Science.gov

Sample records for northward imf conditions

  1. Latitudinal electron precipitation patterns during large and small IMF magnitudes for northward IMF conditions

    NASA Technical Reports Server (NTRS)

    Makita, K.; Meng, C.-I.; Akasofu, S.-I.

    1988-01-01

    It is demonstrated that there are distinct differences in the electron precipitation patterns (or the polar cap size), geomagnetic activity, and field-aligned currents in the highest-latitude region for small and large IMF B(z) values when the IMF B(z) component is positive. First, during periods of weakly northward IMF, there is a distinct area in the highest-latitude region in which the electron precipitation is absent except for the polar rain. By contrast, during strongly northward IMF, the entire polar region is often filled with burst-type soft electron precipitations. Second, geomagnetic disturbances and field-aligned-current intensities in the highest-latitude region are less during a weak IMF B(z) condition than those during a strongly northward IMF B(z) condition. Geomagnetic activity in the auroral zone for both conditions is absent or very weak.

  2. High-Latitude Ionospheric Dynamics During Conditions of Northward IMF

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.

    1996-01-01

    In order to better understand the physical processes operating during conditions of northward interplanetary magnetic field (IMF), in situ measurements from the Dynamics Explorer-2 (low altitude) polar satellite and simultaneous observations from the auroral imager on the Dynamics Explorer-1 (high altitude) satellite were used to investigate the relationships between optical emissions, particle precipitation, and convective flows in the high-latitude ionosphere. Field aligned current and convective flow patterns during IMF north include polar cap arcs, the theta aurora or transpolar arc, and the 'horse-collar' aurora. The initial part of the study concentrated on the electrodynamics of auroral features in the horse-collar aurora, a contracted but thickened emission region in which the dawn and dusk portions can spread to very high latitudes, while the latter part focused on the evolution of one type of IMF north auroral pattern to another, specifically the quiet-time horse-collar pattern to a theta aurora.

  3. MHD simulations using average solar wind conditions for substorms observed under northward IMF conditions

    NASA Astrophysics Data System (ADS)

    Park, K. S.; Lee, D.-Y.; Ogino, T.; Lee, D. H.

    2015-09-01

    Substorms are known to sometimes occur even under northward interplanetary magnetic field (IMF) conditions. In this paper, we perform three-dimensional global magnetohydrodynamic simulations to examine dayside reconnection, tail, and ionospheric signatures for two cases of substorm observations under prolonged northward and dawnward IMF conditions: (1) a strongly northward/dawnward IMF case with BIMF = (0, -20, 20) nT; (2) a weakly northward/dawnward IMF case with BIMF = (0, -2, 2) nT. Throughout the simulations, we used the constant solar wind conditions to reflect the prolonged solar wind conditions around the substorm times. We found that, in both cases, the tail reconnection occurred after the usual high-latitude reconnection on the dayside, providing a possible energy source for later triggered substorm observations under northward IMF conditions. The presence of an equal amount of IMF By allows the high-latitude reconnected magnetic field lines to transport to the tail lobe, eventually leading to the tail reconnection. The simulation results also revealed the following major differences between the two cases: First, the reconnection onset (both on dayside and in the tail) occurs earlier in the strongly northward IMF case than in the weakly northward IMF case. Second, the polar cap size, which is finite in both cases despite the northward IMF conditions and thus supports the lobe energy buildup needed for the substorm occurrences, is larger in the strongly northward IMF case. Accordingly, the polar cap potential is far larger in the strongly northward IMF case (hundreds of kilovolt) than in the weakly northward IMF case (tens of kilovolt). Third, in the strongly northward IMF case, the strong earthward tail plasma flow appears to be caused by the enhanced convection (so enhanced duskward Ey) due to the tail reconnection. In contrast, in the weakly northward IMF case, the earthward tail plasma flow increases gradually in association with a modestly increased

  4. X lines in the magnetotail for southward and northward IMF conditions

    NASA Astrophysics Data System (ADS)

    Zhang, L. Q.; Wang, J. Y.; Baumjohann, W.; Rème, H.; Dai, L.; Dunlop, M. W.; Chen, T.; Huang, Y.

    2015-09-01

    Utilizing associated observations of Geotail and ACE satellites from the year of 1998 to 2005, we investigated the X lines in the near-Earth tail under different interplanetary magnetic field (IMF) conditions. The X lines are recognized by the tailward fast flows with negative Bz. Statistically, the X lines in the tail can be observed for southward as well as northward IMF, but more frequently observed for southward IMF. A typical case on 26 April 2005 showed clear evidence that the X line can occur for northward IMF while the geomagnetic activity is particularly quiet. Further analysis showed that the X line-related solar wind has stronger Ey and Bz components for southward than northward IMF. In addition, the X line-related geomagnetic activities are stronger for southward than northward IMF.

  5. Relation of PC index to magnetic disturbances developing under conditions of northward IMF

    NASA Astrophysics Data System (ADS)

    Podorozhkina, N.; Sormakov, D.; Troshichev, O.

    2012-04-01

    Substorms and storms occurring under conditions of northward IMF (BZN) are commonly examined as "extraordinary events" since they are developed when the efficiency of the interplanetary electric field EY = vBZS (Reiff and Luhmann, 1986) falls to zero. Examination of these events demonstrates that all of them occur, like to ordinary substorms and storms, under conditions that are necessary and sufficient for development of substorms (PC ≥ 1.5 mV/m) and storms ( >2 mV/m). The specified values of the PC index testify that the magnetosphere is affected by the intense interplanetary electric field EKL=vBTsin2θ/2 (Kan and Lee, 1979), where BT is the IMF tangential component and θ is an angle between BT component and the geomagnetic Z-axis. The principal difference between coupling functions EY and EKL lies in the fact that EKL function includes the IMF azimuthal (BY) component. As BY increases relative to BZ, the difference between electric fields EY and EKL quickly grows, and the value of EKL field can be as large as 5-10 mV/m even under conditions of northward IMF orientation, when EY reaches to zero. The same situation is valid for substorms triggered by sharp northward turning of the IMF BZ component following the prolonged period of southward IMF influence. Examination of these substorms demonstrates that they are initiated by increase of coupling function EKL and that the substorm sudden onsets were preceded by the PC index growth. Consistency between the IMF northward turning and substorm sudden onset in these cases is coincidence that explains why substorm are only occasionally initiated by the IMF northward turning. Thus, the "extraordinary" storms and substorms occurring under conditions of ineffective northward IMF component turned out to be events nothing out of the ordinary, if examining them in relation to proper coupling function (EKL) and monitoring them by the PC index.

  6. Solar wind plasma entry into the magnetosphere under northward IMF conditions

    NASA Astrophysics Data System (ADS)

    Li, Wenhui; Raeder, Joachim; Thomsen, Michelle F.; Lavraud, Benoit

    2008-04-01

    This study examines how solar wind plasma enters the magnetosphere under northward interplanetary magnetic field (IMF) conditions, using the Open Geospace General Circulation Model (OpenGGCM) for various solar wind, IMF, and geomagnetic dipole conditions. We trace flow paths of individual fluid elements from the solar wind and study the variation of the topology of the magnetic field line along those flow paths. We find that there is an entry window through which the solar wind plasma can enter the magnetosphere as a result of double high-latitude reconnection under northward IMF conditions. We investigate how the entry window depends on solar wind, IMF, and geomagnetic dipole parameters, and we estimate the solar wind plasma entry rate for various conditions. We find that the effective entry rate under northward IMF conditions is of the order of 1026 to 1027 particles per second. We also estimate the conditions for which solar wind plasma entry is most efficient. The newly created flux tubes with closed-field topology are subsequently convected to the nightside and consequently cause magnetosheath plasma to be captured and enter the magnetosphere. Some captured dayside plasma takes about 90 min to convect along the magnetopause to a near tail flank region of the central plasma sheet, thus forming a cold dense plasma sheet. Double high-latitude reconnection can also release the captured plasma. Thus a balance of inflow and outflow of the captured plasma is eventually established under prolonged northward IMF conditions. We find that high-latitude reconnection is common under northward IMF conditions in our simulations. It occurs for IMF with any clock angle within [-90°, 90°], measured in front of the bow shock, and for any geomagnetic dipole tilt angle within [-30°, 30°]. An IMF field line with a zero x component usually first reconnects with a geomagnetic field line at the northern high-latitude boundary when the geomagnetic dipole tilts positive toward the

  7. The Distant Magnetotail Under Long Duration, Very Northward IMF Conditions: October 22-24, 2003

    NASA Technical Reports Server (NTRS)

    Fairfield, Donald H.; Oieroset, M.; Raeder, J.; Lepping, R. P.; Newell, P. T.; Wind, S.

    2006-01-01

    A unique 32 hour interval of very northward Interplanetary Magnetic Field (IMF) on October 22-24, 2003 created a exceptionally thick cold dense magnetotail plasma sheet, a small polar cap and accompanying small tail lobe. These features were detected by the Cluster DMSP and FAST spacecraft and modeled by a global simulation as described in papers by Oieroset et al. (2005) and Li et al. (2005). During the same interval the Wind spacecraft was passing through the center of the magnetotail about 130 Re downstream of Earth. Wind results will be described that reveal a very unusual magnetotail characterized by (1) continual tailward flow of 200-400 km/s with densities in the range 0.2-3/cc, both of whch are clearly less than those expected in the magnetosheath, (2) a mostly northward Bz but with a predominant Bx field component with sign reversals indicating crossings between the two hemispheres of the tail, and (3) velocity waves superposed on the downstream flow with peak-to-peak amplitudes of 100 to 200 km/s, periods of 10 to 20 minutes and clockwise polarization. Low altitude DMSP and Fast measurements reveal an auroral oval with enhanced latitudinal thickness and a small polar cap filled with structured precipitzting electrons and few ions. A new global MHD simulation of the event exhibits a highly elliptical tail of diminished cross-section at 130 Re with major axis aligned with the northward IMF. The tail current sheet also tends to be aligned in a north-south direction with the two tail hemispheres to the east and west with their polarities depending on prior history of the IMF. The simulation appears to be consistent with many, but not all, of the observations. High latitude cusp reconnection and subsequent downtail flow of closed field lines may explain the tail structure, but the waves are more likely due to the Kelvin-Helmholtz instability often thought to occur during northward IMF conditions.

  8. Strong IMF By-Related Plasma Convection in the Ionosphere and Cusp Field-Aligned Currents Under Northward IMF Conditions

    NASA Technical Reports Server (NTRS)

    Le, G.; Lu, G.; Strangeway, R. J.; Pfaff, R. F., Jr.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    We present in this paper an investigation of IMF-By related plasma convection and cusp field-aligned currents using FAST data and AMIE model during a prolonged interval with large positive IMF By and northward Bz conditions (By/Bz much greater than 1). Using the FAST single trajectory observations to validate the global convection patterns at key times and key locations, we have demonstrated that the AMIE procedure provides a reasonably good description of plasma circulations in the ionosphere during this interval. Our results show that the plasma convection in the ionosphere is consistent with the anti-parallel merging model. When the IMF has a strongly positive By component under northward conditions, we find that the global plasma convection forms two cells oriented nearly along the Sun-earth line in the ionosphere. In the northern hemisphere, the dayside cell has clockwise convection mainly circulating within the polar cap on open field lines. A second cell with counterclockwise convection is located in the nightside circulating across the polar cap boundary, The observed two-cell convection pattern appears to be driven by the reconnection along the anti-parallel merging lines poleward of the cusp extending toward the dusk side when IMF By/Bz much greater than 1. The magnetic tension force on the newly reconnected field lines drives the plasma to move from dusk to dawn in the polar cusp region near the polar cap boundary. The field-aligned currents in the cusp region flow downward into the ionosphere. The return field-aligned currents extend into the polar cap in the center of the dayside convection cell. The field-aligned currents are closed through the Peterson currents in the ionosphere, which flow poleward from the polar cap boundary along the electric field direction.

  9. Magnetic substorms and northward IMF turning

    NASA Astrophysics Data System (ADS)

    Troshichev, Oleg; Podorozhkina, Nataly

    To determine the relation of the northward IMF turnings to substorm sudden onsets, we separated all events with sharp northward IMF turnings observed in years of solar maximum (1999-2002) and solar minimum (2007-2008). The events (N=261) have been classified in 5 groups in accordance with average magnetic activity in auroral zone (low, moderate or high levels of AL index) at unchanged or slightly changed PC index and with dynamics of PC (steady distinct growth or distinct decline) at arbitrary values of AL index. Statistical analysis of relationships between the IMF turning and changes of PC and AL indices has been fulfilled separately for each of 5 classes. Results of the analysis showed that, irrespective of geophysical conditions and solar activity epoch, the magnetic activity in the polar caps and in the auroral zone demonstrate no response to the sudden northward IMF turning, if the moment of northward turning is taken as a key date. Sharp increases of magnetic disturbance in the auroral zone are observed only under conditions of the growing PC index and statistically they are related to moment of the PC index exceeding the threshold level (~1.5 mV/m), not to northward turnings timed, as a rule, after the moment of sudden onset. Magnetic disturbances observed in these cases in the auroral zone (magnetic substorms) are guided by behavior of the PC index, like to ordinary magnetic substorms or substorms developed under conditions of the prolonged northward IMF impact on the magnetosphere. The evident inconsistency between the sharp IMF changes measured outside of the magnetosphere and behavior of the ground-based PC index, the latter determining the substorm development, provides an additional argument in favor of the PC index as a ground-based proxy of the solar wind energy that entered into magnetosphere.

  10. Observations of Magnetic Reconnection From Multiple Merging Sites Along the Same Field Lines Under Northward IMF Conditions

    NASA Astrophysics Data System (ADS)

    Giles, B. L.; Avanov, L. A.; Chandler, M. O.; Pollock, C. J.

    2013-12-01

    Several researchers have shown that when the interplanetary magnetic field (IMF) is northward, magnetic reconnection occurs at the Earth's high latitude magnetopause in regions poleward of the magnetospheric cusps for both the northern and southern hemispheres. With a non-zero By component there is also the possibility for reconnection to occur equatorward of the cusp [e.g., Moore et al., 2002; Chandler et al., 2008]. This paper reexamines the observations of Chandler et al., 2008 in the context of several newly identified, similar events from the Thermal Ion Dynamics Experiment (TIDE) onboard the Polar spacecraft. The observations consist of distinct, overlapping populations of velocity-dispersed magnetosheath ion distributions and outflowing ionospheric ions and occur under a variety of northward IMF conditions. In each case, evidence will be presented to show that the observations are consistent with interactions with separate reconnection sites and plausible scenarios are explored for the location of the sites. The objective is to show that the Chandler et al., 2008 observation is not unique and that the interpretation of these events can be reconciled with those of other investigators studying the dayside magnetic topology for northward IMF.

  11. Kelvin-Helmholtz instability during northward IMF conditions: Global 3-Dimensional MHD simulations (Invited)

    NASA Astrophysics Data System (ADS)

    Merkin, V. G.; Lyon, J.; Claudepierre, S. G.

    2013-12-01

    The Kelvin-Helmholtz Instability (KHI) has long been suggested to operate on the magnetospheric boundary, where the magnetosheath plasma streams past the magnetosphere. The instability is thought to be responsible for inducing various wave populations in the magnetosphere and for mass, momentum and energy transport across the magnetospheric boundary. Waves attributed to the KHI have been observed at the Earth's magnetosphere flanks as well as at Saturn and Mercury during spacecraft crossings, and remotely at boundaries of Coronal Mass Ejections (CMEs). Recent high-resolution global 3D magnetohydrodynamic (MHD) simulations of the magnetosphere confirm the existence of pronounced perturbations of the magnetospheric boundary, which are thought to be due to KHI. Such global simulations had been challenging in the past because of the need to encompass the entire magnetosphere, while sufficiently resolving the boundary layer. Here we present results of such a high-resolution simulation of the magnetosphere, using the Lyon-Fedder-Mobarry (LFM) model, under steady northward Interplanetary Magnetic Field (IMF) conditions. We find the magnetospheric boundary to be globally unstable, including the high-latitude boundary layer (meridional plane), where magnetic tension is apparently not sufficient to stabilize the growth of oscillations. Roughly beyond the terminator, global modes, coupled into the surface modes, become apparent, so that the entire body of the magnetosphere is engaged in an oscillatory motion. The wave vector of the surface oscillations has a component perpendicular to the background flow and tangential to the shear layer (in the equatorial plane, k_z component of the wave vector), which is consistent with the generation of field-aligned currents that flow on closed field lines between the inner portion of the boundary layer and the ionosphere. We calculate the distribution of wave power in the equatorial plane and find it consistent with the existence of a

  12. An evidence for prompt electric field disturbance driven by changes in the solar wind density under northward IMF Bz condition

    NASA Astrophysics Data System (ADS)

    Rout, Diptiranjan; Chakrabarty, D.; Sekar, R.; Reeves, G. D.; Ruohoniemi, J. M.; Pant, Tarun K.; Veenadhari, B.; Shiokawa, K.

    2016-05-01

    Before the onset of a geomagnetic storm on 22 January 2012 (Ap = 24), an enhancement in solar wind number density from 10/cm3 to 22/cm3 during 0440-0510 UT under northward interplanetary magnetic field (IMF Bz) condition is shown to have enhanced the high-latitude ionospheric convection and also caused variations in the geomagnetic field globally. Conspicuous changes in ΔX are observed not only at longitudinally separated low-latitude stations over Indian (prenoon), South American (midnight), Japanese (afternoon), Pacific (afternoon) and African (morning) sectors but also at latitudinally separated stations located over high and middle latitudes. The latitudinal variation of the amplitude of the ΔX during 0440-0510 UT is shown to be consistent with the characteristics of prompt penetration electric field disturbances. Most importantly, the density pulse event caused enhancements in the equatorial electrojet strength and the peak height of the F layer (hmF2) over the Indian dip equatorial sector. Further, the concomitant enhancements in electrojet current and F layer movement over the dip equator observed during this space weather event suggest a common driver of prompt electric field disturbance at this time. Such simultaneous variations are found to be absent during magnetically quiet days. In absence of significant change in solar wind velocity and magnetospheric substorm activity, these observations point toward perceptible prompt electric field disturbance over the dip equator driven by the overcompression of the magnetosphere by solar wind density enhancement.

  13. Temporal Cusp Ion Signatures and Magnetopause Reconnection during Northward IMF

    NASA Astrophysics Data System (ADS)

    Connor, H. K.; Sibeck, D. G.; Raeder, J.; Trattner, K. J.

    2015-12-01

    Dispersed ion signatures observed in the magnetospheric cusps have been used to understand the locations and properties of magnetopause reconnection. Whether a cusp structure is spatial or temporal is an important question because these structures reveal the spatial and temporal nature of magnetopause reconnection. We study temporal cusp ion signatures and their relation to the magnetopause processes during northward IMF using the Open Global Geospace Circulation Model (OpenGGCM) and the Liouville Theorem Particle Tracer (LTPT). OpenGGCM produces dayside reconnection within the framework of resistive MHD, while the LTPT calculates cusp ion signatures caused by the simulated reconnection. Our model produces temporal cusp ion dispersions with ion energies that increase with decreasing latitude during northward IMF, although these signatures are commonly associated with subsolar reconnection during southward IMF. We investigate which magnetopause process is responsible for the temporal cusp signatures.

  14. Dawn-dusk asymmetry in the northward IMF plasma sheet

    NASA Astrophysics Data System (ADS)

    Wing, S.; Johnson, J. R.; Newell, P. T.; Meng, C.

    2005-05-01

    During periods of northward IMF, as a result of large influx of the magnetosheath ions, the plasma sheet becomes cold and dense. During these periods, a large number of the plasma sheet ions have two components: hot (magnetospheric origin) and cold (magnetosheath origin). Based on their spectral distributions: one-component Maxwellian, two-component Maxwellian, and kappa (k), the characteristics of the plasma sheet ions were studied with DMSP satellites and a method of inferring plasma sheet ion properties from the ionospheric observations. The cold-component constituent of the two-component ions is hotter in the dawn than the dusk sector, consistent with the in situ studies that suggest that the magnetosheath ion is heated upon its entry along the plasma sheet dawn flank. This temperature asymmetry leads to a dawn-dusk asymmetry in the ion spectral distribution. The cold and hot components are closer together in temperature space, which increases the proportion of ions having (apparent) one-component distribution in the dawn flank while, in the dusk flank, the influx of the magnetosheath ions increase the density of the two-component ions. The dawn-dusk asymmetry in the cold magnetosheath ion profile should help determine the roles of various proposed magnetosheath entry mechanisms.

  15. IMF By-controlled field-aligned currents in the magnetotail during northward interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Cheng, Z. W.; Shi, J. K.; Dunlop, M.; Liu, Z. X.

    2014-08-01

    The influence of the interplanetary magnetic field (IMF) By component on the field-aligned currents (FACs) in the plasma sheet boundary layer (PSBL) in the magnetotail during the northward IMF were investigated using the data from Cluster. There are 748 FACs cases selected to do analysis. We present that the IMF By component plays a very important role in controlling the flow direction of the FACs in the PSBL in the magnetotail. In the northern hemisphere, the influence of the positive (negative) IMF By is an earthward (tailward) FACs. To the contrary, in the southern hemisphere, the effect of the positive (negative) IMF By is a tailward (earthward) FACs. There is a clear north-south asymmetry of the polarity of the FACs in the PSBL when IMF By is positive or negative, and this asymmetry of the polarity is more distinct when IMF By is positive. The FAC density is controlled by IMF By only when |IMF By| is large. When |IMF By| is more than 10 nT the absolute FAC density in the PSBL has an obvious positive correlation with the |IMF By|. When |IMF By| is less than 10 nT, there is no correlation between the absolute FAC density and |IMF By|. There is a clear dusk-dawn asymmetry in the current densities for the FACs in the PSBL, with the dawn currents appearing larger than the dusk currents. The FAC with the largest (smallest) density is located in the range of 0100≤MLT<0200 (2100≤MLT<2200).

  16. Steady reconnection during intervals of northward IMF: Implications for magnetosheath properties

    NASA Astrophysics Data System (ADS)

    Petrinec, S. M.; Trattner, K. J.; Fuselier, S. A.

    2003-12-01

    This study examines the location of the reconnection site on the magnetopause for conditions of northward interplanetary magnetic field (IMF) and its implications for properties of the magnetosheath. Ion distribution functions from the Toroidal Imaging Mass Angle Spectrometer (TIMAS) instrument on board the Polar spacecraft during passes through the dayside cusp region when the IMF was steady and northward are used. Cutoff velocities are determined from these distributions and the distance from the Polar spacecraft to the site of reconnection is estimated. A magnetospheric magnetic field model is used to map these determined distances to a location on the magnetopause where reconnection is believed to have occurred. Nearly all of these reconnection sites lie in places where the magnetosheath flow is estimated to be super-Alfvénic (using hydrodynamic theory and an analytic magnetosheath magnetic field model). However, there exist strict constraints on the speed of the ambient magnetosheath flow at the reconnection site, in order for this particular type of particle distribution to have been observed by TIMAS. Different physical models are discussed, including the possibility of nonstationary reconnection sites and the existence of a plasma depletion layer which significantly increases the magnetosheath Alfvén speed close to the magnetopause. From the observations and mapped reconnection locations, we estimate statistically how much the average ion density must decrease (and the magnetic field must increase) in the plasma depletion layer to be consistent with the cusp region observations. The resulting range of values is consistent with the theoretical estimates of Zwan and Wolf [1976] (k >= 2).

  17. Impact of Magnetic Draping, Convection, and Field Line Tying on Magnetopause Reconnection Under Northward IMF

    NASA Technical Reports Server (NTRS)

    Wendel, Deirdre E.; Reiff, Patricia H.; Goldstein, Melvyn L.

    2010-01-01

    We simulate a northward IMF cusp reconnection event at the magnetopause using the OpenGGCM resistive MHD code. The ACE input data, solar wind parameters, and dipole tilt belong to a 2002 reconnection event observed by IMAGE and Cluster. Based on a fully three-dimensional skeleton separators, nulls, and parallel electric fields, we show magnetic draping, convection, ionospheric field line tying play a role in producing a series of locally reconnecting nulls with flux ropes. The flux ropes in the cusp along the global separator line of symmetry. In 2D projection, the flux ropes the appearance of a tearing mode with a series of 'x's' and 'o's' but bearing a kind of 'guide field' that exists only within the magnetopause. The reconnecting field lines in the string of ropes involve IMF and both open and closed Earth magnetic field lines. The observed magnetic geometry reproduces the findings of a superposed epoch impact parameter study derived from the Cluster magnetometer data for the same event. The observed geometry has repercussions for spacecraft observations of cusp reconnection and for the imposed boundary conditions reconnection simulations.

  18. Effects of the Dipole Tilt on Dayside Magnetic Reconnection in the Earth's Magnetosphere for Northward IMF

    NASA Astrophysics Data System (ADS)

    Park, K.; Ogino, T.

    2006-12-01

    Magnetic reconnection at the dayside magnetopause are dominantly affected by the relative orientation of the magnetic fields in the magnetosheath and magnetosphere, the relative perpendicular velocities of field lines both before and after reconnection, and the location of the minimum geomagnetic field. We have performed a high-resolution and time-dependent three dimensional MHD simulation of interaction between the solar wind and the Earth's magnetosphere when the dipole tilt, and By and Bz components of the IMF are simultaneously included in the whole volume of the simulation box. In the recent study of Park, K.S. et al. (2006) found that for positive dipole tilt (northern hemisphere is summer) and southward IMF (Bz = 5 nT, By = 5nT), the reconnection site shifts sunward and equatorward in the summer hemisphere, and moves tailward and away from equator in the winter hemisphere. The dipole tilt creates asymmetry that strongly affects the direction of the plasma flow due to reconnection. Moreover, the electric field in the northern "reconnection" region (antiparallel region) is 50% larger than that at the magnetic equator and twice that at the subsolar point. In present study, for the case of positive dipole tilt, and during the northward IMF (Bz = 5 nT, By = 5nT), magnetic reconnection occurs at high latitudes in the northern dusk due to antiparallel field condition in the summer hemisphere for By > 0 and creates open field lines. The open field lines which are generated in the dusk sector and their feet are on the northern ionosphere, move from dusk to dawn in the dayside magnetopause and then come back to dusk in the tail. Tail reconnection successively occurs in the slant and elevated plasma sheet. The polar cap potential in dusk cell is larger than that the dawn cell in summer hemisphere. Moreover three-cell pattern appears in the northern ionosphere. On the other hand, the negative potential is comparable to the positive potential in winter hemisphere and the

  19. Cusp and LLBL as Sources of the Isolated Dayside Auroral Feature During Northward IMF

    NASA Technical Reports Server (NTRS)

    Chang, S.; Gallagher, D. L.; Spann, J. F., Jr.; Mende, S.; Greenwald, R.; Newell, P. T.

    2004-01-01

    An intense dayside proton aurora was observed by IMAGE FUV for an extensive period of northward interplanetary magnetic field (IMF) on 17 and 18 September, 2000. This aurora partially coincided with the auroral oval and intruded farther poleward into the polar cap, and it showed longitudinal motions in response to IMF $B-y$ variation. Intense magnetosheath-like electron and ion precipitations have been simultaneously detected by DMSP above the poleward portion of the high-latitude dayside aurora. They resemble the typical plasmas observed in the low-altitude cusp. However, less intense electrons and more intense energetic ions were detected over the equatorward part of the aurora. These plasmas are closer to the low-latitude boundary layer (LLBL) plasmas. Under strongly northward IMF, global ionospheric convection derived from SuperDARN radar measurements showed a 4-cell pattern with sunward convection in the middle of the dayside polar cap and the dayside aurora corresponded to two different convection cells. This result further supports two source regions for the aurora. The cusp proton aurora is on open magnetic field lines convecting sunward whereas the LLBL proton aurora is on closed field lines convecting antisunward. These IMAGE, DMSP and SuperDARN observations reveal the structure and dynamics of the aurora and provide strong evidence for magnetic merging occurring at the high-latitude magnetopause poleward from the cusp. This merging process was very likely quasi-stationary.

  20. The impact of solar wind ULF Bz fluctuations on geomagnetic activity for viscous timescales during strongly northward and southward IMF

    NASA Astrophysics Data System (ADS)

    Osmane, A.; Dimmock, A. P.; Naderpour, R.; Pulkkinen, T. I.; Nykyri, K.

    2015-11-01

    We analyze more than 17 years of OMNI data to statistically quantify the impact of IMF Bz fluctuations on AL by using higher-order moments in the AL-distribution as a proxy. For strongly southward interplanetary magnetic field (IMF), the AL distribution function is characterized by a decrease of the skewness, a shift of its peak from -30 nT to -200 nT, and a broadening of the distribution core. During northward IMF, the distribution of AL is characterized by a significant reduction of the standard deviation and weight in the tail. Following this characterization of AL for southward and northward IMF, we show that IMF fluctuations enhance the driving on timescales smaller than those of substorms by shifting the peak of the probability distribution function by more than 150 nT during southward IMF, and by narrowing the distribution function by a factor of 2 during northward IMF. For both southward and northward IMF, we demonstrate that high power fluctuations in Bz systematically result in a greater level of activity on timescales consistent with viscous processes. Our results provide additional quantitative evidence of the role of the solar wind fluctuations in geomagnetic activity. The methodology presented also provides a framework to characterize short timescale magnetospheric dynamics taking place on the order of viscous timescales τ ≪ 1 hour.

  1. High-latitude plasma convection during Northward IMF as derived from in-situ magnetospheric Cluster EDI measurements

    NASA Astrophysics Data System (ADS)

    Förster, M.; Haaland, S. E.; Paschmann, G.; Quinn, J. M.; Torbert, R. B.; Vaith, H.; Kletzing, C. A.

    2008-09-01

    In this study, we investigate statistical, systematic variations of the high-latitude convection cell structure during northward IMF. Using 1-min-averages of Cluster/EDI electron drift observations above the Northern and Southern polar cap areas for six and a half years (February 2001 till July 2007), and mapping the spatially distributed measurements to a common reference plane at ionospheric level in a magnetic latitude/MLT grid, we obtained regular drift patterns according to the various IMF conditions. We focus on the particular conditions during northward IMF, where lobe cells at magnetic latitudes >80° with opposite (sunward) convection over the central polar cap are a permanent feature in addition to the main convection cells at lower latitudes. They are due to reconnection processes at the magnetopause boundary poleward of the cusp regions. Mapped EDI data have a particular good coverage within the central part of the polar cap, so that these patterns and their dependence on various solar wind conditions are well verified in a statistical sense. On average, 4-cell convection pattern are shown as regular structures during periods of nearly northward IMF with the tendency of a small shift toward negative clock angles. The positions of these high-latitude convection foci are within 79° to 85° magnetic latitude and 09:00 15:00 MLT. The MLT positions are approximately symmetric ±2 h about 11:30 MLT, i.e. slightly offset from midday toward prenoon hours, while the maximum (minimum) potential of the high-latitude cells is at higher magnetic latitudes near their maximum potential difference at ≍-10° to -15° clock angle for the North (South) Hemisphere. With increasing clock angle distances from ≍IMFBz+, a gradual transition occurs from the 4-cell pattern via a 3-cell to the common 2-cell convection pattern, in the course of which one of the medium-scale high-latitude dayside cells diminishes and disappears while the other intensifies and merges with the

  2. Statistical study of the effect of ULF fluctuations in the IMF on the cross polar cap potential drop for northward IMF

    NASA Astrophysics Data System (ADS)

    Kim, H.-J.; Lyons, L.; Boudouridis, A.; Pilipenko, V.; Ridley, A. J.; Weygand, J. M.

    2011-10-01

    Recent studies showed that, regardless of the orientation of the Interplanetary Magnetic Field (IMF), ULF wave activity in the solar wind can substantially enhance the convection in the high latitude ionosphere, suggesting that ULF fluctuations may also be an important contributor to the coupling of the solar wind to the magnetosphere-ionosphere system. We conduct a statistical study to understand the effect of ULF power in the IMF on the cross polar cap potential, primarily focusing on northward IMF. We have analyzed the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) calculations of the polar cap potential, a IMF ULF index that is defined as the logarithm of Pc5 ULF power in IMF, and solar wind velocity and dynamic pressure for 249 days in 2003. We find that, separated from the effects of solar wind speed and dynamic pressure, the average cross polar cap potentials show a roughly linear dependence on the ULF index, with a partial correlation coefficient of 0.19. Highly structured convection flow patterns with a number of localized vortices are often observed under fluctuating northward IMF. For such a convection configuration, it is hard to estimate properly the cross polar cap potential drop, as the enhanced flows around the vortices that may be associated with IMF fluctuations do not necessarily yield a large potential drop. Thus, despite the relatively small correlation coefficient, the linear trend we found gives support to the significant role of IMF ULF fluctuations on the coupling of the solar wind to the magnetosphere-ionosphere system.

  3. Cusp and LLBL as Sources of the Isolated Dayside Auroral Feature During Northward IMF

    NASA Technical Reports Server (NTRS)

    Chang, S.-W.; Gallagher, D. L.; Spann, J. F.; Mende, S. B.; Greenwald, R. A.; Newell, P. T.

    2004-01-01

    An intense dayside proton aurora was observed by Imager for Magnetopause-to- Aurora Global Exploration Far Ultra-Violet imager (IMAGE FUV) for an extensive period of northward interplanetary magnetic field (IMF) on 17 and 18 September 2000. This aurora partially coincided with the auroral oval and intruded farther poleward into the polar cap, and it showed longitudinal motions in response to IMF By variation. Intense magnetosheath-like electron and ion precipitations have been simultaneously detected by Defense Meteorological Satellite Program (DMSP) above the poleward portion of the high-latitude dayside aurora. They resemble the typical plasmas observed in the low-altitude cusp. However, less intense electrons and more energetic ions were detected over the equatonvard part of the aurora. These plasmas are closer to the low-latitude boundary layer (LLBL) plasmas. Under strongly northward IMF, global ionospheric convection derived from Super Dual Auroral Radar Network (SuperDARN) radar measurements showed a four-cell pattern with sunward convection in the middle of the dayside polar cap and the dayside aurora corresponded to two different convection cells. This result further supports two source regions for the aurora. The cusp proton aurora is on open magnetic field lines convecting sunward whereas the LLBL proton aurora is on closed field lines convecting antisunward. These IMAGE, DMSP, and SuperDARN observations reveal the structure and dynamics of the aurora and provide strong evidence for magnetic merging occurring at the high-latitude magnetopause poleward from the cusp. This merging process was very likely quasi-stationary.

  4. Observations at Low Latitudes of Magnetic Merging Signatures Within a Flux Transfer Event During a Northward IMF

    NASA Technical Reports Server (NTRS)

    Chandler, M. O.; Avanov, L. A.

    2003-01-01

    Flux transfer events (FTE) have been postulated to result from transient magnetic merging. If so, the ion distributions within an event should exhibit features known to result from merging. Observations of a FTE by instruments on the Polar spacecraft revealed classical merging signatures that included: 1) D-shaped, accelerated, magnetosheath ion distributions, 2) a well defined de Hoffman-Teller frame, 3) local stress balance, and 4) a P-N magnetic field signature. This FTE was observed near the magnetic equator at approx. 13 MLT under conditions of a moderately northward interplanetary magnetic field (IMF) (clock angle of less than 10 deg). The nature of the ion distributions and the consistency of the measured cutoff speed with that calculated from the measured local magnetic field and the derived de Hoffman-Teller speed show the ion injection to be local. Coupled with the northward IMF these results lead to the conclusion that component merging in the low latitude region was responsible for the FTE.

  5. Structure and properties of the subsolar magnetopause for northward IMF - ISEE observations

    NASA Technical Reports Server (NTRS)

    Song, P.; Russell, C. T.; Elphic, R. C.; Gosling, J. T.; Cattell, C. A.

    1990-01-01

    This paper describes the structure and the magnetic-field, electric-field, and plasma properties of the ISEE-1 magnetopause crossing on November 5, 1978, which occurred near the subsolar point when the IMF was strongly northward. It was found that the magnetopause was composed of three layers: (1) a sheath transition layer, in which there is a gradual density decrease without a change in temperature and which occurs totally within the magnetosheath plasma; (2) an outer boundary layer, which is dominated by magnetosheath particles; (3) and an inner boundary layer dominated by magnetospheric particles. No significnt heating or cooling was seen across the magnetopause during this crossing. The plasma within each of the layers was quite uniform, and their boundaries were sharp, suggesting that there was very little diffusion present.

  6. Observations of a transient event in the subsolar magnetosheath during strongly northward IMF

    NASA Astrophysics Data System (ADS)

    Dias Silveira, M. V.; Sibeck, D. G.; Gonzalez, W. D.; Koga, D.

    2013-12-01

    We present multipoint THEMIS observation of a transient event in the subsolar magnetosheath on July 10, 2007. The event exhibits some features of a flux transfer event, such as a bipolar variation in the magnetic field component normal to the nominal magnetopause centered on a peak in the total magnetic field strength. Four THEMIS spacecraft were in the magnetosheath and one in the magnetosphere. Timing analysis and the absence of flow perturbation suggest that the event is a small scale structure (~0.12 Re in the direction of the flow) moving with the background magnetosheath flow. Despite the inferred small size of the event, THC and THD both observed large amplitude (~40 nT) bipolar magnetic field signatures normal to the nominal magnetopause. Nearby spacecraft THE (only 0.2 Re further outward in the Xgsm direction) observed no significant magnetic field perturbation. Neither did THB or THA, located further away in the magnetosheath and magnetosphere, respectively. During the event, the IMF was strongly northward (approximately 20nT), which does not favor subsolar magnetic reconnection. Inside the structure, the magnetic field briefly rotates 90° away from northward to dawnward. Ions stream antiparallel to the magnetic field in the magnetosheath, parallel to the magnetic field in the event.

  7. The effect of a brief northward turning in IMF Bz on solar wind-magnetosphere coupling in a global MHD simulation

    NASA Astrophysics Data System (ADS)

    Pham, Kevin H.; Lopez, Ramon E.; Bruntz, Robert

    2016-05-01

    In this paper we examine the response of the magnetosphere-ionopshere (M-I) system to a transient northward excursion in the interplanetary magnetic field (IMF) using the Lyon-Fedder-Mobarry (LFM) global MHD simulation. The simulated IMF transitions hold from a steady southward IMF to a steady northward IMF before suddenly transitioning back to southward IMF after 20 min. Once the IMF returns southward, the M-I system is in a state of reduced energy dissipation for approximately an hour as it reconfigures back into a standard southward IMF configuration. We find that the northward IMF excursion affects both the viscous and reconnection interactions with the solar wind. The flow of plasma in the magnetosphere is significantly disrupted by the reconnection cycle under northward IMF. This reduce the transfer of mechanical energy from the solar wind due to the viscous interaction, and the magnetosphere-ionosphere system is in a mixed topological configuration containing elements produced by both of southward IMF reconnection and the Dungey cycle, as well as northward IMF reconnection and the presence of reverse cell convection at high latitudes. The effects of the transient northward IMF must be completely cleared out before the system can return to an optimal state of energy transfer characteristic of steady southward IMF. As a result, a simple 20 min excursion of northward IMF can put the magnetosphere-ionosphere system into a reduced state of coupling to the solar wind for some time following the return to steady southward IMF; for LFM we saw a reduced state lasting an hour

  8. High Dynamic Pressure and Strong Northward IMF: Ingredients for a New Type of Ring Current on 21-22 January 2005

    NASA Astrophysics Data System (ADS)

    Kozyra, J. U.; Brandt, P. C.; Evans, D. S.; Fang, X.; Fok, M.; Gonzalez, W. D.; Liemohn, M. W.; Lu, G.; Rastaetter, L.; Ridley, A.; Thomsen, M. F.; Tsurutani, B.

    2009-05-01

    During the 21-22 January 2005 magnetic storm, a highly unusual ring current developed dominantly during northward IMF and high dynamic pressure with minimum pressure-corrected symH less than -100 nT. Early in the storm, a short (less than 1 hour) interval of strong southward IMF produced a brief depression in sym H which had already recovered when the main phase development of the ring current began under northward IMF and sustained high solar wind dynamic pressure. During the ring current development, a hot dense plasma sheet was observed at geosynchronous orbit followed by a cold dense plasma sheet. The movement of these dense plasma sheets through the inner magnetosphere during the high dynamic pressure interval in the solar wind produced the ring current, which began to decay immediately following the end of the cold dense plasma sheet interval. The cross polar cap potential reached a maximum during the interval of strongest southward IMF early in the storm. However, the equatorward edge of the auroral oval (as indicated by the MBI index) moved to lowest latitudes as the hot high-density plasma sheet stretched out the magnetotail. Precipitation of protons and electrons at ring current energies maximized during the peak of the ring current development under northward IMF conditions. A simulation of this magnetic storm event using the BATS-R-US MHD model with an inner magnetosphere module based on the Rice Convection model produces all the main features of this unusual ring current development and, in addition, shows that the solar wind-magnetosphere coupling was different during the hot compared to the cold high density plasma sheet intervals. We present a comparison between observations and model results and explore the processes responsible for this unusual ring current and its decay.

  9. Evolution of phase space densities from the dayside to nightside magnetosphere during a prolonged northward-IMF period: Cluster-II, GEOTAIL, and LANL-MPA comparison

    NASA Astrophysics Data System (ADS)

    Seki, K.; Lavraud, B.; Thomsen, M. F.; Elphic, R. C.; Matsumoto, Y.; Mukai, T.; Saito, Y.; Rème, H.; Fazakerley, A. N.

    2004-12-01

    It is observationally known that the plasma sheet becomes much cooler and denser than usual under prolonged northward interplanetary magnetic field (IMF) conditions [e.g., Terasawa et al., 1997]. However, the mechanism responsible for the formation of CDPS is still far from understood. The Kelvin-Helmholtz (K-H) instability driven by the velocity shear at the magnetopause has been proposed as a possible mechanism of magnetosheath plasma entry through the LLBL [Fujimoto and Terasawa, 1994; Otto and Fairfield, 2000; Hasegawa et al., 2004]. Double lobe reconnection, i.e., reconnection of a magnetosheath flux tube with lobe field at the high-latitude magnetopause in both hemispheres, thereby becoming closed, is also an important candidate process for the dense, thick LLBL formation during northward IMF periods [e.g., Song and Russell, 1992]. On the basis of evolution of electron and ion phase space densities (PSDs) from the dayside to the nightside magnetosphere observed by Cluster II, GEOTAIL, and LANL-MPA spacecraft during a northward IMF interval on March 16, 2002, we examine the relative importance of the K-H instability and double lobe reconnection for formation of the CDPS. This event corresponds to one of the CDPS events at geosynchronous orbit during prolonged northward IMF periods [Thomsen et al., 2003]. The heated electron signature observed by Cluster II indicates that formation of closed flux tube(s) through lobe reconnection in both northern and southern hemispheres indeed took place during the event. Comparison of PSDs between the newly closed flux tube observed by Cluster II and the dusk-flank LLBL by GEOTAIL indicates that double lobe reconnection is responsible for formation of the outer-LLBL. On the other hand, GEOTAIL observed wavy structures in the dusk LLBL, and comparison with results from numerical simulation of the K-H instability [Matsumoto et al., 2004] suggests that the observed structure is consistent with the non-linear phase of K

  10. Investigation of a rare event where the polar ionospheric reverse convection potential does not saturate during a period of extreme northward IMF solar wind driving

    NASA Astrophysics Data System (ADS)

    Clauer, C. Robert; Xu, Zhonghua; Maimaiti, M.; Ruohoneimi, J. Michael; Scales, Wayne; Hartinger, Michael D.; Nicolls, Michael J.; Kaeppler, Stephen; Wilder, Frederick D.; Lopez, Ramon E.

    2016-06-01

    A variety of statistical studies have shown that the ionospheric polar potential produced by solar wind-magnetosphere-ionosphere coupling is linear for weak to moderate solar wind driving but becomes nonlinear during periods of very strong driving. It has been shown that this applies to the two-cell convection potential that develops during southward interplanetary magnetic field (IMF) and also to the reverse convection cells that develop during northward IMF. This has been described as polar potential saturation, and it appears to begin when the driving solar wind electric field becomes greater than 3 mV/m. Utilizing measurements from the Resolute Incoherent Scatter Radar (RISR-N), we examine ionospheric data near local noon within the reverse convection cells that developed during a period of very strong northward interplanetary magnetic field (IMF) on 12 September 2014. During this period we measure the electric field within the throat of the reverse convection cells to be near 150 mV/m at a time when the IMF is nearly 28 nT northward. This is far in excess of the 30-40 mV/m expected for polar potential saturation of the reverse convection cells. In fact, the development of the electric field responds linearly to the IMF Bz component throughout this period of extreme driving. The conditions in the solar wind show the solar wind velocity near 600 km/s, number density near 20 ions/cm3, and the Alfvén velocity about 75 km/s giving an Alfvén Mach number of 8. A search of several years of solar wind data shows that these values occur together 0.035% of the time. These conditions imply a high plasma β in the magnetosheath. We believe that condition of high β along with high mass density and a strong merging electric field in the magnetosheath are the significant parameters that produce the linear driving of the ionospheric electric field during this unusual period of extreme solar wind conditions. A discussion of current theories to account for cross-polar cap

  11. Scaling of electric field fluctuations associated with the aurora during northward IMF

    NASA Astrophysics Data System (ADS)

    Kozelov, B. V.; Golovchanskaya, I. V.

    2006-10-01

    We present a statistical study of scaling features of the electric field fluctuations measured by the DE2 satellite in the polar region during positive Bz IMF when the theta-aurora was observed by the DE1 satellite. It is demonstrated that the power spectra of the fluctuations have a power-law form at spatial scales from ~0.5 km (the limit of resolution) to several thousands of kilometers, with a break near 100 km. The scaling properties of the field are studied by examining the generalized structure functions (GSFs) and probability density functions (PDFs) of the fluctuations. The observed PDFs have a non-Gaussian shape with heavy tails. We also demonstrate a collapse of the re-scaled PDFs onto a single curve. A relation of PDF shape to solar wind conditions is revealed. The same analysis is performed on the TV observations of the theta-aurora. The scaling characteristics of the field and auroral fluctuations are compared.

  12. Separator reconnection at Earth's dayside magnetopause under generic northward interplanetary magnetic field conditions

    NASA Astrophysics Data System (ADS)

    Dorelli, John C.; Bhattacharjee, Amitava; Raeder, Joachim

    2007-02-01

    We investigate the global properties of magnetic reconnection at the dayside terrestrial magnetopause under generic northward interplanetary magnetic field (IMF) conditions. In particular, we consider a zero dipole tilt case where the y and z components of the IMF (in GSM coordinates) are equal in magnitude, using three-dimensional resistive magnetohydrodynamics (MHD) simulations to address the following questions: (1) What is the geometry of the dayside X line? (2) How is current density distributed over the magnetopause surface? Using a technique described by Geene (1992) to track the magnetic nulls in the system, we identify the dayside X line as a magnetic separator line, a segment of a magnetic field line which extends across the dayside magnetopause, terminating in the cusps. We demonstrate that the separator line is the intersection of two separatrix surfaces which define volumes containing topologically distinct field lines. Parallel current density, proportional to the parallel electric field in our resistive MHD simulations, is distributed in a broad, thin sheet which extends across the separator line and terminates in the cusps. Thus separator reconnection at the dayside magnetopause displays features of both antiparallel (near the cusp nulls) and component (near the subsolar separator line) reconnection. We discuss some implications of our results for spacecraft observations of reconnection signatures.

  13. Kelvin-Helmholtz Instability under southward IMF: THEMIS observations and OpenGGCM simulations

    NASA Astrophysics Data System (ADS)

    Kavosi, S.; Raeder, J.

    2015-12-01

    While Kelvin-Helmholtz (KH) waves for southward IMF were long thought to be non-existent, both the Kavosi and Raeder [2015] study, and two other independent studies [Hwang et al., 2011; Yan et al., 2014] have found southward IMF KH events. It still remains a mystery, though, why KH under southward IMF occurs only at one quarter of the rate compared to northward IMF [Kavosi and Raeder, 2015], and whether or not such waves occur only under specific conditions. The previous study [Hwang et al., 2011] suggested that the irregular and temporally intermittent structure of KH waves due to dynamically active sub solar behavior under southward IMF condition may explain the preferential in situ detection of KH waves under northward IMF. This explanation is also consistent with the KH events under southward IMF in our database. The majority of the events during southward IMF are irregular, short and polychromatic in compare to regular, long lasting and monochromatic waves under northward IMF. To effectively isolate these differences, we have used both our extensive THEMIS KH event database and OpenGGCM simulations. Our simulation results show that the KH waves under southward IMF are irregular, higher frequency, lower amplitude, and polychromatic compared to northward IMF. Additionally, our statistical analysis shows that occurrence rate of KH wave as a function of solar wind plasma parameters is different under southward IMF compared to northward IMF.

  14. A global MHD simulation study of the vortices at the magnetosphere boundary under the southward IMF condition

    NASA Astrophysics Data System (ADS)

    Park, K.; Ogino, T.; Lee, D.; Walker, R. J.; Kim, K.

    2013-12-01

    One of the significant problems in magnetospheric physics concerns the nature and properties of the processes which occur at the magnetopause boundary; in particular how energy, momentum, and plasma the magnetosphere receives from the solar wind. Basic processes are magnetic reconnection [Dungey, 1961] and viscouslike interaction, such as Kelvin-Helmholtz instability [Dungey 1955, Miura, 1984] and pressure-pulse driven [Sibeck et al. 1989]. In generally, magnetic reconnection occurs efficiently when the IMF is southward and the rate is largest where the magnetosheath magnetic field is antiparallel to the geomagnetic field. [Sonnerup, 1974; Crooker, 1979; Luhmann et al., 1984; Park et al., 2006, 2009]. The Kelvin-Helmholtz instability is driven by the velocity shear at the boundary, which occur frequently when the IMF is northward. Also variation of the magnetic field and the plasma properties is reported to be quasi-periodic with 2-3min [Otto and Fairfield, 2000] and period of vortex train with 3 to 4 minutes by global MHD simulation [Ogino, 2011]. The pressure-pulse is driven by the solar wind. And the observations of the magnetospheric magnetic field response show quasi-periodic with a period of 8 minutes [Sibeck et al., 1989; Kivelson and Chen, 1995]. There have been few studies of the vortices in the magnetospheric boundary under southward IMF condition. However it is not easy to find the generation mechanism and characteristic for vortices in complicated 3-dimensional space. Thus we have performed global MHD simulation for the steady solar wind and southward IMF conditions. From the simulation results, we find that the vortex occurs at R= 11.7Re (IMF Bz = -2 nT) and R= 10.2Re (IMF Bz = -10 nT) in the dayside magnetopause boundary. Also the vortex rotates counterclockwise in duskside magnetopause (clockwise in dawnside) and propagates tailward. Across the vortex, magnetic field and plasma properties clearly show quasi-periodic fluctuations with a period of 8

  15. Turbulence in a Global Magnetohydrodynamic Simulation of the Earth's Magnetosphere during Northward and Southward Interplanetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    El-Alaoui, M.; Richard, R. L.; Ashour-Abdalla, M.; Walker, R. J.; Goldstein, M. L.

    2012-01-01

    We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF) conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs) for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from theory: the energy-containing scale, the inertial range, and the dissipative range. The results were generally consistent with in-situ observations and theoretical predictions. While the two cases studied, northward and southward IMF, had some similar characteristics, there were significant differences as well. For southward IMF, localized reconnection was the main energy source for the turbulence. For northward IMF, remnant reconnection contributed to driving the turbulence. Boundary waves may also have contributed. In both cases, the PSD slopes had spatial distributions in the dissipative range that reflected the pattern of resistive dissipation. For southward IMF there was a trend toward steeper slopes in the dissipative range with distance down the tail. For northward IMF there was a marked dusk-dawn asymmetry with steeper slopes on the dusk side of the tail. The inertial scale PSDs had a dusk-dawn symmetry during the northward IMF interval with steeper slopes on the dawn side. This asymmetry was not found in the distribution of inertial range slopes for southward IMF. The inertial range PSD slopes were clustered around values close to the theoretical expectation for both northward and southward IMF. In the dissipative range, however, the slopes were broadly distributed and the median values were significantly different, consistent with a different distribution of resistivity.

  16. Influence of Geomagnetic and IMF conditions on High Latitude Upper Atmospheric winds and Temperatures

    NASA Astrophysics Data System (ADS)

    Dhadly, M. S.; Conde, M.; Emmert, J. T.

    2015-12-01

    We analyzed the climatological behavior of upper atmospheric winds (horizontal and vertical) and temperatures above Alaska by combining line-of-sight Doppler shifts of 630 nm optical emissions recorded during the 2011 and 2012 winters using a ground based all-sky wavelength scanning Doppler Fabry-Perot interferometer (SDI) located at Poker Flat (65.12N, 147.47W). The wide field of view covered a large geographic region above Alaska. This field was divided in software into multiple zones (115 used here), allowing independent spectra to be sampled from many directions simultaneously. As a result, it is capable of recording the wind field's spatial variations over a wide geographic region with high spatial resolution, and to resolve these variations over time. Although such climatological studies have been performed previously using satellites, models, and narrow field Fabry-Perot interferometers, there are no published climatological studies of thermospheric winds and temperatures using either SDI data or any other technique with comparable geographic coverage and resolution. Wind summary dial plots were produced to depict the climatology of the horizontal winds and temperatures for different geomagnetic conditions and orientation of interplanetary magnetic field (IMF). Results show that horizontal winds and temperatures had a strong dependence on geospace activity and orientation of IMF. The latitudinal shears in horizontal winds were stronger when geomagnetic conditions were active compared to the latitudinal shears for quiet conditions. Also, shears appeared earlier over Poker Flat when geomagnetic conditions were active. The latitudinal shears showed more dependence on IMF when geomagnetic conditions were active than they did during quieter conditions. F-region temperatures were higher under active geomagnetic conditions than during quiet conditions. They were also observed to be higher in pre-magnetic midnight sector (duskside) than they were post

  17. Multi-Fault Detection of Rolling Element Bearings under Harsh Working Condition Using IMF-Based Adaptive Envelope Order Analysis

    PubMed Central

    Zhao, Ming; Lin, Jing; Xu, Xiaoqiang; Li, Xuejun

    2014-01-01

    When operating under harsh condition (e.g., time-varying speed and load, large shocks), the vibration signals of rolling element bearings are always manifested as low signal noise ratio, non-stationary statistical parameters, which cause difficulties for current diagnostic methods. As such, an IMF-based adaptive envelope order analysis (IMF-AEOA) is proposed for bearing fault detection under such conditions. This approach is established through combining the ensemble empirical mode decomposition (EEMD), envelope order tracking and fault sensitive analysis. In this scheme, EEMD provides an effective way to adaptively decompose the raw vibration signal into IMFs with different frequency bands. The envelope order tracking is further employed to transform the envelope of each IMF to angular domain to eliminate the spectral smearing induced by speed variation, which makes the bearing characteristic frequencies more clear and discernible in the envelope order spectrum. Finally, a fault sensitive matrix is established to select the optimal IMF containing the richest diagnostic information for final decision making. The effectiveness of IMF-AEOA is validated by simulated signal and experimental data from locomotive bearings. The result shows that IMF-AEOA could accurately identify both single and multiple faults of bearing even under time-varying rotating speed and large extraneous shocks. PMID:25353982

  18. Global Auroral Energy Deposition during Substorm Onset Compared with Local Time and Solar Wind IMF Conditions

    NASA Technical Reports Server (NTRS)

    Spann, J. F.; Brittnacher, M.; Fillingim, M. O.; Germany, G. A.; Parks, G. K.

    1998-01-01

    The global images made by the Ultraviolet Imager (UVI) aboard the IASTP/Polar Satellite are used to derive the global auroral energy deposited in the ionosphere resulting from electron precipitation. During a substorm onset, the energy deposited and its location in local time are compared to the solar wind IMF conditions. Previously, insitu measurements of low orbiting satellites have made precipitating particle measurements along the spacecraft track and global images of the auroral zone, without the ability to quantify energy parameters, have been available. However, usage of the high temporal, spatial, and spectral resolution of consecutive UVI images enables quantitative measurement of the energy deposited in the ionosphere not previously available on a global scale. Data over an extended period beginning in January 1997 will be presented.

  19. Convection dynamics and driving mechanism of a small substorm during dominantly IMF By+, Bz+ conditions

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Sofko, G. J.; Donovan, E. F.; Watanabe, M.; Greenwald, R. A.

    2004-04-01

    Ground-based optical, magnetic and radar measurements detected a small substorm on October 9, 2000. Solar wind observations on GEOTAIL revealed a prolonged dominant Bz+ and steady By+ interplanetary magnetic field (IMF) prior to the substorm onset, except for a southward excursion at 0645-0655 UT, and a ``square-wave'' IMF Bx-By structure at 0727-0735 UT. We find that the IMF southward excursion led to the dayside convection enhancement and energy transport into the magnetosphere. When the dayside convection decreased, two pseudobreakups occurred as the consequence of the release of magnetospheric energy into the ionosphere. The substorm onset was associated with the IMF Bx-By structure in ``directly driven'' fashion. There was also a Stage-2 expansion which was internally driven within the magnetotail.

  20. Seasonal and diurnal variation of geomagnetic activity: Russell-McPherron effect during different IMF polarity and/or extreme solar wind conditions

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Zong, Q.-G.

    2012-11-01

    The Russell-McPherron (R-M) effect is one of the most prevailing hypotheses accounting for semiannual variation of geomagnetic activity. To validate the R-M effect and investigate the difference of geomagnetic activity variation under different interplanetary magnetic field (IMF) polarity and during extreme solar wind conditions (interplanetary shock), we have analyzed 42 years interplanetary magnetic field and geomagnetic indices data and 1270 SSC (storm sudden commencement) events from the year 1968 to 2010 by defining the R-M effect with positive/negative IMF polarity (IMF away/toward the Sun). The results obtained in this study have shown that the response of geomagnetic activity to the R-M effect with positive/negative IMF polarity are rather profound: the geomagnetic activity is much more intense around fall equinox when the direction of IMF is away the Sun, while much more intense around spring equinox when the direction of IMF is toward the Sun. The seasonal and diurnal variation of geomagnetic activity after SSCs can be attributed to both R-M effect and the equinoctial hypothesis; the R-M effect explains most part of variance of southward IMF, while the equinoctial hypothesis explains similar variance of ring current injection and geomagnetic indices as the R-M effect. However, the R-M effect with positive/negative IMF polarity explains the difference between SSCs with positive/negative IMF By accurately, while the equinoctial hypothesis cannot explain such difference at the spring and fall equinoxes. Thus, the R-M effect with positive/negative IMF polarity is more reasonable to explain seasonal and diurnal variation of geomagnetic activity under extreme solar wind conditions.

  1. Control of lunar external magnetic enhancements by IMF polarity: A case study

    NASA Astrophysics Data System (ADS)

    Nishino, Masaki N.; Fujimoto, Masaki; Tsunakawa, Hideo; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi; Takahashi, Futoshi; Saito, Yoshifumi; Yokota, Shoichiro

    2012-12-01

    We study an interaction between the solar wind and crustal magnetic fields on the lunar surface using SELENE (Kaguya) data. It has been known that magnetic enhancements are at times detected near the limb external to the lunar wake, which is thus called lunar external magnetic enhancement (LEME), as a result of direct interaction between the solar wind and lunar crustal fields. Although previous observational studies showed that LEMEs in the high solar zenith angle region favor stronger interplanetary magnetic field (IMF) and higher solar wind density, the relation between the IMF and the crustal field orientation has not been taken into account. We show evidence that the relation between the IMF and crustal field orientation is also one of the key factors that control the extent of LEME, focusing on one-day observations at 100 km altitude that include data above strong crustal fields around South Pole-Aitken (SPA) basin. Strong LEMEs are detected at 100 km altitude around SPA basin under the stronger and northward IMF condition, while they weaken under southward IMF. All LEME's peaks are located in the region where unperturbed crustal fields at 300 km altitude are directed northward while they are less related to unperturbed crustal fields at 100 km or lower, which suggests that lunar crustal fields are compressed by the solar wind dynamic pressure, and its large scale component parallel to the IMF is essential to the formation of the LEME.

  2. Proton Aurora Dynamics in Response to the IMF and Solar Wind Variations

    NASA Technical Reports Server (NTRS)

    Chang, S.; Mende, S.; Frey, H.; Gallagher, D. L.; Lepping, R. P.; Six, N. Frank (Technical Monitor)

    2002-01-01

    On May 23, 2000, proton auroras observed by IMAGE (Imager for Magnetopause to Aurora Global Exploration) FUV (Far Ultraviolet) on the dayside were very dynamic. Auroral pattern in the cusp is well correlated with Interplanetary Magnetic Field (IMF) and solar wind parameters. When IMF were northward, cusp proton aurora appeared at high latitude poleward from the auroral oval. A high-latitude proton aurora brightened after solar wind ion temperature increased and it disappeared after IMF turned southward. Under the southward IMF condition, auroral activity occurred only in the dayside auroral oval. As IMF $B_z$ reverted to northward, cusp proton aurora reappeared at high latitude. The magnetic local time of the cusp proton aurora changes with the IMF $B_y$ polarity, consistent with previous reports. These results suggest an upstream source of the high-latitude cusp proton aurora for this event. One possible explanation is that bow shock energetic ions are transported into the cusp via the high-latitude magnetic merging process to induce optical emissions in the ionosphere.

  3. Shift of the magnetopause reconnection line to the winter hemisphere under southward IMF conditions: Geotail and MMS observations

    NASA Astrophysics Data System (ADS)

    Kitamura, N.; Hasegawa, H.; Saito, Y.; Shinohara, I.; Yokota, S.; Nagai, T.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Dorelli, J. C.; Gershman, D. J.; Avanov, L. A.; Paterson, W. R.; Coffey, V. N.; Chandler, M. O.; Sauvaud, J. A.; Lavraud, B.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.; Burch, J. L.

    2016-06-01

    At 02:13 UT on 18 November 2015 when the geomagnetic dipole was tilted by -27°, the MMS spacecraft observed southward reconnection jets near the subsolar magnetopause under southward and dawnward interplanetary magnetic field conditions. Based on four-spacecraft estimations of the magnetic field direction near the separatrix and the motion and direction of the current sheet, the location of the reconnection line was estimated to be ~1.8 RE or further northward of MMS. The Geotail spacecraft at GSM Z~1.4 RE also observed southward reconnection jets at the dawnside magnetopause 30-40 min later. The estimated reconnection line location was northward of GSM Z~2 RE. This crossing occurred when MMS observed purely southward magnetic fields in the magnetosheath. The simultaneous observations are thus consistent with the hypothesis that the dayside magnetopause reconnection line shifts from the subsolar point toward the northern (winter) hemisphere due to the effect of geomagnetic dipole tilt.

  4. IMF draping around the geotail - IMP 8 observations

    NASA Technical Reports Server (NTRS)

    Kaymaz, Zerefsan; Siscoe, George; Luhmann, Janet G.

    1992-01-01

    The draping pattern for the full range of IMF directions is mapped in the GSM yz-plane using a large data set for studying magnetic field draping around the tail. Based on the maps, it is concluded that the dominant pattern is draping as found by Ohtani and Kokubun (1991) and Sanchez and Siscoe (1990). A new finding is that the draping pattern is rotated relative to the plane formed by the IMF and the aberrated x-axis, with the degree of rotation varying from zero for strongly northward and southward IMF to a peak of 17 deg for moderately southward IMF. It is also found that the tail radius is bigger for southward IMF than for northward IMF.

  5. Observations of Ion Signatures of Magnetic Reconnection for Northward IMF

    NASA Technical Reports Server (NTRS)

    Chandler, Michael O.; Moore, Thomas E.; Fuselier, S.; Lockwood, Michael

    1998-01-01

    Magnetic merging at Earth's magnetopause produces distinct mixtures of ions and electrons as well as signatures in their distribution functions. High resolution measurements allow for the separation of the different distributions and quantification of their characteristics. This provides details on the temporal and spatial nature of the merging site and the resulting history of the merged fields. The event of May 29, 1996 resulted in remote observations of the effects of reconnection on both magnetosheath and magnetosphere populations for a period of approximately three hours. Three-dimensional ion distributions obtained by the Thermal Ion Dynamics Experiment on the Polar spacecraft show that field lines threading the spacecraft's location in the northern cusp region contained a mix of D-shaped ions from the magnetosheath and accelerated magnetospheric ions both moving parallel to the local magnetic field. This mix of ions resulted from transmission of magnetosheath ions across the magnetopause at speeds greater than the de-Hoffman-Teller speed and the reflection of cold, slow-moving plasmasphere-like ions at the magnetopause. These observations are used to conclude that these field lines were connected to the ionosphere in the northern hemisphere and, southward of the spacecraft, the interplanetary magnetic field and crossed the magnetopause in the equatorial region southward of the spacecraft.

  6. Seasonal Variations in the Diet and Foraging Behaviour of Dunlins Calidris alpina in a South European Estuary: Improved Feeding Conditions for Northward Migrants

    PubMed Central

    Martins, Ricardo C.; Catry, Teresa; Santos, Carlos D.; Palmeirim, Jorge M.; Granadeiro, José P.

    2013-01-01

    During the annual cycle, migratory waders may face strikingly different feeding conditions as they move between breeding areas and wintering grounds. Thus, it is of crucial importance that they rapidly adjust their behaviour and diet to benefit from peaks of prey abundance, in particular during migration, when they need to accumulate energy at a fast pace. In this study, we compared foraging behaviour and diet of wintering and northward migrating dunlins in the Tagus estuary, Portugal, by video-recording foraging birds and analysing their droppings. We also estimated energy intake rates and analysed variations in prey availability, including those that were active at the sediment surface. Wintering and northward migrating dunlins showed clearly different foraging behaviour and diet. In winter, birds predominantly adopted a tactile foraging technique (probing), mainly used to search for small buried bivalves, with some visual surface pecking to collect gastropods and crop bivalve siphons. Contrastingly, in spring dunlins generally used a visual foraging strategy, mostly to consume worms, but also bivalve siphons and shrimps. From winter to spring, we found a marked increase both in the biomass of invertebrate prey in the sediment and in the surface activity of worms and siphons. The combination of these two factors, together with the availability of shrimps in spring, most likely explains the changes in the diet and foraging behaviour of dunlins. Northward migrating birds took advantage from the improved feeding conditions in spring, achieving 65% higher energy intake rates as compared with wintering birds. Building on these results and on known daily activity budgets for this species, our results suggest that Tagus estuary provides high-quality feeding conditions for birds during their stopovers, enabling high fattening rates. These findings show that this large wetland plays a key role as a stopover site for migratory waders within the East Atlantic Flyway. PMID

  7. The population of the magnetosphere by solar winds ions when the interplanetary magnetic field is northward

    NASA Technical Reports Server (NTRS)

    Richard, Robert L.; Walker, Raymond J.; Ashour-Abdalla, Maha

    1994-01-01

    We have examined some possible entry mechanisms of solar wind ions into the magnetosphere by calculating the trajectories of thousands of non-interacting ions in the magnetic and electric fields from a three dimensional global magnetohydrodynamic (MHD) simulation of the magnetosphere and the magnetosheath, under northward interplanetary magnetic field (IMF) conditions. Particles, launched in the solar wind, entered the magnetosphere and formed the low latitude boundary layer (LLBL), plasma sheet and a region of trapped particles near the Earth. The densities and temperatures we obtained in these regions were realistic, with the exception of trapped particle densities. The dominant entry mechanism was convection into the magnetosphere on reconnecting field lines.

  8. Simulation of the geospace response to a sudden change in IMF orientation.

    NASA Astrophysics Data System (ADS)

    Lopez, R. E.; Pham, K. H.; Wiltberger, M. J.

    2015-12-01

    We have conducted simulations of the response of the geospace system to a sudden change in the orientation of the interplanetary magnetic field (IMF) using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic code. Specifically, we have explored a sudden change in the IMF orientation from an extended period during which it was steady northward, to a steady southward IMF. The change in the IMF orientation first causes a reversal in the direction of the bow shock current, which launches a fast mode wave that propagates through the system, causing changes in the overall current pattern even before the southward IMF arrives at the dayside magnetopause to initiate low latitude merging. When the southward IMF does arrive at the magnetopause, the preceding northward IMF in the solar wind flow is still driving high latitude merging poleward of the cusp. Even when the two-cell convection pattern in the ionosphere becomes the dominant convection, the LFM results show that there is still some remnant of the high latitude reverse cell convection that is associated with northward IMF that had previously merged with the geomagnetic field and which takes some time to be cleared out of the system. We will present a detailed account of the timescales and changes in the magnetic topologies, current systems, magnetospheric plasma flows, and ionospheric potential patterns associated with the transition from northward to southward IMF. We will also discuss the implications of these findings for understanding the effect of transient changes in IMF orientations.

  9. Northward displacement of optimal climate conditions for ecotypes of Eriophorum vaginatum L. across a latitudinal gradient in Alaska.

    PubMed

    McGraw, James B; Turner, Jessica B; Souther, Sara; Bennington, Cynthia C; Vavrek, Milan C; Shaver, Gaius R; Fetcher, Ned

    2015-10-01

    Plants are often genetically specialized as ecotypes attuned to local environmental conditions. When conditions change, the optimal environment may be physically displaced from the local population, unless dispersal or in situ evolution keep pace, resulting in a phenomenon called adaptational lag. Using a 30-year-old reciprocal transplant study across a 475 km latitudinal gradient, we tested the adaptational lag hypothesis by measuring both short-term (tiller population growth rates) and long-term (17-year survival) fitness components of Eriophorum vaginatum ecotypes in Alaska, where climate change may have already displaced the optimum. Analyzing the transplant study as a climate transfer experiment, we showed that the climate optimum for plant performance was displaced ca. 140 km north of home sites, although plants were not generally declining in size at home sites. Adaptational lag is expected to be widespread globally for long-lived, ecotypically specialized plants, with disruptive consequences for communities and ecosystems. PMID:26033529

  10. Structure and properties of the subsolar magnetopause for northward interplanetary magnetic field - Multiple-instrument particle observations

    NASA Technical Reports Server (NTRS)

    Song, P.; Russell, C. T.; Fitzenreiter, R. J.; Gosling, J. T.; Thomsen, M. F.; Mitchell, D. G.; Fuselier, S. A.; Parks, G. K.; Anderson, R. R.; Hubert, D.

    1993-01-01

    The paper examines the structure and properties of the subsolar magnetopause for northward IMF on the basis of measurements from 10 different instrument for three ISEE crossings. It is shown that the overall structure and properties are similar for the three crossings, indicating that the magnetopause is relatively well determined in the subsolar region for strongly northward IMF. The combined data set suggests that the magnetopause region is best organized by defining a sheath transition layer and steplike boundary layers. The electron flux enhancements in the lowest energies in the boundary layers and magnetosphere are found to be ionospheric electrons and not photoelectrons from the spacecraft. For northward IMF, they are photoelectrons, but for southward IMF they may be secondary electrons. The density measurements from differential and integral techniques are similar, leaving no room for a significant 'invisible' population.

  11. Asymmetrical response of dayside ion precipitation to a large rotation of the IMF

    NASA Astrophysics Data System (ADS)

    Berchem, J.; Richard, R. L.; Escoubet, C. P.; Wing, S.; Pitout, F.

    2016-01-01

    We have carried out global magnetohydrodynamics (MHD) simulations together with large-scale kinetic simulations to investigate the response of the dayside magnetospheric ion precipitation to a large rotation (135°) of the interplanetary magnetic field (IMF). The study uses simplified global MHD model (no dipole tilt and constant ionospheric conductance) and idealized solar wind conditions where the IMF rotates smoothly from a southward toward a northward direction (BX = 0) to clearly identify the effects of the impact of the discontinuity on the magnetopause. Results of the global simulations reveal that a strong north-south asymmetry develops in the pattern of precipitating ions during the interaction of the IMF rotation with the magnetopause. For a counterclockwise IMF rotation from its original southward direction (BY < 0), a spot of high-energy particle injections occurs in the Northern Hemisphere but not in the Southern Hemisphere. The spot moves poleward and dawnward as the interacting field rotates. In that case, reconnection is found close to the poleward edge of the northern cusp, while it occurs farther tailward in the Southern Hemisphere. Tracing magnetic field lines shows an asymmetry in the tilt of the cusps and indicates that the draping and subsequent double reconnection of newly opened field lines from the Southern Hemisphere over the dayside magnetosphere cause the symmetry breaking. The reverse north-south asymmetry is found for a clockwise IMF rotation from its original southward direction (BY > 0). Trends observed in the ion dispersions predicted from the simulations are in good agreement with Cluster observations of the midaltitude northern cusp, which motivated the study.

  12. Formation of Structured Dayside Boundary Layers under Different Solar Wind Conditions: THEMIS Observations

    NASA Technical Reports Server (NTRS)

    Avanov, Levon A.; Chandler, Michael O.

    2008-01-01

    We have begun an investigation of the formation of the dayside low latitude boundary layer under different solar wind conditions using data from the THEMIS spacecraft. We present two cases of magnetopause/LLBL interface crossings made by the five spacecraft; one under long lasting northward IMF and a second for a period of southward IMF. All spacecraft during these observations traversed the dayside magnetosphere in a string-of-pearls configuration with the farthest distance between spacecraft less than approx.2 R(sub E). The sequence of observations from spacecraft, as they crossed the magnetopause, shows the development of a highly structured boundary layer regardless of the polarity of the IMF. We discuss possible scenarios for the development of such structured boundary layers, including low latitude reconnection under northward IMF as well as double reconnection in opposite hemispheres.

  13. Response of the Reverse Convection to Sharp IMF Turnings

    NASA Astrophysics Data System (ADS)

    Taguchi, S.; Tawara, A.; Hairston, M. R.; Slavin, J. A.; Le, G.; Matzka, J.; Stolle, C.

    2014-12-01

    How strongly the dayside high-latitude convection is controlled by the orientation of the IMF for periods of the steady IMF is well established. However, the nature of the transition that the convection makes when the IMF changes sharply is still not fully understood. In the present paper, we report the characteristics of the transient nature of the reverse convection on the basis of observations from multi-spacecraft and ground magnetometer stations. During a period of northward IMF on 22 April 2006 the magnetic field observations from three ST-5 spacecraft identified distribution change in the polar cap field-aligned current which responds to a quick IMF turning from the purely northward orientation to the duskward orientation. At this time ST-5 flew over one of the Greenland magnetometer stations located near 1200 MLT. The analysis of the ground magnetic perturbations shows that the field-aligned current distribution, which is closely related to the reverse convection pattern, was changing gradually during about 10 min before reaching a steady state. When the steady state was going on, the IMF changed sharply from the duskward orientation to the dawnward orientation. Immediately after this IMF turning, three DMSP spacecraft (F13, F15, and F16) traversed the dayside polar cap in the northern hemisphere. The ion drift observation indicates that the polar cap convection changed from the clockwise circulation to the counter-clockwise circulation during about 10 min. The data from the Greenland magnetometer stations show that a transient state, i.e., deformation or reduction of the clockwise circulation started in the near-noon and postnoon sectors almost simultaneously when the ion drift consisting of the clockwise circulation is still seen in the prenoon polar cap by the DMSP spacecraft. We discuss the changing global patterns that occurred over the whole dayside polar cap during the course of the 10-min transient state for both cases.

