Science.gov

Sample records for nox storage catalysts

  1. Influence of Ceria on the NOx Storage/Reduction Behavior of Lean NOx Trap Catalysts

    SciTech Connect

    Ji, Yaying; Choi, Jae-Soon; Toops, Todd J; Crocker, Dr. Mark; Naseri, Mojghan

    2008-01-01

    The effect of La2O3-stabilized ceria incorporation on the functioning of fully formulated lean NOx trap catalysts was investigated. Monolithic catalysts were prepared, corresponding to loadings of 0, 50 and 100 g CeO2/L, together with a catalyst containing 100 g/L of ceria-zirconia (Ce0.7Zr0.3O2). Loadings of the other main components (Pt, Rh and BaO) were held constant. Catalyst evaluation was performed on a bench flow reactor under simulated diesel exhaust conditions, employing NOx storage/reduction cycles. NOx storage efficiency in the temperature range 150-350 C was observed to increase with ceria loading, resulting in higher NOx conversion levels. At 150 C, high rich phase NOx slip was observed for all of the catalysts, resulting from an imbalance in the rates of nitrate decomposition and NOx reduction. Optimal NOx conversion was obtained in the range 250-350 C for all the catalysts, while at 450 C high rich phase NOx slip from the most highly loaded ceria-containing catalyst resulted in lower NOx conversion than for the ceria-free formulation. N2O was the major NOx reduction product at 150 C over all of the catalysts, although low NOx conversion levels limited the N2O yield. At higher temperatures N2 was the main product of NOx reduction, although NH3 formation was also observed. Selectivity to NH3 decreased with increasing ceria loading, indicating that NH3 is consumed by reaction with stored oxygen in the rear of the catalyst.

  2. Nitrogen Release from a NOx Storage and Reduction Catalyst

    SciTech Connect

    Tonkyn, Russell G.; Disselkamp, Robert S.; Peden, C. H.

    2006-04-30

    In a NOx storage and reduction (NSR) catalyst the release and reduction of NOx occurs over a very short period. The speed of the NOx release and reduction creates difficulties in analyzing the chemistry using normal analytical techniques, which are typically better suited to slower, steady state studies. We have investigated the time dependence of NO, NO2, NH3, N2O and N2 released by an NSR catalyst using a combination of FTIR and gas chromatographic techniques. Nitrogen was detected with the GC by using He rather than N2 as the background gas. The FTIR was used not only to monitor NO, NO2, NH3 and N2O, but also to establish cycle-to-cycle reproducibility. Under these conditions we used the GC to sample the effluent at multiple times over many lean-rich cycles. To the extent that the chemistry was truly periodic and reproducible, we obtained the time dependence of the release of nitrogen after the lean-to-rich transition. Similar information was obtained for O2, H2 and N2O. Combining the FTIR and GC data we obtained good cycle averaged nitrogen balances, indicating that all the major products were accounted for.

  3. NOx Storage and Reduction Properties of Model Ceria-based Lean NOx Trap Catalysts

    SciTech Connect

    Shi, Chuan; Ji, Yaying; Graham, Uschi; Jacobs, Gary; Crocker, Mark; Zhang, Zhaoshun; Wang, Yu; Toops, Todd J

    2012-01-01

    Three kinds of model ceria-containing LNT catalysts, corresponding to Pt/Ba/CeO{sub 2}, Pt/CeO{sub 2}/Al{sub 2}O{sub 3} and Pt/BaO/CeO{sub 2}/Al{sub 2}O{sub 3}, were prepared for comparison with a standard LNT catalyst of the Pt/BaO/Al{sub 2}O{sub 3} type. In these catalysts ceria functioned as a No{sub x} storage component and/or a support material. The influence of ceria on the microstructure of the catalysts was investigated, in addition to the effect on No{sub x} storage capacity, regeneration behavior and catalyst performance during lean/rich cycling. The Pt/Ba/CeO{sub 2} and Pt/BaO/CeO{sub 2}/Al{sub 2}O{sub 3} catalysts exhibited higher No{sub x} storage capacity at 200 and 300 C relative to the Pt/BaO/Al{sub 2}O{sub 3} catalyst, although the latter displayed better storage capacity at 400 C. Catalyst regeneration behavior at low temperature was also improved by the presence of ceria, as reflected by TPR measurements. These factors contributed to the superior No{sub x} storage-reduction performance exhibited by the Pt/Ba/CeO{sub 2} and Pt/BaO/CeO{sub 2}/Al{sub 2}O{sub 3} catalysts under cycling conditions in the temperature range 200-300 C. Overall, Pt/BaO/CeO{sub 2}/Al{sub 2}O{sub 3} (which displayed well balanced No{sub x} storage and regeneration behavior), showed the best performance, affording consistently high No{sub x} conversion levels in the temperature range 200-400 C under lean-rich cycling conditions.

  4. NOx storage and reduction in model lean NOx trap catalysts studied by in situ DRIFTS

    SciTech Connect

    Ji, Yaying; Toops, Todd J; Pihl, Josh A; Crocker, Mark

    2009-01-01

    NO{sub x} storage and reduction on a model Pt/BaO/Al{sub 2}O{sub 3} catalyst was studied by means of in situ DRIFTS measurements. To examine the effect of ceria addition, experiments were also conducted using Pt/BaO/Al{sub 2}O{sub 3} to which Pt/CeO{sub 2} was added as a physical mixture in a 74:26 weight ratio. For the former catalyst, DRIFT spectra acquired during NO/O{sub 2} and NO{sub 2}/O{sub 2} storage indicated the formation of nitrite at 200 C during the initial stages of adsorption, while increasing the adsorption temperature appeared to facilitate the oxidation of nitrite to nitrate. The ceria-containing catalyst afforded similar DRIFT spectra under these conditions, although the presence of cerium nitrates was observed at 200 and 300 C, consistent with NO{sub x} storage on the ceria phase. DRIFT spectra acquired during NO{sub x} reduction in CO and CO/H{sub 2} showed that Ba nitrate species remained on the surface of both catalysts at 450 C, whereas the use of H{sub 2}-only resulted in complete removal of stored NO{sub x}. The observation of Ba carbonates when CO was present suggests that the inferior reduction efficiency of CO may arise from the formation of a crust of BaCO{sub 3} on the Ba phase, which inhibits further NO{sub x} reduction. DRIFT spectra acquired during lean-rich cycling (6.5 min lean, 1.0 min rich) with CO/H{sub 2} as the rich phase reductants revealed that a significant concentration of nitrates remained on the catalysts at the end of the rich phase. This implies that a large fraction of nitrate is not decomposed during cycling and thus cannot participate in NO{sub x} abatement through storage and regeneration.

  5. Effect of K loadings on nitrate formation/decomposition and on NOx storage performance of K-based NOx storage-reduction catalysts

    SciTech Connect

    Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos; Kwak, Ja Hun; Zhu, Haiyang; Peden, Charles HF

    2013-10-25

    We have investigated nitrate formation and decomposition processes, and measured NOx storage performance on Pt-K2O/Al2O3 catalysts as a function of potassium loading. After NO2 adsorption at room temperature, ionic and bidentate nitrates were observed by fourier transform infra-red (FTIR) spectroscopy. The ratio of the former to the latter species increased with increasing potassium loading up to 10 wt%, and then stayed almost constant with additional K, demonstrating a clear dependence of loading on the morphology of the K species. Although both K2O(10)/Al2O3 and K2O(20)/Al2O3 samples have similar nitrate species after NO2 adsorption, the latter has more thermally stable nitrate species as evidenced by FTIR and NO2 temperature programmed desorption (TPD) results. With regard to NOx storage performance, the temperature of maximum NOx uptake (Tmax) is 573 K up to a potassium loading of 10 wt%. As the potassium loading increases from 10 wt% to 20 wt%, Tmax shifted from 573 K to 723 K. Moreover, the amount of NO uptake (38 cm3 NOx/g catal) at Tmax increased more than three times, indicating that efficiency of K in storing NOx is enhanced significantly at higher temperature, in good agreement with the NO2 TPD and FTIR results. Thus, a combination of characterization and NOx storage performance results demonstrates an unexpected effect of potassium loading on nitrate formation and decomposition processes; results important for developing Pt-K2O/Al2O3 for potential applications as high temperature NOx storage-reduction catalysts.

  6. Understanding Automotive Exhaust Catalysts Using a Surface Science Approach: Model NOx Storage Materials

    SciTech Connect

    Szanyi, Janos; Yi, Cheol-Woo W.; Mudiyanselage, Kumudu K.; Kwak, Ja Hun

    2013-11-01

    The structure-reactivity relationships of model BaO-based NOx storage/reduction catalysts were investigated under well controlled experimental conditions using surface science analysis techniques. The reactivity of BaO toward NO2, CO2, and H2O was studied as a function of BaO layer thickness [0\\hBaO\\30 monolayer (ML)], sample temperature, reactant partial pressure, and the nature of the substrate the NOx storage material was deposited onto. Most of the efforts focused on understanding the mechanism of NO2 storage either on pure BaO, or on BaO exposed to CO2 or H2O prior to NO2 exposure. The interaction of NO2 with a pure BaO film results in the initial formation of nitrite/nitrate ion pairs by a cooperative adsorption mechanism predicted by prior theoretical calculations. The nitrites are then further oxidized to nitrates to produce a fully nitrated surface. The mechanism of NO2 uptake on thin BaO films (\\4 ML), BaO clusters (\\1 ML) and mixed BaO/Al2O3 layers are fundamentally different: in these systems initially nitrites are formed only, and then converted to nitrates at longer NO2 exposure times. These results clarify the contradicting mechanisms presented in prior studies in the literature. After the formation of a nitrate layer the further conversion of the underlying BaO is slow, and strongly depends on both the sample temperature and the NO2 partial pressure. At 300 K sample temperature amorphous Ba(NO3)2 forms that then can be converted to crystalline nitrates at elevated temperatures. The reaction between BaO and H2O is facile, a series of Ba(OH)2 phases form under the temperature and H2O partial pressure regimes studied. Both amorphous and crystalline Ba(OH)2 phases react with NO2, and initially form nitrites only that can be converted to nitrates. The NO2 adsorption capacities of BaO and Ba(OH)2 are identical, i.e., both of these phases can completely be converted to Ba(NO3)2. In contrast, the interaction of CO2 with pure BaO results in the formation

  7. Effect of Aging on the NOx Storage and Regeneration Characteristics of Fully Formulated Lean NOx Trap Catalysts

    SciTech Connect

    Ji, Yaying; Easterling, Vencon; Graham, Uschi; Fisk, Courtney; Crocker, Mark; Choi, Jae-Soon

    2011-01-01

    In order to elucidate the effect of washcoat composition on lean NO{sub x} trap (LNT) aging characteristics, fully formulated monolithic LNT catalysts containing varying amounts of Pt, Rh and BaO were subjected to accelerated aging on a bench reactor. Subsequent catalyst evaluation revealed that in all cases aging resulted in deterioration of the NO{sub x} conversion as a consequence of impaired NO{sub x} storage and NO{sub x} reduction functions, while increased selectivity to NH{sub 3} was observed in the temperature range 250--450 C. Elemental analysis, H{sub 2} chemisorption and TEM data revealed two main changes which account for the degradation in LNT performance. First, residual sulfur in the catalysts, associated with the Ba phase, decreased catalyst NO{sub x} storage capacity. Second, sintering of the precious metals in the washcoat occurred, resulting in decreased contact between the Pt and Ba, and hence in less efficient NO{sub x} spillover from Pt to Ba during NO{sub x} adsorption, as well as decreased rates of reductant spillover from Pt to Ba and reverse NO{sub x} spillover during catalyst regeneration. For the aged catalysts, halving the Pt loading from 100 to 50 g/ft{sup 3} was found to result in a significant decrease in overall NO{sub x} conversion, while for catalysts with the same 100 g/ft{sup 3} Pt loading, increasing the relative amount of Pt on the NO{sub x} storage components (BaO and La-stabilized CeO{sub 2}), as opposed to an Al{sub 2}O{sub 3} support material (where it was co-located with Rh), was found to be beneficial. The effect of Rh loading on aged catalyst performance was found to be marginal within the range studied (10--20 g/ft{sup 3}), as was the effect of BaO loading in the range 30--45 g/L.

  8. Effect of Ceria on the Storage and Regeneration Behavior of a Model Lean NOx Trap Catalyst

    SciTech Connect

    Ji, Yaying; Toops, Todd J; Crocker, Dr. Mark

    2007-01-01

    In this study the effect of ceria addition on the performance of a model Ba-based lean NO{sub x} trap (LNT) catalyst was examined. The presence of ceria improved NO{sub x} storage capacity in the temperature range 200-400 C under both continuous lean and lean-rich cycling conditions. Temperature-programmed experiments showed that NO{sub x} stored in the ceria-containing catalyst was thermally less stable and more reactive to reduction with both H{sub 2} and CO as reductants, albeit at the expense of additional reductant consumed by reduction of the ceria. These findings demonstrate that the incorporation of ceria in LNTs not only improves NO{sub x} storage efficiency but also positively impacts LNT regeneration behavior.

  9. Surface Tuning of La0.5Sr0.5CoO3 Perovskite Catalysts by Acetic Acid for NOx Storage and Reduction.

    PubMed

    Peng, Yue; Si, Wenzhe; Luo, Jinming; Su, Wenkang; Chang, Huazhen; Li, Junhua; Hao, Jiming; Crittenden, John

    2016-06-21

    Selective dissolution of perovskite A site (A of ABO3 structure) was performed on the La1 - xSrxCoO3 catalysts for the NOx storage and reduction (NSR) reaction. The surface area of the catalysts were enhanced using dilute HNO3 impregnation to dissolve Sr. Inactive SrCO3 was removed effectively within 6 h, and the catalyst preserved the perovskite framework after 24 h of treatment. The tuned catalysts exhibited higher NSR performance (both NOx storage and NO-to-NO2 oxidation) under lean-burn and fuel-rich cycles at 250 °C. Large amounts of NOx adsorption were due to the increase of nitrate/nitrite species bonding to the A site and the growth of newly formed monodentate nitrate species. Nitrate species were stored stably on the partial exposed Sr(2+) cations. These exposed Sr(2+) cations played an important role on the NOx reduction by C3H6. High NO-to-NO2 oxidation ability was due to the generation of oxygen defects and Co(2+)-Co(3+) redox couples, which resulted from B-site exsolution induced by A-site dissolution. Hence, our method is facile to modify the surface structures of perovskite catalysts and provides a new strategy to obtain highly active catalysts for the NSR reaction. PMID:27233105

  10. NOx Storage-Reduction Characteristics of Ba-Based Lean NOx Trap Catalysts Subjected to Simulated Road Aging

    SciTech Connect

    Ji, Yaying; Fisk, Courtney; Easterling, Vencon; Graham, Uschi; Poole, Adam; Crocker, Mark; Choi, Jae-Soon; Partridge Jr, William P; Wilson, Karen

    2010-01-01

    Although Lean NO{sub x} Trap (LNT) catalyst technology has made significant strides in recent years, the issue of LNT durability remains problematic. Following on from our previous research concerning the effect of ceria addition on LNT preformance, in this study we focus on the role of ceria in ameliorating the deterioration of Ba-based LNT catalysts during aging. Indeed, we have observed that spectacular improvements in LNT durability can be achieved through the incorporation of CeO{sub 2}-ZrO{sub 2} into the LNT formulation, and, to a lesser extent, La-stabilized ceria.

  11. DYNAMOMETER EVALUATION OF PLASMA-CATALYST FOR DIESEL NOX REDUCTION

    SciTech Connect

    Hoard, J; Schmieg, S; Brooks, D; Peden, C; Barlow, S; Tonkyn, R

    2003-08-24

    A three-stage plasma-catalyst system was developed and tested on an engine dynamometer. Previous laboratory testing suggested high NOx efficiency could be obtained. With hexene reductant added to the exhaust, over 90% NOx reduction was observed. However, with diesel or Fischer-Tropsch reductant the catalyst efficiency rapidly dropped off. Heating the catalyst in air removed brown deposit from the surface and restored conversion efficiency. Following the engine tests, the used catalysts were evaluated. BET surface area decreased, and TPD revealed significant storage. This storage appears to be partly unburned diesel fuel that can be removed by heating to around 250-300 C, and partly hydrocarbons bonded to the surface that remain in place until 450-500 C. Laboratory testing with propene reductant demonstrated that the catalyst regains efficiency slowly even when operating temperature does not exceed 300 C. This suggests that control strategies may be able to regenerate the catalyst by occasional moderate heating.

  12. Development of a Desulfurization Strategy for a NOx Adsorber Catalyst

    SciTech Connect

    Tomazic, Dean

    2000-08-20

    Improve NOx regeneration calibration developed in DECSE Phase I project to understand full potential of NOx adsorber catalyst over a range of operating temperatures. Develop and demonstrate a desulfurization process to restore NOx conversion efficiency lost to sulfur contamination. Investigate effect of desulfurization process on long-term performance of the NOx adsorber catalyst.

  13. Enhanced High Temperature Performance of NOx Reduction Catalyst Materials

    SciTech Connect

    Gao, Feng; Kim, Do Heui; Luo, Jinyong; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai Ying; Hess, Howard ..

    2012-12-31

    Two primary NOx after-treatment technologies have been recognized as the most promising approaches for meeting stringent NOx emission standards for diesel vehicles within the Environmental Protection Agency’s (EPA’s) 2007/2010 mandated limits, NOx Storage Reduction (NSR) and NH3 selective catalytic reduction (SCR); both are, in fact being commercialized for this application. However, in looking forward to 2015 and beyond with expected more stringent regulations, the continued viability of the NSR technology for controlling NOx emissions from lean-burn engines such as diesels will require at least two specific, significant and inter-related improvements. First, it is important to reduce system costs by, for example, minimizing the precious metal content while maintaining, even improving, performance and long-term stability. A second critical need for future NSR systems, as well as for NH3 SCR, will be significantly improved higher and lower temperature performance and stability. Furthermore, these critically needed improvements will contribute significantly to minimizing the impacts to fuel economy of incorporating these after-treatment technologies on lean-burn vehicles. To meet these objectives will require, at a minimum an improved scientific understanding of the following things: i) the various roles for the precious and coinage metals used in these catalysts; ii) the mechanisms for these various roles; iii) the effects of high temperatures on the active metal performance in their various roles; iv) mechanisms for higher temperature NOx storage performance for modified and/or alternative storage materials; v) the interactions between the precious metals and the storage materials in both optimum NOx storage performance and long term stability; vi) the sulfur adsorption and regeneration mechanisms for NOx reduction materials; vii) materials degradation mechanisms in CHA-based NH3 SCR catalysts. The objective of this CRADA project between PNNL and Cummins, Inc

  14. Effects of Ba loading and calcination temperature on BaAl2O4 formation for BaO/Al2O3 NOx Storage and Reduction Catalysts

    SciTech Connect

    Szailer, Tamas; Kwak, Ja Hun; Kim, Do Heui; Szanyi, Janos; Wang, Chong M.; Peden, Charles HF

    2006-04-30

    The effect of thermal treatment on the structure and chemical properties of Ba-oxide-based NOx storage/reduction catalysts with different Ba loadings was investigated using BET, TEM, EDS, TPD and FTIR techniques. On the basis of the present and previously reported results, we propose that moderate (< ~873 K) temperature calcinations result in a single monolayer (ML) ‘coating’ of BaO on the alumina surface. At high Ba loading in excess of that required for a full monolayer ‘coating’ (> 8 wt.% BaO), small (~5 nm) particles of ‘bulk’ BaO are present on top of the 1 ML BaO/Al2O3 surface. We did not observe any detectable morphological changes upon higher temperature thermal treatment of 2 and 8 wt% BaO/Al2O3 samples, while dramatic changes occurred for the 20 wt% sample. In this latter case, the transformations included BaAl2O4 formation at the expense of the bulk BaO phase. In particular, we conclude that the surface (ML) BaO phase is quite stable against thermal treatment, while the bulk phase provides the source of Ba for BaAl2O4 formation.

  15. Ammonia reactions with the stored oxygen in a commercial lean NOx trap catalyst

    DOE PAGESBeta

    Bartova, Sarka; Mracek, David; Koci, Petr; Marek, Milos; Choi, Jae -Soon

    2014-10-12

    Ammonia is an important intermediate of the NOx reduction in a NOx storage and reduction catalyst (aka lean NOx trap). NH3 formed under rich conditions in the reduced front part of the catalyst is transported by convection downstream to the unregenerated (still oxidized) zone of the catalyst, where it further reacts with the stored oxygen and NOx. In this paper, the kinetics and selectivity of NH3 reactions with the stored oxygen are studied in detail with a commercial Ba-based NOx storage catalyst containing platinum group metals (PGM), Ba and Ce oxides. Furthermore, steady-state NH3 decomposition, NH3 oxidation by O2 andmore » NO, and N2O decomposition are examined in light-off experiments. Periodic lean/rich cycling is measured first with O2 and NH3, and then with NOx + O2 and NH3 to discriminate between the NH3 reactions with the stored oxygen and the stored NOx. The reaction of NH3 with the stored O2 is highly selective towards N2, however a certain amount of NOx and N2O is also formed. The formed NOx by-product is efficiently adsorbed on the NOx storage sites such that the NOx is not detected at the reactor outlet except at high temperatures. The stored NOx reacts with NH3 feed in the next rich phase, contributing to the N2O formation. Water inhibits the reactions of NH3 with the stored oxygen. On the contrary, the presence of CO2 increases the NH3 consumption. Furthermore, CO2 is able to provide additional oxygen for NH3 oxidation, forming –CO in analogy to the reverse water gas shift reaction.« less

  16. Determination of the NOx Loading of an Automotive Lean NOx Trap by Directly Monitoring the Electrical Properties of the Catalyst Material Itself

    PubMed Central

    Fremerey, Peter; Reiß, Sebastian; Geupel, Andrea; Fischerauer, Gerhard; Moos, Ralf

    2011-01-01

    Recently, it has been shown that the degree of loading of several types of automotive exhaust aftertreatment devices can be directly monitored in situ and in a contactless way by a microwave-based method. The goal of this study was to clarify whether this method can also be applied to NOx storage and reduction catalysts (lean NOx traps) in order to obtain further knowledge about the reactions occurring in the catalyst and to compare the results with those obtained by wirebound NOx loading sensors. It is shown that both methods are able to detect the different catalyst loading states. However, the sensitivity of the microwave-based method turned out to be small compared to that previously observed for other exhaust aftertreatment devices. This may limit the practical applicability of the microwave-based NOx loading detection in lean NOx traps. PMID:22164074

  17. Determination of the NOx loading of an automotive lean NOx trap by directly monitoring the electrical properties of the catalyst material itself.

    PubMed

    Fremerey, Peter; Reiss, Sebastian; Geupel, Andrea; Fischerauer, Gerhard; Moos, Ralf

    2011-01-01

    Recently, it has been shown that the degree of loading of several types of automotive exhaust aftertreatment devices can be directly monitored in situ and in a contactless way by a microwave-based method. The goal of this study was to clarify whether this method can also be applied to NOx storage and reduction catalysts (lean NOx traps) in order to obtain further knowledge about the reactions occurring in the catalyst and to compare the results with those obtained by wirebound NOx loading sensors. It is shown that both methods are able to detect the different catalyst loading states. However, the sensitivity of the microwave-based method turned out to be small compared to that previously observed for other exhaust aftertreatment devices. This may limit the practical applicability of the microwave-based NOx loading detection in lean NOx traps. PMID:22164074

  18. Spatiotemporal distribution of NOx storage and impact on NH3 and N2O selectivities during lean/rich cycling of a Ba-based lean NOx trap catalyst

    SciTech Connect

    Choi, Jae-Soon; Partridge Jr, William P; Pihl, Josh A; Kim, Miyoung; Koci, Petr; Daw, C Stuart

    2012-01-01

    We summarize results from an investigation of the spatiotemporal distribution of NO{sub x} storage and intermediate gas species in determining the performance of a fully formulated, Ba-based, lean NO{sub x} trap catalyst under lean/rich cycling conditions. By experimentally resolving spatiotemporal profiles of gas composition, we found that stored NO{sub x} was significantly redistributed along the monolith axis during the rich phase of the cycle by release and subsequent downstream re-adsorption. Sulfur poisoning of upstream NO{sub x} storage sites caused the active NO{sub x}-storage zone to be displaced downstream. This axial displacement in turn influenced rich-phase NO{sub x} release and re-adsorption. As sulfur poisoning increased, NH3 slip at the catalyst exit also increased due to its formation closer to the catalyst outlet and decreased exposure to downstream oxidation by surface oxygen. N{sub 2}O formation was found to be associated with nitrate reduction rather than oxidation of NH3 by stored oxygen. We propose that the observed evolution of N{sub 2}O selectivity with sulfation can be explained by changes in the spatiotemporal distribution of NO{sub x} storage resulting in either increased or decreased number of precious-metal sites surrounded by nitrates.

  19. Effect of water and ammonia on surface species formed during NO(x) storage-reduction cycles over Pt-K/Al2O3 and Pt-Ba/Al2O3 catalysts.

    PubMed

    Morandi, Sara; Prinetto, Federica; Castoldi, Lidia; Lietti, Luca; Forzatti, Pio; Ghiotti, Giovanna

    2013-08-28

    The effect of water, in the temperature range 25-350 °C, and ammonia at RT on two different surface species formed on Pt-K/Al2O3 and Pt-Ba/Al2O3 NSR catalysts during NO(x) storage-reduction cycles was investigated. The surface species involved are nitrates, formed during the NO(x) storage step, and isocyanates, which are found to be intermediates in N2 production during reduction by CO. FT-IR experiments demonstrate that the dissociative chemisorption of water and ammonia causes the transformation of the bidentate nitrates and linearly bonded NCO(-) species into more symmetric species that we call ionic species. In the case of water, the effect on nitrates is observable at all the temperatures studied; however, the extent of the transformation decreases upon increasing temperature, consistent with the decreased extent of dissociatively adsorbed water. It was possible to hypothesize that the dissociative chemisorption of water and ammonia takes place in a competitive way on surface sites able to give bidentate nitrates and linearly bonded NCO(-) that are dislocated, remaining on the surface as ionic species. PMID:23860492

  20. Impact of sulfation and desulfation on NOx reduction using Cu-chabazite SCR catalysts

    DOE PAGESBeta

    Brookshear, Daniel William; Nam, Jeong -Gil; Nguyen, Ke; Toops, Todd J.; Binder, Andrew J.

    2015-06-05

    This bench reactor study investigates the impact of gaseous sulfur on the NOx reduction activity of Cu-chabazite SCR (Cu-CHA) catalysts at SO2 concentrations representative of marine diesel engine exhaust. After two hours of 500 ppm SO2 exposure at 250 and 400 °C in the simulated diesel exhaust gases, the NOx reduction activity of the sulfated Cu-CHA SCR catalysts is severely degraded at evaluation temperatures below 250 °C; however, above 250 °C the impact of sulfur exposure is minimal. EPMA shows that sulfur is located throughout the washcoat and along the entire length of the sulfated samples. Interestingly, BET measurements revealmore » that the sulfated samples have a 20% decrease in surface area. Moreover, the sulfated samples show a decrease in NOx/nitrate absorption during NO exposure in a DRIFTS reactor which suggests that Cu sites in the catalyst are blocked by the presence of sulfur. SO2 exposure also results in an increase in NH3 storage capacity, possibly due to the formation of ammonium sulfate species in the sulfated samples. In all cases, lean thermal treatments as low as 500 °C reverse the effects of sulfur exposure and restore the NOx reduction activity of the Cu-CHA catalyst to that of the fresh condition.« less

  1. Congressionally Directed Project for Passive NOx Removal Catalysts Research

    SciTech Connect

    Schneider, William

    2014-08-29

    The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

  2. MODELING COMPETITIVE ADSORPTION IN UREA-SCR CATALYSTS FOR EFFECTIVE LOW TEMPERATURE NOX CONTROL

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2010-09-17

    Although the SCR technology exhibits higher NOx reduction efficiency over a wider range of temperatures among the lean NOx reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. For example, it is well known that the ammonia coverage on catalyst surface is critical for NOx reduction efficiency. However, the level of ammonia storage is influenced by competitive adsorption by other species, such as H2O and NO2. Moreover, hydrocarbon species that slip through the upstream DOC during the cold-start period can also inhibit the SCR performance, especially at low temperatures. Therefore, a one-dimensional detailed kinetic model that can account for the effects of such competitive adsorption has been developed based on steady state surface isotherm tests on a commercial Fe-zeolite catalyst. The model is developed as a C language S-function and implemented in Matlab/Simulink environment. Rate kinetics of adsorption and desorption of each of the adsorbents are determined from individual adsorption tests and validated for a set of test conditions that had all the adsorbents in the feed gas.

  3. Hydrophobic Catalysts For Removal Of NOx From Flue Gases

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Hickey, Gregory S.; Voecks, Gerald E.

    1995-01-01

    Improved catalysts for removal of nitrogen oxides (NO and NO2) from combustion flue gases formulated as composites of vanadium pentoxide in carbon molecular sieves. Promotes highly efficient selective catalytic reduction of NOx at relatively low temperatures while not being adversely affected by presence of water vapor and sulfur oxide gases in flue gas. Apparatus utilizing catalyst of this type easily integrated into exhaust stream of power plant to remove nitrogen oxides, generated in combustion of fossil fuels and contribute to formation of acid rain and photochemical smog.

  4. Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction

    SciTech Connect

    Schmieg, Steven J.; Oh, Se H.; Kim, Chang H.; Brown, David B.; Lee, Jong H.; Peden, Charles HF; Kim, Do Heui

    2012-04-30

    Multiple catalytic functions (NOx conversion, NO and NH3 oxidation, NH3 storage) of a commercial Cu-zeolite urea/NH3-SCR catalyst were assessed in a laboratory fixed-bed flow reactor system after differing degrees of hydrothermal aging. Catalysts were characterized by using x-ray diffraction (XRD), 27Al solid state nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) / energy dispersive X-ray (EDX) spectroscopy to develop an understanding of the degradation mechanisms during catalyst aging. The catalytic reaction measurements of laboratory-aged catalysts were performed, which allows us to obtain a universal curve for predicting the degree of catalyst performance deterioration as a function of time at each aging temperature. Results show that as the aging temperature becomes higher, the zeolite structure collapses in a shorter period of time after an induction period. The decrease in SCR performance was explained by zeolite structure destruction and/or Cu agglomeration, as detected by XRD/27Al NMR and by TEM/EDX, respectively. Destruction of the zeolite structure and agglomeration of the active phase also results in a decrease in the NO/NH3 oxidation activity and the NH3 storage capacity of the catalyst. Selected laboratory aging conditions (16 h at 800oC) compare well with a 135,000 mile vehicle-aged catalyst for both performance and characterization criteria.

  5. Reactivity of Pt/BaO/Al₂O₃ for NOx Storage/Reduction: Effects of Pt and Ba Loading

    SciTech Connect

    Kwak, Ja Hun; Kim, Do Heui; Szanyi, Janos; Szailer, Tamas; Peden, Charles HF

    2005-02-01

    The control of NOx (NO and NO₂) emissions from combustion processes, including vehicle engines, remains a challenge particularly for systems operating at high air-to-fuel ratios (so-called ‘lean’ combustion). The current “3-way”, precious metal-based catalytic converters are unable to selectively reduce NOx with reductants (e.g., CO and residual unburned hydrocarbon) in the presence of excess O₂. In the last few years, worldwide environmental regulations regarding NOx emissions from diesel engines (inherently operated ‘lean’) have become significantly more stringent resulting in considerable research efforts to reduce NOx under the highly oxidizing engine operation conditions. Urea selective catalytic reduction (SCR) and non-thermal plasma assisted NOx reduction have been explored as possible technologies. In recent years, alkaline and alkaline earth oxide-based NOx storage/reduction catalysts (especially BaO/Al₂O₃) have been developed, and have shown promising activities for lean-NOx reduction [1,2].

  6. Characteristics of Pt-K/MgAl2O4 lean NOx trap catalysts

    SciTech Connect

    Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos; Zhu, Haiyang; Kwak, Ja Hun; Peden, Charles HF

    2012-04-30

    We report the various characteristics of Pt-K/MgAl{sub 2}O{sub 4} lean NOx trap (LNT) catalysts including the effect of K loading on nitrate formation/decomposition, NOx storage activity and durability. Upon the adsorption of NO{sub 2} on K/MgAl{sub 2}O{sub 4} samples, potassium nitrates formed on Mg-related sites in MgAl{sub 2}O{sub 4} support are observed, in addition to the typical two potassium nitrates (ionic and bidentate) formed also on Al{sub 2}O{sub 3} supported sample. Based on NO{sub 2} TPD and FTIR results, the Mg-bound KNO{sub 3} thermally decompose at higher temperature than Al-bound KNO{sub 3}, implying its superior thermal stability. At a potassium loading of 5wt%, the temperature of maximum NOx uptake (T{sub max}) is 300 C. Increasing the potassium loading from 5wt% to 10 wt%, the T{sub max} gradually shifted from 300 C to 450 C, indicating the dependence of T{sub max} on the potassium loading. However, increase in potassium loading above 10 wt% only gives rise to the reduction in the overall NOx storage capacity. This work also underlines the obstacles these materials have prior to their practical application (e.g., durability and sulfur poisoning/ removal). This work provides fundamental understanding of Pt-K/MgAl{sub 2}O{sub 4}-based lean NOx trap catalysts, which could be good candidates for high temperature LNT applications.

  7. EVALUATION OF NOX EMISSION CONTROL CATALYSTS FOR POWER PLANT SCR INSTALLATIONS

    EPA Science Inventory

    The paper gives results of an evaluation of nitrogen oxide (NOx) emission control catalysts commercially developed for power plant selective catalytic reduction (SCR) installations. ith the objective of establishing the performance of SCR catalysts and related technology, control...

  8. Diesel Fuel Sulfur Effects on the Performance of Lean NOx Catalysts

    SciTech Connect

    Ren, Shouxian

    2000-08-20

    Evaluate the effects of diesel fuel sulfur on the performance of low temperature and high temperature Lean-NOx Catalysts. Evaluate the effects of up to 250 hours of aging on the performance of the Lean-NOx Catalysts with different fuel sulfur contents.

  9. Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2011-04-20

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

  10. Modeling Species Inhibition of NO oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2010-09-15

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data.

  11. Nitrogen oxides storage catalysts containing cobalt

    DOEpatents

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  12. Mitigation of Sulfur Effects on a Lean NOx Trap Catalyst by Sorbate Reapplication

    SciTech Connect

    Parks, II, James E

    2007-01-01

    Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping. Natural gas combusted over partial oxidation catalysts in the exhaust can be used to obtain the rich exhaust conditions necessary for catalyst regeneration. Thus, the lean NOx trap technology is well suited for lean natural gas engine applications. One potential limitation of the lean NOx trap technology is sulfur poisoning. Sulfur compounds directly bond to the NOx trapping sites of the catalyst and render them ineffective; over time, the sulfur poisoning leads to degradation in overall NOx reduction performance. In order to mitigate the effects of sulfur poisoning, a process has been developed to restore catalyst activity after sulfur poisoning has occurred. The process is an aqueous-based wash process that removes the poisoned sorbate component of the catalyst. A new sorbate component is reapplied after removal of the poisoned sorbate. The process is low cost and does not involve reapplication of precious metal components of the catalyst. Experiments were conducted to investigate the feasibility of the washing process on a lean 8.3-liter natural gas engine on a dynamometer platform. The catalyst was rapidly sulfur poisoned with bottled SO2 gas; then, the catalyst sorbate was washed and reapplied and performance was re-evaluated. Results show that the sorbate reapplication process is effective at restoring lost performance due to sulfur poisoning. Specific details relative to the implementation of the process for large stationary natural gas engines will be discussed.

  13. New operation strategy for driving the selectivity of NOx reduction to N2, NH3 or N2O during lean/rich cycling of a lean NOx trap catalyst

    DOE PAGESBeta

    Mráček, David; Koci, Petr; Choi, Jae -Soon; Partridge, Jr., William P.

    2015-09-08

    Periodical regeneration of NOx storage catalyst (also known as lean NOx trap) by short rich pulses of CO, H2 and hydrocarbons is necessary for the reduction of nitrogen oxides adsorbed on the catalyst surface. Ideally, the stored NOx is converted into N2, but N2O and NH3 by-products can be formed as well, particularly at low-intermediate temperatures. The N2 and N2O products are formed concurrently in two peaks. The primary peaks appear immediately after the rich-phase inception, and tail off with the breakthrough of the reductant front accompanied by NH3 product. In addition, the secondary N2 and N2O peaks then appearmore » at the rich-to-lean transition as a result of reactions between surface-deposited reductants/intermediates (CO, HC, NH3, — NCO) and residual stored NOx under increasingly lean conditions.« less

  14. Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process.

    PubMed

    Guo, Yufang; Liao, Xiaobin; Fu, Mingli; Huang, Haibao; Ye, Daiqi

    2015-02-01

    Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression. PMID:25662254

  15. Method of preparing doped oxide catalysts for lean NOx exhaust

    DOEpatents

    Park, Paul W.

    2004-03-09

    The lean NOx catalyst includes a substrate, an oxide support material, preferably .gamma.-alumina deposited on the substrate and a metal or metal oxide promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium cerium, and vanadium, and oxides thereof, and any combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between 80 and 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to about 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  16. Carbonates-based noble metal-free lean NOx trap catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) with superior catalytic performance

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxia; You, Rui; Liu, Dongsheng; Liu, Cheng; Li, Xingang; Tian, Ye; Jiang, Zheng; Zhang, Shuo; Huang, Yuying; Zha, Yuqing; Meng, Ming

    2015-12-01

    A series of base metal-based lean NOx trap (LNT) catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) were synthesized by successive impregnations and employed for the storage and reduction of NOx in the emissions of lean-burn engines at 350 °C. The XRD and XANES/EXAFS results reveal that the active phases in the corresponding catalysts exist as CeO2, Fe2O3, CuO and Co3O4, respectively. Among all the catalysts, CoOx-K2CO3/K2Ti8O17 exhibits the best performance, which cannot only trap the NOx quickly and completely at lean condition, giving the highest storage capacity (3.32 mmol/g) reported so far, but also reduce the NOx at rich condition, showing a NOx reduction percentage as high as 99.0%. Meanwhile, this catalyst displays an ultralow NOx to N2O selectivity (0.3%) during NOx reduction. The excellent performance of CoOx-K2CO3/K2Ti8O17 results from its largest amount of surface active oxygen species as revealed by XPS, O2-TPD and NO-TPD. HRTEM, FT-IR and CO2-TPD results illustrate that several kinds of K species such as sbnd OK groups, K2O, surface carbonates and bulk or bulk-like carbonates coexist in the catalysts. Based upon the in situ DRIFTS results, the participation of K2CO3 in NOx storage is confirmed, and the predominant NOx storage species is revealed as bidentate nitrites formed via multiple kinetic pathways. The low cost and high catalytic performance of the CoOx-based LNT catalyst make it most promising for the substitution of noble metal-based LNT catalysts.

  17. Discovery of New NOx Reduction Catalysts for CIDI Engines Using Combinatorial Techniques

    SciTech Connect

    Blint, Richard J

    2005-08-15

    This project for the discovery of new lean reduction NOx catalysts was initiated on August 16th, 2002 and is now into its fourth year. Several materials have already been identified as NOx reduction catalysts for possible future application. NOx reduction catalysts are a critical need in the North American vehicle market since these catalysts are needed to enable both diesels and lean gasoline engines to meet the 2007-2010 emission standards. Hydrocarbon selective catalytic reduction (SCR) is a preferred technology since it requires no infrastructure changes (as may be expected for urea SCR) and most likely has the simplest engine control strategy of the three proposed NOx reduction approaches. The use of fast throughput techniques and informatics greatly enhances the possibility of discovering new NOx reduction catalysts. Using fast throughput techniques this project has already screened over 3000 new materials and evaluates hundreds of new materials a month. Evaluating such a high number of new materials puts this approach into a very different paradigm than previous discovery approaches for new NOx reduction catalysts. With so much data on materials it is necessary to use statistical techniques to identify the potential catalysts and these statistical techniques are needed to optimize compositions of the multi-component materials that are identified under the program as possible new lean NOx catalysts. Several new materials have conversions in excess of 80% at temperatures above 300 C. That is more than twice the activity of previous HC SCR materials. These materials are candidates for emission control on heavy-duty systems (i.e.; over 8500 pounds gross weight). Tests of one of the downselected materials on an engine dynamometer show NOx reductions greater than 80% under some conditions even though the net NOx reductions on the HWFET and the US06 cycles were relatively low. The program is scheduled to continue until the end of the 2006 calendar year. Work in the

  18. Characterization of Lean NOx Trap Catalysts with In-Cylinder Regeneration Strategies

    SciTech Connect

    Parks, II, James E; Huff, Shean P; Swartz, Matthew M; West, Brian H

    2008-01-01

    Lean NOx trap (LNT) catalysts with different formulations have been characterized on a light-duty diesel engine platform. Two in-cylinder regeneration strategies were used during the study. The reductant chemistry differed for both strategies with one strategy having high levels of CO and H2 and the other strategy having a higher hydrocarbon component. The matrix of LNT catalysts that were characterized included LNTs with various sorbate loads and varying ceria content; the sorbate was Ba. Intra-catalyst measurements of exhaust gas composition were obtained at one quarter, one half, and three quarters of the length of the catalysts to better understand the affect of formulation on performance. Exhaust analysis with FTIR allowed measurement of NH3 and thereby, a measurement of N2 selectivity for the catalysts. Although overall NOx conversion increased with increasing sorbate load, the formation of NH3 increased as well. Interestingly, the presence of ceria in the LNT allowed NH3 to be oxidized to N2 in the downstream half of the LNT, thereby greatly reducing the tailpipe NH3 level. Despite different capacities for NOx sorption, a similar pattern for NOx adsorption as a function of the length of the catalyst was observed for catalysts with 8% and 20% Ba load. Results from these engine based experiments will be discussed relative to the body of literature concerning fundamental and model LNT studies.

