Science.gov

Sample records for northern arabian sea

  1. Winter monsoon circulation of the northern Arabian Sea and Somali Current

    NASA Astrophysics Data System (ADS)

    Schott, Friedrich A.; Fischer, Jürgen

    2000-03-01

    The winter monsoon circulation in the northern inflow region of the Somali Current is discussed on the basis of an array of moored acoustic Doppler current profiler and current meter stations deployed during 1995-1996 and a ship survey carried out in January 1998. It is found that the westward inflow into the Somali Current regime occurs essentially south of 11°N and that this inflow bifurcates at the Somali coast, with the southward branch supplying the equatorward Somali Current and the northward one returning into the northwestern Arabian Sea. This northward branch partially supplies a shallow outflow through the Socotra Passage between the African continent and the banks of Socotra and partially feeds into eastward recirculation directly along the southern slopes of Socotra. Underneath this shallow surface flow, southwestward undercurrent flows are observed. Undercurrent inflow from the Gulf of Aden through the Socotra Passage occurs between 100 and 1000 m, with its current core at 700-800 m, and is clearly marked by the Red Sea Water (RSW) salinity maximum. The observations suggest that the maximum RSW inflow out of the Gulf of Aden occurs during the winter monsoon season and uses the Socotra Passage as its main route into the Indian Ocean. Westward undercurrent inflow into the Somali Current regime is also observed south of Socotra, but this flow lacks the RSW salinity maximum. Off the Arabian peninsula, eastward boundary flow is observed in the upper 800 m with a compensating westward flow to the south. The observed circulation pattern is qualitatively compared with recent high-resolution numerical model studies and is found to be in basic agreement.

  2. Species identification of mixed algal bloom in the Northern Arabian Sea using remote sensing techniques.

    PubMed

    Dwivedi, R; Rafeeq, M; Smitha, B R; Padmakumar, K B; Thomas, Lathika Cicily; Sanjeevan, V N; Prakash, Prince; Raman, Mini

    2015-02-01

    Oceanic waters of the Northern Arabian Sea experience massive algal blooms during winter-spring (mid Feb-end Mar), which prevail for at least for 3 months covering the entire northern half of the basin from east to west. Ship cruises were conducted during winter-spring of 2001-2012 covering different stages of the bloom to study the biogeochemistry of the region. Phytoplankton analysis indicated the presence of green tides of dinoflagellate, Noctiluca scintillans (=N. miliaris), in the oceanic waters. Our observations indicated that diatoms are coupled and often co-exist with N. scintillans, making it a mixed-species ecosystem. In this paper, we describe an approach for detection of bloom-forming algae N. scintillans and its discrimination from diatoms using Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua data in a mixed-species environment. In situ remote sensing reflectance spectra were generated using Satlantic™ hyperspectral radiometer for the bloom and non-bloom waters. Spectral shapes of the reflectance spectra for different water types were distinct, and the same were used for species identification. Scatter of points representing different phytoplankton classes on a derivative plot revealed four diverse clusters, viz. N. scintillans, diatoms, non-bloom oceanic, and non-bloom coastal waters. The criteria developed for species discrimination were implemented on MODIS data and validated using inputs from a recent ship cruise conducted in March 2013. PMID:25638059

  3. Living (Rose Bengal stained) benthic foraminifera from the Pakistan continental margin (northern Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Jannink, N. T.; Zachariasse, W. J.; Van der Zwaan, G. J.

    1998-09-01

    The Arabian Sea is characterized by one of the world's most pronounced oxygen minimum zones (OMZ) (<0.1 O 2 ml/l), which impinges on the seafloor at 200-1000 m depths. The OMZ in the Arabian Sea results from extremely high surface water productivity and moderate thermocline ventilation. Nine box cores were taken on two parallel down-slope transects covering depths from 500 to 2000 m. From these nine box cores living (Rose Bengal stained) benthic foraminifera were studied in detail. Within the upper part of the OMZ, Bolivina dilatata and Bulimina exilis are the most abundant species. In the lower part of the OMZ, Uvigerina peregrina and B. exilis are the most abundant. Just below the OMZ, at a water depth of about 1250 m, the assemblage is typically dominated by Rotaliatinopsis semiinvoluta and U. peregrina; in still deeper waters (1500-2000 m) Bulimina aculeata and Epistominella exigua are the most prominent species. Transect II was sampled three weeks after transect I; on the average, standing stocks were four times higher in transect II. However, down-slope species distributions are similar in the two transects, both in the 63 μm and the 150 μm size fractions. Also vertical (in-sediment) distributions are remarkably similar. This indicates that standing stock differences between the two transects can be ascribed either to the effect of patchiness or, more likely, to the nature and the amount of organic flux. We found unambiguous evidence that in and below the OMZ many benthic foraminifera persist in suboxic to anoxic microhabitats. This regards surface as well as subsurface habitats. Evidently, oxygen is not a limiting factor for a considerable number of species. The obvious relationship between species distribution and the OMZ might then be explained in terms of preferences for amount or type of organic flux. An alternative explanation involves favourable effects resulting from the absence of larger predators. The various models pertaining to the limiting

  4. Live (Rose Bengal stained) foraminiferal faunas from the northern Arabian Sea: faunal succession within and below the OMZ

    NASA Astrophysics Data System (ADS)

    Caulle, Clemence; Koho, Karoliina; Mojtahid, Meryem; Reichart, Gert-Jan; Jorissen, Frans

    2014-05-01

    Live (Rose Bengal stained) benthic foraminifera from the Murray Ridge, within and below the northern Arabian Sea Oxygen Minimum Zone (OMZ), were studied in order to determine the relationship between faunal composition, bottom-water oxygenation (BWO), pore-water chemistry and organic matter (organic carbon and phytopigment) distribution. A series of multicores were recovered from a ten-station oxygen (BWO: 2µM - 78µM) and bathymetric (885 - 3010m depth) transect during the winter monsoon in January 2009. Foraminifera were investigated from three different size fractions (63-125µm, 125-150µm and >150µm). The larger foraminifera (>125µm) were strongly dominated by agglutinated species (e.g. Reophax spp.). In contrast, in the 63-125µm fraction, calcareous taxa were more abundant, especially in the core of the OMZ. On the basis of a Principal Components Analysis, three foraminiferal groups were identified and correlated to the environmental parameters by Canonical Correspondence Analysis. The faunas from the shallowest stations, in the core of the OMZ (BWO: 2µM), were composed of "low oxygen" species, typical of the Arabian Sea OMZ (e.g., Rotaliatinopsis semiinvoluta, Praeglobobulimina sp., Bulimina exilis, Uvigerina peregrina type parva). These taxa are adapted to the very low BWO conditions and to high phytodetritus supplies. The transitional group, typical for the lower part of the OMZ (BWO: 5-16µM), is composed of species, which are tolerant as well to low-oxygen concentrations, but may be less critical with respect to organic supplies (e.g. Globocassidulina subglobosa, Ehrenbergina trigona). Below the OMZ (BWO: 26-78µM), where food availability is more limited and becomes increasingly restricted to surficial sediments, cosmopolitan calcareous taxa were present, such as Bulimina aculeata, Melonis barleeanus, Uvigerina peregrina and Epistominella exigua. Miliolids were uniquely observed in this last zone, reflecting the higher BWO and/or lower organic

  5. Seasonal and annual variability of vertically migrating scattering layers in the northern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Wang, Zhankun; DiMarco, Steven F.; Ingle, Stephanie; Belabbassi, Leila; Al-Kharusi, Lubna H.

    2014-08-01

    A 30-month time series of mean volume backscattering strength (MVBS) data obtained from moored acoustic Doppler current profilers (ADCPs) is used to analyze the evolution of vertically migrating scattering layers and their seasonal and annual variability in the Arabian and Oman Seas. Substantial diel vertical migration (DVM) is observed almost every day at all three mooring sites. Two daytime layers (Layers D1 and D2) and one nighttime layer (Layer E1) are typically present. The greatest biomass is observed near the surface during the night in Layer E1 and at depth between 250 and 450 m during the daytime in Layer D2. All layers are deepest during the spring inter-monsoon and shallowest during the summer/fall southwest monsoon (SWM). Seasonal modulation of the D2 biomass change is evident in our high-resolution data. The lowest biomass in D2 is measured in the early summer (May or June) followed by a rapid biomass increase during the SWM (June-November) until the biomass reaches a maximum at the end of the SWM season. Short-period oscillations in D2 biomass are often seen with periods ranging from days to one month. Occasionally, a lower nighttime layer E2 is formed between 180 and 270 m, mostly near the time of full moons. The upper daytime layer D1 is centered at 200 m and densely concentrated. It is only formed during the winter northeast monsoon (NEM) and the spring inter-monsoon. The influence of physical processes on layer distribution is also investigated. Interestingly, the two daytime layers are found to be formed at the two boundaries of the Persian Gulf outflow water (PGW) and follow the seasonal depth change of the PGW. The timing of the DVM and the formation, persistence, decay and reformation of the deep scattering layers seem to be governed by light, both solar and lunar. The scattering strength, the layer depth and the layer thickness are likewise closely related to the Moon phase at night. Cloud coverage, the isotherm and the isohaline also appear

  6. How a seven-year ocean observatory is influencing our understanding of physical and biological processes in northern Arabian Sea?

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Dimarco, S. F.; Al-Kharusi, L. H.; Belabbassi, L.; Ingle, S.

    2012-12-01

    An ocean observatory—consisting of a real-time, cabled system in the Sea of Oman and an internally-recording, autonomous mooring system recently upgraded to a cabled system in the northern Arabian Sea—was installed in 2005. The two arrays have collected a continuous seven-year time series record of current velocities, temperature, pressure, salinity, dissolved oxygen, and turbidity in a region where several water masses converge and subsequently spread southward to the Indian Ocean. The systems have provided new insights into physical and biological oceanographic processes of the northwestern Indian Ocean, which is strongly affected by the monsoonal oscillation, along with lessons learned and best practices in the operation and application of ocean observatories to ocean science. In this presentation, we show four recent studies for the scientific highlights derived from the data collected from the two systems and supporting data from other sources. The topics of those four studies include: (1) The seasonality associated with the upwelling of low oxygen water on the northern Oman coast and insights on the inter-annual variability of this process; (2) The deep-water oceanic responses excited by the passage of Cyclone Gonu, the largest-ever recorded cyclone in the region; (3) The temporal and spatial evolution of an acoustic backscatter layer; (4) The pulse-like salinity/temperature events in the northeastern Arabian Sea and Gulf of Oman. In summary, the observatory provides a long-term time series with which to perform basic scientific research related to characterizing the general dynamical patterns of the region, quantifying seasonal variability of water column properties, and establishing a time series of sufficient duration to deduce the potential impacts of climate change. Furthermore, observations taken over the full, 20+ year lifetime of a typical cabled system will be extremely useful for evaluating numerical ocean circulation and coupled atmospheric

  7. Live (Rose Bengal stained) foraminiferal faunas from the northern Arabian Sea: faunal succession within and below the OMZ

    NASA Astrophysics Data System (ADS)

    Caulle, C.; Koho, K. A.; Mojtahid, M.; Reichart, G. J.; Jorissen, F. J.

    2014-02-01

    Live (Rose Bengal stained) benthic foraminifera from the Murray Ridge, within and below the northern Arabian Sea oxygen minimum zone (OMZ), were studied in order to determine the relationship between faunal composition, bottom water oxygenation (BWO), pore water chemistry and organic matter (organic carbon and phytopigment) distribution. A series of multicores were recovered from a ten-station oxygen (BWO: 2-78 μM) and bathymetric (885-3010 m depth) transect during the winter monsoon in January 2009. Foraminifera were investigated from three different size fractions (63-125 μm, 125-150 μm and >150 μm). The larger foraminifera (>125 μm) were strongly dominated by agglutinated species (e.g. Reophax spp.). In contrast, in the 63-125 μm fraction, calcareous taxa were more abundant, especially in the core of the OMZ. On the basis of a principal components analysis, three foraminiferal groups were identified and correlated to the environmental parameters by canonical correspondence analysis. The faunas from the shallowest stations, in the core of the OMZ (BWO: 2 μM), were composed of "low oxygen" species, typical of the Arabian Sea OMZ (e.g. Rotaliatinopsis semiinvoluta, Praeglobobulimina sp., Bulimina exilis, Uvigerina peregrina type parva). These taxa are adapted to the very low BWO conditions and to high phytodetritus supplies. The transitional group, typical for the lower part of the OMZ (BWO: 5-16 μM), is composed of species that are tolerant as well to low-oxygen concentrations, but may be less critical with respect to organic supplies (e.g. Globocassidulina subglobosa, Ehrenbergina trigona). Below the OMZ (BWO: 26-78 μM), where food availability is more limited and becomes increasingly restricted to surficial sediments, cosmopolitan calcareous taxa were present, such as Bulimina aculeata, Melonis barleeanus, Uvigerina peregrina and Epistominella exigua. Miliolids were uniquely observed in this last zone, reflecting the higher BWO and/or lower organic

  8. Live foraminiferal faunas (Rose Bengal stained) from the northern Arabian Sea: links with bottom-water oxygenation

    NASA Astrophysics Data System (ADS)

    Caulle, C.; Koho, K. A.; Mojtahid, M.; Reichart, G. J.; Jorissen, F. J.

    2013-09-01

    Live (Rose Bengal stained) benthic foraminifera from the Murray Ridge, within and below the northern Arabian Sea Oxygen Minimum Zone (OMZ), were studied in order to determine the relationship between faunal composition, bottom-water oxygenation (BWO), pore-water chemistry and organic matter (organic carbon and phytopigment) distribution. A series of multicores were recovered from a ten-station oxygen (BWO: 2-78 μM) and bathymetric (885-3010 m depth) transect during the winter monsoon in January 2009. Foraminifera were investigated from three different size fractions (63-125 μm, 125-150 μm and > 150 μm). The larger foraminifera (> 125 μm) were strongly dominated by agglutinated species (e.g. Reophax spp.). In contrast, in the 63-125 μm fraction, calcareous taxa were more abundant, especially in the core of the OMZ, suggesting an opportunistic behaviour. On the basis of a Principal Component Analysis, three foraminiferal groups were identified, reflecting the environmental parameters along the study transect. The faunas from the shallowest stations, in the core of the OMZ (BWO: 2 μM), were composed of "low oxygen" species, typical of the Arabian Sea OMZ (e.g., Rotaliatinopsis semiinvoluta, Praeglobobulimina spp. , Bulimina exilis, Uvigerina peregrina typeparva). These taxa are adapted to the very low BWO conditions and to high phytodetritus supplies. The transitional group, typical for the lower part of the OMZ (BWO: 5-16 μM), is composed of more cosmopolitan taxa tolerant to low-oxygen concentrations (Globocassidulina subglobosa, Ehrenbergina trigona). Below the OMZ (BWO: 26-78 μM), where food availability is more limited and becomes increasingly restricted to surficial sediments, more cosmopolitan calcareous taxa were present, such as Bulimina aculeata, Melonis barleeanus, Uvigerina peregrina and Epistominella exigua. Miliolids were uniquely observed in this last group, reflecting the higher BWO. At these deeper sites, the faunas exhibit a clear depth

  9. Culturable bacterial flora associated with the dinoflagellate green Noctiluca miliaris during active and declining bloom phases in the Northern Arabian Sea.

    PubMed

    Basu, Subhajit; Deobagkar, Deepti D; Matondkar, S G Prabhu; Furtado, Irene

    2013-05-01

    A massive algal bloom of the dinoflagellate Noctiluca miliaris (green) was located in the Northern Arabian Sea by IRS-P4-2 (OCM-II) for microbiological studies, during two consecutive cruises of February-March 2009. Culturable bacterial load during bloom were ≈ 2-3-fold higher in comparison to non-bloom waters and ranged from 3.20 × 10(5) to 6.84 × 10(5) cfu ml(-1). An analysis of the dominant heterotrophs associated with Noctiluca bloom resulted in phylogenetic and a detailed metabolic characterization of 70 bacterial isolates from an overlapping active and declining bloom phase location near north-central Arabian Sea. The active phase flora was dominated by Gram-positive forms (70.59 %), a majority of which belonged to Bacillus (35.29 %) of Firmicutes. As the bloom declined, Gram-negative forms (61.11 %) emerged dominant, and these belonged to a diverse γ-proteobacterial population consisting of Shewanella (16.67 %) and equal fractions of a Cobetia-Pseudomonas-Psychrobacter-Halomonas population (36.11 %). A Unifrac-based principal coordinate analysis of partial 16S rDNA sequences showed significant differences among the active and declining phase flora and also with reported endocytic flora of Noctiluca (red). A nonparametric multidimensional scaling (NMDS) of antibiogram helped differentiation among closely related strains. The organic matter synthesized by N. miliaris appears to be quickly utilized and remineralized as seen from the high efficiency of isolates to metabolize various complex and simple C/N substrates such as carbohydrates, proteins/amino acids, lipids, sulfide production from organic matter, and solubilize phosphates. The ability of a large fraction of these strains (50-41.67 %) to further aerobically denitrify indicates their potential for nitrogen removal from these high-organic microniches of the Noctiluca bloom in the Arabian Sea, also known for high denitrification activity. The results indicate that culturable euphotic bacterial

  10. Crustal evolution of the northern Arabian platform in Syria

    SciTech Connect

    Best, J.A.; Muawia, B.; Chaimov, T.A. ); Al-Saad, D.; Sawaf, T.; Gebran, A. )

    1991-03-01

    Analysis of available geological and geophysical data within Syria has allowed for further understanding of the geologic history of the northern Arabian platform from Proterozoic to present. Elements of the history involve: Proterozoic convergence and suturing of at least two distinct microplates, minor Cambrian extension and associated magmatism, development of a failed intracratonic rift in the early Mesozoic, and inversion of that sedimentary trough that began in the Late Cretaceous. The diverse Phanerozoic tectonic features in Syria may be due to reactivation along older zones of weaknesses in the northern Arabian plate; the proposed Proterozoic suture zone lies along strike of the present day Palmyride intracratonic mountain belt. The construction of isopach maps of the Ordovician through Quaternary sections in Syria based on regional well control and seismic reflection data demonstrates regional structural-stratigraphic relationships. Basement deformation maps, derived from superposition of the formation isopachs, indicate the transformation of an east-directed Paleozoic margin into a well-directed Mesozoic margin (Levantine margin). Contemporaneous with this margin transformation was the development of an east-northeast-trending rift (Palmyride trough) toward the craton interior. Finally, Cenozoic eastward tilting of the Arabian plate, associated with loading of the plate along the Mesopotamian foredeep and uplift of the plate along the Red Sea margin is observed across the southern Arabian platform. Eastward tilting is also observed across the southern Arabian platform. Eastward tilting is also observed on the northern platform with respect to the top of the crystalline basement, indicating a similarity in response of the entire Arabian plate to loading and uplift along its margins.

  11. Tectonic synthesis of the northern Arabian platform

    SciTech Connect

    Everett, J.R.; Russell, O.R.; Stasxkowski, R.J.; Loyd, S.P.; Tabbutt, V.M. ); Dolan, P.; Stein, A. ); Scott, J. )

    1990-05-01

    The creation and destruction of Tethys oceans from the early Mesozoic to the present has created a complex suture zone along the Zagros/Bitlus trend. The fundamental interactions are between the Arabian and Euasian plates, but several microplates trapped between the major plates further complicate the tectonic fabric of the region. On the west, the Arabian plate slides past the African plate and the Sinai microplate along the Levant fault. The Palmyrides are related to a bend in this plate boundary and are not an offset extension of the Syrian arc. As Arabia penetrates Eurasia the Anatolian block is escaping to the west along the northern (right-lateral) and eastern (left-lateral) faults. Convergence of the Eurasian and Arabian plates resulted in ophiolite abduction (Late Cretaceous), followed by continent-continent collision (Miocene to present). The zone of collision is marked by the Bitlis-Zagrosa suture. Structural features associated with the collision include overthrusting, impactogens, and complexly folded and faulted mountain systems. Intensity and complexity of structuring decreases southward into open long-wavelength folds on the Arabian Platform. The fortuitous combination of rich source rocks, abundant reservoir rocks with primary and fracture porosity, and numerous trapping structures make this an extraordinary prolific hydrocarbon province. A structural and lithologic interpretation of 53 contiguous Landsat Multispectral Scanner scenes covering all of Syria, Iraq, and Kuwait, and portions of Turkey, Iran, Jordan, Lebanon, and Saudi Arabia has provided insights into the tectonic history of this area and its hydrocarbon accumulation.

  12. Cabled ocean observatories in Sea of Oman and Arabian Sea

    NASA Astrophysics Data System (ADS)

    DiMarco, Steven F.; Wang, Zhankun; Jochens, Ann; Stoessel, Marion; Howard, Matthew K.; Belabbassi, Leila; Ingle, Stephanie; du Vall, Ken

    2012-07-01

    An ocean observatory—consisting of a real-time, cabled array in the Sea of Oman and an internally recording, autonomous mooring array recently upgraded to a cabled array in the northern Arabian Sea—celebrated more than 2500 days of continuous operation in July 2012. The observatory, which measures a range of properties, such as water current velocities, temperature, salinity, pressure, dissolved oxygen, and turbidity, is part of the Lighthouse Ocean Research Initiative (LORI) project [du Vall et al., 2011], which was designed as a pilot project and installed in 2005 in the region off Abu Bakara (Figures 1a and 1b). The initial goal of the project was to prove that an in situ, cabled ocean observatory can return high-quality scientific data on a real-time basis over longer time periods than conventional moored systems. That same year, an autonomous array was deployed off Ras al Hadd and on Murray Ridge in the Arabian Sea (Figure 1a).

  13. Origin of cold bias over the Arabian Sea in Climate Models.

    PubMed

    Sandeep, S; Ajayamohan, R S

    2014-01-01

    Almost all climate models in Coupled Model Inter-comparison Project phase five (CMIP5) were found to have a cold bias in Sea Surface Temperature (SST) over the northern Arabian Sea, which is linked to the biases in the Indian Summer Monsoon (ISM). This cold SST bias was attributed to the anomalous cold winds from the north-western part of south Asian landmass during boreal winter. However, the origin of the anomalously strong cold winds over the Arabian Sea and its association with the large-scale circulation is obscure. Here we show that an equatorward bias in subtropical Jetstream during boreal spring season anomalously cools down the northern Arabian Sea and adjoining land regions in CMIP5 models. The models with stronger equatorward bias in subtropical jet are also the ones with stronger cold SST bias over the Arabian Sea. The equatorward shift coupled with enhanced strength of the subtropical jet produce a stronger upper tropospheric convergence, leading to a subsidence and divergence at lower levels over the Arabian deserts. The low entropy air flowing from the Arabian land mass cools the northern Arabian Sea. The weaker meridional temperature gradients in the colder models substantially weaken ISM precipitation. PMID:25228235

  14. Remotely Searching for Noctiluca Miliaris in the Arabian Sea

    NASA Technical Reports Server (NTRS)

    Werdell, P. Jeremy; Roesler, Collin S.; Goes, Joaquim I.

    2014-01-01

    Reversing monsoonal winds in the Arabian Sea result in two seasons with elevated biological activity, namely the annual summer Southwest Monsoon (SWM; June to September) and winter Northeast Monsoon (NEM; November to March) [Wiggert et al., 2005]. Generally speaking, the SWM and NEM create two geographically distinct blooms [Banse and English, 2000; Levy et al., 2007]. In the summer, winds from the southwest drive offshore Ekman transport and coastal upwelling along the northwestern coast of Africa, which brings nutrient-rich water to the surface from below the permanent thermocline [Bauer et al., 1991]. In the winter, cooling of the northern Arabian Sea causes surface waters to sink, which generates convective mixing that injects nutrients throughout the upper mixed layer [Madhupratap et al., 1996]. This fertilization of otherwise nutrient-deplete surface waters produces one of the most substantial seasonal extremes of phytoplankton biomass and carbon flux anywhere in the world [Smith, 2005].

  15. Joint influence of the Indo-Pacific Warm Pool and Northern Arabian Sea Temperatures on the Indian Summer Monsoon in a Global Climate Model Simulation

    NASA Astrophysics Data System (ADS)

    Befort, Daniel J.; Leckebusch, Gregor C.; Cubasch, Ulrich

    2016-04-01

    Proxy-based studies confirmed that the Indian Summer Monsoon (ISM) shows large variations during the Holocene. These changes might be explained by changes in orbital conditions and solar insolation but are also thought to be associated to changes in oceanic conditions, e.g. over the Indo-Pacific-Warm-Pool region. However, due to the nature of these (proxy-based) analyses no conclusion about atmospheric circulation changes during dry and wet epochs are possible. Here, a fully-coupled global climate simulation (AOGCM) covering the past 6000 years is analysed regarding ISM variability. Several dry and wet epochs are found, the most striking around 2ka BP (dry) and 1.7ka BP (wet). As only orbital parameters change during integration, we expect these "shorter-term" changes to be associated with changes in oceanic conditions. During 1.7ka BP the sea surface temperatures (SST) over the Northern Arabian Sea (NARAB) are significantly warmer compared to 2ka BP, whereas cooler conditions are found over the western Pacific Ocean. Additionally, significant differences are found over large parts of the North Atlantic. To explain in how far these different ocean basins are responsible for anomalous conditions during 1.7ka BP, several sensitivity experiments with changed SST/SIC conditions are carried out. It is found that neither the SST's in the Pacific nor in the Indian Ocean are able to reproduce the anomalous rainfall and atmospheric circulation patterns during 1.7ka on its own. Instead, anomalous dry conditions during 2ka BP and wet conditions during 1.7ka BP are associated with a shift of the Indo-Pacific-Warm-Pool (IPWP) and simultaneous anomalous sea-surface temperatures over the NARAB region. Eventually, it is tested in how far this hypothesis holds true for other dry and wet events in the AOGCM data during the whole 6000 years. In general, a shift of the IPWP without anomalous SST conditions over the NARAB region (and vice versa) is not sufficient to cause long

  16. Laminated Sediments of the Northern Arabian Sea: Tracking Climatic and Human Impacts on Late Holocene Erosion and Weathering Intensities in SW Asia

    NASA Astrophysics Data System (ADS)

    Forke, Sven; Rixen, Tim

    2014-05-01

    In the face of recent climate change, the need of understanding the mechanisms of climate variability increases continuously. However, most palaeo-climatic and -oceanographic records are restricted to timescales that have too low resolutions to take immediate appeal. Besides tree ring, speleothem and coral records, laminated lacustrine and marine sediments offer the required temporal resolution of decadal and also interannual scales to decipher climatic changes properly. Laminated sediments of the northern Arabian Sea provide such an excellent high-resolution archive for marine and terrestrial environmental changes. Fluvial and aeolian transported detritus are the major constituents of the sediment succession and give good indications of natural climatic and human impact by integrating precipitation and erosion signals of large continental areas of SW Asia. We present data of the seasonal laminated sediment core SO130-275KL (Lat 24°82', Lon 65°91'; 782 mbsl) from the oxygen minimum zone (OMZ) off Karachi, eastern Pakistan. The sediment core is well dated by varve counting and AMS 14C methods, and comprises the late Holocene period (ca. 5,000 years). We applied grain-size analysis in combination with the chemical index on alteration (CIA) on the lithogenic matter portion of the sediment in order to investigate the regional impact of climatic variability and human land use change on soil erosion, soil transport, and silicate weathering. Our data implies a significant distal and proximal aeolian dust contribution to both lithotypes, which were probably re-deposited in combination with riverine sediment load. In doing so, strong aeolian-fluvial interactions as observed in other semi-arid and arid environments of today are very obvious. Fluvial mud and distal aeolian dust percentages show a near-parallel increase after ca. 2,700 years B.P. in combination with reduction of coastal dune activity. Therefore, we assume an increase in winter precipitation intensity due to

  17. Indian Ocean Dipole modulated wave climate of eastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Anoop, T. R.; Sanil Kumar, V.; Shanas, P. R.; Glejin, J.; Amrutha, M. M.

    2016-03-01

    Intrinsic modes of variability have a significant role in driving the climatic oscillations in the oceanic processes. In this paper, we investigate the influence of an inter-annual mode of variability, the Indian Ocean Dipole (IOD), on the wave climate of the eastern Arabian Sea (AS). Using measured, modeled and reanalysis wave data and reanalysis wind data, we show that the IOD plays a major role in the variability of wave climate of the study region. Due to the IOD-induced changes in equatorial sea surface temperature and sea level pressure, the winds from the northern AS gets modified and cause inter-annual variability in the wave climate over the eastern AS. The changes in wind field over the AS due to the IOD influence the generation or dissipation of the wave field and hence cause a decrease in northwest short-period waves during positive IOD and an increase during negative IOD.

  18. Indian Ocean Dipole modulated wave climate of eastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Anoop, T. R.; Sanil Kumar, V.; Shanas, P. R.; Johnson, G.; Amrutha, M. M.

    2015-10-01

    Intrinsic modes of variability have a significant role in driving climatic oscillations in the ocean. In this paper, we investigate the influence of inter-annual variability, the Indian Ocean Dipole (IOD), on the wave climate of the eastern Arabian Sea (AS). Using measured, modeled and reanalysis wave data and reanalysis wind data, we show that the IOD plays a major role in the variability of wave climate of the study region due to the IOD induced changes in equatorial sea surface temperature and sea level pressure. Inter-annual variability in the wave climate over the eastern AS during the IOD is due to the modification of winds from the northern AS. The change in wind field over the AS due to IOD influences the generation or dissipation of wave field and hence causes the decrease in northwest short period waves during positive IOD and increase during negative IOD.

  19. Modelling the seasonality of subsurface light and primary production in the Arabian Sea

    USGS Publications Warehouse

    Brock, John C.; Sathyendranath, Shubha; Platt, Trevor

    1993-01-01

    Seasonal changes in mixed-layer depth and phytoplankton biomass in the Arabian Sea are assessed with climatologies of ship-based hydrographic measurements and ocean-color observations from satellite.  At the close of the intermonsoons in November and especially May, the open Arabian Sea resembles the stereotypic, unperturbed tropical ocean, with a thin oligotrophic mixed layer and a pronounced subsurface chlorophyll maximum.  Both the northeast and southwest monsoons disrupt this typical tropical hydrography through mixed-layer deepening and eutrophication in the central and northern Arabian Sea.  Computations using a spectral model of light penetration suggest that seasonal changes in mixed-layer thickness and phytoplankton concentration result in pronounced fluctuations through the annual cycle in the radiant flux reaching the base of the mixed layer.  At the close of the fall and spring intermonsoons the base of the model euphotic zone is in the thermocline across all of the open Arabian Sea.  The euphotic zone appears to rise into the mixed layer of the northern Arabian Sea during both the winter and summer monsoons.  Strong seasonality in total primary production and its partitioning between the mixed layer and thermocline is predicted byb a photo-synthesis-irradiance model for a site in the western Arabian Sea (14.36° N, 57.38° E).  Modeled mixed-layer primary production depicts an intense peak for the southwest monsoon and a secondary northeast monsoon peak separated by intermonsoon period of low production.  During the fall and spring intermonsoons, in the presence of a subsurface clorophyll maximum, the model estimate of primary production in the thermocline exceeds that in the mixed layer.  Our model calculations suggest that the subsurface clorophyll maximum present in the Arabian Sea during the spring intermonsoon is a precursor of the regional, summer, phytoplankton bloom.

  20. Continental margin evolution of the northern Arabian platform in Syria

    SciTech Connect

    Best, J.A.; Barazangi, M. ); Al-Saad, D.; Sawaf, T.; Gebran, A. )

    1993-02-01

    Synthesis of available geological and geophysical data in the Syrian Arab Republic permits a descriptive account of the pre-Cenozoic geologic history of the northern Arabian platform. The northern Arabian platform appears to be a composite plate similar up to that interpreted in the rocks of the Arabian shield. The structural and stratigraphic relationships of the Paleozoic and Mesozoic sedimentary sections in Syria record the transformation of an eastward-facing Gondwana passive margin in the early Paleozoic into a westward-facing Levantine margin in the Mesozoic, at which time the northern platform was closely associated with the creation of the eastern Mediterranean basin. Timing of the margin transformation is inferred from the orientation and thickness variations of Lower Triassic rocks, but the transformation may have initiated as early as the Permian. The diversity and timing of geological features in Syria suggest that the northern Arabian platform did not behave as a rigid plate throughout its geological history. The present-day Palmyride mountain belt, located within the northern Arabian platform in Syria and initiated in the early Mesozoic as a northeast-trending rift nearly perpendicular to the Levantine margin, subsequently was inverted in the Cenozoic by transpression. The location of the rift may be associated with the reactivation of a zone of crustal weakness, i.e., a Proterozoic suture zone previously proposed from modeling of Bouguer gravity data. Thus, the northern and southern parts of the Arabian platform are similar in their respective geologic histories during the Proterozoic and Paleozoic; however, the northern Arabian platform was greatly affected by Mesozoic rifting and the creation of the eastern Mediterranean basin during the Mesozoic. 13 figs.

  1. Wave Clouds over the Arabian Sea

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Like a massive, ethereal bird gliding into the Persian Gulf, a large cluster of wave clouds spans the Arabian Sea from Oman to India. This cloud formation is likely an undular bore, which is created in the interaction between the cool, dry air in a low-pressure system with a stable layer of warm, moist air. In this case, a low-pressure system probably sits over the Arabian Peninsula, the Gulf of Oman, and Iran and Pakistan. The strong winds generated by the low-pressure system are kicking up clouds of dust from Iran and Pakistan, and, to a lesser degree, Oman. The low-pressure system is also pushing air south-southeast, and this south-moving wave of displaced air pushes ahead of the low-pressure system like a mound of water moving ahead of a boat in calm water. The wave of cool, dry air pushes forward until it meets the wall of warm, moist air that blankets the Arabian Sea. When the two air masses clash, the cool air pushes the warm air up. The warm air rises, cools at the peak of the wave, falls again, and then rises to a slightly lower peak, and so forth, until the wave dissipates. Clouds form at the high-altitude peaks of the waves, with the most defined cloud at the front of the group, where the initial wave formed, followed by increasingly less-defined lines of cloud. The air that moves in front of the low-pressure system does not push forward in a uniform wall; instead it pushes forward in a ragged band, with one part racing ahead of another, like a line of crew racers on a river. Because the air is not uniform, there are small, interacting arcs of waves within the larger band of clouds. Undular bores are rare and hard to predict. This particular undular bore formed over the Arabian Sea on May 8, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite captured this photo-like image. Typical undular bore patterns might display one or two rows of clouds. With more than thirty waves of clouds, this cloud pattern is unusually

  2. Carbon fluxes in the Arabian Sea: Export versus recycling

    NASA Astrophysics Data System (ADS)

    Rixen, Tim; Gaye, Birgit; Ramaswamy, Venkitasubramani

    2016-04-01

    The organic carbon pump strongly influences the exchange of carbon between the ocean and the atmosphere. It is known that it responds to global change but the magnitude and the direction of change are still unpredictable. Sediment trap experiments carried out at various sites in the Arabian Sea between 1986 and 1998 have shown differences in the functioning of the organic carbon pump (OCP). An OCP driven by eukaryotic phytoplankton operated in the upwelling region off Oman and during the spring bloom in the northern Arabian Sea. Cyanobacteria capable of fixing nitrogen seem to dominate the phytoplankton community during all other seasons. The export driven by cyanobacteria was much lower than the export driven by eukaryotic phytoplankton. Productivity and nutrient availability seems to be a main factor controlling fluxes during blooms of eukaryotic phytoplankton. The ballast effect caused by inputs of dust into the ocean and its incorporation into sinking particles seems to be the main factor controlling the export during times when cyanobacteria dominate the phytoplankton community. C/N ratios of organic matter exported from blooms dominated by nitrogen fixing cyanobacteria are enhanced and, furthermore, indicate a more efficient recycling of nutrients at shallower water depth. This implies that the bacterial-driven OCP operates more in a recycling mode that keeps nutrients closer to the euphotic zone whereas the OCP driven by eukaryotic phytoplankton reduces the recycling of nutrients by exporting them into greater water-depth.

  3. Salinity pathways between Arabian Sea and Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Krishna Kailasam, Muni

    2016-07-01

    Surface as well as subsurface salinity are highly heterogeneous in the Arabian Sea and the Bay of Bengal. Due to the strong seasonal reversal of currents in the two seas tremendous salt exchange occurred. The present study focuses on the exchange of salt between the Arabian Sea and Bay of Bengal by using remote sensing observations like SMOS and Aquarius. Inflow of high salinity water from the central Arabians Sea into the south Bay of Bengal is significant and occurs during August-September. Freshwater transport out of the Bay of Bengal is southward throughout the year along the along the east coast of the Indian sub-continent. Only a small fraction of low salinity water is advected into the eastern Arabian Sea from the Bay of Bengal. The pathways of salinity between the two seas are also examined using SODA data. It shows that relatively low salinity Bay of Bengal water is transported southward across the equator throughout the year. A considerable southward cross-equatorial exchange of Arabian Sea water occurs during the southwest monsoon season.

  4. Variability of the Arabian Sea upwelling and intensity of the oxygen minimum zone over the late Pleistocene and Holocene

    NASA Astrophysics Data System (ADS)

    Gaye, Birgit; Böll, Anna; Rixen, Tim; Emeis, Kay-Christian; Ramaswamy, Venkitasubramani

    2016-04-01

    The northern Arabian Sea is one of the main oceanic regions with a permanent low oxygen layer at intermediate water depth that results in water column denitrification. While glacial/interglacial variations in the Arabian Sea oxygen minimum zone (OMZ) are relatively well studied, little is known about the spatial and temporal extent of mid-water oxygen throughout the Holocene. We compared alkenone derived sea surface temperatures of the last 25 kyrs from a core in the northern Arabian Sea with a core from the monsoonal upwelling area off Oman. The difference between the two temperature reconstructions indicates that monsoonal upwelling occurred during warm interstadials and during the entire Holocene. δ15N curves show that denitrification also matched with monsoonal upwelling. Comparison of δ15N records from different locations in the Arabian Sea reveal a Holocene shift in the location of the core OMZ from the northwestern (early Holocene) to the northeastern Arabian Sea (late Holocene). This shift was caused by (i) spatial differences in oxygen demand, caused by changes in SW- and NE-monsoon intensities and associated productivity changes, as well as (ii) changes in mid-water ventilation facilitated by sea level rise and inflow of Persian Gulf and Red Sea Water leading and changes of ventilation by Indian Ocean Central Water .

  5. Aerosol optical depth, physical properties and radiative forcing over the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Satheesh, S. K.; Krishna Moorthy, K.; Kaufman, Y. J.; Takemura, T.

    2006-01-01

    The Arabian Sea region (4° N 20° N to 50° E 78° E) has a unique weather pattern on account of the Indian monsoon and the associated winds that reverse direction seasonally. The aerosol data, collected using ship-borne and island platforms (for 8 years from 1995 to 2002) along with MODIS (onboard TERRA satellite) data (from 2000 to 2003) have been used to evolve a comprehensive characterisation of the spatial and temporal variation in the physical, chemical, and radiative properties of aerosols over the Arabian Sea. The aerosol optical depth (AOD) was found to increase with latitude between the equator and 12° N. Over the northern Arabian Sea (regions lying north of 12° N), AODs do not show significant latitudinal variations; the average aerosol optical depth for this region was 0.29±0.12 during winter monsoon season (WMS; November to March) and 0.47±0.14 during summer monsoon season (SMS; April/May to September). The corresponding Angstrom exponents were 0.7±0.12 and 0.3±0.08, respectively. The low values of the exponent during SMS indicate the dominance of large aerosols (mainly dust particles >1 µm). The latitudinal gradient in AOD in the southern Arabian Sea is larger during SMS compared to WMS.

  6. Marine geology and oceanography of Arabian Sea and coastal Pakistan

    SciTech Connect

    Haq, B.U.; Milliman, J.D.

    1985-01-01

    This volume is a collection of papers presented at the first US-Pakistan workshop in marine science held in Karachi, Pakistan, in November 1982. Of the twenty-four contributions in this book, fourteen cover topics specific to the Arabian Sea-coastal Pakistan region. These include six papers on the geology, tectonics, and petroleum potential of Pakistan, four papers on sedimentary processes in the Indus River delta-fan complex, and four papers on the biological oceanography of the Arabian Sea and coastal Pakistan. The additional ten papers are overviews of shelf sedimentation processes, paleoceanography, the marine nutrient cycle, and physical and chemical oceanography.

  7. Biomass of zooplankton estimated by acoustical sensors in the Arabian sea. Final report

    SciTech Connect

    Holliday, D.V.

    1996-11-22

    The long term goal of our overall research program is the development of data-based models to predict ecological relationships of zooplankton, phytoplankton and the physical environment in the sea. The overall objective of the work carried out within the scope of this particular contract was to acoustically measure the dynamics of zooplankton and micronekton in the northern Arabian Sea during several seasons. The scientific focus was to examine the impact, if any, of the two annual monsoons that are thought to drive the ecosystem response in the area. This particular project involved the design and construction of two sensors which were then deployed in the Arabian Sea by several of our co-PIVs in the ONR ARI on Forced Upper Ocean Dynamics during the time period in which the JGOFS program also focused their efforts on the northern Arabian Sea. This contract involved only the development, calibration and maintenance of the instrumentation. The data processing, other than that which has been necessary for the purposes of quality assurance, was not induded in our original proposal.

  8. Denitrification in the Arabian Sea: A 3D ecosystem modelling study

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas R.; Ryabchenko, Vladimir A.; Fasham, Michael J. R.; Gorchakov, Victor A.

    2007-12-01

    A three-dimensional hydrodynamic-ecosystem model was used to examine the factors determining the spatio-temporal distribution of denitrification in the Arabian Sea. The ecosystem model includes carbon and nitrogen as currencies, cycling of organic matter via detritus and dissolved organic matter, and both remineralization and denitrification as sinks for material exported below the euphotic zone. Model results captured the marked seasonality in plankton dynamics of the region, with characteristic blooms of chlorophyll in the coastal upwelling regions and central Arabian Sea during the southwest monsoon, and also in the northern Arabian Sea during the northeast monsoon as the mixed layer shoals. Predicted denitrification was 26.2 Tg N yr -1,the greatest seasonal contribution being during the northeast monsoon when primary production is co-located with the zone of anoxia. Detritus was the primary organic substrate consumed in denitrification (97%), with a small (3%) contribution by dissolved organic matter. Denitrification in the oxygen minimum zone was predicted to be fuelled almost entirely by organic matter supplied by particles sinking vertically from the euphotic zone above (0.73 mmol N m -2 d -1) rather than from lateral transport of organic matter from elsewhere in the Arabian Sea (less than 0.01 mmol N m -2 d -1). Analysis of the carbon budget in the zone of denitrification (north of 10°N and east of 55°E) indicates that the modelled vertical export flux of detritus, which is similar in magnitude to estimates from field data based on the 234Th method, is sufficient to account for measured bacterial production below the euphotic zone in the Arabian Sea.

  9. Current and thermohaline characteristics of the Arabian Sea during January 1998

    NASA Astrophysics Data System (ADS)

    Chen, Meixiang; Zuo, Juncheng; Li, Peiliang; Du, Ling; Li, Lei

    2007-04-01

    Based on a ship survey during January 1998, the characteristics of the flow, the thermohaline properties and the volume transport of the Arabian Sea are discussed. A strong westward flow exists between 10.5°N and 11°N, part of which turns to the south as the Somali current near the coast at about 10°N and the rest turns north. At the passage between the African continent and the Socotra Island, the northern branch separates into two flows: the left one enters the passage and the right one flows eastward along the southern slope of the island. Off the island the flow separates once more, most of it meandering northeast and a small fraction flowing southeast. Volume transport calculation suggests that the tidal transport is one or two orders of magnitude smaller than the total transport in this region and it becomes more important near the coast. The average velocity of the flow in the upper layer (0 150 m) is about 20 cm s-1, with a maximum of 53 cm s-1 appearing east of the Socotra Island, and the subsurface layer (200 800 m) has an average velocity of 8.6 cm s-1; the velocity becomes smaller at greater depths. The depth of the seasonal thermocline is about 100 m, above which there is a layer with well mixed temperature and dissolved oxygen. High-salinity and oxygen-rich water appears near the surface of the northern Arabian Sea; a salinity maximum and oxygen minimum at 100 m depth along 8°N testifies the subduction of surface water from the northern Arabian Sea. Waters from the Red Sea and the Persian Gulf also influence the salinity of the area.

  10. Benthic foraminifera from the Arabian Sea oxygen minimum zone: towards a paleo-oxygenation proxy.

    NASA Astrophysics Data System (ADS)

    Clemence, Caulle; Meryem, Mojtahid; Karoliina, Koho; Andy, Gooday; Gert-Jan, Reichart; Gerhard, Schmiedl; Frans, Jorissen

    2014-05-01

    Benthic foraminifera from the Arabian Sea oxygen minimum zone: towards a paleo-oxygenation proxy. C. Caulle1, M. Mojtahid1, K. Koho2,3, A. Gooday4, G. J. Reichart2,3, G. Schmiedl5, F. Jorissen1 1UMR CNRS 6112 LPG-BIAF, University of Angers, 2 bd Lavoisier, 49045 Angers Cedex 2Utrecht University, Faculty of Geosciences, Department of Earth Sciences, Budapestlaan 4, 3584 CD Utrecht, The Netherlands 3Royal Netherland Institute for Sea Research (Royal NIOZ), Landsdiep 4, 1797 SZ 't Horntje (Texel) 4Southampton Oceanography Centre, Empress Dock, European Way, Southampton SO14 3ZH, UK 5Department of Geosciences, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany The thermohaline circulation oxygenates the deep ocean sediment and therefore enables aerobic life on the sea-floor. In the past, interruption of this deep water formation occurred several times causing hypoxic to anoxic conditions on the sea-floor leading to major ecological turnover. A better understanding of the interaction between climate and bottom water oxygenation is therefore essential in order to predict future oceanic responses. Presently, permanent (stable over decadal timescale) low-oxygen conditions occur naturally at mid-water depths in the northern Indian Ocean (Arabian Sea). Oxygen Minimum Zones (OMZ) are key areas to understand the hypoxic-anoxic events and their impact on the benthic ecosystem. In this context, a good knowledge of the ecology and life cycle adaptations of the benthic foraminiferal assemblages living in these low oxygen areas is essential. A series of multicores were recovered from three transects showing an oxygen gradient across the OMZ: the Murray Ridge, the Oman margin and the Indian margin. The stations located at the same depths showed slightly different oxygen concentrations and large differences in organic matter content. These differences are mainly related to the geographic location in the Arabian Sea. We investigated at these stations live and dead benthic

  11. The impact of dust storms on the Arabian Peninsula and the Red Sea

    NASA Astrophysics Data System (ADS)

    Jish Prakash, P.; Stenchikov, G.; Kalenderski, S.; Osipov, S.; Bangalath, H.