  14. High-latitude dayside electric fields and currents during strong northward interplanetary magnetic field - Observations and model simulation

    NASA Technical Reports Server (NTRS)

    Clauer, C. Robert; Friis-Christensen, Eigil

    1988-01-01

    On July 23, 1983 the IMF turned strongly northward, becoming about 22 nT for several hours. Using a combined data set of ionospheric convection measurements made by the Sondre Stromfjord incoherent scatter radar and convection inferred from Greenland magnetometer measurements, the onset of the reconfiguration of the high-latitude ionospheric currents is found to occur about 3 min after the northward IMF encounters the magnetopause. The large-scale reconfiguration of currents, however, appears to evolve over a period of about 22 min. These observations and the results of numerical simulations indicate that the dayside polar-cap electric field observed during strong northward IMF is produced by a direct electrical current coupling with the solar wind.

  15. On magnetopause inflation under radial IMF

    NASA Astrophysics Data System (ADS)

    Suvorova, A. V.; Dmitriev, A. V.

    2016-07-01

    Full understanding of the magnetosphere interaction with radial IMF structures embedded in the solar wind flow is far from completeness. In order to analyze the effects of radial IMF, we use THEMIS observations of the magnetopause and magnetosheath together with upstream data acquired from ACE and Wind monitors as well as from the OMNI data base. We demonstrate a prominent magnetopause inflation and low pressure magnetosheath (LPM) mode under long-lasting radial IMF. We propose that these phenomena result from a kinetic effect of energetic ions taking the energy away from the pressure balance at the magnetopause. We show that strict quantitative determination of the inflation and LPM mode as a function of the cone angle is difficult because of the problems with reliable determination of the upstream and magnetosheath conditions. The shortcomings are caused by such effects as ambiguous time delay for the solar wind propagation, THEMIS orbital bias and model-dependent estimations of the magnetopause inflation.

  16. The Earth's magnetosphere is 165 R(sub E) long: Self-consistent currents, convection, magnetospheric structure, and processes for northward interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Fedder, J. A.; Lyon, J. G.

    1995-01-01

    The subject of this paper is a self-consistent, magnetohydrodynamic numerical realization for the Earth's magnetosphere which is in a quasi-steady dynamic equilibrium for a due northward interplanetary magnetic field (IMF). Although a few hours of steady northward IMF are required for this asymptotic state to be set up, it should still be of considerable theoretical interest because it constitutes a 'ground state' for the solar wind-magnetosphere interaction. Moreover, particular features of this ground state magnetosphere should be observable even under less extreme solar wind conditions. Certain characteristics of this magnetosphere, namely, NBZ Birkeland currents, four-cell ionospheric convection, a relatively weak cross-polar potential, and a prominent flow boundary layer, are widely expected. Other characteristics, such as no open tail lobes, no Earth-connected magnetic flux beyond 155 R(sub E) downstream, magnetic merging in a closed topology at the cusps, and a 'tadpole' shaped magnetospheric boundary, might not be expected. In this paper, we will present the evidence for this unusual but interesting magnetospheric equilibrium. We will also discuss our present understanding of this singular state.

  17. A global magnetohydrodynamic simulation of the magnetosheath and magnetosphere when the interplanetary magnetic field is northward

    NASA Technical Reports Server (NTRS)

    Ogino, Tatsuki; Walker, Raymond I.; Ashour-Abdalla, Maha

    1992-01-01

    We have used a new high-resolution global magnetohydrodynamic simulation model to investigate the configuration of the magnetosphere when the interplanetary magnetic field (IMF) is northward. For northward IMF the magnetospheric configuration is dominated by magnetic reconnection at the tail lobe magnetopause tailward of the polar cusp. This results in a local thickening of the plasma sheet equatorward of the region of reconnection and the establishment of a convection system with two cells in each lobe. In the magnetosheath the plasma density and pressure decrease near the subsolar magnetopause, forming a depletion region. Along the flanks of the magnetosphere the magnetosheath flow is accelerated to values larger than the solar wind velocity. The magnetopause shape from the simulations is consistent with the empirically determined shape.

  18. Impact of the IMF rotation on the cusp dynamics on the dayside: Global 3D PIC simulations

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Cai, D.; Lembege, B.; Nishikawa, K.-I.

    The dynamics of the cusp region is analyzed with a new version of a global three-dimensional full particle simulation with changing the interplanetary magnetic field IMF direction progressively from northward to duskward then duskward to southward With the initial northward IMF bands of weak magnetic field sash form poleward of the cusp at high latitudes in each hemisphere and at high altitudes these sashes are located approximately around the pole axis As the IMF rotates duskward these sashes move toward the equator within opposite quadrants Then as the duskward-oriented IMF continue to rotate toward southward these sashes move further and reach the dayside magnetopause at the equator During the progressive rotation of the IMF from northward to duskward i the sash region widens towards lower latitudes banana-shape and with the duskward IMF ii the size of the banana-shape region becomes minimum and its location stops around a maximum deviation of 45degree from the polar axis It should be noted that the sashes are extended from the dayside to the nightside tailward The motion of the sashes is also analyzed during the IMF rotation form duskward to southward

  19. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr - Part 4: Near-Earth solar wind speed, IMF, and open solar flux

    NASA Astrophysics Data System (ADS)

    Lockwood, M.; Nevanlinna, H.; Barnard, L.; Owens, M. J.; Harrison, R. G.; Rouillard, A. P.; Scott, C. J.

    2014-04-01

    In the concluding paper of this tetralogy, we here use the different geomagnetic activity indices to reconstruct the near-Earth interplanetary magnetic field (IMF) and solar wind flow speed, as well as the open solar flux (OSF) from 1845 to the present day. The differences in how the various indices vary with near-Earth interplanetary parameters, which are here exploited to separate the effects of the IMF and solar wind speed, are shown to be statistically significant at the 93% level or above. Reconstructions are made using four combinations of different indices, compiled using different data and different algorithms, and the results are almost identical for all parameters. The correction to the aa index required is discussed by comparison with the Ap index from a more extensive network of mid-latitude stations. Data from the Helsinki magnetometer station is used to extend the aa index back to 1845 and the results confirmed by comparison with the nearby St Petersburg observatory. The optimum variations, using all available long-term geomagnetic indices, of the near-Earth IMF and solar wind speed, and of the open solar flux, are presented; all with ±2σ uncertainties computed using the Monte Carlo technique outlined in the earlier papers. The open solar flux variation derived is shown to be very similar indeed to that obtained using the method of Lockwood et al. (1999).

  20. The Myth of the IMF

    NASA Astrophysics Data System (ADS)

    Melnick, J.

    2009-11-01

    The Myth of Science is the idea that complex phenomena in Nature can be reduced to a set of equations based on the fundamental laws of physics. The Myth of the IMF is the notion that the observed distribution of stellar masses at birth (the IMF) can and must be explained by any successful theory of star formation. In this contribution I argue that the IMF is the result of the complex evolution of the interstellar medium in galaxies, and that as such the IMF preserves very little information, if any, about the detailed physics of star formation. Trying to infer the physics of star formation from the IMF is like trying to understand the personality of Beethoven from the power-spectrum of the Ninth Symphony!

  1. The IMF dependence of the local time of transpolar arcs

    NASA Astrophysics Data System (ADS)

    Fear, R.; Milan, S. E.

    2011-12-01

    Transpolar arcs or polar cap arcs are auroral features which are observed within the polar cap. They occur predominantly during intervals of northward IMF (Berkey et al., 1976). There is mixed evidence for IMF BY control of the local time at which the arcs initially form; Gussenhoven (1982) found that polar cap arcs formed preferentially post-midnight when BY < 0 (evaluated over 1 or 2 hours preceding the start of the arc) and pre-midnight when BY > 0, whereas Valladares et al (1991) found no clear dependency. The only previous statistical study of globally-imaged transpolar arcs (Kullen et al., 2002) found differing results for moving and non-moving arcs, concluding that three different models were required to identify (i) moving arcs, (ii) stationary arcs near the dawn/dusk portion of the main oval, and (iii) stationary arcs in the midnight sector. In this presentation, we show the results of a statistical study of 131 transpolar arcs observed by the FUV cameras on the IMAGE satellite between June 2000 and September 2005. We find that arcs tend to form following the same dependency on BY as identified by Gussenhoven (1982), whether moving or not. We find that the correlation between the magnetic local time at which the arc forms and the IMF BY component is relatively weak if the IMF is only averaged over the hour preceding the arc formation, but becomes stronger if the IMF is evaluated between 1 and 4 hours before the arc first forms. This is consistent with the timescale that is expected for newly-opened magnetospheric flux to reach the magnetotail plasma sheet (Dungey, 1961; Milan et al., 2007), and is therefore consistent with the suggestion that transpolar arcs map to the plasma sheet. We suggest that the similar dependence of stationary and moving arcs on the IMF BY component might imply that it is possible to explain both types of arc in terms of a single mechanism.

  2. A review of IMF theories

    NASA Astrophysics Data System (ADS)

    Cayrel, R.

    An overview is presented of theories of the initial mass function (IMF), starting from those essentially based on stochastic arguments to those involving more physics. Consideration is given to the scheme of Auluck and Kothari (1960, 1965), hierarchical theories, the predicted IMF, coalescence theories, DiFazio's theory (1986), fragmentation from sheets and filaments (bimodal star formation), and the criteria for determining stellar masses. The following concepts are proposed as being the most likely to survive: the general statistical arguments supporting log-normal laws, or power laws; the opacity-limited fragmentation concept; and the concept that the IMF is not a pure product of cloud fragmentation processes but also depends on internal properties of the object itself.

  3. The First in situ Observation of Kelvin-Helmholtz Waves at High-Latitude Magnetopause during Strongly Dawnward Interplanetary Magnetic Field Conditions

    NASA Technical Reports Server (NTRS)

    Hwang, K.-J.; Goldstein, M. L.; Kuznetsova, M. M.; Wang, Y.; Vinas, A. F.; Sibeck, D. G.

    2012-01-01

    We report the first in situ observation of high-latitude magnetopause (near the northern duskward cusp) Kelvin-Helmholtz waves (KHW) by Cluster on January 12, 2003, under strongly dawnward interplanetary magnetic field (IMF) conditions. The fluctuations unstable to Kelvin-Helmholtz instability (KHI) are found to propagate mostly tailward, i.e., along the direction almost 90 deg. to both the magnetosheath and geomagnetic fields, which lowers the threshold of the KHI. The magnetic configuration across the boundary layer near the northern duskward cusp region during dawnward IMF is similar to that in the low-latitude boundary layer under northward IMF, in that (1) both magnetosheath and magnetospheric fields across the local boundary layer constitute the lowest magnetic shear and (2) the tailward propagation of the KHW is perpendicular to both fields. Approximately 3-hour-long periods of the KHW during dawnward IMF are followed by the rapid expansion of the dayside magnetosphere associated with the passage of an IMF discontinuity that characterizes an abrupt change in IMF cone angle, Phi = acos (B(sub x) / absolute value of Beta), from approx. 90 to approx. 10. Cluster, which was on its outbound trajectory, continued observing the boundary waves at the northern evening-side magnetopause during sunward IMF conditions following the passage of the IMF discontinuity. By comparing the signatures of boundary fluctuations before and after the IMF discontinuity, we report that the frequencies of the most unstable KH modes increased after the discontinuity passed. This result demonstrates that differences in IMF orientations (especially in f) are associated with the properties of KHW at the high-latitude magnetopause due to variations in thickness of the boundary layer, and/or width of the KH-unstable band on the surface of the dayside magnetopause.

  4. IMF dependence of high-latitude thermospheric wind pattern derived from CHAMP cross-track measurements

    NASA Astrophysics Data System (ADS)

    Förster, M.; Rentz, S.; Köhler, W.; Liu, H.; Haaland, S. E.

    2008-06-01

    Neutral thermospheric wind pattern at high latitudes obtained from cross-track acceleration measurements of the CHAMP satellite above both North and South polar regions are statistically analyzed in their dependence on the Interplanetary Magnetic Field (IMF) direction in the GSM y-z plane (clock angle). We compare this dependency with magnetospheric convection pattern obtained from the Cluster EDI plasma drift measurements under the same sorting conditions. The IMF-dependency shows some similarity with the corresponding high-latitude plasma convection insofar that the larger-scale convection cells, in particular the round-shaped dusk cell for ByIMF+ (ByIMF-) conditions at the Northern (Southern) Hemisphere, leave their marks on the dominant general transpolar wind circulation from the dayside to the nightside. The direction of the transpolar circulation is generally deflected toward a duskward flow, in particular in the evening to nighttime sector. The degree of deflection correlates with the IMF clock angle. It is larger for ByIMF+ than for ByIMF- and is systematically larger (~5°) and appear less structured at the Southern Hemisphere compared with the Northern. Thermospheric cross-polar wind amplitudes are largest for BzIMF-/ByIMF- conditions at the Northern Hemisphere, but for BzIMF-/ByIMF+ conditions at the Southern because the magnetospheric convection is in favour of largest wind accelerations over the polar cap under these conditions. The overall variance of the thermospheric wind magnitude at Southern high latitudes is larger than for the Northern. This is probably due to a larger "stirring effect" at the Southern Hemisphere because of the larger distance between the geographic and geomagnetic frameworks.

  5. Particle entry into the inner magnetosphere during duskward IMF By: Global three-dimensional electromagnetic full particle simulations

    NASA Astrophysics Data System (ADS)

    Cai, D.; Yan, X. Y.; Nishikawa, K.-I.; Lembege, B.

    2006-06-01

    The change of the interplanetary magnetic field (IMF) direction from northward to duskward has an important impact on the inner magnetosphere. This impact is analyzed with the help of a new parallel version of the global three-dimensional full particle simulation code. For northward IMF, bands of weak magnetic field (sash) form poleward of the cusp at high latitudes in each hemisphere. These sashes move to the equator (within opposite quadrants) as the IMF rotates duskward and merge into one another to form the characteristic ``Crosstail-S'' within the neutral sheet of the magnetotail. These macroscopic magnetic patterns (sashes and Crosstail-S) evidenced herein are in a good agreement with results of previous 3D MHD simulations and experimental observations. Moreover, the analysis of particle fluxes shows that ``sashes'' and ``Crosstail-S'' act as magnetic groove to facilitate the entry and injection of magnetosheath particles into the inner magnetosphere. Injected particles are accelerated after the IMF changes its direction from northward to duskward.

  6. Enhanced Thermospheric Density: The Roles of East-West and Northward Interplanetary Magnetic Field

    NASA Astrophysics Data System (ADS)

    Knipp, D. J.; Drake, K. A.; Lei, J.; Crowley, G.

    2009-12-01

    During 2005 solar EUV energy input to the thermosphere waned as Solar Cycle 23 declined. The reduction allowed a clearer delineation of episodic density disturbances caused by geomagnetic storms. We show new views of these disturbances based on Poynting flux calculations from the Defense Meteorological Satellite Program (DMSP) F-series satellites, as well as from 1) accelerometer data from polar orbiting satellites, 2) the assimilative mapping of ionospheric electrodynamics (AMIE) procedure and 3) the Thermospheric Ionospheric Electrodynamic General Circulation Model (TIEGCM). The new Poynting flux estimates and TIEGCM results allow us to trace the origins of disturbances that are poorly specified by ground indices. In particular we find that intervals of enhanced northward Interplanetary Magnetic Field (IMF) combined with strong east-west components of the IMF allow significant electromagnetic energy input into localized dayside regions of the high-latitude thermosphere. In some cases this energy deposition is consistent with IMF-geomagnetic field merging tailward of the Earth’s magnetic cusps. In other cases the energy is deposited in the vicinity of an extremely narrow convection throat. This mode of interaction provides little energy to the magnetotail; and instead concentrates the energy in the dayside thermosphere. We discuss the solar cycle variability of this type of interaction. as well as compare the relative value of Poynting flux and particle energy deposition for such events.

  7. MESSENGER observations of the response of Mercury's magnetosphere to northward and southward interplanetary magnetic fields

    NASA Astrophysics Data System (ADS)

    Slavin, James

    M. H. Acũa (2), B. J. Anderson (3), D. N. Baker (4), M. Benna (2), S. A. Boardsen (1), G. n Gloeckler (5), R. E. Gold (3), G. C. Ho (3), H. Korth (3), S. M. Krimigis (3), S. A. Livi (6), R. L. McNutt Jr. (3), J. M. Raines (5), M. Sarantos (1), D. Schriver (7), S. C. Solomon (8), P. Travnicek (9), and T. H. Zurbuchen (5) (1) Heliophysics Science Division, NASA GSFC, Greenbelt, MD 20771, USA, (2) Solar System Exploration Division, NASA GSFC, Greenbelt, MD 20771, USA, (3) The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA, (4) Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA, (5) Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA (6) Southwest Research Institute, San Antonio, TX 28510, USA, (7) Institute for Geophysics and Planetary Physics, University of California, Los Angeles, CA 90024, USA, (8) Department of Terrestrial Magnetism, Carnegie Institution of Washington, DC 20015, USA, and (9) Institute of Atmospheric Physics, Prague, Czech Republic, 14131 MESSENGER's 14 January 2008 encounter with Mercury has provided new observations of the solar wind interaction with this planet. Here we report initial results concerning this miniature magnetosphere's response to the north-south component of the interplanetary magnetic field (IMF). This is the component of the IMF that is expected to exert the greatest influence over the structure of the magnetopause and the processes responsible for energy transfer into the magnetosphere. The IMF was northward immediately prior to and following the passage of the MESSENGER spacecraft through this small magnetosphere. However, several-minute episodes of southward IMF were observed in the magnetosheath during the inbound portion of the encounter. Evidence for reconnection at the dayside magnetopause in the form of welldeveloped flux transfer events (FTEs) was observed in the magnetosheath following some of

  8. High-latitude plasma convection from Cluster EDI measurements: method and IMF-dependence

    NASA Astrophysics Data System (ADS)

    Haaland, S. E.; Paschmann, G.; Förster, M.; Quinn, J. M.; Torbert, R. B.; McIlwain, C. E.; Vaith, H.; Puhl-Quinn, P. A.; Kletzing, C. A.

    2007-02-01

    We have used vector measurements of the electron drift velocity made by the Electron Drift Instrument (EDI) on Cluster between February 2001 and March 2006 to derive statistical maps of the high-latitude plasma convection. The EDI measurements, obtained at geocentric distances between ~4 and ~20 RE over both hemispheres, are mapped into the polar ionosphere, and sorted according to the clock-angle of the interplanetary magnetic field (IMF), measured at ACE and propagated to Earth, using best estimates of the orientation of the IMF variations. Only intervals of stable IMF are used, based on the magnitude of a "bias-vector" constructed from 30-min averages. The resulting data set consists of a total of 5862 h of EDI data. Contour maps of the electric potential in the polar ionosphere are subsequently derived from the mapped and averaged ionospheric drift vectors. Comparison with published statistical results based on Super Dual Auroral Radar Network (SuperDARN) radar and low-altitude satellite measurements shows excellent agreement between the average convection patterns, and in particular the lack of mirror-symmetry between the effects of positive and negative IMF By, the appearance of a duskward flow component for strongly southward IMF, and the general weakening of the average flows and potentials for northerly IMF directions. This agreement lends credence to the validity of the assumption underlying the mapping of the EDI data, namely that magnetic field lines are equipotentials. For strongly northward IMF the mapped EDI data show the clear emergence of two counter-rotating lobe cells with a channel of sunward flow between them. The total potential drops across the polar caps obtained from the mapped EDI data are intermediate between the radar and the low-altitude satellite results.

  9. The financial crisis and global health: the International Monetary Fund's (IMF) policy response.

    PubMed

    Ruckert, Arne; Labonté, Ronald

    2013-09-01

    In this article, we interrogate the policy response of the International Monetary Fund (IMF) to the global financial crisis, and discuss the likely global health implications, especially in low-income countries. In doing so, we ask if the IMF has meaningfully loosened its fiscal deficit targets in light of the economic challenges posed by the financial crisis and adjusted its macro-economic policy advice to this new reality; or has the rhetoric of counter-cyclical spending failed to translate into additional fiscal space for IMF loan-recipient countries, with negative health consequences? To answer these questions, we assess several post-crisis IMF lending agreements with countries requiring financial assistance, and draw upon recent academic studies and civil society reports examining policy conditionalities still being prescribed by the IMF. We also reference recent studies examining the health impacts of these conditionalities. We demonstrate that while the IMF has been somewhat more flexible in its crisis response than in previous episodes of financial upheaval, there has been no meaningful rethinking in the application of dominant neoliberal macro-economic policies. After showing some flexibility in the initial crisis response, the IMF is pushing for excessive contraction in most low and middle-income countries. We conclude that there remains a wide gap between the rhetoric and the reality of the IMF's policy and programming advice, with negative implications for global health. PMID:22504946

  10. Dependence of Large-Scale Global Poynting Flux on IMF By Polarity Change

    NASA Astrophysics Data System (ADS)

    Humberset, B. K.; Gjerloev, J. W.

    2014-12-01

    In this study we present the dependence of the global Poynting flux on the IMF By polarity change. The amount of energy that enters the magnetosphere from the solar wind is a function of the solar wind speed and pressure and the IMF orientation and magnitude. All the various published coupling models show that the polarity of the IMF By component does not change the energy input. In contrast the global convection patterns, and thus the ionospheric Pedersen currents, depend on IMF By polarity. This seems to imply that the ionospheric energy deposition is a function of IMF By polarity. Thus, there appear to be a fundamental difference between the input (from the solar wind) and the output (energy dissipating Pedersen currents). We, therefore, ask the question: To what extend is the global Poynting flux dependent on the IMF By polarity? We have performed a statistical study evaluating 59 abrupt transitions in the IMF By component (polarity changes) as measured by the ACE spacecraft. The effect of other solar wind coupling parameters, such as the IMF Bz component, are minimized by selecting events where these are nearly constant. We use electric field distributions from SuperDARN and field-aligned current distributions from AMPERE to calculate the global distribution of the Poynting Flux. To minimize the effect of magnetospheric energy unloading we focus on the 06-18 MLT region. We further investigate the dependence on solar induced conductivity. We find that the Poynting flux is slightly larger for positive IMF By compared to negative By conditions. For a low conductivity (not sunlit) ionosphere the Poynting flux is smaller than in the high conductivity (sunlit) ionosphere and we find a smaller dependence on IMF By polarity. The study emphasizes the global dynamic behavior of the ionosphere in its response to changes in the external driver (IMF).

  11. Particle entry through "Sash" groove simulated by Global 3D Electromagnetic Particle code with duskward IMF By

    NASA Astrophysics Data System (ADS)

    Yan, X.; Cai, D.; Nishikawa, K.; Lembege, B.

    2004-12-01

    We made our efforts to parallelize the global 3D HPF Electromagnetic particle model (EMPM) for several years and have also reported our meaningful simulation results that revealed the essential physics involved in interaction of the solar wind with the Earth's magnetosphere using this EMPM (Nishikawa et al., 1995; Nishikawa, 1997, 1998a, b, 2001, 2002) in our PC cluster and supercomputer(D.S. Cai et al., 2001, 2003). Sash patterns and related phenomena have been observed and reported in some satellite observations (Fujumoto et al. 1997; Maynard, 2001), and have motivated 3D MHD simulations (White and al., 1998). We also investigated it with our global 3D parallelized HPF EMPM with dawnward IMF By (K.-I. Nishikawa, 1998) and recently new simulation with dusk-ward IMF By was accomplished in the new VPP5000 supercomputer. In the new simulations performed on the new VPP5000 supercomputer of Tsukuba University, we used larger domain size, 305×205×205, smaller grid size (Δ ), 0.5R E(the radium of the Earth), more total particle number, 220,000,000 (about 8 pairs per cell). At first, we run this code until we get the so-called quasi-stationary status; After the quasi-stationary status was established, we applied a northward IMF (B z=0.2), and then wait until the IMF arrives around the magnetopuase. After the arrival of IMF, we begin to change the IMF from northward to duskward (IMF B y=-0.2). The results revealed that the groove structure at the day-side magnetopause, that causes particle entry into inner magnetosphere and the cross structure or S-structure at near magneto-tail are formed. Moreover, in contrast with MHD simulations, kinetic characteristic of this event is also analyzed self-consistently with this simulation. The new simulation provides new and more detailed insights for the observed sash event.

  12. IMF Prediction with Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Bieber, J. W.; Evenson, P. A.; Kuwabara, T.; Pei, C.

    2013-12-01

    Cosmic rays impacting Earth have passed through and interacted with the interplanetary magnetic field (IMF) surrounding Earth, and in some sense they carry information on the three-dimensional structure of that field. This work uses neutron monitor data in an effort to extract that information and use it to predict the future behavior of the IMF, especially the north-south component (Bz) which is so crucial in determining geomagnetic activity. We consider 161 events from a published list of interplanetary coronal mass ejections and compare hourly averages of the predicted field with the actual field measured later. We find that the percentage of events with 'good' predictions of Bz (in the sense of having a positive correlation between the prediction and the subsequent measurement) varies from about 85% for predictions 1 hour into the future to about 60% for predictions 4 hours into the future. We present several ideas for how the method might be improved in future implementations. Supported by NASA grant NNX08AQ01G and NSF grant ANT-0739620.

  13. Acceleration and injection of particles inside the magnetosphere changes during duskward IMF By: statistical approach

    NASA Astrophysics Data System (ADS)

    Yan, X.; Cai, D.; Lembege, B.; Nishikawa, K.

    2005-12-01

    The change of the interplanetary magnetic field (IMF) direction from northward to duskward has an important impact on the inner magnetosphere as analyzed in a recent paper [Yan et al, GRL, to appear] . This impact is analyzed with the help of a new parallel version of the global three-dimensional full particle simulation. As the newly duskward-oriented IMF interacts with the magnetosphere, bands of weak magnetic field (sash) move to the equator (within opposite quadrants), reach lower latitude and merge into each other to form characteristic ``Crosstail-S" structures within the neutral sheet of the magnetotail. The analysis of particle fluxes shows that ``sashs" and ``Crosstail-S" act as magnetic groove to facilitate the entry and injection of magnetosheath particles into the inner magnetosphere. Injected particles are accelerated after the IMF changes its direction from northward to duskward. Characteristic times associated to the changes of the particle dynamics are estimated from the simulations. These informations are thought to be helpful as pre-signatures announcing the triggering of magnetic substorms.

  14. IMF-lending programs and suicide mortality.

    PubMed

    Goulas, Eleftherios; Zervoyianni, Athina

    2016-03-01

    While the economic consequences of IMF programs have been extensively analyzed in the literature, much less is known about how key welfare indicators, including suicide-mortality rates, correlate with countries' participation in such programs. This paper examines the impact of IMF lending on suicide mortality, using data from 30 developing and transition countries that received non-concessionary IMF loans during 1991-2008. Our results support the hypothesis of a positive causal relationship between suicide mortality and participation in IMF programs but reveal no systematic suicide-increasing effect from the size of IMF loans. This holds after accounting for self-selection into programs, resulting from the endogeneity of a country's decision to resort to the IMF for funding, and after controlling for standard socio-economic influences on suicidal behaviour. In particular, we find a positive aggregate suicide-mortality differential due to IMF-program participation of between 4 and 14 percentage points. We also find that the positive association between suicides and program participation is stronger and more robust among males. Comparing age groups, individuals belonging to the age group 45-to-64 exhibit the highest increase in suicide due to program-participation, which amounts to over 18 percentage points. Overall, our results imply that when countries are exposed to IMF programs in an attempt to resolve their economic problems, social-safety nets need to be designed to protect the adversely-affected part of the population. PMID:26874823

  15. Impact of the IMF rotation on the cusp dynamics on the dayside: Global 3D PIC simulations

    NASA Astrophysics Data System (ADS)

    Tao, W.; Cai, D.; Lembege, B.; Nishikawa, K.

    2005-12-01

    The dynamics of the cusp region as the interplanetary magnetic field (IMF) progressively changes its direction from northward to duskward is analysed with a new version of a global three-dimensional full particle simulation. For northward IMF, bands of weak magnetic field (sash) form poleward of the cusp at high latitudes in each hemisphere (and at high altitudes); these sashs are centered approximately around the pole axis. However, as the newly duskward-oriented IMF approaches and interacts with the magnetosphere, these sashs move to the equator (within opposite quadrants). During the progressive rotation of the IMF, this motion is decomposed in the plane perpendicular to the solar wind as follows: (i) the "sash" region widens towards lower latitudes ("banana-shape"), and (ii) the size of the "banana-shape" region strongly shrinks and its location stabilizes around a maximum deviation of 45?. In addition, this motion is observed both on the day and the night sides where sashs are simultaneously observed. Characteristic time and space scales of the cusp motion are indicated, in order to be compare with results deduced from previous MHD simulations. Changes of local reconnection in the cusp region are analysed.

  16. Quasi-continuous reconnection accompanied by FTEs during IMF Bz ≈ 0 nT observed by Double Star TC-1 at the dawnside magnetopause

    NASA Astrophysics Data System (ADS)

    Yan, Guang Qing; Mozer, Forrest S.; Phan, Tai; Shen, Chao; Chen, Tao; Bogdanova, Yulia V.; Rème, Henri; Carr, Chris; Liu, Zhen Xing

    2016-07-01

    During a one-hour interval of interplanetary magnetic field (IMF) Bz ≈ 0 nT, the equatorial spacecraft Double Star TC-1 encountered the dawn flank magnetopause many times at the magnetic local time (MLT) of about 08:00 and the latitude of about -27°. During each encounter, reconnection jets were observed with their velocities up to more than 500 km/s, significantly higher than the background flow in the magnetosheath. The fast flows match the theoretical prediction of Alfvénic acceleration well. The medium temperature and density of ions in the boundary layer indicate the open magnetic field topology inside this layer. The mainly southward and tailward flows of the plasma jets alongside with the negative slopes of the Walén test indicate that the spacecraft was located south of the reconnection site, consistent with both anti-parallel and component reconnection models. The accelerated flows were observed lasting for about one hour, with some modulations by the oscillations of the magnetopause, but no reversals in the direction of Vz were found during the interval. The significantly enhanced flows in the boundary layer compared to the adjacent magnetosheath indicate that the reconnection was quasi-continuously active at the magnetopause northward of the spacecraft under such IMF conditions. At the same time, the bipolar signatures in BN with enhancements of the magnetic field indicate the occurrence of the Flux Transfer Events (FTEs). The observed reconnection was quasi-continuous, whereas the simultaneously accompanied FTEs were time-dependent under the IMF Bz ≈ 0 nT. For this event, however, it is not possible to identify whether the reconnection was anti-parallel or component because the TC-1 was far away from the reconnection site.

  17. Magnetospheric sash dependence on IMF direction

    NASA Astrophysics Data System (ADS)

    Siscoe, G. L.; Erickson, G. M.; Ö Sonnerup, B. U.; Maynard, N. C.; Siebert, K. D.; Weimer, D. R.; White, W. W.

    The magnetospheric sash is a ribbon of weak field shaped like a horseshoe with its open ends adjacent to the north and south dayside, magnetopause cusps and its closed end forming the cross-tail current sheet. The clock angle of the sash in the dawn-dusk meridian plane (as seen from the sun) rotates from 0° to 90° as the clock angle of the interplanetary magnetic field (IMF) rotates from 0° to 180°. We use a global MHD simulation to obtain the sash clock angles for IMF clock angles of 45°, 90°, and 135°. Remarkably, the results are very close to the clock angle of the magnetic null points obtained by superposing a uniform field representing the IMF on a dipole field representing the earth. Contours of magnetic field strength on cross sections perpendicular to the solar wind flow direction show how the sash evolves tailward from the dayside cusps.

  18. Solar cycle variations in IMF intensity

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1979-01-01

    Annual averages of logarithms of hourly interplanetary magnetic field (IMF) intensities, obtained from geocentric spacecraft between November 1963 and December 1977, reveal the following solar cycle variation. For 2-3 years at each solar minimum period, the IMF intensity is depressed by 10-15% relative to its mean value realized during a broad 9-year period centered at solar maximum. No systematic variations occur during this 9-year period. The solar minimum decrease, although small in relation to variations in some other solar wind parameters, is both statistically and physically significant.

  19. 3. VIEW NORTHWARD FROM 51 N. THIRD ST. TO 63 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWARD FROM 51 N. THIRD ST. TO 63 N. THIRD ST. (FROM RIGHT TO LEFT). WEST (FRONT) FACADES, LOOKING NORTHEAST - North Third Street Area Study, 17-63 North Third Street (Commercial Buildings), Philadelphia, Philadelphia County, PA

  20. The dependence of transpolar arc location on IMF By: a comparison of two large transpolar arc datasets

    NASA Astrophysics Data System (ADS)

    Kullen, Anita; Fear, Rob; Milan, Steve

    2014-05-01

    It is well-known that transpolar arc occurrence and motion depends strongly on the interplanetary magnetic field (IMF). The dawn-duskward motion of these arcs is strongly controlled by the IMF By component. Fear and Milan (2012) showed that not only the transpolar arc motion but also the dawn-duskward displacement of the original nightside connection point depends on the direction of IMF By. The best correlations between IMF By and location of transpolar arc nighside connection point was found for a 3-4 hour time delay between these. The results of their study are here reinvestigated using a similar dataset by Kullen et al. (2002) covering another time period. The analysis of the results shows several interesting features. It confirms many of the statistical results in the Fear and Milan (2012) study. However, the best correlation between IMF By and transpolar arc location is found to be with IMF conditions 1-2 hours before the arc occurs. Furthermore, one class of transpolar arcs (bending arcs, splitting from dawn- or dusk oval side around 21 and 3 UT) shows no correlation with IMF By at all. This indicates, bending arcs may form in a different way. A possible connection between bending transpolar arcs and dayside flux transfer events is investigated with help of ionospheric plasma flow patterns using SuperDARN data.

  1. 3D Global PIC simulation of Alfvenic transition layers at the cusp outer boundary during IMF rotations from north to south

    NASA Astrophysics Data System (ADS)

    Cai, D. S.; Lembege, B.; Esmaeili, A.; Nishikawa, K.

    2013-12-01

    Statistical experimental observations of the cusp boundaries from CLUSTER mission made by Lavraud et al. (2005) have clearly evidenced the presence of a transition layer inside the magnetosheath near the outer boundary of the cusp. This layer characterized by Log(MA)~ 1 allows a transition from super-Alfvenic to sub-Alfvenic bulk flow from the exterior to the interior side of the outer cusp and has been mainly observed experimentally under northward interplanetary magnetic field (IMF). The role of this layer is important in order to understand the flow variations (and later the entry and precipitation of particles) when penetrating the outer boundary of the cusp. In order to analyze this layer, a large 3D PIC simulation of the global solar wind-terrestrial magnetosphere interaction have been performed, and the attention has been focused on the cusp region and its nearby surrounding during IMF rotation from north to south. Present results retrieve quite well the presence of this layer within the meridian plane for exactly northward IMF, but its location differs in the sense that it is located slightly below the X reconnection region associated to the nearby magnetopause (above the outer boundary of the cusp). In order to clarify this question, an extensive study has been performed as follows: (i) a 3D mapping of this transition layer in order to analyze more precisely the thickness, the location and the spatial extension of this layer on the magnetosphere flanks for a fixed Northward IMF configuration; (ii) a parametric study in order to analyze the impact of the IMF rotation from north to south on the persistence and the main features of this transition layer. The locations of this transition layer slightly radially expand and shrink during the IMF rotation and the thickness of the layer increases during the rotation. We show how these transition layers render the flow from super to sub Alfvenic and allow the particles enter into the magnetic cusp region. Alfven

  2. Global MHD modeling of ionospheric convection and field-aligned currents associated with IMF By triggered theta auroras

    NASA Astrophysics Data System (ADS)

    Watanabe, Masakazu; Sakito, Shintaro; Tanaka, Takashi; Shinagawa, Hiroyuki; Murata, Ken T.

    2014-08-01

    Using numerical magnetohydrodynamic simulations, we investigate the evolution of ionospheric convection and field-aligned currents (FACs) when θ auroras are formed in response to interplanetary magnetic field (IMF) By transitions. When the polarity of IMF By switches abruptly during northward IMF periods, the crossbar of the θ aurora is isolated from the flankside auroral oval and drifts into the polar cap. This drift motion is involved in a large round cell associated with new IMF By, with sunward convection residing only on the dayside tip of the crossbar. There exists an IMF By-controlled large-scale FAC system on the crossbar. When the θ aurora is drifting duskward (dawnward), the FACs are located on the dawnside (duskside) boundary of the crossbar adjacent to the "new" lobe. In contrast, the magnetospheric source region of the crossbar FAC system is located on the duskside (dawnside) boundary of the protruded plasma sheet adjacent to the "old" lobe. In the source region, plasma thermal pressure feeds the electromagnetic energy of FACs, and these processes can be interpreted as coupling of slow mode and Alfvén mode disturbances. In the ionosphere, the crossbar-associated FACs close with part of the region 1 currents associated with the new crescent cell. The magnetospheric source of that part of the region 1 FACs is located on the plasma sheet boundary and the magnetopause both adjacent to the new lobe. Dynamo processes in the old-lobe side and the new-lobe side work together to drive the ionospheric drift motion of the crossbar.

  3. The Role of Stratiform and Convective heating in modifying the northward phase propagation of Monsoon Intraseasonal Oscillation

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, R.; Goswami, B.; Sahai, A. K.

    2009-12-01

    In this study, contribution of stratiform and convective rain rate to total rain rate during different phases of the northward propagating boreal summer monsoon Intraseasonal Oscillation (ISO) is brought out using the TRMM data. Two new insights have emerged from this analysis as shown in Fig.1. It may be noted from Fig.1 that the convective component seems to grow and decay in situ during evolution of active/break phases, the northward propagation of the monsoon ISO is contributed by organized movement of the stratiform component. Further, the trade mark meridional dipole pattern of total rainfall between monsoon trough zone (MTZ) and equatorial Indian Ocean (EIO) also arises largely from contribution stratiform anomalies. The northward propagation of the monsoon intraseasonal oscillation is known to be due to the anomalous response of the atmosphere to heating in the presence of mean easterly vertical shear. Modification of vertical profile of heating due to contribution from stratiform rain could influence the northward propagation of monsoon ISO. We test this using a simple dynamical model known as PUMA (Portable Unified Model of Atmosphere) developed by University of Hamburg, Germany to study the response of the ‘convective’ and ‘stratiform’ heating profiles on the modification of the mean condition which facilitates the northward propagation. Such modification in the large scale response (e.g. vertical shear, barotropic vorticity) seen clearly to be related with the structure of the heating profile (convective or stratiform). The presence of stratiform heating favors the northward phase propagation of monsoon ISO. These results underline the importance simulating the partitioning of convective and stratiform rain by cumulous parameterization in climate models if they have to get the space-time structure of the summer ISOs correctly. Fig. 1 Figure showing the northward propagation of total (top), convective (middle) and stratiform (bottom) rainrate

  4. Simultaneous conjugate observations of dynamic variations in high-latitude dayside convection due to changes in IMF By

    NASA Technical Reports Server (NTRS)

    Greenwald, R. A.; Baker, K. B.; Ruohoniemi, J. M.; Dudeney, J. R.; Pinnock, M.; Mattin, N.; Leonard, J. M.; Lepping, R. P.

    1990-01-01

    Data from two conjugate HF radars currently operating at Goose Bay (Labrador) and the Halley Station (Antarctica), obtained for a single 45-min period about local noon on April 22, 1988, were used to study the near-instantaneous conjugate two-dimensional patterns of plasma convection in the vicinity of the cusp. In particular, the response of these plasma convection patterns to changes in the By component of the IMF was examined. Results indicate that, under quasi-stationary IMF conditions, the conjugate convection patterns are quite similar to the synthesized patterns of Heppner and Maynard (1987) and that the patterns respond rapidly to changes in the IMF By component. Results also show that transitions between convection states begin to occur within minutes of the time that an IMF state change is incident on the magnetospheric boundary, and that the convection reconfigurations expand poleward, completely filling the field of view of an HF radar within 6 min of the time of onset.

  5. IMF effect on the polar cap contraction and expansion during a period of substorms

    NASA Astrophysics Data System (ADS)

    Aikio, A. T.; Pitkänen, T.; Honkonen, I.; Palmroth, M.; Amm, O.

    2013-06-01

    The polar cap boundary (PCB) location and motion in the nightside ionosphere has been studied by using measurements from the EISCAT radars and the MIRACLE magnetometers during a period of four substorms on 18 February 2004. The OMNI database has been used for observations of the solar wind and the Geotail satellite for magnetospheric measurements. In addition, the event was modelled by the GUMICS-4 MHD simulation. The simulation of the PCB location was in a rather good agreement with the experimental estimates at the EISCAT longitude. During the first three substorm expansion phases, neither the local observations nor the global simulation showed any poleward motions of the PCB, even though the electrojets intensified. Rapid poleward motions of the PCB took place only in the early recovery phases of the substorms. Hence, in these cases the nightside reconnection rate was locally higher in the recovery phase than in the expansion phase. In addition, we suggest that the IMF Bz component correlated with the nightside tail inclination angle and the PCB location with about a 17-min delay from the bow shock. By taking the delay into account, the IMF northward turnings were associated with dipolarizations of the magnetotail and poleward motions of the PCB in the recovery phase. The mechanism behind this effect should be studied further.

  6. Solar Wind Influence on MLT Dependence of Plasmasheet Conditions and Implications for Ring Current Modeling

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Wang, C.; Schulz, M.; Lyons, L. R.

    2006-12-01

    The plasmasheet source for the stormtime ring current depends significantly on the interplanetary conditions during the preceding quiet period. We have investigated how this dependence affects the local-time asymmetries in storm-time ring current development by applying realistic plasmasheet boundary conditions based on averages of GEOTAIL data to a magnetically self-consistent ring-current simulation model. By statistical analysis of GEOTAIL data, Wang et al. [this meeting] have found two interesting trends: (1) For strongly northward IMF (2 nT < IMF B_z < 8 nT), high solar-wind density (> 6.5 cm-3), and lower solar-wind speed (< 400 km/s), the overall plasmasheet ion density is the highest among the northward IMF conditions considered, and there is a strong dawn-dusk asymmetry at radial distances r > 8 R_E with high ion densities and low ion temperatures in the post-midnight quadrant of the plasma sheet. (2) For weakly northward IMF (0 < IMF B_z < 2 nT), high solar-wind speed (> 400 km/s), and lower solar-wind density (< 6.5 cm-3), the overall plasmasheet ion density is the lowest and its temperature is highest in the pre-midnight sector among all the northward IMF conditions considered, and there is no strong density enhancement in the post-midnight quadrant of the plasma sheet at r > 8 R_E, such as is seen on average under condition (1). From simple particle-transport considerations, it is expected that condition (1), under which there is (on average) a dense population of low-energy ions in the post-midnight quadrant, may lead to relative enhancement of the ring-current plasma pressure in the post-midnight quadrant. In contrast, condition (2), in which there is (on average) a dense population of high-energy particles in the pre-midnight quadrant of the plasma sheet, may lead to enhancement of the ring-current plasma pressure in the pre-midnight quadrant rather than elsewhere. We test these hypotheses by carrying out magnetically self-consistent simulations of

  7. Solar cycle variations in IMF intensity

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1979-01-01

    Annual averages of logarithms of hourly interplanetary magnetic field intensities, obtained from geocentric spacecraft between November 1963 and December 1977, reveal the following solar cycle variation. For 2 to 3 years at each solar minimum period, the IMF intensity is depressed by 10-15 percent relative to its mean value realized during a broad nine-year period centered at solar maximum. No systematic variations occur during this nine-year period. The solar minimum decrease, although small relative to variations in some other solar wind parameters, is both statistically and physically significant.

  8. Particle entry through sash in the magnetopause with a dawndard IMF as simulated by a 3-D EM particle code

    NASA Astrophysics Data System (ADS)

    Cai, D.; Yan, X.; Lembege, B.; Nishikawa, K.

    2003-12-01

    We report a new progress in the long-term effort to represent the global interaction of the solar wind with the Earth's magnetosphere using a three-dimensional electromagnetic particle code with the improved resolutions using the HPF Tristan code. After a quasi-steady state is established with an unmagnetized solar wind we gradually switch on a northward interplanetary magnetic field (IMF), which causes a magnetic reconnection at the nightside cusps and the magnetosphere to be depolarized. In the case that the northward IMF is switched gradually to dawnward, there is no signature of reconnection in the near-Earth magnetotail as in the case with the southward turning. On the contrary analysis of magnetic fields in the magnetopause confirms a signature of magnetic reconnection at both the dawnside and duskside. And the plasma sheet in the near-Earth magnetotail clearly thins as in the case of southward turning. Arrival of dawnward IMF to the magnetopause creates a reconnection groove which cause particle entry into the deep region of the magnetosphere via field lines that go near the magnetopause. This deep connection is more fully recognized tailward of Earth. The flank weak-field fan joins onto the plasma sheet and the current sheet to form a geometrical feature called the cross-tail S that structurally integrates the magnetopause and the tail interior. This structure contributes to direct plasma entry between the magnetosheath to the inner magnetosphere and plasma sheet, in which the entry process heats the magnetosheath plasma to plasma sheet temperatures. These phenomena have been found by Cluster observations. Further investigation with Cluster observations will provide new insights for unsolved problems such as hot flow anomalies (HFAs), substorms, and storm-substorm relationship. 3-D movies with sash structure will be presented at the meeting.

  9. The IMF at intermediate masses from Galactic Cepheids

    NASA Astrophysics Data System (ADS)

    Mor, R.; Robin, A. C.; Figueras, F.; Lemasle, B.

    2014-07-01

    Aims: To constrain the Initial Mass Function (IMF) of the Galactic young (<1 Gyr) thin Disc population using Cepheids. Methods: We have optimized the flexibility of the new Besançon Galaxy Model (Czekaj 2014) to simulate magnitude and distance complete samples of young intermediate mass stars assuming different IMFs and Star Formation Histories (SFH). Comparing the simulated synthetic catalogues with the observational data we studied which IMF reproduces better the observational number of Cepheids in the Galactic thin Disc. We analysed three different IMF: (1) Salpeter, (2) Kroupa-Haywood and (3) Haywood-Robin IMFs with a decreasing SFH from Aumer & Binney (2009). Results: For the first time the Besançon Galaxy Model is used to characterize the galactic Cepheids. We found that for most of the cases the Salpeter IMF overestimates the number of observed Cepheids and Haywood-Robin IMF underestimates it. The Kroupa-Haywood IMF, with a slope α = 3.2, is the one that best reproduces the observed Cepheids. From the comparison of the predicted and observed number of Cepheids up to V = 12, we point that the model might underestimate the scale height of the young population. Conclusions: In agreement with Kroupa & Weidner (2003) our study shows that the Salpeter IMF (α = 2.35) overestimates the star counts in the range 4 ≤ M/M⊙≤ 10 and supports the idea that the slope of the intermediate and massive stars IMF is steeper than the Salpeter IMF. The poster can be found online at: https://gaia.ub.edu/Twiki/pub/GREATITNFC/ProgramFinalconference/Poster_R._Mor_Great.pdf.

  10. The Response of Heavy Planetary Ions at Mars to Reversals of the IMF

    NASA Astrophysics Data System (ADS)

    Curry, S.; Dong, C.; Luhmann, J. G.; Ma, Y.; Bougher, S. W.; Modolo, R.; Leblanc, F.

    2014-12-01

    We present a kinetic study to quantify the response of Mars' atmosphere to changes in the interplanetary magnetic field (IMF) configuration, specifically with respect to the escape rate of the atmosphere. Because Mars lacks a dipole magnetic field, the solar wind directly interacts with the upper neutral atmosphere to create 'pick-up' ions. We will present global maps of escaping O+ pick up ions during different solar cycle phases for multiple IMF conditions using a magnetohydrodynamic (MHD) and test particle simulation. This study also examines the role of the crustal fields for the different IMF configurations; the remanent crustal magnetic fields, especially in extreme conditions, influence the magnetic topology at Mars and subsequently drive changes in heavy ion atmospheric escape. The results indicate that the escape rate from Mars' atmosphere can change over an order of magnitude due to the IMF, solar cycle, and crustal field orientation, directly impacting Mars' climate and our understanding of the processes that influence atmospheric evolution. These results directly support MAVEN, the next Mars Scout, whose primary objective is to understand the evolution of Mars' atmosphere.

  11. How chemistry influences cloud structure, star formation, and the IMF

    NASA Astrophysics Data System (ADS)

    Hocuk, S.; Cazaux, S.; Spaans, M.; Caselli, P.

    2016-03-01

    In the earliest phases of star-forming clouds, stable molecular species, such as CO, are important coolants in the gas phase. Depletion of these molecules on dust surfaces affects the thermal balance of molecular clouds and with that their whole evolution. For the first time, we study the effect of grain surface chemistry (GSC) on star formation and its impact on the initial mass function (IMF). We follow a contracting translucent cloud in which we treat the gas-grain chemical interplay in detail, including the process of freeze-out. We perform 3D hydrodynamical simulations under three different conditions, a pure gas-phase model, a freeze-out model, and a complete chemistry model. The models display different thermal evolution during cloud collapse as also indicated in Hocuk, Cazaux & Spaans, but to a lesser degree because of a different dust temperature treatment, which is more accurate for cloud cores. The equation of state (EOS) of the gas becomes softer with CO freeze-out and the results show that at the onset of star formation, the cloud retains its evolution history such that the number of formed stars differ (by 7 per cent) between the three models. While the stellar mass distribution results in a different IMF when we consider pure freeze-out, with the complete treatment of the GSC, the divergence from a pure gas-phase model is minimal. We find that the impact of freeze-out is balanced by the non-thermal processes; chemical and photodesorption. We also find an average filament width of 0.12 pc (±0.03 pc), and speculate that this may be a result from the changes in the EOS caused by the gas-dust thermal coupling. We conclude that GSC plays a big role in the chemical composition of molecular clouds and that surface processes are needed to accurately interpret observations, however, that GSC does not have a significant impact as far as star formation and the IMF is concerned.

  12. Connection between dynamically derived IMF normalisation and stellar populations

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.

    2015-04-01

    In this contributed talk I present recent results on the connection between stellar population properties and the normalisation of the stellar initial mass function (IMF) measured using stellar dynamics, based on a large sample of 260 early-type galaxies observed as part of the ATLAS3D project. This measure of the IMF normalisation is found to vary non-uniformly with age- and metallicity-sensitive absorption line strengths. Applying single stellar population models, there are weak but measurable trends of the IMF with age and abundance ratio. Accounting for the dependence of stellar population parameters on velocity dispersion effectively removes these trends, but subsequently introduces a trend with metallicity, such that `heavy' IMFs favour lower metallicities. The correlations are weaker than those found from previous studies directly detecting low-mass stars, suggesting some degree of tension between the different approaches of measuring the IMF. Resolving these discrepancies will be the focus of future work.

  13. IMF Dependence of High-Latitude Thermospheric Wind Pattern Derived from CHAMP Cross-Track Accelerometer Data and the Corresponding Magnetospheric Convection from Cluster EDI Measurements

    NASA Astrophysics Data System (ADS)

    Foerster, Matthias; Haaland, Stein E.; Rentz, Stefanie; Liu, Huixin

    Neutral thermospheric wind pattern at high latitudes obtained from cross-track acceleration measurements of the CHAMP satellite above both North and South polar regions are statistically analyzed in their dependence on the Interplanetary Magnetic Field (IMF) direction in the GSM y-z plane (clock angle). We compare this dependency with magnetospheric convection pattern using 1-min-averages of Cluster/EDI electric drift observations and the same IMF and solar wind sorting conditions. The spatially distributed Cluster/EDI measurements are mapped to a the common reference level at ionospheric F-region heights in a magnetic latitude/MLT grid. We obtained both regular thermospheric wind and plasma drift pattern according to the various IMF conditions. The IMF-dependency shows some similarity with the corresponding high-latitude plasma convection insofar that the larger-scale convection cells, in particular the round-shaped dusk cell for IMF By+ (By-) conditions at the Northern (Southern) Hemisphere, leave their marks on the dominant general transpolar wind circulation from the dayside to the nightside. The direction of the transpolar circulation is generally deflected toward a duskward flow, in particular in the evening to nighttime sector. The degree of deflection correlates with the IMF clock angle. It is larger for IMF By+ than for Byand is systematically larger (about 5 deg) and appear less structured at the Southern Hemisphere compared with the Northern. Thermospheric cross-polar wind amplitudes are largest for IMF Bz-/Byconditions (corresponding to sector 5) at the Northern Hemisphere, but for IMF Bz-/By+ conditions (sector 3) at the Southern because the magnetospheric convection is in favour of largest wind accelerations over the polar cap under these conditions. The overall variance of the thermospheric wind magnitude at Southern high latitudes is larger than for the Northern. This is probably due to a larger "stirring effect" at the Southern Hemisphere because

  14. Coldness triggers northward flight in remigrant monarch butterflies.

    PubMed

    Guerra, Patrick A; Reppert, Steven M

    2013-03-01

    Each fall, eastern North American monarch butterflies (Danaus plexippus) migrate from their northern range to their overwintering grounds in central Mexico. Fall migrants are in reproductive diapause, and they use a time-compensated sun compass to navigate during the long journey south. Eye-sensed directional cues from the daylight sky (e.g., the horizontal or azimuthal position of the sun) are integrated in the sun compass in the midbrain central complex region. Sun compass output is time compensated by circadian clocks in the antennae so that fall migrants can maintain a fixed flight direction south. In the spring, the same migrants remigrate northward to the southern United States to initiate the northern leg of the migration cycle. Here we show that spring remigrants also use an antenna-dependent time-compensated sun compass to direct their northward flight. Remarkably, fall migrants prematurely exposed to overwintering-like coldness reverse their flight orientation to the north. The temperature microenvironment at the overwintering site is essential for successful completion of the migration cycle, because without cold exposure, aged migrants continue to orient south. Our discovery that coldness triggers the northward flight direction in spring remigrants solves one of the long-standing mysteries of the monarch migration. PMID:23434279

  15. Microbial responses to southward and northward Cambisol soil transplant

    SciTech Connect

    Wang, Mengmeng; Liu, Shanshan; Wang, Feng; Sun, Bo; Zhou, Jizhong; Yang, Yunfeng

    2015-10-26

    We report that soil transplant serves as a proxy to simulate climate changes. Recently, we have shown that southward transplant of black soil and northward transplant of red soil altered soil microbial communities and biogeochemical variables. However, fundamental differences in soil types have prevented direct comparison between southward and northward transplants. To tackle it, herein we report an analysis of microbial communities of Cambisol soil in an agriculture field after 4 years of adaptation to southward and northward soil transplants over large transects. Analysis of bare fallow soils revealed concurrent increase in microbial functional diversity and coarse-scale taxonomic diversity at both transplanted sites, as detected by GeoChip 3.0 and DGGE, respectively. Furthermore, a correlation between microbial functional diversity and taxonomic diversity was detected, which was masked in maize cropped soils. Mean annual temperature, soil moisture, and nitrate (NO3¯-N) showed strong correlations with microbial communities. In addition, abundances of ammonium-oxidizing genes (amoA) and denitrification genes were correlated with nitrification capacity and NO3¯-N contents, suggesting that microbial responses to soil transplant could alter microbe-mediated biogeochemical cycle at the ecosystem level.

  16. Microbial responses to southward and northward Cambisol soil transplant

    DOE PAGESBeta

    Wang, Mengmeng; Liu, Shanshan; Wang, Feng; Sun, Bo; Zhou, Jizhong; Yang, Yunfeng

    2015-10-26

    We report that soil transplant serves as a proxy to simulate climate changes. Recently, we have shown that southward transplant of black soil and northward transplant of red soil altered soil microbial communities and biogeochemical variables. However, fundamental differences in soil types have prevented direct comparison between southward and northward transplants. To tackle it, herein we report an analysis of microbial communities of Cambisol soil in an agriculture field after 4 years of adaptation to southward and northward soil transplants over large transects. Analysis of bare fallow soils revealed concurrent increase in microbial functional diversity and coarse-scale taxonomic diversity atmore » both transplanted sites, as detected by GeoChip 3.0 and DGGE, respectively. Furthermore, a correlation between microbial functional diversity and taxonomic diversity was detected, which was masked in maize cropped soils. Mean annual temperature, soil moisture, and nitrate (NO3¯-N) showed strong correlations with microbial communities. In addition, abundances of ammonium-oxidizing genes (amoA) and denitrification genes were correlated with nitrification capacity and NO3¯-N contents, suggesting that microbial responses to soil transplant could alter microbe-mediated biogeochemical cycle at the ecosystem level.« less

  17. Thermospheric Neutral Density Responses to Changes in IMF Sector Polarity

    NASA Astrophysics Data System (ADS)

    Kwak, Y.; Kim, K.; Forbes, J.; Lee, S.

    2008-12-01

    The thermospheric density is important not only for satellite orbital tracking, but also in understanding the thermosphere-ionosphere coupling process as well. Thermospheric density variations are controlled by various sources such as Joule/particle heating, Lorentz force, thermal expansion, upwelling and horizontal wind circulation. These sources are directly or indirectly associated with the direction and/or strength of the interplanetary magnetic field (IMF). That is, there is an intimate relationship between IMF variation and thermospheric density variation. In order to examine how thermospheric density variations are influenced on the orientation and/or strength of the IMF, we used total mass density around 400 km, derived from the high- accuracy accelerometer on board the Challenging Minisatellite Payload (CHAMP) spacecraft, in 2003 when the IMF exhibited a well-defined sector polarity change with a ~27-day periodicity; directed toward the Sun (i.e., +Bx and -By) and away the Sun (-Bx and +By). It has been known that the IMF By in GSE coordinates makes a positive or negative IMF Bz offset in GSM coordinate. We discuss whether the thermospheric total mass density from CHAMP changes with the IMF sector polarity.

  18. The effects of IMF sector boundary crossings on the induced magnetosphere of Venus

    NASA Astrophysics Data System (ADS)

    Vech, D.; Stenberg, G.; Nilsson, H.; Edberg, N. J. T.; Opitz, A.; Szegő, K.; Zhang, T. L.; Futaana, Y.

    2015-10-01

    The induced planetary magnetosphere is the result of the interaction between the streaming solar wind plasma and an unmagnetized planetary body with an ionosphere acting as an obstacle. The structure of the induced magnetosphere highly depends on the upstream solar wind parameters including the direction and magnitude of the Interplanetary Magnetic Field (IMF). (e.g. Zhang et al., 2009; Masunaga et al., 2011). Not only the upstream conditions but also temporal variations of the upstream conditions are expected to cause changes in the structure of induced magnetospheres. For example, Niedner and Brandt [1978] reported that the cometary ion tail was lost due to reconnection after an IMF sector boundary crossing. Edberg et al. [2011] studied the effects of Interplanetary Coronal Mass Ejections (ICME) and Co-rotating Interaction Regions (CIR) at Venus. They suggested that the change in the magnetic field polarity during IMF sector boundary crossings contribute to an increased ion outflow. In addition, they speculated that this might be due to dayside magnetic reconnection. In this study we aim to understand the effects of the varying upstream conditions on the Venusian induced magnetosphere. Using the entire Venus Express/ASPERA-4 and MAG datasets, we first produce the spatial distribution of ions in the plasma environment of Venus during ICME and CIR passages together with that during the average condition. In addition to ICME/CIR passages, we focus on the Heliospheric Current Sheet (HCS) crossings, which can also change the polarity of the induced magnetosphere. By comparing HCS events and ICME/CIR events, we may be able to distinguish the contribution of IMF polarity change on the Venusian induced magnetosphere, because the solar wind is less disturbed during HCS events. We will compare the signatures associated with the sector boundary crossings found at the magnetotail of Venus with that is previously reported from comet studies.

  19. Statistical properties and solar wind source of long-duration and amplitude southward IMF intervals and their geomagnetic effectiveness

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Moldwin, M.

    2012-12-01

    It is well known that extended periods of large amplitude southward Interplanetary Magnetic Field (IMF) are geoeffective. This study determines the statistical properties of these intervals and identifies their corresponding solar wind source. We use 1-min WIND magnetometer data from 1995 - 2011. It is noted that IMF Bz changes polarity from north-to-south or south-to-north at high-frequency (every 3-4 mins) by counting. Long intervals of southward IMF are mainly imbedded in MC (> 2 hrs), SMFR (1-2 hrs) or SIR (0.5-1 hr). About 29% of the long duration (> 2 hrs) strong southward IMF (< -5 nT) are associated with these structures. We also examined the statistical properties and geoeffectiveness for the solar wind and IMF conditions with long duration southward Bz not related to any of these structures. We found that these intervals are related to Heliospheric Current Sheet (HCS) or unidirectional magnetic field or ambiguous variations. Using geomagnetic activity indices obtained from ground magnetometers most of these intervals corresponded to large increases of substorm activity, but not geomagnetic storms. There is a strong solar cycle dependence on the occurrence frequency of strong southward Bz (less than -5 nT).

  20. By-controlled convection and field-aligned currents near midnight auroral oval for northward interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Taguchi, S.; Sugiura, M.; Iyemori, T.; Winningham, J. D.; Slavin, J. A.

    1994-01-01

    Using the Dynamics Explorer (DE) 2 magnetic and electric field and plasma data, B(sub y)- controlled convection and field-aligned currents in the midnight sector for northward interplanetary magnetic field (IMF) are examined. The results of an analysis of the electric field data show that when IMF is stable and when its magnitude is large, a coherent B(sub y)-controlled convection exists near the midnight auroral oval in the ionosphere having adequate conductivities. When B(sub y) is negative, the convection consists of a westward (eastward) plasma flow at the lower latitudes and an eastward (westward) plasma flow at the higher latitudes in the midnight sector in the northern (southern) ionosphere. When B(sub y) is positive, the flow directions are reversed. The distribution of the field-aligned currents associated with the B(sub y)-controlled convection, in most cases, shows a three-sheet structure. In accordance with the convection the directions of the three sheets are dependent on the sign of B(sub y). The location of disappearance of the precipitating intense electrons having energies of a few keV is close to the convection reversal surface. However, the more detailed relationship between the electron precipitation boundary and the convection reversal surface depends on the case. In some cases the precipitating electrons extend beyond the convection reversal surface, and in others the poleward boundary terminates at a latitude lower than the reversal surface. Previous studies suggest that the poleward boundary of the electrons having energies of a few keV is not necessarily coincident with an open/closed bounary. Thus the open/closed boundary may be at a latitude higher than the poleward boundary of the electron precipitation, or it may be at a latitude lower than the poleward boundary of the electron precipitation. We discuss relationships between the open/closed boundary and the convection reversal surface. When as a possible choice we adopt a view that the

  1. Influences of northward propagating 25-90-day and quasi-biweekly oscillations on eastern China summer rainfall

    NASA Astrophysics Data System (ADS)

    Chen, Jiepeng; Wen, Zhiping; Wu, Renguang; Chen, Zesheng; Zhao, Ping

    2015-07-01

    The present study reveals that rainfall anomalies associated with the 25-90-day (quasi-biweekly) tropical convective activity propagates northward (northwestward) into northern China (the Yangtze River). Enhanced rainfall over southern China results directly from enhanced convection propagating northward from the South China Sea (SCS)-western north Pacific (WNP), strengthened northward water vapor transport and intensified upper-level divergence. The anomalous anticyclone over SCS-WNP, which is induced by local lower sea surface temperature, provides a favorable condition for transporting more moisture to southern China. Stronger subtropical westerly jet and South Asia high strengthen upper-level divergence. The northward propagating 25-90-day oscillation over eastern China reaches farther north than the quasi-biweekly oscillation (QBWO). The intensity of QBWO in summer rainfall has significantly strengthened over southern China after 1993 but not for the 25-90-day oscillation. This is mainly contributed by an interdecadal increase in rainfall over southern China and the Yangtze River Basin in the wet phases of QBWO. The interdecadal enhancement of rainfall associated with the QBWO is attributed to three factors. One is lower tropospheric convergence caused by anomalous anticyclone over the WNP and anomalous cyclone over Korean Peninsula and Japan. The second is upper tropospheric divergence resulting from strengthening of subtropical westerly jet and the South Asia high. The last is enhanced ascent over South China through meridional vertical circulation.

  2. Main results of the development of dispersion type IMF at A.A. Bochvar Institute

    NASA Astrophysics Data System (ADS)

    Savchenko, A. M.; Vatulin, A. V.; Glagovsky, E. M.; Konovalov, I. I.; Morozov, A. V.; Kozlov, A. V.; Ershov, S. A.; Mishunin, V. A.; Kulakov, G. V.; Sorokin, V. I.; Simonov, A. P.; Petrova, Z. N.; Fedotov, V. V.

    2010-01-01

    At A.A. Bochvar Institute a novel conception of IMF to burn civil and weapon's grade Pu is currently accepted. It consists in the fact, that instead of using pelletized IMF, that features low serviceability and dust forming route of fuel element fabrication, the usage is made of dispersion type fuel element with aluminium or zirconium matrices. Dispersion fuels feature a high irradiation resistance and reliability; they can consequently reach high burnups and be serviceable under transient conditions. Three basic fuel element versions are under development in VNIINM for both thermal and fast reactors. The first version is a fuel element with a heterogeneous arrangement of fuel (PuO 2 or YSZ granules) within an Al or Zr matrix. The second version of a fuel element has a heat conducting Al or Zr alloy matrix and an isolated arrangement of PuO 2 in a fuel minielement more fully meets the 'Rock Fuel' requirements. According to the third version a porous meat of zirconium metallurgically bonded to a fuel cladding is formed through which a PuO 2 powder is introduced. All the versions are technologically simple to fabricate and require minimal quantities of process operations related to treating MA and Pu. Preliminary in-pile tests of IMF prototypes are presented.

  3. Simulated orbits of heavy planetary ions at Mars for different IMF configurations

    NASA Astrophysics Data System (ADS)

    Curry, Shannon; Luhmann, Janet; Livi, Roberto; Hara, Takuya; Dong, Chuanfei; Ma, Yingjuan; McFadden, James; Bougher, Stephen

    2014-11-01

    We present simulated detections of O+, O2+ and CO2+ ions at Mars along a virtual orbit in the Mars space environment. Planetary pick-up ions are formed through the direct interaction of the solar wind with the neutral upper atmosphere, causing the newly created ions to be picked up and accelerated by the background convective electric field. Because previous missions such as Mars Global Surveyor (MGS) and Mars Express (MEX) have not been able to measure the interplanetary magnetic field (IMF) components simultaneously with plasma measurements, the response of heavy planetary pick-up ions to changes in the IMF has not been well characterized. Using a steady-state multi-species MHD model to provide the background electric and magnetic fields, the Mars Test Particle (MTP) simulation can trace each of these particles along field lines in near-Mars space and construct virtual ion detections from a spacecraft orbit. Specifically, we will present energy-time spectrograms and velocity space distributions (VSDs) for a selection of orbits during different IMF configurations and solar cycle conditions. These simulated orbits have broader implications for how to measure ion escape. Using individual particle traces, the origin and trajectories of different ion populations can be analyzed in order to assess how and where they contribute to the total atmospheric escape rate, which is a major objective of the upcoming MAVEN mission.

  4. 3D PIC Simulation of the Magnetosphere during IMF Rotation from North to South: Signatures of Substorm Triggering in the Magnetotail

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Cao. D/ S/; Lembege, B.

    2008-01-01

    Three dimensional PIC simulations are performed in order to analyse the dynamics of the magnetotail as the interplanetary magnetic field (IMF) rotates from northward to southward direction. This dynamics reveals to be quite different within meridian/equatorial planes over two successive phases of this rotation. First, as IMF rotates from North to Dawn-Dusk direction, the X-Point (magnetic reconnection) evidenced in the magnetotail (meridian plane) is moving earthward (from x=-35 Re to x=-17.5 ) distance at which it stabilizes. This motion is coupled with the formation of "Crosstail-S" patterns (within the plane perpendicular to the Sun-Earth mine) through the neutral sheet in the nearby magnetotail. Second, as IMF rotates from dawn-dusk to South, the minimum B field region is expanding within the equatorial plane and forms a ring. This two-steps dynamics is analyzed in strong association with the cross field magnetotail current Jy, in order to recover the signatures of substorms triggering.

  5. The IMF as a function of supersonic turbulence

    NASA Astrophysics Data System (ADS)

    Bertelli Motta, C.; Clark, P. C.; Glover, S. C. O.; Klessen, R. S.; Pasquali, A.

    2016-08-01

    Recent studies seem to suggest that the stellar initial mass function (IMF) in early-type galaxies might be different from a classical Kroupa or Chabrier IMF, i.e. contain a larger fraction of the total mass in low-mass stars. From a theoretical point of view, supersonic turbulence has been the subject of interest in many analytical theories proposing a strong correlation with the characteristic mass of the core mass function (CMF) in star forming regions, and as a consequence with the stellar IMF. Performing two suites of smoothed particles hydrodynamics (SPH) simulations with different mass resolutions, we aim at testing the effects of variations in the turbulent properties of a dense, star forming molecular cloud on the shape of the system mass function in different density regimes. While analytical theories predict a shift of the peak of the CMF towards lower masses with increasing velocity dispersion of the cloud, we observe in the low-density regime the opposite trend, with high Mach numbers giving rise to a top-heavy mass distribution. For the high-density regime we do not find any trend correlating the Mach number with the characteristic mass of the resulting IMF, implying that the dynamics of protostellar accretion discs and fragmentation on small scales is not strongly affected by turbulence driven at the scale of the cloud. Furthermore, we suggest that a significant fraction of dense cores are disrupted by turbulence before stars can be formed in their interior through gravitational collapse. Although this particular study has limitations in its numerical resolution, we suggest that our results, along with those from other studies, cast doubt on the turbulent fragmentation models on the IMF that simply map the CMF to the IMF.

  6. The prolonged southward IMF-Bz event of 2-4 May 1998: Solar, interplanetary causes and geomagnetic consequences

    NASA Astrophysics Data System (ADS)

    Bisoi, Susanta Kumar; Chakrabarty, D.; Janardhan, P.; Rastogi, R. G.; Yoshikawa, A.; Fujiki, K.; Tokumaru, M.; Yan, Y.

    2016-05-01

    A detailed investigation is carried out to understand the prolonged (˜44 h) weakly southward interplanetary magnetic field (IMF-Bz) condition during 2-4 May 1998. In situ observations, during the period, show the passage of an expanding magnetic cloud embedded in an interplanetary coronal mass ejection (ICME), followed up by a shock and an interplanetary discontinuity driven by another ICME. It is the arrival of the ICMEs and the upfront shocks that caused the prolonged southward IMF-Bz condition. The magnetic configuration of the source regions of the IMF associated with the ICME interval was also examined, which showed open magnetic field structures, emanating from a small active region on the north of the heliospheric current sheet (HCS). The structures remained constantly to the north of the HCS, both on 29 April and 1 May, suggesting no change in their polarity. The draping of these outward directed radial field lines around the propagating CMEs in the shocked plasma explains the observed polarity changes of the IMF-Bz at 1 AU. In addition, multiple enhancements were also detected in the geomagnetic field variations, which showed a distinct one-to-one correspondence with the density pulses observed at 1 AU, during 0700-1700 UT on 3 May. The spectral analyses of both the variations showed the same discrete frequencies of 0.48, 0.65, and 0.75 mHz, demonstrating that the solar wind density enhancements can cause detectable global geomagnetic disturbances. The observations, thus, provide a deeper insight into the possible causes and geomagnetic consequences of a prolonged weakly southward IMF-Bz condition.

  7. The Impact of the Integrated Galaxy IMF on Supernovae Rate

    NASA Astrophysics Data System (ADS)

    Molina, F.; Weidner, C.; Zoccali, M.

    2009-05-01

    Recent research regarding the star formation in star clusters on galaxy wide scales indicates that, in the hypothesis that all stars are born within clusters, the supposedly universal initial stellar mass function (IMF) within young star clusters, does not necessarily yield the same IMF for whole galaxies. As star clusters also follow an embedded cluster mass function (ECMF), the whole integrated galaxy initial stellar mass function (IGIMF) has to be steeper than the individual IMFs of star clusters -- depending on the steepness of the ECMF (Kroupa & Weidner 2003, ApJ, 598, 1076; Weidner & Kroupa 2005, ApJ, 625, 754). This result has found to be able to explain the mass-metallicity relation of galaxies (Köppen et al. 2007, MNRAS, 375, 673). Investigating the effects of the IGIMF further, this project concentrates on the expected temporal evolution of the supernova rate in comparison with a rate for a single-slope Salpeter-like IMF, for a wide range of galaxies with different masses and star-formation histories. Type II and type Ia supernovae are included at a later stage, as well as the influence of massive starbursts.

  8. Distinct Magnetospheric Responses to Southward IMF in Two Substorms

    NASA Technical Reports Server (NTRS)

    El-Alaoui, Mostafa; Ashour-Abdalla, M.; Richard, R. L.; Frank, L. A.; Paterson, W. R.; Sigwarth, J. B.

    2003-01-01

    Solar wind plasma parameters and the Interplanetary Magnetic Field (IMF) observed by the WIND spacecraft upstream of the bow shock were used as input to magnetohydrodynamic (MHD) simulations of two substorm events. The power deposited into the ionosphere due to electron precipitation was calculated both from VIS observations and from the simulations.

  9. Modern yields per stellar generation: the effect of the IMF

    NASA Astrophysics Data System (ADS)

    Vincenzo, F.; Matteucci, F.; Belfiore, F.; Maiolino, R.

    2016-02-01

    Gaseous and stellar metallicities in galaxies are nowadays routinely used to constrain the evolutionary processes in galaxies. This requires the knowledge of the average yield per stellar generation, yZ, i.e. the quantity of metals that a stellar population releases into the interstellar medium (ISM), which is generally assumed to be a fixed fiducial value. Deviations of the observed metallicity from the expected value of yZ are used to quantify the effect of outflows or inflows of gas, or even as evidence for biased metallicity calibrations or inaccurate metallicity diagnostics. Here, we show that y_{Z} depends significantly on the initial mass function (IMF), varying by up to a factor larger than three, for the range of IMFs typically adopted in various studies. Varying the upper mass cutoff of the IMF implies a further variation of yZ by an additional factor that can be larger than two. These effects, along with the variation of the gas mass fraction restored into the ISM by supernovae (R, which also depends on the IMF), may yield to deceiving results, if not properly taken into account. In particular, metallicities that are often considered unusually high can actually be explained in terms of yield associated with commonly adopted IMFs such as the Kroupa or Chabrier. We provide our results for two different sets of stellar yields (both affected by specific limitations) finding that the uncertainty introduced by this assumption can be as large as ˜0.2 dex. Finally, we show that yZ is not substantially affected by the initial stellar metallicity as long as Z > 10-3 Z⊙.

  10. Investigating the low-mass slope and possible turnover in the LMC IMF

    NASA Astrophysics Data System (ADS)

    Gennaro, Mario

    2014-10-01

    We propose to derive the Initial Mass Function (IMF) of the field population of the Large Magellanic Cloud (LMC) down to 0.2 solar masses, probing the mass regime where the characteristic IMF turnover is observed in our Galaxy. The power of the HST, using the WFC3 IR channel, is necessary to obtain photometric mass estimates for the faint, cool, dwarf stars with masses below the expected IMF turnover point. Only by probing the IMF down to such masses, it will be possible to clearly distinguish between a bottom-heavy or bottom-light IMF in the LMC. Recent studies, using the deepest available observations for the Small Magellanic Cloud, cannot find clear evidence of a turnover in the IMF for this galaxy, suggesting a bottom-heavy IMF in contrast to the Milky Way. A similar study of the LMC is needed to confirm a possible dependence of the low-mass IMF with galactic environment. Studies of giant ellipticals have recently challenged the picture of a universal IMF, and suggest an enviromental dependence of the IMF, with the most massive galaxies having a larger fraction of low mass stars and no IMF turnover. A study of possible IMF variations from resolved stellar populations in nearby galaxies is of great importance in sheding light on this issue. Our simple approach, using direct evidence from basic star counts, is much less prone to systematic errors with respect to studies of more distant objects which have to rely on the observations of integrated properties.