  19. Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NOx Emissions Control.

    PubMed

    Huang, Zhiwei; Li, Hao; Gao, Jiayi; Gu, Xiao; Zheng, Li; Hu, Pingping; Xin, Ying; Chen, Junxiao; Chen, Yaxin; Zhang, Zhaoliang; Chen, Jianmin; Tang, Xingfu

    2015-12-15

    The development of catalysts with simultaneous resistance to alkalis and sulfur poisoning is of great importance for efficiently controlling NOx emissions using the selective catalytic reduction of NOx with NH3 (SCR), because the conventional V2O5/WO3-TiO2 catalysts often suffer severe deactivation by alkalis. Here, we support V2O5 on a hexagonal WO3 (HWO) to develop a V2O5/HWO catalyst, which has exceptional resistance to alkali and sulfur poisoning in the SCR reactions. A 350 μmol g(-1) K(+) loading and the presence of 1,300 mg m(-3) SO2 do not almost influence the SCR activity of the V2O5/HWO catalyst, and under the same conditions, the conventional V2O5/WO3-TiO2 catalysts completely lost the SCR activity within 4 h. The strong resistance to alkali and sulfur poisoning of the V2O5/HWO catalysts mainly originates from the hexagonal structure of the HWO. The HWO allows the V2O5 to be highly dispersed on the external surfaces for catalyzing the SCR reactions and has the relatively smooth surfaces and the size-suitable tunnels specifically for alkalis' diffusion and trapping. This work provides a useful strategy to develop SCR catalysts with exceptional resistance to alkali and sulfur poisoning for controlling NOx emissions from the stationary source and the mobile source. PMID:26587749

  20. Discovery of Novel NOx Catalysts for CIDI Applications by High-throughput Methods

    SciTech Connect

    Blint, Richard

    2007-12-31

    DOE project DE-PS26-00NT40758 has developed very active, lean exhaust, NOx reduction catalysts that have been tested on the discovery system, laboratory reactors and engine dynamometer systems. The goal of this project is the development of effective, affordable NOx reduction catalysts for lean combustion engines in the US light duty vehicle market which can meet Tier II emission standards with hydrocarbons based reductants for reducing NOx. General Motors (prime contractor) along with subcontractors BASF (Engelhard) (a catalytic converter developer) and ACCELRYS (an informatics supplier) carried out this project which began in August of 2002. BASF (Engelhard) has run over 16,000 tests of 6100 possible catalytic materials on a high throughput discovery system suitable for automotive catalytic materials. Accelrys developed a new database informatics system which allowed material tracking and data mining. A program catalyst was identified and evaluated at all levels of the program. Dynamometer evaluations of the program catalyst both with and without additives show 92% NOx conversions on the HWFET, 76% on the US06, 60% on the cold FTP and 65% on the Set 13 heavy duty test using diesel fuel. Conversions of over 92% on the heavy duty FTP using ethanol as a second fluid reductant have been measured. These can be competitive with both of the alternative lean NOx reduction technologies presently in the market. Conversions of about 80% were measured on the EUDC for lean gasoline applications without using active dosing to adjust the C:N ratio for optimum NOx reduction at all points in the certification cycle. A feasibility analysis has been completed and demonstrates the advantages and disadvantages of the technology using these materials compared with other potential technologies. The teaming agreements among the partners contain no obstacles to commercialization of new technologies to any potential catalyst customers.

  1. Effects of Potassium loading and thermal aging on K/Pt/Al2O3 high-temperature lean NOx trap catalysts

    SciTech Connect

    Luo, Jinyong; Gao, Feng; Kim, Do Heui; Peden, Charles HF

    2014-03-31

    The effects of K loading and thermal aging on the structural properties and high temperature performance of Pt/K/Al2O3 lean NOx trap (LNT) catalysts were investigated using in situ X-ray diffraction (XRD), temperature-programmed decomposition/desorption of NOx (NOx-TPD), transmission electron microscopy (TEM), NO oxidation and NOx storage tests. In situ XRD results demonstrate that KNO3 becomes extremely mobile on the Al2O3 surface, and experiences complex transformations between orthorhombic and rhombohedral structures, accompanied by sintering, melting and thermal decomposition upon heating. NOx storage results show an optimum K loading around 10% for the best performance at high temperatures. At lower K loadings where the majority of KNO3 stays as a surface layer, the strong interaction between KNO3 and Al2O3 promotes KNO3 decomposition and deteriorates high-temperature performance. At K loadings higher than 10%, the performance drop is not caused by NOx diffusion limitations as for the case of barium-based LNTs, but rather from the blocking of Pt sites by K species, which adversely affects NO oxidation. Thermal aging at 800 ºC severely deactivates the Pt/K/Al2O3 catalysts due to Pt sintering. However, in the presence of potassium, some Pt remains in a dispersed and oxidized form. These Pt species interact strongly with K and, therefore, do not sinter. After a reduction treatment, these Pt species remain finely dispersed, contributing to a partial recovery of NOx storage performance.

  2. Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems

    DOEpatents

    Park, Paul W.

    2004-03-16

    A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  3. Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.

    PubMed

    Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu

    2015-06-01

    A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general. PMID:25941972

  4. New catalyst for NO(x) control. Phase 1. Final report, August 1988-March 1989

    SciTech Connect

    Nelson, B.W.; Nelson, S.G.; Higgins, M.O.; Brandum, P.A.

    1989-06-01

    During static firing tests, aircraft engines are subject to regulation as fixed sources of air pollution. Present best available technology (BAT) to control NOx emissions in exhaust gases from jet-engine test cells (JETCs) is selective catalytic reduction (SCR). SCR is effective at a narrow range of high temperatures, requires elaborate process controls to minimize emissions of ammonia reagent, and consumes precious metal catalysts. This Phase I SBIR project tested vermiculite (a common silicate mineral) as a catalyst for reducing NOx to oxygen and nitrogen. Efficient reduction (50-98%) of NOx was observed over a practical range of operating temperatures (200->850 F) and gas flow rates (5,000-60,000 bed volumes/hr). The vermiculite test bed also efficiently scavenges carbon particulates and reduces part of the CO and CO{sub 2} from the exhaust stream. Used catalyst was regenerated by heating to 930 F in an air stream; it was also judged to be a disposable solid.

  5. Impact of oxidation catalysts on exhaust NO2/NOx ratio from lean-burn natural gas engines.

    PubMed

    Olsen, Daniel B; Kohls, Morgan; Arney, Gregg

    2010-07-01

    Oxides of nitrogen (NOx) emitted from internal combustion engines are composed primarily of nitric oxide (NO) and nitrogen dioxide (NO2). Exhaust from most combustion sources contains NOx composed primarily of NO. There are two important scenarios specific to lean-burn natural gas engines in which the NO2/NOx ratio can be significant: (1) when the engine is operated at ultralean conditions and (2) when an oxidation catalyst is used. Large NO2/NOx ratios may result in additional uncertainty in NOx emissions measurements because the most common technique (chemiluminescence) was developed for low NO2/NOx ratios. In this work, scenarios are explored in which the NO2/NOx ratio can be large. Additionally, three NOx measurement approaches are compared for exhaust with various NO2/NOx ratios. The three measurement approaches are chemiluminescence, chemical cell, and Fourier-transform infrared spectroscopy. A portable analyzer with chemical cell technology was found to be the most accurate for measuring exhaust NOx with large NO2/NOx ratios. PMID:20681434

  6. Effect of Ceria on the Sulfation and Desulfation Characteristics of a Model Lean NOx Trap Catalyst

    SciTech Connect

    Ji, Yaying; Toops, Todd J; Crocker, Mark

    2009-01-01

    The effect of ceria addition on the sulfation and desulfation characteristics of a model Ba-based lean NO{sub x} trap (LNT) catalyst was studied. According to DRIFTS and NO{sub x} storage capacity measurements, ceria is able to store sulfur during catalyst exposure to SO{sub 2}, thereby helping to limit sulfation of the main (Ba) NO{sub x} storage phase and maintain NO{sub x} storage capacity. Temperature programmed desulfation experiments revealed that desulfation of a model ceria-containing catalyst occurred in two stages, corresponding to sulfur elimination from the ceria phase at {approx}450 C, followed by sulfur loss from the Ba phase at {approx}650 C. Significantly, the ceria-containing catalyst displayed relatively lower sulfur evolution from the Ba phase than its non-ceria analog, confirming that the presence of ceria lessened the degree of sulfur accumulation on the Ba phase.

  7. Simultaneous Oxidization of NOx and SO2 by a New Non-thermal Plasma Reactor Enhanced by Catalyst and Additive

    NASA Astrophysics Data System (ADS)

    Kim, Heejoon; Jun, Han; Sakaguchi, Yuhei; Minami, Wataru

    2008-02-01

    The non-thermal plasma as one of the most promising technologies for removing NOx and SO2 has attracted much attention. In this study, a new plasma reactor combined with catalyst and additive was developed to effectively oxidize and remove NOx and SO2 in the flue gas. The experimental results showed that TiO2 could improve the oxidation efficiency of SO2 in the case of applying plasma while having a negative effect on the oxidation process of NO and NOx. With the addition of NH3, the oxidation rates of NOx, NO and SO2 were slightly increased. However, the effect of adding NH3 on NOx oxidation was negative when the temperature was above 200°C.

  8. Regeneration of field-spent activated carbon catalysts for low-temperature selective catalytic reduction of NOx with NH3

    SciTech Connect

    Jeon, Jong Ki; Kim, Hyeonjoo; Park, Young-Kwon; Peden, Charles HF; Kim, Do Heui

    2011-10-15

    In the process of producing liquid crystal displays (LCD), the emitted NOx is removed over an activated carbon catalyst by using selective catalytic reduction (SCR) with NH3 at low temperature. However, the catalyst rapidly deactivates primarily due to the deposition of boron discharged from the process onto the catalyst. Therefore, this study is aimed at developing an optimal regeneration process to remove boron from field-spent carbon catalysts. The spent carbon catalysts were regenerated by washing with a surfactant followed by drying and calcination. The physicochemical properties before and after the regeneration were investigated by using elemental analysis, TG/DTG (thermogravimetric/differential thermogravimetric) analysis, N2 adsorption-desorption and NH3 TPD (temperature programmed desorption). Spent carbon catalysts demonstrated a drastic decrease in DeNOx activity mainly due to heavy deposition of boron. Boron was accumulated to depths of about 50 {mu}m inside the granule surface of the activated carbons, as evidenced by cross-sectional SEM-EDX analysis. However, catalyst activity and surface area were significantly recovered by removing boron in the regeneration process, and the highest NOx conversions were obtained after washing with a non-ionic surfactant in H2O at 70 C, followed by treatment with N2 at 550 C.

  9. Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2011-07-12

    A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

  10. Formation of NOx from N2 and O2 in catalyst-pellet filled dielectric barrier discharges at atmospheric pressure.

    PubMed

    Sun, Qi; Zhu, Aimin; Yang, Xuefeng; Niu, Jinhai; Xu, Yong

    2003-06-21

    At temperatures above 350 degrees C, significant amounts of NOx formed from N2 and O2 have been observed in Cu-ZSM-5 catalyst-pellet filled dielectric barrier discharges, indicating the necessity of using low-temperature performance in all plasma-catalytic processes for removal of air pollutants. PMID:12841270

  11. Bauxite-supported Transition Metal Oxides: Promising Low-temperature and SO2-tolerant Catalysts for Selective Catalytic Reduction of NOx

    PubMed Central

    Wang, Xiuyun; Wu, Wen; Chen, Zhilin; Wang, Ruihu

    2015-01-01

    In order to develop low-temperature (below 200 °C) and SO2-tolerant catalysts for selective catalytic reduction (SCR) of NOx, a series of cheap M/bauxite (M = Mn, Ni and Cu) catalysts were prepared using bauxite as a support. Their SCR performances are much superior to typical V2O5/TiO2, the addition of M into bauxite results in significant promotion of NOx removal efficiency, especially at low temperature. Among the catalysts, Cu/bauxite exhibits wide temperature window over 50–400 °C, strong resistance against SO2 and H2O as well as good regeneration ability in SCR of NOx. NOx conversion is more than 80% at 50–200 °C, and N2 selectivity is more than 98%. Cu/bauxite can serve as a promising catalyst in SCR of NOx. PMID:25988825

  12. Effect of Unburned Methyl Esters on the NOx Conversion of Fe-Zeolite SCR Catalyst

    SciTech Connect

    Williams, A.; Ratcliff, M.; Pedersen, D.; McCormick, R.; Cavataio, G.; Ura, J.

    2010-03-01

    Engine and flow reactor experiments were conducted to determine the impact of biodiesel relative to ultra-low-sulfur diesel (ULSD) on inhibition of the selective catalytic reduction (SCR) reaction over an Fe-zeolite catalyst. Fe-zeolite SCR catalysts have the ability to adsorb and store unburned hydrocarbons (HC) at temperatures below 300 C. These stored HCs inhibit or block NO{sub x}-ammonia reaction sites at low temperatures. Although biodiesel is not a hydrocarbon, similar effects are anticipated for unburned biodiesel and its organic combustion products. Flow reactor experiments indicate that in the absence of exposure to HC or B100, NO{sub x} conversion begins at between 100 and 200 C. When exposure to unburned fuel occurs at higher temperatures (250-400 C), the catalyst is able to adsorb a greater mass of biodiesel than of ULSD. Experiments show that when the catalyst is masked with ULSD, NO{sub x} conversion is inhibited until it is heated to 400 C. However, when masked with biodiesel, NO{sub x} conversion is observed to begin at temperatures as low as 200 C. Engine test results also show low-temperature recovery from HC storage. Engine tests indicate that, overall, the SCR system has a faster recovery from HC masking with biodiesel. This is at least partially due to a reduction in exhaust HCs, and thus total HC exposure with biodiesel.

  13. Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

    SciTech Connect

    Harold, Michael; Crocker, Mark; Balakotaiah, Vemuri; Luss, Dan; Choi, Jae-Soon; Dearth, Mark; McCabe, Bob; Theis, Joe

    2013-09-30

    Oxides of nitrogen in the form of nitric oxide (NO) and nitrogen dioxide (NO{sub 2}) commonly referred to as NO{sub x}, is one of the two chemical precursors that lead to ground-level ozone, a ubiquitous air pollutant in urban areas. A major source of NO{sub x} is generated by equipment and vehicles powered by diesel engines, which have a combustion exhaust that contains NO{sub x} in the presence of excess O{sub 2}. Catalytic abatement measures that are effective for gasoline-fueled engines such as the precious metal containing three-way catalytic converter (TWC) cannot be used to treat O2-laden exhaust containing NO{sub x}. Two catalytic technologies that have emerged as effective for NO{sub x} abatement are NO{sub x} storage and reduction (NSR) and selective catalytic reduction (SCR). NSR is similar to TWC but requires much larger quantities of expensive precious metals and sophisticated periodic switching operation, while SCR requires an on-board source of ammonia which serves as the chemical reductant of the NO{sub x}. The fact that NSR produces ammonia as a byproduct while SCR requires ammonia to work has led to interest in combining the two together to avoid the need for the cumbersome ammonia generation system. In this project a comprehensive study was carried out of the fundamental aspects and application feasibility of combined NSR/SCR. The project team, which included university, industry, and national lab researchers, investigated the kinetics and mechanistic features of the underlying chemistry in the lean NOx trap (LNT) wherein NSR was carried out, with particular focus on identifying the operating conditions such as temperature and catalytic properties which lead to the production of ammonia in the LNT. The performance features of SCR on both model and commercial catalysts focused on the synergy between the LNT and SCR converters in terms of utilizing the upstream-generated ammonia and alternative reductants such as propylene, representing the

  14. Reduction of NOx and SO2 in a non-thermal plasma reactor combined with catalyst and methanol

    NASA Astrophysics Data System (ADS)

    Jun, Han; Kim, Heejoon; Sakaguchi, Yuhei; Hong, Yao

    2008-10-01

    Non-thermal plasma technology has attracted considerable attention due to simultaneous removal of nitrogen oxide (NOx) and sulfur oxide (SO2) from flue gas. In this study, the synergistic effect of methanol and catalyst on NO, NOx and SO2 removal efficiency in a plasma reactor is investigated. The results show that the removal efficiency of NOx is dramatically enhanced by adding 0.4% methanol. Nevertheless, methanol has no significant beneficial effect on the oxidation of SO2. Based on the experimental results, the optimum content of methanol should be 0.4% and the preferable operating temperature is suggested to be 250 °C for removing NOx and SO2 in a non-thermal plasma-catalyst reactor. Moreover, V2O5/TiO2 is found to be more effective than TiO2 for oxidizing NO, whereas V2O5/TiO2 is not better than TiO2 for SO2 oxidization unless the discharge power is above 11 W.

  15. Catalytic decomposition of H2O2 over Fe-based catalysts for simultaneous removal of NOX and SO2

    NASA Astrophysics Data System (ADS)

    Huang, Xianming; Ding, Jie; Zhong, Qin

    2015-01-01

    Simultaneous flue gas desulfurization and denitrification were achieved with rad OH radicals from the decomposition of H2O2 over hematite (Fe) as well as hematite supported on alumina (Fe-Al) and anatase (Fe-Ti). Under all conditions, SO2 achieved 100% removal, whereas NOX removal varies with the catalysts. The supporting of Fe over aluminum enhances the catalytic removal of NOX, whereas that of anatase presents negative effect. The NOX removal is determined by the decomposition rate of H2O2 into rad OH radicals over sbnd OH bonded with Fe (Fe-OH). The supporting of Fe over alumina enhances the content of Fe-OH and the points of zero charge (PZC) values, which are beneficial for the production of rad OH radicals. The supporting of Fe over anatase results in the formation of FeOTi, which cannot decompose H2O2 into rad OH radicals. Furthermore, H2O2 tends more to be reacted with TiOH to produce O2 over Fe-Ti. Finally, the enhancement mechanism of H2O2 decomposition over Fe-based catalysts is speculated. It has a contribution to the correct choice for supports and active ingredients of the catalyst in the future industrial applications.

  16. Sulfate Storage and Stability on Common Lean NOx Trap Components

    SciTech Connect

    Ottinger, Nathan A; Toops, Todd J; Pihl, Josh A; Roop, Justin T; Choi, Jae-Soon; Partridge Jr, William P

    2012-01-01

    Components found in a commercial lean NO{sub x} trap have been studied in order to determine their impact on sulfate storage and release. A micro-reactor and a diffuse reflectance infrared Fourier transform spectrometer (DRIFTS) were used to compare components MgAl{sub 2}O{sub 4}, Pt/MgAl{sub 2}O{sub 4}, Pt/Al{sub 2}O{sub 3}, Pt/Ba/Al{sub 2}O{sub 3}, Pt/CeO{sub 2}-ZrO{sub 2}, and Pt/Ba/CeO{sub 2}-ZrO{sub 2}, as well as physical mixtures of Pt/Al{sub 2}O{sub 3} + MgAl{sub 2}O{sub 4} and Pt/Ba/CeO{sub 2}-ZrO{sub 2} + MgAl{sub 2}O{sub 4}. Desulfation temperature profiles as well as DRIFTS NO{sub x} and SO{sub x} storage spectra are presented for all components. This systematic approach highlighted the ability of the underlying support to impact sulfate stability, in particular when Ba was supported on ceria-zirconia rather than alumina the desulfation temperature decreased by 60-120 C. A conceptual model of sulfation progression on the ceria-zirconia support is proposed that explains the high uptake of sulfur and low temperature release when it is employed. It was also determined that the close proximity of platinum is not necessary for much of the sulfation and desulfation chemistry that occurs, as physical mixtures with platinum dispersed on only one phase displayed similar behavior to samples with platinum dispersed on both phases.

  17. Simultaneous Removal of Particulates and NOx Using Catalyst Impregnated Fibrous Ceramic Filters

    SciTech Connect

    Choi, J.I.; Mun, S.H.; Kim, S.T.; Hong, M.S.; Lee, J.C.

    2002-09-19

    The research is focused on the development and commercialization of high efficiency, cost effective air pollution control system, which can replace in part air pollution control devices currently in use. In many industrial processes, hot exhaust gases are cooled down to recover heat and to remove air pollutants in exhaust gases. Conventional air pollution control devices such as bag filters, E.P. and adsorption towers withstand operating temperatures up to 300 C. Also, reheating is sometimes necessary to meet temperature windows for S.C.R. Since Oxidation reactions of acid gases such as SO{sub 2}, and HCl with lime are enhanced at high temperatures, catalyst impregnated ceramic filters can be candidate for efficient and cost effective air pollution control devices. As shown on Fig. 1., catalytic ceramic filters remove particulates on exterior surface of filters and acid gases are oxidized to salts reacting with limes injected in upstream ducts. Oxidation reactions are enhanced in the cake formed on exterior of filters. Finally, injected reducing gas such as NH{sub 3} react with NOx to form N{sub 2} and H{sub 2}O interior of filters in particulate-free environment. Operation and maintenance technology is similar to conventional bag filters except that systems are exposed to relatively high temperatures ranging 300-500 C.

  18. Simultaneous catalytic removal of NOx and diesel PM over La(0.9) K(0.1) CoO3 catalyst assisted by plasma.

    PubMed

    Pei, Mei-xiang; Lin, He; Shangguan, Wen-feng; Huang, Zhen

    2005-01-01

    The simultaneous removal of NOx and particulate matter (PM) from diesel exhaust is investigated over a mixed metal oxide catalyst of La(0.9) K(0.1) CoO3 loaded on gamma-Al2O3 spherules with the assistant of plasma. It was found that NOx was reduced by PM in oxygen rich atmosphere, the CO2 and N2 were produced in the same temperature window without considering the N2 formed by plasma decomposition. As a result, the temperature for the PM combustion decreases and the reduction efficiency of NOx to N2 increases during the plasma process, which indicated that the activity of the catalyst can be improved by plasma. The NOx is decomposed by plasma at both low temperature and high temperature. Therefore, the whole efficiency of NOx conversion is enhanced. PMID:16295893

  19. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite Structures throughout the Catalyst Life Cycle

    SciTech Connect

    Ribeiro, Fabio; Delgass, Nick; Gounder, Rajmani; Schneider, William F.; Miller, Jeff; Yezerets, Aleksey; McEwen, Jean-Sabin; Peden, Charles HF; Howden, Ken

    2014-12-09

    Oxides of nitrogen (NOx) compounds contribute to acid rain and photochemical smog and have been linked to respiratory ailments. NOx emissions regulations continue to tighten, driving the need for high performance, robust control strategies. The goal of this project is to develop a deep, molecular level understanding of the function of Cu-SSZ-13 and Cu-SAPO-34 materials that catalyze the SCR of NOx with NH3.

  20. SELECTIVE REDUCTION OF NOX IN OXYGEN RICH ENVIRONMENTS WITH PLASMA-ASSISTED CATALYSIS: CATALYST DEVELOPMENT AND MECHANISTIC STUDIES

    SciTech Connect

    Peden, C; Barlow, S; Hoard, J; Kwak, J; *Balmer-Millar, M; *Panov, A; Schmieg, S; Szanyi, J; Tonkyn, R

    2003-08-24

    The control of NOx (NO and NO2) emissions from so-called ''lean-burn'' vehicle engines remains a challenge. In recent years, there have been a number of reports that show that a plasma device combined with a catalyst can reduce as high as 90% or more of NOx in simulated diesel and other ''lean-burn'' exhaust. In the case of propylene containing simulated diesel exhaust, the beneficial role of a plasma treatment is now thought to be due to oxidation of NO to NO2, and the formation of partially oxidized hydrocarbons that are more active for the catalytic reduction of NO2 than propylene. Thus, the overall system can be most usefully described as hydrocarbon selective catalytic reduction (SCR) enhanced by 'reforming' the exhaust with a non-thermal plasma (NTP) device. For plasma-enhanced catalysis, both zeolite- and alumina-based materials have shown high activity, albeit in somewhat different temperature ranges, when preceded by an NTP reactor. This paper will briefly describe our research efforts aimed at optimizing the catalyst materials for NTP-catalysis devices based, in part, on our continuing studies of the NTP- and catalytic-reaction mechanisms. Various alkali- and alkaline earth-cation-exchanged Y zeolites have been prepared, their material properties characterized, and they have been tested as catalytic materials for NOx reduction in laboratory NTP-catalysis reactors. Interestingly, NO2 formed in the plasma and not subsequently removed over these catalysts, will back-convert to NO, albeit to varying extents depending upon the nature of the cation. Besides this comparative reactivity, we will also discuss selected synthesis strategies for enhancing the performance of these zeolite-based catalyst materials. A particularly important result from our mechanistic studies is the observation that aldehydes, formed during the plasma treatment of simulated diesel exhaust, are the important species for the reduction of NOx to N2. Indeed, acetaldehyde has been found to

  1. Elucidating N2O Formation during the Cyclic NOx Storage and Reduction Process Using CO as a Reductant.

    PubMed

    Wang, Jun; Wang, Xiuting; Zhu, Jinxin; Wang, Jianqiang; Shen, Meiqing

    2015-07-01

    The N2O formation pathway and effect of H2O on N2O formation during the NOx storage and reduction (NSR) process using CO as a reductant were investigated over a Pt-BaO/Al2O3 catalyst. The NSR activity measurements and transient in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments were performed to evaluate N2O evolution and elucidate the N2O formation mechanism. N2O is formed in the lean, rich, and delay2 phases. In the lean phase, N2O formation is related to the reactions between surface isocyanate and gaseous NO/O2 and NO is more responsible for N2O formation than O2. Moreover, N2O production decreases with H2O because of the hydrolysis of isocyanate species. In the rich phase, the amount of N2O formation also decreases in the presence of H2O at a higher temperature because of the high reduction ability of H2 generated from the water-gas shift (WGS) reaction. During the delay2 phase, N2O is mainly formed by nitrite species reacting with Pt(0)-CO. Furthermore, the presence of H2O decreases the stability of nitrites and results in more N2O production at a low temperature. PMID:26024310

  2. NOx abatement in the exhaust of lean-burn natural gas engines over Ag-supported γ-Al2O3 catalysts

    NASA Astrophysics Data System (ADS)

    Azizi, Y.; Kambolis, A.; Boréave, A.; Giroir-Fendler, A.; Retailleau-Mevel, L.; Guiot, B.; Marchand, O.; Walter, M.; Desse, M.-L.; Marchin, L.; Vernoux, P.

    2016-04-01

    A series of Ag catalysts supported on γ-Al2O3, including two different γ-Al2O3 supports and various Ag loadings (2-8 wt.%), was prepared, characterized (SEM, TEM, BET, physisorption, TPR, NH3-TPD) and tested for the selective catalytic reduction of NOx by CH4 for lean-burn natural gas engines exhausts. The catalysts containing 2 wt.% Ag supported on γ-Al2O3 were found to be most efficient for the NOx reduction into N2 with a maximal conversion of 23% at 650 °C. This activity was clearly linked with the ability of the catalyst to concomitantly produce CO, via the methane steam reforming, and NO2. The presence of small AgOx nanoparticles seems to be crucial for the methane activation and NOx reduction.

  3. NOx Reduction with Natural Gas for Lean Large-Bore Engine Applications Using Lean NOx Trap Aftertreatment

    SciTech Connect

    Parks, JE

    2005-02-11

    Large-bore natural gas engines are used for distributed energy and gas compression since natural gas fuel offers a convenient and reliable fuel source via the natural gas pipeline and distribution infrastructure. Lean engines enable better fuel efficiency and lower operating costs; however, NOx emissions from lean engines are difficult to control. Technologies that reduce NOx in lean exhaust are desired to enable broader use of efficient lean engines. Lean NOx trap catalysts have demonstrated greater than 90% NOx reduction in lean exhaust from engines operating with gasoline, diesel, and natural gas fuels. In addition to the clean nature of the technology, lean NOx traps reduce NOx with the fuel source of the engine thereby eliminating the requirement for storage and handling of secondary fuels or reducing agents. A study of lean NOx trap catalysts for lean natural gas engines is presented here. Testing was performed on a Cummins C8.3G (CG-280) engine on a motor dynamometer. Lean NOx trap catalysts were tested for NOx reduction performance under various engine operating conditions, and the utilization of natural gas as the reductant fuel source was characterized. Engine test results show that temperature greatly affects the catalytic processes involved, specifically methane oxidation and NOx storage on the lean NOx trap. Additional studies on a bench flow reactor demonstrate the effect of precious metal loading (a primary cost factor) on lean NOx trap performance at different temperatures. Results and issues related to the potential of the lean NOx trap technology for large-bore engine applications will be discussed.

  4. Supported, Alkali-Promoted Cobalt Oxide Catalysts for NOx Removal from Coal Combustion Flue Gases

    SciTech Connect

    Morris D. Argyle

    2005-12-31

    A series of cobalt oxide catalysts supported on alumina ({gamma}-Al{sub 2}O{sub 3}) were synthesized with varying contents of cobalt and of added alkali metals, including lithium, sodium, potassium, rubidium, and cesium. Unsupported cobalt oxide catalysts and several cobalt oxide catalysts supported ceria (CeO{sub 2}) with varying contents of cobalt with added potassium were also prepared. The catalysts were characterized with UV-visible spectroscopy and were examined for NO{sub x} decomposition activity. The CoO{sub x}/Al{sub 2}O{sub 3} catalysts and particularly the CoO{sub x}/CeO{sub 2} catalysts show N{sub 2}O decomposition activity, but none of the catalysts (unsupported Co{sub 3}O{sub 4} or those supported on ceria or alumina) displayed significant, sustained NO decomposition activity. For the Al{sub 2}O{sub 3}-supported catalysts, N{sub 2}O decomposition activity was observed over a range of reaction temperatures beginning about 723 K, but significant (>50%) conversions of N{sub 2}O were observed only for reaction temperatures >900 K, which are too high for practical commercial use. However, the CeO{sub 2}-supported catalysts display N{sub 2}O decomposition rates similar to the Al{sub 2}O{sub 3}-supported catalysts at much lower reaction temperatures, with activity beginning at {approx}573 K. Conversions of >90% were achieved at 773 K for the best catalysts. Catalytic rates per cobalt atom increased with decreasing cobalt content, which corresponds to increasing edge energies obtained from the UV-visible spectra. The decrease in edge energies suggests that the size and dimensionality of the cobalt oxide surface domains increase with increasing cobalt oxide content. The rate data normalized per mass of catalyst that shows the activity of the CeO{sub 2}-supported catalysts increases with increasing cobalt oxide content. The combination of these data suggest that supported cobalt oxide species similar to bulk Co{sub 3}O{sub 4} are inherently more active than

  5. Active sites in Cu-SSZ-13 deNOx catalyst under reaction conditions: a XAS/XES perspective

    NASA Astrophysics Data System (ADS)

    Lomachenko, Kirill A.; Borfecchia, Elisa; Bordiga, Silvia; Soldatov, Alexander V.; Beato, Pablo; Lamberti, Carlo

    2016-05-01

    Cu-SSZ-13 is a highly active catalyst for the NH3-assisted selective catalytic reduction (SCR) of the harmful nitrogen oxides (NOx, x=1, 2). Since the catalytically active sites for this reaction are mainly represented by isolated Cu ions incorporated into the zeolitic framework, element-selective studies of Cu local environment are crucial to fully understand the enhanced catalytic properties of this material. Herein, we highlight the recent advances in the characterization of the most abundant Cu-sites in Cu-SSZ-13 upon different reaction-relevant conditions made employing XAS and XES spectroscopies, complemented by computational analysis. A concise review of the most relevant literature is also presented.

  6. Catalysts, systems and methods to reduce NOX in an exhaust gas stream

    DOEpatents

    Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard

    2010-07-20

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.

  7. Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts

    SciTech Connect

    Gao, Feng; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles HF

    2013-11-03

    Selective catalytic reduction (SCR) of NOx with ammonia using metal-exchanged molecular sieves with a chabazite (CHA) structure has recently been commercialized on diesel vehicles. One of the commercialized catalysts, i.e., Cu-SSZ-13, has received much attention for both practical and fundamental studies. For the latter, the particularly well-defined structure of this zeolite is allowing long-standing issues of the catalytically active site for SCR in metal-exchanged zeolites to be addressed. In this review, recent progress is summarized with a focus on two areas. First, the technical significance of Cu-SSZ-13 as compared to other Cu-ion exchanged zeolites (e.g., Cu-ZSM-5 and Cu-beta) is highlighted. Specifically, the much enhanced hydrothermal stability for Cu-SSZ-13 compared to other zeolite catalysts is addressed via performance measurements and catalyst characterization using several techniques. The enhanced stability of Cu-SSZ-13 is rationalized in terms of the unique small pore structure of this zeolite catalyst. Second, the fundamentals of the catalytically active center; i.e., the chemical nature and locations within the SSZ-13 framework are presented with an emphasis on understanding structure-function relationships. For the SCR reaction, traditional kinetic studies are complicated by intra-particle diffusion limitations. However, a major side reaction, nonselective ammonia oxidation by oxygen, does not suffer from mass-transfer limitations at relatively low temperatures due to significantly lower reaction rates. This allows structure-function relationships that are rather well understood in terms of Cu ion locations and redox properties. Finally, some aspects of the SCR reaction mechanism are addressed on the basis of in-situ spectroscopic studies.

  8. Significant Promotion Effect of Mo Additive on a Novel Ce-Zr Mixed Oxide Catalyst for the Selective Catalytic Reduction of NO(x) with NH3.

    PubMed

    Ding, Shipeng; Liu, Fudong; Shi, Xiaoyan; Liu, Kuo; Lian, Zhihua; Xie, Lijuan; He, Hong

    2015-05-13

    A novel Mo-promoted Ce-Zr mixed oxide catalyst prepared by a homogeneous precipitation method was used for the selective catalytic reduction (SCR) of NO(x) with NH3. The optimal catalyst showed high NH3-SCR activity, SO2/H2O durability, and thermal stability under test conditions. The addition of Mo inhibited growth of the CeO2 particle size, improved the redox ability, and increased the amount of surface acidity, especially the Lewis acidity, all of which were favorable for the excellent NH3-SCR performance. It is believed that the catalyst is promising for the removal of NO(x) from diesel engine exhaust. PMID:25894854

  9. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3.

    PubMed

    Xie, Lijuan; Liu, Fudong; Ren, Limin; Shi, Xiaoyan; Xiao, Feng-Shou; He, Hong

    2014-01-01

    Cu-SSZ-13 samples prepared by a novel one-pot synthesis method achieved excellent NH3-SCR performance and high N2 selectivity from 150 to 550 °C after ion exchange treatments. The selected Cu3.8-SSZ-13 catalyst was highly resistant to large space velocity (800 000 h(-1)) and also maintained high NOx conversion in the presence of CO2, H2O, and C3H6 in the simulated diesel exhaust. Isolated Cu(2+) ions located in three different sites were responsible for its excellent NH3-SCR activity. Primary results suggest that the one-pot synthesized Cu-SSZ-13 catalyst is a promising candidate as an NH3-SCR catalyst for the NOx abatement from diesel vehicles. PMID:24295053

  10. Mono- and bimetallic Rh and Pt NSR-catalysts prepared by controlled deposition of noble metals on support or storage component

    PubMed Central

    Büchel, Robert; Pratsinis, Sotiris E.; Baiker, Alfons

    2013-01-01

    Mono- and bimetallic Rh and Pt based NOx storage-reduction (NSR) catalysts, where the noble metals were deposited on the Al2O3 support or BaCO3 storage component, have been prepared using a twin flame spray pyrolysis setup. The catalysts were characterized by nitrogen adsorption, CO chemisorption combined with diffuse reflectance infrared Fourier transform spectroscopy, X-ray diffraction, and scanning transmission electron microscopy combined with energy dispersive X-ray spectroscopy. The NSR performance of the catalysts was investigated by fuel lean/rich cycling in the absence and presence of SO2 (25 ppm) as well as after H2 desulfation at 750 °C. The performance increased when Rh was located on BaCO3 enabling good catalyst regeneration during the fuel rich phase. Best performance was observed for bimetallic catalysts where the noble metals were separated, with Pt on Al2O3 and Rh on BaCO3. The Rh-containing catalysts generally showed much higher tolerance to SO2 during fuel rich conditions and lost only little activity during thermal aging at 750 °C. PMID:23741085

  11. PARAMETRIC STUDIES OF CATALYSTS FOR NOX CONTROL FROM STATIONARY POWER PLANTS

    EPA Science Inventory

    The report gives results of a study of vanadia-alumina and iron oxide-chromium oxide-alumina catalysts for the reduction of NO with NH3 in simulated flue gas. Optimum catalyst compositions were 15% V2O5 on Al2O3 and 10% Fe-Cr oxides on Al2O3 with an Fe/Cr ratio of 1/9, respective...

  12. Platinum particle size and support effects in NO(x) mediated carbon oxidation over platinum catalysts.

    PubMed

    Villani, Kenneth; Vermandel, Walter; Smets, Koen; Liang, Duoduo; van Tendeloo, Gustaaf; Martens, Johan A

    2006-04-15

    Platinum metal was dispersed on microporous, mesoporous, and nonporous support materials including the zeolites Na-Y, Ba-Y, Ferrierite, ZSM-22, ETS-10, and AIPO-11, alumina, and titania. The oxidation of carbon black loosely mixed with catalyst powder was monitored gravimetrically in a gas stream containing nitric oxide, oxygen, and water. The carbon oxidation activity of the catalysts was found to be uniquely related to the Pt dispersion and little influenced by support type. The optimum dispersion is around 3-4% corresponding to relatively large Pt particle sizes of 20-40 nm. The carbon oxidation activity reflects the NO oxidation activity of the platinum catalyst, which reaches an optimum in the 20-40 nm Pt particle size range. The lowest carbon oxidation temperatures were achieved with platinum loaded ZSM-22 and AIPO-11 zeolite crystallites bearing platinum of optimum dispersion on their external surfaces. PMID:16683615

  13. Enhanced High- and Low-Temperature Performance of NOx Reduction Catalyst Materials

    SciTech Connect

    Gao, Feng; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Luo, Jinyong; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai-Ying; Hess, Howard ..

    2014-12-09

    In this annual CRADA program report, we will briefly highlight results from our recent studies of the stability of candidate K-based high temperature NSR materials, and comparative studies of low temperature performance of SSZ-13 and SAPO-34 CHA catalysts; in particular, recent results comparing Fe- and Cu-based CHA materials.

  14. EVALUATION OF SCR CATALYSTS FOR COMBINED CONTROL OF NOX AND MERCURY

    EPA Science Inventory

    The report documents two-task, bench- and pilot-scale research on the effect of selective catalytic reduction (SCR) catalysts on mercury speciation in Illinois and Powder River Basin (PRB) coal combustion flue gases. In task I, a bench-scale reactor was used to study the oxidatio...

  15. Formic acid as a hydrogen storage material - development of homogeneous catalysts for selective hydrogen release.

    PubMed

    Mellmann, Dörthe; Sponholz, Peter; Junge, Henrik; Beller, Matthias

    2016-07-11

    Formic acid (FA, HCO2H) receives considerable attention as a hydrogen storage material. In this respect, hydrogenation of CO2 to FA and dehydrogenation of FA are crucial reaction steps. In the past decade, for both reactions, several molecularly defined and nanostructured catalysts have been developed and intensively studied. From 2010 onwards, this review covers recent advancements in this area using homogeneous catalysts. In addition to the development of catalysts for H2 generation, reversible H2 storage including continuous H2 production from formic acid is highlighted. Special focus is put on recent progress in non-noble metal catalysts. PMID:27119123

  16. Roles of Promoters in V2O5/TiO2 Catalysts for Selective Catalytic Reduction of NOx with NH3: Effect of Order of Impregnation.

    PubMed

    Youn, Seunghee; Song, Inhak; Kim, Do Heui

    2016-05-01

    Recently, various promoters for commercial selective catalytic reduction (SCR) catalysts are used to improve DeNOx activity at low temperature. We aimed at finding the optimum condition to prepare V2O5/TiO2 catalyst by changing promoters (W, Ce, Zr and Mn), not only for improving SCR reactivity, but also for reducing N2O formation at high temperature. In addition, we changed the order of impregnation between promoter and vanadium precursors on TiO2 support and observed its effect on activity and N2O selectivity. We utilized various analytical techniques, such as N2 adsorption-desorption, X-ray Diffraction (XRD), Raman spectroscopy, UV-visible Diffuse Reflectance Spectroscopy (UV-vis DRS) and Temperature Programmed Reduction with hydrogen (H2-TPR) to investigate the physicochemical properties of V2O5/TiO2 catalysts. It was found that W and Ce added V2O5/TiO2 catalysts showed the most active DeNOx properties at low temperature. Additionally, the difference in impregnation order affected the SCR activity. The superiority of low temperature activity of the vanadium firstly added catalysts (W or Ce/V/TiO2) is attributed to the formation of more polymerized V2O5 on the sample. PMID:27483756

  17. Identification of the arsenic resistance on MoO3 doped CeO2/TiO2 catalyst for selective catalytic reduction of NOx with ammonia.