    2015-01-01

    Located in the dust belt, the Arabian Peninsula is a major source of atmospheric dust. Frequent dust outbreaks and some 15 to 20 dust storms per year have profound effects on all aspects of human activity and natural processes in this region. To quantify the effect of severe dust events on radiation fluxes and regional climate characteristics, we simulated the storm that occurred from 18 to 20 March 2012 using a regional weather research forecast model fully coupled with the chemistry/aerosol module (WRF-Chem). This storm swept over a remarkably large area affecting the entire Middle East, northeastern Africa, Afghanistan, and Pakistan. It was caused by a southward propagating cold front, and the associated winds activated the dust production in river valleys of the lower Tigris and Euphrates in Iraq; the coastal areas in Kuwait, Iran, and the United Arab Emirates; the Rub al Khali, An Nafud, and Ad Dahna deserts; and along the Red Sea coast on the west side of the Arabian Peninsula. Our simulation results compare well with available ground-based and satellite observations. We estimate the total amount of dust generated by the storm to have reached 94 Mt. Approximately 78% of this dust was deposited within the calculation domain. The Arabian Sea and Persian Gulf received 5.3 Mt and the Red Sea 1.2 Mt of dust. Dust particles bring nutrients to marine ecosystems, which is especially important for the oligotrophic Northern Red Sea. However, their contribution to the nutrient balance in the Red Sea remains largely unknown. By scaling the effect of one storm to the number of dust storms observed annually over the Red Sea, we estimate the annual dust deposition to the Red Sea, associated with major dust storms, to be 6 Mt.

  12. The impact of dust storms on the Arabian Peninsula and the Red Sea

    NASA Astrophysics Data System (ADS)

    Jish Prakash, P.; Stenchikov, G.; Kalenderski, S.; Osipov, S.; Bangalath, H.

    2014-07-01

    Located in the dust belt, the Arabian Peninsula is a major source of atmospheric dust. Frequent dust outbreaks and some 15 to 20 dust storms per year have profound effects on all aspects of human activity and natural processes in this region. To quantify the effect of severe dust events on radiation fluxes and regional climate characteristics, we simulated the storm that occurred on 18-20 March 2012 using a regional weather research forecast model fully coupled with the chemistry/aerosol module (WRF-Chem). This storm swept over a remarkably large area affecting the entire Middle East, North-Eastern Africa, Afghanistan and Pakistan. It was caused by a southward propagating cold front and associated winds activated the dust production in river valleys of the lower Tigris and Euphrates in Iraq, the coastal areas in Kuwait, Iran, and the United Arab Emirates, Rub al Khali, An Nafud and Ad Dahna deserts, and along the Red Sea coast on the west side of the Arabian Peninsula. Our simulation results compare well with available ground-based and satellite observations. The total amount of dust generated by the storm reached 93.76 Mt. About 80% of this amount deposited within the calculation domain. The Arabian Sea and Persian Gulf received 5.3 Mt, and the Red Sea 1.2 Mt. Dust particles bring nutrients to marine ecosystems, which is especially important for the oligothrophic Northern Red Sea. However, their contribution to the nutrient balance in the Red Sea remains largely unknown. By scaling the effect of one storm to the number of dust storms observed annually over the Red Sea, we roughly estimate the annual dust deposition to the Red Sea to be 6 Mt.

  13. Controlling factors of the oxygen balance in the Arabian Sea's OMZ

    NASA Astrophysics Data System (ADS)

    Resplandy, L.; Lévy, M.; Bopp, L.; Echevin, V.; Pous, S.; Sarma, V. V. S. S.; Kumar, D.

    2012-12-01

    The expansion of OMZs (oxygen minimum zones) due to climate change and their possible evolution and impacts on the ecosystems and the atmosphere are still debated, mostly because of the unability of global climate models to adequatly reproduce the processes governing OMZs. In this study, we examine the factors controlling the oxygen budget, i.e. the equilibrium between oxygen sources and sinks in the northern Arabian Sea OMZ using an eddy-resolving biophysical model. Our model confirms that the biological consumption of oxygen is most intense below the region of highest productivity in the western Arabian Sea. The oxygen drawdown in this region is counterbalanced by the large supply of oxygenated waters originated from the south and advected horizontally by the western boundary current. Although the biological sink and the dynamical sources of oxygen compensate on annual average, we find that the seasonality of the dynamical transport of oxygen is 3 to 5 times larger than the seasonality of the biological sink. In agreement with previous findings, the resulting seasonality of oxygen concentration in the OMZ is relatively weak, with a variability of the order of 15% of the annual mean oxygen concentration in the oxycline and 5% elsewhere. This seasonality primarily arises from the vertical displacement of the OMZ forced by the monsoonal reversal of Ekman pumping across the basin. In coastal areas, the oxygen concentration is also modulated seasonally by lateral advection. Along the western coast of the Arabian Sea, the Somali Current transports oxygen-rich waters originated from the south during summer and oxygen-poor waters from the northeast during winter. Along the eastern coast of the Arabian Sea, we find that the main contributor to lateral advection in the OMZ is the Indian coastal undercurrent that advects southern oxygenated waters during summer and northern low-oxygen waters during winter. In this region, our model indicates that oxygen concentrations are

  14. Biological control of surface temperature in the Arabian Sea

    NASA Technical Reports Server (NTRS)

    Sathyendranath, Shubha; Gouveia, Albert D.; Shetye, Satish R.; Ravindran, P.; Platt, Trevor

    1991-01-01

    In the Arabian Sea, the southwest monsoon promotes seasonal upwelling of deep water, which supplies nutrients to the surface layer and leads to a marked increase in phytoplankton growth. Remotely sensed data on ocean color are used here to show that the resulting distribution of phytoplankton exerts a controlling influence on the seasonal evolution of sea surface temperature. This results in a corresponding modification of ocean-atmosphere heat exchange on regional and seasonal scales. It is shown that this biological mechanism may provide an important regulating influence on ocean-atmosphere interactions.

  15. Late Holocene SST and primary productivity variations in the northeastern Arabian Sea as a recorder for winter monsoon variability

    NASA Astrophysics Data System (ADS)

    Böll, Anna; Gaye, Birgit; Lückge, Andreas

    2014-05-01

    Variability in the oceanic environment of the Arabian Sea region is strongly influenced by the seasonal monsoon cycle of alternating wind directions. Strong south-westerly winds during the summer monsoon induce upwelling of nutrient rich waters along the coast off Somalia, Oman and southwest India, which result in high rates of primary production. In the northeastern Arabian Sea off Pakistan on the other hand, primary production and sea surface temperatures are linked to northeast monsoonal winds that cool the sea surface and drive convective mixing and high surface ocean productivity during the winter season. In this study, we analyzed alkenone-derived sea surface temperature (SST) variations and proxies of primary productivity (organic carbon and δ15N) in a well-laminated sediment core from the Pakistan continental margin to establish the first high-resolution record of winter monsoon variability for the late Holocene. Over the last 2400 years reconstructed SST in the northeastern Arabian Sea decreased whereas productivity increased, imaging a long-term trend of northeast monsoon strengthening in response to insolation-induced southward migration of the Intertropical Convergence Zone. The comparison of our winter monsoon record with records of summer monsoon intensity suggests that summer and winter monsoon strength was essentially anti-correlated over the late Holocene throughout the Asian monsoon system. In addition, SST variations recorded off Pakistan match very well with Northern Hemisphere temperature records supporting the growing body of evidence that Asian climate is linked to Northern Hemisphere climate change. It reveals a consistent pattern of increased summer monsoon activity in the northeastern Arabian Sea during northern hemispheric warm periods (Medieval Warm Period, Roman Warm Period) and strengthened winter monsoon activity during hemispheric colder periods (Little Ice Age).

  16. Mesoscale variability of water masses in the Arabian Sea as revealed by ARGO floats

    NASA Astrophysics Data System (ADS)

    Carton, X.; L'Hegaret, P.

    2011-06-01

    By analysing ARGO float data over the last four years, some aspects of the mesoscale variability of water masses in the Arabian Sea are described. The Red Sea Water outflow is strong in the Southwestern Gulf of Aden, in particular when a cyclonic gyre predominates in this region. Salinities of 36.5 and temperatures of 16 °C are found there between 600 and 1000 m depths. The Red Sea Water is more dilute in the eastern part of the Gulf, and fragments of this water mass can be advected offshore across the gulf or towards its northern coast by the regional gyres. The Red Sea Water outflow is also detected along the northeastern coast of Socotra, and fragments of RSW are found between one and three degrees of latitude north of this island. In the whole Gulf of Aden, the correlation between the deep motions of the floats and the SSH measured by altimetry is strong, at regional scale. The finer scale details of the float trajectories are more often related to the anomalous water masses that they encounter. The Persian Gulf Water (PGW) is found in the float profiles near Ras ash Sharbatat (near 57° E, 18° N), again with 36.5 in salinity and about 18-19 °C in temperature. These observations were achieved in winter when the southwestward monsoon currents can advect PGW along the South Arabian coast. Fragments of PGW are found in the Arabian Sea between 18 and 20° N and 63 and 65° E, showing that this water mass can escape the Gulf of Oman southeastward, in particular during summer.

  17. Processes controlling forms of phosphorus in surficial sediments from the eastern Arabian Sea impinged by varying bottom water oxygenation conditions

    NASA Astrophysics Data System (ADS)

    Babu, C. Prakash; Nath, B. Nagender

    2005-07-01

    The surficial sediments from the upper continental slope of the eastern Arabian Sea, impinged by the oxygen minimum zone (OMZ, 150-1200 m water depth), show varying concentrations of the biogenic element phosphorus (P, 0.1-0.2%) in the northern and southern areas even though total organic carbon concentrations are relatively constant (TOC, 2-5%; Prakash Babu et al., 1999). To understand this discordance, 17 surface sediment samples from shelf, slope and deep sea of the eastern Arabian Sea were investigated using a five-step sequential extraction scheme to delineate the process responsible for P enrichment in OMZ. High fractions of organic phosphorus (P org 10-26%), biogenic phosphorus (P bio 36-48%), relatively low molar C org/P org ratios (322-447), and C org/P reactive ratios close to Redfield Ratio in OMZ sediments of the SE Arabian Sea suggest accumulation under high surface production and low residence time of labile forms of P due to high sedimentation rates. Despite higher productivity in surface waters, low fractions of P org (8-13%; less than deep-sea sediments of the study area 12-13%), P bio (25-33%), relatively high molar C org/P org ratios (341-508), and C org/P reactive ratios less than Redfield Ratio in OMZ sediments from the NE Arabian Sea may indicate a higher degree of regeneration and diagenetic transformation of labile forms of P to other phases. Authigenic phosphorus (P aut) fraction varies by a factor of 2-8 in sediments from the OMZ when compared to well-oxygenated deep-sea sediments of the study area. While the P total remains constant, significant P transformation seems to occur in NE Arabian Sea, which is suggested by high P aut fraction (˜50%) compared to low P aut fraction (10-39%) in the SE Arabian Sea sediments. Supply rates of phosphorus, variable rates of P dissolution under varying dissolved oxygen contents in the bottom waters, and early diagenetic transformation of P within the sediments seem to influence P geochemistry in

  18. The Northeast Monsoon's Impact on Mixing, Phytoplankton Biomass and Nutrient Cycling in the Arabian Sea

    NASA Technical Reports Server (NTRS)

    Wiggert, J. D.; Jones, B. H.; Dickey, T. D.; Brink, K. H.; Weller, R. A.; Marra, J.; Codispoti, L. A.

    2000-01-01

    In the northern Arabian Sea, atmospheric conditions during the Northeast (winter) Monsoon lead to deep convective mixing. Due to the proximity of the permanent pyncnocline to the sea surface, this mixing does not penetrate below 125 m. However, a strong nitracline is also present and the deep convection results in significant nitrate flux into the surface waters. This leads to nitrate concentrations over the upper 100 m that exceed 4 micrometers toward the end of the Monsoon. During the 1994/1995 US JGOFS/Arabian Sea expedition, the mean areal gross primary production over two successive Northeast Monsoons was determined to be 1.35gC/sq m/d. Thus, despite the deep penetrative convection, high rates of primary productivity were maintained. An interdisciplinary model was developed to elucidate the biogeochemical processes involved in supporting the elevated productivity. This model consists of a 1-D mixed-layer model coupled to a set of equations that tracked phytoplankton growth and the concentration of the two major nutrients (nitrate and ammonium). Zooplankton grazing was parameterized by rate constant determined by shipboard experiments. Model boundary conditions consist of meteorological time-series measured from the surface buoy that was part of the ONR Arabian Sea Experiment's central mooring. Our numerical experiments show that elevated surface evaporation, and the associated salinization of the mixed layer, strongly contributes to the frequency and penetration depth of the observed convective mixing. Cooler surface temperatures, increased nitrate entrainment, reduced water column stratification, and lower near-surface chlorophyll a concentrations all result from this enhanced mixing. The model also captured a dependence on regenerated nitrogen observed in nutrient uptake experiments performed during the Northeast Monsoon. Our numerical experiments also indicate that variability in mean pycnocline depth causes up to a 25% reduction in areal chlorophyll a

  19. Northern Sand Sea

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    This VIS image was taken at 82 degrees North latitude during Northern spring. The image is completely dominated by dunes. In sand seas, it is very common for a single type of dune to occur, and for a single predominate wind to control the alignment of the dunes.

    Image information: VIS instrument. Latitude 82.2, Longitude 152.5 East (207.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. The relationship between Arabian Sea upwelling and Indian Monsoon revisited

    NASA Astrophysics Data System (ADS)

    Yi, Xing; Zorita, Eduardo; Hünicke, Birgit

    2015-04-01

    Coastal upwelling is important to marine ecosystems and human activities. It transports nutrient-rich deep water mass that supports marine biological productivity. In this study, we aim to characterize the large-scale climate forcings that drive upwelling along the western Arabian Sea coast. Studies based on ocean sediments suggest that there is a link between this coastal upwelling system and the Indian summer monsoon. However, a more direct method is needed to examine the influence of various forcings on upwelling. For this purpose, we analyse a high-resolution (about 10 km) global ocean simulation (denoted STORM), which is based on the MPI-OM model developed by the Max-Planck-Institute for Meteorology in Hamburg driven by the global meteorological reanalysis NCEP over the period 1950-2010. This very high spatial resolution allows us to identify characteristics of the coastal upwelling system. We compare the simulated upwelling velocity of STORM with two traditional upwelling indices: along-shore wind speed and sea surface temperature. The analysis reveals good consistency between these variables, with high correlations between coastal upwelling and along-shore wind speed (r=0.85) as well as coastal sea surface temperature (r=-0.77). To study the impact of the monsoon on the upwelling we analyse both temporal and spatial co-variability between upwelling velocity and the Indian summer monsoon index. The spatial analysis shows that the impact of the monsoon on the upwelling is concentrated along the coast, as expected. However, somewhat unexpectedly, the temporal correlation between the coastal upwelling and the monsoon index is rather weak (r=0.26). Also, the spatial structure of upwelling in the Arabian Sea as revealed by a Principal Component Analysis is rather rich, indicating that factors other than the Monsoon are also important drivers of upwelling. In addition, no detectable trend in our coastal upwelling is found in the simulation that would match the

  1. Demersal Fisheries of the Arabian Sea, the Gulf of Oman and the Arabian Gulf

    NASA Astrophysics Data System (ADS)

    Siddeek, M. S. M.; Fouda, M. M.; Hermosa, G. V.

    1999-08-01

    The demersal fisheries of the Arabian Sea, the Gulf of Oman and the Arabian Gulf are reviewed. The region comprises eight countries: Oman, United Arab Emirates (U.A.E.), Qatar, Saudi Arabia, Bahrain, Kuwait, Iraq and Iran. Over 350 commercial fish species, eight shrimp species, two spiny lobster species, one shovel nose lobster species, one cuttlefish species, one crab species, and one abalone species support the demersal fisheries in the continental shelves of the three regions. Artisanal and industrial vessels with over 120 000 fishermen were involved in demersal fisheries. Fishing boats include fish and shrimp trawlers (wooden and steel hulled), large wooden boats (dhow) with inboard engines, small dhows with outboard engines, and fibreglass boats. Fishing gear consists of trawls, bottom gill nets, traps (wire mesh and plastic types), barrier traps, hand lines, and bare hands and knives (to dislodge abalone). Demersal fish (primarily Lethrinidae, Sparidae, Serranidae, Siganidae, Sciaenidae, Stromateidae, Lutjanidae, Trichiuridae, and Nemipteridae) and shrimp (primarily Penaeus semisulcatus, Metapenaeus affinis, Parapenaeopsis stylifera, and Penaeus merguiensis) were the two commercial demersal resources. Approximately 198 000-214 000 tonnes (t) of demersals were landed annually during 1988-1993, accounting for nearly 40% of the total marine landings (475 000-552 000 t). This percentage, however varied among countries: 25% in Oman, 32% in U.A.E., 71% in Qatar, 52% in Saudi Arabia, 56% in Bahrain, 55% in Kuwait, close to 100% in Iraq, and 41% in Iran. Fishing effort on certain stocks may have been below the optimum level (e.g. certain Omani demersal fish), near the optimum level (e.g. Omani shrimp), or above the optimum level (e.g. Arabian Gulf shrimp and demersal fish). Overexploitation led to restriction of fishing effort by limiting fishing licences, regulating fishing gear (mesh size) and capture size, closing fishing areas, restricting fishing season, and

  2. The Tectonic and Climatic Evolution of the Arabian Sea Region

    NASA Astrophysics Data System (ADS)

    Bosence, Dan

    2004-08-01

    This multi-authored volume provides a sampling of current research into the geology of the Arabian Sea region. The editors emphasize the importance of this area as the Earth's best natural laboratory for studying relations between climate and the growth and erosion of an orogenic belt. Uplift of the Himalaya and Tibetan Plateau is now believed to have altered global climate during the Cenozoic, and also to have affected the development of the region's monsoonal climate. The geological features of the region that make it a good area to study such processes include the excellent rock outcrops in the surrounding arid Arabian and Asian landmasses, the locally high rates of sedimentation which provide high-resolution sedimentological and geochemical information, and the monsoon itself, that imparts an annual time beat in some sedimentary successions. However, the region is very large and access is not always easy. Also, many areas are still poorly known geologically, such that this volume contains some papers on basic survey geology.

  3. The Tectonic and Climatic Evolution of the Arabian Sea Region

    NASA Astrophysics Data System (ADS)

    Bosence, Dan

    2004-08-01

    This multi-authored volume provides a sampling of current research into the geology of the Arabian Sea region. The editors emphasize the importance of this area as the Earth's best natural laboratory for studying relations between climate and the growth and erosion of an orogenic belt.Uplift of the Himalaya and Tibetan Plateau is now believed to have altered global climate during the Cenozoic, and also to have affected the development of the region's monsoonal climate. The geological features of the region that make it a good area to study such processes include the excellent rock outcrops in the surrounding arid Arabian and Asian landmasses, the locally high rates of sedimentation which provide high-resolution sedimentological and geochemical information, and the monsoon itself, that imparts an annual time beat in some sedimentary successions. However, the region is very large and access is not always easy. Also, many areas are still poorly known geologically such that this volume contains some papers on basic survey geology.

  4. Climate oscillations reflected in the Arabian Sea subseafloor microbiome

    NASA Astrophysics Data System (ADS)

    Orsi, William; Coolen, Marco; He, Lijun; Wuchter, Cornelia; Irigoien, Xabier; Chust, Guillem; Johnson, Carl; Hemingway, Jordon; Lee, Mitchell; Galy, Valier; Giosan, Liviu

    2016-04-01

    Marine sediment contains a vast microbial biosphere that influences global biogeochemical cycles over geological timescales. However, the environmental factors controlling the stratigraphy of subseafloor microbial communities are poorly understood. We studied a sediment core directly underlying the Arabian Sea oxygen minimum zone (OMZ), which exhibits organic carbon rich sapropelic laminae deposited under low oxygen conditions. Consistent with several other cores from the same location, age dating revealed the sapropelic layers coincide with warm North Atlantic millennial-scale Dansgaard-Oeschger events, indicating a direct link between the strength of the OMZ and paleoclimate. A total of 214 samples spanning 13 m and 52 Kyr of deposition were selected for geochemical analyses and paleoclimate proxy measurements, as well as high-throughput metagenomic DNA sequencing of bacteria and archaea. A novel DNA extraction protocol was developed that allowed for direct (unamplified) metagenomic sequencing of DNA from each sample. This dataset represents the highest resolved sedimentary metagenomic sampling profile to date. Analysis of these data together with multiple paleoceanographic proxies show that millennial-scale paleoenvironmental conditions correlate with the metabolism and diversity of bacteria and archaea over the last glacial-interglacial cycle in the Arabian Sea. The metabolic potential for bacterial denitrification correlates with climate-driven OMZ strength and concomitant nitrogen stable isotope fractionation, whereas catabolic potential reflects changing marine organic matter sources across the Last Glacial Maximum. These results indicate that the subsisting microbial communities had been stratified to a large extent by paleoceanographic conditions at the time of deposition. Paleoenvironmental conditions should thus be considered as a mechanism that can help explain microbiome stratigraphy in marine sediment.

  5. The relationship between Arabian Sea upwelling and Indian monsoon revisited

    NASA Astrophysics Data System (ADS)

    Yi, X.; Hünicke, B.; Tim, N.; Zorita, E.

    2015-11-01

    Studies based on upwelling indices (sediment records, sea-surface temperature and wind) suggest that upwelling along the western coast of Arabian Sea is strongly affected by the Indian summer monsoon (ISM). In order to examine this relationship directly, we employ the vertical water mass transport produced by the eddy-resolving global ocean simulation STORM driven by meteorological reanalysis over the last 61 years. With its very high spatial resolution (10 km), STORM allows us to identify characteristics of the upwelling system. We analyze the co-variability between upwelling and meteorological and oceanic variables from 1950 to 2010. The analyses reveal high interannual correlations between coastal upwelling and along-shore wind-stress (r=0.73) as well as with sea-surface temperature (r0.83). However, the correlation between the upwelling and the ISM is small and other factors might contribute to the upwelling variability. In addition, no long-term trend is detected in our modeled upwelling time series.

  6. Extremely high aerosol loading over Arabian Sea during June 2008: The specific role of the atmospheric dynamics and Sistan dust storms

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Rashki, A.; Houssos, E. E.; Goto, D.; Nastos, P. T.

    2014-09-01

    This study focuses on analyzing the extreme aerosol loading and the mechanisms, source areas and meteorological conditions that favored the abnormal dust exposure towards Arabian Sea during June 2008. The analysis reveals that the spatial-averaged aerosol optical depth (AOD) over Arabian Sea in June 2008 is 0.5 (78.2%) higher than the 2000-2013 mean June value and is mostly attributed to the enhanced dust activity and several (18) dust storms originated from the Sistan region (Iran-Afghanistan borders). Landsat images show that the marshy lakes in Sistan basin got dried during the second half of June 2008 and the alluvial silt and saline material got easily eroded by the intense Levar winds, which were stronger (>15-20 m s-1) than the climatological mean for the month of June. These conditions led to enhanced dust exposure from Sistan that strongly affected the northern and central parts of the Arabian Sea, as forward air-mass trajectories show. The NCEP/NCAR reanalysis reveals an abnormal intensification and spatial expansion of the Indian low pressure system towards northern Arabian Sea in June 2008. This suggests strengthening of the convection over the arid southwest Asia and exposure of significant amount of dust, which can reach further south over Arabian Sea favored by the enhanced cyclonic circulation. MODIS imagery highlighted several dust storms originated from Sistan and affecting Arabian Sea during June 2008, while the SPRINTARS model simulations of increased AOD and dust concentration over Sistan and downwind areas are in agreement with ground-based and satellite observations.

  7. Challenges in modelling spatiotemporally varying phytoplankton blooms in the Northwestern Arabian Sea and Gulf of Oman

    NASA Astrophysics Data System (ADS)

    Sedigh Marvasti, S.; Gnanadesikan, A.; Bidokhti, A. A.; Dunne, J. P.; Ghader, S.

    2015-07-01

    We examine interannual variability of phytoplankton blooms in northwestern Arabian Sea and Gulf of Oman. Satellite data (SeaWIFS ocean color) shows two climatological blooms in this region, a wintertime bloom peaking in February and a summertime bloom peaking in September. A pronounced anti-correlation between the AVISO sea surface height anomaly (SSHA) and chlorophyll is found during the wintertime bloom. On a regional scale, interannual variability of the wintertime bloom is thus dominated by cyclonic eddies which vary in location from one year to another. These results were compared against the outputs from three different 3-D Earth System models. We show that two coarse (1°) models with the relatively complex biogeochemistry (TOPAZ) capture the annual cycle but neither eddies nor the interannual variability. An eddy-resolving model (GFDL CM2.6) with a simpler biogeochemistry (miniBLING) displays larger interannual variability, but overestimates the wintertime bloom and captures eddy-bloom coupling in the south but not in the north. The southern part of the domain is a region with a much sharper thermocline and nutricline relatively close to the surface, in which eddies modulate diffusive nutrient supply to the surface (a mechanism not previously emphasized in the literature). We suggest that for the model to simulate the observed wintertime blooms within cyclones, it will be necessary to represent this relatively unusual nutrient structure as well as the cyclonic eddies. This is a challenge in the Northern Arabian Sea as it requires capturing the details of the outflow from the Persian Gulf.

  8. Characterizing Mineral Dust from the Arabian Coast of the Red Sea

    NASA Astrophysics Data System (ADS)

    Puthan Purakkal, J.; Stenchikov, G. L.; Engelbrecht, J. P.

    2014-12-01

    The Arabian Peninsula is one of the Earth's major sources of atmospheric dust. Along with profound negative effects on human activity and natural processes in this region, dust is an important nutrient source for the oligothrophic northern Red Sea. From preliminary observations it is estimated that some 18-20 major dust storms per year deposit about 6 Mt of mineral dust into the Red Sea. To better understand the optical properties, health, and ecological impacts of dust, we study the mineralogical, chemical and morphological properties of surface soil samples collected at prevbiously identified potential dust sources along the Arabian coast of the Red Sea. Many of these dust sources lie within a narrow coastal region and because of their proximity to the Red Sea, are important contributors to the dust/nutrient balance, during both dusty and fair weather conditions. Bulk samples were collected from the top 10 mm of soils from three sites along the Arabian coast of the Red Sea. The soil samples were sieved to separate the < 38μm particle fractions for chemical and mineralogical analysis. X-ray diffractometry (XRD) was applied to measure the mineral content of the dust. The chemical composition of individual particles was analyzed using scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). From the XRD analysis of the sieved samples from An Masayat (23.3322 N, 38.9481 E), Buthna (23.2960 N, 38.9384 E) and Rabugh pipeline Road (23.292 N, 38.91 E), it was found that the dust was composed largely of hematite, goethite, calcite, dolomite, quartz, chlorite, muscovite, amphibole, epidote and plagioclase. Our results are being compared to, and show similarities to those of Engelbrecht et al. , collected at 15 Middle East sites. Both the mineralogical content and chemical composition of samples bear the signatures of the regional geology. Engelbrecht, J. P., McDonald, E. V., Gillies, J. A., Jayanty, R. K. M., Casuccio, G., and Gertler, A. W., 2009

  9. Response of benthic foraminifera to phytodetritus in the eastern Arabian Sea under low oxygen conditions

    NASA Astrophysics Data System (ADS)

    Enge, Annekatrin; Wukovits, Julia; Wanek, Wolfgang; Watzka, Margarete; Witte, Ursula; Hunter, William; Heinz, Petra

    2016-04-01

    At water depths between 100 and 1500 m a permanent Oxygen Minimum Zone (OMZ) impinges on the sea floor in the eastern Arabian Sea, exposing benthic organisms to anoxic to suboxic conditions. The flux of organic matter to the sea floor is relatively high at these depths but displays seasonal variation. Deposition of relatively fresh phytodetrital material (phytoplankton remains) can occur within a short period of time after monsoon periods. Several organism groups including foraminifera are involved to different extent in the processing of phytodetritus in the OMZs of the northern Arabian Sea. A series of in situ feeding experiments were performed to study the short-term processing (< 11 days) of organic carbon, nitrogen and nutritional demands of foraminifera at different oxygen concentrations on the continental margin in the eastern Arabian Sea. For the experiments, a single pulse of isotopically labeled phytodetritus was added to the sediment along a depth transect (540-1100 m) on the Indian Margin, covering the OMZ core and the lower OMZ boundary region. Uptake of phytodetritus within 4 days shows the relevance of phytodetritus as food source for foraminifera. Lower content of phytodetrital carbon recorded in foraminifera from more oxygenated depths shows greater food uptake by foraminifera in the OMZ core than in the OMZ boundary region. The foraminiferal assemblage living under almost anoxic conditions in the OMZ core is dominated by species typically found in eutroph environments (such as Uvigerinids) that are adapted to high flux of organic matter. The elevated carbon uptake can also result from missing food competition by macrofauna or from greater energy demand in foraminifera to sustain metabolic processes under hypoxic stress. Variable levels and ratios of phytodetrital carbon and nitrogen indicate specific nutritional demands and storage of food-derived nitrogen in some foraminifera species under near anoxia where the mean phytodetrital nitrogen content

  10. Massive outbreaks of Noctiluca scintillans blooms in the Arabian Sea due to spread of hypoxia.

    PubMed

    do Rosário Gomes, Helga; Goes, Joaquim I; Matondkar, S G P; Buskey, Edward J; Basu, Subhajit; Parab, Sushma; Thoppil, Prasad

    2014-01-01

    In the last decade, the northern Arabian Sea has witnessed a radical shift in the composition of winter phytoplankton blooms, which previously comprised mainly of diatoms, the unicellular, siliceous photosynthetic organisms favoured by nutrient-enriched waters from convective mixing. These trophically important diatom blooms have been replaced by widespread blooms of a large, green dinoflagellate, Noctiluca scintillans, which combines carbon fixation from its chlorophyll-containing endosymbiont with ingestion of prey. Here, we report that these massive outbreaks of N. scintillans during winter are being facilitated by an unprecedented influx of oxygen deficient waters into the euphotic zone and by the extraordinary ability of its endosymbiont Pedinomonas noctilucae to fix carbon more efficiently than other phytoplankton under hypoxic conditions. We contend that N. scintillans blooms could disrupt the traditional diatom-sustained food chain to the detriment of regional fisheries and long-term health of an ecosystem supporting a coastal population of nearly 120 million people. PMID:25203785

  11. Carbonate and carbon fluctuations in the Eastern Arabian Sea over 140 ka: Implications on productivity changes?

    NASA Astrophysics Data System (ADS)

    Guptha, M. V. S.; Naidu, P. Divakar; Haake, Birgit Gaye; Schiebel, Ralf

    2005-07-01

    Biological productivity in the western Arabian Sea was higher during interglacial than glacial times. In the eastern Arabian Sea productivity was higher during the glacials compared to interglacials, which is in sharp contrast to the southwest monsoon intensity variations. To examine temporal changes in productivity in the eastern Arabian Sea over the last 140 ka, oxygen isotopes, calcium carbonate and organic carbon on three cores (SL-1 & 4 and SK 129-CR05) were analyzed. Oxygen isotope records display distinct glacial and interglacial transitions. In the northeastern (Core SL-1) and eastern Arabian Sea (Core SL-4) both calcium carbonate and organic carbon variations show no significant systematic relationship with glacial and interglacials periods. In the southeastern Arabian Sea (Core SK-129-CR05) calcium carbonate shows high and low values during interglacial and glacials, respectively, and temporal changes in organic carbon concentration are significant only during MIS 5. Differential variation of calcium carbonate and organic carbon concentration at the northeastern and southeastern Arabian Sea, and between glacials and interglacials, are attributed to regional differences in sedimentation rates, dilution and preservation, which modify the signal of carbonate and carbon production.

  12. Primary productivity and nitrogen fixation by Trichodesmium spp. in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Parab, Sushma G.; Matondkar, S. G. P.

    2012-12-01

    Trichodesmium was studied with the purpose of understanding its distribution, organic production and nitrogen fixation in the Arabian Sea. Out of the 143 stations sampled, a total of 93 stations showed the presence of Trichodesmium filaments. Two species of Trichodesmium namely, T. thiebautii and T. erythraeum were found. These were distributed on the basis of the physico-chemical conditions of the Arabian Sea. This was the first time that we managed to detect and record the presence of Trichodesmium thiebautii bloom in the Arabian Sea at depths as deep as 60-70 m. Total counts of Trichodesmium varied between 0 and 400737 filamentsL- 1. T. thiebautii developed in offshore waters during the fall intermonsoon, when the water temperature was around 28 °C and nitrate content was as low as 0.34 μM. After the northeast monsoon, Trichodesmium erythraeum developed in the offshore area and then spread to coastal waters. Both species of Trichodesmium together produced a total of 0.263 TgCyear- 1 and fixed a total of 0.2976 TgNyear- 1 in the Arabian Sea. The study revealed that Trichodesmium was a major contributor to the organic matter productivity of the Arabian Sea during the period from November to April. The seasonality of the blooms of Trichodesmium is discussed with the help of Ocean Color Monitoring (OCM) data and biogeochemical implication of these findings in the Arabian Sea.

  13. Challenges in modeling spatiotemporally varying phytoplankton blooms in the Northwestern Arabian Sea and Gulf of Oman

    NASA Astrophysics Data System (ADS)

    Sedigh Marvasti, S.; Gnanadesikan, A.; Bidokhti, A. A.; Dunne, J. P.; Ghader, S.

    2016-02-01

    Recent years have shown an increase in harmful algal blooms in the Northwest Arabian Sea and Gulf of Oman, raising the question of whether climate change will accelerate this trend. This has led us to examine whether the Earth System Models used to simulate phytoplankton productivity accurately capture bloom dynamics in this region - both in terms of the annual cycle and interannual variability. Satellite data (SeaWIFS ocean color) show two climatological blooms in this region, a wintertime bloom peaking in February and a summertime bloom peaking in September. On a regional scale, interannual variability of the wintertime bloom is dominated by cyclonic eddies which vary in location from one year to another. Two coarse (1°) models with the relatively complex biogeochemistry (TOPAZ) capture the annual cycle but neither eddies nor the interannual variability. An eddy-resolving model (GFDL CM2.6) with a simpler biogeochemistry (miniBLING) displays larger interannual variability, but overestimates the wintertime bloom and captures eddy-bloom coupling in the south but not in the north. The models fail to capture both the magnitude of the wintertime bloom and its modulation by eddies in part because of their failure to capture the observed sharp thermocline and/or nutricline in this region. When CM2.6 is able to capture such features in the Southern part of the basin, eddies modulate diffusive nutrient supply to the surface (a mechanism not previously emphasized in the literature). For the model to simulate the observed wintertime blooms within cyclones, it will be necessary to represent this relatively unusual nutrient structure as well as the cyclonic eddies. This is a challenge in the Northern Arabian Sea as it requires capturing the details of the outflow from the Persian Gulf - something that is poorly done in global models.

  14. Tropospheric ozone pool over Arabian sea during pre-monsoon

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Ladstätter-Weißenmayer, Annette; Hou, Xuewei; Rozanov, Alexei; Burrows, John

    2016-04-01

    This study focuses on the remarkable and stable phenomenon-enhancement of the tropospheric ozone over Arabian Sea (AS) during the pre-monsoon season. Satellite data (SCIAMACHY LNM, OMI/MLS and TES) showed a strong and clear ozone seasonality over AS with ~42 DU maxima in pre-monsoon season. With the help of MACC reanalysis data, our results showed that 3/4 of the enhanced ozone during this season is contributed at 0-8 km height. The main source of the ozone enhancement is believed to be a long range transport, together with a suitable meteorological condition for pollution accumulation. Local chemistry plays different roles over different altitudes. However we believe the contribution to the tropospheric ozone enhancement from the chemistry is low. The contribution of the STE is unclear. In addition, the interannual variation of the pre-monsoon tropospheric ozone enhancement over AS is discussed. The anomalies in 2005 and 2010 could be due to the dynamical variation of ozone caused by the El Niño events.

  15. Scavenger assemblages under differing trophic conditions: a case study in the deep Arabian Sea

    NASA Astrophysics Data System (ADS)

    Janßen, Felix; Treude, Tina; Witte, Ursula

    Baited cameras and traps were deployed at four stations in the deep Arabian Sea to investigate the composition of the necrophagous fauna and to evaluate whether regional differences in trophic conditions are reflected by differing scavenger assemblages. The ophidiid fish Barathrites iris, the large lysianassoid amphipod Eurythenes gryllus, the aristeid prawn Plesiopenaeus armatus, and zoarcid fishes of the genus Pachycara were abundant at the bait at all stations. The ophidiid Holcomycteronus aequatorius, the liparid fish Paraliparis sp., and galatheid crabs of the genus Munidopsis occurred in considerable numbers at single sites. Trap catches further contained lysianassoid amphipods of the genera Paralicella, Abyssorchomene and Paracallisoma. In contrast to scavenger assemblages of the Atlantic and Pacific Ocean, macrourid fishes were virtually absent at the bait. E. gryllus and B. iris consumed the main proportion of the bait, while consumption was at most moderate in all other taxa. Feeding strategies of the respective taxa are inferred from their behavior at the bait and discussed with regard to the profit that can be drawn from food falls. Differences between stations were pronounced with respect to species dominating bait consumption. E. gryllus appeared in highest numbers at the bait in the productive northern and central Arabian Sea where a relatively high availability of food items is expected to sustain high population densities. High numbers of B. iris in the least productive southern part indicate their ability to persist under food-poor conditions and may correspond to a high dependency on food falls. E. gryllus and B. iris both occurred in smaller numbers in the particularly productive western Arabian Sea. This may reflect a reduced dependency on food falls, due to an access to alternative food sources, rather than small population densities. Smaller numbers of E. gryllus and B. iris resulted in slower bait consumption and gave Pachycara spp. the

  16. Spatial variability in phytoplankton community structure along the eastern Arabian Sea during the onset of south-west monsoon

    NASA Astrophysics Data System (ADS)

    Ahmed, Ayaz; Kurian, Siby; Gauns, Mangesh; Chndrasekhararao, A. V.; Mulla, Amara; Naik, Bhagyashri; Naik, Hema; Naqvi, S. W. A.

    2016-05-01

    The Arabian Sea experiences moderate to weak upwelling along the south-west coast of India, which subsequently propagates towards the north. This causes variation in plankton community composition, which is addressed in the present study. Here we report the spatial variations in distribution of phytoplankton groups along the north-south transect in the eastern Arabian Sea based on marker pigments supported with flow-cytometric and microscopic analyses. 15 phytoplankton pigments were identified using High-performance liquid chromatography (HPLC) and the chemotaxonomic software (CHEMTAX) analysis associated these to seven major group of phytoplankton. The phytoplankton biomass, chlorophyll a (Chl a) was higher in southern stations with dominance of fucoxanthin whereas, divinyl chlorophyll a (divinyl Chl a), marker pigment of Prochlorococcus was present only in the northern region. Microscopic observation revealed the dominance of larger forms; diatoms (Chaetoceros coarctatum and Nitzschia sp.) and dinoflagellates (Scrippsiella sp., Oxytoxum nanum and Oxytoxum sp.) in the southern region. Furthermore, a study of plankton size distribution showed dominance of picoplankton (fpico) followed by nanoplankton (fnano) along the northern stations with comparatively higher microplankton (fmicro) in the south. This study clearly showed the influence of different environmental conditions on the phytoplankton community as reflected in dominance of diatoms in the southern (south of 12 °N) and that of picoplankton in the northern (north of 12 °N) region.

  17. MODIS-Aqua detects Noctiluca scintillans and hotspots in the central Arabian Sea.

    PubMed

    Dwivedi, R; Priyaja, P; Rafeeq, M; Sudhakar, M

    2016-01-01

    Northern Arabian Sea is considered as an ecologically sensitive area as it experiences a massive upwelling and long-lasting algal bloom, Noctiluca scintillans (green tide) during summer and spring-winter, respectively. Diatom bloom is also found to be co-located with N. scintillans and both have an impact on ecology of the basin. In-house technique of detecting species of these blooms from Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua data was used to generate a time-series of images revealing their spatial distribution. A study of spatial-temporal variability of these blooms using satellite data expressed a cyclic pattern of their spread over a period of 13 years. An average distribution of the blooms for January-March period revealed a peak in 2015 and minimum in 2013. Subsequently, a time-series of phytoplankton species images were generated for these 2 years to study their inter-annual variability and the associated factors. Species images during active phase of the bloom (February) in 2015 indicated development of N. scintillans and diatom in the central Arabian Sea also, up to 12° N. This observation was substantiated with relevant oceanic parameters measured from the ship as well as satellite data and the same is highlight of the paper. While oxygen depletion and release of ammonia associated with N. scintillans are detrimental for waters on the western side; it is relatively less extreme and supports the entire food chain on the eastern side. In view of these contrasting eco-sensitive events, it is a matter of concern to identify biologically active persistent areas, hot spots, in order to study their ecology in detail. An ecological index, persistence of the bloom, was derived from the time-series of species images and it is another highlight of our study. PMID:26690080

  18. Response of the Arabian Sea to global warming and associated regional climate shift.

    PubMed

    Kumar, S Prasanna; Roshin, Raj P; Narvekar, Jayu; Kumar, P K Dinesh; Vivekanandan, E

    2009-12-01

    The response of the Arabian Sea to global warming is the disruption in the natural decadal cycle in the sea surface temperature (SST) after 1995, followed by a secular warming. The Arabian Sea is experiencing a regional climate-shift after 1995, which is accompanied by a five fold increase in the occurrence of "most intense cyclones". Signatures of this climate-shift are also perceptible over the adjacent landmass of India as: (1) progressively warmer winters, and (2) decreased decadal monsoon rainfall. The warmer winters are associated with a 16-fold decrease in the decadal wheat production after 1995, while the decreased decadal rainfall was accompanied by a decline of vegetation cover and increased occurrence of heat spells. We propose that in addition to the oceanic thermal inertia, the upwelling-driven cooling provided a mechanism that offset the CO(2)-driven SST increase in the Arabian Sea until 1995. PMID:19592084

  19. Nematode abundance at the oxygen minimum zone in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Cook, Adam A.; Lambshead, P. John D.; Hawkins, Lawrence E.; Mitchell, Nicola; Levin, Lisa A.

    2000-01-01

    This paper supports the hypothesis that low oxygen does not influence deep-sea nematode abundance by investigating an oxygen minimum zone (OMZ) on the Oman slope in the Arabian Sea. Correlation with a number of environmental variables indicated that food quality (measured as the hydrogen index) rather than oxygen was the major predictor of nematode abundance. Nematode abundance was also positively correlated with abundance of total macrofauna, annelids, spionid polychaetes and macrofaunal tube builders. Comparison with published data showed Arabian Sea nematode abundance to be similar to that of the Porcupine Seabight and Bay of Biscay regions of the northeast Atlantic, which also receive significant quantities of phytodetritus but have no OMZ.

  20. Ammonia oxidation rates and nitrification in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Newell, Silvia E.; Babbin, Andrew R.; Jayakumar, Amal; Ward, Bess B.

    2011-12-01

    Nitrification rates, as well as the relationships between rates and ammonia oxidizer abundance (both archaeal and bacterial), were investigated in the Arabian Sea. Ammonia oxidation rates were measured directly using 15N-NH4+stable isotope additions in gas-impermeable, trace metal clean trilaminate bags (500 mL) at in situ temperature. Tracer incubations were performed at three stations at depths above, below, and within the oxycline of the open-ocean oxygen minimum zone (OMZ). Ammonia oxidation rates were similar to previous open-ocean measurements, ranging from undetectable to 21.6 ± 0.1 nmol L-1 d-1. The highest rates at each station occurred at the primary nitrite maximum (above the OMZ), and rates were very low at depths greater than 900 m. The abundances of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were estimated using theamoA gene by quantitative polymerase chain reaction (qPCR). Both AOA and AOB amoA were detected above, within, and below the OMZ, although the AOA were always more abundant than the AOB, by a factor of 35-216. Nitrification rates were not directly correlated to AOA or AOB amoA abundance. These rates offer new insight into the role of nitrification in the mesopelagic zone. The abundance of AOA amoA genes at 1000 m suggests that ˜50% of the microbial biomass could be autotrophic. Additionally, the integrated nitrification rate at depth implies that nitrification could consume most of the ammonium produced by the flux of organic carbon in the mesopelagic zone.

  1. Characteristics of convective boundary layer over the Arabian sea region

    SciTech Connect

    Parasnis, S.S.

    1996-12-31

    The Convective Boundary Layer (CBL) over the oceanic regions plays an important role in regulating the transport of energy and moisture upward into the atmosphere from the surface. CBL structure over the Arabian sea region has been explored using the aerological soundings at two ships viz. SHIRSHOV (12.5{degrees}N, 68{degrees}E ) and OKEAN (14.5{degrees} N, 66{degrees} E) during MONSOON-77. Conserved variable analysis of the mean data sets obtained during the period of 29 June - 16 July, 1977 revealed salient features of the CBL over these regions. The vertical gradients of saturation point parameters viz. virtual potential temperature ({Theta}{sub v}), equivalent potential temperature ({Theta}{sub e}), saturated equivalent potential temperature ({Theta}{sub es}), saturation pressure deficit (P*) and the mixing ratio (q) were used to characterize the different sublayers such as subcloud layer, cloud layer and inversion/stable layer. The mean cloud base was around 950 hPa and the subcloud layer has nearly constant {Theta}{sub v}. The moist layer was associated with unstable {Theta}{sub es} with nearly constant value of P* ({approximately} -40 hPa). This cloud layer was capped by the stable (over OKEAN). The {Theta}{sub e} minimum over OKEAN was observed at 650 hPa (50 hPa above the CBL top) indicating that at some time the convection had reached deeper levels. The {Theta}{sub e} -q diagrams showed a characteristic mixing line up through the cloud and stable layer to the top of CBL. The low level stability analysis using the {Theta}{sub e} and {Theta}{sub es} profiles indicated conditions favorable for shallow convection over OKEAN and for deep convection over SHIRSHOV. The above characteristic features could be attributed to the prevailing weather conditions at OKEAN and SHIRSHOV. The results are discussed.

  2. Diversity and distribution of winter phytoplankton in the Arabian Gulf and the Sea of Oman

    NASA Astrophysics Data System (ADS)

    Polikarpov, Igor; Saburova, Maria; Al-Yamani, Faiza

    2016-05-01

    The spatial distribution of the phytoplankton (diversity, composition, and cell abundance) was described in relation to local environmental conditions across the Arabian Gulf, the Strait of Hormuz, and the Sea of Oman based on data of ROPME cruise of winter 2006. The 376 phytoplankton taxa identified in these waters represented a diverse composition of species with a prevalence of dinoflagellates and diatoms. Three peaks in the phytoplankton abundance were recorded throughout the studied area associated with diatom-dominated phytoplankton blooms in the central and northwestern part of the Arabian Gulf and in the Sea of Oman and the adjacent waters. The studied area was divided into three main regions by cluster analysis based on differences in the phytoplankton composition and concentration. The Sea of Oman and the Strait of Hormuz were occupied by highly abundant, strongly diatom-dominated phytoplankton assemblage. The Arabian Gulf was divided into two main regions along a diagonal northwest-southeast axis, with rather diatom-dominated phytoplankton assemblage off the south and along the Iranian coast but with flagellate-dominated phytoplankton of the north and along the Arabian coast. The distance-based linear modeling revealed a significant relationship between the phytoplankton composition and water masses as indexed by salinity. Our results demonstrated that abundance and composition of winter phytoplankton were related to water circulation pattern in the Arabian Gulf and the Sea of Oman.

