Science.gov

Sample records for normal t-cell development

  1. T Cells Develop Normally in the Absence of both Deltex1 and Deltex2▿ ‡

    PubMed Central

    Lehar, Sophie M.; Bevan, Michael J.

    2006-01-01

    Deltex1, Deltex2, and Deltex4 form a family of related proteins that are the mammalian homologues of Drosophila Deltex, a known regulator of Notch signals. Deltex1 is highly induced by Notch signaling in thymocytes, and overexpression of Deltex1 in T-cell progenitors can block Notch signals, suggesting that Deltex1 may play an important role in regulating Notch signals during T-cell development. A recent report found that T cells develop normally in mice carrying a targeted deletion in the Deltex1 gene (S. Storck, F. Delbos, N. Stadler, C. Thirion-Delalande, F. Bernex, C. Verthuy, P. Ferrier, J. C. Weill, and C. A. Reynaud, Mol. Cell. Biol. 25: 1437-1445, 2005), suggesting that other Deltex homologues may compensate in Deltex1-deficient T cells. We generated mice that lack expression of both Deltex1 and Deltex2 by gene targeting and further reduced expression of Deltex4 in Deltex1/Deltex2 double-deficient T-cell progenitors using RNA interference. Using a sensitive in vitro assay, we found that Notch signaling is more potent in cells expressing lower levels of Deltex proteins. Nevertheless, we were unable to detect any significant defects in thymocyte maturation in Deltex1/Deltex2 double-knockout mice. Together these data suggest that Deltex can act as a negative regulator of Notch signals in T cells but that endogenous levels of Deltex1 and Deltex2 are not important for regulating Notch signals during thymocyte development. PMID:16923970

  2. Cell adhesion molecules involved in intrathymic T cell development.

    PubMed

    Patel, D D; Haynes, B F

    1993-08-01

    During stem cell migration to the thymus, intrathymic maturation of T cells, and emigration of mature T cells out of the thymus, intercellular interactions of developing T cells with a myriad of cell types are required for normal T cell development. Intercellular interactions of T cell precursors with endothelial cells, thymic epithelial cells, fibroblasts, thymic macrophages and dendritic cells are all mediated by adhesion molecules on immature T cells binding to ligands on thymic microenvironment cells. While many receptor-ligand interactions that are important in intrathymic T cell development are known, the adhesion molecules that are important for migration of T cell precursors to the thymus and for emigration of mature thymocytes from the thymus are poorly understood. An emerging concept is that select adhesion molecules at discrete stages of T cell maturation participate in and regulate the complex processes of T cell development. PMID:7693023

  3. MmuPV1 infection and tumor development of T cell-deficient mice is prevented by passively transferred hyperimmune sera from normal congenic mice immunized with MmuPV1 virus-like particles (VLPs).

    PubMed

    Joh, Joongho; Ghim, Shin-Je; Chilton, Paula M; Sundberg, John P; Park, Jino; Wilcher, Sarah A; Proctor, Mary L; Bennett Jenson, A

    2016-02-01

    Infection by mouse papillomavirus (PV), MmuPV1, of T cell-deficient, B6.Cg-Foxn1(nu)/J nude mice revealed that four, distinct squamous papilloma phenotypes developed simultaneously after infection of experimental mice. Papillomas appeared on the muzzle, vagina, and tail at or about day 42days post-inoculation. The dorsal skin developed papillomas and hair follicle tumors (trichoblastomas) as early as 26days after infection. Passive transfer of hyperimmune sera from normal congenic mice immunized with MmuPV1 virus-like particles (VLPs) to T cell-deficient strains of mice prevented infection by virions of experimental mice. This study provides further evidence that T cell deficiency is critical for tumor formation by MmuPV1 infection. PMID:26778691

  4. Human Peripheral CD4+ V?1+ ??T Cells Can Develop into ??T Cells

    PubMed Central

    Ziegler, Hendrik; Welker, Christian; Sterk, Marco; Haarer, Jan; Rammensee, Hans-Georg; Handgretinger, Rupert; Schilbach, Karin

    2014-01-01

    The lifelong generation of ??T cells enables us to continuously build immunity against pathogens and malignancies despite the loss of thymic function with age. Homeostatic proliferation of post-thymic nave and memory T cells and their transition into effector and long-lived memory cells balance the decreasing output of nave T cells, and recent research suggests that also ??T-cell development independent from the thymus may occur. However, the sites and mechanisms of extrathymic T-cell development are not yet understood in detail. ??T cells represent a small fraction of the overall T-cell pool, and are endowed with tremendous phenotypic and functional plasticity. ??T cells that express the V?1 gene segment are a minor population in human peripheral blood but predominate in epithelial (and inflamed) tissues. Here, we characterize a CD4+ peripheral V?1+ ??T-cell subpopulation that expresses stem-cell and progenitor markers and is able to develop into functional ??T cells ex vivo in a simple culture system and in vivo. The route taken by this process resembles thymic T-cell development. However, it involves the re-organization of the V?1+ ??TCR into the ??TCR as a consequence of TCR-? chain downregulation and the expression of surface V?1+V?+ TCR components, which we believe function as surrogate pre-TCR. This transdifferentiation process is readily detectable in vivo in inflamed tissue. Our study provides a conceptual framework for extrathymic T-cell development and opens up a new vista in immunology that requires adaptive immune responses in infection, autoimmunity, and cancer to be reconsidered. PMID:25709606

  5. Selective estrogen receptor modulators in T cell development and T cell dependent inflammation.

    PubMed

    Bernardi, Angelina I; Andersson, Annica; Stubelius, Alexandra; Grahnemo, Louise; Carlsten, Hans; Islander, Ulrika

    2015-10-01

    Lasofoxifene (las) and bazedoxifene (bza) are third generation selective estrogen receptor modulators (SERMs) with minimal estrogenic side effects, approved for treatment of postmenopausal osteoporosis. T cells are involved in the pathology of postmenopausal osteoporosis and previous studies have established an important role for 17β-estradiol (E2) in T cell development and function. E2 causes a drastic thymic atrophy, alters the composition of thymic T cell populations, and inhibits T cell dependent inflammation. In contrast, the second generation SERM raloxifene (ral) lacks these properties. Although las and bza are drugs approved for treatment of postmenopausal bone loss, it is of importance to study their effects on other biological aspects in order to extend the potential use of these compounds. Therefore, the aim of this study was to investigate if treatment with las and bza affects T lymphopoiesis and T cell dependent inflammation. C57Bl6 mice were ovariectomized (ovx) and treated with vehicle, E2, ral, las or bza. As expected, E2 reduced both thymus weight and decreased the proportion of early T cell progenitors while increasing more mature T cell populations in the thymus. E2 also suppressed the T cell dependent delayed-type hypersensitivity (DTH) reaction to oxazolone (OXA). Ral and las, but not bza, decreased thymus weight, while none of the SERMs had any effects on T cell populations in the thymus or on inflammation in DTH. In conclusion, this study shows that treatment with las or bza does not affect T lymphopoiesis or T cell dependent inflammation. PMID:26044996

  6. Histone Deacetylase 3 Is Required for Efficient T Cell Development.

    PubMed

    Stengel, Kristy R; Zhao, Yue; Klus, Nicholas J; Kaiser, Jonathan F; Gordy, Laura E; Joyce, Sebastian; Hiebert, Scott W; Summers, Alyssa R

    2015-11-01

    Hdac3 is a key target for Hdac inhibitors that are efficacious in cutaneous T cell lymphoma. Moreover, the regulation of chromatin structure is critical as thymocytes transition from an immature cell with open chromatin to a mature T cell with tightly condensed chromatin. To define the phenotypes controlled by Hdac3 during T cell development, we conditionally deleted Hdac3 using the Lck-Cre transgene. This strategy inactivated Hdac3 in the double-negative stages of thymocyte development and caused a significant impairment at the CD8 immature single-positive (ISP) stage and the CD4/CD8 double-positive stage, with few mature CD4(+) or CD8(+) single-positive cells being produced. When Hdac3(-/-) mice were crossed with Bcl-xL-, Bcl2-, or TCRβ-expressing transgenic mice, a modest level of complementation was found. However, when the null mice were crossed with mice expressing a fully rearranged T cell receptor αβ transgene, normal levels of CD4 single-positive cells were produced. Thus, Hdac3 is required for the efficient transit from double-negative stage 4 through positive selection. PMID:26324326

  7. Histone Deacetylase 3 Is Required for Efficient T Cell Development

    PubMed Central

    Stengel, Kristy R.; Zhao, Yue; Klus, Nicholas J.; Kaiser, Jonathan F.; Gordy, Laura E.; Joyce, Sebastian

    2015-01-01

    Hdac3 is a key target for Hdac inhibitors that are efficacious in cutaneous T cell lymphoma. Moreover, the regulation of chromatin structure is critical as thymocytes transition from an immature cell with open chromatin to a mature T cell with tightly condensed chromatin. To define the phenotypes controlled by Hdac3 during T cell development, we conditionally deleted Hdac3 using the Lck-Cre transgene. This strategy inactivated Hdac3 in the double-negative stages of thymocyte development and caused a significant impairment at the CD8 immature single-positive (ISP) stage and the CD4/CD8 double-positive stage, with few mature CD4+ or CD8+ single-positive cells being produced. When Hdac3−/− mice were crossed with Bcl-xL-, Bcl2-, or TCRβ-expressing transgenic mice, a modest level of complementation was found. However, when the null mice were crossed with mice expressing a fully rearranged T cell receptor αβ transgene, normal levels of CD4 single-positive cells were produced. Thus, Hdac3 is required for the efficient transit from double-negative stage 4 through positive selection. PMID:26324326

  8. Cbl-b: Roles in T Cell Tolerance, Proallergic T Cell Development, and Cancer Immunity

    PubMed Central

    Zhang, Jian; Liu, Qingjun; Langdon, Wallace Y.

    2015-01-01

    Cbl-b is a member of the Cbl family of RING finger E3 ubiquitin ligases and polymorphisms and mutations in Cbl-b are associated with several autoimmune/inflammatory diseases in humans. Furthermore, gene targeting experiments in mice have provided proof of the in vivo effects of Cbl-b on T cell function and its involvement with these diseases. This brief review updates our understanding of Cbl-b in T cell tolerance, proallergic T cell development, and cancer immunity in light of the most recent advances, and their impact on autoimmune-/inflammatory diseases and cancer immunotherapy. PMID:26082933

  9. Microenvironmental cues for T-cell acute lymphoblastic leukemia development.

    PubMed

    Passaro, Diana; Quang, Christine Tran; Ghysdael, Jacques

    2016-05-01

    Intensive chemotherapy regimens have led to a substantial improvement in the cure rate of patients suffering from T-cell acute lymphoblastic leukemia (T-ALL). Despite this progress, about 15% and 50% of pediatric and adult cases, respectively, show resistance to treatment or relapse with dismal prognosis, calling for further therapeutic investigations. T-ALL is an heterogeneous disease, which presents intrinsic alterations leading to aberrant expression of transcription factors normally involved in hematopoietic stem/progenitor cell development and mutations in genes implicated in the regulation of cell cycle progression, apoptosis, and T-cell development. Gene expression profiling allowed the classification of T-ALL into defined molecular subgroups that mostly reflects the stage of their differentiation arrest. So far this knowledge has not translated into novel, targeted therapy. Recent evidence points to the importance of extrinsic signaling cues in controlling the ability of T-ALL to home, survive, and proliferate, thus offering the perspective of new therapeutic options. This review summarizes the present understanding of the interactions between hematopoietic cells and bone marrow/thymic niches during normal hematopoiesis, describes the main signaling pathways implicated in this dialog, and finally highlights how malignant T cells rely on specific niches to maintain their ability to sustain and propagate leukemia. PMID:27088913

  10. Harnessing CD4+ T cell responses in HIV vaccine development

    PubMed Central

    Streeck, Hendrik; DSouza, M Patricia; Littman, Dan R; Crotty, Shane

    2013-01-01

    CD4+ T cells can perform a panoply of tasks to shape an effective response against a pathogen. Limited attention has been paid to the potential importance of functional CD4+ T cell responses in the context of the development of next-generation vaccines, including HIV vaccines. Many CD4+ T cell functions are newly appreciated and only partially understood. A workshop was held as a forum to bring together a small group of experts to exchange ideas on the role of CD4+ T cells in developing durable functional antibody responses, via follicular helper T cells, as well as on the roles of CD4+ T cells in other aspects of protective immunity. Here we discuss whether CD4+ T cell responses may represent a beneficial component of an efficacious HIV vaccine. PMID:23389614

  11. Thymic stromal cell subsets for T cell development.

    PubMed

    Nitta, Takeshi; Suzuki, Harumi

    2016-03-01

    The thymus provides a specialized microenvironment in which a variety of stromal cells of both hematopoietic and non-hematopoietic origin regulate development and repertoire selection of T cells. Recent studies have been unraveling the inter- and intracellular signals and transcriptional networks for spatiotemporal regulation of development of thymic stromal cells, mainly thymic epithelial cells (TECs), and the molecular mechanisms of how different TEC subsets control T cell development and selection. TECs are classified into two functionally different subsets: cortical TECs (cTECs) and medullary TECs (mTECs). cTECs induce positive selection of diverse and functionally distinct T cells by virtue of unique antigen-processing systems, while mTECs are essential for establishing T cell tolerance via ectopic expression of peripheral tissue-restricted antigens and cooperation with dendritic cells. In addition to reviewing the role of the thymic stroma in conventional T cell development, we will discuss recently discovered novel functions of TECs in the development of unconventional T cells, such as natural killer T cells and γδT cells. PMID:26825337

  12. Asymmetric cell division during T cell development controls downstream fate

    PubMed Central

    Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min

    2015-01-01

    During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500

  13. Asymmetric cell division during T cell development controls downstream fate.

    PubMed

    Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J; Hawkins, Edwin D; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O; Gu, Min; Russell, Sarah M

    2015-09-14

    During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500

  14. Egr3 Induces a Th17 Response by Promoting the Development of ?? T Cells

    PubMed Central

    Parkinson, Rose M.; Collins, Samuel L.; Horton, Maureen R.; Powell, Jonathan D.

    2014-01-01

    The transcription factor Early Growth Response 3 (Egr3) has been shown to play an important role in negatively regulating T cell activation and promoting T cell anergy in Th1 cells. However, its role in regulating other T helper subsets has yet to be described. We sought to determine the role of Egr3 in a Th17 response using transgenic mice that overexpress Egr3 in T cells (Egr3 TG). Splenocytes from Egr3 TG mice demonstrated more robust generation of Th17 cells even under non-Th17 skewing conditions. We found that while Egr3 TG T cells were not intrinsically more likely to become Th17 cells, the environment encountered by these cells was more conducive to Th17 development. Further analysis revealed a considerable increase in the number of ?? T cells in both the peripheral lymphoid organs and mucosal tissues of Egr3 TG mice, a cell type which normally accounts for only a small fraction of peripheral lymphocytes. Consistent with this marked increase in peripheral ?? T cells, thymocytes from Egr3 TG mice also appear biased toward ?? T cell development. Coculture of these Egr3-induced ?? T cells with wildtype CD4+ T cells increases Th17 differentiation, and Egr3 TG mice are more susceptible to bleomycin-induced lung inflammation. Overall our findings strengthen the role for Egr3 in promoting ?? T cell development and show that Egr3-induced ?? T cells are both functional and capable of altering the adaptive immune response in a Th17-biased manner. Our data also demonstrates that the role played by Egr3 in T cell activation and differentiation is more complex than previously thought. PMID:24475259

  15. Diltiazem inhibits transferrin receptor expression and causes G1 arrest in normal and neoplastic T cells.

    PubMed Central

    Neckers, L M; Bauer, S; McGlennen, R C; Trepel, J B; Rao, K; Greene, W C

    1986-01-01

    Transferrin receptor expression is essential for the proliferation of both normal and malignant T cells. While transferrin receptor expression in normal T cells is tightly coupled to interleukin-2 receptor expression, transferrin receptor expression in malignant cells is usually constitutive and is released from this constraint. Temporally, the appearance of these membrane receptors is preceded by changes in the expression of the proto-oncogenes c-myc and c-myb. In addition, although an increase in the level of intracellular free calcium occurs early in the sequence of T-cell activation, the activation events dependent on this calcium flux have not been resolved. In the present study we report that diltiazem, an ion channel-blocking agent that inhibits calcium influx, arrested the growth in vitro of both normal and malignant human T cells in the G1 phase of the cell cycle. However, diltiazem did not inhibit the expression of c-myc or interleukin-2 receptor mRNA and protein in normal mitogen-activated T cells or the constitutive expression of c-myc and c-myb mRNA in malignant T cells (T acute lymphoblastic leukemia cells). In contrast, diltiazem prevented the induction of transferrin receptor (mRNA and protein) in normal T cells and caused a progressive loss of transferrin receptor (mRNA and protein) in malignant T cells. These data demonstrate that diltiazem can dissociate several growth-related processes normally occurring in G1 and thereby disrupt the biochemical cascade leading to cell proliferation. Images PMID:2432398

  16. Agonist-selected T cell development requires strong T-cell receptor signaling and store-operated calcium entry

    PubMed Central

    Oh-hora, Masatsugu; Komatsu, Noriko; Pishyareh, Mojgan; Feske, Stefan; Hori, Shohei; Taniguchi, Masaru; Rao, Anjana; Takayanagi, Hiroshi

    2013-01-01

    Summary T-cell receptor (TCR) signaling driven by interaction of the TCR with specific complexes of self-peptide and the major histocompatibility complex, determines T cell fate in thymic development. However, the signaling pathway through which TCR signal strength regulates distinct T cell lineages remains unknown. Here we have used mice lacking the endoplasmic reticulum Ca2+ sensors STIM1 and STIM2 to show that STIM-induced store-operated Ca2+ entry is not essential for thymic development of conventional TCRαβ+ T cells, but is specifically required for the development of agonist-selected T cells (regulatory T cells, invariant natural killer T cells and TCRαβ+ CD8αα+ intestinal intraepithelial lymphocytes). The severe impairment of agonist-selected T cell development is mainly due to a defect in interleukin-2 (IL-2) or IL-15 signaling. Thus, STIM1 and STIM2-mediated store-operated Ca2+ influx, leading to efficient activation of NFAT (nuclear factor of activated T-cells), is critical for the post-selection maturation of agonist-selected T cells. PMID:23499491

  17. Functional Development of the T Cell Receptor for Antigen

    PubMed Central

    Ebert, Peter J.R.; Li, Qi-Jing; Huppa, Johannes B.; Davis, Mark M.

    2016-01-01

    For over three decades now, the T cell receptor (TCR) for antigen has not ceased to challenge the imaginations of cellular and molecular immunologists alike. T cell antigen recognition transcends every aspect of adaptive immunity: it shapes the T cell repertoire in the thymus and directs T cell-mediated effector functions in the periphery, where it is also central to the induction of peripheral tolerance. Yet, despite its central position, there remain many questions unresolved: how can one TCR be specific for one particular peptide-major histocompatibility complex (pMHC) ligand while also binding other pMHC ligands with an immunologically relevant affinity? And how can a T cell’s extreme specificity (alterations of single methyl groups in their ligand can abrogate a response) and sensitivity (single agonist ligands on a cell surface are sufficient to trigger a measurable response) emerge from TCR–ligand interactions that are so low in affinity? Solving these questions is intimately tied to a fundamental understanding of molecular recognition dynamics within the many different contexts of various T cell–antigen presenting cell (APC) contacts: from the thymic APCs that shape the TCR repertoire and guide functional differentiation of developing T cells to the peripheral APCs that support homeostasis and provoke antigen responses in naïve, effector, memory, and regulatory T cells. Here, we discuss our recent findings relating to T cell antigen recognition and how this leads to the thymic development of foreign-antigen-responsive αβT cells. PMID:20800817

  18. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells.

    PubMed

    Kochenderfer, James N; Yu, Zhiya; Frasheri, Dorina; Restifo, Nicholas P; Rosenberg, Steven A

    2010-11-11

    Adoptive T-cell therapy with anti-CD19 chimeric antigen receptor (CAR)-expressing T cells is a new approach for treating advanced B-cell malignancies. To evaluate anti-CD19-CAR-transduced T cells in a murine model of adoptive T-cell therapy, we developed a CAR that specifically recognized murine CD19. We used T cells that were retrovirally transduced with this CAR to treat mice bearing a syngeneic lymphoma that naturally expressed the self-antigen murine CD19. One infusion of anti-CD19-CAR-transduced T cells completely eliminated normal B cells from mice for at least 143 days. Anti-CD19-CAR-transduced T cells eradicated intraperitoneally injected lymphoma cells and large subcutaneous lymphoma masses. The antilymphoma efficacy of anti-CD19-CAR-transduced T cells was critically dependent on irradiation of mice before anti-CD19-CAR-transduced T-cell infusion. Anti-CD19-CAR-transduced T cells had superior antilymphoma efficacy compared with the anti-CD19 monoclonal antibody from which the anti-CD19 CAR was derived. Our results demonstrated impressive antilymphoma activity and profound destruction of normal B cells caused by anti-CD19-CAR-transduced T cells in a clinically relevant murine model. PMID:20631379

  19. Development of invariant natural killer T cells.

    PubMed

    Gapin, Laurent

    2016-04-01

    Invariant natural killer T (iNKT) cells develop into functionally distinct subsets. Each subset expresses a unique combination of transcription factors that regulate cytokine gene transcription upon activation. The tissue distribution and localization within tissues also varies between subsets. Importantly, the relative abundance of the various subsets is directly responsible for altering several immunological parameters, which subsequently affect the immune response. Here, I review recent advances in our understanding of the molecular regulation of iNKT cell subset development. PMID:26802287

  20. Thymic T-cell development in allogeneic stem cell transplantation

    PubMed Central

    2011-01-01

    Cytoreductive conditioning regimens used in the context of allogeneic hematopoietic cell transplantation (HCT) elicit deficits in innate and adaptive immunity, which predispose patients to infections. As such, transplantation outcomes depend vitally on the successful reconstruction of immune competence. Restoration of a normal peripheral T-cell pool after HCT is a slow process that requires the de novo production of naive T cells in a functionally competent thymus. However, there are several challenges to this regenerative process. Most notably, advanced age, the cytotoxic pretransplantation conditioning, and posttransplantation alloreactivity are risk factors for T-cell immune deficiency as they independently interfere with normal thymus function. Here, we discuss preclinical allogeneic HCT models and clinical observations that have contributed to a better understanding of the transplant-related thymic dysfunction. The identification of the cellular and molecular mechanisms that control regular thymopoiesis but are altered in HCT patients is expected to provide the basis for new therapies that improve the regeneration of the adaptive immune system, especially with functionally competent, naive T cells. PMID:21427289

  1. Humanized Mice to Study Human T Cell Development.

    PubMed

    Bonte, Sarah; Snauwaert, Sylvia; Vanhee, Stijn; Dolens, Anne-Catherine; Taghon, Tom; Vandekerckhove, Bart; Kerre, Tessa

    2016-01-01

    While in vitro models exist to study human T cell development, they still lack the precise environmental stimuli, such as the exact combination and levels of cytokines and chemokines, that are present in vivo. Moreover, studying the homing of hematopoietic stem (HSC) and progenitor (HPC) cells to the thymus can only be done using in vivo models. Although species-specific differences exist, "humanized" models are generated to circumvent these issues. In this chapter, we focus on the humanized mouse models that can be used to study early T cell development. Models that study solely mature T cells, such as the SCID-PBL (Tary-Lehmann et al., Immunol Today 16:529-533) are therefore not discussed here, but have recently been reviewed (Shultz et al., Nat Rev Immunol 12:786-798). PMID:26294414

  2. The serine kinase phosphoinositide-dependent kinase 1 (PDK1) regulates T cell development.

    PubMed

    Hinton, Heather J; Alessi, Dario R; Cantrell, Doreen A

    2004-05-01

    T lymphocyte activation is associated with activation of diverse AGC serine kinases (named after family members protein kinase A, protein kinase G and protein kinase C). It has been difficult to assess the function of these molecules in T cell development with simple gene-deletion strategies because different isoforms of AGC kinases are coexpressed in the thymus and have overlapping, redundant functions. To circumvent these problems, we explored the consequences of genetic manipulation of phosphoinositide-dependent kinase 1 (PDK1), a rate-limiting 'upstream' activator of AGC kinases. Here we analyzed the effect of PDK1 deletion on T lineage development. We also assessed the consequences of reducing PDK1 levels to 10% of normal. Complete PDK1 loss blocked T cell differentiation in the thymus, whereas reduced PDK1 expression allowed T cell differentiation but blocked proliferative expansion. These studies show that AGC family kinases are essential for T cell development. PMID:15077109

  3. Bax alpha perturbs T cell development and affects cell cycle entry of T cells.

    PubMed Central

    Brady, H J; Gil-Gómez, G; Kirberg, J; Berns, A J

    1996-01-01

    Bax alpha can heterodimerize with Bcl-2 and Bcl-X(L), countering their effects, as well as promoting apoptosis on overexpression. We show that bax alpha transgenic mice have greatly reduced numbers of mature T cells, which results from an impaired positive selection in the thymus. This perturbation in positive selection is accompanied by an increase in the number of cycling thymocytes. Further to this, mature T cells overexpressing Bax alpha have lower levels of p27Kip1 and enter S phase more rapidly in response to interleukin-2 stimulation than do control T cells, while the converse is true of bcl-2 transgenic T cells. These data indicate that apoptotic regulatory proteins can modulate the level of cell cycle-controlling proteins and thereby directly impact on the cell cycle. Images PMID:9003775

  4. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is associated with chronic inflammation, which includes increased macrophage accumulation in adipose tissue (AT) and upregulation of chemokines and cytokines. T cells also play important roles in chronic inflammatory diseases such as atherosclerosis but have not been well studied in obesity....

  5. Gammadelta T cell development--having the strength to get there.

    PubMed

    Pennington, Daniel J; Silva-Santos, Bruno; Hayday, Adrian C

    2005-04-01

    Gammadelta T cells play critical roles in immune regulation, tumour surveillance and specific primary immune responses. Mature gammadelta cells derive from thymic precursors that also generate alphabeta T cells. Recent reports have highlighted the impact of the strength of signal received via the T cell receptor on T cell lineage commitment, and the importance of cross-talk between committed alphabeta thymocytes and bipotential progenitors for normal gammadelta T cell differentiation. Studies on T cell receptor-mediated selection of gammadelta cells have supported the view that these unconventional T cells are positively rather than negatively selected on cognate self antigen. PMID:15766668

  6. Development and maintenance of intestinal regulatory T cells.

    PubMed

    Tanoue, Takeshi; Atarashi, Koji; Honda, Kenya

    2016-05-01

    Gut-resident forkhead box P3 (FOXP3)(+)CD4(+) regulatory T cells (Treg cells) are distinct from those in other organs and have gut-specific phenotypes and functions. Whereas Treg cells in other organs have T cell receptors (TCRs) specific for self antigens, intestinal Treg cells have a distinct set of TCRs that are specific for intestinal antigens, and these cells have pivotal roles in the suppression of immune responses against harmless dietary antigens and commensal microorganisms. The differentiation, migration and maintenance of intestinal Treg cells are controlled by specific signals from the local environment. In particular, certain members of the microbiota continuously provide antigens and immunoregulatory small molecules that modulate intestinal Treg cells. Understanding the development and the maintenance of intestinal Treg cells provides important insights into disease-relevant host-microorganism interactions. PMID:27087661

  7. Innate Memory T cells

    PubMed Central

    Jameson, Stephen C.; Lee, You Jeong; Hogquist, Kristin A.

    2015-01-01

    Memory T cells are usually considered to be a feature of a successful immune response against a foreign antigen, and such cells can mediate potent immunity. However, in mice, alternative pathways have been described, through which naïve T cells can acquire the characteristics and functions of memory T cells without encountering specific foreign antigen or the typical signals required for conventional T cell differentiation. Such cells reflect a response to the internal rather the external environment, and hence such cells are called innate memory T cells. In this review, we describe how innate memory subsets were identified, the signals that induce their generation and their functional properties and potential role in the normal immune response. The existence of innate memory T cells in mice raises questions about whether parallel populations exist in humans, and we discuss the evidence for such populations during human T cell development and differentiation. PMID:25727290

  8. T cell development and function in CrkL-deficient mice.

    PubMed

    Peterson, Amy C; Marks, Reinhard E; Fields, Patrick E; Imamoto, Akira; Gajewski, Thomas F

    2003-10-01

    The adapter protein CrkL has been implicated in multiple signal transduction pathways in hematopoietic cells. In T lymphocytes, the recruitment of CrkL-C3G complexes has been correlated with hyporesponsiveness, implicating CrkL as a potential negative regulator. To test this hypothesis we examined T cell activation in CrkL-deficient mice. The CrkL(-/-) genotype was partially embryonic lethal. In viable CrkL(-/-) mice, peripheral blood counts were normal. The thymus from CrkL(-/-) mice had 40% fewer cells compared to littermates, but the proportion of thymocyte subsets was comparable. There was no discernable alteration in T cell function as reflected by T cell numbers, expression of memory markers, IL-2 production, proliferation, and differentiation into Th1/Th2 phenotypes. Immunization induced comparable levels of IgG2a and IgG1 antibodies. Chimeric mice, generated by transfer of CrkL(-/-) fetal liver cells into irradiated RAG2(-/-) recipients, also showed normal T cell function, arguing against selection via partial embryonic lethality. Our results indicate that CrkL is not absolutely required for T cell development or function, and argue against it being an essential component of a negative regulatory pathway in TCR signaling. PMID:14515252

  9. The Effects of TLR Activation on T-Cell Development and Differentiation

    PubMed Central

    Jin, Bo; Sun, Tao; Yu, Xiao-Hong; Yang, Ying-Xiang; Yeo, Anthony E. T.

    2012-01-01

    Invading pathogens have unique molecular signatures that are recognized by Toll-like receptors (TLRs) resulting in either activation of antigen-presenting cells (APCs) and/or costimulation of T cells inducing both innate and adaptive immunity. TLRs are also involved in T-cell development and can reprogram Treg cells to become helper cells. T cells consist of various subsets, that is, Th1, Th2, Th17, T follicular helper (Tfh), cytotoxic T lymphocytes (CTLs), regulatory T cells (Treg) and these originate from thymic progenitor thymocytes. T-cell receptor (TCR) activation in distinct T-cell subsets with different TLRs results in differing outcomes, for example, activation of TLR4 expressed in T cells promotes suppressive function of regulatory T cells (Treg), while activation of TLR6 expressed in T cells abrogates Treg function. The current state of knowledge of regarding TLR-mediated T-cell development and differentiation is reviewed. PMID:22737174

  10. SHARPIN controls the development of regulatory T cells.

    PubMed

    Redecke, Vanessa; Chaturvedi, Vandana; Kuriakose, Jeeba; Häcker, Hans

    2016-06-01

    SHARPIN is an essential component of the linear ubiquitin chain assembly complex (LUBAC) complex that controls signalling pathways of various receptors, including the tumour necrosis factor receptor (TNFR), Toll-like receptor (TLR) and antigen receptor, in part by synthesis of linear, non-degrading ubiquitin chains. Consistent with SHARPIN's function in different receptor pathways, the phenotype of SHARPIN-deficient mice is complex, including the development of inflammatory systemic and skin diseases, the latter of which depend on TNFR signal transduction. Given the established function of SHARPIN in primary and malignant B cells, we hypothesized that SHARPIN might also regulate T-cell receptor (TCR) signalling and thereby control T-cell biology. Here, we focus primarily on the role of SHARPIN in T cells, specifically regulatory T (Treg) cells. We found that SHARPIN-deficient (Sharpin(cpdm/cpdm) ) mice have significantly reduced numbers of FOXP3(+) Treg cells in lymphoid organs and the peripheral blood. Competitive reconstitution of irradiated mice with mixed bone marrow from wild-type and SHARPIN-deficient mice revealed an overall reduced thymus population with SHARPIN-deficient cells with almost complete loss of thymic Treg development. Consistent with this cell-intrinsic function of SHARPIN in Treg development, TCR stimulation of SHARPIN-deficient thymocytes revealed reduced activation of nuclear factor-κB and c-Jun N-terminal kinase, establishing a function of SHARPIN in TCR signalling, which may explain the defective Treg development. In turn, in vitro generation and suppressive activity of mature SHARPIN-deficient Treg cells were comparable to wild-type cells, suggesting that maturation, but not function, of SHARPIN-deficient Treg cells is impaired. Taken together, these findings show that SHARPIN controls TCR signalling and is required for efficient generation of Treg cells in vivo, whereas the inhibitory function of mature Treg cells appears to be independent of SHARPIN. PMID:26931177

  11. Distinct p21 requirements for regulating normal and self-reactive T cells through IFN-γ production.

    PubMed

    Daszkiewicz, Lidia; Vázquez-Mateo, Cristina; Rackov, Gorjana; Ballesteros-Tato, André; Weber, Kathrin; Madrigal-Avilés, Adrián; Di Pilato, Mauro; Fotedar, Arun; Fotedar, Rati; Flores, Juana M; Esteban, Mariano; Martínez-A, Carlos; Balomenos, Dimitrios

    2015-01-01

    Self/non-self discrimination characterizes immunity and allows responses against pathogens but not self-antigens. Understanding the principles that govern this process is essential for designing autoimmunity treatments. p21 is thought to attenuate autoreactivity by limiting T cell expansion. Here, we provide direct evidence for a p21 role in controlling autoimmune T cell autoreactivity without affecting normal T cell responses. We studied C57BL/6, C57BL/6/lpr and MRL/lpr mice overexpressing p21 in T cells, and showed reduced autoreactivity and lymphadenopathy in C57BL/6/lpr, and reduced mortality in MRL/lpr mice. p21 inhibited effector/memory CD4(+) CD8(+) and CD4(-)CD8(-) lpr T cell accumulation without altering defective lpr apoptosis. This was mediated by a previously non-described p21 function in limiting T cell overactivation and overproduction of IFN-γ, a key lupus cytokine. p21 did not affect normal T cell responses, revealing differential p21 requirements for autoreactive and normal T cell activity regulation. The underlying concept of these findings suggests potential treatments for lupus and autoimmune lymphoproliferative syndrome, without compromising normal immunity. PMID:25573673

  12. Statistical Physics of T-Cell Development and Pathogen Specificity

    NASA Astrophysics Data System (ADS)

    Košmrlj, Andrej; Kardar, Mehran; Chakraborty, Arup K.

    2013-04-01

    In addition to an innate immune system that battles pathogens in a nonspecific fashion, higher organisms, such as humans, possess an adaptive immune system to combat diverse (and evolving) microbial pathogens. Remarkably, the adaptive immune system mounts pathogen-specific responses, which can be recalled upon reinfection with the same pathogen. It is difficult to see how the adaptive immune system can be preprogrammed to respond specifically to a vast and unknown set of pathogens. Although major advances have been made in understanding pertinent molecular and cellular phenomena, the precise principles that govern many aspects of an immune response are largely unknown. We discuss complementary approaches from statistical mechanics and cell biology that can shed light on how key components of the adaptive immune system, T cells, develop to enable pathogen-specific responses against many diverse pathogens. The mechanistic understanding that emerges has implications for how host genetics may influence the development of T cells with differing responses to the human immunodeficiency virus (HIV) infection.

  13. MD1 expression regulates development of regulatory T cells.

    PubMed

    Gorczynski, Reginald M; Kai, Yu; Miyake, Kensuke

    2006-07-15

    Intense interest has centered around the role of a subset of regulatory T cells, CD4+CD25+ Treg, in controlling the development of autoimmune disorders, allograft rejection, infection, malignancy, and allergy. We previously reported that MD1, a molecule known to be important in regulation of expression of RP105, also was important in regulating alloimmunity, and that blockade of expression of MD1 diminished graft rejection in vivo. One mechanism by which an MD1-RP105 complex exerts an effect on immune responses is through interference with an LPS-derived signal delivered through the CD14-MD-2-TLR4 complex. We show below that LPS signaling for Treg induction occurs at higher LPS thresholds that for effector T cell responses. In addition, blockade of MD1 functional activity in dendritic cells (using anti-MD1 mAbs, MD1 antisense deoxyoligonucleotides, or responder cells from mice with deletion of the MD1 gene), resulted in elevated Treg induction in response to allogeneic stimulation (in vivo or in vitro) in the presence of LPS. These data offer one mechanistic explanation for the augmented immunosuppression described following anti-MD1 treatment. PMID:16818764

  14. Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy

    PubMed Central

    Haery, Leila; Thompson, Ryan C.; Gilmore, Thomas D.

    2015-01-01

    The development of B and T cells from hematopoietic precursors and the regulation of the functions of these immune cells are complex processes that involve highly regulated signaling pathways and transcriptional control. The signaling pathways and gene expression patterns that give rise to these developmental processes are coordinated, in part, by two opposing classes of broad-based enzymatic regulators: histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs and HDACs can modulate gene transcription by altering histone acetylation to modify chromatin structure, and by regulating the activity of non-histone substrates, including an array of immune-cell transcription factors. In addition to their role in normal B and T cells, dysregulation of HAT and HDAC activity is associated with a variety of B- and T-cell malignancies. In this review, we describe the roles of HATs and HDACs in normal B- and T-cell physiology, describe mutations and dysregulation of HATs and HDACs that are implicated lymphoma and leukemia, and discuss HAT and HDAC inhibitors that have been explored as treatment options for leukemias and lymphomas. PMID:26124919

  15. T cell ageing: Effects of age on development, survival & function

    PubMed Central

    Salam, Nasir; Rane, Sanket; Das, Rituparna; Faulkner, Matthew; Gund, Rupali; Kandpal, Usha; Lewis, Virginia; Mattoo, Hamid; Prabhu, Savit; Ranganathan, Vidya; Durdik, Jeannine; George, Anna; Rath, Satyajit; Bal, Vineeta

    2013-01-01

    Age associated decline of the immune system continues to be a major health concern. All components of innate and adaptive immunity are adversely affected to lesser or greater extent by ageing resulting in an overall decline of immunocompetence. As a result in the aged population, there is increased susceptibility to infection, poor responses to vaccination, and increased incidence of autoreactivity. There is an increasing focus on the role of T cells during ageing because of their impact on the overall immune responses. A steady decline in the production of fresh naïve T cells, more restricted T cell receptor (TCR) repertoire and weak activation of T cells are some of the effects of ageing. In this review we summarize our present understanding of the effects of ageing on naïve CD4 T cells and potential approaches for therapeutic interventions to restore protective immunity in the aged population. PMID:24434315

  16. Metabolic Regulation of Regulatory T Cell Development and Function

    PubMed Central

    Coe, David John; Kishore, Madhav; Marelli-Berg, Federica

    2014-01-01

    It is now well established that the effector T cell (Teff) response is regulated by a series of metabolic switches. Quiescent T cells predominantly require adenosine triphosphate-generating processes, whereas proliferating Teff require high metabolic flux through growth-promoting pathways, such as glycolysis. Pathways that control metabolism and immune cell function are intimately linked, and changes in cell metabolism at both the cell and system levels have been shown to enhance or suppress specific T cell effector functions. Furthermore, functionally distinct T cell subsets require distinct energetic and biosynthetic pathways to support their specific functional needs. In particular, naturally occurring regulatory T cells (Treg) are characterized by a unique metabolic signature distinct to that of conventional Teff cells. We here briefly review the signaling pathways that control Treg metabolism and how this metabolic phenotype integrates their differentiation and function. Ultimately, these metabolic features may provide new opportunities for the therapeutic modulation of unwanted immune responses. PMID:25477880

  17. Transcriptional regulation of early T-cell development in the thymus.

    PubMed

    Seo, Wooseok; Taniuchi, Ichiro

    2016-03-01

    T-cell development occurs in multipotent progenitors arriving in the thymus, which provides a highly specialized microenvironment. Specification and sequential commitment processes to T cells begin in early thymic progenitors upon receiving thymus-specific environmental cues, resulting in the activation of the genetically programmed transcriptional cascade that includes turning on and off numerous transcription factors in a precise manner. Thus, early thymocyte differentiation has been an excellent model system to study cell differentiation processes. This review summarizes recent advances in our knowledge on thymic T-cell development from newly arrived multipotent T-cell progenitors to fully committed T-cell precursors, from the transcriptional regulation perspective. PMID:26763078

  18. Grb2 Is Important for T Cell Development, Th Cell Differentiation, and Induction of Experimental Autoimmune Encephalomyelitis.

    PubMed

    Radtke, Daniel; Lacher, Sonja M; Szumilas, Nadine; Sandrock, Lena; Ackermann, Jochen; Nitschke, Lars; Zinser, Elisabeth

    2016-04-01

    The small adaptor protein growth factor receptor-bound protein 2 (Grb2) modulates and integrates signals from receptors on cellular surfaces in inner signaling pathways. In murine T cells, Grb2 is crucial for amplification of TCR signaling. T cell-specific Grb2(fl/fl) Lckcre(tg) Grb2-deficient mice show reduced T cell numbers due to impaired negative and positive selection. In this study, we found that T cell numbers in Grb2(fl/fl) CD4cre(tg) mice were normal in the thymus and were only slightly affected in the periphery. Ex vivo analysis of CD4(+) Th cell populations revealed an increased amount of Th1 cells within the CD4(+) population of Grb2(fl/fl) CD4cre(tg) mice. Additionally, Grb2-deficient T cells showed a greater potential to differentiate into Th17 cells in vitro. To test whether these changes in Th cell differentiation potential rendered Grb2(fl/fl) CD4cre(tg) mice more prone to inflammatory diseases, we used the murine Th1 cell- and Th17 cell-driven model of experimental autoimmune encephalomyelitis (EAE). In contrast to our expectations, Grb2(fl/fl) CD4cre(tg) mice developed a milder form of EAE. The impaired EAE disease can be explained by the reduced proliferation rate of Grb2-deficient CD4(+) T cells upon stimulation with IL-2 or upon activation by allogeneic dendritic cells, because the activation of T cells by dendritic cells and the subsequent T cell proliferation are known to be crucial factors for the induction of EAE. In summary, Grb2-deficient T cells show defects in T cell development, increased Th1 and Th17 cell differentiation capacities, and impaired proliferation after activation by dendritic cells, which likely reduce the clinical symptoms of EAE. PMID:26921310

  19. Key factors in the organized chaos of early T cell development.

    PubMed

    Hayday, Adrian C; Pennington, Daniel J

    2007-02-01

    A fundamental issue in T cell development is what controls whether a thymocyte differentiates into a gammadelta T cell or an alphabeta T cell, each defined by their distinct T cell receptor. Most likely, lessons learned in studying that issue will also provide insight into how the thymus produces T cell subsets with distinct functional and regulatory potentials. Here we review recent experiments, focusing on three factors that regulate thymocyte differentiation up to and including the expression of the first products of antigen receptor gene rearrangements. Those factors are the archetypal developmental regulator Notch, intrinsic signals emanating from antigen-receptor complexes, and trans conditioning, which reflects communication between different subsets of thymocytes. We also review new findings on the positive selection of gammadelta T cells and on extrathymic T cell development. PMID:17242687

  20. IL-7 therapy dramatically alters peripheral T-cell homeostasis in normal and SIV-infected nonhuman primates.

    PubMed

    Fry, Terry J; Moniuszko, Marcin; Creekmore, Stephen; Donohue, Susan J; Douek, Daniel C; Giardina, Steven; Hecht, Toby T; Hill, Brenna J; Komschlies, Kristen; Tomaszewski, Joseph; Franchini, Genoveffa; Mackall, Crystal L

    2003-03-15

    Interleukin-7 (IL-7) is important for thymopoiesis in mice and humans because IL-7 receptor alpha (IL-7Ralpha) mutations result in a severe combined immunodeficiency phenotype with severe thymic hypoplasia. Recent evidence has indicated that IL-7 also plays an important role as a regulator of T-cell homeostasis. Here we report the immunologic effects of recombinant human IL-7 (rhIL-7) therapy in normal and simian immunodeficiency virus (SIV)-infected nonhuman primates. Cynomolgus monkeys receiving 10 days of rhIL-7 showed substantial, reversible increases in T-cell numbers involving a dramatic expansion of both naive and nonnaive phenotype CD4(+) and CD8(+) subsets. Although IL-7 is known to have thymopoietic effects in mice, we observed marked declines in the frequency and absolute number of T-cell receptor excision circle-positive (TREC(+)) cells in the peripheral blood and dramatic increases in the percentage of cycling T cells in the peripheral blood as measured by Ki-67 expression (baseline less than 5% to approximately 50% after 6 days of therapy) and ex vivo bromodeoxyuridine (BrdU) incorporation. Similarly, moderately CD4- depleted SIV-infected macaques treated with rhIL-7 also had significant increases in peripheral blood CD4(+) and CD8(+) T cells following rhIL-7 therapy. Thus, rhIL-7 induces dramatic alterations in peripheral T-cell homeostasis in both T-cell-replete and T-cell-depleted nonhuman primates. These results further implicate IL-7 as a promising immunorestorative agent but illustrate that a major component of its immunorestorative capacity reflects effects on mature cells. These results also raise the possibility that IL-7 therapy could be used to temporarily modulate T-cell cycling in vivo in the context of immunotherapies such as vaccination. PMID:12411295

  1. CHARACTERIZATION OF NORMAL HUMAN LUNG LYMPHOCYTES AND INTERLEUKIN-2-INDUCED LUNG T CELL LINES

    EPA Science Inventory

    Lymphocytes from the lower respiratory tract were obtained by bronchoalveolar lavage of healthy, non-smoking individuals. arious monoclonal antibodies characterizing activated T cells, helper-inducer and suppressor-inducer T cell subsets, and naive versus memory cells were used t...

  2. Histochemical and molecular overview of the thymus as site for T-cells development.

    PubMed

    Rezzani, Rita; Bonomini, Francesca; Rodella, Luigi Fabrizio

    2008-01-01

    The thymus represents the primary site for T cell lymphopoiesis, providing a coordinated set for critical factors to induce and support lineage commitment, differentiation and survival of thymus-seeding cells. One irrefutable fact is that the presence of non-lymphoid cells through the thymic parenchyma serves to provide coordinated migration and differentiation of T lymphocytes. Moreover, the link between foetal development and normal anatomy has been stressed in this review. Regarding thymic embryology, its epithelium is derived from the embryonic endodermal layer, with possible contributions from the ectoderm. A series of differentiating steps is essential, each of which must be completed in order to provide the optimum environment for thymic development and function. The second part of this article is focused on thymic T-cell development and differentiation, which is a stepwise process, mediated by a variety of stromal cells in different regions of the organ. It depends strongly on the thymic microenvironment, a cellular network formed by epithelial cells, macrophages, dendritic cells and fibroblasts, that provide the combination of cellular interactions, cytokines and chemokines to induce thymocyte precursors for the generation of functional T cells. The mediators of this process are not well defined but it has been demonstrated that some interactions are under neuroendocrine control. Moreover, some studies pointed out that reciprocal signals from developing T cells also are essential for establishment and maintenance of the thymic microenvironment. Finally, we have also highlighted the heterogeneity of the lymphoid, non-lymphoid components and the multi-phasic steps of thymic differentiation. In conclusion, this review contributes to an understanding of the complex mechanisms in which the foetal and postnatal thymus is involved. This could be a prerequisite for developing new therapies specifically aimed to overcome immunological defects, linked or not-linked to aging. PMID:18555891

  3. Regulation of early T cell development by the PHD finger of histone lysine methyltransferase ASH1

    SciTech Connect

    Tanaka, Yujiro Nakayama, Yasuhiro; Taniguchi, Masaru; Kioussis, Dimitris

    2008-01-18

    We have previously isolated a mammalian homologue of Drosophila discsabsent, small, orhomeotic-1 (ash1) from the murine thymus, and recently shown that its SET domain methylates histone H3 lysine 36 (K36). Expression of ASH1 has been reported to be increased in NOD thymocytes in a BDC2.5 clonotype background, but its function in T cell development has remained elusive. Here we report that the ash1 gene is expressed at high levels in thymocytes of mice deficient for rag1 or tcra genes. ASH1 proteins are present at peri-nuclei and as nuclear speckles in thymocytes. Some of the nuclear ASH1 co-localize with RAG2. Expression of the evolutionarily conserved PHD finger of ASH1 impairs T cell development at the DP stage, and causes increased transcription from the HoxA9 promoter in vitro. Moreover, the C-terminal part of ASH1 interacts with HDAC1 repression complexes, suggesting that the PHD finger of ASH1 may be involved in down-regulation of genes for normal development of {alpha}{beta} T cells.

  4. Dysfunction of irradiated thymus for the development of helper T cells

    SciTech Connect

    Amagai, T.; Kina, T.; Hirokawa, K.; Nishikawa, S.; Imanishi, J.; Katsura, Y.

    1987-07-15

    The development of cytotoxic T cells and helper T cells in an intact or irradiated thymus was investigated. C57BL/6 (H-2b, Thy-1.2) mice were whole body-irradiated, or were irradiated with shielding over either the thymus or right leg and tail, and were transferred with 1.5 X 10(7) bone marrow cells from B10.Thy-1.1 mice (H-2b, Thy-1.1). At various days after reconstitution, thymus cells from the recipient mice were harvested and a peanut agglutinin low-binding population was isolated. This population was further treated with anti-Thy-1.2 plus complement to remove host-derived cells and was assayed for the frequency of cytotoxic T cell precursors (CTLp) and for the activity of helper T cells (Th). In the thymus of thymus-shielded and irradiated mice, Th activity reached normal control level by day 25, whereas CTLp frequency remained at a very low level during these days. In the thymus of whole body-irradiated mice, generation of CTLp was highly accelerated while that of Th was retarded, the period required for reconstitution being 25 days and more than 42 days for CTLp and Th, respectively. Preferential development of CTLp was also seen in right leg- and tail-shielded (L-T-shielded) and irradiated recipients. Histological observation indicated that Ia+ nonlymphoid cells were well preserved in the thymus of thymus-shielded and irradiated recipients, whereas in L-T-shielded and irradiated recipients, such cells in the medulla were markedly reduced in number. These results suggest strongly that the generation of Th but not CTLp is dependent on radiosensitive thymic component(s), and that such components may represent Ia+ cells themselves in the medulla or some microenvironment related to Ia+ cells.

  5. Development and characterization of Porphyromonas gingivalis-specific rat T-cell clones.

    PubMed

    Sakurai, K; Yamashita, K; Hara, K

    1992-12-01

    Porphyromonas gingivalis has been implicated as a major pathogen in periodontitis. To determine the role of T cells in the regulation of this disease, a method was developed for the generation and characterization of rat T-cell clones with antigen specificity to P. gingivalis whole cells. The clones studied so far demonstrated a T-helper (Th) phenotype W3/13+, W3/25+, OX8- and OX22-. These T-cell clones proliferated in vitro in response to P. gingivalis, but not to other bacteria (Prevotella intermedia, Actinobacillus actinomycetemcomitans, Wolinella recta, Fusobacterium nucleatum, Streptococcus sanguis). Limiting dilution analysis showed W3/25+, OX8- T cells preferentially respond to P. gingivalis, rather than W3/25-, OX8+ T cells. P. gingivalis-reactive W3/25+ T cells belonged to the OX22- population, suggesting that the OX22- T cells may represent memory cells. All clones tested produced interferon gamma, but not interleukin 2. The cloned T-cell F1 significantly enhanced P. gingivalis-specific antibody production (p < 0.03). The availability of these cloned T cells should bring new insight into the mechanism by which T cells regulate oral health and periodontal disease. PMID:1281976

  6. Influence of time and number of antigen encounters on memory CD8 T cell development.

    PubMed

    Martin, Matthew D; Badovinac, Vladimir P

    2014-08-01

    CD8 T cells are an important part of the adaptive immune system providing protection against intracellular bacteria, viruses, and protozoa. After infection and/or vaccination, increased numbers of antigen-specific CD8 T cells remain as a memory population that is capable of responding and providing enhanced protection during reinfection. Experimental studies indicate that while memory CD8 T cells can be maintained for great lengths of time, their properties change with time after infection and/or vaccination. However, the full scope of these changes and what effects they have on memory CD8 T cell function remain unknown. In addition, memory CD8 T cells can encounter antigen multiple times through either reinfection or prime-boost vaccine strategies designed to increase numbers of protective memory CD8 T cells. Importantly, recent studies suggest that memory CD8 T cell development following infection and/or vaccination is influenced by the number of times they have encountered cognate antigen. Since protection offered by memory CD8 T cells in response to infection depends on both the numbers and quality (functional characteristics) at the time of pathogen re-encounter, a thorough understanding of how time and antigen stimulation history impacts memory CD8 T cell properties is critical for the design of vaccines aimed at establishing populations of long-lived, protective memory CD8 T cells. PMID:24825776

  7. Development and Function of Effector Regulatory T Cells.

    PubMed

    Teh, Peggy P; Vasanthakumar, Ajithkumar; Kallies, Axel

    2015-01-01

    Distinguishing self from nonself is a unique feature of the immune system. Although most self-reactive T cells are eliminated in the thymus, a few rogue cells escape the negative selection process and have the potential to mediate autoimmune disease. Over the last decade, there has been a vast improvement in our understanding of the cellular mechanisms that evolved to dampen the deleterious effects of these self-reactive T cells. In particular, T cells expressing the transcription factor FoxP3, known as regulatory T (Treg) cells, play a central role in maintaining immune homeostasis and suppressing autoimmune responses. In addition, Treg cells are endowed with the ability to suppress diverse inflammatory responses both in lymphoid and in nonlymphoid tissues. This requires Treg cells to undergo a peripheral differentiation and specialization program that results in the emergence of effector Treg (eTreg) cells that are characterized by their ability to produce high amounts of immunosuppressive molecules, including IL-10. This chapter discusses the recent advances in our understanding of the mechanisms governing the differentiation, migration, and maintenance of eTreg cells, in particular in nonlymphoid tissues, in health and disease. PMID:26615096

  8. Differential expression of T cell antigens in normal peripheral blood lymphocytes: a quantitative analysis by flow cytometry.

    PubMed Central

    Ginaldi, L; Farahat, N; Matutes, E; De Martinis, M; Morilla, R; Catovsky, D

    1996-01-01

    AIMS: To obtain reference values of the level of expression of T cell antigens on normal lymphocyte subsets in order to disclose differences which could reflect their function or maturation stages, or both. METHODS: Peripheral blood from 15 healthy donors was processed by flow cytometry with triple colour analysis. For each sample phycoerythrin (PE) conjugated CD2, CD4, CD5, CD8, and CD56 monoclonal antibodies were combined with Cy5-R-phycoerythrin (TC) conjugated CD3 and fluorescein isothiocyanate (FITC) conjugated CD7; CD2- and CD7-PE were also combined with CD3-TC and CD4-FITC. Standard microbeads with different capacities to bind mouse immunoglobulins were used to convert the mean fluorescence intensity (MFI) values of the lymphocyte subsets identified by multiparametric flow cytometry into the number of antigen molecules per cell, measured as antibody binding capacity (ABC). RESULTS: CD4+ (helper/inducer) T cells exhibit a higher CD3 antigen expression compared with CD8+ (suppressor/ cytotoxic) T lymphocytes. Within the CD4+ T cells, the CD4+CD7- subset expressed a lower level of CD3 compared with CD4+CD7+ and CD8+CD7+ cells, and higher CD2 and CD5 expression than the main CD3+CD7+ subset. Major differences in antigen expression were also detected between CD3+ T cells and CD3-CD56+ natural killer (NK) cells: NK cells exhibited higher levels of CD7 and CD56 and lower levels of CD2 and CD5 than T cells. Significantly lower CD5 expression was also detected in the small CD5+ B lymphocyte subset compared with T cells. CONCLUSIONS: Quantitative flow cytometry with triple colour analysis may be used to detect antigen modulations in disease states and to increase the accuracy of diagnosis by comparison with findings in normal counterparts. Images PMID:8813949

  9. Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species

    PubMed Central

    Gelderman, Kyra A.; Hultqvist, Malin; Pizzolla, Angela; Zhao, Ming; Nandakumar, Kutty Selva; Mattsson, Ragnar; Holmdahl, Rikard

    2007-01-01

    Reduced capacity to produce ROS increases the severity of T cell–dependent arthritis in both mice and rats with polymorphisms in neutrophil cytosolic factor 1 (Ncf1) (p47phox). Since T cells cannot exert oxidative burst, we hypothesized that T cell responsiveness is downregulated by ROS produced by APCs. Macrophages have the highest burst capacity among APCs, so to study the effect of macrophage ROS on T cell activation, we developed transgenic mice expressing functional Ncf1 restricted to macrophages. Macrophage-restricted expression of functional Ncf1 restored arthritis resistance to the level of that of wild-type mice in a collagen-induced arthritis model but not in a T cell–independent anti-collagen antibody–induced arthritis model. T cell activation was downregulated and skewed toward Th2 in transgenic mice. In vitro, IL-2 production and T cell proliferation were suppressed by macrophage ROS, irrespective of T cell origin. IFN-γ production, however, was independent of macrophage ROS but dependent on T cell origin. These effects were antigen dependent but not restricted to collagen type II. In conclusion, macrophage-derived ROS play a role in T cell selection, maturation, and differentiation, and also a suppressive role in T cell activation, and thereby mediate protection against autoimmune diseases like arthritis. PMID:17909630

  10. Somatostatin modulates T cells development in adult rat thymus.

    PubMed

    Petrović-Djergović, Danica M; Rakin, Ana K; Kustrimović, Natasa Z; Ristovski, Jasmina S; Dimitrijevic, Ljiljana A; Mileva, Mićić V

    2007-08-16

    It is well known that somatostatin modulates thymic functions, such as binding to receptors. In order to elucidate the influence of somatostatin on the thymus architecture and the T cells maturation, young adult male rats were treated with somatostatin-28. The results showed that somatostatin-28 decreased thymus weight and cellularity, probably due to alterations in the thymic morphometric parameters. Our results also demonstrated that SRIH treatment reduces number of cells with undetectable alphabetaTCR and cells with low expression of alphabetaTCR, while the number of TCRalphabeta(hi) cells remains approximately the same as the values obtained from the control rats. Besides, in the least mature thymocytes (DNTCR TCRalphabeta(-)) and among the most mature the SPCD4 TCRalphabeta(hi) subset remained unaltered, while SPCD8 TCRalphabeta(hi) decreased. At last, it should be noted that SRIH treatment increases DN thymocytes subsets expressing TCRalphabeta(low/hi) (TCRalphabeta(+)). These results suggest that somatostatin-28 induces reshaping of T cells maturation and, at least partly, contributes to thymic weight loss, through the modulation of the complex neuroendocrine-immune network. PMID:17391781

  11. Inhibition of BCL11B expression leads to apoptosis of malignant but not normal mature T cells.

    PubMed

    Grabarczyk, P; Przybylski, G K; Depke, M; Vlker, U; Bahr, J; Assmus, K; Brker, B M; Walther, R; Schmidt, C A

    2007-05-31

    The B-cell chronic lymphocytic leukemia (CLL)/lymphoma 11B gene (BCL11B) encodes a Krppel-like zinc-finger protein, which plays a crucial role in thymopoiesis and has been associated with hematopoietic malignancies. It was hypothesized that BCL11B may act as a tumor-suppressor gene, but its precise function has not yet been elucidated. Here, we demonstrate that the survival of human T-cell leukemia and lymphoma cell lines is critically dependent on Bcl11b. Suppression of Bcl11b by RNA interference selectively induced apoptosis in transformed T cells whereas normal mature T cells remained unaffected. The apoptosis was effected by simultaneous activation of death receptor-mediated and intrinsic apoptotic pathways, most likely as a result of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) upregulation and suppression of the Bcl-xL antiapoptotic protein. Our data indicate an antiapoptotic function of Bcl11b. The resistance of normal mature T lymphocytes to Bcl11b suppression-induced apoptosis and restricted expression pattern make it an attractive therapeutic target in T-cell malignancies. PMID:17173069

  12. Immuno-miRs: critical regulators of T-cell development, function and ageing

    PubMed Central

    Kroesen, Bart-Jan; Teteloshvili, Nato; Smigielska-Czepiel, Katarzyna; Brouwer, Elisabeth; Boots, Anne Mieke H; van den Berg, Anke; Kluiver, Joost

    2015-01-01

    MicroRNAs (miRNAs) are instrumental to many aspects of immunity, including various levels of T-cell immunity. Over the last decade, crucial immune functions were shown to be regulated by specific miRNAs. These ‘immuno-miRs’ regulate generic cell biological processes in T cells, such as proliferation and apoptosis, as well as a number of T-cell-specific features that are fundamental to the development, differentiation and function of T cells. In this review, we give an overview of the current literature with respect to the role of miRNAs at various stages of T-cell development, maturation, differentiation, activation and ageing. Little is known about the involvement of miRNAs in thymic T-cell development, although miR-181a and miR-150 have been implicated herein. In contrast, several broadly expressed miRNAs including miR-21, miR-155 and miR-17∼92, have now been shown to regulate T-cell activation. Other miRNAs, including miR-146a, show a more T-cell-subset-specific expression pattern and are involved in the regulation of processes unique to that specific T-cell subset. Importantly, differences in the miRNA target gene repertoires of different T-cell subsets allow similar miRNAs to control different T-cell-subset-specific functions. Interestingly, several of the here described immuno-miRs have also been implicated in T-cell ageing and there are clear indications for causal involvement of miRNAs in immunosenescence. It is concluded that immuno-miRs have a dynamic regulatory role in many aspects of T-cell differentiation, activation, function and ageing. An important notion when studying miRNAs in relation to T-cell biology is that specific immuno-miRs may have quite unrelated functions in closely related T-cell subsets. PMID:25093579

  13. Metabolic control of regulatory T cell development and function

    PubMed Central

    Zeng, Hu; Chi, Hongbo

    2014-01-01

    Foxp3+ regulatory T cells (Tregs) maintain immune tolerance and play an important role in immunological diseases and cancers. Recent studies have revealed an intricate relationship between Treg biology and host and microbial metabolism. Various metabolites or nutrients produced by host and commensal microbes, such as vitamins and short chain fatty acids (SCFAs), regulate Treg generation, trafficking and function. Furthermore, cell-intrinsic metabolic programs, orchestrated by mTOR and other metabolic sensors, modulate Foxp3 induction and Treg suppressive activity. Conversely, Tregs are crucial in regulating obesity-associated inflammation and host metabolic balance, and shaping homeostasis of gut microbiota. This review discusses the interplay between Tregs and metabolism, with a particular focus on how host, commensal and cellular metabolism impinges upon Treg homeostasis and function. PMID:25248463

  14. Specificity for the tumor-associated self-antigen WT1 drives the development of fully functional memory T cells in the absence of vaccination.

    PubMed

    Pospori, Constandina; Xue, Shao-An; Holler, Angelika; Voisine, Cecile; Perro, Mario; King, Judith; Fallah-Arani, Farnaz; Flutter, Barry; Chakraverty, Ronjon; Stauss, Hans J; Morris, Emma C

    2011-06-23

    Recently, vaccines against the Wilms Tumor antigen 1 (WT1) have been tested in cancer patients. However, it is currently not known whether physiologic levels of WT1 expression in stem and progenitor cells of normal tissue result in the deletion or tolerance induction of WT1-specific T cells. Here, we used an human leukocyte antigen-transgenic murine model to study the fate of human leukocyte antigen class-I restricted, WT1-specific T cells in the thymus and in the periphery. Thymocytes expressing a WT1-specific T-cell receptor derived from high avidity human CD8 T cells were positively selected into the single-positive CD8 population. In the periphery, T cells specific for the WT1 antigen differentiated into CD44-high memory phenotype cells, whereas T cells specific for a non-self-viral antigen retained a CD44(low) naive phenotype. Only the WT1-specific T cells, but not the virus-specific T cells, displayed rapid antigen-specific effector function without prior vaccination. Despite long-term persistence of WT1-specific memory T cells, the animals did not develop autoimmunity, and the function of hematopoietic stem and progenitor cells was unimpaired. This is the first demonstration that specificity for a tumor-associated self-antigen may drive differentiation of functionally competent memory T cells. PMID:21447831

  15. Metabolic switching and fuel choice during T-cell differentiation and memory development

    PubMed Central

    van der Windt, Gerritje J.W.; Pearce, Erika L.

    2013-01-01

    Summary Clearance or control of pathogens or tumors usually requires T-cell-mediated immunity. As such, understanding the mechanisms that govern the function, maintenance, and persistence of T cells will likely lead to new treatments for controlling disease. During an immune response, T-cell development is marked by striking changes in metabolism. There is a growing appreciation that these metabolic changes underlie the capacity of T cells to perform particular functions, and this has led to a recent focus on the idea that the manipulation of cellular metabolism can be used to shape adaptive immune responses. Although interest in this area has grown in the last few years, a full understanding of the metabolic control of T-cell functions, particularly during an immune response in vivo, is still lacking. In this review, we first provide a basic overview of metabolism in T cells, and then we focus on recent studies providing new or updated insights into the regulation of metabolic pathways and how they underpin T-cell differentiation and memory T-cell development. PMID:22889213

  16. Kinetics of mature T-cell development in the thymus

    SciTech Connect

    Egerton, M.; Scollay, R.; Shortman, K. )

    1990-04-01

    We have reexamined the balance between cell birth, cell maturation, and cell death in the thymus by labeling dividing thymocytes and their progeny in vivo with (3H)-thymidine, isolating clearly defined subpopulations by fluorescence-activated cell sorting, and determining the distribution of label by autoradiography. When mature thymocytes were precisely defined (as CD4+CD8- CD3+ or CD4-CD8+ CD3+) and separated from immature single positives (CD4+CD8- CD3- and CD4-CD8+ CD3-), a lag was observed in the rate of entry of (3H)thymidine into mature cells. Thus, many of the mature thymocytes appear to derive from a small nondividing cortical thymocyte pool, rather than originating directly from the earliest dividing CD4+CD8+ blasts. There was little evidence for cell division during or after mature thymocyte formation, suggesting a one-for-one differentiation from cortical cells rather than selective clonal expansion. The rate of production of mature single positive thymocytes agreed closely with estimates of the rate of export of mature T cells from the thymus and was only 3% of the rate of production of double-positive cortical thymocytes. This was compatible with a stringent selection process and extensive intrathymic cell death and suggested that no extensive negative selection occurred after the mature cells were formed.

  17. Regulation of Lipid Signaling by Diacylglycerol Kinases during T Cell Development and Function

    PubMed Central

    Krishna, Sruti; Zhong, Xiao-Ping

    2013-01-01

    Diacylglycerol (DAG) and phosphatidic acid (PA) are bioactive lipids synthesized when the T cell receptor binds to a cognate peptide-MHC complex. DAG triggers signaling by recruiting Ras guanyl-releasing protein 1, PKCθ, and other effectors, whereas PA binds to effector molecules that include mechanistic target of rapamycin, Src homology region 2 domain-containing phosphatase 1, and Raf1. While DAG-mediated pathways have been shown to play vital roles in T cell development and function, the importance of PA-mediated signals remains less clear. The diacylglycerol kinase (DGK) family of enzymes phosphorylates DAG to produce PA, serving as a molecular switch that regulates the relative levels of these critical second messengers. Two DGK isoforms, α and ζ, are predominantly expressed in T lineage cells and play an important role in conventional αβ T cell development. In mature T cells, the activity of these DGK isoforms aids in the maintenance of self-tolerance by preventing T cell hyper-activation and promoting T cell anergy. In this review, we discuss the roles of DAG-mediated pathways, PA-effectors, and DGKs in T cell development and function. We also highlight recent work that has uncovered previously unappreciated roles for DGK activity, for instance in invariant NKT cell development, anti-tumor and anti-viral CD8 responses, and the directional secretion of soluble effectors. PMID:23847619

  18. Distinct roles of prostaglandin H synthases 1 and 2 in T-cell development

    PubMed Central

    Rocca, Bianca; Spain, Lisa M.; Puré, Ellen; Langenbach, Robert; Patrono, Carlo; FitzGerald, Garret A.

    1999-01-01

    Prostaglandin G and H synthases, or cyclooxygenases (COXs), catalyze the formation of prostaglandins (PGs). Whereas COX-1 is diffusely expressed in lymphoid cells in embryonic day 15.5 thymus, COX-2 expression is sparse, apparently limited to stromal cells. By contrast, COX-2 is predominant in a subset of medullary stromal cells in three- to five-week-old mice. The isozymes also differ in their contributions to lymphocyte development. Thus, experiments with selective COX-1 inhibitors in thymic lobes from normal and recombinase-activating gene-1 knockout mice support a role for this isoform in the transition from CD4–CD8– double-negative (DN) to CD4+CD8+ double-positive (DP). Concordant data were obtained in COX-1 knockouts. Pharmacological inhibition and genetic deletion of COX-2, by contrast, support its role during early thymocyte proliferation and differentiation and, later, during maturation of the CD4 helper T-cell lineage. PGE2, but not other PGs, can rescue the effects of inhibition of either isoform, although it acts through distinct EP receptor subtypes. COX-dependent PG generation may represent a mechanism of thymic stromal support for T-cell development. PMID:10330429

  19. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression.

    PubMed

    Ohm, Joyce E; Gabrilovich, Dmitry I; Sempowski, Gregory D; Kisseleva, Ekaterina; Parman, Kelly S; Nadaf, Sorena; Carbone, David P

    2003-06-15

    T-cell defects and premature thymic atrophy occur in cancer patients and tumor-bearing animals. We demonstrate that exposure of mice to recombinant vascular endothelial growth factor (VEGF) at concentrations similar to those observed in advanced stage cancer patients reproduces this profound thymic atrophy and is highlighted by a dramatic reduction in CD4+/CD8+ thymocytes. We find that VEGF does not induce thymocyte apoptosis, but instead rapidly decreases the number of the earliest observable progenitors in the thymus. VEGF does not inhibit thymocyte development in fetal thymic organ culture, further suggesting a prethymic effect. We also demonstrate that bone marrow progenitors from animals infused with recombinant VEGF and transferred to irradiated untreated animals recolonize the thymus more efficiently than progenitors from control animals. This suggests that VEGF exposure is associated with an increased population of thymus-committed progenitors in the bone marrow. We hypothesize that pathophysiologically relevant concentrations of VEGF may block the differentiation and/or emigration of these progenitors resulting in the observed thymic atrophy. Removal of VEGF via cessation of infusion or adoptive transfer of progenitors to a congenic host induces a preferential commitment of lymphoid progenitors to the T lineage and results in a restoration of the normal composition and cellularity of the thymus. These data demonstrate that at pathophysiologic concentrations, VEGF interferes with the development of T cells from early hematopoetic progenitor cells and this may contribute to tumor-associated immune deficiencies. PMID:12586633

  20. Does the PI3K pathway promote or antagonize regulatory T cell development and function?

    PubMed Central

    Soond, Dalya R.; Slack, Elizabeth C. M.; Garden, Oliver A.; Patton, Daniel T.; Okkenhaug, Klaus

    2012-01-01

    Regulatory T cells (Tregs) prevent autoimmunity and inflammation by suppressing the activation of other T cells and antigen presenting cells. The role of phosphoinositide 3-kinase (PI3K) signaling in Treg is controversial. Some studies suggest that inhibition of the PI3K pathway is essential for the development of Tregs whereas other studies have shown reduced Treg numbers and function when PI3K activity is suppressed. Here we attempt to reconcile the different studies that have explored PI3K and the downstream effectors Akt, Foxo, and mTOR in regulatory T cell development and function and discuss the implications for health and therapeutic intervention. PMID:22912633

  1. A role for CD44 in T cell development and function during direct competition between CD44+ and CD44- cells.

    PubMed

    Graham, Victoria A; Marzo, Amanda L; Tough, David F

    2007-04-01

    The role of CD44 in T cell biology remains incompletely understood. Although studies using anti-CD44 antibodies have implicated this cell adhesion molecule in a variety of important T cell processes, few T cell defects have been reported in CD44-deficient mice. We have assessed the requirement for CD44 in T cell development and mature T cell function by analyzing mice in which CD44(-/-) and WT cells were produced simultaneously. In mixed (CD44(-/-) + CD44(+/+)) bone marrow chimeras, production of CD44(-/-) T cells was shown to be reduced compared to WT cells due to inefficient intrathymic development. In addition, mature CD44(-/-) CD8(+) T cells generated a substantially lower response than WT T cells after infection of mice with lymphocytic choriomeningitis virus, with the reduction in response apparent in both lymphoid and non-lymphoid tissues. Overall, these results demonstrate a poor capacity of CD44(-/-) T lineage cells to compete with WT cells at multiple levels, implicating CD44 in normal T cell function. PMID:17330818

  2. Prolonged antigen expression following DNA vaccination impairs effector CD8+ T cell function and memory development.

    PubMed

    Radcliffe, Joanna N; Roddick, Joanne S; Stevenson, Freda K; Thirdborough, Stephen M

    2007-12-15

    After priming, naive T cells undergo a program of expansion, contraction, and memory formation. Numerous studies have indicated that only a brief period of antigenic stimulation is required to fully commit CD8+ T cells to this program. Nonetheless, the persistence of Ag may modulate the eventual fate of CD8+ T cells. Using DNA delivery, we showed previously that direct presentation primes high levels of effector CD8+ T cells as compared with cross-presentation. One explanation now revealed is that prolonged cross-presentation limits effector cell expansion and function. To analyze this, we used a drug-responsive system to regulate Ag expression after DNA injection. Reducing expression to a single burst expanded greater numbers of peptide-specific effector CD8+ T cells than sustained Ag. Consequences for memory development were assessed after boosting and showed that, although persistent Ag maintained higher numbers of tetramer-positive CD8+ T cells, these expanded less (approximately 4-fold) than those induced by transient Ag expression (approximately 35-fold). Transient expression at priming therefore led to a net higher secondary response. In terms of vaccine design, we propose that the most effective DNA-based CD8+ T cell vaccines will be those that deliver a short burst of Ag. PMID:18056376

  3. CD28 in thymocyte development and peripheral T cell activation in mice exposed to suspended particulate matter

    SciTech Connect

    Drela, Nadzieja . E-mail: ndrela@biol.uw.edu.pl; Zesko, Izabela; Jakubowska, Martyna; Biernacka, Marzena

    2006-09-01

    The CD28:B7 signaling pathway is very important for the activity of mature peripheral T lymphocytes and thymocyte development. The proper development of thymocytes into mature single positive CD4{sup +}and CD8{sup +} T cells is crucial for almost all immune functions. In naturally occurring conditions, T cells maturation in the thymus is influenced by environmental agents. The expression of CD28 and the distribution of CD28{sup low/high} thymocytes have been examined at various stages of thymocyte development in BALB/c mice exposed to air-suspended particulate matter (ASM). Acute exposure to ASM resulted in the decrease of CD28 expression in the total thymocyte population. The increase of the percentage of CD28{sup low} and the decrease of CD28{sup high} thymocytes were observed, which may account for the acceleration of thymocyte development under the conditions of elevated risk resulting from the exposure of animals to environmental xenobiotics. ASM exposure resulted in the increase of the level of proliferation of lymph node T cells induced by anti-CD3 and anti-CD28 monoclonal antibodies activation despite normal expression of CD28 molecule. In contrast, the level of proliferation of spleen T cells was lowered or normal dependently of the concentration of stimuli used for activation. Results of these studies demonstrate that acute exposure of mice to ASM can result in the progression of two contrasting processes in the immune system: upregulation of thymocyte development, which contributes to the maintenance of peripheral T cell pool, and over-activation of lymph node lymphocytes, which may lead to uncontrolled immunostimulation.