    PubMed

    Li, Xiang; Li, Xiansheng; Li, Junhua; Hao, Jiming

    2016-11-15

    Arsenic resistance on MoO3 doped CeO2/TiO2 catalysts for selective catalytic reduction of NOx with NH3 (NH3-SCR) is investigated. It is found that the activity loss of CeO2-MoO3/TiO2 caused by As oxide is obvious less than that of CeO2/TiO2 catalysts. The fresh and poisoned catalysts are compared and analyzed using XRD, Raman, XPS, H2-TPR and in situ DRIFTS. The results manifest that the introduction of arsenic oxide to CeO2/TiO2 catalyst not only weakens BET surface area, surface acid sites and adsorbed NOx species, but also destroy the redox circle of Ce(4+) to Ce(3+) because of interaction between Ce and As. When MoO3 is added into CeO2/TiO2 system, the main SCR reaction path are found to be changed from the reaction between coordinated NH3 and ad-NOx species to that between an amide and gaseous NO. Additionally, for CeO2-MoO3/TiO2 catalyst, As toxic effect on active sites CeO2 can be released because of stronger As-Mo interaction. Moreover, not only are the reactable Brønsted and Lewis acid sites partly restored, but the cycle of Ce(4+) to Ce(3+) can also be free to some extent. PMID:27474851

  18. Effect of sulfur loading on the desulfation chemistry of a commercial lean NOx trap catalyst

    SciTech Connect

    Kim, Do Heui; Yezerets, Aleksey; Li, Junhui; Currier, Neal; Chen, Haiying; Hess, Howard ..; Engelhard, Mark H.; Muntean, George G.; Peden, Charles HF

    2012-12-15

    We investigate the effects of initial sulfur loadings on the desulfation chemistry and the subsequent final activity of a commercial LNT catalyst. Identical total amounts of SO2 are applied to the samples, albeit with the frequency of desulfation varied. The results indicate that performance is better with less frequent desulfations. The greater the amount of sulfur deposited before desulfation, the more amount of SO2 evolution before H2S is observed during desulfation, which can be explained by two sequential reactions; initial conversion of sulfate to SO2, followed by the reduction of SO2 to H2S. After completing all sulfation/desulfation steps, the sample with only a single desulfation results in a fairly uniform sulfur distribution along the z-axis inside of the monolith. We expect that the results obtained in this study will provide useful information for optimizing regeneration strategies in vehicles that utilize the LNT technology.

  19. Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNOx catalysts in simulated coal-fired flue gas.

    PubMed

    Zhao, Lingkui; Li, Caiting; Zhang, Xunan; Zeng, Guangming; Zhang, Jie; Xie, Yin'e

    2016-01-01

    In order to reduce the costs, the recycle of spent TiO2-based SCR-DeNOx catalysts were employed as a potential catalytic support material for elemental mercury (Hg(0)) oxidation in simulated coal-fired flue gas. The catalytic mechanism for simultaneous removal of Hg(0) and NO was also investigated. The catalysts were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) method. Results indicated that spent TiO2-based SCR-DeNOx catalyst supported Ce-Mn mixed oxides catalyst (CeMn/SCR1) was highly active for Hg(0) oxidation at low temperatures. The Ce1.00Mn/SCR1 performed the best catalytic activities, and approximately 92.80% mercury oxidation efficiency was obtained at 150 °C. The inhibition effect of NH3 on Hg(0) oxidation was confirmed in that NH3 consumed the surface oxygen. Moreover, H2O inhibited Hg(0) oxidation while SO2 had a promotional effect with the aid of O2. The XPS results illustrated that the surface oxygen was responsible for Hg(0) oxidation and NO conversion. Besides, the Hg(0) oxidation and NO conversion were thought to be aided by synergistic effect between the manganese and cerium oxides. PMID:26370819

  20. Large-scale growth of hierarchical transition-metal vanadate nanosheets on metal meshes as monolith catalysts for De-NOx reaction

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Zhao, Xin; Zhang, Lei; Shi, Liyi; Zhang, Jianping; Zhang, Dengsong

    2015-01-01

    A facile method is developed for the large-scale growth of hierarchical transition-metal (Cu, Fe, and Ni) vanadate nanosheets on corresponding metal mesh as supports. The hierarchical transition-metal vanadate nanosheets were in situ grown on the metal meshes through an orientational etching process and simultaneous nucleation and growth process. Interestingly, the morphologies of the vanadate nanosheets are governed by the balance between dissolution rate and nucleation rate. Thus, the sizes and the thicknesses of the nanosheets could be facilely controlled by the reaction duration, the acidity of the solution and the concentration of vanadate precursor. Furthermore, the hierarchical transition-metal vanadate nanosheets supported on metal meshes are used as monolith catalysts for the selective catalytic reduction (SCR) of NO with NH3. The iron mesh based monolith catalyst shows excellent de-NOx performance with high efficiency and stability in the presence of SO2 and H2O, which provide a promising monolith de-NOx catalyst for stationary source at medium temperatures.A facile method is developed for the large-scale growth of hierarchical transition-metal (Cu, Fe, and Ni) vanadate nanosheets on corresponding metal mesh as supports. The hierarchical transition-metal vanadate nanosheets were in situ grown on the metal meshes through an orientational etching process and simultaneous nucleation and growth process. Interestingly, the morphologies of the vanadate nanosheets are governed by the balance between dissolution rate and nucleation rate. Thus, the sizes and the thicknesses of the nanosheets could be facilely controlled by the reaction duration, the acidity of the solution and the concentration of vanadate precursor. Furthermore, the hierarchical transition-metal vanadate nanosheets supported on metal meshes are used as monolith catalysts for the selective catalytic reduction (SCR) of NO with NH3. The iron mesh based monolith catalyst shows excellent de-NOx

  1. A Comparative Study of N2O Formation during the Selective Catalytic Reduction of NOx with NH3 on Zeolite Supported Cu Catalysts

    SciTech Connect

    Chen, Hai-Ying; Wei, Zhehao; Kollar, Marton; Gao, Feng; Wang, Yilin; Szanyi, Janos; Peden, Charles HF

    2015-09-01

    A comparative study was carried out on a small-pore CHA.Cu and a large-pore BEA.Cu zeolite catalyst to understand the lower N2O formation on small-pore zeolite supported Cu catalysts in the selective catalytic reduction (SCR) of NOx with NH3. On both catalysts, the N2O yield increases with an increase in the NO2/NOx ratios of the feed gas, suggesting N2O formation via the decomposition of NH4NO3. Temperature-programmed desorption experiments reveal that NH4NO3 is more stable on CHA.Cu than on BEA.Cu. In situ FTIR spectra following stepwise (NO2 + O2) and (15NO + NH3 + O2) adsorption and reaction, and product distribution analysis using isotope-labelled reactants, unambiguously prove that surface nitrate groups are essential for the formation of NH4NO3. Furthermore, CHA.Cu is shown to be considerably less active than BEA.Cu in catalyzing NO oxidation and the subsequent formation of surface nitrate groups. Both factors, i.e., (1) the higher thermal stability of NH4NO3 on CHA.Cu, and (2) the lower activity for this catalyst to catalyze NO oxidation and the subsequent formation of surface nitrates, likely contribute to the higher SCR selectivity with less N2O formation on this catalyst as compared to BEA.Cu. The latter is determined as the primary reason since surface nitrates are the source that leads to the formation of NH4NO3 on the catalysts.

  2. Oxygen storage capacity of noble metal car exhaust catalysts containing nickel and cerium

    SciTech Connect

    Loeoef, P.; Kasemo, B.; Keck, K.E. )

    1989-08-01

    Oxygen storage capacity as a function of temperature was measured for two different monolithic car exhaust catalysts. Mass spectrometry connected on-line to a flow reactor was used for quantification of oxygen uptake and reduction, respectively. Both catalysts contained Pt, Rh, and Ce supported by Al{sub 2}O{sub 3}. One of the catalysts also contained Ni. The amount of oxygen that can be taken up/reduced away is strongly temperature-dependent in the range investigated (300-900 K). When present, Ni dominates the oxygen storage capacity at high temperatures. In the catalyst lacking Ni, Ce dominates the storage capacity at high temperatures. At lower temperatures chemisorbed oxygen on Pt/Rh seems to play an essential role.

  3. Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures

    DOEpatents

    Penetrante, Bernardino M.; Brusasco, Raymond M.; Merritt, Bernard T.; Vogtlin, George E.

    2004-02-03

    A high-surface-area (greater than 600 m2/g), large-pore (pore size diameter greater than 6.5 angstroms), basic zeolite having a structure such as an alkali metal cation-exchanged Y-zeolite is employed to convert NO.sub.x contained in an oxygen-rich engine exhaust to N.sub.2 and O.sub.2. Preferably, the invention relates to a two-stage method and apparatus for NO.sub.x reduction in an oxygen-rich engine exhaust such as diesel engine exhaust that includes a plasma oxidative stage and a selective reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and added hydrocarbons. The second stage employs a lean-NO.sub.x catalyst including the basic zeolite at relatively low temperatures to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O.

  4. Dosimeter-Type NOx Sensing Properties of KMnO4 and Its Electrical Conductivity during Temperature Programmed Desorption

    PubMed Central

    Groβ, Andrea; Kremling, Michael; Marr, Isabella; Kubinski, David J.; Visser, Jacobus H.; Tuller, Harry L.; Moos, Ralf

    2013-01-01

    An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT) for NOx storage catalysts (NSC) enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD). The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1) time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2) during the short-term thermal NOx release. PMID:23549366

  5. Dosimeter-type NOx sensing properties of KMnO4 and its electrical conductivity during temperature programmed desorption.

    PubMed

    Groß, Andrea; Kremling, Michael; Marr, Isabella; Kubinski, David J; Visser, Jacobus H; Tuller, Harry L; Moos, Ralf

    2013-01-01

    An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT) for NOx storage catalysts (NSC) enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD). The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1) time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2) during the short-term thermal NOx release. PMID:23549366

  6. Nitrite and nitrate formation on model NOx storage materials: on the influence of particle size and composition.

    PubMed

    Desikusumastuti, A; Qin, Z; Happel, M; Staudt, T; Lykhach, Y; Laurin, M; Rohr, F; Shaikhutdinov, S; Libuda, J

    2009-04-14

    A well-defined model-catalyst approach has been utilized to study the formation and decomposition of nitrite and nitrate species on a model NO(x) storage material. The model system comprises BaAl(2x)O(1+3x) particles of different size and stoichiometry, prepared under ultrahigh-vacuum (UHV) conditions on Al(2)O(3)/NiAl(110). Adsorption and reaction of NO(2) has been investigated by molecular beam (MB) methods and time-resolved IR reflection absorption spectroscopy (TR-IRAS) in combination with structural characterization by scanning tunneling microscopy (STM). The growth behavior and chemical composition of the BaAl(2x)O(1+3x) particles has been investigated previously. In this work we focus on the effect of particle size and stoichiometry on the reaction with NO(2). Particles of different size and of different Ba(2+) : Al(3+) surface ion ratio are prepared by varying the preparation conditions. It is shown that at 300 K the reaction mechanism is independent of particle size and composition, involving initial nitrite formation and subsequent transformation of nitrites into surface nitrates. The coordination geometry of the surface nitrates, however, changes characteristically with particle size. For small BaAl(2x)O(1+3x) particles high temperature (800 K) oxygen treatment gives rise to particle ripening, which has a minor effect on the NO(2) uptake behavior, however. STM shows that the morphology of the particle system is largely conserved during NO(2) exposure at 300 K. The reaction is limited to the formation of surface nitrites and nitrates, which are characterized by low thermal stability and completely decompose below 500 K. As no further sintering occurs before decomposition, NO(2) uptake and release is a fully reversible process. For large BaAl(2x)O(1+3x) particles, aggregates with different Ba(2+) : Al(3+) surface ion ratio were prepared. It was shown that the stoichiometry has a major effect on the kinetics of NO(2) uptake. For barium

  7. Causes of Activation and Deactivation of Modified Nanogold Catalysts during Prolonged Storage and Redox Treatments.

    PubMed

    Kolobova, Ekaterina; Kotolevich, Yulia; Pakrieva, Ekaterina; Mamontov, Grigory; Farías, Mario H; Bogdanchikova, Nina; Cortés Corberán, Vicente; Pestryakov, Alexey

    2016-01-01

    The catalytic properties of modified Au/TiO₂ catalysts for low-temperature CO oxidation are affected by deactivation and reactivation after long-term storage and by redox treatments. The effect of these phenomena on the catalysts was studied by HRTEM, BET, SEM, FTIR CO, XPS and H₂ TPR methods. The main cause for the deactivation and reactivation of catalytic properties is the variation in the electronic state of the supported gold, mainly, the proportion of singly charged ions Au⁺. The most active samples are those with the highest proportion of singly charged gold ions, while catalysts with a high content of trivalent gold ions are inactive at low-temperatures. Active states of gold, resistant to changes caused by the reaction process and storage conditions, can be stabilized by modification of the titanium oxide support with transition metals oxides. The catalyst modified with lanthanum oxide shows the highest stability and activity. PMID:27089310

  8. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH₃ at low temperature.

    PubMed

    Wang, Peng; Sun, Hong; Quan, Xie; Chen, Shuo

    2016-01-15

    The development of catalysts for selective catalytic reduction (SCR) reactions that are highly active at low temperatures and show good resistance to SO2 and H2O is still a challenge. In this study, we have designed and developed a high-performance SCR catalyst based on nano-sized ceria encapsulated inside the pores of MIL-100(Fe) that combines excellent catalytic power with a metal organic framework architecture synthesized by the impregnation method (IM). Transmission electron microscopy (TEM) revealed the encapsulation of ceria in the cavities of MIL-100(Fe). The prepared IM-CeO2/MIL-100(Fe) catalyst shows improved catalytic activity both at low temperatures and throughout a wide temperature window. The temperature window for 90% NOx conversion ranges from 196 to 300°C. X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis indicated that the nano-sized ceria encapsulated inside MIL-100(Fe) promotes the production of chemisorbed oxygen on the catalyst surface, which greatly enhances the formation of the NO2 species responsible for fast SCR reactions. PMID:26414927

  9. Simultaneous reduction of particulate matter and NO(x) emissions using 4-way catalyzed filtration systems.

    PubMed

    Swanson, Jacob J; Watts, Winthrop F; Newman, Robert A; Ziebarth, Robin R; Kittelson, David B

    2013-05-01

    The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device. PMID:23550802

  10. Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

    SciTech Connect

    Choi, Jae-Soon; Prikhodko, Vitaly Y; Partridge Jr, William P; Parks, II, James E; Norman, Kevin M; Huff, Shean P; Chambon, Paul H; Thomas, John F

    2010-01-01

    Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

  11. Photocatalytic oxidation of NOx over TiO2/HZSM-5 catalysts in the presence of water vapor: Effect of hydrophobicity of zeolites.

    PubMed

    Guo, Gaofei; Hu, Yun; Jiang, Shumei; Wei, Chaohai

    2012-07-15

    TiO(2) hybridized with HZSM-5 zeolites photocatalysts were prepared by a simple solid state dispersion method. The physicochemical properties of the catalysts were characterized by X-ray diffraction, UV-vis diffuse reflectance and FT-IR spectroscopy. The photocatalytic oxidation of NO(x) over TiO(2)/HZSM-5 having different Si/Al ratios was carried out under various levels of humidity and different pre-adsorption times in dark. The TiO(2)/HZSM-5 composite catalysts exhibited higher NO conversion and lower NO(2) formation than pure TiO(2). Pre-adsorption with water vapor and the high humidity during the photoreaction were harmful to the reactivity of TiO(2) hybridized with hydrophilic HZSM-5 zeolite. However, the photocatalytic reactivity of TiO(2) hybridized with hydrophobic zeolite varied little with increase in humidity. The results indicated that the high photocatalytic reactivity of TiO(2)/HZSM-5 catalysts is largely depended on the hydrophobicity of the zeolites. PMID:22579762

  12. Water-induced morphology changes in BaO/γ-Al2O3 NOx storage materials: an FTIR, TPD, and time-resolved synchrotron XRD study

    SciTech Connect

    Szanyi, Janos; Kwak, Ja Hun; Kim, Do Heui; Wang, Xianqin; Chimentao, Ricardo J.; Hanson, Jonathan; Epling, William S.; Peden, Charles HF

    2007-03-29

    The effect of water on the morphology of BaO/Al2O3-based NOx storage materials was investigated using Fourier transform infrared spectroscopy, temperature programmed desorption, and time-resolved synchrotron X-ray diffraction techniques. The results of this multi-spectroscopy study reveal that, in the presence of water, surface Ba-nitrates convert to bulk nitrates, and water facilitates the formation of large Ba(NO3)2 particles. This process is completely reversible, i.e. after the removal of water from the storage material a significant fraction of the bulk nitrates re-convert to surface nitrates. NO2 exposure of a H2O-containing (wet) BaO/Al2O3 sample results in the formation of nitrites and bulk nitrates exclusively, i.e. no surface nitrates form. After further exposure to NO2, the nitrites completely convert to bulk nitrates. The amount of NOx taken up by the storage material is, however, essentially unaffected by the presence of water, regardless of whether the water was dosed prior to or after NO2 exposure. Based on the results of this study we are now able to explain most of the observations reported in the literature on the effect of water on NOx uptake on similar storage materials.

  13. DEVELOPMENT OF MULTI-TASK CATALYSTS FOR REMOVAL OF NOx AND TOXIC ORGANIC COMPOUNDS DURING COAL COMBUSTION

    SciTech Connect

    Panagiotis G. Smirniotis; Robert G. Jenkins

    2002-02-04

    The work performed during this project focused on the identification of materials capable of providing high activity and selectivity for the selective catalytic reduction of nitric oxide with ammonia. The material surface characteristics were correlated with the catalytic behavior of our catalysts to increase our understanding and to help improve the DeNO{sub x} efficiency. The catalysts employed in this study include mixed oxide composite powders (TiO{sub 2}-Cr{sub 2}O{sub 3}, TiO{sub 2}-ZrO{sub 2}, TiO{sub 2}-WO{sub 3}, TiO{sub 2}-SiO{sub 2}, and TiO{sub 2}-Al{sub 2}O{sub 3}) loaded with varying amounts of V{sub 2}O{sub 5}, along with 5 different commercial sources of TiO{sub 2}. V{sub 2}O{sub 5} was added to the commercial sources of TiO{sub 2} to achieve monolayer coverage. Since the valence state of vanadium in the precursor solution during the impregnation step significantly impacted catalytic performance, catalysts were synthesized from both V{sup +4} and V{sup +5} solutions explain this phenomenon. Specifically, the synthesis of catalysts from V{sup 5+} precursor solutions yields lower-performance catalysts compared to the case of V{sup 4+} under identical conditions. Aging the vanadium precursor solution, which is associated with the reduction of V{sup 5+} to V{sup 4+} (VO{sub 2}{sup +} {yields} VO{sup 2+}), prior to impregnation results in catalysts with excellent catalytic behavior under identical activation and operating conditions. This work also added vanadia to TiO{sub 2}-based supports with low crystallinity. These supports, which have traditionally performed poorly, are now able to function as effective SCR catalysts. Increasing the acidity of the support by incorporating oxides such as WO{sub 3} and Al{sub 2}O{sub 3} significantly improves the SCR activity and nitrogen selectivity. It was also found that the supports should be synthesized with the simultaneous precipitation of the corresponding precursors. The mixed oxide catalysts possess

  14. Mechanistic insight into aerobic alcohol oxidation using NOx-nitroxide catalysis based on catalyst structure-activity relationships.

    PubMed

    Shibuya, Masatoshi; Nagasawa, Shota; Osada, Yuji; Iwabuchi, Yoshiharu

    2014-11-01

    The mechanism of an NOx-assisted, nitroxide(nitroxyl radical)-catalyzed aerobic oxidation of alcohols was investigated using a set of sterically and electronically modified nitroxides (i.e., TEMPO, AZADO (1), 5-F-AZADO (2), 5,7-DiF-AZADO (3), 5-MeO-AZADO (4), 5,7-DiMeO-AZADO (5), oxa-AZADO (6), TsN-AZADO (7), and DiAZADO (8)). The motivation for the present study stemmed from our previous observation that the introduction of an F atom at a remote position from the nitroxyl radical moiety on the azaadamantane nucleus effectively enhanced the catalytic activity under typical NOx-mediated aerobic-oxidation conditions. The kinetic profiles of the azaadamantane-N-oxyl-[AZADO (1)-, 5-F-AZADO (2)-, and 5,7-DiF-AZADO (3)]-catalyzed aerobic oxidations were closely investigated, revealing that AZADO (1) showed a high initial reaction rate compared to 5-F-AZADO (2) and 5,7-DiF-AZADO (3); however, AZADO-catalyzed oxidation exhibited a marked slowdown, resulting in ∼90% conversion, whereas 5-F-AZADO-catalyzed oxidation smoothly reached completion without a marked slowdown. The reasons for the marked slowdown and the role of the fluoro group are discussed. Oxa-AZADO (6), TsN-AZADO (7), and DiAZADO (8) were designed and synthesized to confirm their comparable catalytic efficiency to that of 5-F-AZADO (2), providing supporting evidence for the electronic effect on the catalytic efficiency of the heteroatoms under NOx-assisted aerobic-oxidation conditions. PMID:25286356

  15. Selective catalytic reduction system and process for treating NOx emissions using a zinc or titanium promoted palladium-zirconium catalyst

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2011-08-02

    A process and system (18) for reducing NO.sub.x in a gas using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream (29) with a catalyst system (38) comprising sulfated zirconia washcoat particles (41), palladium, a pre-sulfated zirconia binder (44), and a promoter (45) comprising at least one of titanium, zinc, or a mixture thereof. The presence of zinc or titanium increases the resistance of the catalyst system to a sulfur and water-containing gas stream.

  16. System and method for controlling an engine based on ammonia storage in multiple selective catalytic reduction catalysts

    DOEpatents

    Sun, MIn; Perry, Kevin L.

    2015-11-20

    A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.

  17. Active role of the support in NOx storage and reductioncatalytic systems

    NASA Astrophysics Data System (ADS)

    Tek, Mustafa; Ustunel, Hande; Toffoli, Daniele

    2015-11-01

    We present first-principles density functional theory calculations of the adsorption properties of NO2 and SO2 on isolated (BaO)n (n = 1, 2, 4, 6, 8, 9) clusters as well as on small BaO clusters ((BaO)n with n = 1, 2, 4) supported on the anatase TiO2(0 0 1) surface. The TiO2 support influences binding indirectly by enhancing the electron donation from the BaO clusters to both chemisorbed NO2 and the support. This support-mediated increase in stability is not observed for SO2. We describe in detail and highlight the role played by TiO2 on the charge transfer mechanism, which can be used to control the catalytic properties of the active components of nitrogen storage and reduction catalytic systems. The relatively larger activity of the supported BaO clusters towards NO2 adsorption in comparison to SO2 could in principle offer protection against sulfur poisoning.

  18. Enhanced high temperature performance of MgAl2O4-supported Pt-BaO lean NOx trap catalysts

    SciTech Connect

    Kwak, Ja Hun; Kim, Do Heui; Szanyi, Janos; Cho, Sung June; Peden, Charles HF

    2012-03-05

    The structural and chemical characteristics of Pt/BaO lean-NO{sub x} trap (LNT) catalysts supported on {gamma}-Al{sub 2}O{sub 3} and MgAl{sub 2}O{sub 4} are compared in this study. The Pt-BaO/MgAl{sub 2}O{sub 4} sample shows relatively low NO{sub x} uptake at temperatures below 300 C, and the temperature of maximum NO{sub x} uptake (T{sub max}) is shifted to 350 C in comparison to that of Pt-BaO/Al{sub 2}O{sub 3} (T{sub max} {approx}250 C). More importantly, the NO{sub x} uptake over the MgAl{sub 2}O{sub 4}-supported catalyst at 350 C is twice that of the alumina-based one. The shift toward the higher temperature NO{sub x} uptake is explained by the larger interfacial area between Pt and BaO, due to smaller Pt clusters as evidenced by TEM and Pt L3 EXAFS. In situ TR-XRD results demonstrate that the formation of a BaAl{sub 2}O{sub 4} phase in the BaO/MgAl{sub 2}O{sub 4} LNT catalyst occurs at a temperature about 100 C higher than on BaO/Al{sub 2}O{sub 3}, which may also represent a beneficial attribute of the BaO/MgAl{sub 2}O{sub 4} LNT with respect to catalyst stability.

  19. Kinetic and Performance Studies of the Regeneration Phase of Model Pt/Ba/Rh NOx Traps for Design and Optimization

    SciTech Connect

    Michael Harold; Vemuri Balakotaiah

    2010-05-31

    In this project a combined experimental and theoretical approach was taken to advance our understanding of lean NOx trap (LNT) technology. Fundamental kinetics studies were carried out of model LNT catalysts containing variable loadings of precious metals (Pt, Rh), and storage components (BaO, CeO{sub 2}). The Temporal Analysis of Products (TAP) reactor provided transient data under well-characterized conditions for both powder and monolith catalysts, enabling the identification of key reaction pathways and estimation of the corresponding kinetic parameters. The performance of model NOx storage and reduction (NSR) monolith catalysts were evaluated in a bench scale NOx trap using synthetic exhaust, with attention placed on the effect of the pulse timing and composition on the instantaneous and cycle-averaged product distributions. From these experiments we formulated a global model that predicts the main spatio-temporal features of the LNT and a mechanistic-based microkinetic models that incorporates a detailed understanding of the chemistry and predicts more detailed selectivity features of the LNT. The NOx trap models were used to determine its ability to simulate bench-scale data and ultimately to evaluate alternative LNT designs and operating strategies. The four-year project led to the training of several doctoral students and the dissemination of the findings as 47 presentations in conferences, catalysis societies, and academic departments as well 23 manuscripts in peer-reviewed journals. A condensed review of NOx storage and reduction was published in an encyclopedia of technology.

  20. Method for reducing NOx during combustion of coal in a burner

    DOEpatents

    Zhou, Bing; Parasher, Sukesh; Hare, Jeffrey J.; Harding, N. Stanley; Black, Stephanie E.; Johnson, Kenneth R.

    2008-04-15

    An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

  1. Imaging of Oxygen Diffusion in Individual Platinum/Ce2 Zr2 Ox Catalyst Particles During Oxygen Storage and Release.

    PubMed

    Matsui, Hirosuke; Ishiguro, Nozomu; Enomoto, Kaori; Sekizawa, Oki; Uruga, Tomoya; Tada, Mizuki

    2016-09-19

    The spatial distribution of Ce(3+) and Ce(4+) in each particle of Ce2 Zr2 Ox in a three-way conversion catalyst system was successfully imaged during an oxygen storage/release cycle by scanning X-ray absorption fine structure (XAFS) using hard X-ray nanobeams. For the first time, nano-XAFS imaging visualized and identified the modes of non-uniform oxygen diffusion from the interface of Pt catalyst and Ce2 Zr2 Ox support and the active parts in individual catalyst particles. PMID:27574097

  2. NOx Reduction on a Transition Metal-free γ-Al2O3 Catalyst Using Dimethylether (DME)

    SciTech Connect

    Ozensoy, Emrah; Herling, Darrell R.; Szanyi, Janos

    2008-07-15

    NO2 and dimethylether (DME) adsorption as well as DME and NO2 coadsorption on a transition metal-free γ-alumina catalyst were investigated via in-situ transmission Fourier transform infrared spectroscopy (in-situ FTIR), residual gas analysis (RGA) and temperature programmed desorption (TPD) techniques. NO2 adsorption at room temperature leads to the formation of surface nitrates and nitrites. DME adsorption on the alumina surface at 300 K leads to molecularly adsorbed DME, molecularly adsorbed methanol and surface methoxides. Upon heating the DME-exposed alumina to 500-600 K the surface is dominated by methoxide groups. At higher temperatures methoxide groups are converted into formates. At T > 510 K formate decomposition takes place to form H2O(g) and CO(g). DME and NO2 coadsorption at 423 K do not indicate a significant reaction between DME and NO2. However, in similar experiments at 573 K, fast reaction occurs and the methoxides present at 573 K before the NO2 adsorption are converted into formates, simultaneously with the formation of isocyanates. Under these conditions, NCO can further be hydrolyzed into isocyanic acid or ammonia with the help of water which is generated during the formate formation, decomposition and/or NCO formation steps.

  3. Sulfur Management of NOx Adsorber Technology for Diesel Light-Duty Vehicle and Truck Applications

    SciTech Connect

    Fang, Howard L.; Wang, Jerry C.; Yu, Robert C.; Wan, C. Z.; Howden, Ken

    2003-10-01

    Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure. With the use of a disposable SOx trap to remove large portion of the sulfur poisons from the exhaust, the NOx adsorber catalyst can be protected and the numbers of de-sulfation events can be greatly reduced. Spectroscopic techniques, such as DRIFTS and Raman, have been used to monitor the underlying chemical reactions during NOx trapping/ regeneration and de-sulfation periods, and provide a fundamental understanding of NOx storage capacity and catalyst degradation mechanism using model catalysts. This paper examines the sulfur effect on two model NOx adsorber catalysts. The chemistry of SOx/base metal oxides and the sulfation product pathways and their corresponding spectroscopic data are discussed. SAE Paper SAE-2003-01-3245 {copyright} 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed

  4. Physico-Chemical Property and Catalytic Activity of a CeO2-Doped MnO(x)-TiO2 Catalyst with SO2 Resistance for Low-Temperature NH3-SCR of NO(x).

    PubMed

    Shin, Byeongkil; Chun, Ho Hwan; Cha, Jin-Sun; Shin, Min-Chul; Lee, Heesoo

    2016-05-01

    The effects of CeO2 addition on the catalytic activity and the SO2 resistance of CeO2-doped MnO(x)-TiO2 catalysts were investigated for the low-temperature selective catalytic reduction (SCR) with NH3 of NO(x) emissions in marine applications. The most active catalyst was obtained from 30 wt% CeO2-MnO(x)-TiO2 catalyst in the whole temperature range of 100-300 degrees C at a low gas hourly space velocity (GHSV) of 10,000 h(-)1, and its de-NO(x) efficiency was higher than 90% over 250 degrees C. The enhanced catalytic activity may contribute to the dispersion state and catalytic acidity on the catalyst surface, and the highly dispersed Mn and Ce on the nano-scaled TiO2 catalyst affects the increase of Lewis and Brønsted acid sites. A CeO2-rich additive on MnO(x)-TiO2 could provide stronger catalytic acid sites, associated with NH3 adsorption and the SCR performance. As the results of sulfur resistance in flue gas that contains SO2, the de-NO(x) efficiency of MnO(x)-TiO2 decreased by 15% over 200 degrees C, whereas that of 30 wt% ceria-doped catalyst increased by 14-21% over 150 degrees C. The high SO2 resistance of CeO2-MnO(x)-TiO2 catalysts that resulted from the addition of ceria suppressed the formation of Mn sulfate species, which led to deactivation on the surface of nano-catalyst. PMID:27483759

  5. Design Strategies for CeO2-MoO3 Catalysts for DeNOx and Hg(0) Oxidation in the Presence of HCl: The Significance of the Surface Acid-Base Properties.

    PubMed

    Chang, Huazhen; Wu, Qingru; Zhang, Tao; Li, Mingguan; Sun, Xiaoxu; Li, Junhua; Duan, Lei; Hao, Jiming

    2015-10-20

    A series of CeMoOx catalysts with different surface Ce/Mo ratios was synthesized by a coprecipitation method via changing precipitation pH value. The surface basicity on selective catalytic reduction (SCR) catalysts (CeMoOx and VMo/Ti) was characterized and correlated to the durability and activity of catalyst for simultaneous elimination of NOx and Hg(0). The pH value in the preparation process affected the surface concentrations of Ce and Mo, the Brunauer-Emmett-Teller (BET) specific surface area, and the acid-base properties over the CeMoOx catalysts. The O 1s X-ray photoelectron spectroscopy (XPS) spectra and CO2-temperature programmed desorption (TPD) suggested that the surface basicity increased as the pH value increased. The existence of strong basic sites contributed to the deactivation effect of HCl over the VMo/Ti and CeMoOx catalysts prepared at pH = 12. For the CeMoOx catalysts prepared at pH = 9 and 6, the appearance of surface molybdena species replaced the surface -OH, and the existence of appropriate medium-strength basic sites contributed to their resistance to HCl poisoning in the SCR reaction. Moreover, these sites facilitated the adsorption and activation of HCl and enhanced Hg(0) oxidation. On the other hand, the inhibitory effect of NH3 on Hg(0) oxidation was correlated with the competitive adsorption of NH3 and Hg(0) on acidic surface sites. Therefore, acidic surface sites may play an important role in Hg(0) adsorption. The characterization and balance of basicity and acidity of an SCR catalyst is believed to be helpful in preventing deactivation by acid gas in the SCR reaction and simultaneous Hg(0) oxidation. PMID:26421943

  6. Influence of the addition of transition metals (Cr, Zr, Mo) on the properties of MnOx-FeOx catalysts for low-temperature selective catalytic reduction of NOx by Ammonia.

    PubMed

    Zhou, Changcheng; Zhang, Yaping; Wang, Xiaolei; Xu, Haitao; Sun, Keqin; Shen, Kai

    2013-02-15

    The co-precipitation and citric acid methods were employed to prepare MnO(x)-FeO(x) catalysts for the low-temperature selective catalytic reduction (SCR) of NO(x) by ammonia. It was found that the Mn-Fe (CP) sample obtained from the co-precipitation method, which exhibited low crystalline of manganese oxides on the surface, high specific surface area and abundant acid sites at the surface, had better catalytic activity. The effects of doping different transition metals (Mo, Zr, Cr) in the Mn-Fe (CP) catalysts were further investigated. The study suggested that the addition of Cr can obviously reduce the take-off temperature of Mn-Fe catalyst to 90°C, while the impregnation of Zr and Mo raised that remarkably. The texture and micro-structure analysis revealed that for the Cr-doped Mn-Fe catalysts, the active components had better dispersion with less agglomeration and sintering and the largest BET surface specific area. In situ FTIR study indicated that the addition of Cr can increase significantly the surface acidity, especially, the Lewis acid sites, and promote the formation of the intermediate -NH(3)(+). H(2)-TPR results confirmed the better low-temperature redox properties of Mn-Fe-Cr. PMID:23142012

  7. Investigation of Mixed Oxide Catalysts for NO Oxidation

    SciTech Connect

    Szanyi, Janos; Karim, Ayman M.; Pederson, Larry R.; Kwak, Ja Hun; Mei, Donghai; Tran, Diana N.; Herling, Darrell R.; Muntean, George G.; Peden, Charles HF; Howden, Ken; Qi, Gongshin; Li, Wei

    2014-12-09

    The oxidation of engine-generated NO to NO2 is an important step in the reduction of NOx in lean engine exhaust because NO2 is required for the performance of the LNT technology [2], and it enhances the activities of ammonia selective catalytic reduction (SCR) catalysts [1]. In particular, for SCR catalysts an NO:NO2 ratio of 1:1 is most effective for NOx reduction, whereas for LNT catalysts, NO must be oxidized to NO2 before adsorption on the storage components. However, NO2 typically constitutes less than 10% of NOx in lean exhaust, so catalytic oxidation of NO is essential. Platinum has been found to be especially active for NO oxidation, and is widely used in DOC and LNT catalysts. However, because of the high cost and poor thermal durability of Pt-based catalysts, there is substantial interest in the development of alternatives. The objective of this project, in collaboration with partner General Motors, is to develop mixed metal oxide catalysts for NO oxidation, enabling lower precious metal usage in emission control systems. [1] M. Koebel, G. Madia, and M. Elsener, Catalysis Today 73, 239 (2002). [2] C. H. Kim, G. S. Qi, K. Dahlberg, and W. Li, Science 327, 1624 (2010).

  8. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    PubMed

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-01

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles. PMID:26763714

  9. Advantages of MgAlOx over gamma-Al2O3 as a support material for potassium-based high temperature lean NOx traps

    SciTech Connect

    Luo, Jinyong; Gao, Feng; Karim, Ayman M.; Xu, Pinghong; Browning, Nigel D.; Peden, Charles HF

    2015-08-07

    MgAlOx mixed oxides were employed as supports for potassium-based lean NOx traps (LNTs) targeted for high temperature applications. Effects of support compositions, K/Pt loadings, thermal aging and catalyst regeneration on NOx storage capacity were systematically investigated. The catalysts were characterized by XRD, NOx-TPD, TEM, STEM-HAADF and in-situ XAFS. The results indicate that MgAlOx mixed oxides have significant advantages over conventional gamma-Al2O3-supports for LNT catalysts, in terms of high temperature NOx trapping capacity and thermal stability. First, as a basic support, MgAlOx stabilizes stored nitrates (in the form of KNO3) to much higher temperatures than mildly acidic gamma-Al2O3. Second, MgAlOx minimizes Pt sintering during thermal aging, which is not possible for gamma-Al2O3 supports. Notably, combined XRD, in-situ XAFS and STEM-HAADF results indicate that Pt species in the thermally aged Pt/MgAlOx samples are finely dispersed in the oxide matrix as isolated atoms. This strong metal-support interaction stabilizes Pt and minimizes the extent of sintering. However, such strong interactions result in Pt oxidation via coordination with the support so that NO oxidation activity can be adversely affected after aging which, in turn, decreases NOx trapping ability for these catalysts. Interestingly, a high-temperature reduction treatment regenerates essentially full NOx trapping performance. In fact, regenerated Pt/K/MgAlOx catalyst exhibits much better NOx trapping performance than fresh Pt/K/Al2O3 LNTs over the entire temperature range investigated here. In addition to thermal aging, Pt/K loading effects were systemically studied over the fresh samples. The results indicate that NOx trapping is kinetically limited at low temperatures, while thermodynamically limited at high temperatures. A simple conceptual model was developed to explain the Pt and K loading effects on NOx storage. An optimized K loading, which allows balancing between the

  10. Redox properties and metal-support interaction of Pd/Ce0.67Zr0.33O2-Al2O3 catalyst for CO, HC and NOx elimination

    NASA Astrophysics Data System (ADS)

    Lin, Siyu; Yang, Linyan; Yang, Xue; Zhou, Renxian

    2014-06-01

    Ce0.67Zr0.33O2, Ce0.67Zr0.33O2-Al2O3 and γ-Al2O3 supported Pd catalysts (designated as Pd/CZ, Pd/CZA and Pd/Al2O3) have been characterized by XRD, CO chemisorption, in situ DRIFTS, XPS, HRTEM, H2-TPR, O2-TPSR and catalytic performance test. The results show that the small PdOx particles dispersed in CZ would promote the conversion of HC, CO and NO2, while the PdOx particles dispersed in Al2O3 promote the conversion of NO in the light-off process. PdOx species mainly disperse on Al2O3-rich grains surface for fresh Pd/CZA catalyst, but easily migrate onto CZ-rich grains surface due to the strong interaction between Pd and ceria-based oxide under high temperature reaction conditions. And it promotes the thermal stability of PdO species and resilience of Pd0 to PdO, therefore enhances the catalytic performance for HC, CO and NOx elimination. Meanwhile, the interaction between CZ and Al2O3 can be enhanced after aging treatment, resulting in increasing the thermal stability of Pd/CZA catalyst.

  11. HERFD-XANES and XES as complementary operando tools for monitoring the structure of Cu-based zeolite catalysts during NOx-removal by ammonia SCR

    NASA Astrophysics Data System (ADS)

    Günter, T.; Doronkin, D. E.; Carvalho, H. W. P.; Casapu, M.; Grunwaldt, J.-D.

    2016-05-01

    In this article, we demonstrate the potential of hard X-ray techniques to characterize catalysts under working conditions. Operando high energy resolution fluorescence detected (HERFD) XANES and valence to core (vtc) X-ray emission spectroscopy (XES) have been used in a spatially-resolved manner to study Cu-zeolite catalysts during the standard-SCR reaction and related model conditions. The results show a gradient in Cu oxidation state and coordination along the catalyst bed as the reactants are consumed. Vtc-XES gives complementary information on the direct adsorption of ammonia at the Cu sites. The structural information on the catalyst shows the suitability of X-ray techniques to understand catalytic reactions and to facilitate catalyst optimization.

  12. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes - May 2008

    SciTech Connect

    Ott, Kevin C.; Linehan, Sue; Lipiecki, Frank; Christopher, Aardahl L.

    2008-05-12

    Chemical Hydrogen Storage Center of Excellence FY2008 Second Quarter Milestone Report: Technical report describing assessment of hydrogen storage materials and progress towards meeting DOE’s hydrogen storage targets.