  3. Denitrification as the dominant nitrogen loss process in the Arabian Sea.

    PubMed

    Ward, B B; Devol, A H; Rich, J J; Chang, B X; Bulow, S E; Naik, Hema; Pratihary, Anil; Jayakumar, A

    2009-09-01

    Primary production in over half of the world's oceans is limited by fixed nitrogen availability. The main loss term from the fixed nitrogen inventory is the production of dinitrogen gas (N(2)) by heterotrophic denitrification or the more recently discovered autotrophic process, anaerobic ammonia oxidation (anammox). Oceanic oxygen minimum zones (OMZ) are responsible for about 35% of oceanic N(2) production and up to half of that occurs in the Arabian Sea. Although denitrification was long thought to be the only loss term, it has recently been argued that anammox alone is responsible for fixed nitrogen loss in the OMZs. Here we measure denitrification and anammox rates and quantify the abundance of denitrifying and anammox bacteria in the OMZ regions of the Eastern Tropical South Pacific and the Arabian Sea. We find that denitrification rather than anammox dominates the N(2) loss term in the Arabian Sea, the largest and most intense OMZ in the world ocean. In seven of eight experiments in the Arabian Sea denitrification is responsible for 87-99% of the total N(2) production. The dominance of denitrification is reproducible using two independent isotope incubation methods. In contrast, anammox is dominant in the Eastern Tropical South Pacific OMZ, as detected using one of the isotope incubation methods, as previously reported. The abundance of denitrifying bacteria always exceeded that of anammox bacteria by up to 7- and 19-fold in the Eastern Tropical South Pacific and Arabian Sea, respectively. Geographic and temporal variability in carbon supply may be responsible for the different contributions of denitrification and anammox in these two OMZs. The large contribution of denitrification to N(2) loss in the Arabian Sea indicates the global significance of denitrification to the oceanic nitrogen budget. PMID:19727197

  4. Pollutants from the Gulf War serve as water mass tracer in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Plähn, Olaf; Rhein, Monika; Fine, Rana A.; Sullivan, Kevin F.

    In 1995, concentrations of the chlorofluorocarbon compound CFC-12 in the outflow water from the Persian Gulf were 8-40 fold higher than normally caused by air-sea gas exchange. At that time, the anomaly was restricted to the Gulf of Oman north of 20°N, while in 1998 the signal had spread southwestward to 12°N. The sources of this CFC-12 input of about 6400 kg are most likely the fire extinguishers and solvents used during and after the Gulf War in 1991. This CFC-12 signal is a new feature of the Persian Gulf Water (PGW) which can be used to track and quantify the spreading and dilution of PGW in the northern Indian Ocean. The contaminated PGW spreads southward with a mean velocity of 0.02-0.025 m s-1. At 20°N, the anomaly is diluted by a factor of more than two, and east of the island Socotra by a factor of four. A mean transport of less than 0.5·106 m³ s-1 is calculated for PGW assuming a mean dilution rate of 30% from the source signal in the Gulf of Oman to the western Arabian Sea.

  5. Acoustic doppler current profiling from the JGOFS Arabian Sea cruises aboard the RV T.G. Thompson

    SciTech Connect

    Flagg, C.N.; Shi, Y.

    1995-04-01

    Acoustic Doppler Current Profiler (ADCP) data from the R/V T.G. THOMPSON is part of the core data for the US JGOFS Arabian Sea project along with hydrographic and nutrient data. Seventeen cruises on the THOMPSON are scheduled to take place between September 1994 and January 1996. The first of these cruises, a transit of the R/V THOMPSON into the northern Arabian Sea area from Singapore, was a calibration and training cruise that took place between September 18 and October 7, 1994. (The cruises on the THOMPSON are numbered consecutively from the ship`s commissioning with the first JOGFS cruise designated TN039.) The remaining cruises have been and will be staged from Muscat, Oman. Seven of these cruises, referred to as process cruises, will follow a set cruise track, making hydrographic, chemical and biological measurements. The remainder of the cruises while not restricted to the set cruise track, will generally stay within the region defined by the track during the deployment and retrieval of moored equipment and the towing of a SeaSoar. Each cruise will last between two weeks and one month. ADCP data will be collected on all the JGOFS Arabian Sea cruises using an autonomous data acquisition system developed for ship-of-opportunity cruises. This system, referred to as the AutoADCP, makes it possible to collect the ADCP data without the constant monitoring usually necessary and assures constant data coverage and uniform data quality. The AutoADCP system is an extension of RD Instrument`s DAS version 2.48 using enhancements made possible with ``user exit`` programs. This data report presents ADCP results from the first four JGOFS cruises, TN039 through TN042, concentrating on the data collection and processing methods.

  6. Detection and monitoring of super sandstorm and its impacts on Arabian Sea-Remote sensing approach

    NASA Astrophysics Data System (ADS)

    Kunte, Pravin D.; M. A., Aswini

    2015-06-01

    The present study addresses an intense sandstorm event over the Persian Gulf and its transport over the Arabian Sea region and the Indian sub-continent using satellite observations and measurements. MODIS data are used to analyze the temporal variation of the dust events that occurred from 17 to 24 March 2012 with the strongest intensity on 20 March over the Arabian Sea. MODIS images are examined to provide an independent assessment of dust presence and plume location and its migration over the Arabian Sea to the Indian sub-continent. Dust enhancement and dust detection procedure is attempted to demarcate the dust event. Dust source, formation, transportation path, and dissipation is studied using source-back-tracking, surface wind, and surface pressure, wind speed and direction, geo-potential height for different pressure level, and remote sensing methods. Finally, an attempt is made to investigate the impact of super sandstorm on the Arabian Sea by studying sea surface temperature and chlorophyll a variability during the events. It is noted that sea surface temperature is decreased and chlorophyll a concentration increased during the post-event period. The present study demonstrates the use of remote sensing data and geospatial techniques in detecting and mapping of dust events and monitoring dust transport along specific regional transport pathways over land and ocean.

  7. Past, present, and future changes in marine biogeochemistry in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Six, Katharina; Segschneider, Joachim

    2014-05-01

    The work presented here aims at a better understanding of the Asian Monsoon system including the marine biogeochemistry in the Arabian Sea. Changes in the past as recorded in marine sediments, as simulated over the past 1000 years, and under forcing by anthropogenic CO2 emissions by numerical model simulations are investigated. The investigation is based on three columns: a sediment core taken in the Arabian Sea (core SO130-275KL taken off Pakistan), a pre-industrial model run from 850 - 1850 with the Max Planck Institute's Earth System Model (MPI-ESM) including the marine and terrestrial carbon cycle and forced by solar variations and volcanic eruptions, and a continuation of this simulation to 2005 under the historical anthropogenic CO2 forcing which allows a comparison with present day climatology. In a first step we compare model results for a set of biogeochemical tracers within the water column and the sediment mixed with observations in the Arabian Sea. We further analyse correlations between Monsoon forcing (represented by zonal wind speed at 850 hPA, short wave radiation, Indian summer precipitation) and biogeochemical parameters, with particular focus on denitrification rates and fluxes to the sediment. This analysis is focused on three regions: off Somalia and off Oman for the summer monsoon, and the central Arabian Sea for the winter monsoon. For the summer monsoon, the highest correlation is found between zonal wind speed and calcite flux to the sediment off Somalia, for the winter monsoon the correlation is highest for short wave radiation in the central Arabian Sea. Time series of mixed layer depth and integrated primary production within the upper 100 m of the ocean from a CMIP5 historical experiment (1850-2005) show, at the location of the sediment core SO130-275KL, little correlation during the summer monsoon, but good correlation during the winter monsoon. As a result, the sediment core is more likely to document winter monsoon conditions

  8. Primary production in the northern Red Sea

    NASA Astrophysics Data System (ADS)

    Qurban, Mohammed Ali; Balala, Arvin C.; Kumar, Sanjeev; Bhavya, P. S.; Wafar, Mohideen

    2014-04-01

    Rates of uptake of carbon and nitrogen (ammonium, nitrate and urea) by phytoplankton, along with concentrations of nutrients and chlorophyll a, in the Saudi Arabian waters of the northern Red Sea (23 °N-28 °N) were measured in autumn, 2012. Concentrations of nitrate, nitrite and phosphate within the euphotic zone were in trace amounts while those of silicon were in excess of 0.5 μmol L- 1. Concentrations of chlorophyll (Chl a) were very low within the euphotic zone (0.01-0.6 μg L- 1 at discrete depths and 1.53-21.5 mg m- 2 as column-integrated values). A deep chlorophyll maximum and a nitrite maximum were present between 60 and 80 m at almost all of the stations occupied. Rates of carbon uptake at discrete depths ranged from 0.02 to 3 μg C L- 1 h- 1. Chl-normalized carbon uptake rates related with ambient light in a Michaelis-Menten kinetic pattern. About 80% of the carbon uptake was attributable to the < 20 μm fraction. Ammonium and urea were the nitrogen compounds taken up in preference by phytoplankton and accounted for close to 90% of the total N uptake. Considered together, these results indicate that the waters of the northern Red Sea are oligotrophic and that the primary production is strongly N-controlled. Analyses of the data and interpretation of the results led to the following speculations: (1) the perceived north-south gradient in Chl a (and possibly in primary production) in the Red Sea is maintained by circulation of Chl- and nutrient-rich waters through a series of gyres, (2) there is a greater role for heterotrophy and microbial loop in the trophic dynamics, and (3) in situ nitrification in the euphotic zone is an important source of N for phytoplankton and consequently export of carbon to deep sea could be lesser than that indicated by f-ratios.

  9. Particle size distribution and estimated carbon flux across the Arabian Sea oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Roullier, F.; Berline, L.; Guidi, L.; Durrieu De Madron, X.; Picheral, M.; Sciandra, A.; Pesant, S.; Stemmann, L.

    2014-08-01

    The goal of the Arabian Sea section of the TARA oceans expedition was to study large particulate matter (LPM > 100 μm) distributions and possible impact of associated midwater biological processes on vertical carbon export through the oxygen minimum zone (OMZ) of this region. We propose that observed spatial patterns in LPM distribution resulted from the timing and location of surface phytoplankton bloom, lateral transport, microbial processes in the core of the OMZ, and enhanced biological processes mediated by bacteria and zooplankton at the lower oxycline. Indeed, satellite-derived net primary production maps showed that the northern stations of the transect were under the influence of a previous major bloom event while the most southern stations were in a more oligotrophic situation. Lagrangian simulations of particle transport showed that deep particles of the northern stations could originate from the surface bloom while the southern stations could be considered as driven by 1-D vertical processes. In the first 200 m of the OMZ core, minima in nitrate concentrations and the intermediate nepheloid layer (INL) coincided with high concentrations of 100 μm < LPM < 200 μm. These particles could correspond to colonies of bacteria or detritus produced by anaerobic microbial activity. However, the calculated carbon flux through this layer was not affected. Vertical profiles of carbon flux indicate low flux attenuation in the OMZ, with a Martin model b exponent value of 0.22. At three stations, the lower oxycline was associated to a deep nepheloid layer, an increase of calculated carbon flux and an increase in mesozooplankton abundance. Enhanced bacterial activity and zooplankton feeding in the deep OMZ is proposed as a mechanism for the observed deep particle aggregation. Estimated lower flux attenuation in the upper OMZ and re-aggregation at the lower oxycline suggest that OMZ may be regions of enhanced carbon flux to the deep sea relative to non OMZ regions.

  10. Particles size distribution and carbon flux across the Arabian Sea Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Roullier, F.; Berline, L.; Guidi, L.; Sciandra, A.; Durrieu De Madron, X.; Picheral, M.; Pesant, S.; Stemmann, L.

    2013-12-01

    The goal of the Arabian Sea section of the TARA oceans expedition was to study Large Particulate Matter (LPM > 100 μm) distributions and possible impact of associated midwater biological processes on vertical carbon export through the Oxygen Minimum Zone (OMZ) of this region. We found that spatial patterns in LPM distribution resulted from the timing and location of surface phytoplankton bloom, lateral transport, microbial processes in the core of the OMZ, and zooplankton activity at the lower oxycline. Indeed, satellite-derived net primary production maps showed that the northern stations of the transect were under the influence of a previous major bloom event while, the most southern stations were in a more oligotrophic situation. Lagrangian simulations of particle transport showed that deep particles of the northern stations could originate from the surface bloom while the southern stations could be considered as driven by 1-D vertical processes. In the first 200 m of the OMZ core, minima in nitrate concentrations and the Intermediate Nepheloid Layer (INL) coincided with high concentrations of 100 μm < LPM < 200 μm. These particles could correspond to colonies of bacteria or detritus produced by anaerobic microbial activity. However, the calculated carbon flux through this layer was not affected. Vertical profiles of carbon flux indicate low flux attenuation in the OMZ, with a Martin model b exponent value of 0.22. At the lower oxycline, a deep nepheloid layer was associated to an increase of carbon flux and an increase in mesozooplankton abundance. Zooplankton feeding on un-mineralized sinking particles in the OMZ is proposed as a mechanism for the observed deep particle aggregation. These results suggest that OMZ may be regions of enhanced carbon flux to the deep sea relative to non-OMZ regions.

  11. Sea level rise within the west of Arabian Gulf using tide gauge and continuous GPS measurements

    NASA Astrophysics Data System (ADS)

    Ayhan, M. E.; Alothman, A.

    2009-04-01

    Arabian Gulf is connected to Indian Ocean and located in the south-west of the Zagros Trust Belt. To investigate sea level variations within the west of Arabian Gulf, monthly means of sea level at 13 tide gauges along the coast of Saudi Arabia and Bahrain, available in the database of the Permanent Service for Mean Sea Level (PSMSL), are studied. We analyzed individually the monthly means at each station, and estimated secular sea level rate by a robust linear trend fitting. We computed the average relative sea level rise rate of 1.96 ± 0.21 mm/yr within the west of Arabian Gulf based on 4 stations spanning longer than 19 years. Vertical land motions are included into the relative sea level measurements at the tide gauges. Therefore sea level rates at the stations are corrected for vertical land motions using the ICE-5G v1.2 VM4 Glacial Isostatic Adjustment (GIA) model then we found the average sea level rise rate of 2.27 mm/yr. Bahrain International GPS Service (IGS) GPS station, which is close to the Mina Sulman tide gauge station in Bahrain, is the only continuous GPS station accessible in the region. The weekly GPS time series of vertical component at Bahrain IGS-GPS station referring to the ITRF97 from 1999.2 to 2008.6 are downloaded from http://www-gps.mit.edu/~tah/. We fitted a linear trend with an annual signal and one break to the GPS vertical time series and found a vertical land motion rate of 0.48 ± 0.11 mm/yr. Assuming the vertical rate at Bahrain IGS-GPS station represents the vertical rate at each of the other tide gauge stations studied here in the region, we computed average sea level rise rate of 2.44 ± 0.21 mm/yr within the west of Arabian Gulf.

  12. The Lighthouse Ocean Research Initiative: Sustained Cabled Ocean Observing Systems in the Sea of Oman and Arabian Sea

    NASA Astrophysics Data System (ADS)

    Ingle, S.; Du Vall, K.; Dimarco, S. F.

    2011-12-01

    In 2003 Lighthouse R & D Enterprises, Inc. began developing an ocean observing system that would help the Sultanate of Oman better manage the health of their fisheries. The resulting cutting-edge, fiber-optic cabled ocean observatory was installed in the northern Sea of Oman and became operational in August of 2005; this summer the system surpassed the milestone of 2100 days of successful operation. A second, deepwater cabled observatory was installed farther to the south, where the Sea of Oman meets the Arabian Sea, in January, 2010. Both systems monitor physical properties throughout the water column including current velocity, temperature, pressure, conductivity, dissolved oxygen and turbidity. The entirely subsea nature of the fiber-optic cabled observatory capitalizes on several advantages over traditional buoyed systems including a lack of exposure to environmental wear and tear, collision, vandalism and theft. The systems are both cabled to nearby shore facilities, where the data are relayed instantly to Houston via satellite for processing, analysis and modeling - the data may also be used in making real time decisions. Many challenges were encountered between the design / development stage and the operation a reliable, long-term, real-time observing system in a dynamic marine environment. Examples of obstacles we encountered and overcame include: maintaining upright mooring strings under differential current velocities; minimizing points of weakness in the system, especially the number of wet mates; recognizing the need for cathodic protection in unanticipated places; protecting vulnerable sensors from biofouling; developing a climate-controlled shore facility in a harsh and remote environment; ensuring an uninterrupted power supply and availability of additional power bursts when required; and lengthening the life of the system while reducing the need for maintenance. The design and obstacles and scientific questions being addressed by the Lighthouse

  13. Observational study of upper ocean cooling due to Phet super cyclone in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Muni Krishna, K.

    2016-05-01

    Phet super cyclone (31 May-7 June 2010) was the most intense and also the rarest of the rare track in Arabian Sea as per the recorded history during 1877-2009. The present study focuses on the ocean physical responses to Phet cyclone using satellite and Argo observations. The sea surface temperature is decreased to 6 °C with an approximately 350 km long and 100 km width area in the Arabian Sea after the cyclone passage. The translation speed of cyclone is 3.86 m/s, the mixed layer is 79 m, and thermocline displacement is 13 m at the cooling area. With the relationship of wind stress curl and Ekman pumping velocity (EPV), the author found that the speed of EPV was increased after the passage of cyclone. So the extent of the SST drop was probably due to the moving speed of cyclone and the depth of the mixed layer.

  14. Sedimentation in the western Arabian Sea the role of coastal and open-ocean upwelling

    NASA Astrophysics Data System (ADS)

    Rixen, Tim; Haake, Birgit; Ittekkot, Venugopalan

    Monsoon-induced coastal and open-ocean upwelling explain 84% of the variations of the organic carbon fluxes measured in the deep western Arabian Sea. In this paper, sea-level measurements, satellite-derived wind speeds, sea surface temperatures, and nutrient profiles are used to discern the relative importance of these factors on fluxes measured during nine years of continuous sediment trap deployments. This exercise shows: (i) the increase in fluxes observed during the initial stages of the SW monsoons are caused by open-ocean upwelling, which develops faster than the coastal upwelling; (ii) coastal upwelling triggers diatom blooms from nutrients from subsurface water and sediment resuspension and, more importantly, by injecting resting stages of diatoms back into the euphotic zone; (iii) silica depletion resulting from diatom blooms in laterally advecting water masses leads to a replacement of diatoms by other nitrate-limited organisms; (iv) organic carbon fluxes to the deep Arabian Sea increase in response to an intensification of both coastal and open-ocean upwelling; weak coastal upwelling and strong open-ocean upwelling also increase organic carbon fluxes. The varying dominance of their influence is reflected in the timing and the composition of the peak fluxes; (v) the link between organic carbon flux and monsoon strength is non-linear probably due to changes in the surface currents and to vigorous turbulence in the surface water during strong SW monsoons. These processes could reduce the organic carbon flux in the western Arabian Sea by about 65%.

  15. The stratigraphic evolution of the Indus Fan and the history of sedimentation in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Clift, Peter; Gaedicke, Christoph; Edwards, Rosemary; Il Lee, Jae; Hildebrand, Peter; Amjad, Shahid; White, Robert S.; Schlüter, Hans-Ulrich

    The Indus Fan records the erosion of the western Himalayas and Karakoram since India began to collide with Asia during the Eocene, ~50 Ma. Multi-channel seismic reflection data from the northern Arabian Sea correlated to industrial well Indus Marine A-1 on the Pakistan Shelf show that sedimentation patterns are variable through time, reflecting preferential sedimentation in deep water during periods of lower sea-level (e.g., middle Miocene, Pleistocene), the diversion of sediment toward the east following uplift of the Murray Ridge, and the autocyclic switching of fan lobes. Individual channel-levee systems are estimated to have been constructed over periods of 105-106 yr during the Late Miocene. Sediment velocities derived from sonobuoys and multi-channel stacking velocities allow sections to be time-depth converted and then backstripped to calculate sediment budgets through time. The middle Miocene is the period of most rapid accumulation, probably reflecting surface uplift in the source regions and strengthening of the monsoon at that time. Increasing sedimentation during the Pleistocene, after a late Miocene-Pliocene minimum, is apparently caused by faster erosion during intense glaciation. The sediment-unloaded geometry of the basement under the Pakistan Shelf shows a steep gradient, similar to the continent-ocean transition seen at other rifted volcanic margins, with basement depths on the oceanward side indistinguishable from oceanic crust. Consequently we suggest that the continent-ocean transition is located close to the present shelf break, rather than >350 km to the south, as previously proposed.

  16. Impact of water mass mixing and dust deposition on Nd concentration and εNd of the Arabian Sea water column

    NASA Astrophysics Data System (ADS)

    Goswami, Vineet; Singh, Sunil K.; Bhushan, Ravi

    2014-11-01

    The concentration and isotopic composition (εNd) of dissolved Nd have been measured in the sub-oxic/denitrifying water column of the eastern Arabian Sea to explore the impact of water mass mixing and release from particles. Dissolved Nd in the north-eastern Arabian Sea is more radiogenic (εNd: -7 to -10) compared to its south-eastern part (εNd: -11 to -15) suggesting contribution of Nd from the Bay of Bengal (BoB). The vertical profile of Nd typically show higher values in surface waters (15.8-27.8 pmol/kg), followed by minima (12-18 pmol/kg) in the subsurface waters (200-300 m) and a gradual increase with depth thereafter. The Nd concentration does not seem to show any changes in the sub-oxic layers suggesting no impact of the sub-oxic/denitrifying conditions in this oceanic region on the biogeochemistry of Nd. The enrichment of Nd in surface waters can be explained either by supply from high Nd low salinity waters from the BoB to the Arabian Sea via the East India Coastal Current (EICC) or, alternatively the Nd surface excess can be result of release from aeolian dust depositing over the sea surface. Inverse modeling computations suggest that in addition to Nd contributed from water mass mixing, some additional excess Nd (Ndxs) is required to balance the Nd inventory in the water column. There is significant Ndxs in the surface waters of the north-eastern Arabian Sea with εNd ∼ -6, similar to that of dust depositing over the Arabian Sea. The fractional solubility of Nd released from the aeolian dust was estimated to be varying from ∼3% to 17% (for excess Nd inventory per unit area (Ndxs∗) of 20 μg m-2 with τNd ranging from 1 to 3 years). This study highlights the significance of aeolian dust deposition in controlling the abundance and distribution of Nd in the Arabian Sea, the western arm of the northern Indian Ocean, lying in the proximity to the arid landmass and characterized by high lithogenic aeolian dust deposition.

  17. Southwest Monsoon Circulation and Environments of Recent Planktonic Foraminifera in the Northwestern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Brock, John C.; McClain, Charles R.; Anderson, David M.; Prell, Warren L.; Hay, William W.

    1992-12-01

    Digital hydrographic data combined with satellite thermal infrared and visible band remote sensing provide a synoptic climatological view of the shallow planktonic environment. This paper uses wind, hydrographic, and ocean remote sensing data to examine southwest monsoon controls on the foraminiferal faunal composition of Recent seafloor sediments of the northwestern Arabian Sea. Ekman pumping resulting in open-ocean upwelling and coastal upwelling create two distinctly different mixed layer plankton environments in the northwestern Arabian Sea during the summer monsoon. Open-sea upwelling to the northwest of the mean July position of the Findlater Jet axis yields a mixed layer environment with temperatures of less than 25°C to about 26.5°C, phytoplankton pigment concentrations between 1.5 and 5.0 mg/m³, and mixed layer depths less than 50 m. Convergence in the Ekman layer in the central Arabian Sea drives the formation of a mixed layer that is greater than 50 m thick, warmer than about 26.5°C, and has phytoplankton pigment concentrations generally below 2.0 mg/m³. Coastal upwelling creates an extremely eutrophic plankton environment that persists over and immediately adjacent to the Omani shelf and undergoes significant offshore transport only within topographically induced coastal squirts. The foraminiferal faunal composition of upper Pleistocene deep-sea sediments of the northwestern Arabian Sea are mainly controlled by vertical nutrient fluxes caused by Ekman pumping, not coastal upwelling. Transfer functions for late Pleistocene mixed layer depth, temperature, and chlorophyll have been obtained through factor analysis and nonlinear multiple regression between late summer mixed layer environment and Recent sediment faunal observations.

  18. Origin and fate of the secondary nitrite maximum in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Lam, P.; Jensen, M. M.; Kock, A.; Lettmann, K. A.; Plancherel, Y.; Lavik, G.; Bange, H. W.; Kuypers, M. M. M.

    2011-06-01

    The Arabian Sea harbours one of the three major oxygen minimum zones (OMZs) in the world's oceans, and it alone is estimated to account for ~10-20 % of global oceanic nitrogen (N) loss. While actual rate measurements have been few, the consistently high accumulation of nitrite (NO2-) coinciding with suboxic conditions in the central-northeastern part of the Arabian Sea has led to the general belief that this is the region where active N-loss takes place. Most subsequent field studies on N-loss have thus been drawn almost exclusively to the central-NE. However, a recent study measured only low to undetectable N-loss activities in this region, compared to orders of magnitude higher rates measured towards the Omani Shelf where little NO2- accumulated (Jensen et al., 2011). In this paper, we further explore this discrepancy by comparing the NO2--producing and consuming processes, and examining the relationship between the overall NO2- balance and active N-loss in the Arabian Sea. Based on a combination of 15N-incubation experiments, functional gene expression analyses, nutrient profiling and flux modeling, our results showed that NO2- accumulated in the central-NE Arabian Sea due to a net production via primarily active nitrate (NO3-) reduction and to a certain extent ammonia oxidation. Meanwhile, NO2- consumption via anammox, denitrification and dissimilatory nitrate/nitrite reduction to ammonium (NH4+) were hardly detectable in this region, though some loss to NO2- oxidation was predicted from modeled NO3- changes. No significant correlation was found between NO2- and N-loss rates (p>0.05). This discrepancy between NO2- accumulation and lack of active N-loss in the central-NE Arabian Sea is best explained by the deficiency of labile organic matter that is directly needed for further NO2- reduction to N2O, N2 and NH4+, and indirectly for the remineralized NH4+ required by anammox. Altogether, our data do not support the long-held view that NO2- accumulation is a

  19. Origin and fate of the secondary nitrite maximum in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Lam, P.; Jensen, M. M.; Kock, A.; Lettmann, K. A.; Plancherel, Y.; Lavik, G.; Bange, H. W.; Kuypers, M. M. M.

    2011-03-01

    The Arabian Sea harbours one of the three major oxygen minimum zones (OMZs) in the world's oceans, and it alone is estimated to account for ~10-20% of global oceanic nitrogen (N) loss. While actual rate measurements have been few, the consistently high accumulation of nitrite (NO2-) coinciding with suboxic conditions in the central-northeastern part of the Arabian Sea has led to the general belief that this is the region where active N-loss takes place. Most subsequent field studies on N-loss have thus been drawn almost exclusively to the central-NE. However, a recent study measured only low to undetectable N-loss activities in this region, compared to orders of magnitude higher rates measured towards the Omani shelf where little NO2- accumulated (Jensen et al., 2011). In this paper, we further explore this discrepancy by comparing the NO2- producing and consuming processes, and examining the relationship between the overall NO2- balance and active N-loss in the Arabian Sea. Based on a combination of 15N-incubation experiments, functional gene expression analyses, nutrient profiling and flux modeling, our results showed that NO2- accumulated in the Central-NE Arabian Sea due to a net production via primarily active nitrate (NO3-) reduction and to a certain extent ammonia oxidation. Meanwhile, NO2- consumption via anammox, denitrification and dissimilatory nitrate/nitrite reduction to ammonium (NH4+) were hardly detectable in this region, though some loss to NO2- oxidation was predicted from modeled NO3- changes. No significant correlation was found between NO2- and N-loss rates (p>0.05). This discrepancy between NO2- accumulation and lack of active N-loss in the Central-NE Arabian Sea is best explained by the deficiency of organic matter that is directly needed for further NO2- reduction to N2O, N2 and NH4+, and indirectly for the remineralized NH4+ required by anammox. Altogether, our data do not support the long-held view that NO2- accumulation is a direct

  20. Westward movement of eddies into the Gulf of Aden from the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Al Saafani, M. A.; Shenoi, S. S. C.; Shankar, D.; Aparna, M.; Kurian, J.; Durand, F.; Vinayachandran, P. N.

    2007-11-01

    Sea level anomalies (SLA) from satellite altimetry (1993-2003) reveal the westward movement of mesoscale eddies in the Gulf of Aden. Inside the gulf the eddies move at a speed of ˜6.0-8.5 cm s-1, comparable to the first-mode baroclinic Rossby wave speed of 7.2 cm s-1. We show that the eddies, which enter the gulf from the Arabian Sea, owe their existence to more than one mechanism. Local Ekman pumping in the western Arabian Sea is important during the summer monsoon (June-September). In May and during the latter half of the summer monsoon (late July to September) and the fall intermonsoon (October), the dominant mechanism is the generation of eddies by the instabilities in the Somali Current and the large eddies associated with it (Great Whirl and Socotra eddy). During the winter monsoon (November-April) the dominant mechanism involves the westward propagating Rossby waves generated either in the Arabian Sea by Ekman pumping or along the west coast of India by poleward propagating Kelvin waves. These Rossby waves from the Arabian Sea propagate slower on entering the gulf because of a shallower thermocline in the gulf. Analysis shows that the SLA signal consists of low (annual and subannual) and high (˜100-180 d) frequencies. The low-frequency signal (mainly annual) shows a discontinuity between 52°E and 60°E. Though the high-frequency signal is seen at all longitudes, a wavelet analysis shows that it was significant only west of 60°E. An energy analysis, based on model simulations, suggests that barotropic instabilities are important during the entire year and that baroclinic instabilities are also important during the summer monsoon.

  1. Influence of continental outflow on aerosol chemical characteristics over the Arabian Sea during winter

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwini; Sudheer, A. K.; Goswami, Vineet; Bhushan, Ravi

    2012-04-01

    The chemical composition of aerosol over the Arabian Sea was investigated during December 2007. Elemental Carbon (EC), Organic Carbon (OC), water soluble organic and inorganic constituents and crustal elements (Al, Fe, Ca, and Mg) were measured in total suspended particulate samples (TSP) collected from marine boundary layer of the Arabian Sea when the oceanic region is influenced by continental outflow. Anthropogenic and natural mineral aerosol originating from continental regions dominates the aerosol composition contributing ∼88% of total aerosol mass. The sea-salt aerosol comprises only ∼12% of TSP. The carbonaceous aerosol exhibits spatial trend similar to that of K+ suggesting major source could be biomass burning. Secondary organic aerosol (SOA) contribution estimated by EC-tracer method suggests that up to 67% of OC can be of secondary origin. Average water soluble organic carbon to OC ratio is ∼0.9, indicates significant formation of SOA during transport of continental air masses. These results demonstrate the dominance of continental aerosol over the Arabian Sea during wintertime where deposition may have major impact on surface ocean biogeochemistry.

  2. Late quaternary time series of Arabian Sea productivity: Global and regional signals

    NASA Technical Reports Server (NTRS)

    Clemens, Steven C.; Prell, W. L.; Murray, D. W.

    1992-01-01

    Modern annual floral and faunal production in the northwest Arabian Sea derives primarily from upwelling induced by strong southwest winds during June, July, and August. Indian Ocean summer monsoon winds are, in turn, driven by differential heating between the Asian continent and the Indian ocean to the south. This differential heating produces a strong pressure gradient resulting in southwest monsoon winds and both coastal and divergent upwelling off the Arabian Peninsula. Over geologic time scales (10(exp 4) to 10(exp 6) years), monsoon wind strength is sensitive to changes in boundary conditions which influence this pressure gradient. Important boundary conditions include the seasonal distribution of solar radiation, global ice volume, Indian Ocean sea surface temperature, and the elevation and albedo of the Asian continent. To the extent that these factors influence monsoon wind strength, they also influence upwelling and productivity. In addition, however, productivity associated with upwelling can be decoupled from the strength of the summer monsoon winds via ocean mechanisms which serve to inhibit or enhance the nutrient supply in the intermediate waters of the Indian Ocean, the source for upwelled waters in the Arabian Sea. To differentiate productivity associated with wind-induced upwelling from that associated with other components of the system such as nutrient sequestering in glacial-age deep waters, we employ a strategy which monitors independent components of the oceanic and atmospheric subsystems. Using sediment records from the Owen Ridge, northwest Arabian Sea, we monitor the strength of upwelling and productivity using two independent indicators, percent G. bulloides and opal accumulation. We monitor the strength of southwest monsoon winds by measuring the grain-size of lithogenic dust particles blown into the Arabian Sea from the surrounding deserts of the Somali and Arabian Peninsulas. Our current hypothesis is that the variability associated

  3. Status of breeding seabirds on the Northern Islands of the Red Sea, Saudi Arabia.

    PubMed

    Shobrak, Mohammed Y; Aloufi, Abdulhadi A

    2014-07-01

    We undertook breeding surveys between 2010 and 2011 to assess the status of breeding birds on 16 islands in the northern Saudi Arabia. Sixteen bird species were found breeding at three different seasons; i.e. winter (Osprey), spring (Caspian and Saunder's Terns), and summer (Lesser Crested, White-cheeked, Bridled Terns). It is postulated that food availability is an important factor influencing the breeding of seabirds in the northern Saudi Arabian Red Sea. Several species laid eggs earlier in northern parts of the Red Sea than in southern parts. The predicted increases in temperatures (Ta ) could have a negative effect on species survival in the future, especially on those whose nests that are in the open. Finally, disturbance, predation and egg collection were probably the main immediate threats affecting the breeding seabird species in the northern Red Sea. PMID:24955009

  4. Status of breeding seabirds on the Northern Islands of the Red Sea, Saudi Arabia

    PubMed Central

    Shobrak, Mohammed Y.; Aloufi, Abdulhadi A.

    2013-01-01

    We undertook breeding surveys between 2010 and 2011 to assess the status of breeding birds on 16 islands in the northern Saudi Arabia. Sixteen bird species were found breeding at three different seasons; i.e. winter (Osprey), spring (Caspian and Saunder’s Terns), and summer (Lesser Crested, White-cheeked, Bridled Terns). It is postulated that food availability is an important factor influencing the breeding of seabirds in the northern Saudi Arabian Red Sea. Several species laid eggs earlier in northern parts of the Red Sea than in southern parts. The predicted increases in temperatures (Ta) could have a negative effect on species survival in the future, especially on those whose nests that are in the open. Finally, disturbance, predation and egg collection were probably the main immediate threats affecting the breeding seabird species in the northern Red Sea. PMID:24955009

  5. Tectonic development of the SW Arabian Plate margin within the central Arabian flank of the Red Sea rift system

    NASA Astrophysics Data System (ADS)

    Szymanski, E.; Stockli, D. F.; Johnson, P. R.; Kattan, F. H.; Cosca, M. A.

    2009-12-01

    The Red Sea rift system is a prime example of continental rifting and has contributed significantly to our understanding of the geologic processes that manage the rupture of continental lithosphere. Using a combined geo- and thermochronometric approach, we explore the modes and mechanisms of rift margin development by studying Red Sea rift-related geologic products along the central Saudi Arabian flank of the rift system, north of Jeddah. We use apatite and zircon (U-Th)/He thermochronometry and whole-rock 40Ar/39Ar dating of basalt to define the spatiotemporal relationship between rift flank extensional structures and rift-related harrat volcanism. This technical approach permits the reconstruction of the tectonic margin from early rift architecture, to strain distribution during progressive rifting, and through subsequent whole-scale modifications of the rift flank due to thermal and isostatic factors. Constraints on the dynamics of rift flank deformation are achieved through the collection of geologic samples along long-baseline thermochronometric transects that traverse the entire Arabian shield from the coastal escarpment to the inland Paleozoic sedimentary cover sequences. Long-baseline transects resolve the timing of rift flank uplift and reveal the pattern of lithospheric modification during the rupturing of continental lithosphere. Locally, short-baseline elevation transects map the footwall exhumation of major normal faults that delineate both the modern rift margin and inland extensional basins such as the NW-trending Hamd-Jizil basin, a prominent syn-extensional basin comprised of two distinct half-grabens (Jizil and Hamd) located NW of Medina. Diffuse lithospheric extension during the Oligo-Miocene affected a widespread area well inboard from the modern rift margin; samples from footwall blocks that bound the inland Jizil and Hamd half-grabens yield apatite (U-Th)/He cooling ages of 14.7 ± 0.9 Ma and 24.5 ± 1.5 Ma, respectively. The mid-Miocene age

  6. Geochemical evidence for anoxic deep water in the Arabian Sea during the last glaciation

    SciTech Connect

    Sarkar, A.; Bhattacharya, S.K.; Sarin, M.M. )

    1993-03-01

    Various paleoceanographic studies have indicated that the deep ocean was probably depleted in dissolved oxygen during the last glacial period ([approximately]18 kyr B.P.; [delta][sup 18]O, stage 2) compared to present time. However, direct evidence of low oxygen content in the deep waters has been lacking. Here, the authors report geochemical evidence of near anoxic conditions in the deep Arabian Sea during the entire last glacial cycle ([delta][sup 18]O; stages 2, 3, and 4). Anoxia is inferred from the concomitant enrichment of organic carbon and authigenic uranium in the glacial sections of a core from the deep eastern Arabian Sea. The anoxic conditions during the last glacial period, probably caused by a change in deep water circulation, evidently enhanced preservation of organic matter and simultaneous removal of uranium from seawater. 57 refs., 3 figs., 2 tabs.

  7. The phytoplankton bloom in the northwestern Arabian Sea during the southwest monsoon of 1979

    NASA Technical Reports Server (NTRS)

    Brock, John C.; Mcclain, Charles R.; Luther, Mark E.; Hay, William W.

    1991-01-01

    The present study investigates the biological variability of the northwestern Arabian Sea during the 1979 southwest monsoon by the synthesis of satellite ocean color remote sensing with an analysis of in situ hydrographic and meteorological data sets and the results of wind-driven modeling of upper-ocean circulation. The phytoplankton bloom peaked during August-September, extended from the Oman coast to about 65 deg E, and lagged behind the development of open-sea upwelling by at least 1 mo. The pigment distributions, hydrographic data, and model results all suggest that the boom was driven by spatially distinct upward nutrient fluxes to the euphotic zone forced by the physical processes of coastal upwelling and offshore Ekman pumping. Coastal upwelling was evident from May through September, yielded the most extreme concentrations of phytoplankton biomass, and, along the Arabian coast, was limited to the continental shelf in the promotion of high concentrations of phytoplankton.

  8. Deglacial temperature patterns in the Arabian Sea and mechanisms for Indian monsoon failure

    NASA Astrophysics Data System (ADS)

    Tierney, J. E.; Pausata, F. S. R.; deMenocal, P. B.

    2015-12-01

    Both paleoclimate data and climate model simulations demonstrate that the Indian monsoon system responds to remote coolings in the North Atlantic. The textbook examples are the stadial events associated with the last deglaciation — the Younger Dryas and Heinrich Stadial 1 — when the monsoon weakened dramatically and caused drying throughout the Indian Ocean rim. The mechanism by which the North Atlantic influences the monsoon system is not completely clear: locally cool SSTs, increases in continental albedo, and southward migration of the intertropical convergence zone have all been raised as possibilities. Here we synthesize biomarker and foraminiferal estimates of temperature to study the evolution of the Arabian Sea water column during the deglaciation and test hypotheses of monsoon failure during stadials. Alkenone and Mg/Ca data clearly indicate that the Arabian Sea cools during the YD and H1, although H1 cooling is partly obscured by the overall warming trend associated with orbital forcing and rising greenhouse gases. In contrast, TEX86 data record warmings during the YD and H1. The stark difference between the TEX86 response and the alkenone and foraminiferal data, as well as comparison with climate model simulations, indicates that TEX86 is most likely acting as a subsurface temperature proxy in the Arabian Sea over these timescales. Taken together, the paleoclimate data describe a pattern of surface cooling and subsurface warming in response to North Atlantic cooling. This oceanographic response is in excellent agreement with both timeslice and transient model simulations spanning the last deglaciation, and strongly supports the hypothesis that locally cool SSTs are a requisite for monsoon failure. Furthermore, subsurface warming causes a destratification of the Arabian Sea water column and provides a mechanism for previously observed reductions in productivity during stadial events.

  9. Moisture transport over the Arabian Sea associated with summer rainfall over Pakistan in 1994 and 2002

    NASA Astrophysics Data System (ADS)

    Ullah, Kalim; Gao, Shouting

    2012-05-01

    In this study, we aimed to elucidate the critical role of moisture transport affecting monsoon activity in two contrasting summers over the Arabian Sea during the years 1994, a relatively wet year, and 2002, a relatively dry year. A comprehensive diagnostic evaluation and comparisons of the moisture fields were conducted; we focused on the precipitation and evaporation as well as the moisture transport and its divergence or convergence in the atmosphere. Monthly mean reanalysis data were obtained from the National Centers for Environmental Prediction (NCEP-I and -II). A detailed evaluation of the moisture budgets over Pakistan during these two years was made by calculating the latent energy flux at the surface ( E-P) from the divergence of the total moisture transport. Our results confirm the moisture supply over the Arabian Sea to be the major source of rainfall in Pakistan and neighboring regions. In 1994, Pakistan received more rainfall compared to 2002 during the summer monsoon. Moisture flow deepens and strengthens over Arabian Sea during the peak summer monsoon months of July and August. Our analysis shows that vertically integrated moisture transport flux have a significant role in supplying moisture to the convective centers over Pakistan and neighboring regions from the divergent regions of the Arabian Sea and the Bay of Bengal. Moreover, in 1994, a deeper vertically integrated moisture convergence progression occurred over Pakistan compared to that in 2002. Perhaps that deeper convergence resulted in a more intense moisture depression over Pakistan and also caused more rainfall in 1994 during the summer monsoon. Finally, from the water budget analysis, it has been surmised that the water budget was larger in 1994 than in 2002 during the summer monsoon.

  10. The World's Most Isolated and Distinct Whale Population? Humpback Whales of the Arabian Sea

    PubMed Central

    Collins, Tim; Minton, Gianna; Findlay, Ken; Leslie, Matthew S.; Ponnampalam, Louisa; Baldwin, Robert; Rosenbaum, Howard

    2014-01-01

    A clear understanding of population structure is essential for assessing conservation status and implementing management strategies. A small, non-migratory population of humpback whales in the Arabian Sea is classified as “Endangered” on the IUCN Red List of Threatened Species, an assessment constrained by a lack of data, including limited understanding of its relationship to other populations. We analysed 11 microsatellite markers and mitochondrial DNA sequences extracted from 67 Arabian Sea humpback whale tissue samples and compared them to equivalent datasets from the Southern Hemisphere and North Pacific. Results show that the Arabian Sea population is highly distinct; estimates of gene flow and divergence times suggest a Southern Indian Ocean origin but indicate that it has been isolated for approximately 70,000 years, remarkable for a species that is typically highly migratory. Genetic diversity values are significantly lower than those obtained for Southern Hemisphere populations and signatures of ancient and recent genetic bottlenecks were identified. Our findings suggest this is the world's most isolated humpback whale population, which, when combined with low population abundance estimates and anthropogenic threats, raises concern for its survival. We recommend an amendment of the status of the population to “Critically Endangered” on the IUCN Red List. PMID:25470144

  11. The world's most isolated and distinct whale population? Humpback whales of the Arabian Sea.

    PubMed

    Pomilla, Cristina; Amaral, Ana R; Collins, Tim; Minton, Gianna; Findlay, Ken; Leslie, Matthew S; Ponnampalam, Louisa; Baldwin, Robert; Rosenbaum, Howard

    2014-01-01

    A clear understanding of population structure is essential for assessing conservation status and implementing management strategies. A small, non-migratory population of humpback whales in the Arabian Sea is classified as "Endangered" on the IUCN Red List of Threatened Species, an assessment constrained by a lack of data, including limited understanding of its relationship to other populations. We analysed 11 microsatellite markers and mitochondrial DNA sequences extracted from 67 Arabian Sea humpback whale tissue samples and compared them to equivalent datasets from the Southern Hemisphere and North Pacific. Results show that the Arabian Sea population is highly distinct; estimates of gene flow and divergence times suggest a Southern Indian Ocean origin but indicate that it has been isolated for approximately 70,000 years, remarkable for a species that is typically highly migratory. Genetic diversity values are significantly lower than those obtained for Southern Hemisphere populations and signatures of ancient and recent genetic bottlenecks were identified. Our findings suggest this is the world's most isolated humpback whale population, which, when combined with low population abundance estimates and anthropogenic threats, raises concern for its survival. We recommend an amendment of the status of the population to "Critically Endangered" on the IUCN Red List. PMID:25470144

  12. Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone

    PubMed Central

    Kox, Martine A.R.; Villanueva, Laura; Jetten, Mike S.M.

    2016-01-01

    Oxygen minimum zones (OMZ) are areas in the global ocean where oxygen concentrations drop to below one percent. Low oxygen concentrations allow alternative respiration with nitrate and nitrite as electron acceptor to become prevalent in these areas, making them main contributors to oceanic nitrogen loss. The contribution of anammox and denitrification to nitrogen loss seems to vary in different OMZs. In the Arabian Sea, both processes were reported. Here, we performed a metagenomics study of the upper and core zone of the Arabian Sea OMZ, to provide a comprehensive overview of the genetic potential for nitrogen and methane cycling. We propose that aerobic ammonium oxidation is carried out by a diverse community of Thaumarchaeota in the upper zone of the OMZ, whereas a low diversity of Scalindua-like anammox bacteria contribute significantly to nitrogen loss in the core zone. Aerobic nitrite oxidation in the OMZ seems to be performed by Nitrospina spp. and a novel lineage of nitrite oxidizing organisms that is present in roughly equal abundance as Nitrospina. Dissimilatory nitrate reduction to ammonia (DNRA) can be carried out by yet unknown microorganisms harbouring a divergent nrfA gene. The metagenomes do not provide conclusive evidence for active methane cycling; however, a low abundance of novel alkane monooxygenase diversity was detected. Taken together, our approach confirmed the genomic potential for an active nitrogen cycle in the Arabian Sea and allowed detection of hitherto overlooked lineages of carbon and nitrogen cycle bacteria. PMID:27077014

  13. Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone.

