unknown. In this study, the impact of an emotionally distressing experience on the EEG correlates of sleep was assessed. In addition, the association between sleep physiological parameters and the extent of emotional attenuation over sleep was determined. The experimental set up involved presentation of an emotionally neutral or distressing film fragment in the evening, followed by polysomnographic registration of undisturbed, whole-night sleep and assessment of emotional reactivity to film cues on the next evening. We found that emotional distress induced mild sleep deterioration, but also an increase in the proportion of slow wave sleep (SWS) and altered patterning of rapid eye movement (REM) sleep. Indeed, while REM sleep occurrence normally increases over the course of the night, emotional distress flattened this distribution and correlated with an increased number of REM periods. While sleep deterioration was negatively associated to emotional attenuation over sleep, the SWS response was positively related to such attenuation and may form part of a compensatory response to the stressor. Interestingly, trait-like SWS characteristics also correlated positively with the extent of emotion attenuation over sleep. The combined results provide strong evidence for an intimate reciprocal relation between sleep physiology and emotional processing. Moreover, individual differences in subjects' emotional and sleep responses suggest there may be a coupling of certain emotion and sleep traits into distinct emotional sleep types. PMID:23671601

  12. Sleep Perception in Obstructive Sleep Apnea: A Study Using Polysomnography and the Multiple Sleep Latency Test

    PubMed Central

    Nam, Hyunwoo; Lim, Jae-Sung; Kim, Jun-Soon; Lee, Keon-Joo; Koo, Dae Lim

    2016-01-01

    Background and Purpose Discrepancies between objectively measured sleep and subjective sleep perception in patients with insomnia have been reported. However, few studies have investigated sleep-state misperception in patients with obstructive sleep apnea (OSA). We designed this study to 1) delineate the factors that could affect this discrepancy and 2) infer an underlying mechanism in patients with OSA. Methods We recruited patients who visited our sleep clinic for the evaluation of their snoring and/or observed OSA. Participants completed a structured questionnaire and underwent overnight polysomnography. On the following day, five sessions of the multiple sleep latency test (MSLT) were applied. We divided the patients into two groups: normal sleep perception and abnormal perception. The abnormal-perception group included patients whose perceived total sleep time was less than 80% of that measured in polysomnography. Results Fifty OSA patients were enrolled from a university hospital sleep clinic. Excessive daytime sleepiness, periodic limb movement index (PLMI), and the presence of dreaming were positively associated with poor sleep perception. REM sleep near the sleep termination exerted important effects. Respiratory disturbance parameters were not related to sleep perception. There was a prolongation in the sleep latency in the first session of the MSLT and we suspected that a delayed sleep phase occurred in poor-sleep perceivers. Conclusions As an objectively good sleep does not match the subjective good-sleep perception in OSA, physicians should keep in mind that OSA patients who perceive that they have slept well does not mean that their OSA is less severe. PMID:27074296

  13. Interface Electronic Circuitry for an Electronic Tongue

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didier; Buehler, Martin

    2007-01-01

    Electronic circuitry has been developed to serve as an interface between an electronic tongue and digital input/output boards in a laptop computer that is used to control the tongue and process its readings. Electronic tongues can be used for a variety of purposes, including evaluating water quality, analyzing biochemicals, analyzing biofilms, and measuring electrical conductivities of soils.

  14. Development of Cortical Circuitry and Cognitive Function.

    ERIC Educational Resources Information Center

    Goldman-Rakic, Patricia S.

    1987-01-01

    Recent studies on the biological development of the prefrontal cortex in rhesus monkeys are reviewed. These studies have elucidated the basic neural circuitry underlying the delayed-response function in adult nonhuman primates and suggest that a critical mass of cortical synapses is important for the emergence of this cognitive function. (BN)

  15. Clock and cycle limit starvation-induced sleep loss in Drosophila

    PubMed Central

    Keene, Alex C.; Duboué, Erik R.; McDonald, Daniel M.; Dus, Monica; Suh, Greg S.B.; Waddell, Scott; Blau, Justin

    2010-01-01

    Summary Neural systems controlling the vital functions of sleep and feeding in mammals are tightly inter-connected: sleep deprivation promotes feeding, while starvation suppresses sleep. Here we show that starvation in Drosophila potently suppresses sleep suggesting that these two homeostatically regulated behaviors are also integrated in flies. The sleep suppressing effect of starvation is independent of the mushroom bodies, a previously identified sleep locus in the fly brain, and therefore is regulated by distinct neural circuitry. The circadian clock genes Clock (Clk) and cycle (cyc) are critical for proper sleep suppression during starvation. However, the sleep suppression is independent of light cues and of circadian rhythms because starved period mutants sleep like wild type flies. By selectively targeting subpopulations of Clk-expressing neurons we localize the observed sleep phenotype to the dorsally located circadian neurons. These findings show that Clk and cyc act during starvation to modulate the conflict of whether flies sleep or search for food. PMID:20541409

  16. [Sleep psychiatry].

    PubMed

    Chiba, Shigeru

    2013-01-01

    Sleep disorders are serious issues in modern society. There has been marked scientific interest in sleep for a century, with the discoveries of the electrical activity of the brain (EEG), sleep-wake system, rapid eye movement (REM) sleep, and circadian rhythm system. Additionally, the advent of video-polysomnography in clinical research has revealed some of the consequences of disrupted sleep and sleep deprivation in psychiatric disorders. Decades of clinical research have demonstrated that sleep disorders are intimately tied to not only physical disease (e. g., lifestyle-related disease) but psychiatric illness. According to The International Classification of Sleep Disorders (2005), sleep disorders are classified into 8 major categories: 1) insomnia, 2) sleep-related breathing disorders, 3) hypersomnias of central origin, 4) circadian rhythm sleep disorders, 5) parasomnias, 6) sleep-related movement disorders, 7) isolated symptoms, and 8) other sleep disorders. Several sleep disorders, including obstructive sleep apnea syndrome, restless legs syndrome, periodic limb movement disorder, sleepwalking, REM sleep behavior disorder, and narcolepsy, may be comorbid or possibly mimic numerous psychiatric disorders, and can even occur due to psychiatric pharmacotherapy. Moreover, sleep disorders may exacerbate underlying psychiatric disorders when left untreated. Therefore, psychiatrists should pay attention to the intimate relationship between sleep disorders and psychiatric symptoms. Sleep psychiatry is an academic field focusing on interrelations between sleep medicine and psychiatry. This mini-review summarizes recent findings in sleep psychiatry. Future research on the bidirectional relation between sleep disturbance and psychiatric symptoms will shed light on the pathophysiological view of psychiatric disorders and sleep disorders. PMID:24050022

  17. Sleep Loss and Inflammation

    PubMed Central

    Simpson, Norah S.; Meier-Ewert, Hans K.; Haack, Monika

    2012-01-01

    Controlled, experimental studies on the effects of acute sleep loss in humans have shown that mediators of inflammation are altered by sleep loss. Elevations in these mediators have been found to occur in healthy, rigorously screened individuals undergoing experimental vigils of more than 24 hours, and have also been seen in response to various durations of sleep restricted to between 25 and 50% of a normal 8 hour sleep amount. While these altered profiles represent small changes, such sub-clinical shifts in basal inflammatory cytokines are known to be associated with the future development of metabolic syndrome disease in healthy, asymptomatic individuals. Although the mechanism of this altered inflammatory status in humans undergoing experimental sleep loss is unknown, it is likely that autonomic activation and metabolic changes play key roles. PMID:21112025

  18. Sleep and Chronic Disease

    MedlinePlus

    ... CDC Cancel Submit Search The CDC Sleep and Sleep Disorders Note: Javascript is disabled or is not supported ... CDC.gov . Sleep About Us About Sleep Key Sleep Disorders Sleep and Chronic Disease How Much Sleep Do ...

  19. Sleep, its regulation and possible mechanisms of sleep disturbances.

    PubMed

    Porkka-Heiskanen, T; Zitting, K-M; Wigren, H-K

    2013-08-01

    The state of sleep consists of different phases that proceed in successive, tightly regulated order through the night forming a physiological program, which for each individual is different but stabile from one night to another. Failure to accomplish this program results in feeling of unrefreshing sleep and tiredness in the morning. The program core is constructed by genetic factors but regulated by circadian rhythm and duration and intensity of day time brain activity. Many environmental factors modulate sleep, including stress, health status and ingestion of vigilance-affecting nutrients or medicines (e.g. caffeine). Acute sleep loss results in compromised cognitive performance, memory deficits, depressive mood and involuntary sleep episodes during the day. Moreover, prolonged sleep curtailment has many adverse health effects, as evidenced by both epidemiological and experimental studies. These effects include increased risk for depression, type II diabetes, obesity and cardiovascular diseases. In addition to voluntary restriction of sleep, shift work, irregular working hours, jet lag and stress are important factors that induce curtailed or bad quality sleep and/or insomnia. This review covers the current theories on the function of normal sleep and describes current knowledge on the physiologic effects of sleep loss. It provides insights into the basic mechanisms of the regulation of wakefulness and sleep creating a theoretical background for understanding different disturbances of sleep. PMID:23746394

  20. Normal breathing pattern and arterial blood gases in awake and sleeping goats after near total destruction of the presumed pre-Bötzinger complex and the surrounding region

    PubMed Central

    Krause, K. L.; Forster, H. V.; Kiner, T.; Davis, S. E.; Bonis, J. M.; Qian, B.; Pan, L. G.

    2009-01-01

    Abrupt neurotoxic destruction of >70% of the pre-Bötzinger complex (preBötzC) in awake goats results in respiratory and cardiac failure (Wenninger JM, Pan LG, Klum L, Leekley T, Bastastic J, Hodges MR, Feroah TR, Davis S, Forster HV. J Appl Physiol 97: 1629–1636, 2004). However, in reduced preparations, rhythmic respiratory activity has been found in other areas of the brain stem (Huang Q, St. John WM. J Appl Physiol 64: 1405–1411, 1988; Janczewski WA, Feldman JL. J Physiol 570: 407–420, 2006; Lieske SP, Thoby-Brisson M, Telgkamo P, Ramierz JM. Nature Neurosci 3: 600–607, 2000; St. John WM, Bledsoe TA. J Appl Physiol 59: 684–690, 1985); thus we hypothesized that, when the preBötzC is destroyed incrementally over weeks, time-dependent plasticity within the respiratory network will result in a respiratory rhythm capable of maintaining normal blood gases. Microtubules were bilaterally implanted into the presumed preBötzC of seven goats. After recovery from surgery, studies were completed to establish baseline values for respiratory parameters. At weekly intervals, increasing volumes (in order 0.5, 1, 5, and 10 μl) of ibotenic acid (IA; 50 mM) were then injected into the preBötzC. All IA injections resulted in an acute tachypnea and dysrhythmia featuring augmented breaths, apneas, and increased breath-to-breath variation in breathing. In studies at night, apneas were nearly all central and occurred in the awake state. Breath-to-breath variation in breathing was greater (P < 0.05) during wakefulness than during non-rapid eye movement sleep. However, one week after the final IA injection, the breathing pattern, breath-to-breath variation, and arterial blood gases and pH were unchanged from baseline, but there was a 20% decrease in respiratory frequency (f) and CO2 sensitivity (P < 0.05), as well as a 40% decrease in the ventilatory response to hypoxia (P < 0.001). In subsequent histological analysis of the presumed preBötzC region of lesioned goats, it

  1. Neurofeedback in ADHD and insomnia: vigilance stabilization through sleep spindles and circadian networks.

    PubMed

    Arns, Martijn; Kenemans, J Leon

    2014-07-01

    In this review article an overview of the history and current status of neurofeedback for the treatment of ADHD and insomnia is provided. Recent insights suggest a central role of circadian phase delay, resulting in sleep onset insomnia (SOI) in a sub-group of ADHD patients. Chronobiological treatments, such as melatonin and early morning bright light, affect the suprachiasmatic nucleus. This nucleus has been shown to project to the noradrenergic locus coeruleus (LC) thereby explaining the vigilance stabilizing effects of such treatments in ADHD. It is hypothesized that both Sensori-Motor Rhythm (SMR) and Slow-Cortical Potential (SCP) neurofeedback impact on the sleep spindle circuitry resulting in increased sleep spindle density, normalization of SOI and thereby affect the noradrenergic LC, resulting in vigilance stabilization. After SOI is normalized, improvements on ADHD symptoms will occur with a delayed onset of effect. Therefore, clinical trials investigating new treatments in ADHD should include assessments at follow-up as their primary endpoint rather than assessments at outtake. Furthermore, an implication requiring further study is that neurofeedback could be stopped when SOI is normalized, which might result in fewer sessions. PMID:23099283

  2. Metabolic consequences of sleep and circadian disorders

    PubMed Central

    Depner, Christopher M.; Stothard, Ellen R.; Wright, Kenneth P.

    2014-01-01

    Sleep and circadian rhythms modulate or control daily physiological patterns with importance for normal metabolic health. Sleep deficiencies associated with insufficient sleep schedules, insomnia with short-sleep duration, sleep apnea, narcolepsy, circadian misalignment, shift work, night eating syndrome and sleep-related eating disorder may all contribute to metabolic dysregulation. Sleep deficiencies and circadian disruption associated with metabolic dysregulation may contribute to weight gain, obesity, and type 2 diabetes potentially by altering timing and amount of food intake, disrupting energy balance, inflammation, impairing glucose tolerance and insulin sensitivity. Given the rapidly increasing prevalence of metabolic diseases, it is important to recognize the role of sleep and circadian disruption in the development, progression, and morbidity of metabolic disease. Some findings indicate sleep treatments and countermeasures improve metabolic health, but future clinical research investigating prevention and treatment of chronic metabolic disorders through treatment of sleep and circadian disruption is needed. PMID:24816752

  3. Additional Drive Circuitry for Piezoelectric Screw Motors

    NASA Technical Reports Server (NTRS)

    Smythe, Robert; Palmer, Dean; Gursel, Yekta; Reder, Leonard; Savedra, Raymond

    2004-01-01

    Modules of additional drive circuitry have been developed to enhance the functionality of a family of commercially available positioning motors (Picomotor . or equivalent) that provide linear motion controllable, in principle, to within increments .30 nm. A motor of this type includes a piezoelectric actuator that turns a screw. Unlike traditional piezoelectrically actuated mechanisms, a motor of this type does not rely on the piezoelectric transducer to hold position: the screw does not turn except when the drive signal is applied to the actuator.

  4. Advanced Data Acquisition Systems with Self-Healing Circuitry

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Ihlefeld, Curtis M.; Medelius, Pedro J.; Delgado, H. (Technical Monitor)

    2001-01-01

    Kennedy Space Center's Spaceport Engineering & Technology Directorate has developed a data acquisition system that will help drive down the cost of ground launch operations. This system automates both the physical measurement set-up function as well as configuration management documentation. The key element of the system is a self-configuring, self-calibrating, signal-conditioning amplifier that automatically adapts to any sensor to which it is connected. This paper will describe the core technology behind this device and the automated data system in which it has been integrated. The paper will also describe the revolutionary enhancements that are planned for this innovative measurement technology. All measurement electronics devices contain circuitry that, if it fails or degrades, requires the unit to be replaced, adding to the cost of operations. Kennedy Space Center is now developing analog circuits that will be able to detect their own failure and dynamically reconfigure their circuitry to restore themselves to normal operation. This technology will have wide ranging application in all electronic devices used in space and ground systems.

  5. Optogenetic dissection of medial prefrontal cortex circuitry

    PubMed Central

    Riga, Danai; Matos, Mariana R.; Glas, Annet; Smit, August B.; Spijker, Sabine; Van den Oever, Michel C.

    2014-01-01

    The medial prefrontal cortex (mPFC) is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g., thalamus, striatum, amygdala and hippocampus), the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders. PMID:25538574

  6. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, S.; Smith, J.H.; Sniegowski, J.J.; McWhorter, P.J.

    1998-08-25

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry. 13 figs.

  7. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, Stephen; Smith, James H.; Sniegowski, Jeffry J.; McWhorter, Paul J.

    1998-01-01

    A method for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry.

  8. Neuronal Machinery of Sleep Homeostasis in Drosophila

    PubMed Central

    Donlea, Jeffrey M.; Pimentel, Diogo; Miesenböck, Gero

    2014-01-01

    Summary Sleep is under homeostatic control, but the mechanisms that sense sleep need and correct sleep deficits remain unknown. Here, we report that sleep-promoting neurons with projections to the dorsal fan-shaped body (FB) form the output arm of Drosophila’s sleep homeostat. Homeostatic sleep control requires the Rho-GTPase-activating protein encoded by the crossveinless-c (cv-c) gene in order to transduce sleep pressure into increased electrical excitability of dorsal FB neurons. cv-c mutants exhibit decreased sleep time, diminished sleep rebound, and memory deficits comparable to those after sleep loss. Targeted ablation and rescue of Cv-c in sleep-control neurons of the dorsal FB impair and restore, respectively, normal sleep patterns. Sleep deprivation increases the excitability of dorsal FB neurons, but this homeostatic adjustment is disrupted in short-sleeping cv-c mutants. Sleep pressure thus shifts the input-output function of sleep-promoting neurons toward heightened activity by modulating ion channel function in a mechanism dependent on Cv-c. PMID:24559676

  9. Respiratory rate variability in sleeping adults without obstructive sleep apnea.

    PubMed

    Gutierrez, Guillermo; Williams, Jeffrey; Alrehaili, Ghadah A; McLean, Anna; Pirouz, Ramin; Amdur, Richard; Jain, Vivek; Ahari, Jalil; Bawa, Amandeep; Kimbro, Shawn

    2016-09-01

    Characterizing respiratory rate variability (RRV) in humans during sleep is challenging, since it requires the analysis of respiratory signals over a period of several hours. These signals are easily distorted by movement and volitional inputs. We applied the method of spectral analysis to the nasal pressure transducer signal in 38 adults with no obstructive sleep apnea, defined by an apnea-hypopnea index <5, who underwent all-night polysomnography (PSG). Our aim was to detect and quantitate RRV during the various sleep stages, including wakefulness. The nasal pressure transducer signal was acquired at 100 Hz and consecutive frequency spectra were generated for the length of the PSG with the Fast Fourier Transform. For each spectrum, we computed the amplitude ratio of the first harmonic peak to the zero frequency peak (H1/DC), and defined as RRV as (100 - H1/DC) %. RRV was greater during wakefulness compared to any sleep stage, including rapid-eye-movement. Furthermore, RRV correlated with the depth of sleep, being lowest during N3. Patients spent most their sleep time supine, but we found no correlation between RRV and body position. There was a correlation between respiratory rate and sleep stage, being greater in wakefulness than in any sleep stage. We conclude that RRV varies according to sleep stage. Moreover, spectral analysis of nasal pressure signal appears to provide a valid measure of RRV during sleep. It remains to be seen if the method can differentiate normal from pathological sleep patterns. PMID:27597768

  10. The Development of Micromachined Gyroscope Structure and Circuitry Technology

    PubMed Central

    Xia, Dunzhu; Yu, Cheng; Kong, Lun

    2014-01-01

    This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs), piezoelectric vibrating gyroscopes (PVGs), surface acoustic wave (SAW) gyroscopes, bulk acoustic wave (BAW) gyroscopes, micromachined electrostatically suspended gyroscopes (MESGs), magnetically suspended gyroscopes (MSGs), micro fiber optic gyroscopes (MFOGs), micro fluid gyroscopes (MFGs), micro atom gyroscopes (MAGs), and special micromachined gyroscopes. Next, the control electronics of micromachined gyroscopes are analyzed. The control circuits are categorized into typical circuitry and special circuitry technologies. The typical circuitry technologies include typical analog circuitry and digital circuitry, while the special circuitry consists of sigma delta, mode matching, temperature/quadrature compensation and novel special technologies. Finally, the characteristics of various typical gyroscopes and their development tendency are discussed and investigated in detail. PMID:24424468

  11. In-school Snacking, Breakfast Consumption, and Sleeping Patterns of Normal and Overweight Iranian High School Girls: A Study in Urban and Rural Areas in Guilan, Iran

    ERIC Educational Resources Information Center

    Maddah, Mohsen; Rashidi, Arash; Mohammadpour, Behnoush; Vafa, Reza; Karandish, Majid

    2009-01-01

    Objective: To investigate the relationship of snacking during school hours, sleep time, and breakfast consumption by weight status of Iranian high school girls in urban and rural areas in Guilan Province, Iran. Design: Data were collected by self-administered questionnaire and measure of body weight and height. Setting: High schools in urban and…

  12. Sleep disorders - overview

    MedlinePlus

    ... Narcolepsy; Hypersomina; Daytime sleepiness; Sleep rhythm; Sleep disruptive behaviors; Jet lag ... a regular sleep schedule (sleep rhythm problem) Unusual behaviors during sleep (sleep-disruptive behaviors) PROBLEMS FALLING AND ...

