Sample records for ns otto hahn

  1. Otto Hahn: Responsibility and Repression

    NASA Astrophysics Data System (ADS)

    Walker, Mark

    2006-05-01

    The role that Otto Hahn (1879 1968) played in the discovery of nuclear fission and whether Lise Meitner (1878 1968) should have shared the Nobel Prize for that discovery have been subjects of earlier studies, but there is more to the story. I examine what Hahn and the scientists in his Kaiser Wilhelm Institute for Chemistry in Berlin-Dahlem did during the Third Reich, in particular, the significant contributions they made to the German uranium project during the Second World War. I then use this as a basis for judging Hahn’s postwar apologia as the last president of the Kaiser Wilhelm Society and first president of its successor, the Max Planck Society.

  2. The Politics of Forgetting: Otto Hahn and the German Nuclear-Fission Project in World War II

    NASA Astrophysics Data System (ADS)

    Sime, Ruth Lewin

    2012-03-01

    As the co-discoverer of nuclear fission and director of the Kaiser Wilhelm Institute for Chemistry, Otto Hahn (1879-1968) took part in Germany`s nuclear-fission project throughout the Second World War. I outline Hahn's efforts to mobilize his institute for military-related research; his inclusion in high-level scientific structures of the military and the state; and his institute's research programs in neutron physics, isotope separation, transuranium elements, and fission products, all of potential military importance for a bomb or a reactor and almost all of it secret. These activities are contrasted with Hahn's deliberate misrepresentations after the war, when he claimed that his wartime work had been nothing but "purely scientific" fundamental research that was openly published and of no military relevance.

  3. The Politics of Memory: Otto Hahn and the Third Reich

    NASA Astrophysics Data System (ADS)

    Sime, Ruth Lewin

    2006-03-01

    As President of the Kaiser Wilhelm Society and its successor, the Max Planck Society, from 1946 until 1960, Otto Hahn (1879 1968) sought to portray science under the Third Reich as a purely intellectual endeavor untainted by National Socialism. I outline Hahn’s activities from 1933 into the postwar years, focusing on the contrast between his personal stance during the National Socialist period, when he distinguished himself as an upright non-Nazi, and his postwar attitude, which was characterized by suppression and denial of Germany’s recent past. Particular examples include Hahn’s efforts to help Jewish friends; his testimony for colleagues involved in denazification and on trial in Nuremberg; his postwar relationships with émigré colleagues, including Lise Meitner; and his misrepresentation of his wartime work in the Kaiser Wilhelm Institute for Chemistry.

  4. An Early Conceptual Design And Feasibility Analysis Of A Nuclear-Powered Cargo Vessel

    DTIC Science & Technology

    2009-05-08

    13 FIGURE 6: NS MUTSU ...NS MUTSU .........................................................15 TABLE 4: PERTINENT NAVAL ARCHITECTURAL DATA DATA FOR NS SEVMORPUT...was built in Japan. Similar to the NS Otto Hahn, the NS Mutsu was to be a research vessel as well as a cargo vessel. However, the NS Mutsu was

  5. The Dispute over Nuclear Fission.

    ERIC Educational Resources Information Center

    Sime, Ruth Lewin

    1996-01-01

    Reveals the stormy relationship and ongoing controversy surrounding the scientific collaboration of Otto Hahn and Lise Meitner. Discusses the controversial 1944 Nobel Prize award to Hahn (ignoring the equal contribution of Meitner), the reaction of the scientific community, and the post-war years of both Meitner and Hahn. (MJP)

  6. Climbing for credit: applying Kurt Hahn's principles for promoting holistic lifestyles.

    PubMed

    Brand, James; Kruczek, Nick; Shan, Kevin; Haraf, Paul; Simmons, Daniel E

    2012-01-01

    Climbing is a sport, a hobby, and metaphor for life's lessons. A climbing course for undergraduate students was designed on the basis of the principles of rock climber and educator Kurt Hahn, who transferred lessons learned from physical activity into lessons for life and whose philosophy underpins the Outward Bound program. Hahn's 10 principles for sound mind-body-spirit are described.

  7. An Inconvenient History: the Nuclear-Fission Display in the Deutsches Museum

    NASA Astrophysics Data System (ADS)

    Sime, Ruth Lewin

    2010-06-01

    One of the longstanding attractions of the Deutsches Museum in Munich, Germany, has been its display of the apparatus associated with the discovery of nuclear fission. Although the discovery involved three scientists, Otto Hahn, Lise Meitner, and Fritz Strassmann, the fission display was designated for over 30 years as the Arbeitstisch von Otto Hahn (Otto Hahn’s Worktable), with Strassmann mentioned peripherally and Meitner not at all, and it was not until the early 1990s that the display was revised to include all three codiscoverers more equitably. I examine the creation of the fission display in the context of the postwar German culture of silencing the National Socialist past, and trace the eventual transformation of the display into a contemporary exhibit that more accurately represents the scientific history of the fission discovery.

  8. An Exactly Solvable Spin Chain Related to Hahn Polynomials

    NASA Astrophysics Data System (ADS)

    Stoilova, Neli I.; van der Jeugt, Joris

    2011-03-01

    We study a linear spin chain which was originally introduced by Shi et al. [Phys. Rev. A 71 (2005), 032309, 5 pages], for which the coupling strength contains a parameter α and depends on the parity of the chain site. Extending the model by a second parameter β, it is shown that the single fermion eigenstates of the Hamiltonian can be computed in explicit form. The components of these eigenvectors turn out to be Hahn polynomials with parameters (α,β) and (α+1,β-1). The construction of the eigenvectors relies on two new difference equations for Hahn polynomials. The explicit knowledge of the eigenstates leads to a closed form expression for the correlation function of the spin chain. We also discuss some aspects of a q-extension of this model.

  9. Otto engine beyond its standard quantum limit.

    PubMed

    Leggio, Bruno; Antezza, Mauro

    2016-02-01

    We propose a quantum Otto cycle based on the properties of a two-level system in a realistic out-of-thermal-equilibrium electromagnetic field acting as its sole reservoir. This steady configuration is produced without the need of active control over the state of the environment, which is a noncoherent thermal radiation, sustained only by external heat supplied to macroscopic objects. Remarkably, even for nonideal finite-time transformations, it largely over-performs the standard ideal Otto cycle and asymptotically achieves unit efficiency at finite power.

  10. Decline of Hesperia ottoe (Lepidoptera: Hesperiidae) in Northern Tallgrass Prairie Preserves.

    PubMed

    Swengel, Ann B; Swengel, Scott R

    2013-11-20

    We counted butterflies on transect surveys during Hesperia ottoe flight period in 1988-2011 at tallgrass prairie preserves in four states (Illinois, Iowa, Minnesota, Wisconsin), divided into units cross-referenced to vegetation type and management history. H. ottoe occurred only in dry and sand prairie types, and was significantly more abundant in undegraded than semi-degraded prairie, and in discontinuous sod (with numerous unvegetated areas due to bare sand and/or rock outcrops) than in continuous sod. This skipper was significantly more abundant in small sites compared to medium and large sites, even when the analysis was limited to undegraded prairie analyzed separately by sod type. H. ottoe was significantly under-represented in year-burn 0 (the first growing season after fire) compared to an expected distribution proportional to survey effort. However, H. ottoe was also over-represented in fire-managed units compared to non-fire-managed units. However, by far most units and sites were in fire management and most populations declined to subdetection during this study. Peak abundance post-fire occurred in a later year-burn in discontinuous sod and was much higher than in continuous sod. We also analyze H. ottoe status and trend in midwestern prairie preserves by compiling a dataset of our and others' butterfly surveys from 1974 to 2011. Only 1/9 sites with continuous sod had detectable H. ottoe in recent year(s). In discontinuous sod, 2/6 did, with two sites lacking data for the last few years. The number of years H. ottoe was still detectable after preservation and the number of years to consistent non-detection were both significantly higher in discontinuous than continuous sod. Both measures of population persistence averaged over twice as long in discontinuous than continuous sod, and correlated negatively with prairie size. The year when consistent non-detection began varied over several decades among sites. Despite the currently urgent need to identify

  11. The Unruh quantum Otto engine

    NASA Astrophysics Data System (ADS)

    Arias, Enrique; de Oliveira, Thiago R.; Sarandy, M. S.

    2018-02-01

    We introduce a quantum heat engine performing an Otto cycle by using the thermal properties of the quantum vacuum. Since Hawking and Unruh, it has been established that the vacuum space, either near a black hole or for an accelerated observer, behaves as a bath of thermal radiation. In this work, we present a fully quantum Otto cycle, which relies on the Unruh effect for a single quantum bit (qubit) in contact with quantum vacuum fluctuations. By using the notions of quantum thermodynamics and perturbation theory we obtain that the quantum vacuum can exchange heat and produce work on the qubit. Moreover, we obtain the efficiency and derive the conditions to have both a thermodynamic and a kinematic cycle in terms of the initial populations of the excited state, which define a range of allowed accelerations for the Unruh engine.

  12. Otto Van Geet | NREL

    Science.gov Websites

    Center at NREL. Otto has been involved in the design, construction, and operation of energy efficient energy use campus and community design. Mr. Van Geet was one of the founding members of the Labs21 and assessment, passive solar building design, use of design tools, photovoltaic (PV) system design

  13. Power Peaking Effect of OTTO Fuel Scheme Pebble Bed Reactor

    NASA Astrophysics Data System (ADS)

    Setiadipura, T.; Suwoto; Zuhair; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    Pebble Bed Reactor (PBR) type of Hight Temperature Gas-cooled Reactor (HTGR) is a very interesting nuclear reactor design to fulfill the growing electricity and heat demand with a superior passive safety features. Effort to introduce the PBR design to the market can be strengthen by simplifying its system with the Once-through-then-out (OTTO) cycle PBR in which the pebble fuel only pass the core once. Important challenge in the OTTO fuel scheme is the power peaking effect which limit the maximum nominal power or burnup of the design. Parametric survey is perform in this study to investigate the contribution of different design parameters to power peaking effect of OTTO cycle PBR. PEBBED code is utilized in this study to perform the equilibrium PBR core analysis for different design parameter and fuel scheme. The parameters include its core diameter, height-per-diameter (H/D), power density, and core nominal power. Results of this study show that diameter and H/D effectsare stronger compare to the power density and nominal core power. Results of this study might become an importance guidance for design optimization of OTTO fuel scheme PBR.

  14. Thermal Stability of Otto Fuel Prepolymer

    NASA Technical Reports Server (NTRS)

    Tompa, Albert S.; Sandagger, Karrie H.; Bryant, William F., Jr.; McConnell, William T.; Lacot, Fernando; Carr, Walter A.

    2000-01-01

    Otto Fuel II contains a nitrate ester, plasticizer, and 2-NDPA as a stabilizer. Otto Fuel with stabilizers from three vendors was investigated by dynamic and isothermal DSC using samples sealed in a glass ampoule and by Isothermal Microcalorimetry (IMC) using 10 gram samples aged at 75 C for 35 days. DSC kinetics did not show differences between the stabilizer; the samples had an activation energy of 36.7 +/- 0.6 kcal/mol. However, IMC analysis was sensitive enough to detect small differences between the stabilizer, namely energy of interaction values of 7 to 14 Joules. DSC controlled cooling and heating at 5 C/min from 30 to -60 to 40 C experiments were similar and showed a crystallization peak at -48 +/- 1 C during cooling, and upon heating there was a glass transition temperature step at approx. -54 +/- 0.5 C and a melting peak at -28 +/- 0.4 C.

  15. 75 FR 70237 - California State Motor Vehicle Pollution Control Standards; California Heavy-Duty On-Highway Otto...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Standards; California Heavy-Duty On-Highway Otto-Cycle Engines and Incomplete Vehicle Regulations; Notice of... California's Heavy-Duty On-Highway Otto-Cycle Engines and Incomplete Vehicle Regulations. SUMMARY: The... its heavy-duty Otto-cycle engines and incomplete vehicle regulations for the 2004, 2005 through 2007...

  16. Real Otto and Diesel Engine Cycles.

    ERIC Educational Resources Information Center

    Giedd, Ronald

    1983-01-01

    A thermodynamic analysis of the properties of otto/diesel engines during the time they operate with open chambers illustrates applicability of thermodynamics to real systems, demonstrates how delivered power is controlled, and explains the source of air pollution in terms of thermodynamic laws. (Author/JN)

  17. Thermal Stability of Otto Fuel Prepolymer

    NASA Technical Reports Server (NTRS)

    Tompa, Albert S.; Sandagger, Karrie H.; Bryant, William F., Jr.; McConnell, William T.; Lacot, Fernando; Carr, Walter A.

    2000-01-01

    Otto Fuel II contains a nitrate ester, plasticizer, and 2-NPDA as a stabilizer. Otto Fuel with stabilizers from three vendors was investigated by dynamic and isothermal differential scanning calorimetry (DSC) using samples sealed in a glass ampoule and by Isothermal Microcalorimetry (IMC) using 10 gram samples aged at 75 C for 35 days. DSC kinetics did not show differences between the stabilizer; the samples had an activation energy of 36.7 +/- 0.6 kcal/mol. However, IMC analysis was sensitive enough to detect small differences between the stabilizer, namely energy of interaction values of 7 to 14 Joules. DSC controlled cooling and heating at 5 C/min from 30 to -60 to 40 C experiments were similar and showed a crystallization peak at -48 +/- 1 C during cooling, and upon heating there was a glass transition temperature step at approx. -54 +/- 0.5 C and a melting peak at -28 +/- 0.4 C.

  18. Evaluating Otto the Auto: Does Engagement in an Interactive Website Improve Young Children's Transportation Safety?

    PubMed

    Schwebel, David C; Johnston, Anna; Shen, Jiabin; Li, Peng

    2017-07-19

    Transportation-related injuries are a leading cause of pediatric death, and effective interventions are limited. Otto the Auto is a website offering engaging, interactive activities. We evaluated Otto among a sample of sixty-nine 4- and 5-year-old children, who participated in a randomized parallel group design study. Following baseline evaluation, children engaged with either Otto or a control website for 2 weeks and then were re-evaluated. Children who used Otto failed to show increases in transportation safety knowledge or behavior compared to the control group, although there was a dosage effect whereby children who engaged in the website more with parents gained safer behavior patterns. We conclude Otto may have some efficacy when engaged by children with their parents, but continued efforts to develop and refine engaging, effective, theory-driven strategies to teach children transportation safety, including via internet, should be pursued.

  19. Occurrence and Nonoccurrence of Random Sequences: Comment on Hahn and Warren (2009)

    ERIC Educational Resources Information Center

    Sun, Yanlong; Tweney, Ryan D.; Wang, Hongbin

    2010-01-01

    On the basis of the statistical concept of waiting time and on computer simulations of the "probabilities of nonoccurrence" (p. 457) for random sequences, Hahn and Warren (2009) proposed that given people's experience of a finite data stream from the environment, the gambler's fallacy is not as gross an error as it might seem. We deal with two…

  20. Quantum Otto heat engine with three-qubit XXZ model as working substance

    NASA Astrophysics Data System (ADS)

    Huang, X. L.; Sun, Qi; Guo, D. Y.; Yu, Qian

    2018-02-01

    A quantum Otto heat engine is established with a three-qubit Heisenberg XXZ model with Dzyaloshinskii-Moriya (DM) interaction under a homogeneous magnetic field as the working substance. The quantum Otto engine is composed of two quantum isochoric processes and two quantum adiabatic processes. Here we have restricted Bc /Bh =Jc /Jh = r in the two adiabatic processes, where r is the adiabatic compression ratio. The work output and efficiency are calculated for our cycle. The possible adiabatic compression ratios and the ratios of work output between our working substance and a single spin under the same external conditions in the Otto cycle are analyzed with different DM interaction parameters and anisotropic parameters. The effects of pairwise entanglements on the heat engine efficiency are discussed.

  1. Evaluating Otto the Auto: Does Engagement in an Interactive Website Improve Young Children’s Transportation Safety?

    PubMed Central

    Johnston, Anna; Shen, Jiabin; Li, Peng

    2017-01-01

    Transportation-related injuries are a leading cause of pediatric death, and effective interventions are limited. Otto the Auto is a website offering engaging, interactive activities. We evaluated Otto among a sample of sixty-nine 4- and 5-year-old children, who participated in a randomized parallel group design study. Following baseline evaluation, children engaged with either Otto or a control website for 2 weeks and then were re-evaluated. Children who used Otto failed to show increases in transportation safety knowledge or behavior compared to the control group, although there was a dosage effect whereby children who engaged in the website more with parents gained safer behavior patterns. We conclude Otto may have some efficacy when engaged by children with their parents, but continued efforts to develop and refine engaging, effective, theory-driven strategies to teach children transportation safety, including via internet, should be pursued. PMID:28753920

  2. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... Heavy-Duty Vehicles § 86.005-10 Emission standards for 2005 and later model year Otto-cycle heavy-duty... emissions from new 2005 and later model year Otto-cycle HDEs, except for Otto-cycle HDEs subject to the...

  3. Europe/Latin America Report Science and Technology.

    DTIC Science & Technology

    1997-01-15

    Partners: Mr. W. Horak Siemens A.G. KO AP 313 Otto Hahn Ring 6 D-8000München 83 Tel: 49-89-72223728 Tlx: 521090 Fax: 49-89-63647140 Siemens A.G...operate the equipment, Dr Joao Renato Pinho of the Adolfo Lutz Institute is pursuing studies in molecular hybridization at the University of Lyons, in

  4. Avoiding unwanted vicinity effects with attract-and-kill tactics for harlequin bug, Murgantia histrionica (Hahn)

    USDA-ARS?s Scientific Manuscript database

    In the development of an attract-and-kill approach for the management of harlequin bug (HB), Murgantia histrionica (Hahn), we evaluated attraction and retention of HB by pheromone-baited traps in the field. In release-recapture and on-farm experiments, traps combining collard plants with commercial ...

  5. Otto Friedrich Karl Deiters (1834-1863).

    PubMed

    Deiters, Vera S; Guillery, R W

    2013-06-15

    Otto Deiters, for whom the lateral vestibular nucleus and the supporting cells of the outer auditory hair cells were named, died in 1863 aged 29. He taught in the Bonn Anatomy Department, had an appointment in the University Clinic, and ran a small private practice. He published articles on the cell theory, the structure and development of muscle fibers, the inner ear, leukaemia, and scarlet fever. He was the second of five surviving children in an academic family whose private correspondence revealed him to be a young man with limited social skills and high ambitions to complete a deeply original study of the brainstem and spinal cord. However, first his father and then his younger brother died, leaving him and his older brother responsible for a suddenly impecunious family as he failed to gain academic promotion. Otto died of typhus two years after his younger brother's death, leaving his greatest scientific achievement to be published posthumously. He showed that most nerve cells have a single axon and several dendrites; he recognized the possibility that nerve cells might be functionally polarized and produced the first illustrations of synaptic inputs to dendrites from what he termed a second system of nerve fibers. Copyright © 2012 Wiley Periodicals, Inc.

  6. The Otto-engine-equivalent vehicle concept

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.; Couch, M. D.

    1978-01-01

    A vehicle comparison methodology based on the Otto-Engine Equivalent (OEE) vehicle concept is described. As an illustration of this methodology, the concept is used to make projections of the fuel economy potential of passenger cars using various alternative power systems. Sensitivities of OEE vehicle results to assumptions made in the calculational procedure are discussed. Factors considered include engine torque boundary, rear axle ratio, performance criteria, engine transient response, and transmission shift logic.

  7. Variable temperature, variable-gap Otto prism coupler for use in a vacuum environment

    NASA Astrophysics Data System (ADS)

    Cairns, G. F.; O'Prey, S. M.; Dawson, P.

    2000-11-01

    The field of surface polariton physics really took off with the prism coupling techniques developed by Kretschmann and Raether, and by Otto. This article reports on the construction and operation of a rotatable, in vacuo, variable temperature, Otto coupler with a coupling gap that can be varied by remote control. The specific design attributes of the system offer additional advantages to those of standard Otto systems of (i) temperature variation (ambient to 85 K), and (ii) the use of a valuable, additional reference point, namely the gap-independent reflectance at the Brewster angle at any given, fixed temperature. The instrument is placed firmly in a historical context of developments in the field. The efficacy of the coupler is demonstrated by sample attenuated total reflectance results on films of platinum, niobium, and yttrium barium copper oxide and on aluminum/gallium arsenide (Al/GaAs) Schottky diode structures.

  8. 40 CFR 86.098-10 - Emission standards for 1998 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.098-10 Section 86.098-10 Protection of... Heavy-Duty Vehicles § 86.098-10 Emission standards for 1998 and later model year Otto-cycle heavy-duty..., exhaust emissions from new 1998 and later model year Otto-cycle heavy-duty engines shall not exceed: (i...

  9. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.008-10 Section 86.008-10 Protection of... Heavy-Duty Vehicles § 86.008-10 Emission standards for 2008 and later model year Otto-cycle heavy-duty...-10.”. (a)(1) Exhaust emissions from new 2008 and later model year Otto-cycle HDEs shall not exceed...

  10. Homonuclear Hartmann-Hahn transfer with reduced relaxation losses by use of the MOCCA-XY16 multiple pulse sequence

    NASA Astrophysics Data System (ADS)

    Furrer, Julien; Kramer, Frank; Marino, John P.; Glaser, Steffen J.; Luy, Burkhard

    2004-01-01

    Homonuclear Hartmann-Hahn transfer is one of the most important building blocks in modern high-resolution NMR. It constitutes a very efficient transfer element for the assignment of proteins, nucleic acids, and oligosaccharides. Nevertheless, in macromolecules exceeding ˜10 kDa TOCSY-experiments can show decreasing sensitivity due to fast transverse relaxation processes that are active during the mixing periods. In this article we propose the MOCCA-XY16 multiple pulse sequence, originally developed for efficient TOCSY transfer through residual dipolar couplings, as a homonuclear Hartmann-Hahn sequence with improved relaxation properties. A theoretical analysis of the coherence transfer via scalar couplings and its relaxation behavior as well as experimental transfer curves for MOCCA-XY16 relative to the well-characterized DIPSI-2 multiple pulse sequence are given.

  11. Homonuclear Hartmann-Hahn transfer with reduced relaxation losses by use of the MOCCA-XY16 multiple pulse sequence.

    PubMed

    Furrer, Julien; Kramer, Frank; Marino, John P; Glaser, Steffen J; Luy, Burkhard

    2004-01-01

    Homonuclear Hartmann-Hahn transfer is one of the most important building blocks in modern high-resolution NMR. It constitutes a very efficient transfer element for the assignment of proteins, nucleic acids, and oligosaccharides. Nevertheless, in macromolecules exceeding approximately 10 kDa TOCSY-experiments can show decreasing sensitivity due to fast transverse relaxation processes that are active during the mixing periods. In this article we propose the MOCCA-XY16 multiple pulse sequence, originally developed for efficient TOCSY transfer through residual dipolar couplings, as a homonuclear Hartmann-Hahn sequence with improved relaxation properties. A theoretical analysis of the coherence transfer via scalar couplings and its relaxation behavior as well as experimental transfer curves for MOCCA-XY16 relative to the well-characterized DIPSI-2 multiple pulse sequence are given.

  12. The Aftermath of the Port Arthur Incident: The Response by Project Hahn to Adolescent Needs.

    ERIC Educational Resources Information Center

    Adams, Allan; Sveen, Robert L.; Denholm, Carey J.

    This paper provides background information about the Project Hahn adventure-based program and its ongoing involvement with the Port Arthur Recovery Group to assist 42 adolescents directly affected by the murders of 36 people by a lone gunman in Tasmania in 1996. Case studies relate personal, social, and community issues faced by these adolescents,…

  13. Otto Rudolph Ortmann, Music Philosophy, and Music Education

    ERIC Educational Resources Information Center

    Gonzol, David J.

    2004-01-01

    What is music? What should be taught when music is taught? How should it be taught? In the early twentieth century, these most foundational questions relating to music education were addressed by the highly regarded, though less well known, educator and researcher, Otto Rudolph Ortmann. In 1922, he published an article in which he outlined a…

  14. Otto Schmitt's contributions to basic and applied biomedical engineering and to the profession.

    PubMed

    Patterson, Robert

    2009-01-01

    Otto Schmitt was one of the early giants in biomedical engineering. Best known in engineering circles for the Schmitt Trigger, he also made many other significant scientific contributions. Besides his scientific work Otto was involved in early organizational activities, which included the first large professional BME meeting in Minneapolis in 1958. A description of his many contributions will be presented along with a short video of Schmitt giving a tour of his laboratory, including the original Schmitt Trigger and the model he used to develop his vector ECG system.

  15. 40 CFR 86.109-94 - Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate emission measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-cycle vehicles not requiring particulate emission measurements. 86.109-94 Section 86.109-94 Protection... Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.109-94 Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate...

  16. Dilatonic parallelizable NS-NS backgrounds

    NASA Astrophysics Data System (ADS)

    Kawano, Teruhiko; Yamaguchi, Satoshi

    2003-08-01

    We complete the classification of parallelizable NS-NS backgrounds in type II supergravity by adding the dilatonic case to the result of Figueroa-O'Farrill on the non-dilatonic case. We also study the supersymmetry of these parallelizable backgrounds. It is shown that all the dilatonic parallelizable backgrounds have sixteen supersymmetries.

  17. Counter Nuclear, Biological, and Chemical Operations, This document compliments JCS Pub 3-11

    DTIC Science & Technology

    2000-08-16

    Successful German Chemical Attack The concept of creating a toxic gas cloud from chemical cylinders was credited to Fritz Haber of the Kaiser Wilhelm Physical...of considerations: The high caliber of German theoretical and experimental physicists like Otto Hahn, Paul Harteck, Werner Heisenberg, Fritz ...Institute of Berlin in late 1914. Owing to a shortage of artillery shells, Haber thought a chemical gas cloud would negate the enemy’s earthworks

  18. Dengue virus NS2 and NS4: Minor proteins, mammoth roles.

    PubMed

    Gopala Reddy, Sindhoora Bhargavi; Chin, Wei-Xin; Shivananju, Nanjunda Swamy

    2018-04-17

    Despite the ever-increasing global incidence of dengue fever, there are no specific chemotherapy regimens for its treatment. Structural studies on dengue virus (DENV) proteins have revealed potential drug targets. Major DENV proteins such as the envelope protein and non-structural (NS) proteins 3 and 5 have been extensively investigated in antiviral studies, but with limited success in vitro. However, the minor NS proteins NS2 and NS4 have remained relatively underreported. Emerging evidence indicating their indispensable roles in virus propagation and host immunomodulation should encourage us to target these proteins for drug discovery. This review covers current knowledge on DENV NS2 and NS4 proteins from structural and functional perspectives and assesses their potential as targets for antiviral design. Antiviral targets in NS2A include surface-exposed transmembrane regions involved in pathogenesis, while those in NS2B include protease-binding sites in a conserved hydrophilic domain. Ideal drug targets in NS4A include helix α4 and the PEPEKQR sequence, which are essential for NS4A-2K cleavage and NS4A-NS4B association, respectively. In NS4B, the cytoplasmic loop connecting helices α5 and α7 is an attractive target for antiviral design owing to its role in dimerization and NS4B-NS3 interaction. Findings implicating NS2A, NS2B, and NS4A in membrane-modulation and viroporin-like activities indicate an opportunity to target these proteins by disrupting their association with membrane lipids. Despite the lack of 3D structural data, recent topological findings and progress in structure-prediction methods should be sufficient impetus for targeting NS2 and NS4 for drug design. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Spin-dependent Otto quantum heat engine based on a molecular substance

    NASA Astrophysics Data System (ADS)

    Hübner, W.; Lefkidis, G.; Dong, C. D.; Chaudhuri, D.; Chotorlishvili, L.; Berakdar, J.

    2014-07-01

    We explore the potential of single molecules for thermodynamic cycles. To this end we propose two molecular heat engines based on the Ni2 dimer in the presence of a static magnetic field: (a) a quantum Otto engine and (b) a modified quantum Otto engine for which optical excitations induced by a laser pulse substitute for one of the heat-exchange points. For reliable predictions and to inspect the role of spin and electronic correlations we perform fully correlated ab initio calculations of the molecular electronic structure including spin-orbital effects. We analyze the efficiency of the engines in dependence of the electronic level scheme and the entanglement and find a significant possible enhancement connected to the quantum nature and the heat capacity of the dimer, as well as to the zero-field triplet states splitting.

  20. Jung's twin brother. Otto Gross and Carl Gustav Jung. With an hitherto unpublished letter by C. G. Jung.

    PubMed

    Heuer, G

    2001-10-01

    This paper is a preliminary communication of several years of research into the life and work of the Austrian psychoanalyst and anarchist Otto Gross (1877-1920). Although he played a pivotal role in the birth of modernity, acting as a significant influence upon psychiatry, psychoanalysis, ethics, sociology and literature, he has remained virtually unknown to this day. Following a biographical sketch and an overview of his main theoretical contributions, the impact of Gross' life and work on the development of analytical theory and practice is described. His relationship with some of the key figures in psychoanalysis is presented, with particular emphasis on his connections to Jung. The paper concludes with an account of relevant contemporary interest in his work: the founding of the International Otto Gross Society, the first edition of The Collected Works of Otto Gross on the Internet, and the 1st and 2nd International Otto Gross Congresses which took place in Berlin in 1999 and at the Burghölzli Clinic, Zürich, in October 2000.

  1. Hartmann-Hahn 2D-map to optimize the RAMP-CPMAS NMR experiment for pharmaceutical materials.

    PubMed

    Suzuki, Kazuko; Martineau, Charlotte; Fink, Gerhard; Steuernagel, Stefan; Taulelle, Francis

    2012-02-01

    Cross polarization-magic angle spinning (CPMAS) is the most used experiment for solid-state NMR measurements in the pharmaceutical industry, with the well-known variant RAMP-CPMAS its dominant implementation. The experimental work presented in this contribution focuses on the entangled effects of the main parameters of such an experiment. The shape of the RAMP-CP pulse has been considered as well as the contact time duration, and a particular attention also has been devoted to the radio-frequency (RF) field inhomogeneity. (13)C CPMAS NMR spectra have been recorded with a systematic variation of (13)C and (1)H constant radiofrequency field pair values and represented as a Hartmann-Hahn matching two-dimensional map. Such a map yields a rational overview of the intricate optimal conditions necessary to achieve an efficient CP magnetization transfer. The map also highlights the effects of sweeping the RF by the RAMP-CP pulse on the number of Hartmann-Hahn matches crossed and how RF field inhomogeneity helps in increasing the CP efficiency by using a larger fraction of the sample. In the light of the results, strategies for optimal RAMP-CPMAS measurements are suggested, which lead to a much higher efficiency than constant amplitude CP experiment. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Interference of transcription across H-NS binding sites and repression by H-NS.

    PubMed

    Rangarajan, Aathmaja Anandhi; Schnetz, Karin

    2018-05-01

    Nucleoid-associated protein H-NS represses transcription by forming extended DNA-H-NS complexes. Repression by H-NS operates mostly at the level of transcription initiation. Less is known about how DNA-H-NS complexes interfere with transcription elongation. In vitro H-NS has been shown to enhance RNA polymerase pausing and to promote Rho-dependent termination, while in vivo inhibition of Rho resulted in a decrease of the genome occupancy by H-NS. Here we show that transcription directed across H-NS binding regions relieves H-NS (and H-NS/StpA) mediated repression of promoters in these regions. Further, we observed a correlation of transcription across the H-NS-bound region and de-repression. The data suggest that the transcribing RNA polymerase is able to remodel the H-NS complex and/or dislodge H-NS from the DNA and thus relieve repression. Such an interference of transcription and H-NS mediated repression may imply that poorly transcribed AT-rich loci are prone to be repressed by H-NS, while efficiently transcribed loci escape repression. © 2018 John Wiley & Sons Ltd.

  3. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.099-10 Section 86.099-10 Protection of... Heavy-Duty Vehicles § 86.099-10 Emission standards for 1999 and later model year Otto-cycle heavy-duty...-cycle medium-duty passenger vehicles (MDPVs) that are subject to regulation under subpart S of this part...

  4. The C-terminal 50 amino acid residues of dengue NS3 protein are important for NS3-NS5 interaction and viral replication.

    PubMed

    Tay, Moon Y F; Saw, Wuan Geok; Zhao, Yongqian; Chan, Kitti W K; Singh, Daljit; Chong, Yuwen; Forwood, Jade K; Ooi, Eng Eong; Grüber, Gerhard; Lescar, Julien; Luo, Dahai; Vasudevan, Subhash G

    2015-01-23

    Dengue virus multifunctional proteins NS3 protease/helicase and NS5 methyltransferase/RNA-dependent RNA polymerase form part of the viral replication complex and are involved in viral RNA genome synthesis, methylation of the 5'-cap of viral genome, and polyprotein processing among other activities. Previous studies have shown that NS5 residue Lys-330 is required for interaction between NS3 and NS5. Here, we show by competitive NS3-NS5 interaction ELISA that the NS3 peptide spanning residues 566-585 disrupts NS3-NS5 interaction but not the null-peptide bearing the N570A mutation. Small angle x-ray scattering study on NS3(172-618) helicase and covalently linked NS3(172-618)-NS5(320-341) reveals a rigid and compact formation of the latter, indicating that peptide NS5(320-341) engages in specific and discrete interaction with NS3. Significantly, NS3:Asn-570 to alanine mutation introduced into an infectious DENV2 cDNA clone did not yield detectable virus by plaque assay even though intracellular double-stranded RNA was detected by immunofluorescence. Detection of increased negative-strand RNA synthesis by real time RT-PCR for the NS3:N570A mutant suggests that NS3-NS5 interaction plays an important role in the balanced synthesis of positive- and negative-strand RNA for robust viral replication. Dengue virus infection has become a global concern, and the lack of safe vaccines or antiviral treatments urgently needs to be addressed. NS3 and NS5 are highly conserved among the four serotypes, and the protein sequence around the pinpointed amino acids from the NS3 and NS5 regions are also conserved. The identification of the functionally essential interaction between the two proteins by biochemical and reverse genetics methods paves the way for rational drug design efforts to inhibit viral RNA synthesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. An Evaluation of Femtosecond/nanosecond Laser Induced Breakdown Spectroscopy (LIBS) for Measuring Total Particulate Emissions

    DTIC Science & Technology

    2009-05-07

    would discourage the use of LIBS for distinguishing between gaseous and particulate species; however, recent studies by Prof. David Hahn at the...If a concept proved feasible, then it would be evaluated in more realistic environments. The program involved a joint effort between Prof. David ...multiphase ns-LIBS measurement that are most relevant to this study are illustrated in the research performed by Prof. David Hahn at the University of Florida

  6. Multiple-state quantum Otto engine, 1D box system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latifah, E., E-mail: enylatifah@um.ac.id; Purwanto, A.

    2014-03-24

    Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.

  7. Could GRB170817A be really correlated to an NS-NS merging?

    NASA Astrophysics Data System (ADS)

    Fargion, D.; Khlopov, M. Yu.; Oliva, P.

    The exciting development of gravitational wave (GW) astronomy in the correlation of LIGO and VIRGO detection of GW signals makes possible to expect registration of effects of not only binary black hole (BH) coalescence but also binary neutron star (NS) merging accompanied by electromagnetic (gamma ray burst; GRB) signal. Here we consider the possibility that an NS, merging in an NS-NS or NS-BH system might be (soon) observed in correlation with any LIGO-VIRGO GWs detection. We analyze as an example the recent case of the short GRB170817A observed by Fermi and integral. The associated optical transient (OT) source in NGC4993 implies a rare near source, a consequent averaged large rate of such events (almost) compatible with expected NS-NS merging rate. However the expected beamed GRB (or short GRB) may be mostly aligned to a different direction than ours. Therefore, even soft GRB photons, spread more than hard ones, might be hardly able to shower to us. Nevertheless, a prompt spiraling electron turbine jet in largest magnetic fields, at the base of the NS-NS collapse, might shine by its tangential synchrotron radiation in spread way with its skimming photons shining in large open disk. The consequent solid angle for such soft disk gamma radiation may be large enough to be nevertheless often observed.

  8. Karl Otto Himmler, manufacturer of the first contact lens.

    PubMed

    Pearson, Richard M

    2007-03-01

    In 1889 August Müller (1864-1949) reported the correction of his own high myopia with a ground scleral contact lens that had been manufactured in Berlin two years earlier. This paper provides the first conclusive identification, based upon primary sources, of the manufacturer of these lenses. They were made by an optical engineer, Karl Otto Himmler (1841-1903), whose firm enjoyed, until the outbreak of World War II, an international reputation for the manufacture of microscopes and their accessories.

  9. Otto von Guericke and 17th century cosmology

    NASA Astrophysics Data System (ADS)

    Knobloch, Eberhard

    Otto von Guericke's scientific method was based on reason and experimental science. His cosmology was embedded in theology and can be interpreted as a refutation of Descartes' worldview. He used Nicolaus Cusanus' theory of quantities in order to characterize space. The notion of space has to be distinguished from that of world or heaven. Forces play a crucial role in this respect described by Athanasius Kircher in his "Celestial Journey". Guericke read this work very diligently. In spite of some obvious similarities between Guericke's and Newton's scientific aims and methods there are crucial differences between the scientific convictions and results of these scholars.

  10. Damned Lies. And Statistics. Otto Neurath and Soviet Propaganda in the 1930s.

    ERIC Educational Resources Information Center

    Chizlett, Clive

    1992-01-01

    Examines the philosophical and historical context in which Otto Neurath (1882-1945) worked. Examines critically (in the light of descriptive statistics) the principles of his Isotype Picture Language. Tests Neurath's personal credibility and scientific integrity by looking at his contributions to Soviet propaganda in the early 1930s. (SR)

  11. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development.

    PubMed

    Luo, Dahai; Vasudevan, Subhash G; Lescar, Julien

    2015-06-01

    The flavivirus NS3 protein is associated with the endoplasmic reticulum membrane via its close interaction with the central hydrophilic region of the NS2B integral membrane protein. The multiple roles played by the NS2B-NS3 protein in the virus life cycle makes it an attractive target for antiviral drug discovery. The N-terminal region of NS3 and its cofactor NS2B constitute the protease that cleaves the viral polyprotein. The NS3 C-terminal domain possesses RNA helicase, nucleoside and RNA triphosphatase activities and is involved both in viral RNA replication and virus particle formation. In addition, NS2B-NS3 serves as a hub for the assembly of the flavivirus replication complex and also modulates viral pathogenesis and the host immune response. Here, we review biochemical and structural advances on the NS2B-NS3 protein, including the network of interactions it forms with NS5 and NS4B and highlight recent drug development efforts targeting this protein. This article forms part of a symposium in Antiviral Research on flavivirus drug discovery. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Implications of PSR J0737-3039B for the Galactic NS-NS binary merger rate

    NASA Astrophysics Data System (ADS)

    Kim, Chunglee; Perera, Benetge Bhakthi Pranama; McLaughlin, Maura A.

    2015-03-01

    The Double Pulsar (PSR J0737-3039) is the only neutron star-neutron star (NS-NS) binary in which both NSs have been detectable as radio pulsars. The Double Pulsar has been assumed to dominate the Galactic NS-NS binary merger rate R_g among all known systems, solely based on the properties of the first-born, recycled pulsar (PSR J0737-3039A, or A) with an assumption for the beaming correction factor of 6. In this work, we carefully correct observational biases for the second-born, non-recycled pulsar (PSR J0737-0737B, or B) and estimate the contribution from the Double Pulsar on R_g using constraints available from both A and B. Observational constraints from the B pulsar favour a small beaming correction factor for A (˜2), which is consistent with a bipolar model. Considering known NS-NS binaries with the best observational constraints, including both A and B, we obtain R_g=21_{-14}^{+28} Myr-1 at 95 per cent confidence from our reference model. We expect the detection rate of gravitational waves from NS-NS inspirals for the advanced ground-based gravitational-wave detectors is to be 8^{+10}_{-5} yr-1 at 95 per cent confidence. Within several years, gravitational-wave detections relevant to NS-NS inspirals will provide us useful information to improve pulsar population models.

  13. Modeling the complete Otto cycle: Preliminary version. [computer programming

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.; Mcbride, B. J.

    1977-01-01

    A description is given of the equations and the computer program being developed to model the complete Otto cycle. The program incorporates such important features as: (1) heat transfer, (2) finite combustion rates, (3) complete chemical kinetics in the burned gas, (4) exhaust gas recirculation, and (5) manifold vacuum or supercharging. Changes in thermodynamic, kinetic and transport data as well as model parameters can be made without reprogramming. Preliminary calculations indicate that: (1) chemistry and heat transfer significantly affect composition and performance, (2) there seems to be a strong interaction among model parameters, and (3) a number of cycles must be calculated in order to obtain steady-state conditions.

  14. Progress on New Hepatitis C Virus Targets: NS2 and NS5A

    NASA Astrophysics Data System (ADS)

    Marcotrigiano, Joseph

    Hepatitis C virus (HCV) is a major global health problem, affecting about 170 million people worldwide. Chronic infection can lead to cirrhosis and liver cancer. The replication machine of HCV is a multi-subunit membrane associated complex, consisting of nonstructural proteins (NS2-5B), which replicate the viral RNA genome. The structures of NS5A and NS2 were recently determined. NS5A is an essential replicase component that also modulates numerous cellular processes ranging from innate immunity to cell growth and survival. The structure reveals a novel protein fold, a new zinc coordination motif, a disulfide bond and a dimer interface. Analysis of molecular surfaces suggests the location of the membrane interaction surface of NS5A, as well as hypothetical protein and RNA binding sites. NS2 is one of two virally encoded proteases that are required for processing the viral polyprotein into the mature nonstructural proteins. NS2 is a dimeric cysteine protease with two composite active sites. For each active site, the catalytic histidine and glutamate residues are contributed by one monomer and the nucleophilic cysteine by the other. The C-terminal residues remain coordinated in the two active sites, predicting an inactive post-cleavage form. The structure also reveals possible sites of membrane interaction, a rare cis-proline residue, and highly conserved dimer contacts. The novel features of both structures have changed the current view of HCV polyprotein replication and present new opportunities for antiviral drug design.

  15. Practice of the Education for the Principle of Otto Cycle by the E-Learning CG-Content

    NASA Astrophysics Data System (ADS)

    Sato, Tomoaki; Nagaoka, Keizo; Oguchi, Kosei

    A CG-animation content which supports the learning of the Otto cycle was developed. This content has a piston assembly and the diagrams of PV, VS, TP and TS. The each diagram has a pointer which moves along the line of the graph and they are synchronized with the movement of the piston. The learners can operate this content directly on the e-learning system. While watching the movements of the piston assembly, the learners can confirm the state of the engine about temperature, pressure, volume, and entropy by the synchronized pointer on the diagrams. This content was used for the class of the machining practice exercise. The learning effect of the content was examined by the score of the short test. As the result of this examination, the CG-animation content was effective in the learning of the Otto cycle.

  16. Maximum cycle work output optimization for generalized radiative law Otto cycle engines

    NASA Astrophysics Data System (ADS)

    Xia, Shaojun; Chen, Lingen; Sun, Fengrui

    2016-11-01

    An Otto cycle internal combustion engine which includes thermal and friction losses is investigated by finite-time thermodynamics, and the optimization objective is the maximum cycle work output. The thermal energy transfer from the working substance to the cylinder inner wall follows the generalized radiative law (q∝Δ (Tn)). Under the condition that all of the fuel consumption, the compression ratio and the cycle period are given, the optimal piston trajectories for both the examples with unlimited and limited accelerations on every stroke are determined, and the cycle-period distribution among all strokes is also optimized. Numerical calculation results for the case of radiative law are provided and compared with those obtained for the cases of Newtonian law and linear phenomenological law. The results indicate that the optimal piston trajectory on each stroke contains three sections, which consist of an original maximum-acceleration and a terminal maximum-deceleration parts; for the case of radiative law, optimizing the piston motion path can achieve an improvement of more than 20% in both the cycle-work output and the second-law efficiency of the Otto cycle compared with the conventional near-sinusoidal operation, and heat transfer mechanisms have both qualitative and quantitative influences on the optimal paths of piston movements.

  17. Conformational flexibility of DENV NS2B/NS3pro: from the inhibitor effect to the serotype influence

    NASA Astrophysics Data System (ADS)

    Piccirillo, Erika; Merget, Benjamin; Sotriffer, Christoph A.; do Amaral, Antonia T.

    2016-03-01

    The dengue virus (DENV) has four well-known serotypes, namely DENV1 to DENV4, which together cause 50-100 million infections worldwide each year. DENV NS2B/NS3pro is a protease recognized as a valid target for DENV antiviral drug discovery. However, NS2B/NS3pro conformational flexibility, involving in particular the NS2B region, is not yet completely understood and, hence, a big challenge for any virtual screening (VS) campaign. Molecular dynamics (MD) simulations were performed in this study to explore the DENV3 NS2B/NS3pro binding-site flexibility and obtain guidelines for further VS studies. MD simulations were done with and without the Bz-nKRR-H inhibitor, showing that the NS2B region stays close to the NS3pro core even in the ligand-free structure. Binding-site conformational states obtained from the simulations were clustered and further analysed using GRID/PCA, identifying four conformations of potential importance for VS studies. A virtual screening applied to a set of 31 peptide-based DENV NS2B/NS3pro inhibitors, taken from literature, illustrated that selective alternative pharmacophore models can be constructed based on conformations derived from MD simulations. For the first time, the NS2B/NS3pro binding-site flexibility was evaluated for all DENV serotypes using homology models followed by MD simulations. Interestingly, the number of NS2B/NS3pro conformational states differed depending on the serotype. Binding-site differences could be identified that may be crucial to subsequent VS studies.

  18. Establishment of a robust dengue virus NS3-NS5 binding assay for identification of protein-protein interaction inhibitors.

    PubMed

    Takahashi, Hirotaka; Takahashi, Chikako; Moreland, Nicole J; Chang, Young-Tae; Sawasaki, Tatsuya; Ryo, Akihide; Vasudevan, Subhash G; Suzuki, Youichi; Yamamoto, Naoki

    2012-12-01

    Whereas the dengue virus (DENV) non-structural (NS) proteins NS3 and NS5 have been shown to interact in vitro and in vivo, the biological relevance of this interaction in viral replication has not been fully clarified. Here, we first applied a simple and robust in vitro assay based on AlphaScreen technology in combination with the wheat-germ cell-free protein production system to detect the DENV-2 NS3-NS5 interaction in a 384-well plate. The cell-free-synthesized NS3 and NS5 recombinant proteins were soluble and in possession of their respective enzymatic activities in vitro. In addition, AlphaScreen assays using the recombinant proteins detected a specific interaction between NS3 and NS5 with a robust Z' factor of 0.71. By employing the AlphaScreen assay, we found that both the N-terminal protease and C-terminal helicase domains of NS3 are required for its association with NS5. Furthermore, a competition assay revealed that the binding of full-length NS3 to NS5 was significantly inhibited by the addition of an excess of NS3 protease or helicase domains. Our results demonstrate that the AlphaScreen assay can be used to discover novel antiviral agents targeting the interactions between DENV NS proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Inhibitor Bound Dengue NS2B-NS3pro Reveals Multiple Dynamic Binding Modes.

    PubMed

    Gibbs, Alan C; Steele, Ruth; Liu, Gaohua; Tounge, Brett A; Montelione, Gaetano T

    2018-03-13

    Dengue virus poses a significant global health threat as the source of increasingly deleterious dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. As no specific antiviral treatment exists for dengue infection, considerable effort is being applied to discover therapies and drugs for maintenance and prevention of these afflictions. The virus is primarily transmitted by mosquitoes, and infection occurs following viral endocytosis by host cells. Upon entering the cell, viral RNA is translated into a large multisubunit polyprotein which is post-translationally cleaved into mature, structural and nonstructural (NS) proteins. The viral genome encodes the enzyme to carry out cleavage of the large polyprotein, specifically the NS2B-NS3pro cofactor-protease complex-a target of high interest for drug design. One class of recently discovered NS2B-NS3pro inhibitors is the substrate-based trifluoromethyl ketone containing peptides. These compounds interact covalently with the active site Ser135 via a hemiketal adduct. A detailed picture of the intermolecular protease/inhibitor interactions of the hemiketal adduct is crucial for rational drug design. We demonstrate, through the use of protein- and ligand-detected solution-state 19 F and 1 H NMR methods, an unanticipated multibinding mode behavior of a representative of this class of inhibitors to dengue NS2B-NS3pro. Our results illustrate the highly dynamic nature of both the covalently bound ligand and protease protein structure, and the need to consider these dynamics when designing future inhibitors in this class.

  20. Discovery and SAR studies of methionine-proline anilides as dengue virus NS2B-NS3 protease inhibitors.

    PubMed

    Zhou, Guo-Chun; Weng, Zhibing; Shao, Xiaoxia; Liu, Fang; Nie, Xin; Liu, Jinsong; Wang, Decai; Wang, Chunguang; Guo, Kai

    2013-12-15

    A series of methionine-proline dipeptide derivatives and their analogues were designed, synthesized and assayed against the serotype 2 dengue virus NS2B-NS3 protease, and methionine-proline anilides 1 and 2 were found to be the most active DENV 2 NS2B-NS3 competitive inhibitors with Ki values of 4.9 and 10.5 μM. The structure and activity relationship and the molecular docking revealed that L-proline, L-methionine and p-nitroaniline in 1 and 2 are the important characters in blocking the active site of NS2B-NS3 protease. Our current results suggest that the title dipeptidic scaffold represents a promising structural core to discover a new class of active NS2B-NS3 competitive inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen

    PubMed Central

    2011-01-01

    Background The genus Flavivirus encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4). Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle. Results We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation. Conclusions We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy. PMID:22014111

  2. Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen.

    PubMed

    Le Breton, Marc; Meyniel-Schicklin, Laurène; Deloire, Alexandre; Coutard, Bruno; Canard, Bruno; de Lamballerie, Xavier; Andre, Patrice; Rabourdin-Combe, Chantal; Lotteau, Vincent; Davoust, Nathalie

    2011-10-20

    The genus Flavivirus encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4). Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle. We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation. We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy.

  3. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment... HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in...

  4. Computer Aided Screening of Phytochemicals from Garcinia against the Dengue NS2B/NS3 Protease.

    PubMed

    Qamar, Tahir Ul; Mumtaz, Arooj; Ashfaq, Usman Ali; Azhar, Samia; Fatima, Tabeer; Hassan, Muhammad; Hussain, Syed Sajid; Akram, Waheed; Idrees, Sobia

    2014-01-01

    Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy.

  5. Computer Aided Screening of Phytochemicals from Garcinia against the Dengue NS2B/NS3 Protease

    PubMed Central

    Qamar, Tahir ul; Mumtaz, Arooj; Ashfaq, Usman Ali; Azhar, Samia; Fatima, Tabeer; Hassan, Muhammad; Hussain, Syed Sajid; Akram, Waheed; Idrees, Sobia

    2014-01-01

    Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy. PMID:24748749

  6. Otto Peters on Distance Education: The Industrialization of Teaching and Learning. Routledge Studies in Distance Education.

    ERIC Educational Resources Information Center

    Keegan, Desmond, Ed.

    This book contains new and previously published translations of 11 essays and articles about the industrialization of teaching and learning in distance education that were originally published in German by Otto Peters between 1965 and 1993. A "Preface" (Desmond Keegan) and an introduction placing Peters' writings in their historical…

  7. Highly potent non-peptidic inhibitors of the HCV NS3/NS4A serine protease.

    PubMed

    Sperandio, David; Gangloff, Anthony R; Litvak, Joane; Goldsmith, Richard; Hataye, Jason M; Wang, Vivian R; Shelton, Emma J; Elrod, Kyle; Janc, James W; Clark, James M; Rice, Ken; Weinheimer, Steve; Yeung, Kap-Sun; Meanwell, Nicholas A; Hernandez, Dennis; Staab, Andrew J; Venables, Brian L; Spencer, Jeffrey R

    2002-11-04

    Screening of a diverse set of bisbenzimidazoles for inhibition of the hepatitis C virus (HCV) serine protease NS3/NS4A led to the identification of a potent Zn(2+)-dependent inhibitor (1). Optimization of this screening hit afforded a 10-fold more potent inhibitor (46) under Zn(2+) conditions (K(i)=27nM). This compound (46) binds also to NS3/NS4A in a Zn(2+) independent fashion (K(i)=1microM). The SAR of this class of compounds under Zn(2+) conditions is highly divergent compared to the SAR in the absence of Zn(2+), suggesting two distinct binding modes.

  8. Replacement of the respiratory syncytial virus nonstructural proteins NS1 and NS2 by the V protein of parainfluenza virus 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, Kim C.; He, Biao; Teng, Michael N.

    2007-11-10

    Paramyxoviruses have been shown to produce proteins that inhibit interferon production and signaling. For human respiratory syncytial virus (RSV), the nonstructural NS1 and NS2 proteins have been shown to have interferon antagonist activity through an unknown mechanism. To understand further the functions of NS1 and NS2, we generated recombinant RSV in which both NS1 and NS2 were replaced by the PIV5 V protein, which has well-characterized IFN antagonist activities ({delta}NS1/2-V). Expression of V was able to partially inhibit IFN responses in {delta}NS1/2-V-infected cells. In addition, the replication kinetics of {delta}NS1/2-V were intermediate between {delta}NS1/2 and wild-type (rA2) in A549 cells.more » However, expression of V did not affect the ability of {delta}NS1/2-V to activate IRF3 nuclear translocation and IFN{beta} transcription. These data indicate that V was able to replace some of the IFN inhibitory functions of the RSV NS1 and NS2 proteins, but also that NS1 and NS2 have functions in viral replication beyond IFN antagonism.« less

  9. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies.

    PubMed

    de Sousa, Lorena Ramos Freitas; Wu, Hongmei; Nebo, Liliane; Fernandes, João Batista; da Silva, Maria Fátima das Graças Fernandes; Kiefer, Werner; Kanitz, Manuel; Bodem, Jochen; Diederich, Wibke E; Schirmeister, Tanja; Vieira, Paulo Cezar

    2015-02-01

    NS2B-NS3 is a serine protease of the Dengue virus considered a key target in the search for new antiviral drugs. In this study flavonoids were found to be inhibitors of NS2B-NS3 proteases of the Dengue virus serotypes 2 and 3 with IC50 values ranging from 15 to 44 μM. Agathisflavone (1) and myricetin (4) turned out to be noncompetitive inhibitors of dengue virus serotype 2 NS2B-NS3 protease with Ki values of 11 and 4.7 μM, respectively. Docking studies propose a binding mode of the flavonoids in a specific allosteric binding site of the enzyme. Analysis of biomolecular interactions of quercetin (5) with NT647-NHS-labeled Dengue virus serotype 3 NS2B-NS3 protease by microscale thermophoresis experiments, yielded a dissociation constant KD of 20 μM. Our results help to understand the mechanism of inhibition of the Dengue virus serine protease by flavonoids, which is essential for the development of improved inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Mutagenesis of Dengue Virus Protein NS2A Revealed a Novel Domain Responsible for Virus-Induced Cytopathic Effect and Interactions between NS2A and NS2B Transmembrane Segments.

    PubMed

    Wu, Ren-Huang; Tsai, Ming-Han; Tsai, Kuen-Nan; Tian, Jia Ni; Wu, Jian-Sung; Wu, Su-Ying; Chern, Jyh-Haur; Chen, Chun-Hong; Yueh, Andrew

    2017-06-15

    The NS2A protein of dengue virus (DENV) has eight predicted transmembrane segments (pTMS1 to -8) and participates in RNA replication, virion assembly, and host antiviral response. However, the roles of specific amino acid residues within the pTMS regions of NS2A during the viral life cycle are not clear. Here, we explore the function of DENV NS2A by introducing a series of alanine substitutions into the N-terminal half (pTMS1 to -4) of the protein in the context of a DENV infectious clone or subgenomic replicon. Six NS2A mutants (NM5, -7, -9, and -17 to -19) around pTMS1 and -2 displayed a novel phenotype showing a >1,000-fold reduction in virus yield, an absence of plaque formation despite wild-type-like replicon activity, and infectious-virus-like particle yields. HEK-293 cells infected with the six NS2A mutant viruses failed to cause a virus-induced cytopathic effect (CPE) by MitoCapture staining, cell proliferation, and lactate dehydrogenase release assays. Sequencing analyses of pseudorevertant viruses derived from lethal-mutant viruses revealed two consensus reversion mutations, leucine to phenylalanine at codon 181 (L181F) within pTMS7 of NS2A and isoleucine to threonine at codon 114 (I114T) within NS2B. The introduction of an NS2A-L181F mutation into the lethal (NM15, -16, -25, and -33) and CPE-defective (NM7, -9, and -19) mutants substantially rescued virus infectivity and virus-induced CPE, respectively, whereas the NS2B-L114T mutation rescued the NM16, -25, and -33 mutants. In conclusion, the results revealed the essential roles of the N-terminal half of NS2A in RNA replication and virus-induced CPE. Intramolecular interactions between pTMSs of NS2A and intermolecular interactions between the NS2A and NS2B proteins were also implicated. IMPORTANCE The characterization of the N-terminal (current study) and C-terminal halves of DENV NS2A is the most comprehensive mutagenesis study to date to investigate the function of NS2A during the flaviviral life cycle

  11. Perspective on Models in Theoretical and Practical Traditions of Knowledge: The Example of Otto Engine Animations

    ERIC Educational Resources Information Center

    Haglund, Jesper; Stromdahl, Helge

    2012-01-01

    Nineteen informants (n = 19) were asked to study and comment two computer animations of the Otto combustion engine. One animation was non-interactive and realistic in the sense of depicting a physical engine. The other animation was more idealised, interactive and synchronised with a dynamic PV-graph. The informants represented practical and…

  12. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyun; Ren, Jinhong; Nocadello, Salvatore

    Zika flavivirus infection during pregnancy appears to produce higher risk of microcephaly, and also causes multiple neurological problems such as Guillain–Barré syndrome. The Zika virus is now widespread in Central and South America, and is anticipated to become an increasing risk in the southern United States. With continuing global travel and the spread of the mosquito vector, the exposure is expected to accelerate, but there are no currently approved treatments against the Zika virus. The Zika NS2B/NS3 protease is an attractive drug target due to its essential role in viral replication. Our studies have identified several compounds with inhibitory activitymore » (IC50) and binding affinity (KD) of ~5–10 μM against the Zika NS2B-NS3 protease from testing 71 HCV NS3/NS4A inhibitors that were initially discovered by high-throughput screening of 40,967 compounds. Competition surface plasmon resonance studies and mechanism of inhibition analyses by enzyme kinetics subsequently determined the best compound to be a competitive inhibitor with a Ki value of 9.5 μM. We also determined the X-ray structure of the Zika NS2B-NS3 protease in a “pre-open conformation”, a conformation never observed before for any flavivirus proteases. This provides the foundation for new structure-based inhibitor design.« less

  13. Characterisation of divergent flavivirus NS3 and NS5 protein sequences detected in Rhipicephalus microplus ticks from Brazil

    PubMed Central

    Maruyama, Sandra Regina; Castro-Jorge, Luiza Antunes; Ribeiro, José Marcos Chaves; Gardinassi, Luiz Gustavo; Garcia, Gustavo Rocha; Brandão, Lucinda Giampietro; Rodrigues, Aline Rezende; Okada, Marcos Ituo; Abrão, Emiliana Pereira; Ferreira, Beatriz Rossetti; da Fonseca, Benedito Antonio Lopes; de Miranda-Santos, Isabel Kinney Ferreira

    2013-01-01

    Transcripts similar to those that encode the nonstructural (NS) proteins NS3 and NS5 from flaviviruses were found in a salivary gland (SG) complementary DNA (cDNA) library from the cattle tick Rhipicephalus microplus. Tick extracts were cultured with cells to enable the isolation of viruses capable of replicating in cultured invertebrate and vertebrate cells. Deep sequencing of the viral RNA isolated from culture supernatants provided the complete coding sequences for the NS3 and NS5 proteins and their molecular characterisation confirmed similarity with the NS3 and NS5 sequences from other flaviviruses. Despite this similarity, phylogenetic analyses revealed that this potentially novel virus may be a highly divergent member of the genus Flavivirus. Interestingly, we detected the divergent NS3 and NS5 sequences in ticks collected from several dairy farms widely distributed throughout three regions of Brazil. This is the first report of flavivirus-like transcripts in R. microplus ticks. This novel virus is a potential arbovirus because it replicated in arthropod and mammalian cells; furthermore, it was detected in a cDNA library from tick SGs and therefore may be present in tick saliva. It is important to determine whether and by what means this potential virus is transmissible and to monitor the virus as a potential emerging tick-borne zoonotic pathogen. PMID:24626302

  14. NS1-binding protein abrogates the elevation of cell viability by the influenza A virus NS1 protein in association with CRKL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, Masaya; Nishihara, Hiroshi, E-mail: hnishihara@med.hokudai.ac.jp; Hasegawa, Hideki

    Highlights: •NS1 induced excessive phosphorylation of ERK and elevated cell viability. •NS1-BP expression and CRKL knockdown abolished survival effect of NS1. •NS1-BP and NS1 formed the complex through the interaction with CRKL-SH3(N). -- Abstract: The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while themore » physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.« less

  15. Assessment of Drug Binding Potential of Pockets in the NS2B/NS3 Dengue Virus Protein

    NASA Astrophysics Data System (ADS)

    Amelia, F.; Iryani; Sari, P. Y.; Parikesit, A. A.; Bakri, R.; Toepak, E. P.; Tambunan, U. S. F.