    PubMed

    Lüke, Claudia; Speth, Daan R; Kox, Martine A R; Villanueva, Laura; Jetten, Mike S M

    2016-01-01

    Oxygen minimum zones (OMZ) are areas in the global ocean where oxygen concentrations drop to below one percent. Low oxygen concentrations allow alternative respiration with nitrate and nitrite as electron acceptor to become prevalent in these areas, making them main contributors to oceanic nitrogen loss. The contribution of anammox and denitrification to nitrogen loss seems to vary in different OMZs. In the Arabian Sea, both processes were reported. Here, we performed a metagenomics study of the upper and core zone of the Arabian Sea OMZ, to provide a comprehensive overview of the genetic potential for nitrogen and methane cycling. We propose that aerobic ammonium oxidation is carried out by a diverse community of Thaumarchaeota in the upper zone of the OMZ, whereas a low diversity of Scalindua-like anammox bacteria contribute significantly to nitrogen loss in the core zone. Aerobic nitrite oxidation in the OMZ seems to be performed by Nitrospina spp. and a novel lineage of nitrite oxidizing organisms that is present in roughly equal abundance as Nitrospina. Dissimilatory nitrate reduction to ammonia (DNRA) can be carried out by yet unknown microorganisms harbouring a divergent nrfA gene. The metagenomes do not provide conclusive evidence for active methane cycling; however, a low abundance of novel alkane monooxygenase diversity was detected. Taken together, our approach confirmed the genomic potential for an active nitrogen cycle in the Arabian Sea and allowed detection of hitherto overlooked lineages of carbon and nitrogen cycle bacteria. PMID:27077014

  14. Recent changes in the Arabian Sea ecosystem linked to large-scale climatic events

    NASA Astrophysics Data System (ADS)

    Goes, Joaquim; do Rosario Gomes, Helga; Prabhu Matondkar, Shivprasad; de Rada, Sergio; Chai, Fei; Dwivedi, Rashmin; Thoppil, Prasad; Al-Azri, Adnan; Basu, Subhajit

    2014-05-01

    Between 1994 and 1996, the Arabian Sea became the focus of a multinational effort directed at studying ocean biological and physical processes and their links to the global carbon cycle. The results of this comprehensive, multi-disciplinary effort known as the Joint Global Flux Study (JGOFS) program provided important indications of the role of the reversal of the monsoons and the extremes in wind forcing, in causing the greatest seasonal variability of primary production and vertical flux of carbon observed in any of the world's oceans. Since the end of the JGOFS program, most contemporary shipboard investigations of primary productivity and biogeochemical processes have come mostly from small programmatically focused shipboard cruises that have been regional in scope. On the other hand, most recent large basin-scale studies have relied mainly on coupled physical-biological models and on satellite data. Here we present a synthesis of recent observations from shipboard cruises and satellites, together with modeling studies which highlight the extreme sensitivity of the Arabian Sea ecosystem to climatic events. We posit that the Arabian Sea ecosystem is undergoing rapid change as a result of changes in physical processes tied to climate change.

  15. Bio-Optical Properties of the Arabian Sea as Determined by In-Situ and SeaWifs Data

    NASA Technical Reports Server (NTRS)

    Trees, Charles C.

    1998-01-01

    The overall objective of this work was to characterize optical and fluorescence properties in the euphotic zone during two British Ocean Flux Study (BOFS) Arabian Sea cruises. This was later expanded in 1995 to include three U.S. Joint Global Ocean Flux Study (JGOFS) Arabian Sea Cruises. The region was to be divided into one or more "bio-optical provinces", within each of which a single set of regression models was to be developed to relate the vertical distribution of irradiance attenuation and normalized fluorescence (SF and NF) to remote sensing reflectance and diffuse attenuation coefficient [K(490)]. The working hypothesis was that over relatively large spatial and temporal scales, the vertical profiles of bio-optical properties were predictable.

  16. Physical processes affecting availability of dissolved silicate for diatom production in the Arabian Sea

    NASA Technical Reports Server (NTRS)

    Young, David K.; Kindle, John C.

    1994-01-01

    A passive tracer to represent dissolved silicate concentrations, with biologically realistic uptake kinetics, is successfully incorporated into a three-dimensional, eddy-resolving, ocean circulation model of the Indian Ocean. Hypotheses are tested to evaluate physical processes which potentially affect the availability of silicate for diatom production in the Arabian Sea. An alternative mechanism is offered to the idea that open ocean upwelling is primarily responsible for the high, vertical nutrient flux and consequent large-scale phytoplankton bloom in the northwestern Arabian Sea during the southwest monsoon. Model results show that dissolved silicate in surface waters available for uptake by diatoms is primarily influenced by the intensity of nearshore upwelling from soutwest monsoonal wind forcing and by the offshore advective transport of surface waters. The upwelling, which in the model occurs within 200 +/- 50 km of the coast, appears to be a result of a combination of coastal upwelling, Elkman pumping, and divergence of the coastal flow as it turns offshore. Localized intensifications of silicate concentrations appear to be hydrodynamically driven and geographically correlated to coastal topographic features. The absence of diatoms in sediments of the eastern Arabian Basin is consistent with modeled distributional patterns of dissolved silicate resulting from limited westward advection of upwelled coastal waters from the western continental margin of India and rapid uptake of available silicate by diatoms. Concentrations of modeled silicate become sufficiently low to become unavailable for diatom production in the eastern Arabian Sea, a region between 61 deg E and 70 deg E at 8 deg N on the south, with the east and west boundaries converging on the north at approximately 67 deg E, 20 deg N.

  17. The role of salinity on the dynamics of the Arabian Sea mini warm pool

    NASA Astrophysics Data System (ADS)

    Nyadjro, Ebenezer S.; Subrahmanyam, Bulusu; Murty, V. S. N.; Shriver, Jay F.

    2012-09-01

    Warmer (>28°C) sea surface temperature (SST) occurs in the South Eastern Arabian Sea (SEAS, 5°N-13°N, 65°E-76°E) during March-April, and is known as the Arabian Sea Mini Warm Pool (ASMWP). In this study, we address the role of salinity and the upper layer heat and salt budgets in the formation and collapse of this ASMWP. An assessment of Level 3 sea surface salinity (SSS) data from the Soil Moisture and Ocean Salinity (SMOS) satellite mission for the year 2010 shows that SMOS is able to capture the SSS variability in the SEAS. Analysis of temperature, salinity and currents from the Hybrid Coordinate Ocean Model during 2003-06, and, in situ temperature and salinity data from Argo floats during 2003-06 for the SEAS revealed that low salinity waters cap the top 60 m of the SEAS in January-February. This minimum salinity was concurrent with the formation of a barrier layer and with the time when the SEAS gained little net heat flux and the equatorward flowing East India Coastal Current (EICC) fed low saline waters into the SEAS. Subsequently, the net heat flux increased to a peak value under the increased salinity stratification, leading to the formation of the ASMWP in March-April. The ASMWP collapsed by May due to increase in SSS and the associated weakening of the salinity stratification. The monsoon onset vortex in May 2004 could be related to the minimum SSS that occurred in February 2004, followed by higher SST and heat content of the ASMWP in April 2004.

  18. A new species of the rare nematode genus Paramicrolaimus Wieser, 1954 (Chromadorida: Paramicrolaimidae) from the south eastern Arabian Sea.

    PubMed

    Jacob, Jini; Jaleel, Abdul K U; Vijayan, Anil Kumar

    2015-01-01

    A new paramicrolaimid nematode, Paramicrolaimus damodarani sp. nov., is described based on specimens from the continental shelf (95 m) of the south eastern Arabian Sea. Paramicrolaimus damodarani sp. nov. differs from other known species of the genus in having a smaller body size, form of the spicular apparatus, presence of 7 cuticularised protruding precloacal supplements and a strongly cuticularised terminal spinneret. This is the first record of the genus Paramicrolaimus from the northern Indian Ocean. A pictorial key to the four species of Paramicrolaimus is also provided, supplemented with comparative characters, based on published information. PMID:25660800

  19. Mechanisms and Effects of Summertime Transport of African Dust Through the Tokar Mountain Gap to the Red Sea and Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Kalenderski, S.; Stenchikov, G. L.

    2015-12-01

    Very high dust loading over the Red Sea region in summer strongly affects the nutrition balance and thermal and dynamic regimes of the sea. The observations suggest that small-scale local dynamic and orographic effects, from both the Arabian and African sides, strongly contribute to dust plume formation. To better understand and quantify these processes we present here the first high resolution modeling study of the dust outbreak phenomena in June 2012 over East Africa, the Red Sea, and the Arabian Peninsula using the WRF-Chem model. We identified several dust generating dynamical processes that range from convective to synoptic scales, including: synoptic cyclones, nocturnal low-level jets, and cold pools of mesoscale convective systems. The simulations reveal an eastward transport of African dust across the Red Sea. Over the northern part of the Red Sea most of the dust transport occurs beyond 2 km above ground level and is strengthened by a pressure gradient formed by low pressure over the eastern Mediterranean and high pressure over the Arabian Peninsula. Across the central and southern parts of the Red Sea dust is mostly transported below 2 km height. During the study period dust is a dominant contributor (87%) to aerosol optical depth (AOD), producing a domain average cooling effect of -12.1 W m-2 at surface, a warming of 7.1 W m-2 in the atmosphere, and a residual cooling of -4.9 W m-2 at the top of the atmosphere. WRF-Chem simulations demonstrate that both dry and wet deposition processes contribute significantly to dust removal from the atmosphere. During the dust outbreak 49.2 Tg of dust deposits within the calculation domain, which is approximately 90% of the total dust emission of 54.5 Tg. Model results compare well with available ground-based and satellite observations but generally underestimate the observed AOD maximum values.

  20. Spacebased Observations of the Oceanic Responses to Monsoons in South China Sea and Arabian Sea

    NASA Technical Reports Server (NTRS)

    Xie, Xiao-Su; Liu, W. Timothy

    2000-01-01

    A large percentage of the world's population and their agrarian economy must endure the vagaries of the monsoons over the tropical oceans between Africa and the Philippines. We know very little about the oceanic responses to changes of the monsoon in the South China Sea (SCS), which is under the influence of the East Asian Monsoon System, and the Arabian Sea (AS), which is dominated by the Indian Monsoon System; oceanic observations are sparse in both regions. Data from spaceborne microwave scatterometers and radiometers have been used to estimate the two major atmospheric forcing, momentum flux and latent heat flux (LHF), which change with the monsoon winds. Spaceborne sensors also observed the surface signatures of the oceanic response: SST and sea level changes (SLC. Sufficient durations of these data have recently become available to allow the meaningful studies of the annual cycles and interannual anomalies. In SCS, the winter monsoon is strong and steady but the summer monsoon is weak and has large intraseasonal fluctuations. In AS, the summer monsoon is much stronger than the winter monsoon. Significant correlations between LHF and SST tendency, and between curl of wind stress and SLC are found in both oceans. In the north SCS, winds are strong and dry, LHF is high, and ocean cooling is also large in fall; LHF is low and the ocean warms up in spring. In AS, LHF and SST tendency have a semi annual period; LHF is high in summer when the wind is strong and in winter when the wind is dry. Along the coast of Oman, the strong summer southwest monsoon causes intense upwelling, low SST and LHF in summer; such wind-driven SST changes is not as obvious along the Vietnam coast because of the weaker summer monsoon. The negative correlation between curl of wind stress and SLC found in the central basins of both SCS and AS agrees with a simple Ekman pumping scenario. Cyclonic winds drive surface divergence and upwelling in the ocean; the rise of the thermocline causes

  1. An overview of historical harmful algae blooms outbreaks in the Arabian Seas.

    PubMed

    Al Shehhi, Maryam R; Gherboudj, Imen; Ghedira, Hosni

    2014-09-15

    Harmful algae blooms (HABs), often composed of oceanic plants called phytoplankton, are potentially harmful to the marine life, water quality, human health, and desalination plants, a chief source of potable water in the Arabian Gulf. The last decade has seen a noticeable increase in the frequency of HAB outbreaks in the Arabian Seas. This increase is mainly caused by the unprecedented economic growth in the region. The increased human activities in the region have added more stress to the marine environment and contributed to the changes observed in the properties of the marine ecosystem: high temperature and salinity, high evaporation rates, limited freshwater inflow, shallow nature, pollution. However, very few studies that cover the HAB outbreaks, causes, impacts and biological characteristics over the region have been published. This work presents a comprehensive overview of historical HAB outbreaks recorded in the region, and investigate their causes and impact, and seasonal variability. PMID:25038981

  2. A Model Study on Understanding the Influence of Arabian Sea Mini Warm Pool on Monsoon Onset Vortex Formation

    NASA Astrophysics Data System (ADS)

    Deepa, R.; Gnanaseelan, C.; Deshpande, M.; Salvekar, P. S.

    2012-09-01

    The Arabian Sea Mini Warm Pool (MWP) is a zone of anomalously high Sea Surface Temperature (SST) in the Arabian Sea over which the monsoon onset vortex (OV) is believed to form. In the present study it is shown that this MWP is a key parameter in the development of the onset vortex. Atmospheric model experiments are carried out with and without MWP to understand the mechanisms for the formation of the OV. The model failed to simulate the OV with the cold SST advocating the importance of the MWP for the formation of the OV. The MWP is found to favor the formation of the onset vortex in the east central Arabian Sea by increasing the horizontal shear and decreasing the vertical wind shear.

  3. Magmatic history of Red Sea rifting: perspective from the central Saudi Arabian coastal plain.

    USGS Publications Warehouse

    Pallister, J.S.

    1987-01-01

    An early stage of magmatism related to Red Sea rifting is recorded by a Tertiary dyke complex and comagmatic volcanic rocks exposed on the central Saudi Arabian coastal plain. Field relations and new K/Ar dates indicate episodic magmatism from approx 30 m.y. to the present day and rift-related magmatism as early as 50 m.y. Localized volcanism and sheeted dyke injection ceased at approx 20 m.y. and were replaced by the intrusion of thick gabbro dykes, marking the onset of sea-floor spreading in the central Red Sea. Differences in the depths and dynamics of mantle-melt extraction and transport may account for the transition from mixed alkaline-subalkaline bimodal magmatism of the pre-20 m.y. rift basin to exclusively subalkaline (tholeiitic) magmatism of the Red Sea spreading axis and the alkali basalt volcanism inland.-L.C.H.

  4. Lithospheric and Upper-Mantle Structure of the Red Sea and Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Hansen, S. E.; Schwartz, S. Y.; Rodgers, A. J.; Gaherty, J. B.; Al-Amri, A. M.

    2007-12-01

    Using broadband seismic data recorded by various networks, a variety of techniques have been employed to investigate the lithospheric and upper-mantle structure of the Red Sea and Arabian Peninsula. This presentation will summarize our findings and conclusions about the tectonic evolution and current state of the Arabian Plate. S-wave receiver functions provide constraints on the lithospheric thickness and reveal very thin lithosphere (40-80 km) along the Red Sea coast, which thickens rapidly toward the interior of the Arabian Shield (100-120 km). A step of 20-40 km in lithospheric thickness is also observed at the Shield-Platform boundary. Mantle anisotropy has been analyzed using shear-wave splitting of teleseismic SKS waveforms. The consistent north-south oriented fast directions are not adequately explained by end-member models of fossilized anisotropy and present-day plate motion and have instead been explained by a combination of plate- and density-driven flow in the asthenosphere. Further constraints on the upper mantle velocity and anisotropy have been obtained by jointly inverting the receiver function constraints with frequency dependent surface wave phase delays. The results demonstrate that the thin lithospheric lid is underlain by a pronounced low-velocity zone and that anisotropy is required in both the lithosphere and asthenosphere. Attenuation and thermal estimates are also being explored and preliminary results will be presented. The combined results of these studies support a two-stage rifting history for the Red Sea, where extension and erosion by asthenospheric flow are responsible for variations in the lithospheric thickness. These lithospheric variations guide asthenospheric flow beneath western Arabia and the Red Sea, leading to a large-scale thermal anomaly that is associated with Cenozoic uplift and volcanism. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National

  5. Interannual variability in phytoplankton blooms observed in the northwestern Arabian Sea during the southwest monsoon

    NASA Technical Reports Server (NTRS)

    Brock, John C.; Mcclain, Charles R.

    1992-01-01

    Interannual changes in the strength and seasonal evolution of the 1979 through 1982 surface-level southwest monsoon winds are related to variations in the summer phytoplankton bloom of the northwestern Arabian Sea by synthesis of satellite ocean-color remote sensing with analysis of in-situ hydrographic and meteorological data sets. The 1979-1981 southwest monsoon phytoplankton blooms in the northwest Arabian Sea peaked during August-September, extended from the Omani coast to about 6 E, and appeared to lag the development of open-sea upwelling by at least 1 month. In all 3 years the bloom was driven by spatially distinct upward nutrient fluxes to the euphotic zone forced by the physical processes of coastal upwelling and offshore Ekman pumping. Coastal upwelling was evident from May through September, yielded the most extreme concentrations of phytoplankton biomass, and along the Omani coast was limited in its impact on upper ocean biological variability to the continental shelf. Ekman pumping stimulated the development of a broad open-ocean component of the southwest monsoon phytoplankton bloom oceanward of the Omani shelf. Phytoplankton biomass on the Omani continental shelf was increased during both the early and late phases of the 1980 southwest monsoon due to stronger coastal upwelling under the most intense southwesterly winds of the four summers investigated. Diminished coastal upwelling during the early phase of the weak 1982 southwest monsoon resulted in a coastal bloom that reached a mean phytoplankton-pigment concentration that was 28 percent of that seen in 1980. The lack of a strong regional northwestern Arabian Sea bloom in late summer 1982 is attributed to the development of persistent, shallow temperature stratification that rendered Ekman pumping less effective in driving upward nutrient fluxes.

  6. Mesoscale variability of water masses in the Arabian Sea as revealed by ARGO floats

    NASA Astrophysics Data System (ADS)

    Carton, X.; L'Hegaret, P.; Baraille, R.

    2012-03-01

    By analysing ARGO float data over the last four years, a few aspects of the mesoscale variability of water masses in the Arabian Sea are described. The Red Sea Outflow Water (RSOW) is concentrated in the Southwestern Gulf of Aden, in particular when a cyclonic gyre predominates in this region. Salinities of 36.5 and temperatures of 16 °C are found in this area at depths between 600 and 1000 m. RSOW is more dilute in the eastern part of the Gulf, where intense and relatively barotropic gyres mix it with Indian ocean Central Water. RSOW is also detected along the northeastern coast of Socotra, and fragments of RSOW are found between one and three degrees of latitude north of this island. In the whole Gulf of Aden, the correlation between the deep motions of the floats and the sea-level anomaly measured by altimetry is strong, at regional scale. The finer scale details of the float trajectories are not sampled by altimetry and are often related to the anomalous water masses that the floats encounter. The Persian Gulf Water (PGW) is found in the float profiles near Ras ash Sharbatat (near 57° E, 18° N), again with 36.5 in salinity and about 18-19 °C in temperature. These observations were achieved in winter when the southwestward monsoon currents can advect PGW along the South Arabian coast. Fragments of PGW were also observed in the Arabian Sea between 18 and 20° N and 63 and 65° E in summer, showing that this water mass can escape the Gulf of Oman southeastward, during that season. Kinetic energy distributions of floats with respect to distance or angle share common features between the two regions (Gulf of Aden and Arabian Sea), in particular peaks at 30, 50 and 150 km scales and along the axis of monsoon currents. Hydrological measurements by floats are also influenced by the seasonal variations of PGW and RSOW in these regions.

  7. High-resolution regional modeling of summertime transport and impact of African dust over the Red Sea and Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Kalenderski, Stoitchko; Stenchikov, Georgiy

    2016-06-01

    Severe dust outbreaks and high dust loading over Eastern Africa and the Red Sea are frequently detected in the summer season. Observations suggest that small-scale dynamic and orographic effects, from both the Arabian and African sides, strongly contribute to dust plume formation. To better understand these processes, we present here the first high-resolution modeling study of a dust outbreak in June 2012 developed over East Africa, the Red Sea, and the Arabian Peninsula. Using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) component, we identified several dust generating dynamical processes that range from convective to synoptic scales, including synoptic cyclones, nocturnal low-level jets, and cold pools of mesoscale convective systems. The simulations reveal an eastward transport of African dust across the Red Sea. Over the northern part of the Red Sea, most of the dust transport occurs above 2 km height, whereas across the central and southern parts of the sea; dust is mostly transported below 2 km height. Dust is the dominant contributor (87%) to the aerosol optical depth, producing a domain average cooling effect of -12.1 W m-2 at the surface, a warming of 7.1 W m-2 in the atmosphere, and a residual cooling of -4.9 W m-2 at the top of the atmosphere. Both dry and wet deposition processes contribute significantly to dust removal from the atmosphere. Model results compare well with available ground-based and satellite observations but generally underestimate the observed maximum values of aerosol optical depth. The satellite-retrieved mean optical depth at some locations is underestimated by a factor of 2. A sensitive experiment suggests that these large local differences may result from poor characterization of dust emissions in some areas of the modeled domain. In this case study we successfully simulate the major fine-scale dust generating dynamical processes, explicitly resolving convection and haboob formation. The future

  8. Physiographic discontinuity along the Levant-Margin hinge-belt of the Arabian Plate (Late Cenomanian, northern Israel)

    NASA Astrophysics Data System (ADS)

    Frank, Ran; Buchbinder, Binyamin; Benjamini, Chaim

    2014-07-01

    The paleo-depositional hinge-belt of the Levant is a zone of rapid proximal-to-distal carbonate facies transitions that defined the western edge of the passive Mesozoic Levant Margin of the Arabian Plate. It was striking parallel to the present day Mediterranean coastline, from northern Sinai to northern Lebanon, but in the mid-Cretaceous a “gap zone”, in which the facies transitions are unclear, extended from northern Israel to southern Mt. Lebanon. This study examines the paleo-physiography and sedimentary evolution in this “gap zone” in the Late Cenomanian of northern Israel. The sedimentary evolution in this region is reflected by five genetic-stratigraphic units representing systems tracts, which were proximal in the Galilee region to the north and distal to the SSW in the Carmel region. During the early Late Cenomanian a carbonate ramp sloped gently from the Galilee towards the Carmel region. Later in the Cenomanian the Galilean part of the ramp was strongly uplifted and faulting enhanced the topography of this region. A steep SSW-facing slope was formed in the Galilee, subdivided into extensional basins tens to hundreds of meters in length. Carbonate sand filled these small basins and was mass-transported further downslope, forming sheeted calciturbidites to the south in the Carmel region. This depositional phase terminated in sea-level fall and subaerial exposure. During the latest Cenomanian, faulting was renewed in the Galilee region, muddy carbonate was deposited on the slope and shelf, and debrites and slides were mass-transported downslope as far as the Carmel region. This depositional phase ended by a second episode of subaerial exposure that was followed by Early Turonian sea-level rise. The direction of mass transport in this region and the trend of proximal-to-distal facies transitions, as well as the strike of the Cenomanian faults, indicate that the depositional strike of the Levantine hinge-belt shifted in this region toward the east

  9. Seasonal and interannual variations in the nitrogen cycle in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Rixen, T.; Baum, A.; Gaye, B.; Nagel, B.

    2014-10-01

    The Arabian Sea plays an important role in the marine nitrogen cycle because of its pronounced mid-water oxygen minimum zone (OMZ) in which bio-available nitrate (NO3-) is reduced to dinitrogen gas (N2). As the nitrogen cycle can respond fast to climate-induced changes in productivity and circulation, the Arabian Sea sediments are an important palaeoclimatic archive. In order to understand seasonal and interannual variations in the nitrogen cycle, nutrient data were obtained from the literature published prior to 1993, evaluated, and compared with data measured during five expeditions carried out in the framework of the Joint Global Ocean Flux Study (JGOFS) in the Arabian Sea in 1995 and during a research cruise of RV Meteor in 2007. The data comparison showed that the area characterized by a pronounced secondary nitrite maximum (SNM) was by 63% larger in 1995 than a similarly determined estimate based on pre-JGOFS data. This area, referred to as the core of the denitrifying zone, showed strong seasonal and interannual variations driven by the monsoon. During the SW monsoon, the SNM retreated eastward due to the inflow of oxygen-enriched Indian Ocean Central Water (ICW). During the NE monsoon, the SNM expanded westward because of the reversal of the current regime. On an interannual timescale, a weaker SW monsoon decreased the inflow of ICW from the equatorial Indian Ocean and increased the accumulation of denitrification tracers by extending the residence time of water in the SNM. This is supported by palaeoclimatic studies showing an enhanced preservation of accumulative denitrification tracers in marine sediments in conjunction with a weakening of the SW monsoon during the late Holocene.

  10. The Effect of the South Asia Monsoon on the Wind Sea and Swell Patterns in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro

    2015-04-01

    Ocean surface gravity waves have a considerable impact on coastal and offshore infrastructures, and are determinant on ship design and routing. But waves also play an important role on the coastal dynamics and beach erosion, and modulate the exchanges of momentum, and mass and other scalars between the atmosphere and the ocean. A constant quantitative and qualitative knowledge of the wave patterns is therefore needed. There are two types of waves at the ocean surface: wind-sea and swell. Wind-sea waves are growing waves under the direct influence of local winds; as these waves propagate away from their generation area, or when their phase speed overcomes the local wind speed, they are called swell. Swell waves can propagate thousands of kilometers across entire ocean basins. The qualitative analysis of ocean surface waves has been the focus of several recent studies, from the wave climate to the air-sea interaction community. The reason for this interest lies mostly in the fact that waves have an impact on the lower atmosphere, and that the air-sea coupling is different depending on the wave regime. Waves modulate the exchange of momentum, heat, and mass across the air-sea interface, and this modulation is different and dependent on the prevalence of one type of waves: wind sea or swell. For fully developed seas the coupling between the ocean-surface and the overlaying atmosphere can be seen as quasi-perfect, in a sense that the momentum transfer and energy dissipation at the ocean surface are in equilibrium. This can only occur in special areas of the Ocean, either in marginal seas, with limited fetch, or in Open Ocean, in areas with strong and persistent wind speed with little or no variation in direction. One of these areas is the Arabian Sea, along the coasts of Somalia, Yemen and Oman. The wind climate in the Arabian sea is under the direct influence of the South Asia monsoon, where the wind blows steady from the northeast during the boreal winter, and

  11. Retreived bacteria from Noctiluca miliaris (green) bloom of the northeastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Basu, Subhajit; Matondkar, S. G. Prabhu; Furtado, Irene

    2013-01-01

    In recent years, seasonal blooms of the dinoflagellate Noctiluca miliaris have appeared in the open-waters of the northern Arabian Sea (NAS). This study provides the first characterization of bacteria from a seasonal bloom of green Noctiluca of NAS (20°N-17°N and 64°E-70°E), during the spring-inter-monsoon cruise of Sagar Sampada 253, in March 2007. Bacterial growth as assessed by most-probable number (MPN) and plate counts, revealed `variable-physiotypes' over a wide range of salinities (0%-25% w/v NaCl), pH levels (5-8.5), and organic nutrient strengths, in comparison to non-bloom waters. MPN indices of bacteria in surface waters of bloom stations *DWK and *PRB, corresponded to (3.08-4.41)×103 cells/mL at 3.5% NaCl (w/v), and (2.82-9.49)×102 cells/mL at 25% (w/v) NaCl in tryptone-yeast extract broth (TYE). Plate counts were (1.12-4)×106 CFU/mL at 0% (w/v) NaCl, (1.28-3.9)×106 CFU/mL at 3.5% (w/v) NaCl, and (0.4-7)×104 CFU/mL at 25% NaCl (w/v) on TYE. One-tenth-strength Zobell's gave (0.6-3.74)×105 CFU/mL at pH 5 to (3.58-7.5)×105 CFU/mL at pH 8.5. These bacteria were identified to the genera Bacillus, Cellulomonas, Staphylococcus, Planococcus, Dietzia, Virgibacillus, Micrococcus, Sporosarcinae, Leucobacter, and Halomonas. The identity of three strains (GUFBSS253N2, GUFBSS253N30, and GUFBSS253N84) was confirmed through 16S rDNA sequence homology as Bacillus cohnii, Bacillus flexus, and Bacillus cereus. The ˜2-3-fold higher plate counts of culturable bacteria from the open-waters of the NAS indicate that these bacteria could critically determine the biogeochemical dynamics of the bloom and its milieu. The role of these bacteria in sustaining/terminating the bloom is under evaluation.

  12. Present-Day Kinematics of the Dead Sea Transform and Internal Deformation within the Sinai and Arabian Plates

    NASA Astrophysics Data System (ADS)

    Gomez, F. G.; Yassminh, R.; Cochran, W. J.; Reilinger, R. E.; Barazangi, M.

    2015-12-01

    An updated GPS velocity field along the Dead Sea Fault (DSF) provides a basis for assessing off-transform strain within the Sinai and Arabian plates along entire length of this left-lateral, continental transform. As one of the main tectonic elements in the eastern Mediterranean region, an improved kinematic view of the DSF elucidates the broader understanding of the regional tectonic framework, as well as contributes to refining the earthquake hazard assessment. Reconciling short-term (geodetic) measurements of crustal strain with neotectonic data on fault movements can yield insight into the mechanical and rheological properties of crustal deformation associated with transform tectonics. In addition to regional continuous GPS stations, this study assembles results from campaign GPS networks in Syria, Lebanon, and Jordan spanning more than a decade. 1-sigma uncertainties on velocities range from less than 0.4 mm/yr (continuous stations and older GPS survey sites) to about 1.0 mm/yr (newer survey sites). Analyses using elastic block models suggest slip rates of 4.0 - 5.0 mm/yr along the southern and central DSF and slip rates of 2.0 - 3.0 mm/yr along the northern DSF, and fault locking depths also vary along strike of the transform. Furthermore, the spatial distribution of GPS observations permits analyzing residual strains within the adjacent plates, after plate boundary strain is removed. A key observation is horizontal stretching within the Sinai plate, which may be related to pull by the subducted slab of the Sinai plate. Within the Arabian plate, areas of horizontal stretching generally correlate with locations of Quaternary volcanism.

  13. Arabian Sea cyclone: Structure analysis using satellite data

    NASA Astrophysics Data System (ADS)

    Rafiq, Lubna; Blaschke, Thomas; Tajbar, Sapna

    2015-11-01

    Advances in earth observation technology over the last two decades have resulted in improved forecasting of various hydrometeorological-related disasters. In this study the severe tropical cyclone Gonu (2-7 June, 2007) was investigated using multi-sensor satellite data sets (i.e. AIRS, METEOSAT, MODIS and QSCAT data) to monitor its overall structure, position, intensity, and motion. A high sea surface temperature and warm core anomalies (at 200 hPa and above) with respect to the pressure minima in the central core were found to have influenced the pattern of development of the tropical cyclone. High relative humidity in the middle troposphere was aligned with temperature minima at 850 hPa and 700 hPa; high winds (above 120 knots) and closed pressure contours were observed during the intensification stage. A contour analysis of outgoing longwave radiation (OLR) provided an explanation for the direction of movement of the cyclone. The translational movement and velocities (ground speed) of the tropical cyclone were calculated using the surface pressure of the cyclone's central core. Statistical analyses revealed a strong correlation between the maximum wind speeds within the cyclone and various atmospheric parameters. We conclude with a discussion of the significance of these findings with regard to cyclone forecasting within the framework of early warning and disaster management.

  14. The secondary calcification of Neogloboquadrina pachyderma assemblages in Arabian Sea waters and surface sediments

    NASA Astrophysics Data System (ADS)

    Abdolalipour, Samereh; Schulz, Hartmut; Darling, Kate F.

    2014-05-01

    The planktic foraminifer Neogloboquadrina pachyderma (N. pachyderma (sin); Darling et al., 2006) has been recently considered as a (paleo) climatic index in Arabian Sea waters, where increased abundance correlates to the South West monsoon upwelling. Genetic characterization of living specimens collected in multinets off the Oman margin and in the central Arabian Sea indicate the presence of an new genotype of N. pachyderma (Type VIII) (Darling et al., submitted) in the northwestern Indian Ocean. Ecological investigation on these samples reveals that this new genotype, which is the only one to date found in this region, can tolerate warm water temperatures of up to 28° C. It was also found alive below the photic zone within the prominent oxygen minimum zone (OMZ) of the Arabian Sea. To extend our knowledge and understanding of this N. pachyderma Type VIII genotype, we have focused on a morphological analysis of randomly picked specimens (live and dead) from the multinets collected from 200 m down to 700 m water column and from core top sediments distributed over a wide range of water depths (607-3951 m) off the Oman margin in the Arabian Sea. We here use Scanning Electron Microscopy (SEM) to determine the size, shape variation and test wall structure of the penultimate chamber. High resolution measurements confirm the model of chamber growth in non-spinose bilamellar foraminifera of a three or four-layered test wall. As ontogenetic calcite, we were able to visualize the inner lining, the outer layer and the outermost layer formed during the growth of the ultimate chamber. Some of the specimens also showed a fourth layer, which can be attributed to encrustation, observed in higher-latitude specimens of both hemispheres to result from secondary calcification as a terminal step in ontogenetic maturation. To verify the test wall growth and secondary calcification the measurements of the layers were related to the maximum test diameter of the shell. The measurement

  15. Monsoon-driven vertical fluxes of organic pollutants in the western Arabian Sea

    SciTech Connect

    Dachs, J.; Bayona, J.M.; Ittekkot, V.; Albaiges, J.

    1999-11-15

    A time series of sinking particles from the western Arabian Sea was analyzed for aliphatic and polycyclic aromatic hydrocarbons, polychlorinated biphenyls, 4,4{prime}-DDT and 4,4{prime}-DDE, to assess the role of monsoons on their vertical flux in the Indian Ocean. Concurrently, molecular markers such as sterols and linear and branched alkanes were analyzed enabling the characterization of the biogenic sources and biogeochemical processes occurring during the sampling period. Hierarchical cluster analysis (HCA) of the data set of concentrations and fluxes of these compounds confirmed a seasonal variability driven by the SW and NE monsoons. Moreover, the influence of different air masses is evidenced by the occurrence of higher concentrations of DDT, PCBs, and pyrolytic PAHs during the NE monsoon and of fossil hydrocarbons during the SW monsoon. Total annual fluxes to the deep Arabian Sea represent an important removal contribution of persistent organic pollutants, thus not being available for the global distillation process (volatilization and atmospheric transport from low or mid latitudes to cold areas). Therefore, monsoons may play a significant role on the global cycle of organic pollutants.

  16. Dtection of Sea Level Rise within the Arabian Gulf Using Space Based GNSS Measurements and Insitu Tide Gauge data

    NASA Astrophysics Data System (ADS)

    Alothman, Abdulaziz; Ayhan, Mehmet

    In the 21st century, sea level rise is expected to be about 30 cm or even more (up to 60 cm). Saudi Arabia has very long coasts of about 3400 km and hundreds of islands. Therefore, sea level monitoring may be important in particular along coastal low lands on Red Sea and Arabian Gulf coasts. Arabian Gulf is connected to Indian Ocean and lying along a parallel course in the south-west of the Zagros Trust Belt. We expect vertical land motion within the area due to both tectonic structures of the Arabian Peninsula and oil production activities. Global Navigation Satellite System (GNSS) Continues observations were used to estimate the vertical crustal motion. Bahrain International GPS Service (IGS-GPS) station is the only continuous GPS station accessible in the region, and it is close to the Mina Sulman tide gauge station in Bahrain. The weekly GPS time series of vertical component at Bahrain IGS-GPS station referring to the ITRF97 from 1999.2 to 2008.6 are used in the computation. We fitted a linear trend with an annual signal and a break to the GPS vertical time series and found a vertical land motion rate of 0.46 0.11 mm/yr. To investigate sea level variation within the west of Arabian Gulf, monthly means of sea level at 13 tide gauges along the coast of Saudi Arabia and Bahrain, available in the database of the Permanent Service for Mean Sea Level (PSMSL), are studied. We analyzed separately the monthly mean sea level measurements at each station, and estimated secular sea level rate by a robust linear trend fitting. We computed the average relative sea level rise rate of 1.96 0.21 mm/yr within the west of Arabian Gulf based on 4 stations spanning longer than 19 years. Sea level rates at the stations are first corrected for vertical land motion contamination using the ICE-5G v1.2 VM4 Glacial Isostatic Adjustment (GIA) model, and the average sea level rate is found 2.27 0.21 mm/yr. Assuming the vertical rate at Bahrain IGS-GPS station represents the vertical rate

  17. Homogeneity of coral reef communities across 8 degrees of latitude in the Saudi Arabian Red Sea.

    PubMed

    Roberts, May B; Jones, Geoffrey P; McCormick, Mark I; Munday, Philip L; Neale, Stephen; Thorrold, Simon; Robitzch, Vanessa S N; Berumen, Michael L

    2016-04-30

    Coral reef communities between 26.8 °N and 18.6 °N latitude in the Saudi Arabian Red Sea were surveyed to provide baseline data and an assessment of fine-scale biogeography of communities in this region. Forty reefs along 1100 km of coastline were surveyed using depth-stratified visual transects of fish and benthic communities. Fish abundance and benthic cover data were analyzed using multivariate approaches to investigate whether coral reef communities differed with latitude. A total of 215 fish species and 90 benthic categories were recorded on the surveys. There were no significant differences among locations in fish abundance, species richness, or among several diversity indices. Despite known environmental gradients within the Red Sea, the communities remained surprisingly similar. The communities do, however, exhibit subtle changes across this span of reefs that likely reflect the constrained distributions of several species of reef fish and benthic fauna. PMID:26608504

  18. Quaternary climate change on the northern margins of Saharo-Arabian Desert with possible impact on human evolution, evidence from Negev Desert speleothems, Israel

    NASA Astrophysics Data System (ADS)

    Vaks, A.; Bar-Matthews, M.; Ayalon, A.; Matthews, A.; Halicz, L.; Frumkin, A.

    2006-12-01

    The Saharo-Arabian Desert belt is the largest and driest desert in the world and its margins are vulnerable to climatic change. The paleoclimate of the northern margins of Saharo-Arabian Desert is not yet fully understood, and it is the subject of our study. The Negev Desert, southern Israel, located in the northern part of the Saharo-Arabian Desert is ideal for paleoclimate research, because of its very steep north-south precipitation gradient and numerous caves rich with carbonate cave deposits (speleothems). Speleothems grow only when precipitation is high enough to enable meteoric water to reach the caves. No present day speleothem deposition occurs in the Negev Desert. The aims of the study were: timing of the humid periods by U-Th dating of the speleothem deposition periods; origin of the rainfall by speleothem δ18O and fluid inclusions δ2H; correlations between local and global climate changes and between the climate changes to out of Africa dispersals of Early Modern Humans (EMH). Speleothems were collected from 7 caves located on the north-south transect of the Negev Desert, between 300 mm to 30 mm isohyets. Whereas in the Mediterranean climate zone (>350 mm) of central and northern Israel the speleothem deposition was continuous, in the Negev Desert periods of speleothem deposition alternated with multiple hiatuses. In the mildly arid transition zone of northern Negev (300 to 150 mm) speleothem deposition occurred most of the time during the last 210 ka, with hiatuses at 150-144 ka, ~140 ka, 117-96 ka, 93-85 ka, 25- 23 ka, and 14-0 ka. In present-day arid and hyper-arid zone of central and southern Negev (150 to 30 mm) no speleothem deposition occurred most of the last 350 ka, with humid intervals at 350-290 ka, 220-190 ka, 137- 110 ka, and ~85 ka. The origin of the precipitation in the Negev Desert during these intervals was from Eastern Mediterranean Sea, i. e. mid-latitude cyclones (as present day). The latter conclusion is based on three evidences

  19. Evidence for eddy formation in the eastern Arabian Sea during the northeast monsoon

    NASA Technical Reports Server (NTRS)

    Bruce, John G.; Johnson, Donald R.; Kindle, John C.

    1994-01-01

    The seasonal formation of a large (500-800 km diameter) anticyclonic eddy in the upper 300-400 m of the eastern Arabian Sea during the northest monsoon period (December-April) is indicated fom hydrographic and satellite altimetry sea level observations, as well as from numerical model experiments. The center of the eddy circulation is approximately 10 deg N, 70 deg E, just to the west of the north-south Laccadive Island chain. In this paper the eddy is called the Laccadive High (LH). In some ways it is like a mirrorlike counterpart to the Great Whirl that develops during the southwest monsoon of the Somali coast (western Arabian Sea). The LH occurs at the same latitude but on the opposite side of the basin during the reversed monsoon. It is different from the Great Whirl, however, in its formation process, its intensity, and its decay. The hydrographic data obtained from surveys all during a single season give sufficiently close station spacing to allow reasonable contouring of the geopotential surfaces and of the properties within and around the LH region with minimum time aliasing. The Geostat altimeter record extends over 4 years, during which the seasonal variability of the LH indicates a dynamic relief of approximately 15-20 cm, which is in good agreement with the hydrographics observations. The altimetry time series also suggests a westward translation of the LH by January with a subsequent dissipation in midbasin. The model used is a wind-forced three-layer primitive equation model which depicts a LH agreement with the timing, position, and amplitude of both the hydrographic and altimetric measurements. The numerical simulation includes a passive tracer located in the Western Bay of Bengal; the western advection of the tracer around the south coasts of Sri Lanka and India in December and January is consistent with the appearance of low-salinity water observed to extend into the Arabian Sea during this period. The modeling studies suggest that both local and

  20. Deep-sea benthic foraminiferal species diversity in the NE Atlantic and NW Arabian sea: a synthesis

    NASA Astrophysics Data System (ADS)

    Gooday, Andrew J.; Bett, Brian J.; Shires, Rizpah; Lambshead, P. John D.

    1998-01-01

    We present a synthesis of species diversity data (Fishers' alpha index, Shannon-Wiener (log 2), ES(100), Rank 1 Dominance) for "live" (stained) foraminifera from five bathyal (1340 m depth) and abyssal (4450-4950 m depth) sites in the NE Atlantic and a 3400 m-deep site in the Arabian Sea. Three Atlantic sites (Porcupine Seabight, BIOTRANS, Porcupine Abyssal Plain) are subject to seasonal phytodetritus inputs that support low diversity populations (8-17 species). In other respects the foraminifera are highly diverse. The meiofaunal fractions (>45 or >63 μm; including fragmented and phytodetritus species) of abyssal Atlantic samples yielded >110 and >170 species in the 0-1 cm and 0-10 cm layers, respectively; the Arabian Sea sample (0-1 cm layer only) yielded 232 species. In both cases, values for diversity measures were very high. Diversity was rather lower in bathyal Porcupine Seabight samples (0-1 cm layer), which yielded <100 species. The foraminiferal macrofauna (>500 μm; Porcupine and Madeira Abyssal Plains) was also speciose (113-133 species), but diversity measures were lower and dominance higher than for the meiofauna. All assemblages contained numerous undescribed species, many belonging to poorly known monothalamous, soft-bodied taxa. Sample diversity was influenced by several factors. Combining phytodetrital and sediment populations reduced diversity and increased dominance slightly; the inclusion of deeper sediment layers and finer sieve fractions had the opposite effect. The inclusion of fragments had more impact on macrofaunal than on meiofaunal diversity, although in both cases the effect was inconsistent (either positive or negative). Porcupine and Madeira Abyssal Plain multicore samples (>63 μm fraction) contained substantially more foraminiferal species than nematode species; the numbers of foraminiferal species in boxcore samples (>500 μm fraction) were comparable to, or greater than, literature values for macrofaunal taxa such as polychaetes

  1. Sea-level responses to erosion and deposition of sediment in the Indus River basin and the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Ferrier, Ken L.; Mitrovica, Jerry X.; Giosan, Liviu; Clift, Peter D.

    2015-04-01

    Changes in sea level are of wide interest because they shape the sedimentary geologic record, modulate flood-related hazards, and reflect Earth's climate. One driver of sea-level change is the erosion and deposition of sediment, which induces changes in sea level by perturbing Earth's crust, gravity field, and rotation axis. Here we use a gravitationally self-consistent global model to explore how sediment erosion and deposition affected sea level during the most recent glacial-interglacial cycle in the northeastern Arabian Sea and the Indus River basin, where fluvial sediment fluxes are among the highest on Earth. We drive the model with a widely used reconstruction of ice mass variations over the last glacial cycle and a sediment loading history that we constructed from published erosion and deposition rate measurements. Our modeling suggests that sediment fluxes from the Indus River are large enough to produce meter-scale changes in sea level near the Indus delta in as little as a few thousand years. These sea-level perturbations are largest closest to the center of the Indus delta, and they grow larger over time as sediment deposition increases. This implies that the elevation of sea-level markers near the Indus delta will be significantly altered by sediment transfer over millennial timescales, and that such deformation should be accounted for in studies that use paleo-sea-level markers to infer past ice sheet volume or explore local processes such as sediment compaction. Our analysis highlights the role that massive fluvial sediment fluxes play in driving sea-level changes over >1000-yr timescales from the Indus River, and, by implication, from other rivers with large sediment fluxes.

  2. Species diversity variations in Neogene deep-sea benthic foraminifera at ODP Hole 730A, western Arabian Sea

    NASA Astrophysics Data System (ADS)

    Arumugm, Yuvaraja; Gupta, Anil K.; Panigrahi, Mruganka K.

    2014-10-01

    Deep-sea benthic foraminifera are an important and widely used marine proxy to understand paleoceanographic and paleoclimatic changes on regional and global scales, owing to their sensitivity to oceanic and climatic turnovers. Some species of benthic foraminifera are sensitive to changes in water mass properties whereas others are sensitive to organic fluxes and deep-sea oxygenation. Benthic faunal diversity has been found closely linked to food web, bottom water oxygen levels, and substrate and water mass stability. The present study is aimed at analyzing species diversity trends in benthic foraminifera and their linkages with Indian monsoon variability during the Neogene. Species diversity of benthic foraminifera is examined in terms of number of species (S), information function (H), equitability (E) and Sanders' rarefied values, which were combined with relative abundances of high and low productivity benthic foraminifera at Ocean Drilling Program Hole 730A, Oman margin, western Arabian Sea. The Oman margin offers the best opportunity to understand monsoon-driven changes in benthic diversity since summer monsoon winds have greater impact on the study area. The species diversity was higher during the early Miocene Climatic Optimum (˜17.2-16.4 Ma) followed by a decrease during 16.4-13 Ma coinciding with a major increase in Antarctic ice volume and increased formation of Antarctic Bottom Water. All the diversity parameters show an increase during 13-11.6 Ma, a gradual decrease during 11.6-9 Ma and then an increase with a maximum at 7 Ma. Thereafter the values show little change until 1.2 Ma when all the parameters abruptly decrease. The benthic foraminiferal populations and diversity at Hole 730A were mainly driven by the Indian monsoon, and polar waters might have played a minor or no role since early Neogene period as the Arabian Sea is an enclosed basin.

  3. Interannual variability of the Arabian Sea Warm Pool: observations and governing mechanisms

    NASA Astrophysics Data System (ADS)

    Rao, R. R.; Jitendra, V.; GirishKumar, M. S.; Ravichandran, M.; Ramakrishna, S. S. V. S.

    2015-04-01

    The near-surface layers in the Arabian Sea progressively warm up from February to early May resulting in the formation of pool of warm waters popularly known as the Arabian Sea Warm Pool (ASWP). The availability of high quality TMI sea surface temperature (SST) data for the years 1998-2010 is exploited to describe the evolution of the ASWP on seasonal and interannual time scales and to explain the associated mechanisms. The multi-year (1998-2010) averaged TMI SSTs during April-May show peak values of the ASWP in excess of 30 °C with its core >30.5 °C extending offshore as a well-marked southwestward tongue stretching from the southwest coast of India. The ASWP shows both seasonal and interannual variability in the evolution of spatio-temporal characteristics such as amplitude, phase and spatial extent. Among these 13 years, the ASWP was most (least) pronounced during 1998, 2003 and 2010 (1999, 2000, 2001 and 2008). The mechanisms that govern the observed interannual variability of the ASWP are examined addressing the most relevant issues such as—(1) dynamic pre-conditioning: background pycnocline topography influenced by the westward propagating Rossby waves during October-May, (2) thermal pre-conditioning: background SST/heat content signal during October-January influenced by the strength of the preceding year's summer monsoon and the post-monsoon cyclones during October-December, (3) haline pre-conditioning: near-surface vertical salinity stratification during November-February influenced by the advection of low saline waters from the Bay of Bengal, (4) influence of surface net heat flux forcing during February-May, and (5) influence of El Nino/La Nina.