  11. Windsock memory COnditioned RAM (CO-RAM) pressure effect: Forced reconnection in the Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Vörös, Z.; Facskó, G.; Khodachenko, M.; Honkonen, I.; Janhunen, P.; Palmroth, M.

    2014-08-01

    Magnetic reconnection (MR) is a key physical concept explaining the addition of magnetic flux to the magnetotail and closed flux lines back-motion to the dayside magnetosphere. This scenario elaborated by Dungey (1963) can explain many aspects of solar wind-magnetosphere interaction processes, including substorms. However, neither the Dungey model nor its numerous modifications were able to explain fully the onset conditions for MR in the tail. In this paper, we introduce new onset conditions for forced MR in the tail. We call our scenario the "windsock memory conditioned ram pressure effect." Our nonflux transfer-associated forcing is introduced by a combination of the large-scale windsock motions exhibiting memory effects and solar wind dynamic pressure actions on the nightside magnetopause during northward oriented interplanetary magnetic field (IMF). Using global MHD Grand Unified Magnetosphere Ionosphere Coupling Simulation version 4 simulation results, upstream data from Wind, magnetosheath data from Cluster 1 and distant tail data from the two-probe Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun mission, we show that the simultaneous occurrence of vertical windsock motions of the magnetotail and enhanced solar wind dynamic pressure introduces strong nightside disturbances, including enhanced electric fields and persistent vertical cross-tail shear flows. These perturbations, associated with a stream interaction region in the solar wind, drive MR in the tail during episodes of northward oriented interplanetary magnetic field (IMF). We detect MR indirectly, observing plasmoids in the tail and ground-based signatures of earthward moving fast flows. We also consider the application to solar system planets and close-in exoplanets, where the proposed scenario can elucidate some new aspects of solar/stellar wind-magnetosphere interactions.

  12. ULF foreshock under radial IMF: THEMIS observations and global kinetic simulation Vlasiator results compared

    NASA Astrophysics Data System (ADS)

    Palmroth, M.; Archer, M.; Vainio, R.; Hietala, H.; Pfau-Kempf, Y.; Hoilijoki, S.; Hannuksela, O.; Ganse, U.; Sandroos, A.; Alfthan, S. von; Eastwood, J. P.

    2015-10-01

    For decades, monochromatic large-scale ultralow frequency (ULF) waves with a period of about 30 s have been observed upstream of the quasi-parallel bow shock. These waves typically propagate obliquely with respect to the interplanetary magnetic field (IMF), while the growth rate for the instability causing the waves is maximized parallel to the magnetic field. It has been suggested that the mechanism for the oblique propagation concerns wave refraction due to the spatial variability of the suprathermal ions, originating from the E × B drift component. We investigate the ULF foreshock under a quasi-radial IMF with Vlasiator, which is a newly developed global hybrid-Vlasov simulation solving the Vlasov equation for protons, while electrons are treated as a charge-neutralizing fluid. We observe the generation of the 30 s ULF waves and compare their properties to previous literature and multipoint Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft observations. We find that Vlasiator reproduces the foreshock ULF waves in all reported observational aspects. We conclude that the variability of the density and velocity of the reflected back streaming ions determines the large-scale structure of the foreshock, which affects the wave frequency, wavelength, and oblique propagation. We conclude that the wave refraction may also be at work for radial IMF conditions, which has earlier been thought of as an exception to the refraction mechanism due to the small E × B drift component. We suggest that additional refraction may be caused by the large-scale spatial variability of the density and velocity of the back streaming ions.

  13. The Magnetospheric Response to Abrupt Variations in the IMF Orientation

    NASA Astrophysics Data System (ADS)

    Sibeck, D. G.

    2014-12-01

    We run the University of Michigan's BATS-R-US global magnetohydrodynamic model at NASA/GSFC's CCMCto study the magnetospheric response to abrupt variations in the IMF orientation but constant solar wind plasmaparameters. IMF rotations from southward to duskward orientations diminish reconnection rates and the flow ofplasma to the dayside magnetopause, launch Alfven waves that carry strong duskward magnetic field perturbationsto the cusp ionosphere, introduce a weak duskward magnetic field perturbation to the outer dayside magnetosphere, twistthe magnetotail current sheet counterclockwise when viewed from the Sun, flatten the north/south dimensions of the distant magnetotail, andgenerate a broad slow-mode fan on the magnetotail flanks. Southward IMF turnings strengthen the Region 1 Birkelandcurrents, prominently depressing magnetic field strengths in the inner dayside magnetosphere and to a lesserdegree those in the outer magnetosphere, consistent with inward dayside magnetopause erosion. The daysidemagnetopause becomes blunter. As evidenced by enhanced magnetosheath thermal and magnetosphericmagnetic pressures, the magnetopause therefore becomes subject to a greater fraction of the incident solar winddynamic pressure at locations away from the subsolar point.

  14. ZFIRE Survey: Studying the IMF at z~2

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Themiya

    2015-08-01

    The development of sensitive Near Infra-Red instruments has made it possible to study the galaxy properties at z~2, just 3Gy after the Big Bang. This is expected to be the time period where galaxies are actively star forming and evolving rapidly to form the massive galaxies that are observed in our local neighborhood.As a part of the ZFIRE survey we used the MOSFIRE on Keck to study environment, metallicity and ISM properties of galaxies at these redshifts. This allowed us to spectroscopically confirm the highest redshift cluster found so far.In my talk I will present results of the first ever attempt to constrain the Initial Mass Function (IMF) of galaxies at these redshifts using a cluster and a field sample. We have investigated the degeneracy between the star formation histories and the IMF to make strong constrains on the stellar mass distribution of these galaxies using synthetic stellar spectra. Our results will demonstrate the possibility of the universality of the IMF as a function of time and environment.

  15. Venus ionopause 'clouds' and IMF sector boundaries

    NASA Astrophysics Data System (ADS)

    Luhmann, Janet G.; Russell, C. T.; Wei, Hanying; Ma, Yingjuan; Zhang, Tielong; McEnulty, T.

    Disconnected or partially connected structures observed by the PVO Langmuir Probe near the ionopause of Venus were called 'clouds' by Brace et al. (1980). These authors speculated that the loss of atmosphere represented by these features could be significant compared to other loss processes. Russell et al. (1982) subsequently showed that the clouds occurred together with sharp rotations in the magnetic field. They suggested that the extreme draping of the interplanetary field that occurs near the ionopause at the draping poles could exert JxB forces sufficient to pull the ionospheric plasma in the cloud tailward and out into the heliosphere. But in 1991, Ong et al. demonstrated via analysis of many clouds that they are not generally seen in the polar regions of the draped magnetosheath field. Instead they occur at times when the interplanetary magnetic field undergoes a sudden rotation, as in interplanetary field sector boundaries. We discuss the statistics of such rotations at the orbit of Venus and their frequency as a function of solar cycle. Whether they enable or enhance escape or not requires simulation studies, but this study calls attention to the potential importance of time dependent external conditions.

  16. The Turbulent ISM of Galaxies 10 Gyrs ago: Star Formation, Gas Accretion, and IMF

    NASA Astrophysics Data System (ADS)

    Le Tiran, Loïc; Lehnert, Matthew D.

    2011-12-01

    The utilization of integral-field spectroscopy has led us to a new understanding of the physical conditions in galaxies within the first few billion years after the Big Bang. In this proceedings, we analyze observations of ~50 massive galaxies as seen as they were 10 Gyrs ago using SINFONI from the ESO-VLT. We show that the large line width they exhibit can be explained by the intense mechanical energy output from the young stars. We also study the influence of cold gas accretion upon these galaxies: We show that an unrealistic amount of shocked gas would be needed in order to explain the Hα emission from these galaxies through shocks from gas accretion with velocity about the Hα line widths of these galaxies. We also use DEEP2 photometric measurements for a sub-sample of 10 of these galaxies to evaluate their ratio of Hα to FUV flux as a function of their Hα and R-band luminosity surface brightnesses. Our data suggests that perhaps their initial mass function (IMF) is flatter than Salpeter at the high mass end, as has been suggested recently for some local galaxies. It may be that high turbulence is responsible for skewing the IMF towards more massive stars as suggested by some theories of star-formation. Much work is however needed to accredit this hypothesis.

  17. Classification of Initial conditions required for Substorm prediction.

    NASA Astrophysics Data System (ADS)

    Patra, S.; Spencer, E. A.

    2014-12-01

    We investigate different classes of substorms that occur as a result of various drivers such as the conditions in the solar wind and the internal state of the magnetosphere ionosphere system during the geomagnetic activity. In performing our study, we develop and use our low order physics based nonlinear model of the magnetosphere called WINDMI to establish the global energy exchange between the solar wind, magnetosphere and ionosphere by constraining the model results to satellite and ground measurements. On the other hand, we make quantitative and qualitative comparisons between our low order model with available MHD, multi-fluid and ring current simulations in terms of the energy transfer between the geomagnetic tail, plasma sheet, field aligned currents, ionospheric currents and ring current, during isolated substorms, storm time substorms, and sawtooth events. We use high resolution solar wind data from the ACE satellite, measurements from the CLUSTER and THEMIS missions satellites, and ground based magnetometer measurements from SUPERMAG and WDC Kyoto, to further develop our low order physics based model. Finally, we attempt to answer the following questions: 1) What conditions in the solar wind influence the type of substorm event. This includes the IMF strength and orientation, the particle densities, velocities and temperatures, and the timing of changes such as shocks, southward turnings or northward turnings of the IMF. 2) What is the state of the magnetosphere ionosphere system before an event begins. These are the steady state conditions prior to an event, if they exist, which produce the satellite and ground based measurements matched to the WINDMI model. 3) How does the prior state of the magnetosphere influence the transition into a particular mode of behavior under solar wind forcing. 4) Is it possible to classify the states of the magnetosphere into distinct categories depending on pre-conditioning, and solar wind forcing conditions? 5) Can we

  18. Strong gravitational lensing and the stellar IMF of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Leier, Dominik; Ferreras, Ignacio; Saha, Prasenjit; Charlot, Stéphane; Bruzual, Gustavo; La Barbera, Francesco

    2016-07-01

    Systematic variations of the initial mass function (IMF) in early-type galaxies, and their connection with possible drivers such as velocity dispersion or metallicity, have been much debated in recent years. Strong lensing over galaxy scales combined with photometric and spectroscopic data provides a powerful method to constrain the stellar mass-to-light ratio and hence the functional form of the IMF. We combine photometric and spectroscopic constraints from the latest set of population synthesis models of Charlot & Bruzual, including a varying IMF, with a non-parametric analysis of the lens masses of 18 ETGs from the SLACS survey, with velocity dispersions in the range 200-300 km s-1. We find that very bottom-heavy IMFs are excluded. However, the upper limit to the bimodal IMF slope (μ ≲ 2.2, accounting for a dark matter fraction of 20-30 per cent, where μ = 1.3 corresponds to a Kroupa-like IMF) is compatible at the 1σ level with constraints imposed by gravity-sensitive line strengths. A two-segment power-law parametrization of the IMF (Salpeter-like for high masses) is more constrained (Γ ≲ 1.5, where Γ is the power index at low masses) but requires a dark matter contribution of ≳25 per cent to reconcile the results with a Salpeter IMF. For a standard Milky Way-like IMF to be applicable, a significant dark matter contribution is required within 1Re. Our results reveal a large range of allowed IMF slopes, which, when interpreted as intrinsic scatter in the IMF properties of ETGs, could explain the recent results of Smith et al., who find Milky Way-like IMF normalizations in a few massive lensing ETGs.

  19. Strong Gravitational Lensing and the Stellar IMF of Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Leier, Dominik; Ferreras, Ignacio; Saha, Prasenjit; Charlot, Stéphane; Bruzual, Gustavo; La Barbera, Francesco

    2016-04-01

    Systematic variations of the IMF in early-type galaxies, and their connection with possible drivers such as velocity dispersion or metallicity, have been much debated in recent years. Strong lensing over galaxy scales combined with photometric and spectroscopic data provides a powerful method to constrain the stellar mass-to-light ratio and hence the functional form of the IMF. We combine photometric and spectroscopic constraints from the latest set of population synthesis models of Charlot & Bruzual, including a varying IMF, with a non-parametric analysis of the lens masses of 18 ETGs from the SLACS survey, with velocity dispersions in the range 200-300 km s-1. We find that very bottom-heavy IMFs are excluded. However, the upper limit to the bimodal IMF slope (μ ≲ 2.2, accounting for a dark matter fraction of 20-30%, where μ = 1.3 corresponds to a Kroupa-like IMF) is compatible at the 1 σ level with constraints imposed by gravity-sensitive line strengths. A two-segment power law parameterisation of the IMF (Salpeter-like for high masses) is more constrained (Γ ≲ 1.5, where Γ is the power index at low masses) but requires a dark matter contribution of ≲ 25% to reconcile the results with a Salpeter IMF. For a standard Milky Way-like IMF to be applicable, a significant dark matter contribution is required within 1Re. Our results reveal a large range of allowed IMF slopes, which, when interpreted as intrinsic scatter in the IMF properties of ETGs, could explain the recent results of Smith et al., who find Milky Way-like IMF normalisations in a few massive lensing ETGs.

  20. Relationship between the observed and modeled modulation of the dayside ionospheric convection by the IMF B{sub y} component

    SciTech Connect

    Papitashvili, V.O.; Clauer, C.R.; Levitin, A.E.

    1995-05-01

    The Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) electrodynamic model (IZMEM) provides global patterns of polar ionospheric potential and is parameterized by the interplanetary magnetic field (IMF). Given IMF conditions measured by an upstream satellite, the model yields a good global approximation to the polar ionospheric convection patterns assuming the proper time delay. While the model assumes static patterns and is based upon statistical regression analysis of high-latitude magnetometer data, it can furnish an appropriate global context within which to examine time-varying phenomena. The authors use the IZMEM model to further develop their understanding of the coordinated analysis of Greenland radar, riometer, and magnetometer data on August 2, 1991, which is one of the geospace environment modeling program intervals. The event is characterized by geomagnetic pulsations observed near local magnetic noon, having a 25-min period and poleward phase propagation. A modulation of the intensity and orientation of the convection electric field is observed by the Sondrestrom incoherent scatter radar. Modeled global convection patterns show striking agreement with observations in the area covered by the radar field of view. The authors interpret observed phenomena as a direct ground-based evidence of the IMF B{sub y} component reconnection at the dayside magnetopause. 31 refs., 6 figs.

  1. The effect of changing solar wind conditions on the inner magnetosphere and ring current: A model data comparison

    NASA Astrophysics Data System (ADS)

    Patra, S.; Spencer, E.

    2015-08-01

    We investigate the rate at which the open drift paths in the near-Earth magnetosphere convert to closed paths during events with a sudden northward turning of the interplanetary magnetic field (IMF Bz) after the peak of a geomagnetic storm. The geomagnetic storm on 17 August 2001 with an abrupt turning of the IMF Bz after the peak in SYM-H index is chosen in this study. The Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme model along with the Fok Ring Current (FRC) model available at Community Coordinated Modeling Center is used to model this event. The unique movie maps of the worldwide magnetometer stations are used to compare with the numerical results. The results indicate that ground magnetic disturbance remains asymmetric for some time after the start of the recovery phase even for a storm with abrupt northward turning of the IMF Bz. FRC simulation results suggest that the flow-out losses decrease under weakened magnetospheric convection but at a rate slower than the change in IMF Bz. These results indicate that the flow-out losses rapidly become smaller as the IMF Bz turns northward during the early recovery phase of a storm and the contribution of the tail current to the SYM-H index is important.

  2. The SFR and IMF of the galactic disk

    NASA Astrophysics Data System (ADS)

    Just, Andreas

    2003-04-01

    There is a long term dynamical heating of stellar populations with age observed in the age velocity dispersion relation (AVR). This effect allows a determination of the star formation history SFR(t) from local kinematical data of main sequence stars. Using a self-consistent disk model for the vertical structure of the disk, we find from the kinematics of the stars in the solar neighbourhood that the SFR shows a moderate star burst about 10 Gyr ago followed by a continuous decline to the present day value consistent with the observed number of OB stars. The gravitational potential of the gas component and of the Dark Matter Halo is included and the effect of chemical enrichment, finite lifetime of the stars and mass loss of the stellar component are taken into account. The scale heights for main sequence stars together with the SFR is then used to determine constistently the IMF from the observed local luminosity function. The main new result is that the power law break in the present day mass function (PDMF) around 1 M ⊙ is entirely due to evolutionary effects of the disk and does not appear in the IMF.

  3. Are Unusual Solar Wind Conditions in SC23-24 Triggering Changes in the Geospace Response to High Speed Streams? (Invited)

    NASA Astrophysics Data System (ADS)

    Kozyra, J. U.; Brandt, P. C.; Buzulukova, N.; de Zeeuw, D.; Fok, M. H.; Frey, H. U.; Gibson, S. E.; Ilie, R.; Liemohn, M. W.; Mende, S. B.; Paxton, L. J.; Rastaetter, L.; Ridley, A. J.; Thomsen, M. F.

    2009-12-01

    In the descent to solar minimum in solar cycle 23-24, the high-speed streams (HSS) were faster and longer lived than previous cycles but the average IMF was weaker and the average solar wind density lower than ever before recorded upstream of the Earth. A simulation of high speed stream activity on 22-24 January 2005 using the BATS-R-US MHD model with embedded Rice Convection Model driven by solar wind inputs indicates that, at least for this event, the interaction between high speed streams and the magnetosphere has been modified by these unusual solar wind conditions. Northward IMF in the HSS drove the periodic capture of solar wind/magnetosheath plasma in the dayside magnetosphere due to high-latitude reconnection. At times of observed strong periodic auroral activity, a significant IMF By component produced a magnetospheric sash configuration in the simulations in which fingers of enhanced plasma beta were associated with strong field-aligned currents linking to the nightside auroral region. In agreement with the simulations, IMAGE HENA observed low energy (less than tens of keV) hydrogen energetic neutral atoms peaking on the dayside for the 3-days of the high speed stream activity. IMAGE FUV and TIMED GUVI observed periodic auroral activations during the HSS that resembled poleward boundary intensifications (PBIs) rather than the periodic substorms typically associated with HSS. The locations of the observed PBIs in the southern hemisphere were consistent with the high-beta fingers in the near-Earth plasma sheet predicted by the simulation. Particle injection signatures at LANL geosynchronous satellites accompanied the PBIs. To our knowledge, these results provide the first evidence in support of the role of northward IMF in HSS interactions. Based on these results, a study of energetic neutral atom images from TWINS and IMAGE HENA along with observations from other missions in the Heliophysics System Observatory is underway to determine if these

  4. A Northward Shift of the North Atlantic Ocean Intertropical Convergence Zone in Response to Summertime Saharan Dust Outbreaks

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Lau, K. M.; Kim, Kyu-Myong

    2010-01-01

    The influence on the summertime North Atlantic Ocean inter-tropical convergence zone (ITCZ) of Saharan dust outbreaks is explored using nine years of continuous satellite observations and atmospheric reanalysis products. During dust outbreak events rainfall along the ITCZ shifts northward by 1 to 4 degrees latitude. Dust outbreaks coincide with warmer lower-tropospheric temperatures compared to low dust conditions, which is attributable to advection of the warm Saharan Air Layer, enhanced subtropical subsidence, and radiative heating of dust. The enhanced positive meridional temperature gradient coincident with dust outbreaks is accompanied by an acceleration of the easterly winds on the n011h side of the African Easterly Jet (AEJ). The center of the positive vorticity region south of the AEJ moves north drawing the center of low-level convergence and ITCZ rainfall northward with it. The enhanced precipitation on the north side of the ITCZ occurs in spite of widespread sea surface temperature cooling north of the ITCZ owing to reduced surface solar insolation by dust scattering.

  5. Case Study of Solar Wind and IMF Influence on Ionospheric Outflow

    NASA Technical Reports Server (NTRS)

    Elliott, H. A.; Comfort, R. H.; Craven, P. D.; Chandler, M. O.; Moore, T. E.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We examine ionospheric outflows in the high attitude magnetospheric polar cap during the POLAR satellite's apogee on 04/19/96 using the TIDE instrument. The pass has a fairly constant flux of H+ which is similar to many other passes, but there is a large amount of O+ present. The elevated levels of O+ may be due both to the geophysical conditions during the apogee pass (Kp=5) and prior to the pass. When the outflows for many high altitude polar cap passes are analyzed the O+ density correlates well with the dynamic pressure. There are several aspects of this pass which are interesting besides the abundance of O+ relative to H+. In this pass both the H+ and O+ outflow velocity correlate with both the solar wind speed and Interplanetary Magnetic Field (IMF) Bx. The geophysical conditions are such that the solar wind speed and IMF Bx are highly correlated with each other. For this case the dynamic pressure of the solar wind is fairly constant and has an average value of about 2.5 nPa which is typical for the solar wind, but the average solar wind speed is about 695 km/s which is greater than 450 km/s which is typical for the solar wind at I AU. The ion outflow measurements themselves are interrelated. The H+ density and parallel speed are anticorrelated which results in the constant flux. The 0+ density does not have as large of a anticorrelation with its parallel speed as H+ does with its parallel speed.

  6. Probabilistic Forecasting Analysis of Geomagnetic Indices for IMF Bs-events

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Moldwin, M.

    2014-12-01

    Strong southward interplanetary magnetic field (IMF Bs) intervals are important to drive disturbances in the Earth's magnetosphere. However, high-accuracy forecast of IMF Bz is not available from current heliospheric models. Here we perform a follow-up study of McPherron and Siscoe [2004] to examine the statistical characteristics of interplanetary plasma/magnetic field and probability distribution function of geomagnetic activity indices for strong IMF Bs intervals. It is shown that the occurrence of long-duration, large-amplitude IMF Bs intervals, related with different solar wind transients (such as ICME, SIR), are preceded by and change with a distinctive set of other solar wind/IMF parameters. We find that solar wind speed is positively correlated with geomagnetic indices, and that strong IMF Bs is the key to trigger storm but not necessarily substorm. We also find that solar wind density weakly affects geomagnetic activity, and the response depends on different kinds of solar wind transients that include the strong IMF Bs-events. We also find that magnetospheric ULF waves are induced by both strong southward IMF intervals and solar wind dynamic pressure disturbances.

  7. The Earth’s magnetosphere response to interplanetary medium conditions on January 21-22, 2005 and on December 14-15, 2006

    NASA Astrophysics Data System (ADS)

    Kalegaev, V. V.; Vlasova, N. A.

    2014-08-01

    The Earth’s magnetosphere response to interplanetary medium conditions on January 21-22, 2005 and on December 14-15, 2006 has been studied. The analysis of solar wind parameters measured by ACE spacecraft, of geomagnetic indices variations, of geomagnetic field measured by GOES 11, 12 satellites, and of energetic particle fluxes measured by POES 15, 16, 17 satellites was performed together with magnetospheric modeling based in terms of A2000 paraboloid model. We found the similar dynamics of three particle populations (trapped, quasi-trapped, and precipitating) during storms of different intensities developed under different external conditions: the maximal values of particle fluxes and the latitudinal positions of the isotropic boundaries were approximately the same. The main sources caused RC build-up have been determined for both magnetic storms. Global magnetospheric convection controlled by IMF and substorm activity driven magnetic storm on December 14-15, 2006. Extreme solar wind pressure pulse was mainly responsible for RC particle injection and unusual January 21, 2005 magnetic storm development under northward IMF during the main phase.

  8. IMF-By effect on the mid-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Maruyama, Takashi; Jin, Hidekatsu

    The primary factor that controls ionospheric total electron content (TEC) variations is solar UV/EUV radiations through the ionization of the thermospheric neutral particles and through the modification of the thermosphere. Changes in temperature and composition of the neutral atmosphere and the atmospheric circulation greatly affect the ionospheric electron density. Because such a relationship between the solar spectral irradiance and the ionospheric TEC is highly complex, we applied an artificial neural network (ANN) technique that has a great capability of function approximation of complex systems to model solar irradiance effects on TEC. Three solar proxies, F_{10.7}, SOHO_SEM_{26-34} EUV emission index, and MgII_c-w-r were chosen as input parameters to the ANN-TEC model. Another channel of energy flow from the sun to the earth’s ionosphere is the solar wind. The am index and several solar wind magnetosphere coupling functions were chosen as additional inputs to the ANN to model the effects of magnetic disturbances. Somewhat minor but interesting effects on TEC variations emerged when the major effects of solar irradiance and magnetic disturbances were removed. We analyzed the time series of the residual error in TEC prediction by using a wavelet transformation, which revealed a periodic increase in error approximately every 27 days in the summer. Possible origins of the error are (1) insufficient modeling of the solar activity effect, (2) lunar tidal forcing, (3) coupling with planetary waves in the lower atmosphere, and (4) solar wind effects. Examinations refused the first three possibilities. We investigated solar wind parameters that are not concerned in geomagnetic disturbances. The 27-day periodic error during the summer disappeared when the IMF-By component and the solar wind velocity were included in the input space of the ANN. Possible explanation of the IMF-By effect is discussed in terms of changes in the thermospheric general circulation pattern.

  9. Response of reverse convection to fast IMF transitions

    NASA Astrophysics Data System (ADS)

    Taguchi, S.; Tawara, A.; Hairston, M. R.; Slavin, J. A.; Le, G.; Matzka, J.; Stolle, C.

    2015-05-01

    The nature of the transition that high-latitude reverse convection makes in response to fast interplanetary magnetic field (IMF) changes is investigated using observations from multiple spacecraft and a ground magnetometer array. We focused on two fast IMF-transition events on 22 April 2006. Immediately after the first event, three ST5 spacecraft identified a clear change in the distribution of the polar cap field-aligned current. Coordinate observations with the Greenland magnetometer chain showed that the near-noon Hall current distribution, which is closely related to the polar cap field-aligned current or reverse convection, was in a transition state for about 10 min. For the second event, the Greenland magnetic perturbations also showed that a transition state occurred in the near-noon sector for 10-15 min. Three DMSP spacecraft that traversed the polar cap provided evidence showing that variations of the ground magnetic perturbations were produced by the transition from clockwise plasma circulation to the anticlockwise circulation over the polar cap. A simple calculation based on the Biot-Savart law shows that the near-noon transition state is consistent with the approach of a new convection region to the near-noon sector at the speed of 0.5-1 km s-1, which is coupled with the moving away of the old convection region at a similar speed. For the higher-latitude sunward flow region, it is found that the convection takes a transition state almost simultaneously (within 1 min) with that in the near-noon sector, i.e., quasi-instantaneous response.

  10. NORTHWARD EXPANSION OF A MARINE PARASITE: TESTING THE ROLE OF TEMPERATURE ADAPTATION

    EPA Science Inventory

    The known range of the eastern oyster (Crassostrea virginica) parasite, Perkinsus marinus, expanded into the northeastern United States in the early 1990s. We used both in vitro and in vivo data to test the hypothesis that the northward expansion was associated with a low-tempera...

  11. High-latitude geomagnetic effects of the main phase of the geomagnetic storm of November 24, 2001 with the Northern direction of IMF

    NASA Astrophysics Data System (ADS)

    Kleimenova, N. G.; Gromova, L. I.; Dremukhina, L. A.; Levitin, A. E.; Zelinsky, N. R.; Gromov, S. V.

    2015-03-01

    The high-latitude geomagnetic events that occurred under extreme space weather conditions during the non-typical development of the main phase of the strong magnetic storm of November 24, 2001 were studied. The development of the main phase was or ceased by a sharp turn of the IMF to the north and the appearance of extremely high (up to about 60 nT) positive IMF Bz values; in this period, high alternating IMF By values were observed (from +40 to -40 nT) against a high dynamic pressure of the solar wind, with sharp bursts up to 50-70 nPa. This resulted in the cessation of nighttime substorms. Magnetic disturbances were recorded on the Earth's surface only in the daytime sector of polar latitudes as a very strong magnetic bay with amplitude of about 2000 nT. According to model calculations, a sharp intensification of field-aligned currents of the NBZ system was noted in that region. The onset of the daytime polar magnetic bay was accompanied by an auroral burst and strong local geomagnetic pulsations in the ˜(2-7) mHz band. Bursts of fluctuations in the solar wind and IMF were not accompanied by simultaneous bursts in ground based high-latitude geomagnetic pulsations, that is, the direct penetration of solar wind and IMF pulsations into the magnetosphere was unlikely to occur. The daytime polar geomagnetic pulsations observed on the Earth's surface could be caused by variations in high-latitude field-aligned currents, which were excited in a turbulent daytime boundary layer as a result of interaction with solar wind inhomogeneities.

  12. On the electrodynamical state of the auroral ionosphere during northward interplanetary magnetic field: A transpolar arc case study

    SciTech Connect

    Marklund, G.T.; Blomberg, L.G. ); Murphree, J.S.; Elphinstone, R.D. ); Zanetti, L.J.; Erlandson, R.E. ); Sandahl, I. ); de la Beaujardiere, O. ); Opgenoorth, H. ); Rich, F.J. )

    1991-06-01

    The ionospheric electrodynamical state has been reconstructed for a transpolar arc event during northward interplanetary magnetic field conditions. An extensive set of observations by Viking and other satellites and by ground-based radars has been used to provide realistic model input data or to verify the modeling results. The resulting convection pattern is found to be consistent with the Viking electric field and intimately linked to the prevalent auroral distribution. It is characterized by a large evening cell, well extended across noon and split up by two separated potential minima, and a minor crescent-shaped morning cell. The convection signatures are found to vary a lot along the transpolar arc depending on the relative role of the arc-associated convection and the ambient convection. The transpolar arc is generally embedded in antisunward convective flow except near the connection points with the auroral oval, where sunward flow exists in localized regions.

  13. Gradient in the IMF slope and Sodium abundance of M87 with MUSE

    NASA Astrophysics Data System (ADS)

    Spiniello, C.; Sarzi, M.; Krajnovic, D.

    2016-06-01

    We present evidence for a radial variation of the stellar initial mass function IMF) in the giant elliptical NGC~4486 based on integral-field MUSE data acquired during the first Science Verification run for this instrument. A steepening of the low-mass end of the IMF towards the centre of this galaxy is necessary to explain the increasing strength of several of the optical IMF sensitive features introduced by Spiniello et al., which we observe in high-quality spectra extracted in annular apertures. The need for a varying slope of the IMF emerges when the strength of these IMF-sensitive features, together with that other classical Lick indices mostly sensitive to stellar metallicity and the bundance of α-elements, are fitted with the state-of-the-art stellar population models from Conroy & van Dokkum and Vazdekis et al., which we modified in order to allow variations in IMF slope, metallicity and α-elements abundance. More specifically, adopting 13-Gyr-old, single-age stellar population models and an unimodal IMF we find that the slope of the latter increases from x=1.8 to x=2.6 in the central 25 arcsec of NGC~4486. Varying IMF accompanied by a metallicity gradient, whereas the abundance of α-element appears constant throughout the MUSE field of view. We found metallicity and α-element abundance gradients perfectly consistent with the literature. A sodium over-abundance is necessary (according to CvD12 models) at all the distances (for all the apertures) and a slight gradient of increasing [Na/Fe] ratio towards the center can be inferred. However, in order to completely break the degeneracies between Na-abundance, total metallicity and IMF variation a more detailed investigation that includes the redder NaI line is required.

  14. Modelling the Northward Expansion of Culicoides sonorensis (Diptera: Ceratopogonidae) under Future Climate Scenarios

    PubMed Central

    Lysyk, Timothy; Johnson, Gregory; Marshall, Shawn; Berger, Kathryn; Cork, Susan Catherine

    2015-01-01

    Climate change is affecting the distribution of pathogens and their arthropod vectors worldwide, particularly at northern latitudes. The distribution of Culicoides sonorensis (Diptera: Ceratopogonidae) plays a key role in affecting the emergence and spread of significant vector borne diseases such as Bluetongue (BT) and Epizootic Hemorrhagic Disease (EHD) at the border between USA and Canada. We used 50 presence points for C. sonorensis collected in Montana (USA) and south-central Alberta (Canada) between 2002 and 2012, together with monthly climatic and environmental predictors to develop a series of alternative maximum entropy distribution models. The best distribution model under current climatic conditions was selected through the Akaike Information Criterion, and included four predictors: Vapour Pressure Deficit of July, standard deviation of Elevation, Land Cover and mean Precipitation of May. This model was then projected into three climate change scenarios adopted by the IPCC in its 5th assessment report and defined as Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5. Climate change data for each predictor and each RCP were calculated for two time points pooling decadal data around each one of them: 2030 (2021–2040) and 2050 (2041–2060). Our projections showed that the areas predicted to be at moderate-high probability of C. sonorensis occurrence would increase from the baseline scenario to 2030 and from 2030 to 2050 for each RCP. The projection also indicated that the current northern limit of C. sonorensis distribution is expected to move northwards to above 53°N. This may indicate an increased risk of Culicoides-borne diseases occurrence over the next decades, particularly at the USA-Canada border, as a result of changes which favor C. sonorensis presence when associated to other factors (i.e. host and pathogen factors). Recent observations of EHD outbreaks in northern Montana and southern Alberta supported our projections and

  15. Modelling the Northward Expansion of Culicoides sonorensis (Diptera: Ceratopogonidae) under Future Climate Scenarios.

    PubMed

    Zuliani, Anna; Massolo, Alessandro; Lysyk, Timothy; Johnson, Gregory; Marshall, Shawn; Berger, Kathryn; Cork, Susan Catherine

    2015-01-01

    Climate change is affecting the distribution of pathogens and their arthropod vectors worldwide, particularly at northern latitudes. The distribution of Culicoides sonorensis (Diptera: Ceratopogonidae) plays a key role in affecting the emergence and spread of significant vector borne diseases such as Bluetongue (BT) and Epizootic Hemorrhagic Disease (EHD) at the border between USA and Canada. We used 50 presence points for C. sonorensis collected in Montana (USA) and south-central Alberta (Canada) between 2002 and 2012, together with monthly climatic and environmental predictors to develop a series of alternative maximum entropy distribution models. The best distribution model under current climatic conditions was selected through the Akaike Information Criterion, and included four predictors: Vapour Pressure Deficit of July, standard deviation of Elevation, Land Cover and mean Precipitation of May. This model was then projected into three climate change scenarios adopted by the IPCC in its 5th assessment report and defined as Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5. Climate change data for each predictor and each RCP were calculated for two time points pooling decadal data around each one of them: 2030 (2021-2040) and 2050 (2041-2060). Our projections showed that the areas predicted to be at moderate-high probability of C. sonorensis occurrence would increase from the baseline scenario to 2030 and from 2030 to 2050 for each RCP. The projection also indicated that the current northern limit of C. sonorensis distribution is expected to move northwards to above 53°N. This may indicate an increased risk of Culicoides-borne diseases occurrence over the next decades, particularly at the USA-Canada border, as a result of changes which favor C. sonorensis presence when associated to other factors (i.e. host and pathogen factors). Recent observations of EHD outbreaks in northern Montana and southern Alberta supported our projections and considerations

  16. High-time resolution measurements of upstream magnetic field and plasma conditions during flux transfer events at the Earth's dayside magnetopause

    NASA Technical Reports Server (NTRS)

    Jacob, Jamey D.; Carrell, Cynthia

    1993-01-01

    We present preliminary results of a study of upstream magnetic field and plasma conditions measured by IRM during flux transfer events observed at the Earth's magnetopause by CCE. This study was designed to determine the importance of various upstream factors in the formation of bipolar magnetic field signatures called flux transfer events (FTEs). Six FTE encounters were examined. In three cases, the two satellites were on similar magnetic field lines. Preliminary investigation showed that fluctuations occurred in the Bz component of the interplanetary magnetic field (IMF) resulting in a southward field preceding the FTE in all three of these cases. In two of these cases, the changes were characterized by a distinct rotation from a strong southward to a strong northward field. There were also accompanying changes in the dynamic and thermal pressure in the solar wind immediately before the FTE was encountered. Examination of the 3D plasma distributions showed that these pulses were due to the addition of energetic upstreaming foreshock particles. There were no consistent changes in either Bz or the plasma pressure at IRM for the three events when the satellites were not connected by the IMF.

  17. Polar, Cluster and SuperDARN Evidence for High-Latitude Merging during Southward IMF: Temporal/Spatial Evolution

    NASA Technical Reports Server (NTRS)

    Maynard, N. C.; Ober, D. M.; Burke, W. J.; Scudder, J. D.; Lester, M.; Dunlap, M.; Wild, J. A.; Grocott, A.; Farrugia, C. J.; Lund, E. J.; Russell, C. T.

    2003-01-01

    Magnetic merging on the dayside magnetopause often occurs at high latitudes. Polar measured fluxes of accelerated ions and wave Poynting vectors while skimming the subsolar magnetopause. The measurements indicate that their source was located to the north of the spacecraft, well removed from expected component merging sites. This represents the first use of wave Poynting flux as a merging discriminator at the magnetopause. We argue that wave Poynting vectors, like accelerated particle fluxes and the Walen tests, are necessary, but not sufficient, conditions, for identifying merging events. The Polar data are complemented with nearly simultaneous measurements from Cluster in the northern cusp, with correlated observations from the SuperDARN radar, to show that the locations and rates of merging vary. Magnetohydrodynamic (MHD) simulations are used to place the measurements into a global context. The MHD simulations confirm the existence of a high-latitude merging site and suggest that Polar and SuperDARN observed effects are attributable to both exhaust regions of a temporally varying X-line. A survey of 13 merging events places the location at high latitudes whenever the interplanetary magnetic field (IMF) clock angle is less than approximately 150 degrees. While inferred high-latitude merging sites favor the antiparallel merging hypothesis, our data alone cannot exclude the possible existence of a guide field. Merging can even move away from equatorial latitudes when the IMF has a strong southward component. MHD simulations suggest that this happens when the dipole tilt angle increases or when IMF B(sub X) increases the effective dipole tilt.

  18. Limits to northward drift of the Paleocene Cantwell Formation, central Alaska.

    USGS Publications Warehouse

    Hillhouse, J.W.; Gromme, C.S.

    1982-01-01

    Volcanic rocks of the Paleocene Cantwell Formation in central Alaska apparently originated at a paleolatitude of 83oN (alpha 95 = 9.7o), as indicated by paleomagnetic results. When compared with the Paleocene pole for the North American craton, the 95% confidence limits of the results suggest that terranes N of the Denali fault have moved no more than 550km northward relative to the North American craton since Paleocene time.-Authors

  19. On the driving forces of the Pangea breakup and northward drift of the Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaki; Hamano, Yozo

    2015-04-01

    During the breakup of the supercontinent Pangea, the Indian subcontinent became isolated from the southern part of Pangea, called Gondwanaland, at around 130 Ma, moved northwards, and eventually collided with Eurasia to form the Himalayas at around 40-50 Ma. The reason why the Indian subcontinent moved at such a high speed of up to c. 20 cm/yr remains a controversial issue in geodynamics. Here, numerical simulation of 3-D spherical mantle convection with an Earth-like Rayleigh number is reported, considering the assembly of highly viscous continental blocks with the configuration of Pangea, to determine the geodynamic mechanisms of the Pangea breakup, the subsequent continental drift, and the high-speed northward drift of the Indian subcontinent. Our numerical simulations approximately reproduced the process of continental drift from the breakup of Pangea at 200 Ma to the present-day continental distribution. These simulations revealed that a major factor in the northward drift of the Indian subcontinent was the large-scale cold mantle downwelling that developed spontaneously in the North Tethys Ocean, attributed to the overall shape of Pangea. The strong lateral mantle flow caused by the high-temperature anomaly beneath Pangea, due to the thermal insulation effect, enhanced the acceleration of the Indian subcontinent during the early stage of the Pangea breakup. The large-scale hot upwelling plumes from the lower mantle, initially located under Africa, might have contributed to the formation of the large-scale cold mantle downwelling in the North Tethys Ocean. References: [1] Yoshida, M., Effects of various lithospheric yield stresses and different mantle-heating modes on the breakup of the Pangea supercontinent, Geophys. Res. Lett., 41(9), 3060-3067, doi:10.1002/2014GL060023, 2014. [2] Yoshida, M. and Y. Hamano, Pangea breakup and northward drift of the Indian subcontinent reproduced by a numerical model of mantle convection, Submitted to Scientific Reports, 2015

  20. Dark matter and IMF normalization in Virgo dwarf early-type galaxies

    NASA Astrophysics Data System (ADS)

    Tortora, C.; La Barbera, F.; Napolitano, N. R.

    2016-01-01

    In this work, we analyse the dark matter (DM) fraction, fDM, and mass-to-light ratio mismatch parameter, δIMF (computed with respect to a Milky Way-like initial mass function), for a sample of 39 dwarf early-type galaxies in the Virgo cluster. Both fDM and δIMF are estimated within the central (one effective radius) galaxy regions, with a Jeans dynamical analysis that relies on galaxy velocity dispersions, structural parameters, and stellar mass-to-light ratios from the SMAKCED survey. In this first attempt to constrain, simultaneously, the initial mass function (IMF) normalization and the DM content, we explore the impact of different assumptions on the DM model profile. On average, for an Navarro, Frenk & White (NFW) profile, the δIMF is consistent with a Chabrier-like normalization ({δ _IMF}˜ 1), with {f_DM}˜ 0.35. One of the main results of this work is that for at least a few systems the δIMF are heavier than the Milky Way-like value (i.e. either top- or bottom-heavy). When introducing tangential anisotropy, larger δIMF and smaller fDM are derived. Adopting a steeper concentration-mass relation than that from simulations, we find lower δIMF ( ≲ 1) and larger fDM. A constant M/L profile with null fDM gives the heaviest δIMF (˜2). In the MONDian framework, we find consistent results to those for our reference NFW model. If confirmed, the large scatter of δIMF for dEs would provide (further) evidence for a non-universal IMF in early-type systems. On average, our reference fDM estimates are consistent with those found for low-σe (˜ 100 km s^{-1}) early-type galaxies (ETGs). Furthermore, we find fDM consistent with values from the SMAKCED survey, and find a double-value behaviour of fDM with stellar mass, which mirrors the trend of dynamical M/L and global star formation efficiency (from abundance matching estimates) with mass.

  1. Detecting the bonding state of explosive welding structures based on EEMD and sensitive IMF time entropy

    NASA Astrophysics Data System (ADS)

    Si, Yue; Zhang, Zhousuo; Liu, Qiang; Cheng, Wei; Yuan, Feichen

    2014-07-01

    With the increasing application of explosive welding structures in many engineering fields, interface bonding state detection has become more and more significant to avoid catastrophic accidents. However, the complexity of the interface bonding state makes this task challenging. In this paper, a new method based on ensemble empirical mode decomposition (EEMD) and sensitive intrinsic mode function (IMF) time entropy is proposed for this task. As a self-adaptive non-stationary signal analysis method, EEMD can decompose a complicated signal into a set of IMFs with truly physical meaning, which is beneficial to allocate the structural vibration response signal containing a wealth of bonding state information to certain IMFs. Then, the time entropies of these IMFs are calculated to quantitatively assess the bonding state of the explosive welding structure. However, the IMF time entropies have different sensitivities to the bonding state. Therefore, the most sensitive IMF time entropy is selected based on a distance evaluation technique to detect the bonding state of explosive welding structures. The proposed method is applied to bonding state detection of explosive welding pipes in three cases, and the results demonstrate its effectiveness.

  2. The Turbulent ISM of Galaxies about 10 Gyrs Ago: An Impact on their IMF?

    NASA Astrophysics Data System (ADS)

    Le Tiran, L.; Lehnert, M. D.

    2011-06-01

    The utilization of integral-field spectroscopy has led us to a new understanding of the physical conditions in galaxies within the first few billion years after the Big Bang. The combination of the kinematics and emission line diagnostics is a powerful technique to discern the physical processes that are at work in distant galaxies. In these proceedings, we present observations of 10 massive galaxies as seen as they were 9 Gyrs ago using SINFONI from the ESO-VLT, combined with photometry from the DEEP2 Survey. We first portray a brief picture of the physical conditions in the warm ionized medium of these galaxies; they exhibit complex morphologies, high star formation and are so pressure dominated they are likely to drive winds and high turbulence. Moreover, their ratio of Hα to FUV flux to their R-band luminosity surface brightnesses indicates that perhaps their initial mass function is flatter than Salpeter at the high mass end, as has been suggested recently for some local galaxies. It may be that high turbulence is responsible for skewing the IMF towards more massive stars as suggested by some theories of star-formation.

  3. Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving

    NASA Astrophysics Data System (ADS)

    Bristow, W. A.; Amata, E.; Spaleta, J.; Marcucci, M. F.

    2015-06-01

    Convection observations from the Southern Hemisphere Super Dual Auroral Radar Network are presented and examined for their relationship to solar wind and interplanetary magnetic field (IMF) conditions, restricted to periods of steady IMF. Analysis is concentrated on two specific regions, the central polar cap and the dayside throat region. An example time series is discussed in detail with specific examples of apparent direct control of the convection velocity by the solar wind driver. Closer examination, however, shows that there is variability in the flows that cannot be explained by the driving. Scatterplots and histograms of observations from all periods in the year 2013 that met the selection criteria are given and their dependence on solar wind driving is examined. It is found that on average the flow velocity depends on the square root of the rate of flux entry to the polar cap. It is also found that there is a large level of variability that is not strongly related to the solar wind driving.

  4. IMF Direction Derived from Cycloid-Like Ion Distributions Observed by Mars Express

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Futaana, Y.; Fedorov, A.; Dubinin, E.; Lundin, R.; Sauvaud, J.-A.; Winningham, D.; Frahm, R.; Barabash, S.; Holmstrom, M.; Woch, J.; Fraenz, M.; Budnik, E.; Borg, H.; Sharber, J. R.; Coates, A. J.; Soobiah, Y.; Koskinen, H.; Kallio, E.; Asamura, K.; Hayakawa, H.; Curtis, C.; Hsieh, K. C.; Sandel, B. R.; Grande, M.; Grigoriev, A.; Wurz, P.; Orsini, S.; Brandt, P.; McKenna-Lawler, S.; Kozyra, J.; Luhmann, J.

    Although the Mars Express (MEX) does not carry a magnetometer, it is in principle possible to derive the interplanetary magnetic field (IMF) orientation from the three dimensional velocity distribution of pick-up ions measured by the Ion Mass Analyser (IMA) on board MEX because pick-up ions' orbits, in velocity phase space, are expected to gyrate around the IMF when the IMF is relatively uniform on a scale larger than the proton gyroradius. Upstream of bow shock, MEX often observed cycloid distributions (two dimensional partial ring distributions in velocity phase space) of protons in a narrow channel of the IMA detector (only one azimuth for many polar angles). We show two such examples. Three different methods are used to derive the IMF orientation from the observed cycloid distributions. One method is intuitive (intuitive method), while the others derive the minimum variance direction of the velocity vectors for the observed ring ions. These velocity vectors are selected either manually (manual method) or automatically using simple filters (automatic method). While the intuitive method and the manual method provide similar IMF orientations by which the observed cycloid distribution is well arranged into a partial circle (representing gyration) and constant parallel velocity, the automatic method failed to arrange the data to the degree of the manual method, yielding about a 30° offset in the estimated IMF direction. The uncertainty of the derived IMF orientation is strongly affected by the instrument resolution. The source population for these ring distributions is most likely newly ionized hydrogen atoms, which are picked up by the solar wind.

  5. IMF Direction Derived from Cycloid-Like Ion Distributions Observed by Mars Express

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Futaana, Y.; Fedorov, A.; Dubinin, E.; Lundin, R.; Sauvaud, J.-A.; Winningham, D.; Frahm, R.; Barabash, S.; Holmstrom, M.; Woch, J.; Fraenz, M.; Budnik, E.; Borg, H.; Sharber, J. R.; Coates, A. J.; Soobiah, Y.; Koskinen, H.; Kallio, E.; Asamura, K.; Hayakawa, H.; Curtis, C.; Hsieh, K. C.; Sandel, B. R.; Grande, M.; Grigoriev, A.; Wurz, P.; Orsini, S.; Brandt, P.; McKenna-Lawler, S.; Kozyra, J.; Luhmann, J.

    2006-10-01

    Although the Mars Express (MEX) does not carry a magnetometer, it is in principle possible to derive the interplanetary magnetic field (IMF) orientation from the three dimensional velocity distribution of pick-up ions measured by the Ion Mass Analyser (IMA) on board MEX because pick-up ions' orbits, in velocity phase space, are expected to gyrate around the IMF when the IMF is relatively uniform on a scale larger than the proton gyroradius. During bow shock outbound crossings, MEX often observed cycloid distributions (two dimensional partial ring distributions in velocity phase space) of protons in a narrow channel of the IMA detector (only one azimuth for many polar angles). We show two such examples. Three different methods are used to derive the IMF orientation from the observed cycloid distributions. One method is intuitive (intuitive method), while the others derive the minimum variance direction of the velocity vectors for the observed ring ions. These velocity vectors are selected either manually (manual method) or automatically using simple filters (automatic method). While the intuitive method and the manual method provide similar IMF orientations by which the observed cycloid distribution is well arranged into a partial circle (representing gyration) and constant parallel velocity, the automatic method failed to arrange the data to the degree of the manual method, yielding about a 30° offset in the estimated IMF direction. The uncertainty of the derived IMF orientation is strongly affected by the instrument resolution. The source population for these ring distributions is most likely newly ionized hydrogen atoms, which are picked up by the solar wind.

  6. VizieR Online Data Catalog: Gamma Vel cluster membership and IMF (Prisinzano+, 2016)

    NASA Astrophysics Data System (ADS)

    Prisinzano, L.; Damiani, F.; Micela, G.; Jeffries, R. D.; Franciosini, E.; Sacco, G. G.; Frasca, A.; Klutsch, A.; Lanzafame, A.; Alfaro, E. J.; Biazzo, K.; Bonito, R.; Bragaglia, A.; Caramazza, M.; Vallenari, A.; Carraro, G.; Costado, M. T.; Flaccomio, E.; Jofre, P.; Lardo, C.; Monaco, L.; Morbidelli, L.; Mowlavi, N.; Pancino, E.; Randich, S.; Zaggia, S.

    2016-04-01

    We derived a list as complete as possible of confirmed members of the young open cluster Gamma Velorum, with the aim of deriving general cluster properties such as the IMF. We used all available spectroscopic membership indicators within the Gaia-ESO public archive, based on spectra acquired with FLAMES a the VLT using the GIRAFFE intermediate-resolution spectrograph. In addition, we used literature photometry and X-ray data. For each membership criterion, we derived the most complete list of candidate cluster members. Then, we considered photometry, gravity, and radial velocities as necessary conditions for selecting a subsample of candidates whose membership was confirmed by using the lithium and Halpha lines and X-rays as youth indicators. Table 5 lists the fundamental parameters of the confirmed and possible members in Gamma Velorum, i.e. photometry, radial velocities, equivalent widths of the lithium line, the Halpha activity index, the X-ray flag, the gravity gamma index and the stellar masses. Finally the binarity and membership flags are given. (1 data file).

  7. Large-Scale Structures in Earth Foreshock Waves during Radial IMF

    NASA Astrophysics Data System (ADS)

    Ganse, Urs; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian; Palmroth, Minna; Vainio, Rami

    2016-04-01

    Wave instabilities in the foreshock region of Earth's bow shock lead to formation of magnetic field and density fluctuations, commonly observed by spacecraft as 30-second waves. These waves are oblique to the interplanetary magnetic field, with the mechanism leading to oblique propagation still under discussion. Using the VLASIATOR (http://vlasiator.fmi.fi) global hybrid-Vlasov simulation code, we performed runs of radial and near-radial IMF conditions and were able to reproduce the development of these oblique foreshock wave instabilities, revealing a peculiar global structure, in which waves with different wave-vector directions are arranged around central spines, which are spatially offset from the bow shock's nose. We present analysis of the waves' growth behaviour and combine them with artificial observations, comparing to in-situ spacecraft data. Furthermore, we employed a test particle approach to investigate the formation mechanism of the instabilities' large-scale structure, and found that a coupling between the microphysics of wave-particle interaction and global-scale shock and foreshock geometry is essential to explain them.

  8. Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Zuo, Ming J.

    2009-12-01

    A Hilbert-Huang transform (HHT) is a time-frequency technique and has been widely applied to analyzing vibration signals in the field of fault diagnosis of rotating machinery. It analyzes the vibration signals using intrinsic mode functions (IMFs) extracted using empirical mode decomposition (EMD). However, EMD sometimes cannot reveal the signal characteristics accurately because of the problem of mode mixing. Ensemble empirical mode decomposition (EEMD) was developed recently to alleviate this problem. The IMFs generated by EEMD have different sensitivity to faults. Some IMFs are sensitive and closely related to the faults but others are irrelevant. To enhance the accuracy of the HHT in fault diagnosis of rotating machinery, an improved HHT based on EEMD and sensitive IMFs is proposed in this paper. Simulated signals demonstrate the effectiveness of the improved HHT in diagnosing the faults of rotating machinery. Finally, the improved HHT is applied to diagnosing an early rub-impact fault of a heavy oil catalytic cracking machine set, and the application results prove that the improved HHT is superior to the HHT based on all IMFs of EMD.

  9. The dependence of the LLBL thickness on IMF Bz and By components

    NASA Astrophysics Data System (ADS)

    Znatkova, S. S.; Antonova, E. E.; Pulinets, M. S.; Kirpichev, I. P.; Riazantseva, M. O.

    2016-07-01

    The thickness of the low latitude boundary layer (LLBL) is studied as a function of interplanetary magnetic field (IMF) using the data of THEMIS mission. The data from intersections of LLBL by Themis-A and -C satellites are analyzed. Solar wind parameters are provided by Themis-B satellite located before the bow shock. We use earlier developed method of LLBL thickness determination based on the analysis of the variation of plasma velocity in the layer perpendicular to the magnetopause. The database for the present analysis consists of 109 single satellite LLBL crossings where the values of LLBL thickness are obtained. The time shift of solar wind propagation from the spacecraft performing measurements outside the bow shock to the LLBL is taken into account. We analyze the dependence of LLBL thickness on IMF Bz and By using data of IMF measurements with 3 s resolution and produce the 180 s averaging of these data. Large scattering of the values of LLBL thickness and the weak dependence on IMF is demonstrated. Dawn-dusk asymmetry of LLBL thickness is not observed. The dependence of LLBL thickness on IMF clock angle is discussed.

  10. Geomagnetic disturbances and pulsations as a high-latitude response to considerable alternating IMF Variations during the magnetic storm recovery phase (Case study: May 30, 2003)

    NASA Astrophysics Data System (ADS)

    Levitin, A. E.; Kleimenova, N. G.; Gromova, L. I.; Antonova, E. E.; Dremukhina, L. A.; Zelinsky, N. R.; Gromov, S. V.; Malysheva, L. M.

    2015-11-01

    Features of high-latitude geomagnetic disturbances during the magnetic storm ( Dst min =-144 nT) recovery phase were studied based on the observations on the Scandinavian profile of magnetometers (IMAGE). Certain non-typical effects that occur under the conditions of large positive IMF Bz values (about +20-25 nT) and large negative IMF By values (to-20 nT) were revealed. Thus, an intense (about 400 nT) negative bay in the X component of the magnetic field (the polar electrojet, PE) was observed in the dayside sector at geomagnetic latitudes higher than 70°. As the IMF B y reverses its sign from negative to positive, the bay in the X component was replaced by the bay in the Y component. The possible distribution of the fieldaligned currents of the NBZ system was analyzed based on the CHAMP satellite data. The results were compared with the position of the auroral oval (the OVATION model) and the ion and electron flux observations on the DMSP satellite. Analysis of the particle spectra indicated that these spectra correspond to the auroral oval dayside sector crossings by the satellite, i.e., to the dayside projection of the plasma ring surrounding the Earth. Arguments are presented for the assumption that the discussed dayside electrojet ( PE) is localized near the polar edge of the dayside auroral oval in a the closed magnetosphere. The features of the spectral and spatial dynamics of intense Pc5 geomagnetic pulsations were studied in this time interval. It was established that the spectrum of high-latitude (higher than ~70°) pulsations does not coincide with the spectrum of fluctuations in the solar wind and IMF. It was shown that Pc5 geomagnetic pulsations can be considered as resonance oscillations at latitudes lower than 70° and apparently reflect fluctuations in turbulent sheets adjacent to the magnetopause (the low-latitude boundary layer, a cusp throat) or in a turbulent magnetosheath at higher latitudes.

  11. Northward expansion of paddy rice in northeastern Asia during 2000-2014

    NASA Astrophysics Data System (ADS)

    Dong, J.; Xiao, X.; Zhang, G.; Menarguez, M. A.; Choi, C. Y.; Qin, Y.; Luo, P.; Zhang, Y.; Moore, B.

    2016-04-01

    Paddy rice in monsoon Asia plays an important role in global food security and climate change. Here we documented annual dynamics of paddy rice areas in the northern frontier of Asia, including northeastern (NE) China, North Korea, South Korea, and Japan, from 2000 to 2014 through analysis of satellite images. The paddy rice area has increased by 120% (2.5 to 5.5 million ha) in NE China, in comparison to a decrease in South Korea and Japan, and the paddy rice centroid shifted northward from 41.16°N to 43.70°N (~310 km) in this period. Market, technology, policy, and climate together drove the rice expansion in NE China. The increased use of greenhouse nurseries, improved rice cultivars, agricultural subsidy policy, and a rising rice price generally promoted northward paddy rice expansion. The potential effects of large rice expansion on climate change and ecosystem services should be paid more attention to in the future.

  12. More-frequent extreme northward shifts of eastern Indian Ocean tropical convergence under greenhouse warming.

    PubMed

    Weller, Evan; Cai, Wenju; Min, Seung-Ki; Wu, Lixin; Ashok, Karumuri; Yamagata, Toshio

    2014-01-01

    The Intertropical Convergence Zone (ITCZ) in the tropical eastern Indian Ocean exhibits strong interannual variability, often co-occurring with positive Indian Ocean Dipole (pIOD) events. During what we identify as an extreme ITCZ event, a drastic northward shift of atmospheric convection coincides with an anomalously strong north-minus-south sea surface temperature (SST) gradient over the eastern equatorial Indian Ocean. Such shifts lead to severe droughts over the maritime continent and surrounding islands but also devastating floods in southern parts of the Indian subcontinent. Understanding future changes of the ITCZ is therefore of major scientific and socioeconomic interest. Here we find a more-than-doubling in the frequency of extreme ITCZ events under greenhouse warming, estimated from climate models participating in the Coupled Model Intercomparison Project phase 5 that are able to simulate such events. The increase is due to a mean state change with an enhanced north-minus-south SST gradient and a weakened Walker Circulation, facilitating smaller perturbations to shift the ITCZ northwards. PMID:25124737

  13. A Variable IMF Slope To Fit The LCDM Picture To Observed High-z Submillimeter Sources

    NASA Astrophysics Data System (ADS)

    Muñoz, A. M.; Navarrete, F. P.; Lagos, C. Del P.; Padilla, N. D.; Cora, S. A.; Tecce, T. E.

    2011-10-01

    Using a Salpeter initial mass function (IMF) allows to describe fairly well a large variety of properties in galaxies. However, some studies have found that it is necessary to change it for a top-heavy IMF in starbursts to give an adequate prediction in the abundance of submillimeter galaxies (SMGs) at high redshifts. We show preliminary results of an implementation of a star formation intensity dependent IMF slope in a semi-analytic model of galaxy formation, which has been connected with a spectrophotometric code that provides an adequate treatment of reprocessed starlight by dust. We also explore systematic effects on the counts of submm sources coming from the beamsize of the receiver taking into account the spatial correlation of sources and foreground objects. This helps alleviate the discrepancies found between the model and the observations.

  14. Northward migration of the eastern Himalayan syntaxis revealed by OSL thermochronometry.

    PubMed

    King, Georgina E; Herman, Frédéric; Guralnik, Benny

    2016-08-19

    Erosion influences the dynamical evolution of mountains. However, evidence for the impact of surface processes on tectonics mostly relies on the circumstantial coincidence of rugged topography, high stream power, erosion, and rock uplift. Using the optically stimulated luminescence (OSL) thermochronometry technique, we quantified the spatial and temporal exhumation of the eastern Himalayan syntaxis. We found increasing exhumation rates within the past million years at the northeast end of the Namche Barwa-Gyala Peri dome. These observations imply headward propagation of erosion in the Parlung River, suggesting that the locus of high exhumation has migrated northward. Although surface processes influence exhumation rates, they do not necessarily engage in a feedback that sets the location of tectonic deformation. PMID:27540169

  15. Small-scale electrodynamics of the cusp with northward interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Basinska, Ewa M.; Burke, William J.; Maynard, Nelson C.; Hughes, W. J.; Winningham, J. D.; Hanson, W. B.

    1992-01-01

    Possible low-altitude field signatures of merging occurring at high latitudes during a period of strong northward directed interplanetary magnetic field are reported. Large electric and magnetic field spikes detected at the poleward edge of the magnetosheathlike particle precipitation are interpreted as field signatures of the low-altitude footprint of such merging line locations. A train of phase-shifted, almost linearly polarized electric and magnetic field fluctuations was detected just equatorward of the large electromagnetic spike. It is argued that these may be due to either ion cyclotron waves excited by penetrating magnetosheath ions or transient oscillations in the frame of convecting plasma, brought about by the sudden change in the flow at the magnetospheric end of the field line.

  16. Ring Current Decay During Northward Turnings of The Interplanetary Magnetic Field

    NASA Astrophysics Data System (ADS)

    Monreal MacMahon, R.; Llop, C.; Miranda, R.

    The ring current formation and energization is thought to be the main consequence of geomagnetic storms and its strength is characterized by the Dst index which evolu- tion satisfies a simple and well-known differential equation introduced by Burton et al. (1975). Since then, several attempts and approaches have been done to study the evolution of the ring current whether introducing discrete values or continuous func- tions for the decay time involved. In this work, we study the character of the recovery phase of magnetic storms in response to well defined northward turnings of the inter- planetary magnetic field using our functional form of the decay time of ring current particles introduced previously.

  17. The northward march of summer low cloudiness along the California coast

    NASA Astrophysics Data System (ADS)

    Clemesha, Rachel E. S.; Gershunov, Alexander; Iacobellis, Sam F.; Williams, A. Park; Cayan, Daniel R.

    2016-02-01

    A new satellite-derived low cloud retrieval reveals rich spatial texture and coherent space-time propagation in summertime California coastal low cloudiness (CLC). Throughout the region, CLC is greatest during May-September but has considerable monthly variability within this summer season. On average, June is cloudiest along the coast of southern California and northern Baja, Mexico, while July is cloudiest along northern California's coast. Over the course of the summer, the core of peak CLC migrates northward along coastal California, reaching its northernmost extent in late July/early August, then recedes while weakening. The timing and movement of the CLC climatological structure is related to the summer evolution of lower tropospheric stability and both its component parts, sea surface temperature and potential temperature at 700 hPa. The roughly coincident seasonal timing of peak CLC with peak summertime temperatures translates into the strongest heat-modulating capacity of CLC along California's north coast.

  18. MOND and IMF variations in early-type galaxies from ATLAS3D

    NASA Astrophysics Data System (ADS)

    Tortora, C.; Romanowsky, A. J.; Cardone, V. F.; Napolitano, N. R.; Jetzer, Ph.

    2014-02-01

    Modified Newtonian Dynamics (MOND) represents a phenomenological alternative to dark matter (DM) for the missing mass problem in galaxies and clusters of galaxies. We analyse the central regions of a local sample of ˜220 early-type galaxies from the ATLAS3D survey, to see if the data can be reproduced without recourse to DM. We estimate dynamical masses in the MOND context through Jeans analysis and compare to ATLAS3D stellar masses from stellar population synthesis. We find that the observed stellar mass-velocity dispersion relation is steeper than expected assuming MOND with a fixed stellar initial mass function (IMF) and a standard value for the acceleration parameter a0. Turning from the space of observables to model space (a) fixing the IMF, a universal value for a0 cannot be fitted, while, (b) fixing a0 and leaving the IMF free to vary, we find that it is `lighter' (Chabrier like) for low-dispersion galaxies and `heavier' (Salpeter like) for high dispersions. This MOND-based trend matches inferences from Newtonian dynamics with DM and from the detailed analysis of spectral absorption lines, adding to the converging lines of evidence for a systematically varying IMF.

  19. Transpolar auroras, their particle precipitation, and IMF B sub y component

    SciTech Connect

    Makita, K. ); Meng, C.I. ); Akasofu, S.I. )

    1991-08-01

    Transpolar auroras, their associated particle precipitation, and their occurrence with respect to the IMF B{sub y} polarity are examined on the basis of DMSP F6 auroral images and the corresponding particle data. It is found that the transpolar arcs are located in the poleward edge of the soft particle precipitation region extending from either the dawn or dusk part of the auroral oval precipitation; they are not embedded in the polar rain region. This finding suggests that the transpolar arcs are located along the poleward boundary of the closed field line region (or the equatorward boundary of the open region) as suggested by Meng. Further, the appearance of the extended precipitation region from the oval depends on the polarity of the IMF B{sub y}, in the northern hemisphere morning sector for IMF B{sub y} < 0 or in the evening sector for IMF B{sub y} > 0. In general, the precipitating particle flux in the extended precipitation region is not high enough to produce appreciable luminosity. Thus only the transpolar arcs (associated with relatively intense precipitation) near the poleward boundary tend to become much more luminous, forming the so-called theta aurora.

  20. Impact of the uncertainties of the ISM when studying the IMF at intermediate masses

    NASA Astrophysics Data System (ADS)

    Mor, R.; Robin, A. C.; Lemasle, B.; Figueras, F.

    We evaluate the impact of the uncertainties in the 3D structure of the Interstellar Medium (ISM) when studying the Initial Mass Function (IMF) at intermediate masses using classical Galactic Cepheids. For that we use the Besan\\c{c}on Galaxy Model (BGM, \\citealt{Robin2003} and \\citealt{Czekaj2014}) and assume different IMFs and different interstellar structure maps to simulate magnitude limited samples of young intermediate mass stars. As our strategy to derive the IMF is based on star counts (in proceedings \\cite{Mor2015} and Mor et al. 2016 in prep.), we quantify the differences in star counts by comparing the whole-sky simulations with Tycho-2 catalogue up to V_T=11 and using Healpix maps. Moreover we compare simulations with different extinction models up to Gaia magnitude G=20. As expected, larger discrepancies between simulations and observations are found in the Galactic Plane, showing that the interstellar extinction in the plane is one of the major source of uncertainty in our study. We show how even with the uncertainties due to the ISM we are able to distinguish between different IMFs.

  1. Appropriate IMFs associated with cepstrum and envelope analysis for ball-bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Tsao, Wen-Chang; Pan, Min-Chun

    2014-03-01

    The traditional envelope analysis is an effective method for the fault detection of rolling bearings. However, all the resonant frequency bands must be examined during the bearing-fault detection process. To handle the above deficiency, this paper proposes using the empirical mode decomposition (EMD) to select a proper intrinsic mode function (IMF) for the subsequent detection tools; here both envelope analysis and cepstrum analysis are employed and compared. By virtue of the band-pass filtering nature of EMD, the resonant frequency bands of structure to be measured are captured in the IMFs. As impulses arising from rolling elements striking bearing faults modulate with structure resonance, proper IMFs potentially enable to characterize fault signatures. In the study, faulty ball bearings are used to justify the proposed method, and comparisons with the traditional envelope analysis are made. Post the use of IMFs highlighting faultybearing features, the performance of using envelope analysis and cepstrum analysis to single out bearing faults is objectively compared and addressed; it is noted that generally envelope analysis offers better performance.

  2. A Vortical Dawn Flank Boundary Layer for Near-Radial IMF: Wind Observations on 24 October 2001

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Gratton, F. T.; Gnavi, G.; Torbert, R. B.; Wilson, Lynn B., III

    2014-01-01

    We present an example of a boundary layer tailward of the dawn terminator which is entirely populated by rolled-up flow vortices. Observations were made by Wind on 24 October 2001 as the spacecraft moved across the region at the X plane approximately equal to -13 Earth radii. Interplanetary conditions were steady with a near-radial interplanetary magnetic field (IMF). Approximately 15 vortices were observed over the 1.5 hours duration of Wind's crossing, each lasting approximately 5 min. The rolling up is inferred from the presence of a hot tenuous plasma being accelerated to speeds higher than in the adjoining magnetosheath, a circumstance which has been shown to be a reliable signature of this in single-spacecraft observations. A blob of cold dense plasma was entrained in each vortex, at whose leading edge abrupt polarity changes of field and velocity components at current sheets were regularly observed. In the frame of the average boundary layer velocity, the dense blobs were moving predominantly sunward and their scale size along the X plane was approximately 7.4 Earth radii. Inquiring into the generation mechanism of the vortices, we analyze the stability of the boundary layer to sheared flows using compressible magnetohydrodynamic Kelvin-Helmholtz theory with continuous profiles for the physical quantities. We input parameters from (i) the exact theory of magnetosheath flow under aligned solar wind field and flow vectors near the terminator and (ii) the Wind data. It is shown that the configuration is indeed Kelvin-Helmholtz (KH) unstable. This is the first reported example of KH-unstable waves at the magnetopause under a radial IMF.

  3. Superposed epoch analysis of the ionospheric convection evolution during substorms: IMF BY dependence

    NASA Astrophysics Data System (ADS)

    Grocott, A.; Milan, S. E.; Yeoman, T. K.; Sato, N.; Yukimatu, A. S.; Wild, J. A.

    2010-10-01

    We present superposed epoch analyses of the average ionospheric convection response in the northern and southern hemispheres to magnetospheric substorms occurring under different orientations of the interplanetary magnetic field (IMF). Observations of the ionospheric convection were provided by the Super Dual Auroral Radar Network (SuperDARN) and substorms were identified using the Far Ultraviolet (FUV) instrument on board the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft. We find that during the substorm growth phase the expected IMF BY-dependent dawn-dusk asymmetry is observed over the entire convection pattern, but that during the expansion phase this asymmetry is retained only in the polar cap and dayside auroral zone. In the nightside auroral zone the convection is reordered according to the local substorm electrodynamics with any remaining dusk-dawn asymmetry being more closely related to the magnetic local time of substorm onset, itself only weakly governed by IMF BY. Owing to the preponderance of substorms occurring just prior to magnetic midnight, the substorm-asymmetry tends to be an azimuthal extension of the dusk convection cell across the midnight sector, a manifestation of the so-called “Harang discontinuity.” This results in the northern (southern) hemisphere nightside auroral convection during substorms generally resembling the expected pattern for negative (positive) IMF BY. When the preexisting convection pattern in the northern (southern) hemisphere is driven by positive (negative) IMF BY, the nightside auroral convection changes markedly over the course of the substorm to establish this same “Harang” configuration.

  4. Structure of the Outer Cusp and Sources of the Cusp Precipitation during Intervals of a Horizontal IMF

    NASA Technical Reports Server (NTRS)

    Nemecek, Z.; Safrankova, J.; Prech, L.; Simunek, J.; Sauvaud, J.-A.; Fedorov, A.; Stenuit, H.; Fuselier, S. A.; Savin, S.; Zelenyi, L.

    2003-01-01

    The cusp represents a place where the magnetosheath plasma can directly penetrate into the magnetosphere. Since the main transport processes are connected with merging of the interplanetary and magnetospheric field lines, the interplanetary magnetic field (IMF) Orientation plays a decisive role in the formation of the high-altitude cusp. The importance of the sign of the IMF Bz component for this process was suggested about 40 years ago and later it was documented by many experimental investigations. However, situations when IMF Bz is the major IMF component are rather rare. The structure of the cusp during periods of a small IMF BZ is generally unknown, probably due to the fully 3-D nature of the interaction. The present case study reveals the importance of horizontal IMF components on the global magnetospheric configuration as well as on small-scale processes at the cusp-magnetosheath interface. We have used simultaneous measurements of several spacecraft (ISTP program) operating in different regions of interplanetary space and two closely spaced satellites (INTERBALL-1/MAGION- 4) crossing the cusp-magnetosheath boundary to show the connection between the short- and large-scale phenomena. In the northern hemisphere, observations suggest a presence of two spots of cusp-like precipitation supplied by reconnection occurring simultaneously in both hemispheres. A source of this bifurcation is the positive IMF By component further enhanced by the field draping in the magnetosheath. This magnetic field component shifts the entry point far away from the local noon but in opposite sense in either hemisphere.

  5. EVIDENCE FOR A CONSTANT IMF IN EARLY-TYPE GALAXIES BASED ON THEIR X-RAY BINARY POPULATIONS

    NASA Astrophysics Data System (ADS)

    Zepf, Stephen E.; Maccarone, T. J.; Kundu, A.; Gonzalez, A. H.; Lehmer, B.; Maraston, C.

    2014-01-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having steeper IMFs. These steeper IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars and black holes. In this paper, we specifically predict the variation in the number of black holes and neutron stars in early type galaxies based on the IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary populations (LMXBs) of nearby early-type galaxies. These binaries are field neutron stars or black holes accreting from a low-mass donor star. We specifically compare the number of field LMXBs per K-band light in a well-studied sample of elliptical galaxies, and use this result to distinguish between an invariant IMF and one that is Kroupa/Chabrier-like at low masses and steeper at high masses. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF.

  6. Long-period irregular pulsations under the conditions of a quiet magnetosphere

    NASA Astrophysics Data System (ADS)

    Kurazhkovskaya, N. A.; Klain, B. I.; Lavrov, I. P.

    2016-05-01

    Simultaneous observations of high-latitude long-period irregular pulsations at frequencies of 2.0-6.0 mHz ( ipcl) and magnetic field disturbances in the solar wind plasma at low geomagnetic activity ( Kp ~ 0) have been studied. The 1-s data on the magnetic field registration at Godhavn (GDH) high-latitude observatory and the 1-min data on the solar wind plasma and IMF parameters for 2011-2013 were used in an analysis. Ipcl (irregular pulsations continuous, long), which were observed against a background of the IMF Bz reorientation from northward to southward, have been analyzed. In this case other solar wind plasma and IMF parameters, such as velocity V, density n, solar wind dynamic pressure P = ρ V 2 (ρ is plasma density), and strength magnitude B, were relatively stable. The effect of the IMF Bz variation rate on the ipcl spectral composition and intensity has been studied. It was established that the ipcl spectral density reaches its maximum (~10-20 min) after IMF Bz sign reversal in a predominant number of cases. It was detected that the ipcl average frequency ( f) is linearly related to the IMF Bz variation rate (Δ Bz/Δ t). It was shown that the dependence of f on Δ Bz/Δ t is controlled by the α = arctan( By/ Bx) angle value responsible for the MHD discontinuity type at the front boundary of magnetosphere. The results made it possible to assume that the formation of the observed ipcl spectrum, which is related to the IMF Bz reorientation, is caused by solar wind plasma turbulence, which promotes the development of current sheet instability and surface wave amplification at the magnetopause.