  13. Sleep Eduction: Treatment & Therapy

    MedlinePlus

    ... Benefits Side Effects Variations Tips Healthy Sleep Habits Sleep Disorders by Category Insomnias Insomnia Child Insomnia Short Sleeper Hypersomnias Narcolepsy Insufficient Sleep Syndrome Long Sleeper Sleep Breathing Disorders Sleep Apnea Snoring Central Sleep Apnea Overview & Facts ...

  14. Sleep Talking (Somniloquy)

    MedlinePlus

    ... Benefits Side Effects Variations Tips Healthy Sleep Habits Sleep Disorders by Category Insomnias Insomnia Child Insomnia Short Sleeper Hypersomnias Narcolepsy Insufficient Sleep Syndrome Long Sleeper Sleep Breathing Disorders Sleep Apnea Snoring Central Sleep Apnea Overview & Facts ...

  15. Sleep Apnea Information Page

    MedlinePlus

    ... is Sleep Apnea? Sleep apnea is a common sleep disorder characterized by brief interruptions of breathing during sleep. ... better ways to prevent, treat, and ultimately cure sleep disorders, such as sleep apnea. NIH Patient Recruitment for ...

  16. Healthy Sleep Habits

    MedlinePlus

    ... Benefits Side Effects Variations Tips Healthy Sleep Habits Sleep Disorders by Category Insomnias Insomnia Child Insomnia Short Sleeper Hypersomnias Narcolepsy Insufficient Sleep Syndrome Long Sleeper Sleep Breathing Disorders Sleep Apnea Snoring Central Sleep Apnea Overview & Facts ...

  17. Changing your sleep habits

    MedlinePlus

    Insomnia - sleep habits; Sleep disorder - sleep habits; Problems falling asleep; Sleep hygiene ... People who have insomnia are often worried about getting enough sleep. The more they try to sleep, the more frustrated and upset they ...

  18. Processing circuitry for single channel radiation detector

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2009-01-01

    Processing circuitry is provided for a high voltage operated radiation detector. An event detector utilizes a comparator configured to produce an event signal based on a leading edge threshold value. A preferred event detector does not produce another event signal until a trailing edge threshold value is satisfied. The event signal can be utilized for counting the number of particle hits and also for controlling data collection operation for a peak detect circuit and timer. The leading edge threshold value is programmable such that it can be reprogrammed by a remote computer. A digital high voltage control is preferably operable to monitor and adjust high voltage for the detector.

  19. Use of SX Series Devices and IEEE 1149.1 JTAG Circuitry. Revised

    NASA Technical Reports Server (NTRS)

    Katz, Richard B.; Wang, J. J.

    1998-01-01

    This report summarizes the use of SX series devices and their JTAG 1149.1 circuitry. 'JTAG' circuitry was originally designed to standardize testing of boards via a simple control port interface electrically without having to use devices such as a bed of nails tester. JTAG is also used for other functions such as executing built-in-test sequences, identifying devices, or, through custom instructions, other functions designed in by the chip designer. The JTAG circuitry is designed for test only; it has no functional use in the integrated circuit during normal operations. The JTAG circuitry and the mode of the device is controlled by a circuit block known as the 'TAP controller,' which is a sixteen-state state machine along with various registers. The controller is normally in an operational state known as TEST-LOGIC-RESET. In this state, the device is held in a fully functional, operating mode. However, a Single Event Upset (SEU) may remove the TAP controller from this state, causing a loss of control of the integrated circuit, unless certain precautions are taken, such as grounding the optional JTAG TRST signal.

  20. Use of SX Series Devices and IEEE 1149.1 JTAG Circuitry

    NASA Technical Reports Server (NTRS)

    Katz, Richard B.; Wang, J. J.

    1998-01-01

    This report summarizes the use of SX series devices and their JTAG 1149.1 circuitry. 'JTAG' circuitry was originally designed to standardize testing of boards via a simple control port interface electrically without having to use devices such as a bed of nails tester. JTAG is also used for other functions such as executing built-in-test sequences, identifying devices, or, through custom instructions, other functions designed in by the chip designer. The JTAG circuitry is designed for test only; it has no functional use in the integrated circuit during normal operations. The JTAG circuitry and the mode of the device is controlled by a circuit block known as the 'TAP controller,' which is a sixteen-state state machine along with various registers. The controller is normally in an operational state known as TEST-LOGIC-RESET. In this state, the device is held in a fully functional, operational mode. However, a Single Event Upset (SEU) may remove the TAP controller from this state, causing a loss of control of the integrated circuit, unless certain precautions are taken, such as grounding the optional JTAG TRST signal.

  1. Sleep Patterns in Autistic Children.

    ERIC Educational Resources Information Center

    Hering, Eli; Epstein, Rachel; Elroy, Sarit; Iancu, Daisy R.; Zelnik, Nathanel

    1999-01-01

    This study compared data on sleep disturbances of 22 autistic children obtained by questionnaires with data obtained with actigraphy. Questionnaire responses indicated that autistic children had an earlier morning awakening time and multiple and early night arousals; actigraphic monitoring, however, showed their sleep patterns were normal except…

  2. Sleep Apnea

    MedlinePlus

    Sleep apnea is a common disorder that causes your breathing to stop or get very shallow. Breathing ... an hour. The most common type is obstructive sleep apnea. It causes your airway to collapse or ...

  3. Sleep Apnea

    MedlinePlus

    Sleep apnea is a common disorder that causes your breathing to stop or get very shallow. Breathing pauses ... an hour. The most common type is obstructive sleep apnea. It causes your airway to collapse or become ...

  4. The role of sleep in the regulation of body weight.

    PubMed

    Leger, Damien; Bayon, Virginie; de Sanctis, Alice

    2015-12-15

    Sleep participates in the regulation of body weight. The amount of sleep and synchronization of the biological clock are both necessary to achieve the energy balance and the secretion of hormones that contribute to weight regulation. In this review, we first reconsider what normal physiological sleep is and what the normative values of sleep are in the general population. Second, we explain how the biological clock regulates the hormones that may be involved in weight control. Third, we provide some recent data on how sleep may be disturbed by sleep disorders or reduced by sleep debt with consequences on weight. Finally, we explore the relationships between sleep debt and obesity. PMID:26123586

  5. BDNF in sleep, insomnia, and sleep deprivation.

    PubMed

    Schmitt, Karen; Holsboer-Trachsler, Edith; Eckert, Anne

    2016-01-01

    The protein brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors involved in plasticity of neurons in several brain regions. There are numerous evidence that BDNF expression is decreased by experiencing psychological stress and that, accordingly, a lack of neurotrophic support causes major depression. Furthermore, disruption in sleep homeostatic processes results in higher stress vulnerability and is often associated with stress-related mental disorders. Recently, we reported, for the first time, a relationship between BDNF and insomnia and sleep deprivation (SD). Using a biphasic stress model as explanation approach, we discuss here the hypothesis that chronic stress might induce a deregulation of the hypothalamic-pituitary-adrenal system. In the long-term it leads to sleep disturbance and depression as well as decreased BDNF levels, whereas acute stress like SD can be used as therapeutic intervention in some insomniac or depressed patients as compensatory process to normalize BDNF levels. Indeed, partial SD (PSD) induced a fast increase in BDNF serum levels within hours after PSD which is similar to effects seen after ketamine infusion, another fast-acting antidepressant intervention, while traditional antidepressants are characterized by a major delay until treatment response as well as delayed BDNF level increase. Key messages Brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of stress-related mood disorders. The interplay of stress and sleep impacts on BDNF level. Partial sleep deprivation (PSD) shows a fast action on BDNF level increase. PMID:26758201

  6. CONTROL OF SLEEP AND WAKEFULNESS

    PubMed Central

    Brown, Ritchie E.; Basheer, Radhika; McKenna, James T.; Strecker, Robert E.; McCarley, Robert W.

    2013-01-01

    This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making. PMID:22811426

  7. The Role of Sleep and Sleep Disorders in the Development, Diagnosis, and Management of Neurocognitive Disorders.

    PubMed

    Miller, Michelle A

    2015-01-01

    It is becoming increasingly apparent that sleep plays an important role in the maintenance, disease prevention, repair, and restoration of both mind and body. The sleep and wake cycles are controlled by the pacemaker activity of the superchiasmic nucleus in the hypothalamus but can be disrupted by diseases of the nervous system causing disordered sleep. A lack of sleep has been associated with an increase in all-cause mortality. Likewise, sleep disturbances and sleep disorders may disrupt neuronal pathways and have an impact on neurological diseases. Sleep deprivation studies in normal subjects demonstrate that a lack of sleep can cause attention and working memory impairment. Moreover, untreated sleep disturbances and sleep disorders such as obstructive sleep apnoe (OSA) can also lead to cognitive impairment. Poor sleep and sleep disorders may present a significant risk factor for the development of dementia. In this review, the underlying mechanisms and the role of sleep and sleep disorders in the development of neurocognitive disorders [dementia and mild cognitive impairment (MCI)] and how the presence of sleep disorders could direct the process of diagnosis and management of neurocognitive disorders will be discussed. PMID:26557104

  8. The Role of Sleep and Sleep Disorders in the Development, Diagnosis, and Management of Neurocognitive Disorders

    PubMed Central

    Miller, Michelle A.

    2015-01-01

    It is becoming increasingly apparent that sleep plays an important role in the maintenance, disease prevention, repair, and restoration of both mind and body. The sleep and wake cycles are controlled by the pacemaker activity of the superchiasmic nucleus in the hypothalamus but can be disrupted by diseases of the nervous system causing disordered sleep. A lack of sleep has been associated with an increase in all-cause mortality. Likewise, sleep disturbances and sleep disorders may disrupt neuronal pathways and have an impact on neurological diseases. Sleep deprivation studies in normal subjects demonstrate that a lack of sleep can cause attention and working memory impairment. Moreover, untreated sleep disturbances and sleep disorders such as obstructive sleep apnoe (OSA) can also lead to cognitive impairment. Poor sleep and sleep disorders may present a significant risk factor for the development of dementia. In this review, the underlying mechanisms and the role of sleep and sleep disorders in the development of neurocognitive disorders [dementia and mild cognitive impairment (MCI)] and how the presence of sleep disorders could direct the process of diagnosis and management of neurocognitive disorders will be discussed. PMID:26557104

  9. Sleep and Respiration in Microgravity

    NASA Technical Reports Server (NTRS)

    West, John B.; Elliott, Ann R.; Prisk, G. Kim; Paiva, Manuel

    2003-01-01

    Sleep is often reported to be of poor quality in microgravity, and studies on the ground have shown a strong relationship between sleep-disordered breathing and sleep disruption. During the 16-day Neurolab mission, we studied the influence of possible changes in respiratory function on sleep by performing comprehensive sleep recordings on the payload crew on four nights during the mission. In addition, we measured the changes in the ventilatory response to low oxygen and high carbon dioxide in the same subjects during the day, hypothesizing that changes in ventilatory control might affect respiration during sleep. Microgravity caused a large reduction in the ventilatory response to reduced oxygen. This is likely the result of an increase in blood pressure at the peripheral chemoreceptors in the neck that occurs when the normally present hydrostatic pressure gradient between the heart and upper body is abolished. This reduction was similar to that seen when the subjects were placed acutely in the supine position in one-G. In sharp contrast to low oxygen, the ventilatory response to elevated carbon dioxide was unaltered by microgravity or the supine position. Because of the similarities of the findings in microgravity and the supine position, it is unlikely that changes in ventilatory control alter respiration during sleep in microgravity. During sleep on the ground, there were a small number of apneas (cessation of breathing) and hypopneas (reduced breathing) in these normal subjects. During sleep in microgravity, there was a reduction in the number of apneas and hypopneas per hour compared to preflight. Obstructive apneas virtually disappeared in microgravity, suggesting that the removal of gravity prevents the collapse of upper airways during sleep. Arousals from sleep were reduced in microgravity compared to preflight, and virtually all of this reduction was as a result of a reduction in the number of arousals from apneas and hypopneas. We conclude that any sleep

  10. Posthypoxic ventilatory decline during NREM sleep: influence of sleep apnea.

    PubMed

    Omran, Amal M; Aboubakr, Salah E; Aboussouan, Loutfi S; Pierchala, Lisa; Badr, M Safwan

    2004-06-01

    We wished to determine the severity of posthypoxic ventilatory decline in patients with sleep apnea relative to normal subjects during sleep. We studied 11 men with sleep apnea/hypopnea syndrome and 11 normal men during non-rapid eye movement sleep. We measured EEG, electrooculogram, arterial O(2) saturation, and end-tidal P(CO2). To maintain upper airway patency in patients with sleep apnea, nasal continuous positive pressure was applied at a level sufficient to eliminate apneas and hypopneas. We compared the prehypoxic control (C) with posthypoxic recovery breaths. Nadir minute ventilation in normal subjects was 6.3 +/- 0.5 l/min (83.8 +/- 5.7% of room air control) vs. 6.7 +/- 0.9 l/min, 69.1 +/- 8.5% of room air control in obstructive sleep apnea (OSA) patients; nadir minute ventilation (% of control) was lower in patients with OSA relative to normal subjects (P < 0.05). Nadir tidal volume was 0.55 +/- 0.05 liter (80.0 +/- 6.6% of room air control) in OSA patients vs. 0.42 +/- 0.03 liter, 86.5 +/- 5.2% of room air control in normal subjects. In addition, prolongation of expiratory time (Te) occurred in the recovery period. There was a significant difference in Te prolongation between normal subjects (2.61 +/- 0.3 s, 120 +/- 11.2% of C) and OSA patients (5.6 +/- 1.5 s, 292 +/- 127.6% of C) (P < 0.006). In conclusion, 1) posthypoxic ventilatory decline occurred after termination of hypocapnic hypoxia in normal subjects and patients with sleep apnea and manifested as decreased tidal volume and prolongation of Te; and 2) posthypoxic ventilatory prolongation of Te was more pronounced in patients with sleep apnea relative to normal subjects. PMID:14990552

  11. Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders.

    PubMed

    Wilcox, Claire E; Pommy, Jessica M; Adinoff, Bryon

    2016-04-01

    Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders

  12. Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders

    PubMed Central

    Wilcox, Claire E.; Pommy, Jessica M.; Adinoff, Bryon

    2016-01-01

    Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders

  13. Cutaneous warming promotes sleep onset.

    PubMed

    Raymann, Roy J E M; Swaab, Dick F; Van Someren, Eus J W

    2005-06-01

    Sleep occurs in close relation to changes in body temperature. Both the monophasic sleep period in humans and the polyphasic sleep periods in rodents tend to be initiated when core body temperature is declining. This decline is mainly due to an increase in skin blood flow and consequently skin warming and heat loss. We have proposed that these intrinsically occurring changes in core and skin temperatures could modulate neuronal activity in sleep-regulating brain areas (Van Someren EJW, Chronobiol Int 17: 313-54, 2000). We here provide results compatible with this hypothesis. We obtained 144 sleep-onset latencies while directly manipulating core and skin temperatures within the comfortable range in eight healthy subjects under controlled conditions. The induction of a proximal skin temperature difference of only 0.78 +/- 0.03 degrees C (mean +/- SE) around a mean of 35.13 +/- 0.11 degrees C changed sleep-onset latency by 26%, i.e., by 3.09 minutes [95% confidence interval (CI), 1.91 to 4.28] around a mean of 11.85 min (CI, 9.74 to 14.41), with faster sleep onsets when the proximal skin was warmed. The reduction in sleep-onset latency occurred despite a small but significant decrease in subjective comfort during proximal skin warming. The induction of changes in core temperature (delta = 0.20 +/- 0.02 degrees C) and distal skin temperature (delta = 0.74 +/- 0.05 degrees C) were ineffective. Previous studies have demonstrated correlations between skin temperature and sleep-onset latency. Also, sleep disruption by ambient temperatures that activate thermoregulatory defense mechanisms has been shown. The present study is the first to experimentally demonstrate a causal contribution to sleep-onset latency of skin temperature manipulations within the normal nocturnal fluctuation range. Circadian and sleep-appetitive behavior-induced variations in skin temperature might act as an input signal to sleep-regulating systems. PMID:15677527

  14. Epigenetics of Sleep and Chronobiology

    PubMed Central

    Qureshi, Irfan A.; Mehler, Mark F.