  13. NOx analyser interefence from alkenes

    NASA Astrophysics Data System (ADS)

    Bloss, W. J.; Alam, M. S.; Lee, J. D.; Vazquez, M.; Munoz, A.; Rodenas, M.

    2012-04-01

    Nitrogen oxides (NO and NO2, collectively NOx) are critical intermediates in atmospheric chemistry. NOx abundance controls the levels of the primary atmospheric oxidants OH, NO3 and O3, and regulates the ozone production which results from the degradation of volatile organic compounds. NOx are also atmospheric pollutants in their own right, and NO2 is commonly included in air quality objectives and regulations. In addition to their role in controlling ozone formation, NOx levels affect the production of other pollutants such as the lachrymator PAN, and the nitrate component of secondary aerosol particles. Consequently, accurate measurement of nitrogen oxides in the atmosphere is of major importance for understanding our atmosphere. The most widely employed approach for the measurement of NOx is chemiluminescent detection of NO2* from the NO + O3 reaction, combined with NO2 reduction by either a heated catalyst or photoconvertor. The reaction between alkenes and ozone is also chemiluminescent; therefore alkenes may contribute to the measured NOx signal, depending upon the instrumental background subtraction cycle employed. This interference has been noted previously, and indeed the effect has been used to measure both alkenes and ozone in the atmosphere. Here we report the results of a systematic investigation of the response of a selection of NOx analysers, ranging from systems used for routine air quality monitoring to atmospheric research instrumentation, to a series of alkenes ranging from ethene to the biogenic monoterpenes, as a function of conditions (co-reactants, humidity). Experiments were performed in the European Photoreactor (EUPHORE) to ensure common calibration, a common sample for the monitors, and to unequivocally confirm the alkene (via FTIR) and NO2 (via DOAS) levels present. The instrument responses ranged from negligible levels up to 10 % depending upon the alkene present and conditions used. Such interferences may be of substantial importance

  14. Promotion effect of H2 on ethanol oxidation and NOx reduction with ethanol over Ag/Al2O3 catalyst.

    PubMed

    Yu, Yunbo; Li, Yi; Zhang, Xiuli; Deng, Hua; He, Hong; Li, Yuyang

    2015-01-01

    The catalytic partial oxidation of ethanol and selective catalytic reduction of NOx with ethanol (ethanol-SCR) over Ag/Al2O3 were studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS). The intermediates were identified by PIMS and their photoionization efficiency (PIE) spectra. The results indicate that H2 promotes the partial oxidation of ethanol to acetaldehyde over Ag/Al2O3, while the simultaneously occurring processes of dehydration and dehydrogenation were inhibited. H2 addition favors the formation of ammonia during ethanol-SCR over Ag/Al2O3, the occurrence of which creates an effective pathway for NOx reduction by direct reaction with NH3. Simultaneously, the enhancement of the formation of ammonia benefits its reaction with surface enolic species, resulting in producing -NCO species again, leading to enhancement of ethanol-SCR over Ag/Al2O3 by H2. Using VUV-PIMS, the reactive vinyloxy radical was observed in the gas phase during the NOx reduction by ethanol for the first time, particularly in the presence of H2. Identification of such a reaction occurring in the gas phase may be crucial for understanding the reaction pathway of HC-SCR over Ag/Al2O3. PMID:25485626

  15. Diesel Fuel Sulfur Effects on the Performance of Diesel Oxidation Catalysts

    SciTech Connect

    Whitacre, Shawn D.

    2000-08-20

    Research focus: - Impact of sulfur on: Catalyst performance; Short term catalyst durability. This presentation summarizes results from fresh catalyst performance evaluations - WVU contracted to conduct DOC and Lean NOx catalyst testing for DECSE DECSE program. (experimental details discussed previously)

  16. Noble metal ionic catalysts.

    PubMed

    Hegde, M S; Madras, Giridhar; Patil, K C

    2009-06-16

    Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NO(x), and unburned hydrocarbons-need to be fully converted to CO(2), N(2), and H(2)O. Most exhaust catalysts contain nanocrystalline noble metals (Pt, Pd, Rh) dispersed on oxide supports such as Al(2)O(3) or SiO(2) promoted by CeO(2). However, in conventional catalysts, only the surface atoms of the noble metal particles serve as adsorption sites, and even in 4-6 nm metal particles, only 1/4 to 1/5 of the total noble metal atoms are utilized for catalytic conversion. The complete dispersion of noble metals can be achieved only as ions within an oxide support. In this Account, we describe a novel solution to this dispersion problem: a new solution combustion method for synthesizing dispersed noble metal ionic catalysts. We have synthesized nanocrystalline, single-phase Ce(1-x)M(x)O(2-delta) and Ce(1-x-y)Ti(y)M(x)O(2-delta) (M = Pt, Pd, Rh; x = 0.01-0.02, delta approximately x, y = 0.15-0.25) oxides in fluorite structure. In these oxide catalysts, Pt(2+), Pd(2+), or Rh(3+) ions are substituted only to the extent of 1-2% of Ce(4+) ion. Lower-valent noble metal ion substitution in CeO(2) creates oxygen vacancies. Reducing molecules (CO, H(2), NH(3)) are adsorbed onto electron-deficient noble metal ions, while oxidizing (O(2), NO) molecules are absorbed onto electron-rich oxide ion vacancy sites. The rates of CO and hydrocarbon oxidation and NO(x) reduction (with >80% N(2) selectivity) are 15-30 times higher in the presence of these ionic catalysts than when the same amount of noble metal loaded on an oxide support is used. Catalysts with palladium ion dispersed in CeO(2) or Ce(1-x)Ti(x)O(2) were far superior to Pt or Rh ionic catalysts. Therefore, we have demonstrated that the

  17. Local ammonia storage and ammonia inhibition in a monolithic copper-beta zeolite SCR catalyst

    SciTech Connect

    Auvray, Xavier P; Partridge Jr, William P; Choi, Jae-Soon; Pihl, Josh A; Yezerets, Alex; Kamasamudram, Krishna; Currier, Neal; Olsson, Louise

    2012-01-01

    Selective catalytic reduction of NO with NH{sub 3} was studied on a Cu-beta zeolite catalyst, with specific focus on the distributed NH{sub 3} capacity utilization and inhibition. In addition, several other relevant catalyst parameter distributions were quantified including the SCR zone, or catalyst region where SCR occurs, and NO and NH{sub 3} oxidation. We show that the full NH{sub 3} capacity (100% coverage) is used within the SCR zone for a range of temperatures. By corollary, unused NH{sub 3} capacity exists downstream of the SCR zone. Consequently, the unused capacity relative to the total capacity is indicative of the portion of the catalyst unused for SCR. Dynamic NH{sub 3} inhibition distributions, which create local transient conversion inflections, are measured. Dynamic inhibition is observed where the gas phase NH{sub 3} and NO concentrations are high, driving rapid NH{sub 3} coverage buildup and SCR. Accordingly, we observe dynamic inhibition at low temperatures and in hydrothermally aged states, but predict its existence very near the catalyst front in higher conversion conditions where we did not specifically monitor its impact. While this paper addresses some general distributed SCR performance parameters including Oxidation and SCR zone, our major new contributions are associated with the NH{sub 3} capacity saturation within the SCR zone and dynamic inhibition distributions and the associated observations. These new insights are relevant to developing accurate models, designs and control strategies for automotive SCR catalyst applications.

  18. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    SciTech Connect

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  19. Sulfur and temperature effects on the spatial distribution of reactions inside a lean NOx trap and resulting changes in global performance

    SciTech Connect

    Choi, Jae-Soon; Partridge Jr, William P; Pihl, Josh A; Daw, C Stuart

    2008-01-01

    We experimentally studied the influence of temperature and sulfur loading on the axial distribution of reactions inside a commercial lean NOx trap (LNT) catalyst to better understand the global performance trends. Our measurements were made on a monolith core, bench-flow reactor under cycling conditions (60-s lean/5-s rich) at 200, 325, and 400 C with intra-catalyst and reactor-outlet gas speciation. Postmortem elemental and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses of the catalyst also supplemented our gas species measurements. For the unsulfated catalyst, the NOx storage/reduction (NSR) reactions were localized in the front (upstream) portion of the monolith, whereas oxygen storage/reduction reactions were distributed more evenly along the entire catalyst length. As a result, two axially distinct reaction zones were developed inside the working catalyst: an upstream 'NSR zone' where both NOx and oxygen storage/reduction took place and a downstream oxygen storage capacity (OSC)-only zone where the NSR reactions did not penetrate. The NSR zone involved less than half the LNT at 325 and 400 C, but it included almost the entire length at 200 C. Sulfation poisoned both the NSR and OSC reactions beginning at the catalyst upstream edge, with the NSR degradation occurring more rapidly and distinctly than the OSC. As sulfation proceeded, a third zone (the sulfated zone) developed and the NSR zone moved downstream, with a concomitant decrease in both the OSC-only zone and global NOx conversion. The sulfation impact on NOx conversion was greatest at 200 C, when the NSR zone was largest. Ammonia selectivity increased with sulfation, which we attributed to a shortened OSC-only zone and resultantly reduced consumption of NH{sub 3}, slipping from the NSR zone, by downstream OSC. Lower temperatures also increased NH{sub 3} selectivity. Nitrous oxide selectivity also increased with decreasing temperature but showed little dependence on

  20. NOx technology for power plant emissions selection of catalysts and type of SCR for process for gas and coal fired power stations

    SciTech Connect

    Ghoreski, D.F.; Negrea, S.

    1993-12-31

    The paper will discuss the basic principle under which SCR system suppliers select the catalyst type and system appropriate for their project. A discussion of temperature, materials, contamination risks and activation properties will be covered for various types of catalysts. The presentation for the selection of type of SCR in the High Dust, Low Dust and Tail gas positions will also be discussed. Further covered is the decision making process to ascertain if an in-duct or conventional SCR system is to be considered. The paper uses examples of pricing for various arrangements in 2,500 MW of gas fired boilers in Southern California a 420 MW coal fired boiler in Florida.

  1. Selective catalytic reduction of NOx with NH3 over a Cu-SSZ-13 catalyst prepared by a solid state ion exchange method

    SciTech Connect

    Wang, Di; Gao, Feng; Peden, Charles HF; Li, Junhui; Kamasamudram, Krishna; Epling, William S.

    2014-06-01

    A novel solid state method was developed to synthesize Cu-SSZ-13 catalysts with excellent NH3-SCR performance and durable hydrothermal stability. After the solid state ion exchange (SSIE) process, the SSZ framework structure and surface area was maintained. In-situ DRIFTS and NH3-TPD experiments provide evidence that isolated Cu ions were successfully exchanged into the pores, which are the active centers for the NH3-SCR reaction.

  2. NOx reduction by electron beam-produced nitrogen atom injection

    DOEpatents

    Penetrante, Bernardino M.

    2002-01-01

    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  3. Synthetic Catalysts for CO2 Storage: Catalytic Improvement of Solvent Capture Systems

    SciTech Connect

    2010-08-15

    IMPACCT Project: LLNL is designing a process to pull CO2 out of the exhaust gas of coal-fired power plants so it can be transported, stored, or utilized elsewhere. Human lungs rely on an enzyme known as carbonic anhydrase to help separate CO2 from our blood and tissue as part of the normal breathing process. LLNL is designing a synthetic catalyst with the same function as this enzyme. The catalyst can be used to quickly capture CO2 from coal exhaust, just as the natural enzyme does in our lungs. LLNL is also developing a method of encapsulating chemical solvents in permeable microspheres that will greatly increase the speed of binding of CO2. The goal of the project is an industry-ready chemical vehicle that can withstand the harsh environments found in exhaust gas and enable new, simple process designs requiring less capital investment.

  4. Modeling Species Inhibition and Competitive Adsorption in Urea-SCR Catalysts

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Lee, Jong H.

    2012-04-16

    Although the urea-SCR technology exhibits high NOx reduction efficiency over a wide range of temperatures among the lean NOx reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. Urea-SCR catalysts exhibit poor NOx reduction performance at low temperature operating conditions (T < 150 C). We postulate that the poor performance is either due to NH3 storage inhibition by species like hydrocarbons or due to competitive adsorption between NH3 and other adsorbates such as H2O and hydrocarbons in the exhaust stream. In this paper we attempt to develop one-dimensional models to characterize inhibition and competitive adsorption in Fe-zeolite based urea-SCR catalysts based on bench reactor experiments. We further use the competitive adsorption (CA) model to develop a standard SCR model based on previously identified kinetics. Simulation results indicate that the CA model predicts catalyst outlet NO and NH3 concentrations with minimal root mean square error.

  5. PLASMA-ASSISTED CATALYTIC REDUCTION OF NOX

    EPA Science Inventory

    Many studies suggest that lean-NOx SCR proceeds via oxidation of NO to NO2 by oxygen, followed by the reaction of the NO2 with hydrocarbons. On catalysts that are not very effective in catalyzing the equilibration of NO+O2 and NO2, the rate of N2 formation is substantially higher...

  6. AMMONIA-FREE NOx CONTROL SYSTEM

    SciTech Connect

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2006-06-01

    This report describes a novel NOx control system that has the potential to drastically reduce cost, and enhance performance, operation and safety of power plant NOx control. The new system optimizes the burner and the furnace to achieve very low NOx levels and to provide an adequate amount of CO, and uses the CO for reducing NO both in-furnace and over a downstream AFSCR (ammonia-free selective catalytic reduction) reactor. The AF-SCR combines the advantages of the highly successful SCR technology for power plants and the TWC (three-way catalytic converter) widely used on automobiles. Like the SCR, it works in oxidizing environment of combustion flue gas and uses only base metal catalysts. Like the TWC, the AF-SCR removes NO and excess CO simultaneously without using any external reagent, such as ammonia. This new process has been studied in a development program jointed funded by the US Department of Energy and Foster Wheeler. The report outlines the experimental catalyst work performed on a bench-scale reactor, including test procedure, operating conditions, and results of various catalyst formulations. Several candidate catalysts, prepared with readily available transition metal oxides and common substrate materials, have shown over 80-90% removal for both NO and CO in oxidizing gas mixtures and at elevated temperatures. A detailed combustion study of a 400 MWe coal-fired boiler, applying computational fluid dynamics techniques to model boiler and burner design, has been carried out to investigate ways to optimize the combustion process for the lowest NOx formation and optimum CO/NO ratios. Results of this boiler and burner optimization work are reported. The paper further discusses catalyst scale-up considerations and the conceptual design of a 400 MWe size AF-SCR reactor, as well as economics analysis indicating large cost savings of the ammonia-free NOx control process over the current SCR technology.

  7. Dynamics of N2 and N2O peaks during and after the regeneration of lean NOx trap

    DOE PAGESBeta

    Mráček, David; Koci, Petr; Marek, Milos; Choi, Jae-Soon; Pihl, Josh A.; Partridge, Jr., William P.

    2014-12-04

    We study the dynamics and selectivity of N2 and N2O formation during and after the regeneration of a commercial NOx storage catalyst containing Pt, Pd, Rh, Ba on Ce/Zr, Mg/Al and Al oxides was studied with high-speed FTIR and SpaciMS analyzers. The lean/rich cycling experiments (60 s/5 s and 60 s/3 s) were performed in the temperature range 200–400°C, using H2, CO, and C3H6 individually for the reduction of adsorbed NOx. Isotopically labeled 15NO was employed in combination with Ar carrier gas in order to quantify the N2 product by mass spectrometry. N2 and N2O products were formed concurrently. Themore » primary peaks appeared immediately after the rich-phase inception, and tailed off with breakthrough of the reductant front (accompanied by NH3 product). Secondary N2 and N2O peaks appeared at the rich-to-lean transition as a result of reactions between surface-deposited reductants/intermediates (CO, HC, NH3, -NCO) and residual stored NOx. At 200–300 °C, up to 30% of N2 and 50% of N2O products originated from the secondary peaks. The N2O/N2 selectivity ratio as well as the magnitude of secondary peaks decreased with temperature and duration of the rich phase. Among the three reductants, propene generated secondary N2 peak up to the highest temperature. Lastly the primary N2 peak exhibited a broadened shoulder aligned with movement of reduction front from the zone where both NOx and oxygen were stored to the NOx-free zone where only oxygen storage capacity was saturated. N2 formed in the NOx-free zone originated from reaction of NH3 with stored oxygen, while N2O formation in this zone was very low.« less

  8. A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application

    SciTech Connect

    Fang, Howard L.; Huang, Shyan C.; Yu, Robert C.; Wan, C. Z.; Howden, Ken

    2002-10-01

    Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed. Development of the NOx adsorber technology is discussed. Spectroscopic techniques are applied to understand the underlying chemical reactions over the catalyst surface during NOx trapping and regeneration periods. In-situ surface probes are useful in providing not only thermodynamic and kinetics information required for model development but also a fundamental understanding of storage capacity and degradation mechanisms. The distribution of various nitration/sulfation species is related to surface basicity. Surface displacement reactions of carbonates also play roles in affecting the trapping capability of NOx adsorbers. When ultralow-S fuel is used as a reductant during the regeneration, sulfur induced performance degradation is still observed in an aged catalyst. Other possible sources related to catalyst deactivation include incomplete reduction of surface nitration, coke formation derived from incomplete hydrocarbon burning, and lubricant formulations. Sulfur management and the

  9. Understanding the nature of surface nitrates in BaO/gamma-Al2O3 NOx storage materials: A combined experimental and theoretical study

    SciTech Connect

    Kwak, Ja Hun; Mei, Donghai; Yi, Cheol-Woo W.; Kim, Do Heui; Peden, Charles HF; Allard, Larry; Szanyi, Janos

    2009-01-01

    The special role of the interface between the active catalytic phase (metal or metal oxide) and the oxide support in determining the properties of practical catalysts has long been recognized; however, it is still very poorly understood in most systems

  10. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts.

    PubMed

    Jeon, Ki-Joon; Moon, Hoi Ri; Ruminski, Anne M; Jiang, Bin; Kisielowski, Christian; Bardhan, Rizia; Urban, Jeffrey J

    2011-04-01

    Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142 MJ kg(-1); ref. 1), great variety of potential sources (for example water, biomass, organic matter), light weight, and low environmental impact (water is the sole combustion product). However, there remains a challenge to produce a material capable of simultaneously optimizing two conflicting criteria--absorbing hydrogen strongly enough to form a stable thermodynamic state, but weakly enough to release it on-demand with a small temperature rise. Many materials under development, including metal-organic frameworks, nanoporous polymers, and other carbon-based materials, physisorb only a small amount of hydrogen (typically 1-2 wt%) at room temperature. Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH(2) has a ΔHf~75 kJ mol(-1)), thus requiring unacceptably high release temperatures resulting in low energy efficiency. However, recent theoretical calculations and metal-catalysed thin-film studies have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption. Here, we report the synthesis of an air-stable composite material that consists of metallic Mg nanocrystals (NCs) in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6 wt% of Mg, 4 wt% for the composite) and rapid kinetics (loading in <30 min at 200 °C). Moreover, nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts. PMID:21399630

  11. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Hull, Jonathan F.; Himeda, Yuichiro; Wang, Wan-Hui; Hashiguchi, Brian; Periana, Roy; Szalda, David J.; Muckerman, James T.; Fujita, Etsuko

    2012-05-01

    Green plants convert CO2 to sugar for energy storage via photosynthesis. We report a novel catalyst that uses CO2 and hydrogen to store energy in formic acid. Using a homogeneous iridium catalyst with a proton-responsive ligand, we show the first reversible and recyclable hydrogen storage system that operates under mild conditions using CO2, formate and formic acid. This system is energy-efficient and green because it operates near ambient conditions, uses water as a solvent, produces high-pressure CO-free hydrogen, and uses pH to control hydrogen production or consumption. The extraordinary and switchable catalytic activity is attributed to the multifunctional ligand, which acts as a proton-relay and strong π-donor, and is rationalized by theoretical and experimental studies.

  12. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures.

    PubMed

    Hull, Jonathan F; Himeda, Yuichiro; Wang, Wan-Hui; Hashiguchi, Brian; Periana, Roy; Szalda, David J; Muckerman, James T; Fujita, Etsuko

    2012-05-01

    Green plants convert CO(2) to sugar for energy storage via photosynthesis. We report a novel catalyst that uses CO(2) and hydrogen to store energy in formic acid. Using a homogeneous iridium catalyst with a proton-responsive ligand, we show the first reversible and recyclable hydrogen storage system that operates under mild conditions using CO(2), formate and formic acid. This system is energy-efficient and green because it operates near ambient conditions, uses water as a solvent, produces high-pressure CO-free hydrogen, and uses pH to control hydrogen production or consumption. The extraordinary and switchable catalytic activity is attributed to the multifunctional ligand, which acts as a proton-relay and strong π-donor, and is rationalized by theoretical and experimental studies. PMID:22522258

  13. Reversible Hydrogen Storage using CO2 and a Proton-Switchable Iridium Catalyst in Aqueous Media under Mild Temperatures and Pressures

    SciTech Connect

    Hull J. F.; Himeda, Y.; Wang, W.-H.; Hashiguchi, B.; Szalda, D.J.; Muckerman, J.T.; Fujita, E.

    2012-05-01

    Green plants convert CO{sub 2} to sugar for energy storage via photosynthesis. We report a novel catalyst that uses CO{sub 2} and hydrogen to store energy in formic acid. Using a homogeneous iridium catalyst with a proton-responsive ligand, we show the first reversible and recyclable hydrogen storage system that operates under mild conditions using CO{sub 2}, formate and formic acid. This system is energy-efficient and green because it operates near ambient conditions, uses water as a solvent, produces high-pressure CO-free hydrogen, and uses pH to control hydrogen production or consumption. The extraordinary and switchable catalytic activity is attributed to the multifunctional ligand, which acts as a proton-relay and strong {pi}-donor, and is rationalized by theoretical and experimental studies.

  14. NOx production in lightning

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Stedman, D. H.; Dickerson, R. R.; Rusch, D. W.; Cicerone, R. J.

    1977-01-01

    The rate of odd nitrogen (NOx) production by electrical discharge through air was theoretically and experimentally estimated to be about 60,000 trillion NOx molecules per joule. The theoretical treatment employed a cylindrical shock-wave solution to calculate the rate of NOx production in high temperature reactions. The limits obtained were experimentally verified by subjecting a regulated air flow to electrical discharges followed by a measurement of NOx production using chemiluminescence. These measurements also indicated that water vapor content has no detectable effect on the NOx production rate. The results imply that lightning is a significant source of NOx, producing about 30-40 megatons NOx-N per year and possibly accounting for as much as 50% of the total atmospheric NOx source.

  15. Research Approach for Aging and Evaluating Diesel Exhaust catalysts

    SciTech Connect

    Wayne, Scott

    2000-08-20

    To determine the impact of diesel fuel sulfur levels on emissions control devices that could lower emissions of oxides of nitrogen (NOX) and particulate matter (PM) from on-highway trucks and buses in the 2002-2004 model years. West Virginia University is evaluating: - Diesel Oxidation Catalysts - Lean NOX Catalysts

  16. Aluminium doped ceria–zirconia supported palladium-alumina catalyst with high oxygen storage capacity and CO oxidation activity

    SciTech Connect

    Dong, Qiang; Yin, Shu Guo, Chongshen; Wu, Xiaoyong; Kimura, Takeshi; Sato, Tsugio

    2013-12-15

    Graphical abstract: Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd/γ-Al{sub 2}O{sub 3} possessed high OSC and CO oxidation activity at low temperature. - Highlights: • A new OSC material of Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd/γ-Al{sub 2}O{sub 3} is prepared via a mechanochemical method. • Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd/γ-Al{sub 2}O{sub 3} showed high OSC even after calcination at 1000 °C for 20 h. • Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd/γ-Al{sub 2}O{sub 3} exhibited the highest CO oxidation activity at low temperature correlates with enhanced OSC. - Abstract: The Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd-γ-Al{sub 2}O{sub 3} catalyst prepared by a mechanochemical route and calcined at 1000 °C for 20 h in air atmosphere to evaluate the thermal stability. The prepared Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd-γ-Al{sub 2}O{sub 3} catalyst was characterized for the oxygen storage capacity (OSC) and CO oxidation activity in automotive catalysis. For the characterization, X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique were employed. The OSC values of all samples were measured at 600 °C using thermogravimetric-differential thermal analysis. Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd-γ-Al{sub 2}O{sub 3} catalyst calcined at 1000 °C for 20 h with a BET surface area of 41 m{sup 2} g{sup −1} exhibited the considerably high OSC of 583 μmol-O g{sup −1} and good OSC performance stability. The same synthesis route was employed for the preparation of the CeO{sub 2}/Pd-γ-Al{sub 2}O{sub 3} and Ce{sub 0.5}Zr{sub 0.5}O{sub 2}/Pd-γ-Al{sub 2}O{sub 3} for comparison.

  17. An examination of the role of plasma treatment for lean NOx reduction over sodium zeolite Y and gamma alumina: Part 1. Plasma assisted NOx reduction over NaY and Al2O3

    SciTech Connect

    Yoon, Ilsop S.; Panov, Alexander G.; Tonkyn, Russell G.; Ebeling, Ana C.; Barlow, Stephan E.; Balmer, Mari Lou

    2002-03-15

    The role of plasma processing on NOx reduction over gammma-alumina and a basic zeolite, NaY was examined. During the plasma treatment NO is oxidized to NO2 and propylene is partially oxidized to CO, CO2, acetaldehyde, and formaldehyde. With plasma treatment, NO as the NOx gas, and a NaY catalyst, the maximum NOx conversion was 70% between 180 and 230?C. The activity decreased at higher and lower temperatures. As high as 80% NOx removal over gamma alumina was measured by a chemiluminescent NOx meter with plasma treatment and NO as the NOx gas. For both catalysts a simultaneous decrease in NOx and aldehydes concentrations was observed, which suggests that aldehyde may be important components for NOx reduction in plasma-treated exhaust.

  18. THE EFFECT OF SULFUR ON METHANE PARTIAL OXIDATION AND REFORMING PROCESSES FOR LEAN NOX TRAP CATALYSIS

    SciTech Connect

    Parks, II, James E; Ponnusamy, Senthil

    2006-01-01

    Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping after NOx purge. Creating the rich exhaust conditions for regeneration can be accomplished by catalytic partial oxidation of methane in the exhaust system. Furthermore, catalytic reforming of partial oxidation exhaust can enable increased quantities of H2 which is an excellent reductant for lean NOx trap regeneration. It is critical to maintain clean and efficient partial oxidation and reforming processes to keep the lean NOx trap functioning properly and to reduce extra fuel consumption from the regeneration process. Although most exhaust constituents do not impede partial oxidation and reforming, some exhaust constituents may negatively affect the catalysts and result in loss of catalytic efficiency. Of particular concern are common catalyst poisons sulfur, zinc, and phosphorous. These poisons form in the exhaust through combustion of fuel and oil, and although they are present at low concentrations, they can accumulate to significant levels over the life of an engine system. In the work presented here, the effects of sulfur on the partial oxidation and reforming catalytic processes were studied to determine any durability limitations on the production of reductants for lean NOx trap catalyst regeneration.

  19. Kinetic and spectroscopic study of catalysts for water-gas shift and nitrogen oxide removal

    NASA Astrophysics Data System (ADS)

    Kispersky, Vincent Frederick

    Nitrogen oxides (NOx) are formed in high temperature combustion processes such as in power generation and motor vehicles. Increasingly stringent regulation of these harmful emissions continues to drive interest in developing, understanding and studying new catalytic formulations for exhaust aftertreatment. For mobile sources, predominantly heavy duty diesel engines, selective catalytic reduction (SCR) with NH3 has become the principal means of NO x abatement. An alternative technology developed, but now surpassed by SCR, is NOx Storage Reduction (NSR) catalysis. Both technologies have been studied in our laboratory and are the basis for this dissertation. We studied seven different lean NOx trap (LNT) monolith formulations for NSR ranging from 0.6 to 6.2 wt.% Pt and 4 to 20 wt.% Ba loadings on γ-Al 2O3. The noble metal component of a LNT oxidizes NO to NO 2 aiding in the storage of NO2 on the alkaline earth component. Before the storage component saturates, a reductant such as H2 is introduced into the vehicular exhaust and the stored NOx is released and reduced to N2. Once the storage component is free of NOx, reductant flow is ceased and storage is begun anew. Our research focused on understanding the effects that CO2 and H2O have on the storage capacity of the LNT over short as well as extended periods of time. We found that for high Ba loadings, CO 2 had a consistently detrimental effect on the fast NOx storage capacity (NSC), defined as the amount of NOx the catalyst can store before 1% of the inlet NOx is measured in the reactor outlet. Over long NOx storage periods, CO2 continued to inhibit storage compared to the same catalyst in CO2 free conditions. On low loadings of Ba, however, the inhibition of CO2 was significantly reduced. We found that the loading dependent characteristics of the Ba phase affected the way in which CO2 adsorbed on the storage component, which greatly affected the stability of the species on lower Ba loadings. The less stable

  20. NOX REMOVAL WITH COMBINED SELECTIVE CATALYTIC REDUCTION AND SELECTIVE NONCATALYTIC REDUCTION: PILOT- SCALE TEST RESULTS

    EPA Science Inventory

    Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...

  1. Water-Induced Morphology Changes in BaO/gamma-Al2O3 NOx Storage Materials: an FTIR, TPD, and Time-Resolved Synchrotron XRD Study

    SciTech Connect

    Szanyi,J.; Kwak, J.; Kim, D.; Wang, X.; Chimentao, R.; Hanson, J.; Epling, W.; Peden, C.

    2007-01-01

    The effect of water on the morphology of BaO/Al{sub 2}O{sub 3}-based NO{sub x} storage materials was investigated using Fourier transform infrared spectroscopy, temperature programmed desorption, and time-resolved synchrotron X-ray diffraction techniques. The results of this multispectroscopy study reveal that in the presence of water surface Ba-nitrates convert to bulk nitrates and water facilitates the formation of large Ba(NO{sub 3}){sub 2} particles. The conversion of surface to bulk Ba-nitrates is completely reversible (i.e., after the removal of water from the storage material a significant fraction of the bulk nitrates reconverts to surface nitrates). NO{sub 2} exposure of a H{sub 2}O-containing (wet) BaO/Al{sub 2}O{sub 3} sample results in the formation of nitrites and bulk nitrates exclusively (i.e., no surface nitrates form). After further exposure to NO{sub 2}, the nitrites completely convert to bulk nitrates. The amount of NO{sub x} taken up by the storage material, however, is essentially unaffected by the presence of water regardless of whether the water was dosed prior to or after NO{sub 2} exposure. On the basis of the results of this study, we are now able to explain most of the observations reported in the literature on the effect of water on NO{sub x} uptake on similar storage materials.

  2. HITACHI ZOSEN NOX FLUE GAS TREATMENT PROCESS. VOLUME 1. PILOT PLANT EVALUATION

    EPA Science Inventory

    The report gives results of a pilot plant evaluation of the Hitachi Zosen NOx flue gas treatment process. The project--evaluating selective catalytic reduction (SCR) of NOx on a coal-fired source--operated for 1-1/2 years. A newly developed catalyst, NOXNON 600, was successfully ...

  3. Investigation of NO(x) Removal from Small Engine Exhaust

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Ates; Akyurtlu, Jale F.

    1999-01-01

    Contribution of emissions from small engines to the air pollution is significant. Due to differences in operating conditions and economics, the pollution control systems designed for automobiles will be neither suitable nor economically feasible for use on small engines. The objective of this project was to find a catalyst for the removal of NOx from the exhaust of small engines which use a rich air to fuel ratio. The desired catalyst should be inexpensive so that the cost of the pollution control unit will be only a small fraction of the total equipment cost. The high cost of noble metals makes them too expensive for use as NOx catalyst for small engines. Catalytic reduction of NO can also be accomplished by base-metal oxide catalysts. The main disadvantage of base-metal catalysts is their deactivation by poisons and high temperatures. Requirements for the length of the life of the small engine exhaust catalysts are much less than those for automobile exhaust catalysts. Since there is no oxygen in the exhaust gases, reduction selectivity is not a problem. Also, the reducing exhaust gases might help prevent the harmful interactions of the catalyst with the support. For these reasons only the supported metal oxide catalysts were investigated in this project.

  4. Investigation of NOx Removal from Small Engine Exhaust

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Ates; Akyurtlu, Jale F.

    1999-01-01

    Contribution of emissions from small engines to the air pollution is significant. Due to differences in operating conditions and economics, the pollution control systems designed for automobiles will be neither suitable nor economically feasible for use on small engines. The objective of this project was to find a catalyst for the removal of NOx from the exhaust of small engines which use a rich air to fuel ratio. The desired catalyst should be inexpensive so that the cost of the pollution control unit will be only a small fraction of the total equipment cost. The high cost of noble metals makes them too expensive for use as NOx catalyst for small engines. Catalytic reduction of Nitrogen Oxide (NO) can also be accomplished by base-metal oxide catalysts. The main disadvantage of base-metal catalysts is their deactivation by poisons and high temperatures. Requirements for the length of the life of the small engine exhaust catalysts are much less than those for automobile exhaust catalysts. Since there is no oxygen in the exhaust gases, reduction selectivity is not a problem. Also, the reducing exhaust gases might help prevent the harmful interactions of the catalyst with the support. For these reasons only the supported metal oxide catalysts were investigated in this project.

  5. SELECTIVE CATALYTIC REDUCTION OF DIESEL ENGINE NOX EMISSIONS USING ETHANOL AS A REDUCTANT

    SciTech Connect

    Kass, M; Thomas, J; Lewis, S; Storey, J; Domingo, N; Graves, R Panov, A

    2003-08-24

    NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400 C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.

  6. Kinetic and spectroscopic study of catalysts for water-gas shift and nitrogen oxide removal

    NASA Astrophysics Data System (ADS)

    Kispersky, Vincent Frederick

    Nitrogen oxides (NOx) are formed in high temperature combustion processes such as in power generation and motor vehicles. Increasingly stringent regulation of these harmful emissions continues to drive interest in developing, understanding and studying new catalytic formulations for exhaust aftertreatment. For mobile sources, predominantly heavy duty diesel engines, selective catalytic reduction (SCR) with NH3 has become the principal means of NO x abatement. An alternative technology developed, but now surpassed by SCR, is NOx Storage Reduction (NSR) catalysis. Both technologies have been studied in our laboratory and are the basis for this dissertation. We studied seven different lean NOx trap (LNT) monolith formulations for NSR ranging from 0.6 to 6.2 wt.% Pt and 4 to 20 wt.% Ba loadings on γ-Al 2O3. The noble metal component of a LNT oxidizes NO to NO 2 aiding in the storage of NO2 on the alkaline earth component. Before the storage component saturates, a reductant such as H2 is introduced into the vehicular exhaust and the stored NOx is released and reduced to N2. Once the storage component is free of NOx, reductant flow is ceased and storage is begun anew. Our research focused on understanding the effects that CO2 and H2O have on the storage capacity of the LNT over short as well as extended periods of time. We found that for high Ba loadings, CO 2 had a consistently detrimental effect on the fast NOx storage capacity (NSC), defined as the amount of NOx the catalyst can store before 1% of the inlet NOx is measured in the reactor outlet. Over long NOx storage periods, CO2 continued to inhibit storage compared to the same catalyst in CO2 free conditions. On low loadings of Ba, however, the inhibition of CO2 was significantly reduced. We found that the loading dependent characteristics of the Ba phase affected the way in which CO2 adsorbed on the storage component, which greatly affected the stability of the species on lower Ba loadings. The less stable

  7. Reactions of NO2 with BaO/Pt(111) Model Catalysts: The Effects of BaO Film Thickness and NO2 Pressure on the Formation of Ba(NOx)2 Species

    SciTech Connect

    Mudiyanselage, Kumudu; Yi, Cheol-Woo; Szanyi, Janos

    2011-05-31

    The adsorption and reaction of NO2 on BaO (<1, ~3, and >20 monolayer equivalent (MLE))/Pt(111) model systems were studied with temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and infrared reflection absorption spectroscopy (IRAS) under ultra-high vacuum (UHV) as well as elevated pressure conditions. NO2 reacts with sub-monolayer BaO (<1 MLE) to form nitrites only, whereas the reaction of NO2 with BaO (~3 MLE)/Pt(111) produces mainly nitrites and a small amount of nitrates under UHV conditions (PNO2 ~ 1.0 × 10-9 Torr) at 300 K. In contrast, a thick BaO(>20 MLE) layer on Pt(111) reacts with NO2 to form nitrite-nitrate ion pairs under the same conditions. At elevated NO2 pressures (≥ 1.0 × 10-5 Torr), however, BaO layers at all these three coverages convert to amorphous barium nitrates at 300 K. Upon annealing to 500 K, these amorphous barium nitrate layers transform into crystalline phases. The thermal decomposition of the thus-formed Ba(NOx)2 species is also influenced by the coverage of BaO on the Pt(111) substrate: at low BaO coverages, these species decompose at significantly lower temperatures in comparison with those formed on thick BaO films due to the presence of Ba(NOx)2/Pt interface where the decomposition can proceed at lower temperatures. However, the thermal decomposition of the thick Ba(NO3)2 films follows that of bulk nitrates. Results obtained from these BaO/Pt(111) model systems under UHV and elevated pressure conditions clearly demonstrate that both the BaO film thickness and the applied NO2 pressure are critical in the Ba(NOx)2 formation and subsequent thermal decomposition processes.

  8. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    SciTech Connect

    Not Available

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  9. Comprehensive catalyst management

    SciTech Connect

    Pritchard, S.

    2007-05-15

    From January 2009, as SCR season expands from five months to year-round to meet new US Clean Air Interstate Rule standards, new catalyst strategies are increasingly important. Power plants will need a comprehensive management strategy that accounts for a wide range of old and new issues to achieve peak performance. An optimum plan is necessary for catalyst replacement or addition. SCR systems should be inspected and evaluated at least once a year. Levels of deactivation agents, most often arsenic and calcium oxide, need to match the particular coals used. Tools such as Cormetech's FIELD Guide are available to quantify the effect on catalyst life under various fuel-firing scenarios. Tests should be conducted to evaluate the NH{sub 3}/NOx distribution over time to maximise catalyst performance. The article gives a case study of catalyst management at the Tennessee Valley Authority Allen plant. Recent changes have created new variables to be considered in a catalyst management process, notably the expansion of the operating temperature range, mercury oxidation and SO{sub 3} emission limits. Cormetech has researched these areas. 5 figs., 2 photos.

  10. Continuous reduction of cyclic adsorbed and desorbed NO(x) in diesel emission using nonthermal plasma.

    PubMed

    Kuwahara, Takuya; Nakaguchi, Harunobu; Kuroki, Tomoyuki; Okubo, Masaaki

    2016-05-01

    Considering the recent stringent regulations governing diesel NO(x) emission, an aftertreatment system for the reduction of NO(x) in the exhaust gas has been proposed and studied. The proposed system is a hybrid method combining nonthermal plasma and NOx adsorbent. The system does not require precious metal catalysts or harmful chemicals such as urea and ammonia. In the present system, NO(x) in diesel emission is treated by adsorption and desorption by adsorbent as well as nonthermal plasma reduction. In addition, the remaining NO(x) in the adsorbent is desorbed again in the supplied air by residual heat. The desorbed NO(x) in air recirculates into the intake of the engine, and this process, i.e., exhaust gas components' recirculation (EGCR) achieves NO(x) reduction. Alternate utilization of two adsorption chambers in the system can achieve high-efficiency NO(x) removal continuously. An experiment with a stationary diesel engine for electric power generation demonstrates an energy efficiency of 154 g(NO2)/kWh for NO(x) removal and continuous NO(x) reduction of 70.3%. Considering the regulation against diesel emission in Japan, i.e., the new regulation to be imposed on vehicles of 3.5-7.5 ton since 2016, the present aftertreatment system fulfills the requirement with only 1.0% of engine power. PMID:26844402

  11. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials.

    PubMed

    Beale, A M; Gao, F; Lezcano-Gonzalez, I; Peden, C H F; Szanyi, J

    2015-10-21

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3-SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptionally high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ∼5 years that led to the introduction of these catalysts into practical applications. This review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetic studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that still need to be addressed in automotive exhaust control catalysis. PMID:25913215

  12. DIESEL NOX CONTROL APPLICATION

    EPA Science Inventory

    The paper gives results of a project to design, develop, and demonstrate a diesel engine nitrogen oxide (NOx) and particulate matter (PM) control package that will meet the U.S. Navy's emission control requirements. (NOTE: In 1994, EPA issued a Notice for Proposed Rule Making (NP...

  13. Passive SCR for lean gasoline NOX control: Engine-based strategies to minimize fuel penalty associated with catalytic NH3 generation

    DOE PAGESBeta

    Prikhodko, Vitaly Y.; Parks, James E.; Pihl, Josh A.; Toops, Todd J.