  4. Observations of barrier layer in southeastern Arabian Sea using Argo observations

    NASA Astrophysics Data System (ADS)

    Sharma, Rashmi; Agarwal, Neeraj; Sarkar, Abhijit

    2006-12-01

    We present in this work composite relationships among Barrier Layer (BL) depth, and various other parameters either directly responsible for its formation or the sequence of events which follow once it is formed. Underlying mechanisms responsible for the development of the BL depth, its sustenance and annihilation are examined in the southeastern Arabian Sea (SEAS) in the north Indian Ocean using primarily ARGO floats observations along with ancillary data from various satellites and surface currents from ocean model. All the available Argo floats observations of temperature and salinity as of December 2005 have been analyzed to evaluate the seasonal characteristics of barrier layer (BL) in this warm pool region of Arabian Sea. The annual average BL thickness in this region varies from 20 to 70 m, with larger values towards coast. The standard deviation is also high (15-30 m) in this region showing a strong seasonal variation. In a complete seasonal characteristic studied with the use of observations, BL thickness shows a primary peak (~ 50 m) in January and a secondary peak in September (~ 35 m). While the former is remotely forced, the later owes its generation to the local forcing via precipitation. TMI observations show a lag of 3 months in the SST warming with respect to the maximum BL thickness observed during January. Peak warming in SST during April immediately follows by rise in integrated water vapour. Interestingly, following the secondary maxima of BL, SST does not show any warming signature, possibly due to the overcast condition, preventing the surface from heating up.

  5. Geology and tin-greisen mineralization of the Akash granite, northern Arabian Shield

    USGS Publications Warehouse

    Kellogg, K.S.; Smith, C.W.

    1986-01-01

    The western margin of the postorogenic Akash granite, 30 km E of Ha'il in the northern Arabian Shield, is greisenized and contains anomalous concentrations of Sn. The pluton intrudes metamorphic and intrusive rocks, and crops out as a 10 by 15 km elliptical body with its long axis oriented N. It consists predominantly of metaluminous alkali-feldspar granite or syenogranite, with accessory biotite and muscovite, and traces of fluorite. Greisenization extends discontinuously in a zone at least 3 km long parallel to the western contact, and along E-trending hematitic quartz veins for more than 2 km from the contact. The veins occupy fractures that were probably conduits for ascending mineralizing fluids. Within about 20 m of the contact, they are enclosed in quartz-white mica greisen containing hematite, fluorite, and locally, topaz and cassiterite. Composite chip samples from the greisenized zone have an average Sn content of 710 ppm, and a maximum of 1600 ppm. Anomalous values for Zn, Fe, Mn, Mo, Bi and Cu also occur, but none of the samples contain detectable W. Three samples of hematitic quartz averaged 126 ppm Sn, and one contained 200 ppm W. ?? 1986.

  6. Arabian Sea

    Atmospheric Science Data Center

    2013-04-16

    ... of the images. The image set is centered along the Tropic of Cancer, about 400 kilometers east of Muscat, Oman, and was acquired on October ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...

  7. Variations in productivity and eolian fluxes in the northeastern Arabian Sea during the past 110 ka

    NASA Astrophysics Data System (ADS)

    Pourmand, Ali; Marcantonio, Franco; Schulz, Hartmut

    2004-04-01

    High-resolution (one to two samples/ka) radionuclide proxy records from core 93KL in the northeastern Arabian Sea provide evidence for millennial climate variability over the past 110 ka. We interpret 230Th-normalized 232Th fluxes as a proxy for eolian input, and authigenic uranium concentrations as a proxy for past productivity. We attribute orbital and suborbital variations in both proxies to changes in the intensity of the southwest Indian Ocean monsoon. The highest 230Th-normalized 232Th fluxes occur at times that are consistent with the timing of the Younger Dryas, Heinrich events 1-7 and cold Dansgaard-Oeschger stadial events recorded in the GISP2 ice core. Such high dust fluxes may be due to a weakened southwest monsoon in conjunction with strengthened northwesterlies from the Arabian Peninsula and Mesopotamia. Authigenic uranium concentrations, on the other hand, are highest during warm Dansgaard-Oeschger interstadials when the southwest monsoon is intensified relative to the northwesterly winds. Our results also indicate that on orbital timescales maximum average eolian fluxes coincide with the timing of marine isotopic stage (MIS) 2 and 4, while minimum fluxes occur during MIS 1, 3 and 5. Although the forcing mechanism(s) controlling suborbital variabilities in monsoonal intensity is still debated, our findings suggest an atmospheric teleconnection between the low-latitude southwest monsoon and North Atlantic climate.

  8. Bouguer gravity trends and crustal structure of the Palmyride Mountain belt and surrounding northern Arabian platform in Syria

    SciTech Connect

    Best, J.A.; Barazangi, M. ); Al-Saad, D.; Sawaf, T.; Gebran, A. )

    1990-12-01

    This study examines the crustal structure of the Palmyrides and the northern Arabian platform in Syria by two- and three-dimensional modeling of the Bouguer gravity anomalies. Results of the gravity modeling indicate that (1) western Syria is composed of at least two different crustal blocks, (2) the southern crustal block is penetrated by a series of crustal-scale, high-density intrusive complexes, and (3) short-wavelength gravity anomalies in the southwest part of the mountain belt are clearly related to basement structure. The crustal thickness in Syria, as modeled on the gravity profiles, is approximately 40{plus minus}4 km, which is similar to crustal thicknesses interpreted from refraction data in Jordan and Saudi Arabia. The different crustal blocks and large-scale mafic intrusions are best explained, though not uniquely, by Proterozoic convergence and suturing and early Paleozoic rifting, as interpreted in the exposed rocks of the Arabian shield. These two processes, combined with documented Mesozoic rifting and Cenozoic transpression, compose the crustal evolution of the northern Arabian platform beneath Syria.

  9. Bio-Optical Properties of the Arabian Sea as Determined by In Situ and Sea WiFS Data

    NASA Technical Reports Server (NTRS)

    Trees, Charles C.

    1997-01-01

    The overall objective of this work was to characterize optical and fluorescence properties in the euphotic zone during two British Ocean Flux Study (BOFS) Arabian Sea cruises. This was later expanded in 1995 to include three U.S. JGOFS Arabian Sea Cruises. The region was to be divided into one or more "bio-optical provinces," within each of which a single set of regression models was to be developed to relate the vertical distribution of irradiance attenuation and normalized fluorescence (SF and NF) to remote sensing reflectance and diffuse attenuation coefficient. The working hypothesis was that over relatively large spatial and temporal scales, the vertical profiles of bio-optical properties were predictable. The specific technical objectives were: (1) To characterize the vertical distribution of the inherent and apparent optical properties by measuring downwelling and upwelling irradiances, upwelling radiances, scalar irradiance of PAR, and beam transmissions at each station - from these data, spectral diffuse attenuation coefficients, irradiance reflectances, remote sensing reflectances, surface-leaving radiances and beam attenuation coefficients were determined; (2) To characterize the spectral absorption of total particulate, detrital, and dissolved organic material at each station from discrete water samples; (3) To describe the vertical distribution of photoadaptive properties in the water column by measuring profiles of stimulated (SF) and natural (NF) fluorescence and examining relationships between SF and NF as a function of diffuse optical depth, pigment biomass and primary productivity; and (4) To establish locally derived, in-water algorithms relating remote sensing reflectance spectra to diffuse attenuation coefficients, phytoplankton pigment concentrations and primary productivity, through intercomparisons with in situ measurements, for application to SeaWiFS data.

  10. Weight dependence of arsenic concentration in the Arabian Sea tuna fish

    SciTech Connect

    Ashraf, M.; Jaffar, M.

    1988-02-01

    The objective of the present investigation was to estimate the arsenic concentration in the edible muscle of Thunnus thynnus and Thunnus toggel (hereafter called tuna and longtail tune) as they have great commercial value. These fish are widely available along the coastal line of Pakistan and are consumed abundantly in large bulk. Thus, it was felt justifiable on the basis of safety of human health that data, in the first instance, be obtained on arsenic concentration in tuna as a function of weight to check whether the metal distribution was species-specific or it depended on individual mode of development. The data, the first of the kind so far presented on the Arabian Sea tuna, would thus provide the required baseline quantitative information needed in future studies on the physiological processes regulating the distribution and uptake of arsenic by these and other species of fish common to the region.

  11. Seasonal response of zooplankton to monsoonal reversals in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Smith, Sharon; Roman, Michael; Prusova, Irina; Wishner, Karen; Gowing, Marcia; Codispoti, L. A.; Barber, Richard; Marra, John; Flagg, Charles

    The US JGOFS Arabian Sea Process Study was designed to provide a seasonally and spatially resolved carbon budget for a basin exhibiting some of the highest and lowest concentrations of plant biomass in the world's ocean. During the US JGOFS Process Study in the Arabian Sea (September 1994-January 1996), the absolute maximum in biomass of epipelagic zooplankton in the entire study was observed during the Southwest Monsoon season inshore of the Findlater Jet in the area of upwelling. The greatest contrast between high and low biomass in the study area also was observed during the Southwest Monsoon, as was the strongest onshore-offshore gradient in biomass. Lowest biomass throughout the study was observed at the most offshore station (S15), outside the direct influence of the monsoon forcing. The greatest day/night contrasts in biomass were observed nearshore in all seasons, with nighttime biomass exceeding daytime in the Northeast Monsoon season, but daytime exceeding nighttime in the Southwest Monsoon season. The diel vertical migration patterns in general reversed between the monsoons at all stations in the southern part of the study area. Virtually, no diel vertical migration of zooplankton took place in any season at the station with strong, persistent subsurface suboxic conditions (N7), suggesting that these conditions suppress migration. Based on the distribution of biomass, we hypothesize that inshore of the Findlater Jet, zooplankton grazing on phytoplankton is the dominant pathway of carbon transformation during both monsoon seasons, whereas offshore the zooplankton feed primarily on microplankton or are carnivorous, conditions that result in reduction of the carbon flux mediated by the zooplankton. Predation by mesopelagic fish, primarily myctophids, may equal daily growth of zooplankton inshore of the Findlater Jet during all seasons. This suggests that the food web inshore of the Findlater Jet is well integrated, may have evolved during past periods of

  12. Large organic-walled Protista ( Gromia) in the Arabian Sea: Density, diversity, distribution and ecology

    NASA Astrophysics Data System (ADS)

    Aranda da Silva, A.; Gooday, A. J.

    2009-03-01

    The genus Gromia includes large marine protists ('gromiids') with filose pseudopodia and sack-like organic tests. The first deep-water species were discovered in the 1990s on the Oman Margin of the Arabian Sea and subsequently found on the Pakistan Margin. We present a survey of gromiids in samples collected off Oman in 2002 and off Pakistan in 2003. In addition to the two species ( Gromia sphaerica and Gromia pyriformis) already described from this area, at least eight undescribed gromiid species were present. Sausage shaped, grape shaped and spherical morphotypes were represented among this material. On the Oman Margin, gromiids occurred in densities up to several thousand individuals m -2 at 1400 and 1700 m but were much less common at 1100 and 2000 m. Apart from G. pyriformis, which was fairly common (several hundred individuals m -2) at 1000 m, gromiids were uncommon in core samples taken off Pakistan, with 11 indiv. m -2 at 1200 m and 19 indiv. m -2 at 1850 m. On both margins, these protists occurred at depths >1000 m where bottom-water oxygen concentrations exceeded ˜0.2 ml l -1 (=8.92 μM l -1) land sediments were fully bioturbated and oxidised. However, they were not observed at similar oxygen levels above the OMZ. Most gromiids lived on the sediment surface with their apertures facing down and their pseudopodia presumably deployed into the sediment to feed on surficial material and associated bacteria. We conclude that these large protists may play an important ecological role in the bathyal Arabian Sea, particularly in carbon cycling but also in structuring the surficial sediments. In addition, their tests, particularly those of G. sphaerica, provide substrates for attached Foraminifera.

  13. Is the trend in chlorophyll-a in the Arabian Sea decreasing?

    NASA Astrophysics Data System (ADS)

    Prakash, Prince; Prakash, Satya; Rahaman, Hasibur; Ravichandran, M.; Nayak, Shailesh

    2012-12-01

    Recent studies of satellite-derived Chlorophyll concentrations (Chl-a) in the western Arabian Sea (AS) have suggested an increasing temporal trend, but the length of the records used have typically been too short to resolve longer-term trends, if any. Our analysis of a long term satellite ocean color data shows a change of trend in the summer chlorophyll for the western AS before and after 2003; Chl-a concentration was indeed increasing till 2003, but appears to be declining since then, indicating a secular multi-year trend in Chl-a variability. However, this trend is not uniform over the entire region. Analysis of wind, sea surface temperature (SST), Sea Level Anomaly (SLA) and thermocline depth, suggests that the declining summer monsoon chlorophyll-a (Chl-a) concentration may be due to increasing SLA in this region. The earlier observed biological changes in the western AS could be an artifact of the change in local winds and ocean dynamics, which may be a part of the natural long-term variability.

  14. Shamals and climate variability in the Northern Arabian Gulf from 1973 to 2012

    NASA Astrophysics Data System (ADS)

    Al Senafi, F.; Anis, A.

    2014-12-01

    This study presents key results from analysis of surface meteorological observations collected in the Northern Arabian Gulf (N AG). The dataset, which spans a 40-years period (1973-2012; Kuwait airport), was used to examine climate variability in the N AG, and the relation to Shamal events (strong NW winds that commonly create large dust storms) and teleconnection patterns (North Atlantic Oscillation, El Nino Southern Oscillation, and Indian Ocean Dipole). Results of the analysis indicate that during the 40-year period the climate in the region experienced a general trend of increase in temperature (0.8 ^oC), decreasein barometric pressure (1 mb), reduction in humidity (6%), and decrease in visibility (9%). Significant correlations were found between the three teleconnection patterns and the meteorological conditions suggesting that seasonal variability in air temperature, barometric pressure, and precipitation are closely related to the teleconnection patterns. Analysis of the 40-year period suggests that on average Shamal events occur at a rate of 10 events per year with 85% of the events occuring during the summer and winter. These events resulted in abrupt changes in meteorological conditions: an increase in wind speed of 2.7 m/s, an increase in temperature during summer of 0.8 ^oC, and a decrease of -1.5 ^oC during winter, a decrease in barometric pressure during summer of -0.6 mb and a increase of 7.8 mb during winter, a decrease in visibility of -1.7 km, and reduction in humidity of -4.3 %.

  15. Crustal underthrusting in the Crimea - Northern Black Sea area

    NASA Astrophysics Data System (ADS)

    Yegorova, Tamara; Gobarenko, Valentina; Murovskaya, Anna; Sheremet, Yevgeniya

    2016-04-01

    The southern Crimean Mountains and the Greater Caucasus form a fold and thrust belt located on the northern margin of the Black Sea, south of Precambrian East European Craton. It is limited to the south by the Main Caucasus Thrust that runs along the whole of the northern margin of the Black Sea and is related to a zone of present day seismicity along the southern Crimea-Caucasus coast of the Sea (Crimean Seismogenic Zone). Strong seismic activity in the region indicates active on-going tectonic processes caused by collision of Eurasian and Arabian plates. In the vicinity of the seismogenic zone there is a transition from thick continental crust on the north to thin suboceanic one on the south in the sea. However, type and structural relations between them are known poorly. To understand better geodynamic processes, there were collected data on the earthquakes that were analyzed together with focal mechanisms of strong earthquakes, new results of geological structural analysis and paleostress reconstructions by kinematic method. These allowed drawing the following conclusions. Seismic activity in the study region, evidenced of active tectonic processes under compression and transpression at the transition from the southern margin of the East European Craton (Scythian Platform) to the Black Sea, is confirmed by predominance of reverse mechanisms among 31 focal mechanisms. In the seismogenic zone, much of which is located along the continental slope, there are three subzones (from east to west): 1) Kerch-Taman one dipping northwards at angle 30 degrees to the depth of 90 km; 2) South-Coast subzone gently dipping to the southeast at angle of 18 degrees with foci depth range 10-45 km, and 3) orthogonal to the latter and confining it from the west the Sevastopol one, characterized by scattered seismicity. The earthquake foci are located in the gradient zone that separates intense Crimea gravity high and positive anomaly of Northern Caucasus from negative gravity field

  16. Relationship between coccolith Sr/Ca ratios and coccolithophore production and export in the Arabian Sea and Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Stoll, Heather M.; Ziveri, Patrizia; Shimizu, Nobumichi; Conte, Maureen; Theroux, Susanna

    2007-03-01

    Coccolithophore CaCO 3 production can account for 20-80% of biogenic carbonate exported from the photic zone, and coccoliths are a dominant biogenic carbonate in many deep-sea sediments. A new method for picking individual coccoliths from sediment traps and sediments for analysis using Secondary Ion Mass Spectrometry (ion probe) allows us to make precise Sr/Ca and Mg/Ca determinations on coccoliths from single species even in samples where material is limited. There are large biological effects in Sr/Ca partitioning in coccoliths that have been related to variations in coccolithophore productivity. In sediment traps from the Sargasso Sea at Bermuda and Arabian Sea in the Somali Basin, we can identify Sr/Ca variations in several species that are consistent with inferred seasonal variations in coccolithophore productivity in surface waters. In the Arabian Sea, coccolith Sr/Ca ratios in Calcidiscus leptoporus and Helicosphaera carteri are lowest during the nonproductive intermonsoon. They are highest during the upwelling of southwest monsoon and during the nutrient entrainment from strong winds of the northeast monsoon. These Sr/Ca variations match seasonal trends in coccolith export flux. Furthermore, Sr/Ca variations in C. leptoporus are larger, and this species also has the greater variation in export flux between southwest monsoon and intermonsoon seasons. At Bermuda, a 1996 fall bloom, driven by passage of a warm mode water eddy, induced a large increase in Sr/Ca of C. leptoporus coincident with an increase of C. leptoporus export. Over an annual series for 2004, highest Sr/Ca ratios of C. leptoporus in the summer months match the typical summer peak in surface standing stock of this species and the stimulation of its productivity by mesoscale cyclonic eddies and eddy-eddy interactions. High Sr/Ca did not coincide with the highest export of C. leptoporus coccoliths, likely because cyclonic eddies, unlike mode-water eddies, are dominated by small phytoplankton

  17. Modeling a Typical Winter-time Dust Event over the Arabian Peninsula and the Red Sea

    SciTech Connect

    Kalenderski, S.; Stenchikov, G.; Zhao, Chun

    2013-02-20

    We used WRF-Chem, a regional meteorological model coupled with an aerosol-chemistry component, to simulate various aspects of the dust phenomena over the Arabian Peninsula and Red Sea during a typical winter-time dust event that occurred in January 2009. The model predicted that the total amount of emitted dust was 18.3 Tg for the entire dust outburst period and that the two maximum daily rates were ~2.4 Tg/day and ~1.5 Tg/day, corresponding to two periods with the highest aerosol optical depth that were well captured by ground- and satellite-based observations. The model predicted that the dust plume was thick, extensive, and mixed in a deep boundary layer at an altitude of 3-4 km. Its spatial distribution was modeled to be consistent with typical spatial patterns of dust emissions. We utilized MODIS-Aqua and Solar Village AERONET measurements of the aerosol optical depth (AOD) to evaluate the radiative impact of aerosols. Our results clearly indicated that the presence of dust particles in the atmosphere caused a significant reduction in the amount of solar radiation reaching the surface during the dust event. We also found that dust aerosols have significant impact on the energy and nutrient balances of the Red Sea. Our results showed that the simulated cooling under the dust plume reached 100 W/m2, which could have profound effects on both the sea surface temperature and circulation. Further analysis of dust generation and its spatial and temporal variability is extremely important for future projections and for better understanding of the climate and ecological history of the Red Sea.

  18. Tracing the strength of the southwest monsoon using boron isotopes in the eastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Naik, Sushant S.; Divakar Naidu, P.; Foster, Gavin L.; Martínez-Botí, Miguel A.

    2015-03-01

    Here we present the first boron isotope-based pCO2sw (pCO2 of seawater) reconstruction from the eastern Arabian Sea using the planktic foraminifera species Globigerinoides ruber. Our results from sediment core AAS9/21 show that pCO2sw varied between ~160 and 300 µatm during the last 23 kyr. The ΔpCO2, the sea-air pCO2 difference, is relatively small during the last glacial maximum and becomes more negative toward the Holocene, with the exception of a significant excess during the last deglaciation centered on the Bølling-Ållerød. Throughout the record, ΔpCO2 is predominantly negative, probably as a result of enhanced biological productivity (and higher nutrient and carbon utilization) during the southwest monsoon. A reduction in ΔpCO2 during the last glacial maximum is therefore consistent with a reduction in the strength of this monsoon system.

  19. Measurements of CO and CH4 in the troposphere over Saudi Arabia, India, and the Arabian Sea during the 1979 International Summer Monsoon Experiment /MONEX/

    NASA Technical Reports Server (NTRS)

    Newell, R. E.; Condon, E. P.; Reichle, H. G., Jr.

    1981-01-01

    During the 1979 Summer MONEX, 150 air samples collected over Saudi Arabia, India, and the Arabian Sea were analyzed for CO and CH4. Near Dhahran and over the Ganges Valley there were high concentrations of CO, around 300 ppbv, in the boundary layer. Out over the Saudi Arabian desert there was no sharp increase in the boundary layer. It is suggested that these high concentrations originate from pollution sources. Low values of CO, down to 80 ppbv, are found over the Arabian Sea as the monsoon progresses, and these may originate from the Southern Hemisphere. Methane over Saudi Arabia (1.59 ppmv) is a little higher than that over the Arabian Sea (1.54 ppmv) probably because the latter region is influenced by air from the Southern Hemisphere.

  20. Modeling of circulation in the Arabian Gulf and the Sea of Oman: Skill assessment and seasonal thermohaline structure

    NASA Astrophysics Data System (ADS)

    Al Azhar, Muchamad; Temimi, Marouane; Zhao, Jun; Ghedira, Hosni

    2016-03-01

    Hindcast simulations of the Arabian Gulf and the Sea of Oman using the Regional Ocean Modeling System (ROMS) are quantitatively evaluated with basin-wide hydrographic data and time series measurements. The model shows comparable skill in reproducing moored observations of current velocities structure in upper and bottom depths. The skill in simulating observed temperature is higher of 0.93 (scale 0-1) in upper depths compared to 0.52 in bottom depths. Model results are sensitive to parameterization of water clarity. A lower sensitivity was noticed to KPP, GLS, and MY2.5 turbulence closures. When coastal turbid water parameterization is used, accuracy of the model in reproducing seasonal and spatial variations of temperature and salinity increased by 25% compared to the clear water case whereas only 10% increase was noticed when applying KPP turbulent closure. The model reproduces well anticlockwise circulation in the Gulf. A stronger surface inflow of fresher water to the Arabian Gulf through the Strait of Hormuz is simulated in summer compared to winter conditions, mainly due to upper layer horizontal gradient of density between the Arabian Gulf and the Sea of Oman. Less seasonal variability of outflow between 0.15 and 0.20 m s-1 at 50 m to bottom depth around the Strait of Hormuz was noticed in the model results. Modeled surface layer stratification is stronger in summer than winter and varies spatially in the Arabian Gulf with highest stratification near the Strait of Hormuz. Overall, the stratification in shallow water area of the Arabian Gulf remains low throughout the year.

  1. Heavy metals in fish from the Red Sea, Arabian Sea, and Indian Ocean: effect of origin, fish species and size and correlation among the metals.

    PubMed

    Obaidat, Mohammad M; Massadeh, Adnan M; Al-Athamneh, Ahmad M; Jaradat, Qasem M

    2015-04-01

    This study determined the levels of As, Cu, Pb, and Cd in fish from Red Sea, Arabian Sea, and Indian Ocean by graphite furnace atomic absorption spectrophotometry. Metal levels were compared with international standards. The levels among fish types and origin, the relationship among metals, and the correlation between the levels and fish size were statistically tested. Fish type and origin significantly affected the levels. None of the fish contained As, Cu, and Pb above the FAO and EU codes. However, Cd exceeded the Jordanian, FAO, and EC codes from the three origins. As and Cd positively correlated with each other in Arabian Sea fish. As and Pb correlated negatively, but Cu and Cd did not correlate with fish size. This study indicates that Cd is common in fish from the three origins regardless the fish size. This warrants continuous monitoring for heavy metals, especially Cd, in internationally traded fish. PMID:25822330

  2. Winter and summer monsoon water mass, heat and freshwater transport changes in the Arabian Sea near 8°N

    NASA Astrophysics Data System (ADS)

    Stramma, Lothar; Brandt, Peter; Schott, Friedrich; Quadfasel, Detlef; Fischer, Jürgen

    The differences in the water mass distributions and transports in the Arabian Sea between the summer monsoon of August 1993 and the winter monsoon of January 1998 are investigated, based on two hydrographic sections along approximately 8°N. At the western end the sections were closed by a northward leg towards the African continent at about 55°E. In the central basin along 8°N the monsoon anomalies of the temperature and density below the surface-mixed layer were dominated by annual Rossby waves propagating westward across the Arabian Sea. In the northwestern part of the basin the annual Rossby waves have much smaller impact, and the density anomalies observed there were mostly associated with the Socotra Gyre. Salinity and oxygen differences along the section reflect local processes such as the spreading of water masses originating in the Bay of Bengal, northward transport of Indian Central Water, or slightly stronger southward spreading of Red Sea Water in August than in January. The anomalous wind conditions of 1997/98 influenced only the upper 50-100 m with warmer surface waters in January 1998, and Bay of Bengal Water covered the surface layer of the section in the eastern Arabian Sea. Estimates of the overturning circulation of the Arabian Sea were carried out despite the fact that many uncertainties are involved. For both cruises a vertical overturning cell of about 4-6 Sv was determined, with inflow below 2500 m and outflow between about 300 and 2500 m. In the upper 300-450 m a seasonally reversing shallow meridional overturning cell appears to exist in which the Ekman transport is balanced by a geostrophic transport. The heat flux across 8°N is dominated by the Ekman transport, yielding about -0.6 PW for August 1993, and 0.24 PW for January 1998. These values are comparable to climatological and model derived heat flux estimates. Freshwater fluxes across 8°N also were computed, yielding northward freshwater fluxes of 0.07 Sv in January 1998 and 0

  3. Annual biomarker record for export production in the central Arabian Sea

    NASA Astrophysics Data System (ADS)

    Prahl, Fredrick G.; Dymond, Jack; Sparrow, Margaret A.

    The record for plankton biomarkers in sediment trap samples from a one-year experiment in the central Arabian Sea (AS4: 15°59'N 61°30'E) shows variations that reflect changing biological conditions in surface waters. Particulate fluxes of C 37-39 alkenones, highly branched C 25 isoprenoids (HBI), dinosterol, nC 28 12-hydroxy fatty acid, 24-ethylcholesterol, and a C 30-34 series of pentacyclic triterpanols all displayed distinct maxima at the start and stop of the Northeast (NE) and Southwest (SW) Monsoons. Surface mixing conditions changed rapidly at these times, altering light and nutrient availability, thereby triggering these biomarker signals of export production. Temporal offsets noted in individual biomarker concentrations (per g total organic carbon) at the start of the SW Monsoon suggest succession occurs in the phytoplankton community contributing to organic matter export. Comparable offsets were neither apparent at the start of the less dynamic NE Monsoon nor at the end of the NE or SW Monsoons. Broad concentration maxima for HBI also were observed at the beginning and end of the time-series during the relatively quiescent Fall Intermonsoon period when such features were conspicuously absent for other biomarkers. HBI are reputed biomarkers of Rhizoselenia and Haslea spp., two recognized dominants of diatom biomass in the Arabian Sea. These peaks in biomarker concentration could reflect either changes in the relative proportion of specific organisms that contribute to the upper ocean productivity or enhanced preservation of the biomarkers during times of high export production. In either case, the biomarker record in sediment traps reflects important changes in the biological condition of the upper ocean. All biomarkers except HBI were measurable in surface sediments deposited beneath the trap site. Comparison with concentrations in average sediment trap particles showed each was sensitive to significant (˜99%) degradation, displaying depletion factors

  4. The trophic and metabolic pathways of foraminifera in the Arabian Sea: evidence from cellular stable isotopes

    NASA Astrophysics Data System (ADS)

    Jeffreys, R. M.; Fisher, E. H.; Gooday, A. J.; Larkin, K. E.; Billett, D. S. M.; Wolff, G. A.

    2015-03-01

    The Arabian Sea is a region of elevated productivity with the highest globally recorded fluxes of particulate organic matter (POM) to the deep ocean, providing an abundant food source for fauna at the seafloor. However, benthic communities are also strongly influenced by an intense oxygen minimum zone (OMZ), which impinges on the continental slope from 100 to 1000 m water depth. We compared the trophic ecology of foraminifera on the Oman and Pakistan margins of the Arabian Sea (140-3185 m water depth). These two margins are contrasting both in terms of the abundance of sedimentary organic matter and the intensity of the OMZ. Organic carbon concentrations of surficial sediments were higher on the Oman margin (3.32 ± 1.4%) compared to the Pakistan margin (2.45 ± 1.1%) and sedimentary organic matter (SOM) quality estimated from the Hydrogen Index was also higher on the Oman margin (300-400 mg HC mg TOC-1) compared to the Pakistan margin (< 250 mg HC mg TOC-1). The δ13C and δ15N values of sediments were similar on both margins (-20 and 8‰, respectively). Stable isotope analysis (SIA) showed that foraminiferal cells had a wide range of δ13C values (-25.5 to -11.5‰), implying that they utilise multiple food sources; indeed δ13C values varied between depths, foraminiferal types and between the two margins. Foraminifera had broad ranges in δ15N values (-7.8 to 27.3‰). The enriched values suggest that some species may store nitrate to utilise in respiration; this was most notable on the Pakistan margin. Depleted foraminiferal δ15N values, particularly at the Oman margin, may reflect feeding on chemosynthetic bacteria. We suggest that differences in productivity regimes may be responsible for the differences observed in foraminiferal isotopic composition. In addition, at the time of sampling, whole jellyfish carcasses (Crambionella orsini) and a carpet of jelly detritus were observed across the Oman margin transect. Associated chemosynthetic bacteria may have

  5. The trophic and metabolic pathways of foraminifera in the Arabian Sea: evidence from cellular stable isotopes

    NASA Astrophysics Data System (ADS)

    Jeffreys, R. M.; Fisher, E. H.; Gooday, A. J.; Larkin, K. E.; Wolff, G. A.; Billett, D. S. M.

    2014-12-01

    The Arabian Sea is a region of elevated productivity with the highest globally recorded fluxes of particulate organic matter (POM) to the deep ocean, providing an abundant food source for fauna at the seafloor. However, benthic communities are also strongly influenced by an intense oxygen minimum zone (OMZ), which impinges on the continental slope at bathyal depths. We compared the trophic ecology of foraminifera on the Oman and Pakistan margins of the Arabian Sea (140-3185 m water depth). Organic carbon concentrations of surficial sediments were higher on the Oman margin (3.32 ± 1.4%) compared to the Pakistan margin (2.45 ± 1.1%) and sedimentary organic matter (SOM) quality estimated from the Hydrogen Index was also higher on the Oman margin (300-400 mg HC (mg TOC)-1) compared to the Pakistan margin (<250 mg HC (mg TOC)-1). δ13C and δ15N values of sediments were similar on both margins (-20 and 8‰, respectively). Stable isotope analysis (SIA) showed that foraminiferal cells had a wide range of δ13C values (-25.5 to -11.5‰), implying that they utilise multiple food sources; indeed δ13C values varied between depths, foraminiferal types and between the two margins. Foraminifera had broad ranges in δ15N values (-7.8 to 27.3‰). The enriched values suggest that some species may store nitrate to utilise in respiration; this was most notable on the Pakistan margin. Depleted foraminiferal δ15N values were identified on both margins, particularly the Oman margin, and may reflect feeding on chemosynthetic bacteria. We suggest that differences in productivity regimes between the two margins may be responsible for the differences observed in foraminiferal isotopic composition. In addition, at the time of sampling, whole jellyfish carcasses (Crambionella orsini) and a carpet of jelly detritus were observed across the Oman margin transect. Associated chemosynthetic bacteria may have provided an organic-rich food source for foraminifera at these sites. Our data

  6. SSMI Wind Speed Climatology of the Time of Monsoon Wind Offset in the Western Arabian Sea

    NASA Technical Reports Server (NTRS)

    Halpern, David

    2000-01-01

    Forecasting the time of onset of monsoon wind in the western Arabian Sea, which is believed to precede the onset of rainfall along the west coast of India, is an important unsolved problem. Prior to measurements of the surface wind field by satellite, there was an absence of suitable surface wind observations. NASA scatterometer (NSCAT) surface wind vectors revealed that the time of the 1997 onset of 12 m/s southwest monsoon wind speeds in the western Arabian Sea preceded the onset of monsoon rainfall in Goa, India, by 3 - 4 days. Wind speed and direction data were necessary to establish a dynamical mechanism between times of onset of 12 m/s wind speed off Somalia and rainfall in Goa. Except for NSCAT, no satellite scatterometer wind product recorded adequately sampled 2-day 1deg x 1deg averaged wind vectors, which are the required space and time scales, to examine the wind-rain relationship in other years. However, the greater-than-95% steadiness of summer monsoon winds allows an opportunity to use satellite measurements of surface wind speed. The Special Sensor Microwave Imager (SSMI) recorded surface wind speed with adequate sampling to produce a 1-day, 1deg x 1deg data product during 1988 - 1998. SSMI data had been uniformly processed throughout the period. Times of onset of 12 m/s wind speed off Somalia determined with the SSMI data set were 21 May 1988, 24 May 1989, 17 May 1990, 28 May 1991, 8 June 1992, 28 May 1993, 30 May 1994, 7 June 1995, 29 May 1996, 12 June 1997, and 15 May 1998. Uncertainty of the 1992 and 1996 times of onset were increased because of the absence of SSMI data on 6 and 7 June 1992 and on 30 May 1996. Correlations of timing of monsoon wind onset with El Nino will be described. Variability of the time difference between times of onset of 12 m/s wind speed and Goa rainfall will be discussed. At the time of submission of the abstract, the Goa rainfall data have not arrived from the India Meteorological Department.

  7. Biological response due to tropical cyclone PHYN in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Rao Neerukattu, Srinivasa; Rao, B. Venkateswara

    During the fall intermonsoon cyclone PHYN (09-11 Nov 2009) occurred in the Northeast Ara-bian Sea, we observed 4.4 C mean Sea Surface Temperature (SST) drop in Aqua-MODIS derived SST data; where the maximum wind speeds recorded were of the order of 50 Knots. High wind speeds deepened the vertical mixing of 90 m, and brought the cold (23.9C), nutrient rich waters to the surface; this is confirmed with Argo's temperature profile data. Post cyclone chlorophyll-a (Chl-a) enhancement was observed through 8 day mean average chlorophyll-a derived from Aqua-MODIS data, concentration from 4.56 mg/m3 to 16 mg/m3. SST drop and Chl-a Enhancement are not continuum all along the cyclone path; Maximum SST drop and Chl-a enhancement are observed at the establishment of `cyclone eye'. The formation of an eye is almost always an indicator of increasing tropical cyclone organization and strength. Where the cyclone stalls, its movement has fallen below 2.24m/s, movement is erratic over a small area; the wave action caused by the strong surface winds churns the ocean surface and produces upwelling. This has the effect of cooling the temperature of the sea surface over an area 200 to 300 miles across. Strong asymmetry in the SST response occurs in the wake of the storm. These results in a cool swath of SST centered 50-400 km on the right hand side of the storm track. SST drop 3o C larger than on left hand side of the track. Tropical cyclones when passing over land may have destroying human lives, but over the ocean they can strongly enhance biological life i.e. enhancing phytoplankton (Chl-a) biomass.

  8. Correlation between some selected trace metal concentrations in six species of fish from the Arabian Sea

    SciTech Connect

    Ashraf, M.; Jaffar, M.

    1988-07-01

    The role of trace metals in marine ecosystems has been keenly investigated during recent years. It is known that abundance of essential trace metals regulates the metal content in the organisms by homeostatic control mechanisms, which when cease to function cause essential trace metals to act in an either acutely or chronically toxic manner. Therefore, a correlation study based on essential and non-essential trace metal concentrations is imperative for extending the existing knowledge of bioaccumulation of trace metals in marine organisms. An attempt has been made in the present investigation to bring out quantitative correlations between the concentrations of iron, copper, lead and zinc in the edible muscle tissue of six species of marine fish: Salmon (salmon sole); tuna (thunnus thynnus); pomfret silver (pampus argenteus); Pomfret black (formioniger); long tail tuna (thynnus tonggel) and Indian oil sardine (sardinella longiceps). These fish are abundantly available in Pakistan along the coastal line of the Arabian Sea and have great commercial value. The computational analysis on the trace metal correlation was conducted using an MSTAT statistical package.

  9. Evolution to decay of upwelling and associated biogeochemistry over the southeastern Arabian Sea shelf

    NASA Astrophysics Data System (ADS)

    Gupta, G. V. M.; Sudheesh, V.; Sudharma, K. V.; Saravanane, N.; Dhanya, V.; Dhanya, K. R.; Lakshmi, G.; Sudhakar, M.; Naqvi, S. W. A.

    2016-01-01

    Observations along 10 shelf transects in 2012 near 10°N in the southeastern Arabian Sea revealed the usual warm oligotrophic conditions during the winter monsoon and upwelling of oxygen-deficient, nutrient-rich cool water during the summer monsoon (SM). By changing an oligotrophic to a nutrient-replete condition, the upwelling is the major process that regulates the biogeochemistry of this shelf. Its onset is perceptible at 100 m depth between January and March. The upwelling reaches the surface layer in May and intensifies during June-July but withdraws completely and abruptly by October. Despite the nutrient injection, the primary production during SM, integrated for euphotic zone, is comparable to that during the preceding spring intermonsoon (SIM). Again, as usual, the high oxygen demand coupled with low concentration in the upwelled subsurface waters causes severe oxygen depletion below the shallow pycnocline. The oxygen concentrations/saturations of 2012 on the midshelf are similar from those of mid-1958 to early 1960, except for marginally higher values during the peak upwelling period due to relatively weak upwelling in 2012. This implies little anthropogenic influence on coastal hypoxia unlike many other coastal regions. In 2012, the inner shelf system shifted from net autotrophy in SIM to net heterotrophy in SM but on an annual basis it was net autotrophic (gross primary production to community respiration ratio, GPP/R:1.11 ± 0.84) as organic production exceeded consumption.

  10. Trace metals health risk appraisal in fish species of Arabian Sea.

    PubMed

    Yasmeen, Kousar; Mirza, Muhammad Aslam; Khan, Namra A; Kausar, Nazish; Rehman, Atta-Ur; Hanif, Muddasir

    2016-01-01

    Fish is a vital food for humans and many animals. We report an environmental monitoring study to assess the trace metals in fish species caught from Arabian Sea and commercially available in the coastal city Karachi, Pakistan. Heavy metals such as copper, iron, lead and cadmium were determined in the skin, fillet and heart of the fish species Pampus argenteus, Epinephelus chlorostigma, Rachycentron canadum, Scomberomorus commerson, Johnius belangerii, Labeo rohita, Lutjanus argentimaculatus, Trachinotus blochii, Pomadsys olivaceum and Acanthopagrus berda by the atomic absorption spectrophotometer. The concentration (mg kg(-1), dry weight) range was: Cd (0.00-0.041), Cu (0.006-0.189), Fe (0.413-4.952) and Pb (0.00-0.569). Cadmium, copper and iron levels were below the tolerable limits whereas concentration of lead in the skins of S. commerson, E. chlorostigma, J. belangerii, A. berda; L. argentimaculatus, fillets of J. belangerii, E. chlorostigma and in the heart of J. belangerii exceeded the recommended limits. Therefore fish skin should be discouraged as food for humans or animals. The results indicate that a number of fish species have higher concentration of heavy metals dangerous for human health. Since the fish P. olivaceum (Dhotar) has the lowest level of trace metals therefore we recommend it for breeding and human consumption. PMID:27386308

  11. Seismic anisotropy and subduction-induced mantle fabrics beneath the Arabian and Nubian Plates adjacent to the Red Sea

    NASA Astrophysics Data System (ADS)

    Elsheikh, Ahmed A.; Gao, Stephen S.; Liu, Kelly H.; Mohamed, Abdelnasser A.; Yu, Youqiang; Fat-Helbary, Raafat E.

    2014-04-01

    For most continental areas, the mechanisms leading to mantle fabrics responsible for the observed anisotropy remain ambiguous, partially due to the lack of sufficient spatial coverage of reliable seismological observations. Here we report the first joint analysis of shear-wave splitting measurements obtained at stations on the Arabian and Nubian Plates adjacent to the Red Sea. More than 1100 pairs of high-quality splitting parameters show dominantly N-S fast orientations at all 47 stations and larger-than-normal splitting times beneath the Afro-Arabian Dome (AAD). The uniformly N-S fast orientations and large splitting times up to 1.5 s are inconsistent with significant contributions from the lithosphere, which is about 50-80 km thick beneath the AAD and even thinner beneath the Red Sea. The results can best be explained by simple shear between the lithosphere and the asthenosphere associated with northward subduction of the African/Arabian Plates over the past 150 Ma.

  12. The effect of Arabian Sea optical properties on SST biases and the South Asian summer monsoon in a coupled GCM

    NASA Astrophysics Data System (ADS)

    Turner, A. G.; Joshi, M.; Robertson, E. S.; Woolnough, S. J.

    2012-08-01

    This study examines the effect of seasonally varying chlorophyll on the climate of the Arabian Sea and South Asian monsoon. The effect of such seasonality on the radiative properties of the upper ocean is often a missing process in coupled general circulation models and its large amplitude in the region makes it a pertinent choice for study to determine any impact on systematic biases in the mean and seasonality of the Arabian Sea. In this study we examine the effects of incorporating a seasonal cycle in chlorophyll due to phytoplankton blooms in the UK Met Office coupled atmosphere-ocean GCM HadCM3. This is achieved by performing experiments in which the optical properties of water in the Arabian Sea—a key signal of the semi-annual cycle of phytoplankton blooms in the region—are calculated from a chlorophyll climatology derived from Sea-viewing Wide Field-of-View Sensor (SeaWiFS) data. The SeaWiFS chlorophyll is prescribed in annual mean and seasonally-varying experiments. In response to the chlorophyll bloom in late spring, biases in mixed layer depth are reduced by up to 50% and the surface is warmed, leading to increases in monsoon rainfall during the onset period. However when the monsoons are fully established in boreal winter and summer and there are strong surface winds and a deep mixed layer, biases in the mixed layer depth are reduced but the surface undergoes cooling. The seasonality of the response of SST to chlorophyll is found to depend on the relative depth of the mixed layer to that of the anomalous penetration depth of solar fluxes. Thus the inclusion of the effects of chlorophyll on radiative properties of the upper ocean acts to reduce biases in mixed layer depth and increase seasonality in SST.

  13. Inhibition of mixed-layer deepening during winter in the northeastern Arabian Sea by the West India Coastal Current

    NASA Astrophysics Data System (ADS)

    Shankar, D.; Remya, R.; Vinayachandran, P. N.; Chatterjee, Abhisek; Behera, Ambica

    2016-08-01

    Though the deep mixed layers (MLs) that form in the northeastern Arabian Sea (NEAS) during the winter monsoon (November-February) have been attributed to convective mixing driven by dry, cool northeasterly winds from the Indian subcontinent, data show that the deepest MLs occur in the northern NEAS and the maxima of latent-heat and net heat fluxes in the southern NEAS. We use an oceanic general circulation model to show that the deep MLs in the NEAS extend up to ~20°N till the end of December, but are restricted poleward of ~22°N (~23°N) in January (February). This progressive restriction of the deep mixed layers within the NEAS is due to poleward advection of water of lower salinity by the West India Coastal Current (WICC). The deep MLs are sustained till February in the northern NEAS because convective mixing deepens the ML before the waters of lower salinity reach this region and the wind stirring and convective overturning generate sufficient turbulent energy for the ML to maintain the depth attained in January. Though the atmospheric fluxes tend to cool the ML in the southern NEAS, this cooling is countered by the warming due to horizontal advection. Likewise, the cooling due to entrainment, which continues in the southern NEAS even as the ML shallows during January-February, is almost cancelled by the warming caused by a downwelling vertical velocity field. Therefore, the SST changes very little during December-February even as the ML shallows dramatically in the southern NEAS. These deep MLs of the NEAS also preclude a strong intraseasonal response to the intraseasonal variability in the fluxes. This role of horizontal advection implies that the ML depth in the NEAS is determined by an interplay of physical processes that are forced differently. The convective mixing depends on processes that are local to the region, but the advection is due to the WICC, whose seasonal cycle is primarily forced by remote winds. By inhibiting the formation of deep MLs in

  14. Inhibition of mixed-layer deepening during winter in the northeastern Arabian Sea by the West India Coastal Current

    NASA Astrophysics Data System (ADS)

    Shankar, D.; Remya, R.; Vinayachandran, P. N.; Chatterjee, Abhisek; Behera, Ambica

    2015-10-01

    Though the deep mixed layers (MLs) that form in the northeastern Arabian Sea (NEAS) during the winter monsoon (November-February) have been attributed to convective mixing driven by dry, cool northeasterly winds from the Indian subcontinent, data show that the deepest MLs occur in the northern NEAS and the maxima of latent-heat and net heat fluxes in the southern NEAS. We use an oceanic general circulation model to show that the deep MLs in the NEAS extend up to ~20°N till the end of December, but are restricted poleward of ~22°N (~23°N) in January (February). This progressive restriction of the deep mixed layers within the NEAS is due to poleward advection of water of lower salinity by the West India Coastal Current (WICC). The deep MLs are sustained till February in the northern NEAS because convective mixing deepens the ML before the waters of lower salinity reach this region and the wind stirring and convective overturning generate sufficient turbulent energy for the ML to maintain the depth attained in January. Though the atmospheric fluxes tend to cool the ML in the southern NEAS, this cooling is countered by the warming due to horizontal advection. Likewise, the cooling due to entrainment, which continues in the southern NEAS even as the ML shallows during January-February, is almost cancelled by the warming caused by a downwelling vertical velocity field. Therefore, the SST changes very little during December-February even as the ML shallows dramatically in the southern NEAS. These deep MLs of the NEAS also preclude a strong intraseasonal response to the intraseasonal variability in the fluxes. This role of horizontal advection implies that the ML depth in the NEAS is determined by an interplay of physical processes that are forced differently. The convective mixing depends on processes that are local to the region, but the advection is due to the WICC, whose seasonal cycle is primarily forced by remote winds. By inhibiting the formation of deep MLs in

  15. Identification of new deep sea sinuous channels in the eastern Arabian Sea.

    PubMed

    Mishra, Ravi; Pandey, D K; Ramesh, Prerna; Clift, Peter D

    2016-01-01

    Deep sea channel systems are recognized in most submarine fans worldwide as well as in the geological record. The Indus Fan is the second largest modern submarine fan, having a well-developed active canyon and deep sea channel system. Previous studies from the upper Indus Fan have reported several active channel systems. In the present study, deep sea channel systems were identified within the middle Indus Fan using high resolution multibeam bathymetric data. Prominent morphological features within the survey block include the Raman Seamount and Laxmi Ridge. The origin of the newly discovered channels in the middle fan has been inferred using medium resolution satellite bathymetry data. Interpretation of new data shows that the highly sinuous deep sea channel systems also extend to the east of Laxmi Ridge, as well as to the west of Laxmi Ridge, as previously reported. A decrease in sinuosity southward can be attributed to the morphological constraints imposed by the elevated features. These findings have significance in determining the pathways for active sediment transport systems, as well as their source characterization. The geometry suggests a series of punctuated avulsion events leading to the present array of disconnected channels. Such channels have affected the Laxmi Basin since the Pliocene and are responsible for reworking older fan sediments, resulting in loss of the original erosional signature supplied from the river mouth. This implies that distal fan sediments have experienced significant signal shredding and may not represent the erosion and weathering conditions within the onshore basin at the time of sedimentation. PMID:27386293

  16. Mesoscale variability in the Arabian Sea from HYCOM model results and observations: impact on the Persian Gulf Water path

    NASA Astrophysics Data System (ADS)

    L'Hégaret, P.; Duarte, R.; Carton, X.; Vic, C.; Ciani, D.; Baraille, R.; Corréard, S.