    2018-04-01

    Every year an endemic dengue fever estimated to affect over 390 million cases in over 128 countries occurs. However, the antigen types which stimulate the human immune response are variable, as a result, neither effective vaccines nor antiviral treatments have been successfully developed for this disease. The NS2B/NS3 protease of the dengue virus (DENV) responsible for viral replication is a potential drug target. The ligand-enzyme binding site determination is a key role in the success of virtual screening of new inhibitors. The NS2B/NS3 protease of DENV (PDB ID: 2FOM) has two pockets consisting of 37 (Pocket 1) and 27 (Pocket 2) amino acid residues in each pocket. In this research, we characterized the amino acid residues for binding sites in NS3/NS2B based on the hydrophobicity, the percentage of charged residues, volume, depth, ΔGbinding, hydrogen bonding and bond length. The hydrophobic percentages of both pockets are high, 59 % (Pocket 1) and 41% (Pocket 2) and the percentage of charged residues in Pocket 1 and 2 are 22% and 48%, and the pocket volume is less than 700 Å3. An interaction analysis using molecular docking showed that interaction between the ligand complex and protein in Pocket 1 is more negative than Pocket 2. As a result, Pocket 1 is the better potential target for a ligand to inhibit the action of NS2B/NS3 DENV.

  16. hnRNP A2/B1 interacts with influenza A viral protein NS1 and inhibits virus replication potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nuclear export

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yimeng; Zhou, Jianhong; Du, Yuchun, E-mail: ydu@uark.edu

    The NS1 protein of influenza viruses is a major virulence factor and exerts its function through interacting with viral/cellular RNAs and proteins. In this study, we identified heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) as an interacting partner of NS1 proteins by a proteomic method. Knockdown of hnRNP A2/B1 by small interfering RNA (siRNA) resulted in higher levels of NS vRNA, NS1 mRNA, and NS1 protein in the virus-infected cells. In addition, we demonstrated that hnRNP A2/B1 proteins are associated with NS1 and NS2 mRNAs and that knockdown of hnRNP A2/B1 promotes transport of NS1 mRNA from the nucleus to themore » cytoplasm in the infected cells. Lastly, we showed that knockdown of hnRNP A2/B1 leads to enhanced virus replication. Our results suggest that hnRNP A2/B1 plays an inhibitory role in the replication of influenza A virus in host cells potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nucleocytoplasmic translocation. - Highlights: • Cellular protein hnRNP A2/B1 interacts with influenza viral protein NS1. • hnRNP A2/B1 suppresses the levels of NS1 protein, vRNA and mRNA in infected cells. • hnRNP A2/B1 protein is associated with NS1 and NS2 mRNAs. • hnRNP A2/B1 inhibits the nuclear export of NS1 mRNAs. • hnRNP A2/B1 inhibits influenza virus replication.« less

  17. Spin Complicates Eccentric BH-NS Mergers

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    When a neutron star (NS) has a glancing encounter with a black hole (BH), its spin has a significant effect on the outcome, according to new simulations run by William East of Stanford University and his collaborators. Spotting an Eccentric Merger. In a traditional BH-NS merger, the two objects orbit each other quasi-circularly as they spiral in. But there's another kind of merger that's possible in high-density environments like galactic nuclei or globular clusters: a dynamical capture merger, in which a NS and BH pass each other just close enough that the gravity of the black hole "catches" the NS, leading the two objects to merge with very eccentric orbits. During an eccentric merger, the NS can be torn apart -- at which point some fraction of the tidally-disrupted material will escape the system, while some fraction instead accretes back onto the BH. Knowing these fractions is important for being able to model the expected electromagnetic signatures for the merger: the unbound material can power transients like kilonovae, whereas the accreting material may be the cause of short gamma-ray bursts. The amount of material available for events like these would change their observable strengths. Testing the Effects of Spin. To see whether NS spin has an impact on the behavior of the merger, East and collaborators use a general-relativistic hydrodynamic code to simulate the glancing encounter of a BH and a NS with dimensionless spin between a=0 (non-spinning) and a=0.756 (rotation period of 1 ms). They also vary the separation of the first encounter. The group finds that changing the NS's spin can change a number of outcomes of the merger. To start with, it can affect whether the NS is captured by the BH, or if the encounter is glancing and then both objects carry on their merry way. And if the NS is trapped by the BH and torn apart, then the higher the NS's spin, the more matter outside of the BH ends up unbound, instead of getting trapped into an accretion disk

  18. Quantitative Proteomic Analysis of the Influenza A Virus Nonstructural Proteins NS1 and NS2 during Natural Cell Infection Identifies PACT as an NS1 Target Protein and Antiviral Host Factor

    PubMed Central

    Tawaratsumida, Kazuki; Phan, Van; Hrincius, Eike R.; High, Anthony A.; Webby, Richard; Redecke, Vanessa

    2014-01-01

    ABSTRACT Influenza A virus (IAV) replication depends on the interaction of virus proteins with host factors. The viral nonstructural protein 1 (NS1) is essential in this process by targeting diverse cellular functions, including mRNA splicing and translation, cell survival, and immune defense, in particular the type I interferon (IFN-I) response. In order to identify host proteins targeted by NS1, we established a replication-competent recombinant IAV that expresses epitope-tagged forms of NS1 and NS2, which are encoded by the same gene segment, allowing purification of NS proteins during natural cell infection and analysis of interacting proteins by quantitative mass spectrometry. We identified known NS1- and NS2-interacting proteins but also uncharacterized proteins, including PACT, an important cofactor for the IFN-I response triggered by the viral RNA-sensor RIG-I. We show here that NS1 binds PACT during virus replication and blocks PACT/RIG-I-mediated activation of IFN-I, which represents a critical event for the host defense. Protein interaction and interference with IFN-I activation depended on the functional integrity of the highly conserved RNA binding domain of NS1. A mutant virus with deletion of NS1 induced high levels of IFN-I in control cells, as expected; in contrast, shRNA-mediated knockdown of PACT compromised IFN-I activation by the mutant virus, but not wild-type virus, a finding consistent with the interpretation that PACT (i) is essential for IAV recognition and (ii) is functionally compromised by NS1. Together, our data describe a novel approach to identify virus-host protein interactions and demonstrate that NS1 interferes with PACT, whose function is critical for robust IFN-I production. IMPORTANCE Influenza A virus (IAV) is an important human pathogen that is responsible for annual epidemics and occasional devastating pandemics. Viral replication and pathogenicity depends on the interference of viral factors with components of the host

  19. Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Arcy, Allan, E-mail: allan.darcy@novartis.com; Chaillet, Maxime; Schiering, Nikolaus

    Crystals of dengue serotype 2 and West Nile virus NS2B–NS3 protease complexes have been obtained and the crystals of both diffract to useful resolution. Sample homogeneity was essential for obtaining X-ray-quality crystals of the dengue protease. Controlled proteolysis produced a crystallizable fragment of the apo West Nile virus NS2B–NS3 and crystals were also obtained in the presence of a peptidic inhibitor. Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but maymore » also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B–NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.« less

  20. Performance of commercial dengue NS1 ELISA and molecular analysis of NS1 gene of dengue viruses obtained during surveillance in Indonesia.

    PubMed

    Aryati, Aryati; Trimarsanto, Hidayat; Yohan, Benediktus; Wardhani, Puspa; Fahri, Sukmal; Sasmono, R Tedjo

    2013-12-29

    Early diagnosis of dengue infection is crucial for better management of the disease. Diagnostic tests based on the detection of dengue virus (DENV) Non Structural Protein 1 (NS1) antigen are commercially available with different sensitivities and specificities observed in various settings. Dengue is endemic in Indonesia and clinicians are increasingly using the NS1 detection for dengue confirmation. This study described the performance of Panbio Dengue Early NS1 and IgM Capture ELISA assays for dengue detection during our surveillance in eight cities in Indonesia as well as the genetic diversity of DENV NS1 genes and its relationship with the NS1 detection. The NS1 and IgM/IgG ELISA assays were used for screening and confirmation of dengue infection during surveillance in 2010-2012. Collected serum samples (n = 440) were subjected to RT-PCR and virus isolation, in which 188 samples were confirmed for dengue infection. The positivity of the ELISA assays were correlated with the RT-PCR results to obtain the sensitivity of the assays. The NS1 genes of 48 Indonesian virus isolates were sequenced and their genetic characteristics were studied. Using molecular data as gold standard, the sensitivity of NS1 ELISA assay for samples from Indonesia was 56.4% while IgM ELISA was 73.7%. When both NS1 and IgM results were combined, the sensitivity increased to 89.4%. The NS1 sensitivity varied when correlated with city/geographical origins and DENV serotype, in which the lowest sensitivity was observed for DENV-4 (19.0%). NS1 sensitivity was higher in primary (67.6%) compared to secondary infection (48.2%). The specificity of NS1 assay for non-dengue samples were 100%. The NS1 gene sequence analysis of 48 isolates revealed the presence of polymorphisms of the NS1 genes which apparently did not influence the NS1 sensitivity. We observed a relatively low sensitivity of NS1 ELISA for dengue detection on RT-PCR-positive dengue samples. The detection rate increased significantly

  1. Performance Evaluation on Otto Engine Generator Using Gasoline and Biogas from Palm Oil Mill Effluent

    NASA Astrophysics Data System (ADS)

    Irvan; Trisakti, B.; Husaini, T.; Sitio, A.; Sitorus, TB

    2017-06-01

    Biogas is a flammable gas produced from the fermentation of organic materials by anaerobic bacteria originating from household waste manure and organic waste including palm oil mill effluent (POME). POME is mainly discharged from the sterilization unit of palm oil processing into crude palm oil. This study utilized biogas produced from liquid waste palm oil for use as fuel in the Otto engine generator 4 - stroke, type STARKE GFH1900LX with a peak power of 1.3 kW, 1.0 kW average power, bore 55 mm, stroke 40 mm, Vd 95 × 10-6 m3, Vc 10 × 10-6 m3, compression ratio of 10.5 : 1, and the number of cylinders = 1. The objective of this study is to evaluate the performance of Otto engine generator fueled with biogas that generated from POME, then comparing its performance fueled by gasoline. The performance included power, torque, specific fuel consumption, thermal efficiency, and the air-fuel ratio. Experiment was conducted by using a variation of the lamp load of 100, 200, 300, 400, and 500 W. The results revealed that the use of biogas as fuel decreased in power, torque, brake thermal efficiency, and air fuel ratio (AFR), while there is an increasing of value specific fuel consumption (SFC).

  2. Staged Reading of the Play: Delicate Particle Logic

    NASA Astrophysics Data System (ADS)

    2016-03-01

    The play explores the relationship between science and art through the story of the discovery of nuclear fission. Under the harshly male-dominated science elite of the time, Lise Meitner broke through to become the leader of a major scientific institute, and the first woman to have the title of ``Professor'' in all of Germany. Along with her long-time partner, chemist Otto Hahn, she began a series of experiments that led to the discovery of nuclear fission. The play presents a meeting between Dr. Meitner and Hahn's wife, Edith, who was a painter. The complicated swirl of their intertwined lives, two women and one man, mixes with the violent upheavals in the world, as the Nazis take over Germany and everything changes. The playwright is Jennifer Blackmer who is a faculty member in theatre at Ball State University http://www.jenniferblackmer.com/ and the staged reading is performed by the Pioneer Theatre Company, http://www.pioneertheatre.org/ of Salt Lake City. After the performance, the director and the actors will be available for a talk-back audience discussion. Produced by Brian Schwartz, Brooklyn College and the Graduate Center of the City University of New York.

  3. Rationalizing meat consumption. The 4Ns.

    PubMed

    Piazza, Jared; Ruby, Matthew B; Loughnan, Steve; Luong, Mischel; Kulik, Juliana; Watkins, Hanne M; Seigerman, Mirra

    2015-08-01

    Recent theorizing suggests that the 4Ns - that is, the belief that eating meat is natural, normal, necessary, and nice - are common rationalizations people use to defend their choice of eating meat. However, such theorizing has yet to be subjected to empirical testing. Six studies were conducted on the 4Ns. Studies 1a and 1b demonstrated that the 4N classification captures the vast majority (83%-91%) of justifications people naturally offer in defense of eating meat. In Study 2, individuals who endorsed the 4Ns tended also to objectify (dementalize) animals and included fewer animals in their circle of moral concern, and this was true independent of social dominance orientation. Subsequent studies (Studies 3-5) showed that individuals who endorsed the 4Ns tend not to be motivated by ethical concerns when making food choices, are less involved in animal-welfare advocacy, less driven to restrict animal products from their diet, less proud of their animal-product decisions, tend to endorse Speciesist attitudes, tend to consume meat and animal products more frequently, and are highly committed to eating meat. Furthermore, omnivores who strongly endorsed the 4Ns tended to experience less guilt about their animal-product decisions, highlighting the guilt-alleviating function of the 4Ns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. GESPA: classifying nsSNPs to predict disease association.

    PubMed

    Khurana, Jay K; Reeder, Jay E; Shrimpton, Antony E; Thakar, Juilee

    2015-07-25

    Non-synonymous single nucleotide polymorphisms (nsSNPs) are the most common DNA sequence variation associated with disease in humans. Thus determining the clinical significance of each nsSNP is of great importance. Potential detrimental nsSNPs may be identified by genetic association studies or by functional analysis in the laboratory, both of which are expensive and time consuming. Existing computational methods lack accuracy and features to facilitate nsSNP classification for clinical use. We developed the GESPA (GEnomic Single nucleotide Polymorphism Analyzer) program to predict the pathogenicity and disease phenotype of nsSNPs. GESPA is a user-friendly software package for classifying disease association of nsSNPs. It allows flexibility in acceptable input formats and predicts the pathogenicity of a given nsSNP by assessing the conservation of amino acids in orthologs and paralogs and supplementing this information with data from medical literature. The development and testing of GESPA was performed using the humsavar, ClinVar and humvar datasets. Additionally, GESPA also predicts the disease phenotype associated with a nsSNP with high accuracy, a feature unavailable in existing software. GESPA's overall accuracy exceeds existing computational methods for predicting nsSNP pathogenicity. The usability of GESPA is enhanced by fast SQL-based cloud storage and retrieval of data. GESPA is a novel bioinformatics tool to determine the pathogenicity and phenotypes of nsSNPs. We anticipate that GESPA will become a useful clinical framework for predicting the disease association of nsSNPs. The program, executable jar file, source code, GPL 3.0 license, user guide, and test data with instructions are available at http://sourceforge.net/projects/gespa.

  5. TFaNS-Tone Fan Noise Design/Prediction System: Users' Manual TFaNS Version 1.5

    NASA Technical Reports Server (NTRS)

    Topol, David A.; Huff, Dennis L. (Technical Monitor)

    2003-01-01

    TFaNS is the Tone Fan Noise Design/Prediction System developed by Pratt & Whitney under contract to NASA Glenn. The purpose of this system is to predict tone noise emanating from a fan stage including the effects of reflection and transmission by the rotor and stator and by the duct inlet and nozzle. The first version of this design system was developed under a previous NASA contract. Several improvements have been made to TFaNS. This users' manual shows how to run this new system. TFaNS consists of the codes that compute the acoustic properties (reflection and transmission coefficients) of the various elements and writes them to files, CUP3D Fan Noise Coupling Code that reads these files, solves the coupling problem, and outputs the desired noise predictions, and AWAKEN CFD/Measured Wake Postprocessor which reformats CFD wake predictions and/or measured wake data so they can be used by the system. This report provides information on code input and file structure essential for potential users of TFaNS.

  6. Feeding a sub-ns-risetime rectangular pulse onto a rod-shaped resistive high-voltage divider in risetime <2 ns

    NASA Astrophysics Data System (ADS)

    Zeng, Zhengzhong; Ma, Lianying

    2004-01-01

    A simple and effective bridge-type feeding network consisting only of ordinary resistors and conductive wires is designed and tested which launches a 0.8 ns risetime, 40 ns width, and kV-level rectangular pulse from a coaxial cable onto a rod-shaped resistive high-voltage divider with risetime <2 ns with no significant distortion.

  7. Identification of drug resistance and immune-driven variations in hepatitis C virus (HCV) NS3/4A, NS5A and NS5B regions reveals a new approach toward personalized medicine.

    PubMed

    Ikram, Aqsa; Obaid, Ayesha; Awan, Faryal Mehwish; Hanif, Rumeza; Naz, Anam; Paracha, Rehan Zafar; Ali, Amjad; Janjua, Hussnain Ahmed

    2017-01-01

    Cellular immune responses (T cell responses) during hepatitis C virus (HCV) infection are significant factors for determining the outcome of infection. HCV adapts to host immune responses by inducing mutations in its genome at specific sites that are important for HLA processing/presentation. Moreover, HCV also adapts to resist potential drugs that are used to restrict its replication, such as direct-acting antivirals (DAAs). Although DAAs have significantly reduced disease burden, resistance to these drugs is still a challenge for the treatment of HCV infection. Recently, drug resistance mutations (DRMs) observed in HCV proteins (NS3/4A, NS5A and NS5B) have heightened concern that the emergence of drug resistance may compromise the effectiveness of DAAs. Therefore, the NS3/4A, NS5A and NS5B drug resistance variations were investigated in this study, and their prevalence was examined in a large number of protein sequences from all HCV genotypes. Furthermore, potential CD4 + and CD8 + T cell epitopes were predicted and their overlap with genetic variations was explored. The findings revealed that many reported DRMs within NS3/4A, NS5A and NS5B are not drug-induced; rather, they are already present in HCV strains, as they were also detected in HCV-naïve patients. This study highlights several hot spots in which HLA and drug selective pressure overlap. Interestingly, these overlapping mutations were frequently observed among many HCV genotypes. This study implicates that knowledge of the host HLA type and HCV subtype/genotype can provide important information in defining personalized therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Single-ion quantum Otto engine with always-on bath interaction

    NASA Astrophysics Data System (ADS)

    Chand, Suman; Biswas, Asoka

    2017-06-01

    We demonstrate how the reciprocating heat cycle of a quantum Otto engine (QOE) can be implemented using a single ion and an always-on thermal environment. The internal degree of freedom of the ion is chosen as the working fluid, while the motional degree of freedom can be used as the cold bath. We show, that by adiabatically changing the local magnetic field, the work efficiency can be asymptotically made unity. We propose a projective measurement of the internal state of the ion that mimics the release of heat from the working fluid during the engine cycle. In our proposal, the coupling to the hot and the cold baths need not be switched off and on in an alternate fashion during the engine cycle, unlike other existing proposals of QOE. This renders the proposal experimentally feasible using the available tapped-ion engineering technology.

  9. [The Swiss archaeologist Otto Hauser. His skeletal findings and hypothesis on the evolution of man and his extensive activities in the development of prehistorical research and evolution].

    PubMed

    Drössler, Rudolf; Drössler, Sigrid; Freyberg, Manuela

    2006-03-01

    New investigations on Otto Hauser's skeleton findings and the excavations of this Swiss citizen in Southwest France from 1906 until 1914 placed the activities of this archaeologist again in the focus of scientific and public interest. This paper describes life and oeuvre of Otto Hauser and discusses the importance of the skeletons found by him and Hermann Klaatsch as well as the consequences of their discovery. The efforts of Otto Hauser to publish his discoveries, to present and spread his view concerning the evolution of man were remarkably manifold as well as the parallels between ancient man and contemporary ethnic groups living on a low technological level drawn by him and to wake and to promote the interest in prehistory. Many books, brochures, articles and public lectures contributed to this intention as well as co-operation with local historians and scientists of other disciplines, and also many films, teaching and illustrative materials. The scientific collection of the authors of this article comprises more than 6,500 written documents and photos.

  10. STD-NMR experiments identify a structural motif with novel second-site activity against West Nile virus NS2B-NS3 protease.

    PubMed

    Schöne, Tobias; Grimm, Lena Lisbeth; Sakai, Naoki; Zhang, Linlin; Hilgenfeld, Rolf; Peters, Thomas

    2017-10-01

    West Nile virus (WNV) belongs to the genus Flavivirus of the family Flaviviridae. This mosquito-borne virus that is highly pathogenic to humans has been evolving into a global threat during the past two decades. Despite many efforts, neither antiviral drugs nor vaccines are available. The viral protease NS2B-NS3 pro is essential for viral replication, and therefore it is considered a prime drug target. However, success in the development of specific NS2B-NS3 pro inhibitors had been moderate so far. In the search for new structural motifs with binding affinity for NS2B-NS3 pro , we have screened a fragment library, the Maybridge Ro5 library, employing saturation transfer difference (STD) NMR experiments as readout. About 30% of 429 fragments showed binding to NS2B-NS3 pro . Subsequent STD-NMR competition experiments using the known active site fragment A as reporter ligand yielded 14 competitively binding fragments, and 22 fragments not competing with A. In a fluorophore-based protease assay, all of these fragments showed inhibition in the micromolar range. Interestingly, 10 of these 22 fragments showed a notable increase of STD intensities in the presence of compound A suggesting cooperative binding. The most promising non-competitive inhibitors 1 and 2 (IC 50 ∼ 500 μM) share a structural motif that may guide the development of novel second-site (potentially allosteric) inhibitors of NS2B-NS3 pro . To identify the matching protein binding site, chemical shift perturbation studies employing 1 H, 15 N-TROSY-HSQC experiments with uniformly 2 H, 15 N-labeled protease were performed in the presence of 1, and in the concomitant absence or presence of A. The data suggest that 1 interacts with Met 52* of NS2B, identifying a secondary site adjacent to the binding site of A. Therefore, our study paves the way for the synthesis of novel bidentate NS2B-NS3 pro inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The contributions of Otto Scherzer (1909-1982) to the development of the electron microscope.

    PubMed

    Marko, Michael; Rose, Harald

    2010-08-01

    Otto Scherzer was one of the pioneers of theoretical electron optics. He was coauthor of the first comprehensive book on electron optics and was the first to understand that round electron lenses could not be combined to correct aberrations, as is the case in light optics. He subsequently was the first to describe several alternative means to correct spherical and chromatic aberration of electron lenses. These ideas were put into practice by his laboratory and students at Darmstadt and their successors, leading to the fully corrected electron microscopes now in operation.

  12. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...

  13. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...

  14. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...

  15. Substrate inhibition kinetic model for West Nile virus NS2B-NS3 protease.

    PubMed

    Tomlinson, Suzanne M; Watowich, Stanley J

    2008-11-11

    West Nile virus (WNV) has recently emerged in North America as a significant disease threat to humans and animals. Unfortunately, no approved antiviral drugs exist to combat WNV or other members of the genus Flavivirus in humans. The WNV NS2B-NS3 protease has been one of the primary targets for anti-WNV drug discovery and design since it is required for virus replication. As part of our efforts to develop effective WNV inhibitors, we reexamined the reaction kinetics of the NS2B-NS3 protease and the inhibition mechanisms of newly discovered inhibitors. The WNV protease showed substrate inhibition in assays utilizing fluorophore-linked peptide substrates GRR, GKR, and DFASGKR. Moreover, a substrate inhibition reaction step was required to accurately model kinetic data generated from protease assays with a peptide inhibitor. The substrate inhibition model suggested that peptide substrates could bind to two binding sites on the protease. Reaction product analogues also showed inhibition of the protease, demonstrating product inhibition in addition to and distinct from substrate inhibition. We propose that small peptide substrates and inhibitors may interact with protease residues that form either the P3-P1 binding surface (i.e., the S3-S1 sites) or the P1'-P3' interaction surface (i.e., the S1'-S3' sites). Optimization of substrate analogue inhibitors that target these two independent sites may lead to novel anti-WNV drugs.

  16. Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents Dengue 2 viral assembly.

    PubMed

    Senthilvel, Padmanaban; Lavanya, Pandian; Kumar, Kalavathi Murugan; Swetha, Rayapadi; Anitha, Parimelzaghan; Bag, Susmita; Sarveswari, Sundaramoorthy; Vijayakumar, Vijayaparthasarathi; Ramaiah, Sudha; Anbarasu, Anand

    2013-01-01

    Dengue virus belongs to the virus family Flaviviridae. Dengue hemorrhagic disease caused by dengue virus is a public health problem worldwide. The viral non structural 2B and 3 (NS2B-NS3) protease complex is crucial for virus replication and hence, it is considered to be a good anti-viral target. Leaf extracts from Carica papaya is generally prescribed for patients with dengue fever, but there are no scientific evidences for its anti-dengue activity; hence we intended to investigate the anti-viral activity of compounds present in the leaves of Carica papaya against dengue 2 virus (DENV-2). We analysed the anti-dengue activities of the extracts from Carica papaya by using bioinformatics tools. Interestingly, we find the flavonoid quercetin with highest binding energy against NS2B-NS3 protease which is evident by the formation of six hydrogen bonds with the amino acid residues at the binding site of the receptor. Our results suggest that the flavonoids from Carica papaya have significant anti-dengue activities. ADME - Absorption, distribution, metabolism and excretion, BBB - Blood brain barrier, CYP - Cytochrome P450, DENV - - Dengue virus, DHF - Dengue hemorrhagic fever, DSS - Dengue shock syndrome, GCMS - - Gas chromatography- Mass spectrometry, MOLCAD - Molecular Computer Aided Design, NS - Non structural, PDB - Protein data bank, PMF - Potential Mean Force.

  17. Extended substrate specificity and first potent irreversible inhibitor/activity-based probe design for Zika virus NS2B-NS3 protease.

    PubMed

    Rut, Wioletta; Zhang, Linlin; Kasperkiewicz, Paulina; Poreba, Marcin; Hilgenfeld, Rolf; Drąg, Marcin

    2017-03-01

    Zika virus is spread by Aedes mosquitoes and is linked to acute neurological disorders, especially to microcephaly in newborn children and Guillan-Barré Syndrome. The NS2B-NS3 protease of this virus is responsible for polyprotein processing and therefore considered an attractive drug target. In this study, we have used the Hybrid Combinatorial Substrate Library (HyCoSuL) approach to determine the substrate specificity of ZIKV NS2B-NS3 protease in the P4-P1 positions using natural and a large spectrum of unnatural amino acids. Obtained data demonstrate a high level of specificity of the S3-S1 subsites, especially for basic amino acids. However, the S4 site exhibits a very broad preference toward natural and unnatural amino acids with selected D-amino acids being favored over L enantiomers. This information was used for the design of a very potent phosphonate inhibitor/activity-based probe of ZIKV NS2B-NS3 protease. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Anthracene-based Inhibitors of Dengue Virus NS2B-NS3 Protease†

    PubMed Central

    Tomlinson, Suzanne M.; Watowich, Stanley J.

    2010-01-01

    Summary Dengue virus (DENV) is a mosquito-borne flavivirus that has strained global healthcare systems throughout tropical and subtropical regions of the world. In addition to plaguing developing nations, it has re-emerged in several developed countries with recent outbreaks in the USA (CDC, 2010), Australia (Hanna et al., 2009), Taiwan (Kuan et al., 2010) and France (La Ruche et al., 2010). DENV infection can cause significant disease, including dengue fever, dengue hemorrhagic fever, dengue shock syndrome, and death. There are no approved vaccines or antiviral therapies to prevent or treat dengue-related illnesses. However, the viral NS2B-NS3 protease complex provides a strategic target for antiviral drug development since NS3 protease activity is required for virus replication. Recently, we reported two compounds with inhibitory activity against the DENV protease in vitro and antiviral activity against dengue 2 (DEN2V) in cell culture (Tomlinson et al., 2009a). Analogs of one of the lead compounds were purchased, tested in protease inhibition assays, and the data evaluated with detailed kinetic analyses. A structure activity relationship (SAR) identified key atomic determinants (i.e. functional groups) important for inhibitory activity. Four “second series” analogs were selected and tested to validate our SAR and structural models. Here, we report improvements to inhibitory activity ranging between ~2- and 60-fold, resulting in selective low micromolar dengue protease inhibitors. PMID:21185332

  19. Einstein, Ethics and the Atomic Bomb

    NASA Astrophysics Data System (ADS)

    Rife, Patricia

    2005-03-01

    Einstein voiced his ethical views against war as well as fascism via venues and alliances with a variety of organizations still debated today. In 1939, he signed a letter to President Roosevelt (drafted by younger colleagues Szilard, Wigner and others) warning the U.S.government about the danger of Nazi Germany gaining control of uranium in the Belgian-controlled Congo in order to develop atomic weapons, based on the discovery of fission by Otto Hahn and Lise Meitner. In 1945, he became a member of the Princeton-based ``Emergency Committee for Atomic Scientists'' organized by Bethe, Condon, Bacher, Urey, Szilard and Weisskopf. Rare Einstein slides will illustrate Dr.Rife's presentation on Albert Einstein's philosophic and ethical convictions about peace, and public stance against war (1914-1950).

  20. NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease.

    PubMed

    Su, Xun-Cheng; Ozawa, Kiyoshi; Yagi, Hiromasa; Lim, Siew P; Wen, Daying; Ekonomiuk, Dariusz; Huang, Danzhi; Keller, Thomas H; Sonntag, Sebastian; Caflisch, Amedeo; Vasudevan, Subhash G; Otting, Gottfried

    2009-08-01

    The two-component NS2B-NS3 protease of West Nile virus is essential for its replication and presents an attractive target for drug development. Here, we describe protocols for the high-yield expression of stable isotope-labelled samples in vivo and in vitro. We also describe the use of NMR spectroscopy to determine the binding mode of new low molecular mass inhibitors of the West Nile virus NS2B-NS3 protease which were discovered using high-throughput in vitro screening. Binding to the substrate-binding sites S1 and S3 is confirmed by intermolecular NOEs and comparison with the binding mode of a previously identified low molecular mass inhibitor. Our results show that all these inhibitors act by occupying the substrate-binding site of the protease rather than by an allosteric mechanism. In addition, the NS2B polypeptide chain was found to be positioned near the substrate-binding site, as observed previously in crystal structures of the protease in complex with peptide inhibitors or bovine pancreatic trypsin inhibitor. This indicates that the new low molecular mass compounds, although inhibiting the protease, also promote the proteolytically active conformation of NS2B, which is very different from the crystal structure of the protein without inhibitor.

  1. PARP12 suppresses Zika virus infection through PARP-dependent degradation of NS1 and NS3 viral proteins.

    PubMed

    Li, Lili; Zhao, Hui; Liu, Ping; Li, Chunfeng; Quanquin, Natalie; Ji, Xue; Sun, Nina; Du, Peishuang; Qin, Cheng-Feng; Lu, Ning; Cheng, Genhong

    2018-06-19

    Zika virus infection stimulates a type I interferon (IFN) response in host cells, which suppresses viral replication. Type I IFNs exert antiviral effects by inducing the expression of hundreds of IFN-stimulated genes (ISGs). To screen for antiviral ISGs that restricted Zika virus replication, we individually knocked out 21 ISGs in A549 lung cancer cells and identified PARP12 as a strong inhibitor of Zika virus replication. Our findings suggest that PARP12 mediated the ADP-ribosylation of NS1 and NS3, nonstructural viral proteins that are involved in viral replication and modulating host defense responses. This modification of NS1 and NS3 triggered their proteasome-mediated degradation. These data increase our understanding of the antiviral activity of PARP12 and suggest a molecular basis for the potential development of therapeutics against Zika virus. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Exploring the Lead Compounds for Zika Virus NS2B-NS3 Protein: an e-Pharmacophore-Based Approach.

    PubMed

    Rohini, K; Agarwal, Pratika; Preethi, B; Shanthi, V; Ramanathan, K

    2018-06-18

    The rapid spread of the Zika virus and its association with the abnormal brain development constitute a global health emergency. With a continuing spread of the mosquito vector, the exposure is expected to accelerate in the coming years. Despite number of efforts, there is still no proper vaccine or medicine to combat this virus. Of note, the NS2B-NS3 protein is proven to be the potential target for the Zika virus therapeutics. Hence, e-pharmacophore-based drug design strategy was employed to identify potent inhibitors of NS2B-NS3 protein from ASINEX database consisting of 467,802 molecules. A 3D e-pharmacophore model was generated using PHASE module of Schrödinger Suite. The generated model consists of one hydrogen bond acceptor (A), two hydrogen bond donors (D), and two aromatic rings (R), ADDRR. The model was further evaluated for its ability to screen actives using enrichment analysis. Subsequently, high-throughput virtual screening protocol was employed, and the resultant hit molecules were also examined for its binding free energies and ADME properties using Prime MM-GBSA and Qikprop module of Schrodinger packages, respectively. Finally, the screened hit molecule was subjected to molecular dynamics simulation to examine its stability. Overall, the results from our analysis suggest that compound BAS 19192837 could be a potent inhibitor for the NS2B-NS3 protein of the Zika virus. It is also noteworthy to mention that our results are in good agreement with literature evidences. We hope that this result is of immense importance in designing potential drug molecules to combat the spread of Zika virus in the near future.

  3. Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Puxian; Fang, Liurong; Liu, Xiaorong

    Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus. Accessory proteins are genus-specific for coronavirus, and two putative accessory proteins, NS6 and NS7, are predicted to be encoded by PDCoV; however, this remains to be confirmed experimentally. Here, we identified the leader-body junction sites of NS6 subgenomic RNA (sgRNA) and found that the actual transcription regulatory sequence (TRS) utilized by NS6 is non-canonical and is located upstream of the predicted TRS. Using the purified NS6 from an Escherichia coli expression system, we obtained two anti-NS6 monoclonal antibodies that could detect the predicted NS6 in cells infected with PDCoV or transfectedmore » with NS6-expressing plasmids. Further studies revealed that NS6 is always localized in the cytoplasm of PDCoV-infected cells, mainly co-localizing with the endoplasmic reticulum (ER) and ER-Golgi intermediate compartments, as well as partially with the Golgi apparatus. Together, our results identify the NS6 sgRNA and demonstrate its expression in PDCoV-infected cells. -- Highlights: •The leader-body fusion site of NS6 sgRNA is identified. •NS6 sgRNA uses a non-canonical transcription regulatory sequence (TRS). •NS6 can be expressed in PDCoV-infected cell. •NS6 predominantly localize to the ER complex and ER-Golgi intermediate compartment.« less

  4. Delayed and highly specific antibody response to nonstructural protein 1 (NS1) revealed during natural human ZIKV infection by NS1-based capture ELISA.

    PubMed

    Gao, Xiujie; Wen, Yingfen; Wang, Jian; Hong, Wenxin; Li, Chunlin; Zhao, Lingzhai; Yin, Chibiao; Jin, Xia; Zhang, Fuchun; Yu, Lei

    2018-06-14

    Zika virus (ZIKV) had spread rapidly in the past few years in southern hemisphere where dengue virus (DENV) had caused epidemic problems for over half a century. The high degree of cross-reactivity of Envelope (E) protein specific antibody responses between ZIKV and DENV made it challenging to perform differential diagnosis between the two infections using standard ELISA method for E protein. Using an IgG capture ELISA, we investigated the kinetics of nonstructural protein 1 (NS1) antibody response during natural ZIKV infection and the cross-reactivity to NS1 proteins using convalescent sera obtained from patients infected by either DENV or ZIKV. The analyses of the sequential serum samples from ZIKV infected individuals showed NS1 specific Abs appeared 2 weeks later than E specific Abs. Notably, human sera from ZIKV infected individuals did not contain cross-reactivity to NS1 proteins of any of the four DENV serotypes. Furthermore, four out of five NS1-specific monoclonal antibodies (mAbs) isolated from ZIKV infected individuals did not bind to DENV NS1 proteins. Only limited amount of cross-reactivity to ZIKV NS1 was displayed in 108 DENV1 immune sera at 1:100 dilution. The high degree of NS1-specific Abs in both ZIKV and DENV infection revealed here suggest that NS1-based diagnostics would significantly improve the differential diagnosis between DENV and ZIKV infections.

  5. Nonstructural proteins nsP3 and nsP4 of Ross River and O'Nyong-nyong viruses: sequence and comparison with those of other alphaviruses.

    PubMed

    Strauss, E G; Levinson, R; Rice, C M; Dalrymple, J; Strauss, J H

    1988-05-01

    We have sequenced the nsP3 and nsP4 region of two alphaviruses, Ross River virus and O'Nyong-nyong virus, in order to examine these viruses for the presence or absence of an opal termination codon present between nsP3 and nsP4 in many alphaviruses. We found that Ross River virus possesses an in-phase opal termination codon between nsP3 and nsP4, whereas in O'Nyong-nyong virus this termination codon is replaced by an arginine codon. Previous studies have shown that two other alphaviruses, Sindbis virus and Middelburg virus, possess an opal termination codon separating nsP3 and nsP4 [E.G. Strauss, C.M. Rice, and J.H. Strauss (1983), Proc. Natl. Acad. Sci. USA 80, 5271-5275], whereas Semliki Forest virus possesses an arginine codon in lieu of the opal codon [K. Takkinen (1986), Nucleic Acids Res. 14, 5667-5682]. Thus, of the five alphaviruses examined to date, three possess the opal codon and two do not. Production of nsP4 requires readthrough of the opal codon in those alphaviruses that possess this termination codon and the function of the termination codon may be to regulate the amount of nsP4 produced. It is an open question then as to whether alphaviruses with no termination codon use other mechanisms to regulate the activity of this gene. The nsP4s of these five alphaviruses are highly conserved, sharing 71-76% amino acid sequence similarity, and all five contain the Gly-Asp-Asp motif found in many RNA virus replicases. The nsP3s are somewhat less conserved, sharing 52-73% amino acid sequence similarity throughout most of the protein, but each possesses a nonconserved C-terminal domain of 134 to 246 amino acids of unknown function.

  6. Further theoretical insight into the reaction mechanism of the hepatitis C NS3/NS4A serine protease

    NASA Astrophysics Data System (ADS)

    Martínez-González, José Ángel; Rodríguez, Alex; Puyuelo, María Pilar; González, Miguel; Martínez, Rodrigo

    2015-01-01

    The main reactions of the hepatitis C virus NS3/NS4A serine protease are studied using the second-order Møller-Plesset ab initio method and rather large basis sets to correct the previously reported AM1/CHARMM22 potential energy surfaces. The reaction efficiencies measured for the different substrates are explained in terms of the tetrahedral intermediate formation step (the rate-limiting process). The energies of the barrier and the corresponding intermediate are so close that the possibility of a concerted mechanism is open (especially for the NS5A/5B substrate). This is in contrast to the suggested general reaction mechanism of serine proteases, where a two-step mechanism is postulated.

  7. Multilevel quantum Otto heat engines with identical particles

    NASA Astrophysics Data System (ADS)

    Huang, X. L.; Guo, D. Y.; Wu, S. L.; Yi, X. X.

    2018-02-01

    A quantum Otto heat engine is studied with multilevel identical particles trapped in one-dimensional box potential as working substance. The symmetrical wave function for Bosons and the anti-symmetrical wave function for Fermions are considered. In two-particle case, we focus on the ratios of W^i (i=B,F) to W_s, where W^B and W^F are the work done by two Bosons and Fermions, respectively, and W_s is the work output of a single particle under the same conditions. Due to the symmetrical of the wave functions, the ratios are not equal to 2. Three different regimes, low-temperature regime, high-temperature regime, and intermediate-temperature regime, are analyzed, and the effects of energy level number and the differences between the two baths are calculated. In the multiparticle case, we calculate the ratios of W^i_M/M to W_s, where W^i_M/M can be seen as the average work done by a single particle in multiparticle heat engine. For other working substances whose energy spectrum has the form of E_n˜ n^2, the results are similar. For the case E_n˜ n, two different conclusions are obtained.

  8. Sindbis virus proteins nsP1 and nsP2 contain homology to nonstructural proteins from several RNA plant viruses.

    PubMed Central

    Ahlquist, P; Strauss, E G; Rice, C M; Strauss, J H; Haseloff, J; Zimmern, D

    1985-01-01

    Although the genetic organization of tobacco mosaic virus (TMV) differs considerably from that of the tripartite viruses (alfalfa mosaic virus [AlMV] and brome mosaic virus [BMV]), all of these RNA plant viruses share three domains of homology among their nonstructural proteins. One such domain, common to the AlMV and BMV 2a proteins and the readthrough portion of TMV p183, is also homologous to the readthrough protein nsP4 of Sindbis virus (Haseloff et al., Proc. Natl. Acad. Sci. U.S.A. 81:4358-4362, 1984). Two more domains are conserved among the AlMV and BMV 1a proteins and TMV p126. We show here that these domains have homology with portions of the Sindbis proteins nsP1 and nsP2, respectively. These results strengthen the view that the four viruses share mechanistic similarities in their replication strategies and may be evolutionarily related. These results also suggest that either the AlMV 1a, BMV 1a, and TMV p126 proteins are multifunctional or Sindbis proteins nsP1 and nsP2 function together as subunits in a single complex. PMID:3968720

  9. Novel dengue virus NS2B/NS3 protease inhibitors.

    PubMed

    Wu, Hongmei; Bock, Stefanie; Snitko, Mariya; Berger, Thilo; Weidner, Thomas; Holloway, Steven; Kanitz, Manuel; Diederich, Wibke E; Steuber, Holger; Walter, Christof; Hofmann, Daniela; Weißbrich, Benedikt; Spannaus, Ralf; Acosta, Eliana G; Bartenschlager, Ralf; Engels, Bernd; Schirmeister, Tanja; Bodem, Jochen

    2015-02-01

    Dengue fever is a severe, widespread, and neglected disease with more than 2 million diagnosed infections per year. The dengue virus NS2B/NS3 protease (PR) represents a prime target for rational drug design. At the moment, there are no clinical PR inhibitors (PIs) available. We have identified diaryl (thio)ethers as candidates for a novel class of PIs. Here, we report the selective and noncompetitive inhibition of the serotype 2 and 3 dengue virus PR in vitro and in cells by benzothiazole derivatives exhibiting 50% inhibitory concentrations (IC50s) in the low-micromolar range. Inhibition of replication of DENV serotypes 1 to 3 was specific, since all substances influenced neither hepatitis C virus (HCV) nor HIV-1 replication. Molecular docking suggests binding at a specific allosteric binding site. In addition to the in vitro assays, a cell-based PR assay was developed to test these substances in a replication-independent way. The new compounds inhibited the DENV PR with IC50s in the low-micromolar or submicromolar range in cells. Furthermore, these novel PIs inhibit viral replication at submicromolar concentrations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Functional interplay among the flavivirus NS3 protease, helicase, and cofactors.

    PubMed

    Li, Kuohan; Phoo, Wint Wint; Luo, Dahai

    2014-04-01

    Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses (NS2BNS3) form an endoplasmic reticulum (ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.

  11. Revision of Sternaspis Otto, 1821 (Polychaeta, Sternaspidae)

    PubMed Central

    Sendall, Kelly; Salazar-Vallejo, Sergio I.

    2013-01-01

    Abstract To the memory of William Ronald Sendall Sternaspid polychaetes are common and often abundant in soft bottoms in the world oceans. Some authors suggest that only one species should be recognized, whereas others regard a few species as widely distributed in many seas and variable depths from the low intertidal to about 4400 m. There are some problems with species delineation and the distinctive ventro-caudal shield has been disregarded or barely used for identifying species. In order to clarify these issues, the ventral shield is evaluated in specimens from the same locality and its diagnostic potential is confirmed. On this basis, a revision of Sternaspis Otto, 1821 (Polychaeta: Sternaspidae) is presented based upon type materials, or material collected from type localities. The sternaspid body, introvert hooks and shield show three distinct patterns, two genera have seven abdominal segments and tapered introvert hooks, and one genus has eight abdominal segments and spatulate introvert hooks. The ventro-caudal shield has three different patterns: stiff with ribs, and sometimes concentric lines, stiff with feebly-defined ribs but no concentric lines, and soft with firmly adhered sediment particles. Sternaspis is restricted to include species with seven abdominal segments, falcate introvert hooks, and stiff shields, often exhibiting radial ribs, concentric lines or both. Sternaspis includes, besides the type species, Sternaspis thalassemoides Otto, 1821 from the Mediterranean Sea, Sternaspis affinis Stimpson, 1864 from the Northeastern Pacific, Sternaspis africana Augener, 1918, stat. n. from Western Africa, Sternaspis andamanensis sp. n. from the Andaman Sea, Sternaspis costata von Marenzeller, 1879 from Japan, Sternaspis fossor Stimpson, 1853 from the Northwestern Atlantic, Sternaspis islandica Malmgren, 1867 from Iceland, Sternaspis maior Chamberlin, 1919 from the Gulf of California, Sternaspis princeps Selenka, 1885 from New Zealand, Sternaspis rietschi

  12. Revision of sternaspis otto, 1821 (polychaeta, sternaspidae).

    PubMed

    Sendall, Kelly; Salazar-Vallejo, Sergio I

    2013-01-01

    To the memory of William Ronald Sendall Sternaspid polychaetes are common and often abundant in soft bottoms in the world oceans. Some authors suggest that only one species should be recognized, whereas others regard a few species as widely distributed in many seas and variable depths from the low intertidal to about 4400 m. There are some problems with species delineation and the distinctive ventro-caudal shield has been disregarded or barely used for identifying species. In order to clarify these issues, the ventral shield is evaluated in specimens from the same locality and its diagnostic potential is confirmed. On this basis, a revision of Sternaspis Otto, 1821 (Polychaeta: Sternaspidae) is presented based upon type materials, or material collected from type localities. The sternaspid body, introvert hooks and shield show three distinct patterns, two genera have seven abdominal segments and tapered introvert hooks, and one genus has eight abdominal segments and spatulate introvert hooks. The ventro-caudal shield has three different patterns: stiff with ribs, and sometimes concentric lines, stiff with feebly-defined ribs but no concentric lines, and soft with firmly adhered sediment particles. Sternaspis is restricted to include species with seven abdominal segments, falcate introvert hooks, and stiff shields, often exhibiting radial ribs, concentric lines or both. Sternaspis includes, besides the type species, Sternaspis thalassemoides Otto, 1821 from the Mediterranean Sea, Sternaspis affinis Stimpson, 1864 from the Northeastern Pacific, Sternaspis africana Augener, 1918, stat. n. from Western Africa, Sternaspis andamanensis sp. n. from the Andaman Sea, Sternaspis costata von Marenzeller, 1879 from Japan, Sternaspis fossor Stimpson, 1853 from the Northwestern Atlantic, Sternaspis islandica Malmgren, 1867 from Iceland, Sternaspis maior Chamberlin, 1919 from the Gulf of California, Sternaspis princeps Selenka, 1885 from New Zealand, Sternaspis rietschi Caullery

  13. Person-Environment Mergence and Separation: Otto Rank's Psychology of Emotion, Personality, and Culture.

    PubMed

    Sullivan, Daniel

    2016-12-01

    Between 1924 and 1939 Otto Rank put forward three major elements of a comprehensive theoretical edifice that has yet to be fully articulated. These are conceptually linked by the fundamental importance of person-environment mergence and separation. Rank's theory of emotions highlights anxiety as the affect of separation, and guilt as the feeling that binds the individual to others. His personality theory distinguishes between the partialist, who responds to life fear with identification, and the totalist, who responds to death fear with projection. His cultural psychology contrasts primal collectivism with contemporary individualism, which orients the person toward individual immortality striving. Individualism has produced problematic self-consciousness and neuroticism, in the face of which Rank struggled to find a new psychology.

  14. Cleavage preference distinguishes the two-component NS2B-NS3 serine proteinases of Dengue and West Nile viruses.

    PubMed

    Shiryaev, Sergey A; Kozlov, Igor A; Ratnikov, Boris I; Smith, Jeffrey W; Lebl, Michal; Strongin, Alex Y

    2007-02-01

    Regulated proteolysis of the polyprotein precursor by the NS2B-NS3 protease is required for the propagation of infectious virions. Unless the structural and functional parameters of NS2B-NS3 are precisely determined, an understanding of its functional role and the design of flaviviral inhibitors will be exceedingly difficult. Our objectives were to define the substrate recognition pattern of the NS2B-NS3 protease of West Nile and Dengue virises (WNV and DV respectively). To accomplish our goals, we used an efficient, 96-well plate format, method for the synthesis of 9-mer peptide substrates with the general P4-P3-P2-P1-P1'-P2'-P3'-P4'-Gly structure. The N-terminus and the constant C-terminal Gly of the peptides were tagged with a fluorescent tag and with a biotin tag respectively. The synthesis was followed by the proteolytic cleavage of the synthesized, tagged peptides. Because of the strict requirement for the presence of basic amino acid residues at the P1 and the P2 substrate positions, the analysis of approx. 300 peptide sequences was sufficient for an adequate representation of the cleavage preferences of the WNV and DV proteinases. Our results disclosed the strict substrate specificity of the WNV protease for which the (K/R)(K/R)R/GG amino acid motifs was optimal. The DV protease was less selective and it tolerated well the presence of a number of amino acid residue types at either the P1' or the P2' site, as long as the other position was occupied by a glycine residue. We believe that our data represent a valuable biochemical resource and a solid foundation to support the design of selective substrates and synthetic inhibitors of flaviviral proteinases.

  15. Much Polyphony but Little Harmony: Otto Sackur's Groping for a Quantum Theory of Gases

    NASA Astrophysics Data System (ADS)

    Badino, Massimiliano; Friedrich, Bretislav

    2013-09-01

    The endeavor of Otto Sackur (1880-1914) was driven, on the one hand, by his interest in Nernst's heat theorem, statistical mechanics, and the problem of chemical equilibrium and, on the other hand, by his goal to shed light on classical mechanics from the quantum vantage point. Inspired by the interplay between classical physics and quantum theory, Sackur chanced to expound his personal take on the role of the quantum in the changing landscape of physics in the turbulent 1910s. We tell the story of this enthusiastic practitioner of the old quantum theory and early contributor to quantum statistical mechanics, whose scientific ontogenesis provides a telling clue about the phylogeny of his contemporaries.

  16. Synthesis and disulfide bond connectivity-activity studies of a kalata B1-inspired cyclopeptide against dengue NS2B-NS3 protease.

    PubMed

    Gao, Yaojun; Cui, Taian; Lam, Yulin

    2010-02-01

    Kalata B1 is a plant protein with remarkable thermal, chemical and enzymatic stability. Its potential applications could be centered on the possibility of using its cyclic structure and cystine knot motif as a scaffold for the design of stable pharmaceuticals. To discover potent dengue NS2B-NS3 protease inhibitors, we have prepared various kalata B1 analogues by varying the amino acid sequence. Mass spectrometric and biochemical investigations of these analogues revealed a cyclopeptide whose two fully oxidized forms are substrate-competitive inhibitors of the dengue viral NS2B-NS3 protease. Both oxidized forms showed potent inhibition with K(i) of 1.39+/-0.35 and 3.03+/-0.75 microM, respectively. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  17. Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side.

    PubMed

    Lin, Kuan-Hung; Ali, Akbar; Rusere, Linah; Soumana, Djade I; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-15

    The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a K i value of 2.9 μM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV. IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti , continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors

  18. Otto Rank, the Rankian circle in Philadelphia, and the origins of Carl Rogers' person-centered psychotherapy.

    PubMed

    deCarvalho, R J

    1999-05-01

    Otto Rank's will therapy helped shape the ideas and techniques of relationship therapy developed by the Philadelphia social workers Jessie Taft, Virginia Robinson, and Frederick Allen in the 1930s. Rank's work and these ideas and techniques in turn strongly influenced the formulation of Carl Rogers' person-centered psychotherapy. This article compares and contrasts will, relationship, and person-centered approaches to psychotherapy and discusses the social factors--primarily the professional conflicts between a male-dominated psychiatry and female social workers over the independent practice of psychotherapy--that were crucial in the dissemination of Rank's psychological thought and the early popularity of Rogers.

  19. Note: A rectangular pulse generator for 50 kV voltage, 0.8 ns rise time, and 10 ns pulse width based on polymer-film switch.

    PubMed

    Wu, Hanyu; Zhang, Xinjun; Sun, Tieping; Zeng, Zhengzhong; Cong, Peitian; Zhang, Shaoguo

    2015-10-01

    In this article, we describe a rectangular pulse generator, consisting of a polymer-film switch, a tri-plate transmission line, and parallel post-shaped ceramic resistor load, for 50-kV voltage, 0.8-ns rise time, and 10-ns width. The switch and resistors are arranged in atmospheric air and the transmission line can work in atmospheric air or in transformer oil to change the pulse width from 6.7 ns to 10 ns. The fast switching and low-inductance characteristics of the polymer-film switch ensure the fast rising wavefront of <1 ns. This generator can be applied in the calibration of nanosecond voltage dividers and used for electromagnetic pulse tests as a fast-rising current injection source.

  20. A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease

    PubMed Central

    Liu, Binbin; Zhang, Jing; Koetzner, Cheri A.; Jones, Susan A.; Lin, Qishan

    2017-01-01

    The flavivirus genome encodes a single polyprotein precursor requiring multiple cleavages by host and viral proteases in order to produce the individual proteins that constitute an infectious virion. Previous studies have revealed that the NS2B cofactor of the viral NS2B-NS3 heterocomplex protease displays a conformational dynamic between active and inactive states. Here, we developed a conformational switch assay based on split luciferase complementation (SLC) to monitor the conformational change of NS2B and to characterize candidate allosteric inhibitors. Binding of an active-site inhibitor to the protease resulted in a conformational change of NS2B and led to significant SLC enhancement. Mutagenesis of key residues at an allosteric site abolished this induced conformational change and SLC enhancement. We also performed a virtual screen of NCI library compounds to identify allosteric inhibitors, followed by in vitro biochemical screening of the resultant candidates. Only three of these compounds, NSC135618, 260594, and 146771, significantly inhibited the protease of Dengue virus 2 (DENV2) in vitro, with IC50 values of 1.8 μM, 11.4 μM, and 4.8 μM, respectively. Among the three compounds, only NSC135618 significantly suppressed the SLC enhancement triggered by binding of active-site inhibitor in a dose-dependent manner, indicating that it inhibits the conformational change of NS2B. Results from virus titer reduction assays revealed that NSC135618 is a broad spectrum flavivirus protease inhibitor, and can significantly reduce titers of DENV2, Zika virus (ZIKV), West Nile virus (WNV), and Yellow fever virus (YFV) on A549 cells in vivo, with EC50 values in low micromolar range. In contrast, the cytotoxicity of NSC135618 is only moderate with CC50 of 48.8 μM on A549 cells. Moreover, NSC135618 inhibited ZIKV in human placental and neural progenitor cells relevant to ZIKV pathogenesis. Results from binding, kinetics, Western blot, mass spectrometry and mutagenesis

  1. The influenza virus NS1 protein as a therapeutic target.

    PubMed

    Engel, Daniel A

    2013-09-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2'-5' oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN-β mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  2. The influenza virus NS1 protein as a therapeutic target

    PubMed Central

    Engel, Daniel A.

    2015-01-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2’-5’ oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN- mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. PMID:23796981

  3. [Bioinformatics analysis of mosquito densovirus nostructure protein NS1].

    PubMed

    Dong, Yun-qiao; Ma, Wen-li; Gu, Jin-bao; Zheng, Wen-ling

    2009-12-01

    To analyze and predict the structure and function of mosquito densovirus (MDV) nostructual protein1 (NS1). Using different bioinformatics software, the EXPASY pmtparam tool, ClustalX1.83, Bioedit, MEGA3.1, ScanProsite, and Motifscan, respectively to comparatively analyze and predict the physic-chemical parameters, homology, evolutionary relation, secondary structure and main functional motifs of NS1. MDV NS1 protein was a unstable hydrophilic protein and the amino acid sequence was highly conserved which had a relatively closer evolutionary distance with infectious hypodermal and hematopoietic necrosis virus (IHHNV). MDV NS1 has a specific domain of superfamily 3 helicase of small DNA viruses. This domain contains the NTP-binding region with a metal ion-dependent ATPase activity. A virus replication roller rolling-circle replication(RCR) initiation domain was found near the N terminal of this protein. This protien has the biological function of single stranded incision enzyme. The bioinformatics prediction results suggest that MDV NS1 protein plays a key role in viral replication, packaging, and the other stages of viral life.

  4. The effect of classical swine fever virus NS5A and NS5A mutants on oxidative stress and inflammatory response in swine testicular cells.

    PubMed

    Dong, Wang; Lv, Huifang; Wang, Yifan; Li, Xiaomeng; Li, Cheng; Wang, Lu; Wang, Chengbao; Guo, Kangkang; Zhang, Yanming

    2017-06-01

    Infection with classical swine fever virus (CSFV) results in highly significant economic losses; this infection is characterized by being highly contagious and accompanied by hyperthermia and systemic bleeding. Oxidative stress (OS) plays a critical role in the pathological process of viral infection. The function of the nonstructural protein 5A (NS5A) in the pathogenesis of CSFV has not been completely understood. Here, OS and the inflammatory response were studied with NS5A and substitution mutants in swine testicular (ST) cells. ST cell lines stably expressing CSFV NS5A or substitution mutants were established. Reactive oxygen species (ROS) production, antioxidant protein expression and inflammatory response were analyzed by quantitative real-time PCR (qRT-PCR), ELISA and flow cytometry analysis. The results showed that CSFV NS5A did not increase ROS production or the antioxidant protein (Trx, HO-1 and PRDX-6) expression in ST cells. However, NS5A inhibited cyclooxygenase-2 (COX-2) expression, a pro-inflammatory protein related to OS. Further studies have shown that NS5A mutants S15A and S92A increased ROS production and inhibited antioxidant protein expression. S15A, S81A and T274A affected the inflammatory response. This study suggested that CSFV NS5A did not induce OS, and amino acids Ser15 and Ser92 of CSFV NS5A were essential for inhibiting OS. Additionally, Ser15, Ser81 and Thr274 played important roles in the inflammatory response in ST cells. These observations provided insight into the function of CSFV NS5A and the mechanism of CSFV persistent infection in ST cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1' may derive from ribosomal frameshifting

    PubMed Central

    Firth, Andrew E; Atkins, John F

    2009-01-01

    Japanese encephalitis, West Nile, Usutu and Murray Valley encephalitis viruses form a tight subgroup within the larger Flavivirus genus. These viruses utilize a single-polyprotein expression strategy, resulting in ~10 mature proteins. Plotting the conservation at synonymous sites along the polyprotein coding sequence reveals strong conservation peaks at the very 5' end of the coding sequence, and also at the 5' end of the sequence encoding the NS2A protein. Such peaks are generally indicative of functionally important non-coding sequence elements. The second peak corresponds to a predicted stable pseudoknot structure whose biological importance is supported by compensatory mutations that preserve the structure. The pseudoknot is preceded by a conserved slippery heptanucleotide (Y CCU UUU), thus forming a classical stimulatory motif for -1 ribosomal frameshifting. We hypothesize, therefore, that the functional importance of the pseudoknot is to stimulate a portion of ribosomes to shift -1 nt into a short (45 codon), conserved, overlapping open reading frame, termed foo. Since cleavage at the NS1-NS2A boundary is known to require synthesis of NS2A in cis, the resulting transframe fusion protein is predicted to be NS1-NS2AN-term-FOO. We hypothesize that this may explain the origin of the previously identified NS1 'extension' protein in JEV-group flaviviruses, known as NS1'. PMID:19196463

  6. Characterization of NS5A and NS5B Resistance-Associated Substitutions from Genotype 1 Hepatitis C Virus Infected Patients in a Portuguese Cohort.