    2016-02-18

    Lean gasoline engines offer greater fuel economy than common stoichiometric gasoline engines. However, excess oxygen prevents the use of the current three-way catalyst (TWC) to control nitrogen oxide (NOX) emissions in lean exhaust. A passive SCR concept, introduced by General Motors Global R&D, makes use of a TWC that is already onboard to generate NH3 under slightly rich conditions, which is stored on the downstream SCR. The stored NH3 is then used to reduce NOX emissions when the engine switches to lean operation. In this work, the effect of engine parameters, such as air-fuel equivalence ratio and spark timing, onmore » NH3 generation over a commercial Pd-only TWC with no dedicated oxygen storage component was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine. NOX reduction, NH3 formation, and reductant utilization processes were evaluated, and fuel efficiency was assessed and compared to the stoichiometric engine operation case. We found air-fuel equivalence ratio to be one of the most important parameters in controlling the NH3 production; however, the rich operation necessary for NH3 production results in a fuel consumption penalty. The fuel penalty can be minimized by adjusting spark timing to increase rich-phase engine out NOX emissions and, thereby, NH3 levels. Additionally, higher engine out NOX during engine load increase to simulate acceleration resulted in additional fuel savings. Ultimately, a 10% fuel consumption benefit was achieved with the passive SCR approach by optimizing rich air-fuel equivalence ratio and spark timing while also utilizing acceleration load conditions.« less

  14. Oxidation catalyst

    DOEpatents

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  15. ULTRA LOW NOx CATALYTIC COMBUSTION FOR IGCC POWER PLANTS

    SciTech Connect

    Lance L. Smith

    2004-03-01

    Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using PCI's two-stage (catalytic / gas-phase) combustion process for syngas fuel. In this process, the first stage is a Rich-Catalytic Lean-burn (RCL{trademark}) catalytic reactor, wherein a fuel-rich mixture contacts the catalyst and reacts while final and excess combustion air cool the catalyst. The second stage is a gas-phase combustor, wherein the catalyst cooling air mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During the reporting period, PCI successfully achieved NOx = 0.011 lbs/MMBtu at 10 atm pressure (corresponding to 2.0 ppm NOx corrected to 15% O{sub 2} dry) with near-zero CO emissions, surpassing the project goal of < 0.03 lbs/MMBtu NOx. These emissions levels were achieved at scaled (10 atm, sub-scale) baseload conditions corresponding to Tampa Electric's Polk Power Station operation on 100% syngas (no co-firing of natural gas).

  16. DOE Hydrogen Sorption Center of Excellence: Synthesis and Processing of Single-Walled Carbon Nanohorns for Hydrogen Storage and Catalyst Supports

    SciTech Connect

    David B. Geohegan; Hui Hu; Mina Yoon; Alex A. Puretzky; Christopher M. Rouleau; Norbert Thonnard; Gerd Duscher; Karren More

    2011-05-24

    The objective of the project was to exploit the unique morphology, tunable porosity and excellent metal supportability of single-walled carbon nanohorns (SWNHs) to optimize hydrogen uptake and binding energy through an understanding of metal-carbon interactions and nanoscale confinement. SWNHs provided a unique material to understand these effects because they are carbon nanomaterials which are synthesized from the 'bottom-up' with well-defined, sub-nm pores and consist of single-layer graphene, rolled up into closed, conical, horn-shaped units which form ball-shaped aggregates of {approx}100-nm diameter. SWNHs were synthesized without metal catalysts by the high-temperature vaporization of solid carbon, so they can be used to explore metal-free hydrogen storage. However, SWNHs can also be decorated with metal nanoparticles or coatings in post-processing treatments to understand how metals augment hydrogen storage. The project first explored how the synthesis and processing of SWNHs could be modified to tailor pore sizes to optimal size ranges. Nanohorns were rapidly synthesized at 20g/hr rates by high-power laser vaporization enabling studies such as neutron scattering with gram quantities. Diagnostics of the synthesis process including high-speed videography, fast pyrometry of the graphite target, and differential mobility analysis monitoring of particle size distributions were applied in this project to provide in situ process control of SWNH morphology, and to understand the conditions for different pore sizes. We conclude that the high-temperature carbon-vaporization process to synthesize SWNHs is scalable, and can be performed by electric arc or other similar techniques as economically as carbon can be vaporized. However, the laser vaporization approach was utilized in this project to permit the precise tuning of the synthesis process through adjustment of the laser pulse width and repetition rate. A result of this processing control in the project was to

  17. LOW NOX BURNER DEVELOPMENT

    SciTech Connect

    KRISHNA,C.R.; BUTCHER,T.

    2004-09-30

    The objective of the task is to develop concepts for ultra low NOx burners. One approach that has been tested previously uses internal recirculation of hot gases and the objective was to how to implement variable recirculation rates during burner operation. The second approach was to use fuel oil aerosolization (vaporization) and combustion in a porous medium in a manner similar to gas-fired radiant burners. This task is trying the second approach with the use of a somewhat novel, prototype system for aerosolization of the liquid fuel.

  18. Novel fluidized bed reactor for integrated NOx adsorption-reduction with hydrocarbons

    SciTech Connect

    Terris T. Yang; Hsiaotao T. Bi

    2009-07-01

    In order to avoid the negative impact of excessive oxygen in the combustion flue gases on the selectivity of most hydrocarbon selective catalytic reduction (HC-SCR) catalysts, an integrated NOx adsorption-reduction process has been proposed in this study for the treatment of flue gases under lean burn conditions by decoupling the adsorption and reduction into two different zones. The hypothesis has been validated in a novel internal circulating fluidized bed (ICFB) reactor using Fe/ZSM-5 as the catalyst and propylene as the reducing agent. Effects of propylene to the NOx molar ratio, flue gas oxygen concentration, and gas velocity on NOx conversion were studied using simulated flue gases. The results showed that increasing the ratio of HC:NO improved the reduction performance of Fe/ZSM-5 in the ICFB reactor. NOx conversion decreased with an increasing flue gas flow velocity in the annulus U{sub A} but increased with an increasing reductant gas flow velocity in the draft tube U{sub D}. The NOx adsorption ratio decreased with increasing U{sub A}. In most cases, NOx conversion was higher than the adsorption ratio due to the relatively poor adsorption performance of the catalyst. Fe/ZSM-5 showed a promising reduction performance and a strong inhibiting ability on the negative impact of excessive O{sub 2} in the ICFB reactor, proving that such an ICFB reactor possessed the ability to overcome the negative impact of excessive O{sub 2} in the flue gas using Fe/ZSM-5 as the deNOx catalyst. 22 refs., 10 figs.

  19. Process of activation of a palladium catalyst system

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  20. Method and apparatus for reducing NOx emissions

    SciTech Connect

    Spokoyny, F.E.; Krigmont, H.V.

    1993-08-24

    A method is described of reducing NOx from a flue gas stream produced from a burner, which flue gas stream passes from the burner through a rotary regenerative heat exchanger which rotates in a direction generally transverse to the direction of the flow of the flue gas stream and wherein at least a portion of the heat transfer elements of the heat exchanger carry a catalyst which, in the presence of a nitrogeneous compound, promote the reduction of NOx from the flue gas stream passing thereby, comprising the steps of: injecting a quantity of a nitrogeneous compound onto the catalyzed heat transfer elements, such injecting being at a plurality of fixed locations along the arcuate path of travel of the catalyzed elements with respect to the flue gas stream; determining the temperature of the portion of the heat transfer elements as such elements travel in an arcuate path with respect to the flow of the flue gas stream; and in response to said step of determining, selectively varying the quantity of nitrogeneous compound injected at each of such fixed locations.

  1. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected

  2. THE ACID RAIN NOX PROGRAM

    EPA Science Inventory

    Between 350,000 and 400,000 tons of annual NOx emissions have been eliminated as a result of Phase I of the Acid Rain NOx Program. As expected. the utilities have chosen emissions averaging as the primary compliance option. This reflects that, in general, NO x reductions have ...

  3. Don't NOx Texas

    SciTech Connect

    Mathis, J.D.; Lachowicz, Y.

    2005-07-01

    Modifications to boiler combustion systems allow Fayette Power Projects units 1 and 2 to meet new NOx emissions limits east of La Grange in Eastern Texas. The article describes modifications executed by Alstom in 2004 which attained an overall reduction in NOx emissions of almost 69%. 4 figs., 1 tab., 1 photo.

  4. Two-stage Catalytic Reduction of NOx with Hydrocarbons

    SciTech Connect

    Umit S. Ozkan; Erik M. Holmgreen; Matthew M. Yung; Jonathan Halter; Joel Hiltner

    2005-12-21

    A two-stage system for the catalytic reduction of NO from lean-burn natural gas reciprocating engine exhaust is investigated. Each of the two stages uses a distinct catalyst. The first stage is oxidation of NO to NO{sub 2} and the second stage is reduction of NO{sub 2} to N{sub 2} with a hydrocarbon. The central idea is that since NO{sub 2} is a more easily reduced species than NO, it should be better able to compete with oxygen for the combustion reaction of hydrocarbon, which is a challenge in lean conditions. Early work focused on demonstrating that the N{sub 2} yield obtained when NO{sub 2} was reduced was greater than when NO was reduced. NO{sub 2} reduction catalysts were designed and silver supported on alumina (Ag/Al{sub 2}O{sub 3}) was found to be quite active, able to achieve 95% N{sub 2} yield in 10% O{sub 2} using propane as the reducing agent. The design of a catalyst for NO oxidation was also investigated, and a Co/TiO{sub 2} catalyst prepared by sol-gel was shown to have high activity for the reaction, able to reach equilibrium conversion of 80% at 300 C at GHSV of 50,000h{sup -1}. After it was shown that NO{sub 2} could be more easily reduced to N{sub 2} than NO, the focus shifted on developing a catalyst that could use methane as the reducing agent. The Ag/Al{sub 2}O{sub 3} catalyst was tested and found to be inactive for NOx reduction with methane. Through iterative catalyst design, a palladium-based catalyst on a sulfated-zirconia support (Pd/SZ) was synthesized and shown to be able to selectively reduce NO{sub 2} in lean conditions using methane. Development of catalysts for the oxidation reaction also continued and higher activity, as well as stability in 10% water, was observed on a Co/ZrO{sub 2} catalyst, which reached equilibrium conversion of 94% at 250 C at the same GHSV. The Co/ZrO{sub 2} catalyst was also found to be extremely active for oxidation of CO, ethane, and propane, which could potential eliminate the need for any separate

  5. Cu/Ba/bauxite: an Inexpensive and Efficient Alternative for Pt/Ba/Al2O3 in NOx Removal

    PubMed Central

    Wang, Xiuyun; Chen, Zhilin; Luo, Yongjin; Jiang, Lilong; Wang, Ruihu

    2013-01-01

    Cu/Ba/bauxite possesses superior NOx storage and reduction (NSR) performances, high thermal stability, strong resistance against SO2 poisoning and outstanding regeneration ability in comparison with Pt/Ba/Al2O3. It can serve as a cheap and promising alternative for traditional Pt/Ba/Al2O3 in NOx removal from lean-burn engines. PMID:23536149

  6. NOx Binding and Dissociation: Enhanced Ferroelectric Surface Chemistry by Catalytic Monolayers

    NASA Astrophysics Data System (ADS)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2013-03-01

    NOx molecules are regulated air pollutants produced during automotive combustion. As part of an effort to design viable catalysts for NOx decomposition operating at higher temperatures that would allow for improved fuel efficiency, we examine NOx chemistry on ferroelectric perovskite surfaces. Changing the direction of ferroelectric polarization can modify surface electronic properties and may lead to switchable surface chemistry. Here, we describe our recent work on potentially enhanced surface chemistry using catalytic RuO2 monolayers on perovskite ferroelectric substrates. In addition to thermodynamic stabilization of the RuO2 layer, we present results on the polarization-dependent binding of NO, O2, N2, and atomic O and N. We present results showing that one key problem with current catalysts, involving the difficulty of releasing dissociation products (especially oxygen), can be ameliorated by this method. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  7. 40 CFR 97.12 - Changing NOX authorized account representative and alternate NOX authorized account...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Changing NOX authorized account representative and alternate NOX authorized account representative; changes in owners and operators. 97.12... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Authorized...

  8. 40 CFR 97.12 - Changing NOX authorized account representative and alternate NOX authorized account...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Changing NOX authorized account representative and alternate NOX authorized account representative; changes in owners and operators. 97.12... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Authorized...

  9. Copper catalysts for soot oxidation: alumina versus perovskite supports.

    PubMed

    López-Suárez, F E; Bueno-López, A; Illán-Gómez, M J; Adamski, A; Ura, B; Trawczynski, J

    2008-10-15

    Copper catalysts prepared using four supports (Mg- and Sr-modified Al2O3 and MgTiO3 and SrTiO3 perovskites) have been tested for soot oxidation by 02 and NOx/O2. Among the catalysts studied, Cu/SrTiO3 is the most active for soot oxidation by NOx/O2 and the support affects positively copper activity. With this catalyst, and under the experimental conditions used, the soot combustion by NOx/O2 presents a considerable rate from 500 degrees C (100 degrees C below the uncatalysed reaction). The Cu/ SrTiO3 catalyst is also the most effective for NOx chemisorption around 425 degrees C. The best activity of Cu/SrTiO3 can be attributed to the improved redox properties of copper originated by Cu-support interactions. This seems to be related to the presence of weakly bound oxygen on this sample. The copper species present in the catalyst Cu/SrTiO3 can be reduced more easily than those in other supports, and for this reason, this catalyst seems to be the most effective to convert NO into NO2, which explains its highest activity for soot oxidation. PMID:18983091

  10. Novel fluidized bed reactor for integrated NO(x) adsorption-reduction with hydrocarbons.

    PubMed

    Yang, Terris T; Bi, Hsiaotao T

    2009-07-01

    In order to avoid the negative impact of excessive oxygen in the combustion flue gases on the selectivity of most hydrocarbon selective catalytic reduction (HC-SCR) catalysts, an integrated NO(x) adsorption-reduction process has been proposed in this study for the treatment of flue gases under lean burn conditions by decoupling the adsorption and reduction into two different zones. The hypothesis has been validated in a novel internal circulating fluidized bed (ICFB) reactor using Fe/ZSM-5 as the catalyst and propylene as the reducing agent. Effects of propylene to the NO(x) molar ratio, flue gas oxygen concentration, and gas velocity on NO(x) conversion were studied using simulated flue gases. The results showed that increasing the ratio of HC:NO improved the reduction performance of Fe/ZSM-5 in the ICFB reactor. NO(x) conversion decreased with an increasing flue gas flow velocity in the annulus U(A) but increased with an increasing reductant gas flow velocity in the draft tube U(D). The NO(x) adsorption ratio decreased with increasing U(A). In most cases, NO(x) conversion was higher than the adsorption ratio due to the relatively poor adsorption performance of the catalyst. Fe/ZSM-5 showed a promising reduction performance and a strong inhibiting ability on the negative impact of excessive O2 in the ICFB reactor, proving that such an ICFB reactor possessed the ability to overcome the negative impact of excessive O2 in the flue gas using Fe/ZSM-5 as the deNO(x) catalyst. PMID:19673305

  11. SOURCEBOOK: NOX CONTROL TECHNOLOGY DATA

    EPA Science Inventory

    The report, a compilation of available information on the control of nitrogen oxide (NOx) emissions from stationary sources, is provided to assist new source permitting activities by regulatory agencies. he sources covered are combustion turbines, internal combustion engines, non...

  12. Heat transfer improvement and NOx reduction in an industrial furnace by regenerative combustion system

    SciTech Connect

    Suzukawa, Yutaka; Sugiyama, Syunichi; Mori, Isao

    1996-12-31

    Recent development of the regenerative combustion system, in which ceramic honeycomb is used as a heat storage medium in a regenerator, has raised preheated air temperature up to 1,600 K. By preheating the combustion air, the heating potential of the furnace gas is increased and the fuel consumption is reduced dramatically. However, higher air temperature increases the potential of NOx formation. Therefore, to apply this technology for commercial use, development of low NOx burner is strongly requested. In this paper, newly developed low NOx burner as well as the high performance honeycomb regenerator is explained. Also, theoretical and numerical analysis of fuel saving by the high preheated air combustion is discussed.

  13. Engine NOx reduction system

    SciTech Connect

    Berriman, L.P.; Zabsky, J.M.; Davis, J.W.; Hylton, W.H.

    1993-07-06

    Apparatus for use with an engine having a power-generating portion that burns a hydrocarbon fuel and air and produces hot exhaust gases is described, having a catalytic converter device that includes a catalyst for enhancing reactions of components of said exhaust gases, and having a conduit that couples said power-generating portion to said catalytic converter device, for reducing pollution in the exhaust, wherein said power-generating portion comprises a plurality of cylinders in which said fuel and air are burned, a mechanism for applying fuel and air to said cylinders, and a plurality of exhaust valves through which burned fuel and air is exhausted and which are connected to said upstream end of said conduit, said conduit including a manifold which is connected to a plurality of said exhaust valves and a downstream conduit portion which connects said manifold to said catalytic converter device, comprising: a device coupled to said conduit, which stores ammonia and injects it into said conduit at a location where the exhaust gases have a substantially maximum temperature, but which is devoid of open flames, to mix with said hot exhaust gases and pass with them along said conduit and then through said catalyst, said location being closer to said power-generating portion than to said catalytic converter and lying in said manifold.

  14. Ultra Low NOx Catalytic Combustion for IGCC Power Plants

    SciTech Connect

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2008-03-31

    In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O{sub 2}) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O{sub 2}) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft{sup 3} was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown to be active in ammonia

  15. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials

    SciTech Connect

    Beale, Andrew M.; Gao, Feng; Lezcano-Gonzalez, Ines; Peden, Charles HF; Szanyi, Janos

    2015-10-05

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade a renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3 SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptional high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ~5 years that lead to the introduction of these catalysts into practical application. The review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetics studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that are still need to be addressed in automotive exhaust control catalysis. Funding A.M.B. and I.L.G. would like to thank EPSRC for funding. F.G., C.H.F.P. and J.Sz. gratefully acknowledge

  16. TOPICAL REVIEW: Nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Moshfegh, A. Z.

    2009-12-01

    In this review, the importance of nanoparticles (NPs), with emphasis on their general and specific properties, especially the high surface-to-volume ratio (A/V), in many technological and industrial applications is studied. Some physical and chemical preparation methods for growing several metallic and binary alloy NP catalysts are reviewed. The growth and mechanism of catalytic reactions for synthesis of 1D nanostructures such as ZnO nanowires and multiwall carbon nanotubes (MWCNTs) are discussed. Gas-phase production with emphasis on dependence of catalytic activity and selectivity on size, shape and structure of NPs is also investigated. Application of NP catalysts in several technological processes including H2 production and storage as well as antibacterial effect, gas sensors and fuel cells is discussed. The mechanism of H2 production from catalytic photoelectrochemical and photocatalytic degradation reactions of some organic dyes is discussed. Finally, the future outlook of NP catalysts in various disciplines is presented.

  17. Investigation of Aging Mechanisms in Lean NOx Traps

    SciTech Connect

    Mark Crocker

    2010-03-31

    Lean NO{sub x} traps (LNTs) represent a promising technology for the abatement of NO{sub x} under lean conditions. Although LNTs are starting to find commercial application, the issue of catalyst durability remains problematic. LNT susceptibility to sulfur poisoning is the single most important factor determining effective catalyst lifetime. The NO{sub x} storage element of the catalyst has a greater affinity for SO{sub 3} than it does for NO{sub 2}, and the resulting sulfate is more stable than the stored nitrate. Although this sulfate can be removed from the catalyst by means of high temperature treatment under rich conditions, the required conditions give rise to deactivation mechanisms such as precious metal sintering, total surface area loss, and solid state reactions between the various oxides present. The principle objective of this project was to improve understanding of the mechanisms of lean NO{sub x} trap aging, and to understand the effect of washcoat composition on catalyst aging characteristics. The approach utilized involved detailed characterization of model catalysts prior to and after aging, in tandem with measurement of catalyst performance in NO{sub x} storage and reduction. In this manner, NO{sub x} storage and reduction characteristics were correlated with the evolution of catalyst physico-chemical properties upon aging. Rather than using poorly characterized proprietary catalysts, or simple model catalysts of the Pt/BaO/Al{sub 2}O{sub 3} type (representing the first generation of LNTs), Pt/Rh/BaO/Al{sub 2}O{sub 3} catalysts were employed which also incorporated CeO{sub 2} or CeO{sub 2}-ZrO{sub 2}, representing a model system which more accurately reflects current LNT formulations. Catalysts were prepared in which the concentration of each of the main components was systematically varied: Pt (50, 75 or 100 g/ft{sup 3}), Rh (10 or 20 g/ft{sup 3}), BaO (15, 30 or 45 g/L), and either CeO{sub 2} (0, 50 or 100 g/L) or CeO{sub 2}-ZrO{sub 2} (0, 50

  18. Reactivation of an aged commercial three-way catalyst by oxalic and citric acid washing.

    PubMed

    Christou, Stavroula Y; Birgersson, Henrik; Fierro, José L G; Efstathiou, Angelos M

    2006-03-15

    The efficiency of dilute oxalic and citric acid solutions on improving the oxygen storage capacity (OSC) and catalytic activity of a severely aged (83,000 km) commercial three-way catalyst (TWC) has been investigated. Washing procedures applied after optimization of experimental parameters, namely, temperature, flow-rate, and concentration of acid solution, led to significant improvements of OSC and catalytic activity (based on dynamometer test measurements) of the aged TWC. The latterwas made possible due to the removal of significant amounts of various contaminants accumulated on the catalyst surface (e.g., P, S, Pb, Ca, Zn, Si, Fe, Cu, and Ni) during driving conditions, as revealed by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and X-ray Photoelectron Spectroscopy (XPS) analyses. For the first time, it is demonstrated that dilute oxalic acid solution significantly improves the catalytic activity of an aged commercial TWC toward CO, Cx,Hy, and NOx conversions under real exhaust gas conditions (dynamometer tests) by two to eight times in the 250-450 degrees C range and the OSC quantity by up to 50%. Oxalic acid appears to be more efficient than citric acid in removing specifically P- and S-containing compounds from the catalyst surface, whereas citric acid in removing Pb- and Zn-containing compounds, thus uncovering surface active catalytic sites. PMID:16570632

  19. Nox NADPH Oxidases and the Endoplasmic Reticulum

    PubMed Central

    Araujo, Thaís L.S.; Abrahão, Thalita B.

    2014-01-01

    Abstract Significance: Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Recent Advances: Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Critical Issues: Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. Future Directions: We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between

  20. The SCONOx catalytic absorption system: Combined CO, NOx, and SOx control for power generation

    SciTech Connect

    MacDonald, R.J.; Girdlestone, T.

    1998-07-01

    Goal Line Environmental Technologies has revolutionized the pollution control industry with its SCONOx{trademark} Catalytic Absorption System for Power Generation. The system has been installed at Sunlaw Energy Corporation's Federal Cogeneration Plant since December 20, 1996, with average NOx readings of less than 2 ppm and average CO readings of less than 1 ppm in base load operation. This plant is a 30 MW facility that fires a GE LM2500 gas turbine. The SCONOx{trademark} system uses a single catalyst for both CO and NOx control. It oxidizes CO to CO{sub 2} and NO to NO{sub 2}, and the NO{sub 2} is then absorbed onto the surface of the catalyst. Just as a sponge absorbs water and must be wrung out periodically, the SCONOx{trademark} catalyst must be periodically regenerated. This is accomplished by passing a dilute hydrogen gas across the surface of the catalyst in the absence of oxygen. Nitrogen oxides are broken down into nitrogen and water vapor, and this is exhausted up the stack instead of NOx. No ammonia or other hazardous materials are required in the process. Goal Line's SCOCOx{trademark} Sulfur Removal System works in a similar manner, sub favors the absorption of sulfur compounds instead of NOx. The SCONOx{trademark}/SCOSOx{trademark} system is a breakthrough in CO, NOx, and SOx control technology that makes it possible to have clean air without the use of ammonia or other hazardous materials. This paper will describe the development of the system and full-scale operational results, as well as focusing on the implications that SCONOx{trademark} as an ultra-clean pollution control technology has on the power generation industry.

  1. Lean NOx Reduction in Two Stages: Non-thermal Plasma Followed by Heterogeneous Catalysis

    SciTech Connect

    Tonkyn, Russell G.; Yoon, Ilsop S.; Barlow, Stephan E.; Panov, Alexander G.; Kolwaite, A; Balmer, Mari LOU.

    2000-10-16

    We present data in this paper showing that non-thermal plasma in combination with heterogeneous catalysis is a promising technique for the treatment of NOx in diesel exhaust. Using a commonly available zeolite catalyst, sodium Y, to treat synthetic diesel exhaust we report approximately 50% chemical reduction of NOx over a broad, representative temperature range. We have measured the overall efficiency as a function of the temperature and hydrocarbon concentration. The direct detection of N2 and N2O when the background gas is replaced by helium confirms that true chemical reduction is occurring.

  2. NOx adsorber and method of regenerating same

    SciTech Connect

    Endicott, Dennis L.; Verkiel, Maarten; Driscoll, James J.

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  3. 40 CFR 52.2237 - NOX RACT and NOX conformity exemption.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false NOX RACT and NOX conformity exemption... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Tennessee § 52.2237 NOX RACT and NOX conformity exemption. Approval. EPA is approving the section 182(f) oxides of...

  4. 40 CFR 96.188 - CAIR NOX allowance allocations to CAIR NOX opt-in units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false CAIR NOX allowance allocations to CAIR NOX opt-in units. 96.188 Section 96.188 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS...

  5. 40 CFR 97.188 - CAIR NOX allowance allocations to CAIR NOX opt-in units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false CAIR NOX allowance allocations to CAIR NOX opt-in units. 97.188 Section 97.188 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING...

  6. 40 CFR 96.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System responsibilities of NOX authorized account representative. 96.52 Section 96.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX...

  7. 40 CFR 96.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System responsibilities of NOX authorized account representative. 96.52 Section 96.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX...

  8. 40 CFR 96.188 - CAIR NOX allowance allocations to CAIR NOX opt-in units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CAIR NOX allowance allocations to CAIR NOX opt-in units. 96.188 Section 96.188 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS...

  9. 40 CFR 52.2237 - NOX RACT and NOX conformity exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false NOX RACT and NOX conformity exemption... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Tennessee § 52.2237 NOX RACT and NOX conformity exemption. Approval. EPA is approving the section 182(f) oxides of...

  10. 40 CFR 97.188 - CAIR NOX allowance allocations to CAIR NOX opt-in units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CAIR NOX allowance allocations to CAIR NOX opt-in units. 97.188 Section 97.188 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING...

  11. 40 CFR 96.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false NOX Allowance Tracking System... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.52 NOX Allowance Tracking System responsibilities of NOX authorized account representative. (a) Following...

  12. 40 CFR 96.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false NOX Allowance Tracking System... SO 2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.52 NOX Allowance Tracking System responsibilities of NOX authorized account representative. (a) Following...

  13. 40 CFR 97.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false NOX Allowance Tracking System... NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.52 NOX Allowance Tracking System... Tracking System account, all submissions to the Administrator pertaining to the account, including, but...

  14. 40 CFR 97.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false NOX Allowance Tracking System... NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.52 NOX Allowance Tracking System... Tracking System account, all submissions to the Administrator pertaining to the account, including, but...

  15. 40 CFR 97.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false NOX Allowance Tracking System... NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.52 NOX Allowance Tracking System... Tracking System account, all submissions to the Administrator pertaining to the account, including, but...

  16. 40 CFR 96.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false NOX Allowance Tracking System... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.52 NOX Allowance Tracking System responsibilities of NOX authorized account representative. (a) Following...

  17. 40 CFR 97.60 - Submission of NOX allowance transfers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Submission of NOX allowance transfers... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Allowance Transfers § 97.60 Submission of NOX allowance transfers. The NOX authorized account representatives...

  18. 40 CFR 97.11 - Alternate NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Alternate NOX authorized account... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Authorized Account Representative for NOX Budget Sources § 97.11 Alternate NOX authorized...

  19. 40 CFR 97.11 - Alternate NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Alternate NOX authorized account... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Authorized Account Representative for NOX Budget Sources § 97.11 Alternate NOX authorized...

  20. 40 CFR 96.60 - Submission of NOX allowance transfers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Submission of NOX allowance transfers... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Transfers § 96.60 Submission of NOX allowance transfers. The NOX...

  1. 40 CFR 96.60 - Submission of NOX allowance transfers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Submission of NOX allowance transfers... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Transfers § 96.60 Submission of NOX allowance transfers. The NOX...

  2. 40 CFR 97.60 - Submission of NOX allowance transfers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Submission of NOX allowance transfers... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Allowance Transfers § 97.60 Submission of NOX allowance transfers. The NOX authorized account representatives...

  3. Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage.

    PubMed

    Xi, Pinxian; Chen, Fengjuan; Xie, Guoqiang; Ma, Cai; Liu, Hongyan; Shao, Changwei; Wang, Jun; Xu, Zhihong; Xu, Ximing; Zeng, Zhengzhi

    2012-09-21

    In this study, monodisperse palladium (Pd) nanoparticles on reduced graphene oxide (RGO) surfaces were successfully prepared by a "wet" and "clean" method in aqueous solution. Without any surface treatment, Pd nanoparticles are firmly attached to the RGO sheets. These RGO/Pd nanocomposites exhibited catalytic activity in hydrogen generation from the hydrolysis of ammonia borane (AB). Their hydrolysis completion time and activation energy were 12.5 min and 51 ± 1 kJ mol(-1), respectively, which were comparable to the best Pd-based catalyst reported. The TOF values (mol of H(2)× (mol of catalyst × min)(-1)) of RGO/Pd is 6.25, which appears to be one of the best catalysts reported so far. We also obtained a (11)B NMR spectrum to investigate the mechanism of this catalytic hydrolysis process. This simple and straightforward method is of significance for the facile preparation of metal nanocatalysts with high catalytic activity on proper supporting materials. PMID:22732933

  4. Bimetallic Catalysts.

    ERIC Educational Resources Information Center

    Sinfelt, John H.

    1985-01-01

    Chemical reaction rates can be controlled by varying composition of miniscule clusters of metal atoms. These bimetallic catalysts have had major impact on petroleum refining, where work has involved heterogeneous catalysis (reacting molecules in a phase separate from catalyst.) Experimentation involving hydrocarbon reactions, catalytic…

  5. Oxyhydrochlorination catalyst

    DOEpatents

    Taylor, Charles E.; Noceti, Richard P.

    1992-01-01

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  6. Dehydrogenation of Formic Acid by Heterogeneous Catalysts.

    PubMed

    Li, Jun; Zhu, Qi-Long; Xu, Qiang

    2015-01-01

    Formic acid has recently been considered as one of the most promising hydrogen storage materials. The basic concept is briefly discussed and the research progress is detailledly reviewed on the dehydrogenation of aqueous formic acid by heterogeneous catalysts. PMID:26507481

  7. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2003-06-30

    This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a new effort was begun on the development of a corrosion management system for minimizing the impacts of low NOx combustion systems on waterwalls; a kickoff meeting was held at the host site, AEP's Gavin Plant, and work commenced on fabrication of the probes. FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Improvements on the mass-spectrometer system at BYU have been made and work on the steady state reactor system shakedown neared completion. The slipstream reactor continued to operate at AEP's Rockport plant; at the end of the quarter, the catalysts had been exposed to flue gas for about 1000 hours. Some operational problems were addressed that enable the reactor to run without excessive downtime by the end of the quarter.

  8. Catalysts as sensors--a promising novel approach in automotive exhaust gas aftertreatment.

    PubMed

    Moos, Ralf

    2010-01-01

    Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NO(x) traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more sophisticated approaches based on interactions with electromagnetic waves are also reviewed. For that purpose, metallic stick-like antennas are inserted into the exhaust pipe. The catalyst properties are measured in a contactless manner, directly indicating the catalyst status. The radio frequency probes gauge the oxygen loading degree of three-way catalysts, the NO(x)-loading of lean NO(x) traps, and the soot loading of Diesel particulate filters. PMID:22163575

  9. Catalyzed borohydrides for hydrogen storage

    DOEpatents

    Au, Ming

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  10. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    SciTech Connect

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S

  11. Method And Apparatus For Regenerating Nox Adsorbers

    DOEpatents

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  12. Controlling NOx emission from industrial sources

    SciTech Connect

    Srivastava, R.K.; Nueffer, W.; Grano, D.; Khan, S.; Staudt, J.E.; Jozewicz, W.

    2005-07-01

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, and the NOx SIP Call rulemakings. In addition to these regulations, the recent Interstate Air Quality Rulemaking proposal and other bills in the Congress are focusing on additional reductions of NOx. Industrial combustion sources accounted for about 18016 of NOx emissions in the United States in 2000 and constituted the second largest emitting source category within stationary sources, only behind electric utility sources. Based on these data, reduction of NOx emissions from industrial combustion sources is an important consideration in efforts undertaken to address the environmental concerns associated with NOx. This paper discusses primary and secondary NOx control technologies applicable to various major categories of industrial sources. The sources considered in this paper include large boilers, furnaces and fired heaters, combustion turbines, large IC engines, and cement kilns. For each source category considered in this paper, primary NOx controls are discussed first, followed by a discussion of secondary NOx controls.

  13. Energy Storage

    SciTech Connect

    Mukundan, Rangachary

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10

  14. Systems and methods for solar energy storage, transportation, and conversion utilizing photochemically active organometallic isomeric compounds and solid-state catalysts

    DOEpatents

    Vollhardt, K. Peter C.; Segalman, Rachel A; Majumdar, Arunava; Meier, Steven

    2015-02-10

    A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release. At the thermal energy release station, the high-energy organometallic compound is catalytically converted back to the photochemically active organometallic compound by an exothermic process, while the released thermal energy is captured for subsequent use.

  15. Polymerization catalyst

    SciTech Connect

    Graves, V.

    1987-05-12

    A process is described for polymerizing at least one alpha olefin under conditions characteristic of Ziegler polymerization wherein the polymerization is conducted in the presence of a catalyst system which comprises: a supported catalyst prepared under anhydrous conditions by the sequential steps of: preparing a slurry of inert particulate support material; adding to the slurry a solution of an organomagnesium compound; adding to the slurry and reacting a solution of a zirconium halide compound, hafnium compound or mixtures thereof; adding to the slurry and reacting a halogenator; adding to the slurry and reacting a tetravalent titanium halide compound; and recovering solid catalyst.

  16. Polymerization catalyst

    SciTech Connect

    Graves, V.

    1986-10-21

    A process is described for polymerizing at least one alpha-olefin under conditions characteristic of Ziegler polymerization wherein the polymerization is conducted in the presence of a catalyst comprising: a supported catalyst prepared under anhydrous conditions by the steps of: (1) sequentially; (a) preparing a slurry of inert particulate support material; (b) adding to the slurry a solution of an organomagnesium compound; (c) adding to the slurry and reacting a solution of zirconium compound; and (2) thereafter; (d) adding to the slurry and reacting a halogenator; (e) adding to the slurry and reacting a tetravalent titanium compound; (f) recovering solid catalyst; and an organoaluminum compound.

  17. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3

    SciTech Connect

    Kwak, Ja Hun; Tonkyn, Russell G.; Kim, Do Heui; Szanyi, Janos; Peden, Charles HF

    2010-10-21

    Superior activity and selectivity of a Cu ion-exchanged SSZ-13 zeolite in the selective catalytic reduction (SCR) of NOx with NH3 were observed, in comparison to Cu-beta and Cu-ZSM-5 zeolites. Cu-SSZ-13 was not only more active in the NOx SCR reaction over the entire temperature range studied (up to 550 °C), but also more selective toward nitrogen formation, resulting in significantly lower amounts of NOx by-products (i.e., NO2 and N2O) than the other two zeolites. In addition, Cu-SSZ-13 demonstrated the highest activity and N2 formation selectivity in the oxidation of NH3. The results of this study strongly suggest that Cu-SSZ-13 is a promising candidate as a catalyst for NOx SCR with great potential in after-treatment systems for either mobile or stationary sources.

  18. Recent Developments of Electrochemical Promotion of Catalysis in the Techniques of DeNOx

    PubMed Central

    Tang, Xiaolong; Yi, Honghong; Chen, Chen; Wang, Chuan

    2013-01-01

    Electrochemical promotion of catalysis reactions (EPOC) is one of the most significant discoveries in the field of catalytic and environmental protection. The work presented in this paper focuses on the aspects of reaction mechanism, influencing factors, and recent positive results. It has been shown with more than 80 different catalytic systems that the catalytic activity and selectivity of conductive catalysts deposited on solid electrolytes can be altered in the last 30 years. The active ingredient of catalyst can be activated by applying constant voltage or constant current to the catalysts/electrolyte interface. The effect of EPOC can improve greatly the conversion rate of NOx. And it can also improve the lifetime of catalyst by inhibiting its poisoning. PMID:23970835

  19. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  20. Photo-oxidation catalysts

    DOEpatents

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  1. Effect of Ti or Sn doping on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3

    NASA Astrophysics Data System (ADS)

    Xiong, Yan; Tang, Changjin; Dong, Lin

    2015-04-01

    The abatement of nitrogen oxides (NOx) emission from exhaust gases of diesel and stationary sources is a significant challenge for economic and social development. Ceria-based solid solutions were synthesized and used as supports to prepare MnOx/Ce0.8Ti0.2O2 and MnOx/Ce0.8Sn0.2O2 catalysts (Mn/CeTi and Mn/CeSn) for low temperature selective catalytic reduction of NO by NH3 (NH3-SCR). The effects of Ti or Sn doping on the catalytic performance of MnOx/CeO2 catalyst were investigated. Experimental results show that doping of Ti or Sn increases the NO removal efficiency of MnOx/CeO2. The NO conversion of Mn/CeTi catalyst is more than 90 % at temperature window of 175 ~ 300 °C under a gas hour space velocity of 60,000 mL•g-1•h-1. Modified catalysts are also found to exhibit greatly improved resistance to sulfur-poisoning. NH3-TPD results suggest that NH3 desorption on the catalysts is observed over a wide temperature range, due to the variability of adsorbed NH3 species with different thermal stabilities. Doping of Ti and Sn into Mn/CeO2 greatly increased the NH3 adsorption ability of the composites which could promote the SCR reaction. Characterization results also indicate that doping of Ti or Sn brings about catalysts with higher BET surface area, enhanced oxygen storage capacity and increased surface acidity. X-ray photoelectron spectroscopy (XPS) analysis of spent catalysts following SCR reaction in the presence of SO2 verify that the loss of surface Mn species was inhibited by doping of Ti, which contributes to extend the catalyst durability.

  2. Nox regulation of smooth muscle contraction

    PubMed Central

    Ritsick, Darren R.; Edens, William A.; Finnerty, Victoria; Lambeth, J. David

    2007-01-01

    The catalytic subunit, gp91phox (a.k.a., Nox2) of the NADPH-oxidase of mammalian phagocytes is activated by microbes and immune mediators to produce large amounts of reactive oxygen species (ROS) which participate in microbial killing. Homologs of gp91phox, the Nox and Duox enzymes, were recently described in a range of organisms, including plants, vertebrates, and invertebrates such as Drosophila melanogaster. While their enzymology and cell biology is being extensively studied in many laboratories, little is known about in vivo functions of Noxes. Here, we establish and use an inducible system for RNAi to discover functions of dNox, an ortholog of human Nox5 in Drosophila. We report here that depletion of dNox in musculature causes retention of mature eggs within ovaries, leading to female sterility. In dNox-depleted ovaries and ovaries treated with a Nox inhibitor, muscular contractions induced by the neuropeptide proctolin are markedly inhibited. This functional defect results from a requirement for dNox for the proctolin-induced calcium flux in Drosophila ovaries. Thus, these studies demonstrate a novel biological role for Nox-generated ROS in mediating agonist-induced calcium flux and smooth muscle contraction. PMID:17561091

  3. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    SciTech Connect

    Parks, II, James E; Storey, John Morse; Theiss, Timothy J; Ponnusamy, Senthil; Ferguson, Harley Douglas; Williams, Aaron M; Tassitano, James B

    2007-09-01

    efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial

  4. Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines

    SciTech Connect

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A; Toops, Todd J

    2014-01-01

    A commercial three-way catalyst (TWC) was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential low cost approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. NH3 generation was evaluated at different air-fuel equivalence ratios at multiple engine speed and load conditions. Near complete conversion of NOX to NH3 was achieved at =0.96 for nearly all conditions studied. At the =0.96 condition, HC emissions were relatively minimal, but CO emissions were significant. Operation at AFRs richer than =0.96 did not provide more NH3 yield and led to higher HC and CO emissions. Results of the reductant conversion and consumption processes were used to calculate a representative fuel consumption of the engine operating with an ideal passive SCR system. The results show a 1-7% fuel economy benefit at various steady-state engine speed and load points relative to a stoichiometric engine operation.

  5. 40 CFR 97.23 - NOX Budget permit contents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false NOX Budget permit contents. 97.23... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.23 NOX Budget permit contents. (a) Each NOX Budget permit will contain, in a format prescribed by the...

  6. 40 CFR 97.24 - NOX Budget permit revisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false NOX Budget permit revisions. 97.24... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.24 NOX Budget permit revisions. (a) For a NOX Budget source with a title V operating permit, except as...

  7. 40 CFR 97.24 - NOX Budget permit revisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false NOX Budget permit revisions. 97.24... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.24 NOX Budget permit revisions. (a) For a NOX Budget source with a title V operating permit, except as...