    2014-01-01

    The circadian clock choreographs fundamental biological rhythms. This system is comprised of the master circadian pacemaker in the suprachiasmatic nucleus and associated pacemakers in other tissues that coordinate complex physiological processes and behaviors, such as sleep, feeding, and metabolism. The molecular circuitry that underlies these clocks and orchestrates circadian gene expression has been the focus of intensive investigation, and it is becoming clear that epigenetic factors are highly integrated into these networks. In this review, we draw attention to the fundamental roles played by epigenetic mechanisms in transcriptional and post-transcriptional regulation within the circadian clock system. We also highlight how alterations in epigenetic factors and mechanisms are being linked with sleep-wake disorders. These observations provide important insights into the pathogenesis and potential treatment of these disorders and implicate epigenetic deregulation in the significant but poorly understood interconnections now emerging between circadian processes and neurodegeneration, metabolic diseases, cancer, and aging. PMID:24477387

  15. Spinal circuitry of sensorimotor control of locomotion

    PubMed Central

    McCrea, David A

    2001-01-01

    During locomotion many segmental hindlimb reflex pathways serve not only to regulate the excitability of local groups of motoneurones, but also to control the basic operation of the central pattern-generating circuitry responsible for locomotion. This is accomplished through a reorganization of reflexes that includes the suppression of reflex pathways operating at rest and the recruitment during locomotion of previously unrecognized types of spinal interneurones. In addition presynaptic inhibition of transmission from segmental afferents serves to regulate the gain of segmental reflexes and may contribute to the selection of particular reflex pathways during locomotion. The fictive locomotion preparation in adult decerebrate cats has proved to be an important tool in understanding reflex pathway reorganization. Further identification of the spinal interneurones involved in locomotor-dependent reflexes will contribute to our understanding not only of reflex pathway organization but also of the organization of the mammalian central pattern generator. PMID:11351011

  16. The Brain Reward Circuitry in Mood Disorders

    PubMed Central

    Russo, Scott J.; Nestler, Eric J.

    2013-01-01

    Mood disorders are common and debilitating conditions characterized in part by profound deficits in reward-related behavioral domains. A recent literature has identified important structural and functional alterations within the brain’s reward circuitry —particularly in the ventral tegmental area to nucleus accumbens pathway — that are associated with symptoms such as anhedonia and aberrant reward-associated perception and memory. This review synthesizes recent data from human and rodent studies from which emerges a circuit-level framework for understanding reward deficits in depression. We also discuss some of the molecular and cellular underpinnings of this framework, ranging from adaptations in glutamatergic synapses and neurotrophic factors to transcriptional and epigenetic mechanisms. PMID:23942470

  17. Integrator Circuitry for Single Channel Radiation Detector

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2008-01-01

    Input circuitry is provided for a high voltage operated radiation detector to receive pulses from the detector having a rise time in the range of from about one nanosecond to about ten nanoseconds. An integrator circuit, which utilizes current feedback, receives the incoming charge from the radiation detector and creates voltage by integrating across a small capacitor. The integrator utilizes an amplifier which closely follows the voltage across the capacitor to produce an integrator output pulse with a peak value which may be used to determine the energy which produced the pulse. The pulse width of the output is stretched to approximately 50 to 300 nanoseconds for use by subsequent circuits which may then use amplifiers with lower slew rates.

  18. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  19. Alternative neural circuitry that might be impaired in the development of Alzheimer disease

    PubMed Central

    Avila, Jesus; Perry, George; Strange, Bryan A.; Hernandez, Felix

    2015-01-01

    It is well established that some individuals with normal cognitive capacity have abundant senile plaques in their brains. It has been proposed that those individuals are resilient or have compensation factors to prevent cognitive decline. In this comment, we explore an alternative mechanism through which cognitive capacity is maintained. This mechanism could involve the impairment of alternative neural circuitry. Also, the proportion of molecules such as Aβ or tau protein present in different areas of the brain could be important. PMID:25954151

  20. Mapping the brain's metaphor circuitry: metaphorical thought in everyday reason

    PubMed Central

    Lakoff, George

    2014-01-01

    An overview of the basics of metaphorical thought and language from the perspective of Neurocognition, the integrated interdisciplinary study of how conceptual thought and language work in the brain. The paper outlines a theory of metaphor circuitry and discusses how everyday reason makes use of embodied metaphor circuitry. PMID:25566012

  1. Obstructive sleep apnea - adults

    MedlinePlus

    Sleep apnea - obstructive - adults; Apnea - obstructive sleep apnea syndrome - adults; Sleep-disordered breathing - adults; OSA - adults ... the upper airway for obstructive sleep apnea in adults. Sleep . 2010;33:1408-1413. PMID: 21061864 www. ...

  2. National Sleep Foundation

    MedlinePlus

    ... Turkish Ukrainian Urdu Vietnamese Welsh Yiddish Choose a Sleep Topic sleep.org Sleep Disorders View More Items ... Recommendations. More Join Now Become a Professional Member Sleep.org Footer Redirect Learn about how sleep impacts ...

  3. Sleep disorders - overview

    MedlinePlus

    Insomnia; Narcolepsy; Hypersomina; Daytime sleepiness; Sleep rhythm; Sleep disruptive behaviors; Jet lag ... excessive daytime sleepiness) Problems sticking to a regular sleep schedule (sleep rhythm problem) Unusual behaviors during sleep ( ...

  4. Sleep in disorders of consciousness

    PubMed Central

    Cologan, Victor; Schabus, Manvel; Ledoux, Didier; Moonen, Gustave; Maquet, Pierre; Laureys, Steven

    2010-01-01

    SUMMARY From a behavioral as well as neurobiological point of view, sleep and consciousness are intimately connected. A better understanding of sleep cycles and sleep architecture of patients suffering from disorders of consciousness (DOC) might therefore improve the clinical care for these patients as well as our understanding of the neural correlations of consciousness. Defining sleep in severely brain-injured patients is however problematic as both their electrophysiological and sleep patterns differ in many ways from healthy individuals. This paper discusses the concepts involved in the study of sleep of patients suffering from DOC and critically assesses the applicability of standard sleep criteria in these patients. The available literature on comatose and vegetative states as well as that on locked-in and related states following traumatic or non-traumatic severe brain injury will be reviewed. A wide spectrum of sleep disturbances ranging from almost normal patterns to severe loss and architecture disorganization are reported in cases of DOC and some patterns correlate with diagnosis and prognosis. At the present time the interactions of sleep and consciousness in brain-injured patients are a little studied subject but, the authors suggest, a potentially very interesting field of research. PMID:19524464

  5. Sleep in disorders of consciousness.

    PubMed

    Cologan, Victor; Schabus, Manvel; Ledoux, Didier; Moonen, Gustave; Maquet, Pierre; Laureys, Steven

    2010-04-01

    From a behavioral as well as neurobiological point of view, sleep and consciousness are intimately connected. A better understanding of sleep cycles and sleep architecture of patients suffering from disorders of consciousness (DOC) might therefore improve the clinical care for these patients as well as our understanding of the neural correlations of consciousness. Defining sleep in severely brain-injured patients is however problematic as both their electrophysiological and sleep patterns differ in many ways from healthy individuals. This paper discusses the concepts involved in the study of sleep of patients suffering from DOC and critically assesses the applicability of standard sleep criteria in these patients. The available literature on comatose and vegetative states as well as that on locked-in and related states following traumatic or non-traumatic severe brain injury will be reviewed. A wide spectrum of sleep disturbances ranging from almost normal patterns to severe loss and architecture disorganization are reported in cases of DOC and some patterns correlate with diagnosis and prognosis. At the present time the interactions of sleep and consciousness in brain-injured patients are a little studied subject but, the authors suggest, a potentially very interesting field of research. PMID:19524464

  6. Classification and epidemiology of childhood sleep disorders.

    PubMed

    Owens, Judith

    2008-09-01

    Approximately 25% of all children experience some type of sleep problem at some point during childhood. A number of studies have examined the prevalence of parent- and child-reported sleep complaints in large samples of healthy, typically developing children and adolescents; many of these have also further delineated the association between disrupted sleep and behavioral concerns. Sleep problems are even more prevalent in children and adolescents with chronic medical, neurodevelopmental, and psychiatric conditions. It is important to note that definitions of normal sleep patterns, sleep requirements, and sleep disorders in childhood must necessarily incorporate the wide range of normal developmental and physical maturational changes across childhood and adolescence, and cultural, environmental, and social influences. PMID:18710669

  7. Physical activity and sleep among pregnant women.

    PubMed

    Borodulin, Katja; Evenson, Kelly R; Monda, Keri; Wen, Fang; Herring, Amy H; Dole, Nancy

    2010-01-01

    Sleep disturbances are common among pregnant women and safe treatments to improve sleep are needed. Generally, physical activity improves sleep, but studies are lacking on the associations of physical activity with sleep among pregnant women. Our aim was to investigate the cross-sectional association of various modes of physical activity and activity clusters with sleep quality and duration among 1259 pregnant women. Participants were recruited into the Pregnancy, Infection, and Nutrition Study from prenatal clinics at the University of North Carolina Hospitals. Women self-reported sleep quality and duration and physical activity in the past week. We used cluster analysis to create seven physical activity profiles and multivariable logistic regression analysis, with adjustments for age, race/ethnicity, education, marital status, parity, self-rated general health, anxiety and depressive symptoms. Women with higher levels of occupational physical activity were more likely to report either short or normal sleep duration than longer duration. Women with higher levels of indoor household physical activity were less likely to report normal sleep duration than shorter duration. Women in the recreational-indoor household activity cluster were less likely than women in the inactivity cluster to report normal sleep duration as compared with longer duration. Our data suggest weak associations of physical activity with sleep duration and quality in late pregnancy. Physical activity is recommended to pregnant women for health benefits, yet more research is needed to understand if physical activity should be recommended for improving sleep. PMID:20078829

  8. Sleep in the intensive care unit

    PubMed Central

    Beltrami, Flávia Gabe; Nguyen, Xuân-Lan; Pichereau, Claire; Maury, Eric; Fleury, Bernard; Fagondes, Simone

    2015-01-01

    ABSTRACT Poor sleep quality is a consistently reported by patients in the ICU. In such a potentially hostile environment, sleep is extremely fragmented and sleep architecture is unconventional, with a predominance of superficial sleep stages and a limited amount of time spent in the restorative stages. Among the causes of sleep disruption in the ICU are factors intrinsic to the patients and the acute nature of their condition, as well as factors related to the ICU environment and the treatments administered, such as mechanical ventilation and drug therapy. Although the consequences of poor sleep quality for the recovery of ICU patients remain unknown, it seems to influence the immune, metabolic, cardiovascular, respiratory, and neurological systems. There is evidence that multifaceted interventions focused on minimizing nocturnal sleep disruptions improve sleep quality in ICU patients. In this article, we review the literature regarding normal sleep and sleep in the ICU. We also analyze sleep assessment methods; the causes of poor sleep quality and its potential implications for the recovery process of critically ill patients; and strategies for sleep promotion. PMID:26785964

  9. Does sleep improve memory organization?

    PubMed

    Takeuchi, Masashi; Furuta, Hisakazu; Sumiyoshi, Tomiki; Suzuki, Michio; Ochiai, Yoko; Hosokawa, Munehito; Matsui, Mie; Kurachi, Masayoshi

    2014-01-01

    Sleep can integrate information into existing memory networks, look for common patterns and distil overarching rules, or simply stabilize and strengthen the memory exactly as it was learned. Recent research has shown that sleep facilitates abstraction of gist information as well as integration across multiple memories, insight into hidden solutions, and even the ability to make creative connections between distantly related ideas and concepts. To investigate the effect of sleep on memory organization, 35 normal volunteers were randomly assigned either to the sleep (n = 17) or wake group (n = 18). The sleep subjects performed the Japanese Verbal Learning Test (JVLT), a measure of learning and memory, three times in the evening, and slept. On the following morning (9 h later), they were asked to recall the words on the list. The wake subjects took the same test in the morning, and were asked to recall the words in the same time interval as in the sleep group. The semantic clustering ratio (SCR), divided by the total number of words recalled, was used as an index of memory organization. Our main interest was whether the sleep subjects elicit a greater increase in this measure from the third to the fourth assessments. Time × Group interaction effect on SCR was not significant between the sleep group and wake group as a whole. Meanwhile, the change in the SCR between the third and fourth trials was negatively correlated with duration of nocturnal waking in the sleep group, but not other sleep indices. Based on this observation, further analysis was conducted for subjects in the sleep group who awoke nocturnally for <60 min for comparison with the wake group. A significant Time × Group interaction was noted; these "good-sleepers" showed a significantly greater improvement in the memory index compared with the wake subjects. These results provide the first suggestion that sleep may enhance memory organization, which requires further study. PMID

  10. Sleep quality in professional ballet dancers.

    PubMed

    Fietze, Ingo; Strauch, Jutta; Holzhausen, Martin; Glos, Martin; Theobald, Christiane; Lehnkering, Hanna; Penzel, Thomas

    2009-08-01

    Ballet dancers are competitive athletes who undergo extreme physical and mental stress and work according to an irregular schedule, with long days of training, rehearsal, and performance. Their most significant potential risks entail physical injury and altered sleep. The elaborate training requirements for ballet dancers do not allow regular chronobiological patterns or a normal sleep-wake rhythm. Our aim was to investigate the sleep-wake rhythm and sleep quality during rehearsal phases prior to a ballet premiere. We used wrist actigraphy and sleep diaries for a period of 67 days before the ballet premiere performance to study 24 classical ballet dancers. We likewise applied the Epworth Sleepiness Score (ESS), Pittsburgh Sleep Quality Index (PSQI), SF-12 Quality of life Assessment, and d2 Test of Attention to assess quality of sleep, aspects of cognitive performance, and health status. We found significant reduction in sleep duration, from 418+/-43 min to 391+/-42 min, and sleep efficiency, from 81+/-4% to 79+/-5%, over the 67-day course of the rehearsal. We also found a decline in time in bed and an increase in wakefulness after sleep onset. Sleep onset latency did not change. However, the changes in sleep as documented by actigraphy were not reflected by the subjective data of the sleep diaries and sleep scores. As a result of the facts that total sleep efficiency and sleep duration values were already lower than usual for the dancers' age group at the beginning of the study and that mental acuity, concentration, and speed were likewise impaired, we observed exacerbated health deterioration in terms of sleep deprivation in ballet dancers during preparation for a premier. We conclude that individual activity-rest schedules, including daytime naps, may be helpful, especially during the stressful training and rehearsal experienced prior to ballet premieres. PMID:19731116

  11. Mean Platelet Volume, Vitamin D and C Reactive Protein Levels in Normal Weight Children with Primary Snoring and Obstructive Sleep Apnea Syndrome

    PubMed Central

    Di Mauro, Federica; Lollobrigida, Valeria; Di Fraia, Marco; Savastano, Vincenzo; Loffredo, Lorenzo; Nicita, Francesco; Spalice, Alberto; Duse, Marzia

    2016-01-01

    Introduction Studies on Mean Platelet Volume (MPV) in children with Sleep Disordered Breathing (SDB) report conflicting results and the hypothesis of an intermittent hypoxemia leading to a systemic inflammation is reaching consensus. Vitamin D exerts anti-inflammatory properties and its deficiency has been supposed to play a role in sleep disorders. Emerging interest is rising about Primary Snoring (PS) since it is reasonable that also undetectable alteration of hypoxia might predispose to an increased production of inflammatory mediators. In this perspective, in a group of children affected by SDB, our aim was to investigate MPV, vitamin D and C Reactive Protein (CRP) levels, which had been previously evaluated separately in different studies focused only on Obstructive Sleep Apnea Syndrome (OSAS). Materials and Methods We enrolled 137 children: 70 healthy controls (HC), 67 affected by SDB undergoing a polysomnographic evaluation, 22 with a diagnosis of PS and 45 with a diagnosis of OSAS. All patients underwent routine biochemical evaluations including blood cell counts, CRP and vitamin D. Results Children affected by SDB had a mean age of 8.49±2.19 and were prevalently males (23 females, 34%; 44 males, 66%). MPV levels were higher in OSAS and PS when compared to HC; platelet count (PLT) and CRP levels were higher while Vitamin D levels were lower in children with SDB when compared to HC. MPV levels were correlated with PLT (r = -0.54; p<0.001), vitamin D (r = -0.39; p<0.001) and CRP (r = 0.21; p<0.01). A multiple regression was run to predict MPV levels from vitamin D, CRP and PLT and these variables significantly predicted MPV (F = 17.42, p<0.0001; adjusted R2 = 0.37). Only platelet count and vitamin D added statistically significantly to the prediction (p<0.05). Conclusion The present study provides evidence of higher MPV and lower vitamin D levels in children with PS as well as in children with OSAS, and supports the underlying inflammation, hence

  12. Superconducting circuitry for quantum electromechanical systems

    NASA Astrophysics Data System (ADS)

    LaHaye, Matthew D.; Rouxinol, Francisco; Hao, Yu; Shim, Seung-Bo; Irish, Elinor K.

    2015-05-01

    Superconducting systems have a long history of use in experiments that push the frontiers of mechanical sensing. This includes both applied and fundamental research, which at present day ranges from quantum computing research and e orts to explore Planck-scale physics to fundamental studies on the nature of motion and the quantum limits on our ability to measure it. In this paper, we first provide a short history of the role of superconducting circuitry and devices in mechanical sensing, focusing primarily on efforts in the last decade to push the study of quantum mechanics to include motion on the scale of human-made structures. This background sets the stage for the remainder of the paper, which focuses on the development of quantum electromechanical systems (QEMS) that incorporate superconducting quantum bits (qubits), superconducting transmission line resonators and flexural nanomechanical elements. In addition to providing the motivation and relevant background on the physical behavior of these systems, we discuss our recent efforts to develop a particular type of QEMS that is based upon the Cooper-pair box (CPB) and superconducting coplanar waveguide (CPW) cavities, a system which has the potential to serve as a testbed for studying the quantum properties of motion in engineered systems.

  13. GPS Position and Heading Circuitry for Ships

    NASA Technical Reports Server (NTRS)

    Cooke, Michael P.; Yim, Hester J.; Gomez, Susan F.