    2015-09-01

    The Arabian Sea and Sea of Oman circulation and water masses, subject to monsoon forcing, reveal a strong seasonal variability and intense mesoscale features. We describe and analyze this variability and these features, using both meteorological data (from ECMWF reanalyses), in situ observations (from the ARGO float program and the GDEM - Generalized Digital Environmental mode - climatology), satellite altimetry (from AVISO) and a regional simulation with a primitive equation model (HYCOM - the Hybrid Coordinate Ocean Model). The model and observations display comparable variability, and the model is then used to analyze the three-dimensional structure of eddies and water masses with higher temporal and spatial resolutions than the available observations. The mesoscale features are highly seasonal, with the formation of coastal currents, destabilizing into eddies, or the radiation of Rossby waves from the Indian coast. The mesoscale eddies have a deep dynamical influence and strongly drive the water masses at depth. In particular, in the Sea of Oman, the Persian Gulf Water presents several offshore ejection sites and a complex recirculation, depending on the mesoscale eddies. The associated mechanisms range from coastal ejection via dipoles, alongshore pulses due to a cyclonic eddy, to the formation of lee eddies downstream of Ra's Al Hamra. This water mass is also captured inside the eddies via several mechanisms, keeping high thermohaline characteristics in the Arabian Sea. The variations of the outflow characteristics near the Strait of Hormuz are compared with variations downstream.

  17. The geology of the northern tip of the Arabian-Nubian Shield

    NASA Astrophysics Data System (ADS)

    Beyth, M.; Eyal, Y.; Garfunkel, Z.

    2014-11-01

    Recently, a detailed (1:50,000) geological map of the Elat area, southern Israel was published. Attached to this map is a stratigraphic table of the Neoproterozoic metamorphic-magmatic complex of the study area. The Neoproterozoic basement in the Elat area encapsulates the Arabian Nubian Shield (ANS) geologic evolution. Uranium-Lead and Lead-Lead zircon ages, included in previous studies and referred to in this paper, reveal that these rocks were formed during more than 300 million years of Neoproterozoic time. The major process controlling the formation of the ANS as part of the East African Orogen is the closure of the Mozambique Ocean. The first orogenic phase in the Elat area, represented by the metamorphic rocks, includes the development of an island arc, erosion of the islands and deposition, and metamorphism. This event took place between ∼950 Ma and 780-790 Ma. Elat Schist, the oldest metamorphic rock in the area, was deformed and then intruded by quartz dioritic and granitic plutons that were later deformed and metamorphosed. The amphibolite metamorphic rock facies indicate metamorphic conditions of up to 650 °C and between 4 and 5 kbar. The peak of the metamorphic event was most probably before 750 Ma. A gradual change from compressional to extensional stress regime is evidenced by emplacement andesitic magnesium-rich dykes dated to 705 Ma that were later metamorphosed to schistose dykes at a greenschist metamorphic facies. The second orogenic phase (terrane amalgamation, main shaping of crust) was associated with the emplacement of large volumes (>50% of area) of calc-alkaline intrusions in a post-collision setting. These very last stages of metamorphism and deformation are characterized by intrusion of ∼630 Ma granitoids exhibiting some foliation. Pluton emplacement continued also after the end of deformation. Exhumation and transition to an extensional regime is recorded by the intrusion of shallow alkaline granites in ∼608 Ma which were

  18. Arabian Night and Sea Story - Biomarkers from a Giant Mass Transport Deposit.

    NASA Astrophysics Data System (ADS)

    Bratenkov, Sophia; Kulhanek, Denise K.; Clift, Peter D.; George, Simon C.

    2016-04-01

    The study of mass transport deposits (MTDs) is an important field of research due to the potential insights into catastrophic events in the past and modern geohazard threats (e.g. tsunamis). Submarine mass movements are very significant processes in sculpturing the structure of continental margins, particularly in their extent and magnitude that have consequences both in the modern day, as well as in the geological past. An understanding of the complex stratigraphy of a submarine mass transport deposit (MTD) might help in reconstructing the provenance and transport pathways of sedimentary material and thus give important insights into sedimentary dynamics and processes triggering specific events. Drilling operations during International Ocean Discovery Program (IODP) Expedition 355 Arabian Sea Monsoon, which took place during April and May, 2015 cored two sites in Laxmi Basin. Site U1456 was cored to 1109.4 m below seafloor (mbsf), with the oldest recovered rock dated to ~13.5-17.7 Ma. Site U1457 was cored to 1108.6 mbsf, with the oldest rock dated to ~62 Ma. At each site, we cored through ~330 m and ~190 m of MTD material. The MTD layers mainly consist of interbedded lithologies of dark grey claystone, light greenish calcarenite and calcilutite, and conglomerate/breccia, with ages based on calcareous nannofossil and foraminifer biostratigraphy ranging from the Eocene to early Miocene (Pandey et al., 2015). This MTD, known as Nataraja Slide, is the third largest MTD known from the geological record and the second largest on a passive margin. Calvés et al. (2015) identified a potential source area offshore Sourashstra on the Indian continental margin and invoked the single step mass movement model to explain the mechanism of emplacement. Initial shipboard work demonstrated the high variability in total organic carbon and total nitrogen levels in different layers within the MTD, which raises a number of questions related to the source and composition of the organic

  19. Characteristics of Monsoon inversions over Arabian Sea observed by satellite sounder and reanalysis data sets

    NASA Astrophysics Data System (ADS)

    Dwivedi, Sanjeev; Narayanan, M. S.; Venkat Ratnam, M.; Narayana Rao, D.

    2015-12-01

    Monsoon inversions (MIs) over Arabian Sea (AS) are an important characteristic associated with the monsoon activity over Indian region during summer monsoon season. In the present study, we have used five years (2009-2013) data of temperature and water vapor profiles obtained from satellite sounder instrument, Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp satellite, besides ERA-Interim data, to study their characteristics. The lower atmospheric data over the AS have been examined first to identify the areas where monsoon inversions are predominant and occur with higher strength. Based on this information, a detailed study has been made to investigate their characteristics separately in eastern AS (EAS) and western AS (WAS) to examine their contrasting features. The initiation and dissipation times of MI, their percentage occurrence, strength etc., has been examined using the huge data base. The relation with monsoon activity (rainfall) over Indian region during normal and poor monsoon years is also studied. WAS ΔT values are ~ 2 K less than those over the EAS, ΔT being temperature difference between 950 and 850 hPa. A much larger contrast between WAS and EAS in ΔT is noticed in ERA-Interim dataset Vis a Vis those observed by satellites. The possibility of detecting MI from another parameter, Refractivity N, obtained directly from another satellite constellation of GPS RO (COSMIC), has also been examined. MI detected from IASI and Atmospheric InfraRed Sounder (AIRS) sounder onboard NOAA satellite have been compared to see how far the two data sets can be combined to study the MI characteristics. We suggest MI could also be included as one of the semi-permanent features of southwest monsoon along with the presently accepted six parameters.

  20. Locating Noctiluca Miliaris in the Arabian Sea: An Optical Proxy Approach

    NASA Technical Reports Server (NTRS)

    Thibodeau, Patricia S.; Roesler, Collin S.; Drapeau, Susan L.; Matondkar, S. G. Prabhu; Goes, Joaquim I.; Werdell, P. Jeremy

    2014-01-01

    Coincident with shifting monsoon weather patterns over India, the phytoplankter Noctiluca miliaris has recently been observed to be dominating phytoplankton blooms in the northeastern Arabian Sea during the winter monsoons. Identifying the exact environmental and/or ecological conditions that favor this species has been hampered by the lack of concurrent environmental and biological observations on time and space scales relevant to ecologic and physiologic processes. We present a bio-optical proxy for N. miliaris measured on highly resolved depth scales coincident with hydrographic observations with the goal to identify conducive hydrographic conditions for the bloom. The proxy is derived from multichannel excitation chlorophyll a fluorescence and is validated with microscopy, pigment composition, and spectral absorption. Phytoplankton populations dominated by either diatoms or other dinoflagellates were additionally discerned. N. miliaris populations in full bloom were identified offshore in low-nutrient and low-N : P ratio surface waters within a narrow temperature and salinity range. These populations transitioned to high-biomass diatom-dominated coastal upwelling populations. A week later, the N. miliaris blooms were observed in declining phase, transitioning to very-low-biomass populations of non-N. miliaris dinoflagellates. There were no clear hydrographic conditions uniquely associated with the N. miliaris populations, although N. miliaris was not found in the upwelling or extremely oligotrophic waters. Taxonomic transitions were not discernible in the spatial structure of the bloom as identified by the ocean color Chl imagery, indicating that in situ observations may be necessary to resolve community structure, particularly for populations below the surface.

  1. Characteristics of monsoon inversions over the Arabian Sea observed by satellite sounder and reanalysis data sets

    NASA Astrophysics Data System (ADS)

    Dwivedi, Sanjeev; Narayanan, M. S.; Venkat Ratnam, M.; Narayana Rao, D.

    2016-04-01

    Monsoon inversion (MI) over the Arabian Sea (AS) is one of the important characteristics associated with the monsoon activity over Indian region during summer monsoon season. In the present study, we have used 5 years (2009-2013) of temperature and water vapour measurement data obtained from satellite sounder instrument, an Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp satellite, in addition to ERA-Interim data, to study their characteristics. The lower atmospheric data over the AS have been examined first to identify the areas where MIs are predominant and occur with higher strength. Based on this information, a detailed study has been made to investigate their characteristics separately in the eastern AS (EAS) and western AS (WAS) to examine their contrasting features. The initiation and dissipation times of MIs, their percentage occurrence, strength, etc., has been examined using the huge database. The relation with monsoon activity (rainfall) over Indian region during normal and poor monsoon years is also studied. WAS ΔT values are ˜ 2 K less than those over the EAS, ΔT being the temperature difference between 950 and 850 hPa. A much larger contrast between the WAS and EAS in ΔT is noticed in ERA-Interim data set vis-à-vis those observed by satellites. The possibility of detecting MI from another parameter, refractivity N, obtained directly from another satellite constellation of GPS Radio Occultation (RO) (COSMIC), has also been examined. MI detected from IASI and Atmospheric Infrared Sounder (AIRS) onboard the NOAA satellite have been compared to see how far the two data sets can be combined to study the MI characteristics. We suggest MI could also be included as one of the semipermanent features of southwest monsoon along with the presently accepted six parameters.

  2. Species delimitation in the coral genus Goniopora (Scleractinia, Poritidae) from the Saudi Arabian Red Sea.

    PubMed

    Terraneo, Tullia I; Benzoni, Francesca; Arrigoni, Roberto; Berumen, Michael L

    2016-09-01

    Variable skeletal morphology, genotype induced plasticity, and homoplasy of skeletal structures have presented major challenges for scleractinian coral taxonomy and systematics since the 18th century. Although the recent integration of genetic and micromorphological data is helping to clarify the taxonomic confusion within the order, phylogenetic relationships and species delimitation within most coral genera are still far from settled. In the present study, the species boundaries in the scleractinian coral genus Goniopora were investigated using 199 colonies from the Saudi Arabian Red Sea and sequencing of four molecular markers: the mitochondrial intergenic spacer between CytB and NAD2, the nuclear ribosomal ITS region, and two single-copy nuclear genes (ATPsβ and CalM). DNA sequence data were analyzed using a variety of methods and exploratory species-delimitation tools. The results were broadly congruent in identifying five distinct molecular lineages within the sequenced Goniopora samples: G. somaliensis/G. savignyi, G. djiboutiensis/G. lobata, G. stokesi, G. albiconus/G. tenuidens, and G. minor/G. gracilis. Although the traditional macromorphological characters used to identify these nine morphospecies were not able to discriminate the obtained molecular clades, informative micromorphological and microstructural features (such as the micro-ornamentation and the arrangement of the columella) were recovered among the five lineages. Moreover, unique in vivo morphologies were associated with the genetic-delimited lineages, further supporting the molecular findings. This study represents the first attempt to identify species boundaries within Goniopora using a combined morpho-molecular approach. The obtained data establish a basis for future taxonomic revision of the genus, which should include colonies across its entire geographical distribution in the Indo-Pacific. PMID:27321092

  3. Evidence of low density sub-crustal underplating beneath western continental region of India and adjacent Arabian Sea: Geodynamical considerations

    NASA Astrophysics Data System (ADS)

    Pandey, O. P.; Agrawal, P. K.; Negi, J. G.

    1996-07-01

    The known high mobility of the Indian subcontinent during the period from 80 to 53 Ma has evoked considerable interest in recent times. It appears to have played an important role in shaping the subcontinental structures of western India and the adjoining Arabian Sea. During this period, a major catastrophic event took place in the form of Deccan volcanism, which coincides with the biological mass extinction at the K-T boundary, including the death of dinosaurs. The origin of Deccan volcanism is still being debated. Geophysically, western India and its offshore regions exhibit numerous prominent anomalies which testify to the abnormal nature of the underlying crust-lithosphere. In this work, we develop a two-dimensional structural model of these areas along two long profiles extending from the eastern basin of the Arabian Sea to about 1000 km inland. The model, derived from the available gravity data in the oceanic and continental regions, is constrained by seismic and other relevant information in the area, and suggests, for the first time, the presence of an extensive low-density (2.95-3.05 g/cm 3) sub-crustal underplating. Such a layer is found to occur between depths of 11 and 20 km in the eastern basin of the Arabian Sea, and betweeen 45 and 60 km in the continental region where it is sandwiched in the lower lithosphere. The low density may have been caused as a result of serpentinization or fractionation of magma by a process related in some way to the Deccan volcanic event. Substantial depletion of both oceanic and continental lithosphere is indicated. We hypothesize that the present anatomy of the deformed lithosphere of the region at the K-T boundary is the result of substantial melt generated owing to frictional heat possibly giving rise to a hot cell like condition at the base of the lithosphere, resulting from the rapid movement of the Indian subcontinent between 80 and 53 Ma.

  4. Seismic Velocity Structure and Depth-Dependence of Anisotropy in the Red Sea and Arabian Shield from Surface Wave Analysis

    SciTech Connect

    Hansen, S; Gaherty, J; Schwartz, S; Rodgers, A; Al-Amri, A

    2007-07-25

    We investigate the lithospheric and upper mantle structure as well as the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Love and Rayleigh waves, measured using a cross-correlation procedure, require very slow shear velocities and the presence of anisotropy throughout the upper mantle. Linearized inversion of these data produce path-averaged 1D radially anisotropic models with about 4% anisotropy in the lithosphere, increasing to about 4.8% anisotropy across the lithosphere-asthenosphere boundary (LAB). Models with reasonable crustal velocities in which the mantle lithosphere is isotropic cannot satisfy the data. The lithospheric lid, which ranges in thickness from about 70 km near the Red Sea coast to about 90 km beneath the Arabian Shield, is underlain by a pronounced low-velocity zone with shear velocities as low as 4.1 km/s. Forward models, which are constructed from previously determined shear-wave splitting estimates, can reconcile surface and body wave observations of anisotropy. The low shear velocity values are similar to many other continental rift and oceanic ridge environments. These low velocities combined with the sharp velocity contrast across the LAB may indicate the presence of partial melt beneath Arabia. The anisotropic signature primarily reflects a combination of plate- and density-driven flow associated with active rifting processes in the Red Sea.

  5. Limpets of the genus Cellana (Patellogastropoda) from Pakistan, North Arabian Sea: species identification based on DNA sequencing.

    PubMed

    Zafar, Fatima Hayat Shaheen; Ayub, Zarrien; Begum, Samar; Siddiqui, Ghazala; Roberts, David

    2016-07-01

    The true limpets are found in the intertidal zone of the rocky shores of Pakistan, North Arabian Sea. Partial sequence of the mitochondrial cytochrome oxidase I was used to estimate the degree of genetic differentiation among the morphological forms of Cellana, which were considered as three separate species earlier in Pakistan. The study revealed that the three morphs of Cellana on COI sequence generated a single haplotype and matched with the COI sequence of Cellana karachiensis. This point out the phenotypic plasticity between the proposed species. PMID:26065851

  6. Heavy mineral variation in the deep sea sediment of southeastern Arabian Sea during the past 32 kyr

    NASA Astrophysics Data System (ADS)

    Akaram, Vaseem; Das, S. S.; Rai, A. K.; Mishra, Gaurav

    2015-03-01

    The present study is based on heavy mineral assemblages (HM) of top 104-cm thick section of gravity core SK 221 (Lat. 8∘7.12'N; Long. 73∘16.38'E and water depth - 2188 m) located near the Chagos-Laccadive Ridge in the southeastern Arabian Sea to evaluate the provenance and paleoenvironmental changes during the last 32 kyr. The biogenic carbonate, acid insoluble residue, magnetic susceptibility, total organic carbon (TOC) and clay based humidity index, i.e., kaolinite/illite ratio are also utilized to correlate with the above paleoenvironmental changes. Ilmenite, garnet, staurolite, pyroxenes, andalusite and zircon are the dominant HM with moderate to low ZTR (zircon-tourmaline-rutile) index indicating instability of the sediments and rapid erosion in the source region. The characteristic HM suggest their mixed sources from the basic igneous, gneisses/granites, high grade metamorphic rocks and sandstones occurring mainly in the western and southwestern India. The temporal variations of HM, AIR (acid insoluble residue), MS (magnetic susceptibility), biogenic carbonate and Corg (TOC) during preglacial and early Holocene suggest intensive weathering, erosion, and transportation of terrigenous detritus from continental region by fluvial processes and summer monsoon led high biogenic productivity, respectively. The convective mixing of waters due to intense winter monsoon resulted in very high biogenic carbonate content during the early stages of glacial period. The HM and associated proxies indicated that the winter monsoons of Heinrich (H3, H2, and H1) and Younger Dryas (YD) events and summer monsoons of Bølling/Allerød (BA) event were not strong enough to bring drastic changes in the above parameters.

  7. Study of air-sea interaction processes over the Arabian Sea and the Bay of Bengal using satellite data

    SciTech Connect

    Gautam, N.; Simon, B.; Pandey, P.C.

    1995-12-01

    The main objective of this work is to study the latitudinal and seasonal variation of latent heat fluxes (LHF) and associated atmospheric and oceanic parameters over the Arabian Sea (AS) and the Bay of Bengal (BB) for the year 1988. A significant latitudinal variation is observed in LHF for most of the months over the AS and the BB, while other oceanic and atmospheric parameters are characterized by a strong latitudinal variation in nonmonsoon months. Seasonal variations in LHF are more significant at higher latitudes compared to lower latitudes over the AS and the BB. The effect of coastal upwelling near the Somali coast decreases LHF, while surface winds near the Indian coast during monsoon months increases LHF. A comparative study over the AS and the BB demonstrates higher PW and SST over the BB than over the AS. LHF is found to be greater over the AS than over the BB for nonmonsoon months. Correlation analysis indicates that LHF is found to be highly correlated with DQ (difference between the humidity at the surface and humidity near the surface) over the AS and weakly correlated over the BB during nonmonsoon months. Throughout the year, DQ is found to be a dominant factor for LHF over the AS. However, WS exercised better control over the BB in generating LHF. SST and PW are found to be highly correlated with each other over the AS (r = 0.87) and the BB (r = 0.75) for nonmonsoon months. The correlation becomes weakly negative over the AS (r = 0.15) and weak over the BB (r = 0.26) during monsoon months. Precipitable water is found to have a high correlation with WS over the AS (r = 0.72). This unique feature is revealed by SSM/I data and has not been reported earlier due to paucity of data over this region.

  8. Evolution and sub-surface characteristics of a sea-surface temperature filament and front in the northeastern Arabian Sea during November-December 2012

    NASA Astrophysics Data System (ADS)

    Vipin, P.; Sarkar, Kankan; Aparna, S. G.; Shankar, D.; Sarma, V. V. S. S.; Gracias, D. G.; Krishna, M. S.; Srikanth, G.; Mandal, R.; Rama Rao, E. P.; Srinivasa Rao, N.

    2015-10-01

    We used satellite-derived sea-surface-temperature (SST) data along with in-situ data collected along a meridional transect between 18.85 and 20.25°N along 69.2°E to describe the evolution of an SST filament and front during 25 November to 1 December in the northeastern Arabian Sea (NEAS). Both features were ~ 100 km long, lasted about a week, and were associated with weak temperature gradients (~ 0.07 °C km- 1). The in-situ data were collected first using a suite of surface sensors during a north-south mapping of this transect and showed the existence of a chlorophyll maximum within the filament. This surface data acquisition was followed by a high-resolution south-north CTD (conductivity-temperature-depth) sampling along the transect. In the two days that elapsed between the two in-situ measurements, the filament had shrunk in size and moved northward. In general, the current direction was northwestward and advected these mesoscale features. The CTD data also showed an SST front towards the northern end of the transect. In both these features, the chlorophyll concentration was higher than in the surrounding waters. The temperature and salinity data from the CTD suggest upward mixing or pumping of water from the base of the mixed layer, where a chlorophyll maximum was present, into the mixed layer that was about 60 m thick. A striking diurnal cycle was evident in the chlorophyll concentration, with higher values tending to occur closer to the surface during the night. The in-situ data from both surface sensors and CTD, and so also satellite-derived chlorophyll data, showed higher chlorophyll concentration, particularly at sub-surface levels, between the filament and the front, but there was no corresponding signature in the temperature and salinity data. Analysis of the SST fronts in the satellite data shows that fronts weaker than those associated with the filament and the front had crossed the transect in this region a day or two preceding the sampling of the

  9. Oceanization starts from below during continental rupturing in the northern Red Sea

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Ligi, M.; Bonatti, E.; Bosworth, W.; Cipriani, A.; Palmiotto, C.; Rasul, N. M.; Ronca, S.; Sanfilippo, A.; Seyler, M.; Nomani, S.; AlQutub, A. S.

    2015-12-01

    The role of magmatism in continental rupturing and in the birth of a new ocean is not well understood. Continental rupture can take place with intense and voluminous volcanism, as in the Southern Red Sea or in a relatively amagmatic mode, as in the Northern Red Sea. Mantle upwelling and melting may be affected by the south to north decreasing opening rate of the Red Sea and by the influence of the Afar plume, also decreasing from south to north. The tholeiitic basalts of the Red Sea spreading system contrast with the extensive Cenozoic basaltic lava fields of the western part of the Arabian peninsula that form one of the largest alkali basalt provinces in the world. In order to establish possible relationship between the Red Sea rift evolution and the western Saudi Arabia intraplate alkali volcanism, field work was carried out on Lunayyir, Ishara, al Kura and Khaybar volcanic fields. Collected samples cover a wide range of chemical diversity (from olivine basalt to trachyte) and span over a 20 Ma interval. We attempt a comparison of the geochemistry of igneous rocks from western Arabia dykes and volcanic fields with those from the Red Sea axis and from the islands of Zabargad and Brothers in the northern Red Sea, that represent basaltic melts injected into the thinned continental crust before continental rupturing and initiation of seafloor spreading. Gabbros drilled in the western Red Sea and exposed on the Brothers islands suggest that continental break up in the northern Red Sea, a relatively non-volcanic rift, is preceded by intrusion of oceanic-type basaltic melts that crystallize at progressively shallower crustal depths as rifting progresses towards continental break-up. A seismic reflection profile running across the central part of the southern Thetis basin shows a ~5 km wide reflector that marks the roof of a magma chamber located ~3.5 km below seafloor. The presence of a few kilometers deep subrift magma chamber soon after the initiation of oceanic

  10. The geology of the northern tip of the Arabian-Nubian Shield

    NASA Astrophysics Data System (ADS)

    Beyth, M.; Eyal, Y.; Garfunkel, Z.

    2014-11-01

    Recently, a detailed (1:50,000) geological map of the Elat area, southern Israel was published. Attached to this map is a stratigraphic table of the Neoproterozoic metamorphic-magmatic complex of the study area. The Neoproterozoic basement in the Elat area encapsulates the Arabian Nubian Shield (ANS) geologic evolution. Uranium-Lead and Lead-Lead zircon ages, included in previous studies and referred to in this paper, reveal that these rocks were formed during more than 300 million years of Neoproterozoic time. The major process controlling the formation of the ANS as part of the East African Orogen is the closure of the Mozambique Ocean. The first orogenic phase in the Elat area, represented by the metamorphic rocks, includes the development of an island arc, erosion of the islands and deposition, and metamorphism. This event took place between ∼950 Ma and 780-790 Ma. Elat Schist, the oldest metamorphic rock in the area, was deformed and then intruded by quartz dioritic and granitic plutons that were later deformed and metamorphosed. The amphibolite metamorphic rock facies indicate metamorphic conditions of up to 650 °C and between 4 and 5 kbar. The peak of the metamorphic event was most probably before 750 Ma. A gradual change from compressional to extensional stress regime is evidenced by emplacement andesitic magnesium-rich dykes dated to 705 Ma that were later metamorphosed to schistose dykes at a greenschist metamorphic facies. The second orogenic phase (terrane amalgamation, main shaping of crust) was associated with the emplacement of large volumes (>50% of area) of calc-alkaline intrusions in a post-collision setting. These very last stages of metamorphism and deformation are characterized by intrusion of ∼630 Ma granitoids exhibiting some foliation. Pluton emplacement continued also after the end of deformation. Exhumation and transition to an extensional regime is recorded by the intrusion of shallow alkaline granites in ∼608 Ma which were

  11. Retrieval of near-surface bio-optical properties of the Arabian Sea from remotely sensed ocean colour data

    NASA Astrophysics Data System (ADS)

    Pinkerton, M. H.; Trees, C. C.; Aiken, J.; Bale, A. J.; Moore, G. F.; Barlow, R. G.; Cummings, D. G.

    1999-03-01

    The use of CZCS-type band-ratio algorithms to estimate the diffuse attenuation coefficient, percentage light depths, and near-surface optically weighted phytoplankton pigment concentrations from remotely sensed ocean colour data was investigated on two cruises in the Arabian Sea and Gulf of Oman during autumn and winter 1994. The variations of upwelling radiance and downwelling irradiance with depth were measured along with phytoplankton pigment concentrations by HPLC. A spectroradiometer was used on the second cruise to investigate the feasibility of measuring water-leaving radiance from above the sea surface. Retrieval of the diffuse downwelling attenuation coefficient at 490 nm was accurate to within 22% of the actual value across both cruises. There was also a robust relationship between the diffuse attenuation coefficient and the 10, 1 and 0.1% light depths. Above-surface estimates of water-leaving radiance agreed with SeaWiFS-standard estimates to within 10% between 443 and 555 nm. The global 443 : 555 band-ratio algorithms of Aiken et al. [NASA Tech. Memo 104566, Vol. 29, SeaWiFS Technical Report Series, 34 pp] estimated near-surface chlorophyll- a and fluorometric pigment concentrations with mean absolute errors of less than 35% of the actual values (which were all less than 2.0 mg m -3). The performance of algorithms based on the 490 : 555 ratio was poorer. The estimates given by the algorithms were generally higher than the measured pigment concentrations and the variance of the accuracy of the estimates was high. There appears to be no significant change in the performance of the algorithms between cruises (approximately 2 1/2 months apart in time). There is no evidence that the Gulf of Oman should be treated as a separate bio-optical province to the Arabian Sea/Omani shelf area for the purpose of the retrieval of near-surface pigment concentrations from ocean colour observations.

  12. Deep-water Thyasiridae (Mollusca: Bivalvia) from the Oman Margin, Arabian Sea, new species and examples of endemism and cosmopolitanism.

    PubMed

    Oliver, P Graham

    2015-01-01

    Seven species of Thyasiridae are reported from the Oman Margin of the Arabian Sea at depths between 688 m and 3356 m. Hypoxic conditions exist at depths between 400 and 1200 m and three species are restricted to this zone and to the Arabian Sea. Leptaxinus indusarium has also been recorded from the Indus Fan and Channelaxinus investigatoris from off Sri Lanka. A new species Thyasira anassa sp. nov. is described from the hypoxic zone. Another four species are recorded from the abyssal zone where oxygen levels are typical for the deep ocean. Here another new species is described, Parathyasira bamberi sp. nov. but the other species could not be conclusively identified because of close affinity with populations from other oceans.  Deep water Atlantic species Axinulus croulinensis and Mendicula ferruginosa are apparently present in the abyssal Indian Ocean while another thyasirid shell is very close to Channelaxinus excavatus from the Eastern Pacific and C. perplicata from the Atlantic. Accompanying these abyssal thyasirids were other bivalve species, Deminucula atacellana, Limopsis pelagica and Bentharca asperula that cannot be distinguished by morphology from their Atlantic populations. It is concluded that using morphology alone that the abyssal species may well be cosmopolitan in distribution. PMID:26250317

  13. Uptake of phytodetritus by benthic foraminifera under oxygen depletion at the Indian Margin (Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Enge, A. J.; Witte, U.; Kucera, M.; Heinz, P.

    2013-09-01

    Benthic foraminifera in sediments on the Indian margin of the Arabian Sea where the oxygen minimum zone (OMZ) impinges on the continental slope are exposed to particularly severe levels of oxygen depletion. Food supply for the benthic community is high but delivered in distinct pulses during upwelling and water mixing events associated with summer and winter monsoon periods. In order to investigate the response by benthic foraminifera to such pulsed food delivery under oxygen concentrations of less than 0.1 mL L-1 (4.5 μmol L-1), an in situ isotope labeling experiment (13C, 15N) was performed at the western continental slope of India at 540 m water depth (OMZ core region). The assemblage of living foraminifera (>125 μm) in the uppermost centimeter at this depth is characterized by an unexpectedly high population density of 3982 ind. 10 cm-2 and a strong dominance by few calcareous species. For the experiment, we concentrated on the nine most abundant taxa, which constitute 93% of the entire foraminifera population at 0-1 cm sediment depth. Increased concentrations of 13C and 15N in the cytoplasm indicate that all investigated taxa took up the labeled phytodetritus during the 4 day experimental phase. In total, these nine species had assimilated 113.8 mg C m-2 (17.5% of the total added carbon). The uptake of nitrogen by the three most abundant taxa (Bolivina aff. B. dilatata, Cassidulina sp., Bulimina gibba) was 2.7 mg N m-2 (2% of the total added nitrogen) and showed the successful application of 15N as tracer in foraminiferal studies. The short-term response to the offered phytodetritus varied largely among foraminiferal species with Uvigerina schwageri being by far the most important species in short-term processing whereas the most abundant taxa Bolivina aff. B. dilatata and Cassidulina sp. showed comparably low uptake of the offered food. We suggest that the observed species-specific differences are related to individual biomass of species and to specific

  14. Uptake of phytodetritus by benthic foraminifera under oxygen depletion at the Indian margin (Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Enge, A. J.; Witte, U.; Kucera, M.; Heinz, P.

    2014-04-01

    Benthic foraminifera in sediments on the Indian margin of the Arabian Sea, where the oxygen minimum zone (OMZ) impinges on the continental slope, are exposed to particularly severe levels of oxygen depletion. Food supply for the benthic community is high but delivered in distinct pulses during upwelling and water mixing events associated with summer and winter monsoon periods. In order to investigate the response by benthic foraminifera to such pulsed food delivery under oxygen concentrations of less than 0.1 mL L-1 (4.5 μmol L-1), an in situ isotope labeling experiment (13C, 15N) was performed on the western continental slope of India at 540 m water depth (OMZ core region). The assemblage of living foraminifera (>125 μm) in the uppermost centimeter at this depth is characterized by an unexpectedly high population density of 3982 individuals 10 cm-2 and a strong dominance by few calcareous species. For the experiment, we concentrated on the nine most abundant taxa, which constitute 93% of the entire foraminiferal population at 0-1 cm sediment depth. Increased concentrations of 13C and 15N in the cytoplasm indicate that all investigated taxa took up labeled phytodetritus during the 4 day experimental phase. In total, these nine species had assimilated 113.8 mg C m-2 (17.5% of the total added carbon). Uptake of nitrogen by the three most abundant taxa (Bolivina aff. B. dilatata, Cassidulina sp., Bulimina gibba) was 2.7 mg N m-2 (2% of the total added nitrogen). The response to the offered phytodetritus varied largely among foraminiferal species with Uvigerina schwageri being by far the most important species in short-term processing, whereas the most abundant taxa Bolivina aff. B. dilatata and Cassidulina sp. showed comparably low uptake of the offered food. We suggest the observed species-specific differences are related to species biomass and specific feeding preferences. In summary, the experiment in the OMZ core region shows rapid processing of fresh

  15. Response of the Surface Circulation of the Arabian Sea to Monsoonal Forcing

    NASA Astrophysics Data System (ADS)

    Beal, L. M.; Hormann, V.; Lumpkin, R.; Foltz, G. R.

    2014-12-01

    We use two decades of drifter and satellite data to examine the monthly evolution of the surface circulation of the Arabian Sea, which reverses annually in response to the Indian monsoon winds. Most significantly, we find that in the transition from winter to summer circulations, northward flow appears along the length of the western boundary as early as March or April, one or two months before the onset of the southwest monsoon winds. This reversal is initiated by annual Rossby waves, which in turn are initiated by wind curl forcing during the previous southwest monsoon. These results lead us to speculate that there is an oceanic mechanism through which one monsoon may precondition the next. Previous studies of monsoon circulations with lower temporal resolution have highlighted basin-wide currents and connections that are not found to exist in the monthly fields. In particular, we find that the Northeast Monsoon Current does not reach the western boundary and there is no counter-rotating gyre system during boreal winter. South of the equator, the eastward-flowing South Equatorial Counter Current (SECC) is present year-round, even though equatorial winds are strongly influenced by the monsoons. Semi-annual variability of the SECC is governed by Ekman pumping over the south equatorial gyre (or Seychelles dome) and, surprisingly, it is weakest during the northeast monsoon. This region has important influence on the atmosphere and its link to the monsoons deserves further investigation. The East African Coastal Current feeds into the SECC from the boundary. During the southwest monsoon it overshoots the equator and splits, feeding both northward into the Somali Current and eastward into the SECC after looping back across the equator. This apparent retroflection of the EACC is what was previously known as the southern gyre and is obscured at the surface by strong, locally wind-driven, cross-equatorial Ekman transport. Finally, there is broad, strong eastward flow at

  16. Acoustic Doppler current profiling from the JGOFS Arabian Sea cruises aboard the RV T.G. Thompson

    SciTech Connect

    Kim, H.S.; Flagg, C.N.; Shi, Y.

    1996-12-01

    Acoustic Doppler current profiler (ADCP) data is part of the core data for the US JGOFS Arabian Sea project, along with hydrographic and nutrient data. Seventeen cruises are scheduled to take place between September 1994 and January 1996 on the R/V T.G. Thompson. Seven of the cruises follow a standard cruise track, taking hydrographic, chemical and biological measurements. The rest of the cruises, which take place generally within the standard cruise region defined by a set track, are for the deployment and recovery of moored equipment and towing of a SeaSoar. Detailed description of ADCP hardware, the AutoADCP data acquisition system, and the collection of navigation and compass data on the Thompson is documented in Section 2. Followed by data collection for each cruise together with a cruise track, Section 3 presents the processing and analysis of velocity and acoustic backscatter intensity data. Section 5 shows results of profile quality diagnosis.

  17. Middle-Late Quaternary paleoclimate of northern margins of the Saharan-Arabian Desert: reconstruction from speleothems of Negev Desert, Israel

    NASA Astrophysics Data System (ADS)

    Vaks, Anton; Bar-Matthews, Miryam; Matthews, Alan; Ayalon, Avner; Frumkin, Amos

    2010-09-01

    Speleothems in arid and hyper-arid areas of Negev Desert, Israel, are used in paleoclimate reconstruction of northern margins of Saharan-Arabian Desert, focused on the following objectives: 1) precise U-Th dating of the timing of speleothem growth as an indicator of periods of humid climate, i.e. positive effective precipitation; 2) the origin of rainfall using the speleothem δ 18O and changes in spatial pattern of speleothem deposition and speleothem thickness along a north-south transect; 3) changes of vegetation cover based on speleothem δ 13C variations. During the last 350 ka major humid periods, referred to herein as Negev Humid Periods (NHP), occurred in the central and southern Negev Desert at 350-310 ka (NHP-4), 310-290 ka (NHP-3), 220-190 ka (NHP-2), and 142-109 ka (NHP-1). NHP-4, NHP-2 and NHP-1 are interglacial events, whereas NHP-3 is associated with a glacial period. During NHP-1, 2 and 3 the thickness and volume of the speleothems decrease from the north to the south, and in the most southern part of the region only a very thin flowstone layer formed during NHP-1, with no speleothem deposition occurring during NHP-2 and 3. These data imply that the Eastern Mediterranean Sea was the major source of the rainfall in northern and central Negev. More negative speleothem δ 18O values, relative to central parts of Israel (Soreq Cave) are attributed to Rayleigh distillation because of the increasing distance from the Mediterranean Sea. Speleothem deposition during the NHP-4 in the southern Negev was more intensive than in most of the central Negev, suggesting the prominence of the tropical rain source. Decrease in speleothem δ 13C during NHP events indicates growth of the vegetation cover. Nevertheless, the ranges of δ 13C values show that the vegetation remained semi-desert C4 type throughout the NHPs, with an additional significant carbon fraction coming from the host rock and the atmosphere. These observations, together with small thickness of the

  18. Climate Change May Bring More Tainted Shellfish to Northern Seas

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_160300.html Climate Change May Bring More Tainted Shellfish to Northern Seas ... must be monitored "in the light of ongoing climate change, especially in coastal areas most heavily affected by ...

  19. Monsoon driven changes in phytoplankton populations in the eastern Arabian Sea as revealed by microscopy and HPLC pigment analysis

    NASA Astrophysics Data System (ADS)

    Parab, Sushma G.; Prabhu Matondkar, S. G.; Gomes, H. do R.; Goes, J. I.

    2006-12-01

    Like the rest of the Arabian Sea, the west coast of India is subject to semi-annual wind reversals associated with the monsoon cycle that result in two periods of elevated phytoplankton productivity, one during the northeast (NE) monsoon (November-February) and the other during the southwest (SW) monsoon (June-September). Although the seasonality of phytoplankton biomass in these coastal waters is well known, the abundance and composition of phytoplankton populations associated with this distinct and predictable seasonal cycle is poorly known. Here we present for the first time, the results of a study on the community structure of phytoplankton for this region, derived from HPLC pigment analysis and microscopic cell counts. Our sampling strategy allowed for large spatial and temporal coverage over regions representative of the coastal and offshore waters, and over seasons that included the NE and the SW monsoon. Monthly observations at a fixed coastal station in particular, allowed us to follow changes in phytoplankton community structure associated with the development of anoxia. Together these measurements helped establish a pattern of seasonal change of three major groups of phytoplankton: diatoms, dinoflagellates and cyanobacteria that appeared to be tightly coupled with hydrographic and chemical changes associated with the monsoonal cycle. During the SW monsoon when nitrate concentrations were high, diatoms were dominant but prymnesiophytes were present as well. By October, as nitrate fell to below detection levels and anoxic conditions began to develop on the shelf below the shallow pycnocline, both diatom and prymensiophytes declined sharply giving way to dinoflagellates. In the well oxygenated surface waters, where both nitrate and ammonium were below detection limits, pico-cyanobacterial populations became dominant. During the NE monsoon, a mixed diatom-dinoflagellate population was quickly replaced by blooms of Trichodesmium erythraeum and Noctiluca

  20. The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons

    NASA Astrophysics Data System (ADS)

    Enzel, Yehouda; Kushnir, Yochanan; Quade, Jay

    2015-06-01

    A dramatic increase in regional summer rainfall amount has been proposed for the Arabian Peninsula during the middle Holocene (ca. 9-5 ka BP) based on lacustrine sediments, inferred lake levels, speleothems, and pollen. This rainfall increase is considered primarily the result of an intensified Indian summer monsoon as part of the insolation-driven, northward shift of the boreal summer position of the Inter-Tropical Convergence Zone (ITCZ) to over the deserts of North Africa, Arabia, and northwest India. We examine the basis for the proposed drastic climate change in Arabia and the shifts in the summer monsoon rains, by reviewing paleohydrologic lacustrine records from Arabia. We evaluate and reinterpret individual lake-basin status regarding their lacustrine-like deposits, physiography, shorelines, fauna and flora, and conclude that these basins were not occupied by lakes, but by shallow marsh environments. Rainfall increase required to support such restricted wetlands is much smaller than needed to form and maintain highly evaporating lakes and we suggest that rainfall changes occurred primarily at the elevated edges of southwestern, southern, and southeastern Arabian Peninsula. These relatively small changes in rainfall amounts and local are also supported by pollen and speleothems from the region. The changes do not require a northward shift of the Northern Hemisphere summer ITCZ and intensification of the Indian monsoon rainfall. We propose that (a) latitudinal and slight inland expansion of the North African summer monsoon rains across the Red Sea, and (b) uplifted moist air of this monsoon to southwestern Arabia highlands, rather than rains associated with intensification of Indian summer monsoon, as proposed before, increased rains in that region; these African monsoon rains produced the modest paleo-wetlands in downstream hyperarid basins. Furthermore, we postulate that as in present-day, the ITCZ in the Indian Ocean remained at or near the equator all

  1. Remote Sensing of Sea Ice in the Northern Sea Route: Studies and Applications

    NASA Astrophysics Data System (ADS)

    Barry, Roger G.

    2008-07-01

    Given the rapid changes that are under way in Arctic sea ice extent, Remote Sensing of Sea Ice in the Northern Sea Route is a timely work. The Northern Sea Route (NSR), along the Arctic coast of Russia, has a long history, dating back to 1932, when the Soviet Union established the NSR administration to develop hydrometeorological services. Shipping along the sea route peaked in the 1980s, but there is renewed interest associated with a lengthening ice-free season and mineral exploitation. Since July 1991, the NSR has been open to all merchant vessels.

  2. Relating MODIS-derived surface albedo to soils and rock types over Northern Africa and the Arabian peninsula

    NASA Astrophysics Data System (ADS)

    Tsvetsinskaya, Elena A.; Schaaf, C. B.; Gao, F.; Strahler, A. H.; Dickinson, R. E.; Zeng, X.; Lucht, W.

    2002-05-01

    We use the MODerate resolution Imaging Spectroradiometer (MODIS) aboard the Terra spacecraft to derive surface albedo for the arid areas of Northern Africa and the Arabian peninsula. Albedo in seven MODIS spectral bands for land and three broad bands (for shortwave, near infrared, and visible portions of the spectrum) is produced. Surface albedo is derived from MODIS observations during a sixteen-day period and is analyzed at 1 km spatial resolution. MODIS data show considerable spatial variability of surface albedo in the study region that is related to soil and geological characteristics of the surface. For example, solar shortwave white-sky albedo varies by a factor of about 2.5 from the darkest volcanic terrains to the brightest sand sheets. Vegetation contribution to surface reflectance is essentially negligible since we only considered pixels with under 10 percent fractional canopy cover. Few, if any, coupled land-atmosphere global or regional models capture this observed spatial variability in surface reflectance or albedo. Here we suggest a scheme that relates soil groups (based on the United Nations Food and Agriculture Organization, FAO, soil classification) and rock types (based on the United States Geological Survey, USGS, geological maps) to MODIS derived surface albedo statistics. This approach is a first step towards the incorporation of the observed spatial variability in surface reflective properties into climate models.

  3. Sink or link? The bacterial role in benthic carbon cycling in the Arabian sea oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Pozzato, L.; Van Oevelen, D.; Moodley, L.; Soetaert, K.; Middelburg, J. J.

    2013-06-01

    The bacterial loop, the consumption of dissolved organic matter (DOM) by bacteria and subsequent transfer of bacterial carbon to higher trophic levels, plays a prominent role in pelagic aquatic food webs. However, its role in sedimentary ecosystems is not well documented. Here we present the results of isotope tracer experiments performed under in situ oxygen conditions in sediments from inside and outside the Arabian Sea Oxygen Minimum Zone (OMZ) to study the importance of the microbial loop in this setting. Particulate organic matter, added as phytodetritus, was processed by bacteria, protozoa and metazoans, while dissolved organic matter was processed only by bacteria and there was very little, if any, transfer to higher trophic levels within the experimental period. This lack of significant transfer of bacterial-derived carbon to metazoan consumers indicates that the bacterial loop is rather inefficient in these sediments. Moreover, metazoans directly consume labile particulate organic matter resources and thus compete with bacteria for phytodetritus.

  4. Biodegradation of diesel oil by an Arabian Sea sediment culture isolated from the vicinity of an oil field.

    PubMed

    Mukherji, Suparna; Jagadevan, Sheeja; Mohapatra, Gita; Vijay, Avinash

    2004-12-01

    Laboratory scale batch studies were performed to test the diesel oil biodegradation ability of ES1 cultures isolated from Arabian Sea sediments obtained from the vicinity of an oil field. This culture could utilize diesel as the sole source of carbon and energy. Under aerobic conditions, 39% loss of diesel oil was observed over 8 days where 80% of the loss was due to aliphatic constituents. Under anoxic nitrate reducing conditions the rate and extent of degradation was significantly lower, i.e., 18% over 50 days. Salt acclimatized cultures could tolerate salinities up to 3.5% and demonstrated optimal performance at a salinity of 0.5%. The optimum N/P ratio for these cultures was found to be in the range of 2:1-5:1. Addition of two trace elemental substance formulations exhibited a significant inhibitory effect on culture growth. This culture has good potential for decontamination of oil-contaminated marine and subsurface environments. PMID:15288270

  5. Trace metal enrichment and organic matter sources in the surface sediments of Arabian Sea along southwest India (Kerala coast).