    PubMed

    Brandão, Ruben; Marcelino, Rute; Gonçalves, Fátima; Diogo, Isabel; Carvalho, Ana; Cabanas, Joaquim; Costa, Inês; Brogueira, Pedro; Ventura, Fernando; Miranda, Ana; Mansinho, Kamal; Gomes, Perpétua

    2018-04-26

    This study is focused on the prevalent NS5 coding region resistance-associated substitutions (RASs) in DAA-naive genotype (GT)1 HCV-infected patients and their potential impact on success rates. Plasma RNA from 81 GT1 HCV-infected patients was extracted prior to an in-house nested RT-PCR of the NS5 coding region, which is followed by Sanger population sequencing. NS5A RASs were present in 28.4% (23/81) of all GT1-infected patients with 9.9% (8/81) having the Y93C/H mutation. NS5B RASs showed a prevalence of 14.8% (12/81) and were only detected in GT1b. Overall 38.3% (31/81) of all GT1 HCV-infected patients presented baseline RASs. The obtained data supports the usefulness of resistance testing prior to treatment since a statistically significant association was found between treatment failure and the baseline presence of specific NS5 RASs known as Y93C/H ( p = 0.04).

  7. Infection of Common Marmosets with GB Virus B Chimeric Virus Encoding the Major Nonstructural Proteins NS2 to NS4A of Hepatitis C Virus

    PubMed Central

    Zhu, Shaomei; Liu, Bochao; Xu, Yuxia; Sun, Yachun; Wang, Yilin; Wang, Yuanzhan; Shuai, Lifang; Chen, Zixuan; Allain, Jean-Pierre

    2016-01-01

    ABSTRACT A lack of immunocompetent-small-primate models has been an obstacle for developing hepatitis C virus (HCV) vaccines and affordable antiviral drugs. In this study, HCV/GB virus B (GBV-B) chimeric virus carrying the major nonstructural proteins NS2 to NS4A (HCV NS2 to -4A chimera) was produced and used to infect common marmosets, since HCV NS2 to NS4A proteins are critical proteases and major antigens. Seven marmosets were inoculated intrahepatically with HCV NS2 to -4A chimera RNA for primary infection or intravenously injected with chimera-containing serum for passage infection. Three animals used as controls were injected with phosphate-buffered saline (PBS) or GBV-B, respectively. Six of seven HCV NS2 to -4A chimera-infected marmosets exhibited consistent viremia and one showed transient viremia during the course of follow-up detection. All six infected animals with persistent circulating viremia presented characteristics typical of viral hepatitis, including viral RNA and proteins in hepatocytes and histopathological changes in liver tissue. Viremia was consistently detected for 5 to 54 weeks of follow-up. FK506 immunosuppression facilitated the establishment of persistent chimera infection in marmosets. An animal with chimera infection spontaneously cleared the virus in blood 7 weeks following the first inoculation, but viral-RNA persistence, low-level viral protein, and mild necroinflammation remained in liver tissue. The specific antibody and T-cell response to HCV NS3 in this viremia-resolved marmoset was boosted by rechallenging, but no viremia was detected during 57 weeks of follow-up. The chimera-infected marmosets described can be used as a suitable small-primate animal model for studying novel antiviral drugs and T-cell-based vaccines against HCV infection. IMPORTANCE HCV infection causes approximately 70% of chronic hepatitis and is frequently associated with primary liver cancer globally. Chimpanzees have been used as a reliable primate model

  8. Infection of Common Marmosets with GB Virus B Chimeric Virus Encoding the Major Nonstructural Proteins NS2 to NS4A of Hepatitis C Virus.

    PubMed

    Zhu, Shaomei; Li, Tingting; Liu, Bochao; Xu, Yuxia; Sun, Yachun; Wang, Yilin; Wang, Yuanzhan; Shuai, Lifang; Chen, Zixuan; Allain, Jean-Pierre; Li, Chengyao

    2016-09-15

    A lack of immunocompetent-small-primate models has been an obstacle for developing hepatitis C virus (HCV) vaccines and affordable antiviral drugs. In this study, HCV/GB virus B (GBV-B) chimeric virus carrying the major nonstructural proteins NS2 to NS4A (HCV NS2 to -4A chimera) was produced and used to infect common marmosets, since HCV NS2 to NS4A proteins are critical proteases and major antigens. Seven marmosets were inoculated intrahepatically with HCV NS2 to -4A chimera RNA for primary infection or intravenously injected with chimera-containing serum for passage infection. Three animals used as controls were injected with phosphate-buffered saline (PBS) or GBV-B, respectively. Six of seven HCV NS2 to -4A chimera-infected marmosets exhibited consistent viremia and one showed transient viremia during the course of follow-up detection. All six infected animals with persistent circulating viremia presented characteristics typical of viral hepatitis, including viral RNA and proteins in hepatocytes and histopathological changes in liver tissue. Viremia was consistently detected for 5 to 54 weeks of follow-up. FK506 immunosuppression facilitated the establishment of persistent chimera infection in marmosets. An animal with chimera infection spontaneously cleared the virus in blood 7 weeks following the first inoculation, but viral-RNA persistence, low-level viral protein, and mild necroinflammation remained in liver tissue. The specific antibody and T-cell response to HCV NS3 in this viremia-resolved marmoset was boosted by rechallenging, but no viremia was detected during 57 weeks of follow-up. The chimera-infected marmosets described can be used as a suitable small-primate animal model for studying novel antiviral drugs and T-cell-based vaccines against HCV infection. HCV infection causes approximately 70% of chronic hepatitis and is frequently associated with primary liver cancer globally. Chimpanzees have been used as a reliable primate model for HCV infection

  9. The possible existence of Pop III NS-BH binary and its detectability

    NASA Astrophysics Data System (ADS)

    Kinugawa, Tomoya; Nakamura, Takashi; Nakano, Hiroyuki

    2017-02-01

    In the population synthesis simulations of Pop III stars, many BH (black hole)-BH binaries with merger time less than the age of the Universe (τH) are formed, while NS (neutron star)-BH binaries are not. The reason is that Pop III stars have no metal so that no mass loss is expected. Then, in the final supernova explosion to NS, much mass is lost so that the semimajor axis becomes too large for Pop III NS-BH binaries to merge within τH . However it is almost established that the kick velocity of the order of 200 ‑500  km s‑1 exists for NS from the observation of the proper motion of the pulsar. Therefore, the semimajor axis of the half of NS-BH binaries can be smaller than that of the previous argument for Pop III NS-BH binaries to decrease the merging time. We perform population synthesis Monte Carlo simulations of Pop III NS-BH binaries including the kick of NS and find that the event rate of Pop III NS-BH merger rate is 1  Gpc‑3 yr‑1 . This suggests that there is a good chance of detecting Pop III NS-BH mergers in O2 (Observation run 2) of Advanced LIGO and Advanced Virgo from this autumn.

  10. Fast hepatitis C virus RNA elimination and NS5A redistribution by NS5A inhibitors studied by a multiplex assay approach.

    PubMed

    Liu, Dandan; Ji, Juan; Ndongwe, Tanya P; Michailidis, Eleftherios; Rice, Charles M; Ralston, Robert; Sarafianos, Stefan G

    2015-01-01

    While earlier therapeutic strategies for the treatment of hepatitis C virus (HCV) infection relied exclusively on interferon (IFN) and ribavirin (RBV), four direct-acting antiviral agents (DAAs) have now been approved, aiming for an interferon-free strategy with a short treatment duration and fewer side effects. To facilitate studies on the mechanism of action (MOA) and efficacy of DAAs, we established a multiplex assay approach, which employs flow cytometry, a Gaussia luciferase reporter system, Western blot analysis, reverse transcription-quantitative PCR (RT-qPCR), a limited dilution assay (50% tissue culture infectious dose [TCID50]), and an image profiling assay that follows the NS5A redistribution in response to drug treatment. We used this approach to compare the relative potency of various DAAs and the kinetics of their antiviral effects as a potential preclinical measure of their potential clinical utility. We evaluated the NS5A inhibitors ledipasvir (LDV) and daclatasvir (DCV), the NS3/4A inhibitor danoprevir (DNV), and the NS5B inhibitor sofosbuvir (SOF). In terms of kinetics, our data demonstrate that the NS5A inhibitor LDV, followed closely by DCV, has the fastest effect on suppression of viral proteins and RNA and on redistribution of NS5A. In terms of MOA, LDV has a more pronounced effect than DCV on the viral replication, assembly, and infectivity of released virus. Our approach can be used to facilitate the study of the biological processes involved in HCV replication and help identify optimal drug combinations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Sound vibration signal processing for detection and identification detonation (knock) to optimize performance Otto engine

    NASA Astrophysics Data System (ADS)

    Sujono, A.; Santoso, B.; Juwana, W. E.

    2016-03-01

    Problems of detonation (knock) on Otto engine (petrol engine) is completely unresolved problem until now, especially if want to improve the performance. This research did sound vibration signal processing engine with a microphone sensor, for the detection and identification of detonation. A microphone that can be mounted is not attached to the cylinder block, that's high temperature, so that its performance will be more stable, durable and inexpensive. However, the method of analysis is not very easy, because a lot of noise (interference). Therefore the use of new methods of pattern recognition, through filtration, and the regression function normalized envelope. The result is quite good, can achieve a success rate of about 95%.

  12. Interactome Analysis of NS1 Protein Encoded by Influenza A H7N9 Virus Reveals an Inhibitory Role of NS1 in Host mRNA Maturation.

    PubMed

    Kuo, Rei-Lin; Chen, Chi-Jene; Tam, Ee-Hong; Huang, Chung-Guei; Li, Li-Hsin; Li, Zong-Hua; Su, Pei-Chia; Liu, Hao-Ping; Wu, Chih-Ching

    2018-04-06

    Influenza A virus infections can result in severe respiratory diseases. The H7N9 subtype of avian influenza A virus has been transmitted to humans and caused severe disease and death. Nonstructural protein 1 (NS1) of influenza A virus is a virulence determinant during viral infection. To elucidate the functions of the NS1 encoded by influenza A H7N9 virus (H7N9 NS1), interaction partners of H7N9 NS1 in human cells were identified with immunoprecipitation followed by SDS-PAGE coupled with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). We identified 36 cellular proteins as the interacting partners of the H7N9 NS1, and they are involved in RNA processing, mRNA splicing via spliceosome, and the mRNA surveillance pathway. Two of the interacting partners, cleavage and polyadenylation specificity factor subunit 2 (CPSF2) and CPSF7, were confirmed to interact with H7N9 NS1 using coimmunoprecipitation and immunoblotting based on the previous finding that the two proteins are involved in pre-mRNA polyadenylation machinery. Furthermore, we illustrate that overexpression of H7N9 NS1, as well as infection by the influenza A H7N9 virus, interfered with pre-mRNA polyadenylation in host cells. This study comprehensively profiled the interactome of H7N9 NS1 in host cells, and the results demonstrate a novel endotype for H7N9 NS1 in inhibiting host mRNA maturation.

  13. A quantum Otto engine with finite heat baths: energy, correlations, and degradation

    NASA Astrophysics Data System (ADS)

    Pozas-Kerstjens, Alejandro; Brown, Eric G.; Hovhannisyan, Karen V.

    2018-04-01

    We study a driven harmonic oscillator operating an Otto cycle by strongly interacting with two thermal baths of finite size. Using the tools of Gaussian quantum mechanics, we directly simulate the dynamics of the engine as a whole, without the need to make any approximations. This allows us to understand the non-equilibrium thermodynamics of the engine not only from the perspective of the working medium, but also as it is seen from the thermal baths’ standpoint. For sufficiently large baths, our engine is capable of running a number of perfect cycles, delivering finite power while operating very close to maximal efficiency. Thereafter, having traversed the baths, the perturbations created by the interaction abruptly deteriorate the engine’s performance. We additionally study the correlations generated in the system, and, in particular, we find a direct connection between the build up of bath–bath correlations and the degradation of the engine’s performance over the course of many cycles.

  14. Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling

    NASA Astrophysics Data System (ADS)

    Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu

    2016-08-01

    Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.

  15. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.

    PubMed

    Altintas, Ferdi; Müstecaplıoğlu, Özgür E

    2015-08-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1/2 and the other with an arbitrary spin (spin s), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.

  16. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1 /2 coupled to an arbitrary spin

    NASA Astrophysics Data System (ADS)

    Altintas, Ferdi; Müstecaplıoǧlu, Ã.-zgür E.

    2015-08-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1 /2 and the other with an arbitrary spin (spin s ), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.

  17. RNA Modulates the Interaction between Influenza A Virus NS1 and Human PABP1.

    PubMed

    Arias-Mireles, Bryan H; de Rozieres, Cyrus M; Ly, Kevin; Joseph, Simpson

    2018-05-25

    Nonstructural protein 1 (NS1) is a multifunctional protein involved in preventing host-interferon response in influenza A virus (IAV). Previous studies have indicated that NS1 also stimulates the translation of viral mRNA by binding to conserved sequences in the viral 5'-UTR. Additionally, NS1 binds to poly(A) binding protein 1 (PABP1) and eukaryotic initiation factor 4G (eIF4G). The interaction of NS1 with the viral 5'-UTR, PABP1, and eIF4G has been suggested to specifically enhance the translation of viral mRNAs. In contrast, we report that NS1 does not directly bind to sequences in the viral 5'-UTR, indicating that NS1 is not responsible for providing the specificity to stimulate viral mRNA translation. We also monitored the interaction of NS1 with PABP1 using a new, quantitative FRET assay. Our data show that NS1 binds to PABP1 with high affinity; however, the binding of double-stranded RNA (dsRNA) to NS1 weakens the binding of NS1 to PABP1. Correspondingly, the binding of PABP1 to NS1 weakens the binding of NS1 to double-stranded RNA (dsRNA). In contrast, the affinity of PABP1 for binding to poly(A) RNA is not significantly changed by NS1. We propose that the modulation of NS1·PABP1 interaction by dsRNA may be important for the viral cycle.

  18. AGILE Observations of the Gravitational-wave Source GW170817: Constraining Gamma-Ray Emission from an NS-NS Coalescence

    NASA Astrophysics Data System (ADS)

    Verrecchia, F.; Tavani, M.; Donnarumma, I.; Bulgarelli, A.; Evangelista, Y.; Pacciani, L.; Ursi, A.; Piano, G.; Pilia, M.; Cardillo, M.; Parmiggiani, N.; Giuliani, A.; Pittori, C.; Longo, F.; Lucarelli, F.; Minervini, G.; Feroci, M.; Argan, A.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Fioretti, V.; Trois, A.; Del Monte, E.; Antonelli, L. A.; Barbiellini, G.; Caraveo, P.; Cattaneo, P. W.; Colafrancesco, S.; Costa, E.; D'Amico, F.; Ferrari, A.; Giommi, P.; Morselli, A.; Paoletti, F.; Pellizzoni, A.; Picozza, P.; Rappoldi, A.; Soffitta, P.; Vercellone, S.; Baroncelli, L.; Zollino, G.

    2017-12-01

    The LIGO-Virgo Collaboration (LVC) detected, on 2017 August 17, an exceptional gravitational-wave (GW) event temporally consistent within ˜ 1.7 {{s}} with the GRB 1708117A observed by Fermi-GBM and INTEGRAL. The event turns out to be compatible with a neutron star-neutron star (NS-NS) coalescence that subsequently produced a radio/optical/X-ray transient detected at later times. We report the main results of the observations by the AGILE satellite of the GW170817 localization region (LR) and its electromagnetic (EM) counterpart. At the LVC detection time T 0, the GW170817 LR was occulted by the Earth. The AGILE instrument collected useful data before and after the GW/GRB event because in its spinning observation mode it can scan a given source many times per hour. The earliest exposure of the GW170817 LR by the gamma-ray imaging detector started about 935 s after T 0. No significant X-ray or gamma-ray emission was detected from the LR that was repeatedly exposed over timescales of minutes, hours, and days before and after GW170817, also considering Mini-calorimeter and Super-AGILE data. Our measurements are among the earliest ones obtained by space satellites on GW170817 and provide useful constraints on the precursor and delayed emission properties of the NS-NS coalescence event. We can exclude with high confidence the existence of an X-ray/gamma-ray emitting magnetar-like object with a large magnetic field of {10}15 {{G}}. Our data are particularly significant during the early stage of evolution of the EM remnant.

  19. Unexpected Functional Divergence of Bat Influenza Virus NS1 Proteins.

    PubMed

    Turkington, Hannah L; Juozapaitis, Mindaugas; Tsolakos, Nikos; Corrales-Aguilar, Eugenia; Schwemmle, Martin; Hale, Benjamin G

    2018-03-01

    Recently, two influenza A virus (FLUAV) genomes were identified in Central and South American bats. These sequences exhibit notable divergence from classical FLUAV counterparts, and functionally, bat FLUAV glycoproteins lack canonical receptor binding and destroying activity. Nevertheless, other features that distinguish these viruses from classical FLUAVs have yet to be explored. Here, we studied the viral nonstructural protein NS1, a virulence factor that modulates host signaling to promote efficient propagation. Like all FLUAV NS1 proteins, bat FLUAV NS1s bind double-stranded RNA and act as interferon antagonists. Unexpectedly, we found that bat FLUAV NS1s are unique in being unable to bind host p85β, a regulatory subunit of the cellular metabolism-regulating enzyme, phosphoinositide 3-kinase (PI3K). Furthermore, neither bat FLUAV NS1 alone nor infection with a chimeric bat FLUAV efficiently activates Akt, a PI3K effector. Structure-guided mutagenesis revealed that the bat FLUAV NS1-p85β interaction can be reengineered (in a strain-specific manner) by changing two to four NS1 residues (96L, 99M, 100I, and 145T), thereby creating a hydrophobic patch. Notably, ameliorated p85β-binding is insufficient for bat FLUAV NS1 to activate PI3K, and a chimeric bat FLUAV expressing NS1 with engineered hydrophobic patch mutations exhibits cell-type-dependent, but species-independent, propagation phenotypes. We hypothesize that bat FLUAV hijacking of PI3K in the natural bat host has been selected against, perhaps because genes in this metabolic pathway were differentially shaped by evolution to suit the unique energy use strategies of this flying mammal. These data expand our understanding of the enigmatic functional divergence between bat FLUAVs and classical mammalian and avian FLUAVs. IMPORTANCE The potential for novel influenza A viruses to establish infections in humans from animals is a source of continuous concern due to possible severe outbreaks or pandemics. The

  20. Unexpected Functional Divergence of Bat Influenza Virus NS1 Proteins

    PubMed Central

    Turkington, Hannah L.; Juozapaitis, Mindaugas; Tsolakos, Nikos; Corrales-Aguilar, Eugenia; Schwemmle, Martin

    2017-01-01

    ABSTRACT Recently, two influenza A virus (FLUAV) genomes were identified in Central and South American bats. These sequences exhibit notable divergence from classical FLUAV counterparts, and functionally, bat FLUAV glycoproteins lack canonical receptor binding and destroying activity. Nevertheless, other features that distinguish these viruses from classical FLUAVs have yet to be explored. Here, we studied the viral nonstructural protein NS1, a virulence factor that modulates host signaling to promote efficient propagation. Like all FLUAV NS1 proteins, bat FLUAV NS1s bind double-stranded RNA and act as interferon antagonists. Unexpectedly, we found that bat FLUAV NS1s are unique in being unable to bind host p85β, a regulatory subunit of the cellular metabolism-regulating enzyme, phosphoinositide 3-kinase (PI3K). Furthermore, neither bat FLUAV NS1 alone nor infection with a chimeric bat FLUAV efficiently activates Akt, a PI3K effector. Structure-guided mutagenesis revealed that the bat FLUAV NS1-p85β interaction can be reengineered (in a strain-specific manner) by changing two to four NS1 residues (96L, 99M, 100I, and 145T), thereby creating a hydrophobic patch. Notably, ameliorated p85β-binding is insufficient for bat FLUAV NS1 to activate PI3K, and a chimeric bat FLUAV expressing NS1 with engineered hydrophobic patch mutations exhibits cell-type-dependent, but species-independent, propagation phenotypes. We hypothesize that bat FLUAV hijacking of PI3K in the natural bat host has been selected against, perhaps because genes in this metabolic pathway were differentially shaped by evolution to suit the unique energy use strategies of this flying mammal. These data expand our understanding of the enigmatic functional divergence between bat FLUAVs and classical mammalian and avian FLUAVs. IMPORTANCE The potential for novel influenza A viruses to establish infections in humans from animals is a source of continuous concern due to possible severe outbreaks or

  1. Rediscovery of Otto Frank's contribution to science.

    PubMed

    Kuhtz-Buschbeck, Johann P; Drake-Holland, Angela; Noble, Mark I M; Lohff, Brigitte; Schaefer, Jochen

    2018-06-01

    In the late 19th century, German physiologist Otto Frank (1865-1944) embarked on a near life-long research program of laying down the mathematical, methodological, and theoretical foundations in order to understand and define the performance of the heart and circulatory system in all their complexity. The existence of the "Frank-Starling law" testifies to this. Two of his seminal publications have been translated into English previously, introducing Frank's research on the dynamics of the heart and the arterial pulse to a wider audience. It is likely that there are a host of other comparable achievements and publications of Frank that are still unknown to the international scientific (cardiological and physiological) community. However, their influence can still be felt and seen in modern cardiology and cardio-physiology, such as in the development of modern interactive simulating and teaching programs. We have translated and commented on ten of these papers, which can be read in parallel with the German originals. These publications show a wealth of theoretical assumptions and projections regarding the importance of the sarcomere, the development of models of contraction, thermo-dynamical considerations for muscular activity, differences between cardiac and skeletal muscles, problems related to methodology and measurement, and the first pressure-volume diagram (published 120 years ago). These topics were envisioned by Frank long before they became a focus of subsequent modern research. Nowadays, frequent measurements of pressure-volume relationships are made in research using the pressure-volume conductance catheter technique. In commenting Frank's scientific topics, we try to show how interconnected his thinking was, and thus how it enabled him to cover such a wide range of subjects. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. [Clinical significance of NS1-BP expression in esophageal squamous cell carcinoma].

    PubMed

    Ren, K; Qian, D; Wang, Y W; Pang, Q S; Zhang, W C; Yuan, Z Y; Wang, P

    2018-01-23

    Objective: To investigate the clinical significance of NS1-BP expression in patients with esophageal squamous cell carcinoma (ESCC), and to study the roles of NS1-BP in proliferation and apoptosis of ESCC cells. Methods: A total of 98 tumor tissues and 30 adjacent normal tissues from 98 ESCC patients were used as study group and control group, and these samples were collected in Sun Yat-Sen University Cancer Center between 2002 and 2008. In addition, 46 ESCC tissues which were collected in Cancer Institute and Hospital of Tianjin Medical University were used as validation group. Expression of mucosal NS1-BP was detected by immunohistochemistry. Kaplan-Meier curve and log-rank test were used to analyze the survival rate. Multivariate Cox proportional hazard model was used to analyze the prognostic factors. Furthermore, NS1-BP was over expressed or knocked down in ESCC cells by transient transfection. Protein levels of c-Myc were detected by western blot. Cell viability and apoptosis was analyzed by MTT assay and flow cytometry. Results: Among all of tested samples, NS1-BP were down-regulated in 9 out of 30 non-tumorous normal esophageal tissues (30.0%) and 85 out of 144 ESCC tissues (59.0%), respectively, showing a statistically significant difference ( P =0.012). In the study group, three-year disease-free survival rate of NS1-BP high expression group (53.2%) was significantly higher than that of NS1-BP low expression group (27.6%; P =0.009). In the validation group, the three-year disease-free survival rates were 57.8% and 25.5% in NS1-BP high and low levels groups, respectively, showing a similar results ( P =0.016). Importantly, multivariate analyses showed that low expression of NS1-BP was an independent predictor for chemoradiotherapy sensitivity and shorter disease-free survival time in ESCC patients( P <0.05 for all). Furthermore, overexpressed NS1-BP in TE-1 cells repressed c-Myc expression, inhibited cell proliferation and promoted apoptosis. In contrast

  3. The discovery of the neutron and its consequences (1930-1940)

    NASA Astrophysics Data System (ADS)

    Nesvizhevsky, Valery; Villain, Jacques

    2017-11-01

    In 1930, Walther Bothe and Herbert Becker performed an experiment, which was further improved by Irène and Frédéric Joliot-Curie. These authors, however, misinterpreted their results and believed to have observed γ-rays while they had seen neutrons. After additional experimental verifications, James Chadwick gave the correct interpretation of these experiments in 1932. Immediately, the new particle, the neutron, became an essential actor of nuclear and elementary particle physics, and completely changed the whole research landscape. Enrico Fermi and his group applied it to artificial radioactivity, substituting neutrons to α-rays initially used by Joliot-Curies. They also discovered that slow neutrons were more efficient than fast ones in certain nuclear reactions. A crucial discovery of Otto Hahn, Fritz Straßmann, Lise Meitner, and Otto Frisch, after several misinterpretations of complicated experimental results, was nuclear fission. When Joliot, Halban, and Kowarski demonstrated the possibility of a chain reaction by neutron multiplication due to fission, nuclear physics became a military science, at the very moment when the Second World War was beginning. Later it led to nuclear power applications and use of neutrons as an important tool and object of scientific research at large-scale neutron facilities. The Comptes rendus de l'Académie des sciences were partner of a vivid international debate involving several other journals.

  4. Pharmacophoric characteristics of dengue virus NS2B/NS3pro inhibitors: a systematic review of the most promising compounds.

    PubMed

    Leonel, Camyla Alves; Lima, William Gustavo; Dos Santos, Michelli; Ferraz, Ariane Coelho; Taranto, Alex Gutterres; de Magalhães, José Carlos; Dos Santos, Luciana Lara; Ferreira, Jaqueline Maria Siqueira

    2018-03-01

    Dengue virus (DENV) infection can lead to a wide range of clinical manifestations, including fatal hemorrhagic complications. There is a need to find effective pharmacotherapies to treat this disease due to the lack of specific immunotherapies and antiviral drugs. That said, the DENV NS2B/NS3pro protease complex is essential in both the viral multiplication cycle and in disease pathogenesis, and is considered a promising target for new antiviral therapies. Here, we performed a systematic review to evaluate the pharmacophoric characteristics of promising compounds against NS2B/NS3pro reported in the past 10 years. Online searches in the PUBMED/MEDLINE and SCOPUS databases resulted in 165 articles. Eight studies, which evaluated 3,384,268 molecules exhibiting protease inhibition activity, were included in this review. These studies evaluated anti-dengue activity in vitro and the IC 50 and EC 50 values were provided. Most compounds exhibited non-competitive inhibition. Cytotoxicity was evaluated in BHK-21, Vero, and LLC-MK2 cells, and the CC 50 values obtained ranged from < 1.0 to 780.5 µM. Several groups were associated with biological activity against dengue, including nitro, catechol, halogen and ammonium quaternaries. Thus, these groups seem to be potential pharmacophores that can be further investigated to treat dengue infections.

  5. Structure-based discovery of clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo.

    PubMed

    Yuan, Shuofeng; Chan, Jasper Fuk-Woo; den-Haan, Helena; Chik, Kenn Ka-Heng; Zhang, Anna Jinxia; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Yip, Cyril Chik-Yan; Mak, Winger Wing-Nga; Zhu, Zheng; Zou, Zijiao; Tee, Kah-Meng; Cai, Jian-Piao; Chan, Kwok-Hung; de la Peña, Jorge; Pérez-Sánchez, Horacio; Cerón-Carrasco, José Pedro; Yuen, Kwok-Yung

    2017-09-01

    Zika virus (ZIKV) infection may be associated with severe complications in fetuses and adults, but treatment options are limited. We performed an in silico structure-based screening of a large chemical library to identify potential ZIKV NS2B-NS3 protease inhibitors. Clinically approved drugs belonging to different drug classes were selected among the 100 primary hit compounds with the highest predicted binding affinities to ZIKV NS2B-NS3-protease for validation studies. ZIKV NS2B-NS3 protease inhibitory activity was validated in most of the selected drugs and in vitro anti-ZIKV activity was identified in two of them (novobiocin and lopinavir-ritonavir). Molecular docking and molecular dynamics simulations predicted that novobiocin bound to ZIKV NS2B-NS3-protease with high stability. Dexamethasone-immunosuppressed mice with disseminated ZIKV infection and novobiocin treatment had significantly (P < 0.05) higher survival rate (100% vs 0%), lower mean blood and tissue viral loads, and less severe histopathological changes than untreated controls. This structure-based drug discovery platform should facilitate the identification of additional enzyme inhibitors of ZIKV. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Construction of plasmid, bacterial expression, purification, and assay of dengue virus type 2 NS5 methyltransferase.

    PubMed

    Boonyasuppayakorn, Siwaporn; Padmanabhan, Radhakrishnan

    2014-01-01

    Dengue virus (DENV), a member of mosquito-borne flavivirus, causes self-limiting dengue fever as well as life-threatening dengue hemorrhagic fever and dengue shock syndrome. Its positive sense RNA genome has a cap at the 5'-end and no poly(A) tail at the 3'-end. The viral RNA encodes a single polyprotein, C-prM-E-NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5. The polyprotein is processed into 3 structural proteins (C, prM, and E) and 7 nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5). NS3 and NS5 are multifunctional enzymes performing various tasks in viral life cycle. The N-terminal domain of NS5 has distinct GTP and S-adenosylmethionine (SAM) binding sites. The role of GTP binding site is implicated in guanylyltransferase (GTase) activity of NS5. The SAM binding site is involved in both N-7 and 2'-O-methyltransferase (MTase) activities involved in formation of type I cap. The C-terminal domain of NS5 catalyzes RNA-dependent RNA polymerase (RdRp) activity involved in RNA synthesis. We describe the construction of the MTase domain of NS5 in an E. coli expression vector, purification of the enzyme, and conditions for enzymatic assays of N7- and 2'O-methyltransferase activities that yield the final type I 5'-capped RNA ((7Me)GpppA2'OMe-RNA).

  7. Antiviral Activity and Resistance Analysis of NS3/4A Protease Inhibitor Grazoprevir and NS5A Inhibitor Elbasvir in Hepatitis C Virus GT4 Replicons.

    PubMed

    Asante-Appiah, Ernest; Curry, Stephanie; McMonagle, Patricia; Ingravallo, Paul; Chase, Robert; Nickle, David; Qiu, Ping; Howe, Anita; Lahser, Frederick C

    2017-07-01

    Although genotype 4 (GT4)-infected patients represent a minor overall percentage of the global hepatitis C virus (HCV)-infected population, the high prevalence of the genotype in specific geographic regions coupled with substantial sequence diversity makes it an important genotype to study for antiviral drug discovery and development. We evaluated two direct-acting antiviral agents-grazoprevir, an HCV NS3/4A protease inhibitor, and elbasvir, an HCV NS5A inhibitor-in GT4 replicons prior to clinical studies in this genotype. Following a bioinformatics analysis of available GT4 sequences, a set of replicons bearing representative GT4 clinical isolates was generated. For grazoprevir, the 50% effective concentration (EC 50 ) against the replicon bearing the reference GT4a (ED43) NS3 protease and NS4A was 0.7 nM. The median EC 50 for grazoprevir against chimeric replicons encoding NS3/4A sequences from GT4 clinical isolates was 0.2 nM (range, 0.11 to 0.33 nM; n = 5). The difficulty in establishing replicons bearing NS3/4A resistance-associated substitutions was substantially overcome with the identification of a G162R adaptive substitution in NS3. Single NS3 substitutions D168A/V identified from de novo resistance selection studies reduced grazoprevir antiviral activity by 137- and 47-fold, respectively, in the background of the G162R replicon. For elbasvir, the EC 50 against the replicon bearing the reference full-length GT4a (ED43) NS5A gene was 0.0002 nM. The median EC 50 for elbasvir against chimeric replicons bearing clinical isolates from GT4 was 0.0007 nM (range, 0.0002 to 34 nM; n = 14). De novo resistance selection studies in GT4 demonstrated a high propensity to suppress the emergence of amino acid substitutions that confer high-potency reductions to elbasvir. Phenotypic characterization of the NS5A amino acid substitutions identified (L30F, L30S, M31V, and Y93H) indicated that they conferred 15-, 4-, 2.5-, and 7.5-fold potency losses, respectively, to elbasvir

  8. Crystal structure of full-length Zika virus NS5 protein reveals a conformation similar to Japanese encephalitis virus NS5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Anup K.; Cyr, Matthew; Longenecker, Kenton

    The rapid spread of the recentZika virus(ZIKV) epidemic across various countries in the American continent poses a major health hazard for the unborn fetuses of pregnant women. To date, there is no effective medical intervention. The nonstructural protein 5 ofZika virus(ZIKV-NS5) is critical for ZIKV replication through the 5'-RNA capping and RNA polymerase activities present in its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains, respectively. The crystal structure of the full-length ZIKV-NS5 protein has been determined at 3.05 Å resolution from a crystal belonging to space groupP2 12 12 and containing two protein molecules in the asymmetricmore » unit. The structure is similar to that reported for the NS5 protein fromJapanese encephalitis virusand suggests opportunities for structure-based drug design targeting either its MTase or RdRp domain.« less

  9. The effect of glycosylation on cytotoxicity of Ibaraki virus nonstructural protein NS3

    PubMed Central

    URATA, Maho; WATANABE, Rie; IWATA, Hiroyuki

    2015-01-01

    The cytotoxicity of Ibaraki virus nonstructural protein NS3 was confirmed, and the contribution of glycosylation to this activity was examined by using glycosylation mutants of NS3 generated by site-directed mutagenesis. The expression of NS3 resulted in leakage of lactate dehydrogenase to the culture supernatant, suggesting the cytotoxicity of this protein. The lack of glycosylation impaired the transport of NS3 to the plasma membrane and resulted in reduced cytotoxicity. Combined with the previous observation that NS3 glycosylation was specifically observed in mammalian cells (Urata et al., Virus Research 2014), it was suggested that the alteration of NS3 cytotoxicity through modulating glycosylation is one of the strategies to achieve host specific pathogenisity of Ibaraki virus between mammals and vector arthropods. PMID:26178820

  10. Sigmund Freud and Otto Rank: debates and confrontations about anxiety and birth.

    PubMed

    Pizarro Obaid, Francisco

    2012-06-01

    The publication of Otto Rank's The Trauma of Birth (1924) gave rise to an intense debate within the secret Committee and confronted Freud with one of his most beloved disciples. After analyzing the letters that the Professor exchanged with his closest collaborators and reviewing the works he published during this period, it is clear that anxiety was a crucial element among the topics in dispute. His reflections linked to the signal anxiety concept allowed Freud to refute Rank's thesis that defined birth trauma as the paradigmatic key to understanding neurosis, and, in turn, was a way of confirming the validity of the concepts of Oedipus complex, repression and castration in the conceptualization of anxiety. The reasons for the modifications of anxiety theory in the mid-1920s cannot be reduced, as Freud would affirm officially in his work of 1926, to the detection of internal contradictions in his theory or to the desire to establish a metapsychological version of the problem, for they gain their essential impulse from the debate with Rank. Copyright © 2012 Institute of Psychoanalysis.

  11. Walther Nernst, Albert Einstein, Otto Stern, and the Specific Heat of Hydrogen.

    NASA Astrophysics Data System (ADS)

    Gearhart, Clayton

    2007-04-01

    In 1911, the German physical chemist Walther Nernst observed that the new quantum theory might both clarify unresolved problems in the specific heats of gases and shed new light on quantum theory itself. He noted that measurements of the specific heat of hydrogen gas at low temperatures might be particularly informative. Arnold Euken, working in Nernst's laboratory in Berlin, published the first measurements in 1912. They showed a sharp drop, corresponding to the rotational degrees of freedom ``freezing out.'' Nernst also developed a theory in his 1911 paper, in which, remarkably, rotational energies were not quantized. Instead, the specific heat fell off because the gas was in equilibrium with quantized Planck oscillators. Nernst's theory was flawed But Einstein adopted an improved version at the 1911 Solvay Conference, and in 1913, he and Otto Stern published a more detailed treatment, in which they suggested tentatively that Planck's recently introduced zero-point energy might reduce or even eliminate the need to quantize physical systems. This episode points out just how mysterious quantum phenomena seemed early in the 20th century.

  12. Virtual screening of commercial cyclic peptides as NS2B-NS3 protease inhibitor of dengue virus serotype 2 through molecular docking simulation

    NASA Astrophysics Data System (ADS)

    Nasution, M. A. F.; Aini, R. N.; Tambunan, U. S. F.

    2017-04-01

    A disease caused by dengue virus infection has become one of the major health problems in the world, particularly in Asia, Africa, and South America. This disease has become endemic in more than 100 countries, and approximately 100 million cases occur each year with 2.5 billion people or 40% of the world population at risk of having this virus infection. Therefore, we need an antiviral drug that can inhibit the activity of the enzymes that involved in the virus replication in the body. Lately, the peptide-based drug design has been developed and proved to have interesting pharmacological properties. This study uses commercially cyclic peptides that have already marketed. The purpose of this study is to screen the commercial cyclic peptides that can be used as an inhibitor of the NS2B-NS3 protease of dengue virus serotype 2 (DENV-2) through molecular docking simulations. Inhibition of NS3 protease enzyme can lead to enzymatic inhibition activity so the formed polyprotein from the translation of RNA cannot be cut into pieces and remain in the long strand form. Consequently, proteins that are vital for the sustainability of dengue virus replication cannot be formed. This research resulted in [alpha]-ANF (1-28), rat, Brain Natriuretic Peptide, porcine, Atrial Natriuretic Factor (3-28) (human) and Atrial Natriuretic Peptide (126-150) (rat) as the best drug candidate for inhibiting the NS2B-NS3 protease of DENV-2.

  13. Uncoupling of Protease trans-Cleavage and Helicase Activities in Pestivirus NS3

    PubMed Central

    Zheng, Fengwei; Lu, Guoliang; Li, Ling

    2017-01-01

    ABSTRACT The nonstructural protein NS3 from the Flaviviridae family is a multifunctional protein that contains an N-terminal protease and a C-terminal helicase, playing essential roles in viral polyprotein processing and genome replication. Here we report a full-length crystal structure of the classical swine fever virus (CSFV) NS3 in complex with its NS4A protease cofactor segment (PCS) at a 2.35-Å resolution. The structure reveals a previously unidentified ∼2,200-Å2 intramolecular protease-helicase interface comprising three clusters of interactions, representing a “closed” global conformation related to the NS3-NS4A cis-cleavage event. Although this conformation is incompatible with protease trans-cleavage, it appears to be functionally important and beneficial to the helicase activity, as the mutations designed to perturb this conformation impaired both the helicase activities in vitro and virus production in vivo. Our work reveals important features of protease-helicase coordination in pestivirus NS3 and provides a key basis for how different conformational states may explicitly contribute to certain functions of this natural protease-helicase fusion protein. IMPORTANCE Many RNA viruses encode helicases to aid their RNA genome replication and transcription by unwinding structured RNA. Being naturally fused to a protease participating in viral polyprotein processing, the NS3 helicases encoded by the Flaviviridae family viruses are unique. Therefore, how these two enzyme modules coordinate in a single polypeptide is of particular interest. Here we report a previously unidentified conformation of pestivirus NS3 in complex with its NS4A protease cofactor segment (PCS). This conformational state is related to the protease cis-cleavage event and is optimal for the function of helicase. This work provides an important basis to understand how different enzymatic activities of NS3 may be achieved by the coordination between the protease and helicase through

  14. The effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on protein-protein interactions.

    PubMed

    Yates, Christopher M; Sternberg, Michael J E

    2013-11-01

    Non-synonymous single nucleotide polymorphisms (nsSNPs) are single base changes leading to a change to the amino acid sequence of the encoded protein. Many of these variants are associated with disease, so nsSNPs have been well studied, with studies looking at the effects of nsSNPs on individual proteins, for example, on stability and enzyme active sites. In recent years, the impact of nsSNPs upon protein-protein interactions has also been investigated, giving a greater insight into the mechanisms by which nsSNPs can lead to disease. In this review, we summarize these studies, looking at the various mechanisms by which nsSNPs can affect protein-protein interactions. We focus on structural changes that can impair interaction, changes to disorder, gain of interaction, and post-translational modifications before looking at some examples of nsSNPs at human-pathogen protein-protein interfaces and the analysis of nsSNPs from a network perspective. © 2013.

  15. Nodding syndrome (NS) and Onchocerca Volvulus (OV) in Northern Uganda.

    PubMed

    Lagoro, David Kitara; Arony, Denis Anywar

    2017-01-01

    Nodding Syndrome (NS) is a childhood neurological disorder characterized by atonic seizures, cognitive decline, school dropout, muscle weakness, thermal dysfunction, wasting and stunted growth. There are recent published information suggesting associations between Nodding Syndrome (NS) with cerebrospinal fluid (CSF) VGKC antibodies and serum leiomidin-1 antibody cross reacting with Onchocerca Volvulus ( OV ). These findings suggest a neuro-inflammatory cause of NS and they are important findings in the search for the cause of Nodding Syndrome. These observations perhaps provide further, the unique explanation for the association between Nodding Syndrome and Onchocerca Volvulus . Many clinical and epidemiological studies had shown a significant correlation between NS and infestation with a nematode, Onchocerca volvulus which causes a disease, Onchocerciasis , some of which when left untreated can develop visual defect ("River Blindness"). While these studies conducted in Northern Uganda and Southern Sudan indicate a statistically significant association with ( OV infection (using positive skin snips), we observe that ( OV is generally endemic in many parts of Sub Saharan Africa and Latin America and that to date, no NS cases have been recorded in those regions. This letter to the Editor is to provide additional information on the current view about the relationship between Nodding Syndrome and Onchocerca Volvulus as seen in Northern Uganda.

  16. Nodding syndrome (NS) and Onchocerca Volvulus (OV) in Northern Uganda

    PubMed Central

    Lagoro, David Kitara; Arony, Denis Anywar

    2017-01-01

    Nodding Syndrome (NS) is a childhood neurological disorder characterized by atonic seizures, cognitive decline, school dropout, muscle weakness, thermal dysfunction, wasting and stunted growth. There are recent published information suggesting associations between Nodding Syndrome (NS) with cerebrospinal fluid (CSF) VGKC antibodies and serum leiomidin-1 antibody cross reacting with Onchocerca Volvulus (OV). These findings suggest a neuro-inflammatory cause of NS and they are important findings in the search for the cause of Nodding Syndrome. These observations perhaps provide further, the unique explanation for the association between Nodding Syndrome and Onchocerca Volvulus. Many clinical and epidemiological studies had shown a significant correlation between NS and infestation with a nematode, Onchocerca volvulus which causes a disease, Onchocerciasis, some of which when left untreated can develop visual defect ("River Blindness"). While these studies conducted in Northern Uganda and Southern Sudan indicate a statistically significant association with (OV infection (using positive skin snips), we observe that (OV is generally endemic in many parts of Sub Saharan Africa and Latin America and that to date, no NS cases have been recorded in those regions. This letter to the Editor is to provide additional information on the current view about the relationship between Nodding Syndrome and Onchocerca Volvulus as seen in Northern Uganda. PMID:29138647

  17. Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides

    PubMed Central

    Chukkapalli, Vineela; Berger, Kristi L.; Kelly, Sean M.; Thomas, Meryl; Deiters, Alexander; Randall, Glenn

    2014-01-01

    Combinations of direct-acting antivirals (DAAs) against the hepatitis C virus (HCV) have the potential to revolutionize the HCV therapeutic regime. An integral component of DAA combination therapies are HCV NS5A inhibitors. It has previously been proposed that NS5A DAAs inhibit two functions of NS5A: RNA replication and virion assembly. In this study, we characterize the impact of a prototype NS5A DAA, daclatasvir (DCV), on HCV replication compartment formation. DCV impaired HCV replicase localization and NS5A motility. In order to characterize the mechanism behind altered HCV replicase localization, we examined the impact of DCV on the interaction of NS5A with its essential cellular cofactor, phosphatidylinositol-4-kinase III α (PI4KA). We observed that DCV does not inhibit PI4KA directly, nor does it impair early events of the NS5A-PI4KA interaction that can occur when NS5A is expressed alone. NS5A functions that are unaffected by DCV include PI4KA binding, as determined by co-immunoprecipitation, and a basal accumulation of the PI4KA product, PI4P. However, DCV impairs late steps in PI4KA activation that requires NS5A expressed in the context of the HCV polyprotein. These NS5A functions include hyper-stimulation of PI4P levels and appropriate replication compartment formation. The data are most consistent with a model wherein DCV inhibits conformational changes in the NS5A protein or protein complex formations that occur in the context of HCV polyprotein expression and stimulate PI4P hyper-accumulation and replication compartment formation. PMID:25546252

  18. Production of recombinant dengue non-structural 1 (NS1) proteins from clinical virus isolates.

    PubMed

    Yohan, Benediktus; Wardhani, Puspa; Aryati; Trimarsanto, Hidayat; Sasmono, R Tedjo

    2017-01-01

    Dengue is a febrile disease caused by infection of dengue virus (DENV). Early diagnosis of dengue infection is important for better management of the disease. The DENV Non-Structural Protein 1 (NS1) antigen has been routinely used for the early dengue detection. In dengue epidemic countries such as Indonesia, clinicians are increasingly relying on the NS1 detection for confirmation of dengue infection. Various NS1 diagnostic tests are commercially available, however different sensitivities and specificities were observed in various settings. This study was aimed to generate dengue NS1 recombinant protein for the development of dengue diagnostic tests. Four Indonesian DENV isolates were used as the source of the NS1 gene cloning, expression, and purification in bacterial expression system. Recombinant NS1 proteins were successfully purified and their antigenicities were assessed. Immunization of mice with recombinant proteins observed the immunogenicity of the NS1 protein. The generated recombinant proteins can be potentially used in the development of NS1 diagnostic test. With minimal modifications, this method can be used for producing NS1 recombinant proteins from isolates obtained from other geographical regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. [System of ns time-resolved spectroscopy diagnosis and radioprotection].

    PubMed

    Yao, Wei-Bo; Guo, Jian-Ming; Zhang, Yong-min; Tang, Jun-Ping; Cheng, Liang; Xu, Qi-fuo

    2014-06-01

    Cathode plasma of high current electron beam diode is an important research on high power microwave and strong pulsed radio accelerator. It is a reliable method to study cathode plasma by diagnosing the cathode plasma parameters with non-contact spectroscopy measurement system. The present paper introduced the work principle, system composition and performance of the nanosecond (ns) time-resolved spectroscopy diagnosis system. Furthermore, it introduced the implementing method and the temporal relation of lower jitter synchronous trigger system. Simultaneously, the authors designed electromagnetic and radio shield room to protect the diagnosis system due to the high electromagnetic and high X-ray and γ-ray radiation, which seriously interferes with the system. Time-resolved spectroscopy experiment on brass (H62) cathode shows that, the element and matter composition of cathode plasma is clearly increase with the increase in the diode pulsed voltage and current magnitude. The spectroscopy diagnosis system could be of up to 10 ns time resolve capability. It's least is 2 ns. Synchronous trigger system's jitter is less than 4 ns. The spectroscopy diagnosis system will open a new way to study the cathode emission mechanism in depth.

  20. A single residue mutation in Hha preserving structure and binding to H-NS results in loss of H-NS mediated gene repression properties.

    PubMed

    Cordeiro, Tiago N; Garcia, Jesús; Pons, José-Ignacio; Aznar, Sonia; Juárez, Antonio; Pons, Miquel

    2008-09-03

    In this study, we report that a single mutation of cysteine 18 to isoleucine (C18I) in Escherichia coli Hha abolishes the repression of the hemolysin operon observed in the wild-type protein. The phenotype also includes a significant decrease in the growth rate of E. coli cells at low ionic strength. Other substitutions at this position (C18A, C18S) have no observable effects in E. coli growth or hemolysin repression. All mutants are stable and well folded and bind H-NS in vitro with similar affinities suggesting that Cys 18 is not directly involved in H-NS binding but this position is essential for the activity of the H-NS/Hha heterocomplexes in the regulation of gene expression.

  1. Selective heteronuclear Hartmann-Hahn: A multiple-pulse sequence for selective magnetization transfer in the structural elucidation of “isotagged” oligosaccharides

    NASA Astrophysics Data System (ADS)

    Meng, Xi; Nguyen, William H.; Nowick, James S.; Shaka, A. J.

    2010-03-01

    A new selective heteronuclear Hartmann-Hahn (SHEHAHA) multiple-pulse mixing sequence is proposed for the solution structure elucidation of milligram amounts of peracetylated oligosaccharides in which the acetyl groups are enriched in carbon-13, so-called “isotags”. SHEHAHA accomplishes exclusive in-phase magnetization transfer between the isotag carbonyl 13C and the proximal proton on the sugar ring. Relayed transfer around the sugar rings by proton-proton TOCSY is suppressed, while the heteronuclear transfer from the labeled carbonyl carbon to the proximal ring proton is maintained. The sequence is broadband in the sense that all acetyl groups simultaneously give good signal transfer to their respective nearest proton neighbors. The 1H-detected spectra have decent sensitivity and excellent resolution, giving patterns that unambiguously identify common structural subunits in human glycans. Peracetylated maltitol is shown as a test case of the method. Lineshapes are pure absorption, allowing facile measurement of vicinal proton-proton couplings. Linkage points can be deduced, and the 2D correlation spectra may be useful for more ambitious prediction algorithms and machine identification by a spectral database.

  2. In-silico identification and evaluation of plant flavonoids as dengue NS2B/NS3 protease inhibitors using molecular docking and simulation approach.

    PubMed

    Qamar, Muhammad Tahirul; Ashfaq, Usman Ali; Tusleem, Kishver; Mumtaz, Arooj; Tariq, Quratulain; Goheer, Alina; Ahmed, Bilal

    2017-11-01

    Dengue infection is prevailing among the people not only from the developing countries but also from the developed countries due to its high morbidity rate around the globe. Hence, due to the unavailability of any suitable vaccine for rigorous dengue virus (DENV), the only mode of its treatment is prevention. The circumstances require an urgent development of efficient and practical treatment to deal with these serotypes. The severe effects and cost of synthetic vaccines simulated researchers to find anti-viral agents from medicinal plants. Flavonoids present in medicinal plants, holds anti-viral activity and can be used as vaccine against viruses. Therefore, present study was planned to find anti-viral potential of 2500 flavonoids inhibitors against the DENVNS2B/NS3 protease through computational screening which can hinder the viral replication within the host cell. By using molecular docking, it was revealed that flavonoids showed strong and stable bonding in the binding pocket of DENV NS2B/NS3 protease and had strong interactions with catalytic triad. Drug capability and anti-dengue potential of the flavonoids was also evaluated by using different bioinformatics tools. Some flavonoids effectively blocked the catalytic triad of DENV NS2B/NS3 protease and also passed through drug ability evaluation. It can be concluded from this study that these flavonoids could act as potential inhibitors to stop the replication of DENV and there is a need to study the action of these molecules in-vitro to confirm their action and other properties.

  3. Gelatin nanoparticles enhance delivery of hepatitis C virus recombinant NS2 gene

    PubMed Central

    George, Marina A.; El-Shorbagy, Haidan M.; Bassiony, Heba; Farroh, Khaled Y.; Youssef, Tareq; Salaheldin, Taher A.

    2017-01-01

    Background Development of an effective non-viral vaccine against hepatitis C virus infection is of a great importance. Gelatin nanoparticles (Gel.NPs) have an attention and promising approach as a viable carrier for delivery of vaccine, gene, drug and other biomolecules in the body. Aim of work The present study aimed to develop stable Gel.NPs conjugated with nonstructural protein 2 (NS2) gene of Hepatitis C Virus genotype 4a (HCV4a) as a safe and an efficient vaccine delivery system. Methods and results Gel.NPs were synthesized and characterized (size: 150±2 nm and zeta potential +17.6 mv). NS2 gene was successfully cloned and expressed into E. coli M15 using pQE-30 vector. Antigenicity of the recombinant NS2 protein was confirmed by Western blotting to verify the efficiency of NS2 as a possible vaccine. Then NS2 gene was conjugated to gelatin nanoparticles and a successful conjugation was confirmed by labeling and imaging using Confocal Laser Scanning Microscope (CLSM). Interestingly, the transformation of the conjugated NS2/Gel.NPs complex into E. coli DH5-α was 50% more efficient than transformation with the gene alone. In addition, conjugated NS2/Gel.NPs with ratio 1:100 (w/w) showed higher transformation efficiency into E. coli DH5-α than the other ratios (1:50 and 2:50). Conclusion Gel.NPs effectively enhanced the gene delivery in bacterial cells without affecting the structure of NS2 gene and could be used as a safe, easy, rapid, cost-effective and non-viral vaccine delivery system for HCV. PMID:28746382

  4. Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components

    PubMed Central

    Beatty, P. Robert

    2017-01-01

    Dengue virus (DENV) is the most prevalent, medically important mosquito-borne virus. Disease ranges from uncomplicated dengue to life-threatening disease, characterized by endothelial dysfunction and vascular leakage. Previously, we demonstrated that DENV nonstructural protein 1 (NS1) induces endothelial hyperpermeability in a systemic mouse model and human pulmonary endothelial cells, where NS1 disrupts the endothelial glycocalyx-like layer. NS1 also triggers release of inflammatory cytokines from PBMCs via TLR4. Here, we examined the relative contributions of inflammatory mediators and endothelial cell-intrinsic pathways. In vivo, we demonstrated that DENV NS1 but not the closely-related West Nile virus NS1 triggers localized vascular leak in the dorsal dermis of wild-type C57BL/6 mice. In vitro, we showed that human dermal endothelial cells exposed to DENV NS1 do not produce inflammatory cytokines (TNF-α, IL-6, IL-8) and that blocking these cytokines does not affect DENV NS1-induced endothelial hyperpermeability. Further, we demonstrated that DENV NS1 induces vascular leak in TLR4- or TNF-α receptor-deficient mice at similar levels to wild-type animals. Finally, we blocked DENV NS1-induced vascular leak in vivo using inhibitors targeting molecules involved in glycocalyx disruption. Taken together, these data indicate that DENV NS1-induced endothelial cell-intrinsic vascular leak is independent of inflammatory cytokines but dependent on endothelial glycocalyx components. PMID:29121099

  5. Conclusions and future directions for the REiNS International Collaboration

    PubMed Central

    Blakeley, Jaishri O.; Dombi, Eva; Fisher, Michael J.; Hanemann, Clemens O.; Walsh, Karin S.; Wolters, Pamela L.; Plotkin, Scott R.

    2013-01-01

    The Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) International Collaboration was established with the goal to develop consensus recommendations for the use of endpoints in neurofibromatosis (NF) clinical trials. This supplement includes the first series of REiNS recommendations for the use of patient-reported, functional, and visual outcomes, and for the evaluation of imaging response in NF clinical trials. Recommendations for neurocognitive outcome measures, the use of whole-body MRI in NF, the evaluation of potential biomarkers of disease, and the comprehensive evaluation of functional and patient-reported outcomes in NF are in development. The REiNS recommendations are made based on current knowledge. Experience with the use of the recommended endpoints in clinical trials, development of new tools and technologies, new knowledge of the natural history of NF, and advances in the methods used to analyze endpoints will likely lead to modifications of the currently proposed guidelines, which will be shared with the NF research community through the REiNS Web site www.reinscollaboration.org. Due to the clinical complexity of NF, there is a need to seek expertise from multiple medical disciplines, regulatory agencies, and industry to develop trial endpoints and designs, which will lead to the identification and approval of effective treatments for NF tumor and nontumor manifestations. The REiNS Collaboration welcomes anyone interested in providing his or her expertise toward this effort. PMID:24249805

  6. The structure of Zika virus NS5 reveals a conserved domain conformation

    DOE PAGES

    Wang, Boxiao; Tan, Xiao -Feng; Thurmond, Stephanie; ...

    2017-03-27

    The recent outbreak of Zika virus (ZIKV) has imposed a serious threat to public health. Here we report the crystal structure of the ZIKV NS5 protein in complex with S-adenosyl-L-homocysteine, in which the tandem methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains stack into one of the two alternative conformations of flavivirus NS5 proteins. In conclusion, the activity of this NS5 protein is verified through a de novo RdRp assay on a subgenomic ZIKV RNA template. Importantly, our structural analysis leads to the identification of a potential drug-binding site of ZIKV NS5, which might facilitate the development of novel antiviralsmore » for ZIKV.« less

  7. Identification of potential hit compounds for Dengue virus NS2B/NS3 protease inhibitors by combining virtual screening and binding free energy calculations.

    PubMed

    Wichapong, K; Nueangaudom, A; Pianwanit, S; Sippl, W; Kokpol, S

    2013-09-01

    Dengue virus (DV) infections are a serious public health problem and there is currently no vaccine or drug treatment. NS2B/NS3 protease, an essential enzyme for viral replication, is one of the promising targets in the search for drugs against DV. In this research work, virtual screening (VS) was carried out on four multi-conformational databases using several criteria. Firstly, molecular dynamics simulations of the NS2B/NS3 protease and four known inhibitors, which reveal an importance of both electrostatic and van der Waals interactions in stabilizing the ligand-enzyme interaction, were used to generate three different pharmacophore models (a structure-based, a static and a dynamic). Subsequently, these three models were employed for pharmacophore search in the VS. Secondly, compounds passing the first criterion were further reduced using the Lipinski's rule of five to keep only compounds with drug-like properties. Thirdly, molecular docking calculations were performed to remove compounds with unsuitable ligand-enzyme interactions. Finally, binding free energy of each compound was calculated. Compounds having better energy than the known inhibitors were selected and thus 20 potential hits were obtained.

  8. The Spectral Signatures Of BH Versus NS Sources

    NASA Astrophysics Data System (ADS)

    Seifina, E.; Titarchuk, L.

    2011-09-01

    We present a comparative analysis of spectral properties of Black Hole (BH) and Neutron Star (NS) X-ray binaries during transition events observed with BeppoSAX and RXTE satellites. In particular, we investigated the behavior of Comptonized component of X-ray spectra when object evolves from the low to high spectral states. The basic models to fit X-ray spectra of these objects are upscattering models (so called BMC and COMPTB models) which are the first principal models. These models taking into account both dynamical and thermal Comptonization and allow to study separate contributions of thermal component and Comptonization component (bulk and thermal effect of Comptonization processes). Specifically, we tested quite a few observations of BHs (GRS 1915+105 and SS 433) and NSs (4U 1728-34 and GX 3+1) applying BMC and COMPTB models. In this way it was found a crucial difference in behavior of photon index vs mass accretion rate (mdot) for BHs and NSs. Namely, we revealed the stability of the photon index around typical value of Gamma=2 versus mdot (or electron temperature) during spectral evolution of NS sources. This stability effect was previously suggested for a number of other neutron binaries (see Farinelli and Titarchuk, 2011). This intrinsic property of NS is fundamentally different from that in BH binary sources for which the index demonstrates monotonic growth with mass accretion rate followed by its saturation at high values of mdot. These index-mass accretion rate behavior during X-ray spectral transition events can be considered as signatures, which allow to differ NS from BH.