  4. Unexpected Regulatory Role of CCR9 in Regulatory T Cell Development

    PubMed Central

    Evans-Marin, Heather L.; Cao, Anthony T.; Yao, Suxia; Chen, Feidi; He, Chong; Liu, Han; Wu, Wei; Gonzalez, Maria G.; Dann, Sara M.; Cong, Yingzi

    2015-01-01

    T cells reactive to microbiota regulate the pathogenesis of inflammatory bowel disease (IBD). As T cell trafficking to intestines is regulated through interactions between highly specific chemokine-chemokine receptors, efforts have been made to develop intestine-specific immunosuppression based on blocking these key processes. CCR9, a gut-trophic chemokine receptor expressed by lymphocytes and dendritic cells, has been implicated in the regulation of IBD through mediating recruitment of T cells to inflamed sites. However, the role of CCR9 in inducing and sustaining inflammation in the context of IBD is poorly understood. In this study, we demonstrate that CCR9 deficiency in effector T cells and Tregs does not affect the development of colitis in a microbiota antigen-specific, T cell-mediated model. However, Treg cells express higher levels of CCR9 compared to those in effector T cells. Interestingly, CCR9 inhibits Treg cell development, in that CCR9-/- mice demonstrate a high level of Foxp3+ Tregs, and ligation of CCR9 by its ligand CCL25 inhibits Treg cell differentiation in vitro. Collectively, our data indicate that in addition to acting as a gut-homing molecule, CCR9 signaling shapes immune responses by inhibiting Treg cell development. PMID:26230654

  5. Analyses of regulatory CD4(+) CD25(+) FOXP3(+) T cells and observations from peripheral T cell subpopulation markers during the development of type 1 diabetes in children.

    PubMed

    Hamari, S; Kirveskoski, T; Glumoff, V; Kulmala, P; Simell, O; Knip, M; Veijola, R

    2016-04-01

    Our aim was to study whether the aberrant amount or function of regulatory T cells is related to the development of type 1 diabetes (T1D) in children. We also set out to investigate the balance of different T cell subtype markers during the T1D autoimmune process. Treg cells were quantified with flow cytometric assay, and the suppression capacity was analysed with a carboxyfluorescein succinimidyl ester (CFSE)-based T cell suppression assay in children in various phases of T1D disease process and in healthy autoantibody-negative control children. The mRNA expression of different T cell subpopulation markers was analysed with real-time qPCR method. The proportion and suppression capacity of regulatory T cells were similar in seroconverted children at an early stage of beta cell autoimmunity and also in children with T1D when compared to healthy and autoantibody-negative children. Significant differences were observed in the mRNA expression of different T cell subpopulation markers in prediabetic children with multiple (≥2) autoantibodies and in children with newly diagnosed T1D when compared to the control children. In conclusion, there were no quantitative or functional differences in regulatory T cells between the case and control groups in any phase of the autoimmune process. Decreased mRNA expression levels of T cell subtype markers were observed in children with multiple islet autoantibodies and in those with newly diagnosed T1D, probably reflecting an exhaustion of the immune system after the strong immune activation during the autoimmune process or a generally aberrant immune response related to the progression of the disease. PMID:26888215

  6. KSHV viral cyclin interferes with T-cell development and induces lymphoma through Cdk6 and Notch activation in vivo

    PubMed Central

    Pekkonen, Pirita; Järviluoma, Annika; Zinovkina, Nadezhda; Cvrljevic, Anna; Prakash, Sonam; Westermarck, Jukka; Evan, Gerard I; Cesarman, Ethel; Verschuren, Emmy W; Ojala, Päivi M

    2014-01-01

    Kaposi's sarcoma herpesvirus (KSHV)-encoded v-cyclin, a homolog of cellular cyclin D2, activates cellular CDK6, promotes G1-S transition of the cell cycle, induces DNA damage, apoptosis, autophagy and is reported to have oncogenic potential. Here we show that in vivo expression of v-cyclin in the B- and T-cell lymphocyte compartments results in a markedly low survival due to high penetrance of early-onset T-cell lymphoma and pancarditis. The v-cyclin transgenic mice have smaller pre-tumorigenic lymphoid organs, showing decreased cellularity, and increased proliferation and apoptosis. Furthermore, v-cyclin expression resulted in decreased amounts of CD3-expressing mature T-cells in the secondary lymphoid organs concurrent with alterations in the T-cell subpopulations of the thymus. This suggests that v-cyclin interferes with normal T-cell development. As the Notch pathway is recognized for its role in both T-cell development and lymphoma initiation, we addressed the role of Notch in the v-cyclin-induced alterations. Fittingly, we demonstrate induction of Notch3 and Hes1 in the pre-tumorigenic thymi and lymphomas of v-cyclin expressing mice, and show that lymphoma growth and viability are dependent on activated Notch signaling. Notch3 transcription and growth of the lymphomas was dependent on CDK6, as determined by silencing of CDK6 expression or chemical inhibition, respectively. Our work here reveals a viral cyclin-CDK6 complex as an upstream regulator of Notch receptor, suggesting that cyclins can play a role in the initiation of Notch-dependent lymphomagenesis. PMID:25483078

  7. Themis sets the signal threshold for positive and negative selection in T-cell development.

    PubMed

    Fu, Guo; Casas, Javier; Rigaud, Stephanie; Rybakin, Vasily; Lambolez, Florence; Brzostek, Joanna; Hoerter, John A H; Paster, Wolfgang; Acuto, Oreste; Cheroutre, Hilde; Sauer, Karsten; Gascoigne, Nicholas R J

    2013-12-19

    Development of a self-tolerant T-cell receptor (TCR) repertoire with the potential to recognize the universe of infectious agents depends on proper regulation of TCR signalling. The repertoire is whittled down during T-cell development in the thymus by the ability of quasi-randomly generated TCRs to interact with self-peptides presented by major histocompatibility complex (MHC) proteins. Low-affinity TCR interactions with self-MHC proteins generate weak signals that initiate 'positive selection', causing maturation of CD4- or CD8??-expressing 'single-positive' thymocytes from CD4(+)CD8??(+) 'double-positive' precursors. These develop into mature naive T cells of the secondary lymphoid organs. TCR interaction with high-affinity agonist self-ligands results in 'negative selection' by activation-induced apoptosis or 'agonist selection' of functionally differentiated self-antigen-experienced T cells. Here we show that positive selection is enabled by the ability of the T-cell-specific protein Themis to specifically attenuate TCR signal strength via SHP1 recruitment and activation in response to low- but not high-affinity TCR engagement. Themis acts as an analog-to-digital converter translating graded TCR affinity into clear-cut selection outcome. By dampening mild TCR signals Themis increases the affinity threshold for activation, enabling positive selection of T cells with a naive phenotype in response to low-affinity self-antigens. PMID:24226767

  8. T Cells

    MedlinePlus

    T Cells - National Multiple Sclerosis Society Skip to navigation Skip to content Menu Navigation National Multiple Sclerosis Society Sign ... Is MS? Definition of MS T Cells T Cells Share Smaller Text Larger Text Print In this ...

  9. Influence of Ganoderma lucidum (Curt.: Fr.) P. Karst. on T-cell-mediated immunity in normal and immunosuppressed mice line CBA/Ca.

    PubMed

    Nizhenkovska, Iryna V; Pidchenko, Vitalii T; Bychkova, Nina G; Bisko, Nina A; Rodnichenko, Angela Y; Kozyko, Natalya O

    2015-09-01

    The article presents the results of the investigation of the effect of biomass powder of the fungus Ganoderma lucidum on T-cell-mediated immunity in normal and immunosuppressed mice CBA/Ca. Delayed-type hypersensitivity assay was used. Experimental immunodeficiency was established with intraperitoneal injection of the immunosuppressant cyclophosphamide at a single dose of 150 mg/kg on the first day of the experiment. Results of the study show that the administration of biomass powder of Ganoderma lucidum in a dose of 0.5 mg/kg orally for 10 days increases the delayed-type hypersensitivity response in normal mice CBA/Ca. Administration of 0.5 mg/kg of biomass powder of the fungus Ganoderma lucidum for 10 days blocked the development of the T-cell-mediated immunosuppression, induced by administration of cyclophosphamide and restored the delayed-type hypersensitivity response in immunosuppressed mice. Key words: fungus Ganoderma lucidum cyclophosphamide immunodeficiency T-cell-mediated immunity delayed-type hypersensitivity. PMID:26459128

  10. Evidence that a significant number of naive T cells enter non-lymphoid organs as part of a normal migratory pathway.

    PubMed

    Cose, Stephen; Brammer, Clair; Khanna, Kamal M; Masopust, David; Lefrançois, Leo

    2006-06-01

    Only activated and effector memory T cells are thought to access non-lymphoid tissues. In contrast, naive T cells are thought to circulate only between the blood, lymph and secondary lymphoid organs. We examined the phenotype of endogenous T cells in various non-lymphoid organs and showed that a subset of cells exhibited an apparently naive phenotype and were functionally inactive. FTY720 treatment selectively depleted this population from the non-lymphoid tissues. In addition, RAG-deficient TCR transgenic CD4 and CD8 T cells were present in non-lymphoid tissues in bone marrow chimeric mice and in situ imaging analysis revealed their location in the parenchymal tissues. Moreover, migration of TCR transgenic T cells to non-lymphoid tissues after adoptive transfer was pertussis-toxin resistant. Overall, the results suggest that naive T cells may circulate through non-lymphoid tissues as part of their normal migratory pathway. PMID:16708400

  11. Idh1 mutations contribute to the development of T-cell malignancies in genetically engineered mice

    PubMed Central

    Hao, Zhenyue; Cairns, Rob A.; Inoue, Satoshi; Li, Wanda Y.; Sheng, Yi; Lemonnier, François; Wakeham, Andrew; Snow, Bryan E.; Dominguez-Brauer, Carmen; Ye, Jing; Larsen, Dana M.; Straley, Kimberly S.; Tobin, Erica R.; Narayanaswamy, Rohini; Gaulard, Philippe; Mak, Tak W.

    2016-01-01

    Gain-of-function mutations in isocitrate dehydrogenase 1 (IDH1) are key drivers of hematopoietic malignancies. Although these mutations are most commonly associated with myeloid diseases, they also occur in malignancies of the T-cell lineage. To investigate their role in these diseases and provide tractable disease models for further investigation, we analyzed the T-cell compartment in a conditional knock-in (KI) mouse model of mutant Idh1. We observed the development of a spontaneous T-cell acute lymphoblastic leukemia (T-ALL) in these animals. The disease was transplantable and maintained expression of mutant IDH1. Whole-exome sequencing revealed the presence of a spontaneous activating mutation in Notch1, one of the most common mutations in human T-ALL, suggesting Idh1 mutations may have the capacity to cooperate with Notch1 to drive T-ALL. To further investigate the Idh1 mutation as an oncogenic driver in the T-cell lineage, we crossed Idh1-KI mice with conditional Trp53 null mice, a well-characterized model of T-cell malignancy, and found that T-cell lymphomagenesis was accelerated in mice bearing both mutations. Because both IDH1 and p53 are known to affect cellular metabolism, we compared the requirements for glucose and glutamine in cells derived from these tumors and found that cells bearing the Idh1 mutation have an increased dependence on both glucose and glutamine. These data suggest that mutant IDH1 contributes to malignancy in the T-cell lineage and may alter the metabolic profile of malignant T cells. PMID:26787889

  12. Idh1 mutations contribute to the development of T-cell malignancies in genetically engineered mice.

    PubMed

    Hao, Zhenyue; Cairns, Rob A; Inoue, Satoshi; Li, Wanda Y; Sheng, Yi; Lemonnier, François; Wakeham, Andrew; Snow, Bryan E; Dominguez-Brauer, Carmen; Ye, Jing; Larsen, Dana M; Straley, Kimberly S; Tobin, Erica R; Narayanaswamy, Rohini; Gaulard, Philippe; Mak, Tak W

    2016-02-01

    Gain-of-function mutations in isocitrate dehydrogenase 1 (IDH1) are key drivers of hematopoietic malignancies. Although these mutations are most commonly associated with myeloid diseases, they also occur in malignancies of the T-cell lineage. To investigate their role in these diseases and provide tractable disease models for further investigation, we analyzed the T-cell compartment in a conditional knock-in (KI) mouse model of mutant Idh1. We observed the development of a spontaneous T-cell acute lymphoblastic leukemia (T-ALL) in these animals. The disease was transplantable and maintained expression of mutant IDH1. Whole-exome sequencing revealed the presence of a spontaneous activating mutation in Notch1, one of the most common mutations in human T-ALL, suggesting Idh1 mutations may have the capacity to cooperate with Notch1 to drive T-ALL. To further investigate the Idh1 mutation as an oncogenic driver in the T-cell lineage, we crossed Idh1-KI mice with conditional Trp53 null mice, a well-characterized model of T-cell malignancy, and found that T-cell lymphomagenesis was accelerated in mice bearing both mutations. Because both IDH1 and p53 are known to affect cellular metabolism, we compared the requirements for glucose and glutamine in cells derived from these tumors and found that cells bearing the Idh1 mutation have an increased dependence on both glucose and glutamine. These data suggest that mutant IDH1 contributes to malignancy in the T-cell lineage and may alter the metabolic profile of malignant T cells. PMID:26787889

  13. Regulation of immune balance by thymosin: potential role in the development of suppressor T-cells.

    PubMed

    Goldstein, A L; Cohen, G H; Thurman, G B; Hooper, J A; Rossio, J L

    1976-01-01

    Studies in a variety of animal and human models indicate that thymosin plays a role in the differentiation of a number of T-cell subpopulations. The hypothesis presented is that a normal immune balance depends heavily upon the presence of thymosin-activated suppressor or regulator T-cells. A major thrust in our present research program is to determine whether or not the various disorders discussed here are causally related to abnormal thymosin production by the thymus gland. We are also assessing in animal models the potential value of thymsin in the treatment of specific autoimmune diseases. This information may yield new insights for the management of autoimmune type disorders such as SLE. Results from clinical trials to date suggest that thymosin will have a role in boosting the immune responses of patients with specific thymic malfunctions and may indeed exert an influence via the production of suppressor or regulator T-cells. PMID:773116

  14. Protecting and rescuing the effectors: roles of differentiation and survival in the control of memory T cell development

    PubMed Central

    Kurtulus, Sema; Tripathi, Pulak; Hildeman, David A.

    2013-01-01

    Vaccines, arguably the single most important intervention in improving human health, have exploited the phenomenon of immunological memory. The elicitation of memory T cells is often an essential part of successful long-lived protective immunity. Our understanding of T cell memory has been greatly aided by the development of TCR Tg mice and MHC tetrameric staining reagents that have allowed the precise tracking of antigen-specific T cell responses. Indeed, following acute infection or immunization, naïve T cells undergo a massive expansion culminating in the generation of a robust effector T cell population. This peak effector response is relatively short-lived and, while most effector T cells die by apoptosis, some remain and develop into memory cells. Although the molecular mechanisms underlying this cell fate decision remain incompletely defined, substantial progress has been made, particularly with regards to CD8+ T cells. For example, the effector CD8+ T cells generated during a response are heterogeneous, consisting of cells with more or less potential to develop into full-fledged memory cells. Development of CD8+ T cell memory is regulated by the transcriptional programs that control the differentiation and survival of effector T cells. While the type of antigenic stimulation and level of inflammation control effector CD8+ T cell differentiation, availability of cytokines and their ability to control expression and function of Bcl-2 family members governs their survival. These distinct differentiation and survival programs may allow for finer therapeutic intervention to control both the quality and quantity of CD8+ T cell memory. Effector to memory transition of CD4+ T cells is less well characterized than CD8+ T cells, emerging details will be discussed. This review will focus on the recent progress made in our understanding of the mechanisms underlying the development of T cell memory with an emphasis on factors controlling survival of effector T cells. PMID:23346085

  15. Oligoclonality in the human CD8+ T cell repertoire in normal subjects and monozygotic twins: implications for studies of infectious and autoimmune diseases.

    PubMed Central

    Monteiro, J.; Hingorani, R.; Choi, I. H.; Silver, J.; Pergolizzi, R.; Gregersen, P. K.

    1995-01-01

    BACKGROUND: We have previously demonstrated CD8+ T cell clonal dominance using a PCR assay for the CDR3 length of T cell receptors belonging to a limited number of TCRBV segments/families. In this study, we have modified this approach in order to analyze more comprehensively the frequency of oligoclonality in the CD8+ T cell subset in 25 known TCRBV segments/families. In order to assess the relative roles of genes and environment in the shaping of a clonally restricted CD8+ T cell repertoire, we have analyzed clonal dominance in the CD8+ T cell population of monozygotic twins, related siblings, and adoptees. MATERIALS AND METHODS: Oligoclonality was assessed in the CD8+ T cell subsets using a multiplex PCR approach to assay for CDR3 length variation across 25 different TCRBV segments/families. Specific criteria for oligoclonality were established, and confirmed by direct sequence analysis of the PCR products. This assay was used to investigate the CD8+ T cell repertoire of 56 normal subjects, as well as six sets of monozygotic (MZ) twins. RESULTS: Seventy-two percent of normal subjects (n = 56) had evidence of oligoclonality in the CD8+ T cell subset, using well-defined criteria. Although MZ twins frequently displayed CD8+ T cell clonal dominance, the overall pattern of oligoclonality was very diverse within each twin pair. However, we occasionally observed dominant CD8+ T cell clones that were highly similar in sequence in both members of some twin pairs. Not a single example of such similarity was observed in normal controls or siblings. CONCLUSIONS: Oligoclonality of circulating CD8+ T cells is a characteristic feature of the human immune system; both host genetic factors and environment shape the pattern of oligoclonality in this T cell subset. The high frequency of this phenomenon in normal subjects provides a background with which to evaluate CD8+ T cell oligoclonality in the setting of infection or autoimmune disease. Further phenotypic and functional characterization of these clonally expanded T cells should provide insight into normal immune homeostasis. Images FIG. 2 FIG. 4 FIG. 5 PMID:8529128

  16. Normal T cell receptor V beta usage in a primary immunodeficiency associated with HLA class II deficiency.

    PubMed

    Rieux-Laucat, F; Le Deist, F; Selz, F; Fischer, A; de Villartay, J P

    1993-04-01

    The human T cell receptor was studied using an anchored-polymerase chain reaction (A-PCR) and hybridization with V beta-specific oligonucleotide probes, together with the few anti-V beta monoclonal antibodies (mAb) available. After confirming the semiquantitative and reproducible nature of the A-PCR technique, we assessed the complete V beta repertoire in sorted CD4+ and CD8+ lymphocyte populations from three normal donors. These experiments confirmed the absence of V beta-restricted deletions in human peripheral cells, in contrast to several mouse strains. This feature makes it difficult to study negative selection in man, given the apparent absence of an endogenous superantigen corresponding to the Mls system in the mouse. To investigate human V beta repertoire shaping, we studied V beta usage in CD4+ and CD8+ T cells from children with an inherited immunodeficiency characterized by defective expression of human leukocyte antigen class II molecules. An initial study using anti-V beta monoclonal antibodies failed to show significant abnormalities in V beta usage. Four patients analyzed using the A-PCR method all had a polyclonal V beta repertoire, suggesting normal positive selection and raising questions as to the importance of V beta major histocompatibility complex (MHC) interactions and the role of thymic MHC density in shaping the V beta repertoire. PMID:8096185

  17. SAP-Dependent and -Independent Regulation of Innate T Cell Development Involving SLAMF Receptors

    PubMed Central

    De Calisto, Jaime; Wang, Ninghai; Wang, Guoxing; Yigit, Burcu; Engel, Pablo; Terhorst, Cox

    2014-01-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) plays an essential role in the immune system mediating the function of several members of the SLAM family (SLAMF) of receptors, whose expression is essential for T, NK, and B-cell responses. Additionally, the expression of SAP in double-positive thymocytes is mandatory for natural killer T (NKT) cells and, in mouse, for innate CD8+ T cell development. To date, only two members of the SLAMF of receptors, Slamf1 and Slamf6, have been shown to positively cooperate during NKT cell differentiation in mouse. However, it is less clear whether other members of this family may also participate in the development of these innate T cells. Here, we show that Slamf[1 + 6]−/− and Slamf[1 + 5 + 6]−/−B6 mice have ~70% reduction of NKT cells compared to wild-type B6 mice. Unexpectedly, the proportion of innate CD8+ T cells slightly increased in the Slamf[1 + 5 + 6]−/−, but not in the Slamf[1 + 6]−/− strain, suggesting that Slamf5 may function as a negative regulator of innate CD8+ T cell development. Accordingly, Slamf5−/− B6 mice showed an exclusive expansion of innate CD8+ T cells, but not NKT cells. Interestingly, the SAP-independent Slamf7−/− strain showed an expansion of both splenic innate CD8+ T cells and thymic NKT cells. On the other hand, and similar to what was recently shown in Slamf3−/− BALB/c mice, the proportions of thymic promyelocytic leukemia zinc finger (PLZFhi) NKT cells and innate CD8+ T cells significantly increased in the SAP-independent Slamf8−/− BALB/c strain. In summary, these results show that NKT and innate CD8+ T cell development can be regulated in a SAP-dependent and -independent fashion by SLAMF receptors, in which Slamf1, Slamf6, and Slamf8 affect development of NKT cells, and that Slamf5, Slamf7, and Slamf8 affect the development of innate CD8+ T cells. PMID:24795728

  18. CD4 memory T cells develop and acquire functional competence by sequential cognate interactions and stepwise gene regulation.

    PubMed

    Kaji, Tomohiro; Hijikata, Atsushi; Ishige, Akiko; Kitami, Toshimori; Watanabe, Takashi; Ohara, Osamu; Yanaka, Noriyuki; Okada, Mariko; Shimoda, Michiko; Taniguchi, Masaru; Takemori, Toshitada

    2016-06-01

    Memory CD4(+) T cells promote protective humoral immunity; however, how memory T cells acquire this activity remains unclear. This study demonstrates that CD4(+) T cells develop into antigen-specific memory T cells that can promote the terminal differentiation of memory B cells far more effectively than their naive T-cell counterparts. Memory T cell development requires the transcription factor B-cell lymphoma 6 (Bcl6), which is known to direct T-follicular helper (Tfh) cell differentiation. However, unlike Tfh cells, memory T cell development did not require germinal center B cells. Curiously, memory T cells that develop in the absence of cognate B cells cannot promote memory B-cell recall responses and this defect was accompanied by down-regulation of genes associated with homeostasis and activation and up-regulation of genes inhibitory for T-cell responses. Although memory T cells display phenotypic and genetic signatures distinct from Tfh cells, both had in common the expression of a group of genes associated with metabolic pathways. This gene expression profile was not shared to any great extent with naive T cells and was not influenced by the absence of cognate B cells during memory T cell development. These results suggest that memory T cell development is programmed by stepwise expression of gatekeeper genes through serial interactions with different types of antigen-presenting cells, first licensing the memory lineage pathway and subsequently facilitating the functional development of memory T cells. Finally, we identified Gdpd3 as a candidate genetic marker for memory T cells. PMID:26714588

  19. PD-1 and Tim-3 pathways are associated with regulatory CD8+ T-cell function in decidua and maintenance of normal pregnancy

    PubMed Central

    Wang, S-C; Li, Y-H; Piao, H-L; Hong, X-W; Zhang, D; Xu, Y-Y; Tao, Y; Wang, Y; Yuan, M-M; Li, D-J; Du, M-R

    2015-01-01

    CD8+ T cells are critical in the balance between fetal tolerance and antiviral immunity. T-cell immunoglobulin mucin-3 (Tim-3) and programmed cell death-1 (PD-1) are important negative immune regulatory molecules involved in viral persistence and tumor metastasis. Here, we demonstrate that Tim-3+PD-1+CD8+ T cells from decidua greatly outnumbered those from peripheral blood during human early pregnancy. Co-culture of trophoblasts with CD8+ T cells upregulated PD-1+ and/or Tim-3+ immune cells. Furthermore, the population of CD8+ T cells co-expressing PD-1 and Tim-3 was enriched within the intermediate memory subset in decidua. This population exhibited high proliferative activity and Th2-type cytokine producing capacity. Blockade of Tim-3 and PD-1 resulted in decreased in vitro proliferation and Th2-type cytokine production while increased trophoblast killing and IFN-? producing capacities of CD8+ T cells. Pregnant CBA/J females challenged with Tim-3 and/or PD-1 blocking antibodies were more susceptible to fetal loss, which was associated with CD8+ T-cell dysfunction. Importantly, the number and function of Tim-3+PD-1+CD8+ T cells in decidua were significantly impaired in miscarriage. These findings underline the important roles of Tim-3 and PD-1 pathways in regulating decidual CD8+ T-cell function and maintaining normal pregnancy. PMID:25950468

  20. Control of the thymic medulla and its influence on αβT-cell development.

    PubMed

    Lucas, Beth; McCarthy, Nicholas I; Baik, Song; Cosway, Emilie; James, Kieran D; Parnell, Sonia M; White, Andrea J; Jenkinson, William E; Anderson, Graham

    2016-05-01

    The thymus is a primary lymphoid tissue that supports the generation of αβT cells. In this review, we describe the processes that give rise to the thymus medulla, a site that nurtures self-tolerant T-cell generation following positive selection events that take place in the cortex. To summarize the developmental pathways that generate medullary thymic epithelial cells (mTEC) from their immature progenitors, we describe work on both the initial emergence of the medulla during embryogenesis, and the maintenance of the medulla during postnatal stages. We also investigate the varying roles that receptors belonging to the tumor necrosis factor receptor superfamily have on thymus medulla development and formation, and highlight the impact that T-cell development has on thymus medulla formation. Finally, we examine the evidence that the thymic medulla plays an important role during the intrathymic generation of distinct αβT-cell subtypes. Collectively, these studies provide new insight into the development and functional importance of medullary microenvironments during self-tolerant T-cell production in the thymus. PMID:27088905

  1. RET/GFRα Signals Are Dispensable for Thymic T Cell Development In Vivo

    PubMed Central

    Almeida, Afonso Rocha Martins; Arroz-Madeira, Sílvia; Fonseca-Pereira, Diogo; Ribeiro, Hélder; Lasrado, Reena; Pachnis, Vassilis; Veiga-Fernandes, Henrique

    2012-01-01

    Identification of thymocyte regulators is a central issue in T cell biology. Interestingly, growing evidence indicates that common key molecules control neuronal and immune cell functions. The neurotrophic factor receptor RET mediates critical functions in foetal hematopoietic subsets, thus raising the possibility that RET-related molecules may also control T cell development. We show that Ret, Gfra1 and Gfra2 are abundantly expressed by foetal and adult immature DN thymocytes. Despite the developmentally regulated expression of these genes, analysis of foetal thymi from Gfra1, Gfra2 or Ret deficient embryos revealed that these molecules are dispensable for foetal T cell development. Furthermore, analysis of RET gain of function and Ret conditional knockout mice showed that RET is also unnecessary for adult thymopoiesis. Finally, competitive thymic reconstitution assays indicated that Ret deficient thymocytes maintained their differentiation fitness even in stringent developmental conditions. Thus, our data demonstrate that RET/GFRα signals are dispensable for thymic T cell development in vivo, indicating that pharmacological targeting of RET signalling in tumours is not likely to result in T cell production failure. PMID:23300832

  2. Bi-Allelic TCRα or β Recombination Enhances T Cell Development but Is Dispensable for Antigen Responses and Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Schuldt, Nathaniel J.; Auger, Jennifer L.; Hogquist, Kristin A.; Binstadt, Bryce A.

    2015-01-01

    Dual TCRα-expressing T cells outnumber dual TCRβ-expressing cells by ~10:1. As a result, efforts to understand how dual TCR T cells impact immunity have focused on dual TCRα expression; dual TCRβ expression remains understudied. We recently demonstrated, however, that dual TCRβ expression accelerated disease in a TCR transgenic model of autoimmune arthritis through enhanced positive selection efficiency, indicating that dual TCRβ expression, though rare, can impact thymic selection. Here we generated mice hemizygous for TCRα, TCRβ, or both on the C57BL/6 background to investigate the impact bi-allelic TCR chain recombination has on T cell development, repertoire diversity, and autoimmunity. Lack of bi-allelic TCRα or TCRβ recombination reduced αβ thymocyte development efficiency, and the absence of bi-allelic TCRβ recombination promoted γδ T cell development. However, we observed no differences in the numbers of naïve and expanded antigen-specific T cells between TCRα+/-β+/- and wildtype mice, and TCR repertoire analysis revealed only subtle differences in Vβ gene usage. Finally, the absence of dual TCR T cells did not impact induced experimental autoimmune encephalomyelitis pathogenesis. Thus, despite more stringent allelic exclusion of TCRβ relative to TCRα, bi-allelic TCRβ expression can measurably impact thymocyte development and is necessary for maintaining normal αβ/γδ T cell proportions. PMID:26693713

  3. Bystander chronic infection negatively impacts development of CD8+ T cell memory

    PubMed Central

    Stelekati, Erietta; Shin, Haina; Doering, Travis A.; Dolfi, Douglas V.; Ziegler, Carly G.; Beiting, Daniel P.; Dawson, Lucas; Liboon, Jennifer; Wolski, David; Ali, Mohammed-Alkhatim A.; Katsikis, Peter D.; Shen, Hao; Roos, David S.; Haining, W. Nicholas; Lauer, Georg M.; Wherry, E. John

    2014-01-01

    Summary Epidemiological evidence suggests that chronic infections impair immune responses to unrelated pathogens and vaccines. The underlying mechanisms, however, are unclear and distinguishing effects on priming versus development of immunological memory has been challenging. We investigated whether bystander chronic infections impact differentiation of memory CD8+ T cells, the hallmark of protective immunity against intracellular pathogens. Chronic bystander infections impaired development of memory CD8+ T cells in several mouse models and humans. These effects were independent of initial priming and were associated with chronic inflammatory signatures. Chronic inflammation negatively impacted the number of bystander CD8+ T cells and their memory development. Distinct underlying mechanisms of altered survival and differentiation were revealed with the latter regulated by the transcription factors T-bet and Blimp-1. Thus, exposure to prolonged bystander inflammation impairs the effector to memory transition. These data have relevance for immunity and vaccination during persisting infections and chronic inflammation. PMID:24837104

  4. Bystander chronic infection negatively impacts development of CD8(+) T cell memory.

    PubMed

    Stelekati, Erietta; Shin, Haina; Doering, Travis A; Dolfi, Douglas V; Ziegler, Carly G; Beiting, Daniel P; Dawson, Lucas; Liboon, Jennifer; Wolski, David; Ali, Mohammed-Alkhatim A; Katsikis, Peter D; Shen, Hao; Roos, David S; Haining, W Nicholas; Lauer, Georg M; Wherry, E John

    2014-05-15

    Epidemiological evidence suggests that chronic infections impair immune responses to unrelated pathogens and vaccines. The underlying mechanisms, however, are unclear and distinguishing effects on priming versus development of immunological memory has been challenging. We investigated whether bystander chronic infections impact differentiation of memory CD8(+) T cells, the hallmark of protective immunity against intracellular pathogens. Chronic bystander infections impaired development of memory CD8(+) T cells in several mouse models and humans. These effects were independent of initial priming and were associated with chronic inflammatory signatures. Chronic inflammation negatively impacted the number of bystander CD8(+) T cells and their memory development. Distinct underlying mechanisms of altered survival and differentiation were revealed with the latter regulated by the transcription factors T-bet and Blimp-1. Thus, exposure to prolonged bystander inflammation impairs the effector to memory transition. These data have relevance for immunity and vaccination during persisting infections and chronic inflammation. PMID:24837104

  5. Kinetics of T-cell receptor-dependent antigen recognition determined in vivo by multi-spectral normalized epifluorescence laser scanning

    NASA Astrophysics Data System (ADS)

    Favicchio, Rosy; Zacharakis, Giannis; Oikonomaki, Katerina; Zacharopoulos, Athanasios; Mamalaki, Clio; Ripoll, Jorge

    2012-07-01

    Detection of multiple fluorophores in conditions of low signal represents a limiting factor for the application of in vivo optical imaging techniques in immunology where fluorescent labels report for different functional characteristics. A noninvasive in vivo Multi-Spectral Normalized Epifluorescence Laser scanning (M-SNELS) method was developed for the simultaneous and quantitative detection of multiple fluorophores in low signal to noise ratios and used to follow T-cell activation and clonal expansion. Colocalized DsRed- and GFP-labeled T cells were followed in tandem during the mounting of an immune response. Spectral unmixing was used to distinguish the overlapping fluorescent emissions representative of the two distinct cell populations and longitudinal data reported the discrete pattern of antigen-driven proliferation. Retrieved values were validated both in vitro and in vivo with flow cytometry and significant correlation between all methodologies was achieved. Noninvasive M-SNELS successfully quantified two colocalized fluorescent populations and provides a valid alternative imaging approach to traditional invasive methods for detecting T cell dynamics.

  6. Transcriptional repressors, corepressors and chromatin modifying enzymes in T cell development

    PubMed Central

    Shapiro, Michael J.; Shapiro, Virginia Smith

    2010-01-01

    Gene expression is regulated by the combined action of transcriptional activators and transcriptional repressors. Transcriptional repressors function by recruiting corepressor complexes containing histone-modifying enzymes to specific sites within DNA. Chromatin modifying complexes are subsequently recruited, either directly by transcriptional repressors, or indirectly via corepressor complexes and/or histone modifications, to remodel chromatin into either a transcription-friendly ‘open’ form or an inhibitory ‘closed’ form. Transcriptional repressors, corepressors and chromatin modifying complexes play critical roles throughout T cell development. Here, we highlight those genes that function to repress transcription and that have been shown to be required for T cell development. PMID:21163671

  7. Repertoire Development and the Control of Cytotoxic/Effector Function in Human ?? T Cells

    PubMed Central

    Urban, Elizabeth M.; Chapoval, Andrei I.; Pauza, C. David

    2010-01-01

    T cells develop into two major populations distinguished by their T cell receptor (TCR) chains. Cells with the ?? TCR generally express CD4 or CD8 lineage markers and mostly fall into helper or cytotoxic/effector subsets. Cells expressing the alternate ?? TCR in humans generally do not express lineage markers, do not require MHC for antigen presentation, and recognize nonpeptidic antigens. We are interested in the dominant V?2V?2+ T cell subset in human peripheral blood and the control of effector function in this population. We review the literature on ?? T cell generation and repertoire selection, along with recent work on CD56 expression and defining a cytotoxic/effector lineage within the phosphoantigen-reactive V?2V?2 cells. A unique mechanism for MHC-independent repertoire selection is linked to the control of effector function that is vital to the role for ?? T cells in tumor surveillance. Better understanding of these mechanisms will improve our ability to exploit this population for tumor immunotherapy. PMID:20396597

  8. The effects of radio-frequency electromagnetic fields on T cell function during development.

    PubMed

    Ohtani, Shin; Ushiyama, Akira; Maeda, Machiko; Ogasawara, Yuki; Wang, Jianqing; Kunugita, Naoki; Ishii, Kazuyuki

    2015-05-01

    With the widespread use of radio-frequency devices, it is increasingly important to understand the biological effects of the associated electromagnetic fields. Thus, we investigated the effects of radio-frequency electromagnetic fields (RF-EMF) on T cell responses during development due to the lack of science-based evidence for RF-EMF effects on developmental immune systems. Sprague Dawley (SD) rats were exposed to 2.14-GHz wideband code division multiple-access (W-CDMA) RF signals at a whole-body specific absorption rate (SAR) of 0.2 W/kg. Exposures were performed for a total of 9 weeks spanning in utero development, lactation and the juvenile period. Rats were continuously exposed to RF-EMF for 20 h/day, 7 days/week. Comparisons of control and exposed rats using flow cytometry revealed no changes in the numbers of CD4/CD8 T cells, activated T cells or regulatory T cells among peripheral blood cells, splenocytes and thymocytes. Expression levels of 16 genes that regulate the immunological Th1/Th2 paradigm were analyzed using real-time PCR in the spleen and thymus tissues of control and RF-EMF-exposed rats. Although only the Il5 gene was significantly regulated in spleen tissues, Il4, Il5 and Il23a genes were significantly upregulated in thymus tissues following exposure to RF-EMF. However, ELISAs showed no changes in serum IL-4 protein concentrations. These data indicate no adverse effects of long-term RF-EMF exposure on immune-like T cell populations, T cell activation, or Th1/Th2 balance in developing rats, although significant transcriptional effects were observed. PMID:25835473

  9. The effects of radio-frequency electromagnetic fields on T cell function during development

    PubMed Central

    Ohtani, Shin; Ushiyama, Akira; Maeda, Machiko; Ogasawara, Yuki; Wang, Jianqing; Kunugita, Naoki; Ishii, Kazuyuki

    2015-01-01

    With the widespread use of radio-frequency devices, it is increasingly important to understand the biological effects of the associated electromagnetic fields. Thus, we investigated the effects of radio-frequency electromagnetic fields (RF-EMF) on T cell responses during development due to the lack of science-based evidence for RF-EMF effects on developmental immune systems. Sprague Dawley (SD) rats were exposed to 2.14-GHz wideband code division multiple-access (W-CDMA) RF signals at a whole-body specific absorption rate (SAR) of 0.2 W/kg. Exposures were performed for a total of 9 weeks spanning in utero development, lactation and the juvenile period. Rats were continuously exposed to RF-EMF for 20 h/day, 7 days/week. Comparisons of control and exposed rats using flow cytometry revealed no changes in the numbers of CD4/CD8 T cells, activated T cells or regulatory T cells among peripheral blood cells, splenocytes and thymocytes. Expression levels of 16 genes that regulate the immunological Th1/Th2 paradigm were analyzed using real-time PCR in the spleen and thymus tissues of control and RF-EMF–exposed rats. Although only the Il5 gene was significantly regulated in spleen tissues, Il4, Il5 and Il23a genes were significantly upregulated in thymus tissues following exposure to RF-EMF. However, ELISAs showed no changes in serum IL-4 protein concentrations. These data indicate no adverse effects of long-term RF-EMF exposure on immune-like T cell populations, T cell activation, or Th1/Th2 balance in developing rats, although significant transcriptional effects were observed. PMID:25835473

  10. Autoimmune Diabetes: Ongoing Development of Immunological Intervention Strategies Targeted Directly Against Autoreactive T Cells

    PubMed Central

    Sia, Charles

    2004-01-01

    It is well known that autoimmunity associated with the onset of insulin-dependent diabetes mellitus (IDDM) involves the generation of autoreactive T and B cells. The findings that diabetics mount humoral and cellular immune responses against islet cell antigens (ICAs) have led to the testing of ICAs and their analogs as candidates for therapeutic agents for better treatment of IDDM at its prediabetic and diabetic stages. Apart from this type of approach, various immunological intervention strategies aimed at direct targeting of the autoreactive T cells have also been investigated. The present review covers the ongoing aspects of these developments focusing on the preclinical findings made in NOD (nonobese diabetic) mice which have been commonly used as a disease model for human autoimmune diabetes. Other types of approaches involving the mobilization of regulatory T cells to indirectly control or modulate the pathological activity of autoreactive T cells will not be discussed within this scope. PMID:17491660

  11. The development and fate of follicular helper T cells defined by an IL-21 reporter mouse.

    PubMed

    Lthje, Katja; Kallies, Axel; Shimohakamada, Yoko; Belz, Gabrielle T; Light, Amanda; Tarlinton, David M; Nutt, Stephen L

    2012-05-01

    Germinal centers require CD4? follicular helper T cells (TFH cells), whose hallmark is expression of the transcriptional repressor Bcl-6, the chemokine receptor CXCR5 and interleukin 21 (IL-21). To track the development and fate of TFH cells, we generated an IL-21 reporter mouse by introducing sequence encoding green fluorescent protein (GFP) into the Il21 locus; these mice had expression of IL-21GFP in CD4?CXCR5?PD-1? TFH cells. IL-21GFP? TFH cells were multifunctional helper cells that coexpressed several cytokines, including interferon-g (IFN-g), IL-2 and IL-4. TFH cells proliferated and gave rise to transferrable memory cells with plasticity, which differentiated after recall into conventional effector helper T cells and TFH cells. Thus, we demonstrated that TFH cells were not terminally differentiated but instead retained the flexibility to be recruited into other helper T cell subsets and nonlymphoid tissues. PMID:22466669

  12. Bioinformatic description of immunotherapy targets for pediatric T-cell leukemia and the impact of normal gene sets used for comparison.

    PubMed

    Orentas, Rimas J; Nordlund, Jessica; He, Jianbin; Sindiri, Sivasish; Mackall, Crystal; Fry, Terry J; Khan, Javed

    2014-01-01

    Pediatric lymphoid leukemia has the highest cure rate of all pediatric malignancies, yet due to its prevalence, still accounts for the majority of childhood cancer deaths and requires long-term highly toxic therapy. The ability to target B-cell ALL with immunoglobulin-like binders, whether anti-CD22 antibody or anti-CD19 CAR-Ts, has impacted treatment options for some patients. The development of new ways to target B-cell antigens continues at rapid pace. T-cell ALL accounts for up to 20% of childhood leukemia but has yet to see a set of high-value immunotherapeutic targets identified. To find new targets for T-ALL immunotherapy, we employed a bioinformatic comparison to broad normal tissue arrays, hematopoietic stem cells (HSC), and mature lymphocytes, then filtered the results for transcripts encoding plasma membrane proteins. T-ALL bears a core T-cell signature and transcripts encoding TCR/CD3 components and canonical markers of T-cell development predominate, especially when comparison was made to normal tissue or HSC. However, when comparison to mature lymphocytes was also undertaken, we identified two antigens that may drive, or be associated with leukemogenesis; TALLA-1 and hedgehog interacting protein. In addition, TCR subfamilies, CD1, activation and adhesion markers, membrane-organizing molecules, and receptors linked to metabolism and inflammation were also identified. Of these, only CD52, CD37, and CD98 are currently being targeted clinically. This work provides a set of targets to be considered for future development of immunotherapies for T-ALL. PMID:24959420

  13. Bioinformatic Description of Immunotherapy Targets for Pediatric T-Cell Leukemia and the Impact of Normal Gene Sets Used for Comparison

    PubMed Central

    Orentas, Rimas J.; Nordlund, Jessica; He, Jianbin; Sindiri, Sivasish; Mackall, Crystal; Fry, Terry J.; Khan, Javed

    2014-01-01

    Pediatric lymphoid leukemia has the highest cure rate of all pediatric malignancies, yet due to its prevalence, still accounts for the majority of childhood cancer deaths and requires long-term highly toxic therapy. The ability to target B-cell ALL with immunoglobulin-like binders, whether anti-CD22 antibody or anti-CD19 CAR-Ts, has impacted treatment options for some patients. The development of new ways to target B-cell antigens continues at rapid pace. T-cell ALL accounts for up to 20% of childhood leukemia but has yet to see a set of high-value immunotherapeutic targets identified. To find new targets for T-ALL immunotherapy, we employed a bioinformatic comparison to broad normal tissue arrays, hematopoietic stem cells (HSC), and mature lymphocytes, then filtered the results for transcripts encoding plasma membrane proteins. T-ALL bears a core T-cell signature and transcripts encoding TCR/CD3 components and canonical markers of T-cell development predominate, especially when comparison was made to normal tissue or HSC. However, when comparison to mature lymphocytes was also undertaken, we identified two antigens that may drive, or be associated with leukemogenesis; TALLA-1 and hedgehog interacting protein. In addition, TCR subfamilies, CD1, activation and adhesion markers, membrane-organizing molecules, and receptors linked to metabolism and inflammation were also identified. Of these, only CD52, CD37, and CD98 are currently being targeted clinically. This work provides a set of targets to be considered for future development of immunotherapies for T-ALL. PMID:24959420

  14. An Essential Role for Thymic Mesenchyme in Early T Cell Development

    PubMed Central

    Suniara, Ravinder K.; Jenkinson, Eric J.; Owen, John J.T.

    2000-01-01

    We show that the mesenchymal cells that surround the 12-d mouse embryo thymus are necessary for T cell differentiation. Thus, epithelial lobes with attached mesenchyme generate all T cell populations in vitro, whereas lobes from which mesenchyme has been removed show poor lymphopoiesis with few cells progressing beyond the CD4−CD8− stage of development. Interestingly, thymic mesenchyme is derived from neural crest cells, and extirpation of the region of the neural crest involved results in impaired thymic development and craniofacial abnormalities similar to the group of clinical defects found in the DiGeorge syndrome. Previous studies have suggested an inductive effect of mesenchyme on thymic epithelial morphogenesis. However, we have found that mesenchyme-derived fibroblasts are still required for early T cell development in the presence of mature epithelial cells, and hence mesenchyme might have a direct role in lymphopoiesis. We provide an anatomical basis for the role of mesenchyme by showing that mesenchymal cells migrate into the epithelial thymus to establish a network of fibroblasts and associated extracellular matrix. We propose that the latter might be important for T cell development through integrin and/or cytokine interactions with immature thymocytes. PMID:10727466

  15. Differential G-protein expression during B- and T-cell development.

    PubMed Central

    Grant, K R; Harnett, W; Milligan, G; Harnett, M M

    1997-01-01

    The molecular mechanisms underlying B- and T-cell development are, as yet, poorly understood. However, as G proteins regulate a diverse range of biological responses including growth, proliferation and differentiation, we have investigated differential expression of G proteins during B- and T-cell development with the aim of identifying key signals involved in lymphocyte maturation. Differential expression of beta 1/2 and alpha-subunits of the Gs-, i- and q-families was found throughout lymphoid development. Most strikingly, G alpha i1 and G alpha i1 were very weakly, or not expressed in pre-, immature and mature B cells, thymocytes or mature T cells, but strongly induced in mature B-lymphoblastoid cell lines, some of which have been used as models of germinal centre B cells, suggesting that expression of these G proteins may correlate with the later stages of B-cell development. In contrast, G alpha 16 expression was highest in T cells and pre-B cells and progressively declined with B-cell maturation. These findings suggest that G proteins, and the signals they regulate, such as ion channels and/or adenylate cyclase (G alpha s/i) and phospholipase C (G beta gamma and G alpha 11/16) are differentially regulated in lymphoid cells in a maturation-and lineage-dependent manner. Images Figure 1 PMID:9176110

  16. Evidence of the extrathymic development of tyrosinase-related protein-2-recognizing CD8+ T cells with low avidity

    PubMed Central

    Harada, Mamoru; Yamada, Hisakata; Tatsugami, Katsunori; Nomoto, Kikuo

    2001-01-01

    The majority of the human tumour-associated antigens characterized to date are derived from non–mutated self-proteins. However, nothing is known about the development of autoreactive and tumour-associated antigen-recognizing T cells. Tyrosinase-related protein (TRP)-2 is a non-mutated melanocyte differentiation antigen and TRP-2-recognizing CD8+ T cells are known to show responses to melanoma both in humans and mice. In addition, TRP-2-reactive T cells with low avidity have been suggested to be readily induced from the spleen cells of naïve mice. On the other hand, recent reports suggest that self antigen-reactive CD8+ T cells can be positively selected in the periphery. In this study, we tested the possibility that TRP-2-reactive CD8+ T cells in naïve mice could develop via the extrathymic pathway. As a consequence, TRP-2-reactive CD8+ T cell precursors in naïve C57BL/6 mice were suggested to express both interleukin-2 (IL-2) receptor β chain (IL-2Rβ) and CD44 molecules, in a manner similar to that of extrathymically developed T cells. Furthermore, IL-2Rβ+ CD44+ CD8+ T cells were detected in the adult thymectomized and bone marrow-reconstituted mice, and functional TRP-2-reactive T cells were generated from their spleen cells. Overall, these results suggest that low avidity CD8+ T cells recognizing TRP-2 can be developed extrathymically. PMID:11576222

  17. Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene.

    PubMed Central

    Malissen, M; Gillet, A; Ardouin, L; Bouvier, G; Trucy, J; Ferrier, P; Vivier, E; Malissen, B

    1995-01-01

    To determine which CD3 components are required for early T cell development, we generated mice with a targeted mutation of the CD3-epsilon gene and characterized their T cell populations relative to those found in CD3-zeta/eta-and recombinase activating gene (RAG)-deficient mice. In the absence of intact CD3-epsilon subunit, thymocytes do not progress beyond the CD44-/lowCD25+ triple-negative stage and appear to be arrested at the very same developmental control point as RAG-deficient thymocytes. In contrast, the disruption of the CD3-epsilon/eta gene does not totally abrogate the progression through this control point. CD3-epsilon-deficient thymocytes do rearrange their T cell receptor (TCR) beta gene segments and produce low levels of full-length TCR beta transcripts. Taken together, these results establish an essential role for the CD3-epsilon gene products during T cell development and further suggest that the CD3-epsilon polypeptides start to exert their function as part of a pre-TCR through which CD44-/lowCD25+ triple-negative cells monitor the occurrence of productive TCR beta gene rearrangements. Finally, the absence of intact CD3-epsilon polypeptides had no discernible effect on the completion of TCR gamma and TCR delta gene rearrangements, emphasizing that they are probably not subjected to the same epigenetic controls as those operating on the expression of TCR alpha and beta genes. Images PMID:7588594

  18. Dampening of death pathways by schnurri-2 is essential for T-cell development.

    PubMed

    Staton, Tracy L; Lazarevic, Vanja; Jones, Dallas C; Lanser, Amanda J; Takagi, Tsuyoshi; Ishii, Shunsuke; Glimcher, Laurie H

    2011-04-01

    Generation of a diverse and self-tolerant T-cell repertoire requires appropriate interpretation of T-cell antigen receptor (TCR) signals by CD4(+?) CD8(+) double-positive thymocytes. Thymocyte cell fate is dictated by the nature of TCR-major-histocompatibility-complex (MHC)-peptide interactions, with signals of higher strength leading to death (negative selection) and signals of intermediate strength leading to differentiation (positive selection). Molecules that regulate T-cell development by modulating TCR signal strength have been described but components that specifically define the boundaries between positive and negative selection remain unknown. Here we show in mice that repression of TCR-induced death pathways is critical for proper interpretation of positive selecting signals in vivo, and identify schnurri-2 (Shn2; also known as Hivep2) as a crucial death dampener. Our results indicate that Shn2(-/-) double-positive thymocytes inappropriately undergo negative selection in response to positive selecting signals, thus leading to disrupted T-cell development. Shn2(-/-) double-positive thymocytes are more sensitive to TCR-induced death in vitro and die in response to positive selection interactions in vivo. However, Shn2-deficient thymocytes can be positively selected when TCR-induced death is genetically ablated. Shn2 levels increase after TCR stimulation, indicating that integration of multiple TCR-MHC-peptide interactions may fine-tune the death threshold. Mechanistically, Shn2 functions downstream of TCR proximal signalling compenents to dampen Bax activation and the mitochondrial death pathway. Our findings uncover a critical regulator of T-cell development that controls the balance between death and differentiation. PMID:21475200

  19. Normal human CD4(+) helper T cells express Kv1.1 voltage-gated K(+) channels, and selective Kv1.1 block in T cells induces by itself robust TNFα production and secretion and activation of the NFκB non-canonical pathway.

    PubMed

    Fellerhoff-Losch, Barbara; Korol, Sergiy V; Ganor, Yonatan; Gu, Songhai; Cooper, Itzik; Eilam, Raya; Besser, Michal; Goldfinger, Meidan; Chowers, Yehuda; Wank, Rudolf; Birnir, Bryndis; Levite, Mia

    2016-03-01

    TNFα is a very potent and pleiotropic pro-inflammatory cytokine, essential to the immune system for eradicating cancer and microorganisms, and to the nervous system, for brain development and ongoing function. Yet, excess and/or chronic TNFα secretion causes massive tissue damage in autoimmune, inflammatory and neurological diseases and injuries. Therefore, many patients with autoimmune/inflammatory diseases receive anti-TNFα medications. TNFα is secreted primarily by CD4(+) T cells, macrophages, monocytes, neutrophils and NK cells, mainly after immune stimulation. Yet, the cause for the pathologically high and chronic TNFα secretion is unknown. Can blocking of a particular ion channel in T cells induce by itself TNFα secretion? Such phenomenon was never revealed or even hypothesized. In this interdisciplinary study we discovered that: (1) normal human T cells express Kv1.1 voltage-gated potassium channel mRNA, and the Kv1.1 membrane-anchored protein channel; (2) Kv1.1 is expressed in most CD4(+)CD3(+) helper T cells (mean CD4(+)CD3(+)Kv1.1(+) T cells of 7 healthy subjects: 53.09 ± 22.17 %), but not in CD8(+)CD3(+) cytotoxic T cells (mean CD8(+)CD3(+)Kv1.1(+) T cells: 4.12 ± 3.04 %); (3) electrophysiological whole-cell recordings in normal human T cells revealed Kv currents; (4) Dendrotoxin-K (DTX-K), a highly selective Kv1.1 blocker derived from snake toxin, increases the rate of rise and decay of Kv currents in both resting and activated T cells, without affecting the peak current; (5) DTX-K by itself induces robust TNFα production and secretion by normal human T cells, without elevating IFNγ, IL-4 and IL-10; (6) intact Ca(2+) channels are required for DTX-induced TNFα secretion; (7) selective anti-Kv1.1 antibodies also induce by themselves TNFα secretion; (8) DTX-K activates NFκB in normal human T cells via the unique non-canonical-pathway; (9) injection of Kv1.1-blocked human T cells to SCID mice, causes recruitment of resident mouse cells into the liver, alike reported after TNFα injection into the brain. Based on our discoveries we speculate that abnormally blocked Kv1.1 in T cells (and other immune cells?), due to either anti-Kv1.1 autoimmune antibodies, or Kv1.1-blocking toxins alike DTX-K, or Kv1.1-blocking genetic mutations, may be responsible for the chronic/excessive TNFα in autoimmune/inflammatory diseases. Independently, we also hypothesize that selective block of Kv1.1 in CD4(+) T cells of patients with cancer or chronic infectious diseases could be therapeutic, since it may: a. augment beneficial secretion and delivery of TNFα to the disease-affected sites; b. induce recruitment and extravasation of curative immune cells and factors; c. improve accessibility of drugs to the brain and few peripheral organs thanks to TNFα-induced increased permeability of organ's barriers. PMID:26611796

  20. Intrinsic role of FoxO3a in the development of CD8+ T cell memory

    PubMed Central

    Tzelepis, Fanny; Joseph, Julie; Haddad, Elias K.; MacLean, Susanne; Dudani, Renu; Agenes, Fabien; Peng, Stanford L.; Sekaly, Rafick-Pierre; Sad, Subash

    2013-01-01

    CD8+ T cells undergo rapid expansion during infection with intracellular pathogens, which is followed by swift and massive culling of primed CD8+ T cells. The mechanisms that govern the massive contraction and maintenance of primed CD8+ T cells are not clear. We show here that the transcription factor, FoxO3a does not influence antigen-presentation and the consequent expansion of CD8+ T cell response during Listeria monocytogenes (LM) infection, but plays a key role in the maintenance of memory CD8+ T cells. The effector function of primed CD8+ T cells as revealed by cytokine secretion and CD107a degranulation was not influenced by inactivation of FoxO3a. Interestingly, FoxO3a-deficient CD8+ T cells displayed reduced expression of pro-apoptotic molecules BIM and PUMA during the various phases of response, and underwent reduced apoptosis in comparison to WT cells. A higher number of memory precursor effector cells (MPECs) and memory subsets were detectable in FoxO3a-deficient mice compared to WT mice. Furthermore, FoxO3a-deficient memory CD8+ T cells upon transfer into normal or RAG1-deficient mice displayed enhanced survival. These results suggest that FoxO3a acts in a cell intrinsic manner to regulate the survival of primed CD8+ T cells. PMID:23277488

  1. CD8+ T Cell-Mediated Immunity during Trypanosoma cruzi Infection: A Path for Vaccine Development?

    PubMed Central

    dos Santos Virgilio, Fernando; Pontes, Camila; Dominguez, Mariana Ribeiro; Ersching, Jonatan; Rodrigues, Mauricio Martins; Vasconcelos, José Ronnie

    2014-01-01

    MHC-restricted CD8+ T cells are important during infection with the intracellular protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Experimental studies performed in the past 25 years have elucidated a number of features related to the immune response mediated by these T cells, which are important for establishing the parasite/host equilibrium leading to chronic infection. CD8+ T cells are specific for highly immunodominant antigens expressed by members of the trans-sialidase family. After infection, their activation is delayed, and the cells display a high proliferative activity associated with high apoptotic rates. Although they participate in parasite control and elimination, they are unable to clear the infection due to their low fitness, allowing the parasite to establish the chronic phase when these cells then play an active role in the induction of heart immunopathology. Vaccination with a number of subunit recombinant vaccines aimed at eliciting specific CD8+ T cells can reverse this path, thereby generating a productive immune response that will lead to the control of infection, reduction of symptoms, and reduction of disease transmission. Due to these attributes, activation of CD8+ T lymphocytes may constitute a path for the development of a veterinarian or human vaccine. PMID:25104879

  2. Design and development of therapies using chimeric antigen receptor-expressing T cells.

    PubMed

    Dotti, Gianpietro; Gottschalk, Stephen; Savoldo, Barbara; Brenner, Malcolm K

    2014-01-01

    Investigators developed chimeric antigen receptors (CARs) for expression on T cells more than 25 years ago. When the CAR is derived from an antibody, the resultant cell should combine the desirable targeting features of an antibody (e.g. lack of requirement for major histocompatibility complex recognition, ability to recognize non-protein antigens) with the persistence, trafficking, and effector functions of a T cell. This article describes how the past two decades have seen a crescendo of research which has now begun to translate these potential benefits into effective treatments for patients with cancer. We describe the basic design of CARs, describe how antigenic targets are selected, and the initial clinical experience with CAR-T cells. Our review then describes our own and other investigators' work aimed at improving the function of CARs and reviews the clinical studies in hematological and solid malignancies that are beginning to exploit these approaches. Finally, we show the value of adding additional engineering features to CAR-T cells, irrespective of their target, to render them better suited to function in the tumor environment, and discuss how the safety of these heavily modified cells may be maintained. PMID:24329793

  3. Disregulated expression of the transcription factor ThPOK during T-cell development leads to high incidence of T-cell lymphomas

    PubMed Central

    Lee, Hyung-Ok; He, Xiao; Mookerjee-Basu, Jayati; Zhongping, Dai; Hua, Xiang; Nicolas, Emmanuelle; Sulis, Maria Luisa; Ferrando, Adolfo A.; Testa, Joseph R.; Kappes, Dietmar J.

    2015-01-01

    The transcription factor T-helper-inducing POZ/Krueppel-like factor (ThPOK, encoded by the Zbtb7b gene) plays widespread and critical roles in T-cell development, particularly as the master regulator of CD4 commitment. Here we show that mice expressing a constitutive T-cell–specific ThPOK transgene (ThPOKconst mice) develop thymic lymphomas. These tumors resemble human T-cell acute lymphoblastic leukemia (T-ALL), in that they predominantly exhibit activating Notch1 mutations. Lymphomagenesis is prevented if thymocyte development is arrested at the DN3 stage by recombination-activating gene (RAG) deficiency, but restored by introduction of a T-cell receptor (TCR) transgene or by a single injection of anti-αβTCR antibody into ThPOKconst RAG-deficient mice, which promotes development to the CD4+8+ (DP) stage. Hence, TCR signals and/or traversal of the DN (double negative) > DP (double positive) checkpoint are required for ThPOK-mediated lymphomagenesis. These results demonstrate a novel link between ThPOK, TCR signaling, and lymphomagenesis. Finally, we present evidence that ectopic ThPOK expression gives rise to a preleukemic and self-perpetuating DN4 lymphoma precursor population. Our results collectively define a novel role for ThPOK as an oncogene and precisely map the stage in thymopoiesis susceptible to ThPOK-dependent tumor initiation. PMID:26056302

  4. Normalization of Tumor Microenvironment by Neem Leaf Glycoprotein Potentiates Effector T Cell Functions and Therapeutically Intervenes in the Growth of Mouse Sarcoma

    PubMed Central

    Barik, Subhasis; Banerjee, Saptak; Mallick, Atanu; Goswami, Kuntal Kanti; Roy, Soumyabrata; Bose, Anamika; Baral, Rathindranath

    2013-01-01

    We have observed restriction of the murine sarcoma growth by therapeutic intervention of neem leaf glycoprotein (NLGP). In order to evaluate the mechanism of tumor growth restriction, here, we have analyzed tumor microenvironment (TME) from sarcoma bearing mice with NLGP therapy (NLGP-TME, in comparison to PBS-TME). Analysis of cytokine milieu within TME revealed IL-10, TGF?, IL-6 rich type 2 characters was switched to type 1 microenvironment with dominance of IFN? secretion within NLGP-TME. Proportion of CD8+ T cells was increased within NLGP-TME and these T cells were protected from TME-induced anergy by NLGP, as indicated by higher expression of pNFAT and inhibit related downstream signaling. Moreover, low expression of FasR+ cells within CD8+ T cell population denotes prevention from activation induced cell death. Using CFSE as a probe, better migration of T cells was noted within TME from NLGP treated mice than PBS cohort. CD8+ T cells isolated from NLGP-TME exhibited greater cytotoxicity to sarcoma cells in vitro and these cells show higher expression of cytotoxicity related molecules, perforin and granzyme B. Adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, is able to significantly inhibit the growth of sarcoma in vivo. Such tumor growth inhibition by NLGP-TME exposed T cells was not observed when mice were depleted for CD8+ T cells. Accumulated evidences strongly suggest NLGP mediated normalization of TME allows T cells to perform optimally to inhibit the tumor growth. PMID:23785504

  5. CCR10 is important for the development of skin-specific γδT cells by regulating their migration and location

    PubMed Central

    Jin, Yan; Xia, Mingcan; Sun, Allen; Saylor, Christina M.; Xiong, Na

    2011-01-01

    Unlike conventional αβ T cells, which preferentially reside in secondary lymphoid organs for adaptive immune responses, various subsets of un-conventional T cells, such as the γδ T cells with innate properties, preferentially reside in epithelial tissues as the first line of defence. However, mechanisms underlying their tissue-specific development are not well understood. We herein report that among different thymic T cell subsets fetal thymic precursors of the prototypic skin intraepithelial Vγ3+ T lymphocytes (sIEL) were selected to display a unique pattern of homing molecules, including a high level of CCR10 expression that was important for their development into sIELs. In fetal CCR10 knockout mice, the Vγ3+ sIEL precursors developed normally in the thymus, but were defective in migrating into the skin. While the earlier defect in the skin-seeding by sIEL precursors was partially compensated for by their normal expansion in the skin of adult CCR10 knockout mice, the Vγ3+ sIELs displayed the abnormal morphology and increasingly accumulated in the dermal region of skin. These findings provide the definite evidence that CCR10 is important in the sIEL development by regulating the migration of sIEL precursors and their maintenance in proper regions of the skin and support the notion that unique homing properties of different thymic T cell subsets plays an important role in their peripheral location. PMID:20937851

  6. Cutting Edge: Codeletion of the Ras GTPase-Activating Proteins (RasGAPs) Neurofibromin 1 and p120 RasGAP in T Cells Results in the Development of T Cell Acute Lymphoblastic Leukemia.

    PubMed

    Lubeck, Beth A; Lapinski, Philip E; Oliver, Jennifer A; Ksionda, Olga; Parada, Luis F; Zhu, Yuan; Maillard, Ivan; Chiang, Mark; Roose, Jeroen; King, Philip D

    2015-07-01

    Ras GTPase-activating proteins (RasGAPs) inhibit signal transduction initiated through the Ras small GTP-binding protein. However, which members of the RasGAP family act as negative regulators of T cell responses is not completely understood. In this study, we investigated potential roles for the RasGAPs RASA1 and neurofibromin 1 (NF1) in T cells through the generation and analysis of T cell-specific RASA1 and NF1 double-deficient mice. In contrast to mice lacking either RasGAP alone in T cells, double-deficient mice developed T cell acute lymphoblastic leukemia/lymphoma, which originated at an early point in T cell development and was dependent on activating mutations in the Notch1 gene. These findings highlight RASA1 and NF1 as cotumor suppressors in the T cell lineage. PMID:26002977

  7. Models of Self-Peptide Sampling by Developing T Cells Identify Candidate Mechanisms of Thymic Selection

    PubMed Central

    Bains, Iren; van Santen, Hisse M.; Seddon, Benedict; Yates, Andrew J.

    2013-01-01

    Conventional and regulatory T cells develop in the thymus where they are exposed to samples of self-peptide MHC (pMHC) ligands. This probabilistic process selects for cells within a range of responsiveness that allows the detection of foreign antigen without excessive responses to self. Regulatory T cells are thought to lie at the higher end of the spectrum of acceptable self-reactivity and play a crucial role in the control of autoimmunity and tolerance to innocuous antigens. While many studies have elucidated key elements influencing lineage commitment, we still lack a full understanding of how thymocytes integrate signals obtained by sampling self-peptides to make fate decisions. To address this problem, we apply stochastic models of signal integration by T cells to data from a study quantifying the development of the two lineages using controllable levels of agonist peptide in the thymus. We find two models are able to explain the observations; one in which T cells continually re-assess fate decisions on the basis of multiple summed proximal signals from TCR-pMHC interactions; and another in which TCR sensitivity is modulated over time, such that contact with the same pMHC ligand may lead to divergent outcomes at different stages of development. Neither model requires that T and T are differentially susceptible to deletion or that the two lineages need qualitatively different signals for development, as have been proposed. We find additional support for the variable-sensitivity model, which is able to explain apparently paradoxical observations regarding the effect of partial and strong agonists on T and T development. PMID:23935465

  8. How specificity for self-peptides shapes the development and function of regulatory T cells

    PubMed Central

    Simons, Donald M.; Picca, Cristina Cozzo; Oh, Soyoung; Perng, Olivia A.; Aitken, Malinda; Erikson, Jan; Caton, Andrew J.

    2010-01-01

    The cataclysmic disease that develops in mice and humans lacking CD4+ T cells expressing the transcription factor Foxp3 has provided abundant evidence that Foxp3+CD4+ Tregs are required to suppress a latent autoreactivity of the immune system. There is also evidence for the existence of tissue-specific Tregs that can act to suppress regional autoimmune responses, suggesting that Tregs exert their effects, in part, through responding to self-peptides. However, how the immune system generates a repertoire of Tregs that is designed to recognize and direct regulatory function to self-peptides is incompletely understood. This review describes studies aimed at determining how T cell recognition of self-peptide(s) directs Treg formation in the thymus, including discussion of a modified “avidity” model of thymocyte development. Studies aimed at determining how TCR specificity contributes to the ability of Tregs to suppress autoimmune diseases are also discussed. PMID:20495071

  9. A Quantitative Increase in Regulatory T Cells Controls Development of Vitiligo

    PubMed Central

    Chatterjee, Shilpak; Eby, Jonathan; Al-Khami, Amir A.; Soloshchenko, Myroslawa; Kang, Hee-Kap; Kaur, Navtej; Naga, Osama; Murali, Anuradha; Nishimura, Michael I.; Le Poole, I. Caroline; Mehrotra, Shikhar

    2014-01-01

    T cell cytolytic activity targeting epidermal melanocyte is shown to cause progressive depigmentation and autoimmune vitiligo. Using the recently developed transgenic mice h3TA2 that carry T cell with a HLA-A2 restricted human tyrosinase reactive TCR and develop spontaneous vitiligo from an early age, we addressed the mechanism regulating autoimmune vitiligo. Depigmentation was significantly impaired only in IFN-γ knockout h3TA2 mice but not in TNF-α or perforin knockout h3TA2 mouse strains, confirming a central role for IFN-γ in vitiligo development. Additionally, the regulatory T cells (Treg) were relatively abundant in h3TA2-IFN-γ−/− mice, and depletion of Treg employing anti-CD25 antibody fully restored the depigmentation phenotype in h3TA2-IFN-γ−/− mice mediated in part through upregulation of pro-inflammatory cytokines as IL-17and IL-22. Further therapeutic potential of Treg abundance in preventing progressive depigmentation was evaluated by adoptively transferring purified Treg or using rapamycin. Both adoptive transfer of Treg and rapamycin induced lasting remission of vitiligo in mice treated at the onset of disease, or in mice with established disease. This leads us to conclude that reduced regulatory responses are pivotal to the development of vitiligo in disease-prone mice, and that a quantitative increase in the Treg population may be therapeutic for vitiligo patients with active disease. PMID:24366614

  10. T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi

    PubMed Central

    Zou, Qiang; Jin, Jin; Xiao, Yichuan; Hu, Hongbo; Zhou, Xiaofei; Jie, Zuliang; Xie, Xiaoping; Li, James Y.H.; Cheng, Xuhong

    2015-01-01

    Generation of T lymphocytes in the thymus is guided by signal transduction from the T cell receptor (TCR), but the underlying mechanism is incompletely understood. Here we have identified a Golgi-associated factor, TRAF3-interacting protein 3 (TRAF3IP3), as a crucial mediator of thymocyte development. TRAF3IP3 deficiency in mice attenuates the generation of mature thymocytes caused by impaired thymocyte-positive selection. TRAF3IP3 mediates TCR-stimulated activation of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK) and its upstream kinase mitogen/extracellular signal-regulated kinase (MEK). Interestingly, TRAF3IP3 exerts this signaling function through recruiting MEK to the Golgi and, thereby, facilitating the interaction of MEK with its activator BRAF. Transgenic expression of a constitutively active MEK rescues the T cell development block in Traf3ip3 knockout mice. These findings establish TRAF3IP3 as a novel regulator of T cell development and suggest a Golgi-specific ERK signaling mechanism that regulates thymocyte development. PMID:26195727

  11. STAT3 Impairs STAT5 Activation in the Development of IL-9-Secreting T Cells.

    PubMed

    Olson, Matthew R; Verdan, Felipe Fortino; Hufford, Matthew M; Dent, Alexander L; Kaplan, Mark H

    2016-04-15

    Th cell subsets develop in response to multiple activating signals, including the cytokine environment. IL-9-secreting T cells develop in response to the combination of IL-4 and TGF-β, although they clearly require other cytokine signals, leading to the activation of transcription factors including STAT5. In Th17 cells, there is a molecular antagonism of STAT5 with STAT3 signaling, although whether this paradigm exists in other Th subsets is not clear. In this paper, we demonstrate that STAT3 attenuates the ability of STAT5 to promote the development of IL-9-secreting T cells. We demonstrate that production of IL-9 is increased in the absence of STAT3 and cytokines that result in a sustained activation of STAT3, including IL-6, have the greatest potency in repressing IL-9 production in a STAT3-dependent manner. Increased IL-9 production in the absence of STAT3 correlates with increased endogenous IL-2 production and STAT5 activation, and blocking IL-2 responses eliminates the difference in IL-9 production between wild-type and STAT3-deficient T cells. Moreover, transduction of developing Th9 cells with a constitutively active STAT5 eliminates the ability of IL-6 to reduce IL-9 production. Thus, STAT3 functions as a negative regulator of IL-9 production through attenuation of STAT5 activation and function. PMID:26976954

  12. T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi.

    PubMed

    Zou, Qiang; Jin, Jin; Xiao, Yichuan; Hu, Hongbo; Zhou, Xiaofei; Jie, Zuliang; Xie, Xiaoping; Li, James Y H; Cheng, Xuhong; Sun, Shao-Cong

    2015-07-27

    Generation of T lymphocytes in the thymus is guided by signal transduction from the T cell receptor (TCR), but the underlying mechanism is incompletely understood. Here we have identified a Golgi-associated factor, TRAF3-interacting protein 3 (TRAF3IP3), as a crucial mediator of thymocyte development. TRAF3IP3 deficiency in mice attenuates the generation of mature thymocytes caused by impaired thymocyte-positive selection. TRAF3IP3 mediates TCR-stimulated activation of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK) and its upstream kinase mitogen/extracellular signal-regulated kinase (MEK). Interestingly, TRAF3IP3 exerts this signaling function through recruiting MEK to the Golgi and, thereby, facilitating the interaction of MEK with its activator BRAF. Transgenic expression of a constitutively active MEK rescues the T cell development block in Traf3ip3 knockout mice. These findings establish TRAF3IP3 as a novel regulator of T cell development and suggest a Golgi-specific ERK signaling mechanism that regulates thymocyte development. PMID:26195727

  13. Gamma delta T cell responses associated with the development of tuberculosis in health care workers.

    PubMed

    Ordway, Diane J; Pinto, Luisa; Costa, Leonor; Martins, Marta; Leandro, Clara; Viveiros, Miguel; Amaral, Leonard; Arroz, Maria J; Ventura, Fernando A; Dockrell, Hazel M

    2005-03-01

    This study evaluated T cell immune responses to purified protein derivative (PPD) and Mycobacterium tuberculosis (Mtb) in health care workers who remained free of active tuberculosis (HCWs w/o TB), health care workers who went on to develop active TB (HCWs w/TB), non-health care workers who were TB free (Non-HCWs) and tuberculosis patients presenting with minimal (Min TB) or advanced (Adv TB) disease. Peripheral blood mononuclear cells (PBMC) were stimulated with Mtb and PPD and the expression of T cell activation markers CD25+ and HLA-DR+, intracellular IL-4 and IFN-gamma production and cytotoxic responses were evaluated. PBMC from HCWs who developed TB showed decreased percentages of cells expressing CD8+CD25+ in comparison to HCWs who remained healthy. HCWs who developed TB showed increased gammadelta TCR+ cell cytotoxicity and decreased CD3+gammadelta TCR- cell cytotoxicity in comparison to HCWs who remained healthy. PBMC from TB patients with advanced disease showed decreased percentages of CD25+CD4+ and CD25+CD8+ T cells that were associated with increased IL-4 production in CD8+ and gammadelta TCR+ phenotypes, in comparison with TB patients presenting minimal disease. TB patients with advanced disease showed increased gammadelta TCR+ cytotoxicity and reduced CD3+gammadelta TCR- cell cytotoxicity. Our results suggest that HCWs who developed TB show an early compensatory mechanism involving an increase in lytic responses of gammadelta TCR+ cells which did not prevent TB. PMID:15708307

  14. Differential effect of DJ-1/PARK7 on development of natural and induced regulatory T cells

    PubMed Central

    Singh, Yogesh; Chen, Hong; Zhou, Yuetao; Föller, Michael; Mak, Tak W.; Salker, Madhuri S.; Lang, Florian

    2015-01-01

    Regulatory T cells (Tregs) are essential for maintaining an effective immune tolerance and a homeostatic balance of various other immune cells. To manipulate the immune response during infections and autoimmune disorders, it is essential to know which genes or key molecules are involved in the development of Tregs. Transcription factor Foxp3 is required for the development of Tregs and governs most of the suppressive functions of these cells. Inhibited PI3K/AKT/mTOR signalling is critical for Foxp3 stability. Previous studies have suggested that DJ-1 or PARK7 protein is a positive regulator of the PI3K/AKT/mTOR pathway by negatively regulating the activity of PTEN. Thus, we hypothesised that a lack of DJ-1 could promote the development of Tregs. As a result, loss of DJ-1 decreased the total CD4+ T cell numbers but increased the fraction of thymic and peripheral nTregs. In contrast, Foxp3 generation was not augmented following differentiation of DJ-1-deficient naïve CD4+ T cells. DJ-1-deficient-iTregs were imperfect in replication, proliferation and more prone to cell death. Furthermore, DJ-1 deficient iTregs were less sensitive to pSmad2 and pStat5 signalling but had activated AKT/mTOR signalling. These observations reveal an unexpected differential role of DJ-1 in the development of nTregs and iTregs. PMID:26634899

  15. Hormonal control of T-cell development in health and disease.

    PubMed

    Savino, Wilson; Mendes-da-Cruz, Daniella Aras; Lepletier, Ailin; Dardenne, Mireille

    2016-02-01

    The physiology of the thymus, the primary lymphoid organ in which T cells are generated, is controlled by hormones. Data from animal models indicate that several peptide and nonpeptide hormones act pleiotropically within the thymus to modulate the proliferation, differentiation, migration and death by apoptosis of developing thymocytes. For example, growth hormone and prolactin can enhance thymocyte proliferation and migration, whereas glucocorticoids lead to the apoptosis of these developing cells. The thymus undergoes progressive age-dependent atrophy with a loss of cells being generated and exported, therefore, hormone-based therapies are being developed as an alternative strategy to rejuvenate the organ, as well as to augment thymocyte proliferation and the export of mature T cells to peripheral lymphoid organs. Some hormones (such as growth hormone and progonadoliberin-1) are also being used as therapeutic agents to treat immunodeficiency disorders associated with thymic atrophy, such as HIV infection. In this Review, we discuss the accumulating data that shows the thymus gland is under complex and multifaceted hormonal control that affects the process of T-cell development in health and disease. PMID:26437623

  16. Helios-positive functional regulatory T cells are decreased in decidua of miscarriage cases with normal fetal chromosomal content.