    PubMed

    Sreekanth, Athira; Mrudulrag, S K; Cheriyan, Eldhose; Sujatha, C H

    2015-12-30

    The geochemical distribution and enrichment of trace metals (Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn) were determined in the surface sediments of Arabian Sea, along southwest India, Kerala coast. The results of geochemical indices indicated that surficial sediments of five transects are uncontaminated with respect to Mn, Zn and Cu, uncontaminated to moderately contaminated with Co and Ni, and moderately to strongly contaminated with Pb. The deposition of trace elements exhibited three different patterns i) Cd and Zn enhanced with settling biodetritus from the upwelled waters, ii) Pb, Co and Ni show higher enrichment, evidenced by the association through adsorption of iron-manganese nodules onto clay minerals and iii) Cu enrichment observed close to major urban sectors, initiated by the precipitation as Cu sulfides. Correlation, principal component analysis (PCA) and cluster analysis (CA) were used to confirm the origin information of metals and the nature of organic matter composition. PMID:26602174

  6. Grazing processes and secondary production in the Arabian Sea: A simple food web synthesis with measurement constraints

    NASA Astrophysics Data System (ADS)

    Landry, Michael R.

    The Joint Global Ocean Flux Study in the Arabian Sea during the mid 1990s provides a rare opportunity to elucidate carbon flows in the lower food web of an open ocean ecosystem. Analysis of that data to date has, however, produced widely divergent perspectives on major flux pathways and roles of zooplankton: from zooplankton as controlling grazers tightly coupled to microbial processes to zooplankton as casual consumers who let a large fraction of production, mostly generated by picophytoplankton, flow directly to detritus and export. Synthesis of experimental grazing rates and production inferences for mesozooplankton and microzooplankton fit well in a conceptually simple food web, constrained by measured carbon flows through phytoplankton and bacteria. Microzooplankton dominate grazing processes, consuming over 70% of particulate primary production (PP), on average, and providing steady and significant supplemental nutrition to mesozooplankton. Direct grazing estimates of mesozooplankton, on the order of 25% of PP, are sufficient to balance the remaining particulate production, with additional transfer through a one- to two-step food chain of microzooplankton accounting for a total ingestion of ˜40% of PP required for mesozooplankton secondary production. Dissolved organic carbon fluxes to bacteria are provided mostly within the constraints of gross and net primary production. Contradictory results from inverse models are likely due to an assumption that exaggerates by approximately twofold the production contribution of picophytoplankton and to the failure to use measured rates of gross primary production as a system constraint. Grazing generally balances net particulate primary production in the Arabian Sea, but true grazer control of phytoplankton dynamics remains an open issue for further study.

  7. Trace and rare earth elemental variation in Arabian sea sediments through a transect across the oxygen minimum zone

    SciTech Connect

    Nath, B.N.; Rao, B.R.; Rao, C.M.; Bau, M.

    1997-06-01

    We have determined the calcium carbonate (CaCO{sub 3}), organic carbon (C{sub org}), trace element, and rare earth element (REE) composition of surface sediments collected from a transect on the central western continental shelf and slope of India in the Eastern Arabian Sea. The transect samples across the oxygen minimum zone (OMZ) allows us to compare the relative abundances of trace elements and REEs in the sediments beneath and beyond the OMZ. Shale-normalized REE patterns, La{sub n}/Yb{sub n} ratios, and Eu/Eu* anamolies indicate that the sediments in the study area are either derived from the adjoining Archaean land masses or from distal Indus source. Sediment deposited in the OMZ have high U values from 3.6 to 8.1 ppm, with their U{sub excess} (of that can be supplied by continental particles) values ranging between 82-91% of the total U, indicating that the U may be precipitated as U{sup +4} in the reducing conditions of OMZ. Sediments deposited beneath the intense OMZ (<0.2 mL/L) and away from the OMZ (1-2 mL/L) show slight negative Ce anomalies, with no significant differences between these two sets of sediments. The Ce/Ce*{sub shale} values are poorly related to U and C{sub org} which are indicators of suboxic bottom waters. Normative calculations suggest that two sources, namely, terrestrial and seawater (terrestrial > seawater) contribute to the total Ce anomaly of the sediments. The Ce anomaly values of the calculated seawater derived component are similar to the anomalies reported for other coastal waters and the oxygenated surface waters of the Arabian Sea and do not show any correspondence to the lowered redox state of the overlying water, probably due to the redirection of dissolved Ce into the oxic deeper water. 103 refs., 6 figs., 3 tabs.

  8. Monsoon variability in the northeastern Arabian Sea on orbital- and millennial scale during the past 200,000 years

    NASA Astrophysics Data System (ADS)

    Lückge, Andreas; Groeneveld, Jeroen; Steinke, Stephan; Mohtadi, Mahyar; Westerhold, Thomas; Schulz, Hartmut

    2016-04-01

    The Dansgaard-Oeschger oscillations and Heinrich events described in the Greenland ice cores and in North Atlantic and Western Mediterranean sediments are also expressed in the climate of the tropics, for example, as documented in Arabian Sea sediments. However, little is known about these fluctuations beyond the reach of the Greenland ice cores. Here, we present high-resolution geochemical, sedimentological as well as micropaleontological data from two cores (SO130-283KL, 987m water depth and SO130-289KL, 571m) off the coast of Pakistan, extending the monsoon record on orbital and millennial scales to the past 200,000 years. The stable oxygen isotope record of the surface-dwelling planktonic foraminifer G. ruber shows a strong correspondence to Greenland ice core δ18O, whereas the deepwater δ18O signal of benthic foraminifera (U. peregrina and G. affinis) reflects patterns recorded in ice cores from Antarctica. Strong shifts in benthic δ18O during stadials/Heinrich events are interpreted to show frequent advances of oxygen-rich intermediate water masses into the Arabian Sea originating from the southern ocean. Alkenone-derived SSTs varied between 23 and 28° C. Highest temperatures were encountered during interglacial MIS 5. Rapid SST changes of 2° C magnitude on millennial scale are overlain by long-term SST fluctuations. Interstadials (of glacial phases) and the cold phases of interglacials are characterized by sediments enriched in organic carbon (up to 4 % TOC) whereas sediments with low TOC contents (< 1 % TOC) appear during stadials and Heinrich events. Shifts at climate transitions, such as onsets of interstadials, were coeval with changes in productivity-related and anoxia-indicating proxies. Interstadial inorganic elemental data consistently show that enhanced fluxes of terrestrial-derived sediments are paralleled by productivity maxima, and are characterized by an increased fluvial contribution from the Indus River. In contrast, stadials are

  9. SeaWiFS: Pakistan Dust

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This SeaWiFS image collected on November 3, 2001 depicts a dust storm blowing southward over the northern end of the Arabian Sea from Pakistan and Iran. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  10. Analysis of humpback whale sounds in shallow waters of the Southeastern Arabian Sea: An indication of breeding habitat.

    PubMed

    Mahanty, Madan M; Latha, G; Thirunavukkarasu, A

    2015-06-01

    The primary objective of this work was to present the acoustical identification of humpback whales, detected by using an autonomous ambient noise measurement system, deployed in the shallow waters of the Southeastern Arabian Sea (SEAS) during the period January to May 2011. Seven types of sounds were detected. These were characteristically upsweeps and downsweeps along with harmonics. Sounds produced repeatedly in a specific pattern were referred to as phrases (PQRS and ABC). Repeated phrases in a particular pattern were referred to as themes, and from the spectrographic analysis, two themes (I and II) were identified. The variation in the acoustic characteristics such as fundamental frequency, range, duration of the sound unit, and the structure of the phrases and themes are discussed. Sound units were recorded from mid-January to mid-March, with a peak in February, when the mean SST is approx. 28 degree C, and no presence was recorded after mid-March. The temporal and thematic structures strongly determine the functions of the humpback whale song form. Given the use of song in the SEAS, this area is possibly used as an active breeding habitat by humpback whales during the winter season. PMID:25963267

  11. Feeding ecology of the copepod Lucicutia aff. L. grandis near the lower interface of the Arabian Sea oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Gowing, Marcia M.; Wishner, Karen F.

    Feeding ecology of the calanoid copepod Lucicutia aff. L. grandis collected in the Arabian Sea at one station during the Spring Intermonsoon and during the Southwest Monsoon of 1995 was studied with transmission electron microscopy of gut-contents. Highest abundances of these animals occurred from ˜400 to 1100 m, near the lower interface of the oxygen minimum zone and at the inflection point where oxygen starts to increase. We expected that their gut-contents would include particles and cells that had sunk relatively undegraded from surface waters as well as those from within the oxygen minimum zone, and that gut-contents would differ between the Spring Intermonsoon and the more productive SW Monsoon. Overall, in both seasons Lucicutia aff. L. grandis was omnivorous, and consumed a variety of detrital particles, prokaryotic and eukaryotic autotrophs, gram-negative bacteria including metal-precipitating bacteria, aggregates of probable gram-positive bacteria, microheterotrophs, virus-like particles and large virus-like particles, as well as cuticle and cnidarian tissue. Few significant differences in types of food consumed were seen among life stages within or among various depth zones. Amorphous, unidentifiable material was significantly more abundant in guts during the Spring Intermonsoon than during the late SW Monsoon, and recognizable cells made up a significantly higher portion of gut-contents during the late SW Monsoon. This is consistent with the Intermonsoon as a time when organic material is considerably re-worked by the surface water microbial loop before leaving the euphotic zone. In both seasons Lucicutia aff. L. grandis had consumed what appeared to be aggregates of probable gram-positive bacteria, similar to those we had previously found in gut-contents of several species of zooplankton from the oxygen minimum zone in the eastern tropical Pacific. By intercepting sinking material, populations of Lucicutia aff. L. grandis act as a filter for carbon

  12. Living (Rose-Bengal-stained) benthic foraminiferal faunas along a strong bottom-water oxygen gradient on the Indian margin (Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Caulle, C.; Mojtahid, M.; Gooday, A. J.; Jorissen, F. J.; Kitazato, H.

    2015-08-01

    Rose-Bengal-stained foraminiferal assemblages (> 150 μm) were analysed along a five-station bathymetric transect across the core and the lower part of the oxygen minimum zone (OMZ) on the Indian margin of the Arabian Sea. Sediment cores were collected using the manned submersible Shinkai 6500 during the RV Yokosuka cruise YK08-11 in the post-monsoon season (October 2008) at water depths ranging from 535 to 2000 m, along a gradient from almost anoxic to well-oxygenated (0.3 to 108 μM) bottom waters. Stained benthic foraminifera were investigated from two different size fractions (150-300 μm and > 300 μm). Stained foraminiferal densities were very high in the core of the OMZ (at 535 and 649 m) and decreased at deeper sites. The faunas (> 150 μm) were dominated (40-80 %) by non-calcareous taxa at all stations. These were mainly species of Reophax and Lagenammina but also included delicate monothalamous taxa (organic-walled "allogromiids", agglutinated saccamminids, psammosphaerids and tubular forms). These new data from the Indian margin are compared to previous studies from the Murray Ridge, the Pakistan margin and the Oman margin. The fact that similar species were found at sites with comparable bottom-water oxygen concentrations but with very different surface water productivity suggests that, within the strongly developed Arabian Sea OMZ, bottom-water oxygen concentration, and not the organic flux to the sea floor, is the main factor controlling the species composition of the foraminiferal communities. Several foraminiferal species (e.g. Praeglobobulimina sp. 1, Ammodiscus sp. 1, Bolivina aff. dilatata) were confined to the core of the OMZ. These species are presently known only from the Arabian Sea. Because of their association with extremely low oxygen concentrations, these species may be good markers for very low oxygen concentrations, and could be used to reconstruct past OMZ variability in the Arabian Sea.

  13. Living (Rose Bengal stained) benthic foraminiferal faunas along a strong bottom-water oxygen gradient on the Indian margin (Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Caulle, C.; Mojtahid, M.; Gooday, A. J.; Jorissen, F. J.; Kitazato, H.

    2015-02-01

    Rose Bengal stained foraminiferal assemblages were analysed along a five-station bathymetric transect across the core and the lower part of the oxygen minimum zone (OMZ) on the Indian margin of the Arabian Sea. Sediment cores were collected using the manned submersible Shinkai 6500 during RV Yokosuka cruise YK08-11 in the post-monsoon season (October 2008) at water depths ranging from 535 to 2000 m, along a gradient from almost anoxic to well-oxygenated (0.3 to 108 μM) bottom waters. Stained foraminiferal densities were very high in the OMZ core (535 m) and decreased with depth. The faunas were dominated (40-80%) by non-calcareous taxa at all stations. These were mainly species of Reophax and Lagenammina but also included delicate monothalamous taxa (organic-walled "allogromiids", agglutinated saccamminids, psammosphaerids and tubular forms). These new data from the Indian margin are compared to previous studies from the Murray Ridge, the Pakistan margin and the Oman margin. The fact that similar species were found at sites with comparable bottom-water oxygen concentrations but with very different surface water productivity suggests that, within the strongly developed Arabian Sea OMZ, bottom-water oxygen concentration, and not the organic flux to the sea floor, is the main factor controlling the species composition of the foraminiferal communities. Several foraminiferal species (e.g. Praeglobobulimina sp. 1, Ammodiscus sp. 1, Bolivina aff. dilatata) were confined to the core of the OMZ and are presently known only from the Arabian Sea. Because of their association with extremely low-oxygen concentration, these species may prove to be good indicators of past OMZ variability in the Arabian Sea.

  14. A Major Ecosystem Shift in the Northern Bering Sea

    NASA Astrophysics Data System (ADS)

    Grebmeier, Jacqueline M.; Overland, James E.; Moore, Sue E.; Farley, Ed V.; Carmack, Eddy C.; Cooper, Lee W.; Frey, Karen E.; Helle, John H.; McLaughlin, Fiona A.; McNutt, S. Lyn

    2006-03-01

    Until recently, northern Bering Sea ecosystems were characterized by extensive seasonal sea ice cover, high water column and sediment carbon production, and tight pelagic-benthic coupling of organic production. Here, we show that these ecosystems are shifting away from these characteristics. Changes in biological communities are contemporaneous with shifts in regional atmospheric and hydrographic forcing. In the past decade, geographic displacement of marine mammal population distributions has coincided with a reduction of benthic prey populations, an increase in pelagic fish, a reduction in sea ice, and an increase in air and ocean temperatures. These changes now observed on the shallow shelf of the northern Bering Sea should be expected to affect a much broader portion of the Pacific-influenced sector of the Arctic Ocean.

  15. A Study of Tropical Cyclones over India (Bay of Bengal and Arabian Sea) and Solar Influence on It

    NASA Astrophysics Data System (ADS)

    Banerjee, Dhruba

    2016-07-01

    A prominent example of extreme weather event in India is Cyclonic Storm. In this paper annual variation of tropical Cyclonic Storm (CS), Severe Cyclonic Storm (SCS), Very Severe Cyclonic Storm (VSCS) and Super Cyclonic Storm (SuCS) over Bay Of Bengal (BOB) and Arabian Sea (ARS) during last 20 years (1990-2009) have been analyzed .The analysis revels that the total number of cyclone (TNC) has increased with high rate(gradient being +1.67 per year) and although C.S. is more over BOB than that over ARS.The rate of increase of C.S. over Arabian Sea is more than that over Bay of Bengal. Furthermore, two interesting features have been noted: (i) Monsoon tends to prohibit the formation of C.S (ii) Cyclonic Storm(C.S.) increases with the increase of Global Sea Surface Temperature (GSST) during said period.. Attempt has also been made to find out the influence of solar activity on these extreme weather events. Keeping in mind that the Sun Spot Number (SSN) is an indicator of the strength of solar effects, it has been found that in most of the times the high value of SSN is associated with small number of total cyclone (C.S.). Specifically, when only the years of high Sun's Spot Number (approximately greater than 90) are taken into consideration then Correlation Coefficient (C.C.) between SSN and number of cyclones comes out to be quite high (-0.78) significance at 99.99% level while Correlation Coefficient (C.C.) of cyclones with time is 0.53 and with SSN < 60 it is..095 . Thus it appears that although C.S. frequency is increasing with time, Sun's Spot's influence is such that it basically opposes the formation of cyclone provided SSN exceeds certain critical value (roughly 90). In principle, this is very important for any such event, and it is consistent with the trend of different phenomena occurring in nature. Key words: India, cyclone, solar influence, Critical Sun's Spot Number

  16. Passive Acoustic Recognition of Fishing Vessel Activity in the Shallow Waters of the Arabian Sea: A Statistical Approach

    NASA Astrophysics Data System (ADS)

    Kannan, R.; Sanjana, M. C.; Latha, G.

    2015-09-01

    The ambient noise system consisting of a vertical linear hydrophone array (VLA) with 12 elements was deployed in the waters of the Arabian Sea at a depth of 16m, off Goa, India, for extracting the ambient noise during the fishing season (March, April and May, 2013 before the onset of the south west monsoon). This study focuses on fishing vessel activity by finding the domination of the vessel and wind noise at two 12 hourly periodic cycles that start at midnight and noon, using the statistical analysis. It is performed using statistical parameters, like the mean, median, and standard deviation, skewness, percentile and spread of data. It is observed that the vessel noise dominates during the 12h period that starts at midnight and is an indication of the activity of fishing vessels while the wind generated noise is more during the 12h period that starts at noon, which is a sign of the domination of the sea breeze effects. This is the first time that a statistical analysis has been carried out to study the ambient noise data collected off Goa, in order to find the fishing vessel activity during the pre-monsoon season. The results are verified with the fishing information from the Directorate of Fisheries, Goa, ship traffic data from the Mormugao Port Trust and wind speed measurements.

  17. The Owen Ridge uplift in the Arabian Sea: Implications for the sedimentary record of Indian monsoon in Late Miocene

    NASA Astrophysics Data System (ADS)

    Rodriguez, Mathieu; Chamot-Rooke, Nicolas; Huchon, Philippe; Fournier, Marc; Delescluse, Matthias

    2014-05-01

    The pelagic cover of the Owen Ridge in the Arabian Sea recorded the evolution of the Indian monsoon since the Middle Miocene. The uplift of the Owen Ridge resulted from tectonic processes along the previously unidentified Miocene India-Arabia plate boundary. Based on seismic reflection data tied with deep-sea drilling to track the Miocene India-Arabia plate boundary, we propose a new timing for the uplift of the Owen Ridge and highlight its impact on the record of climate changes in pelagic sediments. The new dataset reveals a fracture zone east of the Owen Ridge corresponding to the fossil plate boundary, and documents that the main uplift of the Owen Ridge occurred close to ˜8.5 Ma, and is coeval with a major uplift of the east Oman margin. Late Miocene deformation at the India-Arabia plate boundary is also coeval with the onset of intra-plate deformation in the Central Indian Ocean, suggesting a kinematic change of India and surrounding plates in the Late Miocene. The uplift of the Owen Ridge above the lysocline at ˜8.5 Ma accounts for a better preservation of Globigerina bulloides in the pelagic cover, previously misinterpreted as the result of a monsoon intensification event.

  18. Acoustic Doppler current profiling from the JGOFS Arabian sea cruises aboard the RV T.G. Thompson

    SciTech Connect

    Kim, Hyun-Sook; Flagg, C.N.; Shi, Yan

    1996-06-01

    Acoustic Doppler current profiler (ADCP) data is part of the core data for the U.S. JGOFS Arabian Sea project, along with hydrographic and nutrient data. Seventeen cruises are scheduled to take place between September 1994 and January 1996 on the R/V T.G. Thompson. They are numbered consecutively from the ship`s commissioning with the first JGOFS cruise designated TN039. Table 1 lists start and end dates of each cruise with its mission. All but the first cruise have been or will be staged from Muscat, Oman. Each cruise is scheduled for a duration of between two weeks and one month. Seven of the cruises, referred to as process cruises, follow a standard cruise track, taking hydrographic, chemical and biological measurements. The rest of the cruises, which take place generally within the standard cruise region defined by a set track, are for the deployment and recovery of moored equipments and towing of a SeaSoar. ADCP data are collected using an autonomous data acquisition system developed for ship-of-opportunity cruises, named the AutoADCP system. The system is an extension of RD instrument`s DAS version 2.48 using enhancements made possible with {open_quotes}user-exit{close_quotes} programs. It makes it possible to collect ADCP data without the constant monitoring usually necessary and insures constant data coverage and uniform data quality.

  19. Possible Controls on Boron Incorporation in Tests of Planktonic Foraminifera G. ruber in Upwelling Region of the Western Arabian Sea: a Paleoperspective

    NASA Astrophysics Data System (ADS)

    Naik, S. S.; Pothuri, D. N.

    2012-12-01

    In recent times the B/Ca elemental ratio from planktonic foraminifera shells has shown promise as a possible pH proxy (Yu et al 2007). However, studies have further shown that the controls on boron incorporation into foraminifera shells could be other then the seawater pH (Foster 2008; Allen et al 2012). We attempt to utilize this proxy in the intense upwelling region of the western Arabian Sea to understand which factors have dominant control/s on this proxy. The western Arabian Sea upwelling region is known to be an intense source of CO2 to the atmosphere. The intensity of upwelling is also known to be associated with the intensity of monsoon linked through wind strength. We have used a sediment core ODP 723A (18°03N, 57°37E) from a water depth of 808 m, spanning the last 22kyr from the western Arabian Sea. The B/Ca values varied from 123 to 178 μmol/mol with peak value at around 9 kyrs. A comparison with the salinity and temperature calculated using δ18O and Mg/Ca and further comparison with a eastern Arabian Sea core shows that B/Ca proxy is not controlled by salinity or temperature. The B/Ca values however showed a significant correlation with the shell sizes of G. ruber which were seen to increase during 5 to 10 kyr, a period of intense upwelling. This observation suggests that the growth rate of a planktonic foraminifer could be the most important control over the boron incorporation in their shells with higher B/Ca ratios during faster growth period, for example the upwelling period.

  20. Speciation of phosphorus in the continental shelf sediments in the Eastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Acharya, Shiba Shankar; Panigrahi, Mruganka Kumar; Kurian, John; Gupta, Anil Kumar; Tripathy, Subhasish

    2016-03-01

    The distributions of various forms of phosphorus (P) and their relation with sediment geochemistry in two core sediments near Karwar and Mangalore offshore have been studied through the modified SEDEX procedure (Ruttenberg et al., 2009) and bulk chemical analysis. The present study provides the first quantitative analysis of complete phosphorus speciation in the core sediments of the Eastern Arabian shelf. The chemical index of alteration (CIA), chemical Index of Weathering (CIW) and Al-Ti-Zr ternary diagram suggest low to moderate source area weathering of granodioritic to tonalitic source rock composition, despite the intense orographic rainfall in the source area. Due to the presence of same source rock and identical oxic depositional environment, the studied sediments show the same range of variation of total phosphorus (24 to 83 μmol/g) with a down-depth depleting trend. Organic bound P and detrital P are the two major chemical forms followed by iron-bound P, exchangeable/loosely bound P and authigenic P. The authigenic P content in the sediments near Mangalore coast varies linearly with calcium (r=0.88) unlike that of Karwar coast. The different reactive-phosphorus pools exhibit identical depleting trend with depth. This indicates that the phosphorus released from the organic matter and Fe bound fractions are prevented from precipitating as authigenic phosphates in the deeper parts of the sediment column. The low concentration of total P, dominance of detrital non-reactive fraction of P and inhibition of formation of authigenic phosphate result in the absence of active phosphatization in the Eastern Arabian Shelf in the studied region. High sedimentation rate (35-58 cm/kyr) and absence of winnowing effect appear to be the dominant factor controlling the P-speciation in the studied sediments.

  1. Oxygen minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to decadal time scales

    NASA Astrophysics Data System (ADS)

    Banse, K.; Naqvi, S. W. A.; Narvekar, P. V.; Postel, J. R.; Jayakumar, D. A.

    2013-09-01

    The oxygen minimum zone (OMZ) of the Arabian Sea is the thickest of the three oceanic OMZs, which is of global biogeochemical significance because of denitrification in the upper part leading to N2 and N2O production. The residence time of the OMZ water is believed to be less than a decade. The upper few hundred meters of this zone are nearly anoxic but non-sulfidic and still support animal (metazoan) pelagic life, possibly as a result of episodic injections of O2 by physical processes. The very low O2 values obtained with the new STOX sensor in the eastern tropical South Pacific probably also characterize the Arabian Sea OMZ, but there is no apparent reason as to why the temporal trends of the historic data should not hold. We report on discrete measurements of dissolved O2 and NO2-, besides temperature and salinity, made between 1959 and 2004 well below the tops of the sharp pycno- and oxyclines near 150, 200, 300, 400, and 500 m depth. We assemble nearly all O2 determinations (originally, 849 values, 695 in the OMZ) by the visual endpoint detection of the iodometric Winkler procedure, which in our data base yields about 0.04 mL L-1 (∼2 μM) O2 above the endpoint from modern automated titration methods. We find 632 values acceptable (480 from 150 stations in the OMZ). The data are grouped in zonally-paired boxes of 1° lat. and 2° long. centered at 8°, 10°, 12°, 15°, 18°, 20°, and 21° N along 65° E and 67° E. The latitudes of 8-12° N, outside the OMZ, are only treated in passing. The principal results are as follows: (1) an O2 climatology for the upper OMZ reveals a marked seasonality at 200 to 500 m depth with O2 levels during the northeast monsoon and spring intermonsoon season elevated over those during the southwest monsoon season (median difference, 0.08 mL L-1 [3.5 μM]). The medians of the slopes of the seasonal regressions of O2 on year for the NE and SW monsoon seasons are -0.0043 and -0.0019 mL L-1 a-1, respectively (-0.19 and -0.08 μM a

  2. Southern Hemisphere imprint for Indo-Asian summer monsoons during the last glacial period as revealed by Arabian Sea productivity records

    NASA Astrophysics Data System (ADS)

    Caley, T.; Zaragosi, S.; Bourget, J.; Martinez, P.; Malaizé, B.; Eynaud, F.; Rossignol, L.; Garlan, T.; Ellouz-Zimmermann, N.

    2013-11-01

    The monsoon is one of the most important climatic phenomena: it promotes inter-hemispheric exchange of energy and affects the economical prosperity of several countries exposed to its seasonal seesaw. Previous studies in both the Indian and Asian monsoon systems have generally suggested a dominant northern hemispheric (NH) control on summer monsoon dynamics at the scale of suborbital-millennial climatic changes, while the forcing/response of Indian and Asian monsoons at the orbital scale remains a matter of debate. Here, six marine sediment cores distributed across the whole Arabian Sea are used to build a regional surface marine productivity signal. The productivity signal is driven by the intensity of Indian summer monsoon winds. Our results demonstrate the existence of an imprint of suborbital southern hemispheric (SH) temperature changes (i.e. Antarctica) on the Indian summer monsoon during the last glacial period that is generally not recognized. During the last deglaciation, the NH played a more significant role. This suggests that fluctuations in the Indian monsoon are better explained in a bipolar context. The δ18O signal recorded in the Asian monsoon speleothem records could be exported by winds from the Indian summer monsoon region, as recently proposed in modelling exercise, explaining the SH signature observed in Asian cave speleothems. Contrary to the view of a passive response of Indian and Asian monsoons to NH anomalies, the present results appear to suggest that the Indo-Asian summer monsoon plays an active role in amplifying millennial inter-hemispheric asymmetric patterns. Additionally, this study confirms previously observed differences between Indian and Asian speleothem monsoonal records at the orbital-precession scale.

  3. Mulloidichthys flavolineatus flavicaudus Fernandez-Silva & Randall (Perciformes, Mullidae), a new subspecies of goatfish from the Red Sea and Arabian Sea.

    PubMed

    Fernandez-Silva, Iria; Randall, John E; Golani, Daniel; Bogorodsky, Sergey V

    2016-01-01

    The number of goatfish species has increased recently, thanks in part to the application of molecular approaches to the taxonomy of a family with conservative morphology and widespread intraspecific color variation. A new subspecies Mulloidichthys flavolineatus flavicaudus Fernandez-Silva & Randall is described from the Red Sea and Arabian Sea, including Socotra and Gulf of Oman. It is characterized by a yellow caudal fin, 25-28 gill rakers, and 37-38 lateral-line scales and it is differentiated from nominal subspecies Mulloidichthys flavolineatus flavolineatus by 1.7% sequence divergence at the mitochondrial cytochrome b gene. The morphometric examination of specimens of Mulloidichthys flavolineatus flavolineatus revealed variation in head length, eye diameter, and barbel length, in western direction from the Hawaiian Islands, South Pacific, Micronesia, and the East Indies to the Indian Ocean. The population of Mulloidichthys flavolineatus flavicaudus subsp. n. in the Gulf of Aqaba differs from that of the remaining Red Sea by shorter barbels, smaller eyes, shorter head, and shorter pelvic fins. We present a list of 26 endemic fishes from the Gulf of Aqaba and discuss the probable basis for the endemism in the light of the geological history of this region. PMID:27551217

  4. Mulloidichthys flavolineatus flavicaudus Fernandez-Silva & Randall (Perciformes, Mullidae), a new subspecies of goatfish from the Red Sea and Arabian Sea

    PubMed Central

    Fernandez-Silva, Iria; Randall, John E.; Golani, Daniel; Bogorodsky, Sergey V.

    2016-01-01

    Abstract The number of goatfish species has increased recently, thanks in part to the application of molecular approaches to the taxonomy of a family with conservative morphology and widespread intraspecific color variation. A new subspecies Mulloidichthys flavolineatus flavicaudus Fernandez-Silva & Randall is described from the Red Sea and Arabian Sea, including Socotra and Gulf of Oman. It is characterized by a yellow caudal fin, 25–28 gill rakers, and 37–38 lateral-line scales and it is differentiated from nominal subspecies Mulloidichthys flavolineatus flavolineatus by 1.7% sequence divergence at the mitochondrial cytochrome b gene. The morphometric examination of specimens of Mulloidichthys flavolineatus flavolineatus revealed variation in head length, eye diameter, and barbel length, in western direction from the Hawaiian Islands, South Pacific, Micronesia, and the East Indies to the Indian Ocean. The population of Mulloidichthys flavolineatus flavicaudus subsp. n. in the Gulf of Aqaba differs from that of the remaining Red Sea by shorter barbels, smaller eyes, shorter head, and shorter pelvic fins. We present a list of 26 endemic fishes from the Gulf of Aqaba and discuss the probable basis for the endemism in the light of the geological history of this region. PMID:27551217

  5. Decadal- to biennial scale variability of planktic foraminifera in the northeastern Arabian Sea during the last two millennia: evidence for winter monsoon forcing mechanisms

    NASA Astrophysics Data System (ADS)

    Munz, Philipp; Lückge, Andreas; Siccha, Michael; Kucera, Michal; Schulz, Hartmut

    2015-04-01

    The Asian monsoon system is controlling the hydrologic cycle, and thus the agricultural and economic prosperity of the worlds most densely populated region. Strong and moisture-laden winds from the southwest induce upwelling and significant productivity in the western Arabian Sea during boreal summer. During boreal winter, weaker dry and cold surface winds from the northeast nourish ocean productivity mainly in the northeastern Arabian Sea. Instrumental records spanning the last century are too short to understand how the monsoon system reacts to external forcing mechanisms and to accurately determine its natural variability. Compared to the summer monsoon component, the dynamics of the winter monsoon are virtually unknown, due to the lack of adequate archives that are affected only by winter conditions. Here we present a decadal- to biennial-scale resolution record of past winter monsoon variability over the last two millennia, based on census counts of planktic foraminifera from two laminated sediment cores collected offshore Pakistan. One shorter box core (SO90-39KG) spans the last 250 years with an average ~2-year resolution, whereas the longer piston core (SO130-275KL) spans the last 2,100 years with a 10-year resolution. We use Globigerina falconensis as a faunal indicator for winter conditions, a species that is most abundant during winter in the NE Arabian Sea (Peeters and Brummer, 2002; Schulz et al., 2002). Our results show that during the past 2,100 years G. falconensis varied with significant periodicities centered on ˜ 60, ˜ 53, ˜ 40, ˜ 34 and ˜ 29 years per cycle. Some of these periods closely match cycles that are known from proxy records of solar irradiance, suggesting a solar forcing on winter monsoon variability. During the past 250 years G. falconensis varied in correlation with the (11-year) Schwabe and the (22-year) Hale solar cycles. Furthermore, a significant ˜ 7 year cyclicity could indicate a teleconnection to the El Niño Southern

  6. Links between Sea Level in the northern Adriatic sea and large scale patterns

    NASA Astrophysics Data System (ADS)

    Scarascia, L.; Lionello, P.

    2012-04-01

    The study analyzes the link between Northern Adriatic sea level (SL) and three variables: sea level pressure over European and North-Atlantic area (SLP), Mediterranean sea surface temperature (SST) and Mediterranean sea surface salinity (SSS). Sea level data are provided by monthly values recorded at 7 tide gauges stations distributed along the north-Italian and Croatian coasts (available at the PSMSL Permanent Service of Mean Sea Level). SLP data are provided by the EMULATE data set. Mediterranean SST and SSS data are extracted from the MEDATLAS/2002 database. The study shows that annual sea level variations at Northern Adriatic stations are very coherent so that the northern Adriatic sea level can be reconstructed since 1905 on the basis of only two stations: Venice and Trieste, whose data cover almost the entire 20th century (whereas Croatian data cover only the second half of the century). The inverse barometric, thermosteric and halosteric effects provide the physical basis for a local relation of SL with SLP, SST, SSS implying, if other effects are absent, a sea level increase for increasing temperature and decreasing atmospheric pressure and salinity. However, the statistical model used to quantify the link between SL and these three forcings shows that they have produced no important trend and they cannot explain the observed trend of Northern Adriatic Sea level during the second half of the 20th century. The observed trend can therefore be interpreted as the superposition of land movement and a remote cause. Using SLP, SST and SSS from climate model simulations, no trend is obtained during the 20th century, as well. The same model simulations, considering their continuations for the 21st century show that local effects (mainly warming of water masses) are likely to produce an increase of about 10cm (with a large uncertainty) at the end of the century. The global signal and the regional land movements have to be added to this result to obtain the actual

  7. The Northern Bering Sea: An Arctic Ecosystem in Change

    NASA Astrophysics Data System (ADS)

    Grebmeier, J. M.; Cooper, L. W.

    2004-12-01

    Arctic systems can be rich and diverse habitats for marine life in spite of the extreme cold environment. Benthic faunal populations and associated biogeochemical cycling processes are influenced by sea-ice extent, seawater hydrography (nutrients, salinity, temperature, currents), and water column production. Benthic organisms on the Arctic shelves and margins are long-term integrators of overlying water column processes. Because these organisms have adapted to living at cold extremes, it is reasonable to expect that these communities will be among the most susceptible to climate warming. Recent observations show that Arctic sea ice in the North American Arctic is melting and retreating northward earlier in the season and the timing of these events can have dramatic impacts on the biological system. Changes in overlying primary production, pelagic-benthic coupling, and benthic production and community structure can have cascading effects to higher trophic levels, particularly benthic feeders such as walruses, gray whales, and diving seaducks. Recent indicators of contemporary Arctic change in the northern Bering Sea include seawater warming and reduction in ice extent that coincide with our time-series studies of benthic clam population declines in the shallow northern Bering shelf in the 1990's. In addition, declines in benthic amphipod populations have also likely influenced the movement of feeding gray whales to areas north of Bering Strait during this same time period. Finally a potential consequence of seawater warming and reduced ice extent in the northern Bering Sea could be the northward movement of bottom feeding fish currently in the southern Bering Sea that prey on benthic fauna. This would increase the feeding pressure on the benthic prey base and enhance competition for this food source for benthic-feeding marine mammals and seabirds. This presentation will outline recent biological changes observed in the northern Bering Sea ecosystem as documented in

  8. Millennial/centennial-scale thermocline ventilation changes in the Indian Ocean as reflected by aragonite preservation and geochemical variations in Arabian Sea sediments

    NASA Astrophysics Data System (ADS)

    Böning, Philipp; Bard, Edouard

    2009-11-01

    The formation and temporal variability of the oxygen minimum zone (OMZ) of the Arabian Sea is a subject of intense research. We contribute to the discussion by studying modern seawater profiles of the Indian Ocean (salinity, O 2, pH, aragonite saturation, nitrate deficit, nutrients), which show that Subantarctic Mode and Antarctic Intermediate Waters (SAMW-AAIW) have a strong influence on the OMZ characteristics of the Arabian Sea. To obtain a better grasp of the range of possible OMZ variations, we studied a 50-kyr record in the NE Arabian Sea (core MD042876) from a site at 828 m water depth within the thermocline. In this core, aragonite is preserved during North Atlantic Heinrich events (HEs) and Dansgaard-Oeschger (DO) stadials, while it is absent during DO interstadials and most of the Holocene. Considering the excellent correlation between aragonite content and Sr/Ca ratio, as well as the presence of fine-grained aragonitic needles and the isotopic composition (δ 13C) of carbonates in the fine fraction, we infer that essentially all aragonite originates as fine Sr-rich debris from shallow water. A comparison with other records from the NE Arabian Sea (Sr/Ca, δ 15N) indicates that aragonite variability in the cores is rather controlled by OMZ intensity variations as forcing mechanism while changes in aragonite supply seem to play a minor role. The strong correlation of aragonite content with changes in millennial-scale ventilation of the Indian Ocean, as well as a comparison with modern oceanographic conditions, supports the theory that OMZ intensity variations are controlled by changes in the formation of SAMW-AAIW, and are not only due to monsoonal changes. Thus, during HEs and DO stadials, the thermocline Arabian Sea experienced a strengthened influx of O 2-rich SAMW-AAIW. On the other hand, OMZ conditions during DO interstadials and the Holocene seem best explained by analogy with the present-day situation: low supply of O 2 combined with elevated O 2

  9. Evolving deformation along a transform plate boundary: Example from the Dead Sea Fault in northern Israel

    NASA Astrophysics Data System (ADS)

    Weinberger, Ram; Gross, Michael R.; Sneh, Amihai

    2009-10-01

    We analyzed geologic structures adjacent to the Dead Sea Fault (DSF) along the margins of the Sinai and Arabian plates in northern Israel in order to investigate the style and sequence of deformation associated with a transform plate boundary. The field area, located between the Hula basin in northern Israel and the Lebanese restraining bend in southern Lebanon, is divided into distinct structural blocks by a series of distributed faults that comprise this approximately N-S trending section of the DSF. Cretaceous and Tertiary rocks within and adjacent to the structural blocks are folded into broad anticlines and synclines, with more intense localized shortening manifested by tight folds and thrust duplexes. Kinematic analyses of folds, faults, and veins provide evidence for two directions of regional shortening: (1) NW-SE shortening responsible for the formation of NE-SW trending fold axes and left-lateral strike-slip motion along N-S trending faults and (2) E-W shortening as indicated by N-S trending fold axes, N-S striking thrust faults, and extensional calcite-filled veins that strike E-W. Crosscutting relations and U-Th ages of the vein material suggest that the E-W phase of transform-normal shortening represents the most recent and presently active phase of deformation. The structural analysis provides evidence for the transition from an early (Miocene-lower Pliocene) phase of pure strike-slip motion to a late (Pleistocene to Recent) phase of convergent strike slip. The latter phase is characterized by strain partitioning, which is manifested by discrete left-lateral strike-slip motion across weak N-S faults and the development of a fold-thrust belt in response to transform-normal shortening. Analogous to the strain partitioning observed in southern California, we suggest that blind thrust faults adjacent to the DSF in the study area may pose a seismic risk to populations in northern Israel and southern Lebanon.

  10. Sink or link? The bacterial role in benthic carbon cycling in the Arabian Sea's oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Pozzato, L.; Van Oevelen, D.; Moodley, L.; Soetaert, K.; Middelburg, J. J.

    2013-11-01

    The bacterial loop, the consumption of dissolved organic matter (DOM) by bacteria and subsequent transfer of bacterial carbon to higher trophic levels, plays a prominent role in pelagic food webs. However, its role in sedimentary ecosystems is not well documented. Here we present the results of isotope tracer experiments performed under in situ oxygen conditions in sediments from inside and outside the Arabian Sea's oxygen minimum zone (OMZ) to study the importance of the microbial loop in this setting. Particulate organic matter, added as phytodetritus, was processed by bacteria, protozoa and metazoans, while dissolved organic matter was processed only by bacteria and there was very little, if any, transfer to higher trophic levels within the 7 day experimental period. This lack of significant transfer of bacterial-derived carbon to metazoan consumers indicates that the bacterial loop is rather inefficient, in sediments both inside and outside the OMZ. Moreover, metazoans directly consumed labile particulate organic matter resources and thus competed with bacteria for phytodetritus.

  11. Genetic and ecophysiological traits of Synechococcus strains isolated from coastal and open ocean waters of the Arabian Sea.

    PubMed

    Bemal, Suchandan; Anil, Arga Chandrashekar

    2016-11-01

    The picocyanobacterium Synechococcus is a prominent primary producer in the marine environment. The marine Synechococcus strains are clustered into different clades representing ecologically distinct genotypes. In this study, we compared phylogeny, photophysiology and cell cycles of four novel phycoerythrin-containing Synechococcus strains (clade II of subcluster 5.1) isolated from different depths of the water column (surface and subsurface waters) in coastal and offshore regions of the eastern Arabian Sea. The surface water strains possessed a lesser number of thylakoid layers and had a higher zeaxanthin to chlorophyll a ratio than subsurface strains indicating possible influence of light intensity available at their niche. The DNA distribution pattern of the four strains was bimodal in optimal cellular physiology conditions with cell division restricted to the light period and synchronized with the light-dark cycle. The presence of phycourobilin or phycoerythrobilin and the ratio between these two chromophores in all four strains varied according to available spectral wavelength in situ This study indicates that the timing of cell division is conserved within these genotypically identical Synechococcus strains, despite their having different chromophore ratios. We conclude that the timing of cell division of the Synechococcus strains has a genetic basis rather than being determined by phenotypic characters, such as chromophore content and ratio. PMID:27495242

  12. Sedimentary pigments and nature of organic matter within the oxygen minimum zone (OMZ) of the Eastern Arabian Sea (Indian margin)

    NASA Astrophysics Data System (ADS)

    Rasiq, K. T.; Kurian, S.; Karapurkar, S. G.; Naqvi, S. W. A.

    2016-07-01

    Sedimentary pigments, carbon and nitrogen content and their stable isotopes were studied in three short cores collected from the oxygen minimum zone (OMZ) of the Eastern Arabian Sea (EAS). Nine pigments including chlorophyll a and their degradation products were quantified using High Performance Liquid Chromatography (HPLC). Astaxanthin followed by canthaxanthin and zeaxanthin were the major carotenoids detected in these cores. The total pigment concentration was high in the core collected from 500 m water depth (6.5 μgg-1) followed by 800 m (1.7 μgg-1) and 1100 m (1.1 μgg-1) depths respectively. The organic carbon did not have considerable control on sedimentary pigments preservation. Pigment degradation was comparatively high in the core collected from the 800 m site which depended not only the bottom dissolved oxygen levels, but also on the faunal activity. As reported earlier, the bottom water dissolved oxygen and presence of fauna have good control on the organic carbon accumulation and preservation at Indian margin OMZ sediments. The C/N ratios and δ13C values for all the cores conclude the marine origin of organic matter and δ15N profiles revealed signature of upwelling associated denitrification within the water column.

  13. Paleogeographic sedimentation settings in the northern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Trimonis, E. S.; Emelyanov, E. M.; Vaikutene, G.

    2008-10-01

    The grain-size and chemical composition of the bottom sediments and their diatom assemblages from the northern Baltic Sea is discussed. Characteristic layers are distinguished based on the lithostratgraphy and sediment core correlation, which reflect the transition from the lacustrine to marine sedimentation settings during the initial Holocene. Sediment cores demonstrate lateral variations in the sedimentation patterns during the marine (Yoldia Sea), the lacustrine (Ancylus Lake), and the subsequent marine (Littorina Sea) stages: first two stages were characterized by the clay deposition, while the latter one featured accumulation of silty-clayey and clayey muds in bottom depressions. Sea-level fluctuations and corresponding environmental changes are recorded in microlaminated sequences, in particular, sapropelic muds.

  14. First oilfields of the Central and Northern North Sea

    SciTech Connect

    Swarbrick, R.E. ); Martin, J.A. )

    1991-03-01

    Only 25 years ago the areas now termed the Central and Northern North Sea were the true frontier exploration basins. Stratigraphy and structure were essentially unknown, except inferences drawn from the Mesozoic outcrops of Britain and Denmark. At that time the majority of small British onshore oil fields were reservoired in Paleozoic strata. In the Central North Sea, oil was first discovered in Paleocene deep-water sandstone and Upper Cretaceous chalk reservoirs. The first commercial reserves were proven with the discovery of the Ekofisk field (Upper Cretaceous) in 1969 and Forties field (Paleocene) in 1970, both now classed as giants. Subsequently stratigraphically deeper reservoirs were established, including Jurassic sandstones (Piper field) and Permian carbonates and sandstones (Auk and Argyll fields). Diversity of trap type and reservoir age is now a hallmark of the Central North Sea basin. In the Northern North Sea, the first exploration well in 1971 on the Brent field structure, a true wildcat whose nearest UK well control was 320 mi to the south, found oil in Middle Jurassic deltaic sandstones. A spate of discoveries on similar tilted fault blocks with Middle Jurassic and underlying Triassic alluvial-fluvial sandstone targets followed. Later, Upper Jurassic deep-water sandstones became established as a further significant reservoir with the Brae field and Magnus field discoveries. Original seismic data, well prognoses, and structure maps tell the story of these early discoveries. Public response in Norway and the UK to the emergence of the North Sea oil province on their doorstep will be reviewed.

  15. Global Warming and Northern Hemisphere Sea Ice Extent.

    PubMed

    Vinnikov; Robock; Stouffer; Walsh; Parkinson; Cavalieri; Mitchell; Garrett; Zakharov

    1999-12-01

    Surface and satellite-based observations show a decrease in Northern Hemisphere sea ice extent during the past 46 years. A comparison of these trends to control and transient integrations (forced by observed greenhouse gases and tropospheric sulfate aerosols) from the Geophysical Fluid Dynamics Laboratory and Hadley Centre climate models reveals that the observed decrease in Northern Hemisphere sea ice extent agrees with the transient simulations, and both trends are much larger than would be expected from natural climate variations. From long-term control runs of climate models, it was found that the probability of the observed trends resulting from natural climate variability, assuming that the models' natural variability is similar to that found in nature, is less than 2 percent for the 1978-98 sea ice trends and less than 0.1 percent for the 1953-98 sea ice trends. Both models used here project continued decreases in sea ice thickness and extent throughout the next century. PMID:10583952

  16. Late Cenozoic regional uplift and localised crustal deformation within the northern Arabian Platform in southeast Turkey: Investigation of the Euphrates terrace staircase using multidisciplinary techniques

    NASA Astrophysics Data System (ADS)

    Demir, Tuncer; Seyrek, Ali; Westaway, Rob; Guillou, Hervé; Scaillet, Stéphane; Beck, Ant; Bridgland, David R.