    2003-01-01

    Circuit boards that contain radio-frequency (RF) and digital circuitry have been developed by NASA to satisfy a requirement of the Port of Houston Authority for relatively inexpensive Global Positioning System (GPS) receivers that indicate the azimuthal headings as well as the positions of ships. The receiver design utilizes the unique architecture of the Mitel commercial chip-set, which provides for an accurate GPS-based heading-determination device. The major components include two RF front ends (each connected to a separate antenna), a surface-acoustic-wave intermediate-frequency filter between second- and third-stage mixers, a correlator, and a reduced-instruction- set computer. One of the RF front ends operates as a master, the other as a slave. Both RF front ends share a 10-MHz sinusoidal clock oscillator, which provides for more accurate carrier phase measurements between the two antennas. The outputs of the RF front ends are subjected to conventional GPS processing. The commercial-based chip-set design approach provides an inexpensive open architecture GPS platform, which can be used in developing and implementing unique GPS-heading and attitude-determination algorithms for specific applications. The heading is estimated from the GPS position solutions of the two antennas by an algorithm developed specifically for this application. If a third (and preferably a fourth) antenna were added, it would be possible to estimate the attitude of the GPS receiver in three dimensions instead of only its heading in a horizontal plane.

  14. Modeling of Biological Neurons using Superconducting Circuitry

    NASA Astrophysics Data System (ADS)

    Khadka, Shreeya; Svitelskiy, Oleksiy; Kaplan, Steve; Segall, Kenneth

    2014-03-01

    With the goal of understanding the collective behavior of large network of neurons, we purpose a new analog method based on superconducting Josephson junction (JJ) circuitry. Through numerical simulations, we were able to show that these JJ neurons reproduce many characteristic features of biological neurons such as action potential, firing threshold and refractory period. For preliminary testing, we have designed and fabricated a superconducting chip consisting of two coupled JJ neurons, connected to each other in a closed loop. The numerical simulations of the two synchronized coupled neurons, showed a characteristic phase-flip-bifurcation where the two neurons would fire either in-phase or out-of-phase depending on their coupling strength. Thus, we are looking for the characteristic phase-flip-bifurcation in the experiment also. If these encouraging observations find further confirmation, our JJ model will open a way for developing a fast and low power method of studying the dynamics of large neural networks. We would like to thank Zictools/WRSpice for layout and simulation, and Hypres Inc. for fabricating the chip.

  15. Sleep habits and sleep disturbances in Dutch children: a population-based study

    PubMed Central

    Waumans, Ruth C.; van den Berg, Gerrit; Gemke, Reinoud J. B. J.

    2010-01-01

    Sleep disorders can lead to significant morbidity. Information on sleep in healthy children is necessary to evaluate sleep disorders in clinical practice, but data from different societies cannot be simply generalized. The aims of this study were to (1) assess the prevalence of sleep disturbances in Dutch healthy children, (2) describe sleep habits and problems in this population, (3) collect Dutch norm data for future reference, and (4) compare sleep in children from different cultural backgrounds. A population-based descriptive study was conducted using the Children’s sleep habits questionnaire and the sleep self-report. One thousand five hundred seven proxy-reports and 262 self-reports were analyzed. Mean age was 8.5 years (95% confidence interval, 8.4–8.6), 52% were boys. Sleep problems in Dutch children were present in 25%, i.e., comparable to other populations. Sleep habits were age-related. Problem sleepers scored significantly higher on all scales. Correlations between parental and self-assessments were low to moderate. Dutch children had significantly more sleep disturbances than children from the USA and less than Chinese children. Cognitions and attitudes towards what is considered normal sleep seem to affect the appraisal of sleep, this probably accounts partly for cultural differences. For a better understanding of cultural influences on sleep, more information on these determinants and the establishment of cultural norms are mandatory. PMID:20191392

  16. Pathophysiology of central sleep apneas.

    PubMed

    Hernandez, Adam B; Patil, Susheel P

    2016-05-01

    The transition from wake to sleep is accompanied by a host of physiologic changes, which result in major alterations in respiratory control and may result in sleep-related breathing disorders. The central sleep apneas are a group of sleep-related breathing disorders that are characterized by recurrent episodes of airflow reduction or cessation due to a temporary reduction or absence of central respiratory drive. The fundamental hallmark of central sleep apnea (CSA) disorders is the presence of ventilatory control instability; however, additional mechanisms play a role in one or more specific manifestations of CSA. CSA may manifest during conditions of eucapnia/hypocapnia or chronic hypercapnia, which is a useful clinical classification that lends understanding to the underlying pathophysiology and potential therapies. In this review, an overview of normal breathing physiology is provided, followed by a discussion of pathophysiologic mechanisms that promote CSA and the mechanisms that are specific to different manifestations of CSA. PMID:26782104

  17. Spontaneous sleep and homeostatic sleep regulation in ghrelin knockout mice.

    PubMed

    Szentirmai, Eva; Kapás, Levente; Sun, Yuxiang; Smith, Roy G; Krueger, James M

    2007-07-01

    Ghrelin is well known for its feeding and growth hormone-releasing actions. It may also be involved in sleep regulation; intracerebroventricular administration and hypothalamic microinjections of ghrelin stimulate wakefulness in rats. Hypothalamic ghrelin, together with neuropeptide Y and orexin form a food intake-regulatory circuit. We hypothesized that this circuit also promotes arousal. To further investigate the role of ghrelin in the regulation of sleep-wakefulness, we characterized spontaneous and homeostatic sleep regulation in ghrelin knockout (KO) and wild-type (WT) mice. Both groups of mice exhibited similar diurnal rhythms with more sleep and less wakefulness during the light period. In ghrelin KO mice, spontaneous wakefulness and rapid-eye-movement sleep (REMS) were slightly elevated, and non-rapid-eye-movement sleep (NREMS) was reduced. KO mice had more fragmented NREMS than WT mice, as indicated by the shorter and greater number of NREMS episodes. Six hours of sleep deprivation induced rebound increases in NREMS and REMS and biphasic changes in electroencephalographic slow-wave activity (EEG SWA) in both genotypes. Ghrelin KO mice recovered from NREMS and REMS loss faster, and the delayed reduction in EEG SWA, occurring after sleep loss-enhanced increases in EEG SWA, was shorter-lasting compared with WT mice. These findings suggest that the basic sleep-wake regulatory mechanisms in ghrelin KO mice are not impaired and they are able to mount adequate rebound sleep in response to a homeostatic challenge. It is possible that redundancy in the arousal systems of the brain or activation of compensatory mechanisms during development allow for normal sleep-wake regulation in ghrelin KO mice. PMID:17409264

  18. 76 FR 79215 - Certain Semiconductor Chips With Dram Circuitry, and Modules and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... COMMISSION Certain Semiconductor Chips With Dram Circuitry, and Modules and Products Containing Same... importation of certain semiconductor chips with DRAM circuitry, and modules and products containing same by... after importation of certain semiconductor chips with DRAM circuitry, and modules and...

  19. Sleep and Anesthesia Interactions: A Pharmacological Appraisal

    PubMed Central

    Scharf, Matthew T.; Kelz, Max B.

    2013-01-01

    Anesthetics have been used in clinical practice for over a hundred years, yet their mechanisms of action remain poorly understood. One tempting hypothesis to explain their hypnotic properties posits that anesthetics exert a component of their effects by “hijacking” the endogenous arousal circuitry of the brain. Modulation of activity within sleep- and wake-related neuroanatomic systems could thus explain some of the varied effects produced by anesthetics. There has been a recent explosion of research into the neuroanatomic substrates affected by various anesthetics. In this review, we will highlight the relevant sleep architecture and systems and focus on studies over the past few years that implicate these sleep-related structures as targets of anesthetics. These studies highlight a promising area of investigation regarding the mechanisms of action of anesthetics and provide an important model for future study. PMID:23440738

  20. Sleep and Anesthesia Interactions: A Pharmacological Appraisal.

    PubMed

    Scharf, Matthew T; Kelz, Max B

    2013-03-01

    Anesthetics have been used in clinical practice for over a hundred years, yet their mechanisms of action remain poorly understood. One tempting hypothesis to explain their hypnotic properties posits that anesthetics exert a component of their effects by "hijacking" the endogenous arousal circuitry of the brain. Modulation of activity within sleep- and wake-related neuroanatomic systems could thus explain some of the varied effects produced by anesthetics. There has been a recent explosion of research into the neuroanatomic substrates affected by various anesthetics. In this review, we will highlight the relevant sleep architecture and systems and focus on studies over the past few years that implicate these sleep-related structures as targets of anesthetics. These studies highlight a promising area of investigation regarding the mechanisms of action of anesthetics and provide an important model for future study. PMID:23440738

  1. [Sleep related eating disorder].

    PubMed

    Inoue, Yuichi; Komada, Yoko

    2010-01-01

    Nighttime eating is categorized as either sleep-related eating disorder (SRED) or night eating syndrome (NES). Critical reviews of the literature on both disorders have suggested that they are situated at opposite poles of a disordered eating spectrum. The feeding behavior in SRED is characterized by recurrent episodes of eating after an arousal from nighttime sleep with amnesia. Conversely, NES could be considered as an abnormality in the circadian rhythm of meal timing with a normal circadian timing of sleep onset. Both conditions clearly concentrate to occur during young adulthood, and are often relentless and chronic. Misunderstanding and low awareness of SRED and NES have limited our ability to determine the exact prevalence of the two disorders. SRED is frequently associated with other sleep disorders, in particular parasomnias such as sleep walking. Cognitive-behavioral therapy is ineffective, but pharmacotherapy is very effective in controlling SRED. Especially, studies have shown that the anti-seizure medication topiramate may be an effective treatment for SRED. PMID:21077298

  2. Sleep and Aging

    MedlinePlus

    ... There are two types of sleep: non-rapid eye movement -- or NREM sleep -- and rapid eye movement -- or REM sleep. NREM sleep includes four stages, ranging from light to deep sleep. Then we go into REM sleep, the most active ... During REM sleep, the eyes move back and forth beneath the eyelids and ...

  3. Sleep and behavioral problems in rolandic epilepsy.

    PubMed

    Samaitienė, Rūta; Norkūnienė, Jolita; Tumienė, Birutė; Grikinienė, Jurgita

    2013-02-01

    Although patients with benign childhood epilepsy with centrotemporal spikes exhibit a benign course of the disease, some of them display sleep and behavioral problems. Sixty-one patients with rolandic epilepsy, aged 6-11 years, were included in this study. The patients were divided into two subgroups according to the presence of seizures over the preceding 6 months. The control group comprised 25 patients without epilepsy and with similar characteristics in terms of age and sex. All patients underwent evaluation of sleep (Sleep Disturbance Scale for Children) and behavior (Lithuanian version of the Child Behaviour Checklist). Only patients who had had seizures over the preceding 6 months displayed significantly higher scores for sleep problems (disorders of excessive daytime sleepiness, disorders of sleep-wake transition, and scores for total sleep problems), worse sleep quality (longer sleep-onset latency), and behavioral problems (anxiety/depression, social problems, thought problems, attention problems, and aggressive behavior) than the patients of the control group. Our data add to evidence that active epilepsy has an impact on sleep and behavior. Clinically significant sleep problems were related to the higher risk of behavioral problems. Parents' ratings for existing sleep problems were sensitive to Sleep Disturbance Scale for Children scores above normal values. PMID:23337004

  4. Sleep and Development in Genetically Tractable Model Organisms.

    PubMed

    Kayser, Matthew S; Biron, David

    2016-05-01

    Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. PMID:27183564

  5. Sleep extension versus nap or coffee, within the context of 'sleep debt'.

    PubMed

    Horne, James; Anderson, Clare; Platten, Charlotte

    2008-12-01

    Though extended night-time sleep mostly reduces the 'afternoon dip', little is known about evening benefits to alertness, or about comparisons with an afternoon nap or caffeine. Twenty healthy carefully screened adults, normal waking alertness levels, underwent four counterbalanced conditions: usual night sleep; night sleep extended<90 min (usual bed-time); up to 20 min afternoon nap; and 150 mg afternoon caffeine (versus decaffeinated coffee). Sleepiness was measured by afternoon and evening multiple sleep latency test (MSLTs), longer psychomotor vigilance test (PVT) sessions and a subjective sleepiness scale. Sleep was extended by average of 74 min, and all participants could nap 15-20 min. Sleep extension had little effect on PVT determined modest levels of morning sleepiness. Afternoon and evening MSLTs showed all active treatments significantly reduced the 'dip', with nap most effective until mid-evening; next effective was caffeine, then extension. Late evening sleepiness and subsequent sleep did not differ between conditions. Arguably, participants may have experienced some 'sleep debt', given they extended sleep and reflected some sleepiness within settings sensitive to sleepiness. Nevertheless, extended sleep seemed largely superfluous and inefficient in reducing modest levels of sleepiness when compared with a timely nap, and even caffeine. Sleep, such as food and fluid intakes, can be taken to excess of real biological needs, and for many healthy adults, there is a level of modest daytime sleepiness, only unmasked by very sensitive laboratory measures. It may reflect a requirement for more sleep or simply be within the bounds of normal acceptability. PMID:19021851

  6. Circuitry, systems and methods for detecting magnetic fields

    DOEpatents

    Kotter, Dale K [Shelley, ID; Spencer, David F [Idaho Falls, ID; Roybal, Lyle G [Idaho Falls, ID; Rohrbaugh, David T [Idaho Falls, ID

    2010-09-14

    Circuitry for detecting magnetic fields includes a first magnetoresistive sensor and a second magnetoresistive sensor configured to form a gradiometer. The circuitry includes a digital signal processor and a first feedback loop coupled between the first magnetoresistive sensor and the digital signal processor. A second feedback loop which is discrete from the first feedback loop is coupled between the second magnetoresistive sensor and the digital signal processor.

  7. Troubled sleep

    PubMed Central

    Haig, David

    2014-01-01

    Disrupted sleep is probably the most common complaint of parents with a new baby. Night waking increases in the second half of the first year of infant life and is more pronounced for breastfed infants. Sleep-related phenotypes of infants with Prader-Willi and Angelman syndromes suggest that imprinted genes of paternal origin promote greater wakefulness whereas imprinted genes of maternal origin favor more consolidated sleep. All these observations are consistent with a hypothesis that waking at night to suckle is an adaptation of infants to extend their mothers’ lactational amenorrhea, thus delaying the birth of a younger sib and enhancing infant survival. PMID:24610432

  8. Cell Injury and Repair Resulting from Sleep Loss and Sleep Recovery in Laboratory Rats

    PubMed Central

    Everson, Carol A.; Henchen, Christopher J.; Szabo, Aniko; Hogg, Neil

    2014-01-01

    Study Objectives: Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. Design: Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. Measurements and Results: Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Two days of recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. Conclusions: These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury. Citation: Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats

  9. The Neurobiological Mechanisms and Treatments of REM Sleep Disturbances in Depression

    PubMed Central

    Wang, Yi-Qun; Li, Rui; Zhang, Meng-Qi; Zhang, Ze; Qu, Wei-Min; Huang, Zhi-Li

    2015-01-01

    Most depressed patients suffer from sleep abnormalities, which are one of the critical symptoms of depression. They are robust risk factors for the initiation and development of depression. Studies about sleep electroencephalograms have shown characteristic changes in depression such as reductions in non-rapid eye movement sleep production, disruptions of sleep continuity and disinhibition of rapid eye movement (REM) sleep. REM sleep alterations include a decrease in REM sleep latency, an increase in REM sleep duration and REM sleep density with respect to depressive episodes. Emotional brain processing dependent on the normal sleep-wake regulation seems to be failed in depression, which also promotes the development of clinical depression. Also, REM sleep alterations have been considered as biomarkers of depression. The disturbances of norepinephrine and serotonin systems may contribute to REM sleep abnormalities in depression. Lastly, this review also discusses the effects of different antidepressants on REM sleep disturbances in depression. PMID:26412074

  10. Exercise & Sleep

    MedlinePlus

    ... on. Feature: Back to School, the Healthy Way Exercise & Sleep Past Issues / Fall 2012 Table of Contents ... helps kids. Photo: iStock 6 "Bests" About Kids' Exercise At least one hour of physical activity a ...

  11. Sleeping sickness

    MedlinePlus

    Human African trypanosomiasis ... Kirchoff LV. Agents of African trypanosomiasis (sleeping sickness). In: Mandell GL, Bennett JE, Dolan R, eds. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases . 8th ...

  12. American Sleep Association

    MedlinePlus

    ... of sleep. Why we sleep. Why do we dream? Sleep Hygiene Tips Get good sleep now. What ... Forum Posts 90 minute rule. _ Re: Insomnia question _ Artificial foods acting as stimulant and causing insomnia _ DNP ...

  13. Pediatric sleep apnea

    MedlinePlus

    Sleep apnea - pediatric; Apnea - pediatric sleep apnea syndrome; Sleep-disordered breathing - pediatric ... During sleep, all of the muscles in the body become more relaxed. This includes the muscles that help keep ...

  14. Obstructive sleep apnea - adults

    MedlinePlus

    Sleep apnea - obstructive - adults; Apnea - obstructive sleep apnea syndrome - adults; Sleep-disordered breathing - adults; OSA - adults ... When you sleep, all of the muscles in your body become more relaxed. This includes the muscles that help keep your ...

  15. Isolated sleep paralysis

    MedlinePlus

    ... from sleep. It is not associated with another sleep disorder. ... Sleep paralysis can be a symptom of narcolepsy . But if you do not have other symptoms of narcolepsy, there is usually no need to have sleep studies done.

  16. Brain Basics: Understanding Sleep

    MedlinePlus

    ... Many of the body's cells also show increased production and reduced breakdown of proteins during deep sleep. ... deep sleep, REM sleep is associated with increased production of proteins. One study found that REM sleep ...

  17. Pediatric sleep apnea

    MedlinePlus

    Sleep apnea - pediatric; Apnea - pediatric sleep apnea syndrome; Sleep-disordered breathing - pediatric ... Untreated pediatric sleep apnea may lead to: High blood pressure Heart or lung problems Slow growth and development

  18. Isolated sleep paralysis

    MedlinePlus

    ... from sleep. It is not associated with another sleep disorder. Symptoms Episodes of isolated sleep paralysis last from ... A.M. Editorial team. Related MedlinePlus Health Topics Sleep Disorders Browse the Encyclopedia A.D.A.M., Inc. ...

  19. American Sleep Apnea Association

    MedlinePlus

    American Sleep Apnea Association Learn About the CPAP Assistance Program About ASAA News about ASAA Who we are Leadership Team Supporting the ASAA Financials Learn Healthy sleep Sleep apnea Other sleep disorders Personal stories Treat Test Yourself ...

  20. Delayed Sleep Phase Disorder In Temporal Isolation

    PubMed Central

    Campbell, Scott S.; Murphy, Patricia J.