    PubMed

    Inada, Kumiko; Shima, Tomoko; Ito, Mika; Ushijima, Akemi; Saito, Shigeru

    2015-02-01

    Regulatory (Treg) T cells play essential roles in the maintenance of allogeneic pregnancy in mice and humans. Recent data show that Foxp3 expression occurs in both immuno-suppressive Treg and -nonsuppressive effector T (Teff) cells upon activation in humans. Samstein et al. (2012) reported that inducible Treg (iTreg) cells enforce maternal-fetal tolerance in placental mammals. Therefore, we should reanalyze which types of Treg cell play an important role in the maintenance of allogeneic pregnancy. In this study, we studied the frequencies of naïve Treg cells, effector Treg cells, Foxp3(+) Teff cells, Helios(+) naturally occurring Treg (nTreg) cells, and Helios(-) iTreg cells using flow cytometry. The frequencies of effector Treg cells and Foxp3(+) Teff cells among CD4(+)Foxp3(+) cells in the decidua of miscarriage cases with a normal embryo karyotype (n=8) were significantly lower (P=0.0105) and significantly higher (P=0.0258) than those in normally progressing pregnancies (n=11), respectively. However, these frequencies in miscarriages with an abnormal embryo karyotype (n=15) were similar to those in normally progressing pregnancies. The frequencies of these cell populations in the three groups were unchanged in peripheral blood; on the other hand, most of the effector Treg cells in the decidua were Helios(+) nTreg cells and these frequencies were significantly higher than those in peripheral blood, while those among effector Treg and naïve Treg cells in the decidua and peripheral blood were similar among the three groups. These data suggest that decreased Helios(+) effector nTreg might play an important role in the maintenance of pregnancy in humans. PMID:25453751

  17. Heme exporter FLVCR is required for T cell development and peripheral survival.

    PubMed

    Philip, Mary; Funkhouser, Scott A; Chiu, Edison Y; Phelps, Susan R; Delrow, Jeffrey J; Cox, James; Fink, Pamela J; Abkowitz, Janis L

    2015-02-15

    All aerobic cells and organisms must synthesize heme from the amino acid glycine and the tricarboxylic acid cycle intermediate succinyl CoA for incorporation into hemoproteins, such as the cytochromes needed for oxidative phosphorylation. Most studies on heme regulation have been done in erythroid cells or hepatocytes; however, much less is known about heme metabolism in other cell types. The feline leukemia virus subgroup C receptor (FLVCR) is a 12-transmembrane domain surface protein that exports heme from cells, and it was shown to be required for erythroid development. In this article, we show that deletion of Flvcr in murine hematopoietic precursors caused a complete block in αβ T cell development at the CD4(+)CD8(+) double-positive stage, although other lymphoid lineages were not affected. Moreover, FLVCR was required for the proliferation and survival of peripheral CD4(+) and CD8(+) T cells. These studies identify a novel and unexpected role for FLVCR, a major facilitator superfamily metabolite transporter, in T cell development and suggest that heme metabolism is particularly important in the T lineage. PMID:25582857

  18. Heme exporter FLVCR is required for T cell development and peripheral survival

    PubMed Central

    Philip, Mary; Funkhouser, Scott A.; Chiu, Edison Y.; Phelps, Susan R.; Delrow, Jeffrey J.; Cox, James; Fink, Pamela J.; Abkowitz, Janis L.

    2014-01-01

    All aerobic cells and organisms must synthesize heme from the amino acid glycine and the tricarboxylic acid (TCA) cycle intermediate succinyl Coenzyme A for incorporation into hemoproteins such as the cytochromes needed for oxidative phosphorylation. Most studies on heme regulation have been done in erythroid cells or hepatocytes; however much less is known about heme metabolism in other cell types. The feline leukemia virus subgroup C receptor (FLVCR) is a 12 transmembrane domain surface protein that exports heme from cells and was previously shown to be required for erythroid development. Here we show that deletion of Flvcr in murine hematopoietic precursors caused a complete block in αβ T cell development at the CD4+CD8+ double-positive stage, though other lymphoid lineages were unaffected. Moreover, FLVCR was required for the proliferation and survival of peripheral CD4+ and CD8+ T cells. These studies identify a novel and unexpected role for FLVCR, a major facilitator superfamily (MFS) metabolite transporter, in T cell development and suggest that heme metabolism is particularly important in the T lineage. PMID:25582857

  19. Development and validation of a canine T-cell-dependent antibody response model for immunotoxicity evaluation.

    PubMed

    Finco-Kent, Deborah; Kawabata, Thomas T

    2005-10-01

    A T-cell dependent antibody response (TDAR) model to evaluate compounds for potential immunotoxicity in dogs has not been reported. The objective of these studies was to develop and validate a dog TDAR model using the T-cell dependent antigen, keyhole limpet hemocyanin (KLH). Studies were conducted to determine the appropriate dose of KLH, immunization route and kinetics of the antibody response to KLH in the dog. To validate the sensitivity of this method, we investigated the TDAR to KLH in the dog with a known immunosuppressive drug, cyclosporine (Neoral). The results of this study demonstrate that a robust primary IgM and IgG response to KLH can be generated in dogs and the IgG response was sensitive to cyclosporine treatment. PMID:18958674

  20. Antibody persistence and T-cell balance: Two key factors confronting HIV vaccine development

    PubMed Central

    Lewis, George K.; DeVico, Anthony L.; Gallo, Robert C.

    2014-01-01

    The quest for a prophylactic AIDS vaccine is ongoing, but it is now clear that the successful vaccine must elicit protective antibody responses. Accordingly, intense efforts are underway to identify immunogens that elicit these responses. Regardless of the mechanism of antibody-mediated protection, be it neutralization, Fc-mediated effector function, or both, antibody persistence and appropriate T-cell help are significant problems confronting the development of a successful AIDS vaccine. Here, we discuss the evidence illustrating the poor persistence of antibody responses to Env, the envelope glycoprotein of HIV-1, and the related problem of CD4+ T-cell responses that compromise vaccine efficacy by creating excess cellular targets of HIV-1 infection. Finally, we propose solutions to both problems that are applicable to all Env-based AIDS vaccines regardless of the mechanism of antibody-mediated protection. PMID:25349379

  1. Generation of Functional Thymic Epithelium from Human Embryonic Stem Cells that Supports Host T Cell Development

    PubMed Central

    Parent, Audrey V.; Russ, Holger A.; Khan, Imran S.; LaFlam, Taylor N.; Metzger, Todd C.; Anderson, Mark S.; Hebrok, Matthias

    2013-01-01

    SUMMARY Inducing immune tolerance to prevent rejection is a key step toward successful engraftment of stem-cell-derived tissue in a clinical setting. Using human pluripotent stem cells to generate thymic epithelial cells (TECs) capable of supporting T cell development represents a promising approach to reach this goal; however, progress toward generating functional TECs has been limited. Here, we describe a robust in vitro method to direct differentiation of human embryonic stem cells (hESCs) into thymic epithelial progenitors (TEPs) by precise regulation of TGFβ, BMP4, RA, Wnt, Shh, and FGF signaling. The hESC-derived TEPs further mature into functional TECs that support T cell development upon transplantation into thymus-deficient mice. Importantly, the engrafted TEPs produce T cells capable of in vitro proliferation as well as in vivo immune responses. Thus, hESC-derived TEP grafts may have broad applications for enhancing engraftment in cell-based therapies as well as restoring age-and stress-related thymic decline. PMID:23684540

  2. Impairment of T cell development and acute inflammatory response in HIV-1 Tat transgenic mice

    PubMed Central

    Fiume, Giuseppe; Scialdone, Annarita; Albano, Francesco; Rossi, Annalisa; Maria Tuccillo, Franca; Rea, Domenica; Palmieri, Camillo; Caiazzo, Elisabetta; Cicala, Carla; Bellevicine, Claudio; Falcone, Cristina; Vecchio, Eleonora; Pisano, Antonio; Ceglia, Simona; Mimmi, Selena; Iaccino, Enrico; Laurentiis, Annamaria de; Pontoriero, Marilena; Agosti, Valter; Troncone, Giancarlo; Mignogna, Chiara; Palma, Giuseppe; Arra, Claudio; Mallardo, Massimo; Maria Buonaguro, Franco; Scala, Giuseppe; Quinto, Ileana

    2015-01-01

    Immune activation and chronic inflammation are hallmark features of HIV infection causing T-cell depletion and cellular immune dysfunction in AIDS. Here, we addressed the issue whether HIV-1 Tat could affect T cell development and acute inflammatory response by generating a transgenic mouse expressing Tat in lymphoid tissue. Tat-Tg mice showed thymus atrophy and the maturation block from DN4 to DP thymic subpopulations, resulting in CD4+ and CD8+ T cells depletion in peripheral blood. In Tat-positive thymus, we observed the increased p65/NF-κB activity and deregulated expression of cytokines/chemokines and microRNA-181a-1, which are involved in T-lymphopoiesis. Upon LPS intraperitoneal injection, Tat-Tg mice developed an abnormal acute inflammatory response, which was characterized by enhanced lethality and production of inflammatory cytokines. Based on these findings, Tat-Tg mouse could represent an animal model for testing adjunctive therapies of HIV-1-associated inflammation and immune deregulation. PMID:26343909

  3. Epidermal T Cells and Wound Healing

    PubMed Central

    Havran, Wendy L.; Jameson, Julie M.

    2010-01-01

    The murine epidermis contains resident T cells that express a canonical γδ TCR. These cells arise from fetal thymic precursors and use a TCR that is restricted to the skin in adult animals. These cells assume a dendritic morphology in normal skin and constitutively produce low levels of cytokines that contribute to epidermal homeostasis. When skin is wounded, an unknown antigen is expressed on damaged keratinocytes. Neighboring γδ T cells then round up and contribute to wound healing by local production of epithelial growth factors and inflammatory cytokines. In the absence of skin γδ T cells, wound healing is impaired. Similarly, epidermal T cells from patients with healing wounds are activated and secreting growth factors. Patients with non-healing wounds have a defective epidermal T cell response. Information gained on the role of epidermal-resident T cells in the mouse may provide information for development of new therapeutic approaches to wound healing. PMID:20483798

  4. Growth factors, cytokines, chemokines and neuropeptides in the modeling of T cells. Part II: Data tables of normal values in man.

    PubMed

    Krueger, Gerhard R F; Marshall, Gailen R; Junker, Udo; Schroeder, Hannsjoerg; Buja, L Maximilian

    2003-01-01

    Members of the T lymphocyte lineage belong to a highly reactive cell system engaged in the control of internal homoeostasis and bodily intactness. It fulfills its commitments in close communication with the cellular and non-cellular microenvironment and with neuroendocrine regulatory mechanisms. The tools of such communication are various substances and compounds identified as cytokines, chemokines, hormones, growth factors, neuropeptides and components of the extracellular matrix. In a previous publication (22) we described the major players in the network regulation of T cell development and function as a basis for a computational modeling study. The present paper summarizes normal reference values for serum and/or plasma concentrations of these factors in man. PMID:12792970

  5. Design and Development of Therapies using Chimeric Antigen Receptor-Expressing T cells

    PubMed Central

    Dotti, Gianpietro; Gottschalk, Stephen; Savoldo, Barbara; Brenner, Malcolm K

    2013-01-01

    Summary Investigators developed chimeric antigen receptors (CARs) for expression on T cells more than 25 years ago. When the CAR is derived from an antibody, the resultant cell should combine the desirable targeting features of an antibody (e.g. lack of requirement for major histocompatibility complex recognition, ability to recognize non-protein antigens) with the persistence, trafficking and effector functions of a T-cell. This article describes how the past two decades have seen a crescendo of research which has now begun to translate these potential benefits into effective treatments for patients with cancer. We describe the basic design of CARs, describe how antigenic targets are selected, and the initial clinical experience with CART cells. Our review then describes our own and other investigators’ work aimed at improving the function of CARs and reviews the clinical studies in hematological and solid malignancies that are beginning to exploit these approaches. Finally, we show the value of adding additional engineering features to CAR-T cells, irrespective of their target, to render them better suited to function in the tumor environment, and discuss how the safety of these heavily modified cells may be maintained. PMID:24329793

  6. Clonal deletion of self-reactive T cells at the early stage of T cell development in thymus of radiation bone marrow chimeras

    SciTech Connect

    Matsuzaki, G.; Yoshikai, Y.; Ogimoto, M.; Kishihara, K.; Nomoto, K. )

    1990-07-01

    Sequential appearance of T cell subpopulations occurs in the thymocytes of irradiated C3H/He mice (H-2k, Mls-1b2a, Thy-1.2) after transplantation with bone marrow cells of AKR/J mice (H-2k, Mls-1a2b, Thy-1.1) (AKR----C3H chimeras). The donor-derived thymocytes of AKR----C3H chimeras on day 14 after bone marrow transplantation (BMT) contained a large number of blastlike CD4+CD8+ cells which represent relatively immature thymocytes, whereas those on day 21 after BMT consisted of small sized CD4+,CD8+ cells which represent a great part in normal thymocytes. To define the developmental stage at which clonal deletion of self-reactive T cells occurs in adult thymus, we followed the fate of V beta 6- or V beta 11-bearing T cells in the donor-derived thymocytes at the early stage of AKR----C3H chimeras. Mature thymocytes expressing high intensity of V beta 6 or V beta 11, which are involved in recognition of Mls-1a or MHC I-E gene products, respectively, were deleted from the donor-derived thymocytes on day 21. Immature thymocytes expressing low intensity of V beta 6 in CD3low thymocyte fraction decreased in proportion, whereas those expressing low intensity of V beta 11 rather increased in proportion in the donor-derived thymocytes of AKR----C3H chimeras from day 14 to day 21 after BMT. These results suggest that the clonal deletion of V beta 6-positive cells occurs just at the stage of immature CD3lowCD4+CD8+ cells, whereas the clonal deletion of V beta 11-positive cells may begin at the transitional stage from CD3lowCD4+CD8+ cells to CD3high single positive cells. Timing of negative selection of thymocytes may vary in distinct T cells capable of recognizing different self-Ag.

  7. Apoptotic cell-treated dendritic cells induce immune tolerance by specifically inhibiting development of CD4(+) effector memory T cells.

    PubMed

    Zhou, Fang; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2016-02-01

    CD4(+) memory T cells play an important role in induction of autoimmunity and chronic inflammatory responses; however, regulatory mechanisms of CD4(+) memory T cell-mediated inflammatory responses are poorly understood. Here we show that apoptotic cell-treated dendritic cells inhibit development and differentiation of CD4(+) effector memory T cells in vitro and in vivo. Simultaneously, intravenous transfer of apoptotic T cell-induced tolerogenic dendritic cells can block development of experimental autoimmune encephalomyelitis (EAE), an inflammatory disease of the central nervous system in C57 BL/6J mouse. Our results imply that it is effector memory CD4(+) T cells, not central memory CD4(+) T cells, which play a major role in chronic inflammatory responses in mice with EAE. Intravenous transfer of tolerogenic dendritic cells induced by apoptotic T cells leads to immune tolerance by specifically blocking development of CD4(+) effector memory T cells compared with results of EAE control mice. These results reveal a new mechanism of apoptotic cell-treated dendritic cell-mediated immune tolerance in vivo. PMID:26111522

  8. Transient CD4+ T Cell Depletion Results in Delayed Development of Functional Vaccine-Elicited Antibody Responses

    PubMed Central

    Provine, Nicholas M.; Badamchi-Zadeh, Alexander; Bricault, Christine A.; Penaloza-MacMaster, Pablo; Larocca, Rafael A.; Borducchi, Erica N.; Seaman, Michael S.

    2016-01-01

    ABSTRACT We have recently demonstrated that CD4+ T cell help is required at the time of adenovirus (Ad) vector immunization for the development of functional CD8+ T cell responses, but the temporal requirement for CD4+ T cell help for the induction of antibody responses remains unclear. Here we demonstrate that induction of antibody responses in C57BL/6 mice can occur at a time displaced from the time of Ad vector immunization by depletion of CD4+ T cells. Transient depletion of CD4+ T cells at the time of immunization delays the development of antigen-specific antibody responses but does not permanently impair their development or induce tolerance against the transgene. Upon CD4+ T cell recovery, transgene-specific serum IgG antibody titers develop and reach a concentration equivalent to that in undepleted control animals. These delayed antibody responses exhibit no functional defects with regard to isotype, functional avidity, expansion after boosting immunization, or the capacity to neutralize a simian immunodeficiency virus (SIV) Env-expressing pseudovirus. The development of this delayed transgene-specific antibody response is temporally linked to the expansion of de novo antigen-specific CD4+ T cell responses, which develop after transient depletion of CD4+ T cells. These data demonstrate that functional vaccine-elicited antibody responses can be induced even if CD4+ T cell help is provided at a time markedly separated from the time of vaccination. IMPORTANCE CD4+ T cells have a critical role in providing positive help signals to B cells, which promote robust antibody responses. The paradigm is that helper signals must be provided immediately upon antigen exposure, and their absence results in tolerance against the antigen. Here we demonstrate that, in contrast to the current model that the absence of CD4+ T cell help at priming results in long-term antibody nonresponsiveness, antibody responses can be induced by adenovirus vector immunization or alum-adjuvanted protein immunization even if CD4+ T cell help is not provided until >1 month after immunization. These data demonstrate that the time when CD4+ T cell help signals must be provided is more dynamic and flexible than previously appreciated. These data suggest that augmentation of CD4+ T cell helper function even after the time of vaccination can enhance vaccine-elicited antibody responses and thereby potentially enhance the immunogenicity of vaccines in immunocompromised individuals. PMID:26865713

  9. Peripheral Dendritic Cells and CD4+CD25+Foxp3+ Regulatory T Cells in the First Trimester of Normal Pregnancy and in Women with Recurrent Miscarriage

    PubMed Central

    Kwiatek, Maciej; Gęca, Tomasz; Krzyżanowski, Arkadiusz; Malec, Agnieszka; Kwaśniewska, Anna

    2015-01-01

    The development of pregnancy is possible due to initiation of immune response in the body of the mother resulting in immune tolerance. Miscarriage may be caused by the impaired maternal immune response to paternal alloantigens located on the surface of trophoblast and fetal cells. The aim of the study was to compare the population of circulating dendritic cells (DCs) and CD4+CD25+Foxp3+ regulatory T cells (TREGs) in the first trimester of a normal pregnancy and in women with recurrent miscarriage and an attempt to determine the relationship between these cells and the role they may play in human reproductive failures. The study was conducted in a group of 33 first trimester pregnant women with recurrent miscarriage and in a group of 20 healthy pregnant women in the first trimester of normal pregnancy. Among mononuclear cells isolated from peripheral blood, the populations of DCs and TREGs were assessed by flow cytometry. The percentage of myeloid DCs and lymphoid DCs showed no significant difference between study and control group. Older maternal age and obesity significantly reduced the pool of circulating myeloid and lymphoid DCs (R=-0.39, p=0.02). In miscarriages the percentage of circulating TREGs was significantly lower compared to normal pregnancies (p=0.003). Among the analysed factors the percentage of TREGs was the most sensitive and the most specific parameter which correlated with the pregnancy loss. The reduction in the population of circulating TREGs suggests immunoregulatory mechanisms disorder in a pregnancy complicated by miscarriage. PMID:25945787

  10. Noninvasive In Toto Imaging of the Thymus Reveals Heterogeneous Migratory Behavior of Developing T Cells.

    PubMed

    Bajoghli, Baubak; Kuri, Paola; Inoue, Daigo; Aghaallaei, Narges; Hanelt, Marleen; Thumberger, Thomas; Rauzi, Matteo; Wittbrodt, Joachim; Leptin, Maria

    2015-09-01

    The migration of developing T cells (thymocytes) between distinct thymic microenvironments is crucial for their development. Ex vivo studies of thymus tissue explants suggest two distinct migratory behaviors of thymocytes in the thymus. In the cortex, thymocytes exhibit a stochastic migration, whereas medullary thymocytes show confined migratory behavior. Thus far, it has been difficult to follow all thymocytes in an entire thymus and relate their differentiation steps to their migratory dynamics. To understand the spatial organization of the migratory behavior and development of thymocytes in a fully functional thymus, we developed transgenic reporter lines for the chemokine receptors ccr9a and ccr9b, as well as for rag2, and used them for noninvasive live imaging of the entire thymus in medaka (Oryzias latipes). We found that the expression of these two chemokine receptors in the medaka juvenile thymus defined two spatially distinct subpopulations of thymocytes. Landmark events of T cell development including proliferation, somatic recombination, and thymic selection can be mapped to subregions of the thymus. The migratory behavior of thymocytes within each of the subpopulations is equally heterogeneous, and specific migratory behaviors are not associated with particular domains in the thymus. During the period when thymocytes express rag2 their migratory behavior was more homogeneous. Therefore, the migratory behavior of thymocytes is partly correlated with their developmental stage rather than being defined by their spatial localization. PMID:26188059

  11. Impaired survival of peripheral T cells, disrupted NK/NKT cell development, and liver failure in mice lacking Gimap5

    PubMed Central

    Schulteis, Ryan D.; Chu, Haiyan; Dai, Xuezhi; Chen, Yuhong; Edwards, Brandon; Haribhai, Dipica; Williams, Calvin B.; Malarkannan, Subramaniam; Hessner, Martin J.; Glisic-Milosavljevic, Sanja; Jana, Srikanta; Kerschen, Edward J.; Ghosh, Soumitra; Wang, Demin; Kwitek, Anne E.; Lernmark, Ake; Gorski, Jack

    2008-01-01

    The loss of Gimap5 (GTPase of the immune-associated protein 5) gene function is the underlying cause of lymphopenia and autoimmune diabetes in the BioBreeding (BB) rat. The in vivo function of murine gimap5 is largely unknown. We show that selective gene ablation of the mouse gimap5 gene impairs the final intrathymic maturation of CD8 and CD4 T cells and compromises the survival of postthymic CD4 and CD8 cells, replicating findings in the BB rat model. In addition, gimap5 deficiency imposes a block of natural killer (NK)- and NKT-cell differentiation. Development of NK/NKT cells is restored on transfer of gimap5−/− bone marrow into a wild-type environment. Mice lacking gimap5 have a median survival of 15 weeks, exhibit chronic hepatic hematopoiesis, and in later stages show pronounced hepatocyte apoptosis, leading to liver failure. This pathology persists in a Rag2-deficient background in the absence of mature B, T, or NK cells and cannot be adoptively transferred by transplanting gimap5−/− bone marrow into wild-type recipients. We conclude that mouse gimap5 is necessary for the survival of peripheral T cells, NK/NKT-cell development, and the maintenance of normal liver function. These functions involve cell-intrinsic as well as cell-extrinsic mechanisms. PMID:18796632

  12. Alternative promoter usage at the Notch1 locus supports ligand-independent signaling in T cell development and leukemogenesis

    PubMed Central

    Gómez-del Arco, Pablo; Kashiwagi, Mariko; Jackson, Audrey F.; Naito, Taku; Zhang, Jiangwen; Liu, Feifei; Kee, Barbara; Vooijs, Marc; Radtke, Freddy; Redondo, Juan Miguel; Georgopoulos, Katia

    2011-01-01

    Loss of Ikaros has been correlated with Notch activation in T cell acute lymphoblastic leukemia (T-ALL), however, the mechanism remains unknown. We identified promoters in Notch1 that drive expression of Notch1 proteins active in the absence of ligand. Ikaros bound to both canonical and alternative Notch1 promoters and its loss increased permissive chromatin, facilitating recruitment of transcription regulators. At early stages of leukemogenesis, increased basal expression from the canonical and 5’-alternative promoters initiated a feed-back loop, progressively augmenting Notch1 signaling. Ikaros also repressed intragenic promoters that are cryptic in wild-type, poised in pre-leukemic, and active in leukemic cells and which also produced ligand-independent Notch1 proteins. Only ligand-independent Notch1 isoforms were required for Ikaros-mediated leukemogenesis. Notch1 alternative-promoter usage was observed at stages of T cell development dependent on Notch signaling and during T-ALL progression. These studies identify a network of epigenetic and transcriptional regulators that control conventional and unconventional Notch signaling during normal development and leukemogenesis. PMID:21093322

  13. Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity

    PubMed Central

    Haque, Mohammad; Song, Jianyong; Fino, Kristin; Sandhu, Praneet; Song, Xinmeng; Lei, Fengyang; Zheng, Songguo; Ni, Bing; Fang, Deyu; Song, Jianxun

    2016-01-01

    Pluripotent stem cells (PSCs) have the potential to produce almost all of the cells in the body, including regulatory T cells (Tregs). However, the exact conditions required for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) are not well delineated. Ag-specific PSC-Tregs can be tissue/organ-associated and migrate to local inflamed tissues/organs to suppress the autoimmune response after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. In this study, we developed a new approach to generate functional Ag-specific Tregs from induced PSCs (iPSCs), i.e., iPSC-Tregs, which had the ability to generate an Ag-specific immunosuppressive response in a murine model of arthritis. We retrovirally transduced murine iPSCs with a construct containing genes of Ag-specific T cell receptor (TCR) and the transcriptional factor FoxP3. We differentiated the iPSCs into Ag-specific iPSC-Tregs using in vitro or in vivo Notch signaling, and demonstrated that adoptive transfer of such Tregs dramatically suppressed autoimmunity in a well-established Ag-induced arthritis model, including the inflammation, joint destruction, cartilage prostaglandin depletion, osteoclast activity, and Th17 production. Our results indicate that PSCs can be used to develop Ag-specific Tregs, which have a therapeutic potential for Treg-based therapies of autoimmune disorders. PMID:26846186

  14. Incomplete Normalization of Regulatory T-Cell Frequency in the Gut Mucosa of Colombian HIV-Infected Patients Receiving Long-Term Antiretroviral Treatment

    PubMed Central

    Rueda, Cesar M.; Velilla, Paula A.

    2013-01-01

    Introduction To evaluate the effect of late initiation of HAART and poor immune reconstitution on the frequency of regulatory T-cells (Treg) in the peripheral blood and gut of HIV-infected patients, we studied Colombian HIV-infected patients who had been on suppressive HAART for at least one year. They had undetectable viremia but were either immunological responders (HIR); (CD4 counts >500 cells/l) or non-immunological responders (NIR); (CD4 T-cell count <300 cells/l). Untreated HIV-infected patients and uninfected controls from the same region were also evaluated. Methods Frequency and phenotype of regulatory T-cells (Treg) were analyzed in gut biopsies and blood samples. The functional effect of Treg depletion on CMV and HIV responses was determined. Markers of immune activation and circulating LPS levels were quantified. Results Untreated patients exhibited high Treg frequency in PBMC and gut, and their Treg express high levels of CTLA-4 and PD-1. Although HAART significantly decreased mucosal Treg frequency, it did not normalize it in any of the treated groups (HIR and NIR patients). Treg normalization was observed in the blood of HIR patients following HAART, but did not occur in NIR patients. Treg from HIV-infected patients (treated or not) suppressed HIV and hCMV-specific T-cells from gut and blood. Plasma LPS levels and percentage of HLA-DR+CD38+ T-cells were significantly elevated in all infected groups compared to controls. Conclusions These findings suggest that control of viral replication is not sufficient to normalize gut Treg frequency in patients, independent of their response to HAART. Furthermore, persistence of functional Treg in the gut appears to be associated with the failure of HAART to repair mucosal damage. PMID:23967152

  15. Normal Psychosexual Development

    ERIC Educational Resources Information Center

    Rutter, Michael

    1971-01-01

    Normal sexual development is reviewed with respect to physical maturation, sexual interests, sex drive", psychosexual competence and maturity, gender role, object choice, children's concepts of sexual differences, sex role preference and standards, and psychosexual stages. Biologic, psychoanalytic and psychosocial theories are briefly considered.…

  16. IL-17-producing γδT cells are regulated by estrogen during development of experimental arthritis.

    PubMed

    Andersson, Annica; Grahnemo, Louise; Engdahl, Cecilia; Stubelius, Alexandra; Lagerquist, Marie K; Carlsten, Hans; Islander, Ulrika

    2015-12-01

    Interleukin-17 (IL-17) drives inflammation and destruction of joints in rheumatoid arthritis (RA). The female sex hormone 17β-estradiol (E2) inhibits experimental arthritis. γδT cells are significant producers of IL-17, thus the aim of this study was to investigate if E2 influenced IL-17(+) γδT cells during arthritis development using a variety of experimental RA models: collagen-induced arthritis (CIA); antigen-induced arthritis (AIA); and collagen antibody-induced arthritis (CAIA). We demonstrate that E2 treatment decreases IL-17(+) γδT cell number in joints, but increases IL-17(+) γδT cells in draining lymph nodes, suggesting an E2-mediated prevention of IL-17(+) γδT cell migration from lymph nodes to joints, in concert with our recently reported effects of E2 on Th17 cells (Andersson et al., 2015). E2 did neither influence the general γδT cell population nor IFNγ(+) γδT cells, implying a selective regulation of IL-17-producing cells. In conclusion, this study contributes to the understanding of estrogen's role in autoimmune disease. PMID:26423309

  17. The lysophosphatidylserine receptor GPR174 constrains regulatory T cell development and function

    PubMed Central

    Barnes, Michael J.; Li, Chien-Ming; Xu, Ying; An, Jinping; Huang, Yong

    2015-01-01

    Regulatory T cell (T reg cell) numbers and activities are tightly calibrated to maintain immune homeostasis, but the mechanisms involved are incompletely defined. Here, we report that the lysophosphatidylserine (LysoPS) receptor GPR174 is abundantly expressed in developing and mature T reg cells. In mice that lacked this X-linked gene, T reg cell generation in the thymus was intrinsically favored, and a higher fraction of peripheral T reg cells expressed CD103. LysoPS could act in vitro via GPR174 to suppress T cell proliferation and T reg cell generation. In vivo, LysoPS was detected in lymphoid organ and spinal cord tissues and was abundant in the colon. Gpr174−/Y mice were less susceptible to experimental autoimmune encephalomyelitis than wild-type mice, and GPR174 deficiency in T reg cells contributed to this phenotype. This study provides evidence that a bioactive lipid, LysoPS, negatively influences T reg cell accumulation and activity through GPR174. As such, GPR174 antagonists might have therapeutic potential for promoting immune regulation in the context of autoimmune disease. PMID:26077720

  18. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas.

    PubMed

    Egen, Jackson G; Rothfuchs, Antonio Gigliotti; Feng, Carl G; Winter, Nathalie; Sher, Alan; Germain, Ronald N

    2008-02-01

    Granulomas play a key role in host protection against mycobacterial pathogens, with their breakdown contributing to exacerbated disease. To better understand the initiation and maintenance of these structures, we employed both high-resolution multiplex static imaging and intravital multiphoton microscopy of Mycobacterium bovis BCG-induced liver granulomas. We found that Kupffer cells directly capture blood-borne bacteria and subsequently nucleate formation of a nascent granuloma by recruiting both uninfected liver-resident macrophages and blood-derived monocytes. Within the mature granuloma, these myeloid cell populations formed a relatively immobile cellular matrix that interacted with a highly dynamic effector T cell population. The efficient recruitment of these T cells was highly dependent on TNF-alpha-derived signals, which also maintained the granuloma structure through preferential effects on uninfected macrophage populations. By characterizing the migration of both innate and adaptive immune cells throughout the process of granuloma development, these studies provide a new perspective on the cellular events involved in mycobacterial containment and escape. PMID:18261937

  19. Development and Function of Protective and Pathologic Memory CD4 T Cells

    PubMed Central

    Jaigirdar, Shafqat Ahrar; MacLeod, Megan K. L.

    2015-01-01

    Immunological memory is one of the defining features of the adaptive immune system. As key orchestrators and mediators of immunity, CD4 T cells are central to the vast majority of adaptive immune responses. Generated following an immune response, memory CD4 T cells retain pertinent information about their activation environment enabling them to make rapid effector responses upon reactivation. These responses can either benefit the host by hastening the control of pathogens or cause damaging immunopathology. Here, we will discuss the diversity of the memory CD4 T cell pool, the signals that influence the transition of activated T cells into that pool, and highlight how activation requirements differ between naïve and memory CD4 T cells. A greater understanding of these factors has the potential to aid the design of more effective vaccines and to improve regulation of pathologic CD4 T cells, such as in the context of autoimmunity and allergy. PMID:26441961

  20. Development of an IFNγ ELISPOT for the analysis of the human T cell response against mumps virus.

    PubMed

    Han, Wanda G H; Emmelot, Maarten E; Jaadar, Haziz; Ten Hulscher, Hinke I; van Els, Cécile A C M; Kaaijk, Patricia

    2016-04-01

    In the last decade, mumps virus (MuV) causes outbreaks in highly vaccinated populations. Sub-optimal T cell immunity may play a role in the susceptibility to mumps in vaccinated individuals. T cell responses to mumps virus have been demonstrated, yet the quality of the MuV-specific T cell response has not been analyzed using single cell immunological techniques. Here we developed an IFNγ ELISPOT assay to assess MuV-specific T cell responses in peripheral blood mononuclear cells (PBMC) of healthy (vaccinated) donors and mumps patients. Various in vitro MuV-specific stimulation methods of PBMC were compared, using either live or inactivated MuV alone or MuV-infected autologous antigen presenting cells, i.e. Epstein Barr Virus-transformed B lymphoblastoid cell lines (EBV-BLCL) or (mitogen pre-activated) PBMC, for their ability to recall IFNγ-producing responder cells measured by ELISPOT. For the detection of MuV-specific T cell responses, direct exposure (24h) to live MuV was the preferred stimulation method when assay sensitivity and practical reasons were considered. Notably, flowcytometric confirmation of data revealed that primarily T cells and NK cells produce IFNγ upon live MuV stimulation. Depleting PBMC from CD56(+) NK cells prior to stimulation with live MuV led to the enumeration of MuV-specific T cell responses by ELISPOT. Our assay constitutes a tool to evaluate memory MuV-specific T cell responses in MuV vaccinated or infected persons. Furthermore, this study provides evidence that live MuV not only induces IFNγ production by T cells, but also by NK cells. PMID:26872407

  1. Aire-dependent thymic development of tumor-associated regulatory T cells*

    PubMed Central

    Malchow, Sven; Leventhal, Daniel S.; Nishi, Saki; Fischer, Benjamin I.; Shen, Lynn; Paner, Gladell P.; Amit, Ayelet S.; Kang, Chulho; Geddes, Jenna E.; Allison, James P.; Socci, Nicholas D.; Savage, Peter A.

    2013-01-01

    Despite considerable interest in the modulation of tumor-associated Foxp3+ regulatory T cells (Tregs) for therapeutic benefit, little is known about the developmental origins of these cells and the nature of the antigens that they recognize. Here, we identified an endogenous population of antigen-specific Tregs (termed “MJ23” Tregs) found recurrently enriched in the tumors of mice with oncogene-driven prostate cancer. MJ23 Tregs were not reactive to a tumor-specific antigen, but instead recognized a prostate-associated antigen that was present in tumor-free mice. MJ23 Tregs underwent Aire-dependent thymic development in both male and female mice. Thus Aire-mediated expression of peripheral tissue antigens drives the thymic development of a subset of organ-specific Tregs, which are likely co-opted by tumors developing within the associated organ. PMID:23471412

  2. Rac GTPase isoforms Rac1 and Rac2 play a redundant and crucial role in T-cell development

    PubMed Central

    Guo, Fukun; Cancelas, Jose A.; Hildeman, David; Williams, David A.

    2008-01-01

    Rac GTPases have been implicated in the regulation of diverse functions in various blood cell lineages, but their role in T-cell development is not well understood. We have carried out conditional gene targeting to achieve hematopoietic stem cell (HSC)– or T-cell lineage–specific deletion of Rac1 or Rac1/Rac2 by crossbreeding the Mx-Cre or Lck-Cre transgenic mice with Rac1loxp/loxp or Rac1loxp/loxp;Rac2−/− mice. We found that (1) HSC deletion of both Rac1 and Rac2 inhibited production of common lymphoid progenitors (CLPs) in bone marrow and suppressed T-cell development in thymus and peripheral organs, whereas deletion of Rac1 moderately affected CLP production and T-cell development. (2) T cell–specific deletion of Rac1 did not affect T-cell development, whereas deletion of both Rac1 and Rac2 reduced immature CD4+CD8+ and mature CD4+ populations in thymus as well as CD4+ and CD8+ populations in spleen. (3) The developmental defects of Rac1/Rac2 knockout T cells were associated with proliferation, survival, adhesion, and migration defects. (4) Rac1/Rac2 deletion suppressed T-cell receptor–mediated proliferation, IL-2 production, and Akt activation in thymocytes. Thus, Rac1 and Rac2 have unique roles in CLP production and share a redundant but essential role in later stages of T-cell development by regulating survival and proliferation signals. PMID:18579797

  3. Development and characterization of Histoplasma capsulatum-reactive murine T-cell lines and clones

    NASA Technical Reports Server (NTRS)

    Deepe, George S., Jr.; Smith, James G.; Denman, David; Bullock, Ward E.; Sonnenfeld, Gerald

    1986-01-01

    Several Histoplasma capsulatum-reactive murine cloned T-cell lines (TCLs) were isolated from spleens of C57BL/6 mice immunized with viable H. capsulatum yeast cells, using the methodology of Kimoto and Fathman (1980). These T-cells were characterized phenotypically as Thy-1.2(+) Lyt-1(+) L3T4(+) Lyt-2(-), that is, as the helper/inducer phenotype. The cloned T cells proliferate in response to histoplasmin and, in some cases, to heterologous fungal anigens. Upon injection of mice with the antigen, the T-cells mediate local delayed-type hypersensitivity responses and, after stimulation, release regulatory lymphokines.

  4. Essential roles for Cavβ2 and Cav1 channels in thymocyte development and T cell homeostasis.

    PubMed

    Jha, Archana; Singh, Ashish K; Weissgerber, Petra; Freichel, Marc; Flockerzi, Veit; Flavell, Richard A; Jha, Mithilesh K

    2015-10-20

    Calcium ions (Ca(2+)) are important in numerous signal transduction processes, including the development and differentiation of T cells in the thymus. We report that thymocytes have multiple types of pore-forming α subunits and regulatory β subunits that constitute voltage-gated Ca(2+) (Cav) channels. In mice, T cell-specific deletion of the gene encoding the β2 regulatory subunit of Cav channels (Cacnb2) reduced the abundances of the channels Cav1.2 and Cav1.3 (both of which contain pore-forming α1 subunits) and impaired T cell development, which led to a substantial decrease in the numbers of thymocytes and peripheral T cells. Similar to the effect of Cacnb2 deficiency, pharmacological blockade of pore-forming Cav1α subunits reduced the sustained Ca(2+) influx in thymocytes upon stimulation of the T cell receptor, decreased the abundance of the transcription factor NFATc3, inhibited the proliferation of thymocytes in vitro, and led to lymphopenia in mice. Together, our data suggest that Cav1 channels are conduits for the sustained Ca(2+) influx that is required for the development of T cells. PMID:26486172

  5. Regulation of in vitro human T cell development through interleukin-7 deprivation and anti-CD3 stimulation

    PubMed Central

    2012-01-01

    Background The role of IL-7 and pre-TCR signaling during T cell development has been well characterized in murine but not in human system. We and others have reported that human BM hematopoietic progenitor cells (HPCs) display poor proliferation, inefficient double negative (DN) to double positive (DP) transition and no functional maturation in the in vitro OP9-Delta-like 1 (DL1) culture system. Results In this study, we investigated the importance of optimal IL-7 and pre-TCR signaling during adult human T cell development. Using a modified OP9-DL1 culture ectopically expressing IL-7 and Fms-like tyrosine kinase 3 ligand (Flt3L), we demonstrated enhanced T cell precursor expansion. IL-7 removal at various time points during T cell development promoted a slight increase of DP cells; however, these cells did not differentiate further and underwent cell death. As pre-TCR signaling rescues DN cells from programmed cell death, we treated the culture with anti-CD3 antibody. Upon pre-TCR stimulation, the IL-7 deprived T precursors differentiated into CD3+TCRαβ+DP cells and further matured into functional CD4 T cells, albeit displayed a skewed TCR Vβ repertoire. Conclusions Our study establishes for the first time a critical control for differentiation and maturation of adult human T cells from HPCs by concomitant regulation of IL-7 and pre-TCR signaling. PMID:22897934

  6. microRNA regulation of T lymphocyte immunity: modulation of molecular networks responsible for T cell activation, differentiation and development

    PubMed Central

    Podshivalova, Katie; Salomon, Daniel R.

    2014-01-01

    MicroRNAs (miRNA) are a class of small non-coding RNAs that constitute an essential and evolutionarily conserved mechanism for post-transcriptional gene regulation. Multiple miRNAs have been described to play key roles in T lymphocyte development, differentiation and function. In this review we highlight the current literature regarding the differential expression of miRNAs in various models of mouse and human T cell biology and emphasize mechanistic understandings of miRNA regulation of thymocyte development, T cell activation, and differentiation into effector and memory subsets. We describe the participation of miRNAs in complex regulatory circuits shaping T cell proteomes in a context-dependent manner. It is striking that some miRNAs regulate multiple processes, while others only appear in limited functional contexts. It is also evident that the expression and function of specific miRNAs can differ between mouse and human systems. Ultimately, it is not always correct to simplify the complex events of T cell biology into a model driven by only one or two master regulator miRNAs. In reality, T cell activation and differentiation involves the expression of multiple miRNAs with many mRNA targets and thus, the true extent of miRNA regulation of T cell biology is likely far more vast than currently appreciated. PMID:24099302

  7. T Cells in Fish

    PubMed Central

    Nakanishi, Teruyuki; Shibasaki, Yasuhiro; Matsuura, Yuta

    2015-01-01

    Cartilaginous and bony fish are the most primitive vertebrates with a thymus, and possess T cells equivalent to those in mammals. There are a number of studies in fish demonstrating that the thymus is the essential organ for development of T lymphocytes from early thymocyte progenitors to functionally competent T cells. A high number of T cells in the intestine and gills has been reported in several fish species. Involvement of CD4+ and CD8α+ T cells in allograft rejection and graft-versus-host reaction (GVHR) has been demonstrated using monoclonal antibodies. Conservation of CD4+ helper T cell functions among teleost fishes has been suggested in a number studies employing mixed leukocyte culture (MLC) and hapten/carrier effect. Alloantigen- and virus-specific cytotoxicity has also been demonstrated in ginbuna and rainbow trout. Furthermore, the important role of cell-mediated immunity rather than humoral immunity has been reported in the protection against intracellular bacterial infection. Recently, the direct antibacterial activity of CD8α+, CD4+ T-cells and sIgM+ cells in fish has been reported. In this review, we summarize the recent progress in T cell research focusing on the tissue distribution and function of fish T cells. PMID:26426066

  8. Diacylglycerol Kinases: Regulated Controllers of T Cell Activation, Function, and Development

    PubMed Central

    Joshi, Rohan P.; Koretzky, Gary A.

    2013-01-01

    Diacylglycerol kinases (DGKs) are a diverse family of enzymes that catalyze the conversion of diacylglycerol (DAG), a crucial second messenger of receptor-mediated signaling, to phosphatidic acid (PA). Both DAG and PA are bioactive molecules that regulate a wide set of intracellular signaling proteins involved in innate and adaptive immunity. Clear evidence points to a critical role for DGKs in modulating T cell activation, function, and development. More recently, studies have elucidated factors that control DGK function, suggesting an added complexity to how DGKs act during signaling. This review summarizes the available knowledge of the function and regulation of DGK isoforms in signal transduction with a particular focus on T lymphocytes. PMID:23531532

  9. Quantitative and Temporal Requirements Revealed for Zap-70 Catalytic Activity During T Cell Development

    PubMed Central

    Au-Yeung, Byron B.; Melichar, Heather J.; Ross, Jenny O.; Cheng, Debra A.; Zikherman, Julie; Shokat, Kevan M.; Robey, Ellen A.; Weiss, Arthur

    2014-01-01

    The catalytic activity of Zap-70 is crucial for T cell receptor (TCR) signaling, but the quantitative and temporal requirements for its function in thymocyte development are not known. Using a chemical-genetic system to selectively and reversibly inhibit Zap-70 catalytic activity in a model of synchronized thymic selection, we showed that CD4+CD8+ thymocytes integrate multiple, transient, Zap-70-dependent signals over more than 36 h to reach a cumulative threshold for positive selection, whereas one hour of signaling was sufficient for negative selection. Titration of Zap-70 activity resulted in graded reductions in positive and negative selection but did not decrease the cumulative TCR signals integrated by positively selected OT-I cells, revealing heterogeneity, even among CD4+CD8+ thymocytes expressing identical TCRs undergoing positive selection. PMID:24908390

  10. Transfer of regulatory T cells into abortion-prone mice promotes the expansion of uterine mast cells and normalizes early pregnancy angiogenesis.

    PubMed

    Woidacki, Katja; Meyer, Nicole; Schumacher, Anne; Goldschmidt, Alexandra; Maurer, Marcus; Zenclussen, Ana Claudia

    2015-01-01

    Implantation of the fertilized egg depends on the coordinated interplay of cells and molecules that prepare the uterus for this important event. In particular, regulatory T cells (Tregs) are key regulators as their ablation hinders implantation by rendering the uterus hostile for the embryo. In addition, the adoptive transfer of Tregs can avoid early abortion in mouse models. However, it is still not defined which mechanisms underlie Treg function during this early period. Cells of the innate immune system have been reported to support implantation, in part by promoting angiogenesis. In particular, uterine mast cells (uMCs) emerge as novel players at the fetal-maternal interface. Here, we studied whether the positive action of Tregs is based on the expansion of uMCs and the promotion of angiogenesis. We observed that abortion-prone mice have insufficient numbers of uMCs that could be corrected by the adoptive transfer of Tregs. This in turn positively influenced the remodeling of spiral arteries and placenta development as well as the levels of soluble fms-like tyrosine kinase 1 (sFlt-1). Our data suggest an interplay between Tregs and uMCs that is relevant for the changes required at the feto-maternal interface for the normal development of pregnancy. PMID:26355667

  11. Transfer of regulatory T cells into abortion-prone mice promotes the expansion of uterine mast cells and normalizes early pregnancy angiogenesis

    PubMed Central

    Woidacki, Katja; Meyer, Nicole; Schumacher, Anne; Goldschmidt, Alexandra; Maurer, Marcus; Zenclussen, Ana Claudia

    2015-01-01

    Implantation of the fertilized egg depends on the coordinated interplay of cells and molecules that prepare the uterus for this important event. In particular, regulatory T cells (Tregs) are key regulators as their ablation hinders implantation by rendering the uterus hostile for the embryo. In addition, the adoptive transfer of Tregs can avoid early abortion in mouse models. However, it is still not defined which mechanisms underlie Treg function during this early period. Cells of the innate immune system have been reported to support implantation, in part by promoting angiogenesis. In particular, uterine mast cells (uMCs) emerge as novel players at the fetal-maternal interface. Here, we studied whether the positive action of Tregs is based on the expansion of uMCs and the promotion of angiogenesis. We observed that abortion-prone mice have insufficient numbers of uMCs that could be corrected by the adoptive transfer of Tregs. This in turn positively influenced the remodeling of spiral arteries and placenta development as well as the levels of soluble fms-like tyrosine kinase 1 (sFlt-1). Our data suggest an interplay between Tregs and uMCs that is relevant for the changes required at the feto-maternal interface for the normal development of pregnancy. PMID:26355667

  12. [Comparative analysis of the role of CD4(+) and CD8(+) T cells in severe asthma development].

    PubMed

    Wang, X; Wang, J; Xing, C-Y; Zang, R; Pu, Y-Y; Yin, Z-X

    2015-01-01

    The role of CD8^(+) T cells in asthma has not been fully discussed. The mechanisms of CD4^(+) and CD8^(+) cells in severe asthma (SA) development were compared. The microarray data (GSE31773) was downloaded from the Gene Expression Omnibus (GEO) database, including 20 samples of CD4^(+) and CD8^(+) T cells, which were collected from 8 health controls (HC), 4 non-severe asthma (NSA) and 8 SA patients. DEGs of CD4^(+) and CD8^(+) T cells in the HC vs. NSA and HC vs. SA groups were identified using the limma package in R. GO and pathway enrichment analysis of the common DEGs between the two groups were analyzed using DAVID. The interactive network of DEGs and significant modules were further explored. In CD4^(+) cells, there were 168 DEGs in HC vs. NSA group and 685 DEGs in HC vs. SA group, while for CD8^(+) T cells there were 719 DEGs in the HC vs. NSA groups and 1255 DEGs in the HC vs. SA groups. Besides, 80 common DEGs from CD4^(+) samples were enriched in the MAPKKK cascade and molecular metabolism, and 385 common DEGs of CD8^(+) T cells were significantly related with cell apoptosis and transformation. Moreover, two significant modules of DEGs in CD4^(+) were found to be involved with MPO and BPI. One module of CD8^(+) T cells containing PDHA1 and MRPL42 was identified to be related with glycolysis. In conclusion, MPO and BPI in CD4^(+), and PDHA1 and MRPL42 in CD8^(+) T cells might be used as specific biomarkers of SA progression. Therapy targeting the functions of CD4^(+) and CD8^(+) T cells may provide a novel perspective for SA treatment. PMID:26107902

  13. Rational development and characterization of humanized anti–EGFR variant III chimeric antigen receptor T cells for glioblastoma

    PubMed Central

    Johnson, Laura A.; Scholler, John; Ohkuri, Takayuki; Kosaka, Akemi; Patel, Prachi R.; McGettigan, Shannon E.; Nace, Arben K.; Dentchev, Tzvete; Thekkat, Pramod; Loew, Andreas; Boesteanu, Alina C.; Cogdill, Alexandria P.; Chen, Taylor; Fraietta, Joseph A.; Kloss, Christopher C.; Posey, Avery D.; Engels, Boris; Singh, Reshma; Ezell, Tucker; Idamakanti, Neeraja; Ramones, Melissa H.; Li, Na; Zhou, Li; Plesa, Gabriela; Seykora, John T.; Okada, Hideho; June, Carl H.; Brogdon, Jennifer L.; Maus, Marcela V.

    2015-01-01

    Chimeric antigen receptors (CARs) are synthetic molecules designed to redirect T cells to specific antigens. CAR-modified T cells can mediate long-term durable remissions in B cell malignancies, but expanding this platform to solid tumors requires the discovery of surface targets with limited expression in normal tissues. The variant III mutation of the epidermal growth factor receptor (EGFRvIII) results from an in-frame deletion of a portion of the extracellular domain, creating a neoepitope. We chose a vector backbone encoding a second-generation CAR based on efficacy of a murine scFv–based CAR in a xenograft model of glioblastoma. Next, we generated a panel of humanized scFvs and tested their specificity and function as soluble proteins and in the form of CAR-transduced T cells; a low-affinity scFv was selected on the basis of its specificity for EGFRvIII over wild-type EGFR. The lead candidate scFv was tested in vitro for its ability to direct CAR-transduced T cells to specifically lyse, proliferate, and secrete cytokines in response to antigen-bearing targets. We further evaluated the specificity of the lead CAR candidate in vitro against EGFR-expressing keratinocytes and in vivo in a model of mice grafted with normal human skin. EGFRvIII-directed CAR T cells were also able to control tumor growth in xenogeneic subcutaneous and orthotopic models of human EGFRvIII+ glioblastoma. On the basis of these results, we have designed a phase 1 clinical study of CAR T cells transduced with humanized scFv directed to EGFRvIII in patients with either residual or recurrent glioblastoma (NCT02209376). PMID:25696001

  14. Differential requirement for IL-2 and IL-15 during bifurcated development of thymic regulatory T cells

    PubMed Central

    Marshall, Daniel; Sinclair, Charles; Tung, Sim; Seddon, Benedict

    2014-01-01

    The developmental pathways of regulatory T cells (Treg) generation in the thymus are not fully understood. Here, we reconstituted thymic development of Zap70 deficient thymocytes with a tetracycline inducible Zap70 transgene to allow temporal dissection of Treg development. We find that Treg develop with distinctive kinetics, first appearing by day 4 amongst CD4 single positive (SP) thymocytes. Accepted models of CD25+FoxP3+ Treg selection suggest development via CD25+FoxP3− CD4 SP precursors. In contrast, our kinetic analysis revealed the presence of abundant CD25− FoxP3+ cells that are highly efficient at maturing to CD25+FoxP3+ cells in response to IL-2. CD25− FoxP3+ cells more closely resembled mature Treg both with respect to kinetics of development and avidity for self peptide MHC. These population also exhibited distinct requirements for cytokines during their development. CD25−FoxP3+ cells were IL-15 dependent while generation of CD25+FoxP3+ specifically required IL-2. Finally, we found that IL-2 and IL-15 arose from distinct sources in vivo. IL-15 was of stromal origin, while IL-2 was of exclusively from haemopoetic cells that depended on intact CD4 lineage development but not either antigen experienced or NKT cells. PMID:25348623

  15. Development of a diverse human T-cell repertoire despite stringent restriction of hematopoietic clonality in the thymus.

    PubMed

    Brugman, Martijn H; Wiekmeijer, Anna-Sophia; van Eggermond, Marja; Wolvers-Tettero, Ingrid; Langerak, Anton W; de Haas, Edwin F E; Bystrykh, Leonid V; van Rood, Jon J; de Haan, Gerald; Fibbe, Willem E; Staal, Frank J T

    2015-11-01

    The fate and numbers of hematopoietic stem cells (HSC) and their progeny that seed the thymus constitute a fundamental question with important clinical implications. HSC transplantation is often complicated by limited T-cell reconstitution, especially when HSC from umbilical cord blood are used. Attempts to improve immune reconstitution have until now been unsuccessful, underscoring the need for better insight into thymic reconstitution. Here we made use of the NOD-SCID-IL-2Rγ(-/-) xenograft model and lentiviral cellular barcoding of human HSCs to study T-cell development in the thymus at a clonal level. Barcoded HSCs showed robust (>80% human chimerism) and reproducible myeloid and lymphoid engraftment, with T cells arising 12 wk after transplantation. A very limited number of HSC clones (<10) repopulated the xenografted thymus, with further restriction of the number of clones during subsequent development. Nevertheless, T-cell receptor rearrangements were polyclonal and showed a diverse repertoire, demonstrating that a multitude of T-lymphocyte clones can develop from a single HSC clone. Our data imply that intrathymic clonal fitness is important during T-cell development. As a consequence, immune incompetence after HSC transplantation is not related to the transplantation of limited numbers of HSC but to intrathymic events. PMID:26483497

  16. Iron Prevents the Development of Experimental Cerebral Malaria by Attenuating CXCR3-Mediated T Cell Chemotaxis

    PubMed Central

    Van Den Ham, Kristin M.; Shio, Marina Tiemi; Rainone, Anthony; Fournier, Sylvie; Krawczyk, Connie M.; Olivier, Martin

    2015-01-01

    Cerebral malaria is a severe neurological complication of Plasmodium falciparum infection. Previous studies have suggested that iron overload can suppress the generation of a cytotoxic immune response; however, the effect of iron on experimental cerebral malaria (ECM) is yet unknown. Here we determined that the incidence of ECM was markedly reduced in mice treated with iron dextran. Protection was concomitant with a significant decrease in the sequestration of CD4+ and CD8+ T cells within the brain. CD4+ T cells demonstrated markedly decreased CXCR3 expression and had reduced IFNγ-responsiveness, as indicated by mitigated expression of IFNγR2 and T-bet. Additional analysis of the splenic cell populations indicated that parenteral iron supplementation was also associated with a decrease in NK cells and increase in regulatory T cells. Altogether, these results suggest that iron is able to inhibit ECM pathology by attenuating the capacity of T cells to migrate to the brain. PMID:25768944

  17. Follicular helper T cells poise immune responses to the development of autoimmune pathology.

    PubMed

    Gómez-Martín, Diana; Díaz-Zamudio, Mariana; Romo-Tena, Jorge; Ibarra-Sánchez, María J; Alcocer-Varela, Jorge

    2011-04-01

    Follicular helper T cells (T(FH)) have been implicated as a lineage that provides sufficient help to B cells in order to become professional antibody producers. This T helper subset is characterized by a distinctive cell-surface phenotype (CD4(+)CD57(+)CXCR5(+)) and cytokine profile (IL-21, IL-6, and IL-27) as well as transcriptional program (BCL-6, ICOS, and PD-1). Evidence supports the concept that T(FH) subset development, as well as for other lineages, is dependent on microenvironment cues that modulate a particular transcriptional program, susceptible to plasticity. Recently, it has been shown that BCL-6 and IL-21 act as master regulators for the development and function of T(FH) cells. Moreover, costimulation via ICOS, as well as signaling proteins such as SAP constitute required elements of the regulatory network that modulates T(FH) functions. T(FH) dysregulation has been implicated in the development of autoimmune pathology, such as SLE. Indeed, the Sanroque mice associated to the mutation of Roquin, a ubiquitin ligase, essential for the regulation of ICOS and germinal center responses, constitutes a model that shares features with human SLE. Recently, the expansion of "circulating T(FH) cells" (CD4(+)CXCR5(+)ICOS(high)PD1(high)) has been described for a subset of SLE patients that share T(FH) dependent features of disease with Sanroque mice, such as glomerulonephritis and cytopenias. PMID:21167320

  18. CD4 T cells with effector memory phenotype and function develop in the sterile environment of the fetus.

    PubMed

    Zhang, Xiaoming; Mozeleski, Brian; Lemoine, Sebastien; Dériaud, Edith; Lim, Annick; Zhivaki, Dania; Azria, Elie; Le Ray, Camille; Roguet, Gwenaelle; Launay, Odile; Vanet, Anne; Leclerc, Claude; Lo-Man, Richard

    2014-05-28

    The T cell compartment is considered to be naïve and dedicated to the development of tolerance during fetal development. We have identified and characterized a population of fetally developed CD4 T cells with an effector memory phenotype (TEM), which are present in cord blood. This population is polyclonal and has phenotypic features similar to those of conventional adult memory T cells, such as CD45RO expression. These cells express low levels of CD25 but are distinct from regulatory T cells because they lack Foxp3 expression. After T cell receptor activation, neonatal TEM cells readily produced tumor necrosis factor-α (TNF-α) and granulocyte-macrophage colony-stimulating factor (GM-CSF). We also detected interferon-γ (IFN-γ)-producing T helper 1 (TH1) cells and interleukin-4 (IL-4)/IL-13-producing TH2-like cells, but not IL-17-producing cells. We used chemokine receptor expression patterns to divide this TEM population into different subsets and identified distinct transcriptional programs using whole-genome microarray analysis. IFN-γ was found in CXCR3(+) TEM cells, whereas IL-4 was found in both CXCR3(+) TEM cells and CCR4(+) TEM cells. CCR6(+) TEM cells displayed a genetic signature that corresponded to TH17 cells but failed to produce IL-17A. However, the TH17 function of TEM cells was observed in the presence of IL-1β and IL-23. In summary, in the absence of reported pathology or any major infectious history, T cells with a memory-like phenotype develop in an environment thought to be sterile during fetal development and display a large variety of inflammatory effector functions associated with CD4 TH cells at birth. PMID:24871133

  19. Rank signaling links the development of invariant γδ T cell progenitors and Aire(+) medullary epithelium.

    PubMed

    Roberts, Natalie A; White, Andrea J; Jenkinson, William E; Turchinovich, Gleb; Nakamura, Kyoko; Withers, David R; McConnell, Fiona M; Desanti, Guillaume E; Benezech, Cecile; Parnell, Sonia M; Cunningham, Adam F; Paolino, Magdalena; Penninger, Josef M; Simon, Anna Katharina; Nitta, Takeshi; Ohigashi, Izumi; Takahama, Yousuke; Caamano, Jorge H; Hayday, Adrian C; Lane, Peter J L; Jenkinson, Eric J; Anderson, Graham

    2012-03-23

    The thymic medulla provides a specialized microenvironment for the negative selection of T cells, with the presence of autoimmune regulator (Aire)-expressing medullary thymic epithelial cells (mTECs) during the embryonic-neonatal period being both necessary and sufficient to establish long-lasting tolerance. Here we showed that emergence of the first cohorts of Aire(+) mTECs at this key developmental stage, prior to αβ T cell repertoire selection, was jointly directed by Rankl(+) lymphoid tissue inducer cells and invariant Vγ5(+) dendritic epidermal T cell (DETC) progenitors that are the first thymocytes to express the products of gene rearrangement. In turn, generation of Aire(+) mTECs then fostered Skint-1-dependent, but Aire-independent, DETC progenitor maturation and the emergence of an invariant DETC repertoire. Hence, our data attributed a functional importance to the temporal development of Vγ5(+) γδ T cells during thymus medulla formation for αβ T cell tolerance induction and demonstrated a Rank-mediated reciprocal link between DETC and Aire(+) mTEC maturation. PMID:22425250

  20. Defective CD8 T Cell Memory Following Acute Infection Without CD4 T Cell Help

    NASA Astrophysics Data System (ADS)

    Sun, Joseph C.; Bevan, Michael J.

    2003-04-01

    The CD8+ cytotoxic T cell response to pathogens is thought to be CD4+ helper T cell independent because infectious agents provide their own inflammatory signals. Mice that lack CD4+ T cells mount a primary CD8 response to Listeria monocytogenes equal to that of wild-type mice and rapidly clear the infection. However, protective memory to a challenge is gradually lost in the former animals. Memory CD8+ T cells from normal mice can respond rapidly, but memory CD8+ T cells that are generated without CD4 help are defective in their ability to respond to secondary encounters with antigen. The results highlight a previously undescribed role for CD4 help in promoting protective CD8 memory development.

  1. Effect of IL-4 on the Development and Function of Memory-like CD8 T Cells in the Peripheral Lymphoid Tissues

    PubMed Central

    Park, Hi-Jung; Lee, Ara; Lee, Jae-Il; Park, Seong Hoe

    2016-01-01

    Unlike conventional T cells, innate CD8 T cells develop a memory-like phenotype in the thymus and immediately respond upon antigen stimulation, similar to memory T cells. The development of innate CD8 T cells in the thymus is known to require IL-4, which upregulates Eomesodermin (Eomes). These features are similar to that of virtual memory CD8 T cells and IL-4-induced memory-like CD8 T cells generated in the peripheral tissues. However, the relationship between these cell types has not been clearly documented. In the present study, IL-4-induced memory-like CD8 T cells generated in the peripheral tissues were compared with innate CD8 T cells in terms of phenotype and function. When an IL-4/anti-IL-4 antibody complex (IL-4C) was injected into C57BL/6 mice daily for 7 days, the EomeshiCXCR3 + CD8 T cell population was markedly increased in the peripheral lymphoid organs and blood. These cells were generated from naïve CD8 T cells or accumulated via the expansion of pre-existing CD44hiCXCR3 + CD8 T cells. Initially, the majority of these CXCR3 + CD8 T cells expressed low levels of CD44, which was followed by the conversion to the CD44hi phenotype. This conversion was associated with the acquisition of enhanced effector function. After discontinuation of IL-4C treatment, Eomes expression levels gradually decreased in CXCR3 + CD8 T cells. Taken together, the results of this study demonstrate that IL-4-induced memory-like CD8 T cells generated in the peripheral lymphoid tissues are phenotypically and functionally similar to the innate CD8 T cells generated in the thymus. PMID:27162529

  2. T-cell count

    MedlinePlus

    ... to: Cancer, such as acute lymphocytic leukemia or multiple myeloma Infections, such as hepatitis or mononucleosis Lower than normal T-cell levels may be due to: Acute viral infections Aging ... diseases, such as HIV/AIDS Radiation therapy Steroid treatment

  3. Cutaneous T Cell Lymphoma

    MedlinePlus

    ... T-Cell Lymphoma Facts Normally, there is a balance in the body by which new cells replace old ones, and each cell carries out its specific tasks. This balance ensures that the body functions properly. In lymphoma, malignant lymphocytes (cancer cells) ...

  4. The Special Relationship in the Development and Function of T Helper 17 and Regulatory T Cells.

    PubMed

    Lochner, Matthias; Wang, Zuobai; Sparwasser, Tim

    2015-01-01

    T helper 17 (Th17) cells play an essential role in the clearance of extracellular pathogenic bacteria and fungi. However, this subset is critically involved in the pathology of many autoimmune diseases, e.g., psoriasis, multiple sclerosis, allergy, rheumatoid arthritis, and inflammatory bowel diseases in humans. Therefore, Th17 responses need to be tightly regulated in vivo to mediate effective host defenses against pathogens without causing excessive host tissue damage. Foxp3(+) regulatory T (Treg) cells play an important role in maintaining peripheral tolerance to self-antigens and in counteracting the inflammatory activity of effector T helper cell subsets. Although Th17 and Treg cells represent two CD4(+) T cell subsets with opposing principal functions, these cell types are functionally connected. In this review, we will first give an overview on the biology of Th17 cells and describe their development and in vivo function, followed by an account on the special developmental relationship between Th17 and Treg cells. We will describe the identification of Treg/Th17 intermediates and consider their lineage stability and function in vivo. Finally, we will discuss how Treg cells may regulate the Th17 cell response in the context of infection and inflammation, and elude on findings demonstrating that Treg cells can also have a prominent function in promoting the differentiation of Th17 cells. PMID:26615094

  5. Regulatory T-cell development and function are impaired in mice lacking membrane expression of full length intercellular adhesion molecule-1.

    PubMed

    Gottrand, Gaëlle; Courau, Tristan; Thomas-Vaslin, Véronique; Prevel, Nicolas; Vazquez, Thomas; Ruocco, Maria Grazia; Lambrecht, Benedicte; Bellier, Bertrand; Colombo, Bruno M; Klatzmann, David

    2015-12-01

    To further investigate the contribution of intercellular adhesion molecule-1 (ICAM-1) to adaptive immune responses, we analysed T-cell development and function in mice lacking full-length ICAM-1 (ICAM-1(tm1Jcgr) ). Compared with wild-type (ICAM-1(WT) ) mice, ICAM-1(tm1Jcgr) mice have impaired thymocyte development. Proportions and numbers of double negative, double positive, mature CD4(+) and CD8(+) thymocytes, as well as of regulatory T (Treg) cells were also significantly decreased. In the periphery, ICAM-1(tm1Jcgr) mice had significantly decreased proportions and numbers of naive and activated/memory CD4(+) and CD8(+) T cells, as well as of Treg cells, in lymph nodes but not in the spleen. In vitro activation of CD4(+) and CD8(+) T cells from ICAM-1(tm1Jcgr) mice with anti-CD3 antibodies and antigen-presenting cells (APCs) resulted in a significantly weaker proliferation, whereas proliferation induced with anti-CD3 and anti-CD28 antibody-coated beads was normal. In vivo immunization of ICAM-1(tm1Jcgr) mice resulted in normal generation of specific effector and memory immune responses that protect against a viral challenge. However, contrary to ICAM-1(WT) mice, immunization-induced specific effectors could not eradicate immunogen-expressing tumours. Treg cells from ICAM-1(tm1Jcgr) mice have abnormal activation and proliferation induced by anti-CD3 antibody and APCs, and have markedly decreased suppressive activity in vitro. In contrast to ICAM-1(WT) mice, they were unable to control experimentally induced colitis in vivo. Hence, our results further highlight the pleiotropic role of ICAM-1 in T-cell-dependent immune responses, with a major role in Treg cell development and suppressive function. PMID:26370005

  6. Relationship between systemic lupus erythematosus T cell subsets, anti-T cell antibodies, and T cell functions.

    PubMed Central

    Morimoto, C; Reinherz, E L; Distaso, J A; Steinberg, A D; Schlossman, S F

    1984-01-01

    Previous studies have shown that patients with systemic lupus erythematosus (SLE) had differing T cell T4+/T8+ ratios and that the ratio correlated with clinical features of the disease. In the present study, we wished to determine whether the peripheral blood T cell subsets in these patients were related to the specificity of anti-T cell antibodies found in their plasma. Plasma from 24 SLE patients that reacted with greater than 20% of normal T cells were analyzed for their effect on in vitro pokeweed mitogen-stimulated immunoglobulin synthesis and for their reactivity with human T4+ and T8+ cells. Anti-T cell antibodies found in SLE patients have a spectrum of reactivities. We concentrated upon antibodies that interfere with suppressor function. One group of SLE anti-T cell antibodies reacts preferentially with the T8+ suppressor effector cell whereas another is reactive with T4+ suppressor inducer subsets. SLE patients with high T4+/T8+ ratios had anti-T cell antibodies predominantly reactive with the T8+ suppressor effector cells. Patients with low T4+/T8+ ratios, on the other hand, had anti-T cell antibodies reactive with either the T4+ suppressor inducer or with both the T4+ suppressor inducer and T8+ suppressor effector cells. In addition, a fourth group was defined whose anti-T cell antibodies were neither reactive with a functional T4+ suppressor inducer nor a functional T8+ suppressor effector cells. There was a significant correlation between the circulating T4+/T8+ ratio of peripheral T cells in these patients and the relative ability of their anti-T cell antibodies to kill T8+ cells vs. T4+ cells (gamma = 0.666, P less than 0.001). These results support the notion that in SLE different cellular defects in the immunoregulatory circuit underlie the development of autoimmune reactions and that the anti-T cell antibodies may cause numerical and functional deficiencies in T cell subsets. Images PMID:6231307

  7. Effect of Cytomegalovirus Co-Infection on Normalization of Selected T-Cell Subsets in Children with Perinatally Acquired HIV Infection Treated with Combination Antiretroviral Therapy

    PubMed Central

    Kapetanovic, Suad; Aaron, Lisa; Montepiedra, Grace; Anthony, Patricia; Thuvamontolrat, Kasalyn; Pahwa, Savita; Burchett, Sandra; Weinberg, Adriana; Kovacs, Andrea

    2015-01-01

    Background We examined the effect of cytomegalovirus (CMV) co-infection and viremia on reconstitution of selected CD4+ and CD8+ T-cell subsets in perinatally HIV-infected (PHIV+) children ≥ 1-year old who participated in a partially randomized, open-label, 96-week combination antiretroviral therapy (cART)-algorithm study. Methods Participants were categorized as CMV-naïve, CMV-positive (CMV+) viremic, and CMV+ aviremic, based on blood, urine, or throat culture, CMV IgG and DNA polymerase chain reaction measured at baseline. At weeks 0, 12, 20 and 40, T-cell subsets including naïve (CD62L+CD45RA+; CD95-CD28+), activated (CD38+HLA-DR+) and terminally differentiated (CD62L-CD45RA+; CD95+CD28-) CD4+ and CD8+ T-cells were measured by flow cytometry. Results Of the 107 participants included in the analysis, 14% were CMV+ viremic; 49% CMV+ aviremic; 37% CMV-naïve. In longitudinal adjusted models, compared with CMV+ status, baseline CMV-naïve status was significantly associated with faster recovery of CD8+CD62L+CD45RA+% and CD8+CD95-CD28+% and faster decrease of CD8+CD95+CD28-%, independent of HIV VL response to treatment, cART regimen and baseline CD4%. Surprisingly, CMV status did not have a significant impact on longitudinal trends in CD8+CD38+HLA-DR+%. CMV status did not have a significant impact on any CD4+ T-cell subsets. Conclusions In this cohort of PHIV+ children, the normalization of naïve and terminally differentiated CD8+ T-cell subsets in response to cART was detrimentally affected by the presence of CMV co-infection. These findings may have implications for adjunctive treatment strategies targeting CMV co-infection in PHIV+ children, especially those that are now adults or reaching young adulthood and may have accelerated immunologic aging, increased opportunistic infections and aging diseases of the immune system. PMID:25794163

  8. Regulatory gene network circuits underlying T cell development from multipotent progenitors.

    PubMed

    Kueh, Hao Yuan; Rothenberg, Ellen V

    2012-01-01

    Regulatory gene circuits enable stem and progenitor cells to detect and process developmental signals and make irreversible fate commitment decisions. To gain insight into the gene circuits underlying T cell fate decision making in progenitor cells, we generated an updated T-lymphocyte developmental gene regulatory network from genes and connections found in the literature. This reconstruction allowed us to identify candidate regulatory gene circuit elements underlying T cell fate decision making. Here, we examine the roles of these circuits in facilitating different aspects of the decision making process, and discuss experiments to further probe their structure and function. PMID:21976153

  9. Lipopeptides of Borrelia burgdorferi outer surface proteins induce Th1 phenotype development in alphabeta T-cell receptor transgenic mice.