  8. 40 CFR 96.25 - NOX Budget permit revisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false NOX Budget permit revisions. 96.25... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO 2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.25 NOX Budget permit revisions. (a) For a NOX Budget source with a title V operating...

  9. 40 CFR 97.23 - NOX Budget permit contents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false NOX Budget permit contents. 97.23... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.23 NOX Budget permit contents. (a) Each NOX Budget permit will contain, in a format prescribed by the...

  10. 40 CFR 96.25 - NOX Budget permit revisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false NOX Budget permit revisions. 96.25... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.25 NOX Budget permit revisions. (a) For a NOX Budget source with a title V operating...

  11. 40 CFR 96.23 - NOX Budget permit contents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false NOX Budget permit contents. 96.23... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO 2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.23 NOX Budget permit contents. (a) Each NOX Budget permit (including any draft or...

  12. 40 CFR 96.23 - NOX Budget permit contents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false NOX Budget permit contents. 96.23... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.23 NOX Budget permit contents. (a) Each NOX Budget permit (including any draft or...

  13. 40 CFR 96.23 - NOX Budget permit contents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false NOX Budget permit contents. 96.23... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.23 NOX Budget permit contents. (a) Each NOX Budget permit (including any draft or...

  14. 40 CFR 97.23 - NOX Budget permit contents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false NOX Budget permit contents. 97.23... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.23 NOX Budget permit contents. (a) Each NOX Budget permit will contain, in a format prescribed by the...

  15. 40 CFR 97.24 - NOX Budget permit revisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false NOX Budget permit revisions. 97.24... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.24 NOX Budget permit revisions. (a) For a NOX Budget source with a title V operating permit, except as...

  16. 40 CFR 96.25 - NOX Budget permit revisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false NOX Budget permit revisions. 96.25... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.25 NOX Budget permit revisions. (a) For a NOX Budget source with a title V operating...

  17. 40 CFR 96.11 - Alternate NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Alternate NOX authorized account... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Authorized Account Representative for NOX Budget Sources § 96.11 Alternate...

  18. 40 CFR 96.23 - NOX Budget permit contents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Budget permit contents. 96.23... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.23 NOX Budget permit contents. (a) Each NOX Budget permit (including any draft or...

  19. 40 CFR 96.42 - NOX allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX allowance allocations. 96.42... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Allocations § 96.42 NOX allowance allocations. (a)(1) The heat input (in mmBtu) used...

  20. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System accounts... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature...

  1. 40 CFR 96.42 - NOX allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX allowance allocations. 96.42... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Allocations § 96.42 NOX allowance allocations. (a)(1) The heat input (in mmBtu) used...

  2. 40 CFR 96.53 - Recordation of NOX allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Recordation of NOX allowance... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.53 Recordation of NOX allowance allocations. (a)...

  3. 40 CFR 96.25 - NOX Budget permit revisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Budget permit revisions. 96.25... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.25 NOX Budget permit revisions. (a) For a NOX Budget source with a title V operating...

  4. 40 CFR 97.23 - NOX Budget permit contents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Budget permit contents. 97.23... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.23 NOX Budget permit contents. (a) Each NOX Budget permit will contain, in a format prescribed by the...

  5. 40 CFR 96.25 - NOX Budget permit revisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Budget permit revisions. 96.25... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.25 NOX Budget permit revisions. (a) For a NOX Budget source with a title V operating...

  6. 40 CFR 96.142 - CAIR NOX allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CAIR NOX allowance allocations. 96.142... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Allowance Allocations § 96.142 CAIR NOX allowance allocations. (a)(1) The baseline heat...

  7. 40 CFR 97.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System accounts... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.50 NOX Allowance Tracking System accounts. (a) Nature and function of...

  8. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System accounts... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature...

  9. 40 CFR 97.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System accounts... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.50 NOX Allowance Tracking System accounts. (a) Nature and function of...

  10. 40 CFR 97.24 - NOX Budget permit revisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Budget permit revisions. 97.24... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.24 NOX Budget permit revisions. (a) For a NOX Budget source with a title V operating permit, except as...

  11. 40 CFR 96.23 - NOX Budget permit contents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Budget permit contents. 96.23... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.23 NOX Budget permit contents. (a) Each NOX Budget permit (including any draft or...

  12. 40 CFR 96.53 - Recordation of NOX allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Recordation of NOX allowance... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.53 Recordation of NOX allowance allocations. (a)...

  13. 40 CFR 97.53 - Recordation of NOX allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Recordation of NOX allowance... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.53 Recordation of NOX allowance allocations. (a) The Administrator will record the...

  14. 40 CFR 97.42 - NOX allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX allowance allocations. 97.42... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Allowance Allocations § 97.42 NOX allowance allocations. (a)(1) The heat input (in mmBtu) used for calculating...

  15. 40 CFR 97.42 - NOX allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX allowance allocations. 97.42... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Allowance Allocations § 97.42 NOX allowance allocations. (a)(1) The heat input (in mmBtu) used for calculating...

  16. 40 CFR 97.23 - NOX Budget permit contents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Budget permit contents. 97.23... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.23 NOX Budget permit contents. (a) Each NOX Budget permit will contain, in a format prescribed by the...

  17. 40 CFR 96.11 - Alternate NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Alternate NOX authorized account... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Authorized Account Representative for NOX Budget Sources § 96.11 Alternate...

  18. 40 CFR 97.53 - Recordation of NOX allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Recordation of NOX allowance... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.53 Recordation of NOX allowance allocations. (a) The Administrator will record the...

  19. 40 CFR 97.142 - CAIR NOX allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CAIR NOX allowance allocations. 97.142... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Allowance Allocations § 97.142 CAIR NOX allowance allocations. (a)(1) The baseline heat input (in mmBtu) used...

  20. 40 CFR 97.24 - NOX Budget permit revisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Budget permit revisions. 97.24... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.24 NOX Budget permit revisions. (a) For a NOX Budget source with a title V operating permit, except as...

  1. Biological removal of NOx from flue gas.

    PubMed

    Kumaraswamy, R; Muyzer, G; Kuenen, J G; Loosdrecht, M C M

    2004-01-01

    BioDeNOx is a novel integrated physico-chemical and biological process for the removal of nitrogen oxides (NOx) from flue gas. Due to the high temperature of flue gas the process is performed at a temperature between 50-55 degrees C. Flue gas containing CO2, O2, SO2 and NOx, is purged through Fe(II)EDTA2- containing liquid. The Fe(II)EDTA2- complex effectively binds the NOx; the bound NOx is converted into N2 in a complex reaction sequence. In this paper an overview of the potential microbial reactions in the BioDeNOx process is discussed. It is evident that though the process looks simple, due to the large number of parallel potential reactions and serial microbial conversions, it is much more complex. There is a need for a detailed investigation in order to properly understand and optimise the process. PMID:15536984

  2. 40 CFR 97.188 - CAIR NOX allowance allocations to CAIR NOX opt-in units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... allocations will be the lesser of: (i) The CAIR NOX opt-in unit's baseline NOX emissions rate (in lb/mmBtu... emissions limitation applicable to the CAIR NOX opt-in unit at any time during the control period for which... baseline NOX emissions rate (in lb/mmBtu) determined under § 97.184(d); or (B) The most stringent State...

  3. 40 CFR 97.188 - CAIR NOX allowance allocations to CAIR NOX opt-in units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... allocations will be the lesser of: (i) The CAIR NOX opt-in unit's baseline NOX emissions rate (in lb/mmBtu... emissions limitation applicable to the CAIR NOX opt-in unit at any time during the control period for which... baseline NOX emissions rate (in lb/mmBtu) determined under § 97.184(d); or (B) The most stringent State...

  4. Ammonia-Free NOx Control System

    SciTech Connect

    Song Wu; Zhen Fan; Andrew H. Seltzer

    2005-06-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia.

  5. NOx control buys to peak in `98

    SciTech Connect

    McIlvaine, R.W.

    1995-10-01

    Titles I and IV of the Clean Air Act provide the legislative framework for a huge NOx reduction program now in operation. This reduction will have a substantial effect in reducing ground-level ozone. A new McIlvaine report concludes that US utilities and industrial companies during the next 10 years will spend more than $800 million annually to meet CAA`s NOx-control regulations. Much of that investment will be for low-NOx burners, which minimize NOx formation. Many utilities and industrial boilers can be retrofitted with a new generation of burners; however, this technology achieves less than 50% NOx reduction. Post-combustion technologies, such as selective catalytic reduction and selective noncatalytic reduction, can reduce NOx as much as 90%. Therefore, plants needing greater NOx reduction will use post-combustion technologies, often in combination with low-NOx burners. The peak order year for NOx-control equipment will be 1998, primarily because Title IV of CAA requires utilities to comply by 2000. Many industrial sources also will be ordering equipment in 1998.

  6. Statistical modeling of global soil NOx emissions

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoyuan; Ohara, Toshimasa; Akimoto, Hajime

    2005-09-01

    On the basis of field measurements of NOx emissions from soils, we developed a statistical model to describe the influences of soil organic carbon (SOC) content, soil pH, land-cover type, climate, and nitrogen input on NOx emission. While also considering the effects of soil temperature, soil moisture change-induced pulse emission, and vegetation fire, we simulated NOx emissions from global soils at resolutions of 0.5° and 6 hours. Canopy reduction was included in both data processing and flux simulation. NOx emissions were positively correlated with SOC content and negatively correlated with soil pH. Soils in dry or temperate regions had higher NOx emission potentials than soils in cold or tropical regions. Needleleaf forest and agricultural soils had high NOx emissions. The annual NOx emission from global soils was calculated to be 7.43 Tg N, decreasing to 4.97 Tg N after canopy reduction. Global averages of nitrogen fertilizer-induced emission ratios were 1.16% above soil and 0.70% above canopy. Soil moisture change-induced pulse emission contributed about 4% to global annual NOx emission, and the effect of vegetation fire on soil NOx emission was negligible.

  7. Ammonia-Free NOx Control System

    SciTech Connect

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2005-03-31

    Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia.

  8. 40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.388 CAIR NOX Ozone...

  9. 40 CFR 96.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... unit's baseline NOX emissions rate (in lb/mmBtu) determined under § 96.384(d) and multiplied by 70 percent; or (ii) The most stringent State or Federal NOX emissions limitation applicable to the CAIR NOX...: (A) The CAIR NOX Ozone Season opt-in unit's baseline NOX emissions rate (in lb/mmBtu)...

  10. 40 CFR 96.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... unit's baseline NOX emissions rate (in lb/mmBtu) determined under § 96.384(d) and multiplied by 70 percent; or (ii) The most stringent State or Federal NOX emissions limitation applicable to the CAIR NOX...: (A) The CAIR NOX Ozone Season opt-in unit's baseline NOX emissions rate (in lb/mmBtu)...

  11. 40 CFR 97.188 - CAIR NOX allowance allocations to CAIR NOX opt-in units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false CAIR NOX allowance allocations to CAIR... 31 of the control period after the control period in which a CAIR NOX opt-in unit enters the CAIR NOX Annual Trading Program under § 97.184(g) and October 31 of each year thereafter, the permitting...

  12. 40 CFR 96.188 - CAIR NOX allowance allocations to CAIR NOX opt-in units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false CAIR NOX allowance allocations to CAIR... later than October 31 of the control period after the control period in which a CAIR NOX opt-in unit enters the CAIR NOX Annual Trading Program under § 96.184(g) and October 31 of each year thereafter,...

  13. 40 CFR 97.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System responsibilities of NOX authorized account representative. 97.52 Section 97.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND...

  14. 40 CFR 97.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System responsibilities of NOX authorized account representative. 97.52 Section 97.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND...

  15. 40 CFR 96.188 - CAIR NOX allowance allocations to CAIR NOX opt-in units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CAIR NOX opt-in unit's baseline NOX emissions rate (in lb/mmBtu) determined under § 96.184(d) and multiplied by 70 percent; or (ii) The most stringent State or Federal NOX emissions limitation applicable to... emissions rate (in lb/mmBtu) determined under § 96.184(d); or (B) The most stringent State or Federal...

  16. 40 CFR 96.188 - CAIR NOX allowance allocations to CAIR NOX opt-in units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CAIR NOX opt-in unit's baseline NOX emissions rate (in lb/mmBtu) determined under § 96.184(d) and multiplied by 70 percent; or (ii) The most stringent State or Federal NOX emissions limitation applicable to... emissions rate (in lb/mmBtu) determined under § 96.184(d); or (B) The most stringent State or Federal...

  17. High-Potential Electrocatalytic O2 Reduction with Nitroxyl/NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    PubMed Central

    2015-01-01

    Efficient reduction of O2 to water is a central challenge in energy conversion and many aerobic oxidation reactions. Here, we show that the electrochemical oxygen reduction reaction (ORR) can be achieved at high potentials by using soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as 2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl (TEMPO), nor NOx species, such as sodium nitrite, are effective ORR mediators. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction with overpotentials as low as 300 mV in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The overpotentials accessible with this ORR system are significantly lower than widely studied molecular metal-macrocycle ORR catalysts and benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. PMID:27162977

  18. Catalytic hydrolysis of urea with fly ash for generation of ammonia in a batch reactor for flue gas conditioning and NOx reduction

    SciTech Connect

    Sahu, J.N.; Gangadharan, P.; Patwardhan, A.V.; Meikap, B.C.

    2009-01-15

    Ammonia is a highly volatile noxious material with adverse physiological effects, which become intolerable even at very low concentrations and present substantial environmental and operating hazards and risk. Yet ammonia has long been known to be used for feedstock of flue gas conditioning and NOx reduction. Urea as the source of ammonia for the production of ammonia has the obvious advantages that no ammonia shipping, handling, and storage is required. The process of this invention minimizes the risks and hazards associated with the transport, storage, and use of anhydrous and aqueous ammonia. Yet no such rapid urea conversion process is available as per requirement of high conversion in shorter time, so here we study the catalytic hydrolysis of urea for fast conversion in a batch reactor. The catalyst used in this study is fly ash, a waste material originating in great amounts in combustion processes. A number of experiments were carried out in a batch reactor at different catalytic doses, temperatures, times, and at a constant concentration of urea solution 10% by weight, and equilibrium and kinetic studies have been made.

  19. Combination of biodiesel-ethanol-diesel fuel blend and SCR catalyst assembly to reduce emissions from a heavy-duty diesel engine.

    PubMed

    Shi, Xiaoyan; Yu, Yunbo; He, Hong; Shuai, Shijin; Dong, Hongyi; Li, Rulong

    2008-01-01

    In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs). PMID:18574958

  20. Catalyst activator

    DOEpatents

    McAdon, Mark H.; Nickias, Peter N.; Marks, Tobin J.; Schwartz, David J.

    2001-01-01

    A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

  1. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2002-07-28

    This is the eighth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. CFD modeling studies of RRI in a full scale utility boiler have been performed that provide further insight into the NOx reduction process that occurs if the furnace is not adequately staged. In situ reactivity data indicate thus far that titania sulfates under SCR conditions but there is no indication of vanadia sulfation in agreement with some, but not most literature results. Additional analysis and advanced diagnostics are under way to confirm this result and determine its accuracy. Construction of a catalyst characterization reactor system is nearly complete, with a few remaining details discussed in this report. Shakedown testing of the SCR field reactor was completed at the University of Utah pilot-scale coal furnace. The CEM system has been ordered. Talks continued with American Electric Power about hosting a demonstration at their Rockport plant.

  2. LOW-CONCENTRATION NOX EMISSIONS MEASUREMENT

    EPA Science Inventory

    The paper gives results of a recent series of low-concentration nitrogen oxides (NOx) emission measurements, made by Midwest Research Institute (MRI) during U.S. EPA-sponsored Environmental Technology Verification (ETV) test of a NOx control system called Xonon (TM) Cool Combust...

  3. Low NOx Advanced Vortex Combustor

    SciTech Connect

    Edmonds, R.G.; Williams, J.T.; Steele, R.C.; Straub, D.L.; Casleton, K.H.; Bining, Avtar

    2008-05-01

    A lean-premixed advanced vortex combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory in Morgantown, WV. All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx /CO/unburned hydrocarbon (UHC) emissions of 4/4/0 ppmv (all emissions corrected to 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated marked acoustic dynamic stability over a wide range of operating conditions, which potentially makes this approach significantly more attractive than other lean-premixed combustion approaches. In addition, the measured 1.75% pressure drop is significantly lower than conventional gas turbine combustors, which could translate into an overall gas turbine cycle efficiency improvement. The relatively high velocities and low pressure drop achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  4. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-06-30

    This is the sixteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. During an unplanned outage, damage occurred to the electrochemical noise corrosion probes installed at the AEP Gavin plant; testing is expected to resume in August. The KEMCOP corrosion coupons were not affected by the unplanned outage; the coupons were removed and sent for analysis. BYU conducted a series of tests before the ISSR lab was relocated. Ammonia adsorption experiments provided clear evidence of the types of acidic sites present on catalyst surfaces. Data collected this quarter indicate that surface sulfation decreases Lewis acid site concentrations for all catalysts thus far studied, confirming that catalytic activity under commercial coal-based SCR conditions occurs primarily on Br{o}nsted acid sites and would be susceptible to basic impurities such as alkali and alkaline earth oxides, chlorides, and sulfates. SCR activity tests based on MS analysis showed that increasing sulfation generally increases NO reduction activity for both 0% and 1% vanadia catalysts. During this quarter, the slipstream reactor at Rockport operated for 720 hours on flue gas. Catalyst exposure time reached 4500 hours since installation. The reactor is out of service at the Rockport plant and plans are being made to move it to the Gadsden Plant. At Gadsden, modifications have begun in preparation for installation of the slipstream reactor next quarter.

  5. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

    2002-01-31

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates.

  6. Selective Reduction of NOx in Oxygen Rich Environment with Plasma-Assisted Catalysis: Role of Plasma and Reactive Intermediates

    SciTech Connect

    Panov, Alexander G.; Tonkyn, Russell G.; Balmer, Marilou L.; Peden, Charles HF.; Malkin, A; Hoard, John; Balmer, M.L.; Fisher, G.; Hoard, J.

    2001-09-01

    Catalytic activity of selected materials (BaY and NaY zeolites, and g-Alumina) for selective NOx reduction in combination with a non-thermal plasma was investigated. Our studies suggest that aldehydes formed during the plasma treatment of simulated diesel exhaust are the important species for the reduction of NOx to N2. Indeed, all materials that are active in plasma-assisted catalysis were found to be very effective in the thermal reduction of NOx in the presence of aldehydes. For example, the thermal catalytic activity of a BaY zeolite with aldehydes gives 80-90% NOx removal at 250 C with 200ppm NOx at the inlet, 1000ppm of C1 as acetaldehyde, propionaldehyde, and butyraldehyde, and SV=12,000 h?. The hydrocarbon reductants, n-octane and 1-propyl alcohol have also shown high thermal catalytic activity for NOx removal over BaY, NaY and g-alumina. We believe that this activity is due to the fact that in an oxygen rich environment these compounds can be thermally oxidized over the catalysts to form the important aldehyde reaction intermediates.

  7. Catalyst Size and Morphological Effects on the Interaction of NO2 with BaO/γ-Al2O3 Materials

    SciTech Connect

    Mei, Donghai; Kwak, Ja Hun; Szanyi, Janos; Ge, Qingfeng; Peden, Charles HF

    2010-06-19

    The capability of NOx storage on the supported BaO catalyst largely depends on the Ba loading. With different Ba loadings, the supported BaO component exposes various phases ranging from well-dispersed nanoclusters to large crystalline particles on the oxide support materials. In order to better understand size and morphological effects on NOx storage over -Al2O3 supported BaO materials, the adsorption structures and energetics of single NO2 molecule, as well as NOx+NOy (NO2+NO2, NO+NO3 and NO2+NO3) pairs on the BaO/-Al2O3(100), (BaO)2/-Al2O3(100), and (BaO)5/-Al2O3(100) surfaces were investigated using first-principles density functional theory calculations. A single NO2 molecule prefers to adsorb at basic OBa site forming anionic nitrate species. Upon adsorption, a charge redistribution in the supported (BaO)n clusters occurs. Synergistic effects due to the interaction of NO2 with both the (BaO)n clusters and the  Al2O3(100) support enhances the stability of adsorbed NO2. The interaction between NO2 and the (BaO)n/ Al2O3(100) catalysts was found to be markedly affected by the sizes and morphologies of the supported (BaO)n clusters. The adsorption energy of NO2 increases from 0.98 eV on the BaO/-Al2O3(100) surface to 3.01 eV on (BaO)5/ Al2O3(100). NO2 adsorption on (BaO)2 clusters in a parallel configuration on the -Al2O3(100) surface is more stable than on dimers oriented in a perpendicular fashion. Similar to the bulk BaO(100) surface, a supported (BaO)n cluster-mediated electron transfer induces cooperative effects that dramatically increase the total adsorption energy of NOx+NOy pairs on the (BaO)n/-Al2O3(100) surfaces. Following the widely accepted NO2 storage mechanism of , our thermodynamic analysis indicates that the largest energy gain for this overall process of NOx uptake is obtained on the amorphous monolayer-like (BaO)5/-Al2O3(100) surface. This suggests that -Al2O3-supported BaO materials with ~ 6  12 wt

  8. NOx reduction in a lignite cyclone furnace

    SciTech Connect

    Melland, C.; O`Connor, D.

    1998-12-31

    Reburning, selective catalytic reduction, and selective noncatalytic reduction techniques have demonstrated some potential for NOx reduction in cyclone boilers. These techniques are costly in terms of both capital and operating costs. Lignite cyclone combustion modeling studies indicated that modifying combustion inside the cyclone barrel could reduce cyclone NOx emissions. The modeling showed that air staging, secondary air basing, flue gas injection and variations in coal moisture content could affect NOx emissions. Short term lignite boiler tests and now longer term boiler operation have confirmed that significant NOx reductions can be accomplished merely by modifying cyclone combustion. The low NOx operation does not appear to significantly impact maintenance, reliability or capacity of the cyclone burner or furnace.

  9. High temperature durable catalyst development

    NASA Technical Reports Server (NTRS)

    Snow, G. C.; Tong, H.

    1981-01-01

    A program has been carried out to develop a catalytic reactor capable of operation in environments representative of those anticipated for advanced automotive gas turbine engines. A reactor consisting of a graded cell honeycomb support with a combination of noble metal and metal oxide catalyst coatings was built and successfully operated for 1000 hr. At an air preheat temperature of 740 K and a propane/air ratio of 0.028 by mass, the adiabatic flame temperature was held at about 1700 K. The graded cell monolithic reaction measured 5 cm in diameter by 10.2 cm in length and was operated at a reference velocity of 14.0 m/s at 1 atm. Measured NOx levels remained below 5 ppm, while unburned hydrocarbon concentrations registered near zero and carbon monoxide levels were nominally below 20 ppm.

  10. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels.

    PubMed

    Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L

    2009-05-15

    research with control optimization, urea distribution and possible use of oxidation catalysts is recommended to improve the NOx reduction capabilities while minimizing ammonia slip. PMID:19544914

  11. Catalyst suppliers consolidate further, offer more catalysts

    SciTech Connect

    Rhodes, A.K.

    1995-10-02

    The list of suppliers of catalysts to the petroleum refining industry has decreased by five since Oil and Gas Journal`s survey of refining catalysts and catalytic additives was last published. Despite the consolidation, the list of catalyst designations has grown to about 950 in this latest survey, compared to 820 listed in 1993. The table divides the catalysts by use and gives data on their primary differentiating characteristics, feedstock, products, form, bulk density,catalyst support, active agents, availability, and manufactures.

  12. Composite TiO2/clays materials for photocatalytic NOx oxidation

    NASA Astrophysics Data System (ADS)

    Todorova, N.; Giannakopoulou, T.; Karapati, S.; Petridis, D.; Vaimakis, T.; Trapalis, C.

    2014-11-01

    TiO2 photocatalyst received much attention for air purification applications especially for removal of air pollutants like NOx, VOCs etc. It has been established that the activity of the photocatalyst can be significantly enhanced by its immobilization onto suitable substrates like inorganic minerals, porous silica, hydroxyapatite, adsorbent materials like activated carbon, various co-catalysts such as semiconductors, graphene, reduced graphite oxide, etc. In the present work, photocatalytic composite materials consisted of mineral substrate and TiO2 in weight ratio 1:1 were manufactured and examined for oxidation and removal of nitric oxides NOx (NO and NO2). Commercial titania P25 (Evonik-Degussa) and urea-modified P25 were used as photocatalytically active components. Inorganic minerals, namely kunipia, talk and hydrotalcite were selected as supporting materials due to their layered structure and expected high NOx adsorption capability. Al3+ and Ca2+ intercalation was applied in order to improve the dispersion of TiO2 and its loading into the supporting matrix. The X-ray diffraction analysis and Scanning Electron Microscopy revealed the binary structure of the composites and homogeneous dispersion of the photocatalyst into the substrates. The photocatalytic behavior of the materials in NOx oxidation and removal was investigated under UV and visible light irradiation. The composite materials exhibited superior photocatalytic activity than the bare titania under both types of irradiation. Significant visible light activity was recorded for the composites containing urea-modified titania that was accredited to the N-doping of the semiconductor. Among the different substrates, the hydrotalcite caused highest increase in the NOx removal, while among the intercalation ions the Ca2+ was more efficient. The results were related to the improved dispersion of the TiO2 and the synergetic activity of the substrates as NOx adsorbers.

  13. Hydrocracking catalyst

    SciTech Connect

    Hilfman, L.; O'Hara, M.

    1980-07-01

    A description is given of a process for the conversion of heavy hydrocarbon oil boiling above about 650/sup 0/F into lower boiling hydrocarbons, which comprises hydrocracking the heavy oil in admixture with hydrogen and in contact with a catalyst with comprising a ra re earth exchange metal component and a platinum group metal component supported on a mixture of ziegler alumina and a zeolite.

  14. Selective catalytic reduction operation with heavy fuel oil: NOx, NH3, and particle emissions.

    PubMed

    Lehtoranta, Kati; Vesala, Hannu; Koponen, Päivi; Korhonen, Satu

    2015-04-01

    To meet stringent NOx emission limits, selective catalytic reduction (SCR) is increasingly utilized in ships, likely also in combination with low-priced higher sulfur level fuels. In this study, the performance of SCR was studied by utilizing NOx, NH3, and particle measurements. Urea decomposition was studied with ammonia and isocyanic acid measurements and was found to be more effective with heavy fuel oil (HFO) than with light fuel oil. This is suggested to be explained by the metals found in HFO contributing to metal oxide particles catalyzing the hydrolysis reaction prior to SCR. At the exhaust temperature of 340 °C NOx reduction was 85-90%, while at lower temperatures the efficiency decreased. By increasing the catalyst loading, the low temperature behavior of the SCR was enhanced. The drawback of this, however, was the tendency of particle emissions (sulfate) to increase at higher temperatures with higher loaded catalysts. The particle size distribution results showed high amounts of nanoparticles (in 25-30 nm size), the formation of which SCR either increased or decreased. The findings of this work provide a better understanding of the usage of SCR in combination with a higher sulfur level fuel and also of ship particle emissions, which are a growing concern. PMID:25780953

  15. NOx Direct Decomposition: Potentially Enhanced Thermodynamics and Kinetics on Chemically Modified Ferroelectric Surfaces

    NASA Astrophysics Data System (ADS)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2014-03-01

    NOx are regulated pollutants produced during automotive combustion. As part of an effort to design catalysts for NOx decomposition that operate in oxygen rich environment and permit greater fuel efficiency, we study chemistry of NOx on (001) ferroelectric surfaces. Changing the polarization at such surfaces modifies electronic properties and leads to switchable surface chemistry. Using first principles theory, our previous work has shown that addition of catalytic RuO2 monolayer on ferroelectric PbTiO3 surface makes direct decomposition of NO thermodynamically favorable for one polarization. Furthermore, the usual problem of blockage of catalytic sites by strong oxygen binding is overcome by flipping polarization that helps desorb the oxygen. We describe a thermodynamic cycle for direct NO decomposition followed by desorption of N2 and O2. We provide energy barriers and transition states for key steps of the cycle as well as describing their dependence on polarization direction. We end by pointing out how a switchable order parameter of substrate,in this case ferroelectric polarization, allows us to break away from some standard compromises for catalyst design(e.g. the Sabatier principle). This enlarges the set of potentially catalytic metals. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  16. Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Hydrocarbon and NOx Adsorber

    SciTech Connect

    Gao, Zhiming; Kim, Miyoung; Choi, Jae-Soon; Daw, C Stuart; Parks, II, James E; Smith, David E

    2012-01-01

    We presents a study of the potential for using low-cost sorbent materials (i.e. Ag-Beta-zeolite and Fe-Mn-Zr transition metal oxides) to temporally trap hydrocarbons (HCs) and nitrogen oxides (NOx) emissions during cold-start periods in HEVs and PHEVs over transient driving cycles. The adsorption behavior of the candidate sorbent materials was characterized in our laboratory flow reactor experiments. The parameters were then used to develop a one-dimensional, transient device model which has been implemented in the Powertrain Systems Analysis Toolkit (PSAT) to simulate a passive HC and NOx absorber device. The results show that such an absorber can substantially reduce HC and NOx emissions by storing them when the 3-way catalyst is too cool to function and re-releasing them when the exhaust temperature rises. These improved emission controls do not involve any penalty in fuel consumption or require any change in engine operation. The cost of these sorbent materials is also much less than conventional 3-way catalysts.

  17. NOX2-dependent regulation of inflammation.

    PubMed

    Singel, Kelly L; Segal, Brahm H

    2016-04-01

    NADPH oxidase (NOX) isoforms together have multiple functions that are important for normal physiology and have been implicated in the pathogenesis of a broad range of diseases, including atherosclerosis, cancer and neurodegenerative diseases. The phagocyte NADPH oxidase (NOX2) is critical for antimicrobial host defence. Chronic granulomatous disease (CGD) is an inherited disorder of NOX2 characterized by severe life-threatening bacterial and fungal infections and by excessive inflammation, including Crohn's-like inflammatory bowel disease (IBD). NOX2 defends against microbes through the direct antimicrobial activity of reactive oxidants and through activation of granular proteases and generation of neutrophil extracellular traps (NETs). NETosis involves the breakdown of cell membranes and extracellular release of chromatin and neutrophil granular constituents that target extracellular pathogens. Although the immediate effects of oxidant generation and NETosis are predicted to be injurious, NOX2, in several contexts, limits inflammation and injury by modulation of key signalling pathways that affect neutrophil accumulation and clearance. NOX2 also plays a role in antigen presentation and regulation of adaptive immunity. Specific NOX2-activated pathways such as nuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional factor that induces antioxidative and cytoprotective responses, may be important therapeutic targets for CGD and, more broadly, diseases associated with excessive inflammation and injury. PMID:26888560

  18. Modelling NOx emissions of single droplet combustion

    NASA Astrophysics Data System (ADS)

    Moesl, Klaus G.; Schwing, Joachim E.; Sattelmayer, Thomas

    2012-02-01

    An approach for modelling and simulation of the generation of nitrogen oxide (NOx) in the gas phase surrounding single burning droplets is presented. Assuming spherical symmetry (no gravity, no forced convection), the governing equations are derived first. Then simplifications are introduced and it is proven that they are appropriate. The influences of the initial droplet diameter, the ambient conditions, and the droplet pre-vapourisation on NOx are investigated. The fuel of choice is n-decane (C10H22) as it resembles kerosene and diesel fuel best, and the complexity of the reaction mechanism is manageable. Combinations of C10H22 mechanisms and well-established NOx kinetics are evaluated in detail and validated for their applicability in the context of this work. The conducted simulations of droplet combustion in an atmosphere of hot exhaust gas show that NOx formation (by mass of fuel) increases linearly with the droplet diameter. There is a trade-off between available oxygen and ambient temperature. Increasing the equivalence ratio of the exhaust gas leads to higher NOx emissions in the very lean regime, but to lower emissions if the equivalence ratio exceeds 0.85. Pre-vapourisation of fuel at ambient conditions becomes beneficial with respect to NOx emissions only if the degree of vapourisation is above a minimum limit. If less fuel is vapourised before ignition, the NOx emissions remain almost unaffected.

  19. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-03-31

    This is the fifteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At AEP's Gavin Plant, data from the corrosion probes showed that corrosion rate increased as boiler load was increased. During an outage at the plant, the drop in boiler load, sensor temperature and corrosion rate could all be seen clearly. Restarting the boiler saw a resumption of corrosion activity. This behavior is consistent with previous observations made at a 600MWe utility boiler. More data are currently being examined for magnitudes of corrosion rates and changes in boiler operating conditions. Considerable progress was made this quarter in BYU's laboratory study of catalyst deactivation. Surface sulfation appears to partially suppress NO adsorption when the catalyst is not exposed to NH3; NH3 displaces surface-adsorbed NO on SCR catalysts and surface sulfation increases the amount of adsorbed NH3, as confirmed by both spectroscopy and TPD experiments. However, there is no indication of changes in catalyst activity despite changes in the amount of adsorbed NH3. A monolith test reactor (MTR), completed this quarter, provided the first comparative data for one of the fresh and field-exposed monolith SCR catalysts yet developed in this project. Measurements of activity on one of the field-exposed commercial monolith catalysts do not show significant changes in catalyst activity (within experimental error) as compared to the fresh catalyst. The exposed surface of the sample contains large amounts of Ca and Na, neither of which is present in the fresh sample, even after removal of visibly obvious fouling deposits. However, these fouling compounds do not

  20. 40 CFR 75.70 - NOX mass emissions provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false NOX mass emissions provisions. 75.70... (CONTINUED) CONTINUOUS EMISSION MONITORING NOX Mass Emissions Provisions § 75.70 NOX mass emissions... subpart to the extent that compliance is required by an applicable State or federal NOX mass...

  1. 40 CFR 97.82 - NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX authorized account representative... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Individual Unit Opt-ins. § 97.82 NOX authorized account representative. A unit for which an application for a...

  2. 40 CFR 96.82 - NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX authorized account representative... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Individual Unit Opt-ins § 96.82 NOX authorized account representative. A unit for which...

  3. 40 CFR 96.82 - NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX authorized account representative... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Individual Unit Opt-ins § 96.82 NOX authorized account representative. A unit for which...

  4. 40 CFR 97.82 - NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX authorized account representative... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Individual Unit Opt-ins. § 97.82 NOX authorized account representative. A unit for which an application for a...

  5. Catalytic sodium hypochlorite degradation using a Kynar stabilized catalyst

    SciTech Connect

    Compere, A.L.; Griffith, W.L.

    1987-06-01

    Based on bench scale data, the Kynar-cobalt oxide catalyst developed by Pennwalt is able to treat waste hypochlorite streams. The effectiveness of the catalyst rises with decreasing pH and increasing temperature. At 55 to 70/sup 0/C, it is possible to meet discharge requirements using a single pass through an upflow 40 cm deep catalyst bed. Solution pH will be reduced somewhat. The size of a Pennwalt unit for a given flow/concentration can be estimated. Based on bench experience, construction and operation of a full scale unit appears economically feasible. Operating problems with the system include attrition, catalyst conditioning and storage. Catalyst attrition is a major problem. In bench tests, catalyst loss from a tared laboratory column across several weeks was about 0.5 gram per gallon of concentrated hypochlorite processed or, using current Pennwalt costs of $50/lb catalyst, $55 per 1000 gal. Attrition may result from explosion of the catalyst by trapped oxygen. Several operating parameters can increase the rate of catalyst breakdown: high hypochlorite concentrations, increased temperature, and decreased pH. Once attrition begins, increased catalyst movement increases breakdown due to mechanical abrasion. Operations methods can be planned to decrease catalyst breakup by limiting the rate of hypochlorite degradation. Alternatively, a lower efficiency catalyst could be formulated. However, easy catalyst reloading should be part of any equipment design. During first use, a gradual increase in hypochlorite concentrations for several hours appears necessary. In re-uses of the bed after storage, at least a half hour of use is required for consistent minimal hypochlorite output. During startup periods, provision for effluent recycle is recommended. Wet storage of catalyst is recommended by previous investigators.

  6. [Catalyst research]. Final Report

    SciTech Connect

    Ian P Rothwell; David R McMillin

    2005-03-14

    Research results are the areas of catalyst precursor synthesis, catalyst fluxionality, catalyst stability, polymerization of {alpha}-olefins as well as the chemistry of Group IV and Group V metal centers with aryloxide and arylsulfide ligands.

  7. 40 CFR 75.71 - Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass emissions. (a) Coal-fired units. The owner or operator of a...

  8. 40 CFR 75.71 - Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass emissions. (a) Coal-fired units. The owner or operator of a...

  9. 40 CFR 75.71 - Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass emissions. (a) Coal-fired units. The owner or operator of a...

  10. 40 CFR 75.71 - Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass emissions. (a) Coal-fired units. The owner or operator of a...

  11. 40 CFR 75.71 - Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass emissions. (a) Coal-fired units. The owner or operator of a...

  12. 40 CFR 96.12 - Changing the NOX authorized account representative and the alternate NOX authorized account...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Changing the NOX authorized account representative and the alternate NOX authorized account representative; changes in the owners and operators. 96... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION...

  13. 40 CFR 96.12 - Changing the NOX authorized account representative and the alternate NOX authorized account...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Changing the NOX authorized account representative and the alternate NOX authorized account representative; changes in the owners and operators. 96... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION...

  14. 40 CFR 96.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 96.388 Section 96.388 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX...

  15. 40 CFR 96.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 96.388 Section 96.388 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX...

  16. 40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NOX Ozone Season opt-in unit's baseline NOX emissions rate (in lb/mmBtu) determined under § 97.384(d) and multiplied by 70 percent; or (ii) The most stringent State or Federal NOX emissions limitation... unit's baseline NOX emissions rate (in lb/mmBtu) determined under § 97.384(d); or (B) The...

  17. 40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... NOX Ozone Season opt-in unit's baseline NOX emissions rate (in lb/mmBtu) determined under § 97.384(d) and multiplied by 70 percent; or (ii) The most stringent State or Federal NOX emissions limitation... unit's baseline NOX emissions rate (in lb/mmBtu) determined under § 97.384(d); or (B) The...

  18. Preparation of Mn-Based Selective Catalytic Reduction Catalysts by Three Methods and Optimization of Process Conditions

    PubMed Central

    Xing, Yi; Hong, Chen; Cheng, Bei; Zhang, Kun

    2013-01-01

    Mn-based catalysts enable high NOx conversion in the selective catalytic reduction of NOx with NH3. Three catalyst-production methods, namely, co-precipitation, impregnation, and sol-gel, were used in this study to determine the optimum method and parameters. The maximum catalytic activity was found for the catalyst prepared by sol-gel with a 0.5 Mn/Ti ratio. The denitrification efficiency using this catalyst was >90%, which was higher than those of catalysts prepared by the two other methods. The critical temperature of catalytic activity was 353 K. The optimum manganese acetate concentration and weathering time were 0.10 mol and 24 h, respectively. The gas hourly space velocity and O2 concentration were determined to be 12000 h-1 and 3%, respectively. PMID:24023841

  19. Ammonia-Free NOx Control System

    SciTech Connect

    Zhen Fan; Song Wu; Richard G. Herman

    2004-06-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the April 1 to June 30, 2004 time period.

  20. Ammonia-Free NOx Control System

    SciTech Connect

    Song Wu; Zhen Fan; Andrew H. Seltzer

    2005-09-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the July 1 to September 30, 2005 time period.

  1. Ammonia-Free NOx Control System

    SciTech Connect

    S. Wu; Z. Fan; R. Herman

    2004-03-31

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the January 1 to March 31, 2004 time period.

  2. Ammonia-Free NOx Control System

    SciTech Connect

    Song Wu; Zhen Fan; Richard G. Herman

    2004-12-31

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the October 1 to December 30, 2004 time period.

  3. Ammonia-Free NOx Control System

    SciTech Connect

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2004-09-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the July 1 to September 30, 2004 time period.

  4. NOx Formation in a Premixed Syngas Flame

    SciTech Connect

    Yilmaz, S.L.; Givi, P.; Strakey, P.; Casleton, K.

    2006-11-01

    Reduction of NOx is a subject of significant current interest in stationary gas turbines. The objective of this study is to examine the effects of turbulence on non-thermal NOx formation in a syngas flame. This is archived by a detailed parametric study via PDF simulations of a partially stirred reactor and a dumped axisymmetric premixed flame. Several different detailed and reduced kinetics schemes are considered. The simulated results demonstrate the strong dependence of combustion process on turbulence. It is shown that the amount of NOx formation is significantly influenced by the inlet conditions. That is, the turbulence intensity can be tweaked to attain optimal ultra-low NOx emissions at a given temperature.

  5. Electrochemical NOx Sensor for Monitoring Diesel Emissions

    SciTech Connect

    Woo, L Y; Glass, R S

    2008-11-14

    % NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

  6. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    SciTech Connect

    Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

    2012-10-01

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

  7. Effect of Hydrocarbon Emissions From PCCI-Type Combustion on the Performance of Selective Catalytic Reduction Catalysts

    SciTech Connect

    Prikhodko, Vitaly Y; Pihl, Josh A; Lewis Sr, Samuel Arthur; Parks, II, James E

    2011-01-01

    Core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. Subsequently, the NOx reduction performance of the exposed catalysts was evaluated on a laboratory bench-reactor fed with simulated exhaust. The Fe-zeolite NOx conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to HC fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOx conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600 C. GC-MS analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NOx reduction performance trends.