  9. Utility of dengue NS1 antigen rapid diagnostic test for use in difficult to reach areas and its comparison with dengue NS1 ELISA and qRT-PCR.

    PubMed

    Shukla, Mohan K; Singh, Neeru; Sharma, Ravendra K; Barde, Pradip V

    2017-07-01

    The objective of this study was to demonstrate the utility of dengue virus (DENV) non structural protein 1 (NS1) based rapid diagnostic test (RDT) for use in tribal and difficult to reach areas for early dengue (DEN) diagnosis in acute phase patients and evaluate its sensitivity and specificity against DENV NS1 enzyme linked immune sorbent assay (ELISA) and real time reverse transcriptase polymerase chain reaction (qRT-PCR). The DENV NS1 RDT was used for preliminary diagnosis during outbreaks in difficult to reach rural and tribal areas. The diagnosis was confirmed by DENV NS1 ELISA in the laboratory. The samples were also tested and serotyped by qRT-PCR. The results were evaluated using statistical tests. The DENV NS1 RDT showed 99.2% sensitivity and 96.0% specificity when analyzed using DENV NS1 ELISA as standard. The specificity and sensitivity of the RDT when compared with qRT-PCR was 93.6% and 91.1%, respectively. The serotype specific evaluation showed more than 90% sensitivity and specificity for DENV-1, 2, and 3. The RDT proved a good diagnostic tool in difficult to reach rural and tribal areas. Further evaluation studies with different commercially available RDTs in different field conditions are essential, that will help clinicians and patients for treatment and programme managers for timely intervention. © 2017 Wiley Periodicals, Inc.

  10. H-NS Facilitates Sequence Diversification of Horizontally Transferred DNAs during Their Integration in Host Chromosomes

    PubMed Central

    Higashi, Koichi; Tobe, Toru; Kanai, Akinori; Uyar, Ebru; Ishikawa, Shu; Suzuki, Yutaka; Ogasawara, Naotake; Kurokawa, Ken; Oshima, Taku

    2016-01-01

    Bacteria can acquire new traits through horizontal gene transfer. Inappropriate expression of transferred genes, however, can disrupt the physiology of the host bacteria. To reduce this risk, Escherichia coli expresses the nucleoid-associated protein, H-NS, which preferentially binds to horizontally transferred genes to control their expression. Once expression is optimized, the horizontally transferred genes may actually contribute to E. coli survival in new habitats. Therefore, we investigated whether and how H-NS contributes to this optimization process. A comparison of H-NS binding profiles on common chromosomal segments of three E. coli strains belonging to different phylogenetic groups indicated that the positions of H-NS-bound regions have been conserved in E. coli strains. The sequences of the H-NS-bound regions appear to have diverged more so than H-NS-unbound regions only when H-NS-bound regions are located upstream or in coding regions of genes. Because these regions generally contain regulatory elements for gene expression, sequence divergence in these regions may be associated with alteration of gene expression. Indeed, nucleotide substitutions in H-NS-bound regions of the ybdO promoter and coding regions have diversified the potential for H-NS-independent negative regulation among E. coli strains. The ybdO expression in these strains was still negatively regulated by H-NS, which reduced the effect of H-NS-independent regulation under normal growth conditions. Hence, we propose that, during E. coli evolution, the conservation of H-NS binding sites resulted in the diversification of the regulation of horizontally transferred genes, which may have facilitated E. coli adaptation to new ecological niches. PMID:26789284

  11. H-NS Facilitates Sequence Diversification of Horizontally Transferred DNAs during Their Integration in Host Chromosomes.

    PubMed

    Higashi, Koichi; Tobe, Toru; Kanai, Akinori; Uyar, Ebru; Ishikawa, Shu; Suzuki, Yutaka; Ogasawara, Naotake; Kurokawa, Ken; Oshima, Taku

    2016-01-01

    Bacteria can acquire new traits through horizontal gene transfer. Inappropriate expression of transferred genes, however, can disrupt the physiology of the host bacteria. To reduce this risk, Escherichia coli expresses the nucleoid-associated protein, H-NS, which preferentially binds to horizontally transferred genes to control their expression. Once expression is optimized, the horizontally transferred genes may actually contribute to E. coli survival in new habitats. Therefore, we investigated whether and how H-NS contributes to this optimization process. A comparison of H-NS binding profiles on common chromosomal segments of three E. coli strains belonging to different phylogenetic groups indicated that the positions of H-NS-bound regions have been conserved in E. coli strains. The sequences of the H-NS-bound regions appear to have diverged more so than H-NS-unbound regions only when H-NS-bound regions are located upstream or in coding regions of genes. Because these regions generally contain regulatory elements for gene expression, sequence divergence in these regions may be associated with alteration of gene expression. Indeed, nucleotide substitutions in H-NS-bound regions of the ybdO promoter and coding regions have diversified the potential for H-NS-independent negative regulation among E. coli strains. The ybdO expression in these strains was still negatively regulated by H-NS, which reduced the effect of H-NS-independent regulation under normal growth conditions. Hence, we propose that, during E. coli evolution, the conservation of H-NS binding sites resulted in the diversification of the regulation of horizontally transferred genes, which may have facilitated E. coli adaptation to new ecological niches.

  12. Structural Insights into the Regulation of Foreign Genes in Salmonella by the Hha/H-NS Complex*

    PubMed Central

    Ali, Sabrina S.; Whitney, John C.; Stevenson, James; Robinson, Howard; Howell, P. Lynne; Navarre, William Wiley

    2013-01-01

    The bacterial nucleoid-associated proteins Hha and H-NS jointly repress horizontally acquired genes in Salmonella, including essential virulence loci encoded within Salmonella pathogenicity islands. Hha is known to interact with the N-terminal dimerization domain of H-NS; however, the manner in which this interaction enhances transcriptional silencing is not understood. To further understand this process, we solved the x-ray crystal structure of Hha in complex with the N-terminal dimerization domain of H-NS (H-NS(1–46)) to 3.2 Å resolution. Two monomers of Hha bind to symmetrical sites on either side of the H-NS(1–46) dimer. Disruption of the Hha/H-NS interaction by the H-NS site-specific mutation I11A results in increased expression of the Hha/H-NS co-regulated gene hilA without affecting the expression levels of proV, a target gene repressed by H-NS in an Hha-independent fashion. Examination of the structure revealed a cluster of conserved basic amino acids that protrude from the surface of Hha on the opposite side of the Hha/H-NS(1–46) interface. Hha mutants with a diminished positively charged surface maintain the ability to interact with H-NS but can no longer regulate hilA. Increased expression of the hilA locus did not correspond to significant depletion of H-NS at the promoter region in chromatin immunoprecipitation assays. However, in vitro, we find Hha improves H-NS binding to target DNA fragments. Taken together, our results show for the first time how Hha and H-NS interact to direct transcriptional repression and reveal that a positively charged surface of Hha enhances the silencing activity of H-NS nucleoprotein filaments. PMID:23515315

  13. Molecular mechanism of influenza A NS1-mediated TRIM25 recognition and inhibition.

    PubMed

    Koliopoulos, Marios G; Lethier, Mathilde; van der Veen, Annemarthe G; Haubrich, Kevin; Hennig, Janosch; Kowalinski, Eva; Stevens, Rebecca V; Martin, Stephen R; Reis E Sousa, Caetano; Cusack, Stephen; Rittinger, Katrin

    2018-05-08

    RIG-I is a viral RNA sensor that induces the production of type I interferon (IFN) in response to infection with a variety of viruses. Modification of RIG-I with K63-linked poly-ubiquitin chains, synthesised by TRIM25, is crucial for activation of the RIG-I/MAVS signalling pathway. TRIM25 activity is targeted by influenza A virus non-structural protein 1 (NS1) to suppress IFN production and prevent an efficient host immune response. Here we present structures of the human TRIM25 coiled-coil-PRYSPRY module and of complexes between the TRIM25 coiled-coil domain and NS1. These structures show that binding of NS1 interferes with the correct positioning of the PRYSPRY domain of TRIM25 required for substrate ubiquitination and provide a mechanistic explanation for how NS1 suppresses RIG-I ubiquitination and hence downstream signalling. In contrast, the formation of unanchored K63-linked poly-ubiquitin chains is unchanged by NS1 binding, indicating that RING dimerisation of TRIM25 is not affected by NS1.

  14. BOREAS Level-2 NS001 TMS Imagery: Reflectance and Temperature in BSQ Format

    NASA Technical Reports Server (NTRS)

    Lobitz, Brad; Spanner, Michael; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Strub, Richard

    2000-01-01

    For BOREAS, the NS001 TMS images, along with the other remotely sensed data, were collected to provide spatially extensive information over the primary study areas. This information includes detailed land cover and biophysical parameter maps such as fPAR and LAI. Collection of the NS001 images occurred over the study areas during the 1994 field campaigns. The level-2 NS001 data are atmospherically corrected versions of some of the best original NS001 imagery and cover the dates of 19-Apr-1994, 07-Jun-1994, 21-Jul-1994, 08-Aug-1994, and 16-Sep-1994. The data are not geographically/geometrically corrected; however, files of relative X and Y coordinates for each image pixel were derived by using the C130 INS data in an NS001 scan model. The data are provided in binary image format files.

  15. Comparative Analysis of Disruption Tolerant Network Routing Simulations in the One and NS-3

    DTIC Science & Technology

    2017-12-01

    real systems with less work compared to ns-2. In order to meet the design goals of ns-3, the entire code structure changed to a modular design . As a...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS COMPARATIVE ANALYSIS OF DISRUPTION TOLERANT NETWORK ROUTING SIMULATIONS IN THE ONE AND NS-3...Thesis 03-23-2016 to 12-15-2017 4. TITLE AND SUBTITLE COMPARATIVE ANALYSIS OF DISRUPTION TOLERANT NETWORK ROUTING SIMULATIONS IN THE ONE AND NS-3 5

  16. Purification and crystallization of dengue and West Nile virus NS2B-NS3 complexes.

    PubMed

    D'Arcy, Allan; Chaillet, Maxime; Schiering, Nikolaus; Villard, Frederic; Lim, Siew Pheng; Lefeuvre, Peggy; Erbel, Paul

    2006-02-01

    Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but may also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B-NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.

  17. Protective immunity to Japanese encephalitis virus associated with anti-NS1 antibodies in a mouse model.

    PubMed

    Li, Yize; Counor, Dorian; Lu, Peng; Duong, Veasna; Yu, Yongxin; Deubel, Vincent

    2012-07-24

    Japanese encephalitis virus (JEV) is a major mosquito-borne pathogen that causes viral encephalitis throughout Asia. Vaccination with an inactive JEV particle or attenuated virus is an efficient preventative measure for controlling infection. Flavivirus NS1 protein is a glycoprotein secreted during viral replication that plays multiple roles in the viral life cycle and pathogenesis. Utilizing JEV NS1 as an antigen in viral vectors induces a limited protective immune response against infection. Previous studies using E. coli-expressed JEV NS1 to immunize mice induced protection against lethal challenge; however, the protection mechanism through cellular and humoral immune responses was not described. JEV NS1 was expressed in and purified from Drosophila S2 cells in a native glycosylated multimeric form, which induced T-cell and antibody responses in immunized C3H/HeN mice. Mice vaccinated with 1 μg NS1 with or without water-in-oil adjuvant were partially protected against viral challenge and higher protection was observed in mice with higher antibody titers. IgG1 was preferentially elicited by an adjuvanted NS1 protein, whereas a larger load of IFN-γ was produced in splenocytes from mice immunized with aqueous NS1. Mice that passively received anti-NS1 mouse polyclonal immune sera were protected, and this phenomenon was dose-dependent, whereas protection was low or delayed after the passive transfer of anti-NS1 MAbs. The purified NS1 subunit induced protective immunity in relation with anti-NS1 IgG1 antibodies. NS1 protein efficiently stimulated Th1-cell proliferation and IFN-γ production. Protection against lethal challenge was elicited by passive transfer of anti-NS1 antisera, suggesting that anti-NS1 antibodies play a substantial role in anti-viral immunity.

  18. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure

    PubMed Central

    Roth, Caleb C.; Barnes Jr., Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.

    2015-01-01

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane. PMID:26450165

  19. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure.

    PubMed

    Roth, Caleb C; Barnes, Ronald A; Ibey, Bennett L; Beier, Hope T; Christopher Mimun, L; Maswadi, Saher M; Shadaram, Mehdi; Glickman, Randolph D

    2015-10-09

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.

  20. Discovery of Dengue Virus NS4B Inhibitors

    PubMed Central

    Wang, Qing-Yin; Dong, Hongping; Zou, Bin; Karuna, Ratna; Wan, Kah Fei; Zou, Jing; Susila, Agatha; Yip, Andy; Shan, Chao; Yeo, Kim Long; Xu, Haoying; Ding, Mei; Chan, Wai Ling; Gu, Feng; Seah, Peck Gee; Liu, Wei; Lakshminarayana, Suresh B.; Kang, CongBao; Lescar, Julien; Blasco, Francesca; Smith, Paul W.

    2015-01-01

    ABSTRACT The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50, >20 μM). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial “hit” (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients. IMPORTANCE Dengue virus (DENV) threatens up to 2.5 billion people and is now spreading in many regions in the world where it was not previously endemic. While there are several promising vaccine candidates in clinical trials, approved vaccines or antivirals are not yet available. Here we describe the identification and characterization of a spiropyrazolopyridone as a novel inhibitor of DENV by targeting the viral NS4B protein. The compound potently inhibits two of the four serotypes of DENV (DENV-2 and -3) both in vitro and in vivo. Our

  1. Molecular Mechanism by Which a Potent Hepatitis C Virus NS3-NS4A Protease Inhibitor Overcomes Emergence of Resistance

    PubMed Central

    O'Meara, Jeff A.; Lemke, Christopher T.; Godbout, Cédrickx; Kukolj, George; Lagacé, Lisette; Moreau, Benoît; Thibeault, Diane; White, Peter W.; Llinàs-Brunet, Montse

    2013-01-01

    Although optimizing the resistance profile of an inhibitor can be challenging, it is potentially important for improving the long term effectiveness of antiviral therapy. This work describes our rational approach toward the identification of a macrocyclic acylsulfonamide that is a potent inhibitor of the NS3-NS4A proteases of all hepatitis C virus genotypes and of a panel of genotype 1-resistant variants. The enhanced potency of this compound versus variants D168V and R155K facilitated x-ray determination of the inhibitor-variant complexes. In turn, these structural studies revealed a complex molecular basis of resistance and rationalized how such compounds are able to circumvent these mechanisms. PMID:23271737

  2. Rough Interface Effects on N-S Proximity-Contact Systems

    NASA Astrophysics Data System (ADS)

    Nagato, Yasushi; Nagai, Katsuhiko

    2003-03-01

    We discuss the influence of atomic scale roughness of the interface on the properties of the N-S contact systems. To treat the interface roughness effects we extend our previous quasi-classical theory of the rough surface effect and construct a formal solution for the quasi-classical Green's function. We apply the formulation to N-S systems with two-dimensional anisotropic dx2-y2 superconductor and calculate the self-consistent pair potential and the density of states at the interface.

  3. Induction of apoptosis of liver cancer cells by nanosecond pulsed electric fields (nsPEFs).

    PubMed

    He, Ling; Xiao, Deyou; Feng, Jianguo; Yao, Chenguo; Tang, Liling

    2017-02-01

    The application of nanosecond pulsed electric fields (nsPEFs) is a novel method to induce the death of cancer cells. NsPEFs could directly function on the cell membrane and activate the apoptosis pathways, then induce apoptosis in various cell lines. However, the nsPEFs-inducing-apoptosis action sites and the exact pathways are not clear now. In this study, nsPEFs were applied to the human liver cancer cells HepG2 with different parameters. By apoptosis assay, morphological observation, detecting the mitochondrial membrane potential (ΔΨ m ), intracellular calcium ion concentration ([Ca 2+ ]i) and the expressions of key apoptosis factors, we demonstrated that nsPEFs could induce the morphology of cell apoptosis, the change in ΔΨ m , [Ca 2+ ]i and the upregulation of some key apoptosis factors, which revealed the responses of liver cancer cells and indicated that cells may undergo apoptosis through the mitochondria-dependent pathway after nsPEFs were applied.

  4. Structure and sequence based functional annotation of Zika virus NS2b protein: Computational insights.

    PubMed

    Aguilera-Pesantes, Daniel; Méndez, Miguel A

    2017-10-28

    While Zika virus (ZIKV) outbreaks are a growing concern for global health, a deep understanding about the virus is lacking. Here we report a contribution to the basic science on the virus- a detailed computational analysis of the non structural protein NS2b. This protein acts as a cofactor for the NS3 protease (NS3Pro) domain that is important on the viral life cycle, and is an interesting target for drug development. We found that ZIKV NS2b cofactor is highly similar to other virus within the Flavivirus genus, especially to West Nile Virus, suggesting that it is completely necessary for the protease complex activity. Furthermore, the ZIKV NS2b has an important role to the function and stability of the ZIKV NS3 protease domain even when presents a low conservation score. In addition, ZIKV NS2b is mostly rigid, which could imply a non dynamic nature in substrate recognition. Finally, by performing a computational alanine scanning mutagenesis, we found that residues Gly 52 and Asp 83 in the NS2b could be important in substrate recognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Naturally occurring mutations associated with resistance to HCV NS5B polymerase and NS3 protease inhibitors in treatment-naïve patients with chronic hepatitis C.

    PubMed

    Costantino, Angela; Spada, Enea; Equestre, Michele; Bruni, Roberto; Tritarelli, Elena; Coppola, Nicola; Sagnelli, Caterina; Sagnelli, Evangelista; Ciccaglione, Anna Rita

    2015-11-14

    The detection of baseline resistance mutations to new direct-acting antivirals (DAAs) in HCV chronically infected treatment-naïve patients could be important for their management and outcome prevision. In this study, we investigated the presence of mutations, which have been previously reported to be associated with resistance to DAAs in HCV polymerase (NS5B) and HCV protease (NS3) regions, in sera of treatment-naïve patients. HCV RNA from 152 naïve patients (84 % Italian and 16 % immigrants from various countries) infected with different HCV genotypes (21,1a; 21, 1b; 2, 2a; 60, 2c; 22, 3a; 25, 4d and 1, 4k) was evaluated for sequence analysis. Amplification and sequencing of fragments in the NS5B (nt 8256-8640) and NS3 (nt 3420-3960) regions of HCV genome were carried out for 152 and 28 patients, respectively. The polymorphism C316N/H in NS5B region, associated with resistance to sofosbuvir, was detected in 9 of the 21 (43 %) analysed sequences from genotype 1b-infected patients. Naturally occurring mutations V36L, and M175L in the NS3 protease region were observed in 100 % of patients infected with subtype 2c and 4. A relevant proportion of treatment naïve genotype 1b infected patients evaluated in this study harboured N316 polymorphism and might poorly respond to sofosbuvir treatment. As sofosbuvir has been approved for treatment of HCV chronic infection in USA and Europe including Italy, pre-treatment testing for N316 polymorphism on genotype 1b naïve patients should be considered for this drug.

  6. Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H‐NS of Escherichia coli

    PubMed Central

    Hong, Seok Hoon; Wang, Xiaoxue; Wood, Thomas K.

    2010-01-01

    Summary The global regulator H‐NS of Escherichia coli controls genes related to stress response, biofilm formation and virulence by recognizing curved DNA and by silencing acquired genes. Here, we rewired H‐NS to control biofilm formation using protein engineering; H‐NS variant K57N was obtained that reduces biofilm formation 10‐fold compared with wild‐type H‐NS (wild‐type H‐NS increases biofilm formation whereas H‐NS K57N reduces it). Whole‐transcriptome analysis revealed that H‐NS K57N represses biofilm formation through its interaction with the nucleoid‐associated proteins Cnu and StpA and in the absence of these proteins, H‐NS K57N was unable to reduce biofilm formation. Significantly, H‐NS K57N enhanced the excision of defective prophage Rac while wild‐type H‐NS represses excision, and H‐NS controlled only Rac excision among the nine resident E. coli K‐12 prophages. Rac prophage excision not only led to the change in biofilm formation but also resulted in cell lysis through the expression of toxin HokD. Hence, the H‐NS regulatory system may be evolved through a single‐amino‐acid change in its N‐terminal oligomerization domain to control biofilm formation, prophage excision and apoptosis. PMID:21255333

  7. Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet

    PubMed Central

    2013-01-01

    Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression

  8. The 2NS Translocation from Aegilops ventricosa Confers Resistance to the Triticum Pathotype of Magnaporthe oryzae

    PubMed Central

    Cruz, C.D.; Peterson, G.L.; Bockus, W.W.; Kankanala, P.; Dubcovsky, J.; Jordan, K.W.; Akhunov, E.; Chumley, F.; Baldelomar, F.D.; Valent, B.

    2016-01-01

    Wheat blast is a serious disease caused by the fungus Magnaporthe oryzae (Triticum pathotype) (MoT). The objective of this study was to determine the effect of the 2NS translocation from Aegilops ventricosa (Zhuk.) Chennav on wheat head and leaf blast resistance. Disease phenotyping experiments were conducted in growth chamber, greenhouse, and field environments. Among 418 cultivars of wheat (Triticum aestivum L.), those with 2NS had 50.4 to 72.3% less head blast than those without 2NS when inoculated with an older MoT isolate under growth chamber conditions. When inoculated with recently collected isolates, cultivars with 2NS had 64.0 to 80.5% less head blast. Under greenhouse conditions when lines were inoculated with an older MoT isolate, those with 2NS had a significant head blast reduction. With newer isolates, not all lines with 2NS showed a significant reduction in head blast, suggesting that the genetic background and/or environment may influence the expression of any resistance conferred by 2NS. However, when near-isogenic lines (NILs) with and without 2NS were planted in the field, there was strong evidence that 2NS conferred resistance to head blast. Results from foliar inoculations suggest that the resistance to head infection that is imparted by the 2NS translocation does not confer resistance to foliar disease. In conclusion, the 2NS translocation was associated with significant reductions in head blast in both spring and winter wheat. PMID:27814405

  9. Discovery of the Ubiquitous Cation NS+ in Space Confirmed by Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cernicharo, J.; Lefloch, B.; Agúndez, M.; Bailleux, S.; Margulès, L.; Roueff, E.; Bachiller, R.; Marcelino, N.; Tercero, B.; Vastel, C.; Caux, E.

    2018-02-01

    We report the detection in space of a new molecular species that has been characterized spectroscopically and fully identified from astrophysical data. The observations were carried out with the IRAM 30 m telescope. The molecule is ubiquitous as its J=2\\to 1 transition has been found in cold molecular clouds, prestellar cores, and shocks. However, it is not found in the hot cores of Orion-KL and in the carbon-rich evolved star IRC+10216. Three rotational transitions in perfect harmonic relation J\\prime =2/3/5 have been identified in the prestellar core B1b. The molecule has a 1Σ electronic ground state and its J=2\\to 1 transition presents the hyperfine structure characteristic of a molecule containing a nucleus with spin 1. A careful analysis of possible carriers shows that the best candidate is NS+. The derived rotational constant agrees within 0.3%–0.7% with ab initio calculations. NS+ was also produced in the laboratory to unambiguously validate the astrophysical assignment. The observed rotational frequencies and determined molecular constants confirm the discovery of the nitrogen sulfide cation in space. The chemistry of NS+ and related nitrogen-bearing species has been analyzed by means of a time-dependent gas-phase model. The model reproduces well the observed NS/NS+ abundance ratio, in the range 30–50, and indicates that NS+ is formed by reactions of the neutral atoms N and S with the cations SH+ and NH+, respectively.

  10. Hepatitis C virus NS3 helicase forms oligomeric structures that exhibit optimal DNA unwinding activity in vitro.

    PubMed

    Sikora, Bartek; Chen, Yingfeng; Lichti, Cheryl F; Harrison, Melody K; Jennings, Thomas A; Tang, Yong; Tackett, Alan J; Jordan, John B; Sakon, Joshua; Cameron, Craig E; Raney, Kevin D

    2008-04-25

    HCV NS3 helicase exhibits activity toward DNA and RNA substrates. The DNA helicase activity of NS3 has been proposed to be optimal when multiple NS3 molecules are bound to the same substrate molecule. NS3 catalyzes little or no measurable DNA unwinding under single cycle conditions in which the concentration of substrate exceeds the concentration of enzyme by 5-fold. However, when NS3 (100 nm) is equimolar with the substrate, a small burst amplitude of approximately 8 nm is observed. The burst amplitude increases as the enzyme concentration increases, consistent with the idea that multiple molecules are needed for optimal unwinding. Protein-protein interactions may facilitate optimal activity, so the oligomeric properties of the enzyme were investigated. Chemical cross-linking indicates that full-length NS3 forms higher order oligomers much more readily than the NS3 helicase domain. Dynamic light scattering indicates that full-length NS3 exists as an oligomer, whereas NS3 helicase domain exists in a monomeric form in solution. Size exclusion chromatography also indicates that full-length NS3 behaves as an oligomer in solution, whereas the NS3 helicase domain behaves as a monomer. When NS3 was passed through a small pore filter capable of removing protein aggregates, greater than 95% of the protein and the DNA unwinding activity was removed from solution. In contrast, only approximately 10% of NS3 helicase domain and approximately 20% of the associated DNA unwinding activity was removed from solution after passage through the small pore filter. The results indicate that the optimally active form of full-length NS3 is part of an oligomeric species in vitro.

  11. Structure-based design of NS2 mutants for attenuated influenza A virus vaccines.

    PubMed

    Akarsu, Hatice; Iwatsuki-Horimoto, Kiyoko; Noda, Takeshi; Kawakami, Eiryo; Katsura, Hiroaki; Baudin, Florence; Horimoto, Taisuke; Kawaoka, Yoshihiro

    2011-01-01

    We previously characterised the matrix 1 (M1)-binding domain of the influenza A virus NS2/nuclear export protein (NEP), reporting a critical role for the tryptophan (W78) residue that is surrounded by a cluster of glutamate residues in the C-terminal region that interacts with the M1 protein (Akarsu et al., 2003). To gain further insight into the functional role of this interaction, here we used reverse genetics to generate a series of A/WSN/33 (H1N1)-based NS2/NEP mutants for W78 or the C-terminal glutamate residues and assessed their effect on virus growth. We found that simultaneous mutations at three positions (E67S/E74S/E75S) of NS2/NEP were important for inhibition of influenza viral polymerase activity, although the W78S mutant and other glutamate mutants with single substitutions were not. In addition, double and triple substitutions in the NS2/NEP glutamine residues, which resulted in the addition of seven amino acids to the C-terminus of NS1 due to gene overlapping, resulted in virus attenuation in mice. Animal studies with this mutant suggest a potential benefit to incorporating these NS mutations into live vaccines. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity

    PubMed Central

    Allonso, Diego; Andrade, Iamara S.; Conde, Jonas N.; Coelho, Diego R.; Rocha, Daniele C. P.; da Silva, Manuela L.; Ventura, Gustavo T.

    2015-01-01

    ABSTRACT Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the

  13. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity.

    PubMed

    Allonso, Diego; Andrade, Iamara S; Conde, Jonas N; Coelho, Diego R; Rocha, Daniele C P; da Silva, Manuela L; Ventura, Gustavo T; Silva, Emiliana M; Mohana-Borges, Ronaldo

    2015-12-01

    Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the intracellular and the

  14. The Enigmatic Alphavirus Non-Structural Protein 3 (nsP3) Revealing Its Secrets at Last

    PubMed Central

    Götte, Benjamin; Liu, Lifeng

    2018-01-01

    Alphaviruses encode 4 non-structural proteins (nsPs), most of which have well-understood functions in capping and membrane association (nsP1), polyprotein processing and RNA helicase activity (nsP2) and as RNA-dependent RNA polymerase (nsP4). The function of nsP3 has been more difficult to pin down and it has long been referred to as the more enigmatic of the nsPs. The protein comprises three domains, an N-terminal macro domain, a central zinc-binding domain and a C-terminal hypervariable domain (HVD). In this article, we review old and new literature about the functions of the three domains. Much progress in recent years has contributed to a picture of nsP3, particularly through its HVD as a hub for interactions with host cell molecules, with multiple effects on the biology of the host cell at early points in infection. These and many future discoveries will provide targets for anti-viral therapies as well as strategies for modification of vectors for vaccine and oncolytic interventions. PMID:29495654

  15. Quantum Otto engine using a single ion and a single thermal bath

    NASA Astrophysics Data System (ADS)

    Biswas, Asoka; Chand, Suman

    2016-05-01

    Quantum heat engines employ a quantum system as the working fluid, that gives rise to large work efficiency, beyond the limit for classical heat engines. Existing proposals for implementing quantum heat engines require that the system interacts with the hot bath and the cold bath (both modelled as a classical system) in an alternative fashion and therefore assumes ability to switch off the interaction with the bath during a certain stage of the heat-cycle. However, it is not possible to decouple a quantum system from its always-on interaction with the bath without use of complex pulse sequences. It is also hard to identify two different baths at two different temperatures in quantum domain, that sequentially interact with the system. Here, we show how to implement a quantum Otto engine without requiring to decouple the bath in a sequential manner. This is done by considering a single thermal bath, coupled to a single trapped ion. The electronic degree of freedom of the ion is chosen as a two-level working fluid while the vibrational degree of freedom plays the role of the cold bath. Measuring the electronic state mimics the release of heat into the cold bath. Thus, our model is fully quantum and exhibits very large work efficiency, asymptotically close to unity.

  16. Using NetMeeting for remote configuration of the Otto Bock C-Leg: technical considerations.

    PubMed

    Lemaire, E D; Fawcett, J A

    2002-08-01

    Telehealth has the potential to be a valuable tool for technical and clinical support of computer controlled prosthetic devices. This pilot study examined the use of Internet-based, desktop video conferencing for remote configuration of the Otto Bock C-Leg. Laboratory tests involved connecting two computers running Microsoft NetMeeting over a local area network (IP protocol). Over 56 Kbs(-1), DSL/Cable, and 10 Mbs(-1) LAN speeds, a prosthetist remotely configured a user's C-Leg by using Application Sharing, Live Video, and Live Audio. A similar test between sites in Ottawa and Toronto, Canada was limited by the notebook computer's 28 Kbs(-1) modem. At the 28 Kbs(-1) Internet-connection speed, NetMeeting's application sharing feature was not able to update the remote Sliders window fast enough to display peak toe loads and peak knee angles. These results support the use of NetMeeting as an accessible and cost-effective tool for remote C-Leg configuration, provided that sufficient Internet data transfer speed is available.

  17. Reovirus Nonstructural Protein σNS Acts as an RNA-Stability Factor Promoting Viral Genome Replication.

    PubMed

    Zamora, Paula F; Hu, Liya; Knowlton, Jonathan J; Lahr, Roni M; Moreno, Rodolfo A; Berman, Andrea J; Prasad, B V Venkataram; Dermody, Terence S

    2018-05-16

    Viral nonstructural proteins, which are not packaged into virions, are essential for replication of most viruses. Reovirus, a nonenveloped, double-stranded RNA (dsRNA) virus, encodes three nonstructural proteins that are required for viral replication and dissemination in the host. Reovirus nonstructural protein σNS is a single-stranded RNA (ssRNA)-binding protein that must be expressed in infected cells for production of viral progeny. However, activities of σNS during individual steps of the reovirus replication cycle are poorly understood. We explored the function of σNS by disrupting its expression during infection using cells expressing a small interfering RNA (siRNA) targeting the σNS-encoding S3 gene and found that σNS is required for viral genome replication. Using complementary biochemical assays, we determined that σNS forms complexes with viral and nonviral RNAs. We also discovered that σNS increases RNA half-life using in vitro and cell-based RNA degradation experiments. Cryo-electron microscopy revealed that σNS and ssRNAs organize into long, filamentous structures. Collectively, our findings indicate that σNS functions as an RNA-binding protein that increases viral RNA half-life. These results suggest that σNS forms RNA-protein complexes in preparation for genome replication. IMPORTANCE Following infection, viruses synthesize nonstructural proteins that mediate viral replication and promote dissemination. Viruses from the Reoviridae family encode nonstructural proteins that are required for the formation of progeny viruses. Although nonstructural proteins of different Reoviridae family viruses are diverged in primary sequence, these proteins are functionally homologous and appear to facilitate conserved mechanisms of dsRNA virus replication. Using in vitro and cell-culture approaches, we found that the mammalian reovirus nonstructural protein σNS binds and stabilizes viral RNA and is required for genome synthesis. This work contributes new

  18. A single-chip 32-channel analog beamformer with 4-ns delay resolution and 768-ns maximum delay range for ultrasound medical imaging with a linear array transducer.

    PubMed

    Um, Ji-Yong; Kim, Yoon-Jee; Cho, Seong-Eun; Chae, Min-Kyun; Kim, Byungsub; Sim, Jae-Yoon; Park, Hong-June

    2015-02-01

    A single-chip 32-channel analog beamformer is proposed. It achieves a delay resolution of 4 ns and a maximum delay range of 768 ns. It has a focal-point based architecture, which consists of 7 sub-analog beamformers (sub-ABF). Each sub-ABF performs a RX focusing operation for a single focal point. Seven sub-ABFs perform a time-interleaving operation to achieve the maximum delay range of 768 ns. Phase interpolators are used in sub-ABFs to generate sampling clocks with the delay resolution of 4 ns from a low frequency system clock of 5 MHz. Each sub-ABF samples 32 echo signals at different times into sampling capacitors, which work as analog memory cells. The sampled 32 echo signals of each sub-ABF are originated from one target focal point at one instance. They are summed at one instance in a sub-ABF to perform the RX focusing for the target focal point. The proposed ABF chip has been fabricated in a 0.13- μ m CMOS process with an active area of 16 mm (2). The total power consumption is 287 mW. In measurement, the digital echo signals from a commercial ultrasound medical imaging machine were applied to the fabricated chip through commercial DAC chips. Due to the speed limitation of the DAC chips, the delay resolution was relaxed to 10 ns for the real-time measurement. A linear array transducer with no steering operation is used in this work.

  19. Virulence, Speciation and Antibiotic Susceptibility of Ocular Coagualase Negative Staphylococci (CoNS)

    PubMed Central

    Priya, Ravindran; Mythili, Arumugam; Singh, Yendremban Randhir Babu; Sreekumar, Haridas; Manikandan, Palanisamy; Panneerselvam, Kanesan

    2014-01-01

    Background: Coagulase negative Staphylococci (CoNS) are common inhabitants of human skin and mucous membranes. With the emergence of these organisms as prominent pathogens in patients with ocular infections, investigation has intensified in an effort to identify important virulence factors and to inform new approaches to treatment and prevention. Aim: To isolate CoNS from ocular specimens; to study the possible virulence factors; speciation of coagulase negative staphylococci (CoNS) which were isolated from ocular complications; antibiotic susceptibility testing of ocular CoNS. Materials and Methods: The specimens were collected from the target patients who attended the Microbiology Laboratory of a tertiary care eye hospital in Coimbatore, Tamilnadu state, India. The isolates were subjected to tube and slide coagulase tests for the identification of CoNS. All the isolates were subjected to screening for lipase and protease activities. Screening for other virulence factors viz., slime production on Congo red agar medium and haemagglutination assay with use of 96-well microtitre plates. These isolates were identified upto species level by performing biochemical tests such as phosphatase test, arginine test, maltose and trehalose fermentation tests and novobiocin sensitivity test. The isolates were subjected to antibiotic susceptibility studies, based on the revised standards of Clinical and Laboratory Standards Institutes (CLSI). Results: During the one year of study, among the total 260 individuals who were screened, 100 isolates of CoNS were obtained. Lipolytic activity was seen in all the isolates, whereas 38 isolates showed a positive result for protease. A total of 63 isolates showed slime production. Of 100 isolates, 30 isolates were analyzed for haemagglutination, where 4 isolates showed the capacity to agglutinate the erythrocytes. The results of the biochemical analysis revealed that of the 100 isolates of CoNS, 43% were Staphylococcus epidermidis. The other

  20. A first-principles based study of ns2 containing ternary iodides and their possibility of scintillation

    NASA Astrophysics Data System (ADS)

    Kang, Byungkyun; Fang, C. M.; Biswas, Koushik

    2016-10-01

    A recently investigated scintillator material CsBa2I5 showed promising properties when activated with ns2 ions In+, Tl+ or the lanthanide Eu2+. This sparked our interest in an analogous group of materials, e.g. InBa2I5 or TlBa2I5 where the ns2 ion is part of the crystal framework, replacing the alkali ion. Many of these compounds of the type AB2X5 (X  =  halogen) have been previously synthesized and have interesting stereochemical activity. Using density functional calculations we have studied the stable monoclinic phase of the aforementioned ns2 containing iodides. One objective is to explore them as scintillators where the ns2 ions, now appearing as part of the crystal, play a central role. Compared to CsBa2I5, their reduced fundamental band gap and possibility of higher light yield may be attributed to an induced degree of covalency in the ns2-I bonds. The valence and conduction band edges have discernible contributions from the ns2 ions’ s and p orbitals which is crucial in carrier localization. The antibonding Ga or In s sates near valence edge may be a favored site for a hole trap, as against a {{V}k} center. Additional differences among the ns2 compounds lead to qualitatively different self-trapped excitons that may fundamentally affect luminescence. The possibility of fast electron capture at the ns2 sites and the prospect of self-activated scintillation via ns2-p  →  {{V}k} or ns2-p  →  ns2-s transitions may draw interest in related applications.

  1. A novel cell-based assay to measure activity of Venezuelan equine encephalitis virus nsP2 protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos-Gomez, Javier; Ahmad, Fahim; Rodriguez, Efrain

    2016-09-15

    The encephalitic alphaviruses encode nsP2 protease (nsP2pro), which because of its vital role in virus replication, represents an attractive target for therapeutic intervention. To facilitate the discovery of nsP2 inhibitors we have developed a novel assay for quantitative measurement of nsP2pro activity in a cell-based format. The assay is based on a substrate fusion protein consisting of eGFP and Gaussia luciferase (Gluc) linked together by a small peptide containing a VEEV nsp2pro cleavage sequence. The expression of the substrate protein in cells along with recombinant nsP2pro results in cleavage of the substrate protein resulting in extracellular release of free Gluc.more » The Gluc activity in supernatants corresponds to intracellular nsP2pro-mediated substrate cleavage; thus, providing a simple and convenient way to quantify nsP2pro activity. Here, we demonstrate potential utility of the assay in identification of nsP2pro inhibitors, as well as in investigations related to molecular characterization of nsP2pro. - Highlights: • A novel cell-based assay to measure VEEV nsP2 protease activity was developed. • Assay utility was demonstrated for antiviral screening. • .The assay also proved to be useful in basic mechanistic studies of nsP2 protease.« less

  2. Changes of ns-soot mixing states and shapes in an urban area during CalNex

    NASA Astrophysics Data System (ADS)

    Adachi, Kouji; Buseck, Peter R.

    2013-05-01

    Aerosol particles from megacities influence the regional and global climate as well as the health of their occupants. We used transmission electron microscopes (TEMs) to study aerosol particles collected from the Los Angeles area during the 2010 CalNex campaign. We detected major amounts of ns-soot, defined as consisting of carbon nanospheres, sulfate, sea salt, and organic aerosol (OA) and lesser amounts of brochosome particles from leaf hoppers. Ns-soot-particle shapes, mixing states, and abundances varied significantly with sampling times and days. Within plumes having high CO2 concentrations, much ns-soot was compacted and contained a relatively large number of carbon nanospheres. Ns-soot particles from both CalNex samples and Mexico City, the latter collected in 2006, had a wide range of shapes when mixed with other aerosol particles, but neither sets showed spherical ns-soot nor the core-shell configuration that is commonly used in optical calculations. Our TEM observations and light-absorption calculations of modeled particles indicate that, in contrast to ns-soot particles that are embedded within other materials or have the hypothesized core-shell configurations, those attached to other aerosol particles hardly enhance their light absorption. We conclude that the ways in which ns-soot mixes with other particles explain the observations of smaller light amplification by ns-soot coatings than model calculations during the CalNex campaign and presumably in other areas.

  3. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 2; BFaNS User's Manual and Developer's Guide

    NASA Technical Reports Server (NTRS)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the second volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running BFaNS. It concludes with technical documentation of the BFaNS computer program.

  4. The crystal structure of Zika virus NS5 reveals conserved drug targets.

    PubMed

    Duan, Wenqian; Song, Hao; Wang, Haiyuan; Chai, Yan; Su, Chao; Qi, Jianxun; Shi, Yi; Gao, George F

    2017-04-03

    Zika virus (ZIKV) has emerged as major health concern, as ZIKV infection has been shown to be associated with microcephaly, severe neurological disease and possibly male sterility. As the largest protein component within the ZIKV replication complex, NS5 plays key roles in the life cycle and survival of the virus through its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains. Here, we present the crystal structures of ZIKV NS5 MTase in complex with an RNA cap analogue ( m7 GpppA) and the free NS5 RdRp. We have identified the conserved features of ZIKV NS5 MTase and RdRp structures that could lead to development of current antiviral inhibitors being used against flaviviruses, including dengue virus and West Nile virus, to treat ZIKV infection. These results should inform and accelerate the structure-based design of antiviral compounds against ZIKV. © 2017 The Authors.

  5. Structure and function of the Zika virus full-length NS5 protein

    DOE PAGES

    Zhao, Baoyu; Yi, Guanghui; Du, Fenglei; ...

    2017-03-27

    The recent outbreak of Zika virus (ZIKV) has infected over 1 million people in over 30 countries. ZIKV replicates its RNA genome using virally encoded replication proteins. Nonstructural protein 5 (NS5) contains a methyltransferase for RNA capping and a polymerase for viral RNA synthesis. Here we report the crystal structures of full-length NS5 and its polymerase domain at 3.0 Å resolution. The NS5 structure has striking similarities to the NS5 protein of the related Japanese encephalitis virus. The methyltransferase contains in-line pockets for substrate binding and the active site. Key residues in the polymerase are located in similar positions tomore » those of the initiation complex for the hepatitis C virus polymerase. The polymerase conformation is affected by the methyltransferase, which enables a more efficiently elongation of RNA synthesis in vitro. Altogether, our results will contribute to future studies on ZIKV infection and the development of inhibitors of ZIKV replication.« less

  6. The CENNS-10 liquid argon detector to measure CEvNS at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Tayloe, R.

    2018-04-01

    The COHERENT collaboration is deploying a suite of low-energy detectors in a low-background corridor of the ORNL Spallation Neutron Source (SNS) to measure coherent elastic neutrino-nucleus scattering (CEvNS) on an array of nuclear targets employing different detector technologies. A measurement of CEvNS on different nuclei will test the N2-dependence of the CEvNS cross section and further the physics reach of the COHERENT effort. The first step of this program has been realized recently with the observation of CEvNS in a 14.6 kg CsI detector. Operation and deployment of Ge and NaI detectors are also underway. A 22 kg, single-phase, liquid argon detector (CENNS-10) started data-taking in Dec. 2016 and will provide results on CEvNS from a lighter nucleus. Initial results indicate that light output, pulse-shape discrimination, and background suppression are sufficient for a measurement of CEvNS on argon.

  7. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly.

    PubMed

    Xie, Xuping; Zou, Jing; Puttikhunt, Chunya; Yuan, Zhiming; Shi, Pei-Yong

    2015-01-15

    Flavivirus nonstructural protein 2A (NS2A) plays important roles in both viral RNA synthesis and virion assembly. The molecular details of how the NS2A protein modulates the two distinct events have not been defined. To address this question, we have performed a systematic mutagenesis of NS2A using dengue virus (DENV) serotype 2 (DENV-2) as a model. We identified two sets of NS2A mutations with distinct defects during a viral infection cycle. One set of NS2A mutations (D125A and G200A) selectively abolished viral RNA synthesis. Mechanistically, the D125A mutation abolished viral RNA synthesis through blocking the N-terminal cleavage of the NS2A protein, leading to an unprocessed NS1-NS2A protein; this result suggests that amino acid D125 (far downstream of the N terminus of NS2A) may contribute to the recognition of host protease at the NS1-NS2A junction. The other set of NS2A mutations (G11A, E20A, E100A, Q187A, and K188A) specifically impaired virion assembly without significantly affecting viral RNA synthesis. Remarkably, mutants defective in virion assembly could be rescued by supplying in trans wild-type NS2A molecules expressed from a replicative replicon, by wild-type NS2A protein expressed alone, by a mutant NS2A (G200A) that is lethal for viral RNA synthesis, or by a different mutant NS2A that is defective in virion assembly. In contrast, none of the mutants defective in viral RNA synthesis could be rescued by trans-complementation. Collectively, the results indicate that two distinct sets of NS2A molecules are responsible for DENV RNA synthesis and virion assembly. Dengue virus (DENV) represents the most prevalent mosquito-borne human pathogen. Understanding the replication of DENV is essential for development of vaccines and therapeutics. Here we characterized the function of DENV-2 NS2A using a systematic mutagenesis approach. The mutagenesis results revealed two distinct sets of NS2A mutations: one set of mutations that result in defects in viral RNA

  8. Pomegranate ( Punica granatum L.) expresses several nsLTP isoforms characterized by different immunoglobulin E-binding properties.

    PubMed

    Bolla, Michela; Zenoni, Sara; Scheurer, Stephan; Vieths, Stefan; San Miguel Moncin, Maria Del Mar; Olivieri, Mario; Antico, Andrea; Ferrer, Marta; Berroa, Felicia; Enrique, Ernesto; Avesani, Linda; Marsano, Francesco; Zoccatelli, Gianni

    2014-01-01

    Pomegranate allergy is associated with sensitization to non-specific lipid transfer proteins (nsLTPs). Our aim was to identify and characterize the non-specific nsLTPs expressed in pomegranate at the molecular level and to study their allergenic properties in terms of immunoglobulin E (IgE)-binding and cross-reactivity with peach nsLTP (Pru p 3). A non-equilibrium two-dimensional (2-D) electrophoretic approach based on acid-urea PAGE and sodium dodecyl sulfate PAGE was set up to separate pomegranate nsLTPs. Their immunoreactivity was tested by immunoblotting carried out with anti-Pru p 3 polyclonal antibodies and sera from pomegranate-allergic patients. For final identification, pomegranate nsLTPs were purified by chromatography and subjected to trypsin digestion and mass spectrometry (MS) analysis. For this purpose, the sequences obtained by cDNA cloning of three pomegranate nsLTPs were integrated in the database that was subsequently searched for MS data interpretation. Four nsLTPs were identified by 2-D immunoblotting. The detected proteins showed different IgE-binding capacity and partial cross-reactivity with Pru p 3. cDNA cloning and MS analyses led to the identification of three nsLTP isoforms with 66-68% amino acid sequence identity named Pun g 1.0101, Pun g 1.0201 and Pun g 1.0301. By 2-D electrophoresis, we could separate different nsLTP isoforms possessing different IgE-binding properties, which might reflect peculiar allergenic potencies. The contribution of Pru p 3 to prime sensitization is not central as in other plant nsLTPs. © 2014 S. Karger AG, Basel.

  9. A basic cluster in the N terminus of yellow fever virus NS2A contributes to infectious particle production.

    PubMed

    Voßmann, Stephanie; Wieseler, Janett; Kerber, Romy; Kümmerer, Beate Mareike

    2015-05-01

    The flavivirus NS2A protein is involved in the assembly of infectious particles. To further understand its role in this process, a charged-to-alanine scanning analysis was performed on NS2A encoded by an infectious cDNA clone of yellow fever virus (YFV). Fifteen mutants containing single, double, or triple charged-to-alanine changes were tested. Five of them did not produce infectious particles, whereas efficient RNA replication was detectable for two of the five NS2A mutants (R22A-K23A-R24A and R99A-E100A-R101A mutants). Prolonged cultivation of transfected cells resulted in the recovery of pseudorevertants. Besides suppressor mutants in NS2A, a compensating second-site mutation in NS3 (D343G) arose for the NS2A R22A-K23A-R24A mutant. We found this NS3 mutation previously to be suppressive for the NS2Aα cleavage site Q189S mutant, also deficient in virion assembly. In this study, the subsequently suggested interaction between NS2A and NS3 was proven by coimmunoprecipitation analyses. Using selectively permeabilized cells, we could demonstrate that the regions encompassing R22A-K23A-R24A and Q189S in NS2A are localized to the cytoplasm, where NS3 is also known to reside. However, the defect in particle production observed for the NS2A R22A-K23A-R24A and Q189S mutants was not due to a defect in physical interaction between NS2A and NS3, as the NS2A mutations did not interrupt NS3 interaction. In fact, a region just upstream of R22-K23-R24 was mapped to be critical for NS2A-NS3 interaction. Taken together, these data support a complex interplay between YFV NS2A and NS3 in virion assembly and identify a basic cluster in the NS2A N terminus to be critical in this process. Despite an available vaccine, yellow fever remains endemic in tropical areas of South America and Africa. To control the disease, antiviral drugs are required, and an understanding of the determinants of virion assembly is central to their development. In this study, we identified a basic cluster of

  10. A Basic Cluster in the N Terminus of Yellow Fever Virus NS2A Contributes to Infectious Particle Production

    PubMed Central

    Voßmann, Stephanie; Wieseler, Janett; Kerber, Romy

    2015-01-01

    ABSTRACT The flavivirus NS2A protein is involved in the assembly of infectious particles. To further understand its role in this process, a charged-to-alanine scanning analysis was performed on NS2A encoded by an infectious cDNA clone of yellow fever virus (YFV). Fifteen mutants containing single, double, or triple charged-to-alanine changes were tested. Five of them did not produce infectious particles, whereas efficient RNA replication was detectable for two of the five NS2A mutants (R22A-K23A-R24A and R99A-E100A-R101A mutants). Prolonged cultivation of transfected cells resulted in the recovery of pseudorevertants. Besides suppressor mutants in NS2A, a compensating second-site mutation in NS3 (D343G) arose for the NS2A R22A-K23A-R24A mutant. We found this NS3 mutation previously to be suppressive for the NS2Aα cleavage site Q189S mutant, also deficient in virion assembly. In this study, the subsequently suggested interaction between NS2A and NS3 was proven by coimmunoprecipitation analyses. Using selectively permeabilized cells, we could demonstrate that the regions encompassing R22A-K23A-R24A and Q189S in NS2A are localized to the cytoplasm, where NS3 is also known to reside. However, the defect in particle production observed for the NS2A R22A-K23A-R24A and Q189S mutants was not due to a defect in physical interaction between NS2A and NS3, as the NS2A mutations did not interrupt NS3 interaction. In fact, a region just upstream of R22-K23-R24 was mapped to be critical for NS2A-NS3 interaction. Taken together, these data support a complex interplay between YFV NS2A and NS3 in virion assembly and identify a basic cluster in the NS2A N terminus to be critical in this process. IMPORTANCE Despite an available vaccine, yellow fever remains endemic in tropical areas of South America and Africa. To control the disease, antiviral drugs are required, and an understanding of the determinants of virion assembly is central to their development. In this study, we identified

  11. Differential roles for the C-terminal hexapeptide domains of NS2 splice variants during MVM infection of murine cells.

    PubMed

    Ruiz, Zandra; D'Abramo, Anthony; Tattersall, Peter

    2006-06-05

    The MVM NS2 proteins are required for viral replication in cells of its normal murine host, but are dispensable in transformed human 324K cells. Alternate splicing at the minor intron controls synthesis of three forms of this protein, which differ in their C-terminal hexapeptides and in their relative abundance, with NS2P and NS2Y, the predominant isoforms, being expressed at a 5:1 ratio. Mutant genomes were constructed with premature termination codons in the C-terminal exons of either NS2P or NS2Y, which resulted in their failure to accumulate in vivo. To modulate their expression levels, we also introduced a mutation at the putative splice branch point of the large intron, dubbed NS2(lo), that reduced total NS2 expression in murine A9 cells such that NS2P accumulated to approximately half the level normally seen for NS2Y. All mutants replicated productively in human 324K cells. In A9 cells, NS2Y(-) mutants replicated like wildtype, and the NS2(lo) mutants expressed NS1 and replicated duplex viral DNA like wildtype, although their progeny single-strand DNA synthesis was reduced. However, while NS2P(-) and NS2-null viruses initiated infection efficiently in A9 cells, they gave diminished NS1 levels, and viral macromolecular synthesis appeared to become paralyzed shortly after the onset of viral duplex DNA amplification, such that no progeny single-strand DNA could be detected. Thus, the NS2P isoform, even when expressed at a level lower than that of NS2Y, performs a critical role in infection of A9 cells that cannot be accomplished by the NS2Y isoform alone.

  12. Detergent-resistant membrane association of NS2 and E2 during hepatitis C virus replication.

    PubMed

    Shanmugam, Saravanabalaji; Saravanabalaji, Dhanaranjani; Yi, MinKyung

    2015-04-01

    Previously, we demonstrated that the efficiency of hepatitis C virus (HCV) E2-p7 processing regulates p7-dependent NS2 localization to putative virus assembly sites near lipid droplets (LD). In this study, we have employed subcellular fractionations and membrane flotation assays to demonstrate that NS2 associates with detergent-resistant membranes (DRM) in a p7-dependent manner. However, p7 likely plays an indirect role in this process, since only the background level of p7 was detectable in the DRM fractions. Our data also suggest that the p7-NS2 precursor is not involved in NS2 recruitment to the DRM, despite its apparent targeting to this location. Deletion of NS2 specifically inhibited E2 localization to the DRM, indicating that NS2 regulates this process. Treatment of cells with methyl-β-cyclodextrin (MβCD) significantly reduced the DRM association of Core, NS2, and E2 and reduced infectious HCV production. Since disruption of the DRM localization of NS2 and E2, either due to p7 and NS2 defects, respectively, or by MβCD treatment, inhibited infectious HCV production, these proteins' associations with the DRM likely play an important role during HCV assembly. Interestingly, we detected the HCV replication-dependent accumulation of ApoE in the DRM fractions. Taking into consideration the facts that ApoE was shown to be a major determinant for infectious HCV particle production at the postenvelopment step and that the HCV Core protein strongly associates with the DRM, recruitment of E2 and ApoE to the DRM may allow the efficient coordination of Core particle envelopment and postenvelopment events at the DRM to generate infectious HCV production. The biochemical nature of HCV assembly sites is currently unknown. In this study, we investigated the correlation between NS2 and E2 localization to the detergent-resistant membranes (DRM) and HCV particle assembly. We determined that although NS2's DRM localization is dependent on p7, p7 was not targeted to these

  13. Evolution of Bacterial Global Modulators: Role of a Novel H-NS Paralogue in the Enteroaggregative Escherichia coli Strain 042

    PubMed Central

    2018-01-01

    ABSTRACT Bacterial genomes sometimes contain genes that code for homologues of global regulators, the function of which is unclear. In members of the family Enterobacteriaceae, cells express the global regulator H-NS and its paralogue StpA. In Escherichia coli, out of providing a molecular backup for H-NS, the role of StpA is poorly characterized. The enteroaggregative E. coli strain 042 carries, in addition to the hns and stpA genes, a third gene encoding an hns paralogue (hns2). We present in this paper information about its biological function. Transcriptomic analysis has shown that the H-NS2 protein targets a subset of the genes targeted by H-NS. Genes targeted by H-NS2 correspond mainly with horizontally transferred (HGT) genes and are also targeted by the Hha protein, a fine-tuner of H-NS activity. Compared with H-NS, H-NS2 expression levels are lower. In addition, H-NS2 expression exhibits specific features: it is sensitive to the growth temperature and to the nature of the culture medium. This novel H-NS paralogue is widespread within the Enterobacteriaceae. IMPORTANCE Global regulators such as H-NS play key relevant roles enabling bacterial cells to adapt to a changing environment. H-NS modulates both core and horizontally transferred (HGT) genes, but the mechanism by which H-NS can differentially regulate these genes remains to be elucidated. There are several instances of bacterial cells carrying genes that encode homologues of the global regulators. The question is what the roles of these proteins are. We noticed that the enteroaggregative E. coli strain 042 carries a new hitherto uncharacterized copy of the hns gene. We decided to investigate why this pathogenic E. coli strain requires an extra H-NS paralogue, termed H-NS2. In our work, we show that H-NS2 displays specific expression and regulatory properties. H-NS2 targets a subset of H-NS-specific genes and may help to differentially modulate core and HGT genes by the H-NS cellular pool. PMID

  14. Evolution of Bacterial Global Modulators: Role of a Novel H-NS Paralogue in the Enteroaggregative Escherichia coli Strain 042.

    PubMed

    Prieto, A; Bernabeu, M; Aznar, S; Ruiz-Cruz, S; Bravo, A; Queiroz, M H; Juárez, A

    2018-01-01

    Bacterial genomes sometimes contain genes that code for homologues of global regulators, the function of which is unclear. In members of the family Enterobacteriaceae , cells express the global regulator H-NS and its paralogue StpA. In Escherichia coli , out of providing a molecular backup for H-NS, the role of StpA is poorly characterized. The enteroaggregative E. coli strain 042 carries, in addition to the hns and stpA genes, a third gene encoding an hns paralogue ( hns2 ). We present in this paper information about its biological function. Transcriptomic analysis has shown that the H-NS2 protein targets a subset of the genes targeted by H-NS. Genes targeted by H-NS2 correspond mainly with horizontally transferred (HGT) genes and are also targeted by the Hha protein, a fine-tuner of H-NS activity. Compared with H-NS, H-NS2 expression levels are lower. In addition, H-NS2 expression exhibits specific features: it is sensitive to the growth temperature and to the nature of the culture medium. This novel H-NS paralogue is widespread within the Enterobacteriaceae . IMPORTANCE Global regulators such as H-NS play key relevant roles enabling bacterial cells to adapt to a changing environment. H-NS modulates both core and horizontally transferred (HGT) genes, but the mechanism by which H-NS can differentially regulate these genes remains to be elucidated. There are several instances of bacterial cells carrying genes that encode homologues of the global regulators. The question is what the roles of these proteins are. We noticed that the enteroaggregative E. coli strain 042 carries a new hitherto uncharacterized copy of the hns gene. We decided to investigate why this pathogenic E. coli strain requires an extra H-NS paralogue, termed H-NS2. In our work, we show that H-NS2 displays specific expression and regulatory properties. H-NS2 targets a subset of H-NS-specific genes and may help to differentially modulate core and HGT genes by the H-NS cellular pool.

  15. RSV-encoded NS2 promotes epithelial cell shedding and distal airway obstruction

    PubMed Central

    Liesman, Rachael M.; Buchholz, Ursula J.; Luongo, Cindy L.; Yang, Lijuan; Proia, Alan D.; DeVincenzo, John P.; Collins, Peter L.; Pickles, Raymond J.