  7. Wind effects on prey availability: How northward migrating waders use brackish and hypersaline lagoons in the sivash, Ukraine

    NASA Astrophysics Data System (ADS)

    Verkuil, Yvonne; Koolhaas, Anita; Van Der Winden, Jan

    Large numbers of waders migrating northward in spring use the Sivash, a large system of shallow, brackish and hypersaline lagoons in the Black Sea and Azov Sea region (Ukraine). The bottoms of these lagoons are often uncovered by the wind. Hence, for waders the time and space available for feeding depend on wind conditions. In hypersaline lagoons the benthic and pelagic fauna was very poor, consisting mainly of chironomid larvae (0.19 g AFDM·m -2) and brine shrimps Artemia salina, respectively. Brine shrimp abundance was correlated with salinity, wind force, wind direction and water depth. Dunlin Calidris alpina and curlew sandpiper Calidris ferruginea were the only species feeding on brine shrimp. As brine shrimp densities are higher in deeper water, smaller waders such as broad-billed sandpipers Limicola falcinellus are too short-legged to reach exploitable densities of brine shrimp. In brackish lagoons the benthic and pelagic fauna was rich, consisting of polychaetes, bivalves, gastropods, chironomid larvae, isopods and amphipods (8.9 to 30.5 g AFDM·m -2), but there were no brine shrimps. Prey biomass increased with the distance from the coast, being highest on the site that was most frequently inundated. Dunlin, broad-billed sandpiper and grey plover Pluvialis squatarola were the most abundant birds in the brackish lagoon. Due to the effects of wind-tides only a small area was usually available as a feeding site. Gammarus insensibilis was the alternative prey resource in the water layer, and their density varied with wind direction in the same way as brine shrimp. Curlew sandpipers and dunlins in the hypersaline lagoons and broad-billed sandpipers in the brackish lagoons often changed feeding sites, probably following the variation in prey availability. Only because of the large size and variety of lagoons are waders in the Sivash always able to find good feeding sites.

  8. [Northward shift in faunal diversity is a general pattern of evolution of the phanerozoic marine biota].

    PubMed

    Naĭmark, E B; Markov, A V

    2010-01-01

    The analysis of two global databases on spatio-temporal distribution of fossil marine animal genera (Sepkoski's compendium and The Paleobiology Database) has revealed the presence of the latitudinal diversity gradient (LDG) in the marine realm throughout the Phanerozoic. Within each time interval, LDG is characterized by two parameters: the latitudinal position of peak diversity and the steepness of monotonous decline of diversity with increasing distance from the zone of the highest diversity. During the Phanerozoic, peak diversity has drifted gradually from the tropics and subtropics of the Southern hemisphere into northern midlatitudes. The shift in peak diversity is not likely to be an artifact of incompleteness of the fossil record or uneven sampling of different regions. The shift proceeded in a stepwise manner, with periods of relatively fast changes separated by longer periods of little or no change. The latitudinal shift in peak diversity was probably due to a combination of several causes: tectonic (northward shift in the latitudinal distribution of continental shelf area), climatic (as demonstrated by the fact that peak diversity tended to occur near equator during the cold epochs and in midlatitudes during the warm epochs), and historical ("evolutionary inertia" of local faunas). PMID:21061643

  9. Paleomagnetism of Midway Atoll lavas and northward movement of the Pacific plate

    USGS Publications Warehouse

    Gromme, S.; Vine, F.J.

    1972-01-01

    Two deep drill holes through the reef limestones of Midway Atoll penetrated 120 m and 19 m of basaltic lavas that were dated by the KAr method at 18 my. Inclinations of natural remanent magnetization have been measured in 173 specimens cut from 57 core samples from 13 of the lava flows. The mean paleomagnetic inclination is 27.6?? ?? 6.8??, corresponding to a paleolatitude of 14.7?? ?? 4.2??. The present latitude of Midway is 28??, suggesting a northward component of motion of the Pacific plate of approximately 13?? or 1400 km in the last 18 my. The paleolatitude of Midway is thus not significantly different from the present latitude (19??) of the active volcanic island of Hawaii. The paleomagnetic data from the Midway basalts thus support the hypothesis of Wilson and Morgan that volcanic heat sources are fixed with respect to the Earth's mantle below the asthenosphere and their apparent migration with time is due to plate motion. ?? 1972.

  10. Recent northward range expansion promotes song evolution in a passerine bird, the Light-vented Bulbul.

    PubMed

    Xing, X Y; Alström, P; Yang, X J; Lei, F M

    2013-04-01

    In common with human speech, song is culturally inherited in oscine passerine birds ('songbirds'). Intraspecific divergence in birdsong, such as development of local dialects, might be an important early step in the speciation process. It is therefore vital to understand how songs diverge, especially in founding populations. The northward expansion of the Light-vented Bulbul Pycnonotus sinensis (J. F. Gmelin, 1789) into north China in the last 30 years provides an excellent opportunity to study birdsong evolution. We compared ~4400 songs from newly established northern populations with ~2900 songs from southern populations to evaluate song divergence after recent expansion. The total pool of syllables and especially song types was considerably smaller in the north than in the south, indicating 'founder effects' in the new population. The ancestral pattern of mosaic song dialects changed into a pattern of wide geographical sharing of a few song types and syllables, likely the result of fewer geographical barriers to 'meme flow', and the recent spread across a large area in the north. Our results suggest that song evolution and vocal trait shifts can arise rapidly after range expansion, and that in the Light-vented Bulbul 'founder effects', geographical isolation, and recent rapid expansions played important roles in the evolution of song dialects. PMID:23438018

  11. Cross section through the Toa Baja drillsite: Evidence for northward change in Late Eocene deformation intensity

    SciTech Connect

    Larue, D.K. ); Berrong, B. )

    1991-03-01

    A 55 km geologic cross section through the Toa Baja Drillsite, generated by integrating geologic mapping data from the foothills of the Central Mountains of Puerto Rico with onshore and offshore multichannel seismic reflection data, provides an opportunity to examine in profile from the arc interior northward to within 40 km of the current trench slope break. Three structural divisions are recognized. In the foothills of Puerto Rico, Cretaceous and Eocene rocks are separated by transpressional strike-slip faults. In the vicinity of the Toa Baja drillsite where both seismic reflection and borehole data are available, Eocene rocks, deformed by thrust faults, .ie above a lower unit, interpreted to be of Cretaceous age. Offshore, north of the drilling site, seismic reflections suggest Eocene rocks onlap structural basement, thought to be Cretaceous rocks, and both units appear only slightly deformed. All Eocene and Eocene ( ) rocks are overlain by little deformed Oligocene to Recent rocks. From south to north, or from the arc massif interior toward the present-day trench, there is an apparent decrease in amount of Late Eocene to Middle Oligocene strike-slip and shortening deformation. Deformation events occurred mostly in the arc-interior and were not directly associated with the plate boundary which was probably near the Puerto Rico Trench.

  12. Large amplitude undulations of evening site diffuse aurorae. Optical characteristics and conditions of generation

    NASA Astrophysics Data System (ADS)

    Vorobjev, V. G.; Roldugin, V. C.; Yagodkina, O. I.

    2015-01-01

    Optical characteristics of large amplitude undulations (LAU) of diffuse aurorae observed by all-sky cameras at Kola Peninsula on December 28, 2010 were examined. Both interplanetary medium conditions and characteristics of magnetic activity before and during LAU were analyzed. It was shown that the development of undulations could be activated by sharp short-living of ˜20 minutes solar wind dynamic pressure impulse and existence of the undulations during about two hours was supported by electric field of stationary magnetospheric convection originated from large smoothly changed southward IMF Bz component of about -12nT. The altitude of undulation luminosity determined by triangulation method was 120 ± 10 km. The undulations amplitude changed from about 100 to 300 km and the average wavelength was ˜250 km. The undulations were observed moving westward with the average phase velocity of ˜0.7 km/s. The pass of DMSP F16 spacecraft just along "the tongue" of undulations showed that the wave of luminosity was located in the region of the predominantly ion (proton) precipitation with the average energy of particles of ˜18 keV. Rayed auroral structures were observed continuously in the region of diffuse aurorae during time interval of LAU existence. These structures were observed moving westward with the velocity of about 2 km/s that corresponds to the northward electric field of ˜100 mV/m.

  13. Paleomagnetic evidence from land-based and ODP cores for clockwise rotation and northward translation of the Phillippine Sea plate

    SciTech Connect

    Cisowski, S.M.; Fuller, M.; Haston, R.B.; Koyama, M. )

    1990-06-01

    On-land and deep-sea core paleomagnetic data have been collected from around the Philippine Sea plate. Data from the Palau islands suggest 70{degree} of clockwise rotation and northward translation since the mid-Oligocene. The authors interpret this rotation as a rotation of the West Philippine Sea basin as a whole. New paleomagnetic data from Guam indicate 70{degree} of clockwise rotation and northward translation since the early Oligocene. Although Eocene results have been previously quoted, the new data suggest that there is no reliable Eocene data from Guam. New data from Saipan suggest 50-60{degree} of clockwise rotation since the Late Eocene and 20{degree} of clockwise rotation since the mid-Miocene, along with northward translation. During ODP Leg 126, a new technique utilizing the formation microscanner logging tool was employed to obtain orientated drill cores from the Bonin forearc basin. Preliminary results indicate that 70-110{degree} of clockwise rotation has occurred there since the mid-Oligocene. Inclination studies on cores from ODP Legs 125 and 126 along with the on-land paleomagnetic data support 15{degree} of northward translation of the Philippine Sea plate since the mid-Oligocene. The consistent clockwise rotations found around the Philippine Sea plate suggest that the entire plate, including the Bonin and Mariana arcs, has rotated more than 50{degree} since the mid-Oligocene. The similarity of Oligocene results from the Bonin forearc and Guam suggest that little or no relative rotation has occurred between these two points. This implies that the shape of the Mariana arc is probably not due to rotational deformation. The northward translation and clockwise rotation of the Philippine Sea plate established oblique subduction along the proto-Philippine margin, which could account for the 600 km of subducted slab beneath the eastern Celebes Sea.

  14. IMF or Abundance Variations? Steep Gradients at the Centers of Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    McConnell, Nicholas J.; Lu, Jessica R.; Mann, Andrew

    2016-01-01

    We present high signal-to-noise spectra for six early-type galaxies with Keck/LRIS, covering 350-1050 nm and probing spatial scales from 100 pc to several kpc. Some of our objects exhibit steep absorption-line gradients within the central ~300 pc, indicating a rapid increase in [Na/Fe] and [N/Fe] toward the galaxy center. While stellar population synthesis (SPS) modeling may address whether the stellar initial mass function (IMF) varies as a function of radius, we caution that the competing effects of chemical abundance variations and IMF variations demands extreme care in interpreting SPS models of integrated-light spectra. The steep abundance variations themselves may offer insight to star formation and gas retention in progenitors of today's early-type galaxies, including the possible overabundance of stars above ~3 Msun.

  15. Slow modes in the Hermean magnetosphere: Effect of the solar wind hydrodynamic parameters and IMF orientation

    NASA Astrophysics Data System (ADS)

    Varela, J.; Pantellini, F.; Moncuquet, M.

    2016-06-01

    The aim of this study is to simulate the slow mode structures in the Hermean magnetosphere. We use a single fluid MHD model and a multipolar expansion of the Northward displaced Hermean magnetic field, to perform simulations with different solar wind parameters to foreseen the most favorable configuration for the formation of slow modes, attending to the solar wind density, velocity, temperature and the interplanetary magnetic field orientation. If the interplanetary magnetic field is aligned with the Mercury-Sun direction, the magnetic axis of Mercury in the Northward direction or the planet orbital plane, slow mode structures are observed nearby the South pole. If the orientation is in the Sun-Mercury or Northward directions, slow mode structures are observed nearby the North pole, but smaller compared with the structures near the South pole. Increasing the density or the solar wind velocity avoids the formation of slow modes structures, not observed for a dynamic pressure larger than 6.25 ·10-9 Pa in the case of a Northward interplanetary magnetic field orientation, due to the enhancement of the bow shock compression. If the solar wind temperature increases, the slow mode structures are wider because the sonic Mach number is smaller and the bow shock is less compressed.

  16. Is coverage a factor in non-Gaussianity of IMF parameters?

    NASA Technical Reports Server (NTRS)

    Ahluwalia, H. S.; Fikani, M. M.

    1995-01-01

    Recently, Feynman and Ruzmaikin (1994) showed that IMF parameters for the 1973 to 1990 period are not log-normally distributed as previously suggested by Burlaga and King (1979) for the data obtained over a shorter time period (1963-75). They studied the first four moments, namely: mean, variance, skewness, and kurtosis. For a Gaussian distribution, moments higher than the variance should vanish. In particular, Feynman and Ruzmaikin obtained very high values of kurtosis during some periods of their analysis. We note that the coverage for IMF parameters is very uneven for the period analyzed by them, ranging from less than 40% to greater than 80%. So a question arises as to whether the amount of coverage is a factor in their analysis. We decided to test this for the B(sub z) component of IMF, since it is an effective geoactive parameter for short term disturbances. Like them, we used 1-hour averaged data available on the Omnitape. We studied the scatter plots of the annual mean values of B(sub z)(nT) and its kurtosis versus the percent coverage for the year. We obtain a correlation coefficient of 0.48 and 0.42 respectively for the 1973-90 period. The probability for a chance occurrence of these correlation coefficients for 18 pair of points is less than 8%. As a rough measure of skewness, we determined the percent asymmetry between the areas of the histograms representing the distributions of the positive and the negative values of B(sub z) and studied its correlation with the coverage for the year. This analysis yields a correlation coefficient of 0.41 When we extended the analysis for the whole period for which IMF data are available (1963-93) the corresponding correlation coefficients are 0.59, 0.14, and 0.42. Our findings will be presented and discussed

  17. Abundance ratios and IMF slopes in the dwarf elliptical galaxy NGC 1396 with MUSE

    NASA Astrophysics Data System (ADS)

    Mentz, J. J.; La Barbera, F.; Peletier, R. F.; Falcón-Barroso, J.; Lisker, T.; van de Ven, G.; Loubser, S. I.; Hilker, M.; Sánchez-Janssen, R.; Napolitano, N.; Cantiello, M.; Capaccioli, M.; Norris, M.; Paolillo, M.; Smith, R.; Beasley, M. A.; Lyubenova, M.; Munoz, R.; Puzia, T.

    2016-08-01

    Deep observations of the dwarf elliptical (dE) galaxy NGC 1396 (MV = -16.60, Mass ˜4 × 108 M⊙), located in the Fornax cluster, have been performed with the VLT/ MUSE spectrograph in the wavelength region from 4750 - 9350 Å. In this paper we present a stellar population analysis studying chemical abundances, the star formation history (SFH) and the stellar initial mass function (IMF) as a function of galacto-centric distance. Different, independent ways to analyse the stellar populations result in a luminosity-weighted age of ˜ 6 Gyr and a metallicity [Fe/H]˜ -0.4, similar to other dEs of similar mass. We find unusually overabundant values of [Ca/Fe] ˜+0.1, and under-abundant Sodium, with [Na/Fe] values around -0.1, while [Mg/Fe] is overabundant at all radii, increasing from ˜+0.1 in the centre to ˜+0.2 dex. We notice a significant metallicity and age gradient within this dwarf galaxy. To constrain the stellar IMF of NGC 1396, we find that the IMF of NGC 1396 is consistent with either a Kroupa-like or a top-heavy distribution, while a bottom-heavy IMF is firmly ruled out. An analysis of the abundance ratios, and a comparison with galaxies in the Local Group, shows that the chemical enrichment history of NGC 1396 is similar to the Galactic disc, with an extended star formation history. This would be the case if the galaxy originated from a LMC-sized dwarf galaxy progenitor, which would lose its gas while falling into the Fornax cluster.

  18. Geomagnetic response to IMF and solar wind over different latitudes

    NASA Astrophysics Data System (ADS)

    Aslam, A. M.; Tripathi, Sharad Chandra; Mansoori, Azad Ahmad; Waheed, Malik Abdul

    2016-07-01

    In this paper a study on the response of geomagnetic field characteristics to the solar wind variation during three solar cycles (SC 21, SC 22, SC 23) have been conducted in a long term scale. The difference in the response of two different latitudinal characteristic indices has been investigated. For the purpose we have considered the high latitude index AE and the mid-latitude aa index and both gives the knowledge about the perturbations in the geomagnetic field conditions. Eventually we can infer the idea about the ionospheric current system changes in response to the solar wind conditions. The variation found in the AE and aa indices have been found to follow a 11 year cycle as similar to the sunspot variation. Also the correlation between the annual means of the solar wind parameters velocity V, magnetic filed B and the composite parameters BV and BV ^{2 } have been calculated . A difference was found between the correlations obtained for the AE and aa indices. We could also see that the difference in correlation follows a cyclic pattern i.e. the large difference is found during the solar maxima while a small difference is observed during the minima.

  19. On the Effect of IMF Turning on Ion Dynamics at Mercury

    NASA Technical Reports Server (NTRS)

    Delcourt, D. C.; Moore, T. E.; Fok, M.-C. H.

    2011-01-01

    We investigate the effect of a rotation of the Interplanetary Magnetic Field (IMF) on the transport of magnetospheric ion populations at Mercury. We focus on ions of planetary origin and investigate their large-scale circulation using three-dimensional single-particle simulations. We show that a nonzero Bx component of the IMF leads to a pronounced asymmetry in the overall circulation pattern . In particular, we demonstrate that the centrifugal acceleration due to curvature of the E x B drift paths is more pronounced in one hemisphere than the other, leading to filling of the magnetospheric lobes and plasma sheet with more or less energetic material depending upon the hemisphere of origin. Using a time-varying electric and magnetic field model, we investigate the response of ions to rapid (a few tens of seconds) re-orientation of the IMF. We show that, for ions with gyroperiods comparable to the field variation time scale, the inductive electric field should lead to significant nonadiabatic energization, up to several hundreds of eVs or a few keVs. It thus appears that IMP turning at Mercury should lead to localized loading of the magnetosphere with energetic material of planetary origin (e.g., Na+).

  20. Cloning and Expression of SFRP5 in Tibetan Chicken and its Relationship with IMF Deposition.

    PubMed

    Li, Qian; Zuo, Lu-Lu; Lin, Ya-Qiu; Xu, Ya-Ou; Zhu, Jiang-Jiang; Liao, Hong-Hai; Lin, Sen; Xiong, Xian-Rong; Wang, Yong

    2016-10-01

    Secreted frizzled related protein 5 (SFRP5), an anti-inflammatory adipokine, is relevant to the adipocyte differentiation. In order to clarify its role in regulating intramuscular fat (IMF) deposition in Tibetan chicken, the full-length sequence of the Tibetan chicken SFRP5 gene was cloned. The relative expression of SFRP5 gene was detected using quantitative RT-PCR in various tissues of 154 days old Tibetan chicken, as well as in breast muscle, thigh muscle, and adipose tissue at different growth stages. The results showed that SFRP5 gene was expressed in all examined tissues but highly enriched in adipose tissue. Temporal expression profile showed that the expression of SFRP5 was gradually decreased in breast muscle, but was fluctuated in thigh muscle and adipose tissue with the growth of Tibetan chicken. Furthermore, correlation analysis demonstrated that the expression of SFRP5 in breast muscle, thigh muscle and adipose tissue was correlated with IMF content at different levels. The results indicated that Tibetan chicken SFRP5 is involved in IMF deposition. PMID:27565866

  1. Observations of magnetospheric substorms occurring with no apparent solar wind/IMF trigger

    NASA Astrophysics Data System (ADS)

    Henderson, M. G.; Reeves, G. D.; Belian, R. D.; Murphree, J. S.

    1996-05-01

    An outstanding topic in magnetospheric physics is whether substorms are always externally triggered by disturbances in either the interplanetary magnetic field (IMF) or solar wind, or whether they can also occur solely as the result of an internal magnetospheric instability. Over the past decade, arguments have been made on the both sides of this issue. Horwitz [1985] and McPherron et al. [1986] have shown examples of substorm onsets which they claimed were not externally triggered. However, as pointed out by Lyons [1995, 1996], there are several problems associated with these studies that make their results somewhat inconclusive. In particular, in the McPherron et al. study, fluctuations in the By component were not considered as possible triggers. Furthermore, Lyons suggests that the sharp decreases in the AL index during intervals of steady IMF/solar wind are not substorms at all but rather that they are just enhancements of the convection driven DP 2 current system that are often observed to occur during steady magnetospheric convection events. In the present study, we utilize a much more comprehensive data set (consisting of particle data from the Los Alamos energetic particle detectors at geosynchronous orbit, IMP 8 magnetometer and plasma data, Viking UV auroral imager data, midlatitude Pi 2 pulsation data, ground magnetometer data, and ISEE 1 magnetic field and energetic particle data) to show as unambiguously as possible that typical substorms can indeed occur in the absence of an identifiable trigger in the solar wind/IMF.

  2. The IMF-sensitive 1.14-μm Na I doublet in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Russell J.; Alton, Padraig; Lucey, John R.; Conroy, Charlie; Carter, David

    2015-11-01

    We present J-band spectroscopy of passive galaxies focusing on the Na I doublet at 1.14 μm. Like the Na I 0.82 μm doublet, this feature is strong in low-mass stars and hence may provide a useful probe of the initial mass function (IMF). From high signal-to-noise composite spectra, we find that Na I 1.14 μm increases steeply with increasing velocity dispersion, σ, and for the most massive galaxies (σ ≳ 300 km s-1) is much stronger than predicted from synthetic spectra with Milky Way-like IMFs and solar abundances. Reproducing Na I 1.14 μm at high σ likely requires either a very high [Na/H], or a bottom-heavy IMF, or a combination of both. Using the Na D line to break the degeneracy between IMF and abundance, we infer [Na/H] ≈ +0.5 and a steep IMF (single-slope-equivalent x ≈ 3.2, where x = 2.35 for Salpeter), for the high-σ galaxies. At lower mass (σ = 50-100 km s-1), the line strengths are compatible with Milky Way (MW)-like IMFs and near-solar [Na/H]. We highlight two galaxies in our sample where strong gravitational lensing masses favour MW-like IMFs. Like the high-σ sample on average, these galaxies have strong Na I 1.14 μm; taken in isolation their sodium indices imply bottom-heavy IMFs which are hard to reconcile with the lensing masses. An alternative full-spectrum-fitting approach, applied to the high-σ sample, recovers an IMF less heavy than Salpeter, but under-predicts the Na I 1.14 μm line at the 5σ level. We conclude that current models struggle to reproduce this feature in the most massive galaxies without breaking other constraints, and caution against over-reliance on the sodium lines in spectroscopic IMF studies.

  3. Structure of the Outer Cusp and Sources of the Cusp Precipitation during Intervals of a Horizontal IMF

    NASA Technical Reports Server (NTRS)

    Berchem, Jean; Nemecek, Z.; Safrankova, J.; Prech, L.; Simunek, J.; Sauvaud, J.-A.; Fedorov, A.; Stenuit, H.; Fuselier, S. A.; Savin, S.; Zelenyi, L.

    2003-01-01

    The cusp represents a place where the magnetosheath plasma can directly penetrate into the magnetosphere. Since the main transport processes are connected with merging of the interplanetary and magnetospheric field lines: the interplanetary magnetic field (IMF) Orientation plays a decisive role in the formation of the high-altitude cusp. The importance of the sign of the IMF B(sub Z) component for this process was suggested about 40 years ago and later it was documented by many experimental investigations. However, situations when IMF Bz is the major IMF component are rather rare. The structure of the cusp during periods of a small IMF B(sub Z) is generally unknown, probably due to the fully 3-D nature of the interaction. The present case study reveals the importance of horizontal IMF components on the global magnetospheric configuration as well as on small-scale processes at the cusp-magnetosheath interface. We have used simultaneous measurements of several spacecraft (ISTP program) operating in different regions of interplanetary space and two closely spaced satellites (INTERBALL-1/MAGION-4) crossing the cusp-magnetosheath boundary to show the connection between the short- and large-scale phenomena. In the northern hemisphere, observations suggest a presence of two spots of cusp-like precipitation supplied by reconnection occurring simultaneously in both hemispheres. A source of this bifurcation is the positive IMF B(sub y) component further enhanced by the field draping in the magnetosheath. This magnetic field component shifts the entry point far away from the local noon but in opposite sense in either hemisphere. The cusp represents a place where the magnetosheath plasma can directly

  4. Global-scale hybrid simulation of dayside magnetic reconnection under southward IMF: Structure and evolution of reconnection

    NASA Astrophysics Data System (ADS)

    Tan, B.; Lin, Y.; Perez, J. D.; Wang, X. Y.

    2011-02-01

    Magnetopause reconnection is investigated with our 3-D self-consistent global hybrid simulation model. The magnetic configuration and evolution of Flux Transfer Events (FTEs) and the associated ion density and ion velocity distribution at various locations on the magnetopause are investigated. The results reveal the following. (1) Multiple X lines are formed during the magnetopause reconnection, which lead to both FTEs and quasi-steady-type reconnection under a steady solar wind condition. The resulting bipolar signature of local normal magnetic field of FTEs is consistent with satellite observations. (2) A greater-than-20% plasma temperature rise is seen at the center of a FTE, compared to that of the upstream plasma in the magnetosheath. The temperature enhancement is mainly in the direction parallel to the magnetic field because of the mixing of ion beams. (3) Flux ropes that lead to FTEs form between X lines of finite lengths and evolve relatively independently. The ion density is enhanced within FTE flux ropes because of the trapped particles, leading to a filamentary global density. (4) Different from the previous understanding based on the asymmetric density across the magnetopause, a quadrupole magnetic field signature associated with the Hall effects is found to be present around FTEs. (5) A combination of patchy reconnection and multiple X line reconnection leads to the formation of reconnected field lines from the magnetosphere to IMF, as well as the closed field lines from the magnetosphere to the magnetosphere in the magnetopause boundary layer.

  5. Ionospheric convection inferred from interplanetary magnetic field-dependent Birkeland currents

    NASA Technical Reports Server (NTRS)

    Rasmussen, C. E.; Schunk, R. W.

    1988-01-01

    Computer simulations of ionospheric convection have been performed, combining empirical models of Birkeland currents with a model of ionospheric conductivity in order to investigate IMF-dependent convection characteristics. Birkeland currents representing conditions in the northern polar cap of the negative IMF By component are used. Two possibilities are considered: (1) the morning cell shifting into the polar cap as the IMF turns northward, and this cell and a distorted evening cell providing for sunward flow in the polar cap; and (2) the existence of a three-cell pattern when the IMF is strongly northward.

  6. Comparison Between Vortices Created and Evolving During Fixed and Dynamic Solar Wind Conditions

    NASA Technical Reports Server (NTRS)

    Collado-Vega, Yaireska M.; Kessel, R. L.; Sibeck, David Gary; Kalb, V. L.; Boller, R. A.; Rastaetter, L.

    2013-01-01

    We employ Magnetohydrodynamic (MHD) simulations to examine the creation and evolution of plasma vortices within the Earth's magnetosphere for steady solar wind plasma conditions. Very few vortices form during intervals of such solar wind conditions. Those that do remain in fixed positions for long periods (often hours) and exhibit rotation axes that point primarily in the x or y direction, parallel (or antiparallel) to the local magnetospheric magnetic field direction. Occasionally, the orientation of the axes rotates from the x direction to another direction. We compare our results with simulations previously done for unsteady solar wind conditions. By contrast, these vortices that form during intervals of varying solar wind conditions exhibit durations ranging from seconds (in the case of those with axes in the x or y direction) to minutes (in the case of those with axes in the z direction) and convect antisunward. The local-time dependent sense of rotation seen in these previously reported vortices suggests an interpretation in terms of the Kelvin-Helmholtz instability. For steady conditions, the biggest vortices developed on the dayside (about 6R(E) in diameter), had their rotation axes aligned with the y direction and had the longest periods of duration. We attribute these vortices to the flows set up by reconnection on the high latitude magnetopause during intervals of northward Interplanetary Magnetic Field (IMF) orientation. This is the first time that vortices due to high-latitude reconnection have been visualized. The model also successfully predicts the principal characteristics of previously reported plasma vortices within the magnetosphere, namely their dimension, flow velocities, and durations.

  7. Coupling the Solar-Wind/IMF to the Ionosphere through the High Latitude Cusps

    NASA Technical Reports Server (NTRS)

    Maynard, Nelson C.

    2003-01-01

    Magnetic merging is a primary means for coupling energy from the solar wind into the magnetosphere-ionosphere system. The location and nature of the process remain as open questions. By correlating measurements form diverse locations and using large-scale MHD models to put the measurements in context, it is possible to constrain out interpretations of the global and meso-scale dynamics of magnetic merging. Recent evidence demonstrates that merging often occurs at high latitudes in the vicinity of the cusps. The location is in part controlled by the clock angle in the interplanetary magnetic field (IMF) Y-Z plane. In fact, B(sub Y) bifurcated the cusp relative to source regions. The newly opened field lines may couple to the ionosphere at MLT locations of as much as 3 hr away from local noon. On the other side of noon the cusp may be connected to merging sites in the opposite hemisphere. In face, the small convection cell is generally driven by opposite hemisphere merging. B(sub X) controls the timing of the interaction and merging sites in each hemisphere, which may respond to planar features in the IMF at different times. Correlation times are variable and are controlled by the dynamics of the tilt of the interplanetary electric field phase plane. The orientation of the phase plane may change significantly on time scales of tens of minutes. Merging is temporally variable and may be occurring at multiple sites simultaneously. Accelerated electrons from the merging process excite optical signatures at the foot of the newly opened field lines. All-sky photometer observations of 557.7 nm emissions in the cusp region provide a "television picture" of the merging process and may be used to infer the temporal and spatial variability of merging, tied to variations in the IMF.

  8. IMF B/sub y/ dependence of region 1 Birkeland currents near noon

    SciTech Connect

    Erlandson, R.E.; Zanetti, L.J.; Potemra, T.A.; Bythrow, P.F.; Lundin, R.

    1988-09-01

    We have conducted a statistical study of large-scale Birkeland currents, hot plasma, and the B/sub y/ component of the interplanetary magnetic field. Forty-eight Viking orbits from July 19, 1986, to September 2, 1986, were used in the study during a time period when the 3-R/sub E/ geocentric apogee was located near the dayside high-latitude region usually associated with the polar cusp. We first compared the location of magnetosheathlike electrons to the region 1 and ''traditional cusp'' Birkeland current systems near noon. It was found that the region 1 Birkeland current system was colocated with the region of most intense magnetosheathlike electron flux. We therefore infer that the ''tradional cusp'' current system, located poleward of the region 1 system, is associated with field lines that extend to the plasma mantle in the outer magnetosphere. Using this same data base a statistical study between the B/sub y/ component of the IMF and the flow direction of the region 1 Birkeland current system as a function of magnetic local time was performed. We determined that the flow direction of the region 1 current system near noon depends on the B/sub y/ component of IMF. The meridian that separates the dawnside and duskside region 1 Birkeland currents shifted to magnetic local times before noon when B/sub y/ was less than 0 nT, and to the afternoon when B/sub y/ was greater than 0 nT. The extent of the shift away from noon was dependent on the magnitude of the IMF B/sub y/ component. copyright American Geophysical Union 1988

  9. Relationship between the IMF magnitude and Pc 3 magnetic pulsations in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Yumoto, K.; Saito, T.; Tsurutani, B. T.; Smith, E. J.; Akasofu, S.-I.

    1984-01-01

    The relationships between the IMF magnitude and pulsation frequencies in the Pc 3-4 range simultaneously observed both at synchronous orbit and at low latitudes on the ground are statistically described. A theoretical discussion is given on how these observations can be interpreted in terms of the characteristic frequency of compressional Pc 3-4 magnetic pulsations in the magnetosphere, based on the well-established ion cyclotron resonance mechanism between magnetosonic mode of low-frequency upstream waves and narrowly reflected ion beams in the earth's foreshock.

  10. THE STELLAR INITIAL MASS FUNCTION OF ULTRA-FAINT DWARF GALAXIES: EVIDENCE FOR IMF VARIATIONS WITH GALACTIC ENVIRONMENT

    SciTech Connect

    Geha, Marla; Brown, Thomas M.; Tumlinson, Jason; Kalirai, Jason S.; Avila, Roberto J.; Ferguson, Henry C.; Simon, Joshua D.; Kirby, Evan N.; VandenBerg, Don A.; Munoz, Ricardo R.; Guhathakurta, Puragra E-mail: tbrown@stsci.edu

    2013-07-01

    We present constraints on the stellar initial mass function (IMF) in two ultra-faint dwarf (UFD) galaxies, Hercules and Leo IV, based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. The Hercules and Leo IV galaxies are extremely low luminosity (M{sub V} = -6.2, -5.5), metal-poor (([Fe/H]) = -2.4, -2.5) systems that have old stellar populations (>11 Gyr). Because they have long relaxation times, we can directly measure the low-mass stellar IMF by counting stars below the main-sequence turnoff without correcting for dynamical evolution. Over the stellar mass range probed by our data, 0.52-0.77 M{sub Sun }, the IMF is best fit by a power-law slope of {alpha}= 1.2{sub -0.5}{sup +0.4} for Hercules and {alpha} = 1.3 {+-} 0.8 for Leo IV. For Hercules, the IMF slope is more shallow than a Salpeter ({alpha} = 2.35) IMF at the 5.8{sigma} level, and a Kroupa ({alpha} = 2.3 above 0.5 M{sub Sun }) IMF slope at 5.4{sigma} level. We simultaneously fit for the binary fraction, f{sub binary}, finding f{sub binary}= 0.47{sup +0.16}{sub -0.14} for Hercules, and 0.47{sup +0.37}{sub -0.17} for Leo IV. The UFD binary fractions are consistent with that inferred for Milky Way stars in the same mass range, despite very different metallicities. In contrast, the IMF slopes in the UFDs are shallower than other galactic environments. In the mass range 0.5-0.8 M{sub Sun }, we see a trend across the handful of galaxies with directly measured IMFs such that the power-law slopes become shallower (more bottom-light) with decreasing galactic velocity dispersion and metallicity. This trend is qualitatively consistent with results in elliptical galaxies inferred via indirect methods and is direct evidence for IMF variations with galactic environment.

  11. Evolution of the Global Aurora During Positive IMP Bz and Varying IMP By Conditions

    NASA Technical Reports Server (NTRS)

    Cumnock, J. A.; Sharber, J. R.; Heelis. R. A.; Hairston, M. R.; Carven, J. D.

    1997-01-01

    The DE 1 imaging instrumentation provides a full view of the entire auroral oval every 12 min for several hours during each orbit. We examined five examples of global evolution of the aurora that occurred during the northern hemisphere winter of 1981-1982 when the z component of the interplanetary magnetic field was positive and the y component was changing sign. Evolution of an expanded auroral emission region into a theta aurora appears to require a change in the sign of By during northward interplanetary magnetic field (IMF). Theta aurora are formed both from expanded duskside emission regions (By changes from positive to negative) and dawnside emission regions (By changes from negative to positive), however the dawnside-originating and duskside-originating evolutions are not mirror images. The persistence of a theta aurora after its formation suggests that there may be no clear relationship between the theta aurora pattern and the instantaneous configuration of the IMF.

  12. Observations of magnetospheric substorms occurring with no apparent solar wind/IMF trigger

    SciTech Connect

    Henderson, M.G.; Reeves, G.D.; Belian, R.D.; Murphree, J.S.

    1996-03-01

    An outstanding topic in magnetospheric physics is whether substorms are always externally triggered by disturbances in either the interplanetary magnetic field or solar wind, or whether they can also occur solely as the result of an internal magnetospheric instability. Over the past decade, arguments have been made on both sides of this issue. Horwitz and McPherron have shown examples of substorm onsets which they claimed were not externally triggered. However, as pointed out by Lyons, there are several problems associated with these studies that make their results somewhat inconclusive. In particular, in the McPherron et al. study, fluctuations in the B{sub y} component were not considered as possible triggers. Furthermore, Lyons suggests that the sharp decreases in the AL index during intervals of steady IMF/solar wind, are not substorms at all but rather that they are just enhancements of the convection driven DP2 current system that are often observed to occur during steady magnetospheric convection events. In the present study, we utilize a much more comprehensive dataset (consisting of particle data from the Los Alamos energetic particle detectors at geosynchronous orbit, IMP 8 magnetometer and plasma data, Viking UV auroral imager data, mid-latitude Pi2 pulsation data, ground magnetometer data and ISEE1 magnetic field and energetic particle data) to show as unambiguously as possible that typical substorms can indeed occur in the absence of an identifiable trigger in the solar wind/IMF.

  13. Solar Flare and IMF Sector Structure Effects in the Lower Ionosphere

    NASA Technical Reports Server (NTRS)

    Lastovicka, J.

    1984-01-01

    About 1% of all sudden ionospheric disturbances (SIDs) observed at the Panska Ves Observatory (Czechoslovakia), were found to be not of solar-XUV origin. Among them, the very rare SWF events (observed at L = 2.4) of corpuscular origin are the most interesting. The IMF sector structure effects in the midlatitude lower ionosphere are minor in comparison with effects of solar flares, geomagnetic storms, etc. There are two basic types of effects. The first type is a disturbance, best developed in geomagnetic activity, and observed in the night-time ionosphere. It can be interpreted as a response to sector structure related changes of geomagnetic (= magnetospheric) activity. The other type is best developed in the tropospheric vorticity area index and is also observed in the day-time ionosphere in winter. This effect is quietening in the ionosphere as well as troposphere. While the occurrence of the former type is persistent in time, the latter is severely diminished in some periods. All the stratosphere, the 10-mb level temperature and height above Berlin-Tempelhof do not display any observable IMF section structure effect.

  14. Solar flare and IMF sector structure effects in the lower ionosphere

    SciTech Connect

    Lastovicka, J.

    1984-05-01

    About 1% of all sudden ionospheric disturbances (SIDs) observed at the Panska Ves Observatory (Czechoslovakia), were found to be not of solar-XUV origin. Among them, the very rare SWF events (observed at L 2.4) of corpuscular origin are the most interesting. The IMF sector structure effects in the midlatitude lower ionosphere are minor in comparison with effects of solar flares, geomagnetic storms, etc. There are two basic types of effects. The first type is a disturbance, best developed in geomagnetic activity, and observed in the night-time ionosphere. It can be interpreted as a response to sector structure related changes of geomagnetic (magnetospheric) activity. The other type is best developed in the tropospheric vorticity area index and is also observed in the day-time ionosphere in winter. This effect is quietening in the ionosphere as well as troposphere. While the occurrence of the former type is persistent in time, the latter is severely diminished in some periods. All the stratosphere, the 10-mb level temperature and height above Berlin-Tempelhof do not display any observable IMF section structure effect.

  15. Observations of IMF and seasonal effects in high-latitude convection

    NASA Technical Reports Server (NTRS)

    Ruohoniemi, J. M.; Greenwald, R. A.

    1995-01-01

    Strong interplanetary magnetic field (IMF) and seasonal effects in the convection of nightside ionospheric plasma are described. The findings are based on a statistical analysis of observations made with the Johns Hopkins University/ Applied Physics Lab (JHU/APL) HF radar located at Goose Bay, Labrador. For positive sign of the IMF dusk-dawn component, By greater than 0 the dawn cell is more crescent shaped and the dusk cell more round while for BY less than 0 these pairings of size and shape are reversed. The more extreme crescent /round cell dichotomy is obtained for BY greater than 0. The return flows associated with the crescent-shaped cell dominate at midnight MLT (magnetic local time); the reversal in the zonal velocity in the 67 deg-69 deg lambda (magnetic latitude) interval occurs 2.5 hr earlier in summer than in winter. The maximum effects are obtained on the nightside for the pairings By greater than 0, summer and BY less than 0, winter; the first produces the more structured cell in the morning, the second in the evening, and this cell dominates the return flow at midnight. The difference in the zonal flow reversals for these pairings exceeds 4 hr in MLT.

  16. Identification of the IMF sector structure in near-real time by ground magnetic data

    NASA Astrophysics Data System (ADS)

    Janzhura, A. S.; Troshichev, O. A.

    2011-08-01

    A method is proposed to determine in near-real time the interplanetary magnetic field (IMF) sector structure (SS) effect on geomagnetic data from polar cap stations. To separate the SS effect, whose polarity is invariant within an interval from some days to 2 weeks, from the disturbed solar wind effects with periodicity from minutes to hours, the daily median values of geomagnetic H (or D) component are estimated. Then the median values for 9 days preceding the current day are subjected to 3-days running averages and the interpolation procedure is applied to these smoothed averages. Comparisons of the sector structure reconstructed from the ground magnetic data with the actual variations of the GSM IMF By component measured onboard the ACE spacecraft in the summer months of 1990 and 2001 demonstrate their good agreement with coefficient of correlation R=0.96-0.97 for the H-component and R=0.93-0.95 for the D-component. The proposed simple method makes possible identification of the SS effect in the same near real-time regime as the derivation of the quiet daily curve and as level of reference for the polar cap magnetic disturbances in the calculation of the polar cap magnetic activity PC index.

  17. Dulling Occam's Razor: ICM Enrichment, the Elliptical Galaxy IMF, and the Diversity of Star Formation

    NASA Astrophysics Data System (ADS)

    Loewenstein, Michael

    2013-04-01

    Stars born in galaxy cluster potential wells must be responsible for the high level of enrichment measured in the intracluster medium (ICM); however, there is increasing tension between this truism and the parsimonious assumption that the stars in the generally old population studied optically in cluster galaxies emerged from the same formation sites at the same epochs. We construct a phenomenological cluster model to demonstrate that ICM enrichment is underestimated by a factor >2 for standard assumptions, and quantify the adjustments to the star formation efficiency and initial mass function (IMF), and SNIa production efficiency, required to rectify this while being consistent with the observed ICM abundance pattern. Given recent evidence of a steep IMF in elliptical galaxies that conflicts with the nucleosynthetic requirements of the ICM, we are led to conclude that the stellar population responsible for enriching the ICM is currently hidden and offer some suggestions as to where. This study proves that the star formation cannot be invariant in space and time.

  18. Interhemispheric Geomagnetic Field Response to Sudden Change in Solar Wind Pressure and IMF Orientation

    NASA Astrophysics Data System (ADS)

    Kim, H.; Cai, X.; Clauer, C. R.; Stolle, C.; Matzka, J.

    2011-12-01

    Preliminary investigation of geomagnetic field response to sudden change in solar wind pressure and IMF orientation is presented using data from satellite and ground magnetometer array in both northern and southern hemispheres. Some data sets in this study have been provided by AGO (Automatic Geophysical Observatory) and AAL-PIP (Autonomous Adaptive Low-Power Instrument Platform) stations deployed in Antarctica along the 40° magnetic meridian. These stations facilitate high-latitude multi-point magnetic conjugate observation pairs to the Greenland West Coast magnetometer chain for interhemispheric investigations, which have been rarely made because of the difficulty in accessing the Antarctic regions. Geomagnetic field perturbations in response to solar wind pressure impulse events, in which the solar wind pressure changes are more than ˜5 nPa in less than ~16 minutes and the pressures are steady for ~1 hour before and ~20 minutes after the pressure changes, have been examined using the data sets obtained from 1998 to 2010 to show global local time distribution of the ground response, timing response between the two hemispheres and its seasonal variation, and the relationship between IMF orientation and the ground response accompanied by the solar wind sudden pressure change.

  19. Faults Diagnostics of Railway Axle Bearings Based on IMF's Confidence Index Algorithm for Ensemble EMD.

    PubMed

    Yi, Cai; Lin, Jianhui; Zhang, Weihua; Ding, Jianming

    2015-01-01

    As train loads and travel speeds have increased over time, railway axle bearings have become critical elements which require more efficient non-destructive inspection and fault diagnostics methods. This paper presents a novel and adaptive procedure based on ensemble empirical mode decomposition (EEMD) and Hilbert marginal spectrum for multi-fault diagnostics of axle bearings. EEMD overcomes the limitations that often hypothesize about data and computational efforts that restrict the application of signal processing techniques. The outputs of this adaptive approach are the intrinsic mode functions that are treated with the Hilbert transform in order to obtain the Hilbert instantaneous frequency spectrum and marginal spectrum. Anyhow, not all the IMFs obtained by the decomposition should be considered into Hilbert marginal spectrum. The IMFs' confidence index arithmetic proposed in this paper is fully autonomous, overcoming the major limit of selection by user with experience, and allows the development of on-line tools. The effectiveness of the improvement is proven by the successful diagnosis of an axle bearing with a single fault or multiple composite faults, e.g., outer ring fault, cage fault and pin roller fault. PMID:25970256

  20. On the use of a sunward-libration-point orbiting spacecraft as an IMF monitor for magnetospheric studies

    NASA Technical Reports Server (NTRS)

    Kelly, T. J.; Crooker, N. U.; Siscoe, G. L.; Russell, C. T.; Smith, E. J.

    1984-01-01

    Magnetospheric studies often require knowledge of the orientation of the IMF. In order to test the accuracy of using magnetometer data from a spacecraft orbiting the sunward libration point for this purpose, the angle between the IMF at ISEE 3, when it was positioned around the libration point, and at ISEE 1, orbiting Earth, has been calculated for a data set of two-hour periods covering four months. For each period, a ten-minute average of ISEE 1 data is compared with ten-minute averages of ISEE 3 data at successively lagged intervals. At the lag time equal to the time required for the solar wind to convect from ISEE 3 to ISEE 1, the median angle between the IMF orientation at the two spacecraft is 20 deg, and 80% of the cases have angles less than 38 deg. The results for the angles projected on the y-z plane are essentially the same.

  1. Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

    NASA Astrophysics Data System (ADS)

    Baraka, Suleiman

    2016-06-01

    In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

  2. Pangea breakup and northward drift of the Indian subcontinent reproduced by a numerical model of mantle convection.

    PubMed

    Yoshida, Masaki; Hamano, Yozo

    2015-01-01

    Since around 200 Ma, the most notable event in the process of the breakup of Pangea has been the high speed (up to 20 cm yr(-1)) of the northward drift of the Indian subcontinent. Our numerical simulations of 3-D spherical mantle convection approximately reproduced the process of continental drift from the breakup of Pangea at 200 Ma to the present-day continental distribution. These simulations revealed that a major factor in the northward drift of the Indian subcontinent was the large-scale cold mantle downwelling that developed spontaneously in the North Tethys Ocean, attributed to the overall shape of Pangea. The strong lateral mantle flow caused by the high-temperature anomaly beneath Pangea, due to the thermal insulation effect, enhanced the acceleration of the Indian subcontinent during the early stage of the Pangea breakup. The large-scale hot upwelling plumes from the lower mantle, initially located under Africa, might have contributed to the formation of the large-scale cold mantle downwelling in the North Tethys Ocean. PMID:25673102

  3. Pangea breakup and northward drift of the Indian subcontinent reproduced by a numerical model of mantle convection

    PubMed Central

    Yoshida, Masaki; Hamano, Yozo

    2015-01-01

    Since around 200 Ma, the most notable event in the process of the breakup of Pangea has been the high speed (up to 20 cm yr−1) of the northward drift of the Indian subcontinent. Our numerical simulations of 3-D spherical mantle convection approximately reproduced the process of continental drift from the breakup of Pangea at 200 Ma to the present-day continental distribution. These simulations revealed that a major factor in the northward drift of the Indian subcontinent was the large-scale cold mantle downwelling that developed spontaneously in the North Tethys Ocean, attributed to the overall shape of Pangea. The strong lateral mantle flow caused by the high-temperature anomaly beneath Pangea, due to the thermal insulation effect, enhanced the acceleration of the Indian subcontinent during the early stage of the Pangea breakup. The large-scale hot upwelling plumes from the lower mantle, initially located under Africa, might have contributed to the formation of the large-scale cold mantle downwelling in the North Tethys Ocean. PMID:25673102

  4. Pangea breakup and northward drift of the Indian subcontinent reproduced by a numerical model of mantle convection

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaki; Hamano, Yozo

    2015-02-01

    Since around 200 Ma, the most notable event in the process of the breakup of Pangea has been the high speed (up to 20 cm yr-1) of the northward drift of the Indian subcontinent. Our numerical simulations of 3-D spherical mantle convection approximately reproduced the process of continental drift from the breakup of Pangea at 200 Ma to the present-day continental distribution. These simulations revealed that a major factor in the northward drift of the Indian subcontinent was the large-scale cold mantle downwelling that developed spontaneously in the North Tethys Ocean, attributed to the overall shape of Pangea. The strong lateral mantle flow caused by the high-temperature anomaly beneath Pangea, due to the thermal insulation effect, enhanced the acceleration of the Indian subcontinent during the early stage of the Pangea breakup. The large-scale hot upwelling plumes from the lower mantle, initially located under Africa, might have contributed to the formation of the large-scale cold mantle downwelling in the North Tethys Ocean.

  5. Variation in the statistical properties of IMF direction fluctuations during the 22-year solar magnetic cycle

    NASA Astrophysics Data System (ADS)

    Erofeev, D. V.

    2014-12-01

    The variation in the IMF direction distribution during the 22-year solar magnetic cycle has been studied. Data obtained in near-Earth orbits and measurements in the heliospheric regions located far from the Earth, performed with the Helios and Ulysses spacecraft devices, have been analyzed. It has been found that the correlation between the azimuth and magnetic field fluctuations is statistically significant in the low-latitude heliospheric region at heliocentric distances of 0.3-5.4 AU, and the sign of this correlation reverses at a change in the polar solar magnetic field orientation. In the polar zones of the heliosphere outside the latitudinal extension of the heliospheric current sheet, the angle correlation coefficient rapidly decreases with increasing heliographic latitude. The angle correlation sign reversal during the 22-year cycle is accompanied by a change of the asymmetry sign of the magnetic field inclination distribution.

  6. Systematic Variation in the Spectral Slope of the IMF at ACE

    NASA Astrophysics Data System (ADS)

    Thomson, David J.

    Inferences on turbulence in interplanetary plasmas commonly depend on the slope of the power spectrum. We have studied the slopes of spectra of the interplanetary magnetic field and charged particles from the HISCALE and EPAM detectors on Ulysses and ACE and find that it is systematically nonstationary. As an example, when the spectra are estimated on time blocks varying between three hours and one day, the average slope on the ACE GSE Y component of the IMF is close to -5/3, but fluctuations about this average are not random. Using 1-minute data, the slopes made from three hour data blocks offset by one hour gives a new time series. Solar rotation and its first harmonic are nearly absent in the spectrum of this series, but there are a series of strong peaks that may be convection or gravity modes.

  7. The IGIMF and other IMFs in dSphs: the case of Sagittarius

    NASA Astrophysics Data System (ADS)

    Vincenzo, F.; Matteucci, F.; Recchi, S.; Calura, F.; McWilliam, A.; Lanfranchi, G. A.

    2015-05-01

    We have studied the effects of various initial mass functions (IMFs) on the chemical evolution of the Sagittarius dwarf galaxy (Sgr). In particular, we tested the effects of the integrated galactic initial mass function (IGIMF) on various predicted abundance patterns. The IGIMF depends on the star formation rate and metallicity and predicts less massive stars in a regime of low star formation, as it is the case in dwarf spheroidals. We adopted a detailed chemical evolution model following the evolution of α-elements, Fe and Eu, and assuming the currently best set of stellar yields. We also explored different yield prescriptions for the Eu, including production from neutron star mergers. Although the uncertainties still present in the stellar yields and data prevent us from drawing firm conclusions, our results suggest that the IGIMF applied to Sgr predicts lower [α/Fe] ratios than classical IMFs and lower [hydrostatic/explosive] α-element ratios, in qualitative agreement with observations. In our model, the observed high [Eu/O] ratios in Sgr is due to reduced O production, resulting from the IGIMF mass cut-off of the massive oxygen-producing stars, as well as to the Eu yield produced in neutron star mergers, a more promising site than core-collapse supernovae, although many uncertainties are still present in the Eu nucleosynthesis. We find that a model, similar to our previous calculations, based on the late addition of iron from the Type Ia supernova time-delay (necessary to reproduce the shape of [X/Fe] versus [Fe/H] relations) but also including the reduction of massive stars due to the IGIMF, better reproduces the observed abundance ratios in Sgr than models without the IGIMF.

  8. Observations of IMF and seasonal effects in high-latitude convection

    SciTech Connect

    Ruohoniemi, J.M.; Greenwald, R.A.

    1995-05-01

    The authors describe strong interplanetary magnetic field (IMF) and seasonal effects in the convection of nightside ionospheric plasma. The findings are based on a statistical analysis of observations made with the JHU/APL HF radar located at Goose Bay, Labrador. For positive sign of the IMF dawn-dusk component, i.e., B{sub y}>0, the dawn cell is more crescent-shaped and the dusk cell more round while for B{sub y}<0 these pairings of size and shape are reversed. The more extreme crescent/round cell dichotomy is obtained for B{sub y}>0. The return flows associated with the crescent-shaped cell dominate at midnight MLT (Magnetic Local Time); the reversal in the zonal velocity in the 67{degrees}-69{degrees}{Lambda} (magnetic latitude) interval occurs 2 1/2 hr earlier for B{sub y}>0. The seasonal dependence of nightside convection resembles in important respects the B{sub y} dependence. Greater latitudinal velocity shears occur in the morning/afternoon sector for summer/winter and the return flow of this sector dominates at midnight. The zonal flow reversal occurs 2 1/2 hr earlier in summer than in winter. The maximum effects are obtained on the nightside for the pairings [B{sub y}>0, summer] and [B{sub y}<0, winter]; the first produces the more structured cell in the morning, the second in the evening, and this cell dominates the return flow at midnight. The difference in the zonal flow reversals for these pairings exceeds 4 hr in MLT. 15 refs., 4 figs.

  9. High-Latitude Plasma Convection as a Function of Solar Wind and IMF Using a Simple Parameterization

    NASA Astrophysics Data System (ADS)

    Baker, K. B.

    2001-12-01

    A simple parameterization of high-latitude ionospheric plasma convection patterns has been developed to study the relationship of the convection patterns to the speed and density of the solar wind and the interplanetary magnetic field (IMF). The parameterization includes the overall size of the convection pattern, the total potential drop, the orientation of the pattern, and the relative sizes of the dawn and dusk convection cells. The spherical harmonic fitting analysis of Ruohoniemi and Baker [1998] was applied to two years (1999, 2000) of SuperDARN HF-Radar data from the northern hemisphere. Solar Wind and IMF data were take from the definitive ACE key parameter data. Linear regression analysis was applied to determine the relationship of the convection pattern parameters to various combinations of solar wind and IMF parameters. The polar cap potential drop was found to be most strongly correlated to vBz, but a weaker correlation to v*abs(By) was also noted. The orientation of the convection pattern was well correlated with either By alone or the IMF clock angle. Ruohoniemi, J. M., and K. B. Baker, Large-scale imaging of high-latitude convection with SuperDARN HF-radar observations, J. Geophys. Res., 103, 20,797-20,811, 1998.

  10. Moisture dynamics of the northward and eastward propagating boreal summer intraseasonal oscillations: possible role of tropical Indo-west Pacific SST and circulation

    NASA Astrophysics Data System (ADS)

    Pillai, Prasanth A.; Sahai, A. K.

    2016-08-01

    Boreal summer intraseasonal oscillation (BSISO) has complex spatial structure due to the co-existence of equatorial eastward and off-equatorial northward propagation in the equatorial Indian Ocean. As a result, equatorial Indian Ocean convection has simultaneous northward and eastward (NE), northward only (N-only) and eastward only (E-only) propagations. It is well established that the convection propagates in the direction of increasing moist static energy (MSE). The moisture and MSE budget analysis reveals that the horizontal advection of anomalous MSE contributes to positive MSE tendency, which is in agreement with the horizontal advection of column integrated moisture anomaly. Northward movement of warm SST and the anomalous moisture advected by zonal wind are the major initiative for the northward propagation of convection from the equatorial Indian Ocean in both NE and N-only category. At the same time warm SST anomaly in the equatorial west Pacific along with moisture advection caused by anomalous meridional wind is important for the equatorial eastward branch of NE propagation. As these anomalies in the west Pacific moves northward, equatorial Indian Ocean convection establishes over the equatorial west Pacific. The absence of these processes confines the BSISO in northward direction for N-only category. In the case of E-only movement, warm SST anomaly and moisture advection by zonal component of wind causes the eastward propagation of convection. Boundary layer moisture convergence always remains east of convection center in E-only propagation, while it coincides with convection centre in other two categories. Thus the present study concludes that the difference in underlying SST and atmospheric circulation in tropical Indo-west Pacific oceanic regions encourage the differential propagation of BSISO convection through moisture dynamics.

  11. Radial Trends in IMF-sensitive Absorption Features in Two Early-type Galaxies: Evidence for Abundance-driven Gradients

    NASA Astrophysics Data System (ADS)

    McConnell, Nicholas J.; Lu, Jessica R.; Mann, Andrew W.

    2016-04-01

    Samples of early-type galaxies show a correlation between stellar velocity dispersion and the stellar initial mass function (IMF) as inferred from gravity-sensitive absorption lines in the galaxies’ central regions. To search for spatial variations in the IMF, we have observed two early-type galaxies with Keck/LRIS and measured radial gradients in the strengths of absorption features from 4000–5500 Å and 8000–10000 Å. We present spatially resolved measurements of the dwarf-sensitive spectral indices {Na} {{I}} (8190 Å) and Wing-Ford {{FeH}} (9915 Å), as well as indices for species of H, C2, CN, Mg, Ca, {{TiO}}, and Fe. Our measurements show a metallicity gradient in both objects, and Mg/Fe consistent with a shallow gradient in α-enhancement, matching widely observed trends for massive early-type galaxies. The {Na} {{I}} index and the CN1 index at 4160 Å exhibit significantly steeper gradients, with a break at r∼ 0.1 {r}{{eff}} (r∼ 300 pc). Inside this radius, {Na} {{I}} strength increases sharply toward the galaxy center, consistent with a rapid central rise in [Na/Fe]. In contrast, the ratio of the {{FeH}} to Fe index strength decreases toward the galaxy center. This behavior cannot be reproduced by a steepening IMF inside of 0.1 {r}{{eff}} if the IMF is a single power law. While gradients in the mass function above ∼ 0.4 {M}ȯ may occur, exceptional care is required to disentangle these IMF variations from the extreme variations in individual element abundances near the galaxies’ centers.

  12. Y-Chromosome evidence for a northward migration of modern humans into Eastern Asia during the last Ice Age.

    PubMed

    Su, B; Xiao, J; Underhill, P; Deka, R; Zhang, W; Akey, J; Huang, W; Shen, D; Lu, D; Luo, J; Chu, J; Tan, J; Shen, P; Davis, R; Cavalli-Sforza, L; Chakraborty, R; Xiong, M; Du, R; Oefner, P; Chen, Z; Jin, L

    1999-12-01

    The timing and nature of the arrival and the subsequent expansion of modern humans into eastern Asia remains controversial. Using Y-chromosome biallelic markers, we investigated the ancient human-migration patterns in eastern Asia. Our data indicate that southern populations in eastern Asia are much more polymorphic than northern populations, which have only a subset of the southern haplotypes. This pattern indicates that the first settlement of modern humans in eastern Asia occurred in mainland Southeast Asia during the last Ice Age, coinciding with the absence of human fossils in eastern Asia, 50,000-100,000 years ago. After the initial peopling, a great northward migration extended into northern China and Siberia. PMID:10577926

  13. Genetic Evidence of an East Asian Origin and Paleolithic Northward Migration of Y-chromosome Haplogroup N

    PubMed Central

    Peng, Yi; Zhang, Xiaoming; Ma, Runlin Z.; Su, Bing

    2013-01-01

    The Y-chromosome haplogroup N-M231 (Hg N) is distributed widely in eastern and central Asia, Siberia, as well as in eastern and northern Europe. Previous studies suggested a counterclockwise prehistoric migration of Hg N from eastern Asia to eastern and northern Europe. However, the root of this Y chromosome lineage and its detailed dispersal pattern across eastern Asia are still unclear. We analyzed haplogroup profiles and phylogeographic patterns of 1,570 Hg N individuals from 20,826 males in 359 populations across Eurasia. We first genotyped 6,371 males from 169 populations in China and Cambodia, and generated data of 360 Hg N individuals, and then combined published data on 1,210 Hg N individuals from Japanese, Southeast Asian, Siberian, European and Central Asian populations. The results showed that the sub-haplogroups of Hg N have a distinct geographical distribution. The highest Y-STR diversity of the ancestral Hg N sub-haplogroups was observed in the southern part of mainland East Asia, and further phylogeographic analyses supports an origin of Hg N in southern China. Combined with previous data, we propose that the early northward dispersal of Hg N started from southern China about 21 thousand years ago (kya), expanding into northern China 12–18 kya, and reaching further north to Siberia about 12–14 kya before a population expansion and westward migration into Central Asia and eastern/northern Europe around 8.0–10.0 kya. This northward migration of Hg N likewise coincides with retreating ice sheets after the Last Glacial Maximum (22–18 kya) in mainland East Asia. PMID:23840409

  14. Rapid Northward Spread of a Zooxanthellate Coral Enhanced by Artificial Structures and Sea Warming in the Western Mediterranean

    PubMed Central

    Serrano, Eduard; Coma, Rafel; Ribes, Marta; Weitzmann, Boris; García, María; Ballesteros, Enric

    2013-01-01

    The hermatypic coral Oculina patagonica can drive a compositional shift in shallow water benthic marine communities in the northwestern Mediterranean. Here, we analyze a long-term, large-scale observational dataset to characterize the dynamics of the species' recent northward range shift along the coast of Catalonia and examine the main factors that could have influenced this spread. The variation in the distributional range of Oculina patagonica was examined by monitoring 223 locations including natural and artificial habitats along >400 km of coastline over the last 19 years (1992–2010). Abundance of the species increased from being present in one location in 1992 to occur on 19% of the locations in 2010, and exhibited an acceleration of its spreading over time driven by the join action of neighborhood and long-distance dispersal. However, the pattern of spread diverged between artificial and natural habitats. A short lag phase and a high slope on the exponential phase characterized the temporal pattern of spread on artificial habitats in contrast to that observed on natural ones. Northward expansion has occurred at the fastest rate (22 km year−1) reported for a coral species thus far, which is sufficiently fast to cope with certain climate warming predictions. The pattern of spread suggests that this process is mediated by the interplay of (i) the availability of open space provided by artificial habitats, (ii) the seawater temperature increase with the subsequent extension of the growth period, and (iii) the particular biological features of O. patagonica (current high growth rates, early reproduction, and survival to low temperature and in polluted areas). These results are indicative of an ongoing fundamental modification of temperate shallow water assemblages, which is consistent with the predictions indicating that the Mediterranean Sea is one of the most sensitive regions to global change. PMID:23341904

  15. Genetic evidence of an East Asian origin and paleolithic northward migration of Y-chromosome haplogroup N.

    PubMed

    Shi, Hong; Qi, Xuebin; Zhong, Hua; Peng, Yi; Zhang, Xiaoming; Ma, Runlin Z; Su, Bing

    2013-01-01

    The Y-chromosome haplogroup N-M231 (Hg N) is distributed widely in eastern and central Asia, Siberia, as well as in eastern and northern Europe. Previous studies suggested a counterclockwise prehistoric migration of Hg N from eastern Asia to eastern and northern Europe. However, the root of this Y chromosome lineage and its detailed dispersal pattern across eastern Asia are still unclear. We analyzed haplogroup profiles and phylogeographic patterns of 1,570 Hg N individuals from 20,826 males in 359 populations across Eurasia. We first genotyped 6,371 males from 169 populations in China and Cambodia, and generated data of 360 Hg N individuals, and then combined published data on 1,210 Hg N individuals from Japanese, Southeast Asian, Siberian, European and Central Asian populations. The results showed that the sub-haplogroups of Hg N have a distinct geographical distribution. The highest Y-STR diversity of the ancestral Hg N sub-haplogroups was observed in the southern part of mainland East Asia, and further phylogeographic analyses supports an origin of Hg N in southern China. Combined with previous data, we propose that the early northward dispersal of Hg N started from southern China about 21 thousand years ago (kya), expanding into northern China 12-18 kya, and reaching further north to Siberia about 12-14 kya before a population expansion and westward migration into Central Asia and eastern/northern Europe around 8.0-10.0 kya. This northward migration of Hg N likewise coincides with retreating ice sheets after the Last Glacial Maximum (22-18 kya) in mainland East Asia. PMID:23840409

  16. Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet

    NASA Astrophysics Data System (ADS)

    Li, Shi-Min; Zhu, Di-Cheng; Wang, Qing; Zhao, Zhi-Dan; Sui, Qing-Lin; Liu, Sheng-Ao; Liu, Dong; Mo, Xuan-Xue

    2014-09-01

    New zircon LA-ICPMS U-Pb age data, whole-rock major and trace elements, and zircon Hf isotopic data of intrusive rocks from Larelaxin and Caima plutons in the southern margin of the Western Qiangtang subterrane provide important evidence of northward subduction of the Bangong-Nujiang Tethyan Ocean lithosphere. Host granitoids including quartz diorites, granodiorites, and syenogranites and associated mafic varieties including gabbroic enclaves, dioritic dikes and enclaves, and quartz dioritic enclaves are investigated in this study. Five host granitoid samples are dated at 163-160 Ma, and one dioritic dike and three dioritic enclave samples are dated at 162-158 Ma, which indicates that these rocks were contemporaneous. The quartz diorites and granodiorites are normal calc-alkaline I-type granitoids. The syenogranites are characterized by high SiO2 (74-77 wt.%) and differentiation index (DI = 92-97) and marked depletion in Ba, Nb, Ta, Sr, P, Ti, and Eu, thus indicating that they are highly fractionated I-type granitoids. The host granitoids exhibit uniform zircon εHf(t) values (- 1.4 to + 1.9). Considering the current data and their negative whole-rock εNd(t) values (- 4.7 to - 3.5) reported in recent studies, these rocks can be interpreted to have resulted from the partial melting of ancient mafic lower crust with varying contributions from mantle-derived or juvenile crust-derived components. One gabbroic enclave sample exhibits high Al2O3 (18.3 wt.%), low MgO (3.3 wt.%), high TiO2 (1.4 wt.%), and high Nb (24 ppm) and is geochemically similar to high-alumina basalt (HAB) and high-Nb basalt (HNB). This indicates that the gabbroic enclave originated from the partial melting of mantle wedge peridotite that was metasomatized by slab melting and subsequently experienced significant fractional crystallization of olivine and clinopyroxene. The dioritic dike and enclave samples yield εHf(t) values (- 1.6 to + 3.1) similar to those of the host granitoids. They most likely

  17. IMF By-dependent plasma flow and Birkeland currents in the dayside magnetosphere. I - Dynamics Explorer observations

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Reiff, P. H.; Menietti, J. D.; Winningham, J. D.; Heelis, R. A.; Hanson, W. B.; Shawhan, S. D.; Shelley, E. G.; Sugiura, M.

    1985-01-01

    Plasma, magnetic-field, and dc electric-field observations from Dynamics Explorers 1 and 2 are used to investigate the morphology of solar-wind ion injection, Birkeland currents, and plasma convection in the morning sector for both positive and negative interplanetary magnetic field (IMF) By components. The results of the study are used to construct a By-dependent global convection model for southward IMF. A significant element of the model is the coexistence of three types of convection cells ('merging cells', 'viscous cells', and 'lobe cells'). This model can account for observations of a nearly stationary (in local time) convection 'throat', a sunward-antisunward convection reversal zone at the polar-cap boundary in both the morning and afternoon quadrants, the morphology of solar-wind ion injection and transport in the mid-altitude polar cusp, and the By-dependent dawn-dusk asymmetry of polar-cap electron fluxes.

  18. Solar Wind and IMF Control of Large-Scale Ionospheric Currents and Their Time Variations

    NASA Astrophysics Data System (ADS)

    Juusola, L.; Kauristie, K.; Tanskanen, E.; Partamies, N.; Viljanen, A.; Andréeová, K.; van de Kamp, M.; Vanhamäki, H.; Milan, S. E.; Lester, M.; Grocott, A.; Imber, S. M.

    2014-12-01

    Patterns of high-latitude ionospheric currents are a manifestation of the solar wind-magnetosphere-ionosphere coupling. Rapid variations of the currents are associated with geomagnetically induced currents (GIC) in technological conductor systems and displays of bright, diverse auroras. One advantage of a ground-based magnetometer network over a low-orbit satellite is the possibility to distinguish between temporal and spatial variations in the data. Although ground magnetic field data can only yield distributions of ionospheric equivalent currents instead of the full horizontal and field-aligned current density, estimates for these can be obtained, under certain assumptions. We use data (1994-2013) from the ground-based IMAGE magnetometer network to derive statistical distributions of the large-scale ionospheric equivalent current density and its time-derivative as well as estimates for the field-aligned current density. These are compared with and validated against horizontal and field-aligned current density distributions obtained from low-orbit CHAMP satellite magnetic field data (2000-2010) and convection maps obtained from SuperDARN radar data (2000-2010). The ground-based distributions reveal a strong dependence of the dayside variations on radial interplanetary magnetic field (IMF) orientation and solar wind speed. The spatial distribution of enhanced nightside activity agrees with that of the average substorm bulge and depends on solar wind energy input into the magnetosphere. The most intense time variation events are related to substorm activity and occur on the nightside.

  19. The story of UGC 11919 - a galaxy which could possess a non-standard stellar IMF

    NASA Astrophysics Data System (ADS)

    Saburova, Anna; Zasov, Anatoly; Uklein, Roman; Katkov, Ivan

    2015-08-01

    We performed long-slit observations of a spiral galaxy UGC11919 with the Russian 6-m telescope to study its kinematics and stellar population. The previous studies allowed to suspect that this galaxy possesses a peculiarly low mass-to-light ratio M/L of stellar population. A bottom-light stellar initial mass function (IMF) could explain the low value of M/L. The performed spectral observations and the estimation of stellar mass-to-light ratio for different evolutionary models using both the broad-band magnitudes and the detailed spectral data confirm this peculiarity if to accept the inclination angle i = 30 or higher, as it was obtained earlier from the optical isophotes and HI velocity field based on the WSRT observations. However we show that the HI isophotes are compatible with the lower value of i, hence the question of peculiarly low M/L remains open. The derived stellar kinematic profiles reveal a signature of kinematically decoupled nuclear disk in the galaxy. We show that the disk of UGC11919 is dynamically overheated independently of the adopted inclination angle - probably as the result of the gravitational interaction with companions which were found in the HI line.

  20. Localized polar cap flow enhancement tracing using airglow patches: Statistical properties, IMF dependence, and contribution to polar cap convection

    NASA Astrophysics Data System (ADS)

    Zou, Ying; Nishimura, Yukitoshi; Lyons, Larry R.; Shiokawa, Kazuo; Donovan, Eric F.; Ruohoniemi, J. Michael; McWilliams, Kathryn A.; Nishitani, Nozomu

    2015-05-01

    Recent radar observations have suggested that polar cap flows are highly structured and that localized flow enhancements can lead to nightside auroral disturbances. However, knowledge of these flows is limited to available echo regions. Utilizing wide spatial coverage by an all-sky imager at Resolute Bay and simultaneous Super Dual Auroral Radar Network measurements, we statistically determined properties of such flows and their interplanetary magnetic field (IMF) dependence. We found that narrow flow enhancements are well collocated with airglow patches with substantially larger velocities (≥200 m/s) than the weak large-scale background flows. The flow azimuthal widths are similar to the patch widths. During the evolution across the polar cap, the flow directions and speeds are consistent with the patch propagation directions and speeds. These correspondences indicate that patches can optically trace localized flow enhancements reflecting the flow width, speed, and direction. Such associations were found common (~67%) in statistics, and the typical flow speed, propagation time, and width within our observation areas are 600 m/s, tens of minutes, and 200-300 km, respectively. By examining IMF dependence of the occurrence and properties of these flows, we found that they tend to be observed under By-dominated IMF. Flow speeds are large under oscillating IMF clock angles. Localized flow enhancements are usually observed as a channel elongated in the noon-midnight meridian and directed toward premidnight (postmidnight) for +By (-By). The potential drops across localized flow enhancements account for ~10-40% of the cross polar cap potential, indicating that they significantly contribute to polar cap plasma transport.

  1. The relationship between the IMF B(y) and the distant tail (150-238 Re) lobe and plasmasheet B(y) fields

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Lepping, R. P.; Sibeck, D. G.

    1984-01-01

    The relationships between the Solar Magnetospheric (SM) y-component of the interplanetary magnetic field (IMF) and the lobe and plasmasheet magnetic fields have been studied for the two ISEE-3 deep tail passes. It is found that for positive sector IMFs, 13 percent of the interplanetary magnetic field penetrates into the aberrated north-dawn and south-dusk lobe quadrants, and about the same amount in the north-dusk and south-dawn lobe quadrants for negative sector IMFs. For the above cases, field penetration is significantly less for opposite polarity IMFs. The former results are generally consistent with open magnetospheric models, but the latter (the lack of response in certain quadrants) are unexplained by theory at this time. If the magnitude of the plasmasheet B(y) fields are related to plasma pressure anisotropies, very small anisotropies of about 1.01 are expected.

  2. Magnetopause surface waves triggered by a rotating IMF with the global MHD SWMF/BAT-S-RUS model

    NASA Astrophysics Data System (ADS)

    Andriyas, T.; Spencer, E. A.

    2010-12-01

    The solar wind driving of magnetopause surface waves is only partly understood. In particular we do not have a picture of the magnetopause surface wave properties and behavior when a magnetic cloud event, which sometimes involves a rotating IMF, impinges on the magnetosphere. Here we investigate the effect of a twisting or rotational IMF under moderate solar wind velocity (about 500 km/s) upon the magnetosphere with the Global MHD BATS-R-US code. Synthetic solar wind data is constructed to simulate the most important features of a magnetic cloud event, but without including shock features. A sinusoidally varying By component accompanied by a cosinusoidally varying Bz component of the IMF is input into the model with magnitude 10-20 nT. The synthetic data is representative of the magnetic cloud event that occurred on October 3-7 2000. We use the results of the simulation to infer the modes, properties, and particularly the phase speed and wavelength of the surface wave structures.