  8. Effect of Hydrocarbon Emissions From PCCI-Type Combustion On The Performance of Selective Catalytic Reduction Catalysts

    SciTech Connect

    Prikhodko, Vitaly Y; Pihl, Josh A; Lewis Sr, Samuel Arthur; Parks, II, James E

    2011-01-01

    Core samples cut from full size commercial Fe-and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. Subsequently, the NOx reduction performance of the exposed catalysts was evaluated on a laboratory bench- reactor fed with simulated exhaust. The Fe-zeolite NOx conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to HC fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOx conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600 C. GC-MS analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NOx reduction performance trends.

  9. Simulation of catalytic oxidation and selective catalytic NOx reduction in lean-exhaust hybrid vehicles

    SciTech Connect

    Gao, Zhiming; Daw, C Stuart; Chakravarthy, Veerathu K

    2012-01-01

    We utilize physically-based models for diesel exhaust catalytic oxidation and urea-based selective catalytic NOx reduction to study their impact on drive cycle performance of hypothetical light-duty diesel powered hybrid vehicles. The models have been implemented as highly flexible SIMULINK block modules that can be used to study multiple engine-aftertreatment system configurations. The parameters of the NOx reduction model have been adjusted to reflect the characteristics of Cu-zeolite catalysts, which are of widespread current interest. We demonstrate application of these models using the Powertrain System Analysis Toolkit (PSAT) software for vehicle simulations, along with a previously published methodology that accounts for emissions and temperature transients in the engine exhaust. Our results illustrate the potential impact of DOC and SCR interactions for lean hybrid electric and plug-in hybrid electric vehicles.

  10. Correlating Engine NOx Emission with Biodiesel Composition

    NASA Astrophysics Data System (ADS)

    Jeyaseelan, Thangaraja; Mehta, Pramod Shankar

    2016-06-01

    Biodiesel composition comprising of saturated and unsaturated fatty acid methyl esters has a significant influence on its properties and hence the engine performance and emission characteristics. This paper proposes a comprehensive approach for composition-property-NOx emission analysis for biodiesel fuels and highlights the pathways responsible for such a relationship. Finally, a procedure and a predictor equation are developed for the assessment of biodiesel NOx emission from its composition details.

  11. Effect of metal ions doping (M = Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3

    NASA Astrophysics Data System (ADS)

    Xiong, Yan; Tang, Changjin; Dong, Lin

    2015-04-01

    Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China The abatement of nitrogen oxides (NOx) emission from exhaust gases of diesel and stationary sources is a significant challenge for economic and social development. Ceria-based solid solutions were synthesized and used as supports to prepare MnOx/Ce0.8Ti0.2O2 and MnOx/Ce0.8Sn0.2O2 catalysts (Mn/CeTi and Mn/CeSn) for low temperature selective catalytic reduction of NO by NH3 (NH3-SCR). The effects of Ti or Sn doping on the catalytic performance of MnOx/CeO2 catalyst were investigated. Experimental results show that doping of Ti or Sn increases the NO removal efficiency of MnOx/CeO2. The NO conversion of Mn/CeTi catalyst is more than 90 % at temperature window of 175 ~ 300 °C under a gas hour space velocity of 60,000 mL.g-1.h-1. Modified catalysts are also found to exhibit greatly improved resistance to sulfur-poisoning. NH3-TPD results suggest that NH3 desorption on the catalysts is observed over a wide temperature range, due to the variability of adsorbed NH3 species with different thermal stabilities. Doping of Ti and Sn into Mn/CeO2 greatly increased the NH3 adsorption ability of the composites which could promote the SCR reaction. Characterization results also indicate that doping of Ti or Sn brings about catalysts with higher BET surface area, enhanced oxygen storage capacity and increased surface acidity.

  12. BIFUNCTIONAL CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NO BY HYDROCARBONS

    SciTech Connect

    Neylon, M; Castagnola, M; Kropf, A.; Marshall, C

    2003-08-24

    Novel bifunctional catalysts combining two active phases, typically Cu-ZSM-5 and a modifier, were prepared and tested for the selective catalytic reduction of nitrogen oxides using propylene in order to overcome the hindering effects of water typically seen for single-phase catalysts such as Cu-ZSM-5. The catalysts were made by typical preparation techniques, but parameters could be varied to influence the catalyst. The physical characterization of the materials showed that the modification phase was added strictly to the external surface of the zeolite without hindering any internal surface area. Chemical characterization by temperature programmed reactions, DRIFTS and x-ray absorption spectroscopy indicated strong interaction between the two phases, primarily producing materials that exhibited lower reduction temperatures. Two improvements in NOx reduction activity (1000 ppm NO, 1000 ppm C3H6, 2% O2, 30,000 hr-1 GHSV) were seen for these catalysts compared with Cu- ZSM-5: a lower temperature of maximum NOx conversion activity (as low at 250 C), and an enhancement of activity when water was present in the system. The use of a second phase provides a way to further tune the properties of the catalyst in order to achieve mechanistic conditions necessary to maximize NOx remediation.

  13. Advancements in low NOx tangential firing systems

    SciTech Connect

    Hein, R. von; Maney, C.; Borio, R.

    1996-12-31

    The most cost effective method of reducing nitrogen oxide emissions when burning fossil fuels, such as coal, is through in-furnace NOx reduction processes. ABB Combustion Engineering, Inc. (ABB CE), through its ABB Power Plant Laboratories has been involved in the development of such low NOx pulverized coal firing systems for many years. This development effort is most recently demonstrated through ABB CE`s involvement with the U.S. Department of Energy`s (DOE) {open_quotes}Engineering Development of Advanced Coal Fired Low-Emission Boiler Systems{close_quotes} (LEBS) project. The goal of the DOE LEBS project is to use {open_quotes}near term{close_quotes} technologies to produce a commercially viable, low emissions boiler. This paper addresses one of the key technologies within this project, the NOx control subsystem. The foundation for the work undertaken at ABB CE is the TFS 2000{trademark} firing system, which is currently offered on a commercial basis. This system encompasses sub-stoichiometric combustion in the main firing zone for reduced NOx formation. Potential enhancements to this firing system focus on optimizing the introduction of the air and fuel within the primary windbox to provide additional horizontal and vertical staging. As is the case with all in-furnace NOx control processes, it is necessary to operate the system in a manner which does not decrease NOx at the expense of reduced combustion efficiency.

  14. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01

    Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this

  15. Preparation of highly active manganese oxides supported on functionalized MWNTs for low temperature NOx reduction with NH3

    NASA Astrophysics Data System (ADS)

    Pourkhalil, Mahnaz; Moghaddam, Abdolsamad Zarringhalam; Rashidi, Alimorad; Towfighi, Jafar; Mortazavi, Yadollah

    2013-08-01

    Manganese oxide catalysts (MnOx) supported on functionalized multi-walled carbon nanotubes (FMWNTs) for low temperature selective catalytic reduction (LTSCR) of nitrogen oxides (NOx) with NH3 in the presence of excess O2 were prepared by the incipient wetness impregnation method. These catalysts were characterized by N2 adsorption, Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and H2-temperature programmed reduction (H2-TPR) methods. The effects of reaction temperature, MnOx loading, calcination temperature and calcination time were investigated. The presence of surface nitrate species under moderate calcination conditions may play a favorable role in the LTSCR of NOx with NH3. Under the reaction conditions of 200 °C, 1 bar, NO = NH3 = 900 ppm, O2 = 5 vol%, GHSV = 30,000 h-1 and 12 wt% MnOx, NOx conversion and N2 selectivity were 97% and 99.5%, respectively. The SCR activity was reduced in the presence of 100 ppm SO2 and 2.5 vol% H2O from 97% to 92% within 6 h at 200 °C, however such an effect was shown to be reversible by exposing the catalyst to a helium flow for 2 h at 350 °C due to thermal decomposition of ammonium sulphate salts.

  16. High-Potential Electrocatalytic O2 Reduction with Nitroxyl / NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    SciTech Connect

    Gerken, James B.; Stahl, Shannon S.

    2015-07-15

    Efficient reduction of O2 to water is a central challenge in energy conversion and aerobic oxidation catalysis. In the present study, we investigate the electrochemical reduction of O2 with soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl), nor NOx species, such as sodium nitrite, are effective mediators of electrochemical O2 reduction. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction at electrochemical potentials of 0.19–0.33 V (vs. Fc/Fc+) in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The high potentials observed with this ORR system benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  17. Characteristics of NOx removal combining dielectric barrier discharge plasma with selective catalytic reduction by C2H5OH

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Quan; Chen, Wei; Guo, Qi-Pei; Li, Yi; Lv, Guo-Hua; Sun, Xiu-Ping; Zhang, Xian-Hui; Feng, Ke-Cheng; Yang, Si-Ze

    2009-07-01

    With the assistance of dielectric barrier discharge (DBD) plasma, selective catalytic reduction of NOx by ethanol over Ag/Al2O3 catalysts was studied. Experimental results show that NOx conversion was greatly enhanced due to the presence of DBD plasma at lower temperature. By varying the DBD voltages or power in 13 kHz frequency at different temperatures, NOx conversion was increased to 40.7% from 6.4% at 176 °C, even to 66.8% from 17.3% at 200 °C. NOx conversion could even be improved to 90% at temperature above 255 °C. It was proposed that nonthermal plasma generated by dielectric barrier discharge reactor was very effective for oxidizing NO to NO2 under excess O2 conditions, which possesses high reactivity with C2H5OH to yield CxHyNzO compound. By reacting with CxHyNzO compound and oxygen, NOx is converted to N2 at low temperatures.

  18. Reformer assisted lean NO.sub.x catalyst aftertreatment system and method

    DOEpatents

    Kalyanaraman, Mohan; Park, Paul W.; Ragle, Christie S.

    2010-06-29

    A method and apparatus for catalytically processing a gas stream passing therethrough to reduce the presence of NO.sub.x therein, wherein the apparatus includes a first catalyst composed of a silver-containing alumina that is adapted for catalytically processing the gas stream at a first temperature range, a second catalyst composed of a copper-containing zeolite located downstream from the first catalyst, wherein the second catalyst is adapted for catalytically processing the gas stream at a lower second temperature range relative to the first temperature range, a hydrocarbon compound for injection into the gas stream upstream of the first catalyst to provide a reductant, and a reformer for reforming a portion of the hydrocarbon compound into H.sub.2 and/or oxygenated hydrocarbon for injection into the gas stream upstream of the first catalyst. The second catalyst is adapted to facilitate the reaction of reducing NOx into N.sub.2, whereby the intermediates are produced via the first catalyst reacting with NOx and hydrocarbons.

  19. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect

    1995-09-01

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  20. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect

    Ray Chamberland; Aku Raino; David Towle

    2006-09-30

    For more than two decades, ALSTOM Power Inc. (ALSTOM) has developed a range of low cost, in-furnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes ALSTOM's internally developed TFS 2000 firing system, and various enhancements to it developed in concert with the U.S. Department of Energy (DOE). As of 2004, more than 200 units representing approximately 75,000 MWe of domestic coal fired capacity have been retrofit with ALSTOM low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coals to 0.10 lb/MMBtu for subbituminous coals, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing (retrofit) boiler equipment. If enacted, proposed Clear Skies legislation will, by 2008, require an average, effective, domestic NOx emissions rate of 0.16 lb/MMBtu, which number will be reduced to 0.13 lb/MMBtu by 2018. Such levels represent a 60% and 67% reduction, respectively, from the effective 2000 level of 0.40 lb/MMBtu. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. In light of these needs, ALSTOM, in cooperation with the DOE, is developing an enhanced combustion, low NOx pulverized coal burner which, when integrated with ALSTOM's state-of-the-art, globally air staged low NOx firing systems, will provide a means to achieve less than 0.15 lb/MMBtu NOx at less than 3/4 the cost of an SCR with low to no impact on balance of plant issues when firing a high volatile bituminous coal. Such coals can be more economic to fire than subbituminous or Powder River Basin (PRB) coals, but are more problematic from a NOx control standpoint as existing

  1. Amorphous molybdenum sulfides as hydrogen evolution catalysts.

    PubMed

    Morales-Guio, Carlos G; Hu, Xile

    2014-08-19

    Providing energy for a population projected to reach 9 billion people within the middle of this century is one of the most pressing societal issues. Burning fossil fuels at a rate and scale that satisfy our near-term demand will irreversibly damage the living environment. Among the various sources of alternative and CO2-emission-free energies, the sun is the only source that is capable of providing enough energy for the whole world. Sunlight energy, however, is intermittent and requires an efficient storage mechanism. Sunlight-driven water splitting to make hydrogen is widely considered as one of the most attractive methods for solar energy storage. Water splitting needs a hydrogen evolution catalyst to accelerate the rate of hydrogen production and to lower the energy loss in this process. Precious metals such as Pt are superior catalysts, but they are too expensive and scarce for large-scale applications. In this Account, we summarize our recent research on the preparation, characterization, and application of amorphous molybdenum sulfide catalysts for the hydrogen evolution reaction. The catalysts can be synthesized by electrochemical deposition under ambient conditions from readily available and inexpensive precursors. The catalytic activity is among the highest for nonprecious catalysts. For example, at a loading of 0.2 mg/cm(2), the optimal catalyst delivers a current density of 10 mA/cm(2) at an overpotential of 160 mV. The growth mechanism of the electrochemically deposited film catalysts was revealed by an electrochemical quartz microcrystal balance study. While different electrochemical deposition methods produce films with different initial compositions, the active catalysts are the same and are identified as a "MoS(2+x)" species. The activity of the film catalysts can be further promoted by divalent Fe, Co, and Ni ions, and the origins of the promotional effects have been probed. Highly active amorphous molybdenum sulfide particles can also be prepared

  2. Closeout final report on a demonstration test and evaluation of the Cannon Low-NOx Digester System

    SciTech Connect

    1995-04-01

    Cannon Boiler Works Inc. has been investigating a system for removing NOx from the exhaust gases of furnaces, gas turbines, chemical reactors, incinerators, and boilers. Computer simulations, bench-scale and pilot plant tests have proved that the system is capable of removing substantially all of the NOx from natural gas fired equipment exhaust streams. Originally designated as the Cannon NOx Digester, it has recently been renamed the Low Temperature Oxidation (LTO) System for NOx and SOx Reduction. The principal elements in the system are a fan, heat exchanger, oxidation chamber, spray chamber acting as a gas/liquid absorber, demister, an ozone generator, liquid oxygen storage or dry air supply system for the ozonator, chemical storage and metering system for the caustic neutralizer, and a data acquisition and control system. Most of the ozone is consumed in converting NOx to N{sub 2}O{sub 5} which hydrates to nitric acid which is then scrubbed out of the gas as it passes through the absorber. CO also reacts with ozone to form CO{sub 2} which is subsequently scrubbed out with NaOH. A demonstration, planned for the Alta Dena Dairy located near Los Angeles and in violation of California`s air quality regulations for natural gas fired boilers, was started, delayed due to boiler modifications, and will be continued shortly with new funding. This paper describes the LTO process and presents results from the initial demonstration.

  3. Reactive Oxygen Species Derived from NOX3 and NOX5 Drive Differentiation of Human Oligodendrocytes

    PubMed Central

    Accetta, Roberta; Damiano, Simona; Morano, Annalisa; Mondola, Paolo; Paternò, Roberto; Avvedimento, Enrico V.; Santillo, Mariarosaria

    2016-01-01

    Reactive oxygen species (ROS) are signaling molecules that mediate stress response, apoptosis, DNA damage, gene expression and differentiation. We report here that differentiation of oligodendrocytes (OLs), the myelin forming cells in the CNS, is driven by ROS. To dissect the OL differentiation pathway, we used the cell line MO3-13, which display the molecular and cellular features of OL precursors. These cells exposed 1–4 days to low levels of H2O2 or to the protein kinase C (PKC) activator, phorbol-12-Myristate-13-Acetate (PMA) increased the expression of specific OL differentiation markers: the specific nuclear factor Olig-2, and Myelin Basic Protein (MBP), which was processed and accumulated selectively in membranes. The induction of differentiation genes was associated with the activation of ERK1-2 and phosphorylation of the nuclear cAMP responsive element binding protein 1 (CREB). PKC mediates ROS-induced differentiation because PKC depletion or bis-indolyl-maleimide (BIM), a PKC inhibitor, reversed the induction of differentiation markers by H2O2. H2O2 and PMA increased the expression of membrane-bound NADPH oxidases, NOX3 and NOX5. Selective depletion of these proteins inhibited differentiation induced by PMA. Furthermore, NOX5 silencing down regulated NOX3 mRNA levels, suggesting that ROS produced by NOX5 up-regulate NOX3 expression. These data unravel an elaborate network of ROS-generating enzymes (NOX5 to NOX3) activated by PKC and necessary for differentiation of OLs. Furthermore, NOX3 and NOX5, as inducers of OL differentiation, represent novel targets for therapies of demyelinating diseases, including multiple sclerosis, associated with impairment of OL differentiation. PMID:27313511

  4. Reactive Oxygen Species Derived from NOX3 and NOX5 Drive Differentiation of Human Oligodendrocytes.

    PubMed

    Accetta, Roberta; Damiano, Simona; Morano, Annalisa; Mondola, Paolo; Paternò, Roberto; Avvedimento, Enrico V; Santillo, Mariarosaria

    2016-01-01

    Reactive oxygen species (ROS) are signaling molecules that mediate stress response, apoptosis, DNA damage, gene expression and differentiation. We report here that differentiation of oligodendrocytes (OLs), the myelin forming cells in the CNS, is driven by ROS. To dissect the OL differentiation pathway, we used the cell line MO3-13, which display the molecular and cellular features of OL precursors. These cells exposed 1-4 days to low levels of H2O2 or to the protein kinase C (PKC) activator, phorbol-12-Myristate-13-Acetate (PMA) increased the expression of specific OL differentiation markers: the specific nuclear factor Olig-2, and Myelin Basic Protein (MBP), which was processed and accumulated selectively in membranes. The induction of differentiation genes was associated with the activation of ERK1-2 and phosphorylation of the nuclear cAMP responsive element binding protein 1 (CREB). PKC mediates ROS-induced differentiation because PKC depletion or bis-indolyl-maleimide (BIM), a PKC inhibitor, reversed the induction of differentiation markers by H2O2. H2O2 and PMA increased the expression of membrane-bound NADPH oxidases, NOX3 and NOX5. Selective depletion of these proteins inhibited differentiation induced by PMA. Furthermore, NOX5 silencing down regulated NOX3 mRNA levels, suggesting that ROS produced by NOX5 up-regulate NOX3 expression. These data unravel an elaborate network of ROS-generating enzymes (NOX5 to NOX3) activated by PKC and necessary for differentiation of OLs. Furthermore, NOX3 and NOX5, as inducers of OL differentiation, represent novel targets for therapies of demyelinating diseases, including multiple sclerosis, associated with impairment of OL differentiation. PMID:27313511

  5. Electrochemical catalyst recovery method

    DOEpatents

    Silva, L.J.; Bray, L.A.

    1995-05-30

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  6. Electrochemical catalyst recovery method

    DOEpatents

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  7. Application of solid ash based catalysts in heterogeneous catalysis

    SciTech Connect

    Shaobin Wang

    2008-10-01

    Solid wastes, fly ash, and bottom ash are generated from coal and biomass combustion. Fly ash is mainly composed of various metal oxides and possesses higher thermal stability. Utilization of fly ash for other industrial applications provides a cost-effective and environmentally friendly way of recycling this solid waste, significantly reducing its environmental effects. On the one hand, due to the higher stability of its major component, aluminosilicates, fly ash could be employed as catalyst support by impregnation of other active components for various reactions. On the other hand, other chemical compounds in fly ash such as Fe{sub 2}O{sub 3} could also provide an active component making fly ash a catalyst for some reactions. In this paper, physicochemical properties of fly ash and its applications for heterogeneous catalysis as a catalyst support or catalyst in a variety of catalytic reactions were reviewed. Fly-ash-supported catalysts have shown good catalytic activities for H{sub 2} production, deSOx, deNOx, hydrocarbon oxidation, and hydrocracking, which are comparable to commercially used catalysts. As a catalyst itself, fly ash can also be effective for gas-phase oxidation of volatile organic compounds, aqueous-phase oxidation of organics, solid plastic pyrolysis, and solvent-free organic synthesis. 107 refs., 4 figs., 2 tabs.

  8. Long-Life Catalyst

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STC Catalysts, Inc. (SCi) manufactures a noble metal reducible oxide catalyst consisting primarily of platinum and tin dioxide deposited on a ceramic substrate. It is an ambient temperature oxidation catalyst that was developed primarily for Carbon Dioxide Lasers.The catalyst was developed by the NASA Langley Research Center for the Laser Atmospheric Wind Sounder Program (LAWS) which was intended to measure wind velocity on a global basis. There are a number of NASA owned patents covering various aspects of the catalyst.

  9. System and method for diagnosing EGR performance using NOx sensor

    DOEpatents

    Mazur, Christopher John

    2003-12-23

    A method and system for diagnosing a condition of an EGR valve used in an engine system. The EGR valve controls the portion exhaust gases produced by such engine system and fed back to an intake of such engine system. The engine system includes a NOx sensor for measuring NOx in such exhaust. The method includes: determining a time rate of change in NOx measured by the NOx sensor; comparing the determined time rate of change in the measured NOx with a predetermined expected time rate of change in measured NOx; and determining the condition of the EGR valve as a function of such comparison. The method also includes: determining from NOx measured by the NOx sensor and engine operating conditions indications of instances when samples of such measured NOx are greater than an expected maximum NOx level for such engine condition and less than an expected minimum NOx level for such engine condition; and determining the condition of the EGR valve as a function of a statistical analysis of such indications. The method includes determining whether the NOx sensor is faulty and wherein the EGR condition determining includes determining whether the NOx sensor is faulty.

  10. 40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this subpart... the emission limits for NOX....

  11. 40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this subpart... the emission limits for NOX....

  12. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic

  13. Low NOx heavy fuel combustor concept program

    NASA Technical Reports Server (NTRS)

    White, D. J.; Kubasco, A. J.

    1982-01-01

    Three simulated coal gas fuels based on hydrogen and carbon monoxide were tested during an experimental evaluation with a rich lean can combustor: these were a simulated Winkler gas, Lurgi gas and Blue Water gas. All three were simulated by mixing together the necessary pure component species, to levels typical of fuel gases produced from coal. The Lurgi gas was also evaluated with ammonia addition. Fuel burning in a rich lean mode was emphasized. Only the Blue Water gas, however, could be operated in such fashion. This showed that the expected NOx signature form could be obtained, although the absolute values of NOx were above the 75 ppm goals for most operating conditions. Lean combustion produced very low NOx well below 75 ppm with the Winkler and Lurgi gases. In addition, these low levels were not significantly impacted by changes in operating conditions.

  14. Lagrangian Hotspots of In-Use NOX Emissions from Transit Buses.

    PubMed

    Kotz, Andrew J; Kittelson, David B; Northrop, William F

    2016-06-01

    In-use, spatiotemporal NOX emissions were measured from a conventional powertrain transit bus and a series electric hybrid bus over gradients of route kinetic intensity and ambient temperature. This paper introduces a new method for identifying NOX emissions hotspots along a bus route using high fidelity Lagrangian vehicle data to explore spatial interactions that may influence emissions production. Our study shows that the studied transit buses emit higher than regulated emissions because on-route operation does not accurately represent the range of engine operation tested according to regulatory standards. Using the Lagrangian hotspot detection, we demonstrate that NOX hotspots occurred at bus stops, during cold starts, on inclines, and for accelerations. On the selected routes, bus stops resulted in 3.3 times the route averaged emissions factor in grams/km without significant dependence on bus type or climate. The buses also emitted 2.3 times the route averaged NOX emissions factor at the beginning of each route due to cold selective catalytic reduction aftertreatment temperature. The Lagrangian hotspot detection technique demonstrated here could be employed in future connected vehicles empowered by advances in computational power, data storage capability, and improved sensor technology to optimize emissions as a function of spatial location. PMID:27135811

  15. Mechanism of propene poisoning on Fe-ZSM-5 for selective catalytic reduction of NO(x) with ammonia.

    PubMed

    Li, Junhua; Zhu, Ronghai; Cheng, Yisun; Lambert, Christine K; Yang, Ralph T

    2010-03-01

    Application of Fe-zeolites for urea-SCR of NO(x) in diesel engine is limited by catalyst deactivation with hydrocarbons. In this work, we investigated the effect of propene on the activity of Fe-ZSM-5 for selective catalytic reduction of NO(x) with ammonia (NH(3)-SCR), and proposed a deactivation mechanism of Fe(3+) active site blockage by propene residue. The NO conversion decreased in the presence of propene at various temperatures, while the effect was not significant when NO was replaced by NO(2) in the feed, especially at low temperatures (<300 degrees C). The surface area and pore volume were decreased due to carbonaceous deposition. The site blockage was mainly on Fe(3+) sites on which NO was to be oxidized to NO(2). The activity for NO oxidation to NO(2) was significantly inhibited on a propene poisoned catalyst below 400 degrees C. The adsorption of NH(3) on the Bronsted acid sites to form NH(4)(+) was not hindered even on the propene poisoned catalyst, and the amount of absorbed NH(3) was still abundant and enough to react with NO(2) to generate N(2). The hydrocarbon oxygenates such as formate, acetate, and containing nitrogen organic compounds were observed on catalyst surface, however, no graphitic carbonaceous deposit was formed. PMID:20136123

  16. EMISSION CHARACTERIZATION OF STATIONARY NOX SOURCES: VOLUME II. DATA SUPPLEMENT

    EPA Science Inventory

    This is part of 10 special reports on the environmental assessment of stationary source NOx combustion modification technologies program. The program has two main objectives: (1) to identify the multimedia environmental impact of stationary combustion sources and NOx combustion m...

  17. Control of NOx Emissions from Stationary Combustion Sources

    EPA Science Inventory

    In general, NOx control technologies are categorized as being either primary control technologies or secondary control technologies. Primary control technologies reduce the formation of NOx in the primary combustion zone. In contrast, secondary control technologies destroy the NO...

  18. Improved low NOx firing systems for pulverized coal combustion

    SciTech Connect

    McCarthy, K.; Laux, S.; Grusha, J.; Rosin, T.; Hausman, G.L.

    1999-07-01

    More stringent emission limits or the addition of post combustion NOx control create the need for improvements of NOx emissions from pulverized coal boilers. Many boilers retrofitted with Low NOx technology during Phase 1 and Phase 2 of the CAAA fail or marginally meet their requirements. Technical solutions range from addition of overfire air and state-of-the-art low NOx burners to low cost additions of combustion enhancements. Regardless of the combustion NOx control method used, stoichiometries local to the burners must be maintained at the designed values at all times to provide high NOx performance at low efficiency loss due to unburned fuel. This paper describes Foster Wheeler's approach to NOx emission improvements for existing low NOx firing systems. The technology to measure air and coal flow individually for each burner and to control the parameters for optimum combustion are presented and discussed. Field experience shows the installation and advantages of the technology.

  19. ''KN'' series cracking catalysts

    SciTech Connect

    Klapstov, V.F.; Khlebrikova, M.A.; Maslova, A.A.; Nefedov, B.K.

    1986-09-01

    The basic directions in improving high-activity zeolitic cracking catalysts at the present stage are improvements in the resistance to attrition and increases in the bulk density of the catalysts, along with a changeover to relatively waste-free catalyst manufacturing technology. Catalysts of the ''KN'' series have been synthesized recently with improved quality characteristics. Low-waste technology is used in manufacturing them. Data are presented which show that the KN catalysts are better than the other Soviet catalysts. The starting materials and reagents in preparing the KN catalysts are technical alumina, rare-earth element nitrates, a natural component (such as clay conforming to specification TU-21-25-146-75), sodium hydroxide, and granulated sodium silicate. The preparation of the KN catalysts is described and no silica gel is used in manufacturing the KN series catalyst, in contrast to the RSG-6Ts catalyst. The use of KN series catalysts in place of KMTsR in catalytic cracking units will result in an increase in the naphtha yield by at least 20% by weight, as well as a reduction of the catalyst consumption by a factor of 2-3. A changeover to the commerical production of this catalyst will make it possible to reduce saline waste by a factor of 8-10 and reduce the catalyst cost by a factor of 1.5-2.

  20. NOx reduction methods and apparatuses

    DOEpatents

    Tonkyn, Russell G.; Barlow, Stephan E.; Balmer, M. Lou; Maupin, Gary D.

    2004-10-26

    A NO.sub.x reduction method includes treating a first gas containing NO.sub.x, producing a second gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the second gas to N.sub.2, and producing a third gas containing less NO.sub.x than the first gas, substantially all of the third gas NO.sub.x being NO. The method also includes treating the third gas, producing a fourth gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the fourth gas to N.sub.2, and producing a fifth gas containing less NO.sub.x than the third gas, substantially all of the fifth gas NO.sub.x being NO. Treating the first and/or third gas can include treatment with a plasma. Reducing a portion of the NO.sub.2 in the second and/or fourth gas can include reducing with a catalyst. The method can further include controlling energy consumption of the plasmas independent of each other.

  1. 40 CFR 97.41 - Timing requirements for NOX allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Timing requirements for NOX allowance... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Allowance Allocations § 97.41 Timing requirements for NOX allowance allocations. (a) The NOX allowance...

  2. 40 CFR 97.41 - Timing requirements for NOX allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Timing requirements for NOX allowance... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Allowance Allocations § 97.41 Timing requirements for NOX allowance allocations. (a) The NOX allowance...

  3. Simultaneous suppression of PCDD/F and NO(x) during municipal solid waste incineration.

    PubMed

    Lin, Xiaoqing; Yan, Mi; Dai, Ahui; Zhan, Mingxiu; Fu, Jianying; Li, Xiaodong; Chen, Tong; Lu, Shengyong; Buekens, Alfons; Yan, Jianhua

    2015-05-01

    Thiourea was tested as a dioxins inhibitor in a full-scale municipal solid waste incinerator with high capacity (34 t h(-1)). The suppressant, featuring a high S- and N-content, was converted into liquor and then injected (35 kg h(-1)) into the furnace (850 °C) through the inlets already used for Selective Non-Catalytic Reduction (SNCR) of flue gas NOx. The first results show that thiourea reduces the dioxins in flue gas by 55.8 wt.%, those in fly ash by 90.3 wt.% and the total dioxins emission factor by 91.0 wt.%. The concentration of PCDD/Fs was 0.08 ng TEQ Nm(-3), below the national standard of 0.1 ng TEQ Nm(-3). The weight average chlorination degree of dioxins decreases slightly after adding the inhibitor, indicating that it suppresses both the formation and the chlorination of dioxins. Analysis of fly ash by scanning electron microscope (SEM) suggests that the particle size becomes larger after adding the inhibitor. Further analysis using an energy dispersive spectrometer (EDS) reveals that the sulphur content in fly ash rises, but the chlorine content declines when adding thiourea. These results suggest that poisoning the metal catalyst and blocking the chlorination are probably responsible for suppression. NOx reduction attains 42.6 wt.%. These tests are paving the way for further industrial application and assist in controlling the future emissions of dioxins and NOx from MSWI. PMID:25720846

  4. Possible Catalytic Effects of Ice Particles on the Production of NOx by Lightning Discharges

    NASA Technical Reports Server (NTRS)

    2010-01-01

    One mechanism by which NO(x) is produced in the atmosphere is heating in lightning discharge channels. Since most viable proposed electrification mechanisms involve ice crystals, it is reasonable to assume that lightning discharge channels frequently pass through fields of ice particles of various kinds. We address the question of whether ice crystals may serve as catalysts for the production of NO(x) by lightning discharges. If so, and if the effect is large, it would need to be taken into account in estimates of global NO(x) production by lightning. In this study, we make a series of plausible assumptions about the temperature and concentration of reactant species in the environment of discharges and we postulate a mechanism by which ice crystals are able to adsorb nitrogen atoms. We then compare production rates between uncatalyzed and catalytic reactions at 2000 K, 3000 K, and 4000 K. Catalyzed NO production rates are greater at 2000 K, whereas uncatalyzed production occurs most rapidly at 4000 K. 2010

  5. System and method for determining an ammonia generation rate in a three-way catalyst

    DOEpatents

    Sun, Min; Perry, Kevin L; Kim, Chang H

    2014-12-30

    A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.

  6. 40 CFR 75.70 - NOX mass emissions provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false NOX mass emissions provisions. 75.70 Section 75.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING NOX Mass Emissions Provisions § 75.70 NOX mass emissions provisions. (a) Applicability. The owner or...

  7. MULTISTAGED BURNER DESIGN FOR IN-FURNACE NOX CONTROL

    EPA Science Inventory

    The paper gives results of an evaluation of a multistage combustion modification design, combining two advanced NOx control technologies, on a pilot-scale (0.9 MW) package boiler simulator for in-furnace NOx control of high nitrogen fuel combustion applications. A low NOx precomb...

  8. 40 CFR 91.319 - NOX converter check.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false NOX converter check. 91.319 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.319 NOX... of the NO concentration). The NOX analyzer must be in the NO mode so that the span gas does not...

  9. 40 CFR 90.319 - NOX converter check.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false NOX converter check. 90.319 Section 90... Provisions § 90.319 NOX converter check. (a) The efficiency of the converter used for the conversion of NO2... percent of the NO concentration). The NOX analyzer must be in the NO mode so that the span gas does...

  10. 40 CFR 91.319 - NOX converter check.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX converter check. 91.319 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.319 NOX... of the NO concentration). The NOX analyzer must be in the NO mode so that the span gas does not...

  11. 40 CFR 89.317 - NOX converter check.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX converter check. 89.317 Section 89... Provisions § 89.317 NOX converter check. (a) Prior to its introduction into service, and monthly thereafter... of the NOX generator to the sample inlet of the oxides of nitrogen analyzer which has been set to...

  12. 40 CFR 89.317 - NOX converter check.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false NOX converter check. 89.317 Section 89... Provisions § 89.317 NOX converter check. (a) Prior to its introduction into service, and monthly thereafter... of the NOX generator to the sample inlet of the oxides of nitrogen analyzer which has been set to...

  13. 40 CFR 90.319 - NOX converter check.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX converter check. 90.319 Section 90... Provisions § 90.319 NOX converter check. (a) The efficiency of the converter used for the conversion of NO2... percent of the NO concentration). The NOX analyzer must be in the NO mode so that the span gas does...

  14. 40 CFR 86.327-79 - Quench checks; NOX analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Quench checks; NOX analyzer. 86.327-79... Quench checks; NOX analyzer. (a) Perform the reaction chamber quench check for each model of high vacuum... capillary, and if used, dilution capillary. (c) Quench check as follows: (1) Calibrate the NOX analyzer...

  15. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false NOX Allowance Tracking System accounts. 96.50 Section 96.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature...

  16. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false NOX Allowance Tracking System accounts. 96.50 Section 96.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature...

  17. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false NOX Allowance Tracking System accounts. 96.50 Section 96.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature...

  18. 40 CFR 96.42 - NOX allowance allocations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 2003, 2004, and 2005, or 98 percent thereafter, of the tons of NOX emissions in the State trading... percent thereafter, of the number of tons of NOX emissions in the State trading program budget apportioned... thereafter, of the number of tons of NOX emissions in the State trading program budget apportioned...

  19. 40 CFR 96.42 - NOX allowance allocations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 2003, 2004, and 2005, or 98 percent thereafter, of the tons of NOX emissions in the State trading... percent thereafter, of the number of tons of NOX emissions in the State trading program budget apportioned... thereafter, of the number of tons of NOX emissions in the State trading program budget apportioned...

  20. 40 CFR 91.319 - NOX converter check.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.319 NOX... 40 Protection of Environment 21 2012-07-01 2012-07-01 false NOX converter check. 91.319 Section 91... of the NO concentration). The NOX analyzer must be in the NO mode so that the span gas does not...

  1. Activity and hydrothermal stability of CeO2-ZrO2-WO3 for the selective catalytic reduction of NOx with NH3.

    PubMed

    Song, Zhongxian; Ning, Ping; Zhang, Qiulin; Li, Hao; Zhang, Jinhui; Wang, Yancai; Liu, Xin; Huang, Zhenzhen

    2016-04-01

    A series of CeO2-ZrO2-WO3 (CZW) catalysts prepared by a hydrothermal synthesis method showed excellent catalytic activity for selective catalytic reduction (SCR) of NO with NH3 over a wide temperature of 150-550°C. The effect of hydrothermal treatment of CZW catalysts on SCR activity was investigated in the presence of 10% H2O. The fresh catalyst showed above 90% NOx conversion at 201-459°C, which is applicable to diesel exhaust NOx purification (200-440°C). The SCR activity results indicated that hydrothermal aging decreased the SCR activity of CZW at low temperatures (below 300°C), while the activity was notably enhanced at high temperature (above 450°C). The aged CZW catalyst (hydrothermal aging at 700°C for 8hr) showed almost 80% NOx conversion at 229-550°C, while the V2O5-WO3/TiO2 catalyst presented above 80% NOx conversion at 308-370°C. The effect of structural changes, acidity, and redox properties of CZW on the SCR activity was investigated. The results indicated that the excellent hydrothermal stability of CZW was mainly due to the CeO2-ZrO2 solid solution, amorphous WO3 phase and optimal acidity. In addition, the formation of WO3 clusters increased in size as the hydrothermal aging temperature increased, resulting in the collapse of structure, which could further affect the acidity and redox properties. PMID:27090708

  2. Energy Storage.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  3. Ammonia and NO/NOx measurement for DE-NOx applications

    SciTech Connect

    Kita, D.

    1996-10-01

    A number of critical environmental goals may be met by controlling nitrogen oxide (NOx) emissions from combustion sources. These goals include responding to 1990 Clean Air Act Amendment requirements, reduction of human exposure to harmful concentrations of nitric oxide (NO) and nitrogen dioxide (NO{sub 2}), acid deposition control, and urban smog abatement. Technologies utilizing either heterogeneous or homogeneous reactions of NOx with ammonia (NH{sub 3}) are considered major control options. Crucial to the use of such technologies is the continuous measurement of NO/NOx and NH{sub 3} in order to access (and control) performance criteria such as NOx conversion efficiency and NH{sub 3} emissions (NH{sub 3} SLIP) .This paper describes a continuous emission sonitoring system for NO, NO{sub 2}, and NH{sub 3} based upon NO chemiluminescence as well as presenting preliminary field data.

  4. THE NOX SYSTEM IN NUCLEAR WASTE

    EPA Science Inventory

    A collaborative program between ANL and PNNL is proposed to study the radiation, and radiation induced, chemistry of the NOx system in waste simulants. The study will develop a computer model providing predictive capabilities for future EM operations including the characterizatio...

  5. NOx Emission Reduction by Oscillating Combustion

    SciTech Connect

    2005-09-01

    This project focuses on a new technology that reduces NOx emissions while increasing furnace efficiency for both air- and oxygen-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace.

  6. Low NOx heavy fuel combustor concept program

    NASA Technical Reports Server (NTRS)

    White, D. J.; Lecren, R. T.; Batakis, A. P.

    1981-01-01

    A total of twelve low NOx combustor configurations, embodying three different combustion concepts, were designed and fabricated as modular units. These configurations were evaluated experimentally for exhaust emission levels and for mechanical integrity. Emissions data were obtained in depth on two of the configurations.

  7. 40 CFR 96.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 96.388 Section 96.388 Protection of Environment... SO 2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.388...

  8. 40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND...

  9. 40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND...

  10. Kinetics of NOx in the upper troposphere: new constraints on satellite remote sensing of lightning NOx

    NASA Astrophysics Data System (ADS)

    Nault, B.; Laughner, J.; Wooldridge, P. J.; Cohen, R. C.

    2015-12-01

    Satellite retrievals of NO2, O3, and HNO3 have been used in conjunction with chemical transport models, such as GEOS-Chem, to constrain the amount of NOx emitted annually from lightning by comparing the model to both observed NO2 column densities and to upper tropospheric (UT) concentrations of O3 and HNO3. Recent experiments have provided evidence for two changes to the kinetics of NOx in the UT. First, CH3O2NO2 has been shown to be an important temporary sink for NOx, suppressing NOx in the UT. Second, the rate coefficient for the reaction of OH with NO2 at the temperatures and pressures of the UT is slower than in current recommendations. We investigate the impact of updated kinetics that are consistent with in situ observations on model predictions of NO2, O3, and HNO3 concentrations and columns and on the inferred constraints on lightning NOx emissions. Changes to NO2, O3, and HNO3 concentrations resulting from the new kinetics are above the level of uncertainty in daily satellite observations. We hypothesize that the new kinetics will require an increase in lightning NOx emissions to match models to observations, and are working to confirm and quantify this increase.

  11. NOx Sensor for Direct Injection Emission Control

    SciTech Connect

    Betteridge, William J

    2006-02-28

    The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness and durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the

  12. Lewis Base Catalysts 6: Carbene Catalysts

    PubMed Central

    Moore, Jennifer L.