    2014-01-01

    Respiratory syncytial virus (RSV) infection is the major cause of bronchiolitis in young children. The factors that contribute to the increased propensity of RSV-induced distal airway disease compared with other commonly encountered respiratory viruses remain unclear. Here, we identified the RSV-encoded nonstructural 2 (NS2) protein as a viral genetic determinant for initiating RSV-induced distal airway obstruction. Infection of human cartilaginous airway epithelium (HAE) and a hamster model of disease with recombinant respiratory viruses revealed that NS2 promotes shedding of infected epithelial cells, resulting in two consequences of virus infection. First, epithelial cell shedding accelerated the reduction of virus titers, presumably by clearing virus-infected cells from airway mucosa. Second, epithelial cells shedding into the narrow-diameter bronchiolar airway lumens resulted in rapid accumulation of detached, pleomorphic epithelial cells, leading to acute distal airway obstruction. Together, these data indicate that RSV infection of the airway epithelium, via the action of NS2, promotes epithelial cell shedding, which not only accelerates viral clearance but also contributes to acute obstruction of the distal airways. Our results identify RSV NS2 as a contributing factor for the enhanced propensity of RSV to cause severe airway disease in young children and suggest NS2 as a potential therapeutic target for reducing the severity of distal airway disease. PMID:24713657

  16. Quantification of NS1 dengue biomarker in serum via optomagnetic nanocluster detection

    NASA Astrophysics Data System (ADS)

    Antunes, Paula; Watterson, Daniel; Parmvi, Mattias; Burger, Robert; Boisen, Anja; Young, Paul; Cooper, Matthew A.; Hansen, Mikkel F.; Ranzoni, Andrea; Donolato, Marco

    2015-11-01

    Dengue is a tropical vector-borne disease without cure or vaccine that progressively spreads into regions with temperate climates. Diagnostic tools amenable to resource-limited settings would be highly valuable for epidemiologic control and containment during outbreaks. Here, we present a novel low-cost automated biosensing platform for detection of dengue fever biomarker NS1 and demonstrate it on NS1 spiked in human serum. Magnetic nanoparticles (MNPs) are coated with high-affinity monoclonal antibodies against NS1 via bio-orthogonal Cu-free ‘click’ chemistry on an anti-fouling surface molecular architecture. The presence of the target antigen NS1 triggers MNP agglutination and the formation of nanoclusters with rapid kinetics enhanced by external magnetic actuation. The amount and size of the nanoclusters correlate with the target concentration and can be quantified using an optomagnetic readout method. The resulting automated dengue fever assay takes just 8 minutes, requires 6 μL of serum sample and shows a limit of detection of 25 ng/mL with an upper detection range of 20000 ng/mL. The technology holds a great potential to be applied to NS1 detection in patient samples. As the assay is implemented on a low-cost microfluidic disc the platform is suited for further expansion to multiplexed detection of a wide panel of biomarkers.

  17. The non-structural (NS) gene segment of H9N2 influenza virus isolated from backyard poultry in Pakistan reveals strong genetic and functional similarities to the NS gene of highly pathogenic H5N1

    PubMed Central

    Munir, Muhammad; Zohari, Siamak; Iqbal, Munir; Abbas, Muhammad; Perez, Daniel Roberto; Berg, Mikael

    2013-01-01

    Apart from natural reassortment, co-circulation of different avian influenza virus strains in poultry populations can lead to generation of novel variants and reassortant viruses. In this report, we studied the genetics and functions of a reassorted non-structural gene (NS) of H9N2 influenza virus collected from back yard poultry (BYP) flock. Phylogenetic reconstruction based on hemagglutinin and neuraminidase genes indicates that an isolate from BYP belongs to H9N2. However, the NS gene-segment of this isolate cluster into genotype Z, clade 2.2 of the highly pathogenic H5N1. The NS gene plays essential roles in the host-adaptation, cell-tropism, and virulence of influenza viruses. However, such interpretations have not been investigated in naturally recombinant H9N2 viruses. Therefore, we compared the NS1 protein of H9N2 (H9N2/NS1) and highly pathogenic H5N1 (H5N1/NS1) in parallel for their abilities to regulate different signaling pathways, and investigated the molecular mechanisms of IFN-β production in human, avian, and mink lung cells. We found that H9N2/NS1 and H5N1/NS1 are comparably similar in inhibiting TNF-α induced nuclear factor κB and double stranded RNA induced activator protein 1 and interferon regulatory factor 3 transcription factors. Thus, the production of IFN-β was inhibited equally by both NS1s as demonstrated by IFN stimulatory response element and IFN-β promoter activation. Moreover, both NS1s predominantly localized in the nucleus when transfected to human A549 cells. This study therefore suggests the possible increased virulence of natural reassortant viruses for their efficient invasion of host immune responses, and proposes that these should not be overlooked for their epizootic and zoonotic potential. PMID:23959028

  18. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes.

    PubMed

    Liu, Jianying; Liu, Yang; Nie, Kaixiao; Du, Senyan; Qiu, Jingjun; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2016-06-20

    The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus NS1s in the blood of infected interferon-α and γ receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments.

  19. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes

    PubMed Central

    Liu, Jianying; Liu, Yang; Nie, Kaixiao; Du, Senyan; Qiu, Jingjun; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2016-01-01

    Summary The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus (JEV) NS1s in the blood of infected interferon alpha and gamma receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments. PMID:27562253

  20. Transmembrane Domains of NS2B Contribute to both Viral RNA Replication and Particle Formation in Japanese Encephalitis Virus.

    PubMed

    Li, Xiao-Dan; Deng, Cheng-Lin; Ye, Han-Qing; Zhang, Hong-Lei; Zhang, Qiu-Yan; Chen, Dong-Dong; Zhang, Pan-Tao; Shi, Pei-Yong; Yuan, Zhi-Ming; Zhang, Bo

    2016-06-15

    Flavivirus nonstructural protein 2B (NS2B) is a transmembrane protein that functions as a cofactor for viral NS3 protease. The cytoplasmic region (amino acids 51 to 95) alone of NS2B is sufficient for NS3 protease activity, whereas the role of transmembrane domains (TMDs) remains obscure. Here, we demonstrate for the first time that flavivirus NS2B plays a critical role in virion assembly. Using Japanese encephalitis virus (JEV) as a model, we performed a systematic mutagenesis at the flavivirus conserved residues within the TMDs of NS2B. As expected, some mutations severely attenuated (L38A and R101A) or completely destroyed (G12L) viral RNA synthesis. Interestingly, two mutations (G37L and P112A) reduced viral RNA synthesis and blocked virion assembly. None of the mutations affected NS2B-NS3 protease activity. Because mutations G37L and P112A affected virion assembly, we selected revertant viruses for these two mutants. For mutant G37L, replacement with G37F, G37H, G37T, or G37S restored virion assembly. For mutant P112A, insertion of K at position K127 (leading to K127KK) of NS2B rescued virion assembly. A biomolecular fluorescent complementation (BiFC) analysis demonstrated that (i) mutation P112A selectively weakened NS2B-NS2A interaction and (ii) the adaptive mutation K127KK restored NS2B-NS2A interaction. Collectively, our results demonstrate that, in addition to being a cofactor for NS3 protease, flavivirus NS2B also functions in viral RNA replication, as well as virion assembly. Many flaviviruses are important human pathogens. Understanding the molecular mechanisms of the viral infection cycle is essential for vaccine and antiviral development. In this study, we demonstrate that the TMDs of JEV NS2B participate in both viral RNA replication and virion assembly. A viral genetic study and a BiFC assay demonstrated that interaction between NS2B and NS2A may participate in modulating viral assembly in the flavivirus life cycle. Compensatory-mutation analysis

  1. Identification of high-specificity H-NS binding site in LEE5 promoter of enteropathogenic Esherichia coli (EPEC).

    PubMed

    Bhat, Abhay Prasad; Shin, Minsang; Choy, Hyon E

    2014-07-01

    Histone-like nucleoid structuring protein (H-NS) is a small but abundant protein present in enteric bacteria and is involved in compaction of the DNA and regulation of the transcription. Recent reports have suggested that H-NS binds to a specific AT rich DNA sequence than to intrinsically curved DNA in sequence independent manner. We detected two high-specificity H-NS binding sites in LEE5 promoter of EPEC centered at -110 and -138, which were close to the proposed consensus H-NS binding motif. To identify H-NS binding sequence in LEE5 promoter, we took a random mutagenesis approach and found the mutations at around -138 were specifically defective in the regulation by H-NS. It was concluded that H-NS exerts maximum repression via the specific sequence at around -138 and subsequently contacts a subunit of RNAP through oligomerization.

  2. The Tissue Culture Laboratory of Dr. George Otto Gey 60 yrs ago as recalled by a former student.

    PubMed

    Ambrose, Charles T

    2017-05-01

    George Otto Gey was a pioneer in tissue culture, having introduced the roller drum, the HeLa cell line, and the use of human fetal cord serum and beef embryo extract. During his career (1920s-1960s), the field of tissue culture was in its infancy and not yet dependent upon commercial biological supply houses. While the early techniques of cell culture have been greatly improved upon, of historical interest may be personal observations of the Gey Tissue Culture Laboratory, Johns Hopkins Medical School, as recalled by a medical student working there in the 1950s. Dr. Gey served as a founding member and executive of the Tissue Culture Commission (TCC) and became the first president of the Tissue Culture Association (TCA).

  3. StpA and Hha stimulate pausing by RNA polymerase by promoting DNA-DNA bridging of H-NS filaments.

    PubMed

    Boudreau, Beth A; Hron, Daniel R; Qin, Liang; van der Valk, Ramon A; Kotlajich, Matthew V; Dame, Remus T; Landick, Robert

    2018-06-20

    In enterobacteria, AT-rich horizontally acquired genes, including virulence genes, are silenced through the actions of at least three nucleoid-associated proteins (NAPs): H-NS, StpA and Hha. These proteins form gene-silencing nucleoprotein filaments through direct DNA binding by H-NS and StpA homodimers or heterodimers. Both linear and bridged filaments, in which NAPs bind one or two DNA segments, respectively, have been observed. Hha can interact with H-NS or StpA filaments, but itself lacks a DNA-binding domain. Filaments composed of H-NS alone can inhibit transcription initiation and, in the bridged conformation, slow elongating RNA polymerase (RNAP) by promoting backtracking at pause sites. How the other NAPs modulate these effects of H-NS is unknown, despite evidence that they help regulate subsets of silenced genes in vivo (e.g. in pathogenicity islands). Here we report that Hha and StpA greatly enhance H-NS-stimulated pausing by RNAP at 20°C. StpA:H-NS or StpA-only filaments also stimulate pausing at 37°C, a temperature at which Hha:H-NS or H-NS-only filaments have much less effect. In addition, we report that both Hha and StpA greatly stimulate DNA-DNA bridging by H-NS filaments. Together, these observations indicate that Hha and StpA can affect H-NS-mediated gene regulation by stimulating bridging of H-NS/DNA filaments.

  4. The Changing Face of Hepatitis C: Recent Advances on HCV Inhibitors Targeting NS5A

    PubMed

    Rai, Diwakar; Wang, Liu; Jiang, Xuemei; Zhan, Peng; Jia, Haiyong; De Clercq, Erik; Liu, Xinyong

    2015-05-05

    Current treatment for HCV infections consists of approved direct acting antivirals (DAAs), viz. the protease inhibitors (boceprevir, telaprevir, and simeprevir), NS5B polymerase inhibitors (sofosbuvir) and NS5A inhibitor (ledipasvir) in combination with pegylated interferon α and ribavirin). These treatments have made a great improvement in the treatment of chronic HCV infections in recent years, but their adverse side effects, emergence of resistant mutants, high cost, and increased pill burden have limited their clinical use. Recently, with the increasing knowledge in understanding the HCV life cycle, more targets have been recognized. NS5A protein plays a critical role in assembly of infectious HCV particles and offering potential for HCV therapies. Therefore, discovery and development of novel DAAs targeting NS5A with novel mechanisms of action, is of great necessity to improve the quality of existing HCV treatments. In the present review, we discuss recent advances with NS5A inhibitors with potent anti-HCV activity, and the potential for the development of HCV NS5A inhibitors to combat HCV infections.

  5. Interaction between the bacterial nucleoid associated proteins Hha and H-NS involves a conformational change of Hha.

    PubMed

    García, Jesús; Cordeiro, Tiago N; Nieto, José M; Pons, Ignacio; Juárez, Antonio; Pons, Miquel

    2005-06-15

    The H-NS family of proteins has been shown to participate in the regulation of a large number of genes in Gram-negative bacteria in response to environmental factors. In recent years, it has become apparent that proteins of the Hha family are essential elements for H-NS-regulated gene expression. Hha has been shown to bind H-NS, although the details for this interaction are still unknown. In the present paper, we report fluorescence anisotropy and NMR studies of the interaction between Hha and H-NS64, a truncated form of H-NS containing only its N-terminal dimerization domain. We demonstrate the initial formation of a complex between one Hha and two H-NS64 monomers in 150 mM NaCl. This complex seems to act as a nucleation unit for higher-molecular-mass complexes. NMR studies suggest that Hha is in equilibrium between two different conformations, one of which is stabilized by binding to H-NS64. A similar exchange is also observed for Hha in the absence of H-NS when temperature is increased to 37 degrees C, suggesting a key role for intrinsic conformational changes of Hha in modulating its interaction with H-NS.

  6. Interaction between the bacterial nucleoid associated proteins Hha and H-NS involves a conformational change of Hha

    PubMed Central

    2005-01-01

    The H-NS family of proteins has been shown to participate in the regulation of a large number of genes in Gram-negative bacteria in response to environmental factors. In recent years, it has become apparent that proteins of the Hha family are essential elements for H-NS-regulated gene expression. Hha has been shown to bind H-NS, although the details for this interaction are still unknown. In the present paper, we report fluorescence anisotropy and NMR studies of the interaction between Hha and H-NS64, a truncated form of H-NS containing only its N-terminal dimerization domain. We demonstrate the initial formation of a complex between one Hha and two H-NS64 monomers in 150 mM NaCl. This complex seems to act as a nucleation unit for higher-molecular-mass complexes. NMR studies suggest that Hha is in equilibrium between two different conformations, one of which is stabilized by binding to H-NS64. A similar exchange is also observed for Hha in the absence of H-NS when temperature is increased to 37 °C, suggesting a key role for intrinsic conformational changes of Hha in modulating its interaction with H-NS. PMID:15720293

  7. Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Gandham, Ravi Kumar; Sahoo, A P; Harish, D R; Singh, Arvind Kumar; Tiwari, A K

    2016-02-02

    Many viral proteins have the ability to kill tumor cells specifically without harming the normal cells. These proteins, on ectopic expression, cause lysis or induction of apoptosis in the target tumor cells. Parvovirus NS1 is one of such proteins, which is known to kill high proliferating tumor cells. In the present study, we assessed the apoptosis inducing ability of canine parvovirus type 2 NS1 protein (CPV2.NS1) in vitro in 4T1 cells, and found it to cause significant cell death due to induction of apoptosis through intrinsic or mitochondrial pathway. Further, we also evaluated the oncolytic activity of CPV2.NS1 protein in a mouse mammary tumor model. The results suggested that CPV2.NS1 was able to inhibit the growth of 4T1 induced mouse mammary tumor as indicated by significantly reduced tumor volume, mitotic, AgNOR and PCNA indices. Further, inhibition of tumor growth was found to be because of induction of apoptosis in the tumor cells, which was evident by a significant increase in the number of TUNEL positive cells. Further, CPV2.NS1 was also able to stimulate the immune cells against the tumor antigens as indicated by the increased CD4+ and CD8+ counts in the blood of CVP2.NS1 treated mice. Further optimization of the delivery of NS1 protein and use of an adjuvant may further enhance its anti-tumor activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. [Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis].

    PubMed

    Tu, Mengyu; Liu, Fei; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2015-11-01

    Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.

  9. Molecular models of NS3 protease variants of the Hepatitis C virus.

    PubMed

    da Silveira, Nelson J F; Arcuri, Helen A; Bonalumi, Carlos E; de Souza, Fátima P; Mello, Isabel M V G C; Rahal, Paula; Pinho, João R R; de Azevedo, Walter F

    2005-01-21

    Hepatitis C virus (HCV) currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed. The atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures. This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure-based drug design of a new generation of NS3 protease variants

  10. Noncytopathogenic Pestivirus Strains Generated by Nonhomologous RNA Recombination: Alterations in the NS4A/NS4B Coding Region

    PubMed Central

    Gallei, Andreas; Orlich, Michaela; Thiel, Heinz-Juergen; Becher, Paul

    2005-01-01

    Several studies have demonstrated that cytopathogenic (cp) pestivirus strains evolve from noncytopathogenic (noncp) viruses by nonhomologous RNA recombination. In addition, two recent reports showed the rapid emergence of noncp Bovine viral diarrhea virus (BVDV) after a few cell culture passages of cp BVDV strains by homologous recombination between identical duplicated viral sequences. To allow the identification of recombination sites from noncp BVDV strains that evolve from cp viruses, we constructed the cp BVDV strains CP442 and CP552. Both harbor duplicated viral sequences of different origin flanking the cellular insertion Nedd8*; the latter is a prerequisite for their cytopathogenicity. In contrast to the previous studies, isolation of noncp strains was possible only after extensive cell culture passages of CP442 and CP552. Sequence analysis of 15 isolated noncp BVDVs confirmed that all recombinant strains lack at least most of Nedd8*. Interestingly, only one strain resulted from homologous recombination while the other 14 strains were generated by nonhomologous recombination. Accordingly, our data suggest that the extent of sequence identity between participating sequences influences both frequency and mode (homologous versus nonhomologous) of RNA recombination in pestiviruses. Further analyses of the noncp recombinant strains revealed that a duplication of 14 codons in the BVDV nonstructural protein 4B (NS4B) gene does not interfere with efficient viral replication. Moreover, an insertion of viral sequences between the NS4A and NS4B genes was well tolerated. These findings thus led to the identification of two genomic loci which appear to be suited for the insertion of heterologous sequences into the genomes of pestiviruses and related viruses. PMID:16254361

  11. Extended Surface for Membrane Association in Zika Virus NS1 Structure

    PubMed Central

    Brown, W. Clay; Akey, David L.; Konwerski, Jamie; Tarrasch, Jeffrey T.; Skiniotis, Georgios; Kuhn, Richard J.; Smith, Janet L.

    2018-01-01

    The Zika virus, which is implicated in an increase in neonatal microcephaly and Guillain-Barré syndrome, has spread rapidly through tropical regions of the world. The virulence protein NS1 functions in genome replication and host immune system modulation. Here we report the crystal structure of full-length Zika virus NS1, revealing an elongated hydrophobic surface for membrane association and a polar surface that varies substantially among flaviviruses. PMID:27455458

  12. Raising the avermectins production in Streptomyces avermitilis by utilizing nanosecond pulsed electric fields (nsPEFs)

    NASA Astrophysics Data System (ADS)

    Guo, Jinsong; Ma, Ruonan; Su, Bo; Li, Yinglong; Zhang, Jue; Fang, Jing

    2016-05-01

    Avermectins, a group of anthelmintic and insecticidal agents produced from Streptomyces avermitilis, are widely used in agricultural, veterinary, and medical fields. This study presents the first report on the potential of using nanosecond pulsed electric fields (nsPEFs) to improve avermectin production in S. avermitilis. The results of colony forming units showed that 20 pulses of nsPEFs at 10 kV/cm and 20 kV/cm had a significant effect on proliferation, while 100 pulses of nsPEFs at 30 kV/cm exhibited an obvious effect on inhibition of agents. Ultraviolet spectrophotometry assay revealed that 20 pulses of nsPEFs at 15 kV/cm increased avermectin production by 42% and reduced the time for reaching a plateau in fermentation process from 7 days to 5 days. In addition, the decreased oxidation reduction potential (ORP) and increased temperature of nsPEFs-treated liquid were evidenced to be closely associated with the improved cell growth and fermentation efficiency of avermectins in S. avermitilis. More importantly, the real-time RT-PCR analysis showed that nsPEFs could remarkably enhance the expression of aveR and malE in S. avermitilis during fermentation, which are positive regulator for avermectin biosynthesis. Therefore, the nsPEFs technology presents an alternative strategy to be developed to increase avermectin output in fermentation industry.

  13. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 1; Setup_BFaNS User's Manual and Developer's Guide

    NASA Technical Reports Server (NTRS)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the first volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User's Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running Setup_BFaNS. It concludes with technical documentation of the Setup_BFaNS computer program.

  14. Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein.

    PubMed

    Sinawang, Prima Dewi; Rai, Varun; Ionescu, Rodica E; Marks, Robert S

    2016-03-15

    An Electrochemical Lateral Flow Immunosensor (ELFI) is developed combining screen-printed gold electrodes (SPGE) enabling quantification together with the convenience of a lateral flow test strip. A cellulose glassy fiber paper conjugate pad retains the marker immunoelectroactive nanobeads which will bind to the target analyte of interest. The specific immunorecognition event continues to occur along the lateral flow bed until reaching the SPGE-capture antibodies at the end of the cellulosic lateral flow strip. The rationale of the immunoassay consists in the analyte antigen NS1 protein being captured selectively and specifically by the dengue NS1 antibody conjugated onto the immunonanobeads thus forming an immunocomplex. With the aid of a running buffer, the immunocomplexes flow and reach the immuno-conjugated electrode surface and form specific sandwich-type detection due to specific, molecular recognition, while unbound beads move along past the electrodes. The successful sandwich immunocomplex formation is then recorded electrochemically. Specific detection of NS1 is translated into an electrochemical signal contributed by a redox label present on the bead-immobilized detection dengue NS1 antibody while a proportional increase of faradic current is observed with increase in analyte NS1 protein concentration. The first generation ELFI prototype is simply assembled in a cassette and successfully demonstrates wide linear range over a concentration range of 1-25 ng/mL with an ultrasensitive detection limit of 0.5 ng/mL for the qualitative and quantitative detection of analyte dengue NS1 protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Molecular Docking Based Screening of Plant Flavonoids as Dengue NS1 Inhibitors

    PubMed Central

    Qamar, Muhammad Tahir ul; Mumtaz, Arooj; Naseem, Rabbia; Ali, Amna; Fatima, Tabeer; Jabbar, Tehreem; Ahmad, Zubair; Ashfaq, Usman Ali

    2014-01-01

    Dengue infection has turned into a serious health concern globally due to its high morbidity rate and a high possibility of increase in its mortality rate on the account of unavailability of any proper treatment for severe dengue infection. The situation demands an urgent development of efficient and practicable treatment to deal with Dengue virus (DENV). Flavonoids, a class of phytochemicals present in medicinal plants, possess anti-viral activity and can be strong drug candidates against viruses. NS1 glycoprotein of Dengue virus is involved in its RNA replication and can be a strong target for screening of drugs against this virus. Current study focuses on the identification of flavonoids which can block Asn-130 glycosylation site of Dengue virus NS1 to inhibit viral replication as glycosylation of NS1 is required for its biological functioning. Molecular docking approach was used in this study and the results revealed that flavonoids have strong potential interactions with active site of NS1. Six flavonoids (Deoxycalyxin A; 3,5,7,3',4'-pentahydroxyflavonol-3-O-beta-D-galactopyranoside; (3R)-3',8-Dihydroxyvestitol; Sanggenon O; Epigallocatechin gallate; Chamaejasmin) blocked the Asn-130 glycosylation site of NS1 and could be able to inhibit the viral replication. It can be concluded from this study that these flavonoids could serve as antiviral drugs for dengue infections. Further in-vitro analyses are required to confirm their efficacy and to evaluate their drug potency. PMID:25187688

  16. Evaluation of an enzyme immunoassay for detection of dengue virus NS1 antigen in human serum.

    PubMed

    Dussart, Philippe; Labeau, Bhety; Lagathu, Gisèle; Louis, Philippe; Nunes, Marcio R T; Rodrigues, Sueli G; Storck-Herrmann, Cécile; Cesaire, Raymond; Morvan, Jacques; Flamand, Marie; Baril, Laurence

    2006-11-01

    We evaluated a one-step sandwich-format microplate enzyme immunoassay for detecting dengue virus NS1 antigen (Ag) in human serum by use of Platelia Dengue NS1 Ag kits (Bio-Rad Laboratories, Marnes La Coquette, France). We collected 299 serum samples from patients with dengue disease and 50 serum samples from patients not infected with dengue virus. For the 239 serum samples from patients with acute infections testing positive by reverse transcription-PCR and/or virus isolation for one of the four dengue virus serotypes, the sensitivity of the Platelia Dengue NS1 Ag kit was 88.7% (95% confidence interval, 84.0% to 92.4%). None of the serum samples from patients not infected with dengue virus tested positive with the Platelia Dengue NS1 Ag kit. A diagnostic strategy combining the Platelia Dengue NS1 Ag test for acute-phase sera and immunoglobulin M capture enzyme-linked immunosorbent assay for early-convalescent-phase sera increased sensitivity only from 88.7% to 91.9%. Thus, NS1 antigen detection with the Platelia Dengue NS1 Ag kit could be used for first-line testing for acute dengue virus infection in clinical diagnostic laboratories.

  17. H-NS represses transcription of the flagellin gene lafA of lateral flagella in Vibrio parahaemolyticus.

    PubMed

    Wang, Yan; Zhang, Yiquan; Yin, Zhe; Wang, Jie; Zhu, Yongzhe; Peng, Haoran; Zhou, Dongsheng; Qi, Zhongtian; Yang, Wenhui

    2018-01-01

    Swarming motility is ultimately mediated by the proton-powered lateral flagellar (laf) system in Vibrio parahaemolyticus. Expression of laf genes is tightly regulated by a number of environmental conditions and regulatory factors. The nucleoid-associated DNA-binding protein H-NS is a small and abundant protein that is widely distributed in bacteria, and H-NS-like protein-dependent expression of laf genes has been identified in Vibrio cholerae and V. parahaemolyticus. The data presented here show that H-NS acts as a repressor of the swarming motility in V. parahaemolyticus. A single σ 28 -dependent promoter was detected for lafA encoding the flagellin of the lateral flagella, and its activity was directly repressed by H-NS. Thus, H-NS represses swarming motility by directly acting on lafA. Briefly, this work revealed a novel function for H-NS as a repressor of the expression of lafA and swarming motility in V. parahaemolyticus.

  18. Recombinant dengue 2 virus NS3 protein conserves structural antigenic and immunological properties relevant for dengue vaccine design.

    PubMed

    Ramírez, Rosa; Falcón, Rosabel; Izquierdo, Alienys; García, Angélica; Alvarez, Mayling; Pérez, Ana Beatriz; Soto, Yudira; Muné, Mayra; da Silva, Emiliana Mandarano; Ortega, Oney; Mohana-Borges, Ronaldo; Guzmán, María G

    2014-10-01

    The NS3 protein is a multifunctional non-structural protein of flaviviruses implicated in the polyprotein processing. The predominance of cytotoxic T cell lymphocytes epitopes on the NS3 protein suggests a protective role of this protein in limiting virus replication. In this work, we studied the antigenicity and immunogenicity of a recombinant NS3 protein of the Dengue virus 2. The full-length NS3 gene was cloned and expressed as a His-tagged fusion protein in Escherichia coli. The pNS3 protein was purified by two chromatography steps. The recombinant NS3 protein was recognized by anti-protease NS3 polyclonal antibody and anti-DENV2 HMAF by Western Blot. This purified protein was able to stimulate the secretion of high levels of gamma interferon and low levels of interleukin-10 and tumor necrosis factor-α in mice splenocytes, suggesting a predominantly Th-1-type T cell response. Immunized BALB/c mice with the purified NS3 protein showed a strong induction of anti-NS3 IgG antibodies, essentially IgG2b, as determined by ELISA. Immunized mice sera with recombinant NS3 protein showed specific recognition of native dengue protein by Western blotting and immunofluorescence techniques. The successfully purified recombinant protein was able to preserv the structural and antigenic determinants of the native dengue protein. The antigenicity shown by the recombinant NS3 protein suggests its possible inclusion into future DENV vaccine preparations.

  19. Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein

    PubMed Central

    Rajsbaum, Ricardo; Albrecht, Randy A.; Wang, May K.; Maharaj, Natalya P.; Versteeg, Gijs A.; Nistal-Villán, Estanislao; García-Sastre, Adolfo; Gack, Michaela U.

    2012-01-01

    Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production. PMID:23209422

  20. Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein.

    PubMed

    Rajsbaum, Ricardo; Albrecht, Randy A; Wang, May K; Maharaj, Natalya P; Versteeg, Gijs A; Nistal-Villán, Estanislao; García-Sastre, Adolfo; Gack, Michaela U

    2012-01-01

    Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.

  1. Effects of nanosecond pulsed electrical fields (nsPEFs) on the cell cycle of CHO and Jurkat cells

    NASA Astrophysics Data System (ADS)

    Mahlke, Megan A.; Navara, Christopher; Ibey, Bennett L.

    2014-03-01

    Exposure to nano-second pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. Variations between cell lines in membrane and cytoskeletal structure as well as in survival of nsPEF exposure should correspond to unique line-dependent cell cycle effects. Additionally, phase of cell cycle during exposure may be linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate role of cell cycle phase in survival of nsPEFs. CHO populations recovered similarly to sham populations postnsPEF exposure and did not exhibit a phase-specific change in response. Jurkat cells exhibited considerable apoptosis/necrosis in response to nsPEF exposure and were unable to recover and proliferate in a manner similar to sham exposed cells. Additionally, Jurkat cells appear to be more sensitive to nsPEFs in G2/M phases than in G1/S phases. Recovery of CHO populations suggests that nsPEFs do not inhibit proliferation in CHO cells; however, inhibition of Jurkat cells post-nsPEF exposure coupled with preferential cell death in G2/M phases suggest that cell cycle phase during exposure may be an important factor in determining nsPEF toxicity in certain cell lines. Interestingly, CHO cells have a more robust and rigid cytoskeleton than Jurkat cells which is thought to contribute to their ability to

  2. Structure and function of Zika virus NS5 protein: perspectives for drug design.

    PubMed

    Wang, Boxiao; Thurmond, Stephanie; Hai, Rong; Song, Jikui

    2018-05-01

    Zika virus (ZIKV) belongs to the positive-sense single-stranded RNA-containing Flaviviridae family. Its recent outbreak and association with human diseases (e.g. neurological disorders) have raised global health concerns, and an urgency to develop a therapeutic strategy against ZIKV infection. However, there is no currently approved antiviral against ZIKV. Here we present a comprehensive overview on recent progress in structure-function investigation of ZIKV NS5 protein, the largest non-structural protein of ZIKV, which is responsible for replication of the viral genome, RNA capping and suppression of host interferon responses. Structural comparison of the N-terminal methyltransferase domain and C-terminal RNA-dependent RNA polymerase domain of ZIKV NS5 with their counterparts from related viruses provides mechanistic insights into ZIKV NS5-mediated RNA replication, and identifies residues critical for its enzymatic activities. Finally, a collection of recently identified small molecule inhibitors against ZIKV NS5 or its closely related flavivirus homologues are also discussed.

  3. Recombinant Dengue 2 Virus NS3 Helicase Protein Enhances Antibody and T-Cell Response of Purified Inactivated Vaccine

    PubMed Central

    Simmons, Monika; Sun, Peifang; Putnak, Robert

    2016-01-01

    Dengue virus purified inactivated vaccines (PIV) are highly immunogenic and protective over the short term, but may be poor at inducing cell-mediated immune responses and long-term protection. The dengue nonstructural protein 3 (NS3) is considered the main target for T-cell responses during viral infection. The amino (N)-terminal protease and the carboxy (C)-terminal helicase domains of DENV-2 NS3 were expressed in E. coli and analyzed for their immune-potentiating capacity. Mice were immunized with DENV-2 PIV with and without recombinant NS3 protease or NS3 helicase proteins, and NS3 proteins alone on days 0, 14 and 28. The NS3 helicase but not the NS3 protease was effective in inducing T-cell responses quantified by IFN-γ ELISPOT. In addition, markedly increased total IgG antibody titer against virus antigen was seen in mice immunized with the PIV/NS3 helicase combination in the ELISA, as well as increased neutralizing antibody titer measured by the plaque reduction neutralization test. These results indicate the potential immunogenic properties of the NS3 helicase protein and its use in a dengue vaccine formulation. PMID:27035715

  4. Chaperone-Assisted Protein Folding Is Critical for Yellow Fever Virus NS3/4A Cleavage and Replication.

    PubMed

    Bozzacco, Leonia; Yi, Zhigang; Andreo, Ursula; Conklin, Claire R; Li, Melody M H; Rice, Charles M; MacDonald, Margaret R

    2016-01-06

    DNAJC14, a heat shock protein 40 (Hsp40) cochaperone, assists with Hsp70-mediated protein folding. Overexpressed DNAJC14 is targeted to sites of yellow fever virus (YFV) replication complex (RC) formation, where it interacts with viral nonstructural (NS) proteins and inhibits viral RNA replication. How RCs are assembled and the roles of chaperones in this coordinated process are largely unknown. We hypothesized that chaperones are diverted from their normal cellular protein quality control function to play similar roles during viral infection. Here, we show that DNAJC14 overexpression affects YFV polyprotein processing and alters RC assembly. We monitored YFV NS2A-5 polyprotein processing by the viral NS2B-3 protease in DNAJC14-overexpressing cells. Notably, DNAJC14 mutants that did not inhibit YFV replication had minimal effects on polyprotein processing, while overexpressed wild-type DNAJC14 affected the NS3/4A and NS4A/2K cleavage sites, resulting in altered NS3-to-NS3-4A ratios. This suggests that DNAJC14's folding activity normally modulates NS3/4A/2K cleavage events to liberate appropriate levels of NS3 and NS4A and promote RC formation. We introduced amino acid substitutions at the NS3/4A site to alter the levels of the NS3 and NS4A products and examined their effects on YFV replication. Residues with reduced cleavage efficiency did not support viral RNA replication, and only revertant viruses with a restored wild-type arginine or lysine residue at the NS3/4A site were obtained. We conclude that DNAJC14 inhibition of RC formation upon DNAJC14 overexpression is likely due to chaperone dysregulation and that YFV probably utilizes DNAJC14's cochaperone function to modulate processing at the NS3/4A site as a mechanism ensuring virus replication. Flaviviruses are single-stranded RNA viruses that cause a wide range of illnesses. Upon host cell entry, the viral genome is translated on endoplasmic reticulum (ER) membranes to produce a single polyprotein, which is

  5. Chaperone-Assisted Protein Folding Is Critical for Yellow Fever Virus NS3/4A Cleavage and Replication

    PubMed Central

    Bozzacco, Leonia; Yi, Zhigang; Andreo, Ursula; Conklin, Claire R.; Li, Melody M. H.; Rice, Charles M.

    2016-01-01

    ABSTRACT DNAJC14, a heat shock protein 40 (Hsp40) cochaperone, assists with Hsp70-mediated protein folding. Overexpressed DNAJC14 is targeted to sites of yellow fever virus (YFV) replication complex (RC) formation, where it interacts with viral nonstructural (NS) proteins and inhibits viral RNA replication. How RCs are assembled and the roles of chaperones in this coordinated process are largely unknown. We hypothesized that chaperones are diverted from their normal cellular protein quality control function to play similar roles during viral infection. Here, we show that DNAJC14 overexpression affects YFV polyprotein processing and alters RC assembly. We monitored YFV NS2A-5 polyprotein processing by the viral NS2B-3 protease in DNAJC14-overexpressing cells. Notably, DNAJC14 mutants that did not inhibit YFV replication had minimal effects on polyprotein processing, while overexpressed wild-type DNAJC14 affected the NS3/4A and NS4A/2K cleavage sites, resulting in altered NS3-to-NS3-4A ratios. This suggests that DNAJC14's folding activity normally modulates NS3/4A/2K cleavage events to liberate appropriate levels of NS3 and NS4A and promote RC formation. We introduced amino acid substitutions at the NS3/4A site to alter the levels of the NS3 and NS4A products and examined their effects on YFV replication. Residues with reduced cleavage efficiency did not support viral RNA replication, and only revertant viruses with a restored wild-type arginine or lysine residue at the NS3/4A site were obtained. We conclude that DNAJC14 inhibition of RC formation upon DNAJC14 overexpression is likely due to chaperone dysregulation and that YFV probably utilizes DNAJC14's cochaperone function to modulate processing at the NS3/4A site as a mechanism ensuring virus replication. IMPORTANCE Flaviviruses are single-stranded RNA viruses that cause a wide range of illnesses. Upon host cell entry, the viral genome is translated on endoplasmic reticulum (ER) membranes to produce a single

  6. 18F-labeled norepinephrine transporter tracer [18F]NS12137: radiosynthesis and preclinical evaluation.

    PubMed

    Kirjavainen, Anna K; Forsback, Sarita; López-Picón, Francisco R; Marjamäki, Päivi; Takkinen, Jatta; Haaparanta-Solin, Merja; Peters, Dan; Solin, Olof

    2018-01-01

    Several psychiatric and neurodegenerative diseases are associated with malfunction of brain norepinephrine transporter (NET). However, current clinical evaluations of NET function are limited by the lack of sufficiently sensitive methods of detection. To this end, we have synthesized exo-3-[(6-[ 18 F]fluoro-2-pyridyl)oxy]-8-azabicyclo[3.2.1]-octane ([ 18 F]NS12137) as a radiotracer for positron emission tomography (PET) and have demonstrated that it is highly specific for in vivo detection of NET-rich regions of rat brain tissue. We applied two methods of electrophilic, aromatic radiofluorination of the precursor molecule, exo-3-[(6-trimethylstannyl-2-pyridyl)oxy]-8-azabicyclo-[3.2.1]octane-8-carboxylate: (1) direct labeling with [ 18 F]F 2 , and (2) labeling with [ 18 F]Selectfluor, a derivative of [ 18 F]F 2 , using post-target produced [ 18 F]F 2 . The time-dependent distribution of [ 18 F]NS12137 in brain tissue of healthy, adult Sprague-Dawley rats was determined by ex vivo autoradiography. The specificity of [ 18 F]NS12137 binding was demonstrated on the basis of competitive binding by nisoxetine, a known NET antagonist of high specificity. [ 18 F]NS12137 was successfully synthesized with radiochemical yields of 3.9% ± 0.3% when labeled with [ 18 F]F 2 and 10.2% ± 2.7% when labeled with [ 18 F]Selectfluor. The molar activity of radiotracer was 8.8 ± 0.7 GBq/μmol with [ 18 F]F 2 labeling and 6.9 ± 0.4 GBq/μmol with [ 18 F]Selectfluor labeling at the end of synthesis of [ 18 F]NS12137. Uptake of [ 18 F]NS12137 in NET-rich areas in rat brain was demonstrated with the locus coeruleus (LCoe) having the highest regional uptake. Prior treatment of rats with nisoxetine showed no detectable [ 18 F]NS12137 in the LCoe. Analyses of whole brain samples for radiometabolites showed only the parent compound [ 18 F]NS12137. Uptake of 18 F-radioactivity in bone increased with time. The two electrophilic 18 F-labeling methods proved to be suitable for synthesis of [ 18 F]NS

  7. CHD3 facilitates vRNP nuclear export by interacting with NES1 of influenza A virus NS2.

    PubMed

    Hu, Yong; Liu, Xiaokun; Zhang, Anding; Zhou, Hongbo; Liu, Ziduo; Chen, Huanchun; Jin, Meilin

    2015-03-01

    NS2 from influenza A virus mediates Crm1-dependent vRNP nuclear export through interaction with Crm1. However, even though the nuclear export signal 1 (NES1) of NS2 does not play a requisite role in NS2-Crm1 interaction, there is no doubt that NES1 is crucial for vRNP nuclear export. While the mechanism of the NES1 is still unclear, it is speculated that certain host partners might mediate the NES1 function through their interaction with NES1. In the present study, chromodomain-helicase-DNA-binding protein 3 (CHD3) was identified as a novel host nuclear protein for locating NS2 and Crm1 on dense chromatin for NS2 and Crm1-dependent vRNP nuclear export. CHD3 was confirmed to interact with NES1 in NS2, and a disruption to this interaction by mutation in NES1 significantly delayed viral vRNPs export and viral propagation. Further, the knockdown of CHD3 would affect the propagation of the wild-type virus but not the mutant with the weakened NS2-CHD3 interaction. Therefore, this study demonstrates that NES1 is required for maximal binding of NS2 to CHD3, and that the NS2-CHD3 interaction on the dense chromatin contributed to the NS2-mediated vRNP nuclear export.

  8. Mutation of Putative N-Glycosylation Sites on Dengue Virus NS4B Decreases RNA Replication.

    PubMed

    Naik, Nenavath Gopal; Wu, Huey-Nan

    2015-07-01

    Dengue virus (DENV) nonstructural protein 4B (NS4B) is an endoplasmic reticulum (ER) membrane-associated protein, and mutagenesis studies have revealed its significance in viral genome replication. In this work, we demonstrated that NS4B is an N-glycosylated protein in virus-infected cells as well as in recombinant protein expression. NS4B is N glycosylated at residues 58 and 62 and exists in two forms, glycosylated and unglycosylated. We manipulated full-length infectious RNA clones and subgenomic replicons to generate N58Q, N62Q, and N58QN62Q mutants. Each of the single mutants had distinct effects, but the N58QN62Q mutation resulted in dramatic reduction of viral production efficiency without affecting secretion or infectivity of the virion in mammalian and mosquito C6/36 hosts. Real-time quantitative PCR (qPCR), subgenomic replicon, and trans-complementation assays indicated that the N58QN62Q mutation affected RNA replication possibly by the loss of glycans. In addition, four intragenic mutations (S59Y, S59F, T66A, and A137T) were obtained from mammalian and/or mosquito C6/36 cell culture systems. All of these second-site mutations compensated for the replication defect of the N58QN62Q mutant without creating novel glycosylation sites. In vivo protein stability analyses revealed that the N58QN62Q mutation alone or plus a compensatory mutation did not affect the stability of NS4B. Overall, our findings indicated that mutation of putative N-glycosylation sites affected the biological function of NS4B in the viral replication complex. This is the first report to identify and reveal the biological significance of dengue virus (DENV) nonstructural protein 4B (NS4B) posttranslation N-glycosylation to the virus life cycle. The study demonstrated that NS4B is N glycosylated in virus-infected cells and in recombinant protein expression. NS4B is modified by glycans at Asn-58 and Asn-62. Functional characterization implied that DENV NS4B utilizes the glycosylation

  9. 3D-QSAR pharmacophore-based virtual screening, molecular docking and molecular dynamics simulation toward identifying lead compounds for NS2B-NS3 protease inhibitors.

    PubMed

    Luo, Pei H; Zhang, Xuan R; Huang, Lan; Yuan, Lun; Zhou, Xang Z; Gao, X; Li, Ling S

    2017-10-01

    NS2B-NS3 protease has been identified to serve as lead drug design target due to its significant role in West Nile viral (WNV) and dengue virus (DENV) reproduction and replication. There are currently no approved chemotherapeutic drugs and effective vaccines to inhibit DENV and WNV infections. In this work, 3D-QSAR pharmacophore model has been developed to discover potential inhibitory candidates. Validation through Fischer's model and decoy test indicate that the developed 3D pharmacophore model is highly predictive for DENV inhibitors, which was then employed to screen ZINC chemical library to obtain reasonable hits. Following ADMET filtering, 15 hits were subjected to further filter through molecular docking and CoMFA modeling. Finally, top three hits were identified as lead compounds or potential inhibitory candidates with IC 50 values of ∼0.4637 µM and fitness of ∼57.73. It is implied from CoMFA modeling that substituents at the side site of benzotriazole such as a p-nitro group (e.g. biphenyl head) and a carbonyl (e.g. carboxylate function) at the side site of furan or amino group may improve bioactivity of ZINC85645245, respectively. Molecular dynamics simulations (MDS) were performed to discover new interactions and reinforce the binding modes from docking for the hits also. The QSAR and MDS results obtained from this work should be useful in determining structural requirements for inhibitor development as well as in designing more potential inhibitors for NS2B-NS3 protease.

  10. Alternate SlyA and H-NS nucleoprotein complexes control hlyE expression in Escherichia coli K-12

    PubMed Central

    Lithgow, James K; Haider, Fouzia; Roberts, Ian S; Green, Jeffrey

    2007-01-01

    Haemolysin E is a cytolytic pore-forming toxin found in several Escherichia coli and Salmonella enterica strains. Expression of hlyE is repressed by the global regulator H-NS (histone-like nucleoid structuring protein), but can be activated by the regulator SlyA. Expression of a chromosomal hlyE–lacZ fusion in an E. coli slyA mutant was reduced to 60% of the wild-type level confirming a positive role for SlyA. DNase I footprint analysis revealed the presence of two separate SlyA binding sites, one located upstream, the other downstream of the hlyE transcriptional start site. These sites overlap AT-rich H-NS binding sites. Footprint and gel shift data showed that whereas H-NS prevented binding of RNA polymerase (RNAP) at the hlyE promoter (PhlyE), SlyA allowed binding of RNAP, but inhibited binding of H-NS. Accordingly, in vitro transcription analyses showed that addition of SlyA protein relieved H-NS-mediated repression of hlyE. Based on these observations a model for SlyA/H-NS regulation of hlyE expression is proposed in which the relative concentrations of SlyA and H-NS govern the nature of the nucleoprotein complexes formed at PhlyE. When H-NS is dominant RNAP binding is inhibited and hlyE expression is silenced; when SlyA is dominant H-NS binding is inhibited allowing RNAP access to the promoter facilitating hlyE transcription. PMID:17892462

  11. Hippocampal A-type current and Kv4.2 channel modulation by the sulfonylurea compound NS5806.

    PubMed

    Witzel, Katrin; Fischer, Paul; Bähring, Robert

    2012-12-01

    We examined the effects of the sulfonylurea compound NS5806 on neuronal A-type channel function. Using whole-cell patch-clamp we studied the effects of NS5806 on the somatodendritic A-type current (I(SA)) in cultured hippocampal neurons and the currents mediated by Kv4.2 channels coexpressed with different auxiliary β-subunits, including both Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-related proteins (DPPs), in HEK 293 cells. The amplitude of the I(SA) component in hippocampal neurons was reduced in the presence of 20 μM NS5806. I(SA) decay kinetics were slowed and the recovery kinetics accelerated, but the voltage dependence of steady-state inactivation was shifted to more negative potentials by NS5806. The peak amplitudes of currents mediated by ternary Kv4.2 channel complexes, associated with DPP6-S (short splice-variant) and either KChIP2, KChIP3 or KChIP4, were potentiated and their macroscopic inactivation slowed by NS5806, whereas the currents mediated by binary Kv4.2 channels, associated only with DPP6-S, were suppressed, and the NS5806-mediated slowing of macroscopic inactivation was less pronounced. Neither potentiation nor suppression and no effect on current decay kinetics in the presence of NS5806 were observed for Kv4.2 channels associated with KChIP3 and the N-type inactivation-conferring DPP6a splice-variant. For all recombinant channel complexes, NS5806 slowed the recovery from inactivation and shifted the voltage dependence of steady-state inactivation to more negative potentials. Our results demonstrate the activity of NS5806 on native I(SA) and possible molecular correlates in the form of recombinant Kv4.2 channels complexed with different KChIPs and DPPs, and they shed some light on the mechanism of NS5806 action. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Suitable technological conditions for enzymatic hydrolysis of waste paper by Novozymes® enzymes NS50013 and NS50010.

    PubMed

    Brummer, Vladimir; Skryja, Pavel; Jurena, Tomas; Hlavacek, Viliam; Stehlik, Petr

    2014-10-01

    Waste paper belongs to a group of quantitatively the most produced waste types. Enzymatic hydrolysis is becoming a suitable way to treat this type of waste and at the same time, to produce a valuable liquid biofuel, because reducing sugars solutions that are formed during the process of saccharification can be a precursor for following or simultaneous fermentation. If it will be possible to make the enzymatic hydrolysis of the waste paper economically viable, it could serve as one of the new ways to lower the dependence of the transport sector on oil in the future. Only several studies comparing the enzymatic hydrolysis of different waste papers were performed in the past; they are summarized in this manuscript. In our experimental trials, suitable technological conditions for waste paper enzymatic hydrolysis using enzymes from Novozymes® biomass kit: enzymes NS50013 and NS50010 were investigated. The following enzymatic hydrolysis parameters in laboratory scale trials were verified on high cellulose content substrates-filter paper and cellulose pulp: type of buffer, pH, temperature, concentration of the substrate, loading of the enzyme and rate of stirring.

  13. Process Performances of 2 ns Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori

    2011-08-01

    Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.

  14. Plasma Membrane Permeabilization by 60- and 600-ns Electric Pulses Is Determined by the Absorbed Dose

    PubMed Central

    Ibey, Bennett L.; Xiao, Shu; Schoenbach, Karl H.; Murphy, Michael R.; Pakhomov, Andrei G.

    2008-01-01

    We explored how the effect of plasma membrane permeabilization by nanosecond-duration electric pulses (nsEP) depends on the physical characteristics of exposure. The resting membrane resistance (Rm) and membrane potential (MP) were measured in cultured GH3 and CHO cells by conventional whole-cell patch-clamp technique. Intact cells were exposed to a single nsEP (60 or 600 ns duration, 0-22 kV/cm), followed by patch-clamp measurements after a 2-3 min delay. Consistent with earlier findings, nsEP caused long-lasting Rm decrease, accompanied by the loss of MP. The threshold for these effects was about 6 kV/cm for 60 ns pulses, and about 1 kV/cm for 600 ns pulses. Further analysis established that it was neither pulse duration nor the E-field amplitude per se, but the absorbed dose that determined the magnitude of the biological effect. In other words, exposure to nsEP at either pulse duration caused equal effects if the absorbed doses were equal. The threshold absorbed dose to produce plasma membrane effects in either GH3 or CHO cells at either pulse duration was found to be at or below 10 mJ/g. Despite being determined by the dose, the nsEP effect clearly is not thermal, as the maximum heating at the threshold dose is less than 0.01 °C. The use of the absorbed dose as a universal exposure metric may help to compare and quantify nsEP sensitivity of different cell types and of cells in different physiological conditions. The absorbed dose may also prove to be a more useful metric than the incident E-field in determining safety limits for high peak, lowaverage power EMF emissions. PMID:18839412

  15. X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornholdt, Zachary A.; Prasad, B.V. Venkataram

    2009-04-08

    The recent emergence of highly pathogenic avian (H5N1) influenza viruses, their epizootic and panzootic nature, and their association with lethal human infections have raised significant global health concerns. Several studies have underlined the importance of non-structural protein NS1 in the increased pathogenicity and virulence of these strains. NS1, which consists of two domains - a double-stranded RNA (dsRNA) binding domain and the effector domain, separated through a linker - is an antagonist of antiviral type-I interferon response in the host. Here we report the X-ray structure of the full-length NS1 from an H5N1 strain (A/Vietnam/1203/2004) that was associated with 60%more » of human deaths in an outbreak in Vietnam. Compared to the individually determined structures of the RNA binding domain and the effector domain from non-H5N1 strains, the RNA binding domain within H5N1 NS1 exhibits modest structural changes, while the H5N1 effector domain shows significant alteration, particularly in the dimeric interface. Although both domains in the full-length NS1 individually participate in dimeric interactions, an unexpected finding is that these interactions result in the formation of a chain of NS1 molecules instead of distinct dimeric units. Three such chains in the crystal interact with one another extensively to form a tubular organization of similar dimensions to that observed in the cryo-electron microscopy images of NS1 in the presence of dsRNA. The tubular oligomeric organization of NS1, in which residues implicated in dsRNA binding face a 20-{angstrom}-wide central tunnel, provides a plausible mechanism for how NS1 sequesters varying lengths of dsRNA, to counter cellular antiviral dsRNA response pathways, while simultaneously interacting with other cellular ligands during an infection.« less

  16. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats.

    PubMed

    Wang, T; Hu, X; Liang, S; Li, W; Wu, X; Wang, L; Jin, F

    2015-01-01

    Gut microbiota play a vital role in maintaining the health of the host. Many factors affect gut microbiota; application of broad range antibiotics disturb microbiota, while probiotic application protects the microbiota. To investigate how probiotics alter the physiological and psychological changes induced by antibiotics, we tested the performance of ampicillin-treated rats in the presence or absence of Lactobacillus fermentum strain NS9, in elevated plus maze and Morris water maze. The results showed that NS9 normalised the composition of gut microbiota and alleviated the ampicillin-induced inflammation in the colon. The levels of the mineralocorticoid and N-methyl-D-aspartate receptors were also elevated in the hippocampus of the ampillicin+NS9 treated group. NS9 administration also reduced the anxiety-like behaviour and alleviated the ampicillin-induced impairment in memory retention. These findings suggest that NS9 is beneficial to the host, because it restores the physiological and psychological abnormalities induced by ampicillin. Our results highlight how gut contents regulate the brain, and shed light on the clinical applications of probiotics to treat the side effect of antibiotics and mental disorders.

  17. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae.

    PubMed

    Murakami, Suguru; Shimamoto, Toshi; Nagano, Hideaki; Tsuruno, Masahiro; Okuhara, Hiroaki; Hatanaka, Haruyo; Tojo, Hiromasa; Kodama, Yukiko; Funato, Kouichi

    2015-11-17

    Ceramide is one of the most important intercellular components responsible for the barrier and moisture retention functions of the skin. Because of the risks involved with using products of animal origin and the low productivity of plants, the availability of ceramides is currently limited. In this study, we successfully developed a system that produces sphingosine-containing human ceramide-NS in the yeast Saccharomyces cerevisiae by eliminating the genes for yeast sphingolipid hydroxylases (encoded by SUR2 and SCS7) and introducing the gene for a human sphingolipid desaturase (encoded by DES1). The inactivation of the ceramidase gene YDC1, overexpression of the inositol phosphosphingolipid phospholipase C gene ISC1, and endoplasmic reticulum localization of the DES1 gene product resulted in enhanced production of ceramide-NS. The engineered yeast strains can serve as hosts not only for providing a sustainable source of ceramide-NS but also for developing further systems to produce sphingosine-containing sphingolipids.

  18. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface.

    PubMed

    Knodel, Markus M; Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; Targett-Adams, Paul; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel

    2018-01-08

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.

  19. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface

    PubMed Central

    Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel

    2018-01-01

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles. PMID:29316722

  20. Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saw, Wuan Geok; Tria, Giancarlo; Grüber, Ardina

    Infection by the four serotypes ofDengue virus(DENV-1 to DENV-4) causes an important arthropod-borne viral disease in humans. The multifunctional DENV nonstructural protein 5 (NS5) is essential for capping and replication of the viral RNA and harbours a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. In this study, insights into the overall structure and flexibility of the entire NS5 of all fourDengue virusserotypes in solution are presented for the first time. The solution models derived revealed an arrangement of the full-length NS5 (NS5FL) proteins with the MTase domain positioned at the top of the RdRP domain. The DENV-1more » to DENV-4 NS5 forms are elongated and flexible in solution, with DENV-4 NS5 being more compact relative to NS5 from DENV-1, DENV-2 and DENV-3. Solution studies of the individual MTase and RdRp domains show the compactness of the RdRp domain as well as the contribution of the MTase domain and the ten-residue linker region to the flexibility of the entire NS5. Swapping the ten-residue linker between DENV-4 NS5FL and DENV-3 NS5FL demonstrated its importance in MTase–RdRp communication and in concerted interaction with viral and host proteins, as probed by amide hydrogen/deuterium mass spectrometry. Conformational alterations owing to RNA binding are presented.« less

  1. Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution

    PubMed Central

    Saw, Wuan Geok; Tria, Giancarlo; Grüber, Ardina; Subramanian Manimekalai, Malathy Sony; Zhao, Yongqian; Chandramohan, Arun; Srinivasan Anand, Ganesh; Matsui, Tsutomu; Weiss, Thomas M.; Vasudevan, Subhash G.; Grüber, Gerhard

    2015-01-01

    Infection by the four serotypes of Dengue virus (DENV-1 to DENV-4) causes an important arthropod-borne viral disease in humans. The multifunctional DENV nonstructural protein 5 (NS5) is essential for capping and replication of the viral RNA and harbours a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. In this study, insights into the overall structure and flexibility of the entire NS5 of all four Dengue virus serotypes in solution are presented for the first time. The solution models derived revealed an arrangement of the full-length NS5 (NS5FL) proteins with the MTase domain positioned at the top of the RdRP domain. The DENV-1 to DENV-4 NS5 forms are elongated and flexible in solution, with DENV-4 NS5 being more compact relative to NS5 from DENV-1, DENV-2 and DENV-3. Solution studies of the individual MTase and RdRp domains show the compactness of the RdRp domain as well as the contribution of the MTase domain and the ten-residue linker region to the flexibility of the entire NS5. Swapping the ten-residue linker between DENV-4 NS5FL and DENV-3 NS5FL demonstrated its importance in MTase–RdRp communication and in concerted interaction with viral and host proteins, as probed by amide hydrogen/deuterium mass spectrometry. Conformational alterations owing to RNA binding are presented. PMID:26527147

  2. Characterization and evaluation of apoptotic potential of double gene construct pVIVO.VP3.NS1.

    PubMed

    Saxena, Shikha; Desai, G S; Kumar, G Ravi; Sahoo, A P; Santra, Lakshman; Singh, Lakshya Veer

    2015-05-01

    Viral gene oncotherapy, targeted killing of cancer cells by viral genes, is an emerging non-infectious therapeutic cancer treatment modality. Chemo and radiotherapy in cancer treatment is limited due to their genotoxic side effects on healthy cells and need of functional p53, which is mutated in most of the cancers. VP3 (apoptin) of chicken infectious anaemia (CIA) and NS1 (Non structural protein 1) of Canine Parvovirus-2 (CPV-2) have been proven to have oncolytic potential in our laboratory. To evaluate oncolytic potential of VP3 and NS1 together these genes needed to be cloned in a bicistronic vector. In this study, both these genes were cloned and characterized for expression of their gene products and its apoptotic potential. The expression of VP3 and NS1 was studied by confocal microscopy and flowcytometry. Expression of VP3 and NS1 in pVIVO.VP3.NS1 transfected HeLa cells in comparison to mock transfected cells indicated that the double gene construct expresses both the products. This was further confirmed by flowcytometry where there was increase in cells expressing VP3 and NS1 in pVIVO.VP3.NS1 transfected group in comparison with the mock control group. The apoptotic inducing potential of this characterized pVIVO.VP3.NS1 was evaluated in human cervical cancer cell line (HeLa) by DNA fragmentation assay, TUNEL assay and Hoechst staning. This double construct was observed to induce apoptosis in HeLa cells.

  3. Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing.

    PubMed

    Tsai, Pei-Ling; Chiou, Ni-Ting; Kuss, Sharon; García-Sastre, Adolfo; Lynch, Kristen W; Fontoura, Beatriz M A

    2013-01-01

    Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression.

  4. A split face study to document the safety and efficacy of clearance of melasma with a 5 ns q switched Nd YAG laser versus a 50 ns q switched Nd YAG laser.

    PubMed

    Alsaad, Salman M S; Ross, E Victor; Mishra, Vineet; Miller, Lee

    2014-12-01

    To determine the safety and efficacy of a 50 ns Q switched Nd YAG laser vs. a 5 ns Q switched Nd YAG laser for clearance of melasma. To compare subject satisfaction, efficacy, and comfort level between the two lasers. This is a prospective, randomized split face clinical study. The study was approved by the Scripps IRB. Ten healthy female subjects with moderate to severe melasma were enrolled. Each subject had three laser treatments one month apart. Patients were followed up approximately 1 month, 3 months, and 6 months after the final laser treatment. A treatment session consisted of a microdermabrasion, 1064 nm QS laser, and topicals. Subjects were asked to rate treatment pain based on a numerical scale range 0-10 (0 = no pain and 10 = worst pain). A melasma area and severity index (MASI) grading system was applied. Also, melanin measurements were acquired by a reflectance spectrophotometer. Side effects were documented during the study including post treatment erythema. Eight patients completed the study. Subjects showed improvement on both sides of the face. From baseline to 1 month post the final laser treatment, the average MASI scores showed a 16% reduction for the 50 ns QS 1064 nm laser vs. a 27% reduction for the 5 ns QS 1064 nm laser (both significant versus baseline pigment, P < 0.05). This difference in MASI scores between the two lasers was not statistically significant (P = 0.87930). Laser treatments displayed mild erythema that resolved after one day. The melanin meter measurements showed a reduction in pigment readings on both sides. Three months after the final treatment there was some relapse in the melasma, as the mean pigment reduction fell to 12% for the 50 ns laser and 11% for the 5 ns laser. By 3 months pigment reduction was not statistically significant for either laser, and no significant differences in pigment reduction were noted between the two pulse durations. There was a statistically significant difference (P < 0.05) in pain scores

  5. Functional dissection of hematopoietic stem cell populations with a stemness-monitoring system based on NS-GFP transgene expression.