    2012-09-01

    We present the results of detailed field investigations of the fluvial succession exposed along the Euphrates valley adjoining the Atatürk Dam in the northern part of the Arabian Platform within SE Turkey. This work, which has used Differential GPS surveying to obtain accurate heights of deposits and Shuttle Radar Topographic Mission imagery for location purposes, has included documentation of many fresh sections exposed by quarrying. The work has been supplemented by unspiked Ksbnd Ar dating of late Middle Miocene to Late Miocene basalt flows, which are widespread in the region, providing a chronology for the early stages of development of this river system following regional emergence above sea-level in the early Middle Miocene. For example, beside the Atatürk Dam Lake at Siverek İskelesi, basalt dated to 10.24 ± 0.22 Ma (± 2σ) caps a polymict Euphrates gravel some 80 m above the modern river; this is the oldest Euphrates terrace currently recognised. However, amounts and rates of fluvial incision are shown to vary across the northern Arabian Platform in a complex manner, due to the interaction between regional uplift and localised vertical crustal motions caused by slip on active reverse faults beneath anticlines. The study reach downstream of the Atatürk Dam includes the footwall of one such fault, beneath the Bozova Anticline; we estimate that the resulting rate of localised subsidence, superimposed onto the regional uplift that has also been occurring, has been ~ 0.01 mm a- 1 during the present phase of crustal deformation, which began at ~ 3.7-3.6 Ma, but was higher, maybe ~ 0.03 mm a- 1, during the previous phase, which began at ~ 6 Ma, when the pattern of plate motions in the surrounding region was different. A large palaeo-lake centred north of the present study region around the city of Adıyaman is inferred to have existed during this ~ 6 Ma to ~ 3.7-3.6 Ma phase of plate motion, apparently because the relatively rapid localised hanging

  17. Fluorescence-based characterization of phycoerythrin-containing cyanobacterial communities in the Arabian Sea during the Northeast and early Southwest Monsoon (1994 1995)

    NASA Astrophysics Data System (ADS)

    Michelle Wood, A.; Lipsen, Michael; Coble, Paula

    1999-08-01

    Scanning fluorescence spectroscopy was used to investigate the spatial and temporal variability in the fluorescence signature of phycoerythrin-containing organisms in the Arabian Sea during the early Northeast and early Southwest Monsoon (1994-1995). Phycoerythrin (PE) emission spectra were relatively invariant among all the samples collected on either cruise; the relatively symmetrical PE emission peaks showed maxima at wavelengths ranging from 563-572 nm. PE excitation spectra always showed either a strong shoulder or a peak at wavelengths absorbed maximally by phycourobilin (PUB) chromophores as well as a peak at wavelengths absorbed maximally by phycoerythrobilin (PEB) chromophores. Thus, the Arabian Sea appears to be different from the Black Sea or Gulf of Maine in that PUB-lacking forms of PE rarely, if ever, dominate the PE signal. Fluorescence excitation signatures differed in the relative excitation of PE emission by wavelengths absorbed by PUB (˜495 nm, Ex PUB) and by wavelengths absorbed by PEB (˜550 nm, Ex PEB); these were distinguished by having either very low (˜0.6), very high (˜1.8), or intermediate Ex PUB:Ex PEB ratios. The distribution of samples with different PE fluorescence signatures was investigated extensively during the early Southwest Monsoon, and communities characterized by the low Ex PUB:Ex PEB ratios were closely associated with cooler (24-27°C), fresher (35.7-36.25 psu) water influenced by coastal upwelling. In general, "ambient" surface water of the Arabian Sea during the early Southwest Monsoon was of intermediate temperature (27-29°C) and salinity (36.15-36.4 psu) and showed intermediate or high values for Ex PUB:Ex PEB. This suggests that the PE fluorescence signature can be used to follow the fate of upwelling-influenced water masses and the populations they transport.

  18. Tectonic configuration of the western Arabian continental margin, southern Red Sea, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Bohannon, R.G.

    1987-01-01

    A tectonic reconstruction of pre-Red Sea Afro/Arabia suggests that the early rift was narrow with intense extension confined to an axial belt 20 to 40 km wide. Steep Moho slopes probably developed during rift formation as indicated by published gravity data, two published seismic interpretations and the surface geology.

  19. Sea ice monitoring in the northern sea route by satellite radar data

    SciTech Connect

    Johannessen, O.M.; Sandven, S.; Pettersson, L.H.

    1997-06-01

    A project to implement satellite monitoring of ice in the Northern Sea Route between the Barents Sea and the Bering Strait is described. The project objectives are to support ice navigation, offshore oil exploration and production, and global climate change studies. Satellite monitoring will include synthetic-aperture radar, sidelooking radar, and other remote sensing data. The joint project between the Russian Space Agency and the European Space Agency is outlined, and major project elements are described.

  20. Past Temperature and Salinity of the Eastern Arabian Sea: Implications to Sun-Monsoon Precipitation Relationship over Past Couple of Millennia

    NASA Astrophysics Data System (ADS)

    Tiwari, Manish; Nagoji, Siddhesh; Ganeshram, Raja

    2016-04-01

    Eastern Arabian Sea is one of the few regions from where not many high-resolution records of sea surface temperature (SST) and salinity exist despite its hydrological importance vis-à-vis South Asian summer monsoon precipitation. During this period, significant changes in salinity occur in the eastern Arabian Sea due to orographic precipitation and runoff. Additionally, minimal bioturbation occurs in coastal sediments accumulating rapidly due to the presence of an oxygen minima zone (OMZ) in the Arabian Sea. The sediment core used in this study was collected offshore Mangalore from the middle of the OMZ from a water depth of 589 m. The core spans a period of 154 to 4772 yr BP. The average sedimentation rate is 8.96 cm/Kyr while the average resolution is ˜112 yrs/cm. The stable oxygen isotope content (δ18Oc) was determined on the planktic foraminifera Globigerinoides ruber while the past SST variations were determined using an independent parameter - Mg/Ca - in the same species. The salinity was obtained by delineating SST from the δ18Oc using empirical equations. The salinity varies from a maximum of 35.5 (arid) to a minimum of 32.4 (wet) while the SST varies from varies from a maximum of 29.9° C to a minimum of 27.5° C - a variability of 2.4° C. Such high variability could be during to its coastal location, which is affected by moderate upwelling during monsoon season. The long-term trend determined through linear regression shows that the salinity has been increasing since mid-Holocene implying increasing aridity. We identify periods of aridity during the Little Ice Age (and a few centuries prior to it) and at 1300 yr BP, 2000 yr BP, and 4600 yr BP. A few paleomonsoon records also exhibit prominent correspondence with solar activity during early Holocene and beyond. But despite the strong recent solar minima (e.g. Maunder, Spörer, Oort, Wolf), their correlation with monsoon precipitation is weak and inconclusive. Additionally, those from the western

  1. Topographic controls on bioproductivity and organic carbon deposition, Oman Arabian Sea coastal upwelling region

    SciTech Connect

    Brock, J.C.; Hay, W.W.

    1989-03-01

    Ocean boundary currents impinging on swallow shelves and coastal capes may undergo oceanward divergence driven by the conservation of potential vorticity. This process may result in local upwelling, enhanced primary productivity, and increased organic richness in sediments. Combined with reconstructions of past coastline configurations and models of paleo-ocean circulation, the recognition of this process should enable the hindcasting of more specific sites of organic carbon enrichment than has previously been possible. Preliminary investigations of ocean circulation along the southeastern coast of Arabia during recent southwest monsoon seasons suggest that continental shelf topography and coastal promontories act to focus upwelling. Thermal infrared NOAA advanced very high resolution radiometer images acquired during the 1981, 1982, 1983, and 1985 southwest monsoon seasons depict localized regions of depressed sea surface temperature near a major shelf break and coastal capes. These regions of cooler surface water may result from topographically focused upwelling plumes. Present work includes the development of a numerical ocean model to predict the effect of topography on the southwest monsoon current as it encounters the Omani coast. Thermal infrared and visible band satellite remote sensing is being integrated with in-situ vertical temperature profiles and sea surface temperature observations in order to assess horizontal and vertical water motion and surface layer bioproductivity during the monsoonal upwelling season. The effects of topographically focused coastal upwelling on organic carbon deposition are being assessed by the mapping of the total organic carbon content of surface sea-floor sediments.

  2. Dissimilatory nitrate reduction by Aspergillus terreus isolated from the seasonal oxygen minimum zone in the Arabian Sea

    PubMed Central

    2014-01-01

    Background A wealth of microbial eukaryotes is adapted to life in oxygen-deficient marine environments. Evidence is accumulating that some of these eukaryotes survive anoxia by employing dissimilatory nitrate reduction, a strategy that otherwise is widespread in prokaryotes. Here, we report on the anaerobic nitrate metabolism of the fungus Aspergillus terreus (isolate An-4) that was obtained from sediment in the seasonal oxygen minimum zone in the Arabian Sea, a globally important site of oceanic nitrogen loss and nitrous oxide emission. Results Axenic incubations of An-4 in the presence and absence of oxygen and nitrate revealed that this fungal isolate is capable of dissimilatory nitrate reduction to ammonium under anoxic conditions. A 15N-labeling experiment proved that An-4 produced and excreted ammonium through nitrate reduction at a rate of up to 175 nmol 15NH4+ g-1 protein h-1. The products of dissimilatory nitrate reduction were ammonium (83%), nitrous oxide (15.5%), and nitrite (1.5%), while dinitrogen production was not observed. The process led to substantial cellular ATP production and biomass growth and also occurred when ammonium was added to suppress nitrate assimilation, stressing the dissimilatory nature of nitrate reduction. Interestingly, An-4 used intracellular nitrate stores (up to 6–8 μmol NO3- g-1 protein) for dissimilatory nitrate reduction. Conclusions Our findings expand the short list of microbial eukaryotes that store nitrate intracellularly and carry out dissimilatory nitrate reduction when oxygen is absent. In the currently spreading oxygen-deficient zones in the ocean, an as yet unexplored diversity of fungi may recycle nitrate to ammonium and nitrite, the substrates of the major nitrogen loss process anaerobic ammonium oxidation, and the potent greenhouse gas nitrous oxide. PMID:24517718

  3. Characterization of harmful algal blooms (HABs) in the Arabian Gulf and the Sea of Oman using MERIS fluorescence data

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Temimi, Marouane; Ghedira, Hosni

    2015-03-01

    In this study, MERIS fluorescence data were utilized to monitor a toxin-producing dinoflagellate Cochlodinium bloom in 2008 in the Arabian Gulf and the Sea of Oman. The bloom was characterized using modified fluorescence line height (MFLH), enhanced Red-Green-Blue (ERGB) and true color composites, and the ratio of particulate backscattering (bbp) to MFLH (bbp/MFLH). In addition to high MFLH values and dark colors in ERGB images which are generally observed when blooms happen, it was found that the Cochlodinium bloom indicated species-specific signatures which consisted of reddish brown colors in true color composites and bbp/MFLH values below 0.2 mW-1 cm2 μm m-1 sr. Based on these findings, Cochlodinium blooms were successfully distinguished from blooms dominated by other species that were found in the study area, like diatom, Noctiluca, and Trichodesmium. Qualitative analysis showed that the fluorescence-based approach presented better performance than the chlorophyll-a anomaly approach for HAB detection, despite the sensitivity to atmospheric perturbations, benthic vegetation in coastal shallow waters, and variations in environmental conditions. The applicability of the HAB characterization approach tested for the first time over the study area using MERIS data was discussed and can be anticipated with sufficient knowledge of local bloom history. Combing different ocean color products is strongly recommended to improve our understanding of HAB dynamics and enhance our ability to characterize them. This is of great importance for marine environment protection and management and can lead to valuable information for contingency planning.

  4. A study of the circulation and salinity budget of the Arabian Sea with an isopycnic coordinate ocean model

    NASA Astrophysics Data System (ADS)

    Esenkov, Oleg E.; Olson, Donald B.; Bleck, Rainer

    2003-07-01

    The evolution of surface circulation and salinity budget are studied with the open-boundary version of the Miami Isopycnic Coordinate Ocean Model (MICOM) that uses a global MICOM simulation as a boundary condition. Under climatological wind and thermodynamic forcing, the model develops solutions that are in good agreement with the climatologically forced global MICOM results and with observations. When the observed winds force the model, interannual variability of the surface fields increases significantly. However, coalescence of the two large eddies off Somalia in the end of the summer monsoon suggested in earlier observations does not occur in the model. To identify what processes facilitate or restrict the merger, a series of experiments was performed with modified model parameters and forcing fields. The eddies coalesced when half-slip, rather than no-slip, boundary conditions were used. In this case, less positive vorticity was produced at the coast, resulting in reduced blocking effect on the propagation of the southern eddy. The Socotra Island, which is submerged in the standard model, hinders a northward movement of the Great Whirl, leading to a stronger interaction between the eddies, which results in their subsequent merging. A more realistic coalescence occurs in an experiment where winds are held constant after reaching the peak summer value. Freshwater fluxes from the east and south are important for the salinity budget in the Arabian Sea, where evaporation exceeds precipitation. The only significant cross-equatorial transport of low-salinity water occurs in the upper 400 m in the model. Most of this water is advected below the surface mixed layer at the western boundary. The strongest interaction between the mixed layer and the oceanic interior occurs during the summer in the coastal upwelling regions off Somalia. Almost half of all upwelled water comes from depths between 100 and 200 m, thus signifying the importance of mid-depth circulation and

  5. Phycoerythrin-containing picocyanobacteria in the Arabian Sea in February 1995:. diel patterns, spatial variability, and growth rates

    NASA Astrophysics Data System (ADS)

    Sherry, Nelson D.; Michelle Wood, A.

    The abundance of phycoerythrin-containing picocyanobacteria in the surface mixed layer was measured both along-shore and offshore between 8 and 23 February 1995 in the Northwestern Arabian Sea. Water samples from 3 m depth were taken at 2-h intervals and picocyanobacterial abundance and frequency of dividing cells were determined by epifluorescence microscopy. Cell counts showed an average diel change from a mid-day minimum of ˜50×10 3 cells ml -1 to an evening maximum of ˜180×10 3 cells ml -1. The diel change was greater than the differences observed between physically and spatially discrete water masses. By counting the frequency of dividing cells (FDC) and using a novel approach to estimating the length of time required to complete cell division, growth and loss rates were both estimated to be ˜2.9 d -1 with daily turnover being 140% of the mean standing stock. If differences in the intrinsic population growth rate ( μ) and the net rate of change in cell number ( r) are assumed to be due to grazing, then grazing occurred throughout the day at a relatively constant rate (reflecting phytoplankton loss rates of ˜0.12 h -1). Cell division rates peaked in the late afternoon and early evening. FDC decreased throughout the night, suggesting that dark-inhibition of cell division is weak or nonexistent in the picocyanobacteria we studied. While all cell types included in this study would be identified as Synechococcus by flow cytometry because they were small unicells with bright phycoerythrin fluorescence, morphological variability suggests that the community was actually taxonomically diverse and included cells other than Synechococcus, including Synechocystis. Despite this diversity, the strong diel patterns we observed persisted throughout the study region, suggesting that great care should be taken when interpreting picocyanobacterial survey data and experimental results that do not account for the effects of time-of-day.

  6. Live-dead agreement of benthic communities under pressure by chronic oil pollution in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Albano, Paolo G.; Tomašových, Adam; Stachowitsch, Michael; Filippova, Nadezhda; Steger, Jan; Zuschin, Martin

    2014-05-01

    Mismatch between the richness or species composition of a death assemblage (DA) and the local living assemblage (LA) is typically attributed to natural post-mortem processes, particularly preservational bias. Recent research, however, suggests that live-dead (LD) agreement is significantly lower in anthropogenically disturbed settings. This reflects the so-called "compositional inertia" of DAs to recent environmental change, i.e., DAs still capture earlier community states not affected by such disturbance. The inertia to changing ecological conditions should be particularly likely under conditions of anthropogenic modification because the rapidity of many human-driven changes is unprecedented in natural systems. Our research tests this hypothesis by evaluating the agreement between the LA and DA in benthic communities around the Zakum oil field in the Southern Arabian Sea, off the coast of the United Arab Emirates. This is an area of intense oil extraction, with almost 800 offshore oil and gas platforms and 25 major terminals, but no studies on the related impacts are widely available. This approach also sheds light on chronic pollution in tropical settings, an underrepresented topic in the literature. The size fraction between 2 and 5 mm was sorted for living molluscs and empty shells, which were then segregated to morphospecies and identified. The agreement was evaluated in terms of fidelity of species richness, evenness, and rank-order agreement. Compositional fidelity was also evaluated by multivariate analysis. The communities are dominated by bivalves. Polyplacophorans and scaphopods are occasionally present. Gastropod abundance is marginal compared to the bivalves, although their contribution is more significant when species diversity is taken into consideration. Moreover, the living assemblage in the studied size range was particularly poor in terms of species abundance.

  7. Nitrogen transformations as inferred from the activities of key enzymes in the Arabian Sea oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Shailaja, M. S.; Narvekar, P. V.; Alagarsamy, R.; Naqvi, S. W. A.

    2006-06-01

    Vertical distributions of the potential activities of some key enzymes mediating nitrification and denitrification were investigated within the oxygen (O 2) minimum zone of the Arabian Sea at a number of locations between latitudes 17°N and 21°N and longitudes 63°E and 68°E so as to get an insight into the predominant biochemical mode(s) of production and consumption of nitrous oxide (N 2O). Results revealed that the dissimilatory nitrate (NO -3) reduction activity was generally very low or absent within the σ θ range 26.6-26.8, which corresponds to the Persian Gulf Watermass (PGW). Depth profiles of nitrate reductase (NaR), nitrite reductase (NiR) and ammonia monooxygenase (AMO) activities were compared with those of O 2, NO -3, nitrite (NO -2) and N 2O, and it is concluded that nitrifier denitrification rather than heterotrophic denitrification is active within the core of PGW. The presence of multiple peaks of AMO activity coinciding with distinct maxima in the O 2 profile and with a trend opposite to that of NaR activity indicates that the two processes, viz., classical and nitrifier denitrification, occur in discrete layers, probably determined by the variations in the ambient O 2 concentrations at various depths surrounding the PGW core. Further, it appears that at the depths where nitrifier denitrification is active in the absence of heterotrophic denitrification, N 2O builds up as its consumption may be inhibited by O 2. Possible reasons for the occurrence of appreciable nitrate deficit within the core of PGW, where dissimilatory NO -3 reduction is lacking, are discussed.

  8. Oxygen minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to decadal timescales

    NASA Astrophysics Data System (ADS)

    Banse, K.; Naqvi, S. W. A.; Narvekar, P. V.; Postel, J. R.; Jayakumar, D. A.

    2014-04-01

    The oxygen minimum zone (OMZ) of the Arabian Sea is the thickest of the three oceanic OMZ. It is of global biogeochemical significance because of denitrification in the upper part leading to N2 and N2O production. The residence time of OMZ water is believed to be less than a decade. The upper few hundred meters of this zone are nearly anoxic but non-sulfidic and still support animal (metazoan) pelagic life, possibly as a result of episodic injections of O2 by physical processes. We report on discrete measurements of dissolved O2 and NO2-, temperature and salinity made between 1959 and 2004 well below the tops of the sharp pycnocline and oxycline near 150, 200, 300, 400, and 500 m depth. We assemble nearly all O2 determinations (originally there were 849 values, 695 of which came from the OMZ) by the visual endpoint detection of the iodometric Winkler procedure, which in our data base yields about 0.04 mL L-1 (~ 2 μM) O2 above the endpoint from modern automated titration methods. We acknowledge that much lower (nanomolar) O2 values have been measured recently with the STOX (Switchable Trace amount OXygen) sensor in the eastern tropical South Pacific, and that similar conditions may also prevail in the Arabian Sea OMZ. In spite of the error in O2 measurements at vanishingly low levels, we argue that the temporal trends of the historic data should still hold. We find 632 values acceptable (480 from 150 stations in the OMZ). The data are grouped in zonally paired boxes of 1° lat. and 2° long. centered at 8, 10, 12, 15, 18, 20, and 21° N along 65 and 67° E. The latitudes of 8-12° N, outside the OMZ, are treated in passing. The principal results are as follows: (1) an O2 climatology for the upper OMZ reveals a marked seasonality at 200 to 500 m depth with O2 levels during the northeast monsoon and spring intermonsoon seasons elevated over those during the southwest monsoon season (median difference, 0.08 mL L-1 [~ 3.5 μM]). The medians of the slopes of the

  9. Large Scale Patterns of Antimicrofouling Defenses in the Hard Coral Pocillopora verrucosa in an Environmental Gradient along the Saudi Arabian Coast of the Red Sea

    PubMed Central

    Wahl, Martin; Al Sofyani, Abdulmohsin; Saha, Mahasweta; Kruse, Inken; Lenz, Mark; Sawall, Yvonne

    2014-01-01

    Large scale patterns of ecologically relevant traits may help identify drivers of their variability and conditions beneficial or adverse to the expression of these traits. Antimicrofouling defenses in scleractinian corals regulate the establishment of the associated biofilm as well as the risks of infection. The Saudi Arabian Red Sea coast features a pronounced thermal and nutritional gradient including regions and seasons with potentially stressful conditions to corals. Assessing the patterns of antimicrofouling defenses across the Red Sea may hint at the susceptibility of corals to global change. We investigated microfouling pressure as well as the relative strength of 2 alternative antimicrofouling defenses (chemical antisettlement activity, mucus release) along the pronounced environmental gradient along the Saudi Arabian Red Sea coast in 2 successive years. Microfouling pressure was exceptionally low along most of the coast but sharply increased at the southernmost sites. Mucus release correlated with temperature. Chemical defense tended to anti-correlate with mucus release. As a result, the combined action of mucus release and chemical antimicrofouling defense seemed to warrant sufficient defense against microbes along the entire coast. In the future, however, we expect enhanced energetic strain on corals when warming and/or eutrophication lead to higher bacterial fouling pressure and a shift towards putatively more costly defense by mucus release. PMID:25485603

  10. Large scale patterns of antimicrofouling defenses in the hard coral Pocillopora verrucosa in an environmental gradient along the Saudi Arabian coast of the Red Sea.

    PubMed

    Wahl, Martin; Al Sofyani, Abdulmohsin; Saha, Mahasweta; Kruse, Inken; Lenz, Mark; Sawall, Yvonne

    2014-01-01

    Large scale patterns of ecologically relevant traits may help identify drivers of their variability and conditions beneficial or adverse to the expression of these traits. Antimicrofouling defenses in scleractinian corals regulate the establishment of the associated biofilm as well as the risks of infection. The Saudi Arabian Red Sea coast features a pronounced thermal and nutritional gradient including regions and seasons with potentially stressful conditions to corals. Assessing the patterns of antimicrofouling defenses across the Red Sea may hint at the susceptibility of corals to global change. We investigated microfouling pressure as well as the relative strength of 2 alternative antimicrofouling defenses (chemical antisettlement activity, mucus release) along the pronounced environmental gradient along the Saudi Arabian Red Sea coast in 2 successive years. Microfouling pressure was exceptionally low along most of the coast but sharply increased at the southernmost sites. Mucus release correlated with temperature. Chemical defense tended to anti-correlate with mucus release. As a result, the combined action of mucus release and chemical antimicrofouling defense seemed to warrant sufficient defense against microbes along the entire coast. In the future, however, we expect enhanced energetic strain on corals when warming and/or eutrophication lead to higher bacterial fouling pressure and a shift towards putatively more costly defense by mucus release. PMID:25485603

  11. (abstract) Ekman Pumping/Suction and Wind-Driven Ocean Circulation from ERS-1 Scatterometer Measurements Over the Arabian Sea During October 1994-October 1995

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Freilich, M. H.; Weller, R. A.

    1996-01-01

    Spatial variations of the east-west and north-south components of surface wind stress are critical in studies of ocean circulation and biological-physical interactions because surface wind stress curl produces a vertical velocity in the upper ocean at the bottom of the Ekman Layer.The ERS-1 scatterometer provides reasonable coverage and direct measurements of vector of winds. Three schemes are evaluated relative to high-quality moored-bouy wind observations recorded in the central Arabian Sea, where high surface waves and high atmospheric water content during the southeast monsoon adversely affect the estimation of satellite-derived winds.

  12. First report of the planktonic copepod Oithona davisae in the northern Wadden Sea (North Sea): Evidence for recent invasion?

    NASA Astrophysics Data System (ADS)

    Cornils, Astrid; Wend-Heckmann, Britta

    2015-06-01

    In October 2010, specimens of Oithona were taken from the List Tidal Basin in the northern Wadden Sea (North Sea) for a biogeographic study on Oithona similis. These specimens could not be assigned to O. similis or any of the other Oithona species known from the North Sea genetically. These specimens were identified as Oithona davisae Ferrari and Orsi 1984, a Northwest Pacific species, known as an invasive species from the Black Sea and the northwestern Mediterranean Sea. Recent sampling provided evidence that O. davisae is still present in the northern Wadden Sea and may thus now be a permanent plankton species.

  13. A nonstationary analysis for the Northern Adriatic extreme sea levels

    NASA Astrophysics Data System (ADS)

    Masina, Marinella; Lamberti, Alberto

    2013-09-01

    The historical data from the Trieste, Venice, Porto Corsini, and Rimini tide gauges have been used to investigate the spatial and temporal changes in extreme high water levels in the Northern Adriatic. A detailed analysis of annual mean sea level evolution at the three longest operating stations shows a coherent behavior both on a regional and global scale. A slight increase in magnitude of extreme water elevations, after the removal of the regularized annual mean sea level necessary to eliminate the effect of local subsidence and sea level rise, is found at the Venice and Porto Corsini stations. It seems to be mainly associated with a wind regime change occurred in the 1990s, due to an intensification of Bora wind events after their decrease in frequency and intensity during the second half of the 20th century. The extreme values, adjusted for the annual mean sea level trend, are modeled using a time-dependent GEV distribution. The inclusion of seasonality in the GEV parameters considerably improves the data fitting. The interannual fluctuations of the detrended monthly maxima exhibit a significant correlation with the variability of the large-scale atmospheric circulation represented by the North Atlantic Oscillation and Arctic Oscillation indices. The different coast exposure to the Bora and Sirocco winds and their seasonal character explain the various seasonal patterns of extreme sea levels observed at the tide gauges considered in the present analysis.

  14. Chlorinated pesticide residues in sediments from the Arabian Sea along the central west coast of India

    SciTech Connect

    Sarkar, A.; Gupta, R.S.

    1987-12-01

    The problem of environmental contamination by persistent chlorinated pesticides still evokes major concern due to the presence of their residues in the environment and in human tissues. In developing countries like India organochlorine insecticides, especially DDT are extensively being used in agriculture and vector control programs. Few data are available on their levels of concentration from the seas around India. Persistent pesticides residues can be expected to accumulate in marine sediments. However, very little data on this are available along the Indian coast. An attempt has been made in the present communication to identify and quantify some of the chlorinated pesticides residues in the marine sediments collected from different region along the central west coast of India. This is a part of our ongoing project to monitor and map pollutants within the exclusive economic zone of India.

  15. Coxiella burnetii exposure in northern sea otters Enhydra lutris kenyoni.

    PubMed

    Duncan, Colleen; Gill, Verena A; Worman, Kristin; Burek-Huntington, Kathy; Pabilonia, Kristy L; Johnson, Sam; Fitzpatrick, Kelly A; Weller, Christina; Kersh, Gilbert J

    2015-05-11

    Valvular endocarditis has been well described in northern sea otters Enhydra lutris kenyoni of Alaska and in many cases no cause has been identified. It is also one of the most common conditions observed in people with chronic Coxiella burnetii infection. Given the high levels of C. burnetii exposure in marine mammals distributed throughout the same geographic range as the northern sea otter, and the presence of valvular lesions seen in otters, the objective of this study was to determine the level of C. burnetii exposure in otters and investigate any association between exposure, infection and valvular disease in this species. Archived serum from 75 live captured, apparently healthy otters (25 from each of 3 stocks) and 30 dead otters were tested for C. burnetii antibodies by indirect florescent antibody assay (IFA). Archived bone marrow and heart valves were tested for C. burnetii DNA by real-time PCR (qPCR). Overall, the seroprevalence in live otters was 17%, with significantly more exposed animals in the south central (40%) stock relative to the southwest (8%) and southeast (4%). The seroprevalence of animals sampled post mortem was 27%, although none of the bone marrow or heart valve samples were positive by qPCR. Results of this study failed to demonstrate a significant association between C. burnetii infection and valvular endocarditis in sea otters; however, the differing seroprevalence suggests that exposure opportunities vary geographically. PMID:25958809

  16. Effects of warm Arabian Sea Surface Temperature on the Summer Monsoon over Peninsular Indian Region

    NASA Astrophysics Data System (ADS)

    Janardanan, Rajesh; Mohanakumar, Kesavapillai; Rajanayagam, Lorna

    This study investigates the characteristics of circulation and precipitation during monsoon season over peninsular Indian region, based on the sensitivity experiments performed by a regional climate model for the year 2002. The present study uses a recent version (Version-III) of National Center for Atmospheric Research (NCAR) Regional Climate Model (RegCM3). The planetary boundary layer scheme used is that of Holtslag, cumulus parameterization scheme Emanuel of MIT, SUBEX large scale precipitation scheme and BATS ocean flux parameterization scheme. The model is run from 1st May to 30th September. The first month is taken for the spin up. The next four months are taken to study the monsoon. RegCM3 has been integrated at 60 km horizontal resolution over the Indian domain. The experiments are carried out by changing the initial conditions of Sea Surface Temperature by 0.1 degree steps ie. 0.1, 0.2 etc. to 1 degree maximum. The sensitivity experiments showed that the wind strength increases significantly to the northeastern and central parts of India. The change in wind strength is pronounced over the southern peninsula when the Sea Surface Temperature increased by 0.4 degree. The response in precipitation over the peninsular Indian region is also studied. The monsoon circulation features simulated by RegCM3 are compared with those of the NCEP/NCAR reanalysis and the simulated rainfall is validated against observations from the Global Precipitation Climatology Centre (GPCC) Key words:- Peninsular India, model integration, Monsoon Rainfall Reference: K. C. chow, Yiming Liu, Johnny C. L. Chan and Yihui Ding, Int. J. Climatol. 26: 1339-1359 (2006) K. C. Chow, Hang-Wai Tong and Johnny C. L. Chan, Clim. Dyn. DOI 10.1007/s00382-007- 0301-6 G. P. Singh, Jai-Ho Oh, Jin-Young Kim and Ok-Yeon Kim; ", SOLA, Vol. 2, pp.29-32 (2006) Dash S. K., Shekhar M. S., Singh G. P. Theoretical and Applied Climatology 86(1-4): 161 (2006)

  17. A multiproxy approach to understanding the "enhanced" flux of organic matter through the oxygen deficient waters of the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Keil, R. G.; Neibauer, J.; Biladeau, C.; van der Elst, K.; Devol, A. H.

    2015-10-01

    Free-drifting sediment net traps were deployed 14 times at depths between 80 and 500 m for 1-3 days each during the late monsoon/intermonsoon transition in the central Arabian Sea. Two locations (19.5 and 15.5° N) were within the permanently oxygen deficient zone, and a third (11° N) had a shallow and thin oxygen minimum. The secondary nitrite maximum, which serves as a tracer of the oxygen deficient zone (ODZ) zone, thinned from ∼ 250 m thick at stations 19.5 and 15.5° N to ∼ 50 m thick at station 11° N. Overall, organic carbon fluxes ranged from 13.2 g m2 yr-1 at 80 m to a minimum of 1.1 g m2 yr-1 at 500 m. Fluxes at the more oxygenated 11° N station attenuate faster than within the permanent ODZ. Martin curve attenuation coefficients for 19.5 and 15.5° N are 0.59 and 0.63 and for 11° N it is 0.98. At least six potential mechanisms might explain why sinking particles sinking through the ODZ are more effectively transferred to depth; (M1) oxygen effects, (M2) microbial loop efficiencies and chemoautotrophy, (M3) changes in zooplankton dynamics, (M4) additions of ballast that might sorb and protect organic matter from decay, (M5) inputs of refractory organic matter, and (M6) changes in sinking speeds. These mechanisms are intertwined, and were explored using a combination of mineral (XPS) and organic matter characterizations of the sinking material and ship-board incubation experiments. Evidence was found supporting an oxygen effect and/or changes in the efficiency of the microbial loop including the addition of chemoautotrophic carbon to the sinking flux in the upper 500 m. Less evidence was found for the other potential mechanisms. A simple conceptual model consistent with our and other recent data suggests that the upper ODZ microbial community determines the initial flux attenuation, and that deeper in the water column zooplankton and sinking speed become more important. The exact interplay between the various mechanisms remains to be further

  18. Sea ice effects on low salinity water transport in the northern East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Lee, H.; Kim, S.; Kwon, M.; Park, J.; Park, Y.

    2012-12-01

    We here simulated the sea ice in the northern East/Japan Sea and investigated its effects on low salinity waters transported along the Primorye coast using an ice-coupled Ocean General Circulation Model, ROMS(Regional Ocean Modeling System). The model area covers the region 126.5°E - 142.5°E, 33°N - 52°N with grid resolution of 1/10° in latitude and longitude. Monthly mean ECMWF forecast data with 0.5° resolution during the period 1999-2008 and ERA interim reanalysis data are used to calculate sea surface fluxes as well as wind stress at the sea surface. Heat and fresh water fluxes are computed with a bulk formula without any relaxation of SST and SSS. Four major tidal forcing (M2, S2, K1, O1) are included along the open boundaries based on TPXO7. The modeled sea ice in the Tatar Strait shows a maximum extent in February and is disappeared in April. Although its duration time is similar to the observed one, the model appears to underestimate the sea ice concentration and area. The melting of sea ice in the Tatar Strait seems to be responsible for low salinity waters along the Primorye coast in spring.

  19. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route.

    PubMed

    Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime

    2015-01-01

    During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR. PMID:26585690

  20. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route

    PubMed Central

    Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime

    2015-01-01

    During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR. PMID:26585690

  1. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route

    NASA Astrophysics Data System (ADS)

    Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime

    2015-11-01

    During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR.

  2. Bartonella spp. Exposure in Northern and Southern Sea Otters in Alaska and California

    PubMed Central

    Chomel, Bruno B.; Gill, Verena A.; Doroff, Angela M.; Miller, Melissa A.; Burek-Huntington, Kathleen A.; Kasten, Rickie W.; Byrne, Barbara A.; Goldstein, Tracey; Mazet, Jonna A.K.

    2014-01-01

    Abstract Since 2002, an increased number of northern sea otters (Enhydra lutris kenyoni) from southcentral Alaska have been reported to be dying due to endocarditis and/or septicemia with infection by Streptococcus infantarius subsp. coli. Bartonella spp. DNA was also detected in northern sea otters as part of mortality investigations during this unusual mortality event (UME) in Kachemak Bay, Alaska. To evaluate the extent of exposure to Bartonella spp. in sea otters, sera collected from necropsied and live-captured northern sea otters, as well as necropsied southern sea otters (Enhydra lutris nereis) unaffected by the UME, were analyzed using an immunofluorescent antibody assay. Antibodies against Bartonella spp. were detected in sera from 50% of necropsied and 34% of presumed healthy, live-captured northern sea otters and in 16% of necropsied southern sea otters. The majority of sea otters with reactive sera were seropositive for B. washoensis, with antibody titers ranging from 1:64 to 1:256. Bartonella spp. antibodies were especially common in adult northern sea otters, both free-living (49%) and necropsied (62%). Adult stranded northern sea otters that died from infectious causes, such as opportunistic bacterial infections, were 27 times more likely to be Bartonella seropositive than adult stranded northern sea otters that died from noninfectious causes (p<0.001; 95% confidence interval 2.62–269.4). Because Bartonella spp. antibodies were detected in necropsied northern sea otters from southcentral (44%) and southwestern (86%) stocks of Alaska, as well as in necropsied southern sea otters (16%) in southcentral California, we concluded that Bartonella spp. exposure is widely distributed among sea otter populations in the Eastern Pacific, providing context for investigating future disease outbreaks and monitoring of Bartonella infections for sea otter management and conservation. PMID:25514118

  3. Bartonella spp. exposure in northern and southern sea otters in Alaska and California.

    PubMed

    Carrasco, Sebastian E; Chomel, Bruno B; Gill, Verena A; Doroff, Angela M; Miller, Melissa A; Burek-Huntington, Kathleen A; Kasten, Rickie W; Byrne, Barbara A; Goldstein, Tracey; Mazet, Jonna A K

    2014-12-01

    Since 2002, an increased number of northern sea otters (Enhydra lutris kenyoni) from southcentral Alaska have been reported to be dying due to endocarditis and/or septicemia with infection by Streptococcus infantarius subsp. coli. Bartonella spp. DNA was also detected in northern sea otters as part of mortality investigations during this unusual mortality event (UME) in Kachemak Bay, Alaska. To evaluate the extent of exposure to Bartonella spp. in sea otters, sera collected from necropsied and live-captured northern sea otters, as well as necropsied southern sea otters (Enhydra lutris nereis) unaffected by the UME, were analyzed using an immunofluorescent antibody assay. Antibodies against Bartonella spp. were detected in sera from 50% of necropsied and 34% of presumed healthy, live-captured northern sea otters and in 16% of necropsied southern sea otters. The majority of sea otters with reactive sera were seropositive for B. washoensis, with antibody titers ranging from 1:64 to 1:256. Bartonella spp. antibodies were especially common in adult northern sea otters, both free-living (49%) and necropsied (62%). Adult stranded northern sea otters that died from infectious causes, such as opportunistic bacterial infections, were 27 times more likely to be Bartonella seropositive than adult stranded northern sea otters that died from noninfectious causes (p<0.001; 95% confidence interval 2.62-269.4). Because Bartonella spp. antibodies were detected in necropsied northern sea otters from southcentral (44%) and southwestern (86%) stocks of Alaska, as well as in necropsied southern sea otters (16%) in southcentral California, we concluded that Bartonella spp. exposure is widely distributed among sea otter populations in the Eastern Pacific, providing context for investigating future disease outbreaks and monitoring of Bartonella infections for sea otter management and conservation. PMID:25514118

  4. Prediction of sea ice thickness cluster in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Fuckar, Neven-Stjepan; Guemas, Virginie; Johnson, Nathaniel; Doblas-Reyes, Francisco

    2016-04-01

    Sea ice thickness (SIT) has a potential to contain substantial climate memory and predictability in the northern hemisphere (NH) sea ice system. We use 5-member NH SIT, reconstructed with an ocean-sea-ice general circulation model (NEMOv3.3 with LIM2) with a simple data assimilation routine, to determine NH SIT modes of variability disentangled from the long-term climate change. Specifically, we apply the K-means cluster analysis - one of nonhierarchical clustering methods that partition data into modes or clusters based on their distances in the physical - to determine optimal number of NH SIT clusters (K=3) and their historical variability. To examine prediction skill of NH SIT clusters in EC-Earth2.3, a state-of-the-art coupled climate forecast system, we use 5-member ocean and sea ice initial conditions (IC) from the same ocean-sea-ice historical reconstruction and atmospheric IC from ERA-Interim reanalysis. We focus on May 1st and Nov 1st start dates from 1979 to 2010. Common skill metrics of probability forecast, such as rank probability skill core and ROC (relative operating characteristics - hit rate versus false alarm rate) and reliability diagrams show that our dynamical model predominately perform better than the 1st order Marko chain forecast (that beats climatological forecast) over the first forecast year. On average May 1st start dates initially have lower skill than Nov 1st start dates, but their skill is degraded at slower rate than skill of forecast started on Nov 1st.

  5. Clusters of interannual sea ice variability in the northern hemisphere

    NASA Astrophysics Data System (ADS)

    Fučkar, Neven S.; Guemas, Virginie; Johnson, Nathaniel C.; Massonnet, François; Doblas-Reyes, Francisco J.

    2015-11-01

    We determine robust modes of the northern hemisphere (NH) sea ice variability on interannual timescales disentangled from the long-term climate change. This study focuses on sea ice thickness (SIT), reconstructed with an ocean-sea-ice general circulation model, because SIT has a potential to contain most of the interannual memory and predictability of the NH sea ice system. We use the K-means cluster analysis—one of clustering methods that partition data into groups or clusters based on their distances in the physical space without the typical constraints of other unsupervised learning statistical methods such as the widely-used principal component analysis. To adequately filter out climate change signal in the Arctic from 1958 to 2013 we have to approximate it with a 2nd degree polynomial. Using 2nd degree residuals of SIT leads to robust K-means cluster patterns, i.e. invariant to further increase of the polynomial degree. A set of clustering validity indices yields K = 3 as the optimal number of SIT clusters for all considered months and seasons with strong similarities in their cluster patterns. The associated time series of cluster occurrences exhibit predominant interannual persistence with mean timescale of about 2 years. Compositing analysis of the NH surface climate conditions associated with each cluster indicates that wind forcing seem to be the key factor driving the formation of interannual SIT cluster patterns during the winter. Climate memory in SIT with such interannual persistence could lead to increased predictability of the Artic sea ice cover beyond seasonal timescales.

  6. Sea level, paleogeography, and archeology on California's Northern Channel Islands

    USGS Publications Warehouse

    Reeder-Myers, Leslie; Erlandson, Jon M.; Muhs, Daniel R.; Rick, Torben C.

    2015-01-01

    Sea-level rise during the late Pleistocene and early Holocene inundated nearshore areas in many parts of the world, producing drastic changes in local ecosystems and obscuring significant portions of the archeological record. Although global forces are at play, the effects of sea-level rise are highly localized due to variability in glacial isostatic adjustment (GIA) effects. Interpretations of coastal paleoecology and archeology require reliable estimates of ancient shorelines that account for GIA effects. Here we build on previous models for California's Northern Channel Islands, producing more accurate late Pleistocene and Holocene paleogeographic reconstructions adjusted for regional GIA variability. This region has contributed significantly to our understanding of early New World coastal foragers. Sea level that was about 80–85 m lower than present at the time of the first known human occupation brought about a landscape and ecology substantially different than today. During the late Pleistocene, large tracts of coastal lowlands were exposed, while a colder, wetter climate and fluctuating marine conditions interacted with rapidly evolving littoral environments. At the close of the Pleistocene and start of the Holocene, people in coastal California faced shrinking land, intertidal, and subtidal zones, with important implications for resource availability and distribution.

  7. Sea level, paleogeography, and archeology on California's Northern Channel Islands

    NASA Astrophysics Data System (ADS)

    Reeder-Myers, Leslie; Erlandson, Jon M.; Muhs, Daniel R.; Rick, Torben C.

    2015-03-01

    Sea-level rise during the late Pleistocene and early Holocene inundated nearshore areas in many parts of the world, producing drastic changes in local ecosystems and obscuring significant portions of the archeological record. Although global forces are at play, the effects of sea-level rise are highly localized due to variability in glacial isostatic adjustment (GIA) effects. Interpretations of coastal paleoecology and archeology require reliable estimates of ancient shorelines that account for GIA effects. Here we build on previous models for California's Northern Channel Islands, producing more accurate late Pleistocene and Holocene paleogeographic reconstructions adjusted for regional GIA variability. This region has contributed significantly to our understanding of early New World coastal foragers. Sea level that was about 80-85 m lower than present at the time of the first known human occupation brought about a landscape and ecology substantially different than today. During the late Pleistocene, large tracts of coastal lowlands were exposed, while a colder, wetter climate and fluctuating marine conditions interacted with rapidly evolving littoral environments. At the close of the Pleistocene and start of the Holocene, people in coastal California faced shrinking land, intertidal, and subtidal zones, with important implications for resource availability and distribution.

  8. Interannual variability and predictability over the Arabian Penuinsula Winter monsoon region

    NASA Astrophysics Data System (ADS)

    Adnan Abid, Muhammad; Kucharski, Fred; Almazroui, Mansour; Kang, In-Sik

    2016-04-01

    Interannual winter rainfall variability and its predictability are analysed over the Arabian Peninsula region by using observed and hindcast datasets from the state-of-the-art European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal prediction System 4 for the period 1981-2010. An Arabian winter monsoon index (AWMI) is defined to highlight the Arabian Peninsula as the most representative region for the Northern Hemispheric winter dominating the summer rainfall. The observations show that the rainfall variability is relatively large over the northeast of the Arabian Peninsula. The correlation coefficient between the Nino3.4 index and rainfall in this region is 0.33, suggesting potentially some modest predictability, and indicating that El Nino increases and La Nina decreases the rainfall. Regression analysis shows that upper-level cyclonic circulation anomalies that are forced by El Nino Southern Oscillation (ENSO) are responsible for the winter rainfall anomalies over the Arabian region. The stronger (weaker) mean transient-eddy activity related to the upper-level trough induced by the warm (cold) sea-surface temperatures during El Nino (La Nina) tends to increase (decrease) the rainfall in the region. The model hindcast dataset reproduces the ENSO-rainfall connection. The seasonal mean predictability of the northeast Arabian rainfall index is 0.35. It is shown that the noise variance is larger than the signal over the Arabian Peninsula region, which tends to limit the prediction skill. The potential predictability is generally increased in ENSO years and is, in particular, larger during La Nina compared to El Nino years in the region. Furthermore, central Pacific ENSO events and ENSO events with weak signals in the Indian Ocean tend to increase predictability over the Arabian region.

  9. 50 CFR Table 43 to Part 679 - Northern Bering Sea Research Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Northern Bering Sea Research Area 43 Table... ALASKA Pt. 679, Table 43 Table 43 to Part 679—Northern Bering Sea Research Area Longitude Latitude 1687... coordinate system is North American Datum 1983, Albers. * This boundary extends in a clockwise direction...

  10. Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf.

    PubMed

    Hume, B C C; D'Angelo, C; Smith, E G; Stevens, J R; Burt, J; Wiedenmann, J

    2015-01-01

    Coral reefs are in rapid decline on a global scale due to human activities and a changing climate. Shallow water reefs depend on the obligatory symbiosis between the habitat forming coral host and its algal symbiont from the genus Symbiodinium (zooxanthellae). This association is highly sensitive to thermal perturbations and temperatures as little as 1°C above the average summer maxima can cause the breakdown of this symbiosis, termed coral bleaching. Predicting the capacity of corals to survive the expected increase in seawater temperatures depends strongly on our understanding of the thermal tolerance of the symbiotic algae. Here we use molecular phylogenetic analysis of four genetic markers to describe Symbiodinium thermophilum, sp. nov. from the Persian/Arabian Gulf, a thermally tolerant coral symbiont. Phylogenetic inference using the non-coding region of the chloroplast psbA gene resolves S. thermophilum as a monophyletic lineage with large genetic distances from any other ITS2 C3 type found outside the Gulf. Through the characterisation of Symbiodinium associations of 6 species (5 genera) of Gulf corals, we demonstrate that S. thermophilum is the prevalent symbiont all year round in the world's hottest sea, the southern Persian/Arabian Gulf. PMID:25720577