    2007-01-01

    Study Objectives: This study sought to characterize sleep and the circadian rhythm of body core temperature of an individual with delayed sleep phase disorder (DSPD) in the absence of temporal cues and social entrainment and to compare those measures to age-matched normal control subjects studied under identical conditions. Design: Polysomnography and body temperature were recorded continuously for 4 days in entrained conditions, followed immediately by 17 days in a “free-running” environment. Setting: Temporal isolation facility in the Laboratory of Human Chronobiology, Weill Cornell Medical College. Participants: One individual who met criteria for delayed sleep phase disorder according to the International Classification of Sleep Disorders Diagnostic and Coding Manual (ICSD-2) and 3 age-matched control subjects. Interventions: None. Measurements and Results: The DSPD subject had a spontaneous period length (tau) of 25.38 hours compared to an average tau of 24.44 hours for the healthy controls. The DSPD subject also showed an altered phase relationship between sleep/wake and body temperature rhythms, as well as longer sleep latency, poorer sleep efficiency, and altered distribution of slow wave sleep (SWS) within sleep episodes, compared to control subjects. Conclusions: Delayed sleep phase disorder may be the reflection of an abnormal circadian timing system characterized not only by a long tau, but also by an altered internal phase relationship between the sleep/wake system and the circadian rhythm of body temperature. The latter results in significantly disturbed sleep, even when DSPD patients are permitted to sleep and wake at their preferred times. Citation: Campbell SS; Murphy PJ. Delayed sleep phase disorder in temporal isolation. SLEEP 2007;30(9):1225-1228. PMID:17910395

  1. Sleep Disorders Associated with Primary Mitochondrial Diseases

    PubMed Central

    Ramezani, Ryan J.; Stacpoole, Peter W.

    2014-01-01

    Study Objectives: Primary mitochondrial diseases are caused by heritable or spontaneous mutations in nuclear DNA or mitochondrial DNA. Such pathological mutations are relatively common in humans and may lead to neurological and neuromuscular complication that could compromise normal sleep behavior. To gain insight into the potential impact of primary mitochondrial disease and sleep pathology, we reviewed the relevant English language literature in which abnormal sleep was reported in association with a mitochondrial disease. Design: We examined publications reported in Web of Science and PubMed from February 1976 through January 2014, and identified 54 patients with a proven or suspected primary mitochondrial disorder who were evaluated for sleep disturbances. Measurements and Results: Both nuclear DNA and mitochondrial DNA mutations were associated with abnormal sleep patterns. Most subjects who underwent polysomnography had central sleep apnea, and only 5 patients had obstructive sleep apnea. Twenty-four patients showed decreased ventilatory drive in response to hypoxia and/or hypercapnia that was not considered due to weakness of the intrinsic muscles of respiration. Conclusions: Sleep pathology may be an underreported complication of primary mitochondrial diseases. The probable underlying mechanism is cellular energy failure causing both central neurological and peripheral neuromuscular degenerative changes that commonly present as central sleep apnea and poor ventilatory response to hypercapnia. Increased recognition of the genetics and clinical manifestations of mitochondrial diseases by sleep researchers and clinicians is important in the evaluation and treatment of all patients with sleep disturbances. Prospective population-based studies are required to determine the true prevalence of mitochondrial energy failure in subjects with sleep disorders, and conversely, of individuals with primary mitochondrial diseases and sleep pathology. Citation: Ramezani RJ

  2. Refreshing Sleep and Sleep Continuity Determine Perceived Sleep Quality.

    PubMed

    Libman, Eva; Fichten, Catherine; Creti, Laura; Conrod, Kerry; Tran, Dieu-Ly; Grad, Roland; Jorgensen, Mary; Amsel, Rhonda; Rizzo, Dorrie; Baltzan, Marc; Pavilanis, Alan; Bailes, Sally

    2016-01-01

    Sleep quality is a construct often measured, employed as an outcome criterion for therapeutic success, but never defined. In two studies we examined appraised good and poor sleep quality in three groups: a control group, individuals with obstructive sleep apnea, and those with insomnia disorder. In Study 1 we used qualitative methodology to examine good and poor sleep quality in 121 individuals. In Study 2 we examined sleep quality in 171 individuals who had not participated in Study 1 and evaluated correlates and predictors of sleep quality. Across all six samples and both qualitative and quantitative methodologies, the daytime experience of feeling refreshed (nonrefreshed) in the morning and the nighttime experience of good (impaired) sleep continuity characterized perceived good and poor sleep. Our results clarify sleep quality as a construct and identify refreshing sleep and sleep continuity as potential clinical and research outcome measures. PMID:27413553

  3. Refreshing Sleep and Sleep Continuity Determine Perceived Sleep Quality

    PubMed Central

    Fichten, Catherine; Creti, Laura; Conrod, Kerry; Tran, Dieu-Ly; Grad, Roland; Jorgensen, Mary; Amsel, Rhonda; Rizzo, Dorrie; Baltzan, Marc; Pavilanis, Alan; Bailes, Sally

    2016-01-01

    Sleep quality is a construct often measured, employed as an outcome criterion for therapeutic success, but never defined. In two studies we examined appraised good and poor sleep quality in three groups: a control group, individuals with obstructive sleep apnea, and those with insomnia disorder. In Study 1 we used qualitative methodology to examine good and poor sleep quality in 121 individuals. In Study 2 we examined sleep quality in 171 individuals who had not participated in Study 1 and evaluated correlates and predictors of sleep quality. Across all six samples and both qualitative and quantitative methodologies, the daytime experience of feeling refreshed (nonrefreshed) in the morning and the nighttime experience of good (impaired) sleep continuity characterized perceived good and poor sleep. Our results clarify sleep quality as a construct and identify refreshing sleep and sleep continuity as potential clinical and research outcome measures. PMID:27413553

  4. Sleep disorders of early childhood: a review.

    PubMed

    Benhamou, I

    2000-01-01

    Night awakening and refusal to go to sleep are common problems during the first three years of life, comprising 6-30% of children in the general population. The organization and regulation of child sleep is thought to be closely related to his mode of attachment to his mother. Sleep aids (pacifier, teddy bear, etc.) during the night seem to reduce the occurrence of sleep disorders whereas prolonged breastfeeding and co-sleep with the parents interfere with the normal development of sleep. During the preschool years, the main issue affecting sleep is the ability of parents to set firm limits while respecting the sense of autonomy of the child. Sleep disorders are considered to be more common among physically and mentally handicapped children. Children with a difficult temperament sleep less than those with an easy one. A clear association is found between sleep patterns and psychopathology of the mother probably due to emotional unavailability and inappropriate behavior. Evaluation of the disorder should follow medical examination. It should take place in the presence of the child in order to view the real interaction as well as given information about the reported interaction between the child and his mother. Therapeutic interventions in cases of early childhood sleep disorders can be behavioral or psychodynamic and are advised to be focused and brief, unless there is psychopathology in the parents. PMID:11084806

  5. Electroencephalographic studies of sleep

    NASA Technical Reports Server (NTRS)

    Webb, W. B.; Agnew, H. W., Jr.

    1975-01-01

    Various experimental studies on sleep are described. The following areas are discussed: (1) effect of altered day length on sleep, (2) effect of a partial loss of sleep on subsequent nocturnal sleep; (3) effect of rigid control over sleep-wake-up times; (4) sleep and wakefulness in a time-free environment; (5) distribution of spindles during a full night of sleep; and (6) effect on sleep and performance of swiftly changing shifts of work.

  6. Reward Circuitry is Perturbed in the Absence of the Serotonin Transporter

    PubMed Central

    Bearer, Elaine L.; Zhang, Xiaowei; Janvelyan, Davit; Boulat, Benoit; Jacobs, Russell E.

    2009-01-01

    The serotonin transporter (SERT) modulates the entire serotonergic system in the brain and influences both the dopaminergic and norepinephrinergic systems. These three systems are intimately involved in normal physiological functioning of the brain and implicated in numerous pathological conditions. Here we use high-resolution magnetic resonance imaging (MRI) and spectroscopy to elucidate the effects of disruption of the serotonin transporter in an animal model system: the SERT knock-out mouse. Employing manganese-enhanced MRI, we injected Mn2+ into the prefrontal cortex and obtained 3D MR images at specific time points in cohorts of SERT and normal mice. Statistical analysis of co-registered datasets demonstrated that active circuitry originating in the prefrontal cortex in the SERT knock-out is dramatically altered, with a bias towards more posterior areas (substantia nigra, ventral tegmental area, and Raphé nuclei) directly involved in the reward circuit. Injection site and tracing were confirmed with traditional track tracers by optical microscopy. In contrast, metabolite levels were essentially normal in the SERT knock-out by in vivo magnetic resonance spectroscopy and little or no anatomical differences between SERT knock-out and normal mice were detected by MRI. These findings point to modulation of the limbic cortical-ventral striatopallidal by disruption of SERT function. Thus, molecular disruptions of SERT that produce behavioral changes also alter the functional anatomy of the reward circuitry in which all the monoamine systems are involved. PMID:19306930

  7. Cortical Processing of Respiratory Afferent Stimuli during Sleep in Children with the Obstructive Sleep Apnea Syndrome

    PubMed Central

    Huang, Jingtao; Colrain, Ian M.; Melendres, M. Cecilia; Karamessinis, Laurie R.; Pepe, Michelle E.; Samuel, John M.; Abi-Raad, Ronald F.; Trescher, William H.; Marcus, Carole L.

    2008-01-01

    Study Objectives: Children with the obstructive sleep apnea syndrome (OSAS) have blunted upper airway responses to negative pressure, but the underlying cause remains unknown. Cortical processing of respiratory afferent information can be tested by measuring respiratory-related evoked potentials (RREPs). We hypothesized that children with OSAS have blunted RREP responses compared to normal children during sleep. Design: During sleep, RREPs were obtained from EEG electrodes Fz, Cz, Pz during stage 2 sleep, slow wave sleep (SWS), and REM sleep. RREPs were produced with multiple short occlusions of the upper airway. Setting: Sleep laboratory. Participants: 9 children with OSAS and 12 normal controls. Measurements and Results: Children with OSAS had significantly decreased evoked K-complex production in stage 2 sleep and slow wave sleep and significantly reduced RREP N350 and P900 components in slow wave sleep. There were no significant differences in any of the measured RREP components in stage 2 sleep, and the only REM difference was decreased P2 amplitude. Conclusions: Results indicate that in children with OSAS, cortical processing of respiratory-related information measured with RREPs persists throughout sleep; however, RREPs during SWS are blunted compared to those seen in control children. Possible causes for this difference include a congenital deficit in neural processing reflective of a predisposition to develop OSAS, or changes in the upper airway rendering the airway less capable of transducing pressure changes following occlusion. Further research is required to evaluate RREPs after effective surgical treatment of OSAS in children, in order to distinguish between these alternatives. Citation: Huang J; Colrain IM; Melendres MC; Karamessinis LR; Pepe ME; Samuel JM; Abi-Raad RF; Trescher WH; Marcus CL. Cortical processing of respiratory afferent stimuli during sleep in children with the obstructive sleep apnea syndrome. SLEEP 2007;31(3):403-410. PMID:18363317

  8. Personality characteristics and sleep variables.

    PubMed

    Nakazawa, Y; Kotorii, M; Arikawa, K; Horikawa, S; Hasuzawa, H

    1975-01-01

    In a sleep study of 14 normal healthy adults an investigation was made of sleep measurements of a baseline record for its eventual relationship to the percentage of increase of REM percentage of the 1st recovery night following partial differential REM deprivation (PDRD), as well as to personality characteristics. The percentage of change in NREM sleep of the 1st recovery night was compared with the baseline record andthen compared with corresponding values of REM sleep. The results are summarized as follows. No significant correlation exists between the percentage of increase in the REM percentage of the 1st recovery night and sleep measures of the baseline record. An investigation of the relationship between sleep measures of the baseline record and personality characteristics revealed that stage SWS(%) was significantly greater in the introvert than in the extrovert, in the neurotic than in the non-neurotic, and in the nervous than in the optimistic. Comparison of the changes in NREM and REM sleep percentages of the 1st recovery night with the baseline record was made between paired personality characteristics. A significantly high percentage of increase in REM percentage was almost always associated with a significantly high percentage of decrease in stage 2 percentage. From these results it was inferred that an increase in REM percentage occurs at the expense of stage 2 percentage. PMID:170175

  9. Sleep-wake disorders and dermatology.

    PubMed

    Gupta, Madhulika A; Gupta, Aditya K

    2013-01-01

    Sleep is an active process that occupies about one-third of the lives of humans; however, there are relatively few studies of skin disorders during sleep. Sleep disruption in dermatologic disorders can significantly affect the quality of life and mental health of the patient and in some situations may even lead to exacerbations of the dermatologic condition. Sleep and skin disorders interface at several levels: (1) the role of the skin in normal sleep physiology, such as thermoregulation, core body temperature control, and sleep onset; (2) the effect of endogenous circadian rhythms and peripheral circadian "oscillators" on cutaneous symptoms, such as the natural trough in cortisol levels during the evening in patients with inflammatory dermatoses, which most likely results in increased pruritus during the evening and night; (3) the effect of symptoms such as pruritus, hyperhidrosis, and problems with thermoregulation, on sleep and sleep-related quality of life of the patients and their families; (4) the possible effect of primary sleep disorders, such as insomnia, sleep apnea, sleep deprivation, and circadian rhythm disorders, on dermatologic disorders; for example, central nervous system arousals from sleep in sleep apnea can result in increased sympathetic neural activity and increased inflammation; and (5) comorbidity of some dermatologic disorders with stress and psychiatric disorders, for example, major depressive disorder and attention deficit hyperactivity disorder (ADHD) that are also associated with sleep-related complaints. Sleep loss in atopic dermatitis (AD) is likely involved in the pathogenesis of ADHD-like symptoms in AD. Scratching during sleep, which may be proportional to the overall level of sympathetic nervous activity during the respective stages of sleep, usually occurs most frequently during non-rapid eye movement (NREM) stages 1 and 2 (vs stages 3 and 4 which are the deeper stages of sleep), and in rapid eye movement (REM) sleep, where the

  10. Evidence that birds sleep in mid-flight.

    PubMed

    Rattenborg, Niels C; Voirin, Bryson; Cruz, Sebastian M; Tisdale, Ryan; Dell'Omo, Giacomo; Lipp, Hans-Peter; Wikelski, Martin; Vyssotski, Alexei L

    2016-01-01

    Many birds fly non-stop for days or longer, but do they sleep in flight and if so, how? It is commonly assumed that flying birds maintain environmental awareness and aerodynamic control by sleeping with only one eye closed and one cerebral hemisphere at a time. However, sleep has never been demonstrated in flying birds. Here, using electroencephalogram recordings of great frigatebirds (Fregata minor) flying over the ocean for up to 10 days, we show that they can sleep with either one hemisphere at a time or both hemispheres simultaneously. Also unexpectedly, frigatebirds sleep for only 0.69 h d(-1) (7.4% of the time spent sleeping on land), indicating that ecological demands for attention usually exceed the attention afforded by sleeping unihemispherically. In addition to establishing that birds can sleep in flight, our results challenge the view that they sustain prolonged flights by obtaining normal amounts of sleep on the wing. PMID:27485308

  11. Evidence that birds sleep in mid-flight

    PubMed Central

    Rattenborg, Niels C; Voirin, Bryson; Cruz, Sebastian M.; Tisdale, Ryan; Dell'Omo, Giacomo; Lipp, Hans-Peter; Wikelski, Martin; Vyssotski, Alexei L.

    2016-01-01

    Many birds fly non-stop for days or longer, but do they sleep in flight and if so, how? It is commonly assumed that flying birds maintain environmental awareness and aerodynamic control by sleeping with only one eye closed and one cerebral hemisphere at a time. However, sleep has never been demonstrated in flying birds. Here, using electroencephalogram recordings of great frigatebirds (Fregata minor) flying over the ocean for up to 10 days, we show that they can sleep with either one hemisphere at a time or both hemispheres simultaneously. Also unexpectedly, frigatebirds sleep for only 0.69 h d−1 (7.4% of the time spent sleeping on land), indicating that ecological demands for attention usually exceed the attention afforded by sleeping unihemispherically. In addition to establishing that birds can sleep in flight, our results challenge the view that they sustain prolonged flights by obtaining normal amounts of sleep on the wing. PMID:27485308

  12. Epigenetic program and transcription factor circuitry of dendritic cell development.

    PubMed

    Lin, Qiong; Chauvistré, Heike; Costa, Ivan G; Gusmao, Eduardo G; Mitzka, Saskia; Hänzelmann, Sonja; Baying, Bianka; Klisch, Theresa; Moriggl, Richard; Hennuy, Benoit; Smeets, Hubert; Hoffmann, Kurt; Benes, Vladimir; Seré, Kristin; Zenke, Martin

    2015-11-16

    Dendritic cells (DC) are professional antigen presenting cells that develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Multipotent progenitors (MPP) are committed to DC restricted common DC progenitors (CDP), which differentiate into specific DC subsets, classical DC (cDC) and plasmacytoid DC (pDC). To determine epigenetic states and regulatory circuitries during DC differentiation, we measured consecutive changes of genome-wide gene expression, histone modification and transcription factor occupancy during the sequel MPP-CDP-cDC/pDC. Specific histone marks in CDP reveal a DC-primed epigenetic signature, which is maintained and reinforced during DC differentiation. Epigenetic marks and transcription factor PU.1 occupancy increasingly coincide upon DC differentiation. By integrating PU.1 occupancy and gene expression we devised a transcription factor regulatory circuitry for DC commitment and subset specification. The circuitry provides the transcription factor hierarchy that drives the sequel MPP-CDP-cDC/pDC, including Irf4, Irf8, Tcf4, Spib and Stat factors. The circuitry also includes feedback loops inferred for individual or multiple factors, which stabilize distinct stages of DC development and DC subsets. In summary, here we describe the basic regulatory circuitry of transcription factors that drives DC development. PMID:26476451

  13. Epigenetic program and transcription factor circuitry of dendritic cell development

    PubMed Central

    Lin, Qiong; Chauvistré, Heike; Costa, Ivan G.; Gusmao, Eduardo G.; Mitzka, Saskia; Hänzelmann, Sonja; Baying, Bianka; Klisch, Theresa; Moriggl, Richard; Hennuy, Benoit; Smeets, Hubert; Hoffmann, Kurt; Benes, Vladimir; Seré, Kristin; Zenke, Martin

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells that develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Multipotent progenitors (MPP) are committed to DC restricted common DC progenitors (CDP), which differentiate into specific DC subsets, classical DC (cDC) and plasmacytoid DC (pDC). To determine epigenetic states and regulatory circuitries during DC differentiation, we measured consecutive changes of genome-wide gene expression, histone modification and transcription factor occupancy during the sequel MPP-CDP-cDC/pDC. Specific histone marks in CDP reveal a DC-primed epigenetic signature, which is maintained and reinforced during DC differentiation. Epigenetic marks and transcription factor PU.1 occupancy increasingly coincide upon DC differentiation. By integrating PU.1 occupancy and gene expression we devised a transcription factor regulatory circuitry for DC commitment and subset specification. The circuitry provides the transcription factor hierarchy that drives the sequel MPP-CDP-cDC/pDC, including Irf4, Irf8, Tcf4, Spib and Stat factors. The circuitry also includes feedback loops inferred for individual or multiple factors, which stabilize distinct stages of DC development and DC subsets. In summary, here we describe the basic regulatory circuitry of transcription factors that drives DC development. PMID:26476451

  14. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Barron, Carole C.; Fleming, James G.; Montague, Stephen

    1999-01-01

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.