    PubMed

    Ali, Mohamed A E; Fuse, Kyoko; Tadokoro, Yuko; Hoshii, Takayuki; Ueno, Masaya; Kobayashi, Masahiko; Nomura, Naho; Vu, Ha Thi; Peng, Hui; Hegazy, Ahmed M; Masuko, Masayoshi; Sone, Hirohito; Arai, Fumio; Tajima, Atsushi; Hirao, Atsushi

    2017-09-12

    Hematopoietic stem cells (HSCs) in a steady state can be efficiently purified by selecting for a combination of several cell surface markers; however, such markers do not consistently reflect HSC activity. In this study, we successfully enriched HSCs with a unique stemness-monitoring system using a transgenic mouse in which green florescence protein (GFP) is driven by the promoter/enhancer region of the nucleostemin (NS) gene. We found that the phenotypically defined long-term (LT)-HSC population exhibited the highest level of NS-GFP intensity, whereas NS-GFP intensity was strongly downregulated during differentiation in vitro and in vivo. Within the LT-HSC population, NS-GFP high cells exhibited significantly higher repopulating capacity than NS-GFP low cells. Gene expression analysis revealed that nine genes, including Vwf and Cdkn1c (p57), are highly expressed in NS-GFP high cells and may represent a signature of HSCs, i.e., a stemness signature. When LT-HSCs suffered from remarkable stress, such as transplantation or irradiation, NS-GFP intensity was downregulated. Finally, we found that high levels of NS-GFP identified HSC-like cells even among CD34 + cells, which have been considered progenitor cells without long-term reconstitution ability. Thus, high NS-GFP expression represents stem cell characteristics in hematopoietic cells, making this system useful for identifying previously uncharacterized HSCs.

  6. Radiometric properties of the NS001 Thematic Mapper Simulator aircraft multispectral scanner

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Ahmad, Suraiya P.

    1990-01-01

    Laboratory tests of the NS001 TM are described emphasizing absolute calibration to determine the radiometry of the simulator's reflective channels. In-flight calibration of the data is accomplished with the NS001 internal integrating-sphere source because instabilities in the source can limit the absolute calibration. The data from 1987-89 indicate uncertainties of up to 25 percent with an apparent average uncertainty of about 15 percent. Also identified are dark current drift and sensitivity changes along the scan line, random noise, and nonlinearity which contribute errors of 1-2 percent. Uncertainties similar to hysteresis are also noted especially in the 2.08-2.35-micron range which can reduce sensitivity and cause errors. The NS001 TM Simulator demonstrates a polarization sensitivity that can generate errors of up to about 10 percent depending on the wavelength.

  7. A Review of Staphylococcal Cassette Chromosome mec (SCCmec) Types in Coagulase-Negative Staphylococci (CoNS) Species.

    PubMed

    Saber, Huda; Jasni, Azmiza Syawani; Jamaluddin, Tengku Zetty Maztura Tengku; Ibrahim, Rosni

    2017-10-01

    Coagulase-negative staphylococci (CoNS) are considered low pathogenic organisms. However, they are progressively causing more serious infections with time because they have adapted well to various antibiotics owing to their ability to form biofilms. Few studies have been conducted on CoNS in both, hospital and community-acquired settings, especially in Malaysia. Thus, it is important to study their species and gene distributions. A mobile genetic element, staphylococcal cassette chromosome mec (SCC mec ), plays an important role in staphylococci pathogenesis. Among CoNS, SCC mec has been studied less frequently than Staphylococcus aureus (coagulase-positive staphylococci). A recent study (8) conducted in Malaysia successfully detected SCC mec type I to VIII as well as several new combination patterns in CoNS species, particularly Staphylococcus epidermidis . However, data are still limited, and further research is warranted. This paper provides a review on SCC mec types among CoNS species.

  8. Isolation and Characterization of Wheat Derived Nonspecific Lipid Transfer Protein 2 (nsLTP2).

    PubMed

    Bosi, Sara; Fiori, Jessica; Dinelli, Giovanni; Rigby, Neil; Leoncini, Emanuela; Prata, Cecilia; Bregola, Valeria; Marotti, Ilaria; Gotti, Roberto; Naldi, Marina; Massaccesi, Luca; Malaguti, Marco; Kroon, Paul; Hrelia, Silvana

    2018-05-22

    Numerous studies support the protective role of bioactive peptides against cardiovascular diseases. Cereals represent the primary source of carbohydrates, but they also contain substantial amounts of proteins, therefore representing a potential dietary source of bioactive peptides with nutraceutical activities. The analysis of wheat extracts purified by chromatographic techniques by means of HPLC-UV/nanoLC-nanoESI-QTOF allowed the identification of a signal of about 7 kDa which, following data base searches, was ascribed to a nonspecific lipid-transfer protein (nsLTP) type 2 from Triticum aestivum (sequence coverage of 92%). For the first time nsLTP2 biological activities have been investigated. In particular, in experiments with human umbilical vein endothelial cells (HUVEC), nsLTP2 displayed antioxidant and cytoprotective activities, being able to significantly decrease reactive oxygen species (ROS) levels and to reduce lactate dehydrogenase (LDH) release, generated following oxidative (hydrogen peroxide) and inflammatory (tumor necrosis factor α, interleukin-1β, and lipopolysaccharide) stimulation. The obtained promising results suggest potential protective role of nsLTP2 in vascular diseases prevention. PRACTICAL APPLICATION: nsLTP 2 peptide is resistant to proteases throughout the gastrointestinal tract and exerts antioxidant and cytoprotective activities. These characteristics could be exploited in vascular diseases prevention. © 2018 Institute of Food Technologists®.

  9. Viperin Restricts Zika Virus and Tick-Borne Encephalitis Virus Replication by Targeting NS3 for Proteasomal Degradation.

    PubMed

    Panayiotou, Christakis; Lindqvist, Richard; Kurhade, Chaitanya; Vonderstein, Kirstin; Pasto, Jenny; Edlund, Karin; Upadhyay, Arunkumar S; Överby, Anna K

    2018-04-01

    Flaviviruses are arthropod-borne viruses that constitute a major global health problem, with millions of human infections annually. Their pathogenesis ranges from mild illness to severe manifestations such as hemorrhagic fever and fatal encephalitis. Type I interferons (IFNs) are induced in response to viral infection and stimulate the expression of interferon-stimulated genes (ISGs), including that encoding viperin (virus-inhibitory protein, endoplasmic reticulum associated, IFN inducible), which shows antiviral activity against a broad spectrum of viruses, including several flaviviruses. Here we describe a novel antiviral mechanism employed by viperin against two prominent flaviviruses, tick-borne encephalitis virus (TBEV) and Zika virus (ZIKV). Viperin was found to interact and colocalize with the structural proteins premembrane (prM) and envelope (E) of TBEV, as well as with nonstructural (NS) proteins NS2A, NS2B, and NS3. Interestingly, viperin expression reduced the NS3 protein level, and the stability of the other interacting viral proteins, but only in the presence of NS3. We also found that although viperin interacted with NS3 of mosquito-borne flaviviruses (ZIKV, Japanese encephalitis virus, and yellow fever virus), only ZIKV was sensitive to the antiviral effect of viperin. This sensitivity correlated with viperin's ability to induce proteasome-dependent degradation of NS3. ZIKV and TBEV replication was rescued completely when NS3 was overexpressed, suggesting that the viral NS3 is the specific target of viperin. In summary, we present here a novel antiviral mechanism of viperin that is selective for specific viruses in the genus Flavivirus , affording the possible availability of new drug targets that can be used for therapeutic intervention. IMPORTANCE Flaviviruses are a group of enveloped RNA viruses that cause severe diseases in humans and animals worldwide, but no antiviral treatment is yet available. Viperin, a host protein produced in response to

  10. Analysis and simulation of the I C engine Otto cycle using the second law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Abdel-Rahim, Y. M.

    The present investigation is an application of the second law of thermodynamics to the spark ignition engine cycle. A comprehensive thermodynamic analysis of the air standard cycle is conducted using the first and second laws of thermodynamics, the ideal gas equation of state and the perfect gas properties for air. The study investigates the effect of the cycle parameters on the cycle performance reflected by the first and second law efficiencies, the heat added, the work done, the available energy added as well as the history of the internal, available and unavailable energies along the cycle. The study shows that the second law efficiency is a function of the compression ratio, the initial temperature, the maximum temperature as well as the dead state temperature. A non-dimensional comprehensive thermodynamic simulation model for the actual Otto cycle is developed to study the effects of the design and operating parameters of the cycle on the cycle performance. The analysis takes into account engine geometry, mixture strength, heat transfer, piston motion, engine speed, mechanical friction, spark advance and combustion duration.

  11. Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme.

    PubMed

    Feibelman, Kristen M; Fuller, Benjamin P; Li, Linfeng; LaBarbera, Daniel V; Geiss, Brian J

    2018-06-01

    Chikungunya virus (CHIKV) is an arthropod-borne alphavirus. Alphaviruses are positive strand RNA viruses that require a 5' cap structure to direct translation of the viral polyprotein and prevent degradation of the viral RNA genome by host cell nucleases. Formation of the 5' RNA cap is orchestrated by the viral protein nsP1, which binds GTP and provides the N-7 methyltransferase and guanylyltransferase activities that are necessary for cap formation. Viruses with aberrant nsP1 activity are unable to replicate effectively suggesting that nsP1 is a promising target for antiviral drug discovery. Given the absence of commercially available antiviral therapies for CHIKV, it is imperative to identify compounds that could be developed as potential therapeutics. This study details a high-throughput screen of 3051 compounds from libraries containing FDA-approved drugs, natural products, and known bioactives against CHIKV nsP1 using a fluorescence polarization-based GTP competition assay. Several small molecule hits from this screen were able to compete with GTP for the CHIKV nsP1 GTP binding site at low molar concentrations. Compounds were also evaluated with an orthogonal assay that measured the ability of nsP1 to perform the guanylation step of the capping reaction in the presence of inhibitor. In addition, live virus assays with CHIKV and closely related alphavirus, Sindbis virus, were used in conjunction with cell toxicity assays to determine the antiviral activity of compounds in cell culture. The naturally derived compound lobaric acid was found to inhibit CHIKV nsP1 GTP binding and guanylation as well as attenuate viral growth in vitro at both 24 hpi and 48 hpi in hamster BHK21 and human Huh 7 cell lines. These data indicate that development of lobaric acid and further exploration of CHIKV nsP1 as a drug target may aid in the progress of anti-alphaviral drug development strategies. Copyright © 2018. Published by Elsevier B.V.

  12. Replicative Functions of Minute Virus of Mice NS1 Protein Are Regulated In Vitro by Phosphorylation through Protein Kinase C

    PubMed Central

    Nüesch, Jürg P. F.; Dettwiler, Sabine; Corbau, Romuald; Rommelaere, Jean

    1998-01-01

    NS1, the major nonstructural protein of the parvovirus minute virus of mice, is a multifunctional phosphoprotein which is involved in cytotoxicity, transcriptional regulation, and initiation of viral DNA replication. For coordination of these various functions during virus propagation, NS1 has been proposed to be regulated by posttranslational modifications, in particular phosphorylation. Recent in vitro studies (J. P. F. Nüesch, R. Corbau, P. Tattersall, and J. Rommelaere, J. Virol. 72:8002–8012, 1998) provided evidence that distinct NS1 activities, notably the intrinsic helicase function, are modulated by the phosphorylation state of the protein. In order to study the dependence of the initiation of viral DNA replication on NS1 phosphorylation and to identify the protein kinases involved, we established an in vitro replication system that is devoid of endogenous protein kinases and is based on plasmid substrates containing the minimal left-end origins of replication. Cellular components necessary to drive NS1-dependent rolling-circle replication (RCR) were freed from endogenous serine/threonine protein kinases by affinity chromatography, and the eukaryotic DNA polymerases were replaced by the bacteriophage T4 DNA polymerase. While native NS1 (NS1P) supported RCR under these conditions, dephosphorylated NS1 (NS1O) was impaired. Using fractionated HeLa cell extracts, we identified two essential protein components which are able to phosphorylate NS1O, are enriched in protein kinase C (PKC), and, when present together, reactivate NS1O for replication. One of these components, containing atypical PKC, was sufficient to restore NS1O helicase activity. The requirement of NS1O reactivation for characteristic PKC cofactors such as Ca2+/phosphatidylserine or phorbol esters strongly suggests the involvement of this protein kinase family in regulation of NS1 replicative functions in vitro. PMID:9811734

  13. The 5.5 protein of phage T7 inhibits H-NS through interactions with the central oligomerization domain.

    PubMed

    Ali, Sabrina S; Beckett, Emily; Bae, Sandy Jeehoon; Navarre, William Wiley

    2011-09-01

    The 5.5 protein (T7p32) of coliphage T7 (5.5(T7)) was shown to bind and inhibit gene silencing by the nucleoid-associated protein H-NS, but the mechanism by which it acts was not understood. The 5.5(T7) protein is insoluble when expressed in Escherichia coli, but we find that 5.5(T7) can be isolated in a soluble form when coexpressed with a truncated version of H-NS followed by subsequent disruption of the complex during anion-exchange chromatography. Association studies reveal that 5.5(T7) binds a region of H-NS (residues 60 to 80) recently found to contain a distinct domain necessary for higher-order H-NS oligomerization. Accordingly, we find that purified 5.5(T7) can disrupt higher-order H-NS-DNA complexes in vitro but does not abolish DNA binding by H-NS per se. Homologues of the 5.5(T7) protein are found exclusively among members of the Autographivirinae that infect enteric bacteria, and despite fairly low sequence conservation, the H-NS binding properties of these proteins are largely conserved. Unexpectedly, we find that the 5.5(T7) protein copurifies with heterogeneous low-molecular-weight RNA, likely tRNA, through several chromatography steps and that this interaction does not require the DNA binding domain of H-NS. The 5.5 proteins utilize a previously undescribed mechanism of H-NS antagonism that further highlights the critical importance that higher-order oligomerization plays in H-NS-mediated gene repression. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  14. The NS1 Protein from Influenza Virus Stimulates Translation Initiation by Enhancing Ribosome Recruitment to mRNAs.

    PubMed

    Panthu, Baptiste; Terrier, Olivier; Carron, Coralie; Traversier, Aurélien; Corbin, Antoine; Balvay, Laurent; Lina, Bruno; Rosa-Calatrava, Manuel; Ohlmann, Théophile

    2017-10-27

    The non-structural protein NS1 of influenza A viruses exerts pleiotropic functions during infection. Among these functions, NS1 was shown to be involved in the control of both viral and cellular translation; however, the mechanism by which this occurs remains to be determined. Thus, we have revisited the role of NS1 in translation by using a combination of influenza infection, mRNA reporter transfection, and in vitro functional and biochemical assays. Our data show that the NS1 protein is able to enhance the translation of virtually all tested mRNAs with the exception of constructs bearing the Dicistroviruses Internal ribosome entry segment (IRESes) (DCV and CrPV), suggesting a role at the level of translation initiation. The domain of NS1 required for translation stimulation was mapped to the RNA binding amino-terminal motif of the protein with residues R38 and K41 being critical for activity. Although we show that NS1 can bind directly to mRNAs, it does not correlate with its ability to stimulate translation. This activity rather relies on the property of NS1 to associate with ribosomes and to recruit them to target mRNAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. pH-Dependent Conformational Changes in the HCV NS3 Protein Modulate Its ATPase and Helicase Activities

    PubMed Central

    Ventura, Gustavo Tavares; da Costa, Emmerson Corrêa Brasil; Capaccia, Anne Miranda; Mohana-Borges, Ronaldo

    2014-01-01

    The hepatitis C virus (HCV) infects 170 to 200 million people worldwide and is, therefore, a major health problem. The lack of efficient treatments that specifically target the viral proteins or RNA and its high chronicity rate make hepatitis C the cause of many deaths and hepatic transplants annually. The NS3 protein is considered an important target for the development of anti-HCV drugs because it is composed of two domains (a serine protease in the N-terminal portion and an RNA helicase/NTPase in the C-terminal portion), which are essential for viral replication and proliferation. We expressed and purified both the NS3 helicase domain (NS3hel) and the full-length NS3 protein (NS3FL) and characterized pH-dependent structural changes associated with the increase in their ATPase and helicase activities at acidic pH. Using intrinsic fluorescence experiments, we have observed that NS3hel was less stable at pH 6.4 than at pH 7.2. Moreover, binding curves using an extrinsic fluorescent probe (bis-ANS) and ATPase assays performed under different pH conditions demonstrated that the hydrophobic clefts of NS3 are significantly more exposed to the aqueous medium at acidic pH. Using fluorescence spectroscopy and anisotropy assays, we have also observed more protein interaction with DNA upon pH acidification, which suggests that the hydrophobic clefts exposure on NS3 might be related to a loss of stability that could lead it to adopt a more open conformation. This conformational change at acidic pH would stimulate both its ATPase and helicase activities, as well as its ability to bind DNA. Taken together, our results indicate that the NS3 protein adopts a more open conformation due to acidification from pH 7.2 to 6.4, resulting in a more active form at a pH that is found near Golgi-derived membranes. This increased activity could better allow NS3 to carry out its functions during HCV replication. PMID:25551442

  16. The psychology of thinking before the cognitive revolution: Otto Selz on problems, schemas, and creativity.

    PubMed

    ter Hark, Michel

    2010-02-01

    Otto Selz has been hailed as one of the most important precursors of the cognitive revolution, yet surprisingly few studies of his work exist. He is often mentioned in the context of the Würzburg School of the psychology of thinking and sometimes in the context of Gestalt psychology. In this paper, it is argued that Selz's emphasis on the role of problems and schemas in the direction of thought processes and creativity sets him apart from the program of the Würzburg School. On the other hand, by developing a theory of thinking that is exclusively at the intentional level, Selz also differs from psychologists that take physics as a model for psychology, such as the Gestalt psychology of Wolfgang Kihler. Special emphasis is given in this paper to Selz's use of the concept of problem or task and the concept of the schema. It is further argued that the concept of the schema is the result of Selz's adaptation of the theory of relations as developed by the philosopher Meinong. The paper begins with a sketch of Selz's life that ended so tragically.

  17. The Eleventh Plague: The Politics of Biological and Chemical Warfare

    NASA Astrophysics Data System (ADS)

    Kovac, Jeffrey

    1997-07-01

    Leonard A. Cole. W. H. Freeman: New York, 1997. 250 pp. ISBN 0-7167-2950-4. $22.95 hc. The Eleventh Plague begins with a recitation of the ten plagues brought down upon Egypt, part of the Passover Seder celebrated each spring by Jews all over the world. Spring is also the anniversary of the first use of chemical weapons. On April 22, 1915, German soldiers released chlorine gas from 5,739 cylinders installed along the battle line at Ypres in southeastern Belgium. Germany achieved complete surprise. The gas drifted across no man's land, causing widespread terror and creating ten thousand serious casualties and five thousand deaths. Chlorine, of course, was a poor weapon, easily neutralized, but German scientists, including future Nobel laureates Fritz Haber, Otto Hahn, and James Franck, and the German chemical industry created ever more dangerous chemical weapons, culminating with the introduction of mustard gas in 1917. Despite cries of moral outrage, the Allies countered with their own chemical weapons efforts. The eleventh plague had been unleashed.

  18. Fritz Haber: December 9, 1868-January 29, 1934.

    PubMed

    Witschi, H

    2000-08-14

    Fritz Haber (1868-1934) was a German physical chemist. Nobel laureate and foreign member of the US National Academy of Sciences. His greatest accomplishment in science was the development of a practical method to prepare nitrogen from air (nitrogen fixation or Haber-Bosch process). While working on the toxicity of war gases. he formulated 'Haber's rule', also known as C x T= constant in order to characterize the toxicity of an inhalant. Between 1919 and 1933. he was one of the leading figures in revitalizing science in Germany. At his institute in Berlin worked such luminaries as Albert Einstein, Lise Meitner and Otto Hahn. His last paper described what became known as the Haber-Weiss reaction. After his death he was for a long time forgotten by the Nazis because he was Jewish and after World War II by the Allies because of his work on war gases in World War I. And yet he was one of the truly great modern scientists. not only because of his science, but also because of the role he played in science politics and policies.

  19. 'Keeping in the race': physics, publication speed and national publishing strategies in Nature, 1895-1939.

    PubMed

    Baldwin, Melinda

    2014-06-01

    By the onset of the Second World War, the British scientific periodical Nature--specifically, Nature's 'Letters to the editor' column--had become a major publication venue for scientists who wished to publish short communications about their latest experimental findings. This paper argues that the Nobel Prize-winning physicist Ernest Rutherford was instrumental in establishing this use of the 'Letters to the editor' column in the early twentieth century. Rutherford's contributions set Nature apart from its fellow scientific weeklies in Britain and helped construct a defining feature of Nature's influence in the twentieth century. Rutherford's participation in the journal influenced his students and colleagues in the field of radioactivity physics and drew physicists like the German Otto Hahn and the American Bertram Borden Boltwood to submit their work to Nature as well, and Nature came to play a major role in spreading news of the latest research in the science of radioactivity. Rutherford and his colleagues established a pattern of submissions to the 'Letters to the editor' that would eventually be adopted by scientists from diverse fields and from laboratories around the world.

  20. Reassessing Diagrams of Cardiac Mechanics: From Otto Frank and Ernest Starling to Hiroyuki Suga.

    PubMed

    Kuhtz-Buschbeck, Johann-Peter; Lie, Reidar K; Schaefer, Jochen; Wilder, Nicolaus

    2016-01-01

    This article explores the importance of diagrams in the history of the understanding of cardiac function, by comparing Ernest Starling's famous "Law of the Heart" (1918) with the mathematically based view of cardiac mechanics put forward by Otto Frank (1897). Whereas Frank's diagrams gained influence in German cardio-physiological publications, they were widely unknown abroad until 1969, when Hiroyuki Suga began to present similar approaches for warm-blooded animals as Frank had done for the frog. Suga succeeded in correlating the pressure volume area (PVA)-a composite of Frank's work loop plus the area of remaining potential energy-with the oxygen consumption of the beating heart. With the concept of time-varying elastance as an index of cardiac contractility, Suga's approach became attractive for clinical applications, and Daniel Burkhoff and colleagues were able to use these insights for real-time, interactive simulations of the cardiovascular system. Such tools can be used for exploring basic hemodynamic principles and, thanks to technical developments of miniature pumps within the same time frame (Καιρός, the "right moment," or "the opportune"), to test the effects of device-based treatment for heart failure. These outcomes confirm that old analyses of the heart's activity may still be useful today.

  1. Effects of nanosecond pulsed electric fields (nsPEFs) on the human fungal pathogen Candida albicans: an in vitro study

    NASA Astrophysics Data System (ADS)

    Guo, Jinsong; Dang, Jie; Wang, Kaile; Zhang, Jue; Fang, Jing

    2018-05-01

    Candida albicans is the leading human fungal pathogen that causes many life-threatening infections. Notably, the current clinical trial data indicate that Candida species shows the emerging resistance to anti-fungal drugs. The aim of this study was to evaluate the antifungal effects of nanosecond pulsed electric fields (nsPEFs) as a novel drug-free strategy in vitro. In this study, we investigated the inactivation and permeabilization effects of C. albicans under different nsPEFs exposure conditions (100 pulses, 100 ns in duration, intensities of 20, 40 kV cm‑1). Cell death was studied by annexin-V and propidium iodide staining. The changes of intracellular Ca2+ concentration after nsPEFs treatment were observed using Fluo-4 AM. Results show that C. albicans cells and biofilms were both obviously inhibited and destroyed after nsPEFs treatment. Furthermore, C. albicans cells were significantly permeabilized after nsPEFs treatment. Additionally, nsPEFs exposure led to a large amount of DNA and protein leakage. Importantly, nsPEFs induced a field strength-dependent apoptosis in C. albicans cells. Further experiments revealed that Ca2+ involved in nsPEFs induced C. albicans apoptosis. In conclusion, this proof-of-concept study provides a potential alternative drug-free strategy for killing pathogenic Candida species.

  2. Inhibition of the Membrane Attack Complex by Dengue Virus NS1 through Interaction with Vitronectin and Terminal Complement Proteins

    PubMed Central

    Conde, Jonas Nascimento; da Silva, Emiliana Mandarano; Allonso, Diego; Coelho, Diego Rodrigues; Andrade, Iamara da Silva; de Medeiros, Luciano Neves; Menezes, Joice Lima; Barbosa, Angela Silva

    2016-01-01

    ABSTRACT Dengue virus (DENV) infects millions of people worldwide and is a major public health problem. DENV nonstructural protein 1 (NS1) is a conserved glycoprotein that associates with membranes and is also secreted into the plasma in DENV-infected patients. The present study describes a novel mechanism by which NS1 inhibits the terminal complement pathway. We first identified the terminal complement regulator vitronectin (VN) as a novel DENV2 NS1 binding partner by using a yeast two-hybrid system. This interaction was further assessed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) assay. The NS1-VN complex was also detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the DENV2 NS1 protein, either by itself or by interacting with VN, hinders the formation of the membrane attack complex (MAC) and C9 polymerization. Finally, we showed that DENV2, West Nile virus (WNV), and Zika virus (ZIKV) NS1 proteins produced in mammalian cells inhibited C9 polymerization. Taken together, our results points to a role for NS1 as a terminal pathway inhibitor of the complement system. IMPORTANCE Dengue is the most important arthropod-borne viral disease nowadays and is caused by dengue virus (DENV). The flavivirus NS1 glycoprotein has been characterized functionally as a complement evasion protein that can attenuate the activation of the classical, lectin, and alternative pathways. The present study describes a novel mechanism by which DENV NS1 inhibits the terminal complement pathway. We identified the terminal complement regulator vitronectin (VN) as a novel DENV NS1 binding partner, and the NS1-VN complex was detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the NS1-VN complex inhibited membrane attack complex (MAC) formation, thus interfering with the complement terminal

  3. Inhibition of the Membrane Attack Complex by Dengue Virus NS1 through Interaction with Vitronectin and Terminal Complement Proteins.

    PubMed

    Conde, Jonas Nascimento; da Silva, Emiliana Mandarano; Allonso, Diego; Coelho, Diego Rodrigues; Andrade, Iamara da Silva; de Medeiros, Luciano Neves; Menezes, Joice Lima; Barbosa, Angela Silva; Mohana-Borges, Ronaldo

    2016-11-01

    Dengue virus (DENV) infects millions of people worldwide and is a major public health problem. DENV nonstructural protein 1 (NS1) is a conserved glycoprotein that associates with membranes and is also secreted into the plasma in DENV-infected patients. The present study describes a novel mechanism by which NS1 inhibits the terminal complement pathway. We first identified the terminal complement regulator vitronectin (VN) as a novel DENV2 NS1 binding partner by using a yeast two-hybrid system. This interaction was further assessed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) assay. The NS1-VN complex was also detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the DENV2 NS1 protein, either by itself or by interacting with VN, hinders the formation of the membrane attack complex (MAC) and C9 polymerization. Finally, we showed that DENV2, West Nile virus (WNV), and Zika virus (ZIKV) NS1 proteins produced in mammalian cells inhibited C9 polymerization. Taken together, our results points to a role for NS1 as a terminal pathway inhibitor of the complement system. Dengue is the most important arthropod-borne viral disease nowadays and is caused by dengue virus (DENV). The flavivirus NS1 glycoprotein has been characterized functionally as a complement evasion protein that can attenuate the activation of the classical, lectin, and alternative pathways. The present study describes a novel mechanism by which DENV NS1 inhibits the terminal complement pathway. We identified the terminal complement regulator vitronectin (VN) as a novel DENV NS1 binding partner, and the NS1-VN complex was detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the NS1-VN complex inhibited membrane attack complex (MAC) formation, thus interfering with the complement terminal pathway. Interestingly

  4. Phosphorylation of influenza A virus NS1 protein at threonine 49 suppresses its interferon antagonistic activity.

    PubMed

    Kathum, Omer Abid; Schräder, Tobias; Anhlan, Darisuren; Nordhoff, Carolin; Liedmann, Swantje; Pande, Amit; Mellmann, Alexander; Ehrhardt, Christina; Wixler, Viktor; Ludwig, Stephan

    2016-06-01

    Phosphorylation and dephosphorylation acts as a fundamental molecular switch that alters protein function and thereby regulates many cellular processes. The non-structural protein 1 (NS1) of influenza A virus is an important factor regulating virulence by counteracting cellular immune responses against viral infection. NS1 was shown to be phosphorylated at several sites; however, so far, no function has been conclusively assigned to these post-translational events yet. Here, we show that the newly identified phospho-site threonine 49 of NS1 is differentially phosphorylated in the viral replication cycle. Phosphorylation impairs binding of NS1 to double-stranded RNA and TRIM25 as well as complex formation with RIG-I, thereby switching off its interferon antagonistic activity. Because phosphorylation was shown to occur at later stages of infection, we hypothesize that at this stage other functions of the multifunctional NS1 beyond its interferon-antagonistic activity are needed. © 2016 The Authors Cellular Microbiology published by John Wiley & Sons Ltd.

  5. Charged residues in the H-NS linker drive DNA binding and gene silencing in single cells.

    PubMed

    Gao, Yunfeng; Foo, Yong Hwee; Winardhi, Ricksen S; Tang, Qingnan; Yan, Jie; Kenney, Linda J

    2017-11-21

    Nucleoid-associated proteins (NAPs) facilitate chromosome organization in bacteria, but the precise mechanism remains elusive. H-NS is a NAP that also plays a major role in silencing pathogen genes. We used genetics, single-particle tracking in live cells, superresolution microscopy, atomic force microscopy, and molecular dynamics simulations to examine H-NS/DNA interactions in single cells. We discovered a role for the unstructured linker region connecting the N-terminal oligomerization and C-terminal DNA binding domains. In the present work we demonstrate that linker amino acids promote engagement with DNA. In the absence of linker contacts, H-NS binding is significantly reduced, although no change in chromosome compaction is observed. H-NS is not localized to two distinct foci; rather, it is scattered all around the nucleoid. The linker makes DNA contacts that are required for gene silencing, while chromosome compaction does not appear to be an important H-NS function.

  6. Sub-nanosecond resolution electric field measurements during ns pulse breakdown in ambient air

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Goldberg, Ben; Gulko, Ilya; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field during ns pulse discharge breakdown in ambient air has been measured by ps four-wave mixing, with temporal resolution of 0.2 ns. The measurements have been performed in a diffuse plasma generated in a dielectric barrier discharge, in plane-to-plane geometry. Absolute calibration of the electric field in the plasma is provided by the Laplacian field measured before breakdown. Sub-nanosecond time resolution is obtained by using a 150 ps duration laser pulse, as well as by monitoring the timing of individual laser shots relative to the voltage pulse, and post-processing four-wave mixing signal waveforms saved for each laser shot, placing them in the appropriate ‘time bins’. The experimental data are compared with the analytic solution for time-resolved electric field in the plasma during pulse breakdown, showing good agreement on ns time scale. Qualitative interpretation of the data illustrates the effects of charge separation, charge accumulation/neutralization on the dielectric surfaces, electron attachment, and secondary breakdown. Comparison of the present data with more advanced kinetic modeling is expected to provide additional quantitative insight into air plasma kinetics on ~ 0.1-100 ns scales.

  7. Hepatitis C Virus NS3/4A Protease Inhibitors: A Light at the End of the Tunnel

    PubMed Central

    Chatel-Chaix, Laurent; Baril, Martin; Lamarre, Daniel

    2010-01-01

    Hepatitis C virus (HCV) infection is a serious and growing threat to human health. The current treatment provides limited efficacy and is poorly tolerated, highlighting the urgent medical need for novel therapeutics. The membrane-targeted NS3 protein in complex with the NS4A comprises a serine protease domain (NS3/4A protease) that is essential for viral polyprotein maturation and contributes to the evasion of the host innate antiviral immunity by HCV. Therefore, the NS3/4A protease represents an attractive target for drug discovery, which is tied in with the challenge to develop selective small-molecule inhibitors. A rational drug design approach, based on the discovery of N-terminus product inhibition, led to the identification of potent and orally bioavailable NS3 inhibitors that target the highly conserved protease active site. This review summarizes the NS3 protease inhibitors currently challenged in clinical trials as one of the most promising antiviral drug class, and possibly among the first anti-HCV agents to be approved for the treatment of HCV infection. PMID:21994705

  8. Crystal structure of a novel conformational state of the flavivirus NS3 protein: implications for polyprotein processing and viral replication.

    PubMed

    Assenberg, René; Mastrangelo, Eloise; Walter, Thomas S; Verma, Anil; Milani, Mario; Owens, Raymond J; Stuart, David I; Grimes, Jonathan M; Mancini, Erika J

    2009-12-01

    The flavivirus genome comprises a single strand of positive-sense RNA, which is translated into a polyprotein and cleaved by a combination of viral and host proteases to yield functional proteins. One of these, nonstructural protein 3 (NS3), is an enzyme with both serine protease and NTPase/helicase activities. NS3 plays a central role in the flavivirus life cycle: the NS3 N-terminal serine protease together with its essential cofactor NS2B is involved in the processing of the polyprotein, whereas the NS3 C-terminal NTPase/helicase is responsible for ATP-dependent RNA strand separation during replication. An unresolved question remains regarding why NS3 appears to encode two apparently disconnected functionalities within one protein. Here we report the 2.75-A-resolution crystal structure of full-length Murray Valley encephalitis virus NS3 fused with the protease activation peptide of NS2B. The biochemical characterization of this construct suggests that the protease has little influence on the helicase activity and vice versa. This finding is in agreement with the structural data, revealing a single protein with two essentially segregated globular domains. Comparison of the structure with that of dengue virus type 4 NS2B-NS3 reveals a relative orientation of the two domains that is radically different between the two structures. Our analysis suggests that the relative domain-domain orientation in NS3 is highly variable and dictated by a flexible interdomain linker. The possible implications of this conformational flexibility for the function of NS3 are discussed.

  9. Effect of Lactobacillus acidophilus NS1 on plasma cholesterol levels in diet-induced obese mice.

    PubMed

    Song, M; Park, S; Lee, H; Min, B; Jung, S; Park, S; Kim, E; Oh, S

    2015-03-01

    We investigated the probiotic properties of Lactobacillus acidophilus NS1, such as acid resistance, bile tolerance, adherence to HT-29 cells, and cholesterol assimilation activity. In an animal study, 7-wk-old male C57BL/6 mice were fed a normal diet, a high-fat diet (HFD), or an HFD with L. acidophilus NS1 (ca. 1.0×10(8) cfu/mL) for 10 wk. Total cholesterol and low-density lipoprotein (LDL) cholesterol levels were significantly lower in mice fed an HFD with L. acidophilus NS1 than in those fed an HFD only, whereas high-density lipoprotein cholesterol levels were similar between these 2 groups. To understand the mechanism of the cholesterol-lowering effect of L. acidophilus NS1 on the HFD-mediated increase in plasma cholesterol levels, we determined mRNA levels of genes involved in cholesterol homeostasis in the liver. Expression of sterol regulatory element-binding protein 2 (Srebp2) and LDL receptor (Ldlr) in the liver was dramatically reduced in mice fed a HFD compared with those fed a normal diet. When L. acidophilus NS1 was administered orally to HFD-fed mice, an HFD-induced suppression of Srebp2 and Ldlr expression in the liver was abolished. These results suggest that the oral administration of L. acidophilus NS1 to mice fed an HFD increased the expression of Srebp2 and Ldlr in the liver, which was inhibited by high fat intake, thus leading to a decrease in plasma cholesterol levels. Lactobacillus acidophilus NS1 could be a useful probiotic microorganism for cholesterol-lowering dairy products and the improvement of hyperlipidemia and hepatic lipid metabolism. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Introgression of Chromosome 3Ns from Psathyrostachys huashanica into Wheat Specifying Resistance to Stripe Rust

    PubMed Central

    Kang, Houyang; Wang, Yi; Fedak, George; Cao, Wenguang; Zhang, Haiqin; Fan, Xing; Sha, Lina; Xu, Lili; Zheng, Youliang; Zhou, Yonghong

    2011-01-01

    Wheat stripe rust is a destructive disease in the cool and humid wheat-growing areas of the world. Finding diverse sources of stripe rust resistance is critical for increasing genetic diversity of resistance for wheat breeding programs. Stripe rust resistance was identified in the alien species Psathyrostachys huashanica, and a wheat- P. huashanica amphiploid line (PHW-SA) with stripe rust resistance was reported previously. In this study, a P. huashanica 3Ns monosomic addition line (PW11) with superior resistance to stripe rust was developed, which was derived from the cross between PHW-SA and wheat J-11. We evaluated the alien introgressions PW11-2, PW11-5 and PW11-8 which were derived from line PW11 for reaction to new Pst race CYR32, and used molecular and cytogenetic tools to characterize these lines. The introgressions were remarkably resistant to CYR32, suggesting that the resistance to stripe rust of the introgressions thus was controlled by gene(s) located on P. huashanica chromosome 3Ns. All derived lines were cytologically stable in term of meiotic chromosome behavior. Two 3Ns chromosomes of P. huashanica were detected in the disomic addition line PW11-2. Chromosomes 1B of substitution line PW11-5 had been replaced by a pair of P. huashanica 3Ns chromosomes. In PW11-8, a small terminal segment from P. huashanica chromosome arm 3NsS was translocated to the terminal region of wheat chromosomes 3BL. Thus, this translocated chromosome is designated T3BL-3NsS. These conclusions were further confirmed by SSR analyses. Two 3Ns-specific markers Xgwm181 and Xgwm161 will be useful to rapidly identify and trace the translocated fragments. These introgressions, which had significant characteristics of resistance to stripe rust, could be utilized as novel germplasms for wheat breeding. PMID:21760909

  11. Identification of an NTPase motif in classical swine fever virus NS4B protein

    USDA-ARS?s Scientific Manuscript database

    Classical swine fever (CSF) is a highly contagious and often fatal disease of swine caused by CSF virus (CSFV), a positive sense single-stranded RNA virus in the genus Pestivirus of the Flaviviridae family. Here, we have identified, within CSFV non-structural (NS) protein NS4B, conserved sequence el...

  12. HCV RNA traffic and association with NS5A in living cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiches, Guillaume N.; Eyre, Nicholas S.; Aloia, Amanda L.

    The spatiotemporal dynamics of Hepatitis C Virus (HCV) RNA localisation are poorly understood. To address this we engineered HCV genomes harbouring MS2 bacteriophage RNA stem-loops within the 3′-untranslated region to allow tracking of HCV RNA via specific interaction with a MS2-Coat-mCherry fusion protein. Despite the impact of these insertions on viral fitness, live imaging revealed that replication of tagged-HCV genomes induced specific redistribution of the mCherry-tagged-MS2-Coat protein to motile and static foci. Further analysis showed that HCV RNA was associated with NS5A in both static and motile structures while a subset of motile NS5A structures was devoid of HCV RNA.more » Further investigation of viral RNA traffic with respect to lipid droplets (LDs) revealed HCV RNA-positive structures in close association with LDs. These studies provide new insights into the dynamics of HCV RNA traffic with NS5A and LDs and provide a platform for future investigations of HCV replication and assembly. - Highlights: • HCV can tolerate can bacteriophage MS2 stem-loop insertions within the 3′ UTR. • MS2 stem-loop containing HCV genomes allow for real-time imaging of HCV RNA. • HCV RNA is both static and motile and associates with NS5A and lipid droplets.« less

  13. In vivo effects of the IKr agonist NS3623 on cardiac electrophysiology of the guinea pig.

    PubMed

    Hansen, Rie Schultz; Olesen, Søren-Peter; Rønn, Lars Christian B; Grunnet, Morten

    2008-07-01

    The long QT syndrome is characterized by a prolongation of the QT interval measured on the surface electrocardiogram. Prolonging the QT interval increases the risk of dangerous ventricular fibrillations, eventually leading to sudden cardiac death. Pharmacologically induced QT interval prolongations are most often caused by antagonizing effects on the repolarizing cardiac current called IKr. In humans IKr is mediated by the human ether-a-go-go related gene (hERG) potassium channel. We recently presented NS3623, a compound that selectively activates this channel. The present study was dedicated to examining the in vivo effects of NS3623. Injection of 30 mg/kg NS3623 shortened the corrected QT interval by 25 +/- 4% in anaesthetized guinea pigs. Accordingly, 50 mg/kg of NS3623 shortened the QT interval by 30 +/- 6% in conscious guinea pigs. Finally, pharmacologically induced QT prolongation by a hERG channel antagonist (0.15 mg/kg E-4031) could be reverted by injection of NS3623 (50 mg/kg) in conscious guinea pigs. In conclusion, the present in vivo study demonstrates that injection of the hERG channel agonist NS3623 results in shortening of the QTc interval as well as reversal of a pharmacologically induced QT prolongation in both anaesthetized and conscious guinea pigs.

  14. Characterization of molecular interactions between Zika virus protease and peptides derived from the C-terminus of NS2B.

    PubMed

    Li, Yan; Loh, Ying Ru; Hung, Alvin W; Kang, CongBao

    2018-06-21

    Zika virus (ZIKV) protease is a two-component complex in which NS3 contains the catalytic triad and NS2B cofactor region is important for protease folding and activity. A protease construct-eZiPro without the transmembrane domains of NS2B was designed. Structural study on eZiPro reveals that the Thr-Gly-Lys-Arg (TGKR) sequence at the C-terminus of NS2B binds to the active site after cleavage. The bZiPro construct only contains NS2B cofactor region and the N-terminus of NS3 without any artificial linker or protease cleavage site, giving rise to an empty pocket accessible to substrate and inhibitor binding. Herein, we demonstrate that the TGKR sequence of NS2B in eZiPro is dynamic. Peptides from NS2B with various lengths exhibit different binding affinities to bZiPro. TGKR binding to the active site in eZiPro does not affect protease binding to small-molecule compounds. Our results suggest that eZiPro will also be useful for evaluating small-molecule protease inhibitors. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Probing the structure, function, and interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative derivatives.

    PubMed

    Williams, R M; Rimsky, S; Buc, H

    1996-08-01

    Twelve different dominant negative mutants of the Escherichia coli nucleoid-associated protein, H-NS, have been selected and characterized in vivo. The mutants are all severely defective in promoter repression activity in a strain lacking H-NS, and they all disrupt the repression normally exerted by H-NS at two of its target promoters. From the locations of the alterations in these mutants, which result in both large truncations and amino acid substitutions, we propose that H-NAS contains at least two distinct domains. The in vitro protein-protein cross-linking data presented in this report indicate that the proposed N-terminal domain of H-NS has a role in H-NS multimerization. StpA is a protein with known structural and functional homologies to H-NS. We have analyzed the extent of these homologies by constructing and studying StpA mutants predicted to be dominant negative. Our data indicate that the substitutions and deletions found in dominant negative H-NS have similar effects in the context of StpA. We conclude that the domain organizations and functions in StpA and H-NS are closely related. Furthermore, dominant negative H-NS can disrupt the activity of native StpA, and reciprocally, dominant negative StpA can disrupt the activity of native H-NS. We demonstrate that the N-terminal domain of H-NS can be chemically cross-linked to both full-length H-NS and StpA. We account for these observations by proposing that H-NS and StpA have the ability to form hybrid species.

  16. SNPdbe: constructing an nsSNP functional impacts database.

    PubMed

    Schaefer, Christian; Meier, Alice; Rost, Burkhard; Bromberg, Yana

    2012-02-15

    Many existing databases annotate experimentally characterized single nucleotide polymorphisms (SNPs). Each non-synonymous SNP (nsSNP) changes one amino acid in the gene product (single amino acid substitution;SAAS). This change can either affect protein function or be neutral in that respect. Most polymorphisms lack experimental annotation of their functional impact. Here, we introduce SNPdbe-SNP database of effects, with predictions of computationally annotated functional impacts of SNPs. Database entries represent nsSNPs in dbSNP and 1000 Genomes collection, as well as variants from UniProt and PMD. SAASs come from >2600 organisms; 'human' being the most prevalent. The impact of each SAAS on protein function is predicted using the SNAP and SIFT algorithms and augmented with experimentally derived function/structure information and disease associations from PMD, OMIM and UniProt. SNPdbe is consistently updated and easily augmented with new sources of information. The database is available as an MySQL dump and via a web front end that allows searches with any combination of organism names, sequences and mutation IDs. http://www.rostlab.org/services/snpdbe.

  17. NS309 decreases rat detrusor smooth muscle membrane potential and phasic contractions by activating SK3 channels

    PubMed Central

    Parajuli, Shankar P; Hristov, Kiril L; Soder, Rupal P; Kellett, Whitney F; Petkov, Georgi V

    2013-01-01

    Background and Purpose Overactive bladder (OAB) is often associated with abnormally increased detrusor smooth muscle (DSM) contractions. We used NS309, a selective and potent opener of the small or intermediate conductance Ca2+-activated K+ (SK or IK, respectively) channels, to evaluate how SK/IK channel activation modulates DSM function. Experimental Approach We employed single-cell RT-PCR, immunocytochemistry, whole cell patch-clamp in freshly isolated rat DSM cells and isometric tension recordings of isolated DSM strips to explore how the pharmacological activation of SK/IK channels with NS309 modulates DSM function. Key Results We detected SK3 but not SK1, SK2 or IK channels expression at both mRNA and protein levels by RT-PCR and immunocytochemistry in DSM single cells. NS309 (10 μM) significantly increased the whole cell SK currents and hyperpolarized DSM cell resting membrane potential. The NS309 hyperpolarizing effect was blocked by apamin, a selective SK channel inhibitor. NS309 inhibited the spontaneous phasic contraction amplitude, force, frequency, duration and tone of isolated DSM strips in a concentration-dependent manner. The inhibitory effect of NS309 on spontaneous phasic contractions was blocked by apamin but not by TRAM-34, indicating no functional role of the IK channels in rat DSM. NS309 also significantly inhibited the pharmacologically and electrical field stimulation-induced DSM contractions. Conclusions and Implications Our data reveal that SK3 channel is the main SK/IK subtype in rat DSM. Pharmacological activation of SK3 channels with NS309 decreases rat DSM cell excitability and contractility, suggesting that SK3 channels might be potential therapeutic targets to control OAB associated with detrusor overactivity. PMID:23145946

  18. NS5A Sequence Heterogeneity and Mechanisms of Daclatasvir Resistance in Hepatitis C Virus Genotype 4 Infection.

    PubMed

    Zhou, Nannan; Hernandez, Dennis; Ueland, Joseph; Yang, Xiaoyan; Yu, Fei; Sims, Karen; Yin, Philip D; McPhee, Fiona

    2016-01-15

    Daclatasvir is an NS5A inhibitor approved for treatment of infection due to hepatitis C virus (HCV) genotypes (GTs) 1-4. To support daclatasvir use in HCV genotype 4 infection, we examined a diverse genotype 4-infected population for HCV genotype 4 subtype prevalence, NS5A polymorphisms at residues associated with daclatasvir resistance (positions 28, 30, 31, or 93), and their effects on daclatasvir activity in vitro and clinically. We performed phylogenetic analysis of genotype 4 NS5A sequences from 186 clinical trial patients and 43 sequences from the European HCV database, and susceptibility analyses of NS5A polymorphisms and patient-derived NS5A sequences by using genotype 4 NS5A hybrid genotype 2a replicons. The clinical trial patients represented 14 genotype 4 subtypes; most prevalent were genotype 4a (55%) and genotype 4d (27%). Daclatasvir 50% effective concentrations for 10 patient-derived NS5A sequences representing diverse phylogenetic clusters were ≤0.080 nM. Most baseline sequences had ≥1 NS5A polymorphism at residues associated with daclatasvir resistance; however, only 3 patients (1.6%) had polymorphisms conferring ≥1000-fold daclatasvir resistance in vitro. Among 46 patients enrolled in daclatasvir trials, all 20 with baseline resistance polymorphisms achieved a sustained virologic response. Circulating genotype 4 subtypes are genetically diverse. Polymorphisms conferring high-level daclatasvir resistance in vitro are uncommon before therapy, and clinical data suggest that genotype 4 subtype and baseline polymorphisms have minimal impact on responses to daclatasvir-containing regimens. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America.

  19. Targeting Dengue Virus NS-3 Helicase by Ligand based Pharmacophore Modeling and Structure based Virtual Screening

    NASA Astrophysics Data System (ADS)

    Halim, Sobia A.; Khan, Shanza; Khan, Ajmal; Wadood, Abdul; Mabood, Fazal; Hussain, Javid; Al-Harrasi, Ahmed

    2017-10-01

    Dengue fever is an emerging public health concern, with several million viral infections occur annually, for which no effective therapy currently exist. Non-structural protein 3 (NS-3) Helicase encoded by the dengue virus (DENV) is considered as a potential drug target to design new and effective drugs against dengue. Helicase is involved in unwinding of dengue RNA. This study was conducted to design new NS-3 Helicase inhibitor by in silico ligand- and structure based approaches. Initially ligand-based pharmacophore model was generated that was used to screen a set of 1201474 compounds collected from ZINC Database. The compounds matched with the pharmacophore model were docked into the active site of NS-3 helicase. Based on docking scores and binding interactions, twenty five compounds are suggested to be potential inhibitors of NS3 Helicase. The pharmacokinetic properties of these hits were predicted. The selected hits revealed acceptable ADMET properties. This study identified potential inhibitors of NS-3 Helicase in silico, and can be helpful in the treatment of Dengue.

  20. High-energy 100-ns single-frequency all-fiber laser at 1064 nm

    NASA Astrophysics Data System (ADS)

    Fu, Shijie; Shi, Wei; Tang, Zhao; Shi, Chaodu; Bai, Xiaolei; Sheng, Quan; Chavez-Pirson, Arturo; Peyghambarian, N.; Yao, Jianquan

    2018-02-01

    A high-energy, single-frequency fiber laser with long pulse duration of 100 ns has been experimentally investigated in an all-fiber architecture. Only 34-cm long heavily Yb-doped phosphate fiber was employed in power scaling stage to efficiently suppress the Stimulated Brillouin effect (SBS). In the experiment, 0.47 mJ single pulse energy was achieved in power scaling stage at the pump power of 16 W. The pre-shaped pulse was gradually broadened from 103 to 140 ns during the amplification without shape distortion.

  1. Prolactin Regulatory Element Binding Protein Is Involved in Hepatitis C Virus Replication by Interaction with NS4B

    PubMed Central

    Kong, Lingbao; Fujimoto, Akira; Nakamura, Mariko; Aoyagi, Haruyo; Matsuda, Mami; Watashi, Koichi; Suzuki, Ryosuke; Arita, Minetaro; Yamagoe, Satoshi; Dohmae, Naoshi; Suzuki, Takehiro; Sakamaki, Yuriko; Ichinose, Shizuko; Suzuki, Tetsuro; Wakita, Takaji

    2016-01-01

    ABSTRACT It has been proposed that the hepatitis C virus (HCV) NS4B protein triggers the membranous HCV replication compartment, but the underlying molecular mechanism is not fully understood. Here, we screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis and identified 202 host proteins. Subsequent screening of replicon cells with small interfering RNA identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. The interaction between PREB and NS4B was confirmed by immunoprecipitation, immunofluorescence, and proximity ligation assays. PREB colocalized with double-stranded RNA and the newly synthesized HCV RNA labeled with bromouridine triphosphate in HCV replicon cells. Furthermore, PREB shifted to detergent-resistant membranes (DRMs), where HCV replication complexes reside, in the presence of NS4B expression in Huh7 cells. However, a PREB mutant lacking the NS4B-binding region (PREBd3) could not colocalize with double-stranded RNA and did not shift to the DRM in the presence of NS4B. These results indicate that PREB locates at the HCV replication complex by interacting with NS4B. PREB silencing inhibited the formation of the membranous HCV replication compartment and increased the protease and nuclease sensitivity of HCV replicase proteins and RNA in DRMs, respectively. Collectively, these data indicate that PREB promotes HCV RNA replication by participating in the formation of the membranous replication compartment and by maintaining its proper structure by interacting with NS4B. Furthermore, PREB was induced by HCV infection in vitro and in vivo. Our findings provide new insights into HCV host cofactors. IMPORTANCE The hepatitis C virus (HCV) protein NS4B can induce alteration of the endoplasmic reticulum and the formation of a membranous web structure, which provides a platform for the HCV replication complex. The molecular mechanism by which NS4B induces the membranous HCV replication

  2. Hepatitis C Virus Particle Assembly Involves Phosphorylation of NS5A by the c-Abl Tyrosine Kinase.

    PubMed

    Yamauchi, Shota; Takeuchi, Kenji; Chihara, Kazuyasu; Sun, Xuedong; Honjoh, Chisato; Yoshiki, Hatsumi; Hotta, Hak; Sada, Kiyonao

    2015-09-04

    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is thought to regulate the replication of viral RNA and the assembly of virus particles in a serine/threonine phosphorylation-dependent manner. However, the host kinases that phosphorylate NS5A have not been fully identified. Here, we show that HCV particle assembly involves the phosphorylation of NS5A by the c-Abl tyrosine kinase. Pharmacological inhibition or knockdown of c-Abl reduces the production of infectious HCV (J6/JFH1) particles in Huh-7.5 cells without markedly affecting viral RNA translation and replication. NS5A is tyrosine-phosphorylated in HCV-infected cells, and this phosphorylation is also reduced by the knockdown of c-Abl. Mutational analysis reveals that NS5A tyrosine phosphorylation is dependent, at least in part, on Tyr(330) (Tyr(2306) in polyprotein numbering). Mutation of this residue to phenylalanine reduces the production of infectious HCV particles but does not affect the replication of the JFH1 subgenomic replicon. These findings suggest that c-Abl promotes HCV particle assembly by phosphorylating NS5A at Tyr(330). © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noisakran, Sansanee; Medical Molecular Biology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Adulyadejvikrom Building; Sengsai, Suchada

    Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometrymore » (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells.« less

  4. Three Conformational Snapshots of the Hepatitis Virus NS3 Helicase Reveal a Ratchet Translocation Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, M.; Rice, C

    2010-01-01

    A virally encoded superfamily-2 (SF2) helicase (NS3h) is essential for the replication of hepatitis C virus, a leading cause of liver disease worldwide. Efforts to elucidate the function of NS3h and to develop inhibitors against it, however, have been hampered by limited understanding of its molecular mechanism. Here we show x-ray crystal structures for a set of NS3h complexes, including ground-state and transition-state ternary complexes captured with ATP mimics (ADP {center_dot} BeF{sub 3} and ADP {center_dot} AlF{sub 4}{sup -}). These structures provide, for the first time, three conformational snapshots demonstrating the molecular basis of action for a SF2 helicase. Uponmore » nucleotide binding, overall domain rotation along with structural transitions in motif V and the bound DNA leads to the release of one base from the substrate base-stacking row and the loss of several interactions between NS3h and the 3{prime} DNA segment. As nucleotide hydrolysis proceeds into the transition state, stretching of a 'spring' helix and another overall conformational change couples rearrangement of the (d)NTPase active site to additional hydrogen-bonding between NS3h and DNA. Together with biochemistry, these results demonstrate a 'ratchet' mechanism involved in the unidirectional translocation and define the step size of NS3h as one base per nucleotide hydrolysis cycle. These findings suggest feasible strategies for developing specific inhibitors to block the action of this attractive, yet largely unexplored drug target.« less

  5. Hha has a defined regulatory role that is not dependent upon H-NS or StpA

    PubMed Central

    Solórzano, Carla; Srikumar, Shabarinath; Canals, Rocío; Juárez, Antonio; Paytubi, Sonia; Madrid, Cristina

    2015-01-01

    The Hha family of proteins is involved in the regulation of gene expression in enterobacteria by forming complexes with H-NS-like proteins. Whereas several amino acid residues of both proteins participate in the interaction, some of them play a key role. Residue D48 of Hha protein is essential for the interaction with H-NS, thus the D48N substitution in Hha protein abrogates H-NS/Hha interaction. Despite being a paralog of H-NS protein, StpA interacts with HhaD48N with higher affinity than with the wild type Hha protein. To analyze whether Hha is capable of acting independently of H-NS and StpA, we conducted transcriptomic analysis on the hha and stpA deletion strains and the hhaD48N substitution strain of Salmonella Typhimurium using a custom microarray. The results obtained allowed the identification of 120 genes regulated by Hha in an H-NS/StpA-independent manner, 38% of which are horizontally acquired genes. A significant number of the identified genes are involved in functions related to cell motility, iron uptake, and pathogenicity. Thus, motility assays, siderophore detection and intra-macrophage replication assays were performed to confirm the transcriptomic data. Our findings point out the importance of Hha protein as an independent regulator in S. Typhimurium, highlighting a regulatory role on virulence. PMID:26284052

  6. West Nile Virus Temperature Sensitivity and Avian Virulence Are Modulated by NS1-2B Polymorphisms.

    PubMed

    Dietrich, Elizabeth A; Langevin, Stanley A; Huang, Claire Y-H; Maharaj, Payal D; Delorey, Mark J; Bowen, Richard A; Kinney, Richard M; Brault, Aaron C

    2016-08-01

    West Nile virus (WNV) replicates in a wide variety of avian species, which serve as reservoir and amplification hosts. WNV strains isolated in North America, such as the prototype strain NY99, elicit a highly pathogenic response in certain avian species, notably American crows (AMCRs; Corvus brachyrhynchos). In contrast, a closely related strain, KN3829, isolated in Kenya, exhibits a low viremic response with limited mortality in AMCRs. Previous work has associated the difference in pathogenicity primarily with a single amino acid mutation at position 249 in the helicase domain of the NS3 protein. The NY99 strain encodes a proline residue at this position, while KN3829 encodes a threonine. Introduction of an NS3-T249P mutation in the KN3829 genetic background significantly increased virulence and mortality; however, peak viremia and mortality were lower than those of NY99. In order to elucidate the viral genetic basis for phenotype variations exclusive of the NS3-249 polymorphism, chimeric NY99/KN3829 viruses were created. We show herein that differences in the NS1-2B region contribute to avian pathogenicity in a manner that is independent of and additive with the NS3-249 mutation. Additionally, NS1-2B residues were found to alter temperature sensitivity when grown in avian cells.

  7. A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production.

    PubMed

    Gebhard, Leopoldo G; Iglesias, Néstor G; Byk, Laura A; Filomatori, Claudia V; De Maio, Federico A; Gamarnik, Andrea V

    2016-06-01

    Dengue virus is currently the most important insect-borne viral human pathogen. Viral nonstructural protein 3 (NS3) is a key component of the viral replication machinery that performs multiple functions during viral replication and participates in antiviral evasion. Using dengue virus infectious clones and reporter systems to dissect each step of the viral life cycle, we examined the requirements of different domains of NS3 on viral particle assembly. A thorough site-directed mutagenesis study based on solvent-accessible surface areas of NS3 revealed that, in addition to being essential for RNA replication, different domains of dengue virus NS3 are critically required for production of infectious viral particles. Unexpectedly, point mutations in the protease, interdomain linker, or helicase domain were sufficient to abolish infectious particle formation without affecting translation, polyprotein processing, or RNA replication. In particular, we identified a novel proline-rich N-terminal unstructured region of NS3 that contains several amino acid residues involved in infectious particle formation. We also showed a new role for the interdomain linker of NS3 in virion assembly. In conclusion, we present a comprehensive genetic map of novel NS3 determinants for viral particle assembly. Importantly, our results provide evidence of a central role of NS3 in the coordination of both dengue virus RNA replication and particle formation. Dengue virus is an important human pathogen, and its prominence is expanding globally; however, basic aspects of its biology are still unclear, hindering the development of effective therapeutic and prophylactic treatments. Little is known about the initial steps of dengue and other flavivirus particle assembly. This process involves a complex interplay between viral and cellular components, making it an attractive antiviral target. Unpredictably, we identified spatially separated regions of the large NS3 viral protein as determinants for

  8. Comprehensive Screening for Naturally Occurring Hepatitis C Virus Resistance to Direct-Acting Antivirals in the NS3, NS5A, and NS5B Genes in Worldwide Isolates of Viral Genotypes 1 to 6.