  3. Role of imf orientation in the precipitation of solar wind ions into the upper atmosphere of venus.

    NASA Astrophysics Data System (ADS)

    Talha, Madeeha; Stenberg, Gabriella

    2016-07-01

    Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) is used to study the precipitation of solar wind ions (H+ and He2+) into the upper atmosphere of Venus for the period of April 2006 to December 2007 as representative of solar minimum. Precipitation cases are selected and analyzed for the orbits having extreme Interplanetary Magnetic Field (IMF) orientations: IMF perpendicular to the solar wind direction (IMFperp) and IMF aligned with the solar wind direction (IMFpll ). Large number of precipitation behind terminator (nightside) is observed for IMFpll as compared to IMFperp while the reverse trend is noted for the precipitation into the dayside. This is turn favour the presence and absence of magnetic barrier (MB) for IMFperp and IMFpll respectively, as less transport to the nightside and more ions escape from dayside ionosphere during IMFperp contribute for the formation of MB. Contribution in the proton flux by both orientations in the ionosphere and in the transition region is same i.e., 104cm

  4. The XLENS Project: Do More Massive Early-Type Galaxies Have More Dark Matter or Different Stellar IMFs?

    NASA Astrophysics Data System (ADS)

    Spiniello, Chiara

    2013-07-01

    The X-shooter Lens Survey (XLENS) aims to study the interplay of dark matter (DM) and stellar content in the inner regions of massive early-type galaxies (ETGs) by combining strong gravitational lensing, dynamical models, and spectroscopic stellar population analysis. XLENS targets a sample of ETGs from the SLACS survey (The Sloan Lens ACS Survey, e.g. Bolton et al. 2006) with velocity dispersions >=250 kms-1 using the X-Shooter spectrograph on ESO's Very Large Telescope. Recent observations indicate that the internal dark-matter fraction of ETGs increases rapidly with galaxy mass, although some hints for a varying initial mass function (IMF) have also been suggested, where the low-mass end of the stellar IMF steepens with galaxy mass. XLENS first results unambiguously confirm that DM plays an important role already within one effective radius for very massive systems (Spiniello et al. 2011). Moreover, studying equivalent widths of certain red spectral features which are indicators of low-mass stars in massive ETGs (e.g. NaI and TiO2) as a function of age and metallicity (i.e. Mgb, Fe, Hβ), and as function of stellar velocity dispersion, has shown that the IMF slope is varying mildly with galaxy mass (Spiniello et al. 2012).

  5. Strong modulations on the Bay of Bengal monsoon onset vortex by the first northward-propagating intra-seasonal oscillation

    NASA Astrophysics Data System (ADS)

    Li, Kuiping; Li, Zhi; Yang, Yang; Xiang, Baoqiang; Liu, Yanliang; Yu, Weidong

    2016-07-01

    Monsoon onset vortex (OV) in the form of tropical cyclone is often observed in the pre-monsoon period and contributes to the subsequent abrupt establishment of summer monsoon over the Bay of Bengal (BoB). It is identified here that all historical OVs occurred during the convection-enhanced phase of the first northward-propagating intra-seasonal oscillation (FNISO). The individual contributions from the four large scale environmental fields associated with the intra-seasonal variations to the cyclone genesis are diagnosed with the aid of the genesis potential index. The significant moistening of mid-level atmosphere, which is embedded in the FNISO convection-enhanced phase, is shown to be the primary factor leading to the cyclone genesis. The water vapor budget analysis is further done to understand the governing process for the mid-level humidity increase. It is clearly seen that the vertical advection process, dominated by the anomalous vertical advection of the mean vertical water vapor gradient, plays the critical role. Hence the OVs are shown to be strongly modulated by FNISOs, both of which are important elements of the complex story of the BoB monsoon onset.

  6. The northward tectonic transport in the southern Apennines: examples from the Capri Island and western Sorrento Peninsula (Italy)

    NASA Astrophysics Data System (ADS)

    Vitale, Stefano; Tramparulo, Francesco D'Assisi; Ciarcia, Sabatino; Amore, Filomena Ornella; Prinzi, Ernesto Paolo; Laiena, Fabio

    2016-02-01

    We analyzed a thrust fault system located in the western Sorrento Peninsula and Capri Island (southern Italy) where several mesoscale structures related to the main thrusts, such as Riedel shear planes, overturned folds, minor thrust and back-thrust faults, suggest a dominant northward tectonic transport. Major and minor thrust faults, generally characterized by a ramp-flat geometry, involved the Mesozoic Apennine carbonates, the Middle Miocene foredeep, and the unconformable thrust-top basin deposits. The biostratigraphic analysis of calcareous nannoplankton assemblages on the thrust-top basin sediments indicates an age not older than late Tortonian. We propose that this out-of-sequence thrusting stage was related to a regional tectonic event widespread in the entire southern Apennines, probably occurred in the Pliocene time simultaneously with the activity of deep-seated thrust faults that involved the buried carbonates of the Apulian platform. These out-of-sequence thrust faults, here referred to as "envelopment thrusts," were enucleated in a lower structural level with respect to the allochthonous wedge, representing the W-E segments of large regional arcuate structures.

  7. The Non-universality of the Low-mass End of the IMF is Robust against the Choice of SSP Model

    NASA Astrophysics Data System (ADS)

    Spiniello, C.; Trager, S. C.; Koopmans, L. V. E.

    2015-04-01

    We perform a direct comparison of two state-of-the art single stellar population (SSP) models that have been used to demonstrate the non-universality of the low-mass end of the initial mass function (IMF) slope. The two public versions of the SSP models are restricted to either solar abundance patterns or solar metallicity, too restrictive if one aims to disentangle elemental enhancements, metallicity changes, and IMF variations in massive early-type galaxies (ETGs) with star formation histories different from those in the solar neighborhood. We define response functions (to metallicity and α-abundance) to extend the parameter space for each set of models. We compare these extended models with a sample of Sloan Digital Sky Survey (SDSS) ETG spectra with varying velocity dispersions. We measure equivalent widths of optical IMF-sensitive stellar features to examine the effect of the underlying model assumptions and ingredients, such as stellar libraries or isochrones, on the inference of the IMF slope down to ∼0.1 M⊙. We demonstrate that the steepening of the low-mass end of the IMF based on a non-degenerate set of spectroscopic optical indicators is robust against the choice of the stellar population model. Although the models agree in a relative sense (i.e., both imply more bottom-heavy IMFs for more massive systems), we find non-negligible differences in the absolute values of the IMF slope inferred at each velocity dispersion by using the two different models. In particular, we find large inconsistencies in the quantitative predictions of the IMF slope variations and abundance patterns when sodium lines are used. We investigate the possible reasons for these inconsistencies.

  8. Universal IMF versus dark halo response in early-type galaxies: breaking the degeneracy with the Fundamental Plane

    NASA Astrophysics Data System (ADS)

    Dutton, Aaron A.; Macciò, Andrea V.; Mendel, J. Trevor; Simard, Luc

    2013-07-01

    We use the relations between aperture stellar velocity dispersion (σap), stellar mass (MSPS) and galaxy size (Re) for a sample of ˜150 000 early-type galaxies from Sloan Digital Sky Survey/DR7 to place constraints on the stellar initial mass function (IMF) and dark halo response to galaxy formation. We build λ cold dark matter-based mass models that reproduce, by construction, the relations between galaxy size, light concentration and stellar mass, and use the spherical Jeans equations to predict σap. Given our model assumptions (including those in the stellar population synthesis models), we find that reproducing the median σap versus MSPS relation is not possible with both a universal IMF and a universal dark halo response. Significant departures from a universal IMF and/or dark halo response are required, but there is a degeneracy between these two solutions. We show that this degeneracy can be broken using the strength of the correlation between residuals of the velocity-mass (Δlog σap) and size-mass (Δlog Re) relations. The slope of this correlation, ∂VR ≡ Δlog σap/Δlog Re, varies systematically with galaxy mass from ∂VR ≃ -0.45 at MSPS ˜ 1010 M⊙ to ∂VR ≃ -0.15 at MSPS ˜ 1011.6 M⊙. The virial Fundamental Plane (FP) has ∂VR = -1/2, and thus we find that the tilt of the observed FP is mass dependent. Reproducing this tilt requires both a non-universal IMF and a non-universal halo response. Our best model has mass-follows-light at low masses (MSPS ≲ 1011.2 M⊙) and unmodified Navarro, Frenk and White haloes at MSPS ˜ 1011.5 M⊙. The stellar masses imply a mass-dependent IMF which is `lighter' than Salpeter at low masses and `heavier' than Salpeter at high masses.

  9. From nearby low-mass protostars to high redshift starbursts: protostellar outflows tracing the IMF

    NASA Astrophysics Data System (ADS)

    Kristensen, Lars E.; Bergin, Edwin

    2015-08-01

    Embedded low-mass protostars are notoriously difficult to observe even in the nearest Galactic high-mass clusters where they outnumber the high-mass protostars by orders of magnitude. Thus, without a good tracer of the low-mass population, we do not have a good handle on the shape of the initial (core) mass function, leaving little hope for extrapolating to extragalactic regions where we will never have neither the sensitivity nor the resolution to directly observe this population. A good tracer of the low-mass population is needed.One such physical tracer is outflows. Outflow emission is directly proportional to envelope mass, and outflows are predominantly active during the deeply embedded phases of star formation. What is required for this method to work is species and transitions tracing outflows uniquely such that any signal is not diluted by the surrounding cloud, such as certain methanol transitions, water, high-J CO (J > 10).I will present a statistical model of a forming high-mass cluster. The model includes what we currently know about Galactic high-mass clusters and incorporates outflow emission from low-mass protostars. The latter component is obtained from observations of tens of nearby embedded low-mass protostellar outflows in the above-mentioned tracers. The model is benchmarked against ALMA and Herschel-HIFI observations of Galactic clusters proving the concept, and preliminary extrapolations to the extragalactic regime are presented. With this new probe, and traditional probes of the distant star formation which predominantly trace high mass stars, we will be able to explore the IMF in starburst galaxies from low to high redshift.

  10. Hall-MHD simulations of the magnetosphere-northward solar wind interface : the Kelvin-Helmholtz instability as an entry mechanism for the solar wind through mixing and reconnections

    NASA Astrophysics Data System (ADS)

    Leroy, Matthieu; Keppens, Rony

    2016-04-01

    The transfer of matter from the solar-wind to the Earth's magnetosphere during southward solar wind is mostly well understood but the processes governing the same phenomenon during northward solar wind remains to be fully apprehended. Numerous numerical studies have investigated the topic with many interesting results but most of these were considering two-dimensional situations with simplified magnetic configuration and often neglecting the inhomogeneities for the sake of clarity. Given the typical parameters at the magnetosphere-solar wind interface, the situation must be considered in the frame of Hall-MHD, due to the fact that the current layers widths and the gradient lengths can be in the order of the ion inertial length. As a consequence of Hall-MHD creating a third vector component from two planar ones, and also because magnetic perturbations can affect the field configuration at a distance in all directions and not only locally, three-dimensional treatment is necessary. In this spirit three-dimensional simulations of a configuration approaching the conditions leading to the development of Kelvin-Helmholtz instabilities at the flank of the magnetosphere during northward oriented solar-wind are performed as means to study the entry of solar-wind matter into Earth's magnetic field. In the scope of assessing the effect of the Hall-term in the physical processes, the simulations are also performed in the MHD frame. Furthermore the influence of the density and velocity jump through the shear layer on the rate of mass entering the magnetosphere is explored. Indeed, depending on the exact values of the physical quantities, the Kelvin-Helmholtz instability may have to compete with secondary instabilities and the non-linear phase may exhibit vortex merging and large-scale structures reorganisation, creating very different mixing layers, or generate different reconnection sites, locally and at a distance. These different configurations may have discernible signatures

  11. A Possible Solution for the M/L–[Fe/H] Relation of Globular Clusters in M3. I. A Metallicity- and Density-dependent Top-heavy IMF

    NASA Astrophysics Data System (ADS)

    Zonoozi, A. H.; Haghi, H.; Kroupa, P.

    2016-07-01

    The observed mass-to-light (M/L) ratios of a large sample of globular clusters (GCs) in M31 show an inverse trend with metallicity compared to what is expected from simple stellar population (SSP) models with an invariant canonical stellar initial mass function (IMF), in the sense that the observed M/L ratios decrease with increasing metallicity. We show that when incorporating the effect of dynamical evolution the SSP models with a canonical IMF cannot explain the decreasing M/L ratios with increasing metallicity for the M31 GCs. The recently derived top-heavy IMF as a function of metallicity and embedded cluster density is proposed to explain the lower-than-expected M/L ratios of metal-rich GCs. We find that the SSP models with a top-heavy IMF, retaining a metallicity- and cluster-mass-dependent fraction of the remnants within the clusters, and taking standard dynamical evolution into account, can successfully explain the observed M/L–[Fe/H] relation of M31 GCs. Thus we propose that the kinematic data of GCs can be used to constrain the top-heaviness of the IMF in GCs.

  12. IMF-By dependence of transient ionospheric flow perturbation associated with sudden impulses: SuperDARN observations

    NASA Astrophysics Data System (ADS)

    Hori, Tomoaki; Shinbori, Atsuki; Fujita, Shigeru; Nishitani, Nozomu

    2015-11-01

    A statistical study using a large dataset of Super Dual Auroral Radar Network (SuperDARN) observations is conducted for transient ionospheric plasma flows associated with sudden impulses (SI) recorded on ground magnetic field. The global structure of twin vortex-like ionospheric flows is found to be consistent with the twin vortices of ionospheric Hall current deduced by the past geomagnetic field observations. An interesting feature, which is focused on in this study, is that the flow structures show a dawn-dusk asymmetry depending on the combination of the polarity of SI and interplanetary magnetic field (IMF)-By. Detailed statistics of the SuperDARN observations reveal that the dawn-dusk asymmetry of flow vortices due to IMF-By appears during negative SIs, while such asymmetric characteristics are not seen during positive SIs. On the basis of the upstream observations, we suggest that this particular dawn-dusk asymmetry is caused by the interaction between the pre-existing round convection cell and a pair of the transient convection vortices associated with SIs.

  13. AE index forecast at different time scales through an ANN algorithm based on L1 IMF and plasma measurements

    NASA Astrophysics Data System (ADS)

    Pallocchia, G.; Amata, E.; Consolini, G.; Marcucci, M. F.; Bertello, I.

    2008-02-01

    The AE index is known to have two main components, one directly driven by the solar wind and the other related to the magnetotail unloading process. As regards the role played by the IMF and solar wind parameters, recently several authors used artificial neural networks (ANN) to forecast AE from solar wind data. Following this track, in this paper we present a study of the AE forecast at different time scales, from 5 min to 1 h, in order to check whether the performance of the ANN prediction varies significantly as a function of the AE time resolution.The study is based on a new ANN Elman network with Bz (in GSM) and Vx as inputs, one hidden layer containing four neurons, four context units and one output neuron. We find that the forecast AE values, during disturbed AE periods, result to be always smaller than the experimental values; on the other hand, the algorithm performance improves as the time scale increases, i.e. the total standard deviation (calculated over a test data set) between the forecast and the Kyoto AE decreases as the averaging time increases. Under the hypothesis that this decrease follows an exponential law, we find that the 1 h scale normalised standard deviation is 0.975, very close to the asymptotic value of 0.95 for an infinite averaging time. We interpret our results in the sense that the unloading component of the AE variations cannot be predicted from IMF and solar wind parameters only.

  14. IMF B(y) and day-night conductivity effects in the expanding polar cap convection model

    NASA Technical Reports Server (NTRS)

    Moses, J. J.; Gorney, D. J.; Siscoe, G. L.; Crooker, N. U.

    1987-01-01

    During southward B(z) periods the open field line region in the ionosphere (polar cap) expands due to increased dayside merging. Ionospheric plasma flow patterns result which can be classified by the sign of the interplanetary magnetic field (IMF) B(y) component. In this paper, a time-dependent ionospheric convection model is constructed to simulate these flows. The model consists of a spiral boundary with a gap in it. The sign of the IMF B(y) component determines the geometry of the gap. A potential is applied across the gap and distributed around the boundary. A flow results which enters the polar cap through the gap and uniformly pushes the boundary outward. Results of the model show that B(y) effects are greatest near the gap and virtually unnoticeable on the nightside of the polar cap. Adding a day-night ionospheric conductivity gradient concentrates the polar cap electric field toward dawn. The resulting flow curvature gives a sunward component that is independent of B(y). These patterns are shown to be consistent with published observations.

  15. The role of the northward-directed (sub)surface limb of the Atlantic Meridional Overturning Circulation during the 8.2 ka Event

    NASA Astrophysics Data System (ADS)

    Tegzes, A. D.; Jansen, E.; Telford, R. J.

    2014-02-01

    The so-called "8.2 ka Event" has been widely regarded as a major climate perturbation over the Holocene. It is most readily identifiable in the oxygen-isotope records from Greenland ice cores as an approximately 160 yr-long cold interval between 8250-8090 yr BP. The prevailing view has been that the cooling over Greenland, and potentially over the northern North Atlantic at least, was triggered by the catastrophic final drainage of the Agassiz-Ojibway proglacial lake as part of the remnant Laurentide Ice Sheet collapsed over Hudson Bay at around 8420 ± 80 yr BP. The consequent freshening of surface waters in the northern North Atlantic Ocean and the Nordic Seas resulted in weaker overturning, hence reduced northward heat transport. Here we present proxy records from site JM97-MD95-2011 on the mid-Norwegian Margin indicating a (sharp) decline in the strength of the eastern branch of the Atlantic Inflow into the Nordic Seas immediately following a uniquely large drop in (sub)surface ocean temperatures coeval with the lake outbursts. We propose that the final drainage of Lake Agassiz-Ojibway was accompanied by a major iceberg discharge from Hudson Bay, which resulted in the cooling of the northward-directed northern Gulf Stream-North Atlantic Drift-Norwegian Atlantic Current system. Since our current-strength proxy records from the mid-Norwegian Margin do not evidence an exceptionally strong reduction in the main branch of the Atlantic Inflow into the Nordic Seas at the time, we argue that a chilled northward-directed (sub)surface-current system and an already colder background climate state could be the main factors responsible for the 8.2 ka climate perturbation.

  16. Model and observation comparison of the universal time and IMF by dependence of the ionospheric polar hole

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Schunk, R. W.; Hoegy, W. R.; Grebowsky, J. M.

    1991-01-01

    The polar ionospheric F-region often exhibits regions of marked density depletion. These depletions have been observed by a variety of polar orbiting ionospheric satellites over a full range of solar cycle, season, magnetic activity, and universal time (UT). An empirical model of these observations has recently been developed to describe the polar depletion dependence on these parameters. Specifically, the dependence has been defined as a function of F10.7 (solar), summer or winter, Kp (magnetic), and UT. Polar cap depletions have also been predicted /1, 2/ and are, hence, present in physical models of the high latitude ionosphere. Using the Utah State University Time Dependent Ionospheric Model (TDIM) the predicted polar depletion characteristics are compared with those described by the above empirical model. In addition, the TDIM is used to predict the IMF By dependence of the polar hole feature.

  17. Dawn-dusk asymmetry in dayside ion precipitation for southward IMF: results from large-scale simulations

    NASA Astrophysics Data System (ADS)

    Berchem, J.; Richard, R. L.; Escoubet, C.; Wing, S.; Pitout, F.

    2013-12-01

    We present the results of numerical studies of the interaction of solar wind ions with the dayside magnetospheric boundary for a southward interplanetary magnetic field (IMF). These studies use the time-dependent electric and magnetic fields predicted by three-dimensional global magnetohydrodynamic (MHD) simulations to compute the trajectories of large samples of solar wind ions launched upstream of the bow shock. Energy-latitude spectra computed from the large scale kinetic (LSK) simulations show that a strong dawn-dusk asymmetry develops in the precipitation of low to middle energy ions over the high-latitude dayside magnetosphere. These results are consistent with statistical studies of DMSP data showing that ion precipitation from the mantle is predominantly seen over the morning and pre-noon sector.

  18. What physics determines the peak of the IMF? Insights from the structure of cores in radiation-magnetohydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Myers, Andrew T.; Klein, Richard I.; McKee, Christopher F.

    2016-08-01

    As star-forming clouds collapse, the gas within them fragments to ever-smaller masses. Naively one might expect this process to continue down to the smallest mass that is able to radiate away its binding energy on a dynamical time-scale, the opacity limit for fragmentation, at ˜0.01 M⊙. However, the observed peak of the initial mass function (IMF) lies a factor of 20-30 higher in mass, suggesting that some other mechanism halts fragmentation before the opacity limit is reached. In this paper we analyse radiation-magnetohydrodynamic simulations of star cluster formation in typical Milky Way environments in order to determine what physical process limits fragmentation in them. We examine the regions in the vicinity of stars that form in the simulations to determine the amounts of mass that are prevented from fragmenting by thermal and magnetic pressure. We show that, on small scales, thermal pressure enhanced by stellar radiation heating is the dominant mechanism limiting the ability of the gas to further fragment. In the brown dwarf mass regime, ˜0.01 M⊙, the typical object that forms in the simulations is surrounded by gas whose mass is several times its own that is unable to escape or fragment, and instead is likely to accrete. This mechanism explains why ˜0.01 M⊙ objects are rare: unless an outside agent intervenes (e.g. a shock strips away the gas around them), they will grow by accreting the warmed gas around them. In contrast, by the time stars grow to masses of ˜0.2 M⊙, the mass of heated gas is only tens of percent of the central star mass, too small to alter its final mass by a large factor. This naturally explains why the IMF peak is at ˜0.2 M⊙.

  19. What physics determines the peak of the IMF? Insights from the structure of cores in radiation-magnetohydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Myers, Andrew T.; Klein, Richard I.; McKee, Christopher F.

    2016-08-01

    As star-forming clouds collapse, the gas within them fragments to ever-smaller masses. Naively one might expect this process to continue down to the smallest mass that is able to radiate away its binding energy on a dynamical timescale, the opacity limit for fragmentation, at $\\sim 0.01$ $M_\\odot$. However, the observed peak of the initial mass function (IMF) lies a factor of $20-30$ higher in mass, suggesting that some other mechanism halts fragmentation before the opacity limit is reached. In this paper we analyse radiation-magnetohydrodynamic simulations of star cluster formation in typical Milky Way environments in order to determine what physical process limits fragmentation in them. We examine the regions in the vicinity of stars that form in the simulations to determine the amounts of mass that are prevented from fragmenting by thermal and magnetic pressure. We show that, on small scales, thermal pressure enhanced by stellar radiation heating is the dominant mechanism limiting the ability of the gas to further fragment. In the brown dwarf mass regime, $\\sim 0.01$ $M_\\odot$, the typical object that forms in the simulations is surrounded by gas whose mass is several times its own that is unable to escape or fragment, and instead is likely to accrete. This mechanism explains why $\\sim 0.01$ $M_\\odot$ objects are rare: unless an outside agent intervenes (e.g., a shock strips away the gas around them), they will grow by accreting the warmed gas around them. In contrast, by the time stars grow to masses of $\\sim 0.2$ $M_\\odot$, the mass of heated gas is only tens of percent of the central star mass, too small to alter its final mass by a large factor. This naturally explains why the IMF peak is at $\\sim 0.2$ $M_\\odot$.

  20. On the nature of IMF polarity dependent asymmetries in solar wind plasma properties during the minimum of sunspot cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Pereira, B. Felix; Philip, Bijoy John; Girish, T. E.

    2016-03-01

    The monthly solar wind speed and density observed near 1 AU in IMF sectors of opposite magnetic polarity are studied during the minimum of sunspot cycles 23 and 24. During sunspot minima, the IMF is pointing away from the sun (Away sector) in the north of the Heliospheric Current Sheet (HCS) and pointing towards the sun (Toward sector) in the south of HCS during odd sunspot cycles and the same process is reversed during the even cycles. During this period, the solar wind plasma parameters (number density and speed) show a systematic month to month variation with solar wind number density decreases and velocity increases from equator to poles (heliomagnetic latitudinal organization) only in 'Away' IMF sectors compared to 'Toward' IMF sectors. This feature is particularly more evident for low speed solar wind and happens in a helio-hemisphere with a larger polar coronal hole. The association of the above phenomena with north-south asymmetry in coronal and solar wind flow characteristics will be discussed.

  1. The SL2S Galaxy-scale Lens Sample. V. Dark Matter Halos and Stellar IMF of Massive Early-type Galaxies Out to Redshift 0.8

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; Suyu, Sherry H.; Gavazzi, Raphaël; Auger, Matthew W.; Nipoti, Carlo

    2015-02-01

    We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.

  2. Spread-F during the magnetic storm of 22 January 2004 at low latitudes: Effect of IMF-Bz in relation to local sunset time

    NASA Astrophysics Data System (ADS)

    Rastogi, R. G.; Chandra, H.; Janardhan, P.; Hoang, Thai Lan; Condori, Louis; Pant, T. K.; Prasad, D. S. V. V. D.; Reinisch, B.

    2014-08-01

    The paper describes the results of spread-F at low latitude stations around the world during the magnetic storm starting at 0130 UT on 22 January 2004. The storm can be divided into two phases, first phase up to 1000 UT when interplanetary magnetic field IMF-Bz was highly fluctuating around a small positive value and the second phase after a sudden large southward turning of IMF-Bz at 1030 UT. The first phase produced strong spread-F at Jicamarca, Sao Luis, and Ascension Island and caused complete inhibition of spread-F at Thumba and Waltair in India. It generated weak spread-F at Ho Chi Minh City in Vietnam and strong spread-F at Hainan and Chung Li. The strong spread-F at Hainan and Chung Li were caused by the positive IMF-Bz during the first phase of the storm and not by the negative pulse of IMF-Bz at 1000 UT.

  3. Detecting the Gender Dimension of the Choice of the Teaching Profession Prior to the Economic Crisis and IMF (International Monetary Fund) Memorandum in Greece--A Case Study

    ERIC Educational Resources Information Center

    Asimaki, Anna; Vergidis, Dimitris K.

    2013-01-01

    The purpose of this research paper is the investigation of, and the sociological approach to, and interpretation of the attitudes of male and female students in the University Department of Primary Education (U.D.P.E.) at the University of Patras in Greece, before the enforcement of the IMF Memorandum, concerning the choice of the teaching…

  4. Fault geometry and cumulative offsets in the central Coast Ranges, California: Evidence for northward increasing slip along the San Gregorio-San Simeon-Hosgri fault

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; Graymer, R.W.; Colgan, J.P.; Wentworth, C.M.; Stanley, R.G.

    2012-01-01

    Estimates of the dip, depth extent, and amount of cumulative displacement along the major faults in the central California Coast Ranges are controversial. We use detailed aeromagnetic data to estimate these parameters for the San Gregorio–San Simeon–Hosgri and other faults. The recently acquired aeromagnetic data provide an areally consistent data set that crosses the onshore-offshore transition without disruption, which is particularly important for the mostly offshore San Gregorio–San Simeon–Hosgri fault. Our modeling, constrained by exposed geology and in some cases, drill-hole and seismic-reflection data, indicates that the San Gregorio–San Simeon–Hosgri and Reliz-Rinconada faults dip steeply throughout the seismogenic crust. Deviations from steep dips may result from local fault interactions, transfer of slip between faults, or overprinting by transpression since the late Miocene. Given that such faults are consistent with predominantly strike-slip displacement, we correlate geophysical anomalies offset by these faults to estimate cumulative displacements. We find a northward increase in right-lateral displacement along the San Gregorio–San Simeon–Hosgri fault that is mimicked by Quaternary slip rates. Although overall slip rates have decreased over the lifetime of the fault, the pattern of slip has not changed. Northward increase in right-lateral displacement is balanced in part by slip added by faults, such as the Reliz-Rinconada, Oceanic–West Huasna, and (speculatively) Santa Ynez River faults to the east.

  5. East flank of the Sibumasu block in NW Thailand and Myanmar and its possible northward continuation into Yunnan: a review and suggested tectono-stratigraphic interpretation

    NASA Astrophysics Data System (ADS)

    Ridd, Michael F.

    2015-05-01

    The east flank of the Sibumasu block was a passive continental margin, and in NW Thailand is marked by the absence of the autochthonous Middle Permian-Triassic platform carbonates which are widespread across the rest of Sibumasu further west. Instead, the carbonates are represented by hemipelagic cherts, mudstones and sandstones including turbidites. During the northward drift of Sibumasu, following its Early Permian rifting from Gondwana, an accretionary complex was present where Palaeotethyan pelagic rocks as old as Devonian were subducted beneath the Sukhothai volcanic arc. At the time of Sibumasu's collision with the Sukhothai arc, beginning in the Middle Triassic, the accretionary complex was thrust westwards across the east flank of Sibumasu. It is suggested that in the Late Triassic the thrust pile which had been the accretionary complex underwent erosion and was the source of terrigenous clastic rocks deposited further west in a foredeep basin. The boundary of Sibumasu's east flank with the Permo-Triassic carbonate platform further west is the arcuate Mae Ping-Nam Teng Fault system. Notwithstanding later Cenozoic strike-slip displacement, those faults (as well as the Mae Yuam Fault) are interpreted to have had an earlier history of westward-directed Indosinian thrusting. Northwards in Myanmar and Yunnan the Sibumasu Permo-Triassic carbonate shelf continues as the Shan Plateau and Baoshan Block. The east flank is represented by the Changning-Menglian Belt, and the Palaeotethys 'cryptic suture' in Thailand possibly joins with the Lancangjiang Suture.

  6. Dichothermal layer deepening in relation with halocline depth change associated with northward shrinkage of North Pacific western subarctic gyre in early 2000s

    NASA Astrophysics Data System (ADS)

    Nagano, Akira; Wakita, Masahide; Watanabe, Shuichi

    2016-02-01

    In the western subarctic North Pacific, a wind-driven cyclonic circulation, called the western subarctic gyre (WSAG), exists. We examined year-to-year changes of the gyre and hydrographic structures, applying the altimetry-based gravest empirical mode (AGEM) method to hydrographic and altimetric sea surface height (SSH) data, and relation to the in situ variation of the temperature minimum layer, i.e., the dichothermal layer, depth at station K2 (47∘ N, 160∘ E). The AGEM-based geostrophic volume transport and the streamfunction of the WSAG in the top 1000-dbar layer show that the gyre changes substantially. From the late 1990s to the mid-2000s, the gyre shrunk northward. Due to the shrinkage, the halocline bottom, which is equivalent to the top of the main pycnocline, deepens at K2 outside the central part of the gyre. The downward displacement of the dichothermal layer at K2 was found to be significantly related to that of the underlying halocline due to the northward shrinkage of the WSAG.

  7. Paleomagnetism of basaltic basement rocks from IODP Hole C0012A, Exp. 322: Constraints on age, northward migration and rotation of Shikoku Basin

    NASA Astrophysics Data System (ADS)

    Oda, H.; Yamamoto, Y.; Lin, W.; Ishizuka, O.; Zhao, X.; Wu, H.; Torii, M.

    2012-12-01

    The Integrated Ocean Drilling Program Expedition 322 penetrated sediment-basement boundary and recovered successive cores from basaltic basement at Site C0012 near the crest of the Kashinosaki Knoll in the Shikoku Basin. Paleomagnetic measurements were conducted on 29 samples to understand the polarity of magnetization, paleolatitude and tectonic rotation. Paleomagnetic samples suffer from drilling induced remanent magnetization (DIRM), however, alternating field demagnetization at 10 mT was enough to remove DIRM to extract characteristic remanent magnetization (ChRM). Paleomagnetic measurements show that the ChRM has reversed polarity and the magnetic anomaly at the site could be correlated to anomaly C6Ar (20.7-21.1Ma). Average inclination was obtained from 21 samples and paleolatitude was calculated as 26.5±5.5°N suggesting the northward latitudinal translation of 688±611 km since the formation of the seafloor, which is consistent with the northward latitudinal shift of Philippine Sea Plate (Yamazaki et al., 2010). Reconstruction of tectonic rotation was also attempted by using viscous remanent magnetization (VRM) acquired during Brunhes Chron. VRM components were extracted as intersections of great circles from overlapping DIRM and ChRM. The rotation angle could be calculated as 0.6±16.7° clockwise suggesting that the drilled site did not experience detectable rotation since the formation of the Shikoku Basin.

  8. Possible relationship between changes in IMF, M7+ earthquakes and VEI index, during the transition between the solar minimum cycle 23 and the rise of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Casati, Michele; Straser, Valentino

    2013-04-01

    Numerous scientific papers seem to suggest a possible influence of solar activity on geological dynamics (hypothesis triggers earthquakes or volcanic activity) on Earth. In the following study, all earthquakes around the globe with a magnitude greater than or equal to 7, from January 2010 to November 2012, were taken into account which corresponds to the appearance of the first sunspot of Solar Cycle SC24. The data was then compared with the graph that shows the variations of the interplanetary magnetic field (IMF). This second track is the result of a moving average equal to 27 (solar rotation of Bartel) starting from the daily values of the field, detected by the magnetometer on board the probe Advanced Composition Explorer (ACE). The analysis reveals a first major change in February 2010, when the IMF changes from 4.5 nT to about 5.8 nT . A second identical significant change is found in February 2011, when the IMF, went from 4.5 nT to about 5.8 nT. In March 2012, we have, the other way around, a third important change in the IMF, with later's dynamics registering a variation from 5.6 nT to about 6.8 nT. We find that the three most important seismic events of the last three years (M8.8 in Chile 27/02/2010; M9 in Japan on 11/03/2011, and M8.6 on 11/04/2012 in Sumatra) occurred at the same time or slightly after the peaks (Bmax) of increase in the magnetic field of the heliosphere "facing the Earth" were reached. The analysis also suggests further connections between earthquakes with M> 7 and when the peak (maximum value the IMF) were reached, recorded in other changes in the field in these three years. Like, for example, the earthquake of M7.5 in India of 12/06/2010, when the IMF increased from 4.5 nT to 5.2 nT, or the earthquake in Sumatra 25/10/2010, when the IMF went from 4.4 nT to 5.1 nT. The variation of the IMF, recorded in May 2011, from 4.7 nT to 5.9 nT, relates, for example, not only with the M7.6 earthquake in Kermadec (07/06/2011), but also with

  9. Northward laramide thrusting in the quitovac region, northwestern sonora, mexico: Implications for the juxtaposition of paleoproterozoic basement blocks and the mojave-sonora megashear hypothesis

    USGS Publications Warehouse

    Iriondo, A.; Martinez-Torres, L. M.; Kunk, M.J.; Atkinson, W.W., Jr.; Premo, W.R.; McIntosh, W.C.

    2005-01-01

    Restoration of 12%-30% Basin and Range extension allows direct interpretation of ductile fabrics associated with a stack of Laramide thrust faults in the Quito- vac region in northwestern Sonora. The inferred direction of displacement of these thrusts varies gradually from N63??W to N23??E and is interpreted to represent a clockwise rotation of the direction of Laramide thrusting through time. The thrust faults represent a piggy-back sequence of thrusting propagating north, toward the foreland. The average direction and sense of displacement of the thrusts is N18??W, and the cumulative 45 km of estimated northward-directed displacement corresponds to ???86% of shortening. ?? 2005 Geological Society of America.

  10. Southward-younging apatite (U-Th)/He ages in the northern California Coast Ranges due to a northward-migrating crustal welt [rapid communication

    NASA Astrophysics Data System (ADS)

    Brady, Robert J.; Spotila, James A.

    2005-06-01

    (U-Th)/He in apatite dating of Franciscan Formation samples from between 39°47'N and 39°08'N in the northern California Coast Ranges (NCCR) reveals a southward- and downward-younging pattern of ages (21.8 ± 0.6 Ma to 7.9 ± 0.9 Ma). These ages are interpreted to represent a northward or northeastward dipping fossil He partial retention zone that was tilted and exhumed by a northward-migrating pulse of crustal thickening that begins ˜150-200 km ahead of the migrating Mendocino Triple Junction (MTJ) [K.P. Furlong, R. Govers, Ephemeral crustal thickening at a triple junction: the Mendocino crustal conveyor, Geology 27 (1999) 127-130). The ˜8 Ma ages from the southern end of the sample transect are interpreted to come from rocks that were immediately below the He partial retention zone when crustal thickening began, ˜5 my before the MTJ passed by; these rocks have now reached the surface, ˜3 my after passage of the MTJ. The older ages from the central and northern portions of the sample transect are interpreted to represent rocks that were within the He partial retention zone prior to crustal thickening ahead of the MTJ, and which therefore record ages transitional from older subduction-related cooling and exhumation to more recent transform-related cooling and exhumation. In addition to providing support for the model of a migrating crustal welt associated with the MTJ, the existence of an essentially intact, gently tilted fossil partial retention zone in the northern California Coast Range raises the possibility of using isochronous surfaces as neotectonic structural markers in this geologically complex and heavily vegetated region.

  11. Northward growth of the Qimen Tagh Range: A new model accounting for the Late Neogene strike-slip deformation of the SW Qaidam Basin

    NASA Astrophysics Data System (ADS)

    Cheng, Feng; Jolivet, Marc; Fu, Suotang; Zhang, Qiquan; Guan, Shuwei; Yu, Xiangjiang; Guo, Zhaojie

    2014-09-01

    Situated along the western termination of the Eastern Kunlun Mountains, the Qimen Tagh Range represents a key area to understand the Cenozoic basin-range interactions between the northeastern Tibetan Plateau and the Qaidam Basin. Within that region, several huge bow-like fault systems such as the Kunbei and Qimen Tagh fault systems accommodate the transpressive deformation but their kinematic evolution is still highly debated. Newly acquired seismic profiles and isopach maps of the Late Eocene sediments strongly suggest that the Kunbei fault system (consisting of the Kunbei, Arlar and Hongliuquan faults) in the southwestern Qadaim Basin was initially a left-lateral strike-slip fault system rather than a thrusting system. Growth strata indicate an Early Miocene onset age for this strike-slip deformation. However, earthquake focal mechanisms show that the present-day tectonic pattern of this fault system is dominated by NE-SW transpression. As for the Qimen Tagh fault system, numerous linear geomorphic features and fault scarps indicate that it was again a strike-slip fault system. Deformed sediments within the Adatan Valley prove that strike-slip motion prevailed during the Pleistocene, yet the present day deformation is marked by NE-SW transpression. Collectively, the Kunbei and Qimen Tagh fault systems were initially left-lateral strike-slip fault systems that formed during Early Miocene and Pleistocene respectively. Colligating with these southward younging left-lateral strike-slip faulting ages and the fact that these convex-northward structures converge to the center segment of active Kunlun fault in the east, we thus considered the Kunbei and Qimen Tagh fault systems as former western segments of the Kunlun fault once located further south in the present-day location of that fault. These faults gradually migrated northward since the Early Miocene while their kinematics changed from left-lateral strike-slip motion to NE-SW transpression.

  12. Reconstructing the low-mass IMF of the Orion Nebula Cluster through HST photometry in the H2O band at 1.4micron

    NASA Astrophysics Data System (ADS)

    Giulia Ubeira Gabellini, Maria; Ubeda, Leonardo; Da Rio, Nicola; Robberto, Massimo; HST Treasury Program on the Orion Nebula Team

    2016-01-01

    We present a progress report on a 52-orbit Hubble Treasury Program aimed at investigating two key characteristics of the Orion Nebula Cluster: a) the low-mass tail of the IMF, down to a few Jupiter masses; b) the dynamical evolution of clusters, as revealed by stellar proper motions. The program, completed a few weeks ago, uses WFC3 and ACS in coordinated parallel mode to perform a synoptic survey in the 1.345micron H2O feature and in the F775W Ic broad-band. In this contribution we concentrate on the WFC3 photometry; the strength of the H2O absorption feature is strongly correlated with the effective temperature of low-mass stars, brown dwarfs and planetary-mass objects, and allows extending the IMF down to lowest masses formed by gravitational collapse. We present the first results on the central and densest part of the cluster.

  13. From Stars to Super-Planets: The Low-Mass IMF in the Young Cluster IC348

    NASA Technical Reports Server (NTRS)

    Najita, Joan R.; Tiede, Glenn P.; Carr, John S.

    2000-01-01

    We investigate the low-mass population of the young cluster IC348 down to the deuterium-burning limit, a fiducial boundary between brown dwarf and planetary mass objects, using a new and innovative method for the spectral classification of late-type objects. Using photometric indices, constructed from HST/NICMOS narrow-band imaging, that measure the strength of the 1.9 micron water band, we determine the spectral type and reddening for every M-type star in the field, thereby separating cluster members from the interloper population. Due to the efficiency of our spectral classification technique, our study is complete from approximately 0.7 solar mass to 0.015 solar mass. The mass function derived for the cluster in this interval, dN/d log M alpha M(sup 0.5), is similar to that obtained for the Pleiades, but appears significantly more abundant in brown dwarfs than the mass function for companions to nearby sun-like stars. This provides compelling observational evidence for different formation and evolutionary histories for substellar objects formed in isolation vs. as companions. Because our determination of the IMF is complete to very low masses, we can place interesting constraints on the role of physical processes such as fragmentation in the star and planet formation process and the fraction of dark matter in the Galactic halo that resides in substellar objects.

  14. Relation between cusp ion structures and dayside reconnection for four IMF clock angles: OpenGGCM-LTPT results

    NASA Astrophysics Data System (ADS)

    Connor, H. K.; Raeder, J.; Sibeck, D. G.; Trattner, K. J.

    2015-06-01

    When, where, and which type of reconnection (antiparallel or component) happens on the dayside magnetopause are long-standing unsolved questions due to insufficient in situ observation of reconnection sites. Previous studies showed that the dispersed ion signatures observed in the magnetospheric cusps depend on the reconnection mechanism, suggesting that cusp ion signatures can be a good tool to investigate the locations and properties of dayside reconnection. We investigate this close relation between cusp signatures and magnetopause reconnection for four different interplanetary magnetic field (IMF) clock angles (CA) using the Open Global Geospace Circulation Model (OpenGGCM) and the Liouville Theorem Particle Tracer(LTPT). OpenGGCM produces dayside reconnection under the resistive MHD theory, and LTPT calculates cusp ion signatures caused by the simulated reconnection. Our model results show that for CA = 0°, antiparallel reconnection at both the northern and southern lobes causes a reverse dispersion in which ion energies increase with increasing latitude. For CA = 60°, unsteady antiparallel reconnection at both the northern and southern lobes causes double reverse dispersions. For CA = 120°, component reconnection near the subsolar point produces a dispersionless signature in the low-latitude cusp, and antiparallel reconnection on the duskside northern magnetopause produces a normal dispersion in the high-latitude cusp in which ion energies decrease with increasing latitude. For CA = 180°, antiparallel reconnection near the subsolar point causes a normal dispersion.

  15. On the origin of the IMF: First detection of a low-mass star ejected from a triple stellar system

    NASA Astrophysics Data System (ADS)

    Loinard, L.; Rodriguez, L. F.; Rodriguez, M.

    2002-12-01

    Using high-resolution, multi-epoch VLA observations, we have detected orbital motions in several low-luminosity protobinary systems in the Taurus and rho-Ophiuchus molecular complexes. The masses obtained from Kepler's third law are of the order of 0.5 to 1 Msun, as would have been expected for such low-mass protostars. In addition, in one of the sources studied (a triple system in Taurus), one of the three component appears to have been recently ejected from the system. During the first 15 of the 20 years covered by the observations, this component has been on a closed elliptical orbit with a velocity of a few km/s, but in the last 5 years, it has started to spiral out at high speed (20 km/s). Such an ejection is not unexpected in a triple system, because such systems are thought to exhibit chaotic behaviours. However, this is the first time that it is detected directly. The implications for the IMF will be discussed

  16. Proton events at geostationary altitude during 2005, their relationship to solar wind and IMF parameters, and their `geoeffectiveness'

    NASA Astrophysics Data System (ADS)

    Rajaram, Girija; Chandrasekhar Reddy, A.; Alyana, Radharani; Rathod, Jatan; Misra, D. S.; Patil, C. G.; Prasad, M. Y. S.

    2007-12-01

    Solar wind and IMF parameters from the ACE satellite at the Earth's dayside Lagrangian point LI, are examined during solar proton events of 2005 for `shock' structures. The GOES-10 satellite at geostationary orbit (G) sees proton events in the 10-30 MeV energy range only when the flux of these particles exceeds (5 × 10^{-1}) protons/cm^{2}.sec.sr. (also known as pfu). Such events are invariably followed at G by REE (Relativistic Electron Events) which commence with an RED (Relative Electron Dropout). During REE, the enhanced flux of >2 MeV electrons can exceed (> 5 × 10^{4}) pfu, and can cause operational anomalies on geostationary satellite instruments. Such large proton events also trigger off at Earth (E), ssc type of storms with typical signatures in the geomagnetic indices Dst and Kp, and large Forbush decreases in the Cosmic Ray Neutron Monitor (CRNM) Count. Relationships between the various Space Weather parameters recorded at L1, G and E during Proton events, assume special importance from the point of view of Satellite Anomaly predictions.

  17. Bifurcation and Hysteresis of the Magnetospheric Structure with a varying Southward IMF: Field Topology and Global Three-dimensional Full Particle Simulations

    NASA Technical Reports Server (NTRS)

    Cai, DongSheng; Tao, Weinfeng; Yan, Xiaoyang; Lembege, Bertrand; Nishikawa, Ken-Ichi

    2007-01-01

    Using a three-dimensional full electromagnetic particle model (EMPM), we have performed global simulations of the interaction between the solar wind and the terrestrial magnetosphere, and have investigated its asymptotic stability. The distance between the dayside magnetopause subsolar point and the Earth center, R(sub mp) is measured, as the intensity of southward IMF |B(sub z)| is slowly varying. Based on the field topology theory, one analyzes the variation of R(sub mp) as a reference index of the dynamics of this interaction, when IMF |B(sub z)| successively increases and decreases to its original value. Two striking results are observed. First, as the IMF |B(sub z)| increases above a critical value, the variation of R(sub mp) suddenly changes (so called 'bifurcation' process in field topology). Above this critical value, the overall magnetic field topology changes drastically and is identified as being the signature of magnetic reconnection at the subsolar point on the magnetopause. Second, this subsolar point recovers its original location R(sub mp) by following different paths as the IMF |B(sub z)| value increases (from zero to a maximum fixed value) and decreases (from this maximum to zero) passing through some critical values. These different paths are the signature of 'hysteresis' effect, and are characteristic of the so-called 'subcritical-type' bifurcation. This hysteresis signature indicates that dissipation processes take place via an energy transfer from the solar wind to the magnetosphere by some irreversible way, which leads to a drastic change in the magnetospheric field topology. This hysteresis is interpreted herein as a consequence of the magnetic reconnection taking place at the dayside magnetopause. The field topology reveals to be a very powerful tool to analyze the signatures of three-dimensional magnetic reconnection without the obligation for determining the mechanisms responsible for, and the consequences of the reconnection on the

  18. How the IMF By induces a By component in the closed magnetosphere and how it leads to asymmetric currents and convection patterns in the two hemispheres

    NASA Astrophysics Data System (ADS)

    Tenfjord, P.; Østgaard, N.; Snekvik, K.; Laundal, K. M.; Reistad, J. P.; Haaland, S.; Milan, S. E.

    2015-11-01

    We used the Lyon-Fedder-Mobarry global magnetohydrodynamics model to study the effects of the interplanetary magnetic field (IMF) By component on the coupling between the solar wind and magnetosphere-ionosphere system. When the IMF reconnects with the terrestrial magnetic field with IMF By≠0, flux transport is asymmetrically distributed between the two hemispheres. We describe how By is induced in the closed magnetosphere on both the dayside and nightside and present the governing equations. The magnetosphere imposes asymmetric forces on the ionosphere, and the effects on the ionospheric flow are characterized by distorted convection cell patterns, often referred to as "banana" and "orange" cell patterns. The flux asymmetrically added to the lobes results in a nonuniform induced By in the closed magnetosphere. By including the dynamics of the system, we introduce a mechanism that predicts asymmetric Birkeland currents at conjugate foot points. Asymmetric Birkeland currents are created as a consequence of y directed tension contained in the return flow. Associated with these currents, we expect fast localized ionospheric azimuthal flows present in one hemisphere but not necessarily in the other. We also present current density measurements from Active Magnetosphere and Planetary Electrodynamics Response Experiment that are consistent with this picture. We argue that the induced By produces asymmetrical Birkeland currents as a consequence of asymmetric stress balance between the hemispheres. Such an asymmetry will also lead to asymmetrical foot points and asymmetries in the azimuthal flow in the ionosphere. These phenomena should therefore be treated in a unified way.

  19. The rate of occurrence of dayside Pc 3,4 pulsations - The L-value dependence of the IMF cone angle effect

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Luhmann, J. G.; Odera, T. J.; Stuart, W. F.

    1983-01-01

    When the angle of the IMF to the earth sun line is 15 deg or less, the occurrence rate of dayside Pc 3,4 pulsations in 7-8 times the average at L values of 2.4-2.8, and 2.2-3.5 times the average at L of 4-4.3. These waves disappear when the IMF is nearly at right angles to the sun-earth line. Such observations are consistent with a source originating in the waves upstream of the subsolar bow shock, which are transported by convection to the magnetopause. There, they couple to oscillations of magnetospheric field lines. Because the magnetospheric plasma's index of refraction decreases with radial distance except at the plasmapause, inwardly propagating waves should be refracted away from the radial direction. To reach low L values, the waves should therefore couple near the stagnation point and propagate nearly radially inwards. The streamline geometry and its connection to the foreshock region is illustrated for various IMF orientations, using a simple approximation to the magnetosheath flow field.

  20. Statistical mapping of ULF Pc3 velocity fluctuations in the Earth's dayside magnetosheath as a function of solar wind conditions

    NASA Astrophysics Data System (ADS)

    Dimmock, A. P.; Nykyri, K.; Osmane, A.; Pulkkinen, T. I.

    2016-07-01

    In this paper, we present the results of a statistical study of Pc3 velocity fluctuations in the Earth's dayside magnetosheath. There exists a notable dawn-dusk asymmetry, such that velocity fluctuations generally exhibit enhanced spectral power in the magnetosheath downstream of the quasi-parallel shock. The fluctuations in the central magnetosheath and close to bow shock tend to dampen with increasing tail-ward distance while the opposite trend is observed close to the magnetopause. This strongly suggests that velocity shear driven processes such as the Kelvin-Helmholtz instability drive Pc3 flow variations close to the magnetopause as the velocity shear increases with increasing tail-ward distance. We also show strong evidence that Pc3 velocity fluctuations are significantly enhanced during intervals of faster solar wind speeds. We see negligible differences between data collected during northward and southward IMF orientations, but in general, a dawn-favoured asymmetry persists.

  1. Evolution of the Rodgers Creek–Maacama right-lateral fault system and associated basins east of the northward-migrating Mendocino Triple Junction, northern California

    USGS Publications Warehouse

    McLaughlin, Robert J.; Sarna-Wojcicki, Andrei M.; Wagner, David L.; Fleck, Robert J.; Langenheim, V.E.; Jachens, Robert C.; Clahan, Kevin; Allen, James R.

    2012-01-01

    The Rodgers Creek–Maacama fault system in the northern California Coast Ranges (United States) takes up substantial right-lateral motion within the wide transform boundary between the Pacific and North American plates, over a slab window that has opened northward beneath the Coast Ranges. The fault system evolved in several right steps and splays preceded and accompanied by extension, volcanism, and strike-slip basin development. Fault and basin geometries have changed with time, in places with younger basins and faults overprinting older structures. Along-strike and successional changes in fault and basin geometry at the southern end of the fault system probably are adjustments to frequent fault zone reorganizations in response to Mendocino Triple Junction migration and northward transit of a major releasing bend in the northern San Andreas fault. The earliest Rodgers Creek fault zone displacement is interpreted to have occurred ca. 7 Ma along extensional basin-forming faults that splayed northwest from a west-northwest proto-Hayward fault zone, opening a transtensional basin west of Santa Rosa. After ca. 5 Ma, the early transtensional basin was compressed and extensional faults were reactivated as thrusts that uplifted the northeast side of the basin. After ca. 2.78 Ma, the Rodgers Creek fault zone again splayed from the earlier extensional and thrust faults to steeper dipping faults with more north-northwest orientations. In conjunction with the changes in orientation and slip mode, the Rodgers Creek fault zone dextral slip rate increased from ∼2–4 mm/yr 7–3 Ma, to 5–8 mm/yr after 3 Ma. The Maacama fault zone is shown from several data sets to have initiated ca. 3.2 Ma and has slipped right-laterally at ∼5–8 mm/yr since its initiation. The initial Maacama fault zone splayed northeastward from the south end of the Rodgers Creek fault zone, accompanied by the opening of several strike-slip basins, some of which were later uplifted and compressed

  2. The IMF and star formation history of the stellar clusters in the Vela D cloud

    NASA Astrophysics Data System (ADS)

    Massi, F.; Testi, L.; Vanzi, L.

    2006-03-01

    Aims.We present the results of a Near-Infrared deep photometric survey of a sample of six embedded star clusters in the Vela-D molecular cloud, all associated with luminous (˜ 103 L⊙) IRAS sources. The clusters are unlikely to be older than a few 106 yrs, since all are still associated with molecular gas.Methods.We employed the fact that all clusters lie at the same distance and were observed with the same instrumental setting to derive their properties in a consistent way, being affected by the same instrumental and observational biases. We extracted the clusters' K Luminosity Functions and developed a simple method to correct them for extinction, based on colour-magnitude diagrams. The reliability of the method has been tested by constructing synthetic clusters from theoretical tracks for pre-main sequence stars and a standard Initial Mass Function. The clusters' Initial Mass Functions have been derived from the dereddened K Luminosity Functions by adopting a set of pre-main sequence evolutionary tracks and assuming coeval star formation.Results.All clusters are small (˜ 100 members) and compact (radius ˜ 0.1-0.2 pc); their most massive stars are intermediate-mass (˜ 2-10 M⊙) ones. The dereddened K Luminosity Functions are likely to arise from the same distribution, suggesting that the selected clusters have quite similar Initial Mass Functions and star formation histories. The Initial Mass Functions are consistent with those derived for field stars and clusters. Adding them together we found that the "global" Initial Mass Function appears steeper at the high-mass end and exhibits a drop-off at ˜ 10 M⊙. In fact, a standard Initial Mass Function would predict a star with M > 22.5 M⊙ within one of the clusters, which is not found. Hence, either high-mass stars need larger clusters to be formed, or the Initial Mass Function of the single clusters is steeper at the high-mass end because of the physical conditions in the parental gas.

  3. A case study of ionospheric storm effects during long-lasting southward IMF Bz-driven geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Liu, Libo; Nakamura, Takuji; Zhao, Biqiang; Ning, Baiqi; Yoshikawa, A.

    2014-09-01

    Multiple instrumental observations including GPS total electron content (TEC), foF2 and hmF2 from ionosondes, vertical ion drift measurements from Communication/Navigation Outage Forecasting System, magnetometer data, and far ultraviolet airglow measured by Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Global Ultraviolet Imager (TIMED/GUVI) are used to investigate the profound ionospheric disturbances at midlatitude and low latitude during the 14-17 July 2012 geomagnetic storm event, which was featured by prolonged southward interplanetary geomagnetic field component for about 30 h below -10 nT. In the East Asian/Australian sector, latitudinal profile of TEC variations in the main phase were characterized by three bands of increments and separated by weak depressions in the equatorial ionospheric anomaly (EIA) crest regions, which were caused by the combined effects of disturbance dynamo electric fields (DDEF) and equatorward neutral winds. In the recovery phase, strong inhibition of EIA occurred and the summer crest of EIA disappeared on 16 July due to the combined effects of intrusion of neutral composition disturbance zone as shown by the TIMED/GUVI O/N2 measurements and long-lasting daytime westward DDEF inferred from the equatorial electrojet observations. The transit time of DDEF over the dip equator from westward to eastward is around 2200 LT. In the American longitude, the salient ionospheric disturbances in the summer hemisphere were characterized by daytime periodical intrusion of negative phase for three consecutive days in the recovery phase, preceded by storm-enhanced density plume in the initial phase. In addition, multiple short-lived prompt penetration electric fields appeared during stable southward interplanetary magnetic field (IMF) Bz in the recovery phase and were responsible for enhanced the EIA and equatorial ionospheric uplift around sunset.

  4. A case study of Ionospheric storm effects during long-lasting southward IMF Bz driven geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Liu, J., Sr.

    2014-12-01

    Multiple instrumental observations including GPS TEC, foF2 and hmF2 from ionosondes, vertical ion drift measurements from C/NOFS, magnetometer data and far-ultraviolet airglow measured by TIMED/GUVI are used to investigate the profound ionospheric disturbances at mid- and low-latitudes during the 14-17 July 2012 geomagnetic storm event, which was featured by prolonged southward interplanetary geomagnetic field component for about 30 hours below -10 nT. In the East Asian/Australian sector, latitudinal profile of TEC variations in the main phase were characterized by three bands of increments and separated by weak depressions in the Equatorial Ionospheric Anomaly (EIA) crest regions, which were caused by the combined effects of disturbance dynamo electric fields (DDEF) and equatorward neutral winds. In the recovery phase, strong inhibition of EIA occurred and the summer crest of EIA disappeared on 16 July due to the combined effects of intrusion of neutral composition disturbance zone as shown by the TIME/GUVI O/N2 measurements and long-lasting daytime westward DDEF inferred from the equatorial electric electrojet (EEJ) observations. The transit time of DDEF over the dip equator from westward to eastward is around 2200 LT. In the American longitude, the salient ionospheric disturbances in the summer hemisphere were characterized by daytime periodical intrusion of negative phase for three consecutive days in the recovery phase, preceded by storm enhanced density (SED) plume in the initial phase. In addition, multiple short-lived prompt penetration electric fields (PPEF) appeared during stable southward IMF Bz in the recovery phase and were responsible for enhanced the EIA and equatorial ionospheric uplift around sunset.

  5. Body condition and forage type influence intramuscular and rump fat, and reproductive performance of postpartum Brahman-influenced cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiparous Brahman-influenced cows were managed to achieve marginal (BCS = 4.9 ± 0.1; n = 55) or moderate (BCS = 6.5 ± 0.1; n = 55) body condition (BC) to determine the influence of forage type on estrous characteristics, intramuscular fat percentage (IMF), rump fat (RF), and reproductive performan...

  6. Hyalomma ticks on northward migrating birds in southern Spain: Implications for the risk of entry of Crimean-Congo haemorrhagic fever virus to Great Britain.

    PubMed

    England, Marion E; Phipps, Paul; Medlock, Jolyon M; Atkinson, Peter M; Atkinson, Barry; Hewson, Roger; Gale, Paul

    2016-06-01

    Crimean-Congo haemorrhagic fever virus (CCHFV) is a zoonotic virus transmitted by Hyalomma ticks, the immature stages of which may be carried by migratory birds. In this study, a total of 12 Hyalomma ticks were recovered from five of 228 migratory birds trapped in Spring, 2012 in southern Spain along the East Atlantic flyway. All collected ticks tested negative for CCHFV. While most birds had zero Hyalomma ticks, two individuals had four and five ticks each and the statistical distribution of Hyalomma tick counts per bird is over-dispersed compared to the Poisson distribution, demonstrating the need for intensive sampling studies to avoid underestimating the total number of ticks. Rates of tick exchange on migratory birds during their northwards migration will affect the probability that a Hyalomma tick entering Great Britain is positive for CCHFV. Drawing on published data, evidence is presented that the latitude of a European country affects the probability of entry of Hyalomma ticks on wild birds. Further data on Hyalomma infestation rates and tick exchange rates are required along the East Atlantic flyway to further our understanding of the origin of Hyalomma ticks (i.e., Africa or southern Europe) and hence the probability of entry of CCHFV into GB. PMID:27232135

  7. The role of the northward-directed (sub)surface limb of the Atlantic Meridional Overturning Circulation during the 8.2 ka event

    NASA Astrophysics Data System (ADS)

    Tegzes, A. D.; Jansen, E.; Telford, R. J.

    2014-10-01

    The so-called "8.2 ka event" is widely regarded as a major Holocene climate perturbation. It is most readily identifiable in the oxygen-isotope records from Greenland ice cores as an approximately 160-year-long cold interval between 8250 and 8090 years BP. The prevailing view has been that the cooling over Greenland, and potentially over the northern North Atlantic at least, was triggered by the catastrophic final drainage of the Agassiz-Ojibway proglacial lake as part of the remnant Laurentide Ice Sheet collapsed over Hudson Bay at around 8420 ± 80 years BP. The consequent freshening of surface waters in the northern North Atlantic Ocean and the Nordic Seas resulted in weaker overturning, and hence reduced northward ocean heat transport. We have reconstructed variations in the strength of the eastern branch of the Atlantic Inflow into the Nordic Seas around the time of the lake outbursts. While the initial freshwater forcing may have been even larger than originally thought, as the lake outbursts may have been accompanied by a major iceberg discharge from Hudson Bay, our proxy records from the mid-Norwegian Margin do not evidence a uniquely large slowdown in the eastern branch of the Atlantic Inflow at the time. Therefore, its main role in the 8.2 ka event may have been the (rapid) advection of fresh and cold waters to high northern latitudes, initiating rapid sea-ice expansion and an increase in surface albedo.

  8. Intertidal biofilm distribution underpins differential tide-following behavior of two sandpiper species (Calidris mauri and Calidris alpina) during northward migration

    NASA Astrophysics Data System (ADS)

    Jiménez, Ariam; Elner, Robert W.; Favaro, Corinna; Rickards, Karen; Ydenberg, Ronald C.

    2015-03-01

    The discovery that some shorebird species graze heavily on biofilm adds importance to elucidating coastal processes controlling biofilm, as well as impetus to better understand patterns of shorebird use of intertidal flats. Western sandpipers (Calidris mauri) and dunlin (Calidris alpina) stopover in the hundreds of thousands on the Fraser River estuary, British Columbia, Canada, during northward migration to breeding areas. Western sandpipers show greater modification of tongue and bill morphology for biofilm feeding than dunlin, and their diet includes more biofilm. Therefore, we hypothesized that these congeners differentially use the intertidal area. A tide following index (TFI) was used to describe their distributions in the upper intertidal during ebbing tides. Also, we assessed sediment grain size, biofilm (= microphytobenthic or MPB) biomass and invertebrate abundance. Foraging dunlin closely followed the ebbing tide line, exploiting the upper intertidal only as the tide retreated through this area. In contrast, western sandpipers were less prone to follow the tide, and spent more time in the upper intertidal. Microphytobenthic biomass and sediment water content were highest in the upper intertidal, indicating greater biofilm availability for shorebirds in the first 350 m from shore. Invertebrate density did not differ between sections of the upper intertidal. Overall, western sandpiper behaviour and distribution more closely matched MPB biofilm availability than invertebrate availability. Conservation of sandpipers should consider physical processes, such as tides and currents, which maintain the availability of biofilm, a critical food source during global migration.

  9. Ground-based observations of ion/neutral coupling at Thule and Qanaq, Greenland

    NASA Technical Reports Server (NTRS)

    Thayer, J. P.; Crowley, G.; Niciejewski, R. J.; Killeen, T. L.; Buchau, J.; Reinisch, B. W.

    1995-01-01

    During December 1988, 24 hours of darkness and clear sky conditions permitted continuous observations of the O I(6300 A) airglow by a Fabry-Perot interferometer located at Thule Air Base, Greenland. Thus a continuous record of the F region neutral winds was obtained for that month. During this same time period, a digital ionosonde located at Qanaq, Greenland (110 km north of Thule Air Base), was in operation measuring electron density profiles and F region ion drifts. This combination of ground-based observations allowed the investigation of ion/neutral coupling at a temporal resolution of about 15 min. Interplanetary magnetic field (IMF) data from the IMP 8 satellite were also available from December 16 to 24 and indicated intervals of B(sub z) northward IMF conditions during this period. Here we investigate the observed response of the neutral wind to convection changes in the ion drift inside the polar cap for southward and northward IMF B(sub z) conditions. In particular, we establish a control day illustrating the typical antisunward neutral wind and ion drift patterns observed for southward B(sub z) over Thule and Qanaq, and we compare it with observations made when the IMF B(sub z) is directed northward. The observations during periods of northward B(sub z) display sunward directed ion drifts over the polar cap accompanied by decreasing antisunward directed neutral winds. We investigate these times of northward B(sub z) further and demonstrate that the ion drag term alone cannot describe the observed response in the neutral wind during northward IMF.

  10. Screening of different stress factors and development of growth/no growth models for Zygosaccharomyces rouxii in modified Sabouraud medium, mimicking intermediate moisture foods (IMF).

    PubMed

    Vermeulen, A; Daelman, J; Van Steenkiste, J; Devlieghere, F

    2012-12-01

    The microbial stability of intermediate moisture foods (IMF) is linked with the possible growth of osmophilic yeast and xerophilic moulds. As most of these products have a long shelf life the assessment of the microbial stability is often an important hurdle in product innovation. In this study a screening of several Zygosaccharomyces rouxii strains towards individual stress factors was performed and growth/no growth models were developed, incorporating a(w), pH, acetic acid and ethanol concentrations. These stress factors are important for sweet IMF such as chocolate fillings, ganache, marzipan, etc. A comparison was made between a logistic regression model with and without the incorporation of time as an explanatory variable. Next to the model development, a screening of the effect of chemical preservatives (sorbate and benzoate) was performed, in combination with relevant stress factors within the experimental design of the model. The results of the study showed that the influence of the investigated environmental stress factors on the growth/no growth boundary of Z. rouxii is the most significant in the first 30-40 days of incubation. Incorporating time as an explanatory variable in the model had the advantage that the growth/no growth boundary could be predicted at each time between 0 and 60 days of incubation at 22 °C. However, the growth/no growth boundary enlarged significantly leading to a less accurate prediction on the growth probability of Z. rouxii. The developed models can be a useful tool for product developers of sweet IMF. Screening with chemical preservatives revealed that benzoic acid was much less active towards Z. rouxii than sorbic acid or a mixture of both acids. PMID:22986205

  11. The effect of the changing polarity and neutral sheet of the IMF on the cosmic ray diurnal anisotropy at neutron monitor energies

    NASA Technical Reports Server (NTRS)

    Van Staden, M. L.; Potgieter, M. S.

    1991-01-01

    A drift with a simulated wavy neutral sheet have been used to study the effects of the reversal of the solar magnetic field every 11 years and the changes in the waviness of the heliospheric neutral sheet, corresponding to changes in solar activity, on the diurnal anisotropy at an energy of 20 GeV. The results indicate that the long-term behavior of the diurnal anisotropy, especially the phase shift from one solar minimum period to another, which seems to depend on the polarity of the IMF, has a theoretical explanation in the drift picture of the modulation of cosmic rays in the heliosphere.

  12. A Tree-Ring Based Reconstruction (1725-present) of the Position of the Summer North Atlantic Jet Shows a 20th Century Northward Shift

    NASA Astrophysics Data System (ADS)

    Trouet, V.; Babst, F.

    2014-12-01

    The position and strength of the Northern Hemisphere polar jet are important modulators of mid-latitude weather extremes and the societal, ecosystem, and economic damage related to them. The position of the North Atlantic jet (NAJ) controls the location of the Atlantic storm track and anomalies in the NAJ position have been related to temperature and precipitation extremes over Europe. In summer, a southern NAJ regime can result in floods in the British Isles (BRIT) and increasing odds of heat waves in the northeastern Mediterranean (NEMED). Variability in the amplitude and speed of the Northern Hemisphere jet stream is hotly debated as a potential mechanism linking recent mid-latitude weather extremes to anthropogenic warming. However, the hypothesis of jet stream variability as a possible mechanism linking Arctic amplification to mid-latitude weather extremes is largely based on data sets with limited temporal extent that do not warrant robust results from a statistical significance perspective. Here, we combined two summer temperature-sensitive tree-ring records from BRIT and NEMED to reconstruct interannual variability in the latitudinal position of the summer NAJ back to 1725. The two well-replicated temperature proxies counter-correlate significantly over the full period and thus illustrate the temperature dipole generated by anomalous NAJ positions. Positive extremes in the NAJ reconstruction correspond to heatwaves recorded in the historical Central England temperature record and negative extremes correspond to reconstructed fire years in Greece. The reconstruction shows a northward shift in the latitudinal NAJ position since the 1930s that is most pronounced in the northern NAJ extremes, suggesting a more frequent occurrence of BRIT hot summers in the 20th century compared to previous centuries.

  13. Fission track evidence for tilting of the Peninsular Ranges batholith of southern California: An alternative to long-distance northward transport

    SciTech Connect

    George, P.G.; Dokka, R.K. . Dept. of Geology and Geophysics)

    1992-01-01

    Paleomagnetic directions of Mesozoic plutonic rocks from the Peninsular Ranges batholith in southern California and Baja California are discordant with the expected Cretaceous magnetic field direction. The difference between expected and observed directions suggests ca 25[degree] of clockwise tectonic rotation and ca 11[degree] northward translation of peninsular California with respect to cratonic North America. Lithologic correlations between peninsular California and Sonora, however, support only 300 [+-] 10 km of north-northwest translation along the San Andreas transform system. Southwest tilting of the batholith about an axis subparallel to its trend has been proposed in order to explain the discordant paleomagnetic directions, thereby eliminating the need for long-distance transport. The distribution of zircon and apatite fission-track ages across the western half of the batholith between Palomar Mountain and Escondido, California support this proposal. In the northeastern part of the study area apatite and zircon fission-track ages of Early Cretaceous tonalities and granodiorites range from 73.9 to 81.9 Ma and 74.8 to 79.9 Ma, respectively. The show no systematic increase or decrease with changes in elevation or distance along the ca N37E line of sampling. Towards the southwest, however, apatite and zircon fission-track ages increase progressively from 82 to 96 Ma and 83 to 93 Ma, respectively. The author interprets these results as indicating rapid, episodic uplift of the study area during Late Cretaceous time followed by regional tilting of the batholith and its fission-track age surfaces to the southwest. The amount of tilt estimated from the distribution of the fission-track ages is compatible with those based on geobarometry data and the distribution of U-Pb and K-Ar ages.

  14. Steepening of waves at the duskside magnetopause

    NASA Astrophysics Data System (ADS)

    Plaschke, F.; Kahr, N.; Fischer, D.; Nakamura, R.; Baumjohann, W.; Magnes, W.; Burch, J. L.; Torbert, R. B.; Russell, C. T.; Giles, B. L.; Strangeway, R. J.; Leinweber, H. K.; Bromund, K. R.; Anderson, B. J.; Le, G.; Chutter, M.; Slavin, J. A.; Kepko, E. L.

    2016-07-01

    Surface waves at the magnetopause flanks typically feature steeper, i.e., more inclined leading (antisunward facing) than trailing (sunward facing) edges. This is expected for Kelvin-Helmholtz instability (KHI) amplified waves. Very rarely, during northward interplanetary magnetic field (IMF) conditions, anomalous/inverse steepening has been observed. The small-scale tetrahedral configuration of the Magnetospheric Multiscale spacecraft and their high time resolution measurements enable us to routinely ascertain magnetopause boundary inclinations during surface wave passage with high accuracy by four-spacecraft timing analysis. At the dusk flank magnetopause, 77%/23% of the analyzed wave intervals exhibit regular/inverse steepening. Inverse steepening happens during northward IMF conditions, as previously reported and, in addition, during intervals of dominant equatorial IMF. Inverse steepening observed under the latter conditions may be due to the absence of KHI or due to instabilities arising from the alignment of flow and magnetic fields in the magnetosheath.

  15. Howthe IMF By induces a By component in the closed magnetosphere and how it leads to asymmetric currents and convection patterns in the two hemispheres

    NASA Astrophysics Data System (ADS)

    Tenfjord, Paul; Østgaard, Nikolai; Snekvik, Kristian; Reistad, Jone; Magnus Laundal, Karl; Haaland, Stein; Milan, Steve

    2016-04-01

    We describe the effects of the interplanetary magnetic field (IMF) By component on the coupling between the solar wind and magnetosphere-ionosphere system using AMPERE observations and MHD simulations. We show how By is induced on closed magnetospheric field lines on both the dayside and nightside. The magnetosphere imposes asymmetric forces on the ionosphere, and the effects on the ionospheric flow are characterized by distorted convection cell patterns, often referred to as "banana" and "orange" cell patterns. The flux asymmetrically added to the lobes results in a nonuniform induced By in the closed magnetosphere. We present a mechanism that predicts asymmetric Birkeland currents at conjugate foot points. Asymmetric Birkeland currents are created as a consequence of y directed tension contained in the return flow. Associated with these currents, we expect aurora and fast localized ionospheric azimuthal flows present in one hemisphere but not necessarily in the other. We present a statistical study where we show that these processes should occur on timescales of about 30 minutes after the IMF By has arrived at the magnetopause. We also present an event with simultaneous global imaging of the aurora and SuperDARN measurements from both hemisphere. The event is interpreted as an example of the of the proposed asymmetric current mechanism.

  16. Where East Africa and the Levant Are Climatically Connected: An Alternative View of the Northward Shifts of Either the ITCZ and/or the Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Enzel, Y.; Kushnir, Y.; Quade, J.

    2014-12-01

    Lake levels in basins in areas bordering northern Arabian Sea have been used to reconstruct regional paleohydrological patterns through lake-level statuses. For the early-middle Holocene, dramatic increases in regional rainfall have been proposed. These rainfall changes are commonly thought to be associated with an intensified Indian summer monsoon (ISM) and a large northward shift in the latitude of the boreal summer ITCZ over the Indian Ocean; this shift was proposed to reach latitudes as far north as the Levant. However, the ISM currently forces total summer drought not rains, in the Levant and neighboring deserts, including Arabia. The drought is due to large-scale air subsidence forced by the ISM and dries the region except in southernmost Arabia, where topography lifts air and produces orographic rain. This Arabian summer drought is assisted by increased upwelling that limits rainfall inland. How large the actual changes in paleohydrology were in the Arabian Peninsula? If not the ISM, what are the real causes of these changes? We summarize paleohydrologic information from Arabia and revisit the paleolake status of all lacustrine-like deposits and their basins in Arabia. From reinterpretation of these data and sedimentology and fauna, we conclude that these basins were occupied by shallow marsh environments, not lakes. Consequently, the paleohydrologic changes required to support restricted wetland versus lakes were much smaller. These conclusions are supported by the temporal and spatial distribution of other paleoenvironmental indicators such as pollen and speleothems. They indicate that (a) rainfall changes were very small in the heart of and northern Arabia, and (b) that these changes were only at the elevated edges of southwestern, southern, and southeastern Arabian Peninsula, where it rains at present, mainly due to orographic effects on precipitation in the presence of increased moisture supply. We propose that (a) latitudinal and slight inland impact

  17. The interaction of a magnetic cloud with the Earth - Ionospheric convection in the Northern and Southern Hemispheres for a wide range of quasi-steady interplanetary magnetic field conditions

    NASA Technical Reports Server (NTRS)

    Freeman, M. P.; Farrugia, C. J.; Burlaga, L. F.; Hairston, M. R.; Greenspan, M. E.; Ruohoniemi, J. M.; Lepping, R. P.

    1993-01-01

    Observations are presented of the ionospheric convection in cross sections of the polar cap and auroral zone as part of the study of the interaction of the Earth's magnetosphere with the magnetic cloud of January 13-15, 1988. For strongly northward IMF, the convection in the Southern Hemisphere is characterized by a two-cell convection pattern comfined to high latitudes with sunward flow over the pole. The strength of the flows is comparable to that later seen under southward IMF. Superimposed on this convection pattern there are clear dawn-dusk asymmetries associated with a one-cell convection component whose sense depends on the polarity of the magnetic cloud's large east-west magnetic field component. When the cloud's magnetic field turns southward, the convection is characterized by a two-cell pattern extending to lower latitude with antisunward flow over the pole. There is no evident interhemispheric difference in the structure and strength of the convection. Superimposed dawn-dusk asymmetries in the flow patterns are observed which are only in part attributable to the east-west component of the magnetic field.