    2013-01-01

    The use of N-heterocyclic carbenes as catalysts for organic transformations has received increased attention in the past 10 years. A discussion of catalyst development and nucleophilic characteristics precedes a description of recent advancements and new reactions using N-heterocyclic carbenes in catalysis. PMID:21494949

  13. Low Temperature Catalyst for NH3 Removal

    NASA Technical Reports Server (NTRS)

    Monje, Oscar; Melendez, Orlando

    2013-01-01

    Air revitalization technologies maintain a safe atmosphere inside spacecraft by the removal of C02, ammonia (NH3), and trace contaminants. NH3 onboard the International Space Station (ISS) is produced by crew metabolism, payloads, or during an accidental release of thermal control refrigerant. Currently, the ISS relies on removing NH3 via humidity condensate and the crew wears hooded respirators during emergencies. A different approach to cabin NH3 removal is to use selective catalytic oxidation (SCO), which builds on thermal catalytic oxidation concepts that could be incorporated into the existing TCCS process equipment architecture on ISS. A low temperature platinum-based catalyst (LTP-Catalyst) developed at KSC was used for converting NH3 to H20 and N2 gas by SCO. The challenge of implementing SCO is to reduce formation of undesirable byproducts like NOx (N20 and NO). Gas mixture analysis was conducted using FTIR spectrometry in the Regenerable VOC Control System (RVCS) Testbed. The RVCS was modified by adding a 66 L semi-sealed chamber, and a custom NH3 generator. The effect of temperature on NH3 removal using the LTP-Catalyst was examined. A suitable temperature was found where NH3 removal did not produce toxic NO, (NO, N02) and N20 formation was reduced.

  14. Commercial introduction of the Advanced NOxTECH system

    SciTech Connect

    Sudduth, B.C.

    1997-12-31

    NOxTECH is BACT for diesel electric generators. Emissions of NO{sub x} are reduced 95% or more with substantial concurrent reductions in CO, particulates, and ROG`s. No engine modifications or other exhaust aftertreatments can remove all criteria pollutants as effectively as NOxTECH. The NOxTECH system reliably maintains NH{sub 3} slip below 2 ppm. Unlike other emissions controls, NOxTECH does not generate hazardous by-products. The Advanced NOxTECH system reduces the size, weight, and cost for BACT emissions reductions. Based on the operation of a 150 kW prototype, NOxTECH, Inc. is quoting commercial units for diesel electric generators. Advanced NOxTECH equipment costs about half as much as SCR systems, and NO{sub x} reduction can exceed 95% with guarantees for emissions compliance.

  15. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    SciTech Connect

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and

  16. Simultaneous removal of NOx and SO2 from flue gas using combined Na2SO3 assisted electrochemical reduction and direct electrochemical reduction.

    PubMed

    Guo, Qingbin; He, Yi; Sun, Tonghua; Wang, Yalin; Jia, Jinping

    2014-07-15

    A method combining Na2SO3 assisted electrochemical reduction and direct electrochemical reduction using Fe(II)(EDTA) solution was proposed to simultaneously remove NOx and SO2 from flue gas. Activated carbon was used as catalyst to accelerate the process. This new system features (a) direct conversion of NOx and SO2 to harmless N2 and SO4(2-); (b) fast regeneration of Fe(II)(EDTA); (c) minimum use of chemical reagents; and (d) recovery of the reduction by-product (Na2SO4). Fe(II)(EDTA) solution was continuously recycled and reused during entire process, and no harmful waste was generated. Approximately 99% NOx and 98% SO2 were removed under the optimal condition. The stability test showed that the system operation was reliable. PMID:24910913

  17. Oxidation catalysts comprising metal exchanged hexaaluminate wherein the metal is Sr, Pd, La, and/or Mn

    SciTech Connect

    Wickham, David; Cook, Ronald

    2008-10-28

    The present invention provides metal-exchanged hexaaluminate catalysts that exhibit good catalytic activity and/or stability at high temperatures for extended periods with retention of activity as combustion catalysts, and more generally as oxidation catalysts, that make them eminently suitable for use in methane combustion, particularly for use in natural gas fired gas turbines. The hexaaluminate catalysts of this invention are of particular interest for methane combustion processes for minimization of the generation of undesired levels (less than about 10 ppm) of NOx species. Metal exchanged hexaaluminate oxidation catalysts are also useful for oxidation of volatile organic compounds (VOC), particularly hydrocarbons. Metal exchanged hexaaluminate oxidation catalysts are further useful for partial oxidation, particularly at high temperatures, of reduced species, particularly hydrocarbons (alkanes and alkenes).

  18. The poisoning effect of potassium ions doped on MnOx/TiO2 catalysts for low-temperature selective catalytic reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Liangjing; Cui, Suping; Guo, Hongxia; Ma, Xiaoyu; Luo, Xiaogen

    2015-11-01

    The poisoning of alkali metal on MnOx/TiO2 catalysts used for selective catalytic reduction (SCR) of NOx by NH3 was investigated. KNO3, KCl and K2SO4 were doped on MnOx/TiO2 catalysts by sol-gel method, respectively. The SCR activity of each catalyst was measured for the removal of NOx with NH3 in the temperature range 90-330 °C. The experimental results showed that catalyst with KNO3 have a stronger deactivation effect than other catalysts. The properties of the catalysts were characterized by XRD, BET, SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS analyses. The characterized results indicated that KNO3, KCl and K2SO4 caused the similar decrease of specific surface area and pore volume, but the quantity of acid sites for KNO3-MnOx/TiO2 catalyst reduced sharply. The main reason for catalyst deactivation is attributed to two aspects: one was physical influences for the decrease of surface area and pore volume, another was chemical influences that the K+ ions decomposed by KNO3 neutralized Brønsted acid sites of catalyst and reduced their reducibility. The chemical influence played a leading role on the deactivation of catalysts.

  19. Investigation into the effects of vermiculite on NOx reduction and additives on sooting and exhaust infrared signature from a gas-turbine combustor. Master's thesis

    SciTech Connect

    Engel, K.R.

    1990-09-01

    An experimental investigation was conducted to determine the feasibility of using catalytic reduction of NOX emissions from a typical jet engine combustor in the test cell environment. A modified T-63 combustor in combination with an instrumented 21 foot augmentation tube containing a vermiculite catalyst was used. Several methods for containing the vermiculite were attempted. Both vermiculite and vermiculite which had been coated with thiourea were used. Up to 19% reduction in NOX concentrations was obtained using the vermiculite coated with thiourea, however the pressure loss across the catalyst bed was measured to be 36 in. H2O. The techniques used proved ineffective and unacceptable for gas turbine engine test cell applications. Tests were conducted using both Wynn's 15/590 and Catane TM (ferrocene) fuel supplements in order to determine their effectiveness for soot reduction and whether or not the exhaust plume could be changed.

  20. System for reactivating catalysts

    SciTech Connect

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  1. Correlation between Cu ion migration behaviour and deNOx activity in Cu-SSZ-13 for the standard NH3-SCR reaction.

    PubMed

    Beale, A M; Lezcano-Gonzalez, I; Slawinksi, W A; Wragg, D S

    2016-05-01

    Here we present the results of a synchrotron-based in situ, time-resolved PXRD study during activation of two Cu-SSZ-13 catalysts under O2/He and one during standard NH3-SCR reaction conditions to obtain insight into the behaviour of Cu ions. The results obtained indicate that deNOx activity is inexorably linked with occupancy of the zeolite 6r. PMID:27075517

  2. Catalyst patterning for nanowire devices

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2004-01-01

    Nanowire devices may be provided that are based on carbon nanotubes or single-crystal semiconductor nanowires. The nanowire devices may be formed on a substrate. Catalyst sites may be formed on the substrate. The catalyst sites may be formed using lithography, thin metal layers that form individual catalyst sites when heated, collapsible porous catalyst-filled microscopic spheres, microscopic spheres that serve as masks for catalyst deposition, electrochemical deposition techniques, and catalyst inks. Nanowires may be grown from the catalyst sites.

  3. Protein Scaffolding for Small Molecule Catalysts

    SciTech Connect

    Baker, David

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  4. NOx emissions from a Central California dairy

    NASA Astrophysics Data System (ADS)

    Hasson, Alam S.; Ogunjemiyo, Segun O.; Trabue, Steven; Ashkan, Shawn; Scoggin, Kenwood; Steele, Julie; Olea, Catalina; Middala, Srikar; Vu, Kennedy; Scruggs, Austen; Addala, Laxmi R.; Nana, Lucien

    2013-05-01

    Concentrations of NOx (NO + NO2) were monitored downwind from a Central California dairy facility during 2011 and 2012. NOx concentrations at the dairy were significantly higher than the background levels during August 2011 primarily due to the presence of elevated NO, but were indistinguishable from background concentrations during January and April 2012. A Gaussian plume model (AERMOD) and a Lagrangian back trajectory model (Wind Trax) were used to estimate the flux of NO from the dairy during August 2011 with the assumption that emissions were primarily from animal feed. NO emissions from silage were also directly measured from feed to provide additional insight into the sources. Isolation flux chamber measurements imply an NO flux from the feed of about 1.3 × 10-3 g m-2 h-1, but these relatively low fluxes are inconsistent with the elevated NO concentrations observed during August 2011. This implies that either the flux chamber method grossly underestimates the true NO emissions from feed, or that most of the ambient NO measured at the dairy is from other sources. Emissions from farm machinery may account for the NO concentrations observed. Animal feed thus appears to be a small contributor to NOx emissions within Central California.

  5. Integrated diesel engine NOx reduction technology development

    SciTech Connect

    Hoelzer, J.; Zhu, J.; Savonen, C.L.; Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J.

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  6. Textured catalysts and methods of making textured catalysts

    DOEpatents

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2007-03-06

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  7. 40 CFR 97.412 - TR NOX Annual allowance allocations to new units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false TR NOX Annual allowance allocations to...) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS TR NOX Annual Trading Program § 97.412 TR NOX Annual allowance allocations to new units. (a) For...

  8. 40 CFR 97.422 - Submission of TR NOX Annual allowance transfers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Submission of TR NOX Annual allowance... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS TR NOX Annual Trading Program § 97.422 Submission of TR NOX Annual allowance transfers. (a) An authorized...

  9. 40 CFR 97.423 - Recordation of TR NOX Annual allowance transfers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Recordation of TR NOX Annual allowance... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS TR NOX Annual Trading Program § 97.423 Recordation of TR NOX Annual allowance transfers. (a) Within 5 business...

  10. 40 CFR 97.423 - Recordation of TR NOX Annual allowance transfers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Recordation of TR NOX Annual allowance... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS TR NOX Annual Trading Program § 97.423 Recordation of TR NOX Annual allowance transfers. (a) Within 5 business...

  11. 40 CFR 97.422 - Submission of TR NOX Annual allowance transfers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Submission of TR NOX Annual allowance... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS TR NOX Annual Trading Program § 97.422 Submission of TR NOX Annual allowance transfers. (a) An authorized...

  12. 40 CFR 97.423 - Recordation of TR NOX Annual allowance transfers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Recordation of TR NOX Annual allowance... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS TR NOX Annual Trading Program § 97.423 Recordation of TR NOX Annual allowance transfers. (a) Within 5 business...

  13. 40 CFR 97.412 - TR NOX Annual allowance allocations to new units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false TR NOX Annual allowance allocations to...) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS TR NOX Annual Trading Program § 97.412 TR NOX Annual allowance allocations to new units. (a) For...

  14. 40 CFR 97.412 - TR NOX Annual allowance allocations to new units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false TR NOX Annual allowance allocations to...) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS TR NOX Annual Trading Program § 97.412 TR NOX Annual allowance allocations to new units. (a) For...

  15. 40 CFR 97.422 - Submission of TR NOX Annual allowance transfers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Submission of TR NOX Annual allowance... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS TR NOX Annual Trading Program § 97.422 Submission of TR NOX Annual allowance transfers. (a) An authorized...

  16. 40 CFR 97.20 - General NOX Budget Trading Program permit requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false General NOX Budget Trading Program... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.20 General NOX Budget Trading Program permit requirements. (a) For each NOX Budget...

  17. 40 CFR 96.24 - Effective date of initial NOX Budget permit.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Effective date of initial NOX Budget... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.24 Effective date of initial NOX Budget permit. The initial NOX Budget...

  18. 40 CFR 96.85 - NOX Budget opt-in permit contents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false NOX Budget opt-in permit contents. 96... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO 2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Individual Unit Opt-ins § 96.85 NOX Budget opt-in permit contents. (a) Each NOX Budget opt-in...

  19. 40 CFR 97.20 - General NOX Budget Trading Program permit requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false General NOX Budget Trading Program... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.20 General NOX Budget Trading Program permit requirements. (a) For each NOX Budget...

  20. 40 CFR 96.24 - Effective date of initial NOX Budget permit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Effective date of initial NOX Budget... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO 2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.24 Effective date of initial NOX Budget permit. The initial NOX Budget...

  1. 40 CFR 97.21 - Submission of NOX Budget permit applications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Submission of NOX Budget permit... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.21 Submission of NOX Budget permit applications. (a) Duty to apply. The NOX authorized...

  2. 40 CFR 96.85 - NOX Budget opt-in permit contents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false NOX Budget opt-in permit contents. 96... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Individual Unit Opt-ins § 96.85 NOX Budget opt-in permit contents. (a) Each NOX Budget opt-in...

  3. 40 CFR 97.85 - NOX Budget opt-in permit contents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false NOX Budget opt-in permit contents. 97... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Individual Unit Opt-ins § 97.85 NOX Budget opt-in permit contents. (a) Each NOX Budget opt-in permit will contain all...

  4. 40 CFR 97.21 - Submission of NOX Budget permit applications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Submission of NOX Budget permit... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.21 Submission of NOX Budget permit applications. (a) Duty to apply. The NOX authorized...

  5. 40 CFR 97.14 - Objections concerning NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Objections concerning NOX authorized... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Authorized Account Representative for NOX Budget Sources § 97.14 Objections concerning...

  6. 40 CFR 97.10 - Authorization and responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NOX authorized account representative. 97.10 Section 97.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Authorized Account Representative for NOX Budget Sources §...

  7. 40 CFR 96.154 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Compliance with CAIR NOX emissions... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Allowance Tracking System § 96.154 Compliance with CAIR NOX emissions...

  8. 40 CFR 97.20 - General NOX Budget Trading Program permit requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false General NOX Budget Trading Program... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.20 General NOX Budget Trading Program permit requirements. (a) For each NOX Budget...

  9. 40 CFR 96.24 - Effective date of initial NOX Budget permit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Effective date of initial NOX Budget... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.24 Effective date of initial NOX Budget permit. The initial NOX Budget...

  10. 40 CFR 96.153 - Recordation of CAIR NOX allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Recordation of CAIR NOX allowance... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Allowance Tracking System § 96.153 Recordation of CAIR NOX allowance...

  11. 40 CFR 97.153 - Recordation of CAIR NOX allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Recordation of CAIR NOX allowance... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Allowance Tracking System § 97.153 Recordation of CAIR NOX allowance allocations. (a) By September 30,...

  12. 40 CFR 96.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from CAIR NOX Ozone Season... (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.386 Withdrawal from CAIR NOX...

  13. 40 CFR 96.160 - Submission of CAIR NOX allowance transfers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Submission of CAIR NOX allowance... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Allowance Transfers § 96.160 Submission of CAIR NOX allowance transfers. A...

  14. 40 CFR 96.10 - Authorization and responsibilities of the NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the NOX authorized account representative. 96.10 Section 96.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Authorized Account Representative for NOX...

  15. 40 CFR 97.360 - Submission of CAIR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Submission of CAIR NOX Ozone Season... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Allowance Transfers § 97.360 Submission of CAIR NOX Ozone Season...

  16. 40 CFR 97.154 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Compliance with CAIR NOX emissions... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Allowance Tracking System § 97.154 Compliance with CAIR NOX emissions limitation. (a) Allowance...

  17. 40 CFR 96.354 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Compliance with CAIR NOX emissions... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.354 Compliance with CAIR NOX...

  18. 40 CFR 96.342 - CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CAIR NOX Ozone Season allowance... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.342 CAIR NOX Ozone Season...

  19. 40 CFR 97.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Recordation of CAIR NOX Ozone Season... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Allowance Tracking System § 97.353 Recordation of CAIR NOX Ozone Season...

  20. 40 CFR 97.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from CAIR NOX Ozone Season... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.386 Withdrawal from CAIR NOX Ozone Season Trading...

  1. 40 CFR 96.85 - NOX Budget opt-in permit contents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Budget opt-in permit contents. 96... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Individual Unit Opt-ins § 96.85 NOX Budget opt-in permit contents. (a) Each NOX Budget opt-in...

  2. 40 CFR 96.14 - Objections concerning the NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Objections concerning the NOX... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Authorized Account Representative for NOX Budget Sources §...

  3. 40 CFR 96.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Withdrawal from CAIR NOX Ozone Season... (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.386 Withdrawal from CAIR NOX...

  4. 40 CFR 96.10 - Authorization and responsibilities of the NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the NOX authorized account representative. 96.10 Section 96.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Authorized Account Representative for NOX...

  5. 40 CFR 96.24 - Effective date of initial NOX Budget permit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Effective date of initial NOX Budget... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.24 Effective date of initial NOX Budget permit. The initial NOX Budget...

  6. 40 CFR 97.85 - NOX Budget opt-in permit contents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Budget opt-in permit contents. 97... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Individual Unit Opt-ins. § 97.85 NOX Budget opt-in permit contents. (a) Each NOX Budget opt-in permit will contain all...

  7. 40 CFR 97.10 - Authorization and responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NOX authorized account representative. 97.10 Section 97.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Authorized Account Representative for NOX Budget Sources §...

  8. 40 CFR 96.153 - Recordation of CAIR NOX allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Recordation of CAIR NOX allowance... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Allowance Tracking System § 96.153 Recordation of CAIR NOX allowance...

  9. 40 CFR 97.20 - General NOX Budget Trading Program permit requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false General NOX Budget Trading Program... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.20 General NOX Budget Trading Program permit requirements. (a) For each NOX Budget...

  10. 40 CFR 97.160 - Submission of CAIR NOX allowance transfers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Submission of CAIR NOX allowance... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Allowance Transfers § 97.160 Submission of CAIR NOX allowance transfers. A CAIR authorized...

  11. 40 CFR 97.342 - CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CAIR NOX Ozone Season allowance... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.342 CAIR NOX Ozone Season allowance allocations. (a)(1)...

  12. 40 CFR 96.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Withdrawal from CAIR NOX Annual... (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Opt-in Units § 96.186 Withdrawal from CAIR NOX Annual...

  13. 40 CFR 97.360 - Submission of CAIR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Submission of CAIR NOX Ozone Season... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Allowance Transfers § 97.360 Submission of CAIR NOX Ozone Season...

  14. 40 CFR 96.14 - Objections concerning the NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Objections concerning the NOX... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Authorized Account Representative for NOX Budget Sources §...

  15. 40 CFR 97.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from CAIR NOX Annual... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Opt-In Units § 97.186 Withdrawal from CAIR NOX Annual Trading Program. Except as...

  16. 40 CFR 97.354 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Compliance with CAIR NOX emissions... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Allowance Tracking System § 97.354 Compliance with CAIR NOX emissions limitation....

  17. 40 CFR 97.21 - Submission of NOX Budget permit applications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Submission of NOX Budget permit... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.21 Submission of NOX Budget permit applications. (a) Duty to apply. The NOX authorized...

  18. 40 CFR 97.160 - Submission of CAIR NOX allowance transfers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Submission of CAIR NOX allowance... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Allowance Transfers § 97.160 Submission of CAIR NOX allowance transfers. A CAIR authorized...

  19. 40 CFR 96.354 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Compliance with CAIR NOX emissions... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.354 Compliance with CAIR NOX...

  20. 40 CFR 97.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Withdrawal from CAIR NOX Annual... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Opt-In Units § 97.186 Withdrawal from CAIR NOX Annual Trading Program. Except as...

  1. 40 CFR 97.14 - Objections concerning NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Objections concerning NOX authorized... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Authorized Account Representative for NOX Budget Sources § 97.14 Objections concerning...

  2. 40 CFR 97.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Recordation of CAIR NOX Ozone Season... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Allowance Tracking System § 97.353 Recordation of CAIR NOX Ozone Season...

  3. 40 CFR 96.160 - Submission of CAIR NOX allowance transfers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Submission of CAIR NOX allowance... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Allowance Transfers § 96.160 Submission of CAIR NOX allowance transfers. A...

  4. 40 CFR 97.154 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Compliance with CAIR NOX emissions... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Allowance Tracking System § 97.154 Compliance with CAIR NOX emissions limitation. (a) Allowance...

  5. 40 CFR 97.354 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Compliance with CAIR NOX emissions... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Allowance Tracking System § 97.354 Compliance with CAIR NOX emissions limitation....

  6. 40 CFR 97.21 - Submission of NOX Budget permit applications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Submission of NOX Budget permit... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.21 Submission of NOX Budget permit applications. (a) Duty to apply. The NOX authorized...

  7. 40 CFR 97.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Withdrawal from CAIR NOX Ozone Season... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.386 Withdrawal from CAIR NOX Ozone Season Trading...

  8. 40 CFR 97.141 - Timing requirements for CAIR NOX allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Timing requirements for CAIR NOX... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Allowance Allocations § 97.141 Timing requirements for CAIR NOX allowance allocations. (a)...

  9. 40 CFR 96.85 - NOX Budget opt-in permit contents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Budget opt-in permit contents. 96... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Individual Unit Opt-ins § 96.85 NOX Budget opt-in permit contents. (a) Each NOX Budget opt-in...

  10. 40 CFR 97.153 - Recordation of CAIR NOX allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Recordation of CAIR NOX allowance... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Allowance Tracking System § 97.153 Recordation of CAIR NOX allowance allocations. (a) By September 30,...

  11. 40 CFR 96.41 - Timing requirements for NOX allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Timing requirements for NOX allowance... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Allocations § 96.41 Timing requirements for NOX allowance allocations. (a)...

  12. 40 CFR 96.41 - Timing requirements for NOX allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Timing requirements for NOX allowance... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Allocations § 96.41 Timing requirements for NOX allowance allocations. (a)...

  13. 40 CFR 96.154 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Compliance with CAIR NOX emissions... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Allowance Tracking System § 96.154 Compliance with CAIR NOX emissions...

  14. 40 CFR 97.85 - NOX Budget opt-in permit contents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Budget opt-in permit contents. 97... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Individual Unit Opt-ins. § 97.85 NOX Budget opt-in permit contents. (a) Each NOX Budget opt-in permit will contain all...

  15. 40 CFR 96.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from CAIR NOX Annual... (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Opt-in Units § 96.186 Withdrawal from CAIR NOX Annual...

  16. 40 CFR 97.141 - Timing requirements for CAIR NOX allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Timing requirements for CAIR NOX... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Allowance Allocations § 97.141 Timing requirements for CAIR NOX allowance allocations. (a)...

  17. 40 CFR 97.354 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Compliance with CAIR NOX emissions... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Allowance Tracking System § 97.354 Compliance with CAIR NOX emissions limitation....

  18. 40 CFR 96.354 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Compliance with CAIR NOX emissions... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.354 Compliance with CAIR NOX...

  19. 40 CFR 97.354 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Compliance with CAIR NOX emissions... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Allowance Tracking System § 97.354 Compliance with CAIR NOX emissions limitation....

  20. 40 CFR 96.354 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Compliance with CAIR NOX emissions... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.354 Compliance with CAIR NOX...

  1. Full-Scale Demonstration Low-NOx Cell Burner retrofit

    SciTech Connect

    Not Available

    1991-05-24

    The overall objective of the Full-Scale Low-NOx Cell (LNC) Burner Retrofit project is to demonstrate the cost-effective reduction of NOx generated by a large, base-loaded (70% capacity factor or greater), coal-fired utility boiler. Specific objectives include: at least 50% NOx reduction over standard two-nozzle cell burners, without degradation of boiler performance or life; acquire and evaluate emission and boiler performance data before and after the retrofit to determine NOx reduction and impact on overall boiler performance; and demonstrate that the LNC burner retrofits are the most cost-effective alternative to emerging, or commercially- available NOx control technology for units equipped with cell burners. The focus of this demonstration is to determine maximum NOx reduction capabilities without adversely impacting plant performance, operation and maintenance.

  2. Catalytic effects of minerals on NOx emission from coal combustion

    SciTech Connect

    Yao, M.Y.; Che, D.F.

    2007-07-01

    The catalytic effects of inherent mineral matters on NOx emissions from coal combustion have been investigated by a thermo-gravimetric analyzer (TGA) equipped with a gas analyzer. The effect of demineralization and the individual effect of Na, K, Ca, Mg, and Fe on the formation of NOx are studied as well as the combined catalytic effects of Ca + Na and Ca + Ti. Demineralization causes more Fuel-N to retain in the char, and reduction of NOx mostly. But the mechanistic effect on NOx formation varies from coal to coal. Ca and Mg promote NOx emission. Na, K, Fe suppress NOx formation to different extents. The effect of transition element Fe is the most obvious. The combination of Ca + Na and Ca + Ti can realize the simultaneous control of sulfur dioxide and nitrogen oxides emissions.

  3. Methods of making textured catalysts

    DOEpatents

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  4. The selective catalytic reduction of NOx over Ag/Al2O3 with isobutanol as the reductant

    DOE PAGESBeta

    Brookshear, Daniel William; Pihl, Josh A.; Toops, Todd J.; West, Brian H.; Prikhodko, Vitaly Y.

    2016-02-13

    Here, this study investigates the potential of isobutanol (iBuOH) as a reductant for the selective catalytic reduction (SCR) of NOx over 2 wt% Ag/Al2O3 between 150 and 550 °C and gas hourly space velocities (GHSV) between 10,000 and 35,000 h-1. The feed gas consists of 500 ppm NO, 5% H2O, 10% O2, and 375-1500 ppm iBuOH (C1:N ratios of 3-12); additionally, blends of 24 and 48% iBuOH in gasoline are evaluated. Over 90% NOx conversion is achieved between 300 and 400 C using pure iBuOH, including a 40% peak selectivity towards NH3 that could be utilized in a dual HC/NH3more » SCR configuration. The iBuOH/gasoline blends are only able to achieve greater than 90% NOx conversion when operated at a GHSV of 10,000 h-1 and employing a C1:N ratio of 12. Iso-butyraldehyde and NO2 appear to function as intermediates in the iBuOH-SCR mechanism, which mirrors the mechanism observed for EtOH-SCR. In general, the performance of iBuOH in the SCR of NOx over a Ag/Al2O3 catalyst is comparable with that of EtOH, although EtOH/gasoline blends display higher NOx reduction than iBuOH/gasoline blends. The key parameter in employing alcohols in SCR appears to be the C-OH:N ratio rather than the C1:N ratio.« less

  5. Catalyst Alloys Processing

    NASA Astrophysics Data System (ADS)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  6. New Insights on NOX Enzymes in the Central Nervous System

    PubMed Central

    Nayernia, Zeynab; Jaquet, Vincent

    2014-01-01

    Abstract Significance: There is increasing evidence that the generation of reactive oxygen species (ROS) in the central nervous system (CNS) involves the NOX family of nicotinamide adenine dinucleotide phosphate oxidases. Controlled ROS generation appears necessary for optimal functioning of the CNS through fine-tuning of redox-sensitive signaling pathways, while overshooting ROS generation will lead to oxidative stress and CNS disease. Recent Advances: NOX enzymes are not only restricted to microglia (i.e. brain phagocytes) but also expressed in neurons, astrocytes, and the neurovascular system. NOX enzymes are involved in CNS development, neural stem cell biology, and the function of mature neurons. While NOX2 appears to be a major source of pathological oxidative stress in the CNS, other NOX isoforms might also be of importance, for example, NOX4 in stroke. Globally speaking, there is now convincing evidence for a role of NOX enzymes in various neurodegenerative diseases, cerebrovascular diseases, and psychosis-related disorders. Critical Issues: The relative importance of specific ROS sources (e.g., NOX enzymes vs. mitochondria; NOX2 vs. NOX4) in different pathological processes needs further investigation. The absence of specific inhibitors limits the possibility to investigate specific therapeutic strategies. The uncritical use of non-specific inhibitors (e.g., apocynin, diphenylene iodonium) and poorly validated antibodies may lead to misleading conclusions. Future Directions: Physiological and pathophysiological studies with cell-type-specific knock-out mice will be necessary to delineate the precise functions of NOX enzymes and their implications in pathomechanisms. The development of CNS-permeant, specific NOX inhibitors will be necessary to advance toward therapeutic applications. Antioxid. Redox Signal. 20: 2815–2837. PMID:24206089

  7. Catalyst enhances Claus operations

    SciTech Connect

    Dupin, T.; Voizin, R.

    1982-11-01

    An improved Claus catalyst offers superior activity that emphasizes hydrolysis of CS/sub 2/ in the first converter. The catalyst is insensitive to oxygen action at concentrations generally found in Claus gas feeds. It also has an excellent resistance to hydrothermal shocks that may occur during shutdown of the sulfur line. Collectively, these properties make this catalyst the most active formula now available for optimum Claus yields and COS/CS/sub 2/ hydrolysis conversion.

  8. Reversible hydrogen storage materials

    DOEpatents

    Ritter, James A.; Wang, Tao; Ebner, Armin D.; Holland, Charles E.

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  9. Suppression of new particle formation from monoterpene oxidation by NOx

    NASA Astrophysics Data System (ADS)

    Wildt, J.; Mentel, T. F.; Kiendler-Scharr, A.; Hoffmann, T.; Andres, S.; Ehn, M.; Kleist, E.; Müsgen, P.; Rohrer, F.; Rudich, Y.; Springer, M.; Tillmann, R.; Wahner, A.

    2014-03-01

    The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory setup. At high NOx conditions ([BVOC] / [NOx] < 7, [NOx] > 23 ppb) new particle formation was suppressed. Instead, photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. When [NO] was reduced back to levels below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF to be slowed by orders of magnitude compared to analogous experiments at low NOx conditions ([NOx] ~300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF. This suggests that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent approaching -2. This exponent indicated that the overall peroxy radical concentration must have been similar when NPF occurred. Thus, permutation reactions of first-generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy-radical-like intermediates limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was substantially less sensitive to NOx concentrations. If at all, yields were reduced by about an order of magnitude only at very high NOx concentrations.

  10. Suppression of new particle formation from monoterpene oxidation by NOx

    NASA Astrophysics Data System (ADS)

    Wildt, J.; Mentel, T. F.; Kiendler-Scharr, A.; Hoffmann, T.; Andres, S.; Ehn, M.; Kleist, E.; Müsgen, P.; Rohrer, F.; Rudich, Y.; Springer, M.; Tillmann, R.; Wahner, A.

    2013-10-01

    The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory set up. At high NOx conditions (BVOC/NOx < 7, NOx > 23 ppb) no new particles were formed. Instead photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. As soon as [NO] was reduced to below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF orders of magnitude slower than in analogous experiments at low NOx conditions (NOx ~ 300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF suggesting that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent of approximately -2. This exponent indicated that the overall peroxy radical concentration must have been the same whenever NPF appeared. Thus permutation reactions of first generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy radical like molecules limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was less sensitive to NOx concentrations, if at all. Only at very high NOx concentrations yields were reduced by about an order of magnitude.

  11. Low NO(x) potential of gas turbine engines

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.

    1990-01-01

    The purpose is to correlate emission levels of gas turbine engines. The predictions of NO(x) emissions are based on a review of the literature of previous low NO(x) combustor programs and analytical chemical kinetic calculations. Concepts included in the literature review consisted of lean-premixed-prevaporized (LPP), rich burn/quick quench/lean burn (RQL), and direct injection. The NO(x) emissions were found to be an exponential function of adiabatic combustion temperature over a wide range of inlet temperatures, pressures and (lean) fuel-air ratios. A simple correlation of NO(x) formation with time was not found. The LPP and direct injection (using gaseous fuels) concepts have the lowest NO(x) emissions of the three concepts. The RQL data has higher values of NO(x) than the LPP concept, probably due to the stoichiometric temperatures and NO(x) production that occur during the quench step. Improvements in the quick quench step could reduce the NO(x) emissions to the LPP levels. The low NO(x) potential of LPP is offset by the operational disadvantages of its narrow stability limits and its susceptibility to autoignition/flashback. The Rich-Burn/Quick-Quench/Lean-Burn (RQL) and the direct injection concepts have the advantage of wider stability limits comparable to conventional combustors.

  12. Cost effective NOx reduction for tangentially fired boilers

    SciTech Connect

    Hager, M.; Camody, G.; Lewis, R.D.; Maney, C.Q.; Towle, D.P.

    1998-07-01

    Deregulation of the utility industry as well as lower capacity factors on many boilers regulated under Title IV Phase II has mandated ever-tighter vigilance on the costs of NOx compliance. ABB C-E services has responded to this customer need with the development of an in-windbox low NOx firing system. The LNCFS{trademark}-P2 NOx reduction system recently developed by ABB C-E Services represents a significant advancement in coal combustion technology for tangentially fired units. This system was developed to offer the advantages of significant NOx emissions reduction through simple nozzle tip replacements, thereby minimizing costs.

  13. DeNOx characteristics using two staged radical injection techniques

    SciTech Connect

    Kambara, S.; Kumano, Y.; Yukimura, K.

    2009-06-15

    Ammonia radical injection using pulsed dielectric barrier discharge (DBD) plasma has been investigated as a means to control NOx emissions from combustors. When DBD plasma-generated radicals (NH{sub 2}, NH, N, and H) are injected into a flue gas containing nitrogen oxide (NOx), NOx is removed efficiently by chain reactions in the gas phase. However, because the percentage of NOx removal gradually decreases with increasing oxygen concentrations beyond 1% O{sub 2}, improvement of the DeNOx (removal of nitrogen oxide) characteristics at high O{sub 2} concentrations was necessary for commercial combustors. A two-staged injection of the DeNOx agent was developed based on the detailed mechanisms of electron impact reactions and gas phase reactions. A concentration of H radical was observed to play an important role in NOx formation and removal. The effects of applied voltages, oxygen concentrations, and reaction temperatures on NOx removal were investigated under normal and staged injection. NOx removal was improved by approximately 20% using staged injection at O{sub 2} concentrations of 1 to 4%.

  14. METHOD OF PURIFYING CATALYSTS

    DOEpatents

    Joris, G.G.

    1958-09-01

    It has been fuund that the presence of chlorine as an impurity adversely affects the performance of finely divided platinum catalysts such as are used in the isotopic exchange process for the production of beavy water. This chlorine impurity may be removed from these catalysts by treating the catalyst at an elevated temperature with dry hydrogen and then with wet hydrogen, having a hydrogen-water vapor volume of about 8: 1. This alternate treatment by dry hydrogen and wet hydrogen is continued until the chlorine is largely removed from the catalyst.

  15. Polyolefin catalyst manufacturing

    SciTech Connect

    Inkrott, K.E.; Scinta, J.; Smith, P.D. )

    1989-10-16

    Statistical process control (SPC) procedures are absolutely essential for making new-generation polyolefin catalysts with the consistent high quality required by modern polyolefin processes. Stringent quality assurance is critical to the production of today's high-performance catalysts. Research and development efforts during the last 20 years have led to major technological improvements in the polyolefin industry. New generation catalysts, which once were laboratory curiosities, must now be produced commercially on a regular and consistent basis to meet the increasing requirements of the plastics manufacturing industry. To illustrate the more stringent requirements for producing the new generation polyolefin catalysts, the authors compare the relatively simple, first-generation polypropylene catalyst production requirements with some of the basic requirements of manufacturing a more complex new-generation catalyst, such as Catalyst Resources Inc.'s LYNX 900. The principles which hold true for the new-generation catalysts such as LYNX 900 are shown to apply equally to the scale-up of other advanced technology polyolefin catalysts.

  16. Liquefaction with microencapsulated catalysts

    DOEpatents

    Weller, Sol W.

    1985-01-01

    A method of dispersing a liquefaction catalyst within coal or other carbonaceous solids involves providing a suspension in oil of microcapsules containing the catalyst. An aqueous solution of a catalytic metal salt is emulsified in the water-immiscible oil and the resulting minute droplets microencapsulated in polymeric shells by interfacial polycondensation. The catalyst is subsequently blended and dispersed throughout the powdered carbonaceous material to be liquefied. At liquefaction temperatures the polymeric microcapsules are destroyed and the catalyst converted to minute crystallites in intimate contact with the carbonaceous material.

  17. Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst on Lean Gasoline Engine

    SciTech Connect

    Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J; Thomas, John F; Parks, II, James E; West, Brian H

    2015-01-01

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.

  18. A combinatorial chemistry method for fast screening of perovskite-based NO oxidation catalyst.

    PubMed

    Yoon, Dal Young; Lim, Eunho; Kim, Young Jin; Cho, Byong K; Nam, In-Sik; Choung, Jin Woo; Yoo, Seungbeom

    2014-11-10

    A fast parallel screening method based on combinatorial chemistry (combichem) has been developed and applied in the screening tests of perovskite-based oxide (PBO) catalysts for NO oxidation to hit a promising PBO formulation for the oxidation of NO to NO2. This new method involves three consecutive steps: oxidation of NO to NO2 over a PBO catalyst, adsorption of NOx onto the PBO and K2O/Al2O3, and colorimetric assay of the NOx adsorbed thereon. The combichem experimental data have been used for determining the oxidation activity of NO over PBO catalysts as well as three critical parameters, such as the adsorption efficiency of K2O/Al2O3 for NO2 (α) and NO (β), and the time-average fraction of NO included in the NOx feed stream (ξ). The results demonstrated that the amounts of NO2 produced over PBO catalysts by the combichem method under transient conditions correlate well with those from a conventional packed-bed reactor under steady-state conditions. Among the PBO formulations examined, La0.5Ag0.5MnO3 has been identified as the best chemical formulation for oxidation of NO to NO2 by the present combichem method and also confirmed by the conventional packed-bed reactor tests. The superior efficiency of the combichem method for high-throughput catalyst screening test validated in this study is particularly suitable for saving the time and resources required in developing a new formulation of PBO catalyst whose chemical composition may have an enormous number of possible variations. PMID:25321326

  19. A novel four-way combining catalysts for simultaneous removal of exhaust pollutants from diesel engine.

    PubMed

    Liu, Jian; Xu, Jie; Zhao, Zhen; Duan, Aijun; Jiang, Guiyuan; Jing, Yanni

    2010-01-01

    A novel four-way combining catalysts containing double layers was applied to simultaneously remove four kinds of exhaust pollutants (NOx, CO, HC and PM) emitted from diesel engine. The four-way catalysts were characterized using scanning electron microscope (SEM) and Ultraviolet visible diffuse reflectance spectroscopy (UV-Vis DRS). Their catalytic performances were evaluated by temperature-programmed reaction technology. The double layer catalysts could effectively remove the four main pollutants. The highest catalytic activity was given by the two-layered catalysts of La0.6K0.4CoO3/Al2O3 and W/HZSM-5. Under the simulated exhaust gases conditions, the peak temperature of the soot combustion was 421 degrees C, the maximal conversion of NO to N2 was 74%, the temperature of the HC total conversion was 357 degrees C, and the maximum conversion ratio of CO was 99%. PMID:21175003

  20. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation

    PubMed Central

    Lan, Tian; Kisseleva, Tatiana; Brenner, David A.

    2015-01-01

    Reactive oxygen species (ROS) produced by nicotinamide adenine dinucleotide phosphate oxidase (NOX) play a key role in liver injury and fibrosis. Previous studies demonstrated that GKT137831, a dual NOX1/4 inhibitor, attenuated liver fibrosis in mice as well as pro-fibrotic genes in hepatic stellate cells (HSCs) as well as hepatocyte apoptosis. The effect of NOX1 and NOX4 deficiency in liver fibrosis is unclear, and has never been directly compared. HSCs are the primary myofibroblasts in the pathogenesis of liver fibrosis. Therefore, we aimed to determine the role of NOX1 and NOX4 in liver fibrosis, and investigated whether NOX1 and NOX4 signaling mediates liver fibrosis by regulating HSC activation. Mice were treated with carbon tetrachloride (CCl4) to induce liver fibrosis. Deficiency of either NOX1 or NOX4 attenuates liver injury, inflammation, and fibrosis after CCl4 compared to wild-type mice. NOX1 or NOX4 deficiency reduced lipid peroxidation and ROS production in mice with liver fibrosis. NOX1 and NOX4 deficiency are approximately equally effective in preventing liver injury in the mice. The NOX1/4 dual inhibitor GKT137831 suppressed ROS production as well as inflammatory and proliferative genes induced by lipopolysaccharide (LPS), platelet-derived growth factor (PDGF), or sonic hedgehog (Shh) in primary mouse HSCs. Furthermore, the mRNAs of proliferative and pro-fibrotic genes were downregulated in NOX1 and NOX4 knock-out activated HSCs (cultured on plastic for 5 days). Finally, NOX1 and NOX4 protein levels were increased in human livers with cirrhosis compared with normal controls. Thus, NOX1 and NOX4 signaling mediates the pathogenesis of liver fibrosis, including the direct activation of HSC. PMID:26222337