    PubMed Central

    Infante-Duarte, C; Kamradt, T

    1997-01-01

    Induction of the appropriate T helper cell (Th) subset is crucial for the resolution of infectious diseases and the prevention of immunopathology. Some pathogens preferentially induce Th1 or Th2 responses. How microorganisms influence Th phenotype development is unknown. We asked if Borrelia burgdorferi, the spirochete which causes Lyme arthritis, can promote a cytokine milieu in which T cells which are not specific for B. burgdorferi are induced to produce proinflammatory cytokines. Using alphabeta T-cell receptor transgenic mice as a source of T cells with a defined specificity other than for B. burgdorferi, we found that B. burgdorferi induced Th1 phenotype development in ovalbumin-specific transgenic T cells. Small synthetic lipopeptides corresponding to the N-terminal sequences of B. burgdorferi outer surface lipoproteins had similar effects. B. burgdorferi and its lipopeptides induced host cells to produce interleukin-12. When the peptides were used in delipidated form, they did not induce Th1 development. These findings may be of pathogenic importance, since it is currently assumed that a Th2-mediated antibody response is protective against B. burgdorferi. Bacteria associated with reactive arthritis, namely, Yersinia enterocolitica, Shigella flexneri, and Salmonella enteritidis, had different effects. The molecular definition of pathogen-host interactions determining cytokine production should facilitate rational therapeutic interventions directing the host response towards the desired cytokine response. Here, we describe small synthetic molecules capable of inducing Th1 phenotype development. PMID:9317013

  10. MHC class II-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus.

    PubMed

    Anderson, G; Jenkinson, E J; Moore, N C; Owen, J J

    1993-03-01

    T lymphocytes are produced in the thymus from precursors originating in the haemopoietic tissues. On entering the thymus, they undergo a programme of proliferation, T-cell receptor (TCR) gene rearrangement, differentiation and repertoire selection. Although the thymus provides a unique environment for these events, the role of the thymic stroma in regulating specific developmental stages is not well understood. We therefore devised an in vitro system to study the role of individual thymic stromal components in T-cell development. We report here that the development of TCR-CD4-CD8-T-cell precursors into TCR+ cells expressing CD4 and/or CD8 requires the presence of both major histocompatibility complex class II+ epithelial cells and fetal mesenchyme. The requirement for mesenchymal support can be mapped to the initial stages of intrathymic development because the later stages of maturation, from double-positive CD4+CD8+ thymocytes into single-positive CD4+ or CD8+ cells, can be supported by epithelial cells alone. We also show that the requirement for mesenchymal cells can be met by cells of the fibroblast line 3T3 (but not by supernatants from these cells). To our knowledge, these findings provide the first direct evidence that mesenchymal as well as epithelial cells are involved in T-cell development, and suggest that their involvement is stage-specific and likely to be dependent on short-range or contact-mediated interactions. PMID:8446171

  11. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development.

    PubMed

    Roncero, A M; López-Nieva, P; Cobos-Fernández, M A; Villa-Morales, M; González-Sánchez, L; López-Lorenzo, J L; Llamas, P; Ayuso, C; Rodríguez-Pinilla, S M; Arriba, M C; Piris, M A; Fernández-Navarro, P; Fernández, A F; Fraga, M F; Santos, J; Fernández-Piqueras, J

    2016-01-01

    The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments. PMID:26216197

  12. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development

    PubMed Central

    Roncero, A M; López-Nieva, P; Cobos-Fernández, M A; Villa-Morales, M; González-Sánchez, L; López-Lorenzo, J L; Llamas, P; Ayuso, C; Rodríguez-Pinilla, S M; Arriba, M C; Piris, M A; Fernández-Navarro, P; Fernández, A F; Fraga, M F; Santos, J; Fernández-Piqueras, J

    2016-01-01

    The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments. PMID:26216197

  13. Normal Distribution of CD8+ T-Cell-Derived ELISPOT Counts within Replicates Justifies the Reliance on Parametric Statistics for Identifying Positive Responses

    PubMed Central

    Karulin, Alexey Y.; Caspell, Richard; Dittrich, Marcus; Lehmann, Paul V.

    2015-01-01

    Accurate assessment of positive ELISPOT responses for low frequencies of antigen-specific T-cells is controversial. In particular, it is still unknown whether ELISPOT counts within replicate wells follow a theoretical distribution function, and thus whether high power parametric statistics can be used to discriminate between positive and negative wells. We studied experimental distributions of spot counts for up to 120 replicate wells of IFN-γ production by CD8+ T-cell responding to EBV LMP2A (426 – 434) peptide in human PBMC. The cells were tested in serial dilutions covering a wide range of average spot counts per condition, from just a few to hundreds of spots per well. Statistical analysis of the data using diagnostic Q-Q plots and the Shapiro-Wilk normality test showed that in the entire dynamic range of ELISPOT spot counts within replicate wells followed a normal distribution. This result implies that the Student t-Test and ANOVA are suited to identify positive responses. We also show experimentally that borderline responses can be reliably detected by involving more replicate wells, plating higher numbers of PBMC, addition of IL-7, or a combination of these. Furthermore, we have experimentally verified that the number of replicates needed for detection of weak responses can be calculated using parametric statistics. PMID:25738924

  14. Human T cell leukemia virus type I and neurologic disease: events in bone marrow, peripheral blood, and central nervous system during normal immune surveillance and neuroinflammation.

    PubMed

    Grant, Christian; Barmak, Kate; Alefantis, Timothy; Yao, Jing; Jacobson, Steven; Wigdahl, Brian

    2002-02-01

    Human T cell lymphotropic/leukemia virus type I (HTLV-I) has been identified as the causative agent of both adult T cell leukemia (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the exact sequence of events that occur during the early stages of infection are not known in detail, the initial route of infection may predetermine, along with host, environmental, and viral factors, the subset of target cells and/or the primary immune response encountered by HTLV-I, and whether an HTLV-I-infected individual will remain asymptomatic, develop ATL, or progress to the neuroinflammatory disease, HAM/TSP. Although a large number of studies have indicated that CD4(+) T cells represent an important target for HTLV-I infection in the peripheral blood (PB), additional evidence has accumulated over the past several years demonstrating that HTLV-I can infect several additional cellular compartments in vivo, including CD8(+) T lymphocytes, PB monocytes, dendritic cells, B lymphocytes, and resident central nervous system (CNS) astrocytes. More importantly, extensive latent viral infection of the bone marrow, including cells likely to be hematopoietic progenitor cells, has been observed in individuals with HAM/TSP as well as some asymptomatic carriers, but to a much lesser extent in individuals with ATL. Furthermore, HTLV-I(+) CD34(+) hematopoietic progenitor cells can maintain the intact proviral genome and initiate viral gene expression during the differentiation process. Introduction of HTLV-I-infected bone marrow progenitor cells into the PB, followed by genomic activation and low level viral gene expression may lead to an increase in proviral DNA load in the PB, resulting in a progressive state of immune dysregulation including the generation of a detrimental cytotoxic Tax-specific CD8(+) T cell population, anti-HTLV-I antibodies, and neurotoxic cytokines involved in disruption of myelin-producing cells and neuronal degradation characteristic of HAM/TSP. PMID:11807819

  15. Development of a Model System for Tick-Borne Flavivirus Persistence in HEK 293T Cells

    PubMed Central

    Mlera, Luwanika; Offerdahl, Danielle K.; Martens, Craig; Porcella, Stephen F.; Melik, Wessam

    2015-01-01

    ABSTRACT We devised a model system to study persistent infection by the tick-borne flavivirus Langat virus (LGTV) in 293T cells. Infection with a molecularly cloned LGTV strain produced an acute lytic crisis that left few surviving cells. The culture was repopulated by cells that were ~90% positive for LGTV E protein, thus initiating a persistent infection that was maintained for at least 35 weeks without additional lytic crises. Staining of cells for viral proteins and ultrastructural analysis revealed only minor differences from the acute phase of infection. Infectious LGTV decreased markedly over the study period, but the number of viral genomes remained relatively constant, suggesting the development of defective interfering particles (DIPs). Viral genome changes were investigated by RNA deep sequencing. At the initiation of persistent infection, levels of DIPs were below the limit of detection at a coverage depth of 11,288-fold, implying that DIPs are not required for initiation of persistence. However, after 15 passages, DIPs constituted approximately 34% of the total LGTV population (coverage of 1,293-fold). Furthermore, at this point, one specific DIP population predominated in which nucleotides 1058 to 2881 had been deleted. This defective genome specified an intact polyprotein that coded for a truncated fusion protein containing 28 N-terminal residues of E and 134 C-terminal residues of NS1. Such a fusion protein has not previously been described, and a possible function in persistent infection is uncertain. DIPs are not required for the initiation of persistent LGTV infection but may play a role in the maintenance of viral persistence. PMID:26045539

  16. Altered T cell development in human thymoma is related to impairment of MHC class II transactivator expression induced by interferon-gamma (IFN-γ)

    PubMed Central

    Kadota, Y; Okumura, M; Miyoshi, S; Kitagawa-Sakakida, S; Inoue, M; Shiono, H; Maeda, Y; Kinoshita, T; Shirakura, R; Matsuda, H

    2000-01-01

    Thymoma is known to contain CD4+CD8+ T cells, indicating that neoplastic epithelial cells of thymoma have a function as thymic cortical epithelium. However, it has been shown that there is an impairment of CD4+ T cell development in thymoma and that IFN-γ-induced HLA-DR expression on cultured thymic epithelial cells (TEC) derived from thymoma is decreased when compared with the normal thymus. MHC class II transactivator (CIITA) is known to play a critical role in IFN-γ-induced MHC II expression. In this study, we attempted to elucidate whether CIITA is responsible for the impaired up-regulation of MHC II molecules in response to IFN-γ in thymoma TEC. A quantitative reverse transriptase-polymerase chain reaction examination revealed that the induced level of CIITA was significantly lower in thymoma TEC than in normal TEC. The induced levels of invariant chain (Ii) and HLA-DR in thymoma TEC were correlated with CIITA expression. The proportion of CD3+ cells in the CD4+CD8− subset in thymoma was also correlated with CIITA expression. A gel mobility shift assay however, revealed translocation of STAT1 to the nucleus in thymoma as well as normal TEC. Intercellular adhesion molecule-1 was up-regulated in the thymoma TEC to a level similar to normal TEC in response to IFN-γ. These results indicate that impaired up-regulation of HLA-DR in response to IFN-γ results from insufficient induction of CIITA, but not from the signal from IFN-γ receptor to the nucleus. The abnormal regulation of HLA-DR expression caused by impaired induction of CIITA may affect CD4+ T cell development in thymoma. PMID:10886240

  17. Themis1 enhances T cell receptor signaling during thymocyte development by promoting Vav1 activity and Grb2 stability.

    PubMed

    Zvezdova, Ekaterina; Mikolajczak, Judith; Garreau, Anne; Marcellin, Marlène; Rigal, Lise; Lee, Jan; Choi, Seeyoung; Blaize, Gaëtan; Argenty, Jérémy; Familiades, Julien; Li, Liqi; Gonzalez de Peredo, Anne; Burlet-Schiltz, Odile; Love, Paul E; Lesourne, Renaud

    2016-01-01

    The T cell signaling protein Themis1 is essential for the positive and negative selection of thymocytes in the thymus. Although the developmental defect that results from the loss of Themis1 suggests that it enhances T cell receptor (TCR) signaling, Themis1 also recruits Src homology 2 domain-containing phosphatase-1 (SHP-1) to the vicinity of TCR signaling complexes, suggesting that it has an inhibitory role in TCR signaling. We used TCR signaling reporter mice and quantitative proteomics to explore the role of Themis1 in developing T cells. We found that Themis1 acted mostly as a positive regulator of TCR signaling in vivo when receptors were activated by positively selecting ligands. Proteomic analysis of the Themis1 interactome identified SHP-1, the TCR-associated adaptor protein Grb2, and the guanine nucleotide exchange factor Vav1 as the principal interacting partners of Themis1 in isolated mouse thymocytes. Analysis of TCR signaling in Themis1-deficient and Themis1-overexpressing mouse thymocytes demonstrated that Themis1 promoted Vav1 activity both in vitro and in vivo. The reduced activity of Vav1 and the impaired T cell development in Themis1(-/-) mice were due in part to increased degradation of Grb2, which suggests that Themis1 is required to maintain the steady-state abundance of Grb2 in thymocytes. Together, these data suggest that Themis1 acts as a positive regulator of TCR signaling in developing T cells, and identify a mechanism by which Themis1 regulates thymic selection. PMID:27188442

  18. Regulation of the transcriptional program by DNA methylation during human αβ T-cell development

    PubMed Central

    Rodriguez, Ramon M.; Suarez-Alvarez, Beatriz; Mosén-Ansorena, David; García-Peydró, Marina; Fuentes, Patricia; García-León, María J.; Gonzalez-Lahera, Aintzane; Macias-Camara, Nuria; Toribio, María L.; Aransay, Ana M.; Lopez-Larrea, Carlos

    2015-01-01

    Thymocyte differentiation is a complex process involving well-defined sequential developmental stages that ultimately result in the generation of mature T-cells. In this study, we analyzed DNA methylation and gene expression profiles at successive human thymus developmental stages. Gain and loss of methylation occurred during thymocyte differentiation, but DNA demethylation was much more frequent than de novo methylation and more strongly correlated with gene expression. These changes took place in CpG-poor regions and were closely associated with T-cell differentiation and TCR function. Up to 88 genes that encode transcriptional regulators, some of whose functions in T-cell development are as yet unknown, were differentially methylated during differentiation. Interestingly, no reversion of accumulated DNA methylation changes was observed as differentiation progressed, except in a very small subset of key genes (RAG1, RAG2, CD8A, PTCRA, etc.), indicating that methylation changes are mostly unique and irreversible events. Our study explores the contribution of DNA methylation to T-cell lymphopoiesis and provides a fine-scale map of differentially methylated regions associated with gene expression changes. These can lay the molecular foundations for a better interpretation of the regulatory networks driving human thymopoiesis. PMID:25539926

  19. Splenic Long-Lived Plasma Cells Promote the Development of Follicular Helper T Cells during Autoimmune Responses.

    PubMed

    Jang, Eunkyeong; Cho, Wang Sik; Oh, Yeon-Kyung; Cho, Mi-La; Kim, Jung Mogg; Paik, Doo-Jin; Youn, Jeehee

    2016-02-01

    Long-lived plasma cells (LLPCs) develop under the help of follicular helper T (Tfh) cells and reside mainly in the bone marrow. However, these cells are unusually abundant in the spleen of several autoimmune models including K/BxNsf mice, yet their pathogenic impact remains unknown. To investigate a previously unappreciated role of splenic LLPCs, we sorted splenic plasma cells (PCs) from K/BxNsf and K/BxN mice, corresponding to LLPCs and conventional short-lived PCs, respectively, and compared their phenotypes and ability to prime and induce the differentiation of naive CD4(+) T cells into effector cells in vitro and in vivo. We found that K/BxNsf PCs had lower levels of the Ag presentation machinery and costimulators than K/BxN PCs, and also a lower CD4(+) T cell priming capacity. Autoantigen-pulsed K/BxNsf PCs selectively polarized cognate CD4(+) T cells toward the expression of molecules necessary for Tfh development and function. As a result, the K/BxNsf PC-primed CD4(+) T cells were more effective in stimulating B cells to produce autoantigen-specific IgGs than K/BxN PCs or even dendritic cells. Adoptive transfer of K/BxNsf PCs, but not K/BxN PCs, to K/BxN mice increased numbers of Tfh cells in draining lymph nodes. These results propose that abnormal accumulation of LLPCs in the spleen of autoimmune models drives the differentiation of autoantigen-primed CD4(+) T cells to Tfh cells. This positive feedback loop between splenic LLPCs and Tfh cells may contribute to the persistence of humoral autoimmunity. PMID:26729802

  20. Identification of stem cell transcriptional programs normally expressed in embryonic and neural stem cells in alloreactive CD8+ T cells mediating graft-versus-host disease

    PubMed Central

    Kato, Koji; Cui, Shuaiying; Kuick, Rork; Mineishi, Shin; Hexner, Elizabeth; Ferrara, James LM; Emerson, Stephen G.; Zhang, Yi

    2010-01-01

    A hallmark of graft-versus-host-disease (GVHD), a life-threatening complication after allogeneic hematopoietic stem cell transplantation, is the cytopathic injury of host tissues mediated by persistent alloreactive effector T cells (TE). However, the mechanisms that regulate the persistence of alloreactive TE during GVHD remain largely unknown. Using mouse GVHD models, we demonstrate that alloreactive CD8+ TE rapidly diminished in vivo when adoptively transferred into irradiated secondary congenic recipient mice. In contrast, although alloreactive CD8+ TE underwent massive apoptosis upon chronic exposure to alloantigens, they proliferated in vivo in secondary allogeneic recipients, persisted and caused severe GVHD. Thus, the continuous proliferation of alloreactive CD8+ TE, which is mediated by alloantigenic stimuli rather than homeostatic factors, is critical to maintaining their persistence. Gene expression profile analysis revealed that while alloreactive CD8+ TE increased the expression of genes associated with cell death, they activated a group of stem cell genes normally expressed in embryonic and neural stem cells. Most of these stem cell genes are associated with cell cycle regulation, DNA replication, chromatin modification and transcription. One of these genes, Ezh2, which encodes a chromatin modifying enzyme, was abundantly expressed in CD8+ TE. Silencing Ezh2 significantly reduced the proliferation of alloantigen-activated CD8+ T cells. Thus, these findings identify that a group of stem cell genes could play important roles in sustaining terminally differentiated alloreactive CD8+ TE and may be therapeutic targets for controlling GVHD. PMID:20116439

  1. Normal growth and development

    MedlinePlus

    ... DIET Poor nutrition can cause problems with a child's intellectual development. A child with a poor diet may be ... care provider if you have concerns about your child's growth and development. Related topics include: Developmental milestones record - 4 months ...

  2. Numb-dependent integration of pre-TCR and p53 function in T-cell precursor development

    PubMed Central

    Martin-Blanco, N M; Checquolo, S; Del Gaudio, F; Palermo, R; Franciosa, G; Di Marcotullio, L; Gulino, A; Canelles, M; Screpanti, I

    2014-01-01

    Numb asymmetrically segregates at mitosis to control cell fate choices during development. Numb inheritance specifies progenitor over differentiated cell fates, and, paradoxically, also promotes neuronal differentiation, thus indicating that the role of Numb may change during development. Here we report that Numb nuclear localization is restricted to early thymocyte precursors, whereas timed appearance of pre-T-cell receptor (pre-TCR) and activation of protein kinase C? promote phosphorylation-dependent Numb nuclear exclusion. Notably, nuclear localization of Numb in early thymocyte precursors favors p53 nuclear stabilization, whereas pre-TCR-dependent Numb nuclear exclusion promotes the p53 downmodulation essential for further differentiation. Accordingly, the persistence of Numb in the nucleus impairs the differentiation and promotes precursor cell death. This study reveals a novel regulatory mechanism for Numb function based on its nucleuscytosol shuttling, coupling the different roles of Numb with different stages of T-cell development. PMID:25321479

  3. Kinetics of T cell receptor β, γ, and δ rearrangements during adult thymic development: T cell receptor rearrangements are present in CD44+CD25+ Pro-T thymocytes

    PubMed Central

    Capone, Myriam; Hockett, Richard D.; Zlotnik, Albert

    1998-01-01

    We performed a comprehensive analysis of T cell receptor (TCR) γ rearrangements in T cell precursors of the mouse adult thymus. Using a sensitive quantitative PCR method, we show that TCRγ rearrangements are present in CD44+CD25+ Pro-T thymocytes much earlier than expected. TCRγ rearrangements increase significantly from the Pro-T to the CD44−CD25+ Pre-T cell transition, and follow different patterns depending on each Vγ gene segment, suggesting that ordered waves of TCRγ rearrangement exist in the adult mouse thymus as has been described in the fetal mouse thymus. Recombinations of TCRγ genes occur concurrently with TCRδ and D-Jβ rearrangements, but before Vβ gene assembly. Productive TCRγ rearrangements do not increase significantly before the Pre-T cell stage and are depleted in CD4+CD8+ double-positive cells from normal mice. In contrast, double-positive thymocytes from TCRδ−/− mice display random proportions of TCRγ rearranged alleles, supporting a role for functional TCRγ/δ rearrangements in the γδ divergence process. PMID:9770518

  4. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development

    PubMed Central

    Alvarez, John D.; Yasui, Dag H.; Niida, Hiroyuki; Joh, Tadashi; Loh, Dennis Y.; Kohwi-Shigematsu, Terumi

    2000-01-01

    SATB1 is expressed primarily in thymocytes and can act as a transcriptional repressor. SATB1 binds in vivo to the matrix attachment regions (MARs) of DNA, which are implicated in the loop domain organization of chromatin. The role of MAR-binding proteins in specific cell lineages is unknown. We generated SATB1-null mice to determine how SATB1 functions in the T-cell lineage. SATB1-null mice are small in size, have disproportionately small thymi and spleens, and die at 3 weeks of age. At the cellular level, multiple defects in T-cell development were observed. Immature CD3−CD4−CD8− triple negative (TN) thymocytes were greatly reduced in number, and thymocyte development was blocked mainly at the DP stage. The few peripheral CD4+ single positive (SP) cells underwent apoptosis and failed to proliferate in response to activating stimuli. At the molecular level, among 589 genes examined, at least 2% of genes including a proto-oncogene, cytokine receptor genes, and apoptosis-related genes were derepressed at inappropriate stages of T-cell development in SATB1-null mice. For example, IL-2Rα and IL-7Rα genes were ectopically transcribed in CD4+CD8+ double positive (DP) thymocytes. SATB1 appears to orchestrate the temporal and spatial expression of genes during T-cell development, thereby ensuring the proper development of this lineage. Our data provide the first evidence that MAR-binding proteins can act as global regulators of cell function in specific cell lineages. PMID:10716941

  5. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development

    SciTech Connect

    Alvarez, John D.; Yasui, Dag H.; Niida, Hiroyuki; Joh, Tadashi; Loh, Dennis Y.; Kowhi-Shigematsu, Terumi

    2000-02-24

    SATB1 is expressed primarily in thymocytes and can act as a transcriptional repressor. SATB1 binds in vivo to the matrix attachment regions (MARs) of DNA, which are implicated in the loop domain organization of chromatin. The role of MAR-binding proteins in specific cell lineages is unknown. We generated SATB1-null mice to determine how SATB1 functions in the T-cell lineage. SATB1-null mice are small in size, have disproportionately small thymi and spleens, and die at 3 weeks of age. At the cellular level, multiple defects in T-cell development were observed. Immature CD3-CD4-CD8 triple negative (TN) thymocytes were greatly reduced in number, and thymocyte development was blocked mainly at the DP stage. The few peripheral CD4{sup +} single positive (SP) cells underwent apoptosis and failed to proliferate in response to activating stimuli. At the molecular level, among 589 genes examined, at least 2% of genes including a proto-oncogene, cytokine receptor genes, and apoptosis-related genes were derepressed at inappropriate stages of T-cell development in SATB1-null mice. For example, IL-2R{alpha} and IL-7R{alpha} genes were ectopically transcribed in CD4{sup 4+}-CD{sup 8+} double positive (DP) thymocytes. SATB1 appears to orchestrate the temporal and spatial expression of genes during T-cell development, thereby ensuring the proper development of this lineage. Our data provide the first evidence that MAR-binding proteins can act as global regulators of cell function in specific cell lineages.

  6. Regulation of DNA methylation dictates Cd4 gene expression during development of helper and cytotoxic T cell lineages

    PubMed Central

    Sellars, MacLean; Huh, Jun R.; Day, Kenneth; Issuree, Priya D.; Galan, Carolina; Gobeil, Stephane; Absher, Devin; Green, Michael R.; Littman, Dan R.

    2015-01-01

    During development, progenitor cells with binary potential give rise to daughter cells that have distinct functions. Heritable epigenetic mechanisms then lock in gene expression programs that define lineage identity. Cd4 regulation in helper and cytotoxic T cells exemplifies this process, with enhancer- and silencer-regulated establishment of epigenetic memories for stable gene expression and repression, respectively. Using a genetic screen, we identified the DNA methylation machinery as essential for maintaining Cd4 silencing in the cytotoxic lineage. Further, we found a requirement for the proximal enhancer in mediating removal of Cd4 DNA methylation marks, allowing for stable expression in T helper cells. These findings suggest that stage-specific methylation and demethylation events in Cd4 regulate its heritable expression in response to the distinct signals that dictate lineage choice during T cell development. PMID:26030024

  7. CXXC finger protein 1 is critical for T-cell intrathymic development through regulating H3K4 trimethylation.

    PubMed

    Cao, Wenqiang; Guo, Jing; Wen, Xiaofeng; Miao, Li; Lin, Feng; Xu, Guanxin; Ma, Ruoyu; Yin, Shengxia; Hui, Zhaoyuan; Chen, Tingting; Guo, Shixin; Chen, Wei; Huang, Yingying; Liu, Yizhi; Wang, Jianli; Wei, Lai; Wang, Lie

    2016-01-01

    T-cell development in the thymus is largely controlled by an epigenetic program, involving in both DNA methylation and histone modifications. Previous studies have identified Cxxc1 as a regulator of both cytosine methylation and histone 3 lysine 4 trimethylation (H3K4me3). However, it is unknown whether Cxxc1 plays a role in thymocyte development. Here we show that T-cell development in the thymus is severely impaired in Cxxc1-deficient mice. Furthermore, we identify genome-wide Cxxc1-binding sites and H3K4me3 modification sites in wild-type and Cxxc1-deficient thymocytes. Our results demonstrate that Cxxc1 directly controls the expression of key genes important for thymocyte survival such as RORγt and for T-cell receptor signalling including Zap70 and CD8, through maintaining the appropriate H3K4me3 on their promoters. Importantly, we show that RORγt, a direct target of Cxxc1, can rescue the survival defects in Cxxc1-deficient thymocytes. Our data strongly support a critical role of Cxxc1 in thymocyte development. PMID:27210293

  8. The orphan nuclear receptor Ear-2 (Nr2f6) is a novel negative regulator of T cell development.

    PubMed

    Ichim, Christine V; Dervović, Džana D; Zúñiga-Pflücker, Juan Carlos; Wells, Richard A

    2014-01-01

    We describe a novel role for the orphan nuclear receptor Ear-2 in regulating T cell development. Retrovirus-mediated overexpression of Ear-2 (EAR-2++) in a bone marrow (BM) transplantation assay resulted in limited T cell development and a greater than tenfold decrease in thymus size and cellularity relative to controls. Ear-2-transduced murine BM hematopoietic stem cells (HSCs) in OP9-DL1 cultures showed a proliferation deficit during days 1-5 after induction of differentiation, which corresponded to increased expression of the cell cycle regulators p21 (cdkn1a) and p27 (cdkn1b), as well as increased expression of Hes1, Notch3, Egr1, and Scl (Tal1) and decreased expression of Gli1, Gfi-1, HoxA9, PU.1, Nrarp, and Tcf1. In addition, there was a block in differentiation at the DN4 to double-positive (DP) transition accompanied by an increase in apoptosis, similar to the deficit seen in the RORγt null mouse. Gene expression profiling revealed that, like the RORγt-deficient mouse, EAR-2++ DP cells had decreased expression of BclXL and increased expression of the proapoptosis gene Bad. In addition, EAR-2++ DP cells had decreased expression of Bcl11b, PU.1, and HoxA9, and increased expression of Id2. Based on these findings, we conclude that EAR-2++ cells were able to migrate to, but not fully repopulate, the thymus because of a cell-intrinsic defect in the proliferation of DN1 cells followed by a block in differentiation from the DN4 to DP stage of T cell development. We conclude that Ear-2 is a novel negative regulator of T-cell development and that downregulation of Ear-2 is indispensable for the proliferation of DN1 cells and the survival of DN4-DP cells. PMID:24096122

  9. Ikaros Sets the Potential for Th17 Lineage Gene Expression through Effects on Chromatin State in Early T Cell Development*

    PubMed Central

    Wong, Larry Y.; Hatfield, Julianne K.; Brown, Melissa A.

    2013-01-01

    Th17 cells are important effectors of immunity to extracellular pathogens, particularly at mucosal surfaces, but they can also contribute to pathologic tissue inflammation and autoimmunity. Defining the multitude of factors that influence their development is therefore of paramount importance. Our previous studies using Ikaros−/− CD4+ T cells implicated Ikaros in Th1 versus Th2 lineage decisions. Here we demonstrate that Ikaros also regulates Th17 differentiation through its ability to promote expression of multiple Th17 lineage-determining genes, including Ahr, Runx1, Rorc, Il17a, and Il22. Ikaros exerts its influence on the chromatin remodeling of these loci at two distinct stages in CD4+ T helper cell development. In naive cells, Ikaros is required to limit repressive chromatin modifications at these gene loci, thus maintaining the potential for expression of the Th17 gene program. Subsequently, Ikaros is essential for the acquisition of permissive histone marks in response to Th17 polarizing signals. Additionally, Ikaros represses the expression of genes that limit Th17 development, including Foxp3 and Tbx21. These data define new targets of the action of Ikaros and indicate that Ikaros plays a critical role in CD4+ T cell differentiation by integrating specific cytokine cues and directing epigenetic modifications that facilitate activation or repression of relevant genes that drive T cell lineage choice. PMID:24145030

  10. Requirements for eomesodermin and promyelocytic leukemia zinc finger in the development of innate-like CD8+ T cells.

    PubMed

    Gordon, Scott M; Carty, Shannon A; Kim, Jiyeon S; Zou, Tao; Smith-Garvin, Jennifer; Alonzo, Eric S; Haimm, Ethan; Sant'Angelo, Derek B; Koretzky, Gary A; Reiner, Steven L; Jordan, Martha S

    2011-04-15

    Conventional and nonconventional T cell development occur in the thymus. Nonconventional thymocytes that bear characteristics typically associated with innate immune cells are termed innate-like lymphocytes (ILLs). Mice harboring a tyrosine to phenylalanine mutation in the adaptor protein Src homology 2 domain-containing leukocyte protein of 76 kDa at residue 145 (Y145F mice) develop an expanded population of CD8(+)CD122(+)CD44(+) ILLs, typified by expression of the T-box transcription factor eomesodermin. Y145F mice also have an expanded population of γδ T cells that produce copious amounts of IL-4 via a mechanism that is dependent on the BTB-ZF transcription factor promyelocytic leukemia zinc finger. Using mice with T cell-specific deletion of Eomes, we demonstrate that this transcription factor is required for CD8(+) ILL development in Y145F as well as wild-type mice. Moreover, we show that promyelocytic leukemia zinc finger and IL-4 are also required for the generation of this ILL population. Taken together, these data shed light on the cell-intrinsic and cell-extrinsic factors that drive CD8(+) ILL differentiation. PMID:21383242

  11. Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells.

    PubMed

    Kawalekar, Omkar U; O'Connor, Roddy S; Fraietta, Joseph A; Guo, Lili; McGettigan, Shannon E; Posey, Avery D; Patel, Prachi R; Guedan, Sonia; Scholler, John; Keith, Brian; Snyder, Nathaniel; Blair, Ian; Milone, Michael C; June, Carl H

    2016-02-16

    Chimeric antigen receptors (CARs) redirect T cell cytotoxicity against cancer cells, providing a promising approach to cancer immunotherapy. Despite extensive clinical use, the attributes of CAR co-stimulatory domains that impact persistence and resistance to exhaustion of CAR-T cells remain largely undefined. Here, we report the influence of signaling domains of coreceptors CD28 and 4-1BB on the metabolic characteristics of human CAR T cells. Inclusion of 4-1BB in the CAR architecture promoted the outgrowth of CD8(+) central memory T cells that had significantly enhanced respiratory capacity, increased fatty acid oxidation and enhanced mitochondrial biogenesis. In contrast, CAR T cells with CD28 domains yielded effector memory cells with a genetic signature consistent with enhanced glycolysis. These results provide, at least in part, a mechanistic insight into the differential persistence of CAR-T cells expressing 4-1BB or CD28 signaling domains in clinical trials and inform the design of future CAR T cell therapies. PMID:26885860

  12. Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner

    PubMed Central

    White, Jason T.; Cross, Eric W.; Burchill, Matthew A.; Danhorn, Thomas; McCarter, Martin D.; Rosen, Hugo R.; O'Connor, Brian; Kedl, Ross M.

    2016-01-01

    Virtual memory cells (VM) are an antigen-specific, memory phenotype CD8 T-cell subset found in lymphoreplete, unchallenged mice. Previous studies indicated that VM cells were the result of homeostatic proliferation (HP) resembling the proliferation observed in a lymphopenic environment. Here we demonstrate that HP is ongoing in lymphoreplete mice, the degree of which is dictated by the number of naive CD8 T cells with a sufficiently high affinity for self-antigen interacting with peripheral IL-15. VM cell transcriptional profiles suggest a capacity to mediate protective immunity via antigen non-specific bystander killing, a function we show is dependent on IL-15. Finally, we show a VM-like population of human cells that accumulate with age and traffic to the liver, displaying phenotypic and functional attributes consistent with the bystander protective functions of VM cells identified in the mouse. These data identify developmental and functional attributes of VM cells, including their likely role in protective immunity. PMID:27097762

  13. Gallium maltolate inhibits human cutaneous T-cell lymphoma tumor development in mice.

    PubMed

    Wu, Xuesong; Wang, Timothy W; Lessmann, George M; Saleh, Jamal; Liu, Xiping; Chitambar, Christopher R; Hwang, Sam T

    2015-03-01

    Cutaneous T-cell lymphomas (CTCLs) represent a heterogeneous group of non-Hodgkin's lymphoma characterized by an accumulation of malignant CD4 T cells in the skin. The group IIIa metal salt, gallium nitrate, is known to have antineoplastic activity against B-cell lymphoma in humans, but its activity in CTCLs has not been elaborated in detail. Herein, we examined the antineoplastic efficacy of a gallium compound, gallium maltolate (GaM), in vitro and in vivo with murine models of CTCLs. GaM inhibited cell growth and induced apoptosis of cultured CTCL cells. In human CTCL xenograft models, peritumoral injection of GaM limited the growth of CTCL cells, shown by fewer tumor formations, smaller tumor sizes, and decreased neovascularization in tumor microenvironment. To identify key signaling pathways that have a role in GaM-mediated reduction of tumor growth, we analyzed inflammatory cytokines, as well as signal transduction pathways in CTCL cells treated by GaM. IFN-γ-induced chemokines and IL-13 were found to be notably increased in GaM-treated CTCL cells. However, immunosuppressive cytokines, such as IL-10, were decreased with GaM treatment. Interestingly, both oxidative stress and p53 pathways were involved in GaM-induced cytotoxicity. These results warrant further investigation of GaM as a therapeutic agent for CTCLs. PMID:25371972

  14. Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner.

    PubMed

    White, Jason T; Cross, Eric W; Burchill, Matthew A; Danhorn, Thomas; McCarter, Martin D; Rosen, Hugo R; O'Connor, Brian; Kedl, Ross M

    2016-01-01

    Virtual memory cells (VM) are an antigen-specific, memory phenotype CD8 T-cell subset found in lymphoreplete, unchallenged mice. Previous studies indicated that VM cells were the result of homeostatic proliferation (HP) resembling the proliferation observed in a lymphopenic environment. Here we demonstrate that HP is ongoing in lymphoreplete mice, the degree of which is dictated by the number of naive CD8 T cells with a sufficiently high affinity for self-antigen interacting with peripheral IL-15. VM cell transcriptional profiles suggest a capacity to mediate protective immunity via antigen non-specific bystander killing, a function we show is dependent on IL-15. Finally, we show a VM-like population of human cells that accumulate with age and traffic to the liver, displaying phenotypic and functional attributes consistent with the bystander protective functions of VM cells identified in the mouse. These data identify developmental and functional attributes of VM cells, including their likely role in protective immunity. PMID:27097762

  15. Ikaros is required to survive positive selection and to maintain clonal diversity during T-cell development in the thymus.

    PubMed

    Tinsley, Kevin W; Hong, Changwan; Luckey, Megan A; Park, Joo-Young; Kim, Grace Y; Yoon, Hee-Won; Keller, Hilary R; Sacks, Andrew J; Feigenbaum, Lionel; Park, Jung-Hyun

    2013-10-01

    The zinc-finger protein Ikaros is a key player in T-cell development and a potent tumor suppressor in thymocytes. To understand the molecular basis of its function, we disabled Ikaros activity in vivo using a dominant negative Ikaros transgene (DN-IkTg). In DN-IkTg mice, T-cell development was severely suppressed, and positively selected thymocytes clonally expanded, resulting in a small thymus with a heavily skewed T-cell receptor (TCR) repertoire. Notably, DN-IkTg induced vigorous proliferation concomitant to downregulation of antiapoptotic factor expression such as Bcl2. Ikaros activity was required during positive selection, and specifically at the CD4(+)CD8(lo) intermediate stage of thymocyte differentiation, where it prevented persistent TCR signals from inducing aberrant proliferation and expansion. In particular, DN-IkTg induced the accumulation of CD4 single-positive (SP) thymocytes with a developmentally transitional phenotype, and it imposed a developmental arrest accompanied by massive apoptosis. Thus, we identified an in vivo requirement for Ikaros function, which is to suppress the proliferative potential of persistent TCR signals and to promote the survival and differentiation of positively selected thymocytes. PMID:23908463

  16. Ikaros is required to survive positive selection and to maintain clonal diversity during T-cell development in the thymus

    PubMed Central

    Tinsley, Kevin W.; Hong, Changwan; Luckey, Megan A.; Park, Joo-Young; Kim, Grace Y.; Yoon, Hee-won; Keller, Hilary R.; Sacks, Andrew J.; Feigenbaum, Lionel

    2013-01-01

    The zinc-finger protein Ikaros is a key player in T-cell development and a potent tumor suppressor in thymocytes. To understand the molecular basis of its function, we disabled Ikaros activity in vivo using a dominant negative Ikaros transgene (DN-IkTg). In DN-IkTg mice, T-cell development was severely suppressed, and positively selected thymocytes clonally expanded, resulting in a small thymus with a heavily skewed T-cell receptor (TCR) repertoire. Notably, DN-IkTg induced vigorous proliferation concomitant to downregulation of antiapoptotic factor expression such as Bcl2. Ikaros activity was required during positive selection, and specifically at the CD4+CD8lo intermediate stage of thymocyte differentiation, where it prevented persistent TCR signals from inducing aberrant proliferation and expansion. In particular, DN-IkTg induced the accumulation of CD4 single-positive (SP) thymocytes with a developmentally transitional phenotype, and it imposed a developmental arrest accompanied by massive apoptosis. Thus, we identified an in vivo requirement for Ikaros function, which is to suppress the proliferative potential of persistent TCR signals and to promote the survival and differentiation of positively selected thymocytes. PMID:23908463

  17. Harnessing T cells to fight cancer with BiTE(®) antibody constructs - past developments and future directions.

    PubMed

    Klinger, Matthias; Benjamin, Jonathan; Kischel, Roman; Stienen, Sabine; Zugmaier, Gerhard

    2016-03-01

    Bispecific T-cell engager (BiTE(®) ) antibody constructs represent a novel immunotherapy that bridges cytotoxic T cells to tumor cells, thereby inducing target cell-dependent polyclonal T-cell activation and proliferation, and leading to apoptosis of bound tumor cells. Anti-CD19 BiTE(®) blinatumomab has demonstrated clinical activity in Philadelphia chromosome (Ph)-negative relapsed or refractory (r/r) acute lymphoblastic leukemia (ALL) eventually resulting in conditional approval by the U.S. Food and Drug Administration in 2014. This drug is currently further developed in pediatric and Ph(+) r/r, as well as in minimal residual disease-positive ALL, and might also offer clinical benefit for patients with non-Hodgkin's lymphoma, especially for those with aggressive forms like diffuse large B-cell lymphoma. Another BiTE(®) antibody construct in hemato-oncology designated AMG 330 targets CD33 on acute myeloid leukemia blast cells. After showing promising ex vivo activity, this drug candidate has recently entered phase 1 clinical development, and has further indicated potential for combination with checkpoint inhibitors. In solid tumor indications, three BiTE(®) antibody constructs have been tested in phase 1 studies so far: anti-EpCAM BiTE(®) AMG 110, anti-CEA BiTE(®) MEDI-565/AMG 211, and anti-PSMA BiTE(®) BAY2010112/AMG 212. Pertinent questions comprise how to maximize BiTE(®) penetration and T-cell infiltration of the tumor while simultaneously minimizing any adverse events, which is currently explored by a continuous intravenous infusion approach. Thus, BiTE(®) antibody constructs will hopefully provide new treatment options for patients in several indications with high unmet medical need. PMID:26864113

  18. Development of a procedure for the direct cloning of T-cell epitopes using bacterial expression systems.

    PubMed

    Neophytou, P I; Ozegbe, P; Healey, D; Quartey-Papafio, R; Cooke, A; Hutton, J C

    1996-09-13

    Although single bacterial recombinant antigens have been used successfully to stimulate individual T-cell clones and elicit recall responses in peripheral lymphocytes, the broader use of molecular cloning systems for the identification of autoantigens recognised by the cellular arm of the immune system has met with only limited success. In a systematic approach to address this problem, a series of bacterial expression vectors were examined for their potential use as cloning vectors to elicit a proliferative response in vitro from a non-obese diabetic (NOD) mouse T-cell clone which recognises the immunodominant ovalbumin epitope (aa 323-339). The use of the vector pRSET, which produces a hexa-histidine tagged fusion protein, was confounded by non-specific responses to bacterial protein contaminants. pGEX, which generates a glutathione-S-transferase hybrid, avoided this problem but suffered from the disadvantage that a universally applicable purification procedure for the hybrid antigen could not be easily developed. A practical screening protocol was developed using the pUEX expression system (beta-galactosidase hybrid) and purification based upon electroelution of the hybrid protein from purified inclusion bodies subjected to sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). This system can be used to screen expression libraries for the detection of T-cell epitopes provided that the T-cell clones give low background responses to irrelevant pUEX recombinant proteins. Low abundance antigens may be obtained using this system in combination with subtractive hybridisation to construct cDNA libraries enriched in the target antigen. PMID:8841444

  19. Adoptive T Cell Therapies: A Comparison of T Cell Receptors and Chimeric Antigen Receptors.

    PubMed

    Harris, Daniel T; Kranz, David M

    2016-03-01

    The tumor-killing properties of T cells provide tremendous opportunities to treat cancer. Adoptive T cell therapies have begun to harness this potential by endowing a functionally diverse repertoire of T cells with genetically modified, tumor-specific recognition receptors. Normally, this antigen recognition function is mediated by an αβ T cell receptor (TCR), but the dominant therapeutic forms currently in development are synthetic constructs called chimeric antigen receptors (CARs). While CAR-based adoptive cell therapies are already showing great promise, their basic mechanistic properties have been studied in less detail compared with those of αβ TCRs. In this review, we compare and contrast various features of TCRs versus CARs, with a goal of highlighting issues that need to be addressed to fully exploit the therapeutic potential of both. PMID:26705086

  20. An essential role for the transcription factor HEB in thymocyte survival, Tcra rearrangement and the development of natural killer T cells

    PubMed Central

    DCruz, Louise M; Knell, Jamie; Fujimoto, Jessica K; Goldrath, Ananda W

    2010-01-01

    E proteins are basic helix-loop-helix transcription factors that regulate many key aspects of lymphocyte development. Thymocytes express multiple E proteins that are thought to provide cooperative and compensatory functions crucial for T cell differentiation. Contrary to that, we report here that the E protein HEB was uniquely required at the CD4+CD8+ double-positive (DP) stage of T cell development. Thymocytes lacking HEB showed impaired survival, failed to make rearrangements of variable-? (V?) segments to distal joining-? (J?) segments in the gene encoding the T cell antigen receptor ?-chain (Tcra) and had a profound, intrinsic block in the development of invariant natural killer T cells (iNKT cells) at their earliest progenitor stage. Thus, our results show that HEB is a specific and essential factor in T cell development and in the generation of the iNKT cell lineage, defining a unique role for HEB in the regulation of lymphocyte maturation. PMID:20154672

  1. An Excess of the Proinflammatory Cytokines IFN-γ and IL-12 Impairs the Development of the Memory CD8+ T Cell Response to Chlamydia trachomatis.

    PubMed

    Zhang, Xuqing; Starnbach, Michael N

    2015-08-15

    The obligate intracellular bacterium Chlamydia trachomatis is the most common cause of bacterial sexually transmitted disease in the United States and the leading cause of preventable blindness worldwide. Transfer of cultured Chlamydia-specific CD8(+) T cells or vaccination with recombinant virus expressing an MHC I-restricted Chlamydia Ag confers protection, yet surprisingly a protective CD8(+) T cell response is not stimulated following natural infection. In this study, we demonstrate that the presence of excess IL-12 and IFN-γ contributes to poor memory CD8(+) T cell development during C. trachomatis infection of mice. IL-12 is required for CD8(+) T cell expansion but drives effector CD8(+) T cells into a short-lived fate, whereas IFN-γ signaling impairs the development of effector memory cells. We show that transient blockade of IL-12 and IFN-γ during priming promotes the development of memory precursor effector CD8(+) T cells and increases the number of memory T cells that participate in the recall protection against subsequent infection. Overall, this study identifies key factors shaping memory development of Chlamydia-specific CD8(+) T cells that will inform future vaccine development against this and other pathogens. PMID:26179901

  2. Influence of HIV and HCV on T cell antigen presentation and challenges in the development of vaccines.

    PubMed

    John, Mina; Gaudieri, Silvana

    2014-01-01

    Some of the central challenges for developing effective vaccines against HIV and hepatitis C virus (HCV) are similar. Both infections are caused by small, highly mutable, rapidly replicating RNA viruses with the ability to establish long-term chronic pathogenic infection in human hosts. HIV has caused 60 million infections globally and HCV 180 million and both viruses may co-exist among certain populations by virtue of common blood-borne, sexual, or vertical transmission. Persistence of both pathogens is achieved by evasion of intrinsic, innate, and adaptive immune defenses but with some distinct mechanisms reflecting their differences in evolutionary history, replication characteristics, cell tropism, and visibility to mucosal versus systemic and hepatic immune responses. A potent and durable antibody and T cell response is a likely requirement of future HIV and HCV vaccines. Perhaps the single biggest difference between the two vaccine design challenges is that in HCV, a natural model of protective immunity can be found in those who resolve acute infection spontaneously. Such spontaneous resolvers exhibit durable and functional CD4(+) and CD8(+) T cell responses (Diepolder et al., 1995; Cooper et al., 1999; Thimme et al., 2001; Grakoui et al., 2003; Lauer et al., 2004; Schulze Zur Wiesch et al., 2012). However, frequent re-infection suggests partial or lack of protective immunity against heterologous HCV strains, possibly indicative of the degree of genetic diversity of circulating HCV genotypes and subtypes. There is no natural model of protective immunity in HIV, however, studies of "elite controllers," or individuals who have durably suppressed levels of plasma HIV RNA without antiretroviral therapy, has provided the strongest evidence for CD8(+) T cell responses in controlling viremia and limiting reservoir burden in established infection. Here we compare and contrast the specific mechanisms of immune evasion used by HIV and HCV, which subvert adaptive human leukocyte antigen (HLA)-restricted T cell immunity in natural infection, and the challenges these pose for designing effective preventative or therapeutic vaccines. PMID:25352836

  3. The multifaceted role of CD4(+) T cells in CD8(+) T cell memory.

    PubMed

    Laidlaw, Brian J; Craft, Joseph E; Kaech, Susan M

    2016-02-01

    Following infection, T cells differentiate into a heterogeneous population of effector T cells that can mediate pathogen clearance. A subset of these effector T cells possesses the ability to survive long term and mature into memory T cells that can provide long-term immunity. Understanding the signals that regulate the development of memory T cells is crucial to efforts to design vaccines capable of eliciting T cell-based immunity. CD4(+) T cells are essential in the formation of protective memory CD8(+) T cells following infection or immunization. However, until recently, the mechanisms by which CD4(+) T cells act to support memory CD8(+) T cell development following infection were unclear. Here, we discuss recent studies that provide insight into the multifaceted role of CD4(+) T cells in the regulation of memory CD8(+) T cell differentiation. PMID:26781939

  4. New developments in the treatment of peripheral T-cell lymphoma – role of Belinostat

    PubMed Central

    Reimer, Peter

    2015-01-01

    Peripheral T-cell lymphomas (PTCL) represent a heterogeneous group of rare malignancies that with the exception of anaplastic lymphoma kinase expressing anaplastic large cell lymphoma, share a poor outcome after standard (eg, anthracycline-based) chemotherapy. Most patients are either refractory to initial therapy or eventually relapse. Randomized studies for relapsed/refractory PTCL are not available, however, recently published data show that conventional chemotherapy has very limited efficacy in the salvage setting. Thus, novel drugs are urgently needed to improve the outcome in this setting. Belinostat, a pan-histone deacetylase inhibitor, has demonstrated meaningful efficacy and a favorable toxicity profile in two single-arm Phase II trials on 153 patients with relapsed/refractory PTCL. The conclusive results led to an accelerated approval by the US Food and Drug Administration. The present review summarizes the clinical data available for belinostat, its current role, and future perspectives. PMID:26082661

  5. IL12p40 Regulates Functional Development of Human CD4+ T Cells

    PubMed Central

    Wang, Xiaobing; Wu, Ting; Zhou, Feng; Liu, Shi; Zhou, Rui; Zhu, Siying; Song, Lu; Zhu, Feng; Wang, Ge; Xia, Bing

    2015-01-01

    Abstract The proinflammatory effects of IL12p40 had been documented in the literature, and anti-IL12p40 treatment had been proved to be effective in therapy of Crohn disease (CD) in a phase 2b clinical trial. However, the precise role of IL12p40 in the pathogenesis of inflammatory bowel disease (IBD) was still poorly understood. In this study, we investigated the expressions of IL12p40 and its receptor interleukin-12 receptor β 1 both locally and systemically in IBD cases and healthy controls, and the contribution of IL12p40 in IBD pathogenesis. We found that the expression of IL12p40 was elevated both at messenger RNA and protein levels systematically and locally in IBD patients but more significantly in CD patients. Our genetic association study revealed that the polymorphisms of IL12B rs6887695 were associated with both CD and ulcerative colitis (UC) susceptibility in Chinese population, but did not affect the serum IL12p40 level in either CD patients or UC patients. In addition, CD4+ T cells isolated from peripheral blood of CD patients secreted the most abundant IL12p40 production, compared with the UC patients and healthy controls. We also found for the first time that neutralizing IL12p40 secretion could inhibit proliferation, enhance apoptosis, induce a G0/G1 arrest, restrain T helper 1 type immune responses, and promote chemokine C-C motif ligand 20-mediated migration of human CD4+ T cells, which might be the mechanisms why anti-IL12p40 treatment presented efficacy in CD. PMID:25761185

  6. Relationship between T cell subpopulations and the mitogen responsiveness and suppressor cell function of peripheral blood mononuclear cells in normal individuals.

    PubMed Central

    Victorino, R M; Hodgson, H J

    1980-01-01

    A simultaneous analysis was made of numbers and proportions of T cell subsets (T mu and T gamma cells), lymphocyte responsiveness to non-specific mitogens in vitro and 'short-lived suppressor cell activity' in peripheral blood mononuclear cells (PBMC) of normal individuals. No correlation was found between either T gamma or T mu cells and the 'short-lived suppressor cell activity', suggesting that suppression in this system is not a reflection of quantitative alteration in these subsets. However, a highly significant positive correlation was found between numbers of T mu cells and PBMC responses to the mitogens phytohaemagglutinin, concanavalin A and pokeweek mitogen. This may reflect either a helper effect of T mu cells on lymphocyte proliferation in response to mitogens or the presence of the majority of mitogen-responsive cells within this subpopulation. As in normal individuals lymphocyte responsiveness correlates with the number of circulating T mu cells, it is possible that a reduction in these cells in disease states may contribute to defects in cell-mediated immunity. PMID:6452237

  7. Monitoring T cell alloreactivity.

    PubMed

    Mehrotra, Anita; Leventhal, Jeremy; Purroy, Carolina; Cravedi, Paolo

    2015-04-01

    Currently, immunosuppressive therapy in kidney transplant recipients is center-specific, protocol-driven, and adjusted according to functional or histological evaluation of the allograft and/or signs of drug toxicity or infection. As a result, a large fraction of patients receive too much or too little immunosuppression, exposing them to higher rates of infection, malignancy and drug toxicity, or increased risk of acute and chronic graft injury from rejection, respectively. The individualization of immunosuppression requires the development of assays able to reliably quantify and/or predict the magnitude of the recipient's immune response toward the allograft. As alloreactive T cells are central mediators of allograft rejection, monitoring T cell alloreactivity has become a priority for the transplant community. Among available assays, flow cytometry based phenotyping, T cell proliferation, T cell cytokine secretion, and ATP release (ImmuKnow), have been the most thoroughly tested. While numerous cross-sectional studies have found associations between the results of these assays and the presence of clinically relevant post-transplantation outcomes, data from prospective studies are still scanty, thereby preventing widespread implementation in the clinic. Future studies are required to test the hypothesis that tailoring immunosuppression on the basis of results offered by these biomarkers leads to better outcomes than current standard clinical practice. PMID:25475045

  8. T-cell development of resistance to apoptosis is driven by a metabolic shift in carbon source and altered activation of death pathways.

    PubMed

    Bortner, C D; Scoltock, A B; Cain, D W; Cidlowski, J A

    2016-05-01

    We developed a model system to investigate apoptotic resistance in T cells using osmotic stress (OS) to drive selection of death-resistant cells. Exposure of S49 (Neo) T cells to multiple rounds of OS followed by recovery of surviving cells resulted in the selection of a population of T cells (S49 (OS 4-25)) that failed to die in response to a variety of intrinsic apoptotic stimuli including acute OS, but remained sensitive to extrinsic apoptotic initiators. Genome-wide microarray analysis comparing the S49 (OS 4-25) with the parent S49 (Neo) cells revealed over 8500 differentially regulated genes, with almost 90% of those identified being repressed. Surprisingly, our data revealed that apoptotic resistance is not associated with expected changes in pro- or antiapoptotic Bcl-2 family member genes. Rather, these cells lack several characteristics associated with the initial signaling or activation of the intrinsic apoptosis pathway, including failure to increase mitochondrial-derived reactive oxygen species, failure to increase intracellular calcium, failure to deplete glutathione, failure to release cytochrome c from the mitochondria, along with a lack of induced caspase activity. The S49 (OS 4-25) cells exhibit metabolic characteristics indicative of the Warburg effect, and, despite numerous changes in mitochondria gene expression, the mitochondria have a normal metabolic capacity. Interestingly, the S49 (OS 4-25) cells have developed a complete dependence on glucose for survival, and glucose withdrawal results in cell death with many of the essential characteristics of apoptosis. Furthermore, we show that other dietary sugars such as galactose support the viability of the S49 (OS 4-25) cells in the absence of glucose; however, this carbon source sensitizes these cells to die. Our findings suggest that carbon substrate reprogramming for energy production in the S49 (OS 4-25) cells results in stimulus-specific recognition defects in the activation of intrinsic apoptotic pathways. PMID:26658018

  9. Rhizoctonia Bataticola Lectin (RBL) Induces Caspase-8-Mediated Apoptosis in Human T-Cell Leukemia Cell Lines but Not in Normal CD3 and CD34 Positive Cells

    PubMed Central

    Pujari, Radha; Eligar, Sachin M.; Kumar, Natesh; Barkeer, Srikanth; Reddy, Vishwanath; Swamy, Bale M.; Inamdar, Shashikala R.; Shastry, Padma

    2013-01-01

    We have previously demonstrated immunostimulatory activity of a fungal lectin, Rhizoctonia bataticola lectin (RBL), towards normal human peripheral blood mononuclear cells. The present study aimed to explore the anticancer activities of RBL using human leukemic T-cell lines, Molt-4, Jurkat and HuT-78. RBL exhibited significant binding (>90%) to the cell membrane that was effectively inhibited by complex glycoproteins such as mucin (97% inhibition) and asialofetuin (94% inhibition) but not simple sugars such as N-acetyl-D-galactosamine, glucose and sucrose. RBL induced a dose and time dependent inhibition of proliferation and induced cytotoxicity in the cell lines. The percentage of apoptotic cells, as determined by hypodiploidy, was 33% and 42% in Molt-4 and Jurkat cells, respectively, compared to 3.11% and 2.92% in controls. This effect was associated with a concomitant decrease in the G0/G1 population. Though initiator caspase-8 and -9 were activated upon exposure to RBL, inhibition of caspase-8 but not caspase-9 rescued cells from RBL-induced apoptosis. Mechanistic studies revealed that RBL induced cleavage of Bid, loss of mitochondrial membrane potential and activation of caspase-3. The expression of the anti-apoptotic proteins Bcl-2 and Bcl-X was down regulated without altering the expression of pro-apoptotic proteins- Bad and Bax. In contrast to leukemic cells, RBL did not induce apoptosis in normal PBMC, isolated CD3+ve cells and undifferentiated CD34+ve hematopoietic stem and progenitor cells (HSPCs). The findings highlight the differential effects of RBL on transformed and normal hematopoietic cells and suggest that RBL may be explored for therapeutic applications in leukemia. PMID:24244478

  10. T-Cell Immunity to Influenza in Older Adults: A Pathophysiological Framework for Development of More Effective Vaccines

    PubMed Central

    McElhaney, Janet E.; Kuchel, George A.; Zhou, Xin; Swain, Susan L.; Haynes, Laura

    2016-01-01

    One of the most profound public health consequences of immune senescence is reflected in an increased susceptibility to influenza and other acute respiratory illnesses, as well as a loss of influenza vaccine effectiveness in older people. Common medical conditions and mental and psychosocial health issues as well as degree of frailty and functional dependence accelerate changes associated with immune senescence. All contribute to the increased risk for complications of influenza infection, including pneumonias, heart diseases, and strokes that lead to hospitalization, disability, and death in the over 65 population. Changes in mucosal barrier mechanisms and both innate and adaptive immune functions converge in the reduced response to influenza infection, and lead to a loss of antibody-mediated protection against influenza with age. The interactions of immune senescence and reduced adaptive immune responses, persistent cytomegalovirus infection, inflammaging (chronic elevation of inflammatory cytokines), and dysregulated cytokine production, pose major challenges to the development of vaccines designed to improve T-cell-mediated immunity. In older adults, the goal of vaccination is more realistically targeted to providing clinical protection against disease rather than to inducing sterilizing immunity to infection. Standard assays of antibody titers correlate with protection against influenza illness but do not detect important changes in cellular immune mechanisms that correlate with vaccine-mediated protection against influenza in older people. This article will discuss: (i) the burden of influenza in older adults and how this relates to changes in T-cell function, (ii) age-related changes in different T-cell subsets and immunologic targets for improved influenza vaccine efficacy in older, and (iii) the development of correlates of clinical protection against influenza disease to expedite the process of new vaccine development for the 65 and older population. Ultimately, these efforts will address the public health need for improved protection against influenza in older adults and “vaccine preventable disability.” PMID:26941738

  11. T-Cell Immunity to Influenza in Older Adults: A Pathophysiological Framework for Development of More Effective Vaccines.

    PubMed

    McElhaney, Janet E; Kuchel, George A; Zhou, Xin; Swain, Susan L; Haynes, Laura

    2016-01-01

    One of the most profound public health consequences of immune senescence is reflected in an increased susceptibility to influenza and other acute respiratory illnesses, as well as a loss of influenza vaccine effectiveness in older people. Common medical conditions and mental and psychosocial health issues as well as degree of frailty and functional dependence accelerate changes associated with immune senescence. All contribute to the increased risk for complications of influenza infection, including pneumonias, heart diseases, and strokes that lead to hospitalization, disability, and death in the over 65 population. Changes in mucosal barrier mechanisms and both innate and adaptive immune functions converge in the reduced response to influenza infection, and lead to a loss of antibody-mediated protection against influenza with age. The interactions of immune senescence and reduced adaptive immune responses, persistent cytomegalovirus infection, inflammaging (chronic elevation of inflammatory cytokines), and dysregulated cytokine production, pose major challenges to the development of vaccines designed to improve T-cell-mediated immunity. In older adults, the goal of vaccination is more realistically targeted to providing clinical protection against disease rather than to inducing sterilizing immunity to infection. Standard assays of antibody titers correlate with protection against influenza illness but do not detect important changes in cellular immune mechanisms that correlate with vaccine-mediated protection against influenza in older people. This article will discuss: (i) the burden of influenza in older adults and how this relates to changes in T-cell function, (ii) age-related changes in different T-cell subsets and immunologic targets for improved influenza vaccine efficacy in older, and (iii) the development of correlates of clinical protection against influenza disease to expedite the process of new vaccine development for the 65 and older population. Ultimately, these efforts will address the public health need for improved protection against influenza in older adults and "vaccine preventable disability." PMID:26941738

  12. IL-15 receptor α signaling constrains the development of IL-17-producing γδ T cells.

    PubMed

    Colpitts, Sara L; Puddington, Lynn; Lefrançois, Leo

    2015-08-01

    The development and homeostasis of γδ T cells is highly dependent on distinct cytokine networks. Here we examine the role of IL-15 and its unique receptor, IL-15Rα, in the development of IL-17-producing γδ (γδ-17) T cells. Phenotypic analysis has shown that CD44(high) γδ-17 cells express IL-15Rα and the common gamma chain (CD132), yet lack the IL-2/15Rβ chain (CD122). Surprisingly, we found an enlarged population of γδ-17 cells in the peripheral and mesenteric lymph nodes of adult IL-15Rα KO mice, but not of IL-15 KO mice. The generation of mixed chimeras from neonatal thymocytes indicated that cell-intrinsic IL-15Rα expression was required to limit IL-17 production by γδ T cells. γδ-17 cells also were increased in the peripheral lymph nodes of transgenic knock-in mice, where the IL-15Rα intracellular signaling domain was replaced with the intracellular portion of the IL-2Rα chain (that lacks signaling capacity). Finally, an analysis of neonatal thymi revealed that the CD44(lo/int) precursors of γδ-17 cells, which also expressed IL-15Rα, were increased in newborn mice deficient in IL-15Rα signaling, but not in IL-15 itself. Thus, these findings demonstrate that signaling through IL-15Rα regulates the development of γδ-17 cells early in ontogeny, with long-term effects on their peripheral homeostasis in the adult. PMID:26195801

  13. Pak2 Links TCR Signaling Strength to the Development of Regulatory T Cells and Maintains Peripheral Tolerance.

    PubMed

    O'Hagan, Kyle Leonard; Choi, Jinyong; Pryshchep, Olga; Chernoff, Jonathan; Phee, Hyewon

    2015-08-15

    Although significant effort has been devoted to understanding the thymic development of Foxp3(+) regulatory T cells (Tregs), the precise signaling pathways that govern their lineage commitment still remain enigmatic. Our findings show a novel role for the actin cytoskeletal remodeling protein, p21-activated kinase 2 (Pak2), in Treg development and homeostasis. The absence of Pak2 in T cells resulted in a marked reduction in both thymus- and peripherally derived Tregs, accompanied by the development of spontaneous colitis in Pak2-deficient mice. Additionally, Pak2 was required for the proper differentiation of in vitro-induced Tregs as well as maintenance of Tregs. Interestingly, Pak2 was necessary for generating the high-affinity TCR- and IL-2-mediated signals that are required by developing Tregs for their lineage commitment. These findings provide novel insight into how developing thymocytes translate lineage-specific high-affinity TCR signals to adopt the Treg fate, and they further posit Pak2 as an essential regulator for this process. PMID:26157175

  14. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells

    PubMed Central

    Wu, Annie A; Drake, Virginia; Huang, Huai-Shiuan; Chiu, ShihChi; Zheng, Lei

    2015-01-01

    It has become evident that tumor-induced immuno-suppressive factors in the tumor microenvironment play a major role in suppressing normal functions of effector T cells. These factors serve as hurdles that limit the therapeutic potential of cancer immunotherapies. This review focuses on illustrating the molecular mechanisms of immunosuppression in the tumor microenvironment, including evasion of T-cell recognition, interference with T-cell trafficking, metabolism, and functions, induction of resistance to T-cell killing, and apoptosis of T cells. A better understanding of these mechanisms may help in the development of strategies to enhance the effectiveness of cancer immunotherapies. PMID:26140242

  15. Regulation of the Receptor Specificity and Function of the Chemokine RANTES (Regulated on Activation, Normal T Cell Expressed and Secreted) by Dipeptidyl Peptidase IV (CD26)-mediated Cleavage

    PubMed Central

    Oravecz, Tamas; Pall, Marina; Roderiquez, Gregory; Gorrell, Mark D.; Ditto, Mary; Nguyen, Nga Y.; Boykins, Robert; Unsworth, Edward; Norcross, Michael A.

    1997-01-01

    CD26 is a leukocyte activation marker that possesses dipeptidyl peptidase IV activity but whose natural substrates and immunological functions have not been clearly defined. Several chemo-kines, including RANTES (regulated on activation, normal T cell expressed and secreted), have now been shown to be substrates for recombinant soluble human CD26. The truncated RANTES(3–68) lacked the ability of native RANTES(1–68) to increase the cytosolic calcium concentration in human monocytes, but still induced this response in macrophages activated with macrophage colony-stimulating factor. Analysis of chemokine receptor messenger RNAs and patterns of desensitization of chemokine responses showed that the differential activity of the truncated molecule results from an altered receptor specificity. RANTES(3–68) showed a reduced activity, relative to that of RANTES(1–68), with cells expressing the recombinant CCR1 chemokine receptor, but retained the ability to stimulate CCR5 receptors and to inhibit the cytopathic effects of HIV-1. Our results indicate that CD26-mediated processing together with cell activation–induced changes in receptor expression provides an integrated mechanism for differential cell recruitment and for the regulation of target cell specificity of RANTES, and possibly other chemokines. PMID:9382885

  16. [Epigallocatechin gallate attenuates the expression of regulated upon activation normal T cell expressed and secreted induced by lipopolysaccharide in human retinal endothelial cells].

    PubMed

    Zhang, Hui-Yan; Wang, Jian-Yong; Yao, Hang-Ping

    2014-04-25

    The present study was undertaken to determine the effect of epigallocatechin gallate (EGCG) on lipopolysaccharide (LPS)-induced production of inflammatory chemokine regulated upon activation normal T cell expressed and secreted (RANTES) in human retinal endothelial cells (HRECs) and to explore the underlying regulatory mechanism. HRECs were stimulated with LPS in the presence or absence of EGCG at various concentrations (100, 50, 25, 12.5, 6.25 μmol/L). The optimum concentration of drug was determined by a real-time cell-electronic sensing (RT-CES) system, and MTS chromatometry was used to detect the toxicity of LPS and EGCG on HRECs. RANTES production in the culture supernatant was measured by ELISA. The expression levels of Akt and phosphorylated Akt were examined by Western blot assay. The result showed that LPS markedly stimulated RANTES secretion from HRECs. EGCG treatment significantly suppressed LPS-induced RANTES secretion in a dose-dependent manner. Furthermore, EGCG exhibited a dose-dependent inhibitory effect on LPS-induced phosphorylation of Akt. Taken together, our data suggest that EGCG suppresses LPS-induced RANTES secretion, possibly via inhibiting Akt phosphorylation in HRECs. PMID:24777404

  17. T cell receptor interactions with class I heavy-chain influence T cell selection.

    PubMed

    Kuhns, S T; Tallquist, M D; Johnson, A J; Mendez-Fernandez, Y; Pease, L R

    2000-01-18

    The interaction of the T cell receptor (TCR) with peptide in the binding site of the major histocompatibility complex molecule provides the basis for T cell recognition during immune surveillance, repertoire development, and tolerance. Little is known about the extent to which repertoire selection is influenced directly by variation of the structure of the class I heavy chain. We find that the 2C TCR, normally positively selected in the context of the K(b) molecule, is minimally selected into the CD8 lineage in the absence of antigen-processing genes. This finding underscores the importance of peptides in determining the positive-selecting class I ligands in the thymus. In contrast, K(bm3), a variant class I molecule that normally exerts a negative selection pressure on 2C-bearing T cells, positively selects 2C transgenic T cells into the CD8 lineage in an antigen-processing gene-deficient environment. These findings indicate that structural changes in the heavy chain can have direct influence in T cell recognition, from which we conclude that the nature of TCR interaction with class I heavy chain influences the array of TCRs selected during development of the functional adult repertoire. PMID:10639152

  18. The inter-relatedness and interdependence of mouse T cell receptor gammadelta+ and alphabeta+ cells.

    PubMed

    Pennington, Daniel J; Silva-Santos, Bruno; Shires, John; Theodoridis, Efstathios; Pollitt, Christopher; Wise, Emma L; Tigelaar, Robert E; Owen, Michael J; Hayday, Adrian C

    2003-10-01

    Although T cell receptor (TCR)gammadelta+ and TCRalphabeta+ cells are commonly viewed as functionally independent, their relatedness and potential interdependence remain enigmatic. Here we have identified a gene profile that distinguishes mouse gammadelta cell populations from conventional alphabeta T cells. However, this profile was also expressed by sets of unconventional alphabeta T cells. Therefore, whereas TCR specificity determines the involvement of a T cell in an immune response, the cell's functional potential, as assessed by gene expression, does not segregate with the TCR. By monitoring the described gene profile, we show that gammadelta T cell development and function in TCRbeta-deficient mice was impaired because of the absence of alphabeta T cell progenitors. Thus, normal gammadelta cell development is dependent on the development of conventional alphabeta T cells. PMID:14502287

  19. Influence of HIV and HCV on T cell antigen presentation and challenges in the development of vaccines

    PubMed Central

    John, Mina; Gaudieri, Silvana

    2014-01-01

    Some of the central challenges for developing effective vaccines against HIV and hepatitis C virus (HCV) are similar. Both infections are caused by small, highly mutable, rapidly replicating RNA viruses with the ability to establish long-term chronic pathogenic infection in human hosts. HIV has caused 60 million infections globally and HCV 180 million and both viruses may co-exist among certain populations by virtue of common blood-borne, sexual, or vertical transmission. Persistence of both pathogens is achieved by evasion of intrinsic, innate, and adaptive immune defenses but with some distinct mechanisms reflecting their differences in evolutionary history, replication characteristics, cell tropism, and visibility to mucosal versus systemic and hepatic immune responses. A potent and durable antibody and T cell response is a likely requirement of future HIV and HCV vaccines. Perhaps the single biggest difference between the two vaccine design challenges is that in HCV, a natural model of protective immunity can be found in those who resolve acute infection spontaneously. Such spontaneous resolvers exhibit durable and functional CD4+ and CD8+ T cell responses (Diepolder et al., 1995; Cooper et al., 1999; Thimme et al., 2001; Grakoui et al., 2003; Lauer et al., 2004; Schulze Zur Wiesch et al., 2012). However, frequent re-infection suggests partial or lack of protective immunity against heterologous HCV strains, possibly indicative of the degree of genetic diversity of circulating HCV genotypes and subtypes. There is no natural model of protective immunity in HIV, however, studies of “elite controllers,” or individuals who have durably suppressed levels of plasma HIV RNA without antiretroviral therapy, has provided the strongest evidence for CD8+ T cell responses in controlling viremia and limiting reservoir burden in established infection. Here we compare and contrast the specific mechanisms of immune evasion used by HIV and HCV, which subvert adaptive human leukocyte antigen (HLA)-restricted T cell immunity in natural infection, and the challenges these pose for designing effective preventative or therapeutic vaccines. PMID:25352836

  20. Thymic Damage, Impaired Negative Selection, and Development of Chronic Graft-versus-Host Disease Caused by Donor CD4+ and CD8+ T Cells

    PubMed Central

    Wu, Tao; Young, James S.; Johnston, Heather; Ni, Xiong; Deng, Ruishu; Racine, Jeremy; Wang, Miao; Wang, Audrey; Todorov, Ivan; Wang, Jianmin; Zeng, Defu

    2013-01-01

    Prevention of chronic graft-versus-host disease (cGVHD) remains a major challenge in allogeneic hematopoietic cell transplantation (HCT), due to limited understanding of cGVHD pathogenesis and lack of appropriate animal models. Here, we report that, in classical acute GVHD models with C57BL/6 donors and MHC-mismatched BALB/c recipients and with C3H.SW donors and MHC-matched C57BL/6 recipients, GVHD recipients surviving for more than 60 days after HCT developed cGVHD characterized by cutaneous fibrosis, tissue damage in the salivary gland and the presence of serum autoantibodies. Donor CD8+ T cells were more potent than CD4+ T cells for inducing cGVHD. The recipient thymus and de novo-generated, donor-derived CD4+ T cells were required for induction of cGVHD by donor CD8+ T cells but not by donor CD4+ T cells. Donor CD8+ T cells preferentially damaged recipient medullary thymic epithelial cells and impaired negative selection, resulting in production of autoreactive CD4+ T cells that perpetuated damage to the thymus and augmented the development of cGVHD. Short-term anti-CD4 monoclonal antibody treatment early after HCT enabled recovery from thymic damage and prevented cGVHD. These results demonstrate that donor CD8+ T cells cause cGVHD solely through thymic-dependent mechanisms, while CD4+ T cells can cause cGVHD through either thymic-dependent or independent mechanisms. PMID:23709681

  1. Epitope-Specific CD8+ T Cells Play a Differential Pathogenic Role in the Development of a Viral Disease Model for Multiple Sclerosis

    PubMed Central

    Myoung, Jinjong; Kang, Hyun Seok; Hou, Wanqiu; Meng, Liping; Dal Canto, Mauro C.