    PubMed

    Patiño-Galindo, Juan Ángel; Salvatierra, Karina; González-Candelas, Fernando; López-Labrador, F Xavier

    2016-04-01

    There is no comprehensive study available on the natural hepatitis C virus (HCV) polymorphism in sites associated with resistance including all viral genotypes which may present variable susceptibilities to particular direct-acting antivirals (DAAs). This study aimed to analyze the frequencies, genetic barriers, and evolutionary histories of naturally occurring resistance-associated variants (RAVs) in the six main HCV genotypes. A comprehensive analysis of up to 103 RAVs was performed in 2,901, 2,216, and 1,344 HCV isolates for the NS3, NS5A, and NS5B genes, respectively. We report significant intergenotypic differences in the frequencies of natural RAVs for these three HCV genes. In addition, we found a low genetic barrier for the generation of new RAVs, irrespective of the viral genotype. Furthermore, in 1,126 HCV genomes, including sequences spanning the three genes, haplotype analysis revealed a remarkably high frequency of viruses carrying more than one natural RAV to DAAs (53% of HCV-1a, 28.5% of HCV-1b, 67.1% of HCV-6, and 100% of genotype 2, 3, 4, and 5 haplotypes). With the exception of HCV-1a, the most prevalent haplotypes showed RAVs in at least two different viral genes. Finally, evolutionary analyses revealed that, while most natural RAVs appeared recently, others have been efficiently transmitted over time and cluster in well-supported clades. In summary, and despite the observed high efficacy of DAA-based regimens, we show that naturally occurring RAVs are common in all HCV genotypes and that there is an overall low genetic barrier for the selection of resistance mutations. There is a need for natural DAA resistance profiling specific for each HCV genotype. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. NF-κB is required for dengue virus NS5-induced RANTES expression.

    PubMed

    Khunchai, Sasiprapa; Junking, Mutita; Suttitheptumrong, Aroonroong; Kooptiwut, Suwattanee; Haegeman, Guy; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-Thai

    2015-02-02

    Dengue virus (DENV) infection associates with renal disorders. Patients with dengue hemorrhagic fever and acute kidney injury have a high mortality rate. Increased levels of cytokines may contribute to the pathogenesis of DENV-induced kidney injury. Currently, molecular mechanisms how DENV induces kidney cell injury has not been thoroughly investigated. Excessive cytokine production may be involved in this process. Using human cytokine RT(2) Profiler PCR array, 14 genes including IP-10, RANTES, IL-8, CXCL-9 and MIP-1β were up-regulated more than 2 folds in DENV-infected HEK 293 cells compared to that of mock-infected HEK 293 cells. In the present study, RANTES was suppressed by the NF-κB inhibitor, compound A (CpdA), in DENV-infected HEK 293 cells implying the role of NF-κB in RANTES expression. Chromatin immunoprecipitation (ChIP) assay showed that NF-κB binds more efficiently to its binding sites on the RANTES promoter in NS5-transfected HEK 293 cells than in HEK 293 cells expressing the vector lacking NS5 gene. To further examine whether the NS5-activated RANTES promoter is mediated through NF-κB, the two NF-κB binding sites on the RANTES promoter were mutated and this promoter was coupled to the luciferase cDNA. The result showed that when both binding sites of NF-κB in the RANTES promoter were mutated, the ability of NS5 to induce the luciferase activity was significantly decreased. Therefore, DENV NS5 activates RANTES production by increasing NF-κB binding to its binding sites on the RANTES promoter. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Development of a quantitative NS1-capture enzyme-linked immunosorbent assay for early detection of yellow fever virus infection.

    PubMed

    Ricciardi-Jorge, Taissa; Bordignon, Juliano; Koishi, Andrea; Zanluca, Camila; Mosimann, Ana Luiza; Duarte Dos Santos, Claudia Nunes

    2017-11-24

    Yellow fever is an arboviral disease that causes thousands of deaths every year in Africa and the Americas. However, few commercial diagnostic kits are available. Non-structural protein 1 (NS1) is an early marker of several flavivirus infections and is widely used to diagnose dengue virus (DENV) infection. Nonetheless, little is known about the dynamics of Yellow fever virus (YFV) NS1 expression and secretion, to encourage its use in diagnosis. To tackle this issue, we developed a quantitative NS1-capture ELISA specific for YFV using a monoclonal antibody and recombinant NS1 protein. This test was used to quantify NS1 in mosquito and human cell line cultures infected with vaccine and wild YFV strains. Our results showed that NS1 was detectable in the culture supernatants of both cell lines; however, a higher concentration was maintained as cell-associated rather than secreted into the extracellular milieu. A panel of 73 human samples was used to demonstrate the suitability of YFV NS1 as a diagnostic tool, resulting in 80% sensitivity, 100% specificity, a 100% positive predictive value and a 95.5% negative predictive value compared with RT-PCR. Overall, the developed NS1-capture ELISA showed potential as a promising assay for the detection of early YF infection.

  11. Structural characterization of the H-NS protein from Xylella fastidiosa and its interaction with DNA.

    PubMed

    Rosselli-Murai, Luciana K; Sforça, Maurício L; Sassonia, Rogério C; Azzoni, Adriano R; Murai, Marcelo J; de Souza, Anete P; Zeri, Ana C

    2012-10-01

    The nucleoid-associated protein H-NS is a major component of the bacterial nucleoid involved in DNA compaction and transcription regulation. The NMR solution structure of the Xylella fastidiosa H-NS C-terminal domain (residues 56-134) is presented here and consists of two beta-strands and two alpha helices, with one loop connecting the two beta-strands and a second loop connecting the second beta strand and the first helix. The amide (1)H and (15)N chemical shift signals for a sample of XfH-NS(56-134) were monitored in the course of a titration series with a 14-bp DNA duplex. Most of the residues involved in contacts to DNA are located around the first and second loops and in the first helix at a positively charged side of the protein surface. The overall structure of the Xylella H-NS C-terminal domain differ significantly from Escherichia coli and Salmonella enterica H-NS proteins, even though the DNA binding motif in loop 2 adopt similar conformation, as well as β-strand 2 and loop 1. Interestingly, we have also found that the DNA binding site is expanded to include helix 1, which is not seen in the other structures. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Differential responses of rabbit ventricular and atrial transient outward current (Ito) to the Ito modulator NS5806.

    PubMed

    Cheng, Hongwei; Cannell, Mark B; Hancox, Jules C

    2017-03-01

    Transient outward potassium current (I to ) in the heart underlies phase 1 repolarization of cardiac action potentials and thereby affects excitation-contraction coupling. Small molecule activators of I to may therefore offer novel treatments for cardiac dysfunction, including heart failure and atrial fibrillation. NS5806 has been identified as a prototypic activator of canine I to This study investigated, for the first time, actions of NS5806 on rabbit atrial and ventricular I to Whole cell patch-clamp recordings of I to and action potentials were made at physiological temperature from rabbit ventricular and atrial myocytes. 10  μ mol/L NS5806 increased ventricular I to with a leftward shift in I to activation and accelerated restitution. At higher concentrations, stimulation of I to was followed by inhibition. The EC 50 for stimulation was 1.6  μ mol/L and inhibition had an IC 50 of 40.7  μ mol/L. NS5806 only inhibited atrial I to (IC 50 of 18  μ mol/L) and produced a modest leftward shifts in I to activation and inactivation, without an effect on restitution. 10  μ mol/L NS5806 shortened ventricular action potential duration (APD) at APD 20 -APD 90 but prolonged atrial APD NS5806 also reduced atrial AP upstroke and amplitude, consistent with an additional atrio-selective effect on Na + channels. In contrast to NS5806, flecainide, which discriminates between Kv1.4 and 4.x channels, produced similar levels of inhibition of ventricular and atrial I to NS5806 discriminates between rabbit ventricular and atrial I to, with mixed activator and inhibitor actions on the former and inhibitor actions against the later. NS5806 may be of significant value for pharmacological interrogation of regional differences in native cardiac I to . © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  13. Sensitive luminescent reporter viruses reveal appreciable release of hepatitis C virus NS5A protein into the extracellular environment.

    PubMed

    Eyre, Nicholas S; Aloia, Amanda L; Joyce, Michael A; Chulanetra, Monrat; Tyrrell, D Lorne; Beard, Michael R

    2017-07-01

    The HCV NS5A protein is essential for viral RNA replication and virus particle assembly. To study the viral replication cycle and NS5A biology we generated an infectious HCV construct with a NanoLuciferase (NLuc) insertion within NS5A. Surprisingly, beyond its utility as a sensitive reporter of cytoplasmic viral RNA replication, we also observed strong luminescence in cell culture fluids. Further analysis using assembly-defective viruses and subgenomic replicons revealed that infectious virus production was not required for extracellular NS5A-NLuc activity but was associated with enrichment of extracellular NS5A-NLuc in intermediate-density fractions similar to those of exosomes and virus particles. Additionally, BRET analysis indicated that intracellular and extracellular forms of NS5A may adopt differing conformations. Importantly, infection studies using a human liver chimeric mouse model confirmed robust infection in vivo and ready detection of NLuc activity in serum. We hypothesise that the presence of NS5A in extracellular fluids contributes to HCV pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication.

    PubMed

    Mukherjee, Sourav; Weiner, Warren S; Schroeder, Chad E; Simpson, Denise S; Hanson, Alicia M; Sweeney, Noreena L; Marvin, Rachel K; Ndjomou, Jean; Kolli, Rajesh; Isailovic, Dragan; Schoenen, Frank J; Frick, David N

    2014-10-17

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure-activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.

  15. 2D non-separable linear canonical transform (2D-NS-LCT) based cryptography

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Muniraj, Inbarasan; Healy, John J.; Malallah, Ra'ed; Cui, Xiao-Guang; Ryle, James P.; Sheridan, John T.

    2017-05-01

    The 2D non-separable linear canonical transform (2D-NS-LCT) can describe a variety of paraxial optical systems. Digital algorithms to numerically evaluate the 2D-NS-LCTs are not only important in modeling the light field propagations but also of interest in various signal processing based applications, for instance optical encryption. Therefore, in this paper, for the first time, a 2D-NS-LCT based optical Double-random- Phase-Encryption (DRPE) system is proposed which offers encrypting information in multiple degrees of freedom. Compared with the traditional systems, i.e. (i) Fourier transform (FT); (ii) Fresnel transform (FST); (iii) Fractional Fourier transform (FRT); and (iv) Linear Canonical transform (LCT), based DRPE systems, the proposed system is more secure and robust as it encrypts the data with more degrees of freedom with an augmented key-space.

  16. Glycosylation-related genes in NS0 cells are insensitive to moderately elevated ammonium concentrations

    PubMed Central

    Brodsky, Arthur Nathan; Caldwell, Mary; Bae, Sooneon; Harcum, Sarah W.

    2014-01-01

    NS0 and Chinese hamster ovary (CHO) cell lines are used to produce recombinant proteins for human therapeutics; however, ammonium accumulation can negatively impact cell growth, recombinant protein production, and protein glycosylation. To improve product quality and decrease costs, the relationship between ammonium and protein glycosylation needs to be elucidated. While ammonium has been shown to adversely affect glycosylation-related gene expression in CHO cells, NS0 studies have not been performed. Therefore, this study sought to determine if glycosylation in NS0 cells were ammonium-sensitive at the gene expression level. Using a DNA microarray that contained mouse glycosylation-related and housekeeping genes, the of these genes was analysed in response to various culture conditions – elevated ammonium, elevated salt, and elevated ammonium with proline. Surprisingly, no significant differences in gene expression levels were observed between the control and these conditions. Further, the elevated ammonium cultures were analysed using real-time quantitative reverse transcriptase PCR (qRT-PCR) for key glycosylation genes, and the qRT-PCR results corroborated the DNA microarray results, demonstrating that NS0 cells are ammonium-insensitive at the gene expression level. Since NS0 are known to have elevated nucleotide sugar pools under ammonium stress, and none of the genes directly responsible for these metabolic pools were changed, consequently cellular control at the translational or substrate-level must be responsible for the universally observed decreased glycosylation quality under elevated ammonium. PMID:25062658

  17. Water ascent in trees and lianas: the cohesion-tension theory revisited in the wake of Otto Renner.

    PubMed

    Bentrup, Friedrich-Wilhelm

    2017-03-01

    The cohesion-tension theory of water ascent (C-T) has been challenged over the past decades by a large body of experimental evidence obtained by means of several minimum or non-invasive techniques. The evidence strongly suggests that land plants acquire water through interplay of several mechanisms covered by the multi-force theory of (U. Zimmermann et al. New Phytologist 162: 575-615, 2004). The diversity of mechanisms includes, for instance, water acquisition by inverse transpiration and thermodynamically uphill transmembrane water secretion by cation-chloride cotransporters (L.H. Wegner, Progress in Botany 76:109-141, 2014). This whole plant perspective was opened by Otto Renner at the beginning of the last century who supported experimentally the strictly xylem-bound C-T mechanism, yet anticipated that the water ascent involves both the xylem conduit and parenchyma tissues. The survey also illustrates the known paradigm that new techniques generate new insights, as well as a paradigm experienced by Max Planck that a new scientific idea is not welcomed by the community instantly.

  18. Two cases of false-positive dengue non-structural protein 1 (NS1) antigen in patients with hematological malignancies and a review of the literature on the use of NS1 for the detection of Dengue infection.

    PubMed

    Chung, Shimin J; Krishnan, Prabha U; Leo, Yee Sin

    2015-02-01

    Early diagnosis of dengue has been made easier in recent years owing to the advancement in diagnostic technologies. The rapid non-structural protein 1 (NS1) test strip is widely used in many developed and developing regions at risk of dengue. Despite the relatively high specificity of this test, we recently encountered two cases of false-positive dengue NS1 antigen in patients with underlying hematological malignancies. We reviewed the literature for causes of false-positive dengue NS1. © The American Society of Tropical Medicine and Hygiene.

  19. Dynamic Nucleolar Targeting of Dengue Virus Polymerase NS5 in Response to Extracellular pH

    PubMed Central

    Fraser, Johanna E.; Rawlinson, Stephen M.; Heaton, Steven M.

    2016-01-01

    ABSTRACT The nucleolar subcompartment of the nucleus is increasingly recognized as an important target of RNA viruses. Here we document for the first time the ability of dengue virus (DENV) polymerase, nonstructural protein 5 (NS5), to accumulate within the nucleolus of infected cells and to target green fluorescent protein (GFP) to the nucleolus of live transfected cells. Intriguingly, NS5 exchange between the nucleus and nucleolus is dynamically modulated by extracellular pH, responding rapidly and reversibly to pH change, in contrast to GFP alone or other nucleolar and non-nucleolar targeted protein controls. The minimal pH-sensitive nucleolar targeting region (pHNTR), sufficient to target GFP to the nucleolus in a pH-sensitive fashion, was mapped to NS5 residues 1 to 244, with mutation of key hydrophobic residues, Leu-165, Leu-167, and Val-168, abolishing pHNTR function in NS5-transfected cells, and severely attenuating DENV growth in infected cells. This is the first report of a viral protein whose nucleolar targeting ability is rapidly modulated by extracellular stimuli, suggesting that DENV has the ability to detect and respond dynamically to the extracellular environment. IMPORTANCE Infections by dengue virus (DENV) threaten 40% of the world's population yet there is no approved vaccine or antiviral therapeutic to treat infections. Understanding the molecular details that govern effective viral replication is key for the development of novel antiviral strategies. Here, we describe for the first time dynamic trafficking of DENV nonstructural protein 5 (NS5) to the subnuclear compartment, the nucleolus. We demonstrate that NS5's targeting to the nucleolus occurs in response to acidic pH, identify the key amino acid residues within NS5 that are responsible, and demonstrate that their mutation severely impairs production of infectious DENV. Overall, this study identifies a unique subcellular trafficking event and suggests that DENV is able to detect and respond

  20. NS1643 Interacts around L529 of hERG to Alter Voltage Sensor Movement on the Path to Activation

    PubMed Central

    Guo, Jiqing; Cheng, Yen May; Lees-Miller, James P.; Perissinotti, Laura L.; Claydon, Tom W.; Hull, Christina M.; Thouta, Samrat; Roach, Daniel E.; Durdagi, Serdar; Noskov, Sergei Y.; Duff, Henry J.

    2015-01-01

    Activators of hERG1 such as NS1643 are being developed for congenital/acquired long QT syndrome. Previous studies identify the neighborhood of L529 around the voltage-sensor as a putative interacting site for NS1643. With NS1643, the V1/2 of activation of L529I (−34 ± 4 mV) is similar to wild-type (WT) (−37 ± 3 mV; P > 0.05). WT and L529I showed no difference in the slope factor in the absence of NS1643 (8 ± 0 vs. 9 ± 0) but showed a difference in the presence of NS1643 (9 ± 0.3 vs. 22 ± 1; P < 0.01). Voltage-clamp-fluorimetry studies also indicated that in L529I, NS1643 reduces the voltage-sensitivity of S4 movement. To further assess mechanism of NS1643 action, mutations were made in this neighborhood. NS1643 shifts the V1/2 of activation of both K525C and K525C/L529I to hyperpolarized potentials (−131 ± 4 mV for K525C and −120 ± 21 mV for K525C/L529I). Both K525C and K525C/K529I had similar slope factors in the absence of NS1643 (18 ± 2 vs. 34 ± 5, respectively) but with NS1643, the slope factor of K525C/L529I increased from 34 ± 5 to 71 ± 10 (P < 0.01) whereas for K525C the slope factor did not change (18 ± 2 at baseline and 16 ± 2 for NS1643). At baseline, K525R had a slope factor similar to WT (9 vs. 8) but in the presence of NS1643, the slope factor of K525R was increased to 24 ± 4 vs. 9 ± 0 mV for WT (P < 0.01). Molecular modeling indicates that L529I induces a kink in the S4 voltage-sensor helix, altering a salt-bridge involving K525. Moreover, docking studies indicate that NS1643 binds to the kinked structure induced by the mutation with a higher affinity. Combining biophysical, computational, and electrophysiological evidence, a mechanistic principle governing the action of some activators of hERG1 channels is proposed. PMID:25809253

  1. The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon.

    PubMed

    Laurent-Rolle, Maudry; Morrison, Juliet; Rajsbaum, Ricardo; Macleod, Jesica M Levingston; Pisanelli, Giuseppe; Pham, Alissa; Ayllon, Juan; Miorin, Lisa; Martinez, Carles; tenOever, Benjamin R; García-Sastre, Adolfo

    2014-09-10

    To successfully establish infection, flaviviruses have to overcome the antiviral state induced by type I interferon (IFN-I). The nonstructural NS5 proteins of several flaviviruses antagonize IFN-I signaling. Here we show that yellow fever virus (YFV) inhibits IFN-I signaling through a unique mechanism that involves binding of YFV NS5 to the IFN-activated transcription factor STAT2 only in cells that have been stimulated with IFN-I. This NS5-STAT2 interaction requires IFN-I-induced tyrosine phosphorylation of STAT1 and the K63-linked polyubiquitination at a lysine in the N-terminal region of YFV NS5. We identified TRIM23 as the E3 ligase that interacts with and polyubiquitinates YFV NS5 to promote its binding to STAT2 and trigger IFN-I signaling inhibition. Our results demonstrate the importance of YFV NS5 in overcoming the antiviral action of IFN-I and offer a unique example of a viral protein that is activated by the same host pathway that it inhibits. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by Type I interferon

    PubMed Central

    Rajsbaum, Ricardo; Macleod, Jesica M. Levingston; Pisanelli, Giuseppe; Pham, Alissa; Ayllon, Juan; Miorin, Lisa; Martinez, Carles; tenOever, Benjamin R; García-Sastre, Adolfo

    2014-01-01

    Summary To successfully establish infection Flaviviruses have to overcome the antiviral state induced by type I interferon (IFN-I). The nonstructural NS5 proteins of several flaviviruses antagonize IFN-I signaling. Here we show that yellow fever virus (YFV) inhibits IFN-I signaling through a unique mechanism that involves binding of YFV NS5 to the IFN-activated transcription factor STAT2 only in cells that have been stimulated with IFN-I. This NS5-STAT2 interaction requires IFN-I-induced tyrosine phosphorylation of STAT1 and the K63-linked polyubiquitination at a lysine in the N-terminal region of YFV NS5. We identified TRIM23 as the E3 ligase that interacts with and polyubiquitinates YFV NS5 to promote its binding to STAT2 and trigger IFN-I signaling inhibition. Our results demonstrate the importance of YFV NS5 in overcoming the antiviral action of IFN-I and offer a unique example of a viral protein that is activated by the same host pathway that it inhibits. PMID:25211074

  3. Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP)

    PubMed Central

    Glickman, Randolph D.; Tolstykh, Gleb P.; Estlack, Larry E.; Moen, Erick K.; Echchgadda, Ibtissam; Beier, Hope T.; Barnes, Ronald A.; Ibey, Bennett L.

    2016-01-01

    Nanosecond electrical pulse (nsEP) exposure activates signaling pathways, produces oxidative stress, stimulates hormone secretion, causes cell swelling and induces apoptotic and necrotic death. The underlying biophysical connection(s) between these diverse cellular reactions and nsEP has yet to be elucidated. Using global genetic analysis, we evaluated how two commonly studied cell types, U937 and Jurkat, respond to nsEP exposure. We hypothesized that by studying the genetic response of the cells following exposure, we would gain direct insight into the stresses experienced by the cell and in turn better understand the biophysical interaction taking place during the exposure. Using Ingenuity Systems software, we found genes associated with cell growth, movement and development to be significantly up-regulated in both cell types 4 h post exposure to nsEP. In agreement with our hypothesis, we also found that both cell lines exhibit significant biological changes consistent with mechanical stress induction. These results advance nsEP research by providing strong evidence that the interaction of nsEPs with cells involves mechanical stress. PMID:27135944

  4. Amino acids 16-275 of minute virus of mice NS1 include a domain that specifically binds (ACCA)2-3-containing DNA.

    PubMed

    Mouw, M; Pintel, D J

    1998-11-10

    GST-NS1 purified from Escherichia coli and insect cells binds double-strand DNA in an (ACCA)2-3-dependent fashion under similar ionic conditions, independent of the presence of anti-NS1 antisera or exogenously supplied ATP and interacts with single-strand DNA and RNA in a sequence-independent manner. An amino-terminal domain (amino acids 1-275) of NS1 [GST-NS1(1-275)], representing 41% of the full-length NS1 molecule, includes a domain that binds double-strand DNA in a sequence-specific manner at levels comparable to full-length GST-NS1, as well as single-strand DNA and RNA in a sequence-independent manner. The deletion of 15 additional amino-terminal amino acids yielded a molecule [GST-NS1(1-275)] that maintained (ACCA)2-3-specific double-strand DNA binding; however, this molecule was more sensitive to increasing ionic conditions than full-length GST-NS1 and GST-NS1(1-275) and could not be demonstrated to bind single-strand nucleic acids. A quantitative filter binding assay showed that E. coli- and baculovirus-expressed GST-NS1 and E. coli GST-NS1(1-275) specifically bound double-strand DNA with similar equilibrium kinetics [as measured by their apparent equilibrium DNA binding constants (KD)], whereas GST-NS1(16-275) bound 4- to 8-fold less well. Copyright 1998 Academic Press.

  5. NS001MS - Landsat-D thematic mapper band aircraft scanner

    NASA Technical Reports Server (NTRS)

    Richard, R. R.; Merkel, R. F.; Meeks, G. R.

    1978-01-01

    The thematic mapper is a multispectral scanner which will be launched aboard Landsat-D in the early 1980s. Compared with previous Landsat scanners, this instrument will have an improved spatial resolution (30 m) and new spectral bands. Designated NS001MS, the scanner is designed to duplicate the thematic mapper spectral bands plus two additional bands (1.0 to 1.3 microns and 2.08 to 2.35 microns) in an aircraft scanner for evaluation and investigation prior to design and launch of the final thematic mapper. Applicable specifications used in defining the thematic mapper were retained in the NS001MS design, primarily with respect to spectral bandwidths, noise equivalent reflectance, and noise equivalent difference temperature. The technical design and operational characteristics of the multispectral scanner (with thematic mapper bands) are discussed.

  6. Human Parvovirus B19 NS1 Protein Aggravates Liver Injury in NZB/W F1 Mice

    PubMed Central

    Tsai, Chun-Chou; Chiu, Chun-Ching; Hsu, Jeng-Dong; Hsu, Huai-Sheng; Tzang, Bor-Show; Hsu, Tsai-Ching

    2013-01-01

    Human parvovirus B19 (B19) has been associated with a variety of diseases. However, the influence of B19 viral proteins on hepatic injury in SLE is still obscure. To elucidate the effects of B19 viral proteins on livers in SLE, recombinant B19 NS1, VP1u or VP2 proteins were injected subcutaneously into NZB/W F1 mice, respectively. Significant expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected in NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Markedly hepatocyte disarray and lymphocyte infiltration were observed in livers from NZB/WF 1 mice receiving B19 NS1 as compared to those mice receiving PBS. Additionally, significant increases of Tumor Necrosis Factor –α (TNF-α), TNF-α receptor, IκB kinase –α (IKK-α), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IκB) and nuclear factor-kappa B (NF-κB) were detected in livers from NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Accordingly, significant increases of matrix metalloproteinase-9 (MMP9) and U-plasminogen activator (uPA) were also detected in livers from NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Contrarily, no significant variation on livers from NZB/W F1 mice receiving B19 VP1u or VP2 was observed as compared to those mice receiving PBS. These findings firstly demonstrated the aggravated effects of B19 NS1 but not VP1u or VP2 protein on hepatic injury and provide a clue in understanding the role of B19 NS1 on hepatic injury in SLE. PMID:23555760

  7. HCV Core Residues Critical for Infectivity Are Also Involved in Core-NS5A Complex Formation

    PubMed Central

    Gawlik, Katarzyna; Baugh, James; Chatterji, Udayan; Lim, Precious J.; Bobardt, Michael D.; Gallay, Philippe A.

    2014-01-01

    Hepatitis C virus (HCV) infection is a major cause of liver disease. The molecular machinery of HCV assembly and particle release remains obscure. A better understanding of the assembly events might reveal new potential antiviral strategies. It was suggested that the nonstructural protein 5A (NS5A), an attractive recent drug target, participates in the production of infectious particles as a result of its interaction with the HCV core protein. However, prior to the present study, the NS5A-binding site in the viral core remained unknown. We found that the D1 domain of core contains the NS5A-binding site with the strongest interacting capacity in the basic P38-K74 cluster. We also demonstrated that the N-terminal basic residues of core at positions 50, 51, 59 and 62 were required for NS5A binding. Analysis of all substitution combinations of R50A, K51A, R59A, and R62A, in the context of the HCVcc system, showed that single, double, triple, and quadruple mutants were fully competent for viral RNA replication, but deficient in secretion of viral particles. Furthermore, we found that the extracellular and intracellular infectivity of all the mutants was abolished, suggesting a defect in the formation of infectious particles. Importantly, we showed that the interaction between the single and quadruple core mutants and NS5A was impaired in cells expressing full-length HCV genome. Interestingly, mutations of the four basic residues of core did not alter the association of core or NS5A with lipid droplets. This study showed for the first time that basic residues in the D1 domain of core that are critical for the formation of infectious extracellular and intracellular particles also play a role in core-NS5A interactions. PMID:24533158

  8. Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus.

    PubMed

    Nascimento, Eduardo J M; George, James K; Velasco, Melissa; Bonaparte, Matthew I; Zheng, Lingyi; DiazGranados, Carlos A; Marques, Ernesto T A; Huleatt, James W

    2018-07-01

    Dengue virus infection elicits immune responses to multiple viral antigens including antibodies to dengue non-structural protein 1 (NS1) which are rapidly induced and detected within days of infection. The recombinant, live, attenuated, tetravalent dengue vaccine (CYD-TDV; Sanofi Pasteur) uses the yellow fever vaccine virus as a back-bone but expresses dengue virus pre-membrane and envelop proteins. Since CYD-TDV does not express dengue NS1, we evaluated the utility of dengue NS1-specific IgG antibodies as biomarkers of dengue exposure in CYD-TDV recipients and controls. We optimized and evaluated a quantitative anti-dengue NS1 IgG enzyme-linked immunosorbent assay (ELISA). Parameters assessed included: accuracy, dilutability/linearity, precision, limit of quantitation and specificity. The assay specificity was further evaluated using Japanese Encephalitis virus, West Nile virus, Yellow Fever virus or Zika virus positive sera samples collected following confirmed infection or vaccination. Receiver-operating-characteristics (ROC) curves as well as sensitivity and specificity for discriminating previous dengue exposure were assessed using 1250 reference samples. Overall, the anti-dengue NS1 IgG ELISA was able to discriminate previous dengue exposure from non-exposure before vaccination with CYD-TDV (ROC area under the curve > 0.9). Assessment of paired samples from 2511 vaccinated participants showed high overall agreement (93%) between pre-vaccination and post-vaccination dengue serostatus classification based on the anti-dengue NS1 IgG ELISA. However, misclassification of dengue serostatus was observed after vaccination likely due to a combination of asymptomatic dengue infections, assay variability and a modest effect of CYD-TDV on the anti-dengue NS1 IgG ELISA readout. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. In silico mutation analysis of non-structural protein-5 (NS5) dengue virus

    NASA Astrophysics Data System (ADS)

    Puspitasari, R. D.; Tambunan, U. S. F.

    2017-04-01

    Dengue fever is a world disease. It is endemic in more than 100 countries. Information about the effect of mutations in the virus is important in drug design and development. In this research, we studied the effect of mutation on NS5 dengue virus. NS5 is the large protein containing 67% amino acid similarity in DENV 1-4 and has multifunctional enzymatic activities. Dengue virus is an RNA virus that has very high mutation frequency with an average of 100 times higher than DNA mutations, and the accumulation of mutations will be possible to generate the new serotype. In this study, we report that mutation occurs in NS5 of DENV serotype 3, glutamine mutates into methionine at position 10 and threonine mutates into isoleucine at position 55. These residues are part of the domain named S-Adenosyl-L-Methionine-Dependent Methyltransferase (IPR029063).

  10. Assessing Positivity and Circulating Levels of NS1 in Samples from a 2012 Dengue Outbreak in Rio de Janeiro, Brazil

    PubMed Central

    Allonso, Diego; Meneses, Marcelo D. F.; Fernandes, Carlos A.; Ferreira, Davis F.; Mohana-Borges, Ronaldo

    2014-01-01

    Dengue virus (DENV) represents a major threat to public health worldwide. Early DENV diagnosis should not only detect the infection but also identify patients with a higher likelihood to develop severe cases. Previous studies have suggested the potential for NS1 to serve as a viral marker for dengue severity. However, further studies using different sera panels are required to confirm this hypothesis. In this context, we developed a lab-based ELISA to detect and quantitate NS1 protein from the four DENV serotypes and from primary and secondary cases. This approach was used to calculate the circulating NS1 concentration in positive samples. We also tested the NS1 positivity of DENV-positive samples according to the Platelia Dengue NS1 Ag assay. A total of 128 samples were positive for DENV infection and were classified according to the WHO guidelines. The overall NS1 positivity was 68% according to the Platelia assay, whereas all samples were NS1-positive when analyzed with our lab-based ELISA. Fifty-four samples were positive by PCR, revealing a co-circulation of DENV1 and DENV4, and the NS1 positivity for DENV4 samples was lower than that for DENV1. The circulating NS1 concentration ranged from 7 to 284 ng/mL. Our results support previous data indicating the low efficiency of the Platelia assay to detect DENV4 infection. Moreover, this work is the first to analyze NS1 antigenemia using retrospective samples from a Brazilian outbreak. PMID:25412084

  11. Evaluation of a dengue NS1 antigen detection assay sensitivity and specificity for the diagnosis of acute dengue virus infection.

    PubMed

    Hermann, Laura L; Thaisomboonsuk, Butsaya; Poolpanichupatam, Yongyuth; Jarman, Richard G; Kalayanarooj, Siripen; Nisalak, Ananda; Yoon, In-Kyu; Fernandez, Stefan

    2014-10-01

    Currently, no dengue NS1 detection kit has regulatory approval for the diagnosis of acute dengue fever. Here we report the sensitivity and specificity of the InBios DEN Detect NS1 ELISA using a panel of well characterized human acute fever serum specimens. The InBios DENV Detect NS1 ELISA was tested using a panel composed of 334 serum specimens collected from acute febrile patients seeking care in a Bangkok hospital in 2010 and 2011. Of these patients, 314 were found to have acute dengue by either RT-PCR and/or anti-dengue IgM/IgG ELISA. Alongside the InBios NS1 ELISA kit, we compared the performance characteristics of the BioRad Platelia NS1 antigen kit. The InBios NS1 ELISA Ag kit had a higher overall sensitivity (86% vs 72.8%) but equal specificity (100%) compared to the BioRad Platelia kit. The serological status of the patient significantly influenced the outcome. In primary infections, the InBios NS1 kit demonstrated a higher sensitivity (98.8%) than in secondary infections (83.5%). We found significant variation in the sensitivity of the InBios NS1 ELISA kit depending on the serotype of the dengue virus and also found decreasing sensitivity the longer after the onset of illness, showing 100% sensitivity early during illness, but dropping below 50% by Day 7. The InBios NS1 ELISA kit demonstrated high accuracy when compared to the initial clinical diagnosis with greater than 85% agreement when patients were clinically diagnosed with dengue illness. Results presented here suggest the accurate detection of circulating dengue NS1 by the InBios DENV Detect NS1 ELISA can provide clinicians with a useful tool for diagnosis of early dengue infections.

  12. Nuclear Export Factor CRM1 Interacts with Nonstructural Proteins NS2 from Parvovirus Minute Virus of Mice

    PubMed Central

    Bodendorf, Ursula; Cziepluch, Celina; Jauniaux, Jean-Claude; Rommelaere, Jean; Salomé, Nathalie

    1999-01-01

    The nonstructural NS2 proteins of autonomous parvoviruses are known to act in a host cell-dependent manner and to play a role in viral DNA replication, efficient translation of viral mRNA, and/or encapsidation. Their exact function during the parvovirus life cycle remains, however, still obscure. We report here the characterization of the interaction with the NS2 proteins from the parvovirus minute virus of mice (MVM) and rat as well as mouse homologues of the human CRM1 protein, a member of the importin-beta family recently identified as an essential nuclear export factor. Using the two-hybrid system, we could detect the interaction between the carboxy-terminal region of rat CRM1 and each of the three isoforms of NS2 (P [or major], Y [or minor], and L [or rare]). NS2 proteins were further shown to interact with the full-length CRM1 by coimmunoprecipitation experiments using extracts from both mouse and rat cell lines. Our data show that CRM1 preferentially binds to the nonphosphorylated isoforms of NS2. Moreover, we observed that the treatment of MVM-infected cells with leptomycin B, a drug that specifically inhibits the CRM1-dependent nuclear export pathway, leads to a drastic accumulation of NS2 proteins in the nucleus. Both NS2 interaction with CRM1 and nuclear accumulation upon leptomycin B treatment strongly suggest that these nonstructural viral proteins are actively exported out of the nuclei of infected cells via a CRM1-mediated nuclear export pathway. PMID:10438867

  13. Multiple Sensing Application on Wireless Sensor Network Simulation using NS3

    NASA Astrophysics Data System (ADS)

    Kurniawan, I. F.; Bisma, R.

    2018-01-01

    Hardware enhancement provides opportunity to install various sensor device on single monitoring node which then enables users to acquire multiple data simultaneously. Constructing multiple sensing application in NS3 is a challenging task since numbers of aspects such as wireless communication, packet transmission pattern, and energy model must be taken into account. Despite of numerous types of monitoring data available, this study only considers two types such as periodic, and event-based data. Periodical data will generate monitoring data follows configured interval, while event-based transmit data when certain determined condition is met. Therefore, this study attempts to cover mentioned aspects in NS3. Several simulations are performed with different number of nodes on arbitrary communication scheme.

  14. Structure-Based Mutational Analysis of the Hepatitis C Virus NS3 Helicase

    PubMed Central

    Tai, Chun-Ling; Pan, Wen-Ching; Liaw, Shwu-Huey; Yang, Ueng-Cheng; Hwang, Lih-Hwa; Chen, Ding-Shinn

    2001-01-01

    The carboxyl terminus of the hepatitis C virus (HCV) nonstructural protein 3 (NS3) possesses ATP-dependent RNA helicase activity. Based on the conserved sequence motifs and the crystal structures of the helicase domain, 17 mutants of the HCV NS3 helicase were generated. The ATP hydrolysis, RNA binding, and RNA unwinding activities of the mutant proteins were examined in vitro to determine the functional role of the mutated residues. The data revealed that Lys-210 in the Walker A motif and Asp-290, Glu-291, and His-293 in the Walker B motif were crucial to ATPase activity and that Thr-322 and Thr-324 in motif III and Arg-461 in motif VI significantly influenced ATPase activity. When the pairing between His-293 and Gln-460, referred to as gatekeepers, was replaced with the Asp-293/His-460 pair, which makes the NS3 helicase more like the DEAD helicase subgroup, ATPase activity was not restored. It thus indicated that the whole microenvironment surrounding the gatekeepers, rather than the residues per se, was important to the enzymatic activities. Arg-461 and Trp-501 are important residues for RNA binding, while Val-432 may only play a coadjutant role. The data demonstrated that RNA helicase activity was possibly abolished by the loss of ATPase activity or by reduced RNA binding activity. Nevertheless, a low threshold level of ATPase activity was found sufficient for helicase activity. Results in this study provide a valuable reference for efforts under way to develop anti-HCV therapeutic drugs targeting NS3. PMID:11483774

  15. West Nile Virus NS1 Antagonizes Interferon Beta Production by Targeting RIG-I and MDA5.

    PubMed

    Zhang, Hong-Lei; Ye, Han-Qing; Liu, Si-Qing; Deng, Cheng-Lin; Li, Xiao-Dan; Shi, Pei-Yong; Zhang, Bo

    2017-09-15

    West Nile virus (WNV) is a mosquito-borne flavivirus that causes epidemics of encephalitis and viscerotropic disease worldwide. This virus has spread rapidly and has posed a significant public health threat since the outbreak in New York City in 1999. The interferon (IFN)-mediated antiviral response represents an important component of virus-host interactions and plays an essential role in regulating viral replication. Previous studies have suggested that multifunctional nonstructural proteins encoded by flaviviruses antagonize the host IFN response via various means in order to establish efficient viral replication. In this study, we demonstrated that the nonstructural protein 1 (NS1) of WNV antagonizes IFN-β production, most likely through suppression of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) activation. In a dual-luciferase reporter assay, WNV NS1 significantly inhibited the activation of the IFN-β promoter after Sendai virus infection or poly(I·C) treatment. NS1 also suppressed the activation of the IFN-β promoter when it was stimulated by interferon regulatory factor 3 (IRF3)/5D or its upstream molecules in the RLR signaling pathway. Furthermore, NS1 blocked the phosphorylation and nuclear translocation of IRF3 upon stimulation by various inducers. Mechanistically, WNV NS1 targets RIG-I and melanoma differentiation-associated gene 5 (MDA5) by interacting with them and subsequently causing their degradation by the proteasome. Furthermore, WNV NS1 inhibits the K63-linked polyubiquitination of RIG-I, thereby inhibiting the activation of downstream sensors in the RLR signaling pathway. Taken together, our results reveal a novel mechanism by which WNV NS1 interferes with the host antiviral response. IMPORTANCE WNV Nile virus (WNV) has received increased attention since its introduction to the United States. However, the pathogenesis of this virus is poorly understood. This study demonstrated that the nonstructural protein 1 (NS1) of WNV

  16. The HCV Non-Nucleoside Inhibitor Tegobuvir Utilizes a Novel Mechanism of Action to Inhibit NS5B Polymerase Function

    PubMed Central

    Hebner, Christy M.; Han, Bin; Brendza, Katherine M.; Nash, Michelle; Sulfab, Maisoun; Tian, Yang; Hung, Magdeleine; Fung, Wanchi; Vivian, Randall W.; Trenkle, James; Taylor, James; Bjornson, Kyla; Bondy, Steven; Liu, Xiaohong; Link, John; Neyts, Johan; Sakowicz, Roman; Zhong, Weidong; Tang, Hengli; Schmitz, Uli

    2012-01-01

    Tegobuvir (TGV) is a novel non-nucleoside inhibitor (NNI) of HCV RNA replication with demonstrated antiviral activity in patients with genotype 1 chronic HCV infection. The mechanism of action of TGV has not been clearly defined despite the identification of resistance mutations mapping to the NS5B polymerase region. TGV does not inhibit NS5B enzymatic activity in biochemical assays in vitro, suggesting a more complex antiviral mechanism with cellular components. Here, we demonstrate that TGV exerts anti-HCV activity utilizing a unique chemical activation and subsequent direct interaction with the NS5B protein. Treatment of HCV subgenomic replicon cells with TGV results in a modified form of NS5B with a distinctly altered mobility on a SDS-PAGE gel. Further analysis reveals that the aberrantly migrating NS5B species contains the inhibitor molecule. Formation of this complex does not require the presence of any other HCV proteins. The intensity of the aberrantly migrating NS5B species is strongly dependent on cellular glutathione levels as well as CYP 1A activity. Furthermore analysis of NS5B protein purified from a heterologous expression system treated with TGV by mass spectrometry suggests that TGV undergoes a CYP- mediated intracellular activation step and the resulting metabolite, after forming a glutathione conjugate, directly and specifically interacts with NS5B. Taken together, these data demonstrate that upon metabolic activation TGV is a specific, covalent inhibitor of the HCV NS5B polymerase and is mechanistically distinct from other classes of the non-nucleoside inhibitors (NNI) of the viral polymerase. PMID:22720059

  17. Structural determinants for membrane association and dynamic organization of the hepatitis C virus NS3-4A complex

    PubMed Central

    Brass, Volker; Berke, Jan Martin; Montserret, Roland; Blum, Hubert E.; Penin, François; Moradpour, Darius

    2008-01-01

    Hepatitis C virus (HCV) NS3-4A is a membrane-associated multifunctional protein harboring serine protease and RNA helicase activities. It is an essential component of the HCV replication complex and a prime target for antiviral intervention. Here, we show that membrane association and structural organization of HCV NS3-4A are ensured in a cooperative manner by two membrane-binding determinants. We demonstrate that the N-terminal 21 amino acids of NS4A form a transmembrane α-helix that may be involved in intramembrane protein–protein interactions important for the assembly of a functional replication complex. In addition, we demonstrate that amphipathic helix α0, formed by NS3 residues 12–23, serves as a second essential determinant for membrane association of NS3-4A, allowing proper positioning of the serine protease active site on the membrane. These results allowed us to propose a dynamic model for the membrane association, processing, and structural organization of NS3-4A on the membrane. This model has implications for the functional architecture of the HCV replication complex, proteolytic targeting of host factors, and drug design. PMID:18799730

  18. The Hepatitis C Virus NS4B Protein Can trans-Complement Viral RNA Replication and Modulates Production of Infectious Virus▿

    PubMed Central

    Jones, Daniel M.; Patel, Arvind H.; Targett-Adams, Paul; McLauchlan, John

    2009-01-01

    Studies of the hepatitis C virus (HCV) life cycle have been aided by development of in vitro systems that enable replication of viral RNA and production of infectious virus. However, the functions of the individual proteins, especially those engaged in RNA replication, remain poorly understood. It is considered that NS4B, one of the replicase components, creates sites for genome synthesis, which appear as punctate foci at the endoplasmic reticulum (ER) membrane. In this study, a panel of mutations in NS4B was generated to gain deeper insight into its functions. Our analysis identified five mutants that were incapable of supporting RNA replication, three of which had defects in production of foci at the ER membrane. These mutants also influenced posttranslational modification and intracellular mobility of another replicase protein, NS5A, suggesting that such characteristics are linked to focus formation by NS4B. From previous studies, NS4B could not be trans-complemented in replication assays. Using the mutants that blocked RNA synthesis, defective NS4B expressed from two mutants could be rescued in trans-complementation replication assays by wild-type protein produced by a functional HCV replicon. Moreover, active replication could be reconstituted by combining replicons that were defective in NS4B and NS5A. The ability to restore replication from inactive replicons has implications for our understanding of the mechanisms that direct viral RNA synthesis. Finally, one of the NS4B mutations increased the yield of infectious virus by five- to sixfold. Hence, NS4B not only functions in RNA replication but also contributes to the processes engaged in virus assembly and release. PMID:19073716

  19. HCV NS3 protease enhances liver fibrosis via binding to and activating TGF-β type I receptor

    NASA Astrophysics Data System (ADS)

    Sakata, Kotaro; Hara, Mitsuko; Terada, Takaho; Watanabe, Noriyuki; Takaya, Daisuke; Yaguchi, So-Ichi; Matsumoto, Takehisa; Matsuura, Tomokazu; Shirouzu, Mikako; Yokoyama, Shigeyuki; Yamaguchi, Tokio; Miyazawa, Keiji; Aizaki, Hideki; Suzuki, Tetsuro; Wakita, Takaji; Imoto, Masaya; Kojima, Soichi

    2013-11-01

    Viruses sometimes mimic host proteins and hijack the host cell machinery. Hepatitis C virus (HCV) causes liver fibrosis, a process largely mediated by the overexpression of transforming growth factor (TGF)-β and collagen, although the precise underlying mechanism is unknown. Here, we report that HCV non-structural protein 3 (NS3) protease affects the antigenicity and bioactivity of TGF-β2 in (CAGA)9-Luc CCL64 cells and in human hepatic cell lines via binding to TGF-β type I receptor (TβRI). Tumor necrosis factor (TNF)-α facilitates this mechanism by increasing the colocalization of TβRI with NS3 protease on the surface of HCV-infected cells. An anti-NS3 antibody against computationally predicted binding sites for TβRI blocked the TGF-β mimetic activities of NS3 in vitro and attenuated liver fibrosis in HCV-infected chimeric mice. These data suggest that HCV NS3 protease mimics TGF-β2 and functions, at least in part, via directly binding to and activating TβRI, thereby enhancing liver fibrosis.

  20. Role of N-S strike-slip faulting in structuring of north-eastern Tunisia; geodynamic implications

    NASA Astrophysics Data System (ADS)

    Arfaoui, Aymen; Soumaya, Abdelkader; Ben Ayed, Noureddine; Delvaux, Damien; Ghanmi, Mohamed; Kadri, Ali; Zargouni, Fouad

    2017-05-01

    Three major compressional events characterized by folding, thrusting and strike-slip faulting occurred in the Eocene, Late Miocene and Quaternary along the NE Tunisian domain between Bou Kornine-Ressas-Msella and Cap Bon Peninsula. During the Plio-Quaternary, the Grombalia and Mornag grabens show a maximum of collapse in parallelism with the NNW-SSE SHmax direction and developed as 3rd order distensives zones within a global compressional regime. Using existing tectonic and geophysical data supplemented by new fault-kinematic observations, we show that Cenozoic deformation of the Mesozoic sedimentary sequences is dominated by first order N-S faults reactivation, this sinistral wrench system is responsible for the formation of strike-slip duplexes, thrusts, folds and grabens. Following our new structural interpretation, the major faults of N-S Axis, Bou Kornine-Ressas-Messella (MRB) and Hammamet-Korbous (HK) form an N-S first order compressive relay within a left lateral strike-slip duplex. The N-S master MRB fault is dominated by contractional imbricate fans, while the parallel HK fault is characterized by a trailing of extensional imbricate fans. The Eocene and Miocene compression phases in the study area caused sinistral strike-slip reactivation of pre-existing N-S faults, reverse reactivation of NE-SW trending faults and normal-oblique reactivation of NW-SE faults, creating a NE-SW to N-S trending system of east-verging folds and overlaps. Existing seismic tomography images suggest a key role for the lithospheric subvertical tear or STEP fault (Slab Transfer Edge Propagator) evidenced below this region on the development of the MRB and the HK relay zone. The presence of extensive syntectonic Pliocene on top of this crustal scale fault may be the result of a recent lithospheric vertical kinematic of this STEP fault, due to the rollback and lateral migration of the Calabrian slab eastward.

  1. The NS2 polypeptide of parvovirus MVM is required for capsid assembly in murine cells.

    PubMed

    Cotmore, S F; D'Abramo, A M; Carbonell, L F; Bratton, J; Tattersall, P

    1997-05-12

    Mutants of minute virus of mice (MVM) which express truncated forms of the NS2 polypeptide are known to exhibit a host range defect, replicating productively in transformed human cells but not in cells from their normal murine host. To explore this deficiency we generated viruses with translation termination codons at various positions in the second exon of NS2. In human cells these mutants were viable, but showed a late defect in progeny virion release which put them at a selective disadvantage compared to the wildtype. In murine cells, however, duplex viral DNA amplification was reduced to 5% of wildtype levels and single-strand DNA synthesis was undetectable. These deficiencies could not be attributed to a failure to initiate infection or to a generalized defect in viral gene expression, since the viral replicator protein NS1 was expressed to normal or elevated levels early in infection. In contrast, truncated NS2 gene products failed to accumulate, so that each mutant exhibited a similar NS2-null phenotype. Expression of the capsid polypeptides VP1 and VP2 and their subsequent assembly into intact particles were examined in detail. Synchronized infected cell populations labeled under pulse-chase conditions were analyzed by differential immunoprecipitation of native or denatured extracts using antibodies which discriminated between intact particles and isolated polypeptide chains. These analyses showed that at early times in infection, capsid protein synthesis and stability were normal, but particle assembly was impaired. Unassembled VP proteins were retained in the cell for several hours, but as the unprocessed material accumulated, capsid protein synthesis progressively diminished, so that at later times relatively few VP molecules were synthesized. Thus in NS2-null infections of mouse cells there is a major primary defect in the folding or assembly processes required for effective capsid production.

  2. Bovine viral diarrhea virus NS3 serine proteinase: polyprotein cleavage sites, cofactor requirements, and molecular model of an enzyme essential for pestivirus replication.

    PubMed Central

    Xu, J; Mendez, E; Caron, P R; Lin, C; Murcko, M A; Collett, M S; Rice, C M

    1997-01-01

    Members of the Flaviviridae encode a serine proteinase termed NS3 that is responsible for processing at several sites in the viral polyproteins. In this report, we show that the NS3 proteinase of the pestivirus bovine viral diarrhea virus (BVDV) (NADL strain) is required for processing at nonstructural (NS) protein sites 3/4A, 4A/4B, 4B/5A, and 5A/5B but not for cleavage at the junction between NS2 and NS3. Cleavage sites of the proteinase were determined by amino-terminal sequence analysis of the NS4A, NS4B, NS5A, and NS5B proteins. A conserved leucine residue is found at the P1 position of all four cleavage sites, followed by either serine (3/4A, 4B/5A, and 5A/5B sites) or alanine (4A/4B site) at the P1' position. Consistent with this cleavage site preference, a structural model of the pestivirus NS3 proteinase predicts a highly hydrophobic P1 specificity pocket. trans-Processing experiments implicate the 64-residue NS4A protein as an NS3 proteinase cofactor required for cleavage at the 4B/5A and 5A/5B sites. Finally, using a full-length functional BVDV cDNA clone, we demonstrate that a catalytically active NS3 serine proteinase is essential for pestivirus replication. PMID:9188600

  3. The 150 ns detector project: Prototype preamplifier results

    NASA Astrophysics Data System (ADS)

    Warburton, W. K.; Russell, S. R.; Kleinfelder, Stuart A.

    1994-08-01

    The long-term goal of the 150 ns detector project is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1×256 1D and 8×8 2D detectors, 256×256 2D detectors and, finally, 1024 × 1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front-end preamplifiers are integrated first, since their design and performance are the most unusual and also critical to the project's success. Similarly, our early work is concentrated on devising and perfecting detector structures. In this paper we demonstrate the performance of prototypes of our integrated preamplifiers. While the final design will have 64 preamps to a chip, including a switchable gain stage, the prototypes were integrated 8 channels to a "Tiny Chip" and tested in 4 configurations (feedback capacitor Cf equal 2.5 or 4.0 pF, output directly or through a source follower). These devices have been tested thoroughly for reset settling times, gain, linearity, and electronic noise. They generally work as designed, being fast enough to easily integrate detector charge, settle, and reset in 150 ns. Gain and linearity appear to be acceptable. Current values of electronic noise, in double-sampling mode, are about twice the design goal of {2}/{3} of a single photon at 6 keV. We expect this figure to improve with the addition of the onboard amplifier stage and improved packaging. Our next test chip will include these improvements and allow testing with our first detector samples, which will be 1×256 (50 μm wide pixels) and 8×8 (1 mm 2 pixels) element detector on 1 mm thick silicon.

  4. Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation.

    PubMed

    Negres, Raluca A; Norton, Mary A; Cross, David A; Carr, Christopher W

    2010-09-13

    The growth behavior of laser-induced damage sites is affected by a large number of laser parameters as well as site morphology. Here we investigate the effects of pulse duration on the growth rate of damage sites located on the exit surface of fused silica optics. Results demonstrate a significant dependence of the growth parameters on laser pulse duration at 351 nm from 1 ns to 15 ns, including the observation of a dominant exponential versus linear, multiple-shot growth behavior for long and short pulses, respectively. These salient behaviors are tied to the damage morphology and suggest a shift in the fundamental growth mechanisms for pulses in the 1-5 ns range.

  5. Robust translocation along a molecular monorail: the NS3 helicase from hepatitis C virus traverses unusually large disruptions in its track.

    PubMed

    Beran, Rudolf K F; Bruno, Michael M; Bowers, Heath A; Jankowsky, Eckhard; Pyle, Anna Marie

    2006-05-12

    The NS3 helicase is essential for replication of the hepatitis C virus. This multifunctional Superfamily 2 helicase protein unwinds nucleic acid duplexes in a stepwise, ATP-dependent manner. Although kinetic features of its mechanism are beginning to emerge, little is known about the physical determinants for NS3 translocation along a strand of nucleic acid. For example, it is not known whether NS3 can traverse covalent or physical discontinuities on the tracking strand. Here we provide evidence that NS3 translocates with a mechanism that is different from its well-studied relative, the Vaccinia helicase NPH-II. Like NPH-II, NS3 translocates along the loading strand (the strand bearing the 3'-overhang) and it fails to unwind substrates that contain nicks, or covalent discontinuities in the loading strand. However, unlike NPH-II, NS3 readily unwinds RNA duplexes that contain long stretches of polyglycol, which are moieties that bear no resemblance to nucleic acid. Whether located on the tracking strand, the top strand, or both, long polyglycol regions fail to disrupt the function of NS3. This suggests that NS3 does not require the continuous formation of specific contacts with the ribose-phosphate backbone as it translocates along an RNA duplex, which is an observation consistent with the large NS3 kinetic step size (18 base-pairs). Rather, once NS3 loads onto a substrate, the helicase can translocate along the loading strand of an RNA duplex like a monorail train following a track. Bumps in the track do not significantly disturb NS3 unwinding, but a break in the track de-rails the helicase.

  6. Regulation of MVM NS1 by protein kinase C: impact of mutagenesis at consensus phosphorylation sites on replicative functions and cytopathic effects.

    PubMed

    Corbau, R; Duverger, V; Rommelaere, J; Nüesch, J P

    2000-12-05

    Minute virus of mice NS1, an 83-kDa mainly nuclear phosphoprotein, is the only viral nonstructural protein required in all cell types and it is involved in multiple processes necessary for virus propagation. The diversity of functions assigned to NS1, together with the variation of its complex phosphorylation pattern during infection, suggested that the various activities of NS1 could be regulated by distinct phosphorylation events. So far, it has been demonstrated that NS1 replicative functions, in particular, DNA-unwinding activities, are regulated by protein kinase C (PKC), as exemplified by the modulation of NS1 helicase activity by PKClambda phosphorylation. In order to determine further impact of phosphorylation on NS1 functions, including the induction of cytopathic effects, a mutational approach was pursued in order to produce NS1 variants harboring amino acid substitutions at candidate PKC target residues. Besides the determination of two additional in vivo phosphorylation sites in NS1, this mutagenesis allowed the segregation of distinct NS1 functions from one another, generating NS1 variants with a distinct activity profile. Thus, we obtained NS1 mutants that were fully proficient for trans activation of the viral P38 promoter, while being impaired in their replicative functions. Moreover, the alterations of specific PKC phosphorylation sites gave rise to NS1 polypeptides that exerted reduced cytotoxicity, leading to sustained gene expression, while keeping functions necessary for progeny virus production, i.e., viral DNA replication and activation of the capsid gene promoter. These data suggested that in the course of a viral infection, NS1 may undergo a shift from productive to cytotoxic functions as a result of a phosphorylation-dependent regulation. Copyright 2000 Academic Press.

  7. A Crystal Structure of Classical Swine Fever Virus NS5B Reveals a Novel N-terminal Domain.

    PubMed

    Li, Weiwei; Wu, Baixing; Soca, Wibowo Adian; An, Lei

    2018-05-02

    Classical swine fever virus (CSFV) is the ringleader of Classical swine fever (CSF). The non-structural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase (RdRp) that is a key enzyme initiating viral RNA replication by a de novo mechanism. It is also an attractive target for the development of anti-CSFV drugs. To gain a better understanding on the mechanism of CSFV RNA synthesis, here we solved the first crystal structure of CSFV-NS5B. Our studies show that the CSFV-NS5B RdRp contains characteristic fingers, palm domain and thumb domain as well as a unique N-terminal domain (NTD) that had never been observed. Mutagenesis studies on NS5B validated the importance of NTD in the catalytic activity of this novel RNA-dependent RNA polymerase. Moreover, our results shed light on the understanding of CSFV infection. IMPORTANCE Pigs are important domestic animal. However, a highly contagious viral disease named Classical swine fever (CSF) causes devastating economic losses. Classical swine fever virus (CSFV) is the primary culprit of CSF, which is a positive-sense single-stranded RNA virus belonging to the Pestivirus genus, Flaviviridae family. Genome replication of CSFV depends on RNA-dependent RNA polymerase known as NS5B. However, the structure of CSFV-NS5B has never been reported, and the mechanism of CSFV replication is poorly understood. Here, we solved the first crystal structure of CSFV-NS5B, analyzed the function of characteristic fingers, palm, and thumb domains. Additionally, our structure also revealed the presence of a novel N-terminal domain (NTD). Biochemical studies demonstrated that the NTD of CSFV-NS5B is very important for RNA-dependent RNA polymerase (RdRp) activity. Collectively, our studies provide a structural basis for future rational design of anti-CSFV drugs which is critically important as no effective anti-CSFV drugs have been developed. Copyright © 2018 American Society for Microbiology.

  8. The Many Faces of the Flavivirus NS5 Protein in Antagonism of Type I Interferon Signaling

    PubMed Central

    2016-01-01

    ABSTRACT The vector-borne flaviviruses cause severe disease in humans on every inhabited continent on earth. Their transmission by arthropods, particularly mosquitoes, facilitates large emergence events such as witnessed with Zika virus (ZIKV) or West Nile virus in the Americas. Every vector-borne flavivirus examined thus far that causes disease in humans, from dengue virus to ZIKV, antagonizes the host type I interferon (IFN-I) response by preventing JAK-STAT signaling, suggesting that suppression of this pathway is an important determinant of infection. The most direct and potent viral inhibitor of this pathway is the nonstructural protein NS5. However, the mechanisms utilized by NS5 from different flaviviruses are often quite different, sometimes despite close evolutionary relationships between viruses. The varied mechanisms of NS5 as an IFN-I antagonist are also surprising given that the evolution of NS5 is restrained by the requirement to maintain function of two enzymatic activities critical for virus replication, the methyltransferase and RNA-dependent RNA polymerase. This review discusses the different strategies used by flavivirus NS5 to evade the antiviral effects of IFN-I and how this information can be used to better model disease and develop antiviral countermeasures. PMID:27881649

  9. 76 FR 65542 - N.S. Savannah; Exemption From Certain Security Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-238; NRC-2011-0222] N.S. Savannah; Exemption From Certain Security Requirements 1.0 Background The U.S. Department of Transportation, Maritime [[Page 65543

  10. Rift Valley fever virus NS{sub S} gene expression correlates with a defect in nuclear mRNA export

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, Anna Maria; Van Deusen, Nicole M.; Schmaljohn, Connie S., E-mail: Connie.s.schmaljohn.civ@mail.mil

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NS{sub S} gene, but not the N, G{sub N} or NS{sub M} genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NS{sub S}, confirming that expression of NS{sub S} is likely responsible for this phenomenon. - Highlights: • Riftmore » Valley fever virus (RVFV) infection alters the localization of host mRNA. • mRNA accumulates in the nuclei of RVFV-infected but not mock-infected cells. • NS{sub S} is likely responsible for mRNA relocalization to the nucleus.« less

  11. Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection.