  15. Method for integrating microelectromechanical devices with electronic circuitry

    SciTech Connect

    Barron, C.C.; Fleming, J.G.; Montague, S.

    1999-10-05

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCl) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.

  16. Sleeping on a problem: the impact of sleep disturbance on intensive care patients - a clinical review.

    PubMed

    Delaney, Lori J; Van Haren, Frank; Lopez, Violeta

    2015-01-01

    Sleep disturbance is commonly encountered amongst intensive care patients and has significant psychophysiological effects, which protract recovery and increases mortality. Bio-physiological monitoring of intensive care patients reveal alterations in sleep architecture, with reduced sleep quality and continuity. The etiological causes of sleep disturbance are considered to be multifactorial, although environmental stressors namely, noise, light and clinical care interactions have been frequently cited in both subjective and objective studies. As a result, interventions are targeted towards modifiable factors to ameliorate their impact. This paper reviews normal sleep physiology and the impact that sleep disturbance has on patient psychophysiological recovery, and the contribution that the clinical environment has on intensive care patients' sleep. PMID:25852963

  17. Effects of sleep on memory for conditioned fear and fear extinction

    PubMed Central

    Pace-Schott, Edward F.; Germain, Anne; Milad, Mohammed R.

    2015-01-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning and extinction memory in the rodent and human, interactions of sleep with these processes will be examined. Animal and human studies suggest that sleep can serve to consolidate both fear and extinction memory. In humans, sleep also promotes generalization of extinction memory. Time-of-day effects on extinction learning and generalization are also seen. REM may be a sleep stage of particular importance for the consolidation of both fear and extinction memory as evidenced by selective REM deprivation experiments. REM sleep is accompanied by selective activation of the same limbic structures implicated in the learning and memory of fear and extinction. Preliminary evidence also suggests extinction learning can take place during slow wave sleep. Study of low-level processes such as conditioning, extinction and habituation may allow sleep effects on emotional memory to be identified and inform study of sleep’s effects on more complex, emotionally salient declarative memories. Anxiety disorders are marked by impairments of both sleep and extinction memory. Improving sleep quality may ameliorate anxiety disorders by strengthening naturally acquired extinction. Strategically timed sleep may be used to enhance treatment of anxiety by strengthening therapeutic extinction learned via exposure therapy. PMID:25894546

  18. Subjective sleep complaints indicate objective sleep problems in psychosomatic patients: a prospective polysomnographic study

    PubMed Central

    Linden, Michael; Dietz, Marie; Veauthier, Christian; Fietze, Ingo

    2016-01-01

    Objective To elucidate the relationship between subjective complaints and polysomnographical parameters in psychosomatic patients. Method A convenience sample of patients from a psychosomatic inpatient unit were classified according to the Pittsburgh Sleep Quality Index (PSQI) as very poor sleepers (PSQI >10, n=80) and good sleepers (PSQI <6, n=19). They then underwent a polysomnography and in the morning rated their previous night’s sleep using a published protocol (Deutschen Gesellschaft für Schlafforschung und Schlafmedizin morning protocol [MP]). Results In the polysomnography, significant differences were found between very poor and good sleepers according to the PSQI with respect to sleep efficiency and time awake after sleep onset. When comparing objective PSG and subjective MP, the polysomnographical sleep onset latency was significantly positively correlated with the corresponding parameters of the MP: the subjective sleep onset latency in minutes and the subjective evaluation of sleep onset latency (very short, short, normal, long, very long) were positively correlated with the sleep latency measured by polysomnography. The polysomnographical time awake after sleep onset (in minutes) was positively correlated with the subjective time awake after sleep onset (in minutes), evaluation of time awake after sleep onset (seldom, normal often), and subjective restfulness. The polysomnographical total sleep time (TST) was positively correlated with the subjective TST. Conversely, the polysomnographical TST was negatively correlated with the evaluation of TST (high polysomnographical TST was correlated with the subjective evaluation of having slept short or normal and vice versa). The polysomnographical sleep efficiency was positively correlated with subjective feeling of current well-being in the morning and subjective TST and negatively with subjective restfulness, subjective sleep onset latency, subjective evaluation of sleep onset latency, and evaluation of

  19. On the Individuality of Sleep EEG Spectra

    PubMed Central

    Lewandowski, Achim; Rosipal, Roman; Dorffner, Georg

    2013-01-01

    Research in recent years has supported the hypothesis that many properties of the electroencephalogram (EEG) are specific to an individual. In this study, the intra- and inter-individual variations of sleep EEG signals were investigated. This was carried out by analyzing the stability of the average EEG spectra individually computed for the Rechtschaffen and Kales (RK) sleep stages. Six EEG channels were used to account for the topographical aspect of the analysis. Validity of the results was supported by considering a wide dataset of 174 subjects with normal sleep. Subjects spent two consecutive nights in the sleep laboratory during which EEG recordings were obtained. High similarity between average spectra of two consecutive nights was found considering an individual. More than 89% of the second night recordings were correctly assigned to their counterparts of the first night. The average spectra of sleep EEG computed for each RK sleep stage have shown a high degree of individuality. PMID:23997385

  20. Elevated ghrelin predicts food intake during experimental sleep restriction

    PubMed Central

    Broussard, Josiane L.; Kilkus, Jennifer M.; Delebecque, Fanny; Abraham, Varghese; Day, Andrew; Whitmore, Harry R.; Tasali, Esra

    2015-01-01

    Objective Sleep curtailment has been linked to obesity, but underlying mechanisms remain to be elucidated. We assessed whether sleep restriction alters 24-hour profiles of appetite-regulating hormones ghrelin, leptin and pancreatic polypeptide during a standardized diet, and whether these hormonal alterations predict food intake during ad libitum feeding. Methods Nineteen healthy, lean men were studied under normal sleep and sleep restriction in a randomized crossover design. Blood samples were collected for 24-hours during standardized meals. Subsequently, participants had an ad libitum feeding opportunity (buffet meals and snacks) and caloric intake was measured. Results Ghrelin levels were increased after sleep restriction as compared to normal sleep (p<0.01). Overall, sleep restriction did not alter leptin or pancreatic polypeptide profiles. Sleep restriction was associated with an increase in total calories from snacks by 328 ± 140 Kcal (p=0.03), primarily from carbohydrates (p=0.02). The increase in evening ghrelin during sleep restriction was correlated with higher consumption of calories from sweets (r=0.48, p=0.04). Conclusions Sleep restriction as compared to normal sleep significantly increases ghrelin levels. The increase in ghrelin is associated with more consumption of calories. Elevated ghrelin may be a mechanism by which sleep loss leads to increased food intake and the development of obesity. PMID:26467988

  1. Polysomnographic study of nocturnal sleep in idiopathic hypersomnia without long sleep time.

    PubMed

    Pizza, Fabio; Ferri, Raffaele; Poli, Francesca; Vandi, Stefano; Cosentino, Filomena I I; Plazzi, Giuseppe

    2013-04-01

    We investigated nocturnal sleep abnormalities in 19 patients with idiopathic hypersomnia without long sleep time (IH) in comparison with two age- and sex- matched control groups of 13 normal subjects (C) and of 17 patients with narcolepsy with cataplexy (NC), the latter considered as the extreme of excessive daytime sleepiness (EDS). Sleep macro- and micro- (i.e. cyclic alternating pattern, CAP) structure as well as quantitative analysis of EEG, of periodic leg movements during sleep (PLMS), and of muscle tone during REM sleep were compared across groups. IH and NC patients slept more than C subjects, but IH showed the highest levels of sleep fragmentation (e.g. awakenings), associated with a CAP rate higher than NC during lighter sleep stages and lower than C during slow wave sleep respectively, and with the highest relative amount of A3 and the lowest of A1 subtypes. IH showed a delta power in between C and NC groups, whereas muscle tone and PLMS had normal characteristics. A peculiar profile of microstructural sleep abnormalities may contribute to sleep fragmentation and, possibly, EDS in IH. PMID:23061443

  2. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression.

    PubMed

    Cline, Brandon H; Costa-Nunes, Joao P; Cespuglio, Raymond; Markova, Natalyia; Santos, Ana I; Bukhman, Yury V; Kubatiev, Aslan; Steinbusch, Harry W M; Lesch, Klaus-Peter; Strekalova, Tatyana

    2015-01-01

    Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies. PMID:25767439

  3. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression

    PubMed Central

    Cline, Brandon H.; Costa-Nunes, Joao P.; Cespuglio, Raymond; Markova, Natalyia; Santos, Ana I.; Bukhman, Yury V.; Kubatiev, Aslan; Steinbusch, Harry W. M.; Lesch, Klaus-Peter; Strekalova, Tatyana

    2015-01-01

    Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies. PMID:25767439

  4. Total Sleep Time Severely Drops during Adolescence

    PubMed Central

    Leger, Damien; Beck, François; Richard, Jean-Baptiste; Godeau, Emmanuelle

    2012-01-01

    Restricted sleep duration among young adults and adolescents has been shown to increase the risk of morbidities such as obesity, diabetes or accidents. However there are few epidemiological studies on normal total sleep time (TST) in representative groups of teen-agers which allow to get normative data. Purpose To explore perceived total sleep time on schooldays (TSTS) and non schooldays (TSTN) and the prevalence of sleep initiating insomnia among a nationally representative sample of teenagers. Methods Data from 9,251 children aged 11 to 15 years-old, 50.7% of which were boys, as part of the cross-national study 2011 HBSC were analyzed. Self-completion questionnaires were administered in classrooms. An estimate of TSTS and TSTN (week-ends and vacations) was calculated based on specifically designed sleep habits report. Sleep deprivation was estimated by a TSTN – TSTS difference >2 hours. Sleep initiating nsomnia was assessed according to International classification of sleep disorders (ICSD 2). Children who reported sleeping 7 hours or less per night were considered as short sleepers. Results A serious drop of TST was observed between 11 yo and 15 yo, both during the schooldays (9 hours 26 minutes vs. 7 h 55 min.; p<0.001) and at a lesser extent during week-ends (10 h 17 min. vs. 9 h 44 min.; p<0.001). Sleep deprivation concerned 16.0% of chidren aged of 11 yo vs. 40.5% of those of 15 yo (p<0.001). Too short sleep was reported by 2.6% of the 11 yo vs. 24.6% of the 15 yo (p<0.001). Conclusion Despite the obvious need for sleep in adolescence, TST drastically decreases with age among children from 11 to 15 yo which creates significant sleep debt increasing with age. PMID:23082111

  5. Extreme Violation of Sleep Hygiene: Sleeping Against the Biological Clock During a Multiday Relay Event

    PubMed Central

    van Maanen, Annette; Roest, Bas; Moen, Maarten; Oort, Frans; Vergouwen, Peter; Paul, Ingrid; Groenenboom, Petra; Smits, Marcel

    2015-01-01

    Background: Sleep hygiene is important for sleep quality and optimal performance during the day. However, it is not always possible to follow sleep hygiene requirements. In multiday relay events, athletes have to sleep immediately after physical exertion and sometimes against their biological clock. Objectives: In this pilot study we investigated the effect of having to sleep at an abnormal circadian time on sleep duration. Patients and Methods: Eight runners and two cyclists performing a 500 km relay race were followed. They were divided into two groups that took turns in running and resting. Each group ran four times for approximately five hours while the other group slept. As a result, sleep times varied between normal and abnormal times. All athletes wore actigraphs to record the duration and onset of sleep. Results: Linear mixed model analyses showed that athletes slept on average 43 minutes longer when they slept during usual (night) times than during abnormal (day) times. In general, sleep duration decreased during the race with on average 18 minutes per period. Conclusions: This pilot study shows that, even under extreme violation of sleep hygiene rules, there still is an apparent effect of circadian rhythm on sleep duration in relay race athletes. PMID:26715971

  6. Individual Differences in Response to Sleep Deprivation: Assessment of Fatigue Following Sleep Loss

    NASA Technical Reports Server (NTRS)

    Carskadon, Mary A.

    1997-01-01

    Previous work has indicated that a small but significant number of participants in sleep deprivation studies or in simulated shift work experiments manifests an exaggerated performance decrement when they reach a critical point in the experiment, usually near the trough of the circadian cycle or the middle of the night. Those who show this exaggerated response do not appear to differ from other normal volunteers in any substantial way according to usual screening criteria or baseline values. The present study aims to examine factors that may provide the basis for this extreme response. We propose that a preexisting sleep deficit-as manifested by low values on the Multiple Sleep Latency Test (MSLT)-may account for extreme responders. Roth and colleagues (1993) have shown that among normal volunteers screened for a variety of studies, approximately 20 to 25 percent show low (< or = 6 minutes) MSLT scores on a consistent basis, whereas a like proportion shows consistently high MSLT scores (> or = 13 minutes). Additionally, studies by this group have indicated that subjects with low MSLT scores may suffer from chronic insufficient sleep (Roth et al., 1993), as further substantiated by the finding that they have consistently higher nocturnal sleep efficiency and that their MSLT scores rise to normal values when sleep is extended (Roehrs et al., 1996). We hypothesize that the short MSLT subjects have a significant long-term sleep deficit that leads to a marked intolerance for sleep deprivation or shift work. We further suggest that this sleep debt may signify an increased sleep need in these individuals that is not met either due to personal preference or to societal pressures (or both). If this speculation is accurate, then we predict that the tolerance for sleep deprivation in such individuals can be increased by "pretreatment" with sleep extension. Thus, the present study is designed to test the following two hypotheses: subjects with nominal sleep patterns who have

  7. Sleep in Neurodegenerative Diseases.

    PubMed

    Iranzo, Alex

    2016-03-01

    Disorders of sleep are an integral part of neurodegenerative diseases and include insomnia, sleep-wake cycle disruption, excessive daytime sleepiness that may be manifested as persistent somnolence or sudden onset of sleep episodes, obstructive and central sleep apnea, rapid eye movement sleep behavior disorder, and restless legs syndrome. The origin of these sleep disorders is multifactorial including degeneration of the brain areas that modulate sleep, the symptoms of the disease, and the effect of medications. Treatment of sleep disorders in patients with neurodegenerative diseases should be individualized and includes behavioral therapy, sleep hygiene, bright light therapy, melatonin, hypnotics, waking-promoting agents, and continuous positive airway pressure. PMID:26972029

  8. Partial sleep in the context of augmentation of brain function

    PubMed Central

    Pigarev, Ivan N.; Pigareva, Marina L.

    2014-01-01

    Inability to solve complex problems or errors in decision making is often attributed to poor brain processing, and raises the issue of brain augmentation. Investigation of neuronal activity in the cerebral cortex in the sleep-wake cycle offers insights into the mechanisms underlying the reduction in mental abilities for complex problem solving. Some cortical areas may transit into a sleep state while an organism is still awake. Such local sleep would reduce behavioral ability in the tasks for which the sleeping areas are crucial. The studies of this phenomenon have indicated that local sleep develops in high order cortical areas. This is why complex problem solving is mostly affected by local sleep, and prevention of local sleep might be a potential way of augmentation of brain function. For this approach to brain augmentation not to entail negative consequences for the organism, it is necessary to understand the functional role of sleep. Our studies have given an unexpected answer to this question. It was shown that cortical areas that process signals from extero- and proprioreceptors during wakefulness, switch to the processing of interoceptive information during sleep. It became clear that during sleep all “computational power” of the brain is directed to the restoration of the vital functions of internal organs. These results explain the logic behind the initiation of total and local sleep. Indeed, a mismatch between the current parameters of any visceral system and the genetically determined normal range would provide the feeling of tiredness, or sleep pressure. If an environmental situation allows falling asleep, the organism would transit to a normal total sleep in all cortical areas. However, if it is impossible to go to sleep immediately, partial sleep may develop in some cortical areas in the still behaviorally awake organism. This local sleep may reduce both the “intellectual power” and the restorative function of sleep for visceral organs. PMID

  9. Rugged microelectronic module package supports circuitry on heat sink

    NASA Technical Reports Server (NTRS)

    Johnson, A. L.

    1966-01-01

    Rugged module package for thin film hybrid microcircuits incorporated a rigid, thermally conductive support structure, which serves as a heat sink, and a lead wire block in which T-shaped electrical connectors are potted. It protects the circuitry from shock and vibration loads, dissipates internal heat, and simplifies electrical connections between adjacent modules.

  10. Reward Circuitry Function in Autism during Face Anticipation and Outcomes

    ERIC Educational Resources Information Center

    Dichter, Gabriel S.; Richey, J. Anthony; Rittenberg, Alison M.; Sabatino, Antoinette; Bodfish, James W.

    2012-01-01

    The aim of this study was to investigate reward circuitry responses in autism during reward anticipation and outcomes for monetary and social rewards. During monetary anticipation, participants with autism spectrum disorders (ASDs) showed hypoactivation in right nucleus accumbens and hyperactivation in right hippocampus, whereas during monetary…

  11. The Origin of Behavioral Bursts in Decision-Making Circuitry

    PubMed Central

    Lopez-Pigozzi, Diego; Murga, Cristina; de Polavieja, Gonzalo G.