    2012-01-01

    Theiler's virus-induced demyelinating disease has been extensively investigated as a model for persistent viral infection and multiple sclerosis (MS). However, the role of CD8+ T cells in the development of disease remains unclear. To assess the role of virus-specific CD8+ T cells in the pathogenesis of demyelinating disease, a single amino acid substitution was introduced into the predominant viral epitope (VP3 from residues 159 to 166 [VP3159-166]) and/or a subdominant viral epitope (VP3173-181) of susceptible SJL/J mice by site-directed mutagenesis. The resulting variant viruses (N160V, P179A, and N160V/P179A) failed to induce CD8+ T cell responses to the respective epitopes. Surprisingly, mice infected with N160V or N160V/P179A virus, which lacks CD8+ T cells against VP3159-166, did not develop demyelinating disease, in contrast to wild-type virus or P179A virus lacking VP3173-181-specific CD8+ T cells. Our findings clearly show that the presence of VP3159-166-specific CD8+ T cells, rather than viral persistence itself, is strongly correlated with disease development. VP3173-181-specific CD8+ T cells in the central nervous system (CNS) of these virus-infected mice expressed higher levels of transforming growth factor β, forkhead box P3, interleukin-22 (IL-22), and IL-17 mRNA but caused minimal cytotoxicity compared to that caused by VP3159-166-specific CD8+ T cells. VP3159-166-specific CD8+ T cells exhibited high functional avidity for gamma interferon production, whereas VP3173-181-specific CD8+ T cells showed low avidity. To our knowledge, this is the first report indicating that the induction of the IL-17-producing CD8+ T cell type is largely epitope specific and that this specificity apparently plays a differential role in the pathogenicity of virus-induced demyelinating disease. These results strongly advocate for the careful consideration of CD8+ T cell-mediated intervention of virus-induced inflammatory diseases. PMID:23055563

  2. T cell response to FVIII.

    PubMed

    Jacquemin, Marc; Saint-Remy, Jean-Marie

    2016-03-01

    Several lines of evidence indicate that the immune response to Factor VIII (FVIII) in patients with hemophilia A is T cell-dependent. This review highlights the link between the epitope specificity of FVIII-specific T cells and their potential roles in different categories of patients. FVIII-specific T cells able to recognize wild-type (i.e. therapeutic) FVIII but not the mutated self FVIII of hemophilia patients have been identified in patients with mild/moderate hemophilia carrying some point mutations. Such T cells likely contribute to the higher frequency of neutralizing anti-FVIII antibodies (inhibitors) development in these patients. In contrast, as yet no T cells have been identified that can differentiate between FVIII molecules with non-hemophilia-causing single amino acid variants encoded by non-synonymous single-nucleotide polymorphisms in the F8 gene. Other mechanisms are therefore still to be identified that will explain the clinically noted differences in the incidence of inhibitor development between patients of different races who are known to have differences at these sites. Beside information about the mechanism of inhibitor development, the analysis of FVIII-specific T cells has provided tools to develop novel diagnostic and therapeutic approaches, such as the generation of FVIII-specific regulatory T cells that may be useful in preventing or suppressing the immune response to FVIII. PMID:26435345

  3. EMSA Eritin Drives Expansion of Regulatory T Cells and Promotes T Cells Differentiation in Irradiated Mice.

    PubMed

    Ibrahim, Mansur; Widjajanto, Edi; Widodo, M Aris; Sumitro, Sutiman B

    2016-07-01

    Sublethal irradiation therapy in cancer treatment causes generalized immunosuppression, which results in a range of DNA damage. We examined the significance of a polyherbal medicine called "EMSA Eritin" on immunological responses in sublethally irradiated mice focusing on the involvement of Treg, naïve T cell, and also the development and differentiation of T cells in thymus. Normal BALB/c mice were sublethally irradiated with dose of 600 rad. The irradiated mice were then orally administered by EMSA Eritin once a day at different doses: 1.04, 3.12, 9.37 mg/g body weight. The treatment was performed for 14 days. On day 15, immunological responses were observed by analyzing the status of Treg and differentiation of T cells in thymus. The administration of EMSA Eritin to irradiated mice resulted in a significant increase of pre T cells, Treg cells, and naïve T cells, which in general could maintain and normalize healthy condition in mice. PMID:26170134

  4. Proinsulin Expression Shapes the TCR Repertoire but Fails to Control the Development of Low-Avidity Insulin-Reactive CD8+ T Cells.

    PubMed

    Pearson, James A; Thayer, Terri C; McLaren, James E; Ladell, Kristin; De Leenheer, Evy; Phillips, Amy; Davies, Joanne; Kakabadse, Dimitri; Miners, Kelly; Morgan, Peter; Wen, Li; Price, David A; Wong, F Susan

    2016-06-01

    NOD mice, a model strain for human type 1 diabetes, express proinsulin (PI) in the thymus. However, insulin-reactive T cells escape negative selection, and subsequent activation of the CD8(+) T-cell clonotype G9C8, which recognizes insulin B15-23 via an αβ T-cell receptor (TCR) incorporating TRAV8-1/TRAJ9 and TRBV19/TRBJ2-3 gene rearrangements, contributes to the development of diabetes. In this study, we used fixed TRAV8-1/TRAJ9 TCRα-chain transgenic mice to assess the impact of PI isoform expression on the insulin-reactive CD8(+) T-cell repertoire. The key findings were: 1) PI2 deficiency increases the frequency of insulin B15-23-reactive TRBV19(+)CD8(+) T cells and causes diabetes; 2) insulin B15-23-reactive TRBV19(+)CD8(+) T cells are more abundant in the pancreatic lymph nodes of mice lacking PI1 and/or PI2; 3) overexpression of PI2 decreases TRBV19 usage in the global CD8(+) T-cell compartment; 4) a biased repertoire of insulin-reactive CD8(+) T cells emerges in the periphery regardless of antigen exposure; and 5) low-avidity insulin-reactive CD8(+) T cells are less affected by antigen exposure in the thymus than in the periphery. These findings inform our understanding of the diabetogenic process and reveal new avenues for therapeutic exploitation in type 1 diabetes. PMID:26953160

  5. Interferon-γ Promotes Inflammation and Development of T-Cell Lymphoma in HTLV-1 bZIP Factor Transgenic Mice

    PubMed Central

    Mitagami, Yu; Yasunaga, Jun-ichirou; Kinosada, Haruka; Ohshima, Koichi; Matsuoka, Masao

    2015-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is an etiological agent of several inflammatory diseases and a T-cell malignancy, adult T-cell leukemia (ATL). HTLV-1 bZIP factor (HBZ) is the only viral gene that is constitutively expressed in HTLV-1-infected cells, and it has multiple functions on T-cell signaling pathways. HBZ has important roles in HTLV-1-mediated pathogenesis, since HBZ transgenic (HBZ-Tg) mice develop systemic inflammation and T-cell lymphomas, which are similar phenotypes to HTLV-1-associated diseases. We showed previously that in HBZ-Tg mice, HBZ causes unstable Foxp3 expression, leading to an increase in regulatory T cells (Tregs) and the consequent induction of IFN-γ-producing cells, which in turn leads to the development of inflammation in the mice. In this study, we show that the severity of inflammation is correlated with the development of lymphomas in HBZ-Tg mice, suggesting that HBZ-mediated inflammation is closely linked to oncogenesis in CD4+ T cells. In addition, we found that IFN-γ-producing cells enhance HBZ-mediated inflammation, since knocking out IFN-γ significantly reduced the incidence of dermatitis as well as lymphoma. Recent studies show the critical roles of the intestinal microbiota in the development of Tregs in vivo. We found that even germ-free HBZ-Tg mice still had an increased number of Tregs and IFN-γ-producing cells, and developed dermatitis, indicating that an intrinsic activity of HBZ evokes aberrant T-cell differentiation and consequently causes inflammation. These results show that immunomodulation by HBZ is implicated in both inflammation and oncogenesis, and suggest a causal connection between HTLV-1-associated inflammation and ATL. PMID:26296091

  6. Osteonecrosis of the Jaw Developed in Mice: DISEASE VARIANTS REGULATED BY γδ T CELLS IN ORAL MUCOSAL BARRIER IMMUNITY.

    PubMed

    Park, Sil; Kanayama, Keiichi; Kaur, Kawaljit; Tseng, Han-Ching Helen; Banankhah, Sina; Quje, Davood Talebi; Sayre, James W; Jewett, Anahid; Nishimura, Ichiro

    2015-07-10

    Osteonecrosis of the jaw (ONJ), an uncommon co-morbidity in patients treated with bisphosphonates (BP), occurs in the segment of jawbone interfacing oral mucosa. This study aimed to investigate a role of oral mucosal barrier γδ T cells in the pathogenesis of ONJ. Female C57Bl/6J (B6) mice received a bolus zoledronate intravenous injection (ZOL, 540 μg/kg), and their maxillary left first molars were extracted 1 week later. ZOL-treated mice (WT ZOL) delayed oral wound healing with patent open wounds 4 weeks after tooth extraction with characteristic oral epithelial hyperplasia. γδ T cells appeared within the tooth extraction site and hyperplastic epithelium in WT ZOL mice. In ZOL-treated γδ T cell null (Tcrd(-/-) ZOL) mice, the tooth extraction open wound progressively closed; however, histological ONJ-like lesions were identified in 75 and 60% of WT ZOL and Tcrd(-/-) ZOL mice, respectively. Although the bone exposure phenotype of ONJ was predominantly observed in WT ZOL mice, Tcrd(-/-) ZOL mice developed the pustule/fistula disease phenotype. We further addressed the role of γδ T cells from human peripheral blood (h-γδ T cells). When co-cultured with ZOL-pretreated human osteoclasts in vitro, h-γδ T cells exhibited rapid expansion and robust IFN-γ secretion. When h-γδ T cells were injected into ZOL-treated immunodeficient (Rag2(-/-) ZOL) mice, the oral epithelial hyperplasia developed. However, Rag2(-/-) ZOL mice did not develop osteonecrosis. The results indicate that γδ T cells are unlikely to influence the core osteonecrosis mechanism; however, they may serve as a critical modifier contributing to the different oral mucosal disease variations of ONJ. PMID:26013832

  7. Mice develop normally without tenascin.

    PubMed

    Saga, Y; Yagi, T; Ikawa, Y; Sakakura, T; Aizawa, S

    1992-10-01

    Tenascin, an extracellular matrix protein, is expressed in an unusually restricted pattern during embryogenesis and has been implicated in a variety of morphogenetic phenomena. To directly assess the function of tenascin in vivo, we generated mutant mice in which the tenascin gene was nully disrupted by replacing it with the lacZ gene. In mutant mice, lacZ was expressed in place of tenascin, and no tenascin product was detected. Homozygous mutant mice were, however, obtained in accordance with Mendelian laws, and both females and males produced offspring normally. No anatomical or histological abnormalities were detected in any tissues, and no major changes were observed in distribution of fibronectin, laminin, collagen, and proteoglycan. The existence of these mutant mice, lacking tenascin yet phenotypically normal, casts doubt on the theory that tenascin plays and essential role in normal development. PMID:1383086

  8. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.

    PubMed

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma

    2008-01-01

    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies. PMID:17855129

  9. 78 FR 69429 - Prospective Grant of Exclusive License: The Development of Modified T-cells for the Treatment of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... Modified T-cells for the Treatment of Multiple Myeloma AGENCY: National Institutes of Health, HHS. ACTION.../ 622,6008 entitled, ``Chimeric Antigen Receptors Targeting B-cell Maturation Antigen'' . The patent... human T-cells directed against B-cell Maturation Antigen (BCMA) for the treatment of multiple...

  10. Osteoprotegerin-Mediated Homeostasis of Rank+ Thymic Epithelial Cells Does Not Limit Foxp3+ Regulatory T Cell Development

    PubMed Central

    McCarthy, Nicholas I.; Cowan, Jennifer E.; Nakamura, Kyoko; Bacon, Andrea; Baik, Song; White, Andrea J.; Parnell, Sonia M.; Jenkinson, Eric J.; Jenkinson, William E.

    2015-01-01

    In the thymus, medullary thymic epithelial cells (mTEC) regulate T cell tolerance via negative selection and Foxp3+ regulatory T cell (Treg) development, and alterations in the mTEC compartment can lead to tolerance breakdown and autoimmunity. Both the receptor activator for NF-?B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) axis and expression of the transcriptional regulator Aire are involved in the regulation of thymus medullary microenvironments. However, their impact on the mechanisms controlling mTEC homeostasis is poorly understood, as are the processes that enable the thymus medulla to support the balanced production of mTEC-dependent Foxp3+ Treg. In this study, we have investigated the control of mTEC homeostasis and examined how this process impacts the efficacy of Foxp3+ Treg development. Using newly generated RANK Venus reporter mice, we identify distinct RANK+ subsets that reside within both the mTEChi and mTEClo compartments and that represent direct targets of OPG-mediated control. Moreover, by mapping OPG expression to a subset of Aire+ mTEC, our data show how cis- and trans-acting mechanisms are able to control the thymus medulla by operating on multiple mTEC targets. Finally, we show that whereas the increase in mTEC availability in OPG-deficient (Tnfrsf11b?/?) mice impacts the intrathymic Foxp3+ Treg pool by enhancing peripheral Treg recirculation back to the thymus, it does not alter the number of de novo Rag2pGFP+Foxp3+ Treg that are generated. Collectively, our study defines patterns of RANK expression within the thymus medulla, and it shows that mTEC homeostasis is not a rate-limiting step in intrathymic Foxp3+ Treg production. PMID:26254339

  11. Osteoprotegerin-Mediated Homeostasis of Rank+ Thymic Epithelial Cells Does Not Limit Foxp3+ Regulatory T Cell Development.

    PubMed

    McCarthy, Nicholas I; Cowan, Jennifer E; Nakamura, Kyoko; Bacon, Andrea; Baik, Song; White, Andrea J; Parnell, Sonia M; Jenkinson, Eric J; Jenkinson, William E; Anderson, Graham

    2015-09-15

    In the thymus, medullary thymic epithelial cells (mTEC) regulate T cell tolerance via negative selection and Foxp3(+) regulatory T cell (Treg) development, and alterations in the mTEC compartment can lead to tolerance breakdown and autoimmunity. Both the receptor activator for NF-κB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) axis and expression of the transcriptional regulator Aire are involved in the regulation of thymus medullary microenvironments. However, their impact on the mechanisms controlling mTEC homeostasis is poorly understood, as are the processes that enable the thymus medulla to support the balanced production of mTEC-dependent Foxp3(+) Treg. In this study, we have investigated the control of mTEC homeostasis and examined how this process impacts the efficacy of Foxp3(+) Treg development. Using newly generated RANK Venus reporter mice, we identify distinct RANK(+) subsets that reside within both the mTEC(hi) and mTEC(lo) compartments and that represent direct targets of OPG-mediated control. Moreover, by mapping OPG expression to a subset of Aire(+) mTEC, our data show how cis- and trans-acting mechanisms are able to control the thymus medulla by operating on multiple mTEC targets. Finally, we show that whereas the increase in mTEC availability in OPG-deficient (Tnfrsf11b(-/-)) mice impacts the intrathymic Foxp3(+) Treg pool by enhancing peripheral Treg recirculation back to the thymus, it does not alter the number of de novo Rag2pGFP(+)Foxp3(+) Treg that are generated. Collectively, our study defines patterns of RANK expression within the thymus medulla, and it shows that mTEC homeostasis is not a rate-limiting step in intrathymic Foxp3(+) Treg production. PMID:26254339

  12. Chung-Yeul-Gue-Soup-Sa-Gan-Tang, traditional Korean medicine, enhances CD4(+) T cell activities and modulates Th1/Th2 lineage development.

    PubMed

    Ko, Eunjung; Park, Jae-Woo; Rho, Samwoong; Cho, Chongwoon; Park, Seongkyu; Ko, Seonggyu; Lee, Yongwon; Hong, Moo-Chang; Shin, Min-Kyu; Ryu, Ki-Won; Bae, Hyunsu

    2004-04-01

    Chung-Yeul-Gue-Soup-Sa-Gan-Tang (CYT), a traditional Korea herbal medicine, has been widely used in Korea for the treatment of various immunological disorders, including allergic asthma. In this study, CYT was examined in vitro and tested for possible immunological effects. The results demonstrated that CYT had no mitogenic effects on unstimulated CD4(+) T cells, but rather increased CD4(+) T cell proliferation upon activation with anti-CD3/CD28 antibody. Under the Th0 condition, CYT also enhanced expression of interleukin (IL)-2 in purified murine CD4(+) T cells assayed by real-time PCR, suggesting that CYT moderately increases the activity of helper T cells upon T cell receptor ligation under the neutral condition. However, the Th1 cells were overpopulated following CYT treatment under the Th1 condition, while Th2 cells were under-populated in the Th2 driven condition. In addition, under Th1/Th2-skewed conditions, the levels of IL-4 were considerably decreased, while the expression of T-bet and interferon-gamma were increased with CYT treatment. Thus, CYT enhances Th1 lineage development from naive CD4(+) T cells both by increasing Th1 specific cytokine secretion and repressing Th2 specific cytokine production. These results suggest that CYT is a desirable agent for the correction of Th2 dominant pathological disorders. PMID:15107575

  13. Efnb1 and Efnb2 Proteins Regulate Thymocyte Development, Peripheral T Cell Differentiation, and Antiviral Immune Responses and Are Essential for Interleukin-6 (IL-6) Signaling*

    PubMed Central

    Luo, Hongyu; Charpentier, Tania; Wang, Xuehai; Qi, Shijie; Han, Bing; Wu, Tao; Terra, Rafik; Lamarre, Alain; Wu, Jiangping

    2011-01-01

    Erythropoietin-producing hepatocellular kinases (Eph kinases) constitute the largest family of cell membrane receptor tyrosine kinases, and their ligand ephrins are also cell surface molecules. Because of promiscuous interaction between Ephs and ephrins, there is considerable redundancy in this system, reflecting the essential roles of these molecules in the biological system through evolution. In this study, both Efnb1 and Efnb2 were null-mutated in the T cell compartment of mice through loxP-mediated gene deletion. Mice with this double conditional mutation (double KO mice) showed reduced thymus and spleen size and cellularity. There was a significant decrease in the DN4, double positive, and single positive thymocyte subpopulations and mature CD4 and CD8 cells in the periphery. dKO thymocytes and peripheral T cells failed to compete with their WT counterparts in irradiated recipients, and the T cells showed compromised ability of homeostatic expansion. dKO naive T cells were inferior in differentiating into Th1 and Th17 effectors in vitro. The dKO mice showed diminished immune response against LCMV infection. Mechanistic studies revealed that IL-6 signaling in dKO T cells was compromised, in terms of abated induction of STAT3 phosphorylation upon IL-6 stimulation. This defect likely contributed to the observed in vitro and in vivo phenotype in dKO mice. This study revealed novel roles of Efnb1 and Efnb2 in T cell development and function. PMID:21976681

  14. Cutting edge: a chemical genetic system for the analysis of kinases regulating T cell development.

    PubMed

    Denzel, Angela; Hare, Katherine J; Zhang, Chao; Shokat, Kevan; Jenkinson, Eric J; Anderson, Graham; Hayday, Adrian

    2003-07-15

    To understand the regulatory activities of kinases in vivo requires their study across a biologically relevant window of activity. To this end, ATP analog-sensitive kinase alleles (ASKAs) specifically sensitive to a competitive inhibitor have been developed. This article tests whether ASKA technology can be applied to complex immunological systems, such as lymphoid development. The results show that when applied to reaggregate thymic organ culture, novel p56(Lck) ASKAs readily expose a dose-dependent correlation of thymocyte development with a range of p56(Lck) activity. By regulating kinase activity, rather than amounts of RNA or protein, ASKA technology offers a general means for assessing the quantitative contributions to immunology of numerous kinases emerging from genomics analyses. It can obviate the generation of multiple lines of mice expressing different levels of kinase transgenes and should permit specific biological effects to be associated with defined biochemical activities. PMID:12847211

  15. Differentiation of ICOS+ and ICOS- recent thymic emigrant regulatory T cells (RTE T regs) during normal pregnancy, pre-eclampsia and HELLP syndrome.

    PubMed

    Wagner, M I; Jöst, M; Spratte, J; Schaier, M; Mahnke, K; Meuer, S; Zeier, M; Steinborn, A

    2016-01-01

    Two different subsets of naturally occurring regulatory T cells (nTregs), defined by their expression of the inducible co-stimulatory (ICOS) molecule, are produced by the human thymus. To examine the differentiation of ICOS(+) and ICOS(-) CD45RA(+) CD31(+) recent thymic emigrant (RTE) T regs during normal pregnancy and in the presence of pre-eclampsia or haemolysis elevated liver enzymes low platelet (HELLP)-syndrome, we used six-colour flow cytometric analysis to determine the changes in the composition of the ICOS(+) and ICOS(-) T reg pools with CD45RA(+) CD31(+) RTE T regs, CD45RA(+) CD31(-) mature naive (MN) T regs, CD45RA(-) CD31(+) and CD45RA(-) CD31(-) memory Tregs. With the beginning of pregnancy until term, we observed a strong differentiation of both ICOS(+) and ICOS(-) CD45RA(+) CD31(+) RTE, but not CD45RA(+) CD31(-) MN T regs, into CD45RA(-) CD31(-) memory T regs. At the end of pregnancy, the onset of spontaneous term labour was associated with a significant breakdown of ICOS(+) CD45RA(-) CD31(-) memory T regs. However, in the presence of pre-eclampsia, there was a significantly increased differentiation of ICOS(+) and ICOS(-) CD45RA(+) CD31(+) RTE T regs into CD45RA(-) CD31(+) memory T regs, wherein the lacking differentiation into CD45RA(-) CD31(-) memory T regs was partially replaced by the increased differentiation of ICOS(+) and ICOS(-) CD45RA(+) CD31(-) MN Tregs into CD45RA(-) CD31(-) memory T regs. In patients with HELLP syndrome, this alternatively increased differentiation of CD45RA(-) CD31(-) MN T regs seemed to be exaggerated, and presumably restored the suppressive activity of magnetically isolated ICOS(+) and ICOS(-) T regs, which were shown to be significantly less suppressive in pre-eclampsia patients, but not in HELLP syndrome patients. Hence, our findings propose that the regular differentiation of both ICOS(+) and ICOS(-) CD45RA(+) CD31(+) RTE T regs ensures a healthy pregnancy course, while their disturbed differentiation is associated with the occurrence of pre-eclampsia and HELLP syndrome. PMID:26285098

  16. Size and frequency characteristics of alpha beta and gamma delta T cells in the spleens of normal and cyclophosphamide-suppressed virus-infected chickens.

    PubMed

    Banbura, M; Webster, R G; Cooper, M; Doherty, P C

    1991-08-01

    The characteristics of avian lymphocytes expressing surface CD8 (CT8) and T cell receptor (TCR) glycoproteins have been monitored by two-color flow microfluorimetry. Exposure of 1-month-old birds to a lethal influenza A virus, which is known to be lympholytic, significantly decreased the frequency of both the alpha beta TCR2+CT8+ and gamma delta TCR1+CT8- subsets in spleen. However, all categories of T cells showed evidence of greater mean cell size, indicating that they are responding. Inoculation of baby chicks with fowl pox virus induced a response more typical of specific immunity in the TCR2+CT8+ set, in that the lymphocytes increased in both frequency and mean cell size. Greater numbers of lymphoblasts were also found for the TCR2+CT8-, TCR1+CT8+, and TCR1+CT8- subsets, but the total cell counts for the minority TCR1+CT8- cells in spleen were consistently decreased. Immunosuppression with cyclophosphamide prior to infection eliminated 90% of the white blood cells from spleen, with the greatest effect being on the TCR1+ populations. The CT8+ alpha beta T cell response in chick spleen following exposure to a poxvirus is thus comparable to the situation observed for this subset of lymphocytes in mice infected with other viruses. However, although the gamma delta T cells increase in size, their frequency in spleen either does not change (CT8+) or is significantly decreased (CT8-). PMID:1647883

  17. Thymic B cells promote thymus-derived regulatory T cell development and proliferation.

    PubMed

    Lu, Fang-Ting; Yang, Wei; Wang, Yin-Hu; Ma, Hong-Di; Tang, Wei; Yang, Jing-Bo; Li, Liang; Ansari, Aftab A; Lian, Zhe-Xiong

    2015-07-01

    Thymic CD4(+) FoxP3(+) regulatory T (Treg) cells are critical for the development of immunological tolerance and immune homeostasis and requires contributions of both thymic dendritic and epithelial cells. Although B cells have been reported to be present within the thymus, there has not hitherto been a definition of their role in immune cell development and, in particular, whether or how they contribute to the Treg cellular thymic compartment. Herein, using both phenotypic and functional approaches, we demonstrate that thymic B cells contribute to the maintenance of thymic Treg cells and, using an in vitro culture system, demonstrate that thymic B cells contribute to the size of the thymic Treg compartment via cell-cell MHC II contact and the involvement of two independent co-stimulatory pathways that include interactions between the CD40/CD80/CD86 co-stimulatory molecules. Our data also suggest that thymic B cells promote the generation of thymic Treg cell precursors (pre-Treg cells), but not the conversion of FoxP3(+) Treg cells from pre-Treg cells. In addition, thymic B cells directly promote the proliferation of thymic Treg cells that is MHC II contact dependent with a minimal if any role for co-stimulatory molecules including CD40/CD80/CD86. Both pathways are independent of TGFβ. In conclusion, we rigorously define the critical role of thymic B cells in the development of thymic Treg cells from non-Treg to precursor stage and in the proliferation of mature thymic Treg cells. PMID:26071985

  18. Naive Human T Cells Develop into Th1 Effectors after Stimulation with Mycobacterium tuberculosis-Infected Macrophages or Recombinant Ag85 Proteins

    PubMed Central

    Russo, Donna M.; Kozlova, Natalia; Lakey, David L.; Kernodle, Douglas

    2000-01-01

    Most studies of human T-cell responses in tuberculosis have focused on persons with either active disease or latent infection. Although this work has been critical in defining T-cell correlates of successful versus failed host containment, little is known about the development of Mycobacterium-specific T-cell responses in uninfected persons. To explore this issue, naive T cells from uninfected donors were sensitized in vitro with avirulent Mycobacterium tuberculosis-infected autologous macrophages. T-cell lines primed in this manner proliferated and produced cytokines after challenge with mycobacterial antigens. Of 11 such lines, 8 were high Th1 responders, 2 were low Th1 responders, and 1 was a Th2 responder. Furthermore, similar patterns and magnitudes of proliferative and cytokine responses were seen when Mycobacterium infection-primed lines were challenged with recombinant antigen 85 (Ag85) proteins. The addition of interleukin 12 (IL-12) during the initial sensitization increased the magnitude of Th1 responses; however, antibody to IL-12 did not eliminate Th1 responses, suggesting that additional factors contributed to the differentiation of these cells. Finally, in the presence of IL-12, recombinant Ag85B was able to prime naive T cells for Th1 responses upon challenge with Mycobacterium-infected macrophages or Ag85B. Therefore, under the appropriate conditions, priming with whole bacteria or a subunit antigen can stimulate Mycobacterium-specific Th1 effector cell development. Further definition of the antigens and conditions required to drive naive human T cells to differentiate into Th1 effectors should facilitate the development of an improved tuberculosis vaccine. PMID:11083801

  19. Functional profile of S100A4-deficient T cells.

    PubMed

    Weatherly, Kathleen; Bettonville, Marie; Torres, David; Kohler, Arnaud; Goriely, Stanislas; Braun, Michel Y

    2015-12-01

    The protein S100A4 is best known for its significant role in promoting motility and invasive capacity of cancer cells. Since S100A4 expression has been reported also in T cells, we analyzed its potential role in T cell motility and inflammation. Using S100a4(+/Gfp) mice, we show here that S100A4 is exclusively expressed by memory T cells of CD4(+) or CD8(+) subpopulations, predominantly of the effector memory T cell subtype. However, the protein was not required for in vitro memory T cell migration toward gradients of the inflammatory chemokine CXCL10. Moreover, T cell memory response was normal in S100A4-deficient mice and lack of S100a4 gene expression did not induce any defect in promoting the development of protective immunity or inflammatory reactions leading to autoimmunity. Taken together, our results demonstrate that S100A4 activity is dispensable for T cell motility/migration and inflammatory potential. PMID:26734465

  20. Induced and Natural Regulatory T Cells in the Development of Inflammatory Bowel Disease

    PubMed Central

    Mayne, Christopher G.; Williams, Calvin B.

    2013-01-01

    The mucosal immune system mediates contact between the host, and the trillions of microbes that symbiotically colonize the gastrointestinal tract. Failure to tolerate the antigens within this “extended self” can result in inflammatory bowel disease (IBD). Within the adaptive immune system, the most significant cells modulating this interaction are Foxp3+ regulatory T (Treg) cells. Treg cells can be divided into two primary subsets: “natural” Treg (nTreg) cells, and “adaptive” or “induced” Treg (iTreg). Recent research suggests that these subsets serve to play both independent and synergistic roles in mucosal tolerance. Studies from both mouse models and human patients suggest defects in Treg cells can play distinct causative roles in IBD. Numerous genetic, microbial, nutritional, and environmental factors that associate with IBD may also affect Treg cells. In this review we summarize the development and function of Treg cells, and how their regulatory mechanisms may fail, leading to a loss of mucosal tolerance. We discuss both animal models and studies of IBD patients suggesting Treg cell involvement in IBD, and consider how Treg cells may be used in future therapies. PMID:23656897

  1. Development and characterization of a monoclonal antibody against the putative T cells of Labeo rohita.

    PubMed

    Rebello, Sanjay C; Rathore, Gaurav; Punia, Peyush; Sood, Neeraj

    2016-05-01

    In this study, we have described the development and characterization of monoclonal antibodies (MAbs) directed against thymocytes of rohu, Labeo rohita. MAbs were obtained by immunizing BALB/c mice with freshly isolated and nylon wool column enriched mononuclear cells of thymus. Positive clones against thymocytes were screened by cellular ELISA. The hybridoma showing strong reactivity with nylon wool enriched mononuclear cells, and non-reactivity with a rohu thymus macrophage cell line and rohu serum was selected and subjected to single cell cloning by limiting dilution. The MAbs secreted by a positive clone were designated as E6 MAb. Western blotting of reduced protein from enriched thymocytes showed that E6 reacted with a 166.2 kDa polypeptide and belongs to the IgG1 subclass. Flow cytometric analysis of gated lymphocytes, revealed that the percentage of E6 positive (E6+) cells in thymus (n = 5, 720.4 ± 79.70 g) was 89.7 %. Similarly, the percentage of E6+ cells in kidney, spleen and blood (n = 5) was 6.71, 1.71 and 1.88 %, respectively. In indirect immunoperoxidase test, E6+ cells appeared to be lymphoid cells with a high nucleus to cytoplasmic ratio and were densely packed in the central region of thymus whereas, a few cells were found to be positive in kidney and spleen sections. E6 MAb also reacted with a small population of lymphocytes in blood smear. This MAb appears to be a suitable marker for T lymphocytes and can be a valuable tool in studying immune response and ontogeny of L. rohita immune system. PMID:25749913

  2. Id3 and Id2 act as a dual safety mechanism in regulating the development and population size of innate-like γδ T cells

    PubMed Central

    Dai, Meifang; Zhuang, Yuan

    2014-01-01

    The innate-like T cells expressing Vγ1.1 and Vδ6.3 represent a unique T cell lineage sharing features with both the γδ T and the invariant NKT cells. The population size of Vγ1.1+Vδ6.3+ T cells is tightly controlled and usually contributes to a very small proportion of thymic output, but the underlying mechanism remains enigmatic. Deletion of Id3, an inhibitor of E-protein transcription factors, can induce an expansion of the Vγ1.1+Vδ6.3+ T cell population. This phenotype is much stronger on the C57Bl/6 background than on the 129/sv background. Using quantitative trait linkage analysis, we identified Id2, a homologue of Id3, to be the major modifier of Id3 in limiting Vγ1.1+Vδ6.3+ T cell expansion. The Vγ1.1+Vδ6.3+ phenotype is attributed to an intrinsic weakness of Id2 transcription from Id2 C57Bl/6 allele, leading to an overall reduced dosage of Id proteins. However, complete removal of both Id2 and Id3 genes in developing T cells suppressed the expansion of Vγ1.1+Vδ6.3+ T cells due to decreased proliferation and increased cell death. We showed that conditional knockout of Id2 alone is sufficient to promote a moderate expansion of γδ T cells. These regulatory effects of Id2 and Id3 on Vγ1.1+Vδ6.3+ T cells are mediated by titration of E protein activity, since removing one or more copies of E protein genes can restore Vγ1.1+Vδ6.3+ T cell expansion in Id2 and Id3 double conditional knockout mice. Our data indicated that Id2 and Id3 collaboratively control survival and expansion of the γδ lineage through modulating a proper threshold of E-proteins. PMID:24379125

  3. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors.

    PubMed

    Kochenderfer, James N; Rosenberg, Steven A

    2013-05-01

    Most B-cell malignancies express CD19, and a majority of patients with B-cell malignancies are not cured by current standard therapies. Chimeric antigen receptors (CARs) are fusion proteins consisting of antigen recognition moieties and T-cell activation domains. T cells can be genetically modified to express CARs, and adoptive transfer of anti-CD19 CAR T cells is now being tested in clinical trials. Effective clinical treatment with anti-CD19 CAR T cells was first reported in 2010 after a patient with advanced-stage lymphoma treated at the NCI experienced a partial remission of lymphoma and long-term eradication of normal B cells. Additional patients have subsequently obtained long-term remissions of advanced-stage B-cell malignancies after infusions of anti-CD19 CAR T cells. Long-term eradication of normal CD19(+) B cells from patients receiving infusions of anti-CD19 CAR T cells demonstrates the potent antigen-specific activity of these T cells. Some patients treated with anti-CD19 CAR T cells have experienced acute adverse effects, which were associated with increased levels of serum inflammatory cytokines. Although anti-CD19 CAR T cells are at an early stage of development, the potent antigen-specific activity observed in patients suggests that infusions of anti-CD19 CAR T cells might become a standard therapy for some B-cell malignancies. PMID:23546520

  4. An Epistatic Interaction between Themis1 and Vav1 Modulates Regulatory T Cell Function and Inflammatory Bowel Disease Development.

    PubMed

    Pedros, Christophe; Gaud, Guillaume; Bernard, Isabelle; Kassem, Sahar; Chabod, Marianne; Lagrange, Dominique; Andréoletti, Olivier; Dejean, Anne S; Lesourne, Renaud; Fournié, Gilbert J; Saoudi, Abdelhadi

    2015-08-15

    The development of inflammatory diseases depends on complex interactions between several genes and various environmental factors. Discovering new genetic risk factors and understanding the mechanisms whereby they influence disease development is of paramount importance. We previously reported that deficiency in Themis1, a new actor of TCR signaling, impairs regulatory T cell (Treg) function and predisposes Brown-Norway (BN) rats to spontaneous inflammatory bowel disease (IBD). In this study, we reveal that the epistasis between Themis1 and Vav1 controls the occurrence of these phenotypes. Indeed, by contrast with BN rats, Themis1 deficiency in Lewis rats neither impairs Treg suppressive functions nor induces pathological manifestations. By using congenic lines on the BN genomic background, we show that the impact of Themis1 deficiency on Treg suppressive functions depends on a 117-kb interval coding for a R63W polymorphism that impacts Vav1 expression and functions. Indeed, the introduction of a 117-kb interval containing the Lewis Vav1-R63 variant restores Treg function and protects Themis1-deficient BN rats from spontaneous IBD development. We further show that Themis1 binds more efficiently to the BN Vav1-W63 variant and is required to stabilize its recruitment to the transmembrane adaptor LAT and to fully promote the activation of Erk kinases. Together, these results highlight the importance of the signaling pathway involving epistasis between Themis1 and Vav1 in the control of Treg suppressive function and susceptibility to IBD development. PMID:26163585

  5. The cellular immune system in myelomagenesis: NK cells and T cells in the development of MM and their uses in immunotherapies

    PubMed Central

    Dosani, T; Carlsten, M; Maric, I; Landgren, O

    2015-01-01

    As vast strides are being made in the management and treatment of multiple myeloma (MM), recent interests are increasingly focusing on understanding the development of the disease. The knowledge that MM develops exclusively from a protracted phase of monoclonal gammopathy of undetermined significance provides an opportunity to study tumor evolution in this process. Although the immune system has been implicated in the development of MM, the scientific literature on the role and status of various immune components in this process is broad and sometimes contradictory. Accordingly, we present a review of cellular immune subsets in myelomagenesis. We summarize the current literature on the quantitative and functional profiles of natural killer cells and T-cells, including conventional T-cells, natural killer T-cells, γδ T-cells and regulatory T-cells, in myelomagenesis. Our goal is to provide an overview of the status and function of these immune cells in both the peripheral blood and the bone marrow during myelomagenesis. This provides a better understanding of the nature of the immune system in tumor evolution, the knowledge of which is especially significant considering that immunotherapies are increasingly being explored in the treatment of both MM and its precursor conditions. PMID:25885426

  6. The cellular immune system in myelomagenesis: NK cells and T cells in the development of myeloma [corrected] and their uses in immunotherapies.

    PubMed

    Dosani, T; Carlsten, M; Maric, I; Landgren, O

    2015-01-01

    As vast strides are being made in the management and treatment of multiple myeloma (MM), recent interests are increasingly focusing on understanding the development of the disease. The knowledge that MM develops exclusively from a protracted phase of monoclonal gammopathy of undetermined significance provides an opportunity to study tumor evolution in this process. Although the immune system has been implicated in the development of MM, the scientific literature on the role and status of various immune components in this process is broad and sometimes contradictory. Accordingly, we present a review of cellular immune subsets in myelomagenesis. We summarize the current literature on the quantitative and functional profiles of natural killer cells and T-cells, including conventional T-cells, natural killer T-cells, ?? T-cells and regulatory T-cells, in myelomagenesis. Our goal is to provide an overview of the status and function of these immune cells in both the peripheral blood and the bone marrow during myelomagenesis. This provides a better understanding of the nature of the immune system in tumor evolution, the knowledge of which is especially significant considering that immunotherapies are increasingly being explored in the treatment of both MM and its precursor conditions. PMID:25885426

  7. Surface receptors and immune activity of purified human circulating mononuclear cells. IV. The demonstration of seven subclasses of T cells in the circulation of the normal individual: the cytotoxic activities of these cells.

    PubMed

    Richter, M; Ettin, G; Sklar, S; Richter, M; Hamdy, H; Jodouin, C A; Kazaniwsky, N

    1983-12-01

    T lymphocytes were isolated from monocyte-depleted mononuclear cells of normal individuals by rosetting them with sheep erythrocytes. These purified T cells were preferentially depleted of cells with receptors for FcG (TG cells), FcM (TM cells), or C'3 (TC cells) by rosette formation with EA(G), EA(M), and EAC, respectively, before or after incubation for 24 hr in medium 199 fortified with fetal calf serum (20%). The unfractionated lymphocytes and the purified and the depleted T cells were analyzed for receptors to FcG, FcM, and C'3 and for cytotoxic activity in the natural killer (NK), antibody dependent cell-mediated cytotoxicity (ADCC), and mitogen-induced cell-mediated cytotoxicity (MICC) assays. The TG and TC cells were detected among the freshly isolated T cells, whereas the TM cells were detected only following 24 hr of incubation. Removal of TC cells from the 24-hr-cultured T cells resulted in removal of all the TC cells and in the concomitant removal of the majority of TM cells. Similarly, removal of TM cells from the 24-hr-cultured T cells resulted in the elimination of all TM cells as well as the majority of TC cells. These results demonstrate the in vitro generation of T cells with receptors for both FcM and C'3 (TM+C cells). Ten percent of the freshly isolated TG cells possessed detectable receptors for C'3 and/or FcM. These cells constitute the TG+C and TG+M lymphocytes. Support for consideration of these receptor-bearing cells as unique and stable cells is provided by the finding that TM and TC cells maintained in culture for up to 72 hr do not generate other receptors but retain the single receptor which characterizes each of these cells. Only a small percentage of cultured TG cells generate receptors for C'3 and FcM. It may therefore be concluded that the TG, TM, and TC cells are stable unireceptor-bearing cells. The TG, TM, TC, TG+C, TG+M, and TM+C lymphocytes account for approximately 50% of the circulating lymphocytes. Whether the remaining cells, the T null or TN cells, constitute the precursors for any or all of the receptor-bearing T cells remains to be determined. Unfractionated freshly isolated T cells were highly cytotoxic in the NK and PWM-mediated MICC assays but were relatively inactive in the ADCC, naturally occurring cell-mediated cytotoxicity (NOCC), and PHA- and Con-A-mediated MICC assays.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:6228301

  8. Effects of Postchallenge Administration of ST-246 on Dissemination of IHD-J-Luc Vaccinia Virus in Normal Mice and in Immune-Deficient Mice Reconstituted with T Cells

    PubMed Central

    Shotwell, Elisabeth; Scott, John; Cruz, Stephanie; King, Lisa R.; Manischewitz, Jody; Diaz, Claudia G.; Jordan, Robert A.; Grosenbach, Douglas W.; Golding, Hana

    2013-01-01

    Whole-body bioimaging was used to study dissemination of vaccinia virus (VACV) in normal and in immune deficient (nu−/nu−) mice protected from lethality by postchallenge administration of ST-246. Total fluxes were recorded in the liver, spleen, lungs, and nasal cavities of live mice after intranasal infection with a recombinant IHD-J-Luc VACV expressing luciferase. Areas under the flux curve were calculated for individual mice to assess viral loads. Treatment for 2 to 5 days of normal BALB/c mice with ST-246 at 100 mg/kg starting 24 h postchallenge conferred 100% protection and reduced viral loads in four organs compared to control mice. Mice also survived after 5 days of treatment with ST-246 at 30 mg/kg, and yet the viral loads and poxes were higher in these mice compared to 100-mg/kg treatment group. Nude mice were not protected by ST-246 alone or by 10 million adoptively transferred T cells. In contrast, nude mice that received T cells and 7-day treatment with ST-246 survived infection and exhibited reduced viral loads compared to nonreconstituted and ST-246-treated mice after ST-246 was stopped. Similar protection of nude mice was achieved using adoptively transferred 1.0 and 0.1 million, but not 0.01 million, purified T cells or CD4+ or CD8+ T cells in conjunction with ST-246 treatment. These data suggest that ST-246 protects immunocompetent mice from lethality and reduces viral dissemination in internal organs and poxvirus lesions. Furthermore, immune-deficient animals with partial T cell reconstitution can control virus replication after a course of ST-246 and survive lethal vaccinia virus challenge. PMID:23468500

  9. Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid

    PubMed Central

    Marinkovic, Tatjana; Garin, Alexandre; Yokota, Yoshifumi; Fu, Yang-Xin; Ruddle, Nancy H.; Furtado, Glaucia C.; Lira, Sergio A.

    2006-01-01

    Ectopic expression of CC chemokine ligand 21 (CCL21) in the thyroid leads to development of lymphoid structures that resemble those observed in Hashimoto thyroiditis. Deletion of the inhibitor of differentiation 2 (Id2) gene, essential for generation of CD3–CD4+ lymphoid tissue–inducer (LTi) cells and development of secondary lymphoid organs, did not affect formation of tertiary lymphoid structures. Rather, mature CD3+CD4+ T cells were critical for the development of tertiary lymphoid structures. The initial stages of this process involved interaction of CD3+CD4+ T cells with DCs, the appearance of peripheral-node addressin–positive (PNAd+) vessels, and production of chemokines that recruit lymphocytes and DCs. These findings indicate that the formation of tertiary lymphoid structures does not require Id2-dependent conventional LTis but depends on a program initiated by mature CD3+CD4+ T cells. PMID:16998590

  10. Alteration of the Thymic T Cell Repertoire by Rotavirus Infection Is Associated with Delayed Type 1 Diabetes Development in Non-Obese Diabetic Mice

    PubMed Central

    Webster, Nicole L.; Zufferey, Christel; Pane, Jessica A.; Coulson, Barbara S.

    2013-01-01

    Rotaviruses are implicated as a viral trigger for the acceleration of type 1 diabetes in children. Infection of adult non-obese diabetic (NOD) mice with rotavirus strain RRV accelerates diabetes development, whereas RRV infection in infant NOD mice delays diabetes onset. In this study of infant mice, RRV titers and lymphocyte populations in the intestine, mesenteric lymph nodes (MLN) and thymus of NOD mice were compared with those in diabetes-resistant BALB/c and C57BL/6 mice. Enhanced intestinal RRV infection occurred in NOD mice compared with the other mouse strains. This was associated with increases in the frequency of CD8?? TCR?? intraepithelial lymphocytes, and their PD-L1 expression. Virus spread to the MLN and T cell numbers there also were greatest in NOD mice. Thymic RRV infection is shown here in all mouse strains, often in combination with alterations in T cell ontogeny. Infection lowered thymocyte numbers in infant NOD and C57BL/6 mice, whereas thymocyte production was unaltered overall in infant BALB/c mice. In the NOD mouse thymus, effector CD4+ T cell numbers were reduced by infection, whereas regulatory T cell numbers were maintained. It is proposed that maintenance of thymic regulatory T cell numbers may contribute to the increased suppression of inflammatory T cells in response to a strong stimulus observed in pancreatic lymph nodes of adult mice infected as infants. These findings show that rotavirus replication is enhanced in diabetes-prone mice, and provide evidence that thymic T cell alterations may contribute to the delayed diabetes onset following RRV infection. PMID:23554993

  11. Unexpected Role for the B cell-specific Src Family Kinase Blk in the Development of IL-17-Producing γδ T Cells

    PubMed Central

    Laird, Renee M.; Laky, Karen; Hayes, Sandra M.

    2010-01-01

    The Ag receptors on αβ and γδ T cells differ not only in the nature of the ligands that they recognize but also in their signaling potential. We hypothesized that the differences in αβ- and γδTCR signal transduction were due to differences in the intracellular signaling pathways coupled to these two TCRs. To investigate this, we employed transcriptional profiling to identify genes encoding signaling molecules that are differentially expressed in mature αβ and γδ T cell populations. Unexpectedly, we found that B lymphoid kinase (Blk), a Src family kinase expressed primarily in B cells, is expressed in γδ T cells but not in αβ T cells. Analysis of Blk-deficient mice revealed that Blk is required for the development of IL-17-producing γδ T cells. Furthermore, Blk is expressed in lymphoid precursors and, in this capacity, plays a role in regulating thymus cellularity during ontogeny. PMID:20974990

  12. Poor Predictive Value of Cytomegalovirus (CMV)–Specific T Cell Assays for the Development of CMV Retinitis in Patients with AIDS

    PubMed Central

    Jacobson, Mark A.; Tan, Qi Xuan; Girling, Valerie; Poon, C.; Van Natta, Mark; Jabs, Douglas A.; Inokuma, Margaret; Maecker, Holden T.; Bredt, Barry; Sinclair, Elizabeth

    2009-01-01

    Background We examined the potential clinical utility of using a cytomegalovirus (CMV)–specific T cell immunoassay to determine the risk of developing new-onset CMV retinitis (CMVR) in patients with acquired immunodeficiency syndrome (AIDS). Methods CMV-specific T cell assays were performed by multiparameter flow cytometry using stored peripheral blood mononuclear cells that had been obtained in an observational study 2–6 months before new-onset CMVR was diagnosed in case patients (at a study visit during which a dilated ophthalmologic examination revealed no evidence of CMVR) and at the same study visit in control subjects (matched by absolute CD4+ T cell count at entry) who did not subsequently develop retinitis during 1–6 years of study follow-up. Results There were no significant differences in CMV-specific CD4+ or CD8+ T cell interferon-γ or interleukin-2 expression in peripheral blood mononuclear cells from case patients and control subjects. Although there were trends toward lower percentages and absolute numbers of CMV-specific, cytokine-expressing CD8+ T cells with a “late memory” phenotype (CD27−CD28−) as well as with an “early memory” phenotype (CD27+CD28+CD45RA+) in case patients than in control subjects, these differences were not statistically significant. Conclusions Many studies have reported that CMV-specific CD4+ and CD8+ T cell responses distinguish patients with active CMVR (i.e., who lack CMV-protective immunity) from those with inactive CMVR after immune restoration by antiretroviral treatment (i.e., who have CMV-protective immunity). However, the multiple CMV-specific immune responses we measured do not appear to have clinical utility for predicting the risk for patients with AIDS of developing new-onset CMVR with sufficient accuracy to be used in guiding therapeutic management. PMID:18173357

  13. Development and characterization of a three-dimensional co-culture model of tumor T cell infiltration.

    PubMed

    Alonso-Nocelo, M; Abuín, C; López-López, R; de la Fuente, M

    2016-01-01

    Tumor growth and metastasis entangle the alteration and recruitment of non-malignant cells to the primary tumor, among them immune cells, constituting the tumor microenvironment (TME). Communication between tumor cells and their stroma has been shown as a fundamental driving force of the tumoral process. A great deal of effort has been focused on depicting their specific interactions and crosstalk. However, most research has been carried out in 2D conventional cultures that alter cell morphology and intracellular signaling processes. Considering these premises, we have developed a 3D cell co-culture model to mimic T cell infiltration into the tumor mass and explore tumor-immune cells interactions in the TME. Expression of specific cell markers and assessment of cell proliferation were carried out to characterize the proposed 3D co-culture model. Additionally, the study and profiling of the secretome revealed a subset of particular cancer-related inflammation proteins prompted upon 3D cultivation of tumor cells in presence of lymphocytes, pointing out an intercellular communication. Altogether, these results suggest that our 3D cell co-culture model can be a useful tool to identify and study critical factors mediating the crosstalk between tumor and immune cells in the TME. Finally, the potential of this model as a drug-screening platform has been explored using docetaxel as a model antitumoral compound. PMID:27078888

  14. T cell metabolic fitness in antitumor immunity.

    PubMed

    Siska, Peter J; Rathmell, Jeffrey C

    2015-04-01

    T cell metabolism has a central role in supporting and shaping immune responses and may have a key role in antitumor immunity. T cell metabolism is normally held under tight regulation in an immune response of glycolysis to promote effector T cell expansion and function. However, tumors may deplete nutrients, generate toxic products, or stimulate conserved negative feedback mechanisms, such as through Programmed Cell Death 1 (PD-1), to impair effector T cell nutrient uptake and metabolic fitness. In addition, regulatory T cells are favored in low glucose conditions and may inhibit antitumor immune responses. Here, we review how the tumor microenvironment modifies metabolic and functional pathways in T cells and how these changes may uncover new targets and challenges for cancer immunotherapy and treatment. PMID:25773310

  15. Pathogen-Specific T Cell Polyfunctionality Is a Correlate of T Cell Efficacy and Immune Protection

    PubMed Central

    Boyd, Anders; Almeida, Jorge R.; Darrah, Patricia A.; Sauce, Delphine; Seder, Robert A.; Appay, Victor; Gorochov, Guy; Larsen, Martin

    2015-01-01

    Introduction Understanding the factors that delineate the efficacy of T cell responses towards pathogens is crucial for our ability to develop potent therapies against infectious diseases. Multidimensional evaluation of T cell functionality at the single-cell level enables exhaustive analysis of combinatorial functional properties, hence polyfunctionality. We have recently invented an algorithm that quantifies polyfunctionality, the Polyfunctionality Index (Larsen et al. PLoS One 2012). Here we demonstrate that quantitative assessment of T cell polyfunctionality correlates with T cell efficacy measured as the capacity to kill target cells in vitro and control infection in vivo. Methods We employed the polyfunctionality index on two datasets selected for their unique ability to evaluate the polyfunctional imprint on T cell efficacy. 1) HIV-specific CD8+ T cells and 2) Leishmania major-specific CD4+ T cells were analysed for their capacity to secrete multiple effector molecules, kill target cells and control infection. Briefly, employing the Polyfunctionality Index algorithm we determined the parameter estimates resulting in optimal correlation between T cell polyfunctionality and T cell efficacy. Results T cell polyfunctionality is correlated with T cell efficacy measured as 1) target killing (r=0.807, P<0.0001) and 2) lesion size upon challenge with Leishmania major (r=-0.50, P=0.004). Contrary to an approach relying on the Polyfunctionality Index algorithm, quantitative evaluation of T cell polyfunctionality traditionally ignores the gradual contribution of more or less polyfunctional T cells. Indeed, comparing both approaches we show that optimal description of T cell efficacy is obtained when gradually integrating all levels of polyfunctionality in accordance with the Polyfunctionality Index. Conclusions Our study presents a generalizable methodology to objectively evaluate the impact of polyfunctionality on T cell efficacy. We show that T cell polyfunctionality is a superior correlate of T cell efficacy both in vitro and in vivo as compared with response size. Therefore, future immunotherapies should aim to increase T cell polyfunctionality. PMID:26046523

  16. Dynamics of T cell responses after stroke.

    PubMed

    Gill, Dipender; Veltkamp, Roland

    2016-02-01

    T cells are integral to the pathophysiology of stroke. The initial inflammatory cascade leads to T cell migration, which results in deleterious and protective effects mediated through CD4(+), CD(8)+, ?? T cells and regulatory T cells, respectively. Cytokines are central to the T cell responses, with key roles established for TNF-?, IFN-?, IL-17, IL-21 and IL-10. Through communication with the systemic immune system via neural and hormonal pathways, there is also transient immunosuppression after severe strokes. With time, the inflammatory process eventually transforms to one more conducive of repair and recovery, though some evidence also suggests ongoing chronic inflammation. The role of antigen-specific T cell responses requires further investigation. As our understanding develops, there is increasing scope to modulate the T cell response after stroke. PMID:26452204

  17. Multilayered specification of the T-cell lineage fate

    PubMed Central

    Rothenberg, Ellen V.; Zhang, Jingli; Li, Long

    2010-01-01

    Summary T-cell development from stem cells has provided a highly accessible and detailed view of the regulatory processes that can go into the choice of a cell fate in a postembryonic, stem cell-based system. But, it has been a view from the outside. The problems in understanding the regulatory basis for this lineage choice begin with the fact that too many transcription factors are needed to provide crucial input: without any one of them, T-cell development fails. Furthermore, almost all the factors known to provide crucial functions during the climax of T-lineage commitment itself are also vital for earlier functions that establish the pool of multilineage precursors that would normally feed into the T-cell specification process. When the regulatory genes that encode them are mutated, the confounding effects on earlier stages make it difficult to dissect T-cell specification genetically. Yet both the positive and the negative regulatory events involved in the choice of a T-cell fate are actually a mosaic of distinct functions. New evidence has emerged recently that finally provides a way to separate the major components that fit together to drive this process. Here, we review insights into T-cell specification and commitment that emerge from a combination of molecular, cellular, and systems biology approaches. The results reveal the regulatory structure underlying this lineage decision. PMID:20969591

  18. Improving therapy of chronic lymphocytic leukemia with chimeric antigen receptor T cells.

    PubMed

    Fraietta, Joseph A; Schwab, Robert D; Maus, Marcela V

    2016-04-01

    Adoptive cell immunotherapy for the treatment of chronic lymphocytic leukemia (CLL) has heralded a new era of synthetic biology. The infusion of genetically engineered, autologous chimeric antigen receptor (CAR) T cells directed against CD19 expressed by normal and malignant B cells represents a novel approach to cancer therapy. The results of recent clinical trials of CAR T cells in relapsed and refractory CLL have demonstrated long-term disease-free remissions, underscoring the power of harnessing and redirecting the immune system against cancer. This review will briefly summarize T-cell therapies in development for CLL disease. We discuss the role of T-cell function and phenotype, T-cell culture optimization, CAR design, and approaches to potentiate the survival and anti-tumor effects of infused lymphocytes. Future efforts will focus on improving the efficacy of CAR T cells for the treatment of CLL and incorporating adoptive cell immunotherapy into standard medical management of CLL. PMID:27040708

  19. Regulatory T cell memory.

    PubMed

    Rosenblum, Michael D; Way, Sing Sing; Abbas, Abul K

    2016-02-01

    Memory for antigen is a defining feature of adaptive immunity. Antigen-specific lymphocyte populations show an increase in number and function after antigen encounter and more rapidly re-expand upon subsequent antigen exposure. Studies of immune memory have primarily focused on effector B cells and T cells with microbial specificity, using prime-challenge models of infection. However, recent work has also identified persistently expanded populations of antigen-specific regulatory T cells that protect against aberrant immune responses. In this Review, we consider the parallels between memory effector T cells and memory regulatory T cells, along with the functional implications of regulatory memory in autoimmunity, antimicrobial host defence and maternal-fetal tolerance. In addition, we discuss emerging evidence for regulatory T cell memory in humans and key unanswered questions in this rapidly evolving field. PMID:26688349

  20. HLA-E–restricted regulatory CD8+ T cells are involved in development and control of human autoimmune type 1 diabetes

    PubMed Central

    Jiang, Hong; Canfield, Steve M.; Gallagher, Mary P.; Jiang, Hong H.; Jiang, Yihua; Zheng, Zongyu; Chess, Leonard

    2010-01-01

    A key feature of the immune system is its ability to discriminate self from nonself. Breakdown in any of the mechanisms that maintain unresponsiveness to self (a state known as self-tolerance) contributes to the development of autoimmune conditions. Recent studies in mice show that CD8+ T cells specific for the unconventional MHC class I molecule Qa-1 bound to peptides derived from the signal sequence of Hsp60 (Hsp60sp) contribute to self/nonself discrimination. However, it is unclear whether they exist in humans and play a role in human autoimmune diseases. Here we have shown that CD8+ T cells specific for Hsp60sp bound to HLA-E (the human homolog of Qa-1) exist and play an important role in maintaining peripheral self-tolerance by discriminating self from nonself in humans. Furthermore, in the majority of type 1 diabetes (T1D) patients tested, there was a specific defect in CD8+ T cell recognition of HLA-E/Hsp60sp, which was associated with failure of self/nonself discrimination. However, the defect in the CD8+ T cells from most of the T1D patients tested could be corrected in vitro by exposure to autologous immature DCs loaded with the Hsp60sp peptide. These data suggest that HLA-E–restricted CD8+ T cells may play an important role in keeping self-reactive T cells in check. Thus, correction of this defect could be a potentially effective and safe approach in the therapy of T1D. PMID:20877010

  1. T-cell factor-1 expression during human natural killer cell development and in circulating CD56(+) bright natural killer cells.

    PubMed

    Toor, A A; Lund, T C; Miller, J S

    2001-04-01

    Transcription factors are essential to govern differentiation along the lymphoid lineage from uncommitted hematopoietic stem cells. Although many of these transcription factors have putative roles based on murine knockout experiments, their function in human lymphoid development is less known and was studied further. Transcription factor expression in fresh and cultured adult human bone marrow and umbilical cord blood progenitors was evaluated. We found that fresh CD34(+)Lin(-) cells that are human leukocyte antigen (HLA)-DR(-) or CD38(-) constitutively express GATA-3 but not T-cell factor-1 (TCF-1) or Id-3. Culture with the murine fetal liver cell line AFT024 and defined cytokines was capable of inducing TCF-1 mRNA. However, no T-cell receptor gene rearrangement was identified in cultured progeny. Id-3, a basic helix loop helix factor with dominant negative function for T-cell differentiation transcription factors, also was upregulated and may explain unsuccessful T-cell maturation. To better understand the developmental link between natural killer (NK) cells derived from progenitors, we studied NK cell subsets circulating in blood. CD56(+bright), but not CD56(+dim), NK cells constitutively express TCF-1 by reverse transcriptase polymerase chain reaction and Western blot analysis. The TCF-1 isoform found in CD56(+bright) cells, which express lectin but not immunoglobulin class I recognizing inhibitory receptors, was identical to that induced in NK cell differentiation culture and was distinctly different from isoforms in T cells. These results suggest that TCF-1 does not target human killer immunoglobulin receptor genes, TCF-1 is uniquely expressed in circulating CD56(+bright) NK cells, and specific TCF-1 isoforms may play an important role in regulating NK differentiation from a common NK/T-cell progenitor. PMID:11301190

  2. T Cell Immune Reconstitution Following Lymphodepletion

    PubMed Central

    Williams, Kirsten; Hakim, Frances T.; Gress, Ronald E.

    2007-01-01

    T cell reconstitution following lymphopenia from chemotherapy or stem cell transplant is often slow and incompetent, contributing to the development of infectious diseases, relapse, and graft-versus-host disease. This is due to the fact that de novo T cell production is impaired following cytoreductive regimens. T cells can be generated from two pathways: 1) thymus derived through active thymopoiesis and 2) peripherally expanded clones through homeostatic proliferation. In the development of lymphopenia, the thymic pathway is commonly compromised in adults and T cells rely upon peripheral expansion to recover T cell numbers. This homeostatic proliferation exploits the high cytokine levels following lymphopenia to rapidly generate T cells in the periphery. Moreover, this early peripheral expansion of T cells can also be driven by exogenous antigen. This results in loss of T cell repertoire diversity and may predispose to auto- or alloimmunity. Alternatively, the high homeostatic proliferation following lymphopenia may facilitate expansion of anti-tumor immunity. Murine and human studies have provided insight into the cytokine and cellular regulators of these two pathways of T cell generation and the disparate portraits of T cell immunity created through robust thymopoiesis or peripheral expansion following lymphopenia. This insight has permitted the manipulation of the immune system to maximize anti-tumor immunity through lymphopenia and led to an appreciation of mechanisms that underlie graft vs. host disease. PMID:18023361

  3. Harnessing endogenous miR-181a to segregate transgenic antigen receptor expression in developing versus post-thymic T cells in murine hematopoietic chimeras.

    PubMed

    Papapetrou, Eirini P; Kovalovsky, Damian; Beloeil, Laurent; Sant'angelo, Derek; Sadelain, Michel

    2009-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression by targeting complementary sequences, referred to as miRNA recognition elements (MREs), typically located in the 3' untranslated region of mRNAs. miR-181a is highly expressed in developing thymocytes and markedly downregulated in post-thymic T cells. We investigated whether endogenous miR-181a can be harnessed to segregate expression of chimeric antigen receptors (CARs) and TCRs between developing and mature T cells. Lentiviral-encoded antigen receptors were tagged with a miR-181a-specific MRE and transduced into mouse BM cells that were used to generate hematopoietic chimeras. Expression of a CAR specific for human CD19 (hCD19) was selectively suppressed in late double-negative and double-positive thymocytes, coinciding with the peak in endogenous miR-181a expression. Receptor expression was fully restored in post-thymic resting and activated T cells, affording protection against a subsequent challenge with hCD19+ tumors. Hematopoietic mouse chimeras engrafted with a conalbumin-specific TCR prone to thymic clonal deletion acquired peptide-specific T cell responsiveness only when the vector-encoded TCR transcript was similarly engineered to be subject to regulation by miR-181a. These results demonstrate the potential of miRNA-regulated transgene expression in stem cell-based therapies, including cancer immunotherapy. PMID:19033646

  4. Human V delta 2+ gamma delta T-cell tolerance to foreign antigens of Toxoplasma gondii.

    PubMed Central

    Hara, T; Ohashi, S; Yamashita, Y; Abe, T; Hisaeda, H; Himeno, K; Good, R A; Takeshita, K

    1996-01-01

    Little is known about the mechanisms involved in human gammadelta T-cell tolerance to self or to foreign antigens. Patients with congenital toxoplasmosis offer a unique opportunity to examine Vdelta2+ gammadelta T-cell tolerance. Analysis of gammadelta T cells in patients with congenital toxoplasmosis revealed evidence for anergy of these cells with or without clonal Vdelta2+ gammadelta T-cell expansion in the acute phase of the Toxoplasma infection. T cells in general were unresponsive and did not proliferate upon exposure to mitogens or to Toxoplasma lysate antigens or in response to live Toxoplasma-infected cells when the congenitally infected infants were 1 month of age, and they exhibited selective anergy to Toxoplasma lysate antigens and live Toxoplasma-infected cells when the infants were aged 5 months. During the chronic phase of congenital toxoplasmosis in the patients who were more than I year of age, the repertoires of the gammadelta T-cell receptors were found to be within normal ranges. In addition, in the chronic phase, the gammadelta T cells proliferated and secreted gamma-interferon in response to exposure to live Toxoplasmia-infected cells. By contrast, alphabeta T cells remained anergic. Vdelta2+ gammadelta T cells have been considered to undergo extrathymic maturation and thus to be subject to development of peripheral tolerance. Our findings indicate that Vdelta2+ gammadelta T-cell tolerance was lost in these infected infants earlier than alphabeta T-cell tolerance. These findings suggest that gammadelta T cells play a role in protection against Toxoplasma gondii in the chronic phase when congenitally infected children are more than 1 year of age, especially in those in whom alphabeta T cells continue to exhibit deficits in specific immune responses to Toxoplasma antigens. PMID:8643541

  5. SOCS3 deletion in T lymphocytes suppresses development of chronic ocular inflammation via upregulation of CTLA-4 and expansion of regulatory T cells.

    PubMed

    Yu, Cheng-Rong; Kim, Sung-Hye; Mahdi, Rashid M; Egwuagu, Charles E

    2013-11-15

    Suppressors of cytokine signaling (SOCS) proteins are negative-feedback regulators of the JAK/STAT pathway, and SOCS3 contributes to host immunity by regulating the intensity and duration of cytokine signals and inflammatory responses. Mice with Socs3 deletion in myeloid cells exhibit enhanced STAT3 signaling, expansion of Th1 and Th17 cells, and develop severe experimental autoimmune encephalomyelitis. Interestingly, development of the unique IL-17/IFN-γ double-producing (Th17/IFN-γ and Tc17/IFN-γ) subsets that exhibit strong cytotoxic activities and are associated with pathogenesis of several autoimmune diseases has recently been shown to depend on epigenetic suppression of SOCS3 expression, further suggesting involvement of SOCS3 in autoimmunity and tumor immunity. In this study, we generated mice with Socs3 deletion in the CD4 T cell compartment (CD4-SOCS3 knockout [KO]) to determine in vivo effects of the loss of Socs3 in the T cell-mediated autoimmune disease, experimental autoimmune uveitis (EAU). In contrast to the exacerbation of experimental autoimmune encephalomyelitis in myeloid-specific SOCS3-deleted mice, CD4-SOCS3KO mice were protected from acute and chronic uveitis. Protection from EAU correlated with enhanced expression of CTLA-4 and expansion of IL-10-producing regulatory T cells with augmented suppressive activities. We further show that SOCS3 interacts with CTLA-4 and negatively regulates CTLA-4 levels in T cells, providing a mechanistic explanation for the expansion of regulatory T cells in CD4-SOCS3 during EAU. Contrary to in vitro epigenetic studies, Th17/IFN-γ and Tc17/IFN-γ populations were markedly reduced in CD4-SOCS3KO, suggesting that SOCS3 promotes expansion of the Th17/IFN-γ subset associated with development of severe uveitis. Thus, SOCS3 is a potential therapeutic target in uveitis and other autoinflammatory diseases. PMID:24101549

  6. T-cell tolerance and autoimmune diabetes.

    PubMed

    Brumeanu, T D; Bona, C A; Casares, S

    2001-01-01

    Herein we describe the major signaling events that occur in T-cells upon T-cell receptor (TCR) engagement, and the mechanisms responsible for the induction of T-cell anergy that may ultimately lead to the development of immunospecific therapies in T-cell mediated autoimmune diseases. A new type of antigen presenting molecule (dimeric MHC class-II/peptide, DEF) endowed with antigen-specific immunomodulatory effects such as induction of Th2 polarization and T-cell anergy is also described as a potential antidiabetogenic agent. According to our preliminary results, the MHC II/peptide-based approach may provide rational grounds for further development of antigen-specific immunotherapeutic agents such as human-like MHC lI/peptide chimeras endowed with efficient down-regulatory effects in CD4 T-cell-mediated autoimmune diseases such as Type 1 diabetes, multiple sclerosis, primary biliary cirrhosis, and rheumatoid arthritis. PMID:11878772

  7. CD4 T cells are required for both development and maintenance of disease in a new mouse model of reversible colitis.

    PubMed

    Brasseit, J; Althaus-Steiner, E; Faderl, M; Dickgreber, N; Saurer, L; Genitsch, V; Dolowschiak, T; Li, H; Finke, D; Hardt, W-D; McCoy, K D; Macpherson, A J; Corazza, N; Noti, M; Mueller, C

    2016-05-01

    Current therapies to treat inflammatory bowel diseases have limited efficacy, significant side effects, and often wane over time. Little is known about the cellular and molecular mechanisms operative in the process of mucosal healing from colitis. To study such events, we developed a new model of reversible colitis in which adoptive transfer of CD4(+)CD45RB(hi) T cells into Helicobacter typhlonius-colonized lymphopenic mice resulted in a rapid onset of colonic inflammation that was reversible through depletion of colitogenic T cells. Remission was associated with an improved clinical and histopathological score, reduced immune cell infiltration to the intestinal mucosa, altered intestinal gene expression profiles, regeneration of the colonic mucus layer, and the restoration of epithelial barrier integrity. Notably, colitogenic T cells were not only critical for induction of colitis but also for maintenance of disease. Depletion of colitogenic T cells resulted in a rapid drop in tumor necrosis factor α (TNFα) levels associated with reduced infiltration of inflammatory immune cells to sites of inflammation. Although neutralization of TNFα prevented the onset of colitis, anti-TNFα treatment of mice with established disease failed to resolve colonic inflammation. Collectively, this new model of reversible colitis provides an important research tool to study the dynamics of mucosal healing in chronic intestinal remitting-relapsing disorders. PMID:26376366

  8. Delta-like 4-mediated Notch signaling is required for early T-cell development in a three-dimensional thymic structure.

    PubMed

    Hirano, Ken-ichi; Negishi, Naoko; Yazawa, Masaki; Yagita, Hideo; Habu, Sonoko; Hozumi, Katsuto

    2015-08-01

    Delta-like 4 (Dll4)-mediated Notch signaling is critical for specifying T-cell fate, but how Dll4-mediated Notch signaling actually contributes to T-cell development in the thymus remains unclear. To explore this mechanism in the thymic three-dimensional structure, we performed fetal thymus organ culture using Dll4-deficient mice. DN1a/b+DN2mt cells, which had not yet committed to either the αβ T or γδ T/NK cell lineage, did not differentiate into the αβ T-cell lineage in Dll4-deficient thymus despite the lack of cell fate conversion into other lineages. However, DN3 cells efficiently differentiated into a later developmental stage of αβ T cells, the double-positive (DP) stage, although the proliferation was significantly impaired during the differentiation process. These findings suggest that the requirement for Notch signaling differs between the earliest and pre-TCR-bearing precursors and that continued Notch signaling is required for proper differentiation with active proliferation of αβ T lineage cells. Furthermore, we showed that Notch signaling increased the c-Myc expression in DN3 cells in the thymus and that its overexpression rescued the proliferation and differentiation of DN3 cells in the Dll4-null thymus. Therefore, c-Myc plays a central role in the transition from stage DN3 to DP as a downstream target of Notch signaling. PMID:25976373

  9. T-Cell Lymphoma

    MedlinePlus

    ... are extremely rare. T-cell lymphomas can be aggressive (fast-growing) or indolent (slow-growing). Lymphomas are ... also be involved. This group of PTCLs is aggressive and requires combination chemotherapy upon diagnosis. For more ...

  10. EmTIP, a T-Cell Immunomodulatory Protein Secreted by the Tapeworm Echinococcus multilocularis Is Important for Early Metacestode Development

    PubMed Central

    Nono, Justin Komguep; Lutz, Manfred B.; Brehm, Klaus

    2014-01-01

    Background Alveolar echinococcosis (AE), caused by the metacestode of the tapeworm Echinococcus multilocularis, is a lethal zoonosis associated with host immunomodulation. T helper cells are instrumental to control the disease in the host. Whereas Th1 cells can restrict parasite proliferation, Th2 immune responses are associated with parasite proliferation. Although the early phase of host colonization by E. multilocularis is dominated by a potentially parasitocidal Th1 immune response, the molecular basis of this response is unknown. Principal Findings We describe EmTIP, an E. multilocularis homologue of the human T-cell immunomodulatory protein, TIP. By immunohistochemistry we show EmTIP localization to the intercellular space within parasite larvae. Immunoprecipitation and Western blot experiments revealed the presence of EmTIP in the excretory/secretory (E/S) products of parasite primary cell cultures, representing the early developing metacestode, but not in those of mature metacestode vesicles. Using an in vitro T-cell stimulation assay, we found that primary cell E/S products promoted interferon (IFN)-γ release by murine CD4+ T-cells, whereas metacestode E/S products did not. IFN-γ release by T-cells exposed to parasite products was abrogated by an anti-EmTIP antibody. When recombinantly expressed, EmTIP promoted IFN-γ release by CD4+ T-cells in vitro. After incubation with anti-EmTIP antibody, primary cells showed an impaired ability to proliferate and to form metacestode vesicles in vitro. Conclusions We provide for the first time a possible explanation for the early Th1 response observed during E. multilocularis infections. Our data indicate that parasite primary cells release a T-cell immunomodulatory protein, EmTIP, capable of promoting IFN-γ release by CD4+ T-cells, which is probably driving or supporting the onset of the early Th1 response during AE. The impairment of primary cell proliferation and the inhibition of metacestode vesicle formation by anti-EmTIP antibodies suggest that this factor fulfills an important role in early E. multilocularis development within the intermediate host. PMID:24392176

  11. Shifting the Evolving CAR T Cell Platform into Higher Gear.

    PubMed

    Holohan, Daniel R; Lee, James C; Bluestone, Jeffrey A

    2015-10-12

    In this issue of Cancer Cell, Zhao and colleagues test various chimeric antigen receptor (CAR) T cells to show that CD28-CD3ζ CAR T cells that constitutively express 4-1BBL promote T cell expansion and tumor eradication while reducing exhaustion. The results have important implications for the development of effective CAR T cell therapies in cancer patients. PMID:26461084

  12. In silico CD4+ T-cell epitope prediction and HLA distribution analysis for the potential proteins of Neisseria meningitidis Serogroup B--a clue for vaccine development.