  18. The quiet time polar cap: DE 1 observations and conceptual model

    SciTech Connect

    Burch, J.L. ); Saflekos, N.A. ); Gurnett, D.A.; Frank, L.A. ); Craven, J.D. )

    1992-12-01

    Auroral activity increases over the polar caps during quiet times, which are associated with northward interplanetary magnetic field (IMF) components. Polar cap auroras (Sun-aligned arcs, theta auroras, and horse collar auroras) occur under these conditions. DE 1 data have provided partial characterization of these events. A conceptual northward IMF merging model containing lobe cells, merging cells, and viscous cells is shown to be consistent with the observations. As the IMF becomes more northward, the polar arc configuration changes from the horse collar pattern to the theta aurora pattern in the model, and this is shown to be generally true for the set of published data on these phenomena. The model involves dayside merging both at high latitudes on open field lines and at lower latitudes on closed field lines. The ratio between the merged flux produced by the high-latitude merging to that produced by the lower-latitude merging increases as the IMF becomes more northward. Two types of open field lines, equator-crossing and non-equator-crossing, are produced by the higher- and lower-latitude merging, respectively. The equator-crossing field lines have a strong azimuthal component of convection as they flow around the magnetopause, while the non-equator-crossing field lines can convect more or less directly across the polar cap, leading to an antisunward flow channel across the central polar cap. This antisunward flow region grows as the IMF becomes less northward, causing dual polar cap arcs to spread out into the horse collar configuration.

  19. The propagation of solar energetic protons: Comparative studies in two cases with markedly different scattering conditions

    NASA Astrophysics Data System (ADS)

    Valdes-Galicia, J. F.; Wanner, W.; Kallenrode, M.-B.; Wibberenz, G.

    1995-01-01

    In this work we analyze solar particle and interplanetary magnetic field (IMF) data recorded during three solar particle events observed on board Helios 1 on 1978 April 11 and on 1980 June 7. The fluctuating component of the IMF is markedly different in the three cases, the field being very turbulent in the first and very quiet in the second period comprising the other two events. Energetic particle intensities and angular distributions also show different characteristics. Particles propagate in a regime of strong scattering on 1978 April 11, while for 1980 June 7 conditions of weak scattering dominate. Pitch angle coefficients and mean free paths for energetic protons are determined by three different methods: (1) power spectra of IMF fluctuations following quasi-linear theory (QLT), (2) numerical simulations of test particle trajectories using IMF data, and (3) particle time intensity and time anisotropy profiles and angular distributions. Recent investigations (Wanner & Wibberenz 1991b, 1993; Wanner et al. 1993a, b; Droge et al. 1991, 1993) have only compared QLT and particle observations. In this work, we add to these the results of particle trajectory simulations, which are obtained using assumptions different than the QLT calculations. Resulting mean free paths are very similar for the three different approaches, being about 0.015 AU for the event of 1978 April 11 and about 1 AU for the events of 1980 June 7 at 100 MeV particle energy. The agreement found between the mean free path results from the different approaches shows that QLT with the slab wave model leads to a level of scattering coincident with energetic particle determinations for some cases with widely differing scattering conditions. We also find that the shapes of the pitch angle diffusion coefficients do not agree. A discussion of the implications of these findings on the often cited discrepancy between mean free paths determined via QLT and those found by analysis of particle time intensity

  20. Relationships of storm-time changes in thermospheric mass density with solar wind/IMF parameters and ring current index of Sym-H

    NASA Astrophysics Data System (ADS)

    Zhou, Yunliang; Ma, S. Y.; Xiong, Chao; Luehr, Hermann

    The total air mass densities at about 500 km altitude are derived using super-STAR accelerom-eter measurements onboard GRACE satellites for 25 great magnetic storms with minimum Dst less than 100 nT during 2002 to 2006 years. Taking NRLMSISE-00 model-predicted densities without active ap index input as a reference baseline of quiet-time mass density, the storm-time changes in upper thermospheric mass densities are obtained by subtraction for all the storm events and sorted into different grids of latitude by local time sector. The relationships of the storm-time density changes with various interplanetary parameters and magnetospheric ring current index of Sym-H are statistically investigated. The parameters include Akasofu energy coupling function, the merging electric field Em, the magnitude of IMF component in the GSM y-z plane etc. as calculated from OMNI data at 1 AU. It is found that the storm-time changes in the upper thermospheric mass density have the best linear correlation with the Sym-H index in general, showing nearly zero time delay at low-latitudes and a little time ahead at high-latitudes for most cases. Unexpectedly, the magnitude of IMF component in the y-z plane, Byz, shows correlation with storm-time mass density changes better and closer than Akasofu function and even Em. And, the mass density changes lag behind Byz about 1-4 hours for most cases at low-latitudes. The correlations considered above are local time dependent, showing the lowest at dusk sectors. For the largest superstorm of November 2003, the changes in mass density are correlated very closely with Byz, Em, and Sym-H index, showing correlation coefficients averaged over all latitudes in noon sector as high as 0.93, 0.91 and 0.90 separately. The physical factors controlling the lag times between the mass density changes at mid-low-latitudes and the interplanetary parameter variations are also analyzed. The results in this study may pro-vide useful suggestions for establishing

  1. Climatology and IMF By dependence of quiet-time high-latitude upper thermospheric winds measured by ground-based Fabry-Perot Interferometers in the northern and southern hemispheres

    NASA Astrophysics Data System (ADS)

    Emmert, J. T.; Hernandez, G.; Jarvis, M. J.; Niciejewski, R. J.; Sipler, D. P.; Vennerstrom, S.

    2006-05-01

    We analyze ground-based Fabry-Perot interferometer observations, obtained from the CEDAR database, of upper thermospheric (~250 km) horizontal winds derived from Doppler shifts in the 630.0 nm (red line) nightglow. The winds were measured over the following locations: South Pole (90S), Halley (76S, 27W), Millstone Hill (43N, 72W), Sondre Stromfjord (67N, 51W), and Thule (77N, 68W). We derive climatological quiet-time (Kp < 3) wind patterns as a function of local time, solar cycle, day-of-year, and the y-component of the interplanetary magnetic field (IMF By). In magnetic coordinates, the quiet-time high latitude wind patterns are dominated by anti-sunward flow over the polar cap, with wind speeds that generally increase with increasing solar EUV irradiation. Within the limited seasonal coverage afforded by the nighttime (mostly winter) data, the day-of-year dependence is generally weak. IMF By exerts a strong influence on the wind patterns, particularly in the midnight sector. During winter, positive-By winds around midnight in the northern (southern) hemisphere are directed more toward the dusk (dawn) sector, compared to corresponding negative-By winds; this behavior is consistent with the By-dependence of statistical ionospheric convection patterns The strength of the wind response to IMF By tends to increase with increasing solar EUV irradiation, roughly in proportion to the increased wind speeds. Quiet-time IMF By effects are detectable at latitudes as low as that of Millstone Hill (magnetic latitude 53N).

  2. Concerning the Motion of FTEs and Attendant Signatures

    NASA Technical Reports Server (NTRS)

    Sibeck, David G.

    2010-01-01

    We employ the Cooling et al. [2001] model to predict the location, orientation, and motion of flux transfer events (FTEs) generated along finite length component and anti parallel reconnection lines for typical solar wind plasma conditions and various interplanetary magnetic field (IMF) orientations in the plane perpendicular to the SunEarth line at the solstices and equinoxes. For duskward and northward or southward IMF orientations, events formed by component reconnection originate along reconnection curves passing through the sub solar point that tilt from southern dawn to northern dusk. They maintain this orientation as they move either northward into the northern dawn quadrant or southward into the southern dusk quadrant. By contrast, events formed by antiparallel reconnection originate along reconnection curves running from northern dawn to southern dusk in the southern dawn and northern dusk quadrants and maintain these orientations as they move anti sunward into both these quadrants. Although both the component and antiparallel reconnection models can explain previously reported event orientations on the southern dusk magnetopause during intervals of northward and dawn ward IMF orientation, only the component model explains event occurrence near the subsolar magnetopause during intervals when the IMF does not point due southward.

  3. Solar Wind-Magnetosphere Coupling During an Isolated Substorm Event: A Multispacecraft ISTP Study

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Turner, N. E.; Singer, H. J.; Frank, L. A.; Sigwarth, J. B.; Scudder, J.; Anderson, R.; Kokubun, S.; Mukai, T.; Nakamura, R.; Blake, J. B.; Russell, C. T.; Kawano, H.; Mozer, F.; Slavin, J. A.

    1997-01-01

    Multispacecraft data from the upstream solar wind, polar cusp, and inner magnetotail are used to show that the polar ionosphere responds within a few minutes to a southward IMF turning, whereas the inner tail signatures are visible within ten min from the southward turning. Comparison of two subsequent substorm onsets, one during southward and the other during northward IMF, demonstrates the dependence of the expansion phase characteristics on the external driving conditions. Both onsets are shown to have initiated in the midtail, with signatures in the inner tail and auroral oval following a few minutes later.

  4. Structured subauroral polarization streams and related auroral undulations occurring on the storm day of 21 January 2005

    NASA Astrophysics Data System (ADS)

    Horvath, Ildiko; Lovell, Brian C.

    2016-02-01

    We investigate structured subauroral polarization streams (SAPS) and their impacts on the midlatitude trough and auroral regions during the 21-22 January 2005 geomagnetic storm. This was a storm with two sudden commencements occurring under varying interplanetary magnetic field (IMF) conditions and three main phases, two of them unfolding during northward IMF. Its onset at ~1700 UT allowed us to investigate SAPS wave structures (WS) and their impacts during the local evening hours under both southward and northward IMF conditions in the American sector. Results suggest that during southward IMF, SAPS-WS might be related with standing (toroidal) Alfven waves and structured most intensively the stagnation trough. During northward IMF, the trough was created by SAPS electric (E) field effects only and became less structured by SAPS-WS that were of Alfvenic origin. Auroral wave structures and undulations occurred in the structured and unstructured oval regions, respectively, and triggered the subauroral region's response to produce SAPS-WS. Spectrogram images (only one shown) confirmed ring current injections implying magnetotail reconnections during the four SAPS-WS events investigated. Periodic tail connections are also evidenced by the periodic increases seen in both the solar wind-magnetosphere coupling function (ɛ) and the energy input efficiency. Finally, we conclude for the time period investigated that (1) the nature of SAPS-WS was informative of IMF orientation, (2) plasma stagnation enhanced SAPS E field and SAPS-WS development, and (3) more efficient energy input into the magnetosphere contributed to the better development of auroral undulations and SAPS-WS.

  5. Merger Rates of Double Neutron Stars and Stellar Origin Black Holes: The Impact of Initial Conditions on Binary Evolution Predictions

    NASA Astrophysics Data System (ADS)

    de Mink, S. E.; Belczynski, K.

    2015-11-01

    The initial mass function (IMF), binary fraction, and distributions of binary parameters (mass ratios, separations, and eccentricities) are indispensable inputs for simulations of stellar populations. It is often claimed that these are poorly constrained, significantly affecting evolutionary predictions. Recently, dedicated observing campaigns have provided new constraints on the initial conditions for massive stars. Findings include a larger close binary fraction and a stronger preference for very tight systems. We investigate the impact on the predicted merger rates of neutron stars and black holes. Despite the changes with previous assumptions, we only find an increase of less than a factor of 2 (insignificant compared with evolutionary uncertainties of typically a factor of 10–100). We further show that the uncertainties in the new initial binary properties do not significantly affect (within a factor of 2) our predictions of double compact object merger rates. An exception is the uncertainty in IMF (variations by a factor of 6 up and down). No significant changes in the distributions of final component masses, mass ratios, chirp masses, and delay times are found. We conclude that the predictions are, for practical purposes, robust against uncertainties in the initial conditions concerning binary parameters, with the exception of the IMF. This eliminates an important layer of the many uncertain assumptions affecting the predictions of merger detection rates with the gravitational wave detectors aLIGO/aVirgo.

  6. Dynamics of Solar Wind Flows and Characteristics of Geomagnetic Activity at Different Angles of IMF Spiral for Period of Space Measurements at Near-Earth Orbit

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Tamara

    Solar wind streams form a spiral with a different longitude angle U: fast-moving streams moving more directly and slow-moving streams wrapping more around Sun. The azimuth component of spiral corresponds to east-west component By (GSE) which plays important role in reconnection on magnetopause and in progress of geomagnetic activity (GA). We take as our aim to find connection between solar wind parameters (IMF B, solar wind velocity V, concentration N, electric field Е =[VхB], Poyting vector of electromagnetic flux density P =[ExB]) and angle U during period of SC 20-24. Such approach allows not only to identify power quasi-stationary flows on basis of the solar wind parameters for each solar cycle, but to see evolution of the flows during period of 4 SC. Dependence of parameters of flows for odd-even SC and their effects in GA from U allows to find influence of the 22-yr magnetic cycle on interaction efficiency. We use data base of B, V, N, temperature T measured at 1 a.u. near ecliptic plane for period of 1963-2013. In particular, it was shown that E and P for By>0 have its maxima in each solar cycle at mean U=80 deg, herewith the maxima for odd SC 21, 23 are considerably larger than ones for even SC 20, 22. Besides, the value of P for 23 cycle has absolute maximum among SC 20-23! These peaks of P and E for By>0 belongs to slow flow of dense cold plasma. The fact that Bx changes its sign at its external boundary points to internal edge of HCS. We have obtained not only new characteristic of SC23, but and its influence on GA. Really, Dst(U) shows absolute maximum of depression for SC 23 at near the same U=80 (By>0). Polar cap index Pc obtained at Thule shows also absolute maximum for SC23 at the same U for By>0. Our analysis confirms that odd SC with low maximal sunspot numbers Wm will have high P and E for similar flows with By>0 and consequently high GA. So, low value of Wm=121 of SC 23 is a parameter, which does not determine power of solar wind

  7. Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor

    NASA Astrophysics Data System (ADS)

    Tacconi, L. J.; Genzel, R.; Smail, I.; Neri, R.; Chapman, S. C.; Ivison, R. J.; Blain, A.; Cox, P.; Omont, A.; Bertoldi, F.; Greve, T.; Förster Schreiber, N. M.; Genel, S.; Lutz, D.; Swinbank, A. M.; Shapley, A. E.; Erb, D. K.; Cimatti, A.; Daddi, E.; Baker, A. J.

    2008-06-01

    We report subarcsecond resolution IRAM PdBI millimeter CO interferometry of four z ~ 2 submillimeter galaxies (SMGs), and sensitive CO(3-2) flux limits toward three z ~ 2 UV/optically selected star-forming galaxies. The new data reveal for the first time spatially resolved CO gas kinematics in the observed SMGs. Two of the SMGs show double or multiple morphologies, with complex, disturbed gas motions. The other two SMGs exhibit CO velocity gradients of ~500 km s-1 across <=0.2'' (1.6 kpc) diameter regions, suggesting that the star-forming gas is in compact, rotating disks. Our data provide compelling evidence that these SMGs represent extreme, short-lived "maximum" star-forming events in highly dissipative mergers of gas-rich galaxies. The resulting high-mass surface and volume densities of SMGs are similar to those of compact quiescent galaxies in the same redshift range and much higher than those in local spheroids. From the ratio of the comoving volume densities of SMGs and quiescent galaxies in the same mass and redshift ranges, and from the comparison of gas exhaustion timescales and stellar ages, we estimate that the SMG phase duration is about 100 Myr. Our analysis of SMGs and optically/UV selected high-redshift star-forming galaxies supports a "universal" Chabrier IMF as being valid over the star-forming history of these galaxies. We find that the 12CO luminosity to total gas mass conversion factors at z ~ 2-3 are probably similar to those assumed at z ~ 0. The implied gas fractions in our sample galaxies range from 20% to 50%. Based on observations obtained at the IRAM Plateau de Bure Interferometer (PdBI). IRAM is funded by the Centre National de la Recherché Scientifique (France), the Max-Planck Gesellschaft (Germany), and the Instituto Geografico Nacional (Spain).

  8. Northward range expansion requires synchronization of both overwintering behaviour and physiology with photoperiod in the invasive Colorado potato beetle (Leptinotarsa decemlineata).

    PubMed

    Lehmann, Philipp; Lyytinen, Anne; Piiroinen, Saija; Lindström, Leena

    2014-09-01

    Photoperiodic phenological adaptations are prevalent in many organisms living in seasonal environments. As both photoperiod and growth season length change with latitude, species undergoing latitudinal range expansion often need to synchronize their life cycle with a changing photoperiod and growth season length. Since adaptive synchronization often involves a large number of time-consuming genetic changes, behavioural plasticity might be a faster way to adjust to novel conditions. We compared behavioural and physiological traits in overwintering (diapause) preparation in three latitudinally different European Colorado potato beetle (Leptinotarsa decemlineata) populations reared under two photoperiods. Our aim was to study whether behavioural plasticity could play a role in rapid range expansion into seasonal environments. Our results show that while burrowing into the soil occurred in the southernmost studied population also under a non-diapause-inducing long photoperiod, the storage lipid content of these beetles was very low compared to the northern populations. However, similar behavioural plasticity was not found in the northern populations. Furthermore, the strongest suppression of energy metabolism was seen in pre-diapause beetles from the northernmost population. These results could indicate accelerated diapause preparation and possibly energetic adjustments due to temporal constraints imposed by a shorter, northern, growth season. Our results indicate that behavioural plasticity in burrowing may have facilitated initial range expansion of L. decemlineata in Europe. However, long-term persistence at high latitudes has required synchronization of burrowing behaviour with physiological traits. The results underline that eco-physiological life-history traits of insects, such as diapause, should be included in studies on range expansion. PMID:25012598

  9. Breeding on the leading edge of a northward range expansion: differences in morphology and the stress response in the arctic Gambel's white-crowned sparrow.

    PubMed

    Krause, Jesse S; Chmura, Helen E; Pérez, Jonathan H; Quach, Lisa N; Asmus, Ashley; Word, Karen R; McGuigan, Michaela A; Sweet, Shannan K; Meddle, Simone L; Gough, Laura; Boelman, Natalie; Wingfield, John C

    2016-01-01

    Individuals at the forefront of a range shift are likely to exhibit phenotypic traits that distinguish them from the population breeding within the historic range. Recent studies have examined morphological, physiological and behavioral phenotypes of individuals at the edge of their range. Several studies have found differences in the hypothalamic-pituitary-adrenal (HPA) axis activity in response to acute restraint stress in individuals at the range limits. HPA axis activation leads to elevations in glucocorticoids that regulate physiology and behavior. Here we compare the hormonal profiles and morphometrics from Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) breeding at the northern limit of the population's range to those birds breeding within the historic population range. Birds breeding at the northern limit experienced a harsher environment with colder temperatures; however, we found no differences in arthropod prey biomass between the northern limit and more southern (historic) sites. Males at the northern limit had higher body condition scores (mass corrected for body size) compared to individuals within the historic range, but no differences were found in beak and tarsus lengths, wing chord, muscle profile or fat stores. In males during the pre-parental stage, before breeding commenced, HPA axis activity was elevated in birds at the northern limit of the range, but no differences were found during the parental or molt stages. Females showed no differences in HPA axis activity during the parental stage. This study suggests that "pioneering" individuals at the limits of their breeding range exhibit physiology and morphology that are distinct from individuals within the historic range. PMID:26423267

  10. High-Latitude Magnetic Reconnection in Sub-Alfvenic Flow as Observed by Interball Tail on 29 May 1996

    NASA Technical Reports Server (NTRS)

    Smirnov, V. N.; Avanov, L. A.; Waite, J.; Fuselier, S.; Vaisberg, O. L.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Interball/Tail spacecraft crossed the high latitude magnetopause near the cusp region under stable northward IMF conditions on 29 May 1996, with magnetic local time and magnetic latitude approx. 7.3 hours, approx. 65.4 degrees, respectively. The Interball Tail spacecraft observed quasi-steady reconnection and a relatively stable reconnection site at high latitudes. Observed sunward plasma flow and tangential stress balance indicated that reconnection occurred poleward of the magnetic cusp, above the spacecraft location. The spacecraft observed sub-alfvenic flow in the magnetosheath region adjacent to the magnetopause current layer near the reconnection site indicating that the reconnection site may have moved in the sunward direction. These observations suggest that the region of sub-alfvenic flow and stable, quasi-steady reconnection extend to very high latitudes under northward IMF conditions which is not consistent with the gas dynamic model predictions.

  11. Solar Wind Influence on the Oxygen Content of Ion Outflow in the High Altitude Polar Cap During Solar Minimum Conditions

    NASA Technical Reports Server (NTRS)

    Elliott, Heather A.; Comfort, Richard H.; Craven, Paul D.; Chandler, Michael O.; Moore, Thomas E.

    2000-01-01

    We correlate solar wind and IMF properties with the properties of O(+) and H(+) in the polar cap in early 1996 during solar minimum conditions at altitudes between 5.5 and 8.9 Re geocentric using the Thermal Ion Dynamics Experiment (TIDE) on the POLAR satellite. Throughout the high altitude polar cap, we observe H(+) to be more abundant than O(+). H(+) is a significant fraction of both the ionosphere and the solar wind, and O(+) is not a significant species in the solar wind. O(+) is the major species in the ionosphere so the faction of O(+) present in the magnetosphere is commonly used as a measure of the ionospheric contribution to the magnetosphere. For these reasons, 0+ is of primary interest in this study. We observe O(+) to be most abundant at lower latitudes when the solar wind speed is low (and low Kp), and at higher solar wind speeds (and high Kp) O(+) is observed across most of the polar cap. We also find that O(+) density and parallel flux are well organized by solar wind dynamic pressure; they both increase with solar wind dynamic pressure. H(+) is not as highly correlated with solar wind and IMF parameters, but H(+) density and parallel flux have some negative correlation with IMF By, and some positive correlation with VswBIMF. In this solar minimum data set, H(+) is dominant so that contributions of this plasma to the plasma sheet would have a very low O(+) to H(+) ratio.

  12. Concerning the Motion and Orientation of Flux Transfer Events Produced by Component and Antiparallel Reconnection

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Lin, R.-Q.

    2011-01-01

    We employ the Cooling et al. (2001) model to predict the location, orientation, motion, and signatures of flux transfer events (FTEs) generated at the solstices and equinoxes along extended subsolar component and high ]latitude antiparallel reconnection curves for typical solar wind plasma conditions and various interplanetary magnetic field (IMF) strengths and directions. In general, events generated by the two mechanisms maintain the strikingly different orientations they begin with as they move toward the terminator in opposite pairs of magnetopause quadrants. The curves along which events generated by component reconnection form bow toward the winter cusp. Events generated by antiparallel reconnection form on the equatorial magnetopause during intervals of strongly southward IMF orientation during the equinoxes, form in the winter hemisphere and only reach the dayside equatorial magnetopause during the solstices when the IMF strength is very large and the IMF points strongly southward, never reach the equatorial dayside magnetopause when the IMF has a substantial dawnward or duskward component, and never reach the equatorial flank magnetopause during intervals of northward and dawnward or duskward IMF orientation. Magnetosheath magnetic fields typically have strong components transverse to events generated by component reconnection but only weak components transverse to the axes of events generated by antiparallel reconnection. As a result, much stronger bipolar magnetic field signatures normal to the nominal magnetopause should accompany events generated by component reconnection. The results presented in this paper suggest that events generated by component reconnection predominate on the dayside equatorial and flank magnetopause for most solar wind conditions.

  13. Multi-Physics Feedback Simulations with Realistic Initial Conditions of the Formation of Star Clusters: From Large Scale Magnetized Clouds to Turbulent Clumps to Cores to Stars

    NASA Astrophysics Data System (ADS)

    Klein, R. I.; Li, P.; McKee, C. F.

    2015-10-01

    Multi-physics zoom-in adaptive mesh refinement simulations with feedback and realistic initial conditions, starting from large scale turbulent molecular clouds through the formation of clumps and cores to the formation os stellar clusters are presented. I give a summary of results at the different scales undergoing gravitational collapse from cloud to core to cluster formation. Detailed comparisons with observations are made at each stage of the simulations. In particular, properties of the magnetized clumps are compared with recent observations of Crutcher et al. 2010 and Crutcher 2012 and the magnetic field orientation in cloud clumps relative to the global mean field of the inter-cloud medium (Li et al. 2009). The Initial Mass Function (IMF) obtained is compared with the Chabrier IMF and the protostellar mass function of the cluster is compared with different theories.

  14. Magnetospheric convection from Cluster EDI measurements compared with the ground-based ionospheric convection model IZMEM

    NASA Astrophysics Data System (ADS)

    Förster, M.; Feldstein, Y. I.; Haaland, S. E.; Dremukhina, L. A.; Gromova, L. I.; Levitin, A. E.

    2009-08-01

    Cluster/EDI electron drift observations above the Northern and Southern polar cap areas for more than seven and a half years (2001-2008) have been used to derive a statistical model of the high-latitude electric potential distribution for summer conditions. Based on potential pattern for different orientations of the interplanetary magnetic field (IMF) in the GSM y-z-plane, basic convection pattern (BCP) were derived, that represent the main characteristics of the electric potential distribution in dependence on the IMF. The BCPs comprise the IMF-independent potential distribution as well as patterns, which describe the dependence on positive and negative IMFBz and IMFBy variations. The full set of BCPs allows to describe the spatial and temporal variation of the high-latitude electric potential (ionospheric convection) for any solar wind IMF condition near the Earth's magnetopause within reasonable ranges. The comparison of the Cluster/EDI model with the IZMEM ionospheric convection model, which was derived from ground-based magnetometer observations, shows a good agreement of the basic patterns and its variation with the IMF. According to the statistical models, there is a two-cell antisunward convection within the polar cap for northward IMFBz+≤2 nT, while for increasing northward IMFBz+ there appears a region of sunward convection within the high-latitude daytime sector, which assumes the form of two additional cells with sunward convection between them for IMFBz+≍4-5 nT. This results in a four-cell convection pattern of the high-latitude convection. In dependence of the ±IMFBy contribution during sufficiently strong northward IMFBz conditions, a transformation to three-cell convection patterns takes place.

  15. Field-Aligned Current Sheet Motion and Its Correlation with Solar Wind Conditions and Geomagnetic Activities

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Le, G.; Boardsen, S. A.; Slavin, J. A.; Strangeway, R. J.

    2008-05-01

    Field-aligned currents (FACs) are the currents flowing into and out of the ionosphere which connect to the magnetosphere. They provide an essential linkage between the solar wind - magnetosphere system and the ionosphere, and the understanding of these currents is important for global magnetosphere dynamics and space weather prediction. The three spacecraft ST-5 constellation provides an unprecedented opportunity to study in situ FAC dynamics in time scales (10 sec to 10 min) that can not be achieved previously with single spacecraft studies or large-spaced conjugate spacecraft studies. In this study, we use the magnetic field observations during the whole ST-5 mission and their corresponding solar wind conditions to study the dependence of FAC current sheet motion and intensity on solar wind conditions. FAC peak current densities show very good correlations with some solar wind parameters, including IMF Bz, dynamic pressure, Ey, and some IMF angles, but not with other parameters. Instant FAC speeds show generally much weaker dependence on solar wind conditions comparing to FAC peak current densities. This obvious uncorrelation between FAC peak current densities and speeds implies that FAC peak current densities are more consistently controlled by solar wind conditions and geomagnetic activities, while FAC speeds are more oscillatory, sometimes with higher speeds during quieter times and lower speeds during more turbulent times.

  16. Solar Wind Entry into the magnetosphere lobes and its Related Auroral activities

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Gou, X.; Mailyan, B. G.; Maggiolo, R.; Zhang, Y.; Fu, S.; Zong, Q.; Parks, G. K.; Pu, Z.; Dunlop, M. W.

    2014-12-01

    Using Cluster multi-spacecrafts observation between August to October each year from 2002 to 2004, Shi, et al. [2013] have reported an unexpected discovery of regions of solar wind entry into the Earth's high-latitude magnetospheric lobes where the solar wind plasmas may penetrate into magnetosphere through high-latitude magnetic reconnection when the interplanetary magnetic field (IMF) is northward. From statistical analysis, they found that the IMF Bx component may influence the solar wind entry into the magnetosphere by changing the occurring conditions of high-latitude magnetic reconnection. Based on their studies, in this paper we use another period of Cluster data which is between January to April each year from 2001 to 2006 to do a further study. As a result, the influence of the IMF Bx component is consistent with the results from [Shi, et al. 2013]. We find that the IMF By component affects the events along with the IMF Bx component, which is consistent with the Parker Spiral of the IMF. We have also studied some transpolar arc observations in correlation with the solar wind entry events. The properties of entry plasma, electron and ion properties associated with aurorae are examined using multiple spacecraft data (Cluster, TIMED, DMSP, IMAGE and POLAR etc) , as can be seen from another work presented this meeting by Mailyan et al.

  17. Chromosomal Conditions

    MedlinePlus

    ... 150 babies is born with a chromosomal condition. Down syndrome is an example of a chromosomal condition. Because ... all pregnant women be offered prenatal tests for Down syndrome and other chromosomal conditions. A screening test is ...

  18. Future changes in atmospheric condition for the baiu under RCP scenarios

    NASA Astrophysics Data System (ADS)

    Okada, Y.; Takemi, T.; Ishikawa, H.

    2015-12-01

    This study focuses on atmospheric circulation fields during the baiu in Japan with global warming projection experimental data conducted using a 20-km mesh global atmospheric model (MRI-AGCM3.2) under Representative Concentration Pathways (RCP) scenarios. This model also used 4 different sea surface temperature (SST) initial conditions. Support of this dataset is provided by the Meteorological Research Institute (MRI). The baiu front indicated by the north-south gradient of moist static energy moves northward in present-day climate, whereas this northward shift in future climate simulations is very slow during May and June. In future late baiu season, the baiu front stays in the northern part of Japan even in August. As a result, the rich water vapor is transported around western Japan and the daily precipitation amount will increase in August. This northward shift of baiu front is associated with the westward expansion of the enhanced the North Pacific subtropical high (NPSH) into Japan region. However, the convective activity around northwest Pacific Ocean is inactive and is unlikely to occur convective jump (CJ). These models show that the weak trough exists in upper troposphere around Japan. Therefore, the cold advection stays in the northern part of Japan during June. In July, the front due to the strengthening of the NPSH moves northward, and then it stays until August. This feature is often found between the clustered SSTs, Cluster 2 and 3. The mean field of future August also show the inflow of rich water vapor content to Japan islands. In this model, the extreme rainfall suggested tends to almost increase over the Japan islands during future summer. This work was conducted under the Program for Risk Information on Climate Change supported by the Ministry of Education, Culture, Sports, Science, and Technology-Japan (MEXT).

  19. Dynamical ejections of massive stars from young star clusters under diverse initial conditions

    NASA Astrophysics Data System (ADS)

    Oh, Seungkyung; Kroupa, Pavel

    2016-05-01

    We study the effects that initial conditions of star clusters and their massive star population have on dynamical ejections of massive stars from star clusters up to an age of 3 Myr. We use a large set of direct N-body calculations for moderately massive star clusters (Mecl ≈ 103.5 M⊙). We vary the initial conditions of the calculations, such as the initial half-mass radius of the clusters, initial binary populations for massive stars and initial mass segregation. We find that the initial density is the most influential parameter for the ejection fraction of the massive systems. The clusters with an initial half-mass radius rh(0) of 0.1 (0.3) pc can eject up to 50% (30)% of their O-star systems on average, while initially larger (rh(0) = 0.8 pc) clusters, that is, lower density clusters, eject hardly any OB stars (at most ≈ 4.5%). When the binaries are composed of two stars of similar mass, the ejections are most effective. Most of the models show that the average ejection fraction decreases with decreasing stellar mass. For clusters that are efficient at ejecting O stars, the mass function of the ejected stars is top-heavy compared to the given initial mass function (IMF), while the mass function of stars that remain in the cluster becomes slightly steeper (top-light) than the IMF. The top-light mass functions of stars in 3 Myr old clusters in our N-body models agree well with the mean mass function of young intermediate-mass clusters in M 31, as reported previously. This implies that the IMF of the observed young clusters is the canonical IMF. We show that the multiplicity fraction of the ejected massive stars can be as high as ≈ 60%, that massive high-order multiple systems can be dynamically ejected, and that high-order multiples become common especially in the cluster. We also discuss binary populations of the ejected massive systems. Clusters that are initially not mass-segregated begin ejecting massive stars after a time delay that is caused by mass

  20. Observation of magnetopause fluctuations during a Cluster-THEMIS conjunction

    NASA Astrophysics Data System (ADS)

    Hwang, Kyoung-Joo; Goldstein, Mevlyn

    On April 27, 2007, THEMIS observed quasi-periodic magnetopause fluctuations for a prolonged time period (9 hrs) as they skimmed the dusk-side magnetopause, while Cluster detected 1.5-hour-long boundary undulations as they traversed the morning-side magnetopause. The com-parison between Cluster and THEMIS with ACE data implies that: 1) Similar periodicity and patterns of its variability between Cluster and THEMIS observations, with a certain time in-terval longer than is expected from the upstream magnetosheath travel time between THEMIS and Cluster locations, indicate that the dusk-side surface waves have been excited at the nearly subsolar region; 2) The complicated inner-LLBL fluctuations observed by THEMIS have been resulted from the development and modulation of the waves according to the local environment during convection along the LLBL, while Cluster observed the magnetopause fluctuations that appear to be more explicitly controlled by SW variations in the morning sector; 3) The intensity of KHW, often well characterized by Bm power spectra reflect the effects of IMF conditions, exhibiting a correlation with SW temperature and IMF clock angle, i.e., a more solid power law when IMF points due north or south rather than due dawn or dusk; 4) Steeper wavefront at the anti-sunward/sunward edge of KHW during southward/northward IMF support more rapid and turbulent evolution of KHW under southward IMF conditions [Hwang et al., 2010; Kuznetsova et al., 2008], and the steepening effects of the curvature forces of the magnetosheath flux tubes during northward IMF [Chen et al., 1997].

  1. Large-scale plasma transport in the magnetotail during different solar wind conditions

    NASA Astrophysics Data System (ADS)

    Myllys, Minna; Kilpua, Emilia; Pulkkinen, Tuija

    2015-04-01

    We present results from a study on how solar wind conditions affect the energy and plasma transport in the geomagnetic tail and how they modify the large-scale magnetotail configuration. We study the large-scale plasma transport in the magnetotail using tail observations from the five THEMIS spacecrafts during 2008-2011. During this period the THEMIS spacecraft spent a considerable time in the geomagnetic tail allowing us to compile statistical maps of plasma flow and energy transport properties. Furthermore, this time period corresponds to the extended and prolonged solar activity minimum between solar cycle 23 and 24 and relatively quiet rising phase of cycle 24. This allowed us to investigate magnetospheric processes and solar wind-magnetospheric coupling during relatively quiet state of the magnetosphere. In order to separate the role of different solar wind parameters and their activity level on the average sunward and tailward plasma flows and the occurrence rate of fast plasma bursts, the magnetospheric data was binned according to solar wind speed, dynamic pressure and IMF measurements. Our results show that the tailward flow bursts are not dependent on the solar wind conditions, but that the sign of the IMF z-component (GSM coordinates) causes the most visible effect to the occurence rate and pattern of sunward flows.

  2. ISTP Solar Maximum Extended Science Program

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, Maha; Curtis, Steven (Technical Monitor)

    2002-01-01

    We have studied the entry of solar energetic particles (SEPS) into the magnetosphere by following particles in the time dependent magnetic and electric field from global magnetohydrodynamic (MHD) simulations of the magnetosphere. The MHD simulations can either be for idealized interplanetary magnetic field (IMF) conditions, or for upstream conditions measured by spacecraft. An important part of the analysis is understanding the response of the magnetosphere to the IMF conditions. In the idealized case, the MHD simulation included a steady interplanetary magnetic field (IMF) B(sub x), velocity and density, while the B(sub y) and B(sub z) components were varied from southward IMF to dawnward and finally to northward IMF. We launched more than ten million protons, as well as about 1 million He-3 ions and a few thousand electrons upstream of the magnetosphere into the solar wind. They were initialized using a kappa distribution, which is a power law distribution with a power law coefficient of 1.5 at high energies. The particles had energies between 0. 1 and 50 MeV. The particles were run in time dependent MHD fields that were advanced in time as the particles moved through the system.

  3. Concerning the Occurrence Pattern of Flux Transfer Events on the Dayside Magnetopause

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.

    2009-01-01

    We present an analytical model for the magnetic field perturbations associated with flux transfer events (FTEs) on the dayside magnetopause as a function of the shear between the magnetosheath and magnetospheric magnetic fields and the ratio of their strengths. We assume that the events are produced by component reconnection along subsolar reconnection lines with tilts that depend upon the orientation of the interplanetary magnetic field (IMF), and show that the amplitudes of the perturbations generated during southward IMF greatly exceed those during northward IMF As a result, even if the distributions of magnetic reconnection burst durations/event dimensions are identical during periods of northward and southward IMF orientation, events occurring for southward IMF orientations must predominate in surveys of dayside events. Two factors may restore the balance between events occurring for northward and southward IMF orientations on the flanks of the magnetosphere. Events generated on the dayside magnetopause during periods of southward IMF move poleward, while those generated during periods of northward IMF slip dawnward or duskward towards the flanks. Due to differing event and magnetospheric magnetic field orientations, events that produce weak signatures on the dayside magnetopause during intervals of northward IMF orientation may produce strong signatures on the flanks.

  4. Reconnection versus Kelvin-Helmholtz instability in magnetospheric energy transfer - ISEE observations

    NASA Technical Reports Server (NTRS)

    Song, PU; Elphic, R. C.; Russell, C. T.

    1990-01-01

    Examination of multiple magnetopause crossings observed with the magnetometers on ISEE 1 and 2 makes it possible to determine the amplitude of the oscillation of surface waves on the magnetopause with periods greater than about 2 min and its dependence on latitude, local time, and the direction of the IMF. The magnetopause is more oscillatory for southward IMF than for northward IMF. When the IMF is southward, the amplitude of the oscillation increases with increasing angle from the subsolar point, which suggests that reconnection-related phenomena can generate surface waves on the magnetopause. When the IMF is northward, the oscillation does not grow with distance from the subsolar point, which is contrary to the expected growth of the Kelvin-Helmholtz (K-H) instability. It is also found that solar-wind pressure fluctuations may cause all of the observed boundary oscillations for northward IMF.

  5. Magnetopause Standoff Position and Its Time-Dependent Response to Solar Wind Conditions: Models and Observations

    NASA Astrophysics Data System (ADS)

    Collado-Vega, Y. M.; Sibeck, D. G.

    2014-12-01

    We model changes in the magnetopause position due to solar wind increases in solar wind dynamic pressure and step functions in the IMF Bz component observed during 4 hours on March 24, 2001. The study uses the Run-On-Request capabilities within the MHD models available from the Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center, specifically BATS-R-US, OpenGGCM, LFM and GUMICS models. The magnetopause standoff position prediction and response time to the solar wind changes will then be compared to results from available empirical models (e.g. Shue et al. 1997), and to Cluster and the Geotail missions magnetopause crossing observations. Rigorous analysis/comparison of observations and empirical models is critical in determining magnetosphere dynamics for model validation. We will identify solar wind conditions that affect the model predictions significantly and lead to differences between the models. Preliminary results show that the magnetopause standoff position takes about 4/3 of an hour to respond to the simulataneous increase in dynamic pressure and IMF Bz changes at the March 24, 2001 event.

  6. Field-Aligned Current Dynamics and Its Correlation with Solar Wind Conditions and Geomagnetic Activities From Space Technology 5 Observations

    NASA Astrophysics Data System (ADS)

    Wang, Yongli; Boardsen, Scott; Le, Guan; Slavin, James; Strangeway, Robert J.

    Field-aligned currents (FACs) are the currents flowing into and out of the ionosphere which connect to the magnetosphere. They provide an essential linkage between the solar wind - magnetosphere system and the ionosphere, and the understanding of these currents is important for global magnetosphere dynamics and space weather prediction. The three spacecraft ST-5 constellation provides an unprecedented opportunity to study in situ FAC dynamics in time scales (10 sec to 10 min) that can not be achieved previously with single spacecraft studies or large-spaced conjugate spacecraft studies. In this study, we use the magnetic field observations during the whole ST-5 mission to study the dependence of FAC current sheet motion and intensity on solar wind conditions. FAC peak current densities show very good correlations with some solar wind parameters, including IMF Bz, dynamic pressure, Ey, and some IMF angles, but not with other parameters. Instant FAC speeds show generally much weaker dependence on solar wind conditions comparing to FAC peak current densities. This obvious uncorrelation between FAC peak current densities and speeds implies that FAC peak current densities are more consistently controlled by solar wind conditions and geomagnetic activities, while FAC speeds are more oscillatory, sometimes with higher speeds during quieter times and lower speeds during more turbulent times. Detailed examination of FAC current sheet speed during two major storms in the ST-5 mission will also be given to illustrate the temporal evolution of the FAC dynamics with geomagnetic storm.

  7. The quiet time polar cap - DE 1 observations and conceptual model

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Saflekos, N. A.; Gurnett, D. A.; Craven, J. D.; Frank, L. A.

    1992-01-01

    A conceptual merging model of the magnetosphere is developed which explains DE-1 observations on polar cap plasmas and waves made during a quiet period with a northward IMF when multiple adjacent regions of sunward and antisunward convection were observed. The model involves dayside merging both at high latitudes on open field lines (the usual northward IMF merging) and at lower latitudes on closed field lines. The ratio between the merged flux produced by the high-latitude merging to that produced by the lower-latitude merging increases as the IMF becomes more northward.

  8. The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields

    NASA Astrophysics Data System (ADS)

    Tsurutani, B. T.; Echer, E.; Gonzalez, W. D.

    2011-05-01

    Minima in geomagnetic activity (MGA) at Earth at the ends of SC23 and SC22 have been identified. The two MGAs (called MGA23 and MGA22, respectively) were present in 2009 and 1997, delayed from the sunspot number minima in 2008 and 1996 by ~1/2-1 years. Part of the solar and interplanetary causes of the MGAs were exceptionally low solar (and thus low interplanetary) magnetic fields. Another important factor in MGA23 was the disappearance of equatorial and low latitude coronal holes and the appearance of midlatitude coronal holes. The location of the holes relative to the ecliptic plane led to low solar wind speeds and low IMF (Bz) variances (σBz2) and normalized variances (σBz2/B02) at Earth, with concomitant reduced solar wind-magnetospheric energy coupling. One result was the lowest ap indices in the history of ap recording. The results presented here are used to comment on the possible solar and interplanetary causes of the low geomagnetic activity that occurred during the Maunder Minimum.

  9. Wave properties near the subsolar magnetopause - Pc 1 waves in the sheath transition layer

    NASA Technical Reports Server (NTRS)

    Song, P.; Russell, C. T.; Huang, C. Y.

    1993-01-01

    We study the waves in the frequency range of Pc 1 in the sheath transition layer of the magnetopause from the ISEE 1 and 2 observations. The waves are enhanced in the sheath transition layer, although they are scattered into the magnetosheath when the outer edge of the sheath transition layer is not sharp. The wave frequency is proportional to, and equal to, about 44 percent of the ion gyrofrequency. The waves are left-handed polarized for southward IMF, but linearly polarized for northward IMF. The direction of maximum variation is perpendicular to both the background field and the gradients of the field and density for northward IMF; for southward IMF, the waves are more turbulent. Wave generation mechanisms may depend on IMF orientations rather than the shock geometry. To investigate the free energy generating the waves for northward IMF, a method is developed combining the measurements from the fast plasma experiment and Lepedea to obtain a high time resolution estimate of the temperature anisotropy for strongly northward IMF. The estimated ion temperature anisotropy is enhanced, up to a factor of 2, within the sheath transition layer for northward IMF.

  10. Spatial Characteristics of Plasma Depletion Layer using Multiple Spacecraft Observations

    NASA Astrophysics Data System (ADS)

    Türk Katircioglu, Filiz; Angelopoulos, V.; Sibeck, David; Kaymaz, Zerefsan

    2016-07-01

    The plasma depletion layer (PDL) is observed occasionally with Themis B and Themis D spacecraft on dayside magnetosheath between the years 2007-2009. PDL characterizes itself with decreased density and increased magnetic field and its presence depends on the IMF and solar wind conditions. It is mostly known to occur under northward IMF conditions. When the IMF and solar wind conditions favor, the layer occurs just in front of the magnetopause. From the single satellite observations, it is very hard to determine the region because of the difficulties arising from the interaction between the magnetosheath field and flow and Earth's dipole field at the magnetopause boundary under certain IMF and solar wind plasma conditions. In this study, we use multiple Themis observations to understand the spatial differentiation of plasma depletion layer. The high resolution plasma and magnetic field data from multiple Themis spacecraft allow us to determine the spatial extend of the depletion layer and help us to understand its spatial variations. Initial results show that PDL is clearly determined at the subsolar region of the magnetopause with a sharp increase in magnetic field within a narrow zone. We also detect PDL along the flanks of the magnetopause as well as above the equatorial plane. In this presentation, we will show examples of PDL from different regions of the magnetopause boundary and discuss their occurrence and formation mechanisms.

  11. Hyperbaric conditions.

    PubMed

    Doolette, David J; Mitchell, Simon J

    2011-01-01

    Exposure to elevated ambient pressure (hyperbaric conditions) occurs most commonly in underwater diving, during which respired gas density and partial pressures, work of breathing, and physiological dead space are all increased. There is a tendency toward hypercapnia during diving, with several potential causes. Most importantly, there may be reduced responsiveness of the respiratory controller to rising arterial CO₂, leading to hypoventilation and CO₂ retention. Contributory factors may include elevated arterial PO₂, inert gas narcosis and an innate (but variable) tendency of the respiratory controller to sacrifice tight control of arterial CO₂ when work of breathing increases. Oxygen is usually breathed at elevated partial pressure under hyperbaric conditions. Oxygen breathing at modest hyperbaric pressure is used therapeutically in hyperbaric chambers to increase arterial carriage of oxygen and diffusion into tissues. However, to avoid cerebral and pulmonary oxygen toxicity during underwater diving, both the magnitude and duration of oxygen exposure must be managed. Therefore, most underwater diving is conducted breathing mixtures of oxygen and inert gases such as nitrogen or helium, often simply air. At hyperbaric pressure, tissues equilibrate over time with high inspired inert gas partial pressure. Subsequent decompression may reduce ambient pressure below the sum of tissue gas partial pressures (supersaturation) which can result in tissue gas bubble formation and potential injury (decompression sickness). Risk of decompression sickness is minimized by scheduling time at depth and decompression rate to limit tissue supersaturation or size and profusion of bubbles in accord with models of tissue gas kinetics and bubble formation and growth. PMID:23737169

  12. Operant Conditioning

    PubMed Central

    Staddon, J. E. R.; Cerutti, D. T.

    2005-01-01

    Operant behavior is behavior “controlled” by its consequences. In practice, operant conditioning is the study of reversible behavior maintained by reinforcement schedules. We review empirical studies and theoretical approaches to two large classes of operant behavior: interval timing and choice. We discuss cognitive versus behavioral approaches to timing, the “gap” experiment and its implications, proportional timing and Weber's law, temporal dynamics and linear waiting, and the problem of simple chain-interval schedules. We review the long history of research on operant choice: the matching law, its extensions and problems, concurrent chain schedules, and self-control. We point out how linear waiting may be involved in timing, choice, and reinforcement schedules generally. There are prospects for a unified approach to all these areas. PMID:12415075

  13. Reconstruction of Geomagnetic activity and near-Earth interplanetary conditions over the past 167 years.

    NASA Astrophysics Data System (ADS)

    Lockwood, Mike; Nevanlinna, Heikki; Barnard, Luke; Owens, Mat; Harrison, Giles; Rouillard, Alexis; Scott, Chris; Vokhmyanin, Mikhail; Ponyavin, Dmitri; Sokolov, Sergey

    2014-05-01

    Records of geomagnetic activity have previously been used to reconstruct the conditions in near-Earth space, such as the interplanetary magnetic field (IMF), solar wind speed (Vsw) and open solar flux (OSF). Reliable geomagnetic activity records exist back until the mid-1800's, and these data provide one of the few means of inferring variations in the conditions in near-Earth space before the advent of the space age. However, there are challenges in using geomagnetic activity records to reconstruct interplanetary conditions. In particular it is necessary to ensure, as best as is possible, the homogeneity and reliability of any geomagnetic indices used. This becomes increasingly difficult further back in history, as both the quality of the data and the number of observing stations decreases. A new geomagnetic activity index, the IDV(1D) index, is presented, which is designed to be as homogeneous in its construction as possible (Lockwood et al. 2013a). This is achieved by only combining data that, by virtue of the locations of the source observatories used, have similar responses to solar wind and IMF variations. IDV(1d) employs many of the principles of the IDV index (Svalgaard and Cliver (2010)), inspired by the u index of Bartels (1932). The index uses interdiurnal variation data from Helsinki for 1845- 1890 and 1893-1896 and from Eskdalemuir from 1911 to the present. The gaps are filled using data from the Potsdam (1891-1892 and 1897-1907) and the nearby Seddin observatories (1908-1910) and intercalibration achieved using the Potsdam-Seddin sequence. The index is compared with independent, early data from European-sector stations, as well as the composite u index and the IDV index. Agreement is found to be extremely good in most cases. IDV(1D) does not suffer from the poor homogeneity of the IDV index, and is more highly correlated with the IMF, consequently it yields a more reliable reconstruction (Lockwood et al 2013b). For completeness, we use 4 different

  14. Application of the largest Lyapunov exponent algorithm for feature extraction in low speed slew bearing condition monitoring

    NASA Astrophysics Data System (ADS)

    Caesarendra, Wahyu; Kosasih, Buyung; Tieu, Anh Kiet; Moodie, Craig A. S.

    2015-01-01

    This paper presents a new application of the largest Lyapunov exponent (LLE) algorithm for feature extraction method in low speed slew bearing condition monitoring. The LLE algorithm is employed to measure the degree of non-linearity of the vibration signal which is not easily monitored by existing methods. The method is able to detect changes in the condition of the bearing and demonstrates better tracking of the progressive deterioration of the bearing during the 139 measurement days than comparable methods such as the time domain feature methods based on root mean square (RMS), skewness and kurtosis extraction from the raw vibration signal and also better than extracting similar features from selected intrinsic mode functions (IMFs) of the empirical mode decomposition (EMD) result. The application of the method is demonstrated with laboratory slew bearing vibration data and industrial bearing data from a coal bridge reclaimer used in a local steel mill.

  15. On the IMF of first stars

    SciTech Connect

    Susa, H.; Tominaga, N.; Hasegawa, K.

    2014-05-02

    We investigate the formation of the first stars in 60 minihalos found in cosmological simulations, utilizing radiation hydrodynamics simulations. We find ∼70% of the halos host multiple stellar system, while the rest of them have single stars. The stellar mass found in our simulations is in the range of 0.5M{sub ⊙} < M < 300M{sub ⊙}, peaking at several tens of Msun. We do not find that the mass spectrum do not have significant dependence on the formation redshifts and the spin parameters of parent minihalos.

  16. Dawn-dusk asymmetry of the appearance of low-latitude mantle plasma in the magnetotail observed by ARTEMIS

    NASA Astrophysics Data System (ADS)

    Wang, C.; Lyons, L. R.; Angelopoulos, V.

    2013-12-01

    The mantle plasma sometimes appears at low latitudes in the magnetotail and at times is mixed with the plasma sheet boundary layer plasma. Because of its density is substantially higher than the lobe plasma, the low-latitude mantle provides more particles into the tail plasma sheet than do the lobes. To investigate where and when the low-latitude mantle plasma appears, we have identified its appearance using the two ARTEMIS satellites from Oct 2010 to Dec 2012 in the magnetotail from X ~ -40 to -80 Re. The mantle plasma flows tailward along magnetic field lines with speed from ~50 to 200 km/s, and at the same time drift toward midnight and toward the equator. Its density is similar to that in the plasma sheet but its temperature is about an order of magnitude lower. Its occurrence rate can be up to 50% near the flanks and it decreases with decreasing |Y| to nearly 0% at midnight. The appearance shows a clear dawn-dusk asymmetry that depends on the IMF By direction. In the region above (below) the current sheet, it appears dominantly in the post-midnight (pre-midnight) sector when IMF By is positive (negative). The occurrence rates and the dawn-dusk asymmetries are similar for both northward and southward IMF conditions. The BATS-R-US simulations for N IMF show that the magnetopause reconnection locations and the magnetopause shape in the magnetotail change significantly with the IMF clock angles. As IMF By becomes positively larger, the magnetopause reconnection site above (below) the current sheet moves toward lower latitudes to the dawn (dusk) side. Also the magnetopause shape becomes flatter with the Z distance from the magnetopause to the current sheet becomes smaller. As a result, the plasma mantles move to lower latitudes and become closer to the plasma sheet, and the appearance of the mantle plasma becomes more dawn-dusk asymmetric.

  17. Solar wind control of lunar external magnetic enhancement: A case study

    NASA Astrophysics Data System (ADS)

    Nishino, M. N.; Fujimoto, M.; Tsunakawa, H.; Shibuya, H.; Takahashi, F.; Shimizu, H.; Matsushima, M.; Saito, Y.

    2012-04-01

    We study an interaction between the solar wind (SW) and the magnetic anomalies on the lunar surface using SELENE (Kaguya) data. It has been known that magnetic enhancements are at times detected near the limb external to the lunar wake, which is thus called lunar external magnetic enhancement (LEME), as a result of direct interaction between the SW and the lunar crustal fields. Previous observational studies, based on statistical trends that stronger interplanetary magnetic field (IMF) and higher SW density favor the LEME in high solar zenith angle (SZA) region, suggested a fluid-type interaction as a candidate for formation mechanism of the LEME. However, neither the IMF orientation nor the crustal field direction has not been taken into account in the previous analyses. We show evidence that relation between the IMF and crustal field orientation is also one of the key factors that control the extent of LEME, focusing on one-day observations (12 revolutions) that include data above South Pole-Aitken (SPA) basin which is characterized by strong crustal fields in a wide region. Strong LEMEs are detected at 100 km altitude around SPA basin under the stronger and northward IMF condition, while they weakens under southward IMF. We examined the crustal field model (uncompressed by the SW) constructed from the SELENE magnetometer data to know the orientation of the crustal field at 300 km, 100 km, and lower altitude. In the region where the peak of the magnetic enhancement is detected at 100 km altitude, the model crustal field at 300 km altitude is directed northward, while the model field at 100 km and lower altitude had a southward component in some revolutions. This suggests that the lunar crustal field is compressed by the SW dynamic pressure, and that its large scale component is essential to the formation of the LEME. In addition, our results show that pile-up of the IMF above the crustal fields becomes more effective under parallel field configuration, and

  18. Simulation of Theoretical Most-Extreme Geomagnetic Sudden Commencements

    NASA Astrophysics Data System (ADS)

    Welling, Daniel; Love, Jeffrey; Wiltberger, Michael; Rigler, Erin; Gombosi, Tamas

    2016-04-01

    We report results from a numerical simulation of geomagnetic sudden commencements driven by solar wind conditions given by theoretical-limit extreme coronal-mass ejections (CMEs) estimated by Tsurutani and Lakhina [2014]. The CME characteristics at Earth are a step function that jumps from typical quiet values to 2700 km/s flow speed and a magnetic field magnitude of 127 nT. These values are used to drive three coupled models: a global magnetohydrodynamic (MHD) magnetospheric model (BATS-R-US), a ring current model (the Rice Convection Model, RCM), and a height-integrated ionospheric electrodynamics model (the Ridley Ionosphere Model, RIM), all coupled together using the Space Weather Modeling Framework (SWMF). Additionally, simulations from the Lyon-Fedder-Mobarry MHD model are performed for comparison. The commencement is simulated with both purely northward and southward IMF orientations. Low-latitude ground-level geomagnetic variations, both B and dB/dt, are estimated in response to the storm sudden commencement. For a northward interplanetary magnetic field (IMF) storm, the combined models predict a maximum sudden commencement response, Dst-equivalent of +200 nT and a maximum local dB/dt of ~200nT/s. While this positive Dst response is driven mainly by magnetopause currents, complicated and dynamic Birkeland current patterns also develop, which drive the strong dB/dt responses at high latitude. For southward IMF conditions, erosion of dayside magnetic flux allows magnetopause currents to approach much closer to the Earth, leading to a stronger terrestrial response (Dst-equivalent of +250 nT). Further, high latitude signals from Region 1 Birkeland currents move to lower latitudes during the southward IMF case, increasing the risk to populated areas around the globe. Results inform fundamental understanding of solar-terrestrial interaction and benchmark estimates for induction hazards of interest to the electric-power grid industry.

  19. The Kelvin-Helmholtz instability under Parker-Spiral Interplanetary Magnetic Field conditions at the magnetospheric flanks

    NASA Astrophysics Data System (ADS)

    Adamson, E.; Nykyri, K.; Otto, A.

    2016-07-01

    We have generated fully three-dimensional, high-resolution magnetohydrodynamic (MHD) simulations of the Kelvin-Helmholtz (KH) Instability during Parker-Spiral Interplanetary Magnetic Field (IMF) conditions at the dawnside magnetospheric flank magnetopause. Results of these simulations show that, although the draping of a strong tangential magnetic field component around the magnetopause, tailward of the terminator (due to the Parker-Spiral orientation), tends to stabilize the growth of such instabilities within the shear-flow plane, Kelvin-Helmholtz waves with a k -vector tilted out of this plane may, nonetheless, develop into the nonlinear phase. This result suggests that obliquely propagating KH waves may contribute to the dawn-dusk asymmetries observed in plasma sheet parameters.

  20. Tropical Plumes over the Middle East: Climatology and synoptic conditions

    NASA Astrophysics Data System (ADS)

    Tubi, Amit; Dayan, Uri

    2014-08-01

    A 10-yr climatological study of Tropical Plumes (TPs) observed over the Middle East was undertaken. Several tools were used to identify and analyze these mid-tropospheric elongated cloudbands: satellite images, reanalysis and radiosonde data, backward trajectories, and cluster analysis. In order to conduct an in-depth examination of the synoptic conditions controlling this tropical-extratropical phenomenon, a dual methodology was adopted. In the first analysis, the identified 45 plumes were classified to precipitative and non-precipitative. In the second analysis, backward trajectories of the plumes were clustered in order to detect their moisture origins and pathways. In addition to the well documented south-western plumes originating in West Africa, a more southern pathway was identified, in which moisture was transported from Central to East African sources. The ‘south-western’ plumes are associated with a southwards penetration of mid-latitude troughs, associated with an intensified thermal wind and a longer jet streak, extending as far as Northwestern Africa. In the ‘southern’ category the Sub-Tropical Jet is associated with an anticyclonic flow over the south of the Arabian Peninsula, serving as an essential vehicle advecting moisture from tropical origins. This moisture pathway is considerably shorter than the south-western one. Several conditions favor precipitation induced by TPs over the domain: a northward migration of the jet streak resulting in a weakening of the wind speed over the target area, a deeper trough at the 500 hPa level and a shorter moisture corridor.

  1. "Tropical Plumes over the Middle East: Climatology and synoptic conditions"

    NASA Astrophysics Data System (ADS)

    Dayan, Uri; Tubi, Amit

    2015-04-01

    A 10-yr climatological study of Tropical Plumes (TPs) observed over the Middle East was undertaken. Several tools were used to identify and analyze these mid-tropospheric elongated cloudbands: satellite images, reanalysis and radiosonde data, backward trajectories, and cluster analysis. In order to conduct an in-depth examination of the synoptic conditions controlling this tropical-extratropical phenomenon, a dual methodology was adopted. In the first analysis, the identified 45 plumes were classified to precipitative and non-precipitative. In the second analysis, backward trajectories of the plumes were clustered in order to detect their moisture origins and pathways. In addition to the well documented south-western plumes originating in West Africa, a more southern pathway was identified, in which moisture was transported from Central to East African sources. The 'south-western' plumes are associated with a southwards penetration of mid-latitude troughs, associated with an intensified thermal wind and a longer jet streak, extending as far as Northwestern Africa. In the 'southern' category the Sub-Tropical Jet is associated with an anticyclonic flow over the south of the Arabian Peninsula, serving as an essential vehicle advecting moisture from tropical origins. This moisture pathway is considerably shorter than the south-western one. Several conditions favor precipitation induced by TPs over the domain: a northward migration of the jet streak resulting in a weakening of the wind speed over the target area, a deeper trough at the 500 hPa level and a shorter moisture corridor.

  2. Preliminary assessment of aridity conditions in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Andrade, C.; Corte-Real, J. A.

    2016-06-01

    Aridity is one of the key elements characterizing the climate of a region, having a severe impact on human activities. Aiming at assessing aridity conditions in the Iberian Peninsula, the spatial distribution of the UNEP aridity index is analyzed during the period 1901-2012. Gridded precipitation and potential evapotranspiration datasets are used on a monthly basis. Results show that the southern half of Iberia is particularly vulnerable to water stress and hence to desertification processes. In particular, the UNEP aridity index reveals an increase and northward extension of the semi-arid regime in the Iberian Peninsula between 1901 and 2012. More than 50% of the north and western territory have experienced humid/sub-humid conditions, while the other regions underwent semi-arid settings. Results also reveal that climate was subjected to spatial and temporal variabilities with an overall statistically significant (at a 95% confidence level) trend to aridification in the south-easternmost and central regions. The remaining territory of the Iberian Peninsula does not reveal statistically significant trends.

  3. MESSENGER Observations of Mercury's Dynamic Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    2009-01-01

    MESSENGER's 14 January and 6 October 2008 encounters with Mercury have provided new measurements dynamic variations in the coupled atmosphere magnetosphere system. The two flybys took place under very different interplanetary magnetic field (IMF) conditions. The northward IMF during the first encounter produced a very quiet, stable magnetosphere. Neutral sodium atoms and photo-ions were observed to high altitudes ; > 2000 km, even in the subsolar region demonstrating the important role played by more energetic neutral atom production processes such as sputtering. Consistent with predictions of magnetospheric models for northward IMF, the neutral atmosphere was observed to have its strongest sources in the high latitude northern hemisphere for the first flyby. The southward IMF for the second encounter revealed a highly dynamic magnetosphere. Reconnection between the interplanetary and planetary magnetic fields is known to control the rate of energy transfer from the solar wind and to drive magnetospheric convection. The MESSENGER magnetic field measurements revealed that the rate at which interplanetary magnetic fields were reconnecting to planetary fields was a factor of 10 greater than is usually observed at Earth. This extremely high reconnection results in a large magnetic field component normal to the magnetopause and the formation of flux transfer events that are much larger relative to the size of the forward magnetosphere than is observed at Earth. The resulting magnetospheric configuration allows the solar wind access to much of the dayside surface of the Mercury. This widespread impingement of the solar wind on Mercury's surface is a likely source of the less structured sodium exosphere imaged during the second flyby and quite possibly the high degree of exospheric temporal variability observed by ground-based telescopes.

  4. Allergic Skin Conditions

    MedlinePlus

    American Academy of Allergy Asthma & Immunology Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide Conditions Dictionary Just ...

  5. View Northward from Spirit's Winter Roost (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    One part of the research program that NASA's Mars Exploration Rover Spirit is conducting while sitting at a favorable location for wintertime solar energy is the most detailed panorama yet taken on the surface of Mars. This view is a partial preliminary product from the continuing work on the full image, which will be called the 'McMurdo Panorama.'

    Spirit's panoramic camera (Pancam) began taking exposures for the McMurdo Panorama on the rover's 814th Martian day (April 18, 2006). The rover has accumulated more than 900 exposures for this panorama so far, through all of the Pancam mineralogy filters and using little or no image compression. Even with a tilt toward the winter sun, the amount of energy available daily is small, so the job will still take one to two more months to complete.

    This portion of the work in progress looks toward the north. 'Husband Hill,' which Spirit was climbing a year ago, is on the horizon near the center. 'Home Plate' is a between that hill and the rover's current position. Wheel tracks imprinted when Spirit drove south from Home Plate can be seen crossing the middle distance of the image from the center to the right.

    This view is presented in false color to emphasize differences among rock and soil materials. It combines exposures taken through three of the panoramic camera's filters, centered on wavelengths of 750 nanometers, 530 nanometers and 430 nanometers.

  6. A critical note on the IAGA-endorsed Polar Cap index procedure: effects of solar wind sector structure and reverse polar convection

    NASA Astrophysics Data System (ADS)

    Stauning, P.

    2015-11-01

    The International Association of Geomagnetism and Aeronomy (IAGA) has recently endorsed a new Polar Cap (PC) index version to supersede the previous seven different versions of the PCN (North) index and the five different PCS (South) index versions. However, the new PC index has some adverse features which should be known and taken into account by users of the index. It uses in its derivation procedure an "effective" quiet day level (QDC) composed of a "basic" QDC and an added solar wind sector term related to the azimuthal component (By) of the interplanetary magnetic field (IMF). The added IMF By-related terms may introduce unjustified contributions to the PC index of more than 2 index units (mV m-1). Furthermore, cases of reverse convection during strong northward IMF Bz (NBZ) conditions included in the database for calculation of index coefficients can cause unjustified index enhancements of 0.5-1 mV m-1 during calm conditions, reduction of index values by more than 20 % during disturbed conditions, and inconsistencies between index coefficients and index values for the northern and southern polar caps. The aim here is to specify these adverse features and quantify their effects, and to suggest alternative steps for future modifications of the index procedure.

  7. Dynamics Explorer guest investigator

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.

    1988-01-01

    The research has focused on using the SAI auroral images as a high resolution auroral precipitation input to the USU global scale ionospheric model. From the global scale modeling viewpoint, these images offer unique spatial and temporal resolution since all prior studies have used empirical auroral models. These latter models are devoid of storm, substorm, or discrete oval features. The research focused on the problems in converting images to energy flux; using LAPU data to calibrate these energy fluxes; using the USU Time Dependent Ionospheric Model (TDIM) to look at the ionospheric consequences of this structure; and then using DE-2 in-situ observations to compare with the TDIM ionospheric parameters. In carrying out these studies, several additional investigations cropped up which were pursued to help meet the overall goals. The foremost difficulty in carrying out the TDIM modeling in conjunction with the high resolution DE auroral model was that of defining an appropriate ionospheric convection pattern. Under northward conditions this pattern is very complex. In order to study Theta aurora or in general northward IMF conditions, a new model was required. Hence, a study was completed to supply this new model to drive the TDIM as a function of the IMF. With the DE auroral model having adequate resolution to show structure on the 100's of km and all model electric fields being devoid of such structure, an investigation was pursued to find out the effects of structures in the electric field on the F-region.

  8. A statistical study of plasmaspheric plumes and ionospheric outflows observed at the dayside magnetopause

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Zhang, H.; Zong, Q.-G.; Otto, A.; Rème, H.; Liebert, E.

    2016-01-01

    We present a statistical study of plasmaspheric plumes and ionospheric outflows observed by the Cluster spacecraft near the dayside magnetopause. Plasmaspheric plumes are identified when the low-energy ions (<1 keV) with ˜90° pitch angle distributions are observed by the Cluster Ion Spectrometer/Hot Ion Analyzer instrument. The ionospheric outflows are characterized by unidirectional or bidirectional field-aligned pitch angle distributions of low-energy ions observed in the dayside magnetosphere. Forty-three (10%) plasmaspheric plume events and 32 (7%) ionospheric outflow events were detected out of the 442 times that C3 crossed the dayside magnetopause between 2007 and 2009. The occurrence rate of plumes at duskside is significantly higher than that at dawnside. The occurrence rate of outflows shows a weak dawn-dusk asymmetry. We investigate the dependence of the occurrence rates of plumes and ionospheric outflows on geomagnetic activity and on solar wind/interplanetary magnetic field (IMF) conditions. The plume events tend to occur during southward IMF (duskward solar wind electric field) and moderate geomagnetic activity (Kp = 3,-30≤Dst <- 10 nT). However, the ionospheric outflow events tend to occur during northward IMF (dawnward solar wind electric field). The ionospheric outflows do not occur when Kp = 0, and the occurrence rate of the ionospheric outflows does not have a clear Dst dependence. Seventy-five percent (46%) of the outflows are observed in the duskside for negative (positive) IMF By. Conversely, 54% (25%) of the outflows are observed in the dawnside for positive (negative) IMF By. Finally, the occurrence rates of both plumes and outflows increase with solar wind dynamic pressure.

  9. Conditions for the acceptance of deontic conditionals.

    PubMed

    Over, D E; Manktelow, K I; Hadjichristidis, C

    2004-06-01

    Recent psychological research has investigated how people assess the probability of an indicative conditional. Most people give the conditional probability of q given p as the probability of if p then q. Asking about the probability of an indicative conditional, one is in effect asking about its acceptability. But on what basis are deontic conditionals judged to be acceptable or unacceptable? Using a decision theoretic analysis, we argue that a deontic conditional, of the form if p then must q or if p then may q, will be judged acceptable to the extent that the p & q possibility is preferred to the p & not-q possibility. Two experiments are reported in which this prediction was upheld. There was also evidence that the pragmatic suitability of permission rules is partly determined by evaluations of the not-p & q possibility. Implications of these results for theories of deontic reasoning are discussed. PMID:15285599

  10. Magnetopause standoff position and its time-dependent response to solar wind conditions: Models and Observations

    NASA Astrophysics Data System (ADS)

    Collado-Vega, Yaireska Marie; Sibeck, David; Honkonen, Ilja

    2015-04-01

    We model changes in the magnetopause position due to different solar wind conditions for several events. The study uses the Run-On-Request capabilities within the MHD models available from the Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center, specifically BATS-R-US, OpenGGCM, LFM and GUMICS models. The magnetopause standoff position prediction and response time to the solar wind changes will then be compared to results from available empirical models (e.g. Chao et al., 2002), and to Cluster, Geotail, and THEMIS missions magnetopause crossing observations. Rigorous analysis/comparison of observations and empirical models is critical in determining magnetosphere dynamics for model validation. We will identify solar wind conditions that affect the model predictions significantly and lead to differences between the models. Preliminary results show that the modeled magnetopause standoff position takes about 30 min to respond to changes in the dynamic pressure and IMF Bz, and about 80 min to return to its nominal position.

  11. Transfer Entropy And Conditional Redundancy As Measures Of Causality For Internal And External Substorm Triggers

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Wing, S.; Liou, K.

    2010-12-01

    We examine the expanded substorm dataset compiled by Frey [J. Geophys. Res., 109, A10304, 2004] to evaluate the question of internal vs external triggering of substorms [see Hsu and McPherron, J. Geophys. Res., 107, 1398, 2002; Morley and Freeman, Geophys. Res. Lett., 34, L08104, 2006] using transfer entropy and conditional redundancy as a measures of causality. Conditional Redundancy and Transfer Entropy are particularly useful to identify causal relationships in data sets because they: (a) are highly directional, (b) include higher order, nonlinear correlations, and (c) distinguish between variables that are correlated because of a common driver and variables that are causally correlated. While previous work identified internal triggers based on extended periods of southward IMF, we also consider more direct measures of internal triggering such as the tail inclination angle, which serves as a proxy for the magnetic flux stored in the tail and/or diffuse auroral precipitation, which can serve as a proxy for the particle energy stored in the tail.

  12. REACH. Air Conditioning Units.

    ERIC Educational Resources Information Center

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  13. What are the Causes of the Formation of the Sub-Alfvenic Flows at the High Latitude Magnetopause

    NASA Technical Reports Server (NTRS)

    Avanov, L. A.; Chandler, M. O.; Simov, V. N.; Vaisberg, O. L.

    2003-01-01

    We study magnetopause crossings made by the Interball Tail spacecraft at high latitudes under various interplanetary conditions. When the IMF mostly northward the Interball Tail observes quasi steady state reconnection signatures at the high latitude magnetopause, which include a well-defined de Hoffman-Teller frame, satisfaction of stress balance (Walen relations) and D-shaped ion velocity distributions. Under variable or southward IMF the high latitude magnetopause is a tangentional discontinuity. However, in certain conditions, just after the magnetopause crossing, irrespective of the IMF orientation, decelerate magnetosheath flows are observed in the magnetosheath region adjacent to the high latitude magnetopause. This leads to formation of the region where the sub-Alfvenic flow at high latitudes exists. We suggest that in some cases the dipole tilt plays an important role in the formation of the sub-Alfvenic flows, although in some cases formation the depletion layer is responsible for observation of the sub-Alfvenic flows at the high latitude magnetopause.

  14. The evolution of high-latitude field-aligned currents and magnetospheric dynamics in response to solar wind drivers

    NASA Astrophysics Data System (ADS)

    Bogdanova, Yulia; Vennerstrøm, Susanne; Wild, James; Korth, Haje; Lühr, Hermann; Wing, Simon; Pitout, Frederic

    2016-04-01

    While the statistical behaviour of the solar wind-magnetosphere-ionosphere system is well defined by the Dungey cycle, questions remain on the behaviour of this coupled system during extreme conditions, for example during magnetic storms or periods with long lasting northward IMF, and on how, and how fast, the system reacts to abrupt changes in the solar wind driver. Field-aligned currents play a crucial role in the dynamics of this coupled system as they provide connectivity between different regions and act as channels for energy and momentum transfer. These currents have been investigated in the last decade thanks to observations from low-orbiting satellites, such as CHAMP, Ørsted, DMSP, and the Iridium constellation. However, many previous studies concentrated on the statistical behavior of the current systems or measurements from individual observatories. In this paper we will employ data from Swarm, AMPERE, DMSP, Cluster, SuperDARN and SuperMAG to perform a multi-point study of high-latitude field-aligned current systems evolution and properties and magnetospheric dynamics in response to the solar wind driver, concentrating on the intervals of changes in the IMF orientation and extreme IMF and solar wind conditions.

  15. The interplanetary magnetic field B sub y -dependent field-aligned current in the dayside polar cap under quiet conditions

    SciTech Connect

    Yamauchi, M. Kyoto Univ. ); Araki, T. )

    1989-03-01

    Spatial distribution and temporal variation of the interplanetary magnetic field (IMF) B{sub y}-dependent cusp region field-aligned currents (FACs) during quiet periods were studied by use of magnetic data observed by Magsat. The analysis was made for 11 events (each event lasts more than one and a half days) when the IMF B{sub y} component was steadily large and B{sub x} was relatively small ({vert bar}B{sub z}{vert bar} < {vert bar}B{sub y}{vert bar}). Results of the analysis of total 62 half-day periods for the IMF B{sub y}-dependent cusp region FAC are summarized as follows: (1) the IMF B{sub y}-dependent cusp region FAC is located at around 86{degree}-87{degree} invariant latitude local noon, which is more poleward than the location of the IMF B{sub z}-dependent cusp region FAC; (2) the current density of this FAC is greater than previous studies ({ge} 4 {mu}A/m{sup 2} for IMF B{sub y} = 6 nT); (3) there are two time scales for the IMF B{sub y}-dependent cusp region FAC to appear: the initial rise of the current is on a short time scale, {approximately} 10 min, and it is followed by a gradual increase on a time scale of several hours to a half day; (4) the seasonal change of this FAC is greater than that of the nightside region 1 or region 2 FACs; (5) the IMF B{sub z}-dependent cusp region FAC is not well observed around the cusp when the IMF B{sub y}-dependent cusp region FAC is intense.

  16. The Role of Flux Transfer Events in Solar Wind-Magnetosphere Coupling

    NASA Technical Reports Server (NTRS)

    Dorelli, John C.