    2011-01-01

    From ants to humans, the timing of many animal behaviors comes in bursts of activity separated by long periods of inactivity. Recently, mathematical modeling has shown that simple algorithms of priority-driven behavioral choice can result in bursty behavior. To experimentally test this link between decision-making circuitry and bursty dynamics, we have turned to Drosophila melanogaster. We have found that the statistics of intervals between activity periods in endogenous activity-rest switches of wild-type Drosophila are very well described by the Weibull distribution, a common distribution of bursty dynamics in complex systems. The bursty dynamics of wild-type Drosophila walking activity are shown to be determined by this inter-event distribution alone and not by memory effects, thus resembling human dynamics. Further, using mutant flies that disrupt dopaminergic signaling or the mushroom body, circuitry implicated in decision-making, we show that the degree of behavioral burstiness can be modified. These results are thus consistent with the proposed link between decision-making circuitry and bursty dynamics, and highlight the importance of using simple experimental systems to test general theoretical models of behavior. The findings further suggest that analysis of bursts could prove useful for the study and evaluation of decision-making circuitry. PMID:21731478

  12. Statistical physics approaches to quantifying sleep-stage transitions

    NASA Astrophysics Data System (ADS)

    Lo, Chung-Chuan

    Sleep can be viewed as a sequence of transitions in a very complex neuronal system. Traditionally, studies of the dynamics of sleep control have focused on the circadian rhythm of sleep-wake transitions or on the ultradian rhythm of the sleep cycle. However, very little is known about the mechanisms responsible for the time structure or even the statistics of the rapid sleep-stage transitions that appear without periodicity. I study the time dynamics of sleep-wake transitions for different species, including humans, rats, and mice, and find that the wake and sleep episodes exhibit completely different behaviors: the durations of wake episodes are characterized by a scale-free power-law distribution, while the durations of sleep episodes have an exponential distribution with a characteristic time scale. The functional forms of the distributions of the sleep and wake durations hold for human subjects of different ages and for subjects with sleep apnea. They also hold for all the species I investigate. Surprisingly, all species have the same power-law exponent for the distribution of wake durations, but the exponential characteristic time of the distribution of sleep durations changes across species. I develop a stochastic model which accurately reproduces our empirical findings. The model suggests that the difference between the dynamics of the sleep and wake states arises from the constraints on the number of microstates in the sleep-wake system. I develop a measure of asymmetry in sleep-stage transitions using a transition probability matrix. I find that both normal and sleep apnea subjects are characterized by two types of asymmetric sleep-stage transition paths, and that the sleep apnea group exhibits less asymmetry in the sleep-stage transitions.

  13. Epithelial-to-Mesenchymal Plasticity Harnesses Endocytic Circuitries

    PubMed Central

    Corallino, Salvatore; Malabarba, Maria Grazia; Zobel, Martina; Di Fiore, Pier Paolo; Scita, Giorgio

    2015-01-01

    The ability of cells to alter their phenotypic and morphological characteristics, known as cellular plasticity, is critical in normal embryonic development and adult tissue repair and contributes to the pathogenesis of diseases, such as organ fibrosis and cancer. The epithelial-to-mesenchymal transition (EMT) is a type of cellular plasticity. This transition involves genetic and epigenetic changes as well as alterations in protein expression and post-translational modifications. These changes result in reduced cell-cell adhesion, enhanced cell adhesion to the extracellular matrix, and altered organization of the cytoskeleton and of cell polarity. Among these modifications, loss of cell polarity represents the nearly invariable, distinguishing feature of EMT that frequently precedes the other traits or might even occur in their absence. EMT transforms cell morphology and physiology, and hence cell identity, from one typical of cells that form a tight barrier, like epithelial and endothelial cells, to one characterized by a highly motile mesenchymal phenotype. Time-resolved proteomic and phosphoproteomic analyses of cells undergoing EMT recently identified thousands of changes in proteins involved in many cellular processes, including cell proliferation and motility, DNA repair, and – unexpectedly – membrane trafficking (1). These results have highlighted a picture of great complexity. First, the EMT transition is not an all-or-none response but rather a gradual process that develops over time. Second, EMT events are highly dynamic and frequently reversible, involving both cell-autonomous and non-autonomous mechanisms. The net results is that EMT generates populations of mixed cells, with partial or full phenotypes, possibly accounting (at least in part) for the physiological as well as pathological cellular heterogeneity of some tissues. Endocytic circuitries have emerged as complex connectivity infrastructures for numerous cellular networks required for the

  14. Cardiovascular, Inflammatory and Metabolic Consequences of Sleep Deprivation

    PubMed Central

    Mullington, Janet M.; Haack, Monika; Toth, Maria; Serrador, Jorge; Meier-Ewert, Hans

    2009-01-01

    That insufficient sleep is associated with poor attention and performance deficits is becoming widely recognized. Fewer people are aware that chronic sleep complaints in epidemiological studies have also been associated with an increase in overall mortality and morbidity. This article summarizes findings of known effects of insufficient sleep on cardiovascular risk factors including blood pressure, glucose metabolism, hormonal regulation and inflammation with particular emphasis on experimental sleep loss, using models of total and partial sleep deprivation, in healthy individuals who normally sleep in the range of 7-8 hours and have no sleep disorders. These studies show that insufficient sleep alters established cardiovascular risk factors in a direction that is known to increase the risk of cardiac morbidity. PMID:19110131

  15. Sleep Changes in Older Adults

    MedlinePlus

    ... ages can have a sleep disorder such as sleep apnea. Restless legs syndrome or periodic limb movement disorder ... that can cause problems with sleep. What is sleep apnea? Sleep apnea is a disorder in which a ...

  16. Sleep quality but not sleep quantity effects on cortisol responses to acute psychosocial stress.

    PubMed

    Bassett, Sarah M; Lupis, Sarah B; Gianferante, Danielle; Rohleder, Nicolas; Wolf, Jutta M

    2015-01-01

    Given the well-documented deleterious health effects, poor sleep has become a serious public health concern and increasing efforts are directed toward understanding underlying pathways. One potential mechanism may be stress and its biological correlates; however, studies investigating the effects of poor sleep on a body's capacity to deal with challenges are lacking. The current study thus aimed at testing the effects of sleep quality and quantity on cortisol responses to acute psychosocial stress. A total of 73 college-aged adults (44 females) were investigated. Self-reported sleep behavior was assessed via the Pittsburgh Sleep Quality Index and salivary cortisol responses to the Trier Social Stress Test were measured. In terms of sleep quality, we found a significant three-way interaction, such that relative to bad sleep quality, men who reported fairly good or very good sleep quality showed blunted or exaggerated cortisol responses, respectively, while women's stress responses were less dependent on their self-reported sleep quality. Contrarily, average sleep duration did not appear to impact cortisol stress responses. Lastly, participants who reported daytime dysfunctions (i.e. having trouble staying awake or keeping up enthusiasm) also showed a trend to blunted cortisol stress responses compared to participants who did not experience these types of daytime dysfunctions. Overall, the current study suggests gender-specific stress reactivity dysfunctions as one mechanism linking poor sleep with detrimental physical health outcomes. Furthermore, the observed differential sleep effects may indicate that while the body may be unable to maintain normal hypothalamic-pituitary-adrenal functioning in an acute psychosocial stress situation after falling prey to low sleep quality, it may retain capacities to deal with challenges during extended times of sleep deprivation. PMID:26414625

  17. Sleep Apnea Detection

    MedlinePlus

    ... Prenatal Baby Bathing & Skin Care Breastfeeding Crying & Colic Diapers & Clothing Feeding & Nutrition Preemie Sleep Teething & Tooth Care Toddler Preschool Gradeschool Teen Young Adult Healthy Children > Ages & Stages > Baby > Sleep > Sleep Apnea ...

  18. Medicines for sleep

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000758.htm Medicines for sleep To use the sharing features on ... or illegal drug use Over-the-counter sleep medicines Most over-the-counter (OTC) sleeping pills contain ...

  19. Treatments for Sleep Changes

    MedlinePlus

    ... Contributing medical factors Non-drug strategies Medications Common sleep changes Many people with Alzheimer’s experience changes in ... at night. Subscribe now Non-drug treatments for sleep changes Non-drug treatments aim to improve sleep ...

  20. Good Night's Sleep

    MedlinePlus

    ... symptoms to see if you might have a sleep disorder like insomnia, sleep apnea, or a movement disorder. ... periodic limb movement disorder, and rapid eye movement sleep behavior disorder are common in older adults. These movement disorders ...

  1. Sleep and your health

    MedlinePlus

    ... and awake, even when you are very tired. Sleep disorders Sleep problems are a big reason why many ... through the night. It is the most common sleep disorder. Insomnia can last for a night, a couple ...

  2. Aging changes in sleep

    MedlinePlus

    ... CHANGES Sleeping difficulty is an annoying problem. Chronic insomnia is a major cause of auto accidents and ... health condition is affecting your sleep. COMMON PROBLEMS Insomnia is one of the more common sleep problems ...

  3. Excessive daytime sleepiness in sleep disorders

    PubMed Central

    Steier, Joerg

    2012-01-01

    Excessive daytime sleepiness is a significant public health problem, with prevalence in the community estimated to be as high as 18%. Sleepiness is caused by abnormal sleep quantity or sleep quality. Amongst others, multiple neurological, psychological, cardiac and pulmonary disorders may contribute. Risk factors for excessive sleepiness include obesity, depression, extremes of age and insufficient sleep. In the clinical setting, two of the most commonly encountered causes are obstructive sleep apnoea and periodic limb movement disorder. There is continuing discussion of the mechanisms by which these disorders cause daytime symptoms, with intermittent nocturnal hypoxia, sleep fragmentation and autonomic dysregulation identified as important factors. The increased prevalence of obstructive sleep apnoea in obese subjects does not fully account for the increased rates of daytime sleepiness in this population and there is evidence to suggest that it is caused by metabolic factors and chronic inflammation in obese individuals. Sleepiness is also more common in those reporting symptoms of depression or anxiety disorders and significantly impacts their quality of life. Clinicians should be aware of factors which put their patients at high risk of daytime sleepiness, as it is a debilitating and potentially dangerous symptom with medico-legal implications. Treatment option should address underlying contributors and promote sleep quantity and sleep quality by ensuring good sleep hygiene. However, stimulant medication may be indicated in some cases to allow for more normal daytime functioning. PMID:23205286

  4. Consumer sleep tracking devices: a review of mechanisms, validity and utility.

    PubMed

    Kolla, Bhanu Prakash; Mansukhani, Subir; Mansukhani, Meghna P

    2016-05-01

    Consumer sleep tracking devices such as fitness trackers and smartphone apps have become increasingly popular. These devices claim to measure the sleep duration of their users and in some cases purport to measure sleep quality and awaken users from light sleep, potentially improving overall sleep. Most of these devices appear to utilize data generated from in-built accelerometers to determine sleep parameters but the exact mechanisms and algorithms are proprietary. The growing literature comparing these devices against polysomnography/actigraphy shows that they tend to underestimate sleep disruptions and overestimate total sleep times and sleep efficiency in normal subjects. In this review, we evaluate the current literature comparing the accuracy of consumer sleep tracking devices against more conventional methods used to measure sleep duration and quality. We discuss the current technology that these devices utilize as well as summarize the value of these devices in clinical evaluations and their potential limitations. PMID:27043070

  5. Individual Differences in Response to Sleep Deprivation: Assessment of Fatigue Following Sleep Loss

    NASA Technical Reports Server (NTRS)

    Carskadon, Mary A.

    1997-01-01

    Previous work has indicated that a small but significant number of participants in sleep deprivation studies or in simulated shift work experiments manifests an exaggerated performance decrement when they reach a critical point in the experiment, usually near the trough of the circadian cycle or the middle of the night. Those who show this exaggerated response do not appear to differ from other non-nal volunteers in any substantial way according to usual screening criteria or baseline values. The present study aims to examine factors that may provide the basis for this extreme response. We propose that a preexisting sleep deficit-as manifested by low values on the Multiple Sleep Latency Test (MSLT)-may account for extreme responders. Roth and colleagues (1993) have shown that among normal volunteers screened for a variety of studies, approximately 20 to 25 percent show low (< 6 minutes) MSLT scores on a consistent basis, whereas a like proportion shows consistently high MSLT scores (> 13 minutes). Additionally, studies by this group have indicated that subjects with low MSLT scores may suffer from chronic insufficient sleep (Roth et al., 1993), as further substantiated by the finding that they have consistently higher nocturnal sleep efficiency and that their MSLT scores rise to normal values when sleep is extended (Roehrs et al., 1996). We hypothesize that the short MSLT subjects have a significant long-term sleep deficit that leads to a marked intolerance for sleep deprivation or shift work. We further suggest that this sleep debt may signify an increased sleep need in these individuals that is not met either due to personal preference or to societal pressures (or both). If this speculation is accurate, then we predict that the tolerance for sleep deprivation in such individuals can be increased by "pretreatment" with sleep extension. Thus, the present study is designed to test the following two hypotheses: subjects with nominal sleep patterns who have low MSLT

  6. Individual Differences in Response to Sleep Deprivation: Assessment of Fatigue Following Sleep Loss

    NASA Technical Reports Server (NTRS)

    Carskadon, Mary A.

    1997-01-01

    Previous work has indicated that a small but significant number of participants in sleep deprivation studies or in simulated shift work experiments manifests an exaggerated performance decrement when they reach a critical point in the experiment, usually near the trough of the circadian cycle or the middle of the night. Those who show this exaggerated response do not appear to differ from other non-nal volunteers in any substantial way according to usual screening criteria or baseline values. The present study aims to examine factors that may provide the basis for this extreme response. We propose that a preexisting sleep deficit-as manifested by low values on the Multiple Sleep Latency Test (MSLT)-may account for extreme responders. It has been shown that among normal volunteers screened for a variety of studies, approximately 20 to 25 percent show low (< 6 minutes) MSLT scores on a consistent basis, whereas a like proportion shows consistently high MSLT scores (> 13 minutes). Additionally, studies by this group have indicated that subjects with low MSLT scores may suffer from chronic insufficient sleep, as further substantiated by the finding that they have consistently higher nocturnal sleep efficiency and that their MSLT scores rise to normal values when sleep is extended. We hypothesize that the short MSLT subjects have a significant long-term sleep deficit that leads to a marked intolerance for sleep deprivation or shift work. We further suggest that this sleep debt may signify an increased sleep need in these individuals that is not met either due to personal preference or to societal pressures (or both). If this speculation is accurate, then we predict that the tolerance for sleep deprivation in such individuals can be increased by "pretreatment" with sleep extension. Thus, the present study is designed to test the following two hypotheses: (1) subjects with nominal sleep patterns who have low MSLT scores (e.g., Sleepy subjects) will show an exaggerated

  7. Overview of sleep disorders.

    PubMed

    Roldan, Glenn; Ang, Robert C

    2006-03-01

    Sleep disorders are common and can affect anyone, from every social class and every ethnic background. It is estimated that more than 70 million Americans are afflicted by chronic sleep disorders. Currently about 88 sleep disorders are described by the International Classification of Sleep Disorders as established by The American Academy of Sleep Medicine. This article describes the dyssomnias and parasomnias most commonly seen in the clinical setting of the sleep disorder clinic or laboratory. PMID:16530646

  8. Forced splitting of human sleep in free-running rhythms.

    PubMed

    Zulley; Carr

    1992-06-01

    The assumption of polyphasic sleep/wake regulation is based on the occurrence of nap-sleep at specific phase positions in the circadian cycle. Further support would be the split of the normal long major sleep episode into shorter components. Evidence for this hypothesis comes from the discovery of bimodal distribution in sleep duration. An experimental approach to test this hypothesis has been carried out by restricting sleep duration in free-running rhythms. The outcome was a biphasic distribution of sleep within a circadian cycle with sections of dissociation and synchronization of the two sleep blocks. The results show similarities with 'splitting', a phenomenon which has been found in animal studies. The relatively short duration of the different sections as well as the asymmetric distribution of the two sleep blocks in the circadian cycle leads to the assumption of a splitting of the major sleep episode and not of the circadian rhythm. Sleep split into two, relatively short sleep episodes of comparable duration contrasts with napping, which is characterized by an extra sleep episode in addition to the long major sleep. PMID:10607035

  9. Sleep disruption and the sequelae associated with traumatic brain injury

    PubMed Central

    Lucke-Wold, Brandon P.; Smith, Kelly E.; Nguyen, Linda; Turner, Ryan C.; Logsdon, Aric F.; Jackson, Garrett J.; Huber, Jason D.; Rosen, Charles L.; Miller, Diane B.

    2016-01-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy. PMID:25956251

  10. Sleep disruption and the sequelae associated with traumatic brain injury.

    PubMed

    Lucke-Wold, Brandon P; Smith, Kelly E; Nguyen, Linda; Turner, Ryan C; Logsdon, Aric F; Jackson, Garrett J; Huber, Jason D; Rosen, Charles L; Miller, Diane B

    2015-08-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy. PMID:25956251

  11. Paradoxical sleep as a programming system.

    PubMed

    Jouvet, M

    1998-01-01

    The concept of 'psychological individuation' i.e 'intraspecific variability' is essential for evolution as stated by Mayr (1958). It has been recently revived by the study of Bouchard (1990) in homozygous twins separated at birth and reared in different environments. These twins still retain identical psychological idiosyncratic reactions. Even if their brains are almost identical at birth, it is most likely that the different epigenetic stimuli from the external world have differently altered many cerebral synaptic circuitry due to the plasticity of the brain. Therefore, in order to maintain an identical psychological profile, there should be a mechanism which would reinforce the genetic programmation of the central nervous system either in reinforcing or erasing special genetic circuitry which would be stimulated during previous and/or subsequent waking periods. In ectothermic vertebrates, in immature mammals or sometimes in mature birds, this programming can be effectuated by neurogenesis. After neurogenesis has stopped in mammals, paradoxical sleep would be well suited for reinforcing the genetic programming during sleep. The patterns of portogeniculo-occipital (PGO) activity (which depend upon genetic factors) would be responsible for this function, together with the theta activity of the hippocampus (read out of previous waking events) and fast cortical EEG. This programming would activate all the brain including the pyramidal motor system while movements would be suppressed by the system controlling muscle atonia. PMID:9682187

  12. Symposium: Cognitive processes and sleep disturbances: Sleep, dreams and memory: an overview.

    PubMed

    Cipolli

    1995-03-01

    Investigations into the role played by sleep in information processing have consistently shown that the retention of information is better when the memory storage is followed by a period of sleep than of waking. Less definitive evidence, however, is available as to whether the better performance is mainly due to (a) reduction of interference during sleep, (b) slowing down of decay, or (c) consolidation processes at work during sleep. Important insights as to whether consolidation takes place during sleep have recently been provided by the thematic continuity of dreams elaborated in the same night and by the repeated incorporation of pre-sleep stimuli into dream contents. The analysis of such aspects of dreaming indicates that the items of information which are repeatedly accessed during sleep and elaborated for insertion into the ongoing dream experience are better retained at delayed recall. Finally, it is suggested that the use of the strategies applied in studying the information processing in normals may also be extended to sleep-disturbed individuals, in order to establish how memory functioning during sleep is influenced by sleep disturbances. PMID:10607134

  13. Sleep: A Health Imperative

    PubMed Central

    Luyster, Faith S.; Strollo, Patrick J.; Zee, Phyllis C.; Walsh, James K.