    PubMed

    Gupta, Shishir K; Smita, Suchi; Sarangi, Aditya Narayan; Srivastava, Mugdha; Akhoon, Bashir A; Rahman, Qamar; Gupta, Shailendra K

    2010-10-01

    Neisseria meningitidis, an exclusive human pathogen, is a major cause of mortality due to meningococcal meningitis and sepsis in many developing countries. Three meningococcal serogroup B proteins, i.e. T-cell stimulating protein A (TspA), autotransporter A (AutA), and IgA-specific serine endopeptidase (IGA1) elicits CD4+ T-cell response and may enhance the effectiveness of meningococcal vaccines by acting as protective immunogens. A very limited data on T-helper cell epitopes in MenB proteins is available. Hence, in silico prediction of peptide sequences which may act as helper T lymphocyte epitopes in MenB proteins was carried out by NetMHCIIpan web server. HLA distribution analysis was done by using the population coverage tool of Immune Epitope Database to determine the fraction of individuals in various populations expected to respond to a given set of predicted T-cell epitopes based on HLA genotype frequencies. Six epitopic core sequences, two from each MenB proteins, i.e. AutA, TspA and IgA1 protease were predicted to associate with a large number of HLA-DR alleles. These six peptides may act as T-cell epitope in more than 95% of populations in 8 out of 12 populations considered. The T-cell stimulation potential of these predicted peptides containing the core epitopic sequences is to be validated by using laboratory experiments for their efficient use as peptide vaccine candidates against N. meningitidis serogroup B. PMID:20716448

  13. Pushing the frontiers of T-cell vaccines: accurate measurement of human T-cell responses

    PubMed Central

    Saade, Fadi; Gorski, Stacey Ann; Petrovsky, Nikolai

    2013-01-01

    There is a need for novel approaches to tackle major vaccine challenges such as malaria, tuberculosis and HIV, among others. Success will require vaccines able to induce a cytotoxic T-cell response a deficiency of most current vaccine approaches. The successful development of T-cell vaccines faces many hurdles, not least being the lack of consensus on a standardized T-cell assay format able to be used as a correlate of vaccine efficacy. Hence, there remains a need for reproducible measures of T-cell immunity proven in human clinical trials to correlate with vaccine protection. The T-cell equivalent of a neutralizing antibody assay would greatly accelerate the development and commercialization of T-cell vaccines. Recent advances have seen a plethora of new T-cell assays become available, including some like cytometry by time-of-flight with extreme multiparameter T-cell phenotyping capability. However, whether it is historic thymidine-based proliferation assays or sophisticated new cytometry assays, each assay has its relative advantages and disadvantages, and relatively few of these assays have yet to be validated in large-scale human vaccine trials. This review examines the current range of T-cell assays and assesses their suitability for use in human vaccine trials. Should one or more of these assays be accepted as an agreed surrogate of T-cell protection by a regulatory agency, this would significantly accelerate the development of T-cell vaccines. PMID:23252389

  14. E3 Ubiquitin Ligase Cbl-b Regulates Thymic-Derived CD4+CD25+ Regulatory T Cell Development by Targeting Foxp3 for Ubiquitination.

    PubMed

    Zhao, Yixia; Guo, Hui; Qiao, Guilin; Zucker, Mark; Langdon, Wallace Y; Zhang, Jian

    2015-02-15

    CD28 costimulation is essential for the development of thymic-derived CD4(+)CD25(+)Foxp3(+) regulatory T cells ("tTregs"). E3 ubiquitin ligase Cbl-b has been shown to regulate CD28 dependence of T cell activation. In this paper, we report that the loss of Cbl-b partially but significantly rescues the defective development of tTregs in Cd28(-/-) mice. This partial rescue is independent of IL-2. Mechanistically, Cbl-b binds to Foxp3 upon TCR stimulation and, together with Stub1, targets Foxp3 for ubiquitination and subsequently degradation in the proteasome. As Cbl-b self-ubiquitination and proteasomal degradation is impaired in Cd28(-/-) T cells, the defective development of tTregs in Cd28(-/-) mice may in part be due to increased Foxp3 ubiquitination and degradation targeted by Stub1 and Cbl-b. Treating Cd28(-/-) mice with a proteasome inhibitor completely rescues defective tTreg development in these mice. Therefore, Cbl-b, together with Stub1, ubiquitinate Foxp3, and regulate tTreg development. PMID:25560411

  15. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting: Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4{sup +} T cells compared

    SciTech Connect

    Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D.

    1995-05-01

    Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) have been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.

  16. The BMP Pathway Participates in Human Naive CD4+ T Cell Activation and Homeostasis

    PubMed Central

    Martínez, Víctor G.; Sacedón, Rosa; Hidalgo, Laura; Valencia, Jaris; Fernández-Sevilla, Lidia M.; Hernández-López, Carmen

    2015-01-01

    Bone Morphogenetic Proteins (BMPs) form a group of secreted factors that belongs to the TGF-β superfamily. Among different roles in a number of immune cell types, BMPs are known to regulate T cell development within the thymus, although the role of BMP signaling in human mature T cells remains elusive. In this study, we demonstrate that canonical BMP signaling is necessary during two critical events that regulate the size and function of human naive CD4+ T cell population: activation and homeostasis. Upon stimulation via TCR, naive CD4+ T cells upregulate the expression of BMP ligands triggering canonical BMP signaling in CD25+ cells. Blockade of BMP signaling severely impairs CD4+ T cell proliferation after activation mainly through regulation of IL-2, since the addition of this cytokine recuperates normal T cell expansion after inhibition of BMP signaling. Similarly, activation of canonical BMP pathway is required for both the maintenance of cell survival and the homeostatic proliferation induced by IL-7, a key factor for T cell homeostasis. Moreover, upregulation of two critical receptors for T cell homeostasis, CXCR4 and CCR9, triggered by IL-7 is also abrogated in the absence of BMP signaling. Collectively, we describe important roles of the canonical BMP signaling in human naive CD4+ T cell activation and homeostasis that could be valuable for clinical application. PMID:26110906

  17. Immunoregulation in the tissues by gammadelta T cells.

    PubMed

    Hayday, Adrian; Tigelaar, Robert

    2003-03-01

    For a T-cell subset to be classified as immunoregulatory, it might reasonably be predicted that in its absence, animals would experience pathological immune dysregulation. Moreover, reconstitution of the subset should restore normal immune regulation. So far, these criteria have been satisfied by only a few of the candidate regulatory T-cell subsets, but among them is the intraepithelial gammadelta T-cell receptor (TCR)+ subset of mouse skin. In this article, we look at immunoregulatory gammadelta T cells, and the growing evidence for tissue-associated immunoregulation mediated by both gammadelta T cells and alphabeta T cells. PMID:12658271

  18. Memory T Cell Migration

    PubMed Central

    Zhang, Qianqian; Lakkis, Fadi G.

    2015-01-01

    Immunological memory is a key feature of adaptive immunity. It provides the organism with long-lived and robust protection against infection. In organ transplantation, memory T cells pose a significant threat by causing allograft rejection that is generally resistant to immunosuppressive therapy. Therefore, a more thorough understanding of memory T cell biology is needed to improve the survival of transplanted organs without compromising the host’s ability to fight infections. This review will focus on the mechanisms by which memory T cells migrate to the site where their target antigen is present, with particular emphasis on their migration to transplanted organs. First, we will define the known subsets of memory T cells (central, effector, and tissue resident) and their circulation patterns. Second, we will review the cellular and molecular mechanisms by which memory T cells migrate to inflamed and non-inflamed tissues and highlight the emerging paradigm of antigen-driven, trans-endothelial migration. Third, we will discuss the relevance of this knowledge to organ transplantation and the prevention or treatment of allograft rejection. PMID:26483794

  19. N'-methylnicotinamide blocks activation of normal and leukemic T cell line at an early stage of the cell cycle; role of ADP-ribosylation in the transcription of IL-2

    SciTech Connect

    Salazar-Gonzalez, J.F.; Rezai, A.R.; Kermain-Arab, V.

    1986-03-05

    The authors analyzed the role of ADP-ribosyl transferase (ADPRT) in the mitogen induced activation of normal peripheral blood lymphocytes and leukemic T cell line Jurkats through the use of an ADPRT inhibitor. Addition of N'-methylnicotinamide (N'-MN) in the range of 1-10 mM reduced IL-2 production and IL-2 receptor (TAC) expression in both cell specimens in a dose dependent fashion when added before or at the same time as ConA, PHA (+ TPA in Jurkats). When N'-MN was added at different times after mitogens, a sigmoid curve response was obtained. The drug was effective only when added in the early stages of activation (1st 8 hours), causing reduction of viability and cell cycle progression (blast formation-DNA synthesis) and expression of all activation markers such as TAC, OKT-9, OKT-10, and HLA-DR. Late addition of the drug (24 hours or later) had no effect. Exogenous recombinant IL-2 (15 units/ml) partially reversed the N'-MN induced inhibition of /sup 3/H-Thymidine incorporation into DNA from mitogen stimulated normal T cells. Northern blot analysis revealed that N'-MN blocks the transcription of DNA to mRNA coding for IL-2. These data indicate that transcription of the genes involved in immune activation requires ADP-ribosylation of nuclear proteins.

  20. Regulatory T cells in spontaneous autoimmune encephalomyelitis.

    PubMed

    Furtado, G C; Olivares-Villagómez, D; Curotto de Lafaille, M A; Wensky, A K; Latkowski, J A; Lafaille, J J

    2001-08-01

    Spontaneous experimental autoimmune encephalomyelitis (EAE) develops in 100% of mice harboring a monoclonal myelin basic protein (MBP)-specific CD4+ alphabeta T-cell repertoire. Monoclonality of the alphabeta T-cell repertoire can be achieved by crossing MBP-specific T-cell receptor (TCR) transgenic mice with either RAG-/- mice or TCR alpha-/-/TCR beta-/- double knockout mice. Spontaneous EAE can be prevented by a single administration of purified CD4+ splenocytes or thymocytes obtained from wild-type syngeneic mice. The regulatory T cells (T-reg) that protect from spontaneous EAE need not express the CD25 marker, as effective protection can be attained with populations depleted of CD25+ T cells. Although the specificity of the regulatory T cells is important for their generation or regulatory function, T cells that protect from spontaneous EAE can have a diverse TCR alpha and beta chain composition. T-reg cells expand poorly in vivo, and appear to be long lived. Finally, precursors for T-reg are present in fetal liver as well as in the bone marrow of aging mice. We propose that protection of healthy individuals from autoimmune diseases involves several layers of regulation, which consist of CD4+CD25+ regulatory T cells, CD4+CD25- T-reg cells, and anti-TCR T cells, with each layer potentially operating at different stages of T-helper cell-mediated immune responses. PMID:11722629

  1. Engineered T cell therapies.

    PubMed

    Field, Anne-Christine; Qasim, Waseem

    2015-01-01

    Alongside advancements in gene therapy for inherited immune disorders, the need for effective alternative therapeutic options for other conditions has resulted in an expansion in the field of research for T cell gene therapy. T cells are easily obtained and can be induced to divide robustly ex vivo, a characteristic that allows them to be highly permissible to viral vector-mediated introduction of transgenes. Pioneering clinical trials targeting cancers and infectious diseases have provided safety and feasibility data and important information about persistence of engineered cells in vivo. Here, we review clinical experiences with γ-retroviral and lentiviral vectors and consider the potential of integrating transposon-based vectors as well as specific genome editing with designer nucleases in engineered T cell therapies. PMID:26530808

  2. Unbalanced recovery of regulatory and effector T cells after allogeneic stem cell transplantation contributes to chronic GVHD

    PubMed Central

    Alho, Ana C.; Kim, Haesook T.; Chammas, Marie J.; Reynolds, Carol G.; Matos, Tiago R.; Forcade, Edouard; Whangbo, Jennifer; Nikiforow, Sarah; Cutler, Corey S.; Koreth, John; Ho, Vincent T.; Armand, Philippe; Antin, Joseph H.; Alyea, Edwin P.; Lacerda, Joao F.; Soiffer, Robert J.

    2016-01-01

    The development and maintenance of immune tolerance after allogeneic hematopoietic stem cell transplantation (HSCT) requires the balanced reconstitution of donor-derived CD4 regulatory T cells (CD4Tregs) as well as effector CD4 (conventional CD4 T cells [CD4Tcons]) and CD8 T cells. To characterize the complex mechanisms that lead to unbalanced recovery of these distinct T-cell populations, we studied 107 adult patients who received T-replete stem cell grafts after reduced-intensity conditioning. Immune reconstitution of CD4Treg, CD4Tcon, and CD8 T cells was monitored for a 2-year period. CD3 T-cell counts gradually recovered to normal levels during this period but CD8 T cells recovered more rapidly than either CD4Tregs or CD4Tcons. Reconstituting CD4Tregs and CD4Tcons were predominantly central memory (CM) and effector memory (EM) cells and CD8 T cells were predominantly terminal EM cells. Thymic generation of naive CD4Tcon and CD8 T cells was maintained but thymic production of CD4Tregs was markedly decreased with little recovery during the 2-year study. T-cell proliferation was skewed in favor of CM and EM CD4Tcon and CD8 T cells, especially 6 to 12 months after HSCT. Intracellular expression of BCL2 was increased in CD4Tcon and CD8 T cells in the first 3 to 6 months after HSCT. Early recovery of naive and CM fractions within each T-cell population 3 months after transplant was also strongly correlated with the subsequent development of chronic graft-versus-host disease (GVHD). These dynamic imbalances favor the production, expansion, and persistence of effector T cells over CD4Tregs and were associated with the development of chronic GVHD. PMID:26670634

  3. Developmental Exposure To 2,3,7,8 Tetrachlorodibenzo-p-Dioxin Attenuates Later-Life Notch1-Mediated T Cell Development and Leukemogenesis

    PubMed Central

    Ahrenhoerster, Lori S.; Leuthner, Tess C.; Tate, Everett R.; Lakatos, Peter A.; Laiosa, Michael D.

    2015-01-01

    Over half of T-cell acute lymphoblastic leukemia (T-ALL) patients have activating mutations in the Notch gene. Moreover, the contaminant 2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) is a known carcinogen that mediates its toxicity through the aryl hydrocarbon receptor (AHR), and crosstalk between activated AHR and Notch signaling pathways has previously been observed. Given the importance of Notch signaling in thymocyte development and T-ALL disease progression, we hypothesized that the activated AHR potentiates disease initiation and progression in an in vivo model of Notch1-induced thymoma. This hypothesis was tested utilizing adult and developmental exposure paradigms to TCDD in mice expressing a constitutively active Notch1 transgene (NotchICN-TG). Following exposure of adult NotchICN-TG mice to a single high dose of TCDD, we observed a significant increase in the efficiency of CD8 thymocyte generation. We next exposed pregnant mice to 3μg/kg of TCDD throughout gestation and lactation to elucidate effects of developmental AHR activation on later-life T cell development and T-ALL-like thymoma susceptibility induced by Notch1. We found that the vehicle-exposed NotchICN-TG offspring have a peripheral T-cell pool heavily biased toward the CD4 lineage, while TCDD-exposed NotchICN-TG offspring were biased toward the CD8 lineage. Furthermore, while the vehicle-exposed NotchICN-TG mice showed increased splenomegaly and B to T cell ratios indicative of disease, mice developmentally exposed to TCDD were largely protected from disease. These studies support a model where developmental AHR activation attenuates later-life Notch1-dependent impacts on thymocyte development and disease progression. PMID:25585350

  4. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates later-life Notch1-mediated T cell development and leukemogenesis.

    PubMed

    Ahrenhoerster, Lori S; Leuthner, Tess C; Tate, Everett R; Lakatos, Peter A; Laiosa, Michael D

    2015-03-01

    Over half of T cell acute lymphoblastic leukemia (T-ALL) patients have activating mutations in the Notch gene. Moreover, the contaminant 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a known carcinogen that mediates its toxicity through the aryl hydrocarbon receptor (AHR), and crosstalk between activated AHR and Notch signaling pathways has previously been observed. Given the importance of Notch signaling in thymocyte development and T-ALL disease progression, we hypothesized that the activated AHR potentiates disease initiation and progression in an in vivo model of Notch1-induced thymoma. This hypothesis was tested utilizing adult and developmental exposure paradigms to TCDD in mice expressing a constitutively active Notch1 transgene (Notch(ICN-TG)). Following exposure of adult Notch(ICN-TG) mice to a single high dose of TCDD, we observed a significant increase in the efficiency of CD8 thymocyte generation. We next exposed pregnant mice to 3μg/kg of TCDD throughout gestation and lactation to elucidate effects of developmental AHR activation on later-life T cell development and T-ALL-like thymoma susceptibility induced by Notch1. We found that the vehicle-exposed Notch(ICN-TG) offspring have a peripheral T cell pool heavily biased toward the CD4 lineage, while TCDD-exposed Notch(ICN-TG) offspring were biased toward the CD8 lineage. Furthermore, while the vehicle-exposed NotchICN-TG mice showed increased splenomegaly and B to T cell ratios indicative of disease, mice developmentally exposed to TCDD were largely protected from disease. These studies support a model where developmental AHR activation attenuates later-life Notch1-dependent impacts on thymocyte development and disease progression. PMID:25585350

  5. Development of replication-defective lymphocytic choriomeningitis virus vectors for the induction of potent CD8+ T cell immunity

    PubMed Central

    Flatz, Lukas; Hegazy, Ahmed N; Bergthaler, Andreas; Verschoor, Admar; Claus, Christina; Fernandez, Marylise; Gattinoni, Luca; Johnson, Susan; Kreppel, Florian; Kochanek, Stefan; van den Broek, Maries; Radbruch, Andreas; Lvy, Frdric; Lambert, Paul-Henri; Siegrist, Claire-Anne; Restifo, Nicholas P; Lhning, Max; Ochsenbein, Adrian F; Nabel, Gary J; Pinschewer, Daniel D

    2011-01-01

    Lymphocytic choriomeningitis virus (LCMV) exhibits natural tropism for dendritic cells and represents the prototypic infection that elicits protective CD8+ T cell (cytotoxic T lymphocyte (CTL)) immunity. Here we have harnessed the immunobiology of this arenavirus for vaccine delivery. By using producer cells constitutively synthesizing the viral glycoprotein (GP), it was possible to replace the gene encoding LCMV GP with vaccine antigens to create replication-defective vaccine vectors. These rLCMV vaccines elicited CTL responses that were equivalent to or greater than those elicited by recombinant adenovirus 5 or recombinant vaccinia virus in their magnitude and cytokine profiles, and they exhibited more effective protection in several models. In contrast to recombinant adenovirus 5, rLCMV failed to elicit vector-specific antibody immunity, which facilitated re-administration of the same vector for booster vaccination. In addition, rLCMV elicited T helper type 1 CD4+ T cell responses and protective neutralizing antibodies to vaccine antigens. These features, together with low seroprevalence in humans, suggest that rLCMV may show utility as a vaccine platform against infectious diseases and cancer. PMID:20139992

  6. The Transcriptional Repressor Gfi1 Affects Development of Early, Uncommitted c-Kit+ T Cell Progenitors and CD4/CD8 Lineage Decision in the Thymus

    PubMed Central

    Ycel, Raif; Karsunky, Holger; Klein-Hitpass, Ludger; Mry, Tarik

    2003-01-01

    In the thymus, several steps of proliferative expansion and selection coordinate the maturation of precursors into antigen-specific T cells. Here we identify the transcriptional repressor Gfi1 as an important regulator of this maturation process. Mice lacking Gfi1 show reduced thymic cellularity due to an increased cell death rate, lack of proliferation, and a differentiation block in the very early uncommitted CD4?/CD8?/c-Kit+ cytokine-dependent T cell progenitors that have not yet initiated VDJ recombination. In addition, Gfi1-deficient mice show increased major histocompatibility complex class Irestricted positive selection and develop significantly more CD8+ cells suggesting a requirement of Gfi1 for a correct CD4/CD8 lineage decision. Absence of Gfi1 correlates with high level expression of the genes for lung Krppel-like factor (LKLF), inhibitor of DNA binding (Id)1 and Id2, suggesting the existence of new regulatory pathways in pre-T cell development and thymic selection in which Gfi1 acts upstream of LKLF as well as the E-proteins, which are negatively regulated by Id1 and Id2. PMID:12682108

  7. Transiently Reduced PI3K/Akt Activity Drives the Development of Regulatory Function in Antigen-Stimulated Naïve T-Cells

    PubMed Central

    Hasenberg, Mike; Reichardt, Peter; Gunzer, Matthias

    2013-01-01

    Regulatory T-cells (Tregs) are central for immune homeostasis and divided in thymus-derived natural Tregs and peripherally induced iTreg. However, while phenotype and function of iTregs are well known, a remarkable lack exists in knowledge about signaling mechanisms leading to their generation from naïve precursors in peripheral tissues. Using antigen specific naïve T-cells from mice, we investigated CD4+ CD25+ FoxP3- iTreg induction during antigen-specific T-cell receptor (TCR) stimulation with weak antigen presenting cells (APC). We show that early signaling pathways such as ADAM-17-activation appeared similar in developing iTreg and effector cells (Teff) and both initially shedded CD62-L. But iTreg started reexpressing CD62-L after 24 h while Teff permanently downmodulated it. Furthermore, between 24 and 72 hours iTreg presented with significantly lower phosphorylation levels of Akt-S473 suggesting lower activity of the PI3K/Akt-axis. This was associated with a higher expression of the Akt hydrophobic motif-specific phosphatase PHLPP1 in iTreg. Importantly, the lack of costimulatory signals via CD28 from weak APC was central for the development of regulatory function in iTreg but not for the reappearance of CD62-L. Thus, T-cells display a window of sensitivity after onset of TCR triggering within which the intensity of the PI3K/Akt signal controls entry into either effector or regulatory pathways. PMID:23874604

  8. Extrathymic origin of intestinal intraepithelial lymphocytes bearing T-cell antigen receptor gamma delta

    SciTech Connect

    Bandeira, A.; Itohara, S.; Bonneville, M.; Burlen-Defranoux, O.; Mota-Santos, T.; Coutinho, A.; Tonegawa, S. )

    1991-01-01

    The kinetics of postnatal intestinal colonization by T cells carrying gamma delta and alpha beta T-cell antigen receptors were studied in nude and normal mice by flow cytometry and immunohistology. Furthermore, gamma delta and alpha beta T-cell development was analyzed in lethally irradiated mice that were reconstituted by fetal liver precursors with or without a thymus. Our results establish that a major subpopulation of gamma delta intestinal intraepithelial lymphocytes is produced from uncommitted precursors at extrathymic sites. This work further shows that a small pool of T cells carrying alpha beta T-cell receptors can also differentiate extrathymically from CD3- fetal liver precursors but with rates of production and peripheral expansion much reduced as compared with those observed in thymus-bearing animals.

  9. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates later-life Notch1-mediated T cell development and leukemogenesis

    SciTech Connect

    Ahrenhoerster, Lori S.; Leuthner, Tess C.; Tate, Everett R.; Lakatos, Peter A.; Laiosa, Michael D.

    2015-03-01

    Over half of T cell acute lymphoblastic leukemia (T-ALL) patients have activating mutations in the Notch gene. Moreover, the contaminant 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a known carcinogen that mediates its toxicity through the aryl hydrocarbon receptor (AHR), and crosstalk between activated AHR and Notch signaling pathways has previously been observed. Given the importance of Notch signaling in thymocyte development and T-ALL disease progression, we hypothesized that the activated AHR potentiates disease initiation and progression in an in vivo model of Notch1-induced thymoma. This hypothesis was tested utilizing adult and developmental exposure paradigms to TCDD in mice expressing a constitutively active Notch1 transgene (Notch{sup ICN-TG}). Following exposure of adult Notch{sup ICN-TG} mice to a single high dose of TCDD, we observed a significant increase in the efficiency of CD8 thymocyte generation. We next exposed pregnant mice to 3 μg/kg of TCDD throughout gestation and lactation to elucidate effects of developmental AHR activation on later-life T cell development and T-ALL-like thymoma susceptibility induced by Notch1. We found that the vehicle-exposed Notch{sup ICN-TG} offspring have a peripheral T cell pool heavily biased toward the CD4 lineage, while TCDD-exposed Notch{sup ICN-TG} offspring were biased toward the CD8 lineage. Furthermore, while the vehicle-exposed NotchICN-TG mice showed increased splenomegaly and B to T cell ratios indicative of disease, mice developmentally exposed to TCDD were largely protected from disease. These studies support a model where developmental AHR activation attenuates later-life Notch1-dependent impacts on thymocyte development and disease progression. - Highlights: • Adult mice exposed to 30 μg/kg TCDD have higher efficiency of CD8 thymocyte generation. • Mice carrying a constitutively active Notch transgene were exposed to 3 μg/kg TCDD throughout development. • Progression of Notch-induced thymoma was different in offspring exposed to TCDD developmentally. • Developmental AHR activation attenuates later-life Notch1-dependent impacts on T cell differentiation.

  10. Influence of the route of infection on development of T-cell receptor beta-chain repertoires of reovirus-specific cytotoxic T lymphocytes.

    PubMed

    Fulton, Jonathan R; Smith, Jeremy; Cunningham, Cynthia; Cuff, Christopher F

    2004-02-01

    It is well established that the route of infection affects the nature of the adaptive immune response. However, little is known about the effects of the route of exposure on development of cytotoxic T-lymphocyte (CTL) responses. Alternative antigen-presenting cell populations, tissue-restricted expression of class I major histocompatibility complex-encoded molecules, and unique T-cell receptor (TCR)-bearing cells in mucosal tissues could influence the selection and expansion of responder T cells. This study addresses the question of whether the route of virus infection affects the selection and expansion of subpopulations of virus-specific CTLs. Mice were infected orally or in the hind footpads with reovirus, and the repertoires of TCR beta-chains expressed on virus-specific CD8(+) T cells in Peyer's patches or lymph nodes and spleens were examined. CD8(+) cells expressing the variable gene segment of the TCR beta-chain 6 (Vbeta6) expanded in the spleens of mice infected by either route and in CTL lines established from the spleens and draining lymphoid tissues. Adoptively transferred Vbeta6(+) CD8(+) T cells from orally or parenterally infected donors expanded in reovirus-infected severe combined immunodeficient recipient mice and mediated cytotoxicity ex vivo. Furthermore, recovered Vbeta6(+) cells were enriched for clones utilizing uniform complementarity-determining region 3 (CDR3) lengths. However, sequencing of CDR3beta regions from Vbeta6(+) CD8(+) cells indicated that Jbeta gene segment usage is significantly more restricted in CTLs from orally infected mice, suggesting that the route of infection affects selection and/or subsequent expansion of virus-specific CTLs. PMID:14722312

  11. Prenatal exposure to radiofrequencies: effects of WiFi signals on thymocyte development and peripheral T cell compartment in an animal model.

    PubMed

    Laudisi, Federica; Sambucci, Manolo; Nasta, Francesca; Pinto, Rosanna; Lodato, Rossella; Altavista, Pierluigi; Lovisolo, Giorgio Alfonso; Marino, Carmela; Pioli, Claudio

    2012-12-01

    Wireless local area networks are an increasing alternative to wired data networks in workplaces, homes, and public areas. Concerns about possible health effects of this type of signal, especially when exposure occurs early in life, have been raised. We examined the effects of prenatal (in utero) exposure to wireless fidelity (WiFi) signal-associated electromagnetic fields (2450 MHz center-frequency band) on T cell development and function. Pregnant mice were exposed whole body to a specific absorption rate of 4 W/kg, 2 h per day, starting 5 days after mating and ending 1 day before the expected delivery. Sham-exposed and cage control groups were used as controls. No effects on cell count, phenotype, and proliferation of thymocytes were observed. Also, spleen cell count, CD4/CD8 cell frequencies, T cell proliferation, and cytokine production were not affected by the exposure. These findings were consistently observed in the male and female offspring at early (5 weeks of age) and late (26 weeks of age) time points. Nevertheless, the expected differences associated with aging and/or gender were confirmed. In conclusion, our results do not support the hypothesis that the exposure to WiFi signals during prenatal life results in detrimental effects on the immune T cell compartment. PMID:22556007

  12. Regulation of natural killer activity of lymphocytes from normal subjects and patients with chronic lymphatic leukemia by interaction between T and non-T cells

    SciTech Connect

    Khonina, N.A.; Shubinskii, G.Z.; Lozovoi, V.P.

    1987-08-01

    The authors study the effect of culture of human cells on functional activity of natural killer cells and investigate the possible mechanisms of regulation of natural killer activity by acting on cytodifferentiation of lymphocytes in normal subjects and in patients with the B-cell variant of chromic lymphatic leukemia. To estimate natural killer cell function, a membranotoxic test was carried out, using cells of the transplantable line K-562, labeled with /sup 3/H-uridine as the targets.

  13. Limitations in plasticity of the T-cell receptor repertoire.

    PubMed Central

    Nanda, N K; Apple, R; Sercarz, E

    1991-01-01

    How constrained is T-cell recognition? Is a truncated T-cell receptor (TCR) repertoire, missing half of its V beta components (where V indicates variable), still broad enough to produce an antigen-specific T-cell response to all determinants? These questions can be answered for certain T-cell antigenic determinants whose response in the wild type is limited to specific gene segments. Our results show that mice with such a deletion in their TCR V beta genes (V beta truncated haplotype, Va beta) are unable to respond to two antigen determinants (sperm whale myoglobin 111-121/I-Ed and myelin basic protein 1-11/I-Au) whose response in the wild type is restricted to the missing V beta (V beta 8.2 in the case of 111-121/I-Ed and V beta 8.2 and V beta 13 in the case of 1-11/I-Au) gene segments. Fundamentally, this restriction could have been attributed to another aspect of immunodominance--that a favored TCR with high affinity would dominate the response, but in its absence, a hierarchy of T cells with lesser efficiency and expressing alternate TCR V genes could take over. However, from our experiments it has become evident that there is an absolute limit to the flexibility inherent in the TCR repertoire. Since it is clear that mouse populations have many ambient deletion ligands (such as self-superantigens) that can result in the loss of multiple V beta gene segments during normal T-cell development, these deletions can have serious consequences, such as unresponsiveness to the antigen as a whole--a hole in the repertoire--if a dominant determinant of that antigen normally shows restricted TCR V beta gene usage. PMID:1719532

  14. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice.

    PubMed

    Sun, Yafei; Tian, Tian; Gao, Juan; Liu, Xiaoqian; Hou, Huiqing; Cao, Runjing; Li, Bin; Quan, Moyuan; Guo, Li

    2016-03-15

    Immoderate immunoreaction of antigen-specific Th17 and Treg cell dysfunction play critical roles in the pathogenesis of multiple sclerosis. We examined Th17/Treg immune responses and the underlying mechanisms in response to metformin in C57BL/6 mice with experimental autoimmune encephalomyelitis (EAE). Metformin reduced Th17 and increased Treg cell percentages along with the levels of associated cytokines. Molecules involved in cellular metabolism were altered in mice with EAE. Suppressed activation of mTOR and its downstream target, HIF-1α, likely mediated the protective effects of metformin. Our findings demonstrate that regulation of T cell metabolism represents a new therapeutic target for CNS autoimmune disorders. PMID:26943960

  15. HIV+ elite controllers have low HIV-specific T cell activation yet maintain strong, polyfunctional T cell responses

    PubMed Central

    Owen, Rachel E.; Heitman, John W.; Hirschkorn, Dale F.; Lanteri, Marion C.; Biswas, Hope H.; Martin, Jeffrey N.; Krone, Melissa R.; Deeks, Steven G.; Norris, Philip J.

    2010-01-01

    Objective HIV+ elite controllers are a unique group of rare individuals who maintain undetectable viral loads in the absence of antiretroviral therapy. We studied immune responses in these subjects to inform vaccine development, with the goal of identifying the immune correlates of protection from HIV. Methods We compared markers of cellular activation, HIV-specific immune responses, and regulatory T (Treg) cell frequencies in 4 groups of subjects: HIV-negative healthy controls, elite controllers (HIV RNA level <75 copies/ml), individuals on highly active antiretroviral therapy (HAART), and subjects with HIV RNA level >10,000 copies/ml (non-controllers). Results Elite controllers possessed significantly lower levels of activated HIV-specific CD8+ T cells and of recently divided HIV-specific CD4+ T cells than non-controllers, while these differences were not seen in the respective CMV-specific T cell populations. Elite controllers also mounted a stronger and broader cytokine and chemokine response following HIV-specific stimulation than individuals on HAART and non-controllers. Finally, we found that HAART suppressed subjects had elevated Treg cell frequencies, while elite controllers and non-controllers maintained normal percentages of Treg cells. Conclusion Elite controllers maintain high levels of HIV-specific immune responses with low levels of HIV-specific T cell activation, and do not have elevated Treg cell levels. Based on these data an ideal HIV vaccine would induce strong HIV-specific immune responses while minimizing HIV-specific T cell activation. PMID:20400885

  16. T cell responses in dengue viral infections.

    PubMed

    Malavige, Gathsaurie Neelika; Ogg, Graham S

    2013-12-01

    Dengue viral infections are the commonest mosquito borne viral infection in the world, affecting more than 100 countries and 390 million individuals annually. Currently, there are no effective antiviral drugs or an effective vaccine to prevent infection. A main hurdle in developing a safe and effective vaccine has been our poor understanding of the complex nature of the protective immune response in acute dengue infection and the presence of four dengue virus (DV) serotypes that are highly homologous. The role of DV specific T cells in the pathogenesis of severe clinical disease in not clear. It has been speculated that highly cross reactive T cells for the previous infecting heterologous DV serotype, which produce pro-inflammatory cytokines, contribute to disease pathogenesis. These cross reactive T cells are believed to be suboptimal in clearing the infection with the current DV-serotype. However, other studies have shown that cross-reactive DV-specific T cells are absent or present in very low frequency during acute infection, appearing only during the convalescent period in the majority of patients. Furthermore, significant apoptosis of T cells occurs in severe acute clinical disease. Overall therefore, it is unclear what role T cells play in contributing to disease pathogenesis during acute dengue infection. Existing data have been complicated by cross-reactivity in T cells assays. These findings can now be re-evaluated in the light of novel technologies to identify serotype-specific T cell responses. PMID:24220605

  17. Visualizing T Cell Migration in situ

    PubMed Central

    Benechet, Alexandre P.; Menon, Manisha; Khanna, Kamal M.

    2014-01-01

    Mounting a protective immune response is critically dependent on the orchestrated movement of cells within lymphoid tissues. The structure of secondary lymphoid organs regulates immune responses by promoting optimal cell–cell and cell–extracellular matrix interactions. Naïve T cells are initially activated by antigen presenting cells in secondary lymphoid organs. Following priming, effector T cells migrate to the site of infection to exert their functions. Majority of the effector cells die while a small population of antigen-specific T cells persists as memory cells in distinct anatomical locations. The persistence and location of memory cells in lymphoid and non-lymphoid tissues is critical to protect the host from re-infection. The localization of memory T cells is carefully regulated by several factors including the highly organized secondary lymphoid structure, the cellular expression of chemokine receptors and compartmentalized secretion of their cognate ligands. This balance between the anatomy and the ordered expression of cell surface and soluble proteins regulates the subtle choreography of T cell migration. In recent years, our understanding of cellular dynamics of T cells has been advanced by the development of new imaging techniques allowing in situ visualization of T cell responses. Here, we review the past and more recent studies that have utilized sophisticated imaging technologies to investigate the migration dynamics of naïve, effector, and memory T cells. PMID:25120547

  18. Targeting T cell metabolism for therapy

    PubMed Central

    O’Sullivan, David

    2015-01-01

    In the past several years, a wealth of evidence has emerged illustrating how metabolism supports many aspects of T cell biology, as well as how metabolic changes drive T cell differentiation and fate. Here we outline developing principles in the regulation of T cell metabolism, and discuss how these processes are impacted in settings of inflammation and cancer. In this context we discuss how metabolic pathways might be manipulated for the treatment of human disease, including how metabolism may be targeted to prevent T cell dysfunction in inhospitable microenvironments, to generate more effective adoptive cellular immunotherapies in cancer, and to direct T cell differentiation and function towards non-pathogenic phenotypes in settings of autoimmunity. PMID:25601541

  19. gammadelta T cells: the overlooked T-cell subset in demyelinating disease.

    PubMed

    Wohler, Jillian E; Smith, Sherry S; Barnum, Scott R

    2010-01-01

    gammadelta T cells represent a small subpopulation of T cells expressing a restricted repertoire of T-cell receptors and, unlike alphabeta T cells, function more as cells of the innate immune system. These cells are found in skin and mucosal sites as well as secondary lymphoid tissues and frequently act as first line of defense sentinels. gammadelta T cells have been implicated in the pathogenesis of demyelinating disease, although little was known regarding their trafficking and effector functions. In this Mini-Review, we highlight recent studies demonstrating that gammadelta T cells migrate rapidly to the CNS during experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. gammadelta T-cell trafficking to the CNS is independent of beta(2)-integrins and occurs well before onset of clinical signs of disease, peaking early during the acute phase of disease. gammadelta T-cell-mediated production of inflammatory cytokines, including interferon-gamma and tumor necrosis factor-alpha, appears critical for EAE development, suggesting that these cells may set the stage for activation of other subsets of infiltrating effector cells. These data suggest that gammadelta T cells or subsets of gammadelta T cells may represent a new therapeutic target in demeylinating disease. PMID:19610090

  20. Improving the efficacy and safety of engineered T cell therapy for cancer.

    PubMed

    Shi, Huan; Liu, Lin; Wang, Zhehai

    2013-01-28

    Adoptive T-cell therapy (ACT) using tumor-infiltrating lymphocytes (TILs) is a powerful immunotherapeutics approach against metastatic melanoma. The success of TIL therapy has led to novel strategies for redirecting normal T cells to recognize tumor-associated antigens (TAAs) by genetically engineering tumor antigen-specific T cell receptors (TCRs) or chimeric antigen receptor (CAR) genes. In this manner, large numbers of antigen-specific T cells can be rapidly generated compared with the longer term expansion of TILs. Great efforts have been made to improve these approaches. Initial clinical studies have demonstrated that genetically engineered T cells can mediate tumor regression in vivo. In this review, we discuss the development of TCR and CAR gene-engineered T cells and the safety concerns surrounding the use of these T cells in patients. We highlight the importance of judicious selection of TAAs for modified T cell therapy and propose solutions for potential "on-target, off-organ" toxicity. PMID:23022475

  1. Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn's disease

    PubMed Central

    Canavan, James B; Scottà, Cristiano; Vossenkämper, Anna; Goldberg, Rimma; Elder, Matthew J; Shoval, Irit; Marks, Ellen; Stolarczyk, Emilie; Lo, Jonathan W; Powell, Nick; Fazekasova, Henrieta; Irving, Peter M; Sanderson, Jeremy D; Howard, Jane K; Yagel, Simcha; Afzali, Behdad; MacDonald, Thomas T; Hernandez-Fuentes, Maria P; Shpigel, Nahum Y; Lombardi, Giovanna; Lord, Graham M

    2016-01-01

    Background and aim Thymus-derived regulatory T cells (Tregs) mediate dominant peripheral tolerance and treat experimental colitis. Tregs can be expanded from patient blood and were safely used in recent phase 1 studies in graft versus host disease and type 1 diabetes. Treg cell therapy is also conceptually attractive for Crohn's disease (CD). However, barriers exist to this approach. The stability of Tregs expanded from Crohn's blood is unknown. The potential for adoptively transferred Tregs to express interleukin-17 and exacerbate Crohn's lesions is of concern. Mucosal T cells are resistant to Treg-mediated suppression in active CD. The capacity for expanded Tregs to home to gut and lymphoid tissue is unknown. Methods To define the optimum population for Treg cell therapy in CD, CD4+CD25+CD127loCD45RA+ and CD4+CD25+CD127loCD45RA− Treg subsets were isolated from patients’ blood and expanded in vitro using a workflow that can be readily transferred to a good manufacturing practice background. Results Tregs can be expanded from the blood of patients with CD to potential target dose within 22–24 days. Expanded CD45RA+ Tregs have an epigenetically stable FOXP3 locus and do not convert to a Th17 phenotype in vitro, in contrast to CD45RA− Tregs. CD45RA+ Tregs highly express α4β7 integrin, CD62L and CC motif receptor 7 (CCR7). CD45RA+ Tregs also home to human small bowel in a C.B-17 severe combined immune deficiency (SCID) xenotransplant model. Importantly, in vitro expansion enhances the suppressive ability of CD45RA+ Tregs. These cells also suppress activation of lamina propria and mesenteric lymph node lymphocytes isolated from inflamed Crohn's mucosa. Conclusions CD4+CD25+CD127loCD45RA+ Tregs may be the most appropriate population from which to expand Tregs for autologous Treg therapy for CD, paving the way for future clinical trials. PMID:25715355

  2. SOCS3 Deletion in T-Lymphocytes Suppresses Development of Chronic Ocular Inflammation Via Up-regulation of CTLA-4 and Expansion of Regulatory T cells

    PubMed Central

    Yu, Cheng-Rong; Kim, Sung-Hye; Mahdi, Rashid M.; Egwuagu, Charles E.

    2013-01-01

    Suppressors of cytokine signaling (SOCS) proteins are negative-feedback regulators of JAK/STAT pathway and SOCS3 contributes to host immunity by regulating the intensity/duration of cytokine signals and inflammatory responses. Mice with Socs3 deletion in myeloid cells exhibit enhanced STAT3-signaling, expansion of Th1 and Th17 cells and developed severe experimental autoimmune encephalomyelitis (EAE). Interestingly, development of the unique IL-17/IFN-γ-double producing (Th17/IFN-γ and Tc17/IFN-γ) subsets that exhibit strong cytotoxic activities and associated with pathogenesis of several autoimmune diseases, has recently been shown to depend on epigenetic suppression of SOCS3 expression, further suggesting involvement of SOCS3 in autoimmunity and tumor immunity. In this study, we generated mice with Socs3 deletion in CD4 T cell compartment (CD4-SOCS3KO) to determine in vivo effects of the loss of Socs3 in the T cell-mediated autoimmune disease, experimental autoimmune uveitis (EAU). In contrast to the exacerbation of EAE in myeloid-specific SOCS3-deleted mice, CD4-SOCS3KO mice were protected from acute and chronic uveitis. Protection from EAU correlated with enhanced expression of CTLA4 and expansion of IL-10 producing Tregs with augmented suppressive activities. We further show that SOCS3 interacts with CTLA4 and negatively regulates CTLA4 levels in T cells, providing mechanistic explanation for the expansion of Tregs in CD4-SOCS3 during EAU. Contrary to in vitro epigenetic studies, Th17/IFN-γ and Tc17/IFN-γ populations were markedly reduced in CD4-SOCS3KO, suggesting that SOCS3 promotes expansion of Th17/IFN-γ subset associated with development of severe uveitis. Thus, SOCS3 is a potential therapeutic target in uveitis and other auto-inflammatory diseases. PMID:24101549

  3. [Extranodal natural killer/T-cell lymphoma, nasal type developing central nervous system and epididymis involvement immediately after concurrent chemoradiotherapy].

    PubMed

    Sasaki, Yuya; Yonezawa, Akihito; Kinoshita, Yoshihiro; Kitagawa, Tomoya; Mori, Minako; Onaka, Takashi; Imada, Kazunori

    2015-12-01

    A 66-year-old man showed central nervous system (CNS) and epididymis involvement after concurrent chemoradiotherapy for extranodal natural killer/T-cell lymphoma, nasal type (ENKL). The patient experienced continuous nasal obstruction. CT revealed a mass in the nasal cavity and paranasal sinuses. Biopsy of the nasal cavity mass showed it to be ENKL. Based on bone marrow biopsy and 18F-FDG PET/CT findings, the clinical stage was suspected to be IIE. The sites involved were the nasal cavity, paranasal sinuses, and cervical lymph nodes. We performed concurrent chemoradiotherapy consisting of a 67% dose of DeVIC and involved field radiation therapy towards his head and neck. Head and neck CT confirmed a therapeutic response. After receiving concurrent chemoradiotherapy, the patient complained of perineal discomfort. Ultrasonography revealed swelling of the left epididymis. Left epididymis biopsy showed ENKL involvement and lumbar puncture revealed CNS involvement. The findings of this case suggest that evaluation of CNS involvement might be an essential part of the initial workup for some ENKL patients. PMID:26725358

  4. Development and validation of a broad scheme for prediction of HLA class II restricted T cell epitopes.

    PubMed

    Paul, Sinu; Lindestam Arlehamn, Cecilia S; Scriba, Thomas J; Dillon, Myles B C; Oseroff, Carla; Hinz, Denise; McKinney, Denise M; Carrasco Pro, Sebastian; Sidney, John; Peters, Bjoern; Sette, Alessandro

    2015-07-01

    Computational prediction of HLA class II restricted T cell epitopes has great significance in many immunological studies including vaccine discovery. In recent years, prediction of HLA class II binding has improved significantly but a strategy to globally predict the most dominant epitopes has not been rigorously defined. Using human immunogenicity data associated with sets of 15-mer peptides overlapping by 10 residues spanning over 30 different allergens and bacterial antigens, and HLA class II binding prediction tools from the Immune Epitope Database and Analysis Resource (IEDB), we optimized a strategy to predict the top epitopes recognized by human populations. The most effective strategy was to select peptides based on predicted median binding percentiles for a set of seven DRB1 and DRB3/4/5 alleles. These results were validated with predictions on a blind set of 15 new allergens and bacterial antigens. We found that the top 21% predicted peptides (based on the predicted binding to seven DRB1 and DRB3/4/5 alleles) were required to capture 50% of the immune response. This corresponded to an IEDB consensus percentile rank of 20.0, which could be used as a universal prediction threshold. Utilizing actual binding data (as opposed to predicted binding data) did not appreciably change the efficacy of global predictions, suggesting that the imperfect predictive capacity is not due to poor algorithm performance, but intrinsic limitations of HLA class II epitope prediction schema based on HLA binding in genetically diverse human populations. PMID:25862607

  5. Genetically Modified T Cells for the Treatment of Malignant Disease

    PubMed Central

    Wieczorek, Agnieszka; Uharek, Lutz

    2013-01-01

    Summary The broaden application of adoptive T-cell transfer has been constrained by the technical abilities to isolate and expand antigen-specific T cells potent to selectively kill tumor cells. With the recent progress in the design and manufacturing of cellular products, T cells used in the treatment of malignant diseases may be regarded as anticancer biopharmaceuticals. Genetical manipulation of T cells has given T cells desired specificity but also enable to tailor their activation and proliferation potential. Here, we summarize the recent developments in genetic engineering of T-cell-based biopharmaceuticals, covering criteria for their clinical application in regard to safety and efficacy. PMID:24474888

  6. Harnessing the antibacterial and immunological properties of mucosal-associated invariant T cells in the development of novel oral vaccines against enteric infections.

    PubMed

    Abautret-Daly, Aine E; Davitt, Christopher J H; Lavelle, Ed C

    2014-11-15

    Enteric infections are a major cause of mortality and morbidity with significant social and economic implications worldwide and particularly in developing countries. An attractive approach to minimizing the impact of these diseases is via the development of oral vaccination strategies. However, oral vaccination is challenging due to the tolerogenic and hyporesponsive nature of antigen presenting cells resident in the gastrointestinal tract. The inclusion of adjuvants in oral vaccine formulations has the potential to overcome this challenge. To date no oral adjuvants have been licenced for human use and thus oral adjuvant discovery remains a key goal in improving the potential for oral vaccine development. Mucosal-associated invariant T (MAIT) cells are a recently discovered population of unconventional T cells characterized by an evolutionarily conserved αβ T cell receptor (TCR) that recognizes antigens presented by major histocompatibility complex (MHC) class I-related (MR1) molecule. MAIT cells are selected intra-thymically by MR1 expressing double positive thymocytes and enter the circulation with a naïve phenotype. In the circulation they develop a memory phenotype and are programmed to home to mucosal tissues and the liver. Once resident in these tissues, MAIT cells respond to bacterial and yeast infections through the production of chemokines and cytokines that aid in the induction of an adaptive immune response. Their abundance in the gastrointestinal tract and ability to promote adaptive immunity suggests that MAIT cell activators may represent attractive novel adjuvants for use in oral vaccination. PMID:25173989

  7. Impaired T-Cell Function in B-Cell Lymphoma: A Direct Consequence of Events at the Immunological Synapse?

    PubMed Central

    Nassef Kadry Naguib Roufaiel, Marian; Wells, James W.; Steptoe, Raymond J.

    2015-01-01

    Tumors can escape immune destruction through the development of antigen loss variants and loss of antigen processing/presentation pathways, thereby rendering them invisible to T cells. Alternatively, mechanisms of peripheral T-cell tolerance that would normally be important for protection from the development of autoimmunity may also be co-opted to (i) generate an immuno-inhibitory tumor environment, (ii) promote development of regulatory cell populations, or (iii) cell-intrinsically inactivate tumor-specific T cells. Emerging evidence suggests that T-cell function is impaired in hematological malignancies, which may manifest from cognate interactions between T cells and the tumor. The immunological synapse forms the cognate T-cell and antigen-presenting cell interaction and is the site where key signalling events, including those delivered by co-inhibitory receptors, that determine the fate of T cells occur. Here, we review evidence that events at the immune synapse between T cells and malignant B cells and alterations in immune synapse function may contribute to loss of T-cell function in B-cell malignancies. PMID:26082776

  8. Engineered T cells for cancer treatment

    PubMed Central

    Anurathapan, Usanarat; Leen, Ann M.; Brenner, Malcolm K.; Vera, Juan F.

    2014-01-01

    Adoptively transferred T cells have the capacity to traffic to distant tumor sites, infiltrate even fibrotic tissue and kill antigen-expressing tumor cells. A variety of groups have investigated different genetic engineering strategies designed to enhance tumor specificity, increase T cell potency, improve proliferation, persistence, or migratory capacity, and increase safety. In this review we focus on recent developments in the T cell engineering arena, discuss the application of these engineered cell products clinically, and outline future prospects for this therapeutic modality. PMID:24239105

  9. Breaking the co-operation between bystander T-cells and natural killer cells prevents the development of immunosuppression after traumatic skeletal muscle injury in mice

    PubMed Central

    Wirsdrfer, Florian; Bangen, JrgM.; Pastille, Eva; Hansen, Wiebke

    2015-01-01

    Nosocomial infections represent serious complications after traumatic or surgical injuries in intensive care units. The pathogenesis of the underlying immunosuppression is only incompletely understood. In the present study, we investigated whether injury interferes with the function of the adaptive immune system in particular with the differentiation of antigen-specific T helper (Th)-cell responses invivo. We used a mouse model for traumatic gastrocnemius muscle injury. Ovalbumin (OVA), which served as a foreign model antigen, was injected into the hind footpads for determination of the differentiation of OVA-specific Th-cells in the draining popliteal lymph node (pLN). The release of interferon (IFN)-? from OVA-specific Th-cells was impaired within 24h after injury and this impairment persisted for at least 7days. In contrast, the proliferation of OVA-specific Th-cells remained unaffected. Injury did not modulate the function of antigen-presenting cells (APCs) in the pLN. Adoptive transfer of total T-cells from pLNs of injured mice inhibited IFN-? production by OVA-specific Th-cells in naive mice. Suppressed Th1 priming did not occur in lymphocyte-deficient mice after injury but was restored by administration of T-cells before injury. Moreover, the suppression of Th1 differentiation required the presence of natural killer (NK) cells that were recruited to the pLN after injury; this recruitment was dependent on lymphocytes, toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). In summary, upon traumatic skeletal muscle injury T-cells and NK cells together prevent the development of protective Th1 immunity. Breaking this co-operation might be a novel approach to reduce the risk of infectious complications after injury. PMID:25609031

  10. I spy alloreactive T cells.

    PubMed

    Alegre, Maria-Luisa

    2015-01-28

    High-throughput sequencing of the T cell receptor Vβ CDR3 region allowed longitudinal tracking of alloreactive T cells in kidney transplant patients, revealing clonal deletion as a mechanism of transplantation tolerance (Morris et al., this issue). PMID:25632032

  11. Caveolin-1 regulates TCR signal strength and regulatory T-cell differentiation into alloreactive T cells.

    PubMed

    Schönle, Anne; Hartl, Frederike A; Mentzel, Jan; Nöltner, Theresa; Rauch, Katharina S; Prestipino, Alessandro; Wohlfeil, Sebastian A; Apostolova, Petya; Hechinger, Anne-Kathrin; Melchinger, Wolfgang; Fehrenbach, Kerstin; Guadamillas, Marta C; Follo, Marie; Prinz, Gabriele; Ruess, Ann-Katrin; Pfeifer, Dietmar; Angel Del Pozo, Miguel; Schmitt-Graeff, Annette; Duyster, Justus; Hippen, Keli I; Blazar, Bruce R; Schachtrup, Kristina; Minguet, Susana; Zeiser, Robert

    2016-04-14

    Caveolin-1 (Cav-1) is a key organizer of membrane specializations and a scaffold protein that regulates signaling in multiple cell types. We found increased Cav-1 expression in human and murine T cells after allogeneic hematopoietic cell transplantation. Indeed, Cav-1(-/-)donor T cells caused less severe acute graft-versus-host disease (GVHD) and yielded higher numbers of regulatory T cells (Tregs) compared with controls. Depletion of Tregs from the graft abrogated this protective effect. Correspondingly, Treg frequencies increased when Cav-1(-/-)T cells were exposed to transforming growth factor-β/T-cell receptor (TCR)/CD28 activation or alloantigen stimulation in vitro compared with wild-type T cells. Mechanistically, we found that the phosphorylation of Cav-1 is dispensable for the control of T-cell fate by using a nonphosphorylatable Cav-1 (Y14F/Y14F) point-mutation variant. Moreover, the close proximity of lymphocyte-specific protein tyrosine kinase (Lck) to the TCR induced by TCR-activation was reduced in Cav-1(-/-)T cells. Therefore, less TCR/Lck clustering results in suboptimal activation of the downstream signaling events, which correlates with the preferential development into a Treg phenotype. Overall, we report a novel role for Cav-1 in TCR/Lck spatial distribution upon TCR triggering, which controls T-cell fate toward a regulatory phenotype. This alteration translated into a significant increase in the frequency of Tregs and reduced GVHD in vivo. PMID:26837700

  12. Tumor Evasion from T Cell Surveillance

    PubMed Central

    Töpfer, Katrin; Kempe, Stefanie; Müller, Nadja; Schmitz, Marc; Bachmann, Michael; Cartellieri, Marc; Schackert, Gabriele; Temme, Achim

    2011-01-01

    An intact immune system is essential to prevent the development and progression of neoplastic cells in a process termed immune surveillance. During this process the innate and the adaptive immune systems closely cooperate and especially T cells play an important role to detect and eliminate tumor cells. Due to the mechanism of central tolerance the frequency of T cells displaying appropriate arranged tumor-peptide-specific-T-cell receptors is very low and their activation by professional antigen-presenting cells, such as dendritic cells, is frequently hampered by insufficient costimulation resulting in peripheral tolerance. In addition, inhibitory immune circuits can impair an efficient antitumoral response of reactive T cells. It also has been demonstrated that large tumor burden can promote a state of immunosuppression that in turn can facilitate neoplastic progression. Moreover, tumor cells, which mostly are genetically instable, can gain rescue mechanisms which further impair immune surveillance by T cells. Herein, we summarize the data on how tumor cells evade T-cell immune surveillance with the focus on solid tumors and describe approaches to improve anticancer capacity of T cells. PMID:22190859

  13. Modulation of CD4+ T Cell-Dependent Specific Cytotoxic CD8+ T Cells Differentiation and Proliferation by the Timing of Increase in the Pathogen Load

    PubMed Central

    Tzelepis, Fanny; Persechini, Pedro M.; Rodrigues, Mauricio M.

    2007-01-01

    Background Following infection with viruses, bacteria or protozoan parasites, naïve antigen-specific CD8+ T cells undergo a process of differentiation and proliferation to generate effector cells. Recent evidences suggest that the timing of generation of specific effector CD8+ T cells varies widely according to different pathogens. We hypothesized that the timing of increase in the pathogen load could be a critical parameter governing this process. Methodology/Principal Findings Using increasing doses of the protozoan parasite Trypanosoma cruzi to infect C57BL/6 mice, we observed a significant acceleration in the timing of parasitemia without an increase in mouse susceptibility. In contrast, in CD8 deficient mice, we observed an inverse relationship between the parasite inoculum and the timing of death. These results suggest that in normal mice CD8+ T cells became protective earlier, following the accelerated development of parasitemia. The evaluation of specific cytotoxic responses in vivo to three distinct epitopes revealed that increasing the parasite inoculum hastened the expansion of specific CD8+ cytotoxic T cells following infection. The differentiation and expansion of T. cruzi-specific CD8+ cytotoxic T cells is in fact dependent on parasite multiplication, as radiation-attenuated parasites were unable to activate these cells. We also observed that, in contrast to most pathogens, the activation process of T. cruzi-specific CD8+ cytotoxic T cells was dependent on MHC class II restricted CD4+ T cells. Conclusions/Significance Our results are compatible with our initial hypothesis that the timing of increase in the pathogen load can be a critical parameter governing the kinetics of CD4+ T cell-dependent expansion of pathogen-specific CD8+ cytotoxic T cells. PMID:17460760

  14. Downregulated Expression of Ly-6-ThB on Developing T Cells Marks CD4+CD8+ Subset Undergoing Selection in the Thymus

    PubMed Central

    Reese, Justin T.; Mehta, Hitesh; Chappell, Clay H.

    2001-01-01

    Interaction of TCRs on CD4+CD8+ immature T cell with MHC-peptide complexes on stromal cells is required for positive and negative selection in the thymus. Identification and characterization of a subpopulation of CD4+CD8+ thymocytes undergoing selection in the thymus will aid in understanding the mechanisms underlying lineage commitment and thymic selection. Herein, we describe the expression of Ly-6 ThB on developing thymocytes. The majority of CD4+CD8+ thymocytes express Ly-6 ThB at high levels. Its expression is downregulated in a subset of CD4+CD8+ thymocytes as well as in mature CD4+CD8- and CD4-CD8+ T cells. More importantly, interaction of TCR/coreceptor with the self-MHC-peptide contributes to the downregulation of ThB expression on developing thymocytes. These findings indicate that downregulation of ThB on CD4+CD8+ thymocytes identifies a unique subset (CD4+CD8+ThBneglow) of thymocytes that has received the initial signals for thymic selection but have not yet downregulated the CD4 and CD8 cell surface expression. In addition, these results also indicate that a high frequency (2040%) of CD4+CD8+ immature thymocytes receive these initial signals during thymic selection. PMID:11589307

  15. Genetic Analysis of T Cell Lymphomas in Carbon Ion-Irradiated Mice Reveals Frequent Interstitial Chromosome Deletions: Implications for Second Cancer Induction in Normal Tissues during Carbon Ion Radiotherapy

    PubMed Central

    Blyth, Benjamin J.; Kakinuma, Shizuko; Sunaoshi, Masaaki; Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Ogawa, Kanae; Shirakami, Ayana; Shang, Yi; Tsuruoka, Chizuru; Nishimura, Mayumi; Shimada, Yoshiya

    2015-01-01

    Monitoring mice exposed to carbon ion radiotherapy provides an indirect method to evaluate the potential for second cancer induction in normal tissues outside the radiotherapy target volume, since such estimates are not yet possible from historical patient data. Here, male and female B6C3F1 mice were given single or fractionated whole-body exposure(s) to a monoenergetic carbon ion radiotherapy beam at the Heavy Ion Medical Accelerator in Chiba, Japan, matching the radiation quality delivered to the normal tissue ahead of the tumour volume (average linear energy transfer = 13 keV.μm-1) during patient radiotherapy protocols. The mice were monitored for the remainder of their lifespan, and a large number of T cell lymphomas that arose in these mice were analysed alongside those arising following an equivalent dose of 137Cs gamma ray-irradiation. Using genome-wide DNA copy number analysis to identify genomic loci involved in radiation-induced lymphomagenesis and subsequent detailed analysis of Notch1, Ikzf1, Pten, Trp53 and Bcl11b genes, we compared the genetic profile of the carbon ion- and gamma ray-induced tumours. The canonical set of genes previously associated with radiation-induced T cell lymphoma was identified in both radiation groups. While the pattern of disruption of the various pathways was somewhat different between the radiation types, most notably Pten mutation frequency and loss of heterozygosity flanking Bcl11b, the most striking finding was the observation of large interstitial deletions at various sites across the genome in carbon ion-induced tumours, which were only seen infrequently in the gamma ray-induced tumours analysed. If such large interstitial chromosomal deletions are a characteristic lesion of carbon ion irradiation, even when using the low linear energy transfer radiation to which normal tissues are exposed in radiotherapy patients, understanding the dose-response and tissue specificity of such DNA damage could prove key to assessing second cancer risk in carbon ion radiotherapy patients. PMID:26125582

  16. Genetic Analysis of T Cell Lymphomas in Carbon Ion-Irradiated Mice Reveals Frequent Interstitial Chromosome Deletions: Implications for Second Cancer Induction in Normal Tissues during Carbon Ion Radiotherapy.

    PubMed

    Blyth, Benjamin J; Kakinuma, Shizuko; Sunaoshi, Masaaki; Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Ogawa, Kanae; Shirakami, Ayana; Shang, Yi; Tsuruoka, Chizuru; Nishimura, Mayumi; Shimada, Yoshiya

    2015-01-01

    Monitoring mice exposed to carbon ion radiotherapy provides an indirect method to evaluate the potential for second cancer induction in normal tissues outside the radiotherapy target volume, since such estimates are not yet possible from historical patient data. Here, male and female B6C3F1 mice were given single or fractionated whole-body exposure(s) to a monoenergetic carbon ion radiotherapy beam at the Heavy Ion Medical Accelerator in Chiba, Japan, matching the radiation quality delivered to the normal tissue ahead of the tumour volume (average linear energy transfer = 13 keV x μm(-1)) during patient radiotherapy protocols. The mice were monitored for the remainder of their lifespan, and a large number of T cell lymphomas that arose in these mice were analysed alongside those arising following an equivalent dose of 137Cs gamma ray-irradiation. Using genome-wide DNA copy number analysis to identify genomic loci involved in radiation-induced lymphomagenesis and subsequent detailed analysis of Notch1, Ikzf1, Pten, Trp53 and Bcl11b genes, we compared the genetic profile of the carbon ion- and gamma ray-induced tumours. The canonical set of genes previously associated with radiation-induced T cell lymphoma was identified in both radiation groups. While the pattern of disruption of the various pathways was somewhat different between the radiation types, most notably Pten mutation frequency and loss of heterozygosity flanking Bcl11b, the most striking finding was the observation of large interstitial deletions at various sites across the genome in carbon ion-induced tumours, which were only seen infrequently in the gamma ray-induced tumours analysed. If such large interstitial chromosomal deletions are a characteristic lesion of carbon ion irradiation, even when using the low linear energy transfer radiation to which normal tissues are exposed in radiotherapy patients, understanding the dose-response and tissue specificity of such DNA damage could prove key to assessing second cancer risk in carbon ion radiotherapy patients. PMID:26125582

  17. Follicular Helper T Cells.

    PubMed

    Vinuesa, Carola G; Linterman, Michelle A; Yu, Di; MacLennan, Ian C M

    2016-05-20

    Although T cell help for B cells was described several decades ago, it was the identification of CXCR5 expression by B follicular helper T (Tfh) cells and the subsequent discovery of their dependence on BCL6 that led to the recognition of Tfh cells as an independent helper subset and accelerated the pace of discovery. More than 20 transcription factors, together with RNA-binding proteins and microRNAs, control the expression of chemotactic receptors and molecules important for the function and homeostasis of Tfh cells. Tfh cells prime B cells to initiate extrafollicular and germinal center antibody responses and are crucial for affinity maturation and maintenance of humoral memory. In addition to the roles that Tfh cells have in antimicrobial defense, in cancer, and as HIV reservoirs, regulation of these cells is critical to prevent autoimmunity. The realization that follicular T cells are heterogeneous, comprising helper and regulatory subsets, has raised questions regarding a possible division of labor in germinal center B cell selection and elimination. PMID:26907215

  18. Immunopathology of experimental Chagas' disease: binding of T cells to Trypanosoma cruzi-infected heart tissue.

    PubMed Central

    Mortatti, R C; Maia, L C; de Oliveira, A V; Munk, M E

    1990-01-01

    The immunopathology of Chagas' disease was studied in the experimental model of chronic infection in C57BL/10JT or mice. Sublethal infection with Trypanosoma cruzi, Y strain, induced specific antibodies and a delayed hypersensitivity response to parasite antigens. Mice developed chronic chagasic myocarditis but not skeletal muscle myositis. Binding of T cells to infected heart tissue was investigated during short-term cocultivation of lymphocytes with heart cryostat sections. T cells from infected mice and from normal controls bound equally to myocardium and liver sections from both infected and normal mice. A search in depth was attempted with cells heavily tagged with 99mTc. Labeled T cells from chagasic mice bound to both normal and infected myocardium slices. 99mTc-labeled T cells from controls gave the same binding values. Glass-adherent spleen cells behaved identically to T cells. Prior treatment of the tissue with serum from chronically infected mice did not increase the number of binding cells. Peritoneal macrophages tagged with 99mTc-sulfur colloid also bound to infected myocardium slices. The binding of macrophages was not changed by pretreatment of infected tissue with anti-T, cruzi antibodies. In short, this work did not detect any population of T cells or macrophages which could bind specifically to infected heart tissue to initiate an autoreactive process. Images PMID:2228230

  19. The signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation

    PubMed Central

    Huang, Weishan; August, Avery

    2015-01-01

    T cell development, differentiation, and maintenance are orchestrated by 2 key signaling axes: the antigen-specific TCR and cytokine-mediated signals. The TCR signals the recognition of self- and foreign antigens to control T cell homeostasis for immune tolerance and immunity, which is regulated by a variety of cytokines to determine T cell subset homeostasis and differentiation. TCR signaling can synergize with or antagonize cytokine-mediated signaling to fine tune T cell fate; however, the latter is less investigated. Murine models with attenuated TCR signaling strength have revealed that TCR signaling can function as regulatory feedback machinery for T cell homeostasis and differentiation in differential cytokine milieus, such as IL-2-mediated Treg development; IL-7-mediated, naïve CD8+ T cell homeostasis; and IL-4-induced innate memory CD8+ T cell development. In this review, we discuss the symphonic cross-talk between TCR and cytokine-mediated responses that differentially control T cell behavior, with a focus on the negative tuning by TCR activation on the cytokine effects. PMID:25525115

  20. Steller sea lion (Eumetopias jubatus) pups undergo a decrease in circulating white blood cells and the ability of T cells to proliferate during early postnatal development.

    PubMed

    Keogh, Mandy J; Maniscalco, John M; Atkinson, Shannon

    2010-10-15

    Postnatal changes in circulating immune components and peripheral blood mononuclear cell (PBMC) proliferation were assessed in Steller sea lion pups (SSL; Eumetopias jubatus). Blood samples were collected for complete blood cell counts including total and differential white blood cell (WBC) counts from 46 pups ranging in age from 5 to 38 days old. Total WBC and neutrophil counts decreased in association with increased age of the pups. The ability of PBMC to proliferate was assessed by in vitro exposure to concanavalin A (ConA) or lipopolysaccharide (LPS) in 21 pups ranging in age from 7 to 32 days old. All SSL pups responded to in vitro stimulation with ConA and LPS 055:B5 indicating peripheral T and B cells are capable of responding to an antigenic challenge. ConA-induced T cell proliferation decreased with age while there was no change in spontaneous proliferation of PBMC or B cells exposed to LPS. The decreases in total WBC, neutrophil counts and T cell proliferation indicates that SSL undergo a period of postnatal development in cell-mediated immune function which is comparatively longer than phocid pups and consistent with other otariids. PMID:20816245

  1. Increased Interleukin-4 production by CD8 and gammadelta T cells in health-care workers is associated with the subsequent development of active tuberculosis.

    PubMed

    Ordway, Diane J; Costa, Leonor; Martins, Marta; Silveira, Henrique; Amaral, Leonard; Arroz, Maria J; Ventura, Fernando A; Dockrell, Hazel M

    2004-08-15

    We evaluated immune responses to Mycobacterium tuberculosis in 10 health-care workers (HCWs) and 10 non-HCWs and correlated their immune status with the development of active tuberculosis (TB). Twenty individuals were randomly recruited, tested, and monitored longitudinally for TB presentation. Peripheral blood mononuclear cells (PBMCs) from donors were stimulated with M. tuberculosis and tested for cell proliferation and the production of interferon (IFN)- gamma, interleukin (IL)-5, and IL-4, by use of enzyme-linked immunosorbent or flow-cytometric assays. HCWs had higher levels of cell proliferation (24,258 cpm) and IFN- gamma (6373 pg/mL) to M. tuberculosis than did non-HCWs (cell proliferation, 11,462 cpm; IFN- gamma, 3228 pg/mL). Six of 10 HCWs showed increased median percentages of CD8+IL-4+ (4.7%) and gammadelta +IL-4+ (2.3%) T cells and progressed to active TB. HCWs who remained healthy showed increased median percentages of CD8+IFN- gamma+ (25.0%) and gammadelta +IFN- gamma+ (8.0%) and lower percentages of CD8+IL-4+ (0.05%) and gammadelta +IL-4+ (0.03%) T cells. PMID:15272404

  2. 4-1BB ligand signaling to T cells limits T cell activation.

    PubMed

    Eun, So-Young; Lee, Seung-Woo; Xu, Yanfei; Croft, Michael

    2015-01-01

    4-1BB ligand (4-1BBL) and its receptor, 4-1BB, are both induced on T cells after activation, but little is known about the role of 4-1BBL. In this study we show that 4-1BBL can transmit signals that limit T cell effector activity under tolerogenic conditions. Cross-linking 4-1BBL inhibited IL-2 production in vitro, primarily with suboptimal TCR stimulation. Furthermore, naive 4-1BBL-deficient OT-II transgenic T cells displayed a greater conversion to effector T cells in vivo when responding to soluble OVA peptide in wild-type hosts, whereas development of Foxp3(+) regulatory T cells was not altered. A greater number of effector T cells also differentiated from naive wild-type OT-II T cells when transferred into 4-1BB-deficient hosts, suggesting that APC-derived 4-1BB is likely to trigger 4-1BBL. Indeed, effector T cells that could not express 4-1BBL accumulated in larger numbers in vitro when stimulated with 4-1BB-expressing mesenteric lymph node dendritic cells. 4-1BBL was expressed on T cells when Ag presentation was limiting, and 4-1BBL was aberrantly expressed at very high levels on T cells that could not express 4-1BB. Trans-ligation, Ab capture, and endocytosis experiments additionally showed that T cell-intrinsic 4-1BB regulated internalization of membrane 4-1BBL, implying that the strong induction of 4-1BB on T cells may counteract the suppressive function of 4-1BBL by limiting its availability. These data suggest that 4-1BBL expressed on T cells can restrain effector T cell development, creating a more favorable regulatory T cell to effector cell balance under tolerogenic conditions, and this may be particularly active in mucosal barrier tissues where 4-1BB-expressing regulatory dendritic cells present Ag. PMID:25404362

  3. Adult T-Cell Leukemia/Lymphoma (HTLV-1)

    MedlinePlus

    ... gentic material made of DNA, but instead carry RNA. These viruses selectively infect only T-cells. Only ... potential to inject its genetic material (DNA or RNA) into normal cells. Once inside the normal cells, ...

  4. Roscovitine Suppresses CD4+ T Cells and T Cell-Mediated Experimental Uveitis

    PubMed Central

    Zhang, Zili; Liu, Qi; Leskov, Konstantin S.; Wu, Xiumei; Duan, Jie; Zhang, Gary L.; Hall, Mark; Rosenbaum, James T.