    2009-01-01

    Recent global MHD simulations of Flux Transfer Events (FTE's)[Dorelli and Bhattachar ee, JGR, 114, 2009] demonstrate that they are topologically complex flux ropes which extend large distances away from the subsolar magnetopause. Thus, FTE's represent a significant perturbation to the magnetopause magnetic field topology. Specifically, prior to the formation of the first FTE of the simulation, the dayside magnetopause has a relatively simple topology consisting of a single magnetic separator draping northward (even for southward IMF) over the dayside magnetopause (in a manner similar to the "overdraping" which occurs under northward IMF conditions). After the first FTE forms, however, the magnetopause becomes topologically more complex, consisting of multiple separators and braided flux domains. One consequence of this topological complexity is that open flux tubes have direct access to the magnetosphere near the subsolar region (such direct access is not possible during steady separator reconnection). Since the magnetopause topology affects the mapping of the solar wind electric field to the magnetosphere, an interesting question arises: What is the effect of FTE generation on the global magnetospheric convection pattern? In this talk, we address this question by exploring the differences between magnetospheric and ionospheric convection before and after the formation of the first FTE of the simulation.

  17. Dark polar ionosphere: Progress and future challenges

    SciTech Connect

    Carlson, H.C. Jr.

    1994-01-01

    Since the end of the 1970s, we have seen enormous progress in our understanding of the polar ionosphere and its structuring. With this benchmark issue of Radio Science it is appropriate to reflect briefly on that passage and some key questions that lie ahead. The discussion here will concentrate on the winter hemisphere, in keeping with the conditions under which most of the data studied to date have been gathered. The polar ionosphere alternates between two states, depending on whether the interplanetary magnetic field (IMF) is southward or northward. The former state is characterized by approximately 100-1000 km islands of enhanced F region plasma, originating in sunlit upper midlatitudes, entering and traversing the polar cap. They become highly structured and produce severe scintillation. Despite much progress on the source, evolution, and ultimate fate of this polar plasma, we remain challenged by the process(es) which chop entering plasma into such islands. For northward IMF we have learned much about the near-Earth processes determining the character of polar cap arcs, velocity structure and electrodynamics, and energetics. A remaining challenge is to relate these structures to the topology and driving physical processes in the magnetosphere and solar wind. Here we sketch the principles behind the progress and the context of several key problem areas ahead.

  18. Heliospheric and geomagnetic modulation of galactic cosmic rays under quiet and disturbed interplanetary conditions during solar cycles 20-23

    NASA Astrophysics Data System (ADS)

    Chukwudi Okpala, Kingsley

    2015-08-01

    The modulation of galactic cosmic rays (GCR) within the heliosphere leads to a reduction in the GCR count rates during period of high solar activity and conversely. Data from three geomagnetic observatories and three Neutron monitors (in close proximity to the geomagnetic stations) have been studied. The monthly residuals of the geomagnetic field components with respect to quiet time conditions from these three stations have been computed and compared with the cosmic ray count rates. The modulations of the GCR during quiet and disturbed interplanetary conditions have been investigated with a view to better understand the role of the global merged interaction regions and intense magnetic fields to the GCR modulation. From first-order partial correlation, we found that removing the influence of the total IMF-B, (especially during quiet conditions) and the influence of SW dynamic pressure (during disturbed conditions) generally enhances the correlation of the residual geomagnetic field with the GCR significantly. The influence of the more subtle parameters like speed, Bz component and proton density were masked by these dominant parameters. Results from this work are important for the modeling of long term GCR variability.

  19. Inflation of Conditional Predictions

    ERIC Educational Resources Information Center

    Koriat, Asher; Fiedler, Klaus; Bjork, Robert A.

    2006-01-01

    The authors report 7 experiments indicating that conditional predictions--the assessed probability that a certain outcome will occur given a certain condition--tend to be markedly inflated. The results suggest that this inflation derives in part from backward activation in which the target outcome highlights aspects of the condition that are…

  20. Substorm related CNA near equatorward boundary of the auroral oval in relation to interplanetary conditions

    NASA Astrophysics Data System (ADS)

    Behera, Jayanta K.; Sinha, Ashwini K.; Singh, Anand K.; Vichare, Geeta; Dhar, Ajay; Labde, Sachin; Jeeva, K.

    2015-07-01

    Cosmic noise absorption (CNA) at high latitudes is a typical manifestation of enhanced precipitation of energetic charged particles during the course of a magnetospheric substorm. Present analysis demonstrates the energetic particles precipitate to the high latitude ionosphere during substorms, affecting upper and lower regions of the ionosphere simultaneously. Previous studies have reported that intense and short-lived CNA events associated with substorms are mostly observed in the midnight sector of the auroral oval. In the current study, we have examined such type of CNA events predominantly occurring during 0000-0600 UT (2300-0500 MLT) at an Indian Antarctic station Maitri (corrected geomagnetic (CGM) coordinates 62.59°S, 53.59°E), which is located at the equatorward edge of the auroral oval. Absorption events related to isolated substorm and storm-time substorms exhibit distinct features in terms of their intensity and extent in latitude and longitude. Our study suggests that the maximum intensity of CNAs depends on the interplanetary conditions, such as, the solar wind speed, southward component of IMF Bz, and duskward component of IEF Ey. Moreover, the role of duskward component of IEF Ey is more noteworthy than other interplanetary parameters.

  1. Evidence for multiple ejecta: April 7-11, 1997, ISTP Sun-Earth connection event

    NASA Astrophysics Data System (ADS)

    Berdichevsky, D.; Bougeret, J.-L.; Delaboudinière, J.-P.; Fox, N.; Kaiser, M.; Lepping, R.; Michels, D.; Plunkett, S.; Reames, D.; Reiner, M.; Richardson, I.; Rostoker, G.; Steinberg, J.; Thompson, B.; von Rosenvinge, T.

    Evidence is presented that the enhanced geomagnetic activity, on April 10-11, 1997, was caused by one of two ejecta that left the Sun at ≈ 14 UT on April 7. This ejecta was not directly detected at the Earth. The evidence for this interpretation is based on WIND spacecraft observations in the solar wind (SW). It is consistent with: (i) measured velocities of the coronal mass ejections from the SOHO coronagraph; (ii) the initial propagation speed of the shock generated in this event, estimation from type II radio burst observations from the WAVES instrument on WIND, and (iii) the time profile of energetic ions observed by EPACT on WIND. This locally unobserved ejecta (moving at 600 to 700 kms-1) generated a fast shock which accelerated ions to several tens of MeV/amu. The inferred passage of the first ejecta close to Earth (on April 10 to 11) is based on the observation of an interplanetary shock (IS) ahead of a field and plasma compressional region where the draping of the SW flow and possibly the changes in the direction of the IMF are consistent with a location northward of a faster ejecta. This ejecta was responsible for disturbed SW conditions including approximately ten hours of southward orientation of the interplanetary magnetic field (IMF) and a ram pressure many times above normal. The slower moving ejecta was directed toward Earth and was observed with WIND from about 0550 until 1500 UT on April 11. It had a strong northward IMF and produced density enhancements which elevated the ram pressure to more than four times above normal.

  2. Nonparametric conditional estimation

    SciTech Connect

    Owen, A.B.

    1987-01-01

    Many nonparametric regression techniques (such as kernels, nearest neighbors, and smoothing splines) estimate the conditional mean of Y given X = chi by a weighted sum of observed Y values, where observations with X values near chi tend to have larger weights. In this report the weights are taken to represent a finite signed measure on the space of Y values. This measure is studied as an estimate of the conditional distribution of Y given X = chi. From estimates of the conditional distribution, estimates of conditional means, standard deviations, quantiles and other statistical functionals may be computed. Chapter 1 illustrates the computation of conditional quantiles and conditional survival probabilities on the Stanford Heart Transplant data. Chapter 2 contains a survey of nonparametric regression methods and introduces statistical metrics and von Mises' method for later use. Chapter 3 proves some consistency results. Chapter 4 provides conditions under which the suitably normalized errors in estimating the conditional distribution of Y have a Brownian limit. Using von Mises' method, asymptotic normality is obtained for nonparametric conditional estimates of compactly differentiable statistical functionals.

  3. Air-Conditioning Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by air conditioning mechanics. Addressed in the four chapters, or lessons, of the manual are the following topics: principles of air conditioning, refrigeration components as…

  4. Condition Assessment Information System

    Energy Science and Technology Software Center (ESTSC)

    2002-09-16

    CAIS2000 records, tracks and cost maintenance deficiencies associated with condition assessments of real property assets. Cost information is available for 39,000 items in the currenht RS Means, Facilities Construction Manual. These costs can, in turn, be rolled by by asset to produce the summary condition of an asset or site.

  5. NATIONAL COASTAL CONDITION REPORT

    EPA Science Inventory

    The National Coastal Condition report compiles several available data sets from different agencies and areas of the country and summarizes them to present a broad baseline picture of the condition of coastal waters. Although data sets presented in this report do not cover all coa...

  6. FLUE GAS CONDITIONING

    EPA Science Inventory

    The report gives results of a survey of available flue gas conditioning agents and user experience. Many existing chemicals have been used as conditioning agents in power plants or have been studied in the laboratory as potential agents. The particle collection efficiency of an e...

  7. Statistical Dependence of the Large-Scale Birkeland Currents on Solar Wind Parameters

    NASA Astrophysics Data System (ADS)

    Korth, H.; Anderson, B. J.; Waters, C. L.

    2008-12-01

    Since February 1999, distributions of the large-scale field-aligned Birkeland currents have been derived continuously from magnetic perturbations measured globally by the Iridium constellation of satellites. In a statistical study, over 1500 two-hour intervals (5% of the data) were identified for which the currents were stable to within at least 45% overlap between successive hours, corresponding to conditions in the solar wind were sufficiently stable to obtain reliable Birkeland currents. Organized by the interplanetary magnetic field (IMF) clock angle, the statistical current distributions show familiar Regrion-1 and Region-2 currents for southward IMF, NBZ currents for northward IMF, and a continuous distortion of the currents with IMF clock angle consistent with changes in the location of outflow from magnetopause reconnection (Anderson et al. 2008). Here we extend the statistical analysis to examine the dependence of the large-scale Birkeland currents on solar wind electric field in the plane normal to the Earth-Sun line, Eyz, to assess the sensitivity to the strength of the solar wind dynamo, Alfvén Mach number to assess the influence of dayside reconnection mass loading, and dynamic pressure to investigate the dependence on ram pressure. The current intensities are first corrected for variations in EUV-produced ionospheric conductance, normalizing the current densities to zero dipole tilt conditions. Findings include: (1) with increasing solar wind electric field the large-scale Birkeland currents shift duskward and expand equatorward, and the total current intensifies; (2) the total current intensifies with increasing solar wind dynamic pressure by 0.4 MA/nPa; (3) the total current intensifies with increasing Alfvén Mach number by 0.07 MA per unit Alfvén Mach number change. The analysis and implications are discussed.

  8. Numerical simulation of the subsolar magnetopause current layer in the sun-earth meridian plane

    NASA Technical Reports Server (NTRS)

    Okuda, H.

    1993-01-01

    The formation and stability of the magnetopause current layer near the subsolar point in the sun-earth meridian plane are examined using a 2D electromagnetic particle simulation. For the case of zero IMF, the simulation results show that the current layer remains stable and is essentially the same as in the 1D simulation. The width of the current layer is given by the electron-ion hybrid gyroradius which is much smaller than the ion gyroradius. The current layer is found to remain stable for the northward IMF as well. As in the 1D simulation, the jump of the magnetic field at the current layer for the northward IMF remains small. For the southward IMF, collisionless magnetic reconnection is found to develop, leading to the formation of magnetic islands and density peaking within the current layer.

  9. The aurora at quite magnetospheric conditions: Repeatability and dipole tilt angle dependence

    SciTech Connect

    Oznovich, I. ); Eastes, R.W.; Huffman, R.E. ); Tur, M.; Glaser, I. )

    1993-03-01

    Is there a magnetospheric ground state Do the position and size of the auroral oval depend on the magnetic dipole tilt angle at quiet magnetospheric conditions In order to address these questions, northern hemisphere images of the aurora at 1356 [Angstrom], obtained by Polar BEAR at solar minimum (beginning of 1987), were related to high temporal resolution IPM 8 measurements of the interplanetary magnetic field, to solar wind velocity, and to the ground-based activity index Kp. The first problem was addressed by a two-dimensional correlation study of the repeatability of auroral emissions in corrected geomagnetic space at conditions of minimum energy transfer from the magnetosphere. The correlation measure of auroral images was 0.6-0.85. Error simulations indicate that given the uncertainties in pixel position and intensity, the maximum expected value of the correlation measure is 0.65-0.9. The notion of a ground state magnetosphere is therefore supported by this data. Repeatability was found at the same level regardless of time or reconfigurations of the magnetosphere between images and independent of magnetic time sector. The second problem was addressed by relating latitudinal shifts of the aurora with dipole tilt angle without resorting to auroral boundary specification. This data indicate that the latitude of the continuous aurora is related to the dipole tilt angle at quiet magnetospheric conditions. In the winter hemisphere a 10[degrees] increase in the dipole tilt angle causes a 1[degree] decrease (increase) in the latitude of auroral emissions at noon (midnight). The magnetic local time distribution of the latitudinal shifts with dipole tilt angle support a simple model in which the dipole tilt angle determines the position of the center of the auroral circle along the magnetic meridian 1320-0120 MLT (for IMF B[sub y] positive) and does not affect its radius. 22 refs., 8 figs.

  10. Common Childhood Orthopedic Conditions

    MedlinePlus

    ... Ones & When? Smart School Lunches Emmy-Nominated Video "Cerebral Palsy: Shannon's Story" 5 Things to Know About Zika & ... might be linked to other conditions, such as cerebral palsy, muscle weakness disorders, autism, or other nervous system ...

  11. Skin Conditions during Pregnancy

    MedlinePlus

    ... during pregnancy? • What is pruritic urticarial papules and plaques of pregnancy (PUPPP)? • What is prurigo of pregnancy? • ... itchy skin. What is pruritic urticarial papules and plaques of pregnancy (PUPPP)? In this condition, small, red ...

  12. Common Conditions in Newborns

    MedlinePlus

    ... Prenatal Baby Bathing & Skin Care Breastfeeding Crying & Colic Diapers & Clothing Feeding & Nutrition Preemie Sleep Teething & Tooth Care Toddler Preschool Gradeschool Teen Young Adult Healthy Children > Ages & Stages > Baby > Common Conditions in ...

  13. Climatic Conditions in Classrooms.

    ERIC Educational Resources Information Center

    Kevan, Simon M.; Howes, John D.

    1980-01-01

    Presents an overview of research on the ways in which classroom thermal environment, lighting conditions, ion state, and electromagnetic and air pollution affect learning and the performance of students and teachers. (SJL)

  14. Lung Diseases and Conditions

    MedlinePlus

    ... Share this page from the NHLBI on Twitter. Lung Diseases and Conditions Breathing is a complex process. ... your bronchial tubes ( bronchitis ) or deep in your lungs ( pneumonia ). These infections cause a buildup of mucus ...

  15. Pavement condition data analysis

    SciTech Connect

    Zaniewski, J.P.; Hudson, S.W.; Hudson, W.R.

    1987-07-01

    This paper describes a computer methodology for analyzing pavement condition data to define inputs for pavement management systems. This system of programs was developed during a Federal Highway Administration research project. In the project, eight state highway departments were studied to determine the types of pavement condition data collected, procedures used for collecting data, the inputs to the states' pavement management systems, and computer programs used by the states to analyze raw pavement condition data. Several of the programs were assembled into the Method for Analyzing Pavement Condition, MAPCON, during a project performed at Pennsylvania State University. These and other existing or new programs (a total of 18) were identified, tested, modified, and incorporated onto a MS/DOS microcomputer system. MAPCON guides the user through selection of analysis method, raw data entry, and data analysis.

  16. Aerobic Conditioning Class.

    ERIC Educational Resources Information Center

    Johnson, Neil R.

    1980-01-01

    An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

  17. Operant Conditioning and Education.

    ERIC Educational Resources Information Center

    de Noronha, Mario

    A case study of a learning disabled 8-year-old with behavior disturbancs is presented to highlight the use of operant conditioning in cutting down educational costs and easing the teacher's class management problems. (CL)

  18. Solar Wind Influence on the Oxygen Content of Ion Outflow in the High-Altitude Polar Cap During Solar Minimum Conditions

    NASA Technical Reports Server (NTRS)

    Elliott, H. A.; Comfort, R. H.; Craven, P. D.; Chandler, M. O.; Moore, T. E.

    2001-01-01

    We correlate solar wind and interplanetary magnetic field (IMF) properties with the properties of O(+) and H(+) during early 1996 (solar minimum) at altitudes between 5.5 and 8.9 R(sub E) geocentric using the Thermal Ion Dynamics Experiment (TIDE) on the Polar satellite. Throughout the high-altitude polar cap we observe H(+) to be more abundant than O(+). O(+) is found to be more abundant at lower latitudes when the solar wind speed is low (and Kp is low), while at higher solar wind speeds (and high Kp), O(+) is observed across most of the polar cap. The O(+) density and parallel flux are well organized by solar wind dynamic pressure, both increasing with solar wind dynamic pressure. Both the O(+) density and parallel flux have positive correlations with both V(sub SW)B(sub IMF) and E(sub SW). No correlation is found between O(+) density and IMF Bz, although a nonlinear relationship with IMF By is observed, possibly due to a strong linear correlation with the dynamic pressure. H(+) is not as highly correlated with solar wind and IMF parameters, although H(+) density and parallel flux are negatively correlated with IMF By and positively correlated with both V(sub SW)B(sub IMF) and E(sub SW). In this solar minimum data set, H(+) is dominant, so that contributions of this plasma to the plasma sheet would have very low O(+) to H(+) ratios.

  19. Conditional data watchpoint management

    DOEpatents

    Burdick, Dean Joseph; Vaidyanathan, Basu

    2010-08-24

    A method, system and computer program product for managing a conditional data watchpoint in a set of instructions being traced is shown in accordance with illustrative embodiments. In one particular embodiment, the method comprises initializing a conditional data watchpoint and determining the watchpoint has been encountered. Upon that determination, examining a current instruction context associated with the encountered watchpoint prior to completion of the current instruction execution, further determining a first action responsive to a positive context examination; otherwise, determining a second action.

  20. Power supply conditioning circuit

    NASA Technical Reports Server (NTRS)

    Primas, Lori E. (Inventor); Loveland, Rohan C. (Inventor)

    1988-01-01

    A conditioning circuit is provided with a constant current diode in series with a zener diode, the former having a high dynamic impedance and the latter a low dynamic impedance. The constant current diode can receive an input voltage with PARD. In conjunction with the zener diode fixed to a ground, a voltage divider is provided which can give an output voltage whose PARD was significantly reduced. The conditioning circuit is effective down to dc.

  1. Chemical conditioning of sludge.

    PubMed

    Novak, J T; Park, C

    2004-01-01

    With all the advances made in understanding the structure and composition of sewage sludges, chemical conditioning remains a trial and error process, both with regard to the type and dose of conditioner needed. Recent studies at Virginia Tech have found that biological floc consists of two types of biopolymer, material associated with iron and aluminium and material associated with calcium and magnesium. These materials behave differently when sludges undergo digestion. This results in very different material being released into solution during digestion and very different conditioning requirements. This study shows that the primary materials released during anaerobic digestion are proteins and coagulation of the colloidal protein fraction in solution is the primary mechanism for conditioning. For aerobically digested sludges, both proteins and polysaccharides make up the colloid fraction, which interferes with dewatering. This research also shows that the effectiveness of the digestion process as characterized by volatile solids destruction is directly related to the chemical dose required for conditioning. That is, as the solids destruction increases, the conditioning chemical requirement also increases. Well digested sludges dewater more poorly and require more conditioning chemical than those with less volatile solids destruction. PMID:15259940

  2. LHCb distributed conditions database

    NASA Astrophysics Data System (ADS)

    Clemencic, M.

    2008-07-01

    The LHCb Conditions Database project provides the necessary tools to handle non-event time-varying data. The main users of conditions are reconstruction and analysis processes, which are running on the Grid. To allow efficient access to the data, we need to use a synchronized replica of the content of the database located at the same site as the event data file, i.e. the LHCb Tier1. The replica to be accessed is selected from information stored on LFC (LCG File Catalog) and managed with the interface provided by the LCG developed library CORAL. The plan to limit the submission of jobs to those sites where the required conditions are available will also be presented. LHCb applications are using the Conditions Database framework on a production basis since March 2007. We have been able to collect statistics on the performance and effectiveness of both the LCG library COOL (the library providing conditions handling functionalities) and the distribution framework itself. Stress tests on the CNAF hosted replica of the Conditions Database have been performed and the results will be summarized here.

  3. Competitive interactions between walleye (Sander vitreus) and smallmouth bass (Micropterus dolomieu) under various controlled conditions

    USGS Publications Warehouse

    Wuellner, M.R.; Graeb, B.D.S.; Willis, D.W.; Galster, B.J.; Selch, T.M.; Chipps, S.R.

    2011-01-01

    The range of smallmouth bass (Micropterus dolomieu) is expanding northward, creating new interactions with native predators, including walleye (Sander vitreus). We used a series of experiments to investigate competition between walleye (WAE) and smallmouth bass (SMB) at different life stages and light conditions, identified behaviors that allowed one fish to outcompete another, and evaluated whether prey switching mitigated competitive interactions. Juvenile and adult SMB appeared to outcompete WAE when fed during the daytime; neither species dominated when fed near dusk. Attack rates and capture efficiencies of both species were similar with an intra- or interspecific competitor, but SMB often exploited prey before the competitor had a chance to feed (exploitative competition) or displayed agonistic behaviors toward a potential competitor (interference competition). Prey selectivity of WAE or SMB did not differ when by themselves or with a potential competitor. These results indicate that SMB could outcompete WAE under limiting prey conditions due to the aggressive nature of SMB, but resources may be partitioned at least along a temporal scale. ?? 2011 Taylor & Francis.

  4. Paired microfossil evidence for a delayed development of fully marine surface water conditions in the Nordic seas during the Last interglacial (MIS 5e)

    NASA Astrophysics Data System (ADS)

    van Nieuwenhove, N.; Bauch, H. A.; Kandiano, E. S.

    2010-12-01

    Dinoflagellate cyst (dinocyst) and foraminiferal records of sediment cores from The Vøring and Iceland Plateau and south of the Fram Strait were used to reconstruct the evolution of the surface circulation in the Nordic seas during the last interglacial (Marine Isotopic Stage or MIS 5e). The location of the cores, under the modern pathway of the warm Norwegian Atlantic Current (NwAC) and within the mixing zone of the NwAC and the cold East Greenland Current (EGC), allows to reconstruct the spreading of inflowing North Atlantic surface waters across the Nordic seas during the climate progression of MIS 5e. The microfossil records, supported by stable isotope and IRD data, reveal that during the first ~6000 years of MIS 5e a more pronounced stratification and seasonality existed in the eastern Nordic seas, presumably as a result of long-lasting deglacial effects. Thus, the northward heat flux was reduced during this time in this area. It was only during late MIS 5e, and when IRD-input into the eastern Nordic seas had come to a halt, that the northward flow of warm Atlantic water masses intensified so that interglacial conditions became also eminent in the surface waters south of the Fram Strait. Our data further suggest that the stronger NwAC of late MIS 5e entailed an intensification of the EGC. While this brought comparatively colder conditions towards the Iceland Plateau it was also the only time when proper, that is fully marine, warm interglacial surface conditions co-existed in the eastern Nordic seas.

  5. Causal conditionals and counterfactuals

    PubMed Central

    Frosch, Caren A.; Byrne, Ruth M.J.

    2012-01-01

    Causal counterfactuals e.g., ‘if the ignition key had been turned then the car would have started’ and causal conditionals e.g., ‘if the ignition key was turned then the car started’ are understood by thinking about multiple possibilities of different sorts, as shown in six experiments using converging evidence from three different types of measures. Experiments 1a and 1b showed that conditionals that comprise enabling causes, e.g., ‘if the ignition key was turned then the car started’ primed people to read quickly conjunctions referring to the possibility of the enabler occurring without the outcome, e.g., ‘the ignition key was turned and the car did not start’. Experiments 2a and 2b showed that people paraphrased causal conditionals by using causal or temporal connectives (because, when), whereas they paraphrased causal counterfactuals by using subjunctive constructions (had…would have). Experiments 3a and 3b showed that people made different inferences from counterfactuals presented with enabling conditions compared to none. The implications of the results for alternative theories of conditionals are discussed. PMID:22858874

  6. Conditioning experiences and phobias.

    PubMed

    Merckelbach, H; de Ruiter, C; van den Hout, M A; Hoekstra, R

    1989-01-01

    A retrospective study was conducted to examine the extent to which phobias are associated with a conditioning pathway to fear. The Phobic Origin Questionnaire (Ost and Hugdahl, Behav. Res. Ther. 19, 439-477, 1981) was administered to a sample of 91 phobic outpatients (patients with panic disorder with agoraphobia, social phobics, simple phobics). Results show clearly that conditioning experiences occur more frequently than either vicarious or informational, learning experiences, which confirms the findings previously reported by Rimm, Janda, Lancaster, Nahl and Dittmar (Behav. Res. Ther. 15, 231-238, 1977) and by Ost and Hugdahl (1981; Behav. Res. Ther. 21, 623-631, 1983). Yet, conditioning experiences consist mainly of panic attacks in confirmed environments. The findings also suggest that a considerable number of phobias are based on a combination of different pathways to fear. PMID:2610660

  7. Conditional E-Cash

    NASA Astrophysics Data System (ADS)

    Shi, Larry; Carbunar, Bogdan; Sion, Radu

    We introduce a novel conditional e-cash protocol allowing future anonymous cashing of bank-issued e-money only upon the satisfaction of an agreed-upon public condition. Payers are able to remunerate payees for services that depend on future, yet to be determined outcomes of events. Once payment complete, any double-spending attempt by the payer will reveal its identity; no double-spending by the payee is possible. Payers can not be linked to payees or to ongoing or past transactions. The flow of cash within the system is thus both correct and anonymous. We discuss several applications of conditional e-cash including online trading of financial securities, prediction markets, and betting systems.

  8. Meteorological conditions along airways

    NASA Technical Reports Server (NTRS)

    Gregg, W R

    1927-01-01

    This report is an attempt to show the kind of meteorological information that is needed, and is in part available, for the purpose of determining operating conditions along airways. In general, the same factors affect these operating conditions along all airways though in varying degree, depending upon their topographic, geographic, and other characteristics; but in order to bring out as clearly as possible the nature of the data available, a specific example is taken, that of the Chicago-Dallas airway on which regular flying begins this year (1926).

  9. Universal signal conditioning amplifier

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Hallberg, Carl; Medelius, Pedro J.

    1994-01-01

    Engineers at NASA's Kennedy Space Center have designed a signal conditioning amplifier which automatically matches itself to almost any kind of transducer. The product, called Universal Signal Conditioning Amplifier (USCA), uses state-of-the-art technologies to deliver high accuracy measurements. USCA's features which can be either programmable or automated include: voltage, current, or pulsed excitation, unlimited resolution gain, digital filtering and both analog and digital output. USCA will be used at Kennedy Space Center's launch pads for environmental measurements such as vibrations, strains, temperatures and overpressures. USCA is presently being commercialized through a co-funded agreement between NASA, the State of Florida, and Loral Test and Information Systems, Inc.

  10. Mineralogy under extreme conditions

    SciTech Connect

    Shu, Jinfu

    2012-02-07

    We have performed measurements of minerals based on the synchrotron source for single crystal and powder X-ray diffraction, inelastic scattering, spectroscopy and radiography by using diamond anvil cells. We investigated the properties of iron (Fe), iron-magnesium oxides (Fe, Mg)O, silica(SiO{sub 2}), iron-magnesium silicates (Fe, Mg)SiO{sub 3} under simulated high pressure-high temperature extreme conditions of the Earth's crust, upper mantle, low mantle, core-mantle boundary, outer core, and inner core. The results provide a new window on the investigation of the mineral properties at Earth's conditions.

  11. Conditions for Teacher Research

    ERIC Educational Resources Information Center

    Borg, Simon

    2006-01-01

    The article starts by defining teacher research and a summary of its benefits. In reviewing teacher research in the field of ELT, the author points out that such research is not enough. The author then suggests ten conditions that would increase the incidence of teacher research. Additional questions for consideration are suggested at the end that…

  12. Impacts of sociopolitical conditions

    NASA Technical Reports Server (NTRS)

    Finney, Ben R.

    1992-01-01

    Space development scenarios and the choice of technologies to carry them out depend upon the future social, economic, and political factors. A brief discussion concerning the impact of sociopolitical conditions on space exploration is presented. Some of the topics mentioned include: space weapons/warfare, international cooperation, NASA's Search for Extraterrestrial Intelligence (SETI) Program, and superpower rivelry.

  13. Operant Conditioning - Token Economy.

    ERIC Educational Resources Information Center

    Montgomery, Jacqueline; McBurney, Raymond D.

    Described is an Operant Conditioning-Token Economy Program, teaching patients to be responsible for their own behavior, to make choices, and to be motivated to change. The program was instigated with mentally ill patients in a state hospital and was later used with institutionalized mentally handicapped groups. After two years, only four of the…

  14. Teachers and Operant Conditioning.

    ERIC Educational Resources Information Center

    Frey, Sherman

    A survey was conducted of 406 elementary, middle, and secondary school teachers to determine their understanding, acceptance, and use of the principle of operant conditioning. The treatment of data was by percent and chi square analysis primarily according to sex, experience, degree, and position. Subjects reported that a) they believed that the…

  15. Anomalous plasma diffusion and the magnetopause boundary layer

    NASA Technical Reports Server (NTRS)

    Treumann, Rudolf A.; Labelle, James; Haerendel, Gerhard; Pottelette, Raymond

    1992-01-01

    An overview of the current state of anomalous diffusion research at the magnetopause and its role in the formation of the magnetopause boundary layer is presented. Plasma wave measurements in the boundary layer indicate that most of the relevant unstable wave modes contribute negligibly to the diffusion process at the magnetopause under magnetically undisturbed northward IMF conditions. The most promising instability is the lower hybrid drift instability, which may yield diffusion coefficients of the right order if the highest measured wave intensities are assumed. It is concluded that global stationary diffusion due to wave-particle interactions does not take place at the magnetopause. Microscopic wave-particle interaction and anomalous diffusion may contribute to locally break the MD frozen-in conditions and help in transporting large amounts of magnetosheath plasma across the magnetospheric boundary.

  16. Tracking Biological and Ecosystem Responses to Changing Environmental Conditions in the Pacific Arctic

    NASA Astrophysics Data System (ADS)

    Grebmeier, J. M.; Cooper, L. W.; Frey, K. E.; Moore, S. E.

    2014-12-01

    Changing seasonal sea ice conditions and seawater temperatures strongly influence biological processes and marine ecosystems at high latitudes. In the Pacific Arctic, persistent regions termed "hotspots", are localized areas with high benthic macroinfaunal biomass that have been documented over four decades (see Figure). These regions are now being more formally tracked to relate physical forcing and ecosystem response as an Arctic Distributed Biological Observatory (DBO) supported by the US National Ocean Policy Implementation Plan and international partners. These hotspots are important foraging areas for upper trophic level benthic feeders, such as marine mammals and seabirds. South of St. Lawrence Island (SLI) in the northern Bering Sea, benthic feeding spectacled eiders, bearded seals and walruses are important winter consumers of infauna, such as bivalves and polychaetes. Gray whales have historically been a major summer consumer of benthic amphipods in the Chirikov Basin to the north of SLI, although summertime sightings of gray whales declined in the Chirikov from the 1980s up until at least 2002. The SE Chukchi Sea hotspot, as are the other hotspots, is maintained by export of high chlorophyll a that is produced locally as well as advected by water masses transiting northward through the system. Both walrus and gray whales are known to forage in this hotspot seasonally on high biomass levels of benthic prey. Notably the center of the highest benthic biomass regions has shifted northward in three of the DBO hotspots in recent years. This has coincided with changing sediment grain size, an indicator of current speed, and is also likely a response to changes in primary production in the region. Studies of these broad biological responses to changing physical drivers have been facilitated through development of the DBO cooperative effort by both US and international scientists. The DBO includes a series of coordinated, multi-trophic level observations that

  17. Stability Behaviour of the Atlantic Thermohaline Circulation Under Different Climate Conditions: The Thermal Component

    NASA Astrophysics Data System (ADS)

    Knorr, G.; Eichinger, R.; Lohmann, G.; Prange, M.; Barker, S.

    2010-05-01

    During the Last Glacial Maximum the Atlantic Thermohaline Circulation (THC) was characterized by a southward shift of the North Atlantic deep water (NADW) formation sites and a relatively shallow NADW- overturning cell, compared to the present mode of operation. Furthermore, abrupt climate events during the last glacial are associated with rapid changes in the THC and accompanying changes of the inter-hemispheric northward oceanic heat transport. Using an interhemispheric box model of the Atlantic THC, coupled to a moist energy balance model of the atmosphere we present a new approach, which is based on the assumption that a completely sea ice covered North Atlantic would inhibit the generation of deep water. Therefore we introduce a dependence of the overturning strength from the sea ice extent in the North Atlantic. This approach can be viewed as a loss of efficiency of the inter-hemispheric density gradient in driving the overturning with cooler climate conditions. The transition from the present day climate to a colder climate forces the Atlantic THC to collapse in an intermediate climate state. This change in the stability behaviour is a consequence of the model response to gradual changes in the outgoing infra-red radiation at the top of the atmosphere. At cooler climate states the increasing atmosphere-ocean temperature contrast and associated ocean heat loss dominates the insulating effect of sea ice on North Atlantic temperature and promotes a sea ice growth. This effect is amplified by a weaker overturning circulation and decreased northward oceanic heat transport, which leads to a positive feedback loop and the existence of multiple equilibria in an intermediate climate state. Based on the reduction of the system to key variables governing the stability, we will also discuss the internal and structural stability of the system with the aid of numerical and analytical solutions to gain a deeper understanding of the underlying dynamics. A comparison with

  18. Power supply conditioning circuit

    NASA Technical Reports Server (NTRS)

    Primas, L. E.; Loveland, R.

    1987-01-01

    A power supply conditioning circuit that can reduce Periodic and Random Deviations (PARD) on the output voltages of dc power supplies to -150 dBV from dc to several KHz with no measurable periodic deviations is described. The PARD for a typical commercial low noise power supply is -74 dBV for frequencies above 20 Hz and is often much worse at frequencies below 20 Hz. The power supply conditioning circuit described here relies on the large differences in the dynamic impedances of a constant current diode and a zener diode to establish a dc voltage with low PARD. Power supplies with low PARD are especially important in circuitry involving ultrastable frequencies for the Deep Space Network.

  19. Fuel gas conditioning process

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  20. High voltage pulse conditioning

    DOEpatents

    Springfield, Ray M.; Wheat, Jr., Robert M.

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  1. Simulation of interplanetary magnetic field B{sub y} penetration into the magnetotail

    SciTech Connect

    Guo, Jiuling; Shen, Chao; Liu, Zhenxing

    2014-07-15

    Based on our global 3D magnetospheric MHD simulation model, we investigate the phenomena and physical mechanism of the B{sub y} component of the interplanetary magnetic field (IMF) penetrating into the magnetotail. We find that the dayside reconnected magnetic field lines move to the magnetotail, get added to the lobe fields, and are dragged in the IMF direction. However, the B{sub y} component in the plasma sheet mainly originates from the tilt and relative slippage of the south and north lobes caused by plasma convection, which results in the original B{sub z} component in the plasma sheet rotating into a B{sub y} component. Our research also shows that the penetration effect of plasma sheet B{sub y} from the IMF B{sub y} during periods of northward IMF is larger than that during periods of southward IMF.

  2. HELIOSPHERIC ASYMMETRIES AND 2-3 kHz RADIO EMISSION UNDER STRONG INTERSTELLAR MAGNETIC FIELD CONDITIONS

    SciTech Connect

    Pogorelov, Nikolai V.; Heerikhuisen, Jacob; Zank, Gary P.; Mitchell, Jeremy J.; Cairns, Iver H.

    2009-04-10

    We discuss the asymmetry of the major heliospheric discontinuities obtained from the analysis of three-dimensional modeling of the solar wind interaction with the local interstellar medium (LISM). The flow of charged particles is governed by the ideal MHD equations and the transport of neutral particles is described by the Boltzmann equation. The emphasis is on the asymmetries of the termination shock (TS) and the heliopause under the combined action of the interstellar and interplanetary magnetic fields (ISMF and IMF) in the presence of neutral hydrogen atoms. It is shown that an ISMF of a strength greater than 4 {mu}G can account for the 10 AU difference in the TS heliocentric distances observed by the Voyager 1 and Voyager 2 spacecraft. We analyze the deflection of neutral hydrogen flow from its original direction in the unperturbed LISM and conclude that it remains within the range measured in the SOHO SWAN experiment. The impact is analyzed of a strong ISMF on the 2-3 kHz radio emission observed by the Voyager spacecraft, using new estimates of the radio emission conditions.

  3. Direct observations of the full Dungey convection cycle in the polar ionosphere for southward interplanetary magnetic field conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Q.-H.; Lockwood, M.; Foster, J. C.; Zhang, S.-R.; Zhang, B.-C.; McCrea, I. W.; Moen, J.; Lester, M.; Ruohoniemi, J. M.

    2015-06-01

    Tracking the formation and full evolution of polar cap ionization patches in the polar ionosphere, we directly observe the full Dungey convection cycle for southward interplanetary magnetic field (IMF) conditions. This enables us to study how the Dungey cycle influences the patches' evolution. The patches were initially segmented from the dayside storm enhanced density plume at the equatorward edge of the cusp, by the expansion and contraction of the polar cap boundary due to pulsed dayside magnetopause reconnection, as indicated by in situ Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. Convection led to the patches entering the polar cap and being transported antisunward, while being continuously monitored by the globally distributed arrays of GPS receivers and Super Dual Auroral Radar Network radars. Changes in convection over time resulted in the patches following a range of trajectories, each of which differed somewhat from the classical twin-cell convection streamlines. Pulsed nightside reconnection, occurring as part of the magnetospheric substorm cycle, modulated the exit of the patches from the polar cap, as confirmed by coordinated observations of the magnetometer at Tromsø and European Incoherent Scatter Tromsø UHF radar. After exiting the polar cap, the patches broke up into a number of plasma blobs and returned sunward in the auroral return flow of the dawn and/or dusk convection cell. The full circulation time was about 3 h.

  4. Flow-Through Reconnection 3: The General Case

    NASA Astrophysics Data System (ADS)

    Siscoe, G. L.; Erickson, G. M.; Sonnerup, B. U.; Maynard, N. C.; Schoendorf, J. A.; Siebert, K. D.; Weimer, D. R.; White, W. W.; Wilson, G. R.

    2001-05-01

    This talk covers "flow-through reconnection," FTR, for the general IMF case as represented by a duskward IMF (IMF clock angle = 90 degrees). For the general IMF case, FTR occurs in the magnetospheric sash where the magnetic separatrix has its null point. Reconnection occurs all along the separatrix, from one null point across the dayside magnetopause to the null point in the other hemisphere. We show that the null point in the sash is stationary even though plasma is flowing through it tailward in excess of 200 km/s. In this case the sash acts as the long, narrow tongue of very weak field, described for the northward and southward IMF cases, within which the dissipation electric field exceeds the motional electric field. This case illustrates that the horn of the northward IMF case, the tongue of the southward IMF case, and the sash of the general case have the same function: to enable FTR when the magnetosphere is faced with the problem of operating sites of magnetic reconnection away from a stagnation point. This talk will also demonstrate how streamlines of the Poynting vector can be used to define the reconnection line along the magnetopause.

  5. First results using TWINS-derived ion temperature boundary conditions in CRCM

    NASA Astrophysics Data System (ADS)

    Elfritz, J. G.; Keesee, A. M.; Buzulukova, N.; Fok, M.-C.; Scime, E. E.

    2014-05-01

    We have integrated dynamic, spatiotemporally resolved ion temperature boundary conditions into the Comprehensive Ring Current Model (CRCM), which are based on 2-D equatorial maps derived from the Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) energetic neutral atom (ENA) data. The high-speed stream-driven event on 22 July 2009 is simulated and compared against an identical simulation using a statistically derived boundary condition model. ENA-derived temperatures allow users to include event-specific observations associated with a dynamic plasma sheet. This method also provides temperatures in the important region between geosynchronous orbit and the plasma sheet, a region which existing empirical models exclude. We find that the spatial and energy distributions of ring current flux and pressure have sensitive dependence on boundary conditions during this event. The coupling of boundary conditions to the time history of the convection field strength also plays an important role by throttling the influence of the boundary plasma on the inner magnetosphere. Simulated moments and spectra from our simulations are compared with remotely imaged ion temperatures from TWINS and also in situ energy spectra and temperature moments from Time History of Events and Macroscale Interactions during Substorms-D. Storm time dusk-dawn asymmetries consistent with observational data, such as Zhang et al. (2006), are reproduced well when CRCM is provided with the event-specific boundary model. A hot localized structure observed by TWINS at geosynchronous midnight during a strong northward interplanetary magnetic field interval is also reproduced with this boundary model, whereas the empirical boundary model fails to yield this feature.

  6. Cyclone-induced rapid creation of extreme Antarctic sea ice conditions

    PubMed Central

    Wang, Zhaomin; Turner, John; Sun, Bo; Li, Bingrui; Liu, Chengyan

    2014-01-01

    Two polar vessels, Akademik Shokalskiy and Xuelong, were trapped by thick sea ice in the Antarctic coastal region just to the west of 144°E and between 66.5°S and 67°S in late December 2013. This event demonstrated the rapid establishment of extreme Antarctic sea ice conditions on synoptic time scales. The event was associated with cyclones that developed at lower latitudes. Near the event site, cyclone-enhanced strong southeasterly katabatic winds drove large westward drifts of ice floes. In addition, the cyclones also gave southward ice drift. The arrival and grounding of Iceberg B9B in Commonwealth Bay in March 2011 led to the growth of fast ice around it, forming a northward protruding barrier. This barrier blocked the westward ice drift and hence aided sea ice consolidation on its eastern side. Similar cyclone-induced events have occurred at this site in the past after the grounding of Iceberg B9B. Future events may be predictable on synoptic time scales, if cyclone-induced strong wind events can be predicted. PMID:24937550

  7. Cyclone-induced rapid creation of extreme Antarctic sea ice conditions.

    PubMed

    Wang, Zhaomin; Turner, John; Sun, Bo; Li, Bingrui; Liu, Chengyan

    2014-01-01

    Two polar vessels, Akademik Shokalskiy and Xuelong, were trapped by thick sea ice in the Antarctic coastal region just to the west of 144°E and between 66.5°S and 67°S in late December 2013. This event demonstrated the rapid establishment of extreme Antarctic sea ice conditions on synoptic time scales. The event was associated with cyclones that developed at lower latitudes. Near the event site, cyclone-enhanced strong southeasterly katabatic winds drove large westward drifts of ice floes. In addition, the cyclones also gave southward ice drift. The arrival and grounding of Iceberg B9B in Commonwealth Bay in March 2011 led to the growth of fast ice around it, forming a northward protruding barrier. This barrier blocked the westward ice drift and hence aided sea ice consolidation on its eastern side. Similar cyclone-induced events have occurred at this site in the past after the grounding of Iceberg B9B. Future events may be predictable on synoptic time scales, if cyclone-induced strong wind events can be predicted. PMID:24937550

  8. Cyclone-induced rapid creation of extreme Antarctic sea ice conditions

    NASA Astrophysics Data System (ADS)

    Wang, Zhaomin; Turner, John; Sun, Bo; Li, Bingrui; Liu, Chengyan

    2014-06-01

    Two polar vessels, Akademik Shokalskiy and Xuelong, were trapped by thick sea ice in the Antarctic coastal region just to the west of 144°E and between 66.5°S and 67°S in late December 2013. This event demonstrated the rapid establishment of extreme Antarctic sea ice conditions on synoptic time scales. The event was associated with cyclones that developed at lower latitudes. Near the event site, cyclone-enhanced strong southeasterly katabatic winds drove large westward drifts of ice floes. In addition, the cyclones also gave southward ice drift. The arrival and grounding of Iceberg B9B in Commonwealth Bay in March 2011 led to the growth of fast ice around it, forming a northward protruding barrier. This barrier blocked the westward ice drift and hence aided sea ice consolidation on its eastern side. Similar cyclone-induced events have occurred at this site in the past after the grounding of Iceberg B9B. Future events may be predictable on synoptic time scales, if cyclone-induced strong wind events can be predicted.

  9. Urogynecologic conditions: urinary incontinence.

    PubMed

    Kelley, Robert; Garely, Alan D

    2015-03-01

    Urinary incontinence (UI), the leakage of urine, is a condition that frequently goes untreated. There are many different types of UI, including stress and urge UI, and the etiology is multifactorial. Diagnosis can be made with a pertinent history, including use of a questionnaire; a pelvic examination; and direct observation. Additional testing can include physical maneuvers to elicit stress leakage and urodynamic studies. Treatment ranges from pelvic floor exercise to surgical support of the pelvic floor for stress UI and, typically, behavioral therapy and/or pharmacotherapy, starting with antimuscarinic drugs, for urge UI. PMID:25756372

  10. Conditions simulating androgenetic alopecia.

    PubMed

    Rossi, A; Iorio, A; Di Nunno, D; Priolo, L; Fortuna, M C; Garelli, V; Carlesimo, M; Calvieri, S; Mari, E

    2015-07-01

    Androgenetic alopecia is a common form of hair loss, characterized by a progressive hair follicular miniaturization, caused by androgen hormones on a genetically susceptible hair follicle, in androgenic-dependent areas. Characteristic phenotype of androgenetic alopecia is also observed in many other hair disorders. These disorders are androgenetic-like diseases that cause many differential diagnosis or therapeutic error problems. The objective of this review was to systematically analyse the greatest number of conditions that mimic the AGA pattern and explain their disease pathogenesis. PMID:25571781

  11. The dynamic cusp

    SciTech Connect

    Potemra, T.A.; Erlandson, R.E.; Zanetti, L.J. ); Arnoldy, R.L. ); Woch, J. ); Friis-Christensen, E. )

    1992-03-01

    A unique alignment of the Viking satellite with respect to a network of magnetometers in Greenland has provided the opportunity to study the relationship of pulsations and plasma characteristics in the dayside cusp. The presence of Pc 1 bursts, Pc 4-5 pulsations, and a tailward traveling twin vortex pattern of ionospheric convection suggests that the magnetosphere may have been temporarily compressed. Magnetic field data acquired at synchrotrons altitude from GOES 5 and on the ground from Huancayo support this suggestion. Plasma with ion dispersion characteristics associated with a cusp during southward IMF was detected by Viking over a 3.5{degree} range of latitude. The presence of standing Alfven waves and ring current ions suggest that this cusplike plasma was observed on closed geomagnetic field lines. As Viking moved further poleward, it detected a different region of plasma with characteristics associated with a cusp during northward IMF. The presence of plasma on closed field lines with southward IMF ion dispersion characteristics can be explained with a poleward moving plasma source. The authors suggest that the magnetosphere, during a northward IMF, is temporarily compressed by a solar wind pressure enhancement that produces the Pc 1 bursts, Pc 4-5 pulsations, and ionospheric vortices. As the magnetosphere recovers to its precompressed shape, the source of cusp plasma will move poleward until it reaches an equilibrium position for northward IMF. The Viking satellite, following in the wake of this source, will detect plasma with southward IMF characteristics until it reaches the latitude of the actual northward IMF cusp.

  12. Statistical analysis of dayside equatorial ionospheric electric fields and electrojet currents produced by magnetospheric substorms during sawtooth events

    NASA Astrophysics Data System (ADS)

    Huang, Chao-Song

    2012-02-01

    Substorms cause significant disturbances in the ionosphere. However, it has not been well understood how the electric field and electrojet in the dayside equatorial ionosphere respond to substorm onset. Previous studies found that the equatorial electric field, after substorm onset, could be eastward or westward. Because the onset of isolated substorms is often related to a northward turning of the interplanetary magnetic field (IMF), the measured total electric field is determined by contributions from both IMF northward turning and substorm onset and is not necessarily the signature of the onset. In order to exclude the effect of IMF northward turning, we analyze the variations of ionospheric electric field and electrojet during storm time substorms when the IMF remains stable. Thus, the ionospheric variations can be identified to be caused solely by substorms. The electric field data are measured by the Jicamarca radar, and the electrojet is derived from magnetometers at Jicamarca and Piura. It is found that substorm onset induces an eastward electric field and electrojet in the dayside equatorial ionosphere when the IMF remains continuously southward across the onset. The equatorial electrojet starts to increase at the onset, reaches a maximum value ˜30 min after the onset, and then decreases to the pre-onset value ˜60 min after the onset. Westward electric field and counter-electrojet occur only if the substorm onset is associated with a northward turning of the IMF. It is concluded that the effect of substorm onset on the dayside equatorial ionosphere, without involvement of IMF reorientations, is an enhanced eastward electric field.

  13. Mining Conditional Phosphorylation Motifs.

    PubMed

    Liu, Xiaoqing; Wu, Jun; Gong, Haipeng; Deng, Shengchun; He, Zengyou

    2014-01-01

    Phosphorylation motifs represent position-specific amino acid patterns around the phosphorylation sites in the set of phosphopeptides. Several algorithms have been proposed to uncover phosphorylation motifs, whereas the problem of efficiently discovering a set of significant motifs with sufficiently high coverage and non-redundancy still remains unsolved. Here we present a novel notion called conditional phosphorylation motifs. Through this new concept, the motifs whose over-expressiveness mainly benefits from its constituting parts can be filtered out effectively. To discover conditional phosphorylation motifs, we propose an algorithm called C-Motif for a non-redundant identification of significant phosphorylation motifs. C-Motif is implemented under the Apriori framework, and it tests the statistical significance together with the frequency of candidate motifs in a single stage. Experiments demonstrate that C-Motif outperforms some current algorithms such as MMFPh and Motif-All in terms of coverage and non-redundancy of the results and efficiency of the execution. The source code of C-Motif is available at: https://sourceforge. net/projects/cmotif/. PMID:26356863

  14. Childhood Eye Diseases and Conditions

    MedlinePlus

    ... and Conditions Nov. 01, 2013 The importance of vision screening There are many eye conditions and diseases ... child’s vision. Focus and alignment disorders that affect vision If any of the following conditions is suspected, ...

  15. How Are Genetic Conditions Diagnosed?

    MedlinePlus

    ... Consultation How are genetic conditions diagnosed? How are genetic conditions diagnosed? A doctor may suspect a diagnosis ... and advocacy resources. For more information about diagnosing genetic conditions: Genetics Home Reference provides information about genetic ...

  16. Using Near-infrared Light to Establish the Initial Conditions of Star Formation.

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan B.

    2009-01-01

    The dense cores of dust and gas which form stars have long been objects of study, but recent observations suggest that the initial mass function (IMF) of stars may arise directly from the mass function of these dense cores; to understand the initial conditions of star formation it is therefore crucial to understand dense cores. Near-infrared observations provide two different methods for constraining dense core properties: extinction maps and studies of scattered light. In extinction mapping, background starlight is reddened as it passes through the core, allowing us to probe the density profile. We have extended this method to include background galaxies in an unbiased way, improving the noise and resolution possible in such maps (a procedure we call GNICER). Currently, the gains are largest for clouds far from the galactic plane, but deeper surveys in the future will pick up an ever-growing number of galaxies. Extinction mapping requires us to understand the extinction law, so we have surveyed large portions of a single molecular cloud (Perseus), to study small variations in the extinction law with density across a single cloud. We find a change in the red-optical/NIR extinction law as a function of density. Finally, dense cores also scatter the interstellar radiation field. In the near-infrared, this scattering dominates over other sources of light, resulting in a uniquely useful phenomena we call "Cloudshine". In a few simple situations, we have inverted Cloudshine images to infer the dust density profile of dense cores at unprecedented resolution (a few arcseconds). Over larger regions, Cloudshine can be used to make statistical comparisons between real molecular clouds and simulations thereof.

  17. Cosmic rays, conditions in interplanetary space and geomagnetic variations during solar cycles 19-24

    NASA Astrophysics Data System (ADS)

    Biktash, Lilia

    2016-07-01

    We have studied conditions in interplanetary space, which can have an influence on galactic and solar cosmic rays (CRs). In this connection the solar wind and interplanetary magnetic field parameters and CRs variations have been compared with geomagnetic activity represented by the equatorial Dst and Kp indices beginning from 1955 to the end 2015. The indices are in common practice in the solar wind-magnetosphere-ionosphere interaction studies and they are the final product of this interaction. The important drivers in interplanetary medium which have effect on cosmic rays as CMEs (coronal mass ejections) and CIRs (corotating interaction regions) undergo very strong changes during their propagation to the Earth. Correlation of sunspot numbers and long-term variations of cosmic rays do not adequately reflect peculiarities concerned with the solar wind arrival to 1 AU also. Moreover records of in situ space measurements of the IMF and most other indicators of solar activity cover only a few decades and have a lot of gaps for calculations of long-term variations. Because of this, in such investigations, the geomagnetic indices have some inestimable advantage as continuous series other the solar wind measurements. We have compared the yearly average variations of the indices and of the solar wind parameters with cosmic ray data from Moscow, Climax, Halekala and Oulu neutron monitors during the 20-24 solar cycles. During the descending phases of the solar cycles the long-lasting solar wind high speed streams occurred frequently and were the primary contributors to the recurrent Dst variations and had effects on cosmic rays variations. We show that long-term Dst and Kp variations in these solar cycles were correlated with cosmic ray count rates and can be used for prediction of CR variations. Climate change in connection with evolution of CRs variations is discussed.

  18. Formation of polar ionospheric tongue of ionization during minor geomagnetic disturbed conditions

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Nakamura, Takuji; Liu, Libo; Wang, Wenbin; Balan, Nanan; Nishiyama, Takanori; Hairston, Marc R.; Thomas, E. G.

    2015-08-01

    Previous investigations of ionospheric storm-enhanced density (SED) and tongue of ionization (TOI) focused mostly on the behavior of TOI during intense geomagnetic storms. Little attention has been paid to the spatial and temporal variations of TOI during weak to moderate geomagnetic disturbed conditions. In this paper we investigate the source and development of TOI during a moderate geomagnetic storm on 14 October 2012. Multi-instrumental observations including GPS total electron content (TEC), Defense Meteorological Satellite Program (DMSP) in situ measured total ion concentration and ion drift velocity, SuperDARN measured polar ion convection patterns, and electron density profiles from the Poker Flat Incoherent Scatter Radar (PFISR) have been utilized in the current analysis. GPS TEC maps show salient TOI structures persisting for about 5 h over high latitudes of North America on 14 October 2012 in the later recovery phase of the storm when the magnitudes of IMF By and Bz were less than 5 nT. The PFISR electron density profiles indicate that the extra ionization for TEC enhancements mainly occurred in the topside ionosphere with no obvious changes in the bottomside ionosphere and vertical plasma drifts. Additionally, there were no signatures of penetration electric fields in the equatorial electrojet data and upward ion drifts at high latitudes. At the same time, strong subauroral polarization streams with ion drift speeds exceeding 2.5 km/s carried sunward fluxes and migrated toward lower latitudes for about 5° based on the DMSP cross-track drift measurements. Based on those measurements, we postulate that the combined effects of initial build-up of ionization at midlatitudes through daytime production of ionization and equatorward (or less poleward than normal daytime) neutral wind reducing downward diffusion along the inclined filed lines, and an expanded polar ion convection pattern and its associated horizontal plasma transport are important in the

  19. Formation of Polar Ionospheric Tongue of Ionization during Minor Geomagnetic Disturbed Conditions

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, W.; Burns, A. G.; Yue, X.; Zhang, S.; Zhang, Y.

    2015-12-01

    Previous investigations of ionospheric storm-enhanced density (SED) and tongue of ionization (TOI) focused mostly on the behavior of TOI during intense geomagnetic storms. Little attention has been paid to the spatial and temporal variations of TOI during weak to moderate geomagnetic disturbed conditions. we investigate the source and development of TOI during a moderate geomagnetic storm on 14 October 2012.Multi-instrumental observations including GPS total electron content (TEC), Defense Meteorological SatelliteProgram(DMSP) in situ measured total ion concentration and ion drift velocity, SuperDARN measured polar ionconvection patterns, and electron density profiles from the Poker Flat Incoherent Scatter Radar (PFISR) have been utilized in the current analysis. GPS TEC maps show salient TOI structures persisting for about 5 h over high latitudes of North America on 14 October 2012 in the later recovery phase of the storm when the magnitudes of IMF By and Bz were less than 5 nT. The PFISR electron density profiles indicate that the extra ionization for TEC enhancements mainly occurred in the topside ionosphere with no obvious changes in the bottom side ionosphere and vertical plasma drifts. Additionally, there were no signatures of penetration electric fields in the equatorial electrojet data and upward ion drifts at high latitudes. At the same time, strong subauroral polarization streams with ion drift speeds exceeding 2.5 km/s carried sunward fluxes and migrated toward lower latitudes for about 5° based on the DMSP cross-track driftmeasurements. Based on those measurements,we postulate that the combined effects of initial build-up of ionization at midlatitudes through daytime production of ionization and equatorward (or less poleward than normal daytime) neutral wind reducing downward diffusion along the inclined filed lines, and an expanded polar ion convection pattern and its associated horizontal plasma transport are important in the formation of the TOI.

  20. Comparative Analysis of Stormtime Ring Currents Under Extreme Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    Kozyra, J. U.; Liemohn, M. W.; Thomsen, M. F.; Borovsky, J. E.; Hairston, M. R.; Ridley, A. J.

    2001-12-01

    Several recent magnetic superstorms (6 April 2000, 15 July 2000 and 31 March 2001) are numerically and observationally analyzed to understand the response of the ring current to extreme values of southward IMF Bz. Simulations of these events were carried out using the Michigan ring current drift-loss model (RAM) driven by dynamical fluxes at the nightside outer boundary based on observations. Plasma sheet distributions measured by satellites were used to specify the ring current source population and its variation during the events. Plasma sheet densities were elevated for all three events but reached their most extreme value (near 10 cm-3) during the March 2001 superstorm which also had the largest ěrtminimum Dst*ěrt. Convection electric fields within the inner magnetosphere were specified based on the McIlwain (1986) model scaled by the polar-cap potential (PCP) derived from DMSP observations. Shielding in the McIlwain model was parametrized based on the DMSP auroral boundary index (MBI). Maximum values of the DMSP PCP were < 250 kV for July 2000 and March 2001 compared to peak values near 600 kV predicted by linear parametrizations based on more moderate storms. It is clear that the relationship between the PCP and solar wind Ey changes dramatically during extreme events and this will have a major impact on ring current energization. We examine the relationship between convection strength (polar cap potential), ion source intensity (near-Earth plasma sheet flux), and ion source composition (H+ versus O+) to understand ring current dynamics and evolution during each of these events. Finally, we compare the differences and similarities in the magnetospheric responses to the three selected intervals of extreme solar wind conditions.

  1. Signal conditioning system

    NASA Technical Reports Server (NTRS)

    Zahzah, Mohamad (Inventor); Korkosz, Gregory J. (Inventor); Bohr, Gerald (Inventor)

    2000-01-01

    A current-driven signal conditioning system comprising a first terminal, a second terminal, a strain gauge, and an instrumentation amplifier is disclosed. The strain gauge is adapted to measure a deformation of a structure and to generate a resistance which corresponds to the measured deformation. The instrumentation amplifier is adapted to be connected between the first terminal and the second terminal. The instrumentation amplifier is further adapted to be connected to the strain gauge and to place an output current on the second terminal. The output current is proportional to the resistance generated by the strain gauge. An output resister is coupled between the strain gauge and the second terminal, and a capacitor is coupled between the resister and the first terminal. A zenor diode is coupled between the first terminal and the strain gauge, and a diode is also coupled between the first terminal and the strain gauge.

  2. Conditional sterility in plants

    DOEpatents

    Meagher, Richard B.; McKinney, Elizabeth; Kim, Tehryung

    2010-02-23

    The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

  3. Remote Ischemic Conditioning

    PubMed Central

    Heusch, Gerd; Bøtker, Hans Erik; Przyklenk, Karin; Redington, Andrew; Yellon, Derek

    2014-01-01

    In remote ischemic conditioning (RIC) brief, reversible episodes of ischemia with reperfusion in one vascular bed, tissue or organ confer a global protective phenotype and render remote tissues and organs resistant to ischemia/reperfusion injury. The peripheral stimulus can be chemical, mechanical or electrical and involves activation of peripheral sensory nerves. The signal transfer to the heart or other organs is through neuronal and humoral communications. Protection can be transferred, even across species, with plasma-derived dialysate and involves nitric oxide, stromal derived factor-1α, microRNA-144, but also other, not yet identified factors. Intracardiac signal transduction involves: adenosine, bradykinin, cytokines, and chemokines, which activate specific receptors; intracellular kinases; and mitochondrial function. RIC by repeated brief inflation/deflation of a blood pressure cuff protects against endothelial dysfunction and myocardial injury in percutaneous coronary interventions, coronary artery bypass grafting and reperfused acute myocardial infarction. RIC is safe and effective, noninvasive, easily feasible and inexpensive. PMID:25593060

  4. Explaining Verification Conditions

    NASA Technical Reports Server (NTRS)

    Deney, Ewen; Fischer, Bernd

    2006-01-01

    The Hoare approach to program verification relies on the construction and discharge of verification conditions (VCs) but offers no support to trace, analyze, and understand the VCs themselves. We describe a systematic extension of the Hoare rules by labels so that the calculus itself can be used to build up explanations of the VCs. The labels are maintained through the different processing steps and rendered as natural language explanations. The explanations can easily be customized and can capture different aspects of the VCs; here, we focus on their structure and purpose. The approach is fully declarative and the generated explanations are based only on an analysis of the labels rather than directly on the logical meaning of the underlying VCs or their proofs. Keywords: program verification, Hoare calculus, traceability.

  5. Initial Cladding Condition

    SciTech Connect

    E. Siegmann

    2000-08-22

    The purpose of this analysis is to describe the condition of commercial Zircaloy clad fuel as it is received at the Yucca Mountain Project (YMP) site. Most commercial nuclear fuel is encased in Zircaloy cladding. This analysis is developed to describe cladding degradation from the expected failure modes. This includes reactor operation impacts including incipient failures, potential degradation after reactor operation during spent fuel storage in pool and dry storage and impacts due to transportation. Degradation modes include cladding creep, and delayed hydride cracking during dry storage and transportation. Mechanical stresses from fuel handling and transportation vibrations are also included. This Analysis and Model Report (AMR) does not address any potential damage to assemblies that might occur at the YMP surface facilities. Ranges and uncertainties have been defined. This analysis will be the initial boundary condition for the analysis of cladding degradation inside the repository. In accordance with AP-2.13Q, ''Technical Product Development Planning'', a work plan (CRWMS M&O 2000c) was developed, issued, and utilized in the preparation of this document. There are constraints, caveats and limitations to this analysis. This cladding degradation analysis is based on commercial Pressurized Water Reactor (PWR) fuel with Zircaloy cladding but is applicable to Boiling Water Reactor (BWR) fuel. Reactor operating experience for both PWRs and BWRs is used to establish fuel reliability from reactor operation. It is limited to fuel exposed to normal operation and anticipated operational occurrences (i.e. events which are anticipated to occur within a reactor lifetime), and not to fuel that has been exposed to severe accidents. Fuel burnup projections have been limited to the current commercial reactor licensing environment with restrictions on fuel enrichment, oxide coating thickness and rod plenum pressures. The information provided in this analysis will be used in

  6. Magnetic conditioning in superfluid

    SciTech Connect

    Caspi, S.

    1988-08-01

    Improvements in superconducting magnet technology have reduced to a handful the number of training quenches typical of dipole magnets. The number of training quenches in long (17 m) and short (1--2 m) SSC magnets are now about the same (operating at 6.6 tesla and 4.4 K). Yet the steps necessary to totally eliminate training are in the future RandD plans for magnet construction and conductor motion prevention. The accepted hypothesis is that Lorentz forces and poor mechanical properties of superconducting cables are the cause of conductor motion. Conductor motion reduces the stored energy in the cable by converting it into heat. The small amount of heat generated (millijoules) during motion is usually enough to quench the magnet when it is close to short sample. During training, the magnet performance normally improves with the number of quenches. It is not the quench itself that improves magnet performance but rather the fact that once conductor motion has occurred it will probably not repeat itself unless subjected to higher forces. Conditioning is a process that enables the magnet to reduce its stored energy without causing a premature quench. During the conditioning process the magnet is further cooled from its operating temperature of 4.4 K to 1.8 K by converting He I into He II. As a result the magnet is placed in a state where it has excess stability as well as excellent heat transfer capabilities. Although this does not eliminate motion, if the magnet is now cycled to /approximately/10% above its operating field at 4.4 K (which is above short sample) the excess stability should be enough to prevent quenching and reduce the probability of conductor motion and training once the magnet has been warmed back up to its operating temperature of 4.4 K. 3 refs., 5 figs.

  7. Mugabe: victim of the IMF and World Bank?

    PubMed

    Moore, J L

    2000-06-01

    This paper discusses the role of President Robert Mugabe on the economic crisis in Zimbabwe. It is noted that President Mugabe adopted the Economic Structural Adjustment Programme in 1990. The introduction of this program had more to do with the demands of major exporters, such as White farmers and multinational companies, and the demise of socialist thinking than with any high ideals of altruism. As part of the market strategy, the government removed food subsidies, deregulated the exchange rate, and increased education and health fees. Such moves contributed to the existing crisis in the country, in which access to fertile land has become a matter of survival for many of the 7 million people caught within overcrowded and environmentally degraded communal lands. PMID:12179463

  8. Latitudinal Dependence of the Radial IMF Component: Coronal Imprint

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Smith, E. J.

    1996-01-01

    Measurements by Ulysses have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,) of the interplanetary magnetic field. In the corona, the plasma, beta is much less than 1, except directly above streamers, so longitudinal and latitudinal gradients in field strength will relax due to the transverse magnetic pressure gradient force as the solar wind carries magnetic flux away from the Sun. This happens quickly enough so that the field is essentially uniform by 5 - 10 solar radius, apparently remaining so as it is carried to beyond 1 AU. Here, we illustrate the coronal relaxation with a qualitative physical argument and by reference to a detailed Magneto HydroDynamics (MHD) simulation.

  9. Latitudinal Dependence of the Radial IMF Component - Interplanetary Imprint

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Smith, E. J.; Phillips, J.; Goldstein, B. E.; Nerney, S.

    1996-01-01

    Ulysses measurements have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,), of the interplanetary magnetic field. There are two processes responsible for this observation. In the corona, the plasma beta is much less than 1, except directly above streamers, so both longitudinal and latitudinal (meridional) gradients in field strength will relax, due to the transverse magnetic pressure gradient force, as the solar wind carries magnetic flux away from the Sun. This happens so quickly that the field is essentially uniform by 5 solar radius. Beyond 10 solar radius, beta is greater than 1 and it is possible for a meridional thermal pressure gradient to redistribute magnetic flux - an effect apparently absent in Ulysses and earlier ICE and Interplanetary Magnetic Physics (IMP) data. We discuss this second effect here, showing that its absence is mainly due to the perpendicular part of the anisotropic thermal pressure gradient in the interplanetary medium being too small to drive significant meridional transport between the Sun and approx. 4 AU. This is done using a linear analytic estimate of meridional transport. The first effect was discussed in an earlier paper.

  10. ON THE INITIAL CONDITIONS FOR STAR FORMATION AND THE INITIAL MASS FUNCTION

    SciTech Connect

    Elmegreen, Bruce G.

    2011-04-10

    Density probability distribution functions (PDFs) for turbulent self-gravitating clouds should be convolutions of the local log-normal PDF, which depends on the local average density {rho}{sub ave} and Mach number M, and the PDFs for {rho}{sub ave} and M, which depend on the overall cloud structure. When self-gravity drives a cloud to increased central density, the total PDF develops an extended tail. If there is a critical density or column density for star formation, then the fraction of the local mass exceeding this threshold becomes higher near the cloud center. These elements of cloud structure should be in place before significant star formation begins. Then the efficiency is high so that bound clusters form rapidly, and the stellar initial mass function (IMF) has an imprint in the gas before destructive radiation from young stars can erase it. The IMF could arise from a power-law distribution of mass for cloud structure. These structures should form stars down to the thermal Jeans mass M{sub J} at each density in excess of a threshold. The high-density tail of the PDF, combined with additional fragmentation in each star-forming core, extends the IMF into the brown dwarf regime. The core fragmentation process is distinct from the cloud structuring process and introduces an independent core fragmentation mass function (CFMF). The CFMF would show up primarily below the IMF peak.

  11. A Case Study in Leveraging Major Science at Low Cost: Development of Large Scale Birkeland Currents Determined from AMPERE

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Dyrud, L. P.; Korth, H.; Waters, C. L.; Green, D. L.; Barnes, R. J.

    2011-12-01

    The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) uses the constellation of Iridium Communications satellites in 780-km-altitude, circular, polar orbits to monitor the global Birkeland currents with a nine-minute cadence. This allows us to follow the development of these currents through transitions from quiescent conditions to moderate driving as indicated by rotations of the interplanetary magnetic field (IMF) from northward to southward. AMPERE data are available beginning on October 2009 for development testing purposes and for continuous science observations starting in June 2010. Data are processed in 10-minute windows stepped by two minutes to derive global Birkeland currents with a minimum intensity of 0.2 mirco-A/m2. A transition event ocurred on 24 February 2010, which illustrates one type of systematic behavior found. As measured by ACE at the first Langrangian point, L1, the IMF was northward and sunward from 1300 to 1420 UT with a BZ component of +2 to +3 nT. At 1420 UT, the IMF began rotating southward reaching -2 to -3 nT by 1510 UT. At Earth, the first enhancement in Birkeland currents occurs at 1524-1534 UT on the dayside, reflecting reconnection driven convection associated with the positive IMF BY that persisted through the event. The dayside currents continued to intensify through 1540-1550 UT and extended from mid-morning to dusk. At 1542-1552 UT, isolated nightside currents appear at midnight and are localized in latitude and longitude, extending less than one hour pre or post-midnight. Ten minutes later the nightside currents expand to most of the nighside and merge with the dayside system. The nightside currents then continue to intensify, first near midnight and expand toward both dawn and dusk, resulting in a fully formed classic Region 1/Region 2 current system by 1640-1650 UT. The results indicate that dayside reconnection drives both Region-1 and Region-2-sense currents, whereas the nightside currents

  12. Terrestrial Myriametric Radio Burst Observed by IMAGE and Geotail Satellites

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Hashimoto, KoZo; Kojima, Hirotsugu; Boardson, Scott A.; Garcia, Leonard N.; Matsumoto, Hiroshi; Green, James L.; Reinisch, Bodo W.

    2013-01-01

    We report the simultaneous detection of a terrestrial myriametric radio burst (TMRB) by IMAGE and Geotail on 19 August 2001. The TMRB was confined in time (0830-1006 UT) and frequency (12-50kHz). Comparisons with all known nonthermal myriametric radiation components reveal that the TMRB might be a distinct radiation with a source that is unrelated to the previously known radiation. Considerations of beaming from spin-modulation analysis and observing satellite and source locations suggest that the TMRB may have a fan beamlike radiation pattern emitted by a discrete, dayside source located along the poleward edge of magnetospheric cusp field lines. TMRB responsiveness to IMF Bz and By orientations suggests that a possible source of the TMRB could be due to dayside magnetic reconnection instigated by northward interplanetary field condition.

  13. Multi-Sensor Data Fusion Identification for Shearer Cutting Conditions Based on Parallel Quasi-Newton Neural Networks and the Dempster-Shafer Theory

    PubMed Central

    Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Xu, Jing; Zheng, Kehong

    2015-01-01

    In order to efficiently and accurately identify the cutting condition of a shearer, this paper proposed an intelligent multi-sensor data fusion identification method using the parallel quasi-Newton neural network (PQN-NN) and the Dempster-Shafer (DS) theory. The vibration acceleration signals and current signal of six cutting conditions were collected from a self-designed experimental system and some special state features were extracted from the intrinsic mode functions (IMFs) based on the ensemble empirical mode decomposition (EEMD). In the experiment, three classifiers were trained and tested by the selected features of the measured data, and the DS theory was used to combine the identification results of three single classifiers. Furthermore, some comparisons with other methods were carried out. The experimental results indicate that the proposed method performs with higher detection accuracy and credibility than the competing algorithms. Finally, an industrial application example in the fully mechanized coal mining face was demonstrated to specify the effect of the proposed system. PMID:26580620

  14. Multi-Sensor Data Fusion Identification for Shearer Cutting Conditions Based on Parallel Quasi-Newton Neural Networks and the Dempster-Shafer Theory.

    PubMed

    Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Xu, Jing; Zheng, Kehong

    2015-01-01

    In order to efficiently and accurately identify the cutting condition of a shearer, this paper proposed an intelligent multi-sensor data fusion identification method using the parallel quasi-Newton neural network (PQN-NN) and the Dempster-Shafer (DS) theory. The vibration acceleration signals and current signal of six cutting conditions were collected from a self-designed experimental system and some special state features were extracted from the intrinsic mode functions (IMFs) based on the ensemble empirical mode decomposition (EEMD). In the experiment, three classifiers were trained and tested by the selected features of the measured data, and the DS theory was used to combine the identification results of three single classifiers. Furthermore, some comparisons with other methods were carried out. The experimental results indicate that the proposed method performs with higher detection accuracy and credibility than the competing algorithms. Finally, an industrial application example in the fully mechanized coal mining face was demonstrated to specify the effect of the proposed system. PMID:26580620

  15. Flue gas conditioning today

    SciTech Connect

    Southam, B.J.; Coe, E.L. Jr.

    1995-12-01

    Many relatively small electrostatic precipitators (ESP`s) exist which collect fly ash at remarkably high efficiencies and have been tested consistently at correspondingly high migration velocities. But the majority of the world`s coal supplies produce ashes which are collected at much lower migration velocities for a given efficiency and therefore require correspondingly large specific collection areas to achieve acceptable results. Early trials of flue gas conditioning (FGC) showed benefits in maximizing ESP performance and minimizing expense which justified continued experimentation. Trials of several dozen ways of doing it wrong eventually developed a set of reliable rules for doing it right. One result is that the use of sulfur trioxide (SO{sub 3}) for adjustment of the resistivity of fly ash from low sulfur coal has been widely applied and has become an automatically accepted part of the option of burning low sulfur coal for compliance with the Clean Air Act of l990 in the U.S.A. Currently, over 100,000 MW of generating capacity is using FGC, and it is estimated that approximately 45,800 MW will utilize coal-switching with FGC for Clean Air Act emission compliance. Guarantees that this equipment will be available to operate at least 98 percent of the time it is called upon are routinely fulfilled.