    2012-01-01

    Chronic sleep deficiency, defined as a state of inadequate or mistimed sleep, is a growing and underappreciated determinant of health status. Sleep deprivation contributes to a number of molecular, immune, and neural changes that play a role in disease development, independent of primary sleep disorders. These changes in biological processes in response to chronic sleep deficiency may serve as etiological factors for the development and exacerbation of cardiovascular and metabolic diseases and, ultimately, a shortened lifespan. Sleep deprivation also results in significant impairments in cognitive and motor performance which increase the risk of motor vehicle crashes and work-related injuries and fatal accidents. The American Academy of Sleep Medicine and the Sleep Research Society have developed this statement to communicate to national health stakeholders the current knowledge which ties sufficient sleep and circadian alignment in adults to health. Citation: Luyster FS; Strollo PJ; Zee PC; Walsh JK. Sleep: a health imperative. SLEEP 2012;35(6):727-734. PMID:22654183

  14. 76 FR 72214 - Certain Semiconductor Chips with DRAM Circuitry, and Modules and Products Containing Same Receipt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... COMMISSION Certain Semiconductor Chips with DRAM Circuitry, and Modules and Products Containing Same Receipt... Commission has received a complaint entitled In Re Certain Semiconductor Chips with DRAM Circuitry, and... importation of certain semiconductor chips with dram circuitry, and modules and products containing same....

  15. Sleep Discrepancy, Sleep Complaint, and Poor Sleep Among Older Adults

    PubMed Central

    2013-01-01

    Objectives. Discrepancy between self-report- and actigraphy-measured sleep, often considered an artifact of measurement error, has been well documented among insomnia patients. Sleep problems are common among older adults, and this discrepancy may represent meaningful sleep-related phenomenon, which could have clinical and research significance. Method. Sleep discrepancy was examined in 4 groups of older adults (N = 152, mean age = 71.93 years) based on sleep complaint versus no complaint and presence versus absence of insomnia symptoms. Participants completed the Beck Depression Inventory-second edition (BDI-II) and 14 nights of sleep diaries and actigraphy. Results. Controlling for covariates, group differences were found in the duration and frequency of discrepancy in sleep onset latency (SOLd) and wake after sleep onset (WASOd). Those with insomnia symptoms and complaints reported greater duration and frequency of WASOd than the other 3 groups. Quantities of SOLd and WASOd were related to BDI-II score and group status, indicating that sleep discrepancy has meaningful clinical correlates. Discussion. Discrepancy occurred across all groups but was pronounced among the group with both insomnia symptoms and complaints. This discrepancy may provide a means of quantifying and conceptualizing the transition from wake to sleep among older adults, particularly those with sleeping problems. PMID:23804432

  16. Separate Circuitries Encode the Hedonic and Nutritional Values of Sugar

    PubMed Central

    Tellez, Luis A.; Han, Wenfei; Zhang, Xiaobing; Ferreira, Tatiana L.; Perez, Isaac O.; Shammah-Lagnado, Sara J.; van den Pol, Anthony N.; de Araujo, Ivan E.

    2016-01-01

    Sugar exerts its potent reinforcing effects via both gustatory and post-ingestive pathways. It is however unknown if sweetness and nutritional signals engage segregated brain networks to motivate ingestion. We show in mice that separate basal ganglia circuitries mediate the hedonic and nutritional actions of sugar. We found that, during sugar intake, suppressing hedonic value inhibited dopamine release in ventral but not dorsal striatum, whereas suppressing nutritional value inhibited dopamine release in dorsal but not ventral striatum. Consistently, cell-specific ablation of dopamine-excitable cells in dorsal, but not ventral, striatum inhibited sugar’s ability to drive the ingestion of unpalatable solutions. Conversely, optogenetic stimulation of dopamine-excitable cells in dorsal, but not ventral, striatum substituted for sugar in its ability to drive the ingestion of unpalatable solutions. Our data demonstrate that sugar recruits a distributed dopamine-excitable striatal circuitry that acts to prioritize energy seeking over taste quality. PMID:26807950

  17. Separate circuitries encode the hedonic and nutritional values of sugar.

    PubMed

    Tellez, Luis A; Han, Wenfei; Zhang, Xiaobing; Ferreira, Tatiana L; Perez, Isaac O; Shammah-Lagnado, Sara J; van den Pol, Anthony N; de Araujo, Ivan E

    2016-03-01

    Sugar exerts its potent reinforcing effects via both gustatory and post-ingestive pathways. It is, however, unknown whether sweetness and nutritional signals engage segregated brain networks to motivate ingestion. We found in mice that separate basal ganglia circuitries mediated the hedonic and nutritional actions of sugar. During sugar intake, suppressing hedonic value inhibited dopamine release in ventral, but not dorsal, striatum, whereas suppressing nutritional value inhibited dopamine release in dorsal, but not ventral, striatum. Consistently, cell-specific ablation of dopamine-excitable cells in dorsal, but not ventral, striatum inhibited sugar's ability to drive the ingestion of unpalatable solutions. Conversely, optogenetic stimulation of dopamine-excitable cells in dorsal, but not ventral, striatum substituted for sugar in its ability to drive the ingestion of unpalatable solutions. Our data indicate that sugar recruits a distributed dopamine-excitable striatal circuitry that acts to prioritize energy-seeking over taste quality. PMID:26807950

  18. In short photoperiods, human sleep is biphasic.

    PubMed

    Wehr

    1992-06-01

    Results of a photoperiod experiment show that human sleep can be unconsolidated and polyphasic, like the sleep of other animals. When normal individuals were transferred from a conventional 16-h photoperiod to an experimental 10-h photo-period, their sleep episodes expanded and usually divided into two symmetrical bouts, several hours in duration, with a 1-3 h waking interval between them. The durations of nocturnal melatonin secretion and of the nocturnal phase of rising sleepiness (measured in a constant routine protocol) also expanded, indicating that the timing of internal processes that control sleep and melatonin, such as circadian rhythms, had been modified by the change in photoperiod. Previous work suggests that the experimental results could be simulated with dual-oscillators, entrained separately to dawn and dusk, or with a two-process model, having a lowered threshold for sleep-onset during the scotoperiod. PMID:10607034

  19. Heightened sexual interest and sleep disturbance

    NASA Technical Reports Server (NTRS)

    Zarcone, V.; De La Pena, A.; Dement, W. C.

    1974-01-01

    The study demonstrates a behavioral effect of selective sleep disturbance in normal human subjects. Ten male subjects were selectively REM-deprived for two nights by awakening them at the onset of REM sleep. In addition, there were baseline and non-REM awakening conditions. Heightened sexual interest was defined by the number of film frames (using a Mackworth camera) in which subjects fixated on parts of the female figure in photographs. The largest mean difference in sexual interest was found between baseline and REM-deprivation. Both the non-REM awakenings and REM-sleep deprivation enhanced sexual interest. The failure to demonstrate a significant difference between REM-deprivation and non-REM awakenings may be due to the fact that subjects were REM-sleep-deprived in both conditions. It is suggested that REM-sleep loss may lead to increased selective attention and preoccupation with any cues which are usually interesting.

  20. Alcohol disrupts sleep homeostasis.

    PubMed

    Thakkar, Mahesh M; Sharma, Rishi; Sahota, Pradeep

    2015-06-01

    Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired

  1. Upper Airway Collapsibility During REM Sleep in Children with the Obstructive Sleep Apnea Syndrome

    PubMed Central

    Huang, Jingtao; Karamessinis, Laurie R.; Pepe, Michelle E.; Glinka, Stephen M.; Samuel, John M.; Gallagher, Paul R.; Marcus, Carole L.

    2009-01-01

    Study Objectives: In children, most obstructive events occur during rapid eye movement (REM) sleep. We hypothesized that children with the obstructive sleep apnea syndrome (OSAS), in contrast to age-matched control subjects, would not maintain airflow in the face of an upper airway inspiratory pressure drop during REM sleep. Design: During slow wave sleep (SWS) and REM sleep, we measured airflow, inspiratory time, inspiratory time/total respiratory cycle time, respiratory rate, tidal volume, and minute ventilation at a holding pressure at which flow limitation occurred and at 5 cm H2O below the holding pressure in children with OSAS and in control subjects. Setting: Sleep laboratory. Participants: Fourteen children with OSAS and 23 normal control subjects. Results: In both sleep states, control subjects were able to maintain airflow, whereas subjects with OSAS preserved airflow in SWS but had a significant decrease in airflow during REM sleep (change in airflow of 18.58 ± 12.41 mL/s for control subjects vs −44.33 ± 14.09 mL/s for children with OSAS, P = 0.002). Although tidal volume decreased, patients with OSAS were able to maintain minute ventilation by increasing the respiratory rate and also had an increase in inspiratory time and inspiratory time per total respiratory cycle time Conclusion: Children with OSAS do not maintain airflow in the face of upper-airway inspiratory-pressure drops during REM sleep, indicating a more collapsible upper airway, compared with that of control subjects during REM sleep. However, compensatory mechanisms exist to maintain minute ventilation. Local reflexes, central control mechanisms, or both reflexes and control mechanisms need to be further explored to better understand the pathophysiology of this abnormality and the compensation mechanism. Citation: Huang J; Karamessinis LR; Pepe ME; Glinka SM; Samuel JM; Gallagher PR; Marcus CL. Upper airway collapsibility during REM sleep in children with the obstructive sleep apnea

  2. Microstructural Abnormalities in Subcortical Reward Circuitry of Subjects with Major Depressive Disorder

    PubMed Central

    Blood, Anne J.; Iosifescu, Dan V.; Makris, Nikos; Perlis, Roy H.; Kennedy, David N.; Dougherty, Darin D.; Kim, Byoung Woo; Lee, Myung Joo; Wu, Shirley; Lee, Sang; Calhoun, Jesse; Hodge, Steven M.; Fava, Maurizio; Rosen, Bruce R.; Smoller, Jordan W.; Gasic, Gregory P.; Breiter, Hans C.

    2010-01-01

    Background Previous studies of major depressive disorder (MDD) have focused on abnormalities in the prefrontal cortex and medial temporal regions. There has been little investigation in MDD of midbrain and subcortical regions central to reward/aversion function, such as the ventral tegmental area/substantia nigra (VTA/SN), and medial forebrain bundle (MFB). Methodology/Principal Findings We investigated the microstructural integrity of this circuitry using diffusion tensor imaging (DTI) in 22 MDD subjects and compared them with 22 matched healthy control subjects. Fractional anisotropy (FA) values were increased in the right VT and reduced in dorsolateral prefrontal white matter in MDD subjects. Follow-up analysis suggested two distinct subgroups of MDD patients, which exhibited non-overlapping abnormalities in reward/aversion circuitry. The MDD subgroup with abnormal FA values in VT exhibited significantly greater trait anxiety than the subgroup with normal FA values in VT, but the subgroups did not differ in levels of anhedonia, sadness, or overall depression severity. Conclusions/Significance These findings suggest that MDD may be associated with abnormal microstructure in brain reward/aversion regions, and that there may be at least two subtypes of microstructural abnormalities which each impact core symptoms of depression. PMID:21124764

  3. Adolescents' Sleep Behaviors and Perceptions of Sleep

    ERIC Educational Resources Information Center

    Noland, Heather; Price, James H.; Dake, Joseph; Telljohann, Susan K.

    2009-01-01

    Background: Sleep duration affects the health of children and adolescents. Shorter sleep durations have been associated with poorer academic performance, unintentional injuries, and obesity in adolescents. This study extends our understanding of how adolescents perceive and deal with their sleep issues. Methods: General education classes were…

  4. Sleep Disorders in ESRD Patients Undergoing Hemodialysis.

    PubMed

    Abassi, Mohammad Reza; Safavi, Amin; Haghverdi, Masoumeh; Saedi, Babak

    2016-03-01

    Kidney failure affects different aspects of normal life. Among different manifestations, sleep problem can be considered as a common complaint of ESRD (End Stage Renal Disease) patients. In this study, we aimed to investigate the interrelationship between sleep disorders in ESRD patients and their characteristics. Through a cross-sectional study (2010-2011), 88 ESRD patients undergoing maintenance hemodialysis thrice weekly were recruited to enter the study. We used a self-administered questionnaire into which the data were reflected. The patients selected their specific sleep disorders using a nine-item scale while the Epworth Sleepiness Scale (ESS) determined both the presence and severity of sleep disorders. The data was finally analyzed with their baseline characteristics, dialysis characteristics, medication/stimulants use, and clinical and biochemical parameters. Over 95% of the patients had, at least, one specific sleep disorder while the ESS revealed 36.36% of patients as normal, 59.09% as having mild sleep disorders, and 4.54% as having moderate to severe sleep disorders. Sleep disorders were significantly correlated with older ages (P=0.035), dialysis dose (P=0.001), blood creatinine levels (P=0.037), upper airways obstruction (P=0.035), hepatomegaly (P=0.006), hepatic failure (P=0.001), higher blood TSH levels (P=0.039), history of hypothyroidism (P=0.005), and the use of levodopa (P=0.004), anti-hypertensive medications (P=0.006), benzodiazepines (P=0.006), Eprex (Erythropoietin) (P=0.001), Venofer (Iron Sucrose Injection) (P=0.013), and phosphate-binders agents (P=0.018). Sleep disorders are common findings among ESRD patients and seem to be a more complicated issue than a simple accumulation of the wastes products in the body. Whatever the causes of sleep disorders are, disorder-specific treatments should be considered. PMID:27107522

  5. Sleep Apnea Facts

    MedlinePlus

    ... Apnea Facts Sleep Apnea Links Sleep Apnea Facts Sleep apnea affects up to 18 million Americans The condition was ... member is the first to notice signs of sleep apnea in someone with the ... diagnosed. The condition affects about 4 percent of middle-aged men and ...

  6. Sleep and Infant Learning

    ERIC Educational Resources Information Center

    Tarullo, Amanda R.; Balsam, Peter D.; Fifer, William P.

    2011-01-01

    Human neonates spend the majority of their time sleeping. Despite the limited waking hours available for environmental exploration, the first few months of life are a time of rapid learning about the environment. The organization of neonate sleep differs qualitatively from adult sleep, and the unique characteristics of neonatal sleep may promote…

  7. Sleep Disorders (PDQ)

    MedlinePlus

    ... The two main phases of sleep are rapid eye movement (REM) and non-rapid eye movement (NREM): REM sleep, also known as "dream sleep," ... taken during sleep that show: Brain wave changes. Eye movements. Breathing rate. Blood pressure . Heart rate and electrical ...

  8. A mathematical model of the sleep/wake cycle.

    PubMed

    Rempe, Michael J; Best, Janet; Terman, David

    2010-05-01

    We present a biologically-based mathematical model that accounts for several features of the human sleep/wake cycle. These features include the timing of sleep and wakefulness under normal and sleep-deprived conditions, ultradian rhythms, more frequent switching between sleep and wakefulness due to the loss of orexin and the circadian dependence of several sleep measures. The model demonstrates how these features depend on interactions between a circadian pacemaker and a sleep homeostat and provides a biological basis for the two-process model for sleep regulation. The model is based on previous "flip-flop" conceptual models for sleep/wake and REM/NREM and we explore whether the neuronal components in these flip-flop models, with the inclusion of a sleep-homeostatic process and the circadian pacemaker, are sufficient to account for the features of the sleep/wake cycle listed above. The model is minimal in the sense that, besides the sleep homeostat and constant cortical drives, the model includes only those nuclei described in the flip-flop models. Each of the cell groups is modeled by at most two differential equations for the evolution of the total population activity, and the synaptic connections are consistent with those described in the flip-flop models. A detailed analysis of the model leads to an understanding of the mathematical mechanisms, as well as insights into the biological mechanisms, underlying sleep/wake dynamics. PMID:19557415

  9. Sleep in Persons with Frontotemporal Dementia and Their Family Caregivers

    PubMed Central

    Merrilees, Jennifer; Hubbard, Erin; Mastick, Judy; Miller, Bruce L.; Dowling, Glenna A.

    2014-01-01

    Background Dementia is associated with disruptions in sleep and sleep quality for patients and their family caregivers. Little is known about the impact of frontotemporal dementia (FTD) on sleep. Objective The purpose of this study was to characterize sleep in patients with frontotemporal dementia and their family caregivers. Methods Twenty-two patient-caregiver dyads were enrolled: Thirteen behavioral variant FTD (bvFTD) and nine semantic dementia (SD). Sleep and sleep quality data were collected for two weeks using diaries and Actiwatches. Results Patients with bvFTD and SD spent more time in bed at night compared to their caregivers. Nighttime behaviors were reported more frequently by caregivers for the bvFTD patients and strongly correlated with caregiver distress. Actigraphy data demonstrated normal sleep efficiency and timing of the nighttime sleep period for both patients and their caregivers. Caregivers of patients with bvFTD reported poorer sleep quality compared to the SD caregivers. A greater number of bvFTD caregivers compared to SD reported negative aspects of sleep quality for themselves and used sleep medications more frequently. Conclusion The clinical manifestations of bvFTD appear to be associated with different and more distressing impacts on the caregiver sleep quality than SD. PMID:24589648

  10. Female impulsive aggression: a sleep research perspective.

    PubMed

    Lindberg, Nina; Tani, Pekka; Putkonen, Hanna; Sailas, Eila; Takala, Pirjo; Eronen, Markku; Virkkunen, Matti

    2009-01-01

    The rate of violent crimes among girls and women appears to be increasing. One in every five female prisoners has been reported to have antisocial personality disorder. However, it has been quite unclear whether the impulsive, aggressive behaviour among women is affected by the same biological mechanisms as among men. Psychiatric sleep research has attempted to identify diagnostically sensitive and specific sleep patterns associated with particular disorders. Most psychiatric disorders are typically characterized by a severe sleep disturbance associated with decreased amounts of slow wave sleep (SWS), the physiologically significant, refreshing part of sleep. Among men with antisocial behaviour with severe aggression, on the contrary, increased SWS has been reported, reflecting either specific brain pathology or a delay in the normal development of human sleep patterns. In our preliminary study among medication-free, detoxified female homicidal offenders with antisocial personality disorder, the same profound abnormality in sleep architecture was found. From the perspective of sleep research, the biological correlates of severe impulsive aggression seem to share similar features in both sexes. PMID:19095304