    2013-01-01

    Background T cells are essential for the development of uveitis and other autoimmune diseases. After initial activation, CD4+ lymphocytes express the co-stimulatory molecule OX40 that plays an important role in T cell proliferation. Cyclin dependent kinase 2 (CdK2) plays a pivotal role in the cell cycle transition from G1 to S phase. In addition, recent research has implicated CdK2 in T cell activation. Thus, we sought to test the immunosuppressive effect of roscovitine, a potent CdK2 inhibitor, on CD4+ T cell activation, proliferation, and function. Design and Methods Mouse CD4+ T cells were activated by anti-CD3 and anti-CD28 antibodies. The expression of OX40, CD44, and CdK2 were analyzed by flow cytometry. In addition, cell cycle progression and apoptosis of control and roscovitine-treated T lymphocytes were measured by BrdU incorporation and annexin V assay, respectively. Furthermore, the immunoregulatory effect of roscovitine was evaluated in both ovalbumin-induced uveitis and experimental autoimmune uveitis (EAU) models. Results In this study, we found that T cell activation induced OX40 expression. Cell cycle analysis showed that more CD4+OX40+ cells entered S phase than OX40- T cells. Concurrently, CD4+OX40+ cells had a higher level of CdK2 expression. Roscovitine treatment blocked activated CD4+ cells from entering S phase. In addition, roscovitine not only reduced the viability of CD4+ lymphocytes but also suppressed T cell activation and cytokine production. Finally, roscovitine significantly attenuated the severity of T cell-dependent, OX40-enhanced uveitis. Conclusion These results implicate CdK2 in OX40-augmented T cell response and expansion. Furthermore, this study suggests that roscovitine is a novel, promising, therapeutic agent for treating T cell-mediated diseases such as uveitis. PMID:24260551

  5. Oligoclonal expansions of mucosal T cells in Crohn's disease predominate in NKG2D-expressing CD4 T cells.

    PubMed

    Camus, M; Esses, S; Pariente, B; Le Bourhis, L; Douay, C; Chardiny, V; Mocan, I; Benlagha, K; Clave, E; Toubert, A; Mayer, L; Allez, M

    2014-03-01

    Crohn's disease (CD) is an inflammatory pathology of the mucosal intestine that results from uncontrolled immune response towards commensal microbes. Clonal expansions of T cells have been found in patients with CD suggesting an antigen-specific stimulation of pathogenic T cells. Here we show, using T-cell receptor repertoire analysis by real-time PCR, that oligoclonal expansions are found in both CD8+ and CD4+ T cells in the blood and intestinal mucosa of CD patients. The majority of CD4+ T-cell-expanded clones are CD4+NKG2D+ T cells. These clonal expansions were found in both inflamed and neighboring healthy tissue and were persisting during the course of the disease. The presence of these CD4+NKG2D+ T-cell clones at the macroscopically normal edge of the surgical resection might be predictive of inflammation relapse post surgery. PMID:23945543

  6. DCIR2+ cDC2 DCs and Zbtb32 Restore CD4+ T-Cell Tolerance and Inhibit Diabetes.

    PubMed

    Price, Jeffrey D; Hotta-Iwamura, Chie; Zhao, Yongge; Beauchamp, Nicole M; Tarbell, Kristin V

    2015-10-01

    During autoimmunity, the normal ability of dendritic cells (DCs) to induce T-cell tolerance is disrupted; therefore, autoimmune disease therapies based on cell types and molecular pathways that elicit tolerance in the steady state may not be effective. To determine which DC subsets induce tolerance in the context of chronic autoimmunity, we used chimeric antibodies specific for DC inhibitory receptor 2 (DCIR2) or DEC-205 to target self-antigen to CD11b(+) (cDC2) DCs and CD8(+) (cDC1) DCs, respectively, in autoimmune-prone nonobese diabetic (NOD) mice. Antigen presentation by DCIR2(+) DCs but not DEC-205(+) DCs elicited tolerogenic CD4(+) T-cell responses in NOD mice. β-Cell antigen delivered to DCIR2(+) DCs delayed diabetes induction and induced increased T-cell apoptosis without interferon-γ (IFN-γ) or sustained expansion of autoreactive CD4(+) T cells. These divergent responses were preceded by differential gene expression in T cells early after in vivo stimulation. Zbtb32 was higher in T cells stimulated with DCIR2(+) DCs, and overexpression of Zbtb32 in T cells inhibited diabetes development, T-cell expansion, and IFN-γ production. Therefore, we have identified DCIR2(+) DCs as capable of inducing antigen-specific tolerance in the face of ongoing autoimmunity and have also identified Zbtb32 as a suppressive transcription factor that controls T cell-mediated autoimmunity. PMID:26070317

  7. The Nore1B/Mst1 complex restrains antigen receptor-induced proliferation of naïve T cells.

    PubMed

    Zhou, Dawang; Medoff, Benjamin D; Chen, Lanfen; Li, Lequn; Zhang, Xian-feng; Praskova, Maria; Liu, Matthew; Landry, Aimee; Blumberg, Richard S; Boussiotis, Vassiliki A; Xavier, Ramnik; Avruch, Joseph

    2008-12-23

    The Mst1 and Mst2 protein kinases are the mammalian homologs of hippo, a major inhibitor of cell proliferation in Drosophila. Mst1 is most abundant in lymphoid tissues. Mice lacking Mst1 exhibit markedly reduced levels of the Mst1 regulatory protein Nore1B/RAPL in lymphoid cells, whereas Mst2 abundance is unaltered. Mst1-null mice exhibit normal T cell development but low numbers of mature naïve T cells with relatively normal numbers of effector/memory T cells. In vitro, the Mst1-deficient naïve T cells exhibit markedly greater proliferation in response to stimulation of the T cell receptor whereas the proliferative responses of the Mst1-null effector/memory T cell cohort is similar to wild type. Thus, elimination of Mst1 removes a barrier to the activation and proliferative response of naïve T cells. The levels of Mst1 and Nore1B/RAPL in wild-type effector/memory T cells are approximately 10% those seen in wild-type naïve T cells, which may contribute to the enhanced proliferative responses of the former. Freshly isolated Mst1-null T cells exhibit high rates of ongoing apoptosis, a likely basis for their low numbers in vivo; they also exhibit defective clustering of LFA-1, as previously observed for Nore1B/RAPL-deficient T cells. Among known Mst1 substrates, only the phosphorylation of the cell cycle inhibitory proteins MOBKL1A/B is lost entirely in TCR-stimulated, Mst1-deficient T cells. Mst1/2-catalyzed MOBKL1A/B phosphorylation slows proliferation and is therefore a likely contributor to the anti-proliferative action of Mst1 in naïve T cells. The Nore1B/RAPL-Mst1 complex is a negative regulator of naïve T cell proliferation. PMID:19073936

  8. A Variable CD3+ T-Cell Frequency in Peripheral Blood Lymphocytes Associated with Type 1 Diabetes Mellitus Development in the LEW.1AR1-iddm Rat

    PubMed Central

    Arndt, Tanja; Jörns, Anne; Weiss, Heike; Tiedge, Markus; Hedrich, Hans-Jürgen; Lenzen, Sigurd; Wedekind, Dirk

    2013-01-01

    Purpose The LEW.1AR1-iddm rat is an animal model of human type 1 diabetes mellitus (T1DM), which arose through a spontaneous mutation within the MHC-congenic inbred strain LEW.1AR1 (RT1r2). In contrast to the diabetes-resistant LEW.1AR1 background strain in LEW.1AR1-iddm rats a highly variable T-cell frequency could be observed in peripheral blood lymphocytes (PBLs). Methods In this study we therefore characterised the T-cell repertoire within the PBLs of the two strains by flow cytometry analysis and identified the CD3+ T-cell phenotype and its possible linkage to diabetes susceptibility. To map loci conferring susceptibility to variable CD3+ T-cell frequency, backcross strains (N2) were generated with the genetically divergent BN and PAR rats for microsatellite analysis. Results The LEW.1AR1-iddm rat strain was characterised by a higher variability of CD3+ T-cells in PBLs along with a slightly decreased mean value compared to the LEW.1AR1 background strain. The reason for this reduction was a decrease in the CD4+ T-cell count while the CD8+ T-cell proportion remained unchanged. However, both T-cell subpopulations showed a high variability. This resulted in a lower CD4+/CD8+ T-cell ratio than in LEW.1AR1 rats. Like LEW.1AR1-iddm rats all animals of the backcross populations, N2 BN and N2 PAR rats, also showed large variations of the CD3+ T-cell frequency. The phenotype of variable CD3+ T-cell frequency mapped to the telomeric region of chromosome 1 (RNO1), which is identical with the already known Iddm8 diabetes susceptibility region. The data indicate that a variable CD3+ T-cell frequency in PBLs is genetically linked to diabetes susceptibility in the LEW.1AR1-iddm rat. Conclusion The T-cell variability in PBLs could be related to the previously reported imbalance between regulatory and effector T-cell populations which results in beta-cell autoimmunity. Since similar T-cell phenotypes have also been described in human T1DM the identification of the functional role of the observed variable CD3+ T-cell frequency may help to understand the mechanisms of autoimmunity in T1DM. PMID:23717591

  9. T Cell Receptor-Engineered T Cells to Treat Solid Tumors: T Cell Processing Toward Optimal T Cell Fitness

    PubMed Central

    van Steenbergen-Langeveld, Sabine; van Brakel, Mandy; Groot-van Ruijven, Corrien M.; van Elzakker, Pascal M.M.L.; van Krimpen, Brigitte; Sleijfer, Stefan; Debets, Reno

    2014-01-01

    Abstract Therapy with autologous T cells that have been gene-engineered to express chimeric antigen receptors (CAR) or T cell receptors (TCR) provides a feasible and broadly applicable treatment for cancer patients. In a clinical study in advanced renal cell carcinoma (RCC) patients with CAR T cells specific for carbonic anhydrase IX (CAIX), we observed toxicities that (most likely) indicated in vivo function of CAR T cells as well as low T cell persistence and clinical response rates. The latter observations were confirmed by later clinical trials in other solid tumor types and other gene-modified T cells. To improve the efficacy of T cell therapy, we have redefined in vitro conditions to generate T cells with young phenotype, a key correlate with clinical outcome. For their impact on gene-modified T cell phenotype and function, we have tested various anti-CD3/CD28 mAb-based T cell activation and expansion conditions as well as several cytokines prior to and/or after gene transfer using two different receptors: CAIX CAR and MAGE-C2(ALK)/HLA-A2 TCR. In a total set of 16 healthy donors, we observed that T cell activation with soluble anti-CD3/CD28 mAbs in the presence of both IL15 and IL21 prior to TCR gene transfer resulted in enhanced proportions of gene-modified T cells with a preferred in vitro phenotype and better function. T cells generated according to these processing methods demonstrated enhanced binding of pMHC, and an enhanced proportion of CD8+, CD27+, CD62L+, CD45RA+T cells. These new conditions will be translated into a GMP protocol in preparation of a clinical adoptive therapy trial to treat patients with MAGE-C2-positive tumors. PMID:25423330

  10. T Cells and Gene Regulation: The Switching On and Turning Up of Genes after T Cell Receptor Stimulation in CD8 T Cells

    PubMed Central

    Conley, James M.; Gallagher, Michael P.; Berg, Leslie J.

    2016-01-01

    Signaling downstream of the T cell receptor (TCR) is directly regulated by the dose and affinity of peptide antigen. The strength of TCR signaling drives a multitude of T cell functions from development to differentiation. CD8 T cells differentiate into a diverse pool of effector and memory cells after activation, a process that is critical for pathogen clearance and is highly regulated by TCR signal strength. T cells rapidly alter their gene expression upon activation. Multiple signaling pathways downstream of the TCR activate transcription factors, which are critical for this process. The dynamics between proximal TCR signaling, transcription factor activation and CD8 T cell function are discussed here. We propose that inducible T cell kinase (ITK) acts as a rheostat for gene expression. This unique regulation of TCR signaling by ITK provides a possible signaling mechanism for the promotion of a diverse T cell repertoire in response to pathogen. PMID:26973653

  11. Immunoglobulin heavy chain gene rearrangement and transcription in murine T cell hybrids and T lymphomas.

    PubMed Central

    Ziga, M C; D'Eustachio, P; Ruddle, N H

    1982-01-01

    We have examined the arrangement of immunoglobulin heavy chain constant (CH) and joining (JH) region genes in murine T cell hybrid lines and in T lymphomas. CH genes derived from both parental cell types were present in all hybrids for which polymorphism in sequences flanking CH genes permitted us to distinguish parental CH genes. All T lymphomas and T cell hybrids retained the C alpha gene in germ-line configuration and all but one cell line had germ-line C mu genes. Novel DNA fragments reactive with JH probes were observed in six of nine T cell hybrids, as well as in two T lymphomas, WEHI7.1 and YAC-1, but not in the fusion parent, BW5147. No RNA homologous to C gamma 2b, C alpha, or lambda genes was detected in any of the T cell lines. T cell lines contained poly(A)+ RNA homologous to a C mu cDNA probe. More importantly, in several cell lines the C mu RNAs were associated with membrane-bound polyribosomes. These results suggest that both JH rearrangements and C mu RNA production occur in at least some mature, antigen-specific T cells. They may therefore reflect events in normal T cell development and function related to those involved in the generation of the T receptor for antigen. Images PMID:6806823

  12. Reactive oxygen species differentially affect T cell receptor-signaling pathways.

    PubMed

    Cemerski, Saso; Cantagrel, Alain; Van Meerwijk, Joost P M; Romagnoli, Paola

    2002-05-31

    Oxidative stress plays an important role in the induction of T lymphocyte hyporesponsiveness observed in several human pathologies including cancer, rheumatoid arthritis, leprosy, and AIDS. To investigate the molecular basis of oxidative stress-induced T cell hyporesponsiveness, we have developed an in vitro system in which T lymphocytes are rendered hyporesponsive by co-culture with oxygen radical-producing activated neutrophils. We have observed a direct correlation between the level of T cell hyporesponsiveness induced and the concentration of reactive oxygen species produced. Moreover, induction of T cell hyporesponsiveness is blocked by addition of N-acetyl cysteine, Mn(III)tetrakis(4-benzoic acid)porphyrin chloride, and catalase, confirming the critical role of oxidative stress in this system. The pattern of tyrosine-phosphorylated proteins was profoundly altered in hyporesponsive as compared with normal T cells. In hyporesponsive T cells, T cell receptor (TCR) ligation no longer induced phospholipase C-gamma1 activation and caused reduced Ca(2+) flux. In contrast, despite increased levels of ERK1/2 phosphorylation, TCR-dependent activation of mitogen-activated protein kinase ERK1/2 was unaltered in hyporesponsive T lymphocytes. A late TCR-signaling event such as caspase 3 activation was as well unaffected in hyporesponsive T lymphocytes. Our data indicate that TCR-signaling pathways are differentially affected by physiological levels of oxidative stress and would suggest that although "hyporesponsive" T cells have lost certain effector functions, they may have maintained or gained others. PMID:11916964

  13. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection

    PubMed Central

    Matsushita, Mai; Freigang, Stefan; Schneider, Christoph; Conrad, Marcus; Bornkamm, Georg W.

    2015-01-01

    The selenoenzyme glutathione peroxidase 4 (Gpx4) is a major scavenger of phospholipid hydroperoxides. Although Gpx4 represents a key component of the reactive oxygen species-scavenging network, its relevance in the immune system is yet to be defined. Here, we investigated the importance of Gpx4 for physiological T cell responses by using T cell–specific Gpx4-deficient mice. Our results revealed that, despite normal thymic T cell development, CD8+ T cells from TΔGpx4/ΔGpx4 mice had an intrinsic defect in maintaining homeostatic balance in the periphery. Moreover, both antigen-specific CD8+ and CD4+ T cells lacking Gpx4 failed to expand and to protect from acute lymphocytic choriomeningitis virus and Leishmania major parasite infections, which were rescued with diet supplementation of high dosage of vitamin E. Notably, depletion of the Gpx4 gene in the memory phase of viral infection did not affect T cell recall responses upon secondary infection. Ex vivo, Gpx4-deficient T cells rapidly accumulated membrane lipid peroxides and concomitantly underwent cell death driven by ferroptosis but not necroptosis. These studies unveil an essential role of Gpx4 for T cell immunity. PMID:25824823

  14. Genomic landscape of cutaneous T cell lymphoma

    PubMed Central

    Choi, Jaehyuk; Goh, Gerald; Walradt, Trent; Hong, Bok S.; Bunick, Christopher G.; Chen, Kan; Bjornson, Robert D.; Maman, Yaakov; Wang, Tiffany; Tordoff, Jesse; Carlson, Kacie; Overton, John D.; Liu, Kristina J.; Lewis, Julia M.; Devine, Lesley; Barbarotta, Lisa; Foss, Francine M.; Subtil, Antonio; Vonderheid, Eric C.; Edelson, Richard L.; Schatz, David G.; Boggon, Titus J.; Girardi, Michael; Lifton, Richard P.

    2015-01-01

    Cutaneous T cell lymphoma (CTCL) is a non-Hodgkin lymphoma of skin-homing T lymphocytes. We performed exome and whole genome DNA sequence and RNA sequencing on purified CTCL and matched normal cells. The results implicate mutations in 17 genes in CTCL pathogenesis, including genes involved in T cell activation and apoptosis, NFκB signaling, chromatin remodeling, and DNA damage response. CTCL is distinctive in that somatic copy number variants (SCNVs) comprise 92% of all driver mutations (mean of 11.8 pathogenic SCNVs vs. 1.0 somatic single nucleotide variants per CTCL). These findings have implications for novel therapeutics. PMID:26192916

  15. A Comparative Study of N-glycolylneuraminic Acid (Neu5Gc) and Cytotoxic T Cell (CT) Carbohydrate Expression in Normal and Dystrophin-Deficient Dog and Human Skeletal Muscle

    PubMed Central

    Martin, Paul T.; Golden, Bethannie; Okerblom, Jonathan; Camboni, Marybeth; Chandrasekharan, Kumaran; Xu, Rui; Varki, Ajit; Flanigan, Kevin M.; Kornegay, Joe N.

    2014-01-01

    The expression of N-glycolylneuraminic acid (Neu5Gc) and the cytotoxic T cell (CT) carbohydrate can impact the severity of muscular dystrophy arising from the loss of dystrophin in mdx mice. Here, we describe the expression of these two glycans in skeletal muscles of dogs and humans with or without dystrophin-deficiency. Neu5Gc expression was highly reduced (>95%) in muscle from normal golden retriever crosses (GR, n = 3) and from golden retriever with muscular dystrophy (GRMD, n = 5) dogs at multiple ages (3, 6 and 13 months) when compared to mouse muscle, however, overall sialic acid expression in GR and GRMD muscles remained high at all ages. Neu5Gc was expressed on only a minority of GRMD satellite cells, CD8+ T lymphocytes and macrophages. Human muscle from normal (no evident disease, n = 3), Becker (BMD, n = 3) and Duchenne (DMD, n = 3) muscular dystrophy individuals had absent to very low Neu5Gc staining, but some punctate intracellular muscle staining was present in BMD and DMD muscles. The CT carbohydrate was localized to the neuromuscular junction in GR muscle, while GRMD muscles had increased expression on a subset of myofibers and macrophages. In humans, the CT carbohydrate was ectopically expressed on the sarcolemmal membrane of some BMD muscles, but not normal human or DMD muscles. These data are consistent with the notion that altered Neu5Gc and CT carbohydrate expression may modify disease severity resulting from dystrophin deficiency in dogs and humans. PMID:24505439

  16. The two-faced T cell epitope

    PubMed Central

    Moise, Leonard; Gutierrez, Andres H.; Bailey-Kellogg, Chris; Terry, Frances; Leng, Qibin; Abdel Hady, Karim M.; VerBerkmoes, Nathan C.; Sztein, Marcelo B.; Losikoff, Phyllis T.; Martin, William D.; Rothman, Alan L; De Groot, Anne S.

    2013-01-01

    Advances in the field of T cell immunology have contributed to the understanding that cross-reactivity is an intrinsic characteristic of the T cell receptor (TCR), and that each TCR can potentially interact with many different T cell epitopes. To better define the potential for TCR cross-reactivity between epitopes derived from the human genome, the human microbiome, and human pathogens, we developed a new immunoinformatics tool, JanusMatrix, that represents an extension of the validated T cell epitope mapping tool, EpiMatrix. Initial explorations, summarized in this synopsis, have uncovered what appear to be important differences in the TCR cross-reactivity of selected regulatory and effector T cell epitopes with other epitopes in the human genome, human microbiome, and selected human pathogens. In addition to exploring the T cell epitope relationships between human self, commensal and pathogen, JanusMatrix may also be useful to explore some aspects of heterologous immunity and to examine T cell epitope relatedness between pathogens to which humans are exposed (Dengue serotypes, or HCV and Influenza, for example). In Hand-Foot-Mouth disease (HFMD) for example, extensive enterovirus and human microbiome cross-reactivity (and limited cross-reactivity with the human genome) seemingly predicts immunodominance. In contrast, more extensive cross-reactivity with proteins contained in the human genome as compared to the human microbiome was observed for selected Treg epitopes. While it may be impossible to predict all immune response influences, the availability of sequence data from the human genome, the human microbiome, and an array of human pathogens and vaccines has made computationally–driven exploration of the effects of T cell epitope cross-reactivity now possible. This is the first description of JanusMatrix, an algorithm that assesses TCR cross-reactivity that may contribute to a means of predicting the phenotype of T cells responding to selected T cell epitopes. Whether used for explorations of T cell phenotype or for evaluating cross-conservation between related viral strains at the TCR face of viral epitopes, further JanusMatrix studies may contribute to developing safer, more effective vaccines. PMID:23584251

  17. Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+ regulatory T cell development via the CD27–CD70 pathway

    PubMed Central

    Coquet, Jonathan M.; Ribot, Julie C.; Bąbała, Nikolina; Middendorp, Sabine; van der Horst, Gerda; Xiao, Yanling; Neves, Joana F.; Fonseca-Pereira, Diogo; Jacobs, Heinz; Pennington, Daniel J.; Silva-Santos, Bruno

    2013-01-01

    CD4+Foxp3+ regulatory T cells (Treg cells) are largely autoreactive yet escape clonal deletion in the thymus. We demonstrate here that CD27–CD70 co-stimulation in the thymus rescues developing Treg cells from apoptosis and thereby promotes Treg cell generation. Genetic ablation of CD27 or its ligand CD70 reduced Treg cell numbers in the thymus and peripheral lymphoid organs, whereas it did not alter conventional CD4+Foxp3− T cell numbers. The CD27–CD70 pathway was not required for pre-Treg cell generation, Foxp3 induction, or mature Treg cell function. Rather, CD27 signaling enhanced positive selection of Treg cells within the thymus in a cell-intrinsic manner. CD27 signals promoted the survival of thymic Treg cells by inhibiting the mitochondrial apoptosis pathway. CD70 was expressed on Aire− and Aire+ medullary thymic epithelial cells (mTECs) and on dendritic cells (DCs) in the thymic medulla. CD70 on both mTECs and DCs contributed to Treg cell development as shown in BM chimera experiments with CD70-deficient mice. In vitro experiments indicated that CD70 on the CD8α+ subset of thymic DCs promoted Treg cell development. Our data suggest that mTECs and DCs form dedicated niches in the thymic medulla, in which CD27–CD70 co-stimulation rescues developing Treg cells from apoptosis, subsequent to Foxp3 induction by TCR and CD28 signals. PMID:23547099

  18. A sharp T-cell antigen receptor signaling threshold for T-cell proliferation

    PubMed Central

    Au-Yeung, Byron B.; Zikherman, Julie; Mueller, James L.; Ashouri, Judith F.; Matloubian, Mehrdad; Cheng, Debra A.; Chen, Yiling; Shokat, Kevan M.; Weiss, Arthur

    2014-01-01

    T-cell antigen receptor (TCR) signaling is essential for activation, proliferation, and effector function of T cells. Modulation of both intensity and duration of TCR signaling can regulate these events. However, it remains unclear how individual T cells integrate such signals over time to make critical cell-fate decisions. We have previously developed an engineered mutant allele of the critical T-cell kinase zeta-chain-associated protein kinase 70 kDa (Zap70) that is catalytically inhibited by a small molecule inhibitor, thereby blocking TCR signaling specifically and efficiently. We have also characterized a fluorescent reporter Nur77–eGFP transgenic mouse line in which T cells up-regulate GFP uniquely in response to TCR stimulation. The combination of these technologies unmasked a sharp TCR signaling threshold for commitment to cell division both in vitro and in vivo. Further, we demonstrate that this threshold is independent of both the magnitude of the TCR stimulus and Interleukin 2. Similarly, we identify a temporal threshold of TCR signaling that is required for commitment to proliferation, after which T cells are able to proliferate in a Zap70 kinase-independent manner. Taken together, our studies reveal a sharp threshold for the magnitude and duration of TCR signaling required for commitment of T cells to proliferation. These results have important implications for understanding T-cell responses to infection and optimizing strategies for immunomodulatory drug delivery. PMID:25136127

  19. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies.

    PubMed

    Mamonkin, Maksim; Rouce, Rayne H; Tashiro, Haruko; Brenner, Malcolm K

    2015-08-20

    Options for targeted therapy of T-cell malignancies remain scarce. Recent clinical trials demonstrated that chimeric antigen receptors (CARs) can effectively redirect T lymphocytes to eradicate lymphoid malignancies of B-cell origin. However, T-lineage neoplasms remain a more challenging task for CAR T cells due to shared expression of most targetable surface antigens between normal and malignant T cells, potentially leading to fratricide of CAR T cells or profound immunodeficiency. Here, we report that T cells transduced with a CAR targeting CD5, a common surface marker of normal and neoplastic T cells, undergo only limited fratricide and can be expanded long-term ex vivo. These CD5 CAR T cells effectively eliminate malignant T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma lines in vitro and significantly inhibit disease progression in xenograft mouse models of T-ALL. These data support the therapeutic potential of CD5 CAR in patients with T-cell neoplasms. PMID:26056165

  20. Contrasting Roles For All-Trans Retinoic Acid in TGF-ß-mediated Induction of Foxp3 and Il10 Genes in Developing Regulatory T Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrathymic induction of regulatory T cells (Treg) is essential to the regulation of effector T cell responses in the periphery. TGF-ß has been shown to induce Foxp3-expressing Tregs both in vitro and in vivo. More recently, the vitamin A metabolite, all-trans retinoic acid (at-RA), has been found t...

  1. Deletion of Pten in CD45-expressing cells leads to development of T-cell lymphoblastic lymphoma but not myeloid malignancies.

    PubMed

    Mirantes, Cristina; Dosil, Maria Alba; Hills, David; Yang, Jian; Eritja, Núria; Santacana, Maria; Gatius, Sònia; Vilardell, Felip; Medvinsky, Alexander; Matias-Guiu, Xavier; Dolcet, Xavier

    2016-04-14

    Since its discovery in the late 1990s, Pten has turned out to be one of the most important tumor suppressor genes. Pten loss results in increased activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, which is associated with increased proliferation, survival, and neoplastic growth. Here, we have addressed the effects of conditional deletion of Pten in hematopoietic cells by crossing Pten conditional knockout mice with a knock-in mouse expressing the Cre recombinase in the CD45 locus. CD45 is also known as leukocyte common antigen, and it is expressed in virtually all white cells and in hematopoietic stem cells. Using a reporter mouse, we demonstrate that CD45:Cre mouse displays recombinase activity in both myeloid and lymphoid cells. However, deletion of Pten in CD45-expressing cells induces development of T-cell acute lymphoblastic leukemia and lymphoma, but not other hematologic malignancies. PMID:26773036

  2. Dynamic mapping of normal human hippocampal development.

    PubMed

    Gogtay, Nitin; Nugent, Tom F; Herman, David H; Ordonez, Anna; Greenstein, Deanna; Hayashi, Kiralee M; Clasen, Liv; Toga, Arthur W; Giedd, Jay N; Rapoport, Judith L; Thompson, Paul M

    2006-01-01

    The hippocampus, which plays an important role in memory functions and emotional responses, has distinct subregions subserving different functions. Because the volume and shape of the hippocampus are altered in many neuropsychiatric disorders, it is important to understand the trajectory of normal hippocampal development. We present the first dynamic maps to reveal the anatomical sequence of normal human hippocampal development. A novel hippocampal mapping technique was applied to a database of prospectively obtained brain magnetic resonance imaging (MRI) scans (100 scans in 31 children and adolescents), scanned every 2 yr for 6-10 yr between ages 4 and 25. Our results establish that the structural development of the human hippocampus is remarkably heterogeneous, with significant differences between posterior (increase over time) and anterior (loss over time) subregions. These distinct developmental trajectories of hippocampal subregions may parallel differences in their functional development. PMID:16826559

  3. Bacterial clearance reverses a skewed T-cell repertoire induced by Salmonella infection

    PubMed Central

    Leyva-Rangel, Jessica P; de los Angeles Hernández-Cueto, Maria; Galan-Enriquez, Carlos-Samuel; López-Medina, Marcela; Ortiz-Navarrete, Vianney

    2015-01-01

    Salmonella typhimurium invades the spleen, liver, and peripheral lymph nodes and has recently been detected in the bone marrow and thymus, resulting in a reduced thymic size and a decline in the total number of thymic cells. A specific deletion of the double-positive cell subset has been characterized, yet the export of mature T cells to the periphery remains normal. We analyzed Salmonella pathogenesis regarding thymic structure and the T-cell maturation process. We demonstrate that, despite alterations in the thymic structure, T-cell development is maintained during Salmonella infection, allowing the selection of single-positive T-cell clones expressing particular T-cell receptor beta chains (TCR-Vβ). Moreover, the treatment of infected mice with an antibiotic restored the normal thymic architecture and thymocyte subset distribution. Additionally, the frequency of TCR-Vβ usage after treatment was comparable to that in non-infected mice. However, bacteria were still recovered from the thymus after 1 month of treatment. Our data reveal that a skewed T-cell developmental process is present in the Salmonella-infected thymus that alters the TCR-Vβ usage frequency. Likewise, the post-treatment persistence of Salmonella reveals a novel function of the thymus as a potential reservoir for this infectious agent. PMID:26417438

  4. T CELL THERAPIES FOR HIV

    PubMed Central

    Lam, Sharon; Bollard, Catherine

    2013-01-01

    Anti-retroviral therapy (ART) has improved the quality of life for HIV+ individuals but efficacy requires strict adherence and treatment is not curative. Recently, the use of T cells as therapeutic agents have been in the spotlight in the settings of post-transplant opportunistic infections and cancer. Whether T cell therapy can be harnessed for treating HIV remains to be determined but there are a few studies that seek to answer that question. Infusion of ex vivo expanded HIV-specific T cells showed limited efficacy but no adverse events. Genetically modified T cells expressing CD4 chimeric antigen receptors (CAR) have recently been shown to have persistence that outperforms CARs used for cancers. Although the results have not yet been published for many clinical studies using T cells for HIV, preclinical studies and the clinical data that is available highlight the potential for T cell therapy to decrease or eliminate HIV patients’ dependency on ART. PMID:23557423

  5. T Cell Epitope Mapping of JC Polyoma Virus-Encoded Proteome Reveals Reduced T Cell Responses in HLA-DRB1*04:01+ Donors

    PubMed Central

    Jelčić, Ilijas; Aly, Lilian; Binder, Thomas M. C.; Jelčić, Ivan; Bofill-Mas, Sílvia; Planas, Raquel; Demina, Victoria; Eiermann, Thomas H.; Weber, Thomas; Girones, Rosina; Sospedra, Mireia

    2013-01-01

    JC polyomavirus (JCV) infection is highly prevalent and usually kept in a persistent state without clinical signs and symptoms. It is only during immunocompromise and especially impaired CD4+ T cell function in the brain, as seen in AIDS patients or natalizumab-treated multiple sclerosis patients, that JCV may cause progressive multifocal leukoencephalopathy (PML), an often life-threatening brain disease. Since CD4+ T cells likely play an important role in controlling JCV infection, we here describe the T cell response to JCV in a group of predominantly HLA-DR-heterozygotic healthy donors (HD) by using a series of overlapping 15-mer peptides spanning all JCV-encoded open reading frames. We identified immunodominant epitopes and compared T cell responses with anti-JCV VP1 antibody production and with the presence of urinary viral shedding. We observed positive JCV-specific T cell responses in 28.6% to 77.6%, humoral immune response in 42.6% to 89.4%, and urinary viral shedding in 36.4% to 45.5% of HD depending on the threshold. Four immunodominant peptides were mapped, and at least one immunogenic peptide per HLA-DRB1 allele was detected in DRB1*01+, DRB1*07+, DRB1*11+, DRB1*13+, DRB1*15+, and DRB1*03+ individuals. We show for the first time that JCV-specific T cell responses may be directed not only against JCV VP1 and large T antigen but also against all other JCV-encoded proteins. Heterozygotic DRB1*04:01+ individuals showed very low T cell responses to JCV together with normal anti-VP1 antibody levels and no urinary viral shedding, indicating a dominant-negative effect of this allele on global JCV-directed T cell responses. Our data are potentially relevant for the development of vaccines against JCV. PMID:23302880

  6. Peripheral T cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunization.

    PubMed

    Degl'Innocenti, Elena; Grioni, Matteo; Boni, Andrea; Camporeale, Annalisa; Bertilaccio, Maria T S; Freschi, Massimo; Monno, Antonella; Arcelloni, Cinzia; Greenberg, Norman M; Bellone, Matteo

    2005-01-01

    In the tumor-prone transgenic adenocarcinoma mouse prostate (TRAMP) mouse model we followed the fate of the immune response against the SV40 large T antigen (Tag) selectively expressed in the prostate epithelium during the endogenous transformation from normal cells to tumors. Young (5-7-week-old) male TRAMP mice, despite a dim and patchy expression of Tag overlapping foci of mouse prostate intraepithelial neoplasia, displayed a strong Tag-specific cytotoxic T lymphocyte (CTL) response after an intradermal injection of peptide-pulsed dendritic cells (DC). This response was weaker than the one found in vaccinated wild-type littermates, and was characterized by a reduced frequency and avidity of Tag-specific CTL. Early DC vaccination also subverted the profound state of peripheral tolerance typically found in TRAMP mice older than 9-10 weeks. The DC-induced CTL response indeed was still detectable in TRAMP mice of 16 weeks, and was associated with histology evidence of reduced disease progression. Our findings suggest that tumor antigens are handled as self antigens, and peripheral tolerance is associated with in situ antigen overexpression and cancer progression. Our data also support a relevant role for DC-based vaccines in controlling the induction of peripheral tolerance to tumor antigens. PMID:15597325

  7. Isolation of Double Negative αβ T Cells from the Kidney

    PubMed Central

    Martina, Maria N.; Bandapalle, Samantha; Rabb, Hamid; Hamad, Abdel R.

    2014-01-01

    There is currently no standard protocol for the isolation of DN T cells from the non-lymphoid tissues despite their increasingly reported involvement in various immune responses. DN T cells are a unique immune cell type that has been implicated in regulating immune and autoimmune responses and tolerance to allotransplants1-6. DN T cells are, however, rare in peripheral blood and secondary lymphoid organs (spleen and lymph nodes), but are major residents of the normal kidney. Very little is known about their pathophysiologic function7 due to their paucity in the periphery. We recently described a comprehensive phenotypic and functional analysis of this population in the kidney8 in steady state and during ischemia reperfusion injury. Analysis of DN T cell function will be greatly enhanced by developing a protocol for their isolation from the kidney. Here, we describe a novel protocol that allows isolation of highly pure ab CD4+ CD8+ T cells and DN T cells from the murine kidney. Briefly, we digest kidney tissue using collagenase and isolate kidney mononuclear cells (KMNC) by density gradient. This is followed by two steps to enrich hematopoietic T cells from 3% to 70% from KMNC. The first step consists of a positive selection of hematopoietic cells using a CD45+ isolation kit. In the second step, DN T cells are negatively isolated by removal of non-desired cells using CD4, CD8, and MHC class II monoclonal antibodies and CD1d α-galcer tetramer. This strategy leads to a population of more than 90% pure DN T cells. Surface staining with the above mentioned antibodies followed by FACs analysis is used to confirm purity. PMID:24893925

  8. Peritoneal cavity regulatory B cells (B10 cells) modulate IFN-γ+CD4+ T cell numbers during colitis development in mice.

    PubMed

    Maseda, Damian; Candando, Kathleen M; Smith, Susan H; Kalampokis, Ioannis; Weaver, Casey T; Plevy, Scott E; Poe, Jonathan C; Tedder, Thomas F

    2013-09-01

    The spleen regulatory B cell subset with the functional capacity to express IL-10 (B10 cells) modulates both immune responses and autoimmune disease severity. However, the peritoneal cavity also contains relatively high frequencies of functionally defined IL-10-competent B10 cells. In this study, peritoneal cavity B10 cells shared similar cell surface phenotypes with their spleen counterparts. However, peritoneal cavity B10 cells were 10-fold more frequent among B cells than occurred within the spleen, intestinal tract, or mesenteric lymph nodes and were present at higher proportions among the phenotypically defined peritoneal B1a > B1b > B2 cell subpopulations. The development or localization of B10 cells within the peritoneal cavity was not dependent on the presence of commensal microbiota, T cells, IL-10 or B10 cell IL-10 production, or differences between their fetal liver or adult bone marrow progenitor cell origins. The BCR repertoire of peritoneal cavity B10 cells was diverse, as occurs in the spleen, and predominantly included germline-encoded VH and VL regions commonly found in either the conventional or B1 B cell compartments. Thereby, the capacity to produce IL-10 appears to be an intrinsic functional property acquired by clonally diverse B cells. Importantly, IL-10 production by peritoneal cavity B cells significantly reduced disease severity in spontaneous and induced models of colitis by regulating neutrophil infiltration, colitogenic CD4(+) T cell activation, and proinflammatory cytokine production during colitis onset. Thus, the numerically small B10 cell subset within the peritoneal cavity has regulatory function and is important for maintaining homeostasis within gastrointestinal tissues and the immune system. PMID:23918988

  9. PTPN2 attenuates T-cell lymphopenia-induced proliferation

    NASA Astrophysics Data System (ADS)

    Wiede, Florian; La Gruta, Nicole L.; Tiganis, Tony

    2014-01-01

    When the peripheral T-cell pool is depleted, T cells undergo homoeostatic expansion. This expansion is reliant on the recognition of self-antigens and/or cytokines, in particular interleukin-7. The T cell-intrinsic mechanisms that prevent excessive homoeostatic T-cell responses and consequent overt autoreactivity remain poorly defined. Here we show that protein tyrosine phosphatase N2 (PTPN2) is elevated in naive T cells leaving the thymus to restrict homoeostatic T-cell proliferation and prevent excess responses to self-antigens in the periphery. PTPN2-deficient CD8+ T cells undergo rapid lymphopenia-induced proliferation (LIP) when transferred into lymphopenic hosts and acquire the characteristics of antigen-experienced effector T cells. The enhanced LIP is attributed to elevated T-cell receptor-dependent, but not interleukin-7-dependent responses, results in a skewed T-cell receptor repertoire and the development of autoimmunity. Our results identify a major mechanism by which homoeostatic T-cell responses are tuned to prevent the development of autoimmune and inflammatory disorders.

  10. CD8+ T cell-mediated airway hyperresponsiveness and inflammation is dependent on CD4+IL-4+ T cells.

    PubMed

    Koya, Toshiyuki; Miyahara, Nobuaki; Takeda, Katsuyuki; Matsubara, Shigeki; Matsuda, Hiroyuki; Swasey, Christina; Balhorn, Annette; Dakhama, Azzeddine; Gelfand, Erwin W

    2007-09-01

    CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation. PMID:17709492

  11. CD11a Regulates Effector CD8 T Cell Differentiation and Central Memory Development in Response to Infection with Listeria monocytogenes

    PubMed Central

    Bose, Tina O.; Pham, Quynh-Mai; Jellison, Evan R.; Mouries, Juliette; Ballantyne, Christie M.

    2013-01-01

    ?2 (CD18) integrins with ?-chains CD11a, -b, -c, and -d are important adhesion molecules necessary for leukocyte migration and cellular interactions. CD18 deficiency leads to recurrent bacterial infections and poor wound healing due to reduced migration of leukocytes to inflammatory sites. CD8 T cells also upregulate CD11a, CD11b, and CD11c upon activation. However, the role these molecules play for CD8 T cells in vivo is not known. To determine the function of individual ?2 integrins, we examined CD8 T cell responses to Listeria monocytogenes infection in CD11a-, CD11b-, and CD11c-deficient mice. The absence of CD11b or CD11c had no effect on the generation of antigen-specific CD8 T cells. In contrast, the magnitude of the primary CD8 T cell response in CD11a-deficient mice was significantly reduced. Moreover, the response in CD11a?/? mice exhibited reduced differentiation of short-lived effector cells (KLRG1hi CD127lo), although cytokine and granzyme B production levels were unaffected. Notably, CD11a deficiency resulted in greatly enhanced generation of CD62L+ central memory cells. Surprisingly, CD8 T cells lacking CD11a mounted a robust secondary response to infection. Taken together, these findings demonstrated that CD11a expression contributes to expansion and differentiation of primary CD8 T cells but may be dispensable for secondary responses to infection. PMID:23357382

  12. The Challenges and Opportunities for Development of a T-Cell Epitope-Based Herpes Simplex Vaccine

    PubMed Central

    Kuo, Tiffany; Wang, Christine; Badakhshan, Tina; Chilukuri, Sravya; BenMohamed, Lbachir

    2014-01-01

    The infections with herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) have been prevalent since the ancient Greek times. To this day, they still affect a staggering number of over a half billion individuals worldwide. HSV-2 infections cause painful genital herpes, encephalitis, and death in newborns. HSV-1 infections are more prevalent than HSV-2 infections and cause potentially blinding ocular herpes, oro-facial herpes and encephalitis. While genital herpes in mainly caused by HSV-2 infections, in recent years, there is an increase in the proportion of genital herpes caused by HSV-1 infections in young adults, which reach 50% in some western societies. While prophylactic and therapeutic HSV vaccines remain urgently needed for centuries their development has been notoriously difficult. During the most recent National Institute of Health (NIH) workshop titled "Next Generation Herpes Simplex Virus Vaccines: The Challenges and Opportunities", basic researchers, funding agencies, and pharmaceutical representatives gathered: (i) to assess the status of herpes vaccine research; and (ii) to identify the gaps and propose alternative approaches in developing a safe and efficient herpes vaccine. One “common denominator” among previously failed clinical herpes vaccine trials is that they either used a whole virus or whole viral proteins, which contain both pathogenic “symptomatic” and protective “asymptomatic” antigens/epitopes. In this report, we continue to advocate that using an “asymptomatic” epitope-based vaccine strategy that selectively incorporates protective epitopes which: (i) are exclusively recognized, in vitro, by effector memory CD4+ and CD8+ TEM cells from “naturally” protected seropositive asymptomatic individuals; and (ii) protect, in vivo, human leukocyte antigen (HLA) transgenic animal models from ocular and genital herpes infections and diseases, could be the answer to many of the scientific challenges facing HSV vaccine development. We review the role of animal models in herpes vaccine development and discuss its current status, challenges, and prospects. PMID:25446827

  13. Foxp3 transcription factor is proapoptotic and lethal to developing regulatory T cells unless counterbalanced by cytokine survival signals.

    PubMed

    Tai, Xuguang; Erman, Batu; Alag, Amala; Mu, Jie; Kimura, Motoko; Katz, Gil; Guinter, Terry; McCaughtry, Tom; Etzensperger, Ruth; Feigenbaum, Lionel; Singer, Dinah S; Singer, Alfred

    2013-06-27

    Immune tolerance requires regulatory T (Treg) cells to prevent autoimmune disease, with the transcription factor Foxp3 functioning as the critical regulator of Treg cell development and function. We report here that Foxp3 was lethal to developing Treg cells in the thymus because it induced a unique proapoptotic protein signature (Puma⁺⁺⁺p-Bim⁺⁺p-JNK⁺⁺DUSP6⁻) and repressed expression of prosurvival Bcl-2 molecules. However, Foxp3 lethality was prevented by common gamma chain (γc)-dependent cytokine signals that were present in the thymus in limiting amounts sufficient to support only ∼1 million Treg cells. Consequently, most newly arising Treg cells in the thymus were deprived of this signal and underwent Foxp3-induced death, with Foxp3⁺CD25⁻ Treg precursor cells being the most susceptible. Thus, we identify Foxp3 as a proapoptotic protein that requires developing Treg cells to compete with one another for limiting amounts of γc-dependent survival signals in the thymus. PMID:23746651

  14. T Cell Metabolic Fitness in Anti-Tumor Immunity

    PubMed Central

    Siska, Peter J.; Rathmell, Jeffrey C.

    2015-01-01

    SUMMARY T cell metabolism plays a central role to support and shape immune responses and may play a key role in anti-tumor immunity. T cell metabolism is normally held under tight regulation in an immune response of glycolysis to promote effector T cell expansion and function. However, tumors may deplete nutrients, generate toxic products, or stimulate conserved negative feedback mechanisms, such as through PD-1, to impair effector T cell nutrient uptake and metabolic fitness. In addition, regulatory T cells are favored in low glucose conditions and may inhibit anti-tumor immune responses. Here we review how the tumor microenvironment modifies metabolic and functional pathways in T cells and how these changes may uncover new targets and challenges for cancer immunotherapy and treatment. PMID:25773310

  15. Pathobiology of T-cell and NK-cell lymphomas

    PubMed Central

    Bajor-Dattilo, Ewa B.; Pittaluga, Stefania

    2013-01-01

    T-cell and NK-cell lymphomas are uncommon lymphomas with an aggressive clinical course. The causes and precise cellular origin of most T-cell lymphomas are still not well defined. The WHO classification utilizes morphologic and immunophenotypic features in conjunction with clinical aspects and in some instances genetics to delineate a prognostically and therapeutically meaningful categorization. The anatomic localization of neoplastic T-cells and NK-cells parallels in part their proposed normal cellular counterparts and functions. T-cells of the adaptive immune system are mainly based in lymph nodes and peripheral blood, whereas lymphomas derived from T-cells and NK-cells of the innate immune system are mainly extranodal. This approach allows for better understanding of some of the manifestations of the T-cell and NK-cell lymphomas, including their cellular distribution, some aspects of morphology and even associated clinical findings. PMID:23768642

  16. REGULATORY T CELLS

    PubMed Central

    DElia, Riccardo; Behnke, Jerzy M; Bradley, Janette E; Else, Kathryn J.

    2009-01-01

    The chronic nature of intestinal nematode infections suggests that these parasites have evolved sophisticated immunomodulatory strategies. The induction of regulatory responses during chronic helminth infections could be advantageous to the host by minimising damage incurred by these organisms. Regulation of the host immune response to infection could however be exploited by parasites as a survival strategy. We have explored both these aspects using the murine model of whipworm infection, Trichuris muris. Of the three laboratory isolates of T. muris in use, two (the E (Edinburgh) and J (Japan - sub-cultured from E) are readily expelled by C57BL/6 mice whereas the third, the S isolate (Sobreda - isolated from wild mice in Portugal) survives for much longer. The existence of the T. muris isolates thus presents a powerful tool to explore the mechanisms underlying chronic infection in a single strain of mouse. Here we show that S isolate infected mice have increased numbers of Foxp3+ T cells in the gut compared to mice infected with the E isolate. Treatment of mice infected with the S isolate with either anti-CD25 or anti-GITR exacerbated intestinal pathology, and, in addition, mice treated with anti-GITR were able to expel worms more rapidly, implying the release of local effector mechanisms from a regulatory influence. Thus our data show for the first time that T regulatory cells protect the host from worm driven intestinal pathology. In addition, our data reveal a subversion of this damage-limiting response by the S isolate to facilitate its own survival. PMID:19201888

  17. The fragile environments of inexpensive CD4+ T-cell enumeration in the least developed countries: strategies for accessible support.

    PubMed

    Larsen, Christoph H

    2008-01-01

    With the advent of affordable antiretroviral treatment (ART), flow cytometry has ventured out of the exclusive realms of First World research to the resource-strapped clinical environment of developing countries (DCs). Flow cytometric instrumentation for ART has become more cost-efficient, thanks to simplified, yet accurate protocols and smart technologies. These positive developments have, however, not taken shape without problems, as health care in DCs remains weak due to chronic underfunding of their primary health systems. In addition, the multiplicity of donors has created parallel infrastructures that are difficult to manage and may undermine the responsibilities of public services. Hence, there is a prevailing lack of attention to maintenance, support, and human resource development. Not uncommonly, the procurement of high-value equipment is guided by nontechnical interests with mixed results. As conventional service contracts are unpopular, the sustainability of equipment is under serious threat after warranty periods, with environmental factors such as dust and unreliable power supplies being well-known culprits. Reagent supplies and servicing constitute further challenges, where a combination of short reagent shelf life, cold-box shipping, huge distances across poor infrastructures, rigid accounting procedures, and erratic customs requirements cause significant delays and extra costs. Although excellent, highly trained or trainable local staff is available, it is frequently diverted by brain drain from the government sector to privately funded hospitals, research facilities, and overseas postings. Despite these challenges, corporate service management has commonly remained loyal to its roots in the developed world.A number of propositions address the current situation: "Reagent-rental" agreements represent an attractive alternative to service contracts, while smart instrument design has started to make inroads into more robust device concepts. To avoid logistical bottlenecks, reagents call for lyophilization and increased heat stability. Newly designed remote diagnostic tools are expected to save costs on service visits. Furthermore, web-based customer-relationship management and enterprise resource planning software is expected to ease the existing complex communication- and logistics issues. In addition, a public-private partnership is proposed that involves government, manufacturers, and local distributors with field application specialists. The latter operate crossbrand as independent subcontractors to manufacturers under a nationally endorsed cost-capping and quality assurance agreement to service all cytometric devices common in the region. These locally run networks may serve as "templates" for improved laboratory services in general, in collaboration with CD4 counting, haematology and infectious disease diagnostics. PMID:18228565

  18. B- and T-cell-specific inactivation of thioredoxin reductase 2 does not impair lymphocyte development and maintenance.

    PubMed

    Geisberger, Roland; Kiermayer, Claudia; Hömig, Cornelia; Conrad, Marcus; Schmidt, Jörg; Zimber-Strobl, Ursula; Brielmeier, Markus

    2007-10-01

    Thioredoxin reductases (Txnrds) are a group of selenoenzymes participating in cellular redox regulation. Three Txnrd isoforms are known, each of which exhibits distinct cellular localisation and tissue-specific expression pattern. Txnrd1 is found in the cytoplasm, expression of Txnrd2 is restricted to mitochondria and Txnrd3 shows testis-specific expression. Recently, it was shown that Txnrd2 strongly affects the development of blood cells, since mouse embryos deficient for Txnrd2 are severely anaemic, show increased apoptosis in foetal liver and possess haematopoietic liver stem cells of reduced capacity to proliferate in vitro. However, because Txnrd2-deficient mice die at embryonic day 13.5, it was not known how this enzyme affects blood cell function in the adult animal. In the present study we show that conditional Txnrd2 knockouts generated using CD4- and CD19Cre transgenic mice lack Txnrd2 expression in CD4-- and CD19-positive T- and B-lymphocytes, respectively. However, the development and differentiation of both cell types in thymus and bone marrow was not significantly impaired. In addition, B-cell proliferation and activation in response to CD40 and IL-4 was unaltered in Txnrd2-deficient B-cells. PMID:17937622

  19. Increased ratio of ICOS(+) /PD-1(+) follicular helper T cells positively correlates with the development of human idiopathic membranous nephropathy.

    PubMed

    Shi, Xu; Qu, Zhihui; Zhang, Li; Zhang, Nan; Liu, Yong; Li, Man; Qiu, Jinpeng; Jiang, Yanfang

    2016-04-01

    To identify the frequencies of different subsets of peripheral blood follicular helper T (Tfh) cells in human idiopathic membranous nephropathy (IMN), 39 patients with new onset IMN and 18 age- and gender-matched healthy controls (HC) were enrolled for this study. The frequency of Tfh cells in venous blood were measured by flow cytometry, while concentration of serum IL-21 was detected by enzyme-linked immunosorbent assay. Correlation between the clinical features of IMN and Tfh cells was assessed by Spearman's rank correlation test. Overall, the frequencies of total, ICOS(+) , and PD-1(+) Tfh cells were increased in IMN patients, while the ratio of ICOS(+) /PD-1(+) Tfh cells positively correlated with IMN progression. However, the elevated serum IL-21 level in three subgroups of IMN patients, stratified based on 24-h urine protein levels, was not statistically significant compared to HC. Nonetheless, intracellular IL-21 in Tfh cells was generally increased in all IMN patients, and closely correlated with IMN development. Finally, the frequency of IL-21(+) Tfh cells and the ratio of ICOS(+) /PD-1(+) Tfh cells were positively correlated with the estimated 24-h urine protein of IMN patients. The data indicated that Tfh cells contribute to the pathogenicity of IMN. The ratio of ICOS(+) /PD-1(+) Tfh cells and the frequency of IL-21(+) Tfh cells may be indicators for evaluating the IMN development. PMID:26845249

  20. Elevation and persistence of CD8 T-cells in HIV infection: the Achilles heel in the ART era

    PubMed Central

    Cao, Wei; Mehraj, Vikram; Kaufmann, Daniel E; Li, Taisheng; Routy, Jean-Pierre

    2016-01-01

    Introduction HIV infection leads to a disturbed T-cell homeostasis, featured by a depletion of CD4 T-cells and a persistent elevation of CD8 T-cells over disease progression. Most effort of managing HIV infection has been focused on CD4 T-cell recovery, while changes in the CD8 compartment were relatively underappreciated in the past. Methods A comprehensive literature review of publications in English language was conducted using major electronic databases. Our search was focused on factors contributing to CD8 T-cell dynamics in HIV infection and following antiretroviral therapy (ART). Discussion Normalization of CD8 counts is seldom observed even with optimal CD4 recovery following long-term treatment. Initiation of ART in primary HIV infection leads to enhanced normalization of CD8 count compared with long-term ART initiated in chronic infection. Importantly, such CD8 elevation in treated HIV infection is associated with an increased risk of inflammatory non-AIDS-related clinical events independent of CD4 T-cell recovery. The mechanisms underlying CD8 persistence remain largely unknown, which may include bystander activation, exhaustion and immunosenescence of CD8 T-cells. The information provided herein will lead to a better understanding of factors associated with CD8 persistence and contribute to the development of strategies aiming at CD8 normalization. Conclusions Persistence of CD8 T-cell elevation in treated HIV-infected patients is associated with an increased risk of non-AIDS-related events. Now that advances in ART have led to decreased AIDS-related opportunistic diseases, more attention has been focused on reducing non-AIDS events and normalizing persistent CD8 T-cell elevation. PMID:26945343

  1. Metabolic regulation of T cell differentiation and function

    PubMed Central

    Park, Benjamin V.; Pan, Fan

    2016-01-01

    Upon encountering pathogens, T cells mount immune responses by proliferating, increasing cellular mass and differentiating. These cellular changes impose significant energetic challenges on T cells. It was believed that TCR and cytokine-mediated signaling are dominant dictators of T cell-mediated immune responses. Recently, it was recognized that T cells utilize metabolic transporters and metabolic sensors that allow them to rapidly respond to nutrient-limiting inflammatory environments. Metabolic sensors allow T cells to find a balance between energy consumption (anabolic metabolism) and production (catabolic metabolism) in order to mount effective immune responses. Also, metabolic regulators interact with cytokine-dependent transcriptional regulators, suggesting a more integrative and advanced model of T cell activation and differentiation. In this review, we will discuss recent discoveries regarding the roles of metabolic regulators in effector and memory T cell development and their interaction with canonical transcription factors. PMID:26277275

  2. Experimental autoimmune encephalomyelitis mediated by CD8+ T cells.

    PubMed

    Ji, Qingyong; Goverman, Joan

    2007-04-01

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that is believed to have an autoimmune origin. CD4(+) T cells have been well studied for their involvement in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis (EAE). CD8(+) T cells, however, have been overlooked until recently, when more attention has focused on their potential role in pathogenic mechanisms in MS. Here we summarize our work in generating a CD8(+) T cell-mediated EAE model. We discuss immune tolerance mechanisms that regulate CD8(+) T cells specific for myelin basic protein (MBP), and describe initial results regarding triggers of CD8(+) T cell-mediated disease. The availability of CD8(+) T cell-mediated EAE models will help to elucidate the pathogenic roles of CD8(+) T cells in MS, and provide tools for development of novel therapies for MS. PMID:17376824

  3. Transcriptional drivers of the T-cell lineage program.

    PubMed

    Rothenberg, Ellen V

    2012-04-01

    The T-cell development program is specifically triggered by Notch-Delta signaling, but most transcription factors needed to establish T-cell lineage identity also have crossover roles in other hematopoietic lineages. This factor sharing complicates full definition of the core gene regulatory circuits required for T-cell specification. But new advances illuminate the roles of three of the most T-cell specific transcription factors. Commitment to the T-cell lineage is now shown to depend on Bcl11b, while initiation of the T-cell differentiation program begins earlier with the induction of TCF-1 (Tcf7 gene product) and GATA-3. Several reports now reveal how TCF-1 and GATA-3 are mobilized in early T cells and the pathways for their T-lineage specific effects. PMID:22264928

  4. Development of γδ T cell subset responses in gnotobiotic pigs infected with human rotaviruses and colonized with probiotic lactobacilli

    PubMed Central

    Wen, Ke; Li, Guohua; Zhang, Wei; Azevedo, Marli SP; Saif, Linda J; Liu, Fangning; Bui, Tammy; Yousef, Ahmed; Yuan, Lijuan

    2011-01-01

    γδ T cell responses are induced by various viral and bacterial infections. Different γδ T cells contribute to activation and regulation of the inflammatory response and to epithelial repair. How γδ T cells respond to rotavirus infection and how the colonization of probiotics influences the γδ T cell response were unknown. In this study, we evaluated by multicolor flow cytometry the frequencies and distribution of total γδ T cells and three major subsets (CD2−CD8−, CD2+CD8− and CD2+CD8+) in ileum, spleen and blood of gnotobiotic (Gn) pigs at early (3–5 days) and late phases (28 days) after rotavirus infection. The Gn pigs were inoculated with the virulent human rotavirus Wa strain and colonized with a mixture of two strains of probiotics Lactobacillus acidophilus and Lactobacillus reuteri. In naive pigs, the highest frequency of total γδ T cells was found in blood, followed by spleen and ileum at the early age (8–10 days old) whereas in older pigs (32 days of age) the highest frequency of total γδ T cells was found in ileum and spleen followed by blood. Rotavirus infection significantly increased frequencies of intestinal total γδ T cells and the putatively regulatory CD2+CD8+ γδ T cell subset and decreased frequencies of the putatively proinflammatory CD8− subsets in ileum, spleen and blood at post-infection days (PID) 3 or 5. The three γδ T cell subsets distributed and responded differently after rotavirus infection and/or lactobacilli colonization. The CD2+CD8+ subset contributed the most to the expansion of total γδ T cells after rotavirus infection in ileum because more than 77% of the total γδ T cells there were CD2+CD8+ cells. There was an additive effect between lactobacilli and rotavirus in inducing total γδ T cell expansion in ileum at PID 5. The overall effect of lactobacilli colonization versus rotavirus infection on frequencies of the CD2+CD8+ γδ T cell subset in ileum was similar; however, rotavirus-infected pigs maintained significantly higher frequencies of CD8− subsets in ileum than lactobacilli-colonized pigs. The dynamic γδ T cell responses suggest that γδ T cell subsets may play important roles in different stages of immune responses after rotavirus infection and probiotic colonization. The knowledge on the kinetics and distribution patterns of γδ T cell subsets in naïve pigs and after rotavirus infection or lactobacilli colonization provides the foundation for further mechanistic studies of their functions. PMID:21489639

  5. Memory CD8+ T cells use cell intrinsic lipolysis to support the metabolic programming necessary for development

    PubMed Central

    O’Sullivan, David; van der Windt, Gerritje J. W.; Ching-Cheng Huang, Stanley; Curtis, Jonathan D.; Chang, Chih-Hao; Buck, Michael D.; Qiu, Jing; Smith, Amber M.; Lam, Wing Y.; DiPlato, Lisa M.; Hsu, Fong-Fu; Birnbaum, Morris J.; Pearce, Edward J.; Pearce, Erika L.

    2014-01-01

    Summary Generation of CD8+ memory T (TM) cells requires metabolic reprogramming that is characterized by enhanced mitochondrial fatty acid oxidation (FAO). However, where the fatty acids (FA) that fuel this process come from remains unclear. We found that while CD8+ TM cells engaged higher levels of FAO, they acquired substantially fewer long-chain FA from their external environment than CD8+ effector T (TE) cells. Rather than using extracellular FA directly, TM cells used extracellular glucose to support FAO and oxidative phosphorylation (OXPHOS), suggesting that lipids must be synthesized to generate the substrates needed for FAO. We have demonstrated that TM cells rely on cell intrinsic expression of the lysosomal hydrolase LAL (lysosomal acid lipase) to mobilize FA for FAO and TM cell development. Our observations link LAL to metabolic reprogramming in lymphocytes and show that cell intrinsic lipolysis is deterministic for TM cell fate. PMID:25001241

  6. Non-Fas(CD95/APO1)-mediated apoptosis of activated T cells inhibits the development of atherosclerosis

    PubMed Central

    Esparza, Leticia; De Haro, Joaquin; Bleda, Silvia; Acin, Francisco

    2012-01-01

    Atherosclerosis is a chronic systemic inflammatory disease. The innate and adaptive immune response might be involved in atherogenesis. Methotrexate (MTX) induces apoptosis of activated T cells by a CD95-independent pathway. The aim of this study was to analyse the effect of immunomodulation by MTX in the development of early atherosclerotic vascular lesions in an animal model. Four-week old male C57BL6 LDL-receptor-deficient mice were fed a diet rich in saturated fat (82%) and cholesterol (2.8%). Thirty animals were given a weekly intramuscular injection of MTX, establishing three subgroups: 10, 30 and 50 mg/kg. Ten further mice were used as an immunocompetent control group. Aortic thickening was significantly inhibited in all MTX-treated groups compared with the control group at 30 days (0.46 ± 0.003 mm2 in the control group vs 0.31 ± 0.002, 0.14 ± 0.009 and 0.16 ± 0.006 mm2 in the low-, intermediate- and high-dose group, respectively; P = 0.01) and at 60 days. The aortic lumen/total area ratio was also increased in the MTX-treated groups (0.82 ± 0.06 in the control group vs 0.88 ± 0.07, 0.86 ± 0.05 and 0.88 ± 0.04, respectively; P = 0.02). Immunosuppression by MTX inhibits the development of atherosclerotic lesions in arterial vessels in mice, which highlights the crucial role of the immune system in atherogenesis. PMID:22617501

  7. A locus on mouse Chromosome 13 inversely regulates CD1d expression and the development of invariant natural killer T-cells

    PubMed Central

    Tsaih, Shirng-Wern; Presa, Maximiliano; Khaja, Shamim; Ciecko, Ashley E.; Serreze, David V.; Chen, Yi-Guang

    2014-01-01

    Invariant natural killer T (iNKT)-cell development is controlled by many polymorphic genes present in commonly used mouse inbred strains. Development of type 1 diabetes (T1D) in NOD mice partly results from their production of fewer iNKT-cells compared to non-autoimmune prone control strains including ICR. We previously identified several iNKT-cell quantitative trait genetic loci co-localized with known mouse and human T1D regions in a (NOD × ICR)F2 cross. To further dissect the mechanisms underlying the impaired iNKT-cell compartment in NOD mice, we carried out a series of bone marrow transplantation as well as additional genetic mapping studies. We found that impaired iNKT-cell development in NOD mice was mainly due to the inability of their double-positive (DP) thymocytes to efficiently select this T-cell population. Interestingly, we observed higher levels of CD1d expression by NOD than ICR DP thymocytes. The genetic control of the inverse relationship between the CD1d expression level on DP thymocytes and the frequency of thymic iNKT-cells was further mapped to a region on Chromosome 13 between 60.12 Mb and 70.59 Mb. The NOD allele was found to promote CD1d expression and suppress iNKT-cell development. Our results indicate that genetically controlled physiological variation of CD1d expression levels modulates iNKT-cell development. PMID:25654212

  8. The T Cells in Peripheral Taste Tissue of Healthy Human Adults: Predominant Memory T Cells and Th-1 Cells

    PubMed Central

    Wang, Hong; Feldman, Roy S.; Pribitkin, Edmund A.; Breslin, Paul A. S.

    2010-01-01

    A healthy taste system is important to the maintenance of nutrition and overall quality of life, and taste disorders are associated with many inflammatory states. We previously determined the immune cells in normal human gustatory tissue; they are predominantly dendritic cells and CD4 T cells with a few macrophages and B lymphocytes present. There are, however, few reports of the subtypes of resident lymphocytes in or near taste tissues. The present study further characterized the distribution and population of the major subtypes of T cells in situ within biopsies of healthy human fungiform papillae (FP). Immunohistochemical analyses indicated that T-helper (Th)1 cells (CCR5+) were more predominant in FP than Th2 T cells (CCR4+). CD45RO+ memory T cells were the principal T cells in gustatory tissue, whereas CD45RA+ naive T cells were uncommon. Regarding subcompartments of the tissue, most intraepithelial lymphocytes of FPs were γ/δ T cells, whereas the major subtype of lymphocytes in the lamina propria were α/β T cells. Regulatory T cells that express CTLA-4 (CD152) and interleukin-2 receptors (IL-2R, CD25) were found at low levels in FP. The T cells stand ready to respond to inflammatory and infectious insults and may play a role in the taste alterations observed during acute and chronic inflammatory states. PMID:20457570

  9. Rank Signaling Links the Development of Invariant γδ T Cell Progenitors and Aire+ Medullary Epithelium

    PubMed Central

    Roberts, Natalie A.; White, Andrea J.; Jenkinson, William E.; Turchinovich, Gleb; Nakamura, Kyoko; Withers, David R.; McConnell, Fiona M.; Desanti, Guillaume E.; Benezech, Cecile; Parnell, Sonia M.; Cunningham, Adam F.; Paolino, Magdalena; Penninger, Josef M.; Simon, Anna Katharina; Nitta, Takeshi; Ohigashi, Izumi; Takahama, Yousuke; Caamano, Jorge H.; Hayday, Adrian C.; Lane, Peter J.L.; Jenkinson, Eric J.; Anderson, Graham

    2012-01-01

    Summary The thymic medulla provides a specialized microenvironment for the negative selection of T cells, with the presence of autoimmune regulator (Aire)-expressing medullary thymic epithelial cells (mTECs) during the embryonic-neonatal period being both necessary and sufficient to establish long-lasting tolerance. Here we showed that emergence of the first cohorts of Aire+ mTECs at this key developmental stage, prior to αβ T cell repertoire selection, was jointly directed by Rankl+ lymphoid tissue inducer cells and invariant Vγ5+ dendritic epidermal T cell (DETC) progenitors that are the first thymocytes to express the products of gene rearrangement. In turn, generation of Aire+ mTECs then fostered Skint-1-dependent, but Aire-independent, DETC progenitor maturation and the emergence of an invariant DETC repertoire. Hence, our data attributed a functional importance to the temporal development of Vγ5+ γδ T cells during thymus medulla formation for αβ T cell tolerance induction and demonstrated a Rank-mediated reciprocal link between DETC and Aire+ mTEC maturation. PMID:22425250

  10. Regulatory T Cells as Immunotherapy

    PubMed Central

    Singer, Benjamin D.; King, Landon S.; DAlessio, Franco R.

    2014-01-01

    Regulatory T cells (Tregs) suppress exuberant immune system activation and promote immunologic tolerance. Because Tregs modulate both innate and adaptive immunity, the biomedical community has developed an intense interest in using Tregs for immunotherapy. Conditions that require clinical tolerance to improve outcomes autoimmune disease, solid organ transplantation, and hematopoietic stem cell transplantation may benefit from Treg immunotherapy. Investigators have designed ex vivo strategies to isolate, preserve, expand, and infuse Tregs. Protocols to manipulate Treg populations in vivo have also been considered. Barriers to clinically feasible Treg immunotherapy include Treg stability, off-cell effects, and demonstration of cell preparation purity and potency. Clinical trials involving Treg adoptive transfer to treat graft versus host disease preliminarily demonstrated the safety and efficacy of Treg immunotherapy in humans. Future work will need to confirm the safety of Treg immunotherapy and establish the efficacy of specific Treg subsets for the treatment of immune-mediated disease. PMID:24575095

  11. Adoptively Transferred Allergen-Specific T Cells Cause Maternal Transmission of Asthma Risk

    PubMed Central

    Hubeau, Cedric; Apostolou, Irina; Kobzik, Lester

    2006-01-01

    In addition to genetics and environment, maternal asthma is an identified risk factor for developing the disease during childhood. The mechanisms of this maternal effect remain poorly understood. We tested the role of allergen-specific T cells in the maternal transmission of asthma risk by modifying a model where offspring of asthmatic mothers are more prone to develop asthma after an intentionally suboptimal asthma induction. Normal BALB/c females were injected with allergen-specific T cells from ovalbumin-specific T cell receptor (TCR) transgenic DO11.10 donors before mating. Using the protocol of suboptimal asthma induction, offspring of normal and recipient mothers were tested for their susceptibility to develop asthma. Only pups of recipient mothers showed increased airway responsiveness (Penh), allergic airway inflammation with eosinophilia, and local Th2-skewed cytokine production. Although recipient mothers did not develop asthma, serum levels of interferon-γ, interleukin (IL)-4, IL-10, and IL-13 were significantly increased during pregnancy. Consistent with this finding, a subset of DO11.10 T cells persisted in the spleen and placenta of expectant recipient mothers. We conclude that allergen-specific T cells are sufficient to orchestrate the maternal transmission of asthma risk. Because overt maternal asthma was not required, our results suggest that similar maternal-fetal interactions may occur in other allergic disorders. PMID:16723708

  12. Bispecific T cell engagers for cancer immunotherapy

    PubMed Central

    Huehls, Amelia M.; Coupet, Tiffany A.; Sentman, Charles L.

    2015-01-01

    Bispecific T cell engagers are a new class of immunotherapeutic molecules intended for the treatment of cancer. These molecules, termed BiTEs, enhance the patient’s immune response to tumors by retargeting T cells to tumor cells. BiTEs are constructed of two single chain variable fragments (scFv) connected in tandem by a flexible linker. One scFv binds to a T cell-specific molecule, usually CD3, while the second scFv binds to a tumor-associated antigen. This structure and specificity allows a BiTE to physically link a T cell to a tumor cell, ultimately stimulating T cell activation, tumor killing and cytokine production. BiTEs have been developed that target several tumor-associated antigens for a variety of both hematological and solid tumors. Several BiTEs are currently in clinical trials for their therapeutic efficacy and safety. This review examines the salient structural and functional features of BiTEs as well as the current state of their clinical and preclinical development. PMID:25367186

  13. The G protein-coupled receptor T-cell death-associated gene 8 (TDAG8) facilitates tumor development by serving as an extracellular pH sensor.

    PubMed

    Ihara, Yuichiro; Kihara, Yasuyuki; Hamano, Fumie; Yanagida, Keisuke; Morishita, Yasuyuki; Kunita, Akiko; Yamori, Takao; Fukayama, Masashi; Aburatani, Hiroyuki; Shimizu, Takao; Ishii, Satoshi

    2010-10-01

    Tumors often are associated with a low extracellular pH, which induces a variety of cellular events. However, the mechanisms by which tumor cells recognize and react to the acidic environment have not been fully elucidated. T-cell death-associated gene 8 (TDAG8) is an extracellular pH-sensing G protein-coupled receptor that is overexpressed in various tumors and tumor cell lines. In this report, we show that TDAG8 on the surface of tumor cells facilitates tumor development by sensing the acidic environment. Overexpression of TDAG8 in mouse Lewis lung carcinoma (LLC) cells enhanced tumor development in animal models and rendered LLC cells resistant to acidic culture conditions by increasing activation of protein kinase A and extracellular signal-regulated kinase in vitro. Moreover, shRNA-mediated knockdown of endogenous TDAG8 in NCI-H460 human non-small cell lung cancer cells reduced cell survival in an acidic environment in vitro as well as tumor development in vivo. Microarray analyses of tumor-containing lung tissues of mice injected with TDAG8-expressing LLC cells revealed up-regulation of genes related to cell growth and glycolysis. These results support the hypothesis that TDAG8 enhances tumor development by promoting adaptation to the acidic environment to enhance cell survival/proliferation. TDAG8 may represent a therapeutic target for arresting tumor growth. PMID:20855608

  14. The G protein-coupled receptor T-cell death-associated gene 8 (TDAG8) facilitates tumor development by serving as an extracellular pH sensor

    PubMed Central

    Ihara, Yuichiro; Kihara, Yasuyuki; Hamano, Fumie; Yanagida, Keisuke; Morishita, Yasuyuki; Kunita, Akiko; Yamori, Takao; Fukayama, Masashi; Aburatani, Hiroyuki; Shimizu, Takao; Ishii, Satoshi

    2010-01-01

    Tumors often are associated with a low extracellular pH, which induces a variety of cellular events. However, the mechanisms by which tumor cells recognize and react to the acidic environment have not been fully elucidated. T-cell death-associated gene 8 (TDAG8) is an extracellular pH-sensing G protein-coupled receptor that is overexpressed in various tumors and tumor cell lines. In this report, we show that TDAG8 on the surface of tumor cells facilitates tumor development by sensing the acidic environment. Overexpression of TDAG8 in mouse Lewis lung carcinoma (LLC) cells enhanced tumor development in animal models and rendered LLC cells resistant to acidic culture conditions by increasing activation of protein kinase A and extracellular signal-regulated kinase in vitro. Moreover, shRNA-mediated knockdown of endogenous TDAG8 in NCI-H460 human non-small cell lung cancer cells reduced cell survival in an acidic environment in vitro as well as tumor development in vivo. Microarray analyses of tumor-containing lung tissues of mice injected with TDAG8-expressing LLC cells revealed up-regulation of genes related to cell growth and glycolysis. These results support the hypothesis that TDAG8 enhances tumor development by promoting adaptation to the acidic environment to enhance cell survival/proliferation. TDAG8 may represent a therapeutic target for arresting tumor growth. PMID:20855608

  15. Interleukin-10 Inhibits Elevated Chemokine Interleukin-8 and Regulated on Activation Normal T Cell Expressed and Secreted Production in Cystic Fibrosis Bronchial Epithelial Cells by Targeting the IkB Kinase α/β Complex

    PubMed Central

    Tabary, Olivier; Muselet, Céline; Escotte, Sandie; Antonicelli, Frank; Hubert, Dominique; Dusser, Daniel; Jacquot, Jacky

    2003-01-01

    Accumulating evidence suggests that in cystic fibrosis (CF) patients, airway fluids are characterized by decreased antibacterial activity, elevated NaCl concentration, and high levels of chemokines, resulting in exaggerated activation of the transcriptional nuclear factor (NF)-κB in airway epithelial cells. The present study was undertaken to evaluate the effects of anti-inflammatory cytokine interleukin-10 (IL-10) on NaCl-induced chemokine IL-8 and regulated on activation normal T cell expressed and secreted (RANTES) expression through the NF-κB signaling in primary ΔF508 CF and non-CF (control) human bronchial epithelial cells. Exposure of CF and non-CF bronchial epithelial cells to hypertonic (170 mmol/L NaCl) milieu compared to isotonic (115 mmol/L NaCl) and hypotonic (85 mmol/L NaCl) milieu caused a significant, NaCl-dependent increase in IL-8 and RANTES gene expression and protein production. Compared to non-CF cells, CF bronchial epithelial cells were characterized by a higher susceptibility to produce elevated IL-8 and RANTES production in an hypertonic NaCl milieu in response to IL-1β activation. Treatment with IL-10 suppressed IL-8 and RANTES gene expression in both non-CF and CF bronchial epithelial cells was associated with a reduced expression of IkB (IKK) α/β kinases, particularly for IKKα which is greater expressed in CF bronchial epithelial cells, and resulting in reduced NF-κB activation. These findings suggest that IL-10 might have anti-inflammatory benefits in airways of CF patients. PMID:12507912

  16. Developmentally determined reduction in CD31 during gestation is associated with CD8+ T cell effector differentiation in preterm infants.

    PubMed

    Scheible, Kristin M; Emo, Jason; Yang, Hongmei; Holden-Wiltse, Jeanne; Straw, Andrew; Huyck, Heidie; Misra, Sara; Topham, David J; Ryan, Rita M; Reynolds, Anne Marie; Mariani, Thomas J; Pryhuber, Gloria S

    2015-12-01

    Homeostatic T cell proliferation is more robust during human fetal development. In order to understand the relative effect of normal fetal homeostasis and perinatal exposures on CD8+ T cell behavior in PT infants, we characterized umbilical cord blood CD8+ T cells from infants born between 23-42weeks gestation. Subjects were recruited as part of the NHLBI-sponsored Prematurity and Respiratory Outcomes Program. Cord blood from PT infants had fewer naïve CD8+ T cells and lower regulatory CD31 expression on both naïve and effector, independent of prenatal exposures. CD8+ T cell in vitro effector function was greater at younger gestational ages, an effect that was exaggerated in infants with prior inflammatory exposures. These results suggest that CD8+ T cells earlier in gestation have loss of regulatory co-receptor CD31 and greater effector differentiation, which may place PT neonates at unique risk for CD8+ T cell-mediated inflammation and impaired T cell memory formation. PMID:26232733

  17. Diffusion tensor imaging of normal brain development

    PubMed Central

    Yoshida, Shoko; Oishi, Kenichi; Faria, Andreia V.

    2013-01-01

    Diffusion tensor imaging (DTI) is an MRI technique that can measure the macroscopic structural organization in brain tissues. DTI has been shown to provide information complementary to relaxation-based MRI about the changes in the brain's microstructure. In the pediatric population, DTI enables quantitative observation of the maturation process of white matter structures. Its ability to delineate various brain structures during developmental stages makes it an effective tool with which to characterize both the normal and abnormal anatomy of the developing brain. This review will highlight the advantages, as well as the common technical pitfalls of pediatric DTI. In addition, image quantification strategies for various DTI-derived parameters and the normal brain developmental changes associated with these parameters are discussed. PMID:23288475

  18. Synthetic biology approaches to engineer T cells.

    PubMed

    Wu, Chia-Yung; Rupp, Levi J; Roybal, Kole T; Lim, Wendell A

    2015-08-01

    There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics. PMID:26218616

  19. The Gut Microbiota and Mucosal T Cells

    PubMed Central

    Smith, Patrick M.; Garrett, Wendy S.