  16. Counterfactual and prefactual conditionals.

    PubMed

    Byrne, Ruth M J; Egan, Suzanne M

    2004-06-01

    We consider reasoning about prefactual possibilities in the future, for example, "if I were to win the lottery next year I would buy a yacht" and counterfactual possibilities, for example, "if I had won the lottery last year, I would have bought a yacht." People may reason about indicative conditionals, for example, "if I won the lottery I bought a yacht" by keeping in mind a few true possibilities, for example, "I won the lottery and I bought a yacht." They understand counterfactuals by keeping in mind two possibilities, the conjecture, "I won the lottery and I bought a yacht" and the presupposed facts, "I did not win the lottery and I did not buy a yacht." We report the results of three experiments on prefactuals that examine what people judge them to imply, the possibilities they judge to be consistent with them, and the inferences they judge to follow from them. The results show that reasoners keep a single possibility in mind to understand a prefactual. PMID:15285601

  17. Universal Signal Conditioning Amplifier

    NASA Technical Reports Server (NTRS)

    Kinney, Frank

    1997-01-01

    The Technological Research and Development Authority (TRDA) and NASA-KSC entered into a cooperative agreement in March of 1994 to achieve the utilization and commercialization of a technology development for benefiting both the Space Program and U.S. industry on a "dual-use basis". The technology involved in this transfer is a new, unique Universal Conditioning Amplifier (USCA) used in connection with various types of transducers. The project was initiated in partnership with I-Net Corporation, Lockheed Martin Telemetry & Instrumentation (formerly Loral Test and Information Systems) and Brevard Community College. The project consists of designing, miniaturizing, manufacturing, and testing an existing prototype of USCA that was developed for NASA-KSC by the I-Net Corporation. The USCA is a rugged and field-installable self (or remotely)- programmable amplifier that works in combination with a tag random access memory (RAM) attached to various types of transducers. This summary report comprises performance evaluations, TRDA partnership tasks, a project summary, project milestones and results.

  18. Universal signal conditioning amplifier

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Hallberg, Carl; Cecil, Jim

    1994-01-01

    A state-of-the-art instrumentation amplifier capable of being used with most types of transducers has been developed at the Kennedy Space Center. This Universal Signal Conditioning Amplifier (USCA) can eliminate costly measurement setup item and troubleshooting, improve system reliability and provide more accurate data than conventional amplifiers. The USCA can configure itself for maximum resolution and accuracy based on information read from a RAM chip attached to each transducer. Excitation voltages or current are also automatically configured. The amplifier uses both analog and digital state-of-the-art technology with analog-to-digital conversion performed in the early stages in order to minimize errors introduced by offset and gain drifts in the analog components. A dynamic temperature compensation scheme has been designed to achieve and maintain 12-bit accuracy of the amplifier from 0 to 70 C. The digital signal processing section allows the implementation of digital filters up to 511th order. The amplifier can also perform real-time linearizations up to fourth order while processing data at a rate of 23.438 kS/s. Both digital and analog outputs are available from the amplifier.

  19. The Probabilities of Conditionals Revisited

    ERIC Educational Resources Information Center

    Douven, Igor; Verbrugge, Sara

    2013-01-01

    According to what is now commonly referred to as "the Equation" in the literature on indicative conditionals, the probability of any indicative conditional equals the probability of its consequent of the conditional given the antecedent of the conditional. Philosophers widely agree in their assessment that the triviality arguments of…

  20. The Probability of Causal Conditionals

    ERIC Educational Resources Information Center

    Over, David E.; Hadjichristidis, Constantinos; Evans, Jonathan St. B. T.; Handley, Simon J.; Sloman, Steven A.

    2007-01-01

    Conditionals in natural language are central to reasoning and decision making. A theoretical proposal called the Ramsey test implies the conditional probability hypothesis: that the subjective probability of a natural language conditional, P(if p then q), is the conditional subjective probability, P(q [such that] p). We report three experiments on…

  1. Assessing the planet's condition.

    PubMed

    Brown, L R

    1990-01-01

    The destruction of the environment has accelerated since the Earth Day of 1970, the world's population has increased by another 1.6 billion, and over 500 million acres of forest have been lost. Carbon dioxide levels, greenhouse gases, and chlorofluorocarbons have increased in the atmosphere with evidence that global warming has started. The ozone hole has appeared, acid rain has destroyed forests, air pollution in major northern hemisphere cities has worsened, and species are disappearing, while toxic chemicals have been dumped indiscriminately. World grain production has fallen while population has increased. In Europe 14 countries have stabilized their population, and Japan, France, and Finland are on the way to zero growth. Reduction of high fertility in 1/2 could halt the deterioration of living conditions. Japan and China achieved this within a decade. Energy efficiency has to be attained; US cars still consume too much gas. Solar energy with photovoltaic cells to provide power, fuel alcohol from plants, and solar thermal power plants have potential. Semiarid regions, such as northern Africa, could become major producers of solar energy. Various measures are mandatory to cut down on waste: to recycle paper bags, to use standardized glasses for beverages, and to utilize scrap metal in electric arc steel furnaces. Reforestation is also on the agenda, as major deforestation has occurred in the Brazilian Amazon region, in India, and in Europe because of acid rain. Australia's national plan envisions planting 1 billion trees, and the US project is of similar magnitude during the 1990s. Only the US has succeeded in erosion control and topsoil stabilization when it converted erodible cropland into grassland or woodland during 1986-90. PMID:12285798

  2. Plasma structuring in the polar cap

    SciTech Connect

    Basu, S.; Basu, S.; Weber, E.J.; Bishop, G.J.

    1990-01-01

    Propagation experiments providing scintillation, total electron content and drift data in the field of view of an all-sky imager near the magnetic polar in Greenland are utilized to investigate the manner in which ionospheric plasma becomes structured within the polar cap. It is found that under IMF Bz southward conditions, large scale ionization patches which are convected through the dayside cusp into the polar cap get continually structured. The structuring occurs through the ExB gradient drift instability process which operates through an interaction between the antisunward plasma convection in the neutral rest frame and large scale plasma density gradients that exist at the edges of the ionization patches. It is shown that with the increase of solar activity the strength of the irregularities integrated through the ionosphere is greatly increased. Under the IMF Bz northward conditions, the plasma structuring occurs around the polar cap arcs in the presence of inhomogeneous electric field or disordered plasma convection. In that case, the irregularity generation is caused by the competing processes of non-linear Kelvin-Helmholtz instability driven by sheared plasma flows and the gradient drift instability process which operates in the presence of dawn-dusk motion of arc structures. The integrated strength of this class of irregularities also exhibits marked increase with increasing solar activity presumably because the ambient plasma density over the polar cap is enhanced.

  3. A morphological description and statistical classification of dayside diffuse aurora observed at Yellow River Station in Ny-Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Chen, Xiangcai; Han, Desheng; Hu, Zejun

    2013-04-01

    Ground optical observations are best suited to identify morphological characteristics of the dayside diffuse aurora that usually brightens at the equatorward of the auroral oval. Using 7-winter optical auroral observations, we recognized that the dayside diffuse aurora has a variety of temporal and spatial size scales and forms. Mostly dayside diffuse auroral forms have drawn together in a general classification based on their morphological characteristics and occurrence time. Four primary categories of dayside diffuse aurora are classified: (1) Veiling Diffuse Aurora (VDA), which has no obvious morphological structure and clear boundaries, sometimes like a thick cloud covering the entire sky; (2) Patchy Diffuse Aurora (PDA), which usually occurred accompany by pulsating aurora, mostly in spatial scale of 10-100 km diameter width but occasionally to hundreds kilometer; (3) Diffuse Aurora Arc (DAA), which was obviously different from discrete auroral arcs in morphology; (4) Pulsating Aurora (PA), occurred with sparkling forms. The luminosity of PA commonly showed periodic variation with the oscillating appearance. The occurrence rate of each type shows a parabolic distribution with magnetic local time (MLT), and the occurrence peak is found to be mostly near the cusp region. The duration time of pulsating aurora on cusp region was markedly longer than that on nightside. Dayside diffuse aurora more commonly occurred under quiet geomagnetic condition as measured by the Kp index, which indicates almost 92.2% occurrence at the Kp ≤ 3. To investigate whether the interplanetary magnetic field (IMF) controls dayside diffuse aurora occurrence, we present a general bias comparison of IMF three components. Under the IMF condition of negative By accompanied with positive Bz, it could be expected that the dayside diffuse aurora would be easier to observe. We suggest that a negative IMF By associated field-aligned current (FAC) at the lower latitude region in the Northern

  4. Oceanographic Conditions Limit the Spread of a Marine Invader along Southern African Shores.

    PubMed

    Assis, Jorge; Zupan, Mirta; Nicastro, Katy R; Zardi, Gerardo I; McQuaid, Christopher D; Serrão, Ester A

    2015-01-01

    Invasive species can affect the function and structure of natural ecological communities, hence understanding and predicting their potential for spreading is a major ecological challenge. Once established in a new region, the spread of invasive species is largely controlled by their dispersal capacity, local environmental conditions and species interactions. The mussel Mytilus galloprovincialis is native to the Mediterranean and is the most successful marine invader in southern Africa. Its distribution there has expanded rapidly and extensively since the 1970s, however, over the last decade its spread has ceased. In this study, we coupled broad scale field surveys, Ecological Niche Modelling (ENM) and Lagrangian Particle Simulations (LPS) to assess the current invaded distribution of M. galloprovincialis in southern Africa and to evaluate what prevents further spread of this species. Results showed that all environmentally suitable habitats in southern Africa have been occupied by the species. This includes rocky shores between Rocky Point in Namibia and East London in South Africa (approx. 2800 km) and these limits coincide with the steep transitions between cool-temperate and subtropical-warmer climates, on both west and southeast African coasts. On the west coast, simulations of drifting larvae almost entirely followed the northward and offshore direction of the Benguela current, creating a clear dispersal barrier by advecting larvae away from the coast. On the southeast coast, nearshore currents give larvae the potential to move eastwards, against the prevalent Agulhas current and beyond the present distributional limit, however environmental conditions prevent the establishment of the species. The transition between the cooler and warmer water regimes is therefore the main factor limiting the northern spread on the southeast coast; however, biotic interactions with native fauna may also play an important role. PMID:26114766

  5. Oceanographic Conditions Limit the Spread of a Marine Invader along Southern African Shores

    PubMed Central

    Nicastro, Katy R.; Zardi, Gerardo I.; McQuaid, Christopher D.; Serrão, Ester A.

    2015-01-01

    Invasive species can affect the function and structure of natural ecological communities, hence understanding and predicting their potential for spreading is a major ecological challenge. Once established in a new region, the spread of invasive species is largely controlled by their dispersal capacity, local environmental conditions and species interactions. The mussel Mytilus galloprovincialis is native to the Mediterranean and is the most successful marine invader in southern Africa. Its distribution there has expanded rapidly and extensively since the 1970s, however, over the last decade its spread has ceased. In this study, we coupled broad scale field surveys, Ecological Niche Modelling (ENM) and Lagrangian Particle Simulations (LPS) to assess the current invaded distribution of M. galloprovincialis in southern Africa and to evaluate what prevents further spread of this species. Results showed that all environmentally suitable habitats in southern Africa have been occupied by the species. This includes rocky shores between Rocky Point in Namibia and East London in South Africa (approx. 2800 km) and these limits coincide with the steep transitions between cool-temperate and subtropical-warmer climates, on both west and southeast African coasts. On the west coast, simulations of drifting larvae almost entirely followed the northward and offshore direction of the Benguela current, creating a clear dispersal barrier by advecting larvae away from the coast. On the southeast coast, nearshore currents give larvae the potential to move eastwards, against the prevalent Agulhas current and beyond the present distributional limit, however environmental conditions prevent the establishment of the species. The transition between the cooler and warmer water regimes is therefore the main factor limiting the northern spread on the southeast coast; however, biotic interactions with native fauna may also play an important role. PMID:26114766

  6. Children with chronic conditions: perspectives on condition management.

    PubMed

    Beacham, Barbara L; Deatrick, Janet A

    2015-01-01

    This qualitative study described children's (8-13 years old) perspectives of their chronic health conditions (e.g., asthma, diabetes, cystic fibrosis): how they perceived their condition, its management, and its implications for their future. The study used the family management style framework (FMSF) to examine child perspectives on the joint venture of condition management between the child and family. Children within this age group viewed condition management in ways similar to their parents and have developed their own routines around condition management. Future studies of this phenomenon comparing child and parent perspectives would further our understanding of the influence of family management. PMID:25458105

  7. CLASSICAL CONDITIONING AND PAIN: CONDITIONED ANALGESIA AND HYPERALGESIA

    PubMed Central

    Miguez, Gonzalo; Laborda, Mario A.; Miller, Ralph R.

    2013-01-01

    This article reviews situations in which stimuli produce an increase or a decrease in nociceptive responses through basic associative processes and provides an associative account of such changes. Specifically, the literature suggests that cues associated with stress can produce conditioned analgesia or conditioned hyperalgesia, depending on the properties of the conditioned stimulus (e.g., contextual cues and audiovisual cues vs. gustatory and olfactory cues, respectively) and the proprieties of the unconditioned stimulus (e.g., appetitive, aversive, or analgesic, respectively). When such cues are associated with reducers of exogenous pain (e.g., opiates), they typically increase sensitivity to pain. Overall, the evidence concerning conditioned stress-induced analgesia, conditioned hyperalagesia, conditioned tolerance to morphine, and conditioned reduction of morphine analgesia suggests that selective associations between stimuli underlie changes in pain sensitivity. PMID:24269884

  8. Operant Conditioning for Special Educators.

    ERIC Educational Resources Information Center

    Pedrini, Bonnie C.; Pedrini, D. T.

    The paper briefly explains operant conditioning as it pertains to special educators. Operant conditioning is thought to be an efficient method for modifying student behavior. Using the B. F. Skinner frame of reference, operant conditioning is said to include behavior modification and therapy, programed instruction, and computer assisted and…

  9. Teaching and Demonstrating Classical Conditioning.

    ERIC Educational Resources Information Center

    Sparrow, John; Fernald, Peter

    1989-01-01

    Discusses classroom demonstrations of classical conditioning and notes tendencies to misrepresent Pavlov's procedures. Describes the design and construction of the conditioner that is used for demonstrating classical conditioning. Relates how students experience conditioning, generalization, extinction, discrimination, and spontaneous recovery.…

  10. Teacher Working Conditions that Matter

    ERIC Educational Resources Information Center

    Leithwood, Ken; McAdie, Pat

    2007-01-01

    To advance understanding of the issues concerning teachers' working conditions, the Elementary Teachers' Federation of Ontario commissioned one of the authors to do an analytical review of literature on teachers' working conditions. This resulted in the publication, "Teacher Working Conditions That Matter: Evidence for Change." The framework for…

  11. Modelling the magnetic field in Mercury's magnetosheath

    NASA Astrophysics Data System (ADS)

    Parunakian, David; Dyadechkin, Sergey; Alexeev, Igor; Belenkaya, Elena; Khodachenko, Maxim; Kallio, Esa; Alho, Markku

    2016-04-01

    The main focus of the present work is to estimate the accuracy of the new assimilated model (based on the paraboloid model of magnetosphere by Moscow State University and the 3D hybrid model by Aalto University) for Mercury's magnetic field in the magnetosheath by comparing its predictions with MESSENGER magnetometer measurements along several typical orbits. The duration of each magnetosheath pass is approximately one hour for dawn-dusk orbits, which is substantially longer than characteristic times of inner magnetospheric processes as well as the time required for solar wind to flow past Mercury's magnetosphere (approximately 1 min for L ˜ 10RM). Because of that, we need to carefully select the orbits to use from the available array of over 8000 magnetosheath crossings to satisfy the necessary condition of similar solar wind properties in orbit segments incoming and outgoing the magnetosheath. We pay special attention to the differences in the Mercury-solar wind interactions for southward and northward IMF. Dependence of reconnection phenomena on the IMF Bz direction is clearly demonstrated by our assimilated hybrid and paraboloid model simulation runs. We also examine the magnetosheath plasma parameters for signatures of a plasma depletion layer and examine the properties of Mercury's magnetopause.

  12. Solar Radiation Influence on Ground-Level Geomagnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Weimer, D. R.; Clauer, C. R.

    2011-12-01

    An empirical model has been developed for predicting ground-level geomagnetic perturbations. Measurements from over 112 magnetometers were used, along with simultaneous observations of the solar wind and interplanetary magnetic field (IMF) from the ACE satellite. These data were from an eight-year period, from 1998 through 2005, covering both the rise and fall of the solar cycle. Variations in the solar radiation during this cycle are incorporated into the model, as determined by the F10.7 index of solar radio flux. Variations in ionospheric conductivity, under the influence of both season (dipole tilt angle) and solar radiation are implicitly included. Comparisons of model calculations with measurements at different locations show very good results. Maps of the magnetic perturbations for different conditions generally look as expected. Surprisingly, increasing the F10.7 index does not always increase the magnetic perturbations on the ground at all locations, as one might expect. The largest increases in the perturbations occur near the cusp when the IMF is Northward or has a strong Y component. However, in the nightside, as well as under the Region-2 currents, the ground-level perturbations are more likely to have a smaller magnitude with a higher F10.7 index.

  13. Common skin conditions during pregnancy.

    PubMed

    Tunzi, Marc; Gray, Gary R

    2007-01-15

    Common skin conditions during pregnancy generally can be separated into three categories: hormone-related, preexisting, and pregnancy-specific. Normal hormone changes during pregnancy may cause benign skin conditions including striae gravidarum (stretch marks); hyperpigmentation (e.g., melasma); and hair, nail, and vascular changes. Preexisting skin conditions (e.g., atopic dermatitis, psoriasis, fungal infections, cutaneous tumors) may change during pregnancy. Pregnancy-specific skin conditions include pruritic urticarial papules and plaques of pregnancy, prurigo of pregnancy, intrahepatic cholestasis of pregnancy, pemphigoid gestationis, impetigo herpetiformis, and pruritic folliculitis of pregnancy. Pruritic urticarial papules and plaques of pregnancy are the most common of these disorders. Most skin conditions resolve postpartum and only require symptomatic treatment. However, there are specific treatments for some conditions (e.g., melasma, intrahepatic cholestasis of pregnancy, impetigo herpetiformis, pruritic folliculitis of pregnancy). Antepartum surveillance is recommended for patients with intrahepatic cholestasis of pregnancy, impetigo herpetiformis, and pemphigoid gestationis. PMID:17263216

  14. Polarity in Conditionals and Conditional-Like Constructions

    ERIC Educational Resources Information Center

    Hsieh, I-Ta Chris

    2012-01-01

    This dissertation concerns the distribution of negative polarity items (henceforth, NPIs) in conditionals and conditional-like constructions. NPIs include words such as any and ever and idioms such as "give a damn" and "lift a finger"; these expressions have only a limited distribution. In this dissertation, the distribution of…

  15. How People Interpret Conditionals: Shifts toward the Conditional Event

    ERIC Educational Resources Information Center

    Fugard, Andrew J. B.; Pfeifer, Niki; Mayerhofer, Bastian; Kleiter, Gernot D.

    2011-01-01

    We investigated how people interpret conditionals and how stable their interpretation is over a long series of trials. Participants were shown the colored patterns on each side of a 6-sided die and were asked how sure they were that a conditional holds of the side landing upward when the die is randomly thrown. Participants were presented with 71…

  16. FPC conditioning cart at BNL

    SciTech Connect

    Xu, W.; Ben-Zvi, I.; Altinbas, F.Z.; Belomestnykh, S.; Burrill, A.; Cole, M.; Deonarine, J.; Jamilkowski, J.; Kayran, D.; Laloudakis, N.; Masi Jr, L.; McIntyre, G.; Pate, D.; Philips, D.; Seda, T.; Steszyn, A.; Tallerico, T.; Todd, R.; Weiss, D.; White, G.; Zaltsman, A.

    2011-03-28

    The 703 MHz superconducting gun for the BNL Energy Recovery Linac (ERL) prototype has two fundamental power couplers (FPCs), and each of them will deliver up to 500 kW of CW RF power. In order to prepare the couplers for high power RF service and process multipacting, the FPCs should be conditioned prior to installation into the gun cryomodule. A conditioning cart based test stand, which includes a vacuum pumping system, controllable bake-out system, diagnostics, interlocks and data log system has been designed, constructed and commissioned by collaboration of BNL and AES. This paper presents FPC conditioning cart systems and the conditioning process.

  17. Conditional entropy of ordinal patterns

    NASA Astrophysics Data System (ADS)

    Unakafov, Anton M.; Keller, Karsten

    2014-02-01

    In this paper we investigate a quantity called conditional entropy of ordinal patterns, akin to the permutation entropy. The conditional entropy of ordinal patterns describes the average diversity of the ordinal patterns succeeding a given ordinal pattern. We observe that this quantity provides a good estimation of the Kolmogorov-Sinai entropy in many cases. In particular, the conditional entropy of ordinal patterns of a finite order coincides with the Kolmogorov-Sinai entropy for periodic dynamics and for Markov shifts over a binary alphabet. Finally, the conditional entropy of ordinal patterns is computationally simple and thus can be well applied to real-world data.

  18. Evolution of the current system during solar wind pressure pulses based on aurora and magnetometer observations

    NASA Astrophysics Data System (ADS)

    Nishimura, Yukitoshi; Kikuchi, Takashi; Ebihara, Yusuke; Yoshikawa, Akimasa; Imajo, Shun; Li, Wen; Utada, Hisashi

    2016-08-01

    We investigated evolution of ionospheric currents during sudden commencements using a ground magnetometer network in conjunction with an all-sky imager, which has the advantage of locating field-aligned currents much more accurately than ground magnetometers. Preliminary (PI) and main (MI) impulse currents showed two-cell patterns propagating antisunward, particularly during a southward interplanetary magnetic field (IMF). Although this overall pattern is consistent with the Araki (solar wind sources of magnetospheric ultra-low-frequency waves. Geophysical monograph series, vol 81. AGU, Washington, DC, pp 183-200, 1994. doi: 10.1029/GM081p0183) model, we found several interesting features. The PI and MI currents in some events were highly asymmetric with respect to the noon-midnight meridian; the post-noon sector did not show any notable PI signal, but only had an MI starting earlier than the pre-noon MI. Not only equivalent currents but also aurora and equatorial magnetometer data supported the much weaker PI response. We suggest that interplanetary shocks impacting away from the subsolar point caused the asymmetric current pattern. Additionally, even when PI currents form in both pre- and post-noon sectors, they can initiate and disappear at different timings. The PI currents did not immediately disappear but coexisted with the MI currents for the first few minutes of the MI. During a southward IMF, the MI currents formed equatorward of a preexisting DP-2, indicating that the MI currents are a separate structure from a preexisting DP-2. In contrast, the MI currents under a northward IMF were essentially an intensification of a preexisting DP-2. The magnetometer and imager combination has been shown to be a powerful means for tracing evolution of ionospheric currents, and we showed various types of ionospheric responses under different upstream conditions.

  19. Special features of a substorm during high solar wind dynamic pressure

    SciTech Connect

    Lui, A.T.Y.; Ohtani, S.; Newell, P.T.

    1995-10-01

    A substorm on July 24, 1986, exhibiting a rather unusual auroral morphology is analyzed with data from spacecraft (Viking; DMSP F6 and F7; GOES 5 and 6; three LANL geosynchronous satellites; CCE; and IMP 8). This substorm occurred during high solar wind dynamic pressure (>5 nPa). Several notable features for this substorm are: (1) the substorm onset activity was preceded by prominent auroral activations in the morning sector with spatial separations between adjacent bright regions ranging from {approximately}160 to 640 km, and their intensity was modulated at {approximately}3.2-min intervals; (2) the initial substorm activity was concentrated in the morning sector, followed by a sudden activation in the dusk sector, leaving the midnight sector relatively undisturbed, in sharp contrast to the traditional substorm development; (3) while a substorm injection was observed at a geocentric distance of {approximately}8.4 R{sub E} by CCE in association with the substorm onset, particle injections (detectable with three LANL geosynchronous satellites) and dipolarization signatures (detectable by the two GOES satellites) were not observed until subsequent intensifications; (4) timing subsequent substorm intensifications from injections at the geosynchronous altitude differed from timing intensifications based on Viking auroral images by as much as {approximately}3 min; (5) the polar cap boundary was at a significantly higher latitude than the poleward boundary delineated by detectable auroral luminosity in the auroral oval. Detailed timing analysis suggests the substorm onset to be associated with southward interplanetary magnetic field (IMF), possibly with the crossing of an IMF sector boundary (interplanetary current sheet). The dimming of auroral luminosity in the midnight region was associated with a sudden northward turning of the IMF during high solar wind dynamic pressure condition. 36 refs., 14 figs.

  20. Reconstructing coastal environmental condition in the eastern Norwegian Sea by means of Arctica islandica sclerochronological records

    NASA Astrophysics Data System (ADS)

    Trofimova, Tamara; Andersson, Carin

    2015-04-01

    Paleo archives are fundament in improving our knowledge of the natural climate variability. Established marine proxy records for the ocean, especially for high latitudes, are both sparsely distributed and are poorly resolved in time. The identification and development of new archives and proxies for studying key ocean processes at annual to sub-annual resolution that can extend the marine instrumental record is therefore a clear priority for marine climate science. The bivalve species Arctica islandica is a unique paleoclimatic archive with an exceptional longevity combined with high temporal resolution, due to accretion of annual growth increments. The aim of this study is to use sclerochronological records of A. islandica to extend instrumental hydrographic records and increase our understanding of a variability of a Norwegian Coastal Current (NCC). The NCC transports warm, low-salinity water northwards, which eventually plays role for the Arctic halocline. Moreover, previous investigations showed the connection of properties and variability of the NCC with catches of commercially valuable fishes. The knowledge of the variability of the NCC is also essential for possible future prediction climate conditions and fish stock variability in the region. In this study we use shells of Arctica islandica collected off the coast of Eggum (Lofoten, Norway). The material was obtained from the depth 5-10 m by dredging along the seabed and by means of scuba divers. We examine the growth patterns of living and subfossil shells. Ongoing work mainly focuses on the construction of a composite growth chronology based on increment-width time series. The results we will compare with existing time series of the environment and climatic parameters to determine the controlling factors and test the applicability of growth chronology in a climate reconstruction. Furthermore, we will perform geochemical analyses of the stable isotope composition (δ18O and δ13C) in shell carbonate to

  1. Storm surges in the Mediterranean Sea: Variability and trends under future climatic conditions

    NASA Astrophysics Data System (ADS)

    Androulidakis, Yannis S.; Kombiadou, Katerina D.; Makris, Christos V.; Baltikas, Vassilis N.; Krestenitis, Yannis N.

    2015-09-01

    The trends of storm surge extremes in the Mediterranean Sea for a period of 150 years (1951-2100) are explored, using a high-resolution storm surge model. Numerical simulations are forced by the output of regional climate simulations with RegCM3, which uses IPCC's historical data on greenhouse gasses emissions for the (past) period 1951-2000, and IPCC's A1B climate scenario for the (future) period 2001-2100. Comparisons between observations and modeling results show good agreement and confirm the ability of our model to estimate the response of the sea surface to future climatic conditions. We investigate the future trends, the variability and frequency of local extremes and the main forcing mechanisms that can induce strong surges in the Mediterranean region. Our results support that there is a general decreasing trend in storminess under the considered climate scenario, mostly related to the frequency of local peaks and the duration and spatial coverage of the storm surges. The northward shift in the location of storm tracks is a possible reason for this storminess attenuation, especially over areas where the main driving factor of extreme events is the inverted barometer effect. However, the magnitudes of sea surface elevation extremes may increase in several Mediterranean sub-regions, i.e., Southern Adriatic, Balearic and Tyrrhenian Seas, during the 21st century. There are clear distinctions in the contributions of winds and pressure fields to the sea level height for various regions of the Mediterranean Sea, as well as on the seasonal variability of extreme values; the Aegean and Adriatic Seas are characteristic examples, where high surges are predicted to be mainly induced by low pressure systems and favorable winds, respectively.

  2. Reevaluating evaluative conditioning: a nonassociative explanation of conditioning effects in the visual evaluative conditioning paradigm.

    PubMed

    Field, A P; Davey, G C

    1999-04-01

    In 2 studies, the authors investigated whether evaluative conditioning (EC) is an associative phenomenon. Experiment 1 compared a standard EC paradigm with nonpaired and no-treatment control conditions. EC effects were obtained only when the conditioned stimulus (CS) and unconditioned stimulus (UCS) were rated as perceptually similar. However, similar EC effects were obtained in both control groups. An earlier failure to obtain EC effects was reanalyzed in Experiment 2. Conditioning-like effects were found when comparing a CS with the most perceptually similar UCSs used in the procedure but not when analyzing a CS rating with respect to the UCS with which it was paired during conditioning. The implications are that EC effects found in many studies are not due to associative learning and that the special characteristics of EC (conditioning without awareness and resistance to extinction) are probably nonassociative artifacts of the EC paradigm. PMID:10331920

  3. Matching and Conditioned Reinforcement Rate

    ERIC Educational Resources Information Center

    Shahan, Timothy A.; Podlesnik, Christopher A.; Jimenez-Gomez, Corina

    2006-01-01

    Attempts to examine the effects of variations in relative conditioned reinforcement rate on choice have been confounded by changes in rates of primary reinforcement or changes in the value of the conditioned reinforcer. To avoid these problems, this experiment used concurrent observing responses to examine sensitivity of choice to relative…

  4. The National Wetland Condition Assessment

    EPA Science Inventory

    The first National Wetland Condition Assessment (NWCA) was conducted in 2011 by the US Environmental Protection Agency (USEPA). Vegetation, algae, soil, water chemistry,and hydrologic data were collected at each of 1138 sites across the contiguous US. Ecological condition was ass...

  5. Entanglement conditions and polynomial identities

    SciTech Connect

    Shchukin, E.

    2011-11-15

    We develop a rather general approach to entanglement characterization based on convexity properties and polynomial identities. This approach is applied to obtain simple and efficient entanglement conditions that work equally well in both discrete as well as continuous-variable environments. Examples of violations of our conditions are presented.

  6. Conditional Logic and Primary Children.

    ERIC Educational Resources Information Center

    Ennis, Robert H.

    Conditional logic, as interpreted in this paper, means deductive logic characterized by "if-then" statements. This study sought to investigate the knowledge of conditional logic possessed by primary children and to test their readiness to learn such concepts. Ninety students were designated the experimental group and participated in a 15-week…

  7. Critical Conditions for Rill Initiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying critical conditions of rill formation can be useful for a better understanding of soil erosion processes. Current studies lack a consensus and related rationale on how to describe these conditions. This study was based on the concepts that: (1) the flow shear stress available for erosio...

  8. Olfactory Classical Conditioning in Neonates

    PubMed Central

    Sullivan, Regina M.; Taborsky-Barba, Suzanne; Mendoza, Raffael; Itano, Alison; Leon, Michael; Cotman, Carl W.; Payne, Terrence F.; Lott, Ira

    2007-01-01

    One-day-old, awake infants underwent an olfactory classical conditioning procedure to assess associative learning within the olfactory system of newborns. Experimental infants received ten 30-second pairings of a novel olfactory conditioned stimulus (a citrus odor of neutral value) and tactile stimulation provided by stroking as the reinforcing unconditioned stimulus (a stimulus with positive properties). Control babies received only the odor, only the stroking, or the stroking followed by the odor presentation. The next day, all infants, in either the awake or sleep state, were given five 30-second presentations of the odor. Results were analyzed from video tapes scored by an observer unaware of the infants’ training condition. The results indicate that only those infants who received the forward pairings of the odor and stroking exhibited conditioned responding (head turning toward the odor) to the citrus odor. The performance of the conditioned response was not affected by the state of the baby during testing, because both awake and sleeping infants exhibited conditioned responses. Furthermore, the expression of the conditioned response was odor specific; a novel floral odor presented during testing did not elicit conditioned responses in the experimental babies. These results suggest that complex associative olfactory learning is seen in newborns within the first 48 hours of life. These baseline findings may serve as normative data against which observation from neonates at risk for neurological sequelae may be compared. PMID:2011429

  9. Comparison Between the Integrated Ion Outflow Fluxes from the North and South Hemispheres Under Sustained Geomagnetically Active Conditions

    NASA Astrophysics Data System (ADS)

    Barakat, A. R.; Schunk, R. W.; Eccles, J. V.

    2015-12-01

    The Generalized Polar Wind (GPW) model is used to simulate the polar ionosphere during the September/October 2002 storm. The simulation period is near equinox when the north and south hemispheres are similarly exposed to solar radiation. We present a model simulation of the eight day period 2002 September 27 (DOY 270) through October 4 (DOY 277). The first three days have relatively quiet magnetic activity as indicated by low Kp values. The fourth day (270) is moderately active, and over the last four days (1-4 October) a strong magnetic storm takes place where Kp reaches values greater than 7 and Dst reaches values below -170. The GPW model was utilized to simulate the behavior of the plasma outflow from both hemispheres over the eight-day period. This storm differs from idealized storm that was the subject of a number of previous studies by Schunk and coauthors in the following ways. First, the interplanetary magnetic field changed in a complex manner in contrast to the previous studies where the IMF remained in the negative z direction. Second, Kp variation is more complex than the previous investigations. Third, the simulation period of eight days is much longer than the previous simulations (less than 18 hours). Finally, both hemispheres are considered, in contrast to previous simulations that investigated the northern hemisphere only. This investigation focuses on the variation of the integrated flux (from the poles to 45 degrees of latitude). We discuss how the integrated flux depends on the ion species (O+ vs. H+) and on the hemisphere (north vs. south). We also investigated the integrated flux dependence on the physical conditions, e.g., Kp, Dst universal time, etc. This statistical approach helped extract important simple conclusions from the complex behavior of the ion outflow during real a storm.

  10. Object Detection under Noisy Condition

    NASA Astrophysics Data System (ADS)

    Halkarnikar, P. P.; Khandagle, H. P.; Talbar, S. N.; Vasambekar, P. N.

    2010-11-01

    Identifying moving objects from a video sequence is a fundamental and critical task in many computer-vision applications. Such automatic object detection soft wares have many applications in surveillance, auto navigation and robotics. A common approach is to perform background subtraction, which identifies the moving object from portion of video sequences. These soft wares work good under normal condition but tend to give false alarms when tested in real life conditions. Such a condition arises due to fog, smoke, glares ect. These situations are termed as noisy conditions and objects are detected under such conditions. In this paper we created noise by addition of standard Gaussian noise in clean video and compare the response of the detection system to various noise level.

  11. Jump conditions in transonic equilibria

    SciTech Connect

    Guazzotto, L.; Betti, R.; Jardin, S. C.

    2013-04-15

    In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that 'standard' (low-{beta}, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-{beta}, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large {beta}, while they agree with the results obtained with the old implementation of FLOW in lower-{beta} equilibria.

  12. From Early Holocene to Neoglacial conditions - Multiproxy evidence for stepwise cooling in the Arctic Gateway

    NASA Astrophysics Data System (ADS)

    Werner, K.; Müller, J.; Hass, H.; Spielhagen, R. F.

    2012-12-01

    Two high-resolution sediment sequences from the Western Svalbard margin covering the last ca. 10.000 years were studied in order to derive information on the Holocene variability of heat transport to the Arctic Ocean and fluctuations in the position of the marginal ice zone. The Fram Strait, often referred to as the Arctic Gateway, is the only deep-water passage for Atlantic-derived water masses to enter the Arctic Ocean. Northward advection of relatively warm and saline Atlantic Water masses keeps the eastern Fram Strait ice-free all year and controls the Arctic Ocean's heat budget. We investigated geochemical, micropaleontological, and sedimentological parameters with centennial to multidecadal time resolution at two sites which are located today beneath the Atlantic Water-bearing inner and outer West Spitsbergen Current. Records of planktic and benthic foraminiferal stable isotopes and planktic foraminifer assemblages clearly reveal distinct variations between climatically warmer and colder intervals throughout this period. Strong fluctuations in stable isotope data of the subpolar planktic foraminifer species Turborotalita quinqueloba infer strong variability of summer sea surface conditions probably caused by variable extent of the upper mixed layer and the sea ice margin. Planktic foraminifer fauna imply a stepwise transition from deglacial/Early Holocene to modern-like conditions. Superimposed on the generally strong heat transport to the Arctic Ocean during the Early to Mid-Holocene are repeated short-term coolings such as the 8.2 ka event. Past sea ice conditions were studied by means of the sea ice proxy IP25 and ice rafted detritus and document increasing occurrence of sea ice and/or icebergs since the Mid-Holocene, culminating in the so-called 'neoglaciation' trend. The Late Holocene Neoglacial phase was in particular characterized by the dominance of the cold water-indicating planktic foraminifer species Neogloboquadrina pachyderma. Consistent with the

  13. Redox Conditions and Related Color Change in Eastern Equatorial Pacific Sediments: IODP Site U1334

    NASA Astrophysics Data System (ADS)

    Kordesch, W. E.; Gussone, N. C.; Hathorne, E. C.; Kimoto, K.; Delaney, M. L.

    2011-12-01

    This study was prompted by a 65 m thick brown-green color change in deep-sea sediments of IODP Site U1334 (0-38 Ma, 4799 m water depth) that corresponds to its equatorial crossing (caused by the Northward movement of the pacific plate). Green sediment is a visual indicator of reducing conditions in sediment due to enhanced organic matter deposition and burial. Here we use geochemical redox indicators to characterize the effect of equatorial upwelling on bottom water. The modern redox signal is captured in porewater profiles (nitrate, manganese, iron, sulfate) while trace metal Enrichment Factors (EF) in bulk sediment (manganese, uranium, molybdenum, rhenium) normalized to the detrital component (titanium) record redox state at burial. To measure export productivity we also measure biogenic barium. Porewater profiles reveal suboxic diagenesis; profiles follow the expected sequence of nitrate, manganese oxide, and iron oxide reduction with increasing depth. Constant sulfate (~28 μM) implies anoxia has not occurred. Bulk sediment Mn EF are enriched (EF > 1) throughout the record (Mn EF = 15-200) while U and Mo enrichment corresponds to green color and equatorial proximity (U EF = 4-19; Mo EF = 0-7). Constant Mn enrichment implies continuous oxygenation. Uranium and Mo enrichment near the equator represents suboxic conditions also seen in the porewater. Low Re concentrations (below detection) provide additional evidence against anoxia. A comparison of Mn EF from total digestions to samples treated with an additional reductive cleaning step distinguishes between Mn-oxides and Mn-carbonates, indicating oxygenated and reducing conditions respectively. Mn-carbonate occurrence agrees with U and Mo EF; conditions were more reducing near the equator. Bio-Ba shows significant variability over this interval (22-99 mmol g-1). Our geochemical results indicate that bottom waters became suboxic at the equator as a result of equatorial upwelling-influenced increases in organic

  14. Defeasible reasoning with legal conditionals.

    PubMed

    Gazzo Castañeda, Lupita Estefania; Knauff, Markus

    2016-04-01

    Valid conclusions can be defeated if people can think of conditions that prevent the consequent to occur although the antecedent is given. The goal of the present research was to investigate how people consider these conditions when reasoning with legal conditionals such as "If a person kills another human, then this person should be punished for manslaughter." In Experiments 1 and 2 legal conditionals were presented to participants together with exculpatory circumstances, i.e., counterexamples. The participants' task was to decide whether they would adhere to the legal conditional rule and punish the offender. Participants were either lawyers (i.e., advanced law students and graduate lawyers) or legal laypeople. We found that laypeople often ignore exculpatory circumstances and adhere to the conditional rule when offences evoked high levels of moral outrage. Lawyers did not show this effect. In Experiment 3 laypeople showed difficulties even when asked to simply imagine exculpatory circumstances for highly morally outrageous offences. Results provide new evidence for the role of emotions--like moral outrage--in the consideration of counterexamples to legal conditionals. PMID:26689704

  15. Compatibility Conditions of Structural Mechanics

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1999-01-01

    The theory of elasticity has camouflaged a deficiency in the compatibility formulation since 1860. In structures the ad hoc compatibility conditions through virtual "cuts" and closing "gaps" are not parallel to the strain formulation in elasticity. This deficiency in the compatibility conditions has prevented the development of a direct stress determination method in structures and in elasticity. We have addressed this deficiency and attempted to unify the theory of compatibility. This work has led to the development of the integrated force method for structures and the completed Beltrami-Michell formulation for elasticity. The improved accuracy observed in the solution of numerical examples by the integrated force method can be attributed to the compliance of the compatibility conditions. Using the compatibility conditions allows mapping of variables and facile movement among different structural analysis formulations. This paper reviews and illustrates the requirement of compatibility in structures and in elasticity. It also describes the generation of the conditions and quantifies the benefits of their use. The traditional analysis methods and available solutions (which have been obtained bypassing the missed conditions) should be verified for compliance of the compatibility conditions.

  16. Summer atmospheric conditions over the Japan/East Sea

    NASA Astrophysics Data System (ADS)

    Dorman, C. E.; Beardsley, R. C.; Limeburner, R.; Varlamov, S. M.; Caruso, M.; Dashko, N. A.

    2005-06-01

    Atmospheric conditions over the Japan/East Sea (JES) during the 1999 warm season (May-August) were investigated using research vessel surface and sounding observations in conjunction with coastal station and moored buoy meteorological data. In the broad center of the sea, surface winds were weak and variable with a tendency to be northward in direction. Air temperatures were close to the sea-surface temperature but warmer on average. The lower atmospheric profiles were weakly unstable or stable with shallow inversions. The summer surface heat flux was dominated by radiation components. The large solar short-wave flux caused a large net gain of heat by the sea that was unchecked by the weaker, long-wave flux. Sensible and latent heat fluxes were both small due to modest air-sea temperature differences and weak winds. The surface wind stress was also weak. European Center for Medium-range Weather Forecasting (ECMWF) model surface fields compare favorably with our ship measurements in both summer of 1999 and the winter of 2000. The ECMWF model analysis followed the observed synoptic scale variations well but missed smaller scale variations. The ECMWF air temperature, dew point, pressure, wind speed, and wind direction were correlated with ship values at 0.8 or better. ECMWF forecasts and ship measurements of surface heat fluxes were well related. In the center of the JES, net fluxes in the winter and summer were correlated to 0.7-0.9, with winter the greater. ECMWF short-wave heat flux tended to exceed the ship-based values by 25-55 W/m 2. ECMWF wind stress magnitude was best correlated with winter ship measurements, with correlations that reached 0.76-0.89, while wind stress components were more poorly correlated. In both seasons, ECMWF underestimated the wind stress by 15-25%. Monthly mean climatologies of the JES surface heat flux and wind stress were computed using the 1991-2001 ECMWF surface flux time series. The annual heat flux cycle varies from a maximum

  17. Plant Condition Remote Monitoring Technique

    NASA Technical Reports Server (NTRS)

    Fotedar, L. K.; Krishen, K.

    1996-01-01

    This paper summarizes the results of a radiation transfer study conducted on houseplants using controlled environmental conditions. These conditions included: (1) air and soil temperature; (2) incident and reflected radiation; and (3) soil moisture. The reflectance, transmittance, and emittance measurements were conducted in six spectral bands: microwave, red, yellow, green, violet and infrared, over a period of three years. Measurements were taken on both healthy and diseased plants. The data was collected on plants under various conditions which included: variation in plant bio-mass, diurnal variation, changes in plant pathological conditions (including changes in water content), different plant types, various disease types, and incident light wavelength or color. Analysis of this data was performed to yield an algorithm for plant disease from the remotely sensed data.

  18. 8 Conditions for Motivated Learning

    ERIC Educational Resources Information Center

    Cushman, Kathleen

    2014-01-01

    The author interviewed hundreds of adolescents about what makes them interested in learning, in and out of school. The result is a formula hinging on creating eight conditions that spur kids to take active, motivated roles in their own learning.

  19. Conditioning biomass for microbial growth

    SciTech Connect

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  20. Matching and Conditioned Reinforcement Rate

    PubMed Central

    Shahan, Timothy A; Podlesnik, Christopher A; Jimenez-Gomez, Corina

    2006-01-01

    Attempts to examine the effects of variations in relative conditioned reinforcement rate on choice have been confounded by changes in rates of primary reinforcement or changes in the value of the conditioned reinforcer. To avoid these problems, this experiment used concurrent observing responses to examine sensitivity of choice to relative conditioned reinforcement rate. In the absence of observing responses, unsignaled periods of food delivery on a variable-interval 90-s schedule alternated with extinction on a center key (i.e., a mixed schedule was in effect). Two concurrently available observing responses produced 15-s access to a stimulus differentially associated with the schedule of food delivery (S+). The relative rate of S+ deliveries arranged by independent variable-interval schedules for the two observing responses varied across conditions. The relation between the ratio of observing responses and the ratio of S+ deliveries was well described by the generalized matching law, despite the absence of changes in the rate of food delivery. In addition, the value of the S+ deliveries likely remained constant across conditions because the ratio of S+ to mixed schedule food deliveries remained constant. Assuming that S+ deliveries serve as conditioned reinforcers, these findings are consistent with the functional similarity between primary and conditioned reinforcers suggested by general choice theories based on the concatenated matching law (e.g., contextual choice and hyperbolic value-added models). These findings are inconsistent with delay reduction theory, which has no terms for the effects of rate of conditioned reinforcement in the absence of changes in rate of primary reinforcement. PMID:16673824

  1. [Early Development under Microgravity Conditions].

    PubMed

    Ogneva, I V

    2015-01-01

    The review is devoted to various aspects of early development under the space flight conditions. The different possible cell mechanosensors are considered. Structural and functional changes in the cells, predominantly, in non-muscle ones, were discussed. The results of the different experiments with the embryos of fish, amphibians, birds and mammals under microgravity conditions are shown discussing possible reasons for the development of morphological changes. PMID:26591615

  2. Blood circulation under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Kopanev, V. I.; Yazdovskiy, V. I.

    1975-01-01

    Biomedical data obtained on men and animals during weightlessness conditions establish instabilities in pulse rate and blood circulation that smooth out in proportion to adaptation to the weightless condition. The unusual slowness of recovery of pulse rate to initial values after space flight stress is attributed to biological simulation of hormonal shifts and discharge of humoral substances into the blood that prevent a rapid recovery of some biological indicators to initial values.

  3. Optimal conditional error functions for the control of conditional power.

    PubMed

    Brannath, Werner; Bauer, Peter

    2004-09-01

    Ethical considerations and the competitive environment of clinical trials usually require that any given trial have sufficient power to detect a treatment advance. If at an interim analysis the available data are used to decide whether the trial is promising enough to be continued, investigators and sponsors often wish to have a high conditional power, which is the probability to reject the null hypothesis given the interim data and the alternative of interest. Under this requirement a design with interim sample size recalculation, which keeps the overall and conditional power at a prespecified value and preserves the overall type I error rate, is a reasonable alternative to a classical group sequential design, in which the conditional power is often too small. In this article two-stage designs with control of overall and conditional power are constructed that minimize the expected sample size, either for a simple point alternative or for a random mixture of alternatives given by a prior density for the efficacy parameter. The presented optimality result applies to trials with and without an interim hypothesis test; in addition, one can account for constraints such as a minimal sample size for the second stage. The optimal designs will be illustrated with an example, and will be compared to the frequently considered method of using the conditional type I error level of a group sequential design. PMID:15339294

  4. Air conditioning and refrigeration engineering

    SciTech Connect

    Kreith, F.

    1999-12-01

    This book supplies the basics of design, from selecting the optimum system and equipment to preparing the drawings and specifications. It discusses the four phases of preparing a project: gathering information, developing alternatives, evaluating alternatives, and selling the best solution. In addition, the author breaks down the responsibilities of the engineer design documents, computer aided design, and government codes and standards. It provides you with an easy reference to all aspects of the topic. This resource addresses the most current areas of interest, such as computer aided design and drafting, desiccant air conditioning and energy conservation. It is a thorough and convenient guide to air conditioning and refrigeration engineering. Contents include: introduction; psychrometrics; air-conditioning processes and cycles; refrigerants and refrigeration cycles; outdoor design conditions and indoor design criteria; load calculations; air handling units and packaged units; refrigeration components and evaporative coolers; water systems; heating systems; refrigeration systems; thermal storage system; air system basics; absorption systems; air-conditioning systems and selection; and desiccant dehumidification and air-conditioning.

  5. Phytoplankton characteristics and hydrological conditions in the western part of the Sea of Okhotsk in the spring of 1999 and 2000 based on expeditionary and satellite data

    NASA Astrophysics Data System (ADS)

    Zakharkov, S. P.; Selina, M. S.; Vanin, N. S.; Shtraikhert, E. A.; Biebov, N.

    2007-08-01

    Using the data obtained in 1999 2000 during the spring bloom of phytoplankton (late May early June), the variability of the pigment concentrations, the phytoplankton biomass and species compositions, and the hydrological conditions on the eastern shelf of Sakhalin Island was studied. The study resulted in revealing 135 microalgae species belonging to eight divisions. The most diversely presented were the Dinophyta dinoflagellates and Bacillariophyta diatoms (70 and 53 species, respectively). The concentration of chlorophyll a in the euphotic zone amounted, on average, to 3.8 mg/m3 in 1999 and 2.4 mg/m3 in 2000. It was shown that, in the northern and southern parts of the coastal zone, the concentration of chlorophyll a and the phytoplankton density in the spring were considerably different and depended on the hydrological conditions. In the north, their maximum values were found in the area of the depth break and were determined by the tidal mixing. The increased algae concentrations and temperature inversions at depths of 400 600 m confirm the downslope sliding of the near-bottom shelf waters. In the southern part, the high phytoplankton concentrations in the surface layer in 1999 confirmed by the monthly averaged estimates from the SeaWiFS satellite color scanner were caused by the abnormal northward propagation of the Soya Current waters and by intense tidal mixing.

  6. Tracing the Origin and Northward Dissemination Dynamics of HIV-1 Subtype C in Brazil

    PubMed Central

    Delatorre, Edson; Couto-Fernandez, José C.; Guimarães, Monick Lindenmayer; Vaz Cardoso, Ludimila Paula; de Alcantara, Keila Correia; Martins de Araújo Stefani, Mariane; Romero, Hector; Freire, Caio C. M.; Iamarino, Atila; de A Zanotto, Paolo M.; Morgado, Mariza G.; Bello, Gonzalo

    2013-01-01

    Previous studies indicate that the HIV-1 subtype C epidemic in southern Brazil was initiated by the introduction of a single founder strain probably originating from east Africa. However, the exact country of origin of such a founder strain as well as the origin of the subtype C viruses detected outside the Brazilian southern region remains unknown. HIV-1 subtype C pol sequences isolated in the southern, southeastern and central-western Brazilian regions (n = 209) were compared with a large number (n ~ 2,000) of subtype C pol sequences of African origin. Maximum-likelihood analyses revealed that most HIV-1 subtype C Brazilian sequences branched in a single monophyletic clade (CBR-I), nested within a larger monophyletic lineage characteristic of east Africa. Bayesian analyses indicate that the CBR-I clade most probably originated in Burundi and was introduced into the Paraná state (southern region) around the middle 1970s, after which it rapidly disseminated to neighboring regions. The states of Paraná and Santa Catarina have been the most important hubs of subtype C dissemination, and routine travel and spatial accessibility seems to have been the major driving forces of this process. Five additional introductions of HIV-1 subtype C strains probably originated in eastern (n = 2), southern (n = 2) and central (n = 1) African countries were detected in the Rio de Janeiro state (southeastern region). These results indicate a continuous influx of HIV-1 subtype C strains of African origin into Brazil and also unveil the existence of unrecognized transmission networks linking this country to east Africa. PMID:24069269

  7. Late Miocene northward propagation of the northeast Pamir thrust system, northwest China

    NASA Astrophysics Data System (ADS)

    Thompson, Jessica A.; Burbank, Douglas W.; Li, Tao; Chen, Jie; Bookhagen, Bodo

    2015-03-01

    Piggyback basins on the margins of growing orogens commonly serve as sensitive recorders of the onset of thrust deformation and changes in source areas. The Bieertuokuoyi piggyback basin, located in the hanging wall of the Pamir Frontal Thrust, provides an unambiguous record of the outward growth of the northeast Pamir margin in northwest China from the Miocene through the Quaternary. To reconstruct the deformation along the margin, we synthesized structural mapping, stratigraphy, magnetostratigraphy, and cosmogenic burial dating of basin fill and growth strata. The Bieertuokuoyi basin records the initiation of the Pamir Frontal Thrust and the Takegai Thrust ~5-6 Ma, as well as clast provenance and paleocurrent changes resulting from the Pliocene-to-Recent uplift and exhumation of the Pamir to the south. Our results show that coeval deformation was accommodated on the major structures on the northeast Pamir margin throughout the Miocene to Recent. Furthermore, our data support a change in the regional kinematics around the Miocene-Pliocene boundary (~5-6 Ma). Rapid exhumation of NE Pamir extensional domes, coupled with cessation of the Kashgar-Yecheng Transfer System on the eastern margin of the Pamir, accelerated the outward propagation of the northeastern Pamir margin and the southward propagation of the Kashi-Atushi fold-and-thrust belt in the southern Tian Shan. This coeval deformation signifies the coupling of the Pamir and Tarim blocks and the transfer of shortening north to the Pamir frontal faults and across the quasi-rigid Tarim Basin to the southern Tian Shan Kashi-Atushi fold-and-thrust system.

  8. Case for northward transport of Baja and coastal southern California: Paleomagnetic data, analysis, and alternatives

    SciTech Connect

    Beck, M.E. Jr. )

    1991-05-01

    This paper reviews Cretaceous paleomagnetic evidence for Baja and coastal southern California as a whole, results from Baja and southern California require transport of 1,000 km or more, relative to interior North America. Agreement between independent results, for different rock types and experimental techniques is overwhelming. Dextral shear driven by right-oblique subduction readily accounts for the paleomagnetic results. Alternative explanations such as experimental errors, rock-magnetic effects, anomalous geomagnetic behavior, errors in dating, or local structure are inadequate, improbable, or both. Some geologists have difficulty reconciling the findings of paleomagnetism with their own results; hence, as emphasized by Gastil, a conflict and enigma exist. To resolve them will require a willingness on both sides to honestly scrutinize basic assumptions.

  9. Paleozoic paleomagnetism and northward drift of the Alexander Terrane, southeastern Alaska

    NASA Astrophysics Data System (ADS)

    van Der Voo, Rob; Jones, Meridee; Gromme, C. Sherman; Eberlein, G. Donald; Churkin, Michael, Jr.

    1980-10-01

    Paleozoic limestone, graywacke, sandstone, milestone, red beds and volcanic rocks of the Alexander terrane, southeastern Alaska, have yielded six paleomagnetic pole positions after thermal and alternating-field demagnetization. These poles are from sample groups of late Middle Ordovician, Late Ordovician, Devonian, Late Devonian, and early and late Carboniferous age. To test various tectonic models for the structural development of this part of western North America, the paleomagnetic results are compared to those for the North American craton. It is found that the observed inclination and declination values deviate significantly from the values predicted for the present-day position of the Alexander terrane (55.5N, 133.5W). Better matching can be obtained for a paleoposition of the terrane at about 40N, 120W, in the present position of western Nevada and northeastern California. In addition, an in situ 25° clockwise rotation of the terrane is required to restore it to its original position.

  10. The Eastern California Shear Zone as the northward extension of the southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Thatcher, W.; Savage, J. C.; Simpson, R. W.

    2016-04-01

    Cluster analysis offers an agnostic way to organize and explore features of the current GPS velocity field without reference to geologic information or physical models using information only contained in the velocity field itself. We have used cluster analysis of the Southern California Global Positioning System (GPS) velocity field to determine the partitioning of Pacific-North America relative motion onto major regional faults. Our results indicate the large-scale kinematics of the region is best described with two boundaries of high velocity gradient, one centered on the Coachella section of the San Andreas Fault and the Eastern California Shear Zone and the other defined by the San Jacinto Fault south of Cajon Pass and the San Andreas Fault farther north. The ~120 km long strand of the San Andreas between Cajon Pass and Coachella Valley (often termed the San Bernardino and San Gorgonio sections) is thus currently of secondary importance and carries lesser amounts of slip over most or all of its length. We show these first order results are present in maps of the smoothed GPS velocity field itself. They are also generally consistent with currently available, loosely bounded geologic and geodetic fault slip rate estimates that alone do not provide useful constraints on the large-scale partitioning we show here. Our analysis does not preclude the existence of smaller blocks and more block boundaries in Southern California. However, attempts to identify smaller blocks along and adjacent to the San Gorgonio section were not successful.

  11. Paleozoic paleomagnetism and northward drift of the Alexander terrane, southeastern Alaska.

    USGS Publications Warehouse

    Van Der Voo, R.; Jones, M.; Gromme, C.S.; Eberlein, G.D.; Churkin, M., Jr.

    1980-01-01

    Paleozoic limestone, greywacke, sandstone, mudstone, red beds and volcanic rocks of the Alexander terrane, SE Alaska, have yielded six paleomagnetic pole positions after thermal and alternating-field demagnetization. These poles are from sample groups of late Middle Ordovician, Late Ordovician, Devonian, Late Devonian, and early and late Carboniferous age. To test various tectonic models for the structural development of this part of western N America, the paleomagnetic results are compared to those for the N American craton. It is found that the observed inclination and declination values deviate significantly from the values predicted for the present-day position of the Alexander terrance (55.5 N, 133.5 W). Better matching can be obtained for a paleoposition of the terrane at about 40 N, 120 W, in the present position of western Nevada and NE California. In addition, an in situ 25o clockwise rotation of the terrane is required to restore it to its original position.-Authors

  12. Precursor Environmental Conditions Associated with the Termination of Madden-Julian Oscillation Events

    NASA Astrophysics Data System (ADS)

    Stachnik, J. P.; Waliser, D. E.; Majda, A.

    2014-12-01

    Current generations of global climate models continue to struggle with simulating many of the observed features of the Madden-Julian oscillation (MJO) and suffer from low skill regarding initiation forecasts. While recent work has focused on those mechanisms thought to be important for MJO initiation, fewer studies have examined the large-scale conditions associated with quiescent periods of the MJO and the decay of existing events. Understanding these mechanisms may provide a valuable context toward improving simulations of MJO initiation and propagation in climate and operational weather forecast models. This study presents an analysis of the precursor environmental conditions related to the termination of MJO events. A simple climatology is created using a real-time MJO monitoring index, documenting the locations and frequencies of MJO decay. Lead-lag composites of several atmospheric variables including temperature, moisture, and intraseasonal wind anomalies are generated from three reanalyses. Long-term, lower tropospheric moisture deficits over the local domain best identify terminating events over the Indian Ocean, with a northward shift of the Intertropical Convergence Zone (ITCZ) and corresponding lead times as much as 20 days prior to MJO decay. Statistically significant differences are also identified more than 10 days in advance of MJO termination events in the west Pacific, though the vertical velocity and moisture anomalies are more symmetric about the equator. We also present results for those MJOs that terminate over the maritime continent. Unlike the Indian Ocean and west Pacific, the likelihood of an MJO to cross the maritime continent appears related to its own intensity, rather than the upstream environmental conditions, with only the strongest MJOs propagating into the warm pool region. Finally, a budget analysis is performed on the three-dimensional moisture advection equation in order to better elucidate what time-scales and physical

  13. FTEs: Theory, Simulation, and Observations

    NASA Technical Reports Server (NTRS)

    Siebeck, David G.; Zhang, H.

    2011-01-01

    Flux transfer events (FTEs) are ropes of interconnected magnetosheath and magnetospheric magnetic field lines generated by bursty reconnection at the dayside magnetopause. Theory predicts that the combined pressure gradient and magnetic curvature forces should determine the speed at which the events move and the locations where they can be observed. We present results indicating that events form on the dayside magnetopause for both northward and southward IMF orientations, but that the events for northward IMF orientations exhibit far weaker signatures until they reach the magnetospheric flanks and argue that this is consistent with observations indicating that events on the dayside tend to occur for southward IMF orientations, but those on the flank do not. We show that the component and antiparallel reconnection models predict events in strikingly different quadrants outside the flanks of the magnetotail.Observations of events in all four quadrants indicate that both models are required. The motion of events inferred from multispacecraft timing during periods of northward IMF orientation is generally consistent with the component reconnection model.

  14. Dynamical interpretation of conditional patterns

    NASA Technical Reports Server (NTRS)

    Adrian, R. J.; Moser, R. D.; Moin, P.

    1988-01-01

    While great progress is being made in characterizing the 3-D structure of organized turbulent motions using conditional averaging analysis, there is a lack of theoretical guidance regarding the interpretation and utilization of such information. Questions concerning the significance of the structures, their contributions to various transport properties, and their dynamics cannot be answered without recourse to appropriate dynamical governing equations. One approach which addresses some of these questions uses the conditional fields as initial conditions and calculates their evolution from the Navier-Stokes equations, yielding valuable information about stability, growth, and longevity of the mean structure. To interpret statistical aspects of the structures, a different type of theory which deals with the structures in the context of their contributions to the statistics of the flow is needed. As a first step toward this end, an effort was made to integrate the structural information from the study of organized structures with a suitable statistical theory. This is done by stochastically estimating the two-point conditional averages that appear in the equation for the one-point probability density function, and relating the structures to the conditional stresses. Salient features of the estimates are identified, and the structure of the one-point estimates in channel flow is defined.

  15. The CMS Condition Database System

    NASA Astrophysics Data System (ADS)

    Di Guida, S.; Govi, G.; Ojeda, M.; Pfeiffer, A.; Sipos, R.

    2015-12-01

    The Condition Database plays a key role in the CMS computing infrastructure. The complexity of the detector and the variety of the sub-systems involved are setting tight requirements for handling the Conditions. In the last two years the collaboration has put a substantial effort in the re-design of the Condition Database system, with the aim at improving the scalability and the operability for the data taking starting in 2015. The re-design has focused on simplifying the architecture, using the lessons learned during the operation of the Run I data-taking period (20092013). In the new system the relational features of the database schema are mainly exploited to handle the metadata (Tag and Interval of Validity), allowing for a limited and controlled set of queries. The bulk condition data (Payloads) are stored as unstructured binary data, allowing the storage in a single table with a common layout for all of the condition data types. In this paper, we describe the full architecture of the system, including the services implemented for uploading payloads and the tools for browsing the database. Furthermore, the implementation choices for the core software will be discussed.

  16. Oil Analysis and Condition Monitoring

    NASA Astrophysics Data System (ADS)

    Toms, A.; Toms, L.

    Lubricants are essential and expensive components of machine systems needing sampling, analysis and monitoring. Monitoring can be either performance testing or oil condition monitoring. Knowledge of the system's critical failure modes is essential for cost-effective oil and machinery monitoring. Contamination occurs by water, fuel, glycol, dirt, wrong oil, metal particulate, soot, oil degradation and additive depletion. Oil test methods include in situ or laboratory FT-IR, electronic particle counting, elemental metal measurement, X-ray fluorescence, viscosity, gas chromatography, water determination and RULER®. Condition monitoring data must be managed by storage, analysis and interpretation. Status levels must be established from the database and reported upon for individual and sequential runs of samples as condition indicators.

  17. Melting processes under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Glicksman, M. E.; Lupulescu, A.; Koss, M. B.

    2003-07-01

    The kinetics of melting pivalic acid (PVA) dendrites was observed under convection-free conditions on STS-87 as part of the United States Microgravity Payload Mission (USMP-4) flown on Columbia in 1997. Analysis of video data show that PVA dendrites melt without relative motion with respect to the quiescent melt phase. Dendritic fragments display shrinking to extinction, with fragmentation occurring at higher initial supercoblings. Individual fragments follow a characteristic time-dependence derived elsewhere. The microgravity melting kinetics against which the experimental observations are compared is based on conduction-limited quasi-static melting under shape-preserving conditions. Agreement between analytic theory and our experiments is found when the melting process occurs under shape-preserving conditions as measured using the C/A ratio of individual needle-like crystal fragments.

  18. Motor activity under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Kopanev, V. I.; Cherepakhin, M. A.; Yuganov, Y. M.

    1975-01-01

    The material presented on the motor activity under weightless conditions (brief and long) leads to the conclusion that it is not significantly disrupted, if those being examined are secured at the workplaces. Some discoordination of movement, moderately expressed disruption of the precision of reproduction of assigned muscular forces, etc., were observed. Motor disorders decrease significantly in proportion to the length of stay under weightless conditions. This apparently takes place, as a consequence of formation of a new functional system, adequate to the conditions of weightlessness. Tests on intact and labyrinthectomized animals have demonstrated that signaling from the inner ear receptors is superfluous in weightlessness, since it promotes the onset of disruptions in the combined work of the position analyzers.

  19. Structural lubricity under ambient conditions

    PubMed Central

    Cihan, Ebru; İpek, Semran; Durgun, Engin; Baykara, Mehmet Z.

    2016-01-01

    Despite its fundamental importance, physical mechanisms that govern friction are poorly understood. While a state of ultra-low friction, termed structural lubricity, is expected for any clean, atomically flat interface consisting of two different materials with incommensurate structures, some associated predictions could only be quantitatively confirmed under ultra-high vacuum (UHV) conditions so far. Here, we report structurally lubric sliding under ambient conditions at mesoscopic (∼4,000–130,000 nm2) interfaces formed by gold islands on graphite. Ab initio calculations reveal that the gold–graphite interface is expected to remain largely free from contaminant molecules, leading to structurally lubric sliding. The experiments reported here demonstrate the potential for practical lubrication schemes for micro- and nano-electromechanical systems, which would mainly rely on an atomic-scale structural mismatch between the slider and substrate components, via the utilization of material systems featuring clean, atomically flat interfaces under ambient conditions. PMID:27350035

  20. Quantum Measurement and Initial Conditions

    NASA Astrophysics Data System (ADS)

    Stoica, Ovidiu Cristinel

    2016-03-01

    Quantum measurement finds the observed system in a collapsed state, rather than in the state predicted by the Schrödinger equation. Yet there is a relatively spread opinion that the wavefunction collapse can be explained by unitary evolution (for instance in the decoherence approach, if we take into account the environment). In this article it is proven a mathematical result which severely restricts the initial conditions for which measurements have definite outcomes, if pure unitary evolution is assumed. This no-go theorem remains true even if we take the environment into account. The result does not forbid a unitary description of the measurement process, it only shows that such a description is possible only for very restricted initial conditions. The existence of such restrictions of the initial conditions can be understood in the four-dimensional block universe perspective, as a requirement of global self-consistency of the solutions of the Schrödinger equation.

  1. Diffusions conditioned on occupation measures

    NASA Astrophysics Data System (ADS)

    Angeletti, Florian; Touchette, Hugo

    2016-02-01

    A Markov process fluctuating away from its typical behavior can be represented in the long-time limit by another Markov process, called the effective or driven process, having the same stationary states as the original process conditioned on the fluctuation observed. We construct here this driven process for diffusions spending an atypical fraction of their evolution in some region of state space, corresponding mathematically to stochastic differential equations conditioned on occupation measures. As an illustration, we consider the Langevin equation conditioned on staying for a fraction of time in different intervals of the real line, including the positive half-line which leads to a generalization of the Brownian meander problem. Other applications related to quasi-stationary distributions, metastable states, noisy chemical reactions, queues, and random walks are discussed.

  2. Real-time streamflow conditions

    USGS Publications Warehouse

    Graczyk, David J.; Gebert, Warren A.

    1996-01-01

    Would you like to know streamflow conditions before you go fishing in Wisconsin or in more distant locations? Real-time streamflow data throughout Wisconsin and the United States are available on the Internet from the U.S. Geological Survey. You can see if the stream you are interested in fishing is high due to recent rain or low because of an extended dry spell. Flow conditions at more than 100 stream-gaging stations located throughout Wisconsin can be viewed by accessing the Wisconsin District Home Page at: http://wwwdwimdn.er.usgs.gov

  3. Making chromosome abnormalities treatable conditions.

    PubMed

    Cody, Jannine DeMars; Hale, Daniel Esten

    2015-09-01

    Individuals affected by the classic chromosome deletion syndromes which were first identified at the beginning of the genetic age, are now positioned to benefit from genomic advances. This issue highlights five of these conditions (4p-, 5p-, 11q-, 18p-, and 18q-). It focuses on the increased in understanding of the molecular underpinnings and envisions how these can be transformed into effective treatments. While it is scientifically exciting to see the phenotypic manifestations of hemizygosity being increasingly understood at the molecular and cellular level, it is even more amazing to consider that we are now on the road to making chromosome abnormalities treatable conditions. PMID:26351122

  4. Heat pipe thermal conditioning panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Loose, J. D.; Mccoy, K. E.

    1974-01-01

    Thermal control of electronic hardware and experiments on future space vehicles is critical to proper functioning and long life. Thermal conditioning panels (cold plates) are a baseline control technique in current conceptual studies. Heat generating components mounted on the panels are typically cooled by fluid flowing through integral channels within the panel. However, replacing the pumped fluid coolant loop within the panel with heat pipes offers attractive advantages in weight, reliability, and installation. This report describes the development and fabrication of two large 0.76 x 0.76 m heat pipe thermal conditioning panels to verify performance and establish the design concept.

  5. Signal conditioning, the next generation

    NASA Astrophysics Data System (ADS)

    Penharlow, David

    This paper describes recent advances in signal conditioning techiques used on flight test programs, which were achieved due to the availability to the electronic designer of new or improved analog and digital monolithic devices. These changes were driven by the design of new sensors, the architecture of the data acquisition systems, and by the vehicle type and design. The paper considers how each of these factors influenced the signal conditioning equipment and discusses new technology introduced, such as hybridized signal conditioners, amplifier-filter products, the self-balancing amplifier, and automatic gain ranging amplifiers.

  6. Extreme Conditions Modeling Workshop Report

    SciTech Connect

    Coe, R. G.; Neary, V. S.; Lawson, M. J.; Yu, Y.; Weber, J.

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, NM on May 13th-14th, 2014. The objective of the workshop was to review the current state of knowledge on how to model WECs in extreme conditions (e.g. hurricanes and other large storms) and to suggest how U.S. Department of Energy (DOE) and national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry.

  7. The Pilot Conditioning Plant Gorleben

    SciTech Connect

    Willax, H.O.; Lahr, H.

    1995-12-31

    In the Federal Republic of Germany, the feasibility of direct disposal of spent fuel elements has been examined and their safety aspects evaluated in the years between 1979 and 1985. In an assessment of the results, the Federal Government concluded that the technology of direct disposal has to be developed. According to this decision in April 1986, there was the application for the erection and operation of the Pilot Conditioning Plant (PKA) for the conditioning of spent fuel elements and other radioactive waste. Since February 1990, the PKA has been under construction and the hot commissioning will be in 1997.

  8. Initial conditions and quantum cosmology

    NASA Technical Reports Server (NTRS)

    Hartle, James B.

    1987-01-01

    A theory of initial conditions is necessary for a complete explanation of the presently observed large scale structural features of the universe, and a quantum theory of cosmology is probably needed for its formulation. The kinematics of quantum cosmology are reviewed, and some candidates for a law of initial conditions are discussed. The proposal that the quantum state of a closed universe is the natural analog of the ground state for closed cosmologies and is specified by a Euclidean sum over histories is sketched. When implemented in simple models, this proposal is consistent with the most important large-scale observations.

  9. Conditions for sustained resonance. II

    NASA Astrophysics Data System (ADS)

    Kath, W. L.

    1983-06-01

    A generalized form of Kerkorian's (1974, 1978) model of sustained reentry roll resonance, which occurs when a slightly asymmetric ballistic spacecraft reenters the earth's atmosphere, is examined using a method proposed by Haberman (1983). This method determines the width of the energy band in which solutions are entrained into sustained resonance, thereby enabling a sufficient condition for entrainment to and continuation of sustained resonance to be given. Both the width of the energy band and the sufficient condition are calculated in terms of the slowly varying pitching and yawing frequency, which is assumed to be known.

  10. Incubation of conditioned fear in the conditioned suppression model in rats: role of food-restriction conditions, length of conditioned stimulus, and generality to conditioned freezing

    PubMed Central

    Pickens, Charles L.; Navarre, Brittany M.; Nair, Sunila G.

    2010-01-01

    We recently adapted the conditioned suppression of operant responding method to study fear incubation. We found that food-restricted rats show low fear 2 days after extended (10 d; 100 30-sec tone-shock pairings) fear training and high fear after 1–2 months. Here, we studied a potential mechanism of fear incubation: extended food-restriction stress. We also studied whether fear incubation is observed after fear training with a prolonged-duration (6-min) tone conditioned stimulus (CS), and whether conditioned freezing incubates after extended training in rats with or without a concurrent operant task. Conditioned fear was assessed 2 days and 1 month after training. In the conditioned suppression method, fear incubation was reliably observed in rats under moderate food-restriction conditions (18–20 g food/day) that allowed for weight gain, and after extended (10 d), but not limited (1 d), fear training with the 6-min CS. Incubation of conditioned freezing was observed after extended fear training in rats lever-pressing for food and, to a lesser degree, in rats not performing an operant task. Results indicate that prolonged hunger-related stress does not account for fear incubation in the conditioned suppression method, and that fear incubation occurs to a longer-duration (6-min) fear CS. Extended training also leads to robust fear incubation of conditioned freezing in rats performing an operant task and weaker fear incubation in rats not performing an operant task. PMID:20600654

  11. Facilitating Conditions for School Motivation.

    ERIC Educational Resources Information Center

    Yeung, Alexander Seeshing; McInerney, Dennis M.

    Primary and high school students (277 in grades 5-6; 615 in grades 7-12) in the United States (47 percent boys) responded to 26 items of the Facilitating Conditions Questionnaire (FCQ). Results indicate 7 distinct FCQ factors: perceived value of schooling; affect toward schooling; peer positive academic climate (Peer Positive); encouragement from…

  12. How Cells Endure Extreme Conditions

    SciTech Connect

    2009-01-01

    One of natures most gripping feats of survival is now better understood. For the first time, Berkeley Lab scientists observed the chemical changes in individual cells that enable them to survive in conditions that should kill them. http://newscenter.lbl.gov/feature-stories/2009/07/07/cells-endure-extremes/

  13. Ferreting Out Terms and Conditions.

    ERIC Educational Resources Information Center

    Ebbinghouse, Carol

    1999-01-01

    Discusses problems for information professionals arising from traditional copyright legislation, as well as from the proposed Uniform Commercial Code 2B on information licensing. Highlights include responsibility of information consumers; World Wide Web terms and conditions, including those of newspapers and publishers; privacy issues; database…

  14. Covariant jump conditions in electromagnetism

    NASA Astrophysics Data System (ADS)

    Itin, Yakov

    2012-02-01

    A generally covariant four-dimensional representation of Maxwell's electrodynamics in a generic material medium can be achieved straightforwardly in the metric-free formulation of electromagnetism. In this setup, the electromagnetic phenomena are described by two tensor fields, which satisfy Maxwell's equations. A generic tensorial constitutive relation between these fields is an independent ingredient of the theory. By use of different constitutive relations (local and non-local, linear and non-linear, etc.), a wide area of applications can be covered. In the current paper, we present the jump conditions for the fields and for the energy-momentum tensor on an arbitrarily moving surface between two media. From the differential and integral Maxwell equations, we derive the covariant boundary conditions, which are independent of any metric and connection. These conditions include the covariantly defined surface current and are applicable to an arbitrarily moving smooth curved boundary surface. As an application of the presented jump formulas, we derive a Lorentzian type metric as a condition for existence of the wave front in isotropic media. This result holds for ordinary materials as well as for metamaterials with negative material constants.

  15. 77 FR 4469 - Dental Conditions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... published in the Federal Register on March 17, 2011 (76 FR 14600), VA proposed to amend 38 CFR 3.381, which..., the rating activity will determine whether the condition is due to combat or other in-service trauma... trauma; or (5) Whether the veteran is totally disabled due to a service- connected disability....

  16. 76 FR 14600 - Dental Conditions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... disability adjudicated as resulting from combat wounds or service trauma (Class II(a)). Who are homeless or... there is dental disability due to combat wounds or service trauma. To determine prisoner of war status..., the rating activity will determine whether the condition is due to combat or other in-service...