    2011-01-01

    It is intuitive that immune cells in the gut may require microbiota-derived cues for their differentiation. The proximity between host and microbe in the intestine would seemingly necessitate co-adaptation. However, it has been challenging to determine the members and features of the gut microbiota that influence immune system development and function. The recent identification of immunomodulatory members of the commensal microbiota is providing insight into the dependence of select, intestinal immune cell subsets on specific microbial species. In this review, we focus on the gut microbiota's influence on the development and function of mucosal T cells subsets, specifically intraepithelial lymphocytes and lamina propria CD4 T cells. PMID:21833339

  20. Self-recognition specificity expressed by T cells from nude mice. Absence of detectable Ia-restricted T cells in nude mice that do exhibit self-K/D-restricted T cell responses

    SciTech Connect

    Kruisbeek, A.M.; Davis, M.L.; Matis, L.A.; Longo, D.L.

    1984-09-01

    The presence in athymic nude mice of precursor T cells with self-recognition specificity for either H-2 K/D or H-2 I region determinants was investigated. Chimeras were constructed of lethally irradiated parental mice receiving a mixture of F1 nude mouse (6-8 wk old) spleen and bone marrow cells. The donor inoculum was deliberately not subjected to any T cell depletion procedure, so that any potential major histocompatibility complex-committed precursor T cells were allowed to differentiate and expand in the normal parental recipients. 3 mo after reconstitution, the chimeras were immunized with several protein antigens in complete Freund's adjuvant in the footpads and their purified draining lymph node T cells tested 10 d later for ability to recognize antigen on antigen-presenting cells of either parental haplotype. Also, their spleen and lymph node cells were tested for ability to generate a cytotoxic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified stimulator cells of either parental haplotype. It was demonstrated that T cell proliferative responses of these F1(nude)----parent chimeras were restricted solely to recognizing parental host I region determinants as self and expressed the Ir gene phenotype of the host. In contrast, CTL responses could be generated (in the presence of interleukin 2) to TNP-modified stimulator cells of either parental haplotype. Thus these results indicate that nude mice which do have CTL with self-specificity for K/D region determinants lack proliferating T cells with self-specificity for I region determinants. These results provide evidence for the concepts that development of the I region-restricted T cell repertoire is strictly an intrathymically determined event and that young nude mice lack the unique thymic elements responsible for edu

  1. Examining the Role of CD1d and Natural Killer T Cells in the Development of Nephritis in a Genetically Susceptible Lupus Model

    PubMed Central

    Yang, Jun-Qi; Wen, Xiangshu; Liu, Hongzhu; Folayan, Gbolahan; Dong, Xin; Zhou, Min; Van Kaer, Luc; Singh, Ram Raj

    2008-01-01

    Objective CD1d-reactive invariant natural killer T (iNKT) cells secrete multiple cytokines upon T cell receptor (TCR) engagement and modulate many immune-mediated conditions. The purpose of this study was to examine the role of these cells in the development of autoimmune disease in genetically lupus-prone (NZB × NZW)F1 (BWF1) mice. Methods The CD1d1-null genotype was crossed onto the NZB and NZW backgrounds to establish CD1d1-knockout (CD1d0) BWF1 mice. CD1d0 mice and their wild-type littermates were monitored for the development of nephritis and assessed for cytokine responses to CD1d-restricted glycolipid α-galactosylceramide (αGalCer), anti-CD3 antibody, and con-canavalin A (Con A). Thymus and spleen cells were stained with CD1d tetramers that had been loaded with αGalCer or its analog PBS-57 to detect iNKT cells, and the cells were compared between BWF1 mice and class II major histocompatibility complex–matched nonautoimmune strains, including BALB/c, (BALB/c × NZW)F1 (CWF1), and NZW. Results CD1d0 BWF1 mice had more severe nephritis than did their wild-type littermates. Although iNKT cells and iNKT cell responses were absent in CD1d0 BWF1 mice, the CD1d0 mice continued to have significant numbers of interferon-γ–producing NKT-like (CD1d-independent TCRβ+,NK1.1+ and/or DX5+) cells. CD1d deficiency also influenced cytokine responses by conventional T cells: upon in vitro stimulation of splenocytes with Con A or anti-CD3, type 2 cytokine levels were reduced, whereas type 1 cytokine levels were increased or unchanged in CD1d0 mice as compared with their wild-type littermates. Additionally, numbers of thymic iNKT cells were lower in young wild-type BWF1 mice than in nonautoimmune strains. Conclusion Germline deletion of CD1d exacerbates lupus in BWF1 mice. This finding, together with reduced thymic iNKT cells in young BWF1 mice as compared with nonautoimmune strains, implies a regulatory role of CD1d and iNKT cells during the development of lupus. PMID:17393451

  2. Immunoregulatory changes induced by total lymphoid irradiation. II. Development of thymus-leukemia antigen-positive and -negative suppressor T cells that differ in their regulatory function

    SciTech Connect

    King, D.P.; Strober, S.

    1981-07-01

    BALB/c mice treated with total lymphoid irradiation (TLI) develop non-antigen-specific suppressor cells of the adoptive secondary antibody response and of the mixed leukocyte reaction. Suppressors of the adoptive anti-DNP response were eliminated by incubation of spleen cells with anti-Thy-1.2 or anti-thymus-leukemia (TL) antiserum and complement before cell transfer. Thymectomy before TLI prevented the appearance of the latter suppressor cells. On the other hand, suppressors of the MLR were eliminated by incubation of spleen cells with anti-Thy-1.2 but not anti-TL antiserum and complement. Thymectomy before TLI did not prevent their subsequent development. Thus, two subpopulations of suppressor T cells that differ in the expression of the TL surface antigen, dependence on the presence of the thymus, and in regulatory functions develop after TLI. The TL+, thymus-dependent cell suppresses the adoptive antibody response, and the TL-, thymus-independent cell suppresses the MLR.

  3. Pertubation of B and T cell development and predisposition to lymphomagenesis in Emu Bmi1 transgenic mice require the Bmi1 RING finger.

    PubMed

    Alkema, M J; Jacobs, H; van Lohuizen, M; Berns, A

    1997-08-18

    Proviral activation of the Bmi1 gene has implicated Bmi1 as a collaborator of c-Myc in lymphomagenesis. To determine the effect of Bmi1 overexpression on hematopoiesis and lymphomagenesis transgenic mice were generated that overexpress different forms of the Bmi1 protein in their lymphoid compartment. Emu Bmi1 transgenic mice, overexpressing the wild type Bmi1 protein showed a perturbed lymphoid development and were highly susceptible to B and T cell lymphomagenesis. Mutational analysis of the Bmi1 protein demonstrated that the conserved N-terminal RING finger and central part of Bmi1 are essential for its oncogenic potential whereas the C-terminal Pro-Ser rich region is not required. We have used provirus tagging in the Emu Bmi1 mice to identify genes that cooperate with Bmi1 in lymphomagenesis. MoMLV infection in Emu Bmi1 transgenic mice accelerated lymphoma development. Proviral activation of the Pim and Myc genes but not the Gfi1 gene were frequently observed in these tumors. These results demonstrate that Bmi1 is a potent oncogene and suggest that it plays an important role in early lymphoid development. PMID:9285685

  4. Recurrence of Melanoma Following T Cell Treatment: Continued Antigen Expression in a Tumor That Evades T Cell Recruitment

    PubMed Central

    Straetemans, Trudy; Berrevoets, Cor; Coccoris, Miriam; Treffers-Westerlaken, Elike; Wijers, Rebecca; Cole, David K; Dardalhon, Valerie; Sewell, Andrew K; Taylor, Naomi; Verweij, Jaap; Debets, Reno

    2015-01-01

    Clinical therapy with T cells shows promise for cancer patients, but is currently challenged by incomplete responses and tumor relapse. The exact mechanisms that contribute to tumor relapse remain largely unclear. Here, we treated mouse melanomas with T cell receptor-engineered T cells directed against a human peptide-major histocompatibility complex antigen in immune-competent mice. T cells resulted in significant tumor regression, which was followed by relapse in about 80–90% of mice. Molecular analysis revealed that relapsed tumors harbored nonmutated antigen genes, not silenced by promoter methylation, and functionally expressed surface antigen at levels equal to nontreated tumors. Relapsed tumors resisted a second in vivo T cell treatment, but regained sensitivity to T cell treatment upon retransplantation in mice. Notably, relapsed tumors demonstrated decreased levels of CD8 T cells and monocytes, which were substantiated by downregulated expression of chemoattractants and adhesion molecules. These observations were confirmed when using T cells specific for a less immunogenic, endogenous mouse melanoma antigen. We conclude that tumors, when exposed to T cell treatment, can relapse without loss of antigen and develop a milieu that evades recruitment of effector CD8 T cells. Our findings support the concept to target the tumor milieu to aid T cell therapy in limiting tumor relapse PMID:25363716

  5. T cells induce terminal differentiation of transformed B cells to mature plasma cell tumors.

    PubMed

    Hilbert, D M; Shen, M Y; Rapp, U R; Rudikoff, S

    1995-01-31

    Major interest in the analysis of mature plasma cell neoplasias of mice and humans has focused on identification of precursor cells that give rise to mature malignant plasma cells. Although several laboratories have recently suggested that such cells are present in the granulomas of pristane-treated mice and the bone marrow of some multiple myeloma patients, the in vivo cellular interactions required for their differentiation into mature plasma cell tumors remains unclear. Given the extensive interactions of peripheral T cells and normal B cells, we assessed the potential role of T cells in plasma-cell tumor development, by using a myc, raf-containing retrovirus, J3V1, to induce plasmacytomas in normal BALB/c mice, T-cell-deficient nude mice, and T-cell-reconstituted nude mice. The B-lineage tumors arising in normal BALB/c mice were uniformly mature plasmacytomas, most of which secreted immunoglobulin. In contrast, nude mice yielded predominantly non-immunoglobulin-secreting B-cell lymphomas with a phenotype characteristic of peripheral B cells. T-cell reconstitution of nude mice prior to tumor induction resulted in a shift from B-cell lymphomas to plasmacytomas. These results imply that transformation can occur prior to terminal differentiation of B cells and that such transformed cells can be driven to terminal differentiation by peripheral T cells. These findings further suggest that, in human multiple myeloma, the ability of T cells to influence the differentiation state of transformed B cells may provide a mechanism by which malignant plasma cells found in the bone marrow could arise from clonotypically related less-mature B cells found in both the bone marrow and periphery. PMID:7846031

  6. T-cell metabolism in autoimmune disease.

    PubMed

    Yang, Zhen; Matteson, Eric L; Goronzy, Jörg J; Weyand, Cornelia M

    2015-01-01

    Cancer cells have long been known to fuel their pathogenic growth habits by sustaining a high glycolytic flux, first described almost 90 years ago as the so-called Warburg effect. Immune cells utilize a similar strategy to generate the energy carriers and metabolic intermediates they need to produce biomass and inflammatory mediators. Resting lymphocytes generate energy through oxidative phosphorylation and breakdown of fatty acids, and upon activation rapidly switch to aerobic glycolysis and low tricarboxylic acid flux. T cells in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) have a disease-specific metabolic signature that may explain, at least in part, why they are dysfunctional. RA T cells are characterized by low adenosine triphosphate and lactate levels and increased availability of the cellular reductant NADPH. This anti-Warburg effect results from insufficient activity of the glycolytic enzyme phosphofructokinase and differentiates the metabolic status in RA T cells from those in cancer cells. Excess production of reactive oxygen species and a defect in lipid metabolism characterizes metabolic conditions in SLE T cells. Owing to increased production of the glycosphingolipids lactosylceramide, globotriaosylceramide and monosialotetrahexosylganglioside, SLE T cells change membrane raft formation and fail to phosphorylate pERK, yet hyperproliferate. Borrowing from cancer metabolomics, the metabolic modifications occurring in autoimmune disease are probably heterogeneous and context dependent. Variations of glucose, amino acid and lipid metabolism in different disease states may provide opportunities to develop biomarkers and exploit metabolic pathways as therapeutic targets. PMID:25890351

  7. Multiple Sclerosis and Regulatory T Cells

    PubMed Central

    Costantino, Cristina Maria; Hutton, Jonathon; Baecher-Allan, Clare; Hafler, David A.

    2009-01-01

    Multiple sclerosis (MS) is a complex genetic disease characterized by chronic inflammation of the central nervous system (CNS). The pathology of MS is largely attributed to autoreactive effector T cells that penetrate the blood-brain barrier and become activated within the CNS. As autoreactive T cells are present in the blood of both patients with MS and healthy individuals, other regulatory mechanisms exist to prevent autoreactive T cells from causing immune disorders. Active suppression by regulatory T (Treg) cells plays a key role in the control of self-antigen-reactive T cells and the induction of peripheral tolerance in vivo. In particular, the importance of antigen-specific Treg cells in conferring genetic resistance to organ specific autoimmunity and in limiting autoimmune tissue damage has been documented in many disease models including MS. We have found that the frequency of Tregs in MS patients is unchanged from controls, but their function measured in vitro may be diminished, correlating with impaired inhibitory activity in vivo. This review discusses the immunopathology of MS with particular focus given to regulatory T cells and their potential for the development of new therapies to treat this disease. PMID:18763026

  8. Dysregulated development of IL-17- and IL-21-expressing follicular helper T cells and increased germinal center formation in the absence of RORγt.

    PubMed

    Wichner, Katharina; Stauss, Dennis; Kampfrath, Branka; Krüger, Kerstin; Müller, Gerd; Rehm, Armin; Lipp, Martin; Höpken, Uta E

    2016-02-01

    Interleukin 17-producing helper T (Th17) cells have been widely defined by the lineage transcription factor retinoid-related orphan receptor (ROR)γt. Pathophysiologically, these cells play a crucial role in autoimmune diseases and have been linked to dysregulated germinal center (GC) reactions and autoantibody production. In this study, we used gene expression and flow cytometric analyses for the characterization of Rorγt(-/-) and Rorγt(-/-)Il21(RFP/+) mice to demonstrate a previously unknown transcriptional flexibility in the development of IL-17-producing Th-cell subsets. We found an accumulation of follicular Th (Tfh) cells by 5.2-fold, spontaneous 13-fold higher GC formation, decreased frequency of follicular Foxp3(+) T-regulatory (Treg) cells (50%), and a 3.4-fold increase in the number of proliferating follicular B cells in RORγt-deficient vs. wild-type mice. Dysregulated B-cell responses were associated with enhanced production of IL-17 (6.4-fold), IL-21 (2.2-fold), and B-cell-activating factor (BAFF) (2-fold) and were partially rescued by adoptive transfer of Treg cells. In an unexpected finding, we detected RORγt-independent IL-17 expression in ICOS(+)CXCR5(+)Tfh and in ICOS(+)CXCR5(-)Th cells. Based on the observed high Irf4 and Batf gene expression, we suggest that CD4(+) T-cell transcription factors other than RORγt can cooperatively induce differentiation of IL-17-producing Th cells, including Th17-like Tfh-cell subsets. We conclude that the occurrence of aberrant Tfh and follicular Treg cells support spontaneous GC formation and dysregulated B-cell responses in RORγt-deficient mice.-Wichner, K., Stauss, D., Kampfrath, B., Krüger, K., Müller, G., Rehm, A., Lipp, M., Höpken, U. E. Dysregulated development of IL-17- and IL-21-expressing follicular helper T cells and increased germinal center formation in the absence of RORγt. PMID:26499265

  9. Recent Developments in Nonlinear Normal Mode Initialization

    NASA Technical Reports Server (NTRS)

    Bloom, S. C.

    1985-01-01

    The importance of a balanced initial condition upon GLAS GCM forecasts and assimilation cycles was assessed. An effort to combine previous work on normal mode initialization at GLA is underway to develop an initialization process for the production version of the GLAS 4th order GCM. The major aspects of this work fall into two parts: vectorization of the linear projector code and the insertion of the mode projector and Machenhauer iteration algorithm into the full GLAS GCM. Memory and paging constraints place restrictions on the number of horizontal modes stored for initialization purposes, and on the manner in which they are stored. Only the first five vertical structures of the gravity modes are used. Differing phase and normalization conventions provided many elusive coding errors. A Machenhauer nonlinear normal mode initialization technique is used. This method entails the insertion of a modified version of the mode projector into the full GCM, and the modification of the GCM to allow for iterative calls to the projector.

  10. CD8 T cell memory recall is enhanced by novel direct interactions with CD4 T cells enabled by MHC class II transferred from APCs.

    PubMed

    Romagnoli, Pablo A; Premenko-Lanier, Mary F; Loria, Gilbert D; Altman, John D

    2013-01-01

    Protection against many intracellular pathogens is provided by CD8 T cells, which are thought to need CD4 T cell help to develop into effective memory CD8 T cells. Because murine CD8 T cells do not transcribe MHC class II (MHC-II) genes, several models have proposed antigen presenting cells (APCs) as intermediaries required for CD4 T cells to deliver their help to CD8 T cells. Here, we demonstrate the presence of MHC-II molecules on activated murine CD8 T cells in vitro as well as in vivo. These MHC-II molecules are acquired via trogocytosis by CD8 T cells from their activating APCs, particularly CD11c positive dendritic cells (DCs). Transferred MHC-II molecules on activated murine CD8 T cells were functionally competent in stimulating specific indicator CD4 T cells. CD8 T cells that were "helped" in vitro and subsequently allowed to rest in vivo showed enhanced recall responses upon challenge compared to "helpless" CD8 T cells; in contrast, no differences were seen upon immediate challenge. These data indicate that direct CD8:CD4 T cell interactions may significantly contribute to help for CD8 T cells. Furthermore, this mechanism may enable CD8 T cells to communicate with different subsets of interacting CD4 T cells that could modulate immune responses. PMID:23441229

  11. CD8 T Cell Memory Recall Is Enhanced by Novel Direct Interactions with CD4 T Cells Enabled by MHC Class II Transferred from APCs

    PubMed Central

    Romagnoli, Pablo A.; Premenko-Lanier, Mary F.; Loria, Gilbert D.; Altman, John D.

    2013-01-01

    Protection against many intracellular pathogens is provided by CD8 T cells, which are thought to need CD4 T cell help to develop into effective memory CD8 T cells. Because murine CD8 T cells do not transcribe MHC class II (MHC-II) genes, several models have proposed antigen presenting cells (APCs) as intermediaries required for CD4 T cells to deliver their help to CD8 T cells. Here, we demonstrate the presence of MHC-II molecules on activated murine CD8 T cells in vitro as well as in vivo. These MHC-II molecules are acquired via trogocytosis by CD8 T cells from their activating APCs, particularly CD11c positive dendritic cells (DCs). Transferred MHC-II molecules on activated murine CD8 T cells were functionally competent in stimulating specific indicator CD4 T cells. CD8 T cells that were “helped” in vitro and subsequently allowed to rest in vivo showed enhanced recall responses upon challenge compared to “helpless” CD8 T cells; in contrast, no differences were seen upon immediate challenge. These data indicate that direct CD8∶CD4 T cell interactions may significantly contribute to help for CD8 T cells. Furthermore, this mechanism may enable CD8 T cells to communicate with different subsets of interacting CD4 T cells that could modulate immune responses. PMID:23441229

  12. Efficacy and toxicity management of CAR-T-cell immunotherapy: a matter of responsiveness control or tumour-specificity?

    PubMed

    Alonso-Camino, Vanesa; Harwood, Seandean Lykke; Álvarez-Méndez, Ana; Alvarez-Vallina, Luis

    2016-04-15

    Chimaeric antigen receptor (CAR)-expressing T-cells have demonstrated potent clinical efficacy in patients with haematological malignancies. However, the use of CAR-T-cells targeting solid tumour-associated antigens (TAAs) has been limited by organ toxicities related to activation of T-cell effector functions through the CAR. Most existing CARs recognize TAAs, which are also found in normal tissues. CAR-T-cell-mediated destruction of normal tissues constitutes a major roadblock to CAR-T-cell therapy, and must be avoided or mitigated. There is a broad range of strategies for modulating antigen responsiveness of CAR-T-cells, with varying degrees of complexity. Some of them might ameliorate the acute and chronic toxicities associated with current CAR constructs. However, further embellishments to CAR therapy may complicate clinical implementation and possibly create new immunogenicity issues. In contrast, the development of CARs targeting truly tumour-specific antigens might circumvent on-target/off-tumour toxicities without adding additional complexity to CAR-T-cell therapies, but these antigens have been elusive and may require novel selection strategies for their discovery. PMID:27068947

  13. APRIL modulates B and T cell immunity

    PubMed Central

    Stein, Jens V.; López-Fraga, Marta; Elustondo, Fernando A.; Carvalho-Pinto, Carla E.; Rodríguez, Dolores; Gómez-Caro, Ruth; de Jong, Joan; Martínez-A, Carlos; Medema, Jan Paul; Hahne, Michael

    2002-01-01

    The TNF-like ligands APRIL and BLyS are close relatives and share the capacity to bind the receptors TACI and BCMA. BLyS has been shown to play an important role in B cell homeostasis and autoimmunity, but the biological role of APRIL remains less well defined. Analysis of T cells revealed an activation-dependent increase in APRIL mRNA expression. We therefore generated mice expressing APRIL as a transgene in T cells. These mice appeared normal and showed no signs of B cell hyperplasia. Transgenic T cells revealed a greatly enhanced survival in vitro as well as enhanced survival of staphylococcal enterotoxin B–reactive CD4+ T cells in vivo, which both directly correlate with elevated Bcl-2 levels. Analysis of humoral responses to T cell–dependent antigens in the transgenic mice indicated that APRIL affects only IgM but not IgG responses. In contrast, T cell–independent type 2 (TI-2) humoral response was enhanced in APRIL transgenic mice. As TACI was previously reported to be indispensable for TI-2 antibody formation, these results suggest a role for APRIL/TACI interactions in the generation of this response. Taken together, our data indicate that APRIL is involved in the induction and/or maintenance of T and B cell responses. PMID:12070306

  14. T cell dysfunction in the diabetes-prone BB rat. A role for thymic migrants that are not T cell precursors

    SciTech Connect

    Georgiou, H.M.; Lagarde, A.C.; Bellgrau, D.

    1988-01-01

    Diabetes-prone BB (BB-DP) rats express several T cell dysfunctions which include poor proliferative and cytotoxic responses to alloantigen. The goal of this study was to determine the origin of these T cell dysfunctions. When BB-DP rats were thymectomized, T cell depleted, and transplanted with neonatal thymus tissue from diabetes-resistant and otherwise normal DA/BB F1 rats, the early restoration of T cell function proceeded normally on a cell-for-cell basis; i.e., peripheral T cells functioned like those from the thymus donor. Because the thymus in these experiments was subjected to gamma irradiation before transplantation and there was no evidence of F1 chimerism in the transplanted BB-DP rats, it appeared that the BB-DP T cell precursors could mature into normally functioning T cells if the maturation process occurred in a normal thymus. If the F1 thymus tissue was treated with dGua before transplantation, the T cells of these animals functioned poorly like those from untreated BB-DP rats. dGua poisons bone marrow-derived cells, including gamma radiation-resistant cells of the macrophage/dendritic cell lineages, while sparing the thymic epithelium. Therefore, the reversal of the T cell dysfunction depends on the presence in the F1 thymus of gamma radiation-resistant, dGua-sensitive F1 cells. Conversely, thymectomized and T cell-depleted F1 rats expressed T cell dysfunction when transplanted with gamma-irradiated BB thymus grafts. T cell responses were normal in animals transplanted with dGua-treated BB thymus grafts. With increasing time after thymus transplantation, T cells from all animals gradually expressed the functional phenotype of the bone marrow donor. Taken together these results suggest that BB-DP bone marrow-derived cells that are not T cell precursors influence the maturation environment in the thymus of otherwise normal BB-DP T cell precursors.

  15. CAR-T Cell Therapy for Lymphoma.

    PubMed

    Ramos, Carlos A; Heslop, Helen E; Brenner, Malcolm K

    2016-01-01

    Lymphomas arise from clonal expansions of B, T, or NK cells at different stages of differentiation. Because they occur in the immunocyte-rich lymphoid tissues, they are easily accessible to antibodies and cell-based immunotherapy. Expressing chimeric antigen receptors (CARs) on T cells is a means of combining the antigen-binding site of a monoclonal antibody with the activating machinery of a T cell, enabling antigen recognition independent of major histocompatibility complex restriction, while retaining the desirable antitumor properties of a T cell. Here, we discuss the basic design of CARs and their potential advantages and disadvantages over other immune therapies for lymphomas. We review current clinical trials in the field and consider strategies to improve the in vivo function and safety of immune cells expressing CARs. The ultimate driver of CAR development and implementation for lymphoma will be the demonstration of their ability to safely and cost-effectively cure these malignancies. PMID:26332003

  16. Development of ultra-super sensitive immunohistochemistry and its application to the etiological study of adult T-cell leukemia/lymphoma.

    PubMed

    Hasui, Kazuhisa; Wang, Jia; Tanaka, Yuetsu; Izumo, Shuji; Eizuru, Yoshito; Matsuyama, Takami

    2012-04-26

    Antigen retrieval (AR) and ultra-super sensitive immunohistochemistry (ultra-IHC) have been established for application to archival human pathology specimens. The original ultra-IHC was the ImmunoMax method or the catalyzed signal amplification system (ImmunoMax/CSA method), comprising the streptavidin-biotin complex (sABC) method and catalyzed reporter deposition (CARD) reaction with visualization of its deposition. By introducing procedures to diminish non-specific staining in the original ultra-IHC method, we developed the modified ImmunoMax/CSA method with AR heating sections in an AR solution (heating-AR). The heating-AR and modified ImmunoMax/CSA method visualized expression of the predominantly simple present form of HTLV-1 proviral DNA pX region p40Tax protein (Tax) in adult T-cell leukemia/lymphoma (ATLL) cells in archival pathology specimens in approximately 75% of cases. The simple present form of Tax detected exhibited a close relation with ATLL cell proliferation. We also established a new simplified CSA (nsCSA) system by replacing the sABC method with the secondary antibody- and horse radish peroxidase-labeled polymer reagent method, introducing the pretreatments blocking non-specific binding of secondary antibody reagent, and diminishing the diffusion of deposition in the CARD reaction. Combined with AR treating sections with proteinase K solution (enzymatic-AR), the nsCSA system visualized granular immunostaining of the complex present form of Tax in a small number of ATLL cells in most cases, presenting the possibility of etiological pathological diagnosis of ATLL and suggesting that the complex present form of Tax-positive ATLL cells were young cells derived from ATLL stem cells. The heating-AR and ultra-IHC detected physiological expression of the p53 protein and its probable phosphorylation by Tax in peripheral blood mononuclear cells of peripheral blood tissue specimens from HTLV-1 carriers, as well as physiological and pathological expression of the molecules involved with G1 phase progression and G1-S phase transition (E2F-1, E2F-4, DP-1, and cyclin E) in ATLL and peripheral T-cell lymphoma cells. The ultra-IHC with AR is useful for etiological pathological diagnosis of ATLL since HTLV-1 pathogenicity depends on that of Tax, and can be a useful tool for studies translating advanced molecular biology and pathology to human pathology. PMID:22685351

  17. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection.

    PubMed

    Côme, Christophe; Cvrljevic, Anna; Khan, Mohd Moin; Treise, Irina; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Au-Yeung, Byron; Sittig, Eleonora; Laajala, Teemu Daniel; Chen, Yiling; Oeder, Sebastian; Calzada-Wack, Julia; Horsch, Marion; Aittokallio, Tero; Busch, Dirk H; Ollert, Markus W; Neff, Frauke; Beckers, Johannes; Gailus-Durner, Valerie; Fuchs, Helmut; Hrabě de Angelis, Martin; Chen, Zhi; Lahesmaa, Riitta; Westermarck, Jukka

    2016-01-01

    The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects. PMID:27100879

  18. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection

    PubMed Central

    Cvrljevic, Anna; Khan, Mohd Moin; Treise, Irina; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Au-Yeung, Byron; Sittig, Eleonora; Laajala, Teemu Daniel; Chen, Yiling; Oeder, Sebastian; Calzada-Wack, Julia; Horsch, Marion; Aittokallio, Tero; Busch, Dirk H.; Ollert, Markus W.; Neff, Frauke; Beckers, Johannes; Gailus-Durner, Valerie; Fuchs, Helmut; de Angelis, Martin Hrabě; Chen, Zhi; Lahesmaa, Riitta; Westermarck, Jukka

    2016-01-01

    The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects. PMID:27100879

  19. Virus-specific CD8+ T-cell responses in mice transgenic for a T-cell receptor beta chain selected at random.

    PubMed Central

    Ewing, C; Allan, W; Daly, K; Hou, S; Cole, G A; Doherty, P C; Blackman, M A

    1994-01-01

    The consequences of severely limiting the T-cell receptor (TCR) repertoire available for the response to intranasal infection with an influenza A virus or with Sendai virus have been analyzed by using H-2k mice (TG8.1) transgenic for a TCR beta-chain gene (V beta 8.1D beta 2J beta 2.3C beta 2). Analyzing the prevalence of V beta 8.1+ CD8+ T cells in lymph node cultures from nontransgenic (non-TG) H-2k controls primed with either virus and then stimulated in vitro with the homologous virus or with anti-CD3 epsilon showed that this TCR is not normally selected from the CD8+ T-cell repertoire during these infections. However, the TG8.1 mice cleared both viruses and generated virus-specific effector cytotoxic T lymphocytes (CTL) and memory CTL precursors, though the responses were delayed compared with the non-TG controls. Depletion of the CD4+ T-cell subset had little effect on the course of influenza virus infection but substantially slowed the development of the Sendai virus-specific CTL response and virus elimination in both the TG8.1 and non-TG mice, indicating that CD4+ helpers are promoting the CD8+ T-cell response in the Sendai virus model. Even so, restricting the available T-cell repertoire to lymphocytes expressing a single TCR beta chain still allows sufficient TCR diversity for CD8+ T cells (acting in the presence or absence of the CD4+ subset) to limit infection with an influenza A virus and a parainfluenza type 1 virus. PMID:7908699

  20. Infusion of Human Bone Marrow-Derived Mesenchymal Stem Cells Alleviates Autoimmune Nephritis in a Lupus Model by Suppressing Follicular Helper T-Cell Development.

    PubMed

    Jang, Eunkyeong; Jeong, Mini; Kim, Sukhyung; Jang, Kiseok; Kang, Bo-Kyeong; Lee, Dong Yun; Bae, Sang-Cheol; Kim, Kyung Suk; Youn, Jeehee

    2016-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the production of autoantibodies to components of the cell nucleus. These autoantibodies are predominantly produced with the help of follicular helper T (Tfh) cells and form immune complexes that trigger widespread inflammatory damage, including nephritis. In recent studies, mesenchymal stem cells (MSCs) elicited diverse, even opposing, effects in experimental and clinical SLE. Here we investigated the effect of human bone marrow-derived MSCs (hBM-MSCs) in a murine model of SLE, the F1 hybrid between New Zealand Black and New Zealand White strains (NZB/W). We found that infusion of female NZB/W mice with hBM-MSCs attenuated glomerulonephritis; it also decreased levels of autoantibodies and the incidence of proteinuria and improved survival. These effects coincided with a decrease in Tfh cells and downstream components. Infiltration of long-lived plasma cells into the inflamed kidney was also reduced in the hBM-MSC-treated mice. Importantly, hBM-MSCs directly suppressed the in vitro differentiation of naive CD4(+) T cells toward Tfh cells in a contact-dependent manner. These results suggest that MSCs attenuate lupus nephritis by suppressing the development of Tfh cells and the subsequent activation of humoral immune components. They thus reveal a novel mechanism by which MSCs regulate humoral autoimmune diseases such as SLE. PMID:25975931

  1. An attenuated temperature-sensitive strain of cytomegalovirus (tsm5) establishes immunity without development of CD8(+) T cell memory inflation.

    PubMed

    Beswick, Mark; Pachnio, Annette; Al-Ali, Abdulaziz; Sweet, Clive; Moss, Paul A

    2013-11-01

    Cytomegalovirus (CMV) is a widely prevalent herpesvirus that is well tolerated by an immune competent host yet establishes a state of chronic infection. The virus is thought to undergo frequent subclinical episodes of reactivation which leads to an unusually large accumulation of CMV-specific CD8(+) T lymphocytes in the peripheral blood, a phenomenon termed "memory inflation." The high magnitude of the CMV T cell response has been implicated in impaired immunity to heterologous pathogens such as EBV, influenza and West Nile virus. Here, using murine CMV (MCMV), we show that memory inflation of virus-specific CD8(+) T cells is avoided if mice are infected with a replication defective virus called temperature-sensitive mutant 5 (tsm5), which carries an attenuating mutation within the DNA primase gene. Mice infected with tsm5 do generate primary T cell responses towards viral proteins but these do not amass to skew the memory repertoire of CD8(+) T cells. Therefore, attenuation of the virus replication machinery may be valuable in future CMV vaccine designs because the virus remains immunogenic but does not contribute to CMV associated T cell immune senescence. PMID:23852921

  2. Therapeutic Potential of Hyporesponsive CD4+ T Cells in Autoimmunity

    PubMed Central

    Maggi, Jaxaira; Schafer, Carolina; Ubilla-Olguín, Gabriela; Catalán, Diego; Schinnerling, Katina; Aguillón, Juan C.

    2015-01-01

    The interaction between dendritic cells (DCs) and T cells is crucial on immunity or tolerance induction. In an immature or semi-mature state, DCs induce tolerance through T-cell deletion, generation of regulatory T cells, and/or induction of T-cell anergy. Anergy is defined as an unresponsive state that retains T cells in an “off” mode under conditions in which immune activation is undesirable. This mechanism is crucial for the control of T-cell responses against self-antigens, thereby preventing autoimmunity. Tolerogenic DCs (tDCs), generated in vitro from peripheral blood monocytes of healthy donors or patients with autoimmune pathologies, were shown to modulate immune responses by inducing T-cell hyporesponsiveness. Animal models of autoimmune diseases confirmed the impact of T-cell anergy on disease development and progression in vivo. Thus, the induction of T-cell hyporesponsiveness by tDCs has become a promising immunotherapeutic strategy for the treatment of T-cell-mediated autoimmune disorders. Here, we review recent findings in the area and discuss the potential of anergy induction for clinical purposes. PMID:26441992

  3. B and T cell screen

    MedlinePlus

    Direct immunofluorescence; E-rosetting; T and B lymphocyte assays; B and T lymphocyte assays ... to distinguish between T and B cells. The E-rosetting test identifies T cells and direct immunofluorescence ...

  4. Immunophenotypic and antigen receptor gene rearrangement analysis in T cell neoplasia.

    PubMed Central

    Knowles, D. M.

    1989-01-01

    The author reviews the immunophenotypic profiles displayed by the major clinicopathologic categories of T cell neoplasia, the immunophenotypic criteria useful in the immunodiagnosis of T cell neoplasia, and the contributions made by antigen receptor gene rearrangement analysis to the understanding of T cell neoplasia. Neoplasms belonging to distinct clinicopathologic categories of T cell neoplasia often exhibit characteristic immunophenotypic profiles. Approximately 80% of lymphoblastic lymphomas and 20% of acute lymphoblastic leukemias express phenotypes consistent with prethymic and intrathymic stages of T cell differentiation, including intranuclear terminal deoxynucleotidyl transferase. Cutaneous T cell lymphomas of mycosis fungoides type usually express pan-T cell antigens CD2, CD5, and CD3, often lack the pan-T cell antigen CD7, and usually express the mature, peripheral helper subset phenotype, CD4+ CD8-. Cutaneous T cell lymphomas of nonmycosis fungoides type and peripheral T cell lymphomas often lack one or more pan-T cell antigens and, in addition, occasionally express the anomalous CD4+ CD8+ or CD4- CD8- phenotypes. T gamma-lymphoproliferative disease is divisable into two broad categories: those cases that are CD3 antigen positive and exhibit clonal T cell receptor beta chain (TCR-beta) gene rearrangements and those cases that are CD3 antigen negative and exhibit the TCR-beta gene germline configuration. Human T cell lymphotropic virus-I (HTLV-I) associated Japanese, Carribean, and sporadic adult T cell leukemia/lymphomas usually express pan-T cell antigens, the CD4+ CD8- phenotype, and various T cell-associated activation antigens, including the interleukin-2 receptor (CD25). Immunophenotypic criteria useful in the immunodiagnosis of T cell neoplasia include, in increasing order of utility, T cell predominance, T cell subset antigen restriction, anomalous T cell subset antigen expression, and deletion of one or more pan-T cell antigens. Only in exceptional circumstances do normal, non-neoplastic T cell populations express the CD4- CD8- or the CD4+ CD8+ phenotype and/or lack one or more pan-T cell antigens. T cell receptor beta chain gene rearrangement analysis represents an accurate, objective, and sensitive molecular genetic marker of T cell lineage and clonality that allows discrimination among non-T cell, polyclonal T cell and monoclonal T cell populations. Non-T cells exhibit the TCR-beta gene germline configuration.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 3 Figure 6 Figure 7 PMID:2495724

  5. T Cells in Vascular Inflammatory Diseases

    PubMed Central

    Lintermans, Lucas L.; Stegeman, Coen A.; Heeringa, Peter; Abdulahad, Wayel H.

    2014-01-01

    Inflammation of the human vasculature is a manifestation of many different diseases ranging from systemic autoimmune diseases to chronic inflammatory diseases, in which multiple types of immune cells are involved. For both autoimmune diseases and chronic inflammatory diseases several observations support a key role for T lymphocytes in these disease pathologies, but the underlying mechanisms are poorly understood. Previous studies in several autoimmune diseases have demonstrated a significant role for a specific subset of CD4+ T cells termed effector memory T (TEM) cells. This expanded population of TEM cells may contribute to tissue injury and disease progression. These cells exert multiple pro-inflammatory functions through the release of effector cytokines. Many of these cytokines have been detected in the inflammatory lesions and participate in the vasculitic reaction, contributing to recruitment of macrophages, neutrophils, dendritic cells, natural killer cells, B cells, and T cells. In addition, functional impairment of regulatory T cells paralyzes anti-inflammatory effects in vasculitic disorders. Interestingly, activation of TEM cells is uniquely dependent on the voltage-gated potassium Kv1.3 channel providing an anchor for specific drug targeting. In this review, we focus on the CD4+ T cells in the context of vascular inflammation and describe the evidence supporting the role of different T cell subsets in vascular inflammation. Selective targeting of pathogenic TEM cells might enable a more tailored therapeutic approach that avoids unwanted adverse side effects of generalized immunosuppression by modulating the effector functions of T cell responses to inhibit the development of vascular inflammation. PMID:25352848

  6. Identification of a Late Stage of Small Noncycling pTα−  Pre-T Cells as Immediate Precursors of T Cell Receptor α/β+  Thymocytes

    PubMed Central

    Trigueros, César; Ramiro, Almudena R.; Carrasco, Yolanda R.; de Yebenes, Virginia G.; Albar, Juan P.; Toribio, María L.

    1998-01-01

    During thymocyte development, progression from T cell receptor (TCR)β to TCRα rearrangement is mediated by a CD3-associated pre-TCR composed of the TCRβ chain paired with pre-TCRα (pTα). A major issue is how surface expression of the pre-TCR is regulated during normal thymocyte development to control transition through this checkpoint. Here, we show that developmental expression of pTα is time- and stage-specific, and is confined in vivo to a limited subset of large cycling human pre-T cells that coexpress low density CD3. This restricted expression pattern allowed the identification of a novel subset of small CD3− thymocytes lacking surface pTα, but expressing cytoplasmic TCRβ, that represent late noncycling pre-T cells in which recombination activating gene reexpression and downregulation of T early α transcription are coincident events associated with cell cycle arrest, and immediately preceding TCRα gene expression. Importantly, thymocytes at this late pre-T cell stage are shown to be functional intermediates between large pTα+ pre-T cells and TCRα/β+ thymocytes. The results support a developmental model in which pre-TCR–expressing pre-T cells are brought into cycle, rapidly downregulate surface pre-TCR, and finally become small resting pre-T cells, before the onset of TCRα gene expression. PMID:9782117

  7. Nod2 Activates NF-kB in CD4+ T Cells but Its Expression Is Dispensable for T Cell-Induced Colitis

    PubMed Central

    Zanello, Galliano; Goethel, Ashleigh; Forster, Katharina; Geddes, Kaoru; Philpott, Dana J.; Croitoru, Kenneth

    2013-01-01

    Although the etiology of Crohn's disease (CD) remains elusive this disease is characterized by T cell activation that leads to chronic inflammation and mucosal damage. A potential role for maladaptation between the intestinal microbiota and the mucosal immune response is suggested by the fact that mutations in the pattern recognition receptor Nod2 are associated with higher risks for developing CD. Although Nod2 deletion in CD4+ T cells has been shown to impair the induction of colitis in the murine T cell transfer model, the analysis of T cell intrinsic Nod2 function in T cell differentiation and T cell-mediated immunity is inconsistent between several studies. In addition, the role of T cell intrinsic Nod2 in regulatory T cell (Treg) development and function during colitis remain to be analyzed. In this study, we show that Nod2 expression is higher in activated/memory CD4+ T cells and its expression was inducible after T cell receptor (TCR) ligation. Nod2 stimulation with muramyl dipeptide (MDP) led to a nuclear accumulation of c-Rel NF-kB subunit. Although functionally active in CD4+ T cells, the deletion of Nod2 did not impair the induction and the prevention of colitis in the T cell transfer model. Moreover, Nod2 deletion did not affect the development of Foxp3+ Treg cells in the spleen of recipient mice and Nod2 deficient CD4 T cells expressing the OVA specific transgenic TCR were able to differentiate in Foxp3+ Treg cells after OVA feeding. In vitro, CD25+ Nod2 deficient T cells suppressed T cell proliferation as well as wild type counter parts and T cell stimulation with MDP did not affect the proliferation and the cytokine secretion of T cells. In conclusion, our data indicate that Nod2 is functional in murine CD4+ T cells but its expression is dispensable for the T cell regulation of colitis. PMID:24324812

  8. Herpesvirus saimiri transformed T cells and peripheral blood mononuclear cells restimulate identical antigen-specific human T cell clones.

    PubMed

    Daubenberger, C A; Nickel, B; Hbner, B; Siegler, U; Meinl, E; Pluschke, G

    2001-08-01

    Panels of human antigen-specific T cell clones (TCC) have been established by limiting dilution using Herpesvirus saimiri (HVS) subtype C transformed T cells as antigen presenting cells (APC). They showed antigen-specific proliferation when peripheral blood mononuclear cells (PBMC), HVS-transformed T cells and Epstein Barr Virus transformed lymphoblastoid B cell lines (EBV-LCL) were used as APC. All T cell clones were CD4+ and HLA class II restricted. For a detailed analysis, two panels of T cell clones specific for an epitope located in the N-terminus of the Merozoite Surface Protein 1 (MSP-1) of Plasmodium falciparum were established from the same founder T cell line using either PBMC or HVS-transformed T cells as APC. TCR analysis of the two panels of TCC demonstrated that the same founder cells could be propagated in both culture systems. Furthermore, no difference in the cytokine expression pattern or antigen processing and co-stimulatory requirements was observed between TCC established on PBMC or HVS-transformed T cells. Based on the finding that HVS-transformed T cells can replace PBMC as APC for isolation and propagation of antigen-specific TCC, a protocol was developed and successfully executed, which allows to establish and maintain vaccine-specific T cell clones from 20 ml of blood. This method might be particularly significant in clinical trials of immune intervention strategies. PMID:11406156

  9. Biomarkers in T cell therapy clinical trials

    PubMed Central

    2011-01-01

    T cell therapy represents an emerging and promising modality for the treatment of both infectious disease and cancer. Data from recent clinical trials have highlighted the potential for this therapeutic modality to effect potent anti-tumor activity. Biomarkers, operationally defined as biological parameters measured from patients that provide information about treatment impact, play a central role in the development of novel therapeutic agents. In the absence of information about primary clinical endpoints, biomarkers can provide critical insights that allow investigators to guide the clinical development of the candidate product. In the context of cell therapy trials, the definition of biomarkers can be extended to include a description of parameters of the cell product that are important for product bioactivity. This review will focus on biomarker studies as they relate to T cell therapy trials, and more specifically: i. An overview and description of categories and classes of biomarkers that are specifically relevant to T cell therapy trials, and ii. Insights into future directions and challenges for the appropriate development of biomarkers to evaluate both product bioactivity and treatment efficacy of T cell therapy trials. PMID:21851646

  10. Discrete dynamic modeling of T cell survival signaling networks

    NASA Astrophysics Data System (ADS)

    Zhang, Ranran

    2009-03-01

    Biochemistry-based frameworks are often not applicable for the modeling of heterogeneous regulatory systems that are sparsely documented in terms of quantitative information. As an alternative, qualitative models assuming a small set of discrete states are gaining acceptance. This talk will present a discrete dynamic model of the signaling network responsible for the survival and long-term competence of cytotoxic T cells in the blood cancer T-LGL leukemia. We integrated the signaling pathways involved in normal T cell activation and the known deregulations of survival signaling in leukemic T-LGL, and formulated the regulation of each network element as a Boolean (logic) rule. Our model suggests that the persistence of two signals is sufficient to reproduce all known deregulations in leukemic T-LGL. It also indicates the nodes whose inactivity is necessary and sufficient for the reversal of the T-LGL state. We have experimentally validated several model predictions, including: (i) Inhibiting PDGF signaling induces apoptosis in leukemic T-LGL. (ii) Sphingosine kinase 1 and NFκB are essential for the long-term survival of T cells in T-LGL leukemia. (iii) T box expressed in T cells (T-bet) is constitutively activated in the T-LGL state. The model has identified potential therapeutic targets for T-LGL leukemia and can be used for generating long-term competent CTL necessary for tumor and cancer vaccine development. The success of this model, and of other discrete dynamic models, suggests that the organization of signaling networks has an determining role in their dynamics. Reference: R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, T. P. Loughran, Jr., Network Model of Survival Signaling in LGL Leukemia, PNAS 105, 16308-16313 (2008).

  11. Deep Sequencing of the T-cell Receptor Repertoire Demonstrates Polyclonal T-cell Infiltrates in Psoriasis

    PubMed Central

    Harden, Jamie L.; Hamm, David; Gulati, Nicholas; Lowes, Michelle A.; Krueger, James G.

    2015-01-01

    It is well known that infiltration of pathogenic T-cells plays an important role in psoriasis pathogenesis. However, the antigen specificity of these activated T-cells is relatively unknown. Previous studies using T-cell receptor polymerase chain reaction technology (TCR-PCR) have suggested there are expanded T-cell receptor (TCR) clones in psoriatic skin, suggesting a response to an unknown psoriatic antigen. Here we describe the results of high-throughput deep sequencing of the entire αβ- and γδ- TCR repertoire in normal healthy skin and psoriatic lesional and non-lesional skin. From this study, we were able to determine that there is a significant increase in the abundance of unique β- and γ- TCR sequences in psoriatic lesional skin compared to non-lesional and normal skin, and that the entire T-cell repertoire in psoriasis is polyclonal, with similar diversity to normal and non-lesional skin. Comparison of the αβ- and γδ- TCR repertoire in paired non-lesional and lesional samples showed many common clones within a patient, and these close were often equally abundant in non-lesional and lesional skin, again suggesting a diverse T-cell repertoire. Although there were similar (and low) amounts of shared β-chain sequences between different patient samples, there was significantly increased sequence sharing of the γ-chain in psoriatic skin from different individuals compared to those without psoriasis. This suggests that although the T-cell response in psoriasis is highly polyclonal, particular γδ- T-cell subsets may be associated with this disease. Overall, our findings present the feasibility of this technology to determine the entire αβ- and γδ- T-cell repertoire in skin, and that psoriasis contains polyclonal and diverse αβ- and γδ- T-cell populations. PMID:26594339

  12. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy.

    PubMed

    Dai, Hanren; Wang, Yao; Lu, Xuechun; Han, Weidong

    2016-07-01

    The genetic modification and characterization of T-cells with chimeric antigen receptors (CARs) allow functionally distinct T-cell subsets to recognize specific tumor cells. The incorporation of costimulatory molecules or cytokines can enable engineered T-cells to eliminate tumor cells. CARs are generated by fusing the antigen-binding region of a monoclonal antibody (mAb) or other ligand to membrane-spanning and intracellular-signaling domains. They have recently shown clinical benefit in patients treated with CD19-directed autologous T-cells. Recent successes suggest that the modification of T-cells with CARs could be a powerful approach for developing safe and effective cancer therapeutics. Here, we briefly review early studies, consider strategies to improve the therapeutic potential and safety, and discuss the challenges and future prospects for CAR T-cells in cancer therapy. PMID:26819347

  13. T-Cell Signaling in HIV-1 Infection

    PubMed Central

    Abbas, Wasim; Herbein, Georges

    2013-01-01

    HIV exploits the T-cell signaling network to gain access to downstream cellular components, which serves as effective tools to break the cellular barriers. Multiple host factors and their interaction with viral proteins contribute to the complexity of HIV-1 pathogenesis and disease progression. HIV-1 proteins gp120, Nef, Tat and Vpr alter the T-cell signaling pathways by activating multiple transcription factors including NF-?B, Sp1 and AP-1. HIV-1 evades the immune system by developing a multi-pronged strategy. Additionally, HIV-1 encoded proteins influence the apoptosis in the host cell favoring or blocking T-cell apoptosis. Thus, T-cell signaling hijacked by viral proteins accounts for both viral persistence and immune suppression during HIV-1 infection. Here, we summarize past and present studies on HIV-1 T-cell signaling with special focus on the possible role of T cells in facilitating viral infection and pathogenesis PMID:23986795

  14. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy

    PubMed Central

    Dai, Hanren; Wang, Yao; Lu, Xuechun

    2016-01-01

    The genetic modification and characterization of T-cells with chimeric antigen receptors (CARs) allow functionally distinct T-cell subsets to recognize specific tumor cells. The incorporation of costimulatory molecules or cytokines can enable engineered T-cells to eliminate tumor cells. CARs are generated by fusing the antigen-binding region of a monoclonal antibody (mAb) or other ligand to membrane-spanning and intracellular-signaling domains. They have recently shown clinical benefit in patients treated with CD19-directed autologous T-cells. Recent successes suggest that the modification of T-cells with CARs could be a powerful approach for developing safe and effective cancer therapeutics. Here, we briefly review early studies, consider strategies to improve the therapeutic potential and safety, and discuss the challenges and future prospects for CAR T-cells in cancer therapy. PMID:26819347

  15. The role of the T cell in autoimmune inflammation

    PubMed Central

    2005-01-01

    T cells, in particular CD4+ T cells, have been implicated in mediating many aspects of autoimmune inflammation. However, current evidence suggests that the role played by CD4+ T cells in the development of rheumatoid inflammation exceeds that of activated proinflammatory T-helper (Th)1 effector cells that drive the chronic autoimmune response. Subsets of CD4+ T cells with regulatory capacity, such as CD25+ regulatory T (Treg) cells and Th2 cells, have been identified, and recent observations suggest that in rheumatoid arthritis the function of these regulatory T cells is severely impaired. Thus, in rheumatoid arthritis, defective regulatory mechanisms might allow the breakdown of peripheral tolerance, after which the detrimental Th1-driven immune response evolves and proceeds to chronic inflammation. Here, we review the functional abnormalities and the contribution of different T cell subsets to rheumatoid inflammation. PMID:15833146

  16. mTORC1 in Thymic Epithelial Cells Is Critical for Thymopoiesis, T-Cell Generation, and Temporal Control of γδT17 Development and TCRγ/δ Recombination

    PubMed Central

    Wang, Hong-Xia; Shin, Jinwook; Wang, Shang; Gorentla, Balachandra; Lin, Xingguang; Gao, Jimin; Qiu, Yu-Rong; Zhong, Xiao-Ping

    2016-01-01

    Thymus is crucial for generation of a diverse repertoire of T cells essential for adaptive immunity. Although thymic epithelial cells (TECs) are crucial for thymopoiesis and T cell generation, how TEC development and function are controlled is poorly understood. We report here that mTOR complex 1 (mTORC1) in TECs plays critical roles in thymopoiesis and thymus function. Acute deletion of mTORC1 in adult mice caused severe thymic involution. TEC-specific deficiency of mTORC1 (mTORC1KO) impaired TEC maturation and function such as decreased expression of thymotropic chemokines, decreased medullary TEC to cortical TEC ratios, and altered thymic architecture, leading to severe thymic atrophy, reduced recruitment of early thymic progenitors, and impaired development of virtually all T-cell lineages. Strikingly, temporal control of IL-17-producing γδT (γδT17) cell differentiation and TCRVγ/δ recombination in fetal thymus is lost in mTORC1KO thymus, leading to elevated γδT17 differentiation and rearranging of fetal specific TCRVγ/δ in adulthood. Thus, mTORC1 is central for TEC development/function and establishment of thymic environment for proper T cell development, and modulating mTORC1 activity can be a strategy for preventing thymic involution/atrophy. PMID:26889835

  17. mTORC1 in Thymic Epithelial Cells Is Critical for Thymopoiesis, T-Cell Generation, and Temporal Control of γδT17 Development and TCRγ/δ Recombination.

    PubMed

    Wang, Hong-Xia; Shin, Jinwook; Wang, Shang; Gorentla, Balachandra; Lin, Xingguang; Gao, Jimin; Qiu, Yu-Rong; Zhong, Xiao-Ping

    2016-02-01

    Thymus is crucial for generation of a diverse repertoire of T cells essential for adaptive immunity. Although thymic epithelial cells (TECs) are crucial for thymopoiesis and T cell generation, how TEC development and function are controlled is poorly understood. We report here that mTOR complex 1 (mTORC1) in TECs plays critical roles in thymopoiesis and thymus function. Acute deletion of mTORC1 in adult mice caused severe thymic involution. TEC-specific deficiency of mTORC1 (mTORC1KO) impaired TEC maturation and function such as decreased expression of thymotropic chemokines, decreased medullary TEC to cortical TEC ratios, and altered thymic architecture, leading to severe thymic atrophy, reduced recruitment of early thymic progenitors, and impaired development of virtually all T-cell lineages. Strikingly, temporal control of IL-17-producing γδT (γδT17) cell differentiation and TCRVγ/δ recombination in fetal thymus is lost in mTORC1KO thymus, leading to elevated γδT17 differentiation and rearranging of fetal specific TCRVγ/δ in adulthood. Thus, mTORC1 is central for TEC development/function and establishment of thymic environment for proper T cell development, and modulating mTORC1 activity can be a strategy for preventing thymic involution/atrophy. PMID:26889835

  18. Harnessing Regulatory T cells to Suppress Asthma

    PubMed Central

    Thorburn, Alison N.; Hansbro, Philip M.

    2010-01-01

    Regulatory T cells (Tregs) play an essential role in maintaining the homeostatic balance of immune responses. Asthma is an inflammatory condition of the airways that is driven by dysregulated immune responses toward normally innocuous antigens. Individuals with asthma have fewer and less functional Tregs, which may lead to uncontrolled effector cell responses and promote proasthmatic responses of T helper type 2, T helper 17, natural killer T, antigen-presenting, and B cells. Tregs have the capacity to either directly or indirectly suppress these responses. Hence, the induced expansion of functional Tregs in predisposed or individuals with asthma is a potential approach for the prevention and treatment of asthma. Infection by a number of micro-organisms has been associated with reduced prevalence of asthma, and many infectious agents have been shown to induce Tregs and reduce allergic airways disease in mouse models. The translation of the regulatory and therapeutic properties of infectious agents for use in asthma requires the identification of key modulatory components and the development and trial of effective immunoregulatory therapies. Further translational and clinical research is required for the induction of Tregs to be harnessed as a therapeutic strategy for asthma. PMID:20097830

  19. Studies on thyroglobulin-specific suppressor T cell function in autoimmune thyroid disease

    SciTech Connect

    Mori, H.; Hamada, N.; DeGroot, L.J.

    1985-08-01

    T cell regulation of the generation of thyroglobulin plaque-forming cells (Tg PFC) and protein A plaque-forming cells (Prot A PFC) was investigated using lymphocytes from patients with autoimmune thyroid disease. T and B cell mixed cultures (T-B MC) were carried out without mitogenic or antigenic stimulation to identify physiological T cell effects in the system. Tg PFC were found in 8 (44%) of 18 patients who had high titers of thyroglobulin antibody in their sera. Tg-specific and nonspecific immunoregulation by T cells from patients and normal subjects was studied using B cells from these eight patients in the T-B MC system. Remarkably lower values of Tg PFC induction compared to Prot A PFC induction were found after T cell addition. Normal T cells inhibited Tg PFC induction, but patient T cells did not, while the same extent of helper effects were found on Prot A PFC induction by the addition of patient and normal T cells. Irradiation (1500 rads) of T cells from patients and normal subjects significantly enhanced both Tg PFC and Prot A PFC induction. Thus, Tg-specific suppressor T cells are present in all normal subjects as part of the radiosensitive suppressor T cell subset. The increase in Tg-PFC caused by irradiation-induced inhibition of Tg-specific suppressor T cell function was significantly greater in normal subjects than in patients. Histamine type 2 receptor-bearing T cells inhibited Prot A PFC induction, but not Tg PFC induction, in the autologous T-B MC system. No Tg PFC were induced from normal B cells in any combination with untreated T cells, irradiated T cells, or histamine type 2 receptor-negative T cells from patients or normal subjects.

  20. Pre-miRNA Loop Nucleotides Control the Distinct Activities of mir-181a-1 and mir-181c in Early T Cell Development

    PubMed Central

    Yue, Sibiao; Chen, Chang-Zheng

    2008-01-01

    Background Mature miRNAs can often be classified into large families, consisting of members with identical seeds (nucleotides 2 through 7 of the mature miRNAs) and highly homologous ∼21-nucleotide (nt) mature miRNA sequences. However, it is unclear whether members of a miRNA gene family, which encode identical or nearly identical mature miRNAs, are functionally interchangeable in vivo. Methods and Findings We show that mir-181a-1, but not mir-181c, can promote CD4 and CD8 double-positive (DP) T cell development when ectopically expressed in thymic progenitor cells. The distinct activities of mir-181a-1 and mir-181c are largely determined by their unique pre-miRNA loop nucleotides—not by the one-nucleotide difference in their mature miRNA sequences. Moreover, the activity of mir-181a-1 on DP cell development can be quantitatively influenced by nucleotide changes in its pre-miRNA loop region. We find that both the strength and the functional specificity of miRNA genes can be controlled by the pre-miRNA loop nucleotides. Intriguingly, we note that mutations in the pre-miRNA loop regions affect pre-miRNA and mature miRNA processing, but find no consistent correlation between the effects of pre-miRNA loop mutations on the levels of mature miRNAs and the activities of the mir-181a-1/c genes. Conclusions These results demonstrate that pre-miRNA loop nucleotides play a critical role in controlling the activity of miRNA genes and that members of the same miRNA gene families could have evolved to achieve different activities via alterations in their pre-miRNA loop sequences, while maintaining identical or nearly identical mature miRNA sequences. PMID:18974849

  1. Giant cell vasculitis is a T cell-dependent disease.

    PubMed Central

    Brack, A.; Geisler, A.; Martinez-Taboada, V. M.; Younge, B. R.; Goronzy, J. J.; Weyand, C. M.

    1997-01-01

    BACKGROUND: Giant cell arteritis (GCA) is a systemic vasculitis that preferentially targets medium-sized and large arteries. The etiopathogenesis of the syndrome is not known, and because of the paucity of information concerning the mechanisms of blood vessel wall damage, treatment options are limited. Clues to pathogenic events in this arteritis may derive from understanding the function of tissue-infiltrating cells. Arterial injury in GCA is associated with the formation of granulomas that are composed of T cells, activated macrophages, and multinucleated giant cells. To examine the role of T cells, we implanted inflamed temporal arteries from patients with GCA into severe combined immunodeficiency (SCID) mice and studied whether the vascular lesions were T cell-dependent. MATERIALS AND METHODS: Temporal artery specimens from patients with GCA were engrafted into SCID mice. The histomorphologic appearance of fresh arteries and grafts retrieved from the mice was compared by two-color immunohistochemistry, and the functional profile of tissue-infiltrating cells was analyzed by semiquantifying cytokine transcription with a polymerase chain reaction (PCR)-based assay system. The repertoire of tissue-infiltrating T cells was assessed for the presence of dominant T cell populations by using T cell receptor beta-chain-specific PCR followed by sequencing. To investigate the role of T cells in the activation of tissue-infiltrating macrophages, T cells were depleted from the arterial grafts by treating the mice with T cell-specific antibodies and the production of monokines was monitored. To demonstrate the disease relevance of T cells expanding in the implants, T cells were isolated from tissue segments and adoptively transferred into mice implanted with syngeneic arteries. The in situ production of lymphokines was then determined. RESULTS: The inflammatory infiltrate penetrating all layers of the arterial wall persisted in the xenotransplants, indicating that the inflammatory foci represent independent functional units. Similar quantities of T cell- and macrophage-derived cytokines were detected in fresh and engrafted tissue. However, the diversity of tissue-infiltrating T cells decreased following implantation. T cells with identical T cell receptors were expanded in different mice that had been engrafted with tissue fragments from the same patient, indicating that T cell survival in the arterial wall was a nonrandom process. To confirm the disease relevance of these T cells, T cell depletion and reconstitution experiments were performed. Antibody-mediated elimination of T cells from the xenotransplants resulted in the attenuation of the production of the monokines, IL-1 beta and IL-6. Adoptive transfer of syngeneic tissue-derived T cells, but not of peripheral blood T cells, into engrafted SCID mice enhanced the transcription of IL-2 and IFN-gamma in the implanted arteries. CONCLUSIONS: The vascular lesions of GCA are maintained in human artery-mouse chimeras, indicating that all cellular and noncellular components necessary for the disease are present in the temporal artery. Activation of tissue-infiltrating T cells and macrophages depends upon an infrequent subpopulation of lesional T cells that have a survival advantage in the xenotransplants. The selective proliferation of these T cells in the arteries suggests that there is recognition of a locally expressed antigen. Therefore, these T cells should be candidate targets for the development of novel therapeutic strategies in GCA. Images FIG. 1 FIG. 3 FIG. 5 PMID:9307981

  2. Retargeting Oncolytic Vesicular Stomatitis Virus to Human T-Cell Lymphotropic Virus Type 1-Associated Adult T-Cell Leukemia

    PubMed Central

    Betancourt, Dillon; Ramos, Juan Carlos

    2015-01-01

    ABSTRACT Adult T cell leukemia/lymphoma (ATL) is an aggressive cancer of CD4/CD25+ T lymphocytes, the etiological agent of which is human T-cell lymphotropic virus type 1 (HTLV-1). ATL is highly refractory to current therapies, making the development of new treatments a high priority. Oncolytic viruses such as vesicular stomatitis virus (VSV) are being considered as anticancer agents since they readily infect transformed cells compared to normal cells, the former appearing to exhibit defective innate immune responses. Here, we have evaluated the efficacy and safety of a recombinant VSV that has been retargeted to specifically infect and replicate in transformed CD4+ cells. This was achieved by replacing the single VSV glycoprotein (G) with human immunodeficiency virus type 1 (HIV-1) gp160 to create a hybrid fusion protein, gp160G. The resultant virus, VSV-gp160G, was found to only target cells expressing CD4 and retained robust oncolytic activity against HTLV-1 actuated ATL cells. VSV-gp160G was further noted to be highly attenuated and did not replicate efficiently in or induce significant cell death of primary CD4+ T cells. Accordingly, VSV-gp160G did not elicit any evidence of neurotoxicity even in severely immunocompromised animals such as NOD/Shi-scid, IL-2Rγ-c-null (NSG) mice. Importantly, VSV-gp160G effectively exerted potent oncolytic activity in patient-derived ATL transplanted into NSG mice and facilitated a significant survival benefit. Our data indicate that VSV-gp160G exerts potent oncolytic efficacy against CD4+ malignant cells and either alone or in conjunction with established therapies may provide an effective treatment in patients displaying ATL. IMPORTANCE Adult T cell leukemia (ATL) is a serious form of cancer with a high mortality rate. HTLV-1 infection is the etiological agent of ATL and, unfortunately, most patients succumb to the disease within a few years. Current treatment options have failed to significantly improve survival rate. In this study, we developed a recombinant strain of vesicular stomatitis virus (VSV) that specifically targets transformed CD4+ T cells through replacement of the G protein of VSV with a hybrid fusion protein, combining domains from gp160 of HIV-1 and VSV-G. This modification eliminated the normally broad tropism of VSV and restricted infection to primarily the transformed CD4+ cell population. This effect greatly reduced neurotoxic risk associated with VSV infection while still allowing VSV to effectively target ATL cells. PMID:26378177

  3. Alemtuzumab in T-cell lymphoproliferative disorders.

    PubMed

    Dearden, Claire E; Matutes, Estella

    2006-01-01

    The humanized monoclonal antibody alemtuzumab binds to the CD52 antigen, a glycoprotein which is widely expressed on normal and malignant B and T lymphocytes. Recently it has been demonstrated in a number of clinical trials that alemtuzumab has clinical activity in mature T-cell diseases such as T-prolymphocytic leukaemia and cutaneous T-cell lymphoma, inducing responses in up to two thirds of heavily pre-treated relapsed/refractory patients. Response was associated with improved survival. The toxicity profile for the antibody is manageable. The major complications are infusional reactions associated with initial injections, and prolonged lymphopenia associated with reactivation of viruses. Future studies will be directed towards alternative (subcutaneous) routes and schedules of administration, use as first-line therapy, combination strategies, and role of alemtuzumab to purge minimal residual bone-marrow disease prior to stem-cell transplantation. PMID:16997184

  4. Novel treatments for T-cell lymphoma.

    PubMed

    Cheah, Chan Yoon; Oki, Yasuhiro; Fanale, Michelle A

    2015-01-01

    T-cell lymphomas are a biologically and clinically diverse collection of diseases that collectively account for 10% to 15% of non-Hodgkin lymphomas. Unlike B-cell lymphomas, the response of T-cell lymphomas to standard anthracycline-containing chemotherapy regimens is suboptimal and the prognosis of patients is accordingly poor. To address these shortcomings, there has been a proliferation in biologic agents with novel mechanisms of action that target surface antigens, signaling pathways, or cellular processes. Given the large number of candidate molecules showing preclinical promise and the rarity of these diseases, drug development for peripheral T-cell lymphoma is challenging. We provide an overview of agents that have recently been approved for relapsed/refractory T-cell lymphoma and highlight efforts to introduce these agents into front-line treatment protocols in combination with chemotherapy. We discuss biologic doublets currently being evaluated as "chemotherapy-free" salvage regimens and highlight some of the most promising investigational agents in early clinical development. PMID:25993211

  5. T cells as a therapeutic target in SLE

    PubMed Central

    Comte, Denis; Karampetsou, Maria P.; Tsokos, George C.

    2014-01-01

    Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease characterized by a loss of tolerance to multiple endogenous antigens. SLE etiology remains largely unknown, despite recent insight into the immunopathogenesis of the disease. T cells are important in the development of the disease by amplifying the immune response and contributing to organ damage. Aberrant signaling, cytokine secretion and tissue homing displayed by SLE T cells have been extensively studied and the underlying pathogenic molecular mechanisms are starting to be elucidated. T-cell targeted treatments are being explored in SLE patients. This review is an update on the T-cell abnormalities and related therapeutic options in SLE. PMID:25801878

  6. Memory T cells need CD28 costimulation to remember

    PubMed Central

    Boesteanu, Alina C.; Katsikis, Peter D.

    2010-01-01

    The activation and expansion of nave T cells require costimulatory signals provided by CD28 and TNF family members. In contrast, for many years it was believed that memory T cells do not require CD28 costimulation for expansion during secondary responses. This was based on in vitro experiments that suggested the re-activation of memory T cells is somewhat independent of costimulation. Recent in vivo evidence, however, has challenged this and shown that both CD4+ and CD8+ memory T cells require CD28 costimulation for maximal expansion and pathogen clearance. This requirement has important implications for host immunity, vaccine development and immunotherapeutics. PMID:19268606

  7. γδ T Cell Immunotherapy—A Review

    PubMed Central

    Kobayashi, Hirohito; Tanaka, Yoshimasa

    2015-01-01

    Cancer immunotherapy utilizing Vγ9Vδ2 T cells has been developed over the past decade. A large number of clinical trials have been conducted on various types of solid tumors as well as hematological malignancies. Vγ9Vδ2 T cell-based immunotherapy can be classified into two categories based on the methods of activation and expansion of these cells. Although the in vivo expansion of Vγ9Vδ2 T cells by phosphoantigens or nitrogen-containing bisphosphonates (N-bis) has been translated to early-phase clinical trials, in which the safety of the treatment was confirmed, problems such as activation-induced Vγ9Vδ2 T cell anergy and a decrease in the number of peripheral blood Vγ9Vδ2 T cells after infusion of these stimulants have not yet been solved. In addition, it is difficult to ex vivo expand Vγ9Vδ2 T cells from advanced cancer patients with decreased initial numbers of peripheral blood Vγ9Vδ2 T cells. In this article, we review the clinical studies and reports targeting Vγ9Vδ2 T cells and discuss the development and improvement of Vγ9Vδ2 T cell-based cancer immunotherapy. PMID:25686210

  8. Pre-existing anti-Salmonella vector immunity prevents the development of protective antigen-specific CD8 T-cell frequencies against murine listeriosis.

    PubMed

    Sevil Domènech, Victòria E; Panthel, Klaus; Meinel, Katrin M; Winter, Sebastian E; Rüssmann, Holger

    2007-10-01

    Our laboratory has focused its research on the use of the type III secretion system of Salmonella enterica serovar Typhimurium to translocate heterologous antigens directly into the cytosol of antigen-presenting cells. We have previously reported that the single oral immunization of mice with a recombinant Salmonella aroA/sptP mutant strain expressing the translocated Yersinia outer protein E fused to the immunodominant antigen p60 from Listeria monocytogenes in a type III-mediated fashion results in the efficient induction of p60-specific CD8 T cells and confers protection against a lethal Listeria challenge infection. In the present study, we determined whether pre-existing anti-Salmonella vector immunity influences the induction of p60-specific CD8 T cells and modulates protective immunity against listeriosis after oral vaccination with recombinant Salmonella. After single oral immunization, the Salmonella aroA/sptP double mutant strain was found to colonize spleens of mice for 21days. In contrast, the period of colonization was significantly shortened to 6days due to anti-Salmonella vector immunity after second oral immunization. The latter scenario led to the induction of low-level frequencies of antigen-specific CD8 T cells. Compared to the significantly higher numbers of p60-specific T lymphocytes elicited after single oral immunization, the low amount of Listeria-specific CD8 T cells did not confer protection against listeriosis. PMID:17913544

  9. Depressed immune surveillance against cancer: role of deficient T cell: extracellular matrix interactions.

    PubMed

    Górski, A; Castronovo, V; Stepień-Sopniewska, B; Grieb, P; Ryba, M; Mrowiec, T; Korczak-Kowalska, G; Wierzbicki, P; Matysiak, W; Dybowska, B

    1994-07-01

    Although T cells infiltrate malignant tumors, the local immune response is usually inefficient and tumors escape destruction. While extracellular matrix proteins strongly costimulate T cell responses in normal individuals, our studies indicate that peripheral blood T cells from cancer patients and tumor infiltrating cells respond poorly or are resistant to stimulative signals mediated by collagen I and IV and fibronectin. Moreover, the adhesive properties of cancer T cells are markedly depressed. Those functional deficiencies are paralleled by variable deficits in integrin and non-integrin T cell receptors for extracellular matrix. Immunotherapy with BCG causes a dramatic but transient increase in T cell: ECM interactions. PMID:7827959

  10. Development of Type 2, But Not Type 1, Leprosy Reactions is Associated with a Severe Reduction of Circulating and In situ Regulatory T-Cells.

    PubMed

    Vieira, Ana Paula; Trindade, Maria Ângela Bianconcini; Pagliari, Carla; Avancini, João; Sakai-Valente, Neusa Yurico; Duarte, Alberto José da Silva; Benard, Gil

    2016-04-01

    Leprosy is frequently complicated by the appearance of reactions that are difficult to treat and are the main cause of sequelae. We speculated that disturbances in regulatory T-cells (Tregs) could play a role in leprosy reactions. We determined the frequency of circulating Tregs in patients with type 1 reaction (T1R) and type 2 reaction (T2R). The in situ frequency of Tregs and interleukin (IL)-17, IL-6, and transforming growth factor beta (TGF)-β-expressing cells was also determined. T2R patients showed markedly lower number of circulating and in situ Tregs than T1R patients and controls. This decrease was paralleled by increased in situ IL-17 expression but decreased TGF-β expression. Biopsies from T1R and T2R patients before the reaction episodes showed similar number of forkhead box protein P3+ (FoxP3+) and IL-17+ cells. However, in biopsies taken during the reaction, T2R patients showed a decrease in Tregs and increase in IL-17+ cells, whereas T1R patients showed the opposite: Tregs increased but IL-17+ cells decreased. We also found decreased expansion of Tregs upon in vitro stimulation withMycobacterium lepraeand a trend for lower expression of FoxP3 and the immunosuppressive molecule cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) in T2R Tregs. Our results provide some evidence to the hypothesis that, in T2R, downmodulation of Tregs may favor the development of T-helper-17 responses that characterize this reaction. PMID:26903606

  11. [Psychomotor development and its disorders: between normal and pathological development].

    PubMed

    Vericat, Agustina; Bibiana Orden, Alicia

    2013-10-01

    This article discusses some aspects of psychomotor development and its disorders, with special emphasis on psychomotor retardation. Diagnostic classifications of psychomotor problems, such as DSM-IV and CIE-10, are referred to and their advantages and disadvantages are analyzed. The concept of normality as a synonym for the statistical mean in the context of psychomotor disorders is also analyzed in order to consider its dynamic and variability, thereby avoiding the normality/pathology opposition, while some issues, such as the social and cultural aspects, are highlighted, making it possible to rethink the universality and relativity of psychomotor development. PMID:24061024

  12. Isolation and Characterization of Salmonid CD4+ T Cells.

    PubMed

    Maisey, Kevin; Montero, Ruth; Corripio-Miyar, Yolanda; Toro-Ascuy, Daniela; Valenzuela, Beatriz; Reyes-Cerpa, Sebastián; Sandino, Ana María; Zou, Jun; Wang, Tiehui; Secombes, Christopher J; Imarai, Mónica

    2016-05-15

    This study reports the isolation and functional characterization of rainbow trout (Oncorhynchus mykiss) CD4-1(+) T cells and the establishment of an IL-15-dependent CD4-1(+) T cell line. By using Abs specific for CD4-1 and CD3ε it was possible to isolate the double-positive T cells in spleen and head kidney. The morphology and the presence of transcripts for T cell markers in the sorted CD4-1(+)CD3ε(+) cells were studied next. Cells were found to express TCRα, T