    PubMed

    Wan, Shu-Wen; Chen, Pei-Wei; Chen, Chin-Yu; Lai, Yen-Chung; Chu, Ya-Ting; Hung, Chia-Yi; Lee, Han; Wu, Hsuan Franziska; Chuang, Yung-Chun; Lin, Jessica; Chang, Chih-Peng; Wang, Shuying; Liu, Ching-Chuan; Ho, Tzong-Shiann; Lin, Chiou-Feng; Lee, Chien-Kuo; Wu-Hsieh, Betty A; Anderson, Robert; Yeh, Trai-Ming; Lin, Yee-Shin

    2017-10-15

    Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome and is endemic to tropical and subtropical regions of the world. Our previous studies showed the existence of epitopes in the C-terminal region of DENV nonstructural protein 1 (NS1) which are cross-reactive with host Ags and trigger anti-DENV NS1 Ab-mediated endothelial cell damage and platelet dysfunction. To circumvent these potentially harmful events, we replaced the C-terminal region of DENV NS1 with the corresponding region from Japanese encephalitis virus NS1 to create chimeric DJ NS1 protein. Passive immunization of DENV-infected mice with polyclonal anti-DJ NS1 Abs reduced viral Ag expression at skin inoculation sites and shortened DENV-induced prolonged bleeding time. We also investigated the therapeutic effects of anti-NS1 mAb. One mAb designated 2E8 does not recognize the C-terminal region of DENV NS1 in which host-cross-reactive epitopes reside. Moreover, mAb 2E8 recognizes NS1 of all four DENV serotypes. We also found that mAb 2E8 caused complement-mediated lysis in DENV-infected cells. In mouse model studies, treatment with mAb 2E8 shortened DENV-induced prolonged bleeding time and reduced viral Ag expression in the skin. Importantly, mAb 2E8 provided therapeutic effects against all four serotypes of DENV. We further found that mAb administration to mice as late as 1 d prior to severe bleeding still reduced prolonged bleeding time and hemorrhage. Therefore, administration with a single dose of mAb 2E8 can protect mice against DENV infection and pathological effects, suggesting that NS1-specific mAb may be a therapeutic option against dengue disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  12. Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Wang, Xinwei; Zhou, Yan

    2018-01-01

    A method of ns-scaled time-gated fluorescence lifetime imaging (TFLI) is proposed to distinguish different fluorescent substances in forensic document examination. Compared with Video Spectral Comparator (VSC) which can examine fluorescence intensity images only, TFLI can detect questioned documents like falsification or alteration. TFLI system can enhance weak signal by accumulation method. The two fluorescence intensity images of the interval delay time tg are acquired by ICCD and fitted into fluorescence lifetime image. The lifetimes of fluorescence substances are represented by different colors, which make it easy to detect the fluorescent substances and the sequence of handwritings. It proves that TFLI is a powerful tool for forensic document examination. Furthermore, the advantages of TFLI system are ns-scaled precision preservation and powerful capture capability.

  13. Identification of chikungunya virus nsP2 protease inhibitors using structure-base approaches.

    PubMed

    Nguyen, Phuong T V; Yu, Haibo; Keller, Paul A

    2015-04-01

    The nsP2 protease of chikungunya virus (CHIKV) is one of the essential components of viral replication and it plays a crucial role in the cleavage of polyprotein precursors for the viral replication process. Therefore, it is gaining attention as a potential drug design target against CHIKV. Based on the recently determined crystal structure of the nsP2 protease of CHIKV, this study identified potential inhibitors of the virus using structure-based approaches with a combination of molecular docking, virtual screening and molecular dynamics (MD) simulations. The top hit compounds from database searching, using the NCI Diversity Set II, with targeting at five potential binding sites of the nsP2 protease, were identified by blind dockings and focused dockings. These complexes were then subjected to MD simulations to investigate the stability and flexibility of the complexes and to gain a more detailed insight into the interactions between the compounds and the enzyme. The hydrogen bonds and hydrophobic contacts were characterized for the complexes. Through structural alignment, the catalytic residues Cys1013 and His1083 were identified in the N-terminal region of the nsP2 protease. The absolute binding free energies were estimated by the linear interaction energy approach and compared with the binding affinities predicted with docking. The results provide valuable information for the development of inhibitors for CHIKV. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  14. Folding Proteins at 500 ns/hour with Work Queue.

    PubMed

    Abdul-Wahid, Badi'; Yu, Li; Rajan, Dinesh; Feng, Haoyun; Darve, Eric; Thain, Douglas; Izaguirre, Jesús A

    2012-10-01

    Molecular modeling is a field that traditionally has large computational costs. Until recently, most simulation techniques relied on long trajectories, which inherently have poor scalability. A new class of methods is proposed that requires only a large number of short calculations, and for which minimal communication between computer nodes is required. We considered one of the more accurate variants called Accelerated Weighted Ensemble Dynamics (AWE) and for which distributed computing can be made efficient. We implemented AWE using the Work Queue framework for task management and applied it to an all atom protein model (Fip35 WW domain). We can run with excellent scalability by simultaneously utilizing heterogeneous resources from multiple computing platforms such as clouds (Amazon EC2, Microsoft Azure), dedicated clusters, grids, on multiple architectures (CPU/GPU, 32/64bit), and in a dynamic environment in which processes are regularly added or removed from the pool. This has allowed us to achieve an aggregate sampling rate of over 500 ns/hour. As a comparison, a single process typically achieves 0.1 ns/hour.

  15. Folding Proteins at 500 ns/hour with Work Queue

    PubMed Central

    Abdul-Wahid, Badi’; Yu, Li; Rajan, Dinesh; Feng, Haoyun; Darve, Eric; Thain, Douglas; Izaguirre, Jesús A.

    2014-01-01

    Molecular modeling is a field that traditionally has large computational costs. Until recently, most simulation techniques relied on long trajectories, which inherently have poor scalability. A new class of methods is proposed that requires only a large number of short calculations, and for which minimal communication between computer nodes is required. We considered one of the more accurate variants called Accelerated Weighted Ensemble Dynamics (AWE) and for which distributed computing can be made efficient. We implemented AWE using the Work Queue framework for task management and applied it to an all atom protein model (Fip35 WW domain). We can run with excellent scalability by simultaneously utilizing heterogeneous resources from multiple computing platforms such as clouds (Amazon EC2, Microsoft Azure), dedicated clusters, grids, on multiple architectures (CPU/GPU, 32/64bit), and in a dynamic environment in which processes are regularly added or removed from the pool. This has allowed us to achieve an aggregate sampling rate of over 500 ns/hour. As a comparison, a single process typically achieves 0.1 ns/hour. PMID:25540799

  16. Biochemical Activities of Minute Virus of Mice Nonstructural Protein NS1 Are Modulated In Vitro by the Phosphorylation State of the Polypeptide

    PubMed Central

    Nüesch, Jürg P. F.; Corbau, Romuald; Tattersall, Peter; Rommelaere, Jean

    1998-01-01

    NS1, the 83-kDa major nonstructural protein of minute virus of mice (MVM), is a multifunctional nuclear phosphoprotein which is required in a variety of steps during progeny virus production, early as well as late during infection. NS1 is the initiator protein for viral DNA replication. It binds specifically to target DNA motifs; has site-specific single-strand nickase, intrinsic ATPase, and helicase activities; trans regulates viral and cellular promoters; and exerts cytotoxic stress on the host cell. To investigate whether these multiple activities of NS1 depend on posttranslational modifications, in particular phosphorylation, we expressed His-tagged NS1 in HeLa cells by using recombinant vaccinia viruses, dephosphorylated it at serine and threonine residues with calf intestine alkaline phosphatase, and compared the biochemical activities of the purified un(der)phosphorylated (NS1O) and the native (NS1P) polypeptides. Biochemical analyses of replicative functions of NS1O revealed a severe reduction of intrinsic helicase activity and, to a minor extent, of ATPase and nickase activities, whereas its affinity for the target DNA sequence [ACCA]2–3 was enhanced compared to that of NS1P. In the presence of endogenous protein kinases found in replication extracts, NS1O showed all functions necessary for resolution and replication of the 3′ dimer bridge, indicating reactivation of NS1O by rephosphorylation. Partial reactivation of the helicase activity was found as well when NS1O was incubated with protein kinase C. PMID:9733839

  17. Evaluation of the Tone Fan Noise Design/Prediction System (TFaNS) at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    1999-01-01

    Version 1.4 of TFaNS, the Tone Fan Noise Design/Prediction System. has recently been evaluated at the NASA Glenn Research Center. Data from tests of the Allison Ultra High Bypass Fan (UHBF) were used to compare to predicted farfield directivities for the radial stator configuration. There was good agreement between measured and predicted directivities at low fan speeds when rotor effects were neglected in the TFaNS calculations. At higher fan speeds, TFaNS is shown to be useful in predicting overall trends rather than absolute sound pressure levels.

  18. The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2-3.

    PubMed Central

    Cotmore, S F; Christensen, J; Nüesch, J P; Tattersall, P

    1995-01-01

    A DNA fragment containing the minute virus of mice 3' replication origin was specifically coprecipitated in immune complexes containing the virally coded NS1, but not the NS2, polypeptide. Antibodies directed against the amino- or carboxy-terminal regions of NS1 precipitated the NS1-origin complexes, but antibodies directed against NS1 amino acids 284 to 459 blocked complex formation. Using affinity-purified histidine-tagged NS1 preparations, we have shown that the specific protein-DNA interaction is of moderate affinity, being stable in 0.1 M salt but rapidly lost at higher salt concentrations. In contrast, generalized (or nonspecific) DNA binding by NS1 could be demonstrated only in low salt. Addition of ATP or gamma S-ATP enhanced specific DNA binding by wild-type NS1 severalfold, but binding was lost under conditions which favored ATP hydrolysis. NS1 molecules with mutations in a critical lysine residue (amino acid 405) in the consensus ATP-binding site bound to the origin, but this binding could not be enhanced by ATP addition. DNase I protection assays carried out with wild-type NS1 in the presence of gamma S-ATP gave footprints which extended over 43 nucleotides on both DNA strands, from the middle of the origin bubble sequence to a position some 14 bp beyond the nick site. The DNA-binding site for NS1 was mapped to a 22-bp fragment from the middle of the 3' replication origin which contains the sequence ACCAACCA. This conforms to a reiterated motif (ACCA)2-3, which occurs, in more or less degenerate form, at many sites throughout the minute virus of mice genome (J. W. Bodner, Virus Genes 2:167-182, 1989). Insertion of a single copy of the sequence (ACCA)3 was shown to be sufficient to confer NS1 binding on an otherwise unrecognized plasmid fragment. The functions of NS1 in the viral life cycle are reevaluated in the light of this result. PMID:7853501

  19. The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2-3.

    PubMed

    Cotmore, S F; Christensen, J; Nüesch, J P; Tattersall, P

    1995-03-01

    A DNA fragment containing the minute virus of mice 3' replication origin was specifically coprecipitated in immune complexes containing the virally coded NS1, but not the NS2, polypeptide. Antibodies directed against the amino- or carboxy-terminal regions of NS1 precipitated the NS1-origin complexes, but antibodies directed against NS1 amino acids 284 to 459 blocked complex formation. Using affinity-purified histidine-tagged NS1 preparations, we have shown that the specific protein-DNA interaction is of moderate affinity, being stable in 0.1 M salt but rapidly lost at higher salt concentrations. In contrast, generalized (or nonspecific) DNA binding by NS1 could be demonstrated only in low salt. Addition of ATP or gamma S-ATP enhanced specific DNA binding by wild-type NS1 severalfold, but binding was lost under conditions which favored ATP hydrolysis. NS1 molecules with mutations in a critical lysine residue (amino acid 405) in the consensus ATP-binding site bound to the origin, but this binding could not be enhanced by ATP addition. DNase I protection assays carried out with wild-type NS1 in the presence of gamma S-ATP gave footprints which extended over 43 nucleotides on both DNA strands, from the middle of the origin bubble sequence to a position some 14 bp beyond the nick site. The DNA-binding site for NS1 was mapped to a 22-bp fragment from the middle of the 3' replication origin which contains the sequence ACCAACCA. This conforms to a reiterated motif (ACCA)2-3, which occurs, in more or less degenerate form, at many sites throughout the minute virus of mice genome (J. W. Bodner, Virus Genes 2:167-182, 1989). Insertion of a single copy of the sequence (ACCA)3 was shown to be sufficient to confer NS1 binding on an otherwise unrecognized plasmid fragment. The functions of NS1 in the viral life cycle are reevaluated in the light of this result.

  20. A New Comptonization Model for Weakly Magnetized Accreting NS LMXBs

    NASA Astrophysics Data System (ADS)

    Paizis, A.; Farinelli, R.; Titarchuk, L.; Frontera, F.; Cocchi, M.; Ferrigno, C.

    2009-05-01

    We have developed a new Comptonization model to propose, for the first time, a self consistent physical interpretation of the complex spectral evolution seen in NS LMXBs. The model and its application to LMXBs are presented and compared to the Simbol-X expected capabilities.

  1. Host factor SPCS1 regulates the replication of Japanese encephalitis virus through interactions with transmembrane domains of NS2B.

    PubMed

    Ma, Le; Li, Fang; Zhang, Jing-Wei; Li, Wei; Zhao, Dong-Ming; Wang, Han; Hua, Rong-Hong; Bu, Zhi-Gao

    2018-03-28

    Signal peptidase complex subunit 1 (SPCS1) is a newly identified host factor that regulates flavivirus replication, but the molecular mechanism is not fully understood. Herein, using Japanese encephalitis virus (JEV) as a model, we investigated the mechanism through which host factor SPCS1 regulates the replication of flaviviruses. We first validated the regulatory function of SPCS1 in JEV propagation by knocking down and knocking out endogenous SPCS1. Loss of SPCS1 function markedly reduced intracellular virion assembly and production of infectious JEV particles, but did not affect virus cell entry, RNA replication, or translation. SPCS1 was found to interact with NS2B, which is involved in post-translational protein processing and viral assembly. Serial deletion mutation of the JEV NS2B protein revealed that two transmembrane domains, NS2B (1-49) and NS2B (84-131), interact with SPCS1. Further mutagenesis analysis of conserved flavivirus residues in two SPCS1 interaction domains of NS2B demonstrated that G12A, G37A, and G47A in NS2B (1-49), and P112A in NS2B (84-131), weakened the interaction with SPCS1. Deletion mutation of SPCS1 revealed that SPCS1 (91-169) which containing two transmembrane domains was involved in the interaction with both NS2B (1-49) and NS2B (84-131). Taken together, the results demonstrate that SPCS1 affects viral replication by interacting with NS2B, thereby influencing post-translational processing of JEV proteins and the assembly of virions. IMPORTANCE Understanding viral-host interactions is important for elucidating the molecular mechanisms of viral propagation, and identifying potential anti-viral targets. Previous reports demonstrated that SPCS1 is involved in the flavivirus life cycle, but the mechanism remains unknown. In this study, we confirmed that SPCS1 participates in the post-translational protein processing and viral assembly stages of the JEV lifecycle, but not in the cell entry, genome RNA replication, or translation

  2. Crystal structure of Zika virus NS5 RNA-dependent RNA polymerase.

    PubMed

    Godoy, Andre S; Lima, Gustavo M A; Oliveira, Ketllyn I Z; Torres, Naiara U; Maluf, Fernando V; Guido, Rafael V C; Oliva, Glaucius

    2017-03-27

    The current Zika virus (ZIKV) outbreak became a global health threat of complex epidemiology and devastating neurological impacts, therefore requiring urgent efforts towards the development of novel efficacious and safe antiviral drugs. Due to its central role in RNA viral replication, the non-structural protein 5 (NS5) RNA-dependent RNA-polymerase (RdRp) is a prime target for drug discovery. Here we describe the crystal structure of the recombinant ZIKV NS5 RdRp domain at 1.9 Å resolution as a platform for structure-based drug design strategy. The overall structure is similar to other flaviviral homologues. However, the priming loop target site, which is suitable for non-nucleoside polymerase inhibitor design, shows significant differences in comparison with the dengue virus structures, including a tighter pocket and a modified local charge distribution.

  3. Screening of antiviral activities in medicinal plants extracts against dengue virus using dengue NS2B-NS3 protease assay.

    PubMed

    Rothan, H A; Zulqarnain, M; Ammar, Y A; Tan, E C; Rahman, N A; Yusof, R

    2014-06-01

    Dengue virus infects millions of people worldwide and there is no vaccine or anti-dengue therapeutic available. Screening large numbers of medicinal plants for anti-dengue activities is an alternative strategy in order to find the potent therapeutic compounds. Therefore, this study was designed to identify anti-dengue activities in nineteen medicinal plant extracts that are used in traditional medicine. Local medicinal plants Vernonia cinerea, Hemigraphis reptans, Hedyotis auricularia, Laurentia longiflora, Tridax procumbers and Senna angustifolia were used in this study. The highest inhibitory activates against dengue NS2B-NS3pro was observed in ethanolic extract of S. angustifolia leaves, methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems. These findings were further verified by in vitro viral inhibition assay. Methanolic extract of V. cinerea leaves, ethanol extract of T. procumbens stems and at less extent ethanolic extract of S. angustifolia leaves were able to maintain the normal morphology of DENV2-infected Vero cells without causing much cytopathic effects (CPE). The percentage of viral inhibition of V. cinerea and T. procumbens extracts were significantly higher than S. angustifolia extract as measured by plaque formation assay and RT-qPCR. In conclusion, The outcome of this study showed that the methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems possessed high inhibitory activates against dengue virus that worth more investigation.

  4. Development and characterization of serotype-specific monoclonal antibodies against the dengue virus-4 (DENV-4) non-structural protein (NS1).

    PubMed

    Gelanew, Tesfaye; Hunsperger, Elizabeth

    2018-02-06

    Dengue, caused by one of the four serologically distinct dengue viruses (DENV-1 to - 4), is a mosquito-borne disease of serious global health significance. Reliable and cost-effective diagnostic tests, along with effective vaccines and vector-control strategies, are highly required to reduce dengue morbidity and mortality. Evaluation studies revealed that many commercially available NS1 antigen (Ag) tests have limited sensitivity to DENV-4 serotype compared to the other three serotypes. These studies indicated the need for development of new NS1 Ag detection test with improved sensitivity to DENV-4. An NS1 capture enzyme linked immunoassay (ELISA) specific to DENV-4 may improve the detection of DENV-4 cases worldwide. In addition, a serotype-specific NS1 Ag test identifies both DENV and the infecting serotype. In this study, we used a small-ubiquitin-like modifier (SUMO*) cloning vector to express a SUMO*-DENV-4 rNS1 fusion protein to develop NS1 DENV-4 specific monoclonal antibodies (MAbs). These newly developed MAbs were then optimized for use in an anti-NS1 DENV-4 capture ELISA. The serotype specificity and sensitivity of this ELISA was evaluated using (i) supernatants from DENV (1-4)-infected Vero cell cultures, (ii) rNS1s from all the four DENV (1-4) and, (iii) rNS1s of related flaviviruses (yellow fever virus; YFV and West Nile virus; WNV). From the evaluation studies of the newly developed MAbs, we identified three DENV-4 specific anti-NS1 MAbs: 3H7A9, 8A6F2 and 6D4B10. Two of these MAbs were optimal for use in a DENV-4 serotype-specific NS1 capture ELISA: MAb 8A6F2 as the capture antibody and 6D4B10 as a detection antibody. This ELISA was sensitive and specific to DENV-4 with no cross-reactivity to other three DENV (1-3) serotypes and other heterologous flaviviruses. Taken together these data indicated that our MAbs are useful reagents for the development of DENV-4 immunodiagnostic tests.

  5. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus.

    PubMed

    Mutso, Margit; Morro, Ainhoa Moliner; Smedberg, Cecilia; Kasvandik, Sergo; Aquilimeba, Muriel; Teppor, Mona; Tarve, Liisi; Lulla, Aleksei; Lulla, Valeria; Saul, Sirle; Thaa, Bastian; McInerney, Gerald M; Merits, Andres; Varjak, Margus

    2018-04-27

    Infection by Chikungunya virus (CHIKV) of the Old World alphaviruses (family Togaviridae) in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP) (nsP1, nsp2, nsP3 and nsP4) that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD) of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV) harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.

  6. In Vitro Antiviral Activity and Resistance Profile of the Next-Generation Hepatitis C Virus NS5A Inhibitor Pibrentasvir.

    PubMed

    Ng, Teresa I; Krishnan, Preethi; Pilot-Matias, Tami; Kati, Warren; Schnell, Gretja; Beyer, Jill; Reisch, Thomas; Lu, Liangjun; Dekhtyar, Tatyana; Irvin, Michelle; Tripathi, Rakesh; Maring, Clarence; Randolph, John T; Wagner, Rolf; Collins, Christine

    2017-05-01

    Pibrentasvir (ABT-530) is a novel and pan-genotypic hepatitis C virus (HCV) NS5A inhibitor with 50% effective concentration (EC 50 ) values ranging from 1.4 to 5.0 pM against HCV replicons containing NS5A from genotypes 1 to 6. Pibrentasvir demonstrated similar activity against a panel of chimeric replicons containing HCV NS5A of genotypes 1 to 6 from clinical samples. Resistance selection studies were conducted using HCV replicon cells with NS5A from genotype 1a, 1b, 2a, 2b, 3a, 4a, 5a, or 6a at a concentration of pibrentasvir that was 10- or 100-fold over its EC 50 for the respective replicon. With pibrentasvir at 10-fold over the respective EC 50 , only a small number of colonies (0.00015 to 0.0065% of input cells) with resistance-associated amino acid substitutions were selected in replicons containing genotype 1a, 2a, or 3a NS5A, and no viable colonies were selected in replicons containing NS5A from other genotypes. With pibrentasvir at 100-fold over the respective EC 50 , very few colonies (0.0002% of input cells) were selected by pibrentasvir in genotype 1a replicon cells while no colonies were selected in other replicons. Pibrentasvir is active against common resistance-conferring substitutions in HCV genotypes 1 to 6 that were identified for other NS5A inhibitors, including those at key amino acid positions 28, 30, 31, or 93. The combination of pibrentasvir with HCV inhibitors of other classes produced synergistic inhibition of HCV replication. In summary, pibrentasvir is a next-generation HCV NS5A inhibitor with potent and pan-genotypic activity, and it maintains activity against common amino acid substitutions of HCV genotypes 1 to 6 that are known to confer resistance to currently approved NS5A inhibitors. Copyright © 2017 Ng et al.

  7. [Construction and expression of six deletion mutants of human astrovirus C-terminal nsP1a/4 protein].

    PubMed

    Zhao, Wei; Niu, Ke; Zhao, Jian; Jin, Yi-ming; Sui, Ting-ting; Wang, Wen

    2013-09-01

    Human astrovirus (HAstV) is one of the leading causes of actue virual diarrhea in infants. HAstV-induced epithdlial cell apoptosis plays an important role in the pathogenesis of HAstV infection. Our previous study indicated that HAstV non-structural protein nsPla C-terminal protein nsPla/4 was the major apoptosis functional protein and probably contained the main apoptosis domains. In order to screen for astrovirus encoded apoptotic protien, nsPla/4 and six turncated proteins, which possessed nsPla/4 protein different function domain ,were cloned into green fluorescent protein (GFP) vector pEG-FP-N3. After 24-72 h transfection, the fusion protein expression in BHK21 cells, was analysis by fluorescence microscope and Western blot. The results indicated seven fusion proteins were observed successfully in BHK21 cell after transfected for 24 h. Western blot analysis showed that the level of fusion protein expressed in BHK21 cells was increased significantly at 72h compared to 48h in transfected cells. The successful expression of deletion mutants of nsPla/4 protein was an important foundation to gain further insights into the function of apoptosis domains of nsPla/4 protein and it would also provide research platform to further confirm the molecule pathogenic mechanism of human astrovirus.

  8. Preclinical Profile and Characterization of the Hepatitis C Virus NS3 Protease Inhibitor Asunaprevir (BMS-650032)

    PubMed Central

    Sheaffer, Amy K.; Friborg, Jacques; Hernandez, Dennis; Falk, Paul; Zhai, Guangzhi; Levine, Steven; Chaniewski, Susan; Yu, Fei; Barry, Diana; Chen, Chaoqun; Lee, Min S.; Mosure, Kathy; Sun, Li-Qiang; Sinz, Michael; Meanwell, Nicholas A.; Colonno, Richard J.; Knipe, Jay; Scola, Paul

    2012-01-01

    Asunaprevir (ASV; BMS-650032) is a hepatitis C virus (HCV) NS3 protease inhibitor that has demonstrated efficacy in patients chronically infected with HCV genotype 1 when combined with alfa interferon and/or the NS5A replication complex inhibitor daclatasvir. ASV competitively binds to the NS3/4A protease complex, with Ki values of 0.4 and 0.24 nM against recombinant enzymes representing genotypes 1a (H77) and 1b (J4L6S), respectively. Selectivity was demonstrated by the absence of any significant activity against the closely related GB virus-B NS3 protease and a panel of human serine or cysteine proteases. In cell culture, ASV inhibited replication of HCV replicons representing genotypes 1 and 4, with 50% effective concentrations (EC50s) ranging from 1 to 4 nM, and had weaker activity against genotypes 2 and 3 (EC50, 67 to 1,162 nM). Selectivity was again demonstrated by the absence of activity (EC50, >12 μM) against a panel of other RNA viruses. ASV exhibited additive or synergistic activity in combination studies with alfa interferon, ribavirin, and/or inhibitors specifically targeting NS5A or NS5B. Plasma and tissue exposures in vivo in several animal species indicated that ASV displayed a hepatotropic disposition (liver-to-plasma ratios ranging from 40- to 359-fold across species). Twenty-four hours postdose, liver exposures across all species tested were ≥110-fold above the inhibitor EC50s observed with HCV genotype-1 replicons. Based on these virologic and exposure properties, ASV holds promise for future utility in a combination with other anti-HCV agents in the treatment of HCV-infected patients. PMID:22869577

  9. Computational Study on the Inhibitor Binding Mode and Allosteric Regulation Mechanism in Hepatitis C Virus NS3/4A Protein

    PubMed Central

    Xue, Weiwei; Yang, Ying; Wang, Xiaoting; Liu, Huanxiang; Yao, Xiaojun

    2014-01-01

    HCV NS3/4A protein is an attractive therapeutic target responsible for harboring serine protease and RNA helicase activities during the viral replication. Small molecules binding at the interface between the protease and helicase domains can stabilize the closed conformation of the protein and thus block the catalytic function of HCV NS3/4A protein via an allosteric regulation mechanism. But the detailed mechanism remains elusive. Here, we aimed to provide some insight into the inhibitor binding mode and allosteric regulation mechanism of HCV NS3/4A protein by using computational methods. Four simulation systems were investigated. They include: apo state of HCV NS3/4A protein, HCV NS3/4A protein in complex with an allosteric inhibitor and the truncated form of the above two systems. The molecular dynamics simulation results indicate HCV NS3/4A protein in complex with the allosteric inhibitor 4VA adopts a closed conformation (inactive state), while the truncated apo protein adopts an open conformation (active state). Further residue interaction network analysis suggests the communication of the domain-domain interface play an important role in the transition from closed to open conformation of HCV NS3/4A protein. However, the inhibitor stabilizes the closed conformation through interaction with several key residues from both the protease and helicase domains, including His57, Asp79, Asp81, Asp168, Met485, Cys525 and Asp527, which blocks the information communication between the functional domains interface. Finally, a dynamic model about the allosteric regulation and conformational changes of HCV NS3/4A protein was proposed and could provide fundamental insights into the allosteric mechanism of HCV NS3/4A protein function regulation and design of new potent inhibitors. PMID:24586263

  10. NS5B RNA dependent RNA polymerase inhibitors: the promising approach to treat hepatitis C virus infections.

    PubMed

    Deore, R R; Chern, J-W

    2010-01-01

    Hepatitis C virus (HCV), a causative agent for non-A and non-B hepatitis, has infected approximately 3% of world's population. The current treatment option of ribavirin in combination with pegylated interferon possesses lower sustained virological response rates, and has serious disadvantages. Unfortunately, no prophylactic vaccine has been approved yet. Therefore, there is an unmet clinical need for more effective and safe anti-HCV drugs. HCV NS5B RNA dependent RNA polymerase is currently pursued as the most popular target to develop safe anti-HCV agents, as it is not expressed in uninfected cells. More than 25 pharmaceutical companies and some research groups have developed ≈50 structurally diverse scaffolds to inhibit NS5B. Here we provide comprehensive account of the drug development process of these scaffolds. NS5B polymerase inhibitors have been broadly classified in nucleoside and non nucleoside inhibitors and are sub classified according to their mechanism of action and structural diversities. With some additional considerations about the inhibitor bound NS5B enzyme X-ray crystal structure information and pharmacological aspects of the inhibitors, this review summarizes the lead identification, structure activity relationship (SAR) studies leading to the most potent NS5B inhibitors with subgenomic replicon activity.

  11. Roles of the phosphorylation of specific serines and threonines in the NS1 protein of human influenza A viruses.

    PubMed

    Hsiang, Tien-Ying; Zhou, Ligang; Krug, Robert M

    2012-10-01

    We demonstrate that phosphorylation of the NS1 protein of a human influenza A virus occurs not only at the threonine (T) at position 215 but also at serines (Ss), specifically at positions 42 and 48. By generating recombinant influenza A/Udorn/72 (Ud) viruses that encode mutant NS1 proteins, we determined the roles of these phosphorylations in virus replication. At position 215 only a T-to-A substitution attenuated replication, whereas other substitutions (T to E to mimic constitutive phosphorylation, T to N, and T to P, the amino acid in avian influenza A virus NS1 proteins) had no effect. We conclude that attenuation resulting from the T-to-A substitution at position 215 is attributable to a deleterious structural change in the NS1 protein that is not caused by other amino acid substitutions and that phosphorylation of T215 does not affect virus replication. At position 48 neither an S-to-A substitution nor an S-to-D substitution that mimics constitutive phosphorylation affected virus replication. In contrast, at position 42, an S-to-D, but not an S-to-A, substitution caused attenuation. The S-to-D substitution eliminates detectable double-stranded RNA binding by the NS1 protein, accounting for attenuation of virus replication. We show that protein kinase C α (PKCα) catalyzes S42 phosphorylation. Consequently, the only phosphorylation of the NS1 protein of this human influenza A virus that regulates its replication is S42 phosphorylation catalyzed by PKCα. In contrast, phosphorylation of Ts or Ss in the NS1 protein of the 2009 H1N1 pandemic virus was not detected, indicating that NS1 phosphorylation probably does not play any role in the replication of this virus.

  12. DNA Unwinding Functions of Minute Virus of Mice NS1 Protein Are Modulated Specifically by the Lambda Isoform of Protein Kinase C

    PubMed Central

    Dettwiler, Sabine; Rommelaere, Jean; Nüesch, Jürg P. F.

    1999-01-01

    The parvovirus minute virus of mice NS1 protein is a multifunctional protein involved in a variety of processes during virus propagation, ranging from viral DNA replication to promoter regulation and cytotoxic action to the host cell. Since NS1 becomes phosphorylated during infection, it was proposed that the different tasks of this protein might be regulated in a coordinated manner by phosphorylation. Indeed, comparing biochemical functions of native NS1 with its dephosphorylated counterpart showed that site-specific nicking of the origin and the helicase and ATPase activities are remarkably reduced upon NS1 dephosphorylation while site-specific affinity of the protein to the origin became enhanced. As a consequence, the dephosphorylated polypeptide is deficient for initiation of DNA replication. By adding fractionated cell extracts to a kinase-free in vitro replication system, the combination of two protein components containing members of the protein kinase C (PKC) family was found to rescue the replication activity of the dephosphorylated NS1 protein upon addition of PKC cofactors. One of these components, termed HA-1, also stimulated NS1 helicase function in response to acidic lipids but not phorbol esters, indicating the involvement of atypical PKC isoforms in the modulation of this NS1 function (J. P. F. Nüesch, S. Dettwiler, R. Corbau, and J. Rommelaere, J. Virol. 72:9966–9977, 1998). The present study led to the identification of atypical PKCλ/ι as the active component of HA-1 responsible for the regulation of NS1 DNA unwinding and replicative functions. Moreover, a target PKCλ phosphorylation site was localized at S473 of NS1. By site-directed mutagenesis, we showed that this residue is essential for NS1 helicase activity but not promoter regulation, suggesting a possible modulation of NS1 functions by PKCλ phosphorylation at residue S473. PMID:10438831

  13. Virtual ligand screening of the National Cancer Institute (NCI) compound library leads to the allosteric inhibitory scaffolds of the West Nile Virus NS3 proteinase.

    PubMed

    Shiryaev, Sergey A; Cheltsov, Anton V; Gawlik, Katarzyna; Ratnikov, Boris I; Strongin, Alex Y

    2011-02-01

    Viruses of the genus Flavivirus are responsible for significant human disease and mortality. The N-terminal domain of the flaviviral nonstructural (NS)3 protein codes for the serine, chymotrypsin-fold proteinase (NS3pro). The presence of the nonstructural (NS)2B cofactor, which is encoded by the upstream gene in the flaviviral genome, is necessary for NS3pro to exhibit its proteolytic activity. The two-component NS2B-NS3pro functional activity is essential for the viral polyprotein processing and replication. Both the structure and the function of NS2B-NS3pro are conserved in the Flavivirus family. Because of its essential function in the posttranslational processing of the viral polyprotein precursor, NS2B-NS3pro is a promising target for anti-flavivirus drugs. To identify selective inhibitors with the reduced cross-reactivity and off-target effects, we focused our strategy on the allosteric inhibitors capable of targeting the NS2B-NS3pro interface rather than the NS3pro active site. Using virtual ligand screening of the diverse, ∼275,000-compound library and the catalytic domain of the two-component West Nile virus (WNV) NS2B-NS3pro as a receptor, we identified a limited subset of the novel inhibitory scaffolds. Several of the discovered compounds performed as allosteric inhibitors and exhibited a nanomolar range potency in the in vitro cleavage assays. The inhibitors were also potent in cell-based assays employing the sub-genomic, luciferase-tagged WNV and Dengue viral replicons. The selectivity of the inhibitors was confirmed using the in vitro cleavage assays with furin, a human serine proteinase, the substrate preferences of which are similar to those of WNV NS2B-NS3pro. Conceptually, the similar in silico drug discovery strategy may be readily employed for the identification of inhibitors of other flaviviruses.

  14. Systems Biology Reveals NS4B-Cyclophilin A Interaction: A New Target to Inhibit YFV Replication.

    PubMed

    Vidotto, Alessandra; Morais, Ana T S; Ribeiro, Milene R; Pacca, Carolina C; Terzian, Ana C B; Gil, Laura H V G; Mohana-Borges, Ronaldo; Gallay, Philippe; Nogueira, Mauricio L

    2017-04-07

    Yellow fever virus (YFV) replication is highly dependent on host cell factors. YFV NS4B is reported to be involved in viral replication and immune evasion. Here interactions between NS4B and human proteins were determined using a GST pull-down assay and analyzed using 1-DE and LC-MS/MS. We present a total of 207 proteins confirmed using Scaffold 3 Software. Cyclophilin A (CypA), a protein that has been shown to be necessary for the positive regulation of flavivirus replication, was identified as a possible NS4B partner. 59 proteins were found to be significantly increased when compared with a negative control, and CypA exhibited the greatest difference, with a 22-fold change. Fisher's exact test was significant for 58 proteins, and the p value of CypA was the most significant (0.000000019). The Ingenuity Systems software identified 16 pathways, and this analysis indicated sirolimus, an mTOR pathway inhibitor, as a potential inhibitor of CypA. Immunofluorescence and viral plaque assays showed a significant reduction in YFV replication using sirolimus and cyclosporine A (CsA) as inhibitors. Furthermore, YFV replication was strongly inhibited in cells treated with both inhibitors using reporter BHK-21-rep-YFV17D-LucNeoIres cells. Taken together, these data suggest that CypA-NS4B interaction regulates YFV replication. Finally, we present the first evidence that YFV inhibition may depend on NS4B-CypA interaction.

  15. Therapeutic potential of Taraxacum officinale against HCV NS5B polymerase: In-vitro and In silico study.

    PubMed

    Rehman, Sidra; Ijaz, Bushra; Fatima, Nighat; Muhammad, Syed Aun; Riazuddin, Sheikh

    2016-10-01

    Discovery of alternative and complementary regimens for HCV infection treatment is a need of time from clinical as well as economical point of views. Low cost of bioactive natural compounds production, high biochemical diversity and inexistent/milder side effects contribute to new therapies. Aim of this study is to clarify anti-HCV role of Taraxacum officinale, a natural habitat plant rich of flavonoids. In this study, methanol extract of T. officinale leaves was initially analyzed for its cytotoxic activity in human hepatoma (Huh-7) and CHO cell lines. Hepatoma cells were transfected with pCR3.1/Flagtag/HCV NS5B gene cloned vector (genotype 1a) along with T. officinale extract. Considering NS5B polymerase as potential therapeutic drug target, twelve phytochemicals of T. officinale were selected as ligands for molecular interaction with NS5B protein using Molecular Operating Environment (MOE) software. Sofosbuvir (Sovaldi: brand name) currently approved as new anti-HCV drug, was used as standard in current study for comparative analysis in computational docking screening. HCV NS5B polymerase as name indicates plays key role in viral genome replication. On the basis of which NS5B gene is targeted for determining antiviral role of T. officinale extract and 65% inhibition of NS5B expression was documented at nontoxic dose concentration (200μg/ml) using Real-time PCR. In addition, 57% inhibition of HCV replication was recorded when incubating Huh-7 cells with high titer serum of HCV infected patients along with leaves extract. Phytochemicals for instance d-glucopyranoside (-31.212 Kcal/mol), Quercetin (-29.222 Kcal/mol), Luteolin (-26.941 Kcal/mol) and some others displayed least binding energies as compared to standard drug Sofosbuvir (-21.0746 Kcal/mol). Results of our study strongly revealed that T. officinale leaves extract potentially blocked the viral replication and NS5B gene expression without posing any toxic effect on normal fibroblast cells of body

  16. Sn ion energy distributions of ns- and ps-laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Bayerle, A.; Deuzeman, M. J.; van der Heijden, S.; Kurilovich, D.; de Faria Pinto, T.; Stodolna, A.; Witte, S.; Eikema, K. S. E.; Ubachs, W.; Hoekstra, R.; Versolato, O. O.

    2018-04-01

    Ion energy distributions arising from laser-produced plasmas of Sn are measured over a wide laser parameter space. Planar-solid and liquid-droplet targets are exposed to infrared laser pulses with energy densities between 1 J cm‑2 and 4 kJ cm‑2 and durations spanning 0.5 ps to 6 ns. The measured ion energy distributions are compared to two self-similar solutions of a hydrodynamic approach assuming isothermal expansion of the plasma plume into vacuum. For planar and droplet targets exposed to ps-long pulses, we find good agreement between the experimental results and the self-similar solution of a semi-infinite simple planar plasma configuration with an exponential density profile. The ion energy distributions resulting from solid Sn exposed to ns-pulses agrees with solutions of a limited-mass model that assumes a Gaussian-shaped initial density profile.

  17. A molecular dynamics simulation study decodes the Zika virus NS5 methyltransferase bound to SAH and RNA analogue.

    PubMed

    Chuang, Chih-Hung; Chiou, Shean-Jaw; Cheng, Tian-Lu; Wang, Yeng-Tseng

    2018-04-20

    Since 2015, widespread Zika virus outbreaks in Central and South America have caused increases in microcephaly cases, and this acute problem requires urgent attention. We employed molecular dynamics and Gaussian accelerated molecular dynamics techniques to investigate the structure of Zika NS5 protein with S-adenosyl-L-homocysteine (SAH) and an RNA analogue, namely 7-methylguanosine 5'-triphosphate (m7GTP). For the binding motif of Zika virus NS5 protein and SAH, we suggest that the four Zika NS5 substructures (residue orders: 101-112, 54-86, 127-136 and 146-161) and the residues (Ser56, Gly81, Arg84, Trp87, Thr104, Gly106, Gly107, His110, Asp146, Ile147, and Gly148) might be responsible for the selectivity of the new Zika virus drugs. For the binding motif of Zika NS5 protein and m7GTP, we suggest that the three Zika NS5 substructures (residue orders: 11-31, 146-161 and 207-218) and the residues (Asn17, Phe24, Lys28, Lys29, Ser150, Arg213, and Ser215) might be responsible for the selectivity of the new Zika virus drugs.

  18. Young Otto Struve: The Education and Development of A Research Scientist 1921-1932

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    1995-12-01

    Otto Struve arrived at Yerkes Observatory from Turkey in October 1921, the penniless survivor of a defeated army. Then 24 years old, he immediately began his studies and assistantship as the only graduate student at the observatory. Eleven years later he became its "boy director." His education, training, research experience and development are described in the context of Yerkes Observatory, and of American graduate and post-graduate work in astronomy of the time. Under Director Edwin B. Frost, Yerkes Observatory's main program was radial-velocity measurements of O, B, and A stars. Struve worked on it and did his thesis on spectroscopic binaries. A prodigious achiever, he was appointed to the faculty as an instructor as soon as he received his doctorate. On his own he jumped into frontier research on interstellar absorption lines, based in large part on existing spectrograms taken for the radial-velocity program. Reviewing Cecilia Payne's book on stellar atmospheres in 1926 converted Struve to a self-taught observational astrophysicist. Research leaves at Mount Wilson and Harvard, with working visits to Lick and the DAO, plus a Guggenheim year at Cambridge with Arthur S. Eddington, broadened his horizons. Struve always observed diligently, published frequently, attended AAS meetings, presented oral papers, and discussed his research with others. With practically no knowledge of modern physics, he cultivated others who were experts in it, beginning with Pol Swings, a visitor from Belgium. By 1932 Struve was ready to become director of Yerkes Observatory, and to lead it back into its place as a leading astrophysical research center, for which George Ellery Hale had founded it.

  19. Japanese encephalitis virus NS1' protein depends on pseudoknot secondary structure and is cleaved by caspase during virus infection and cell apoptosis.

    PubMed

    Sun, Jin; Yu, Yongxin; Deubel, Vincent

    2012-09-01

    Japanese encephalitis virus (JEV) is a flavivirus with a complex life cycle involving mosquito vectors that mainly target birds and pigs, and causes severe encephalitis in children in Asia. Neurotropic flaviviruses of the JEV serogroup have a particular characteristic of expressing a unique nonstructural NS1' protein, which is a prolongation of NS1 at the C terminus by 52 amino acids derived from a pseudoknot-driven-1 translation frameshift. Protein NS1' is associated with virus neuro-invasiveness. In this study, the need of the pseudoknot structure for NS1' synthesis was confirmed. By using a specific antibody against the prolonged peptide, NS1' was found to be absent from the JEV SA14-14-2 vaccine strain, resulting from a single nucleotide silent mutation in the pseudoknot. A partial cleavage of NS1' at a specific site of its C-terminal appendix recognized by caspases and inhibited by caspase inhibitors suggests a unique feature of intracellular NS1'. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Radiometric calibration of the reflective bands of NS001-Thematic Mapper Simulator (TMS) and modular multispectral radiometers (MMR)

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Wood, Frank M., Jr.; Ahmad, Suraiya P.

    1988-01-01

    The NS001 Thematic Mapper Simulator scanner (TMS) and several modular multispectral radiometers (MMRs) are among the primary instruments used in the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE). The NS001 has a continuously variable gain setting. Calibration of the NS001 data is influenced by drift in the dark current level of up to six counts during a mirror scan at typical gain settings. The MMR instruments are being used in their 1 deg FOV configuration on the helicopter and 15 deg FOV on the ground.

  1. Baseline NS5A resistance associated substitutions may impair DAA response in real-world hepatitis C patients.

    PubMed

    Carrasco, Itzíar; Arias, Ana; Benítez-Gutiérrez, Laura; Lledó, Gemma; Requena, Silvia; Cuesta, Miriam; Cuervas-Mons, Valentín; de Mendoza, Carmen

    2018-03-01

    Oral DAA have demonstrated high efficacy as treatment of hepatitis C. However, the presence of resistance-associated substitutions (RAS) at baseline has occasionally been associated with impaired treatment response. Herein, we examined the impact of baseline RAS at the HCV NS5A gene region on treatment response in a real-life setting. All hepatitis C patients treated with DAA including NS5A inhibitors at our institution were retrospectively examined. The virus NS5A gene was analyzed using population sequencing at baseline and after 24 weeks of completing therapy in all patients that failed. All changes recorded at positions 28, 29, 30, 31, 32, 58, 62, 92, and 93 were considered. A total of 166 patients were analyzed. HCV genotypes were as follows: G1a (31.9%), G1b (48.2%), G3 (10.2%), and G4 (9.6%). Overall, 69 (41.6%) patients were coinfected with HIV and 46.7% had advanced liver fibrosis (Metavir F3-F4). Sixty (36.1%) patients had at least one RAS at baseline, including M28A/G/T (5), Q30X (12), L31I/F/M/V (6), T58P/S (25), Q/E62D (1), A92 K (7), and Y93C/H (15). Overall, 4.8% had two or more RAS, being more frequent in G4 (12.5%) followed by G1b (6.3%) and G1a (1.9%). Of 10 (6%) patients that failed DAA therapy, five had baseline NS5A RAS. No association was found for specific baseline RAS, although changes at position 30 were more frequent in failures than cures (22.2% vs 6.4%, P = 0.074). Moreover, the presence of two or more RAS at baseline was more frequent in failures (HR: 7.2; P = 0.029). Upon failure, six patients showed emerging RAS, including Q30C/H/R (3), L31M (1), and Y93C/H (2). Baseline NS5A RAS are frequently seen in DAA-naïve HCV patients. Two or more baseline NS5A RAS were found in nearly 5% and were significantly associated to DAA failure. Therefore, baseline NS5A testing should be considered when HCV treatment is planned with NS5A inhibitors. © 2017 Wiley Periodicals, Inc.

  2. In-Depth Analysis of HA and NS1 Genes in A(H1N1)pdm09 Infected Patients.

    PubMed

    Caglioti, Claudia; Selleri, Marina; Rozera, Gabriella; Giombini, Emanuela; Zaccaro, Paola; Valli, Maria Beatrice; Capobianchi, Maria Rosaria

    2016-01-01

    In March/April 2009, a new pandemic influenza A virus (A(H1N1)pdm09) emerged and spread rapidly via human-to-human transmission, giving rise to the first pandemic of the 21th century. Influenza virus may be present in the infected host as a mixture of variants, referred to as quasi-species, on which natural and immune-driven selection operates. Since hemagglutinin (HA) and non-structural 1 (NS1) proteins are relevant in respect of adaptive and innate immune responses, the present study was aimed at establishing the intra-host genetic heterogeneity of HA and NS1 genes, applying ultra-deep pyrosequencing (UDPS) to nasopharyngeal swabs (NPS) from patients with confirmed influenza A(H1N1)pdm09 infection. The intra-patient nucleotide diversity of HA was significantly higher than that of NS1 (median (IQR): 37.9 (32.8-42.3) X 10-4 vs 30.6 (27.4-33.6) X 10-4 substitutions/site, p = 0.024); no significant correlation for nucleotide diversity of NS1 and HA was observed (r = 0.319, p = 0.29). Furthermore, a strong inverse correlation between nucleotide diversity of NS1 and viral load was observed (r = - 0.74, p = 0.004). For both HA and NS1, the variants appeared scattered along the genes, thus indicating no privileged mutation site. Known polymorphisms, S203T (HA) and I123V (NS1), were observed as dominant variants (>98%) in almost all patients; three HA and two NS1 further variants were observed at frequency >40%; a number of additional variants were detected at frequency <6% (minority variants), of which three HA and four NS1 variants were novel. In few patients multiple variants were observed at HA residues 203 and 222. According to the FLUSURVER tool, some of these variants may affect immune recognition and host range; however, these inferences are based on H5N1, and their extension to A(H1N1)pdm09 requires caution. More studies are necessary to address the significance of the composite nature of influenza virus quasi-species within infected patients.

  3. Introduction to Psychomotor Skills (NS 117): Competency-Based Course Syllabus.

    ERIC Educational Resources Information Center

    Brady, Marilyn H.; Wells, Tanya G.

    "Introduction to Psychomotor Skills" (NS 117) is the first of seven core courses in the associate degree nursing program at Chattanooga State Technical Community College. The course was designed to help students develop competencies in psychomotor skills necessary to assume the role of provider of direct patient care. The course syllabus for NS…

  4. [Determination of drug resistance mutations of NS3 inhibitors in chronic hepatitis C patients infected with genotype 1].

    PubMed

    Şanlıdağ, Tamer; Sayan, Murat; Akçalı, Sinem; Kasap, Elmas; Buran, Tahir; Arıkan, Ayşe

    2017-04-01

    Direct-acting antiviral agents (DAA) such as NS3 protease inhibitors is the first class of drugs used for chronic hepatitis C (CHC) treatment. NS3 inhibitors (PI) with low genetic barrier have been approved to be used in the CHC genotype 1 infections, and in the treatment of compensated liver disease including cirrhosis together with pegile interferon and ribavirin. Consequently, the development of drug resistance during DAA treatment of CHC is a major problem. NS3 resistant variants can be detected before treatment as they can occurnaturally. The aim of this study was to investigate new and old generation NS3 inhibitors resistance mutations before DAA treatment in hepatitis C virus (HCV) that were isolated from CHC. The present study was conducted in 2015 and included 97 naive DAA patients infected with HCV genotype 1, who were diagnosed in Manisa and Kocaeli cities of Turkey. Magnetic particle based HCV RNA extraction and than RNA detection and quantification were performed using commercial real-time PCR assay QIASypmhony + Rotorgene Q/ArtusHCV QS-RGQ and COBAS Ampliprep/COBAS TaqMan HCV Tests. HCV NS3 viral protease genome region was amplified with PCR and mutation analysis was performed by Sanger dideoxy sequencing technique of NS3 protease codons (codon 32-185). HCV NS3 protease inhibitors; asunaprevir, boceprevir, faldaprevir, grazoprevir, pariteprevir, simeprevir and telaprevir were analysed for resistant mutations by Geno2pheno-HCV resistance tool. HCV was genotyped in all patients and 88 patients (n= 88/97, 91%) had genotype 1. Eight (n= 8/97, 8.2%) and 80 (n= 80/97, 82.4%) HCC patients were subgenotyped as 1a and 1b, respectively. Many aminoacid substitutions and resistance mutations were determined in 39/88 (44%) patients in the study group. Q80L, S122C/N, S138W were defined as potential substitutions (6/88 patients; 7%); R109K, R117C, S122G, I132V, I170V, N174S were described as potential resistance (34/88 patients; 39%); V36L, T54S, V55A, Q80H were

  5. Application of the dengue virus NS1 antigen rapid test for on-site detection of imported dengue cases at airports.

    PubMed

    Shu, Pei-Yun; Yang, Cheng-Fen; Kao, Jeng-Fong; Su, Chien-Ling; Chang, Shu-Fen; Lin, Chien-Chou; Yang, Wen-Chih; Shih, Hsiu; Yang, Shih-Yan; Wu, Ping-Fuai; Wu, Ho-Sheng; Huang, Jyh-Hsiung

    2009-04-01

    We used the dengue virus NS1 antigen (Ag) rapid test for on-site detection of imported dengue cases at airports. Among 22 positive cases of dengue identified from 850 patients with a fever suspected to have dengue, 17 were NS1 Ag test positive. These findings demonstrate the usefulness of the NS1 Ag rapid test in screening imported dengue cases at airports.

  6. Application of the Dengue Virus NS1 Antigen Rapid Test for On-Site Detection of Imported Dengue Cases at Airports▿

    PubMed Central

    Shu, Pei-Yun; Yang, Cheng-Fen; Kao, Jeng-Fong; Su, Chien-Ling; Chang, Shu-Fen; Lin, Chien-Chou; Yang, Wen-Chih; Shih, Hsiu; Yang, Shih-Yan; Wu, Ping-Fuai; Wu, Ho-Sheng; Huang, Jyh-Hsiung

    2009-01-01

    We used the dengue virus NS1 antigen (Ag) rapid test for on-site detection of imported dengue cases at airports. Among 22 positive cases of dengue identified from 850 patients with a fever suspected to have dengue, 17 were NS1 Ag test positive. These findings demonstrate the usefulness of the NS1 Ag rapid test in screening imported dengue cases at airports. PMID:19193828

  7. Strike-slip brittle shear zone from coastal Deccan in and around Mumbai, India: Evidence for N-S extension

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Gourab; Ayan Misra, Achyuta; Bose, Narayan; Mukherjee, Soumyajit

    2013-04-01

    An E-W extension separated India from the Seychelles micro-continent at ~ 62 Ma. This post-dated the Deccan volcanic eruptions. However, the structures attributed to this extension lack geometrical quantification, especially in the western Indian coast. The Narmada-Tapi region, ~ 400 Km north of Mumbai, experienced a ~ N-S extension prior to and/or concurrent with the volcanism. Normal faults dip towards W. Sub-horizontal lava flows, slickensides, N-S shear zones etc. have been reported from the western part of the Deccan Large Igneous Province (DLIP). This work, for the first time, identifies and investigates a ~ 20°N strike-slip brittle shear zone, traced for ~ 100 Km along the west coast of India from Mumbai to Murud by fieldworks. The W-block moved north through a dextral-slip. Deformation is more enhanced in the south (near Murud). Field observations reveal Y-planes (~ N20°E; abundant), Riedels (~ 0-N30°E; abundant), anti-Riedels (~ N30-50°W; less abundant), asymmetric elevations (~ N15°E; locally abundant), extension and en-echelon fractures (2 sets: ~N-S and ~E-W) with a single miniature pull-apart basin (~ N-S extension). The E-W fractures reactivated locally and around Murud slipped/faulted ~ N-S dykes. Average directions of paleostress tensors were computed for the regime yielding σ1 (trend = 99°; plunge = 0°), σ2 (trend = 196°; plunge = 90°) and σ3 (trend = 10°; plunge = 0°). Associated strain results convincingly display a dominant N-S extension. It was not possible to establish which set of extensions (i.e. between N-S and E-W) occurred earlier. Alongside E-W extension, structurally weak shear zones might have channelized late-stage intrusions of ~ N-S dykes. The DLIP was not subject to any post-rifting deformations regionally, except isostatic adjustments. Hence, based on available data, we postulate that these two extensions were coevally operating in the late phases of the Deccan eruptions. As the Indian plate drifted NE, the strike

  8. Phosphorylation of NS5A Serine-235 is essential to hepatitis C virus RNA replication and normal replication compartment formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyre, Nicholas S., E-mail: nicholas.eyre@adelaide.edu.au; Centre for Cancer Biology, SA Pathology, Adelaide; Hampton-Smith, Rachel J.

    Hepatitis C virus (HCV) NS5A protein is essential for HCV RNA replication and virus assembly. Here we report the identification of NS5A phosphorylation sites Ser-222, Ser-235 and Thr-348 during an infectious HCV replication cycle and demonstrate that Ser-235 phosphorylation is essential for HCV RNA replication. Confocal microscopy revealed that both phosphoablatant (S235A) and phosphomimetic (S235D) mutants redistribute NS5A to large juxta-nuclear foci that display altered colocalization with known replication complex components. Using electron microscopy (EM) we found that S235D alters virus-induced membrane rearrangements while EM using ‘APEX2’-tagged viruses demonstrated S235D-mediated enrichment of NS5A in irregular membranous foci. Finally, using amore » customized siRNA screen of candidate NS5A kinases and subsequent analysis using a phospho-specific antibody, we show that phosphatidylinositol-4 kinase III alpha (PI4KIIIα) is important for Ser-235 phosphorylation. We conclude that Ser-235 phosphorylation of NS5A is essential for HCV RNA replication and normal replication complex formation and is regulated by PI4KIIIα. - Highlights: • NS5A residues Ser-222, Ser-235 and Thr-348 are phosphorylated during HCV infection. • Phosphorylation of Ser-235 is essential to HCV RNA replication. • Mutation of Ser-235 alters replication compartment localization and morphology. • Phosphatidylinositol-4 kinase III alpha is important for Ser-235 phosphorylation.« less

  9. Dimerization site 2 of the bacterial DNA-binding protein H-NS is required for gene silencing and stiffened nucleoprotein filament formation.

    PubMed

    Yamanaka, Yuki; Winardhi, Ricksen S; Yamauchi, Erika; Nishiyama, So-Ichiro; Sowa, Yoshiyuki; Yan, Jie; Kawagishi, Ikuro; Ishihama, Akira; Yamamoto, Kaneyoshi

    2018-06-15

    The bacterial nucleoid-associated protein H-NS is a DNA-binding protein, playing a major role in gene regulation. To regulate transcription, H-NS silences genes, including horizontally acquired foreign genes. Escherichia coli H-NS is 137 residues long and consists of two discrete and independent structural domains: an N-terminal oligomerization domain and a C-terminal DNA-binding domain, joined by a flexible linker. The N-terminal oligomerization domain is composed of two dimerization sites, dimerization sites 1 and 2, which are both required for H-NS oligomerization, but the exact role of dimerization site 2 in gene silencing is unclear. To this end, we constructed a whole set of single amino acid substitution variants spanning residues 2 to 137. Using a well-characterized H-NS target, the slp promoter of the glutamic acid-dependent acid resistance (GAD) cluster promoters, we screened for any variants defective in gene silencing. Focusing on the function of dimerization site 2, we analyzed four variants, I70C/I70A and L75C/L75A, which all could actively bind DNA but are defective in gene silencing. Atomic force microscopy analysis of DNA-H-NS complexes revealed that all of these four variants formed condensed complexes on DNA, whereas WT H-NS formed rigid and extended nucleoprotein filaments, a conformation required for gene silencing. Single-molecule stretching experiments confirmed that the four variants had lost the ability to form stiffened filaments. We conclude that dimerization site 2 of H-NS plays a key role in the formation of rigid H-NS nucleoprotein filament structures required for gene silencing. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Prokaryotic Expression of Hepatitis C Virus-NS3 Protein and Preparation of a Monoclonal Antibody.

    PubMed

    Xi, Yun; Zhang, Yuming; Fang, Jianmin; Whittaker, Kelly; Luo, Shuhong; Huang, Ruo-Pan

    2017-12-01

    Hepatitis C virus (HCV) is a significant health threat that has been extensively investigated worldwide. Improving the sensitivity and specificity of laboratory tests for screening and early diagnosis of HCV in a relevant population is an effective measure to control the spread of HCV. To build a more reliable diagnostic method for HCV, we expressed gene fragments of HCV-NS3 linked to a carrier, pET28a, and then transformed this vector into Escherichia. coli. The produced recombinant NS3 protein with a molecular weight of 38 kDa, which was purified through Ni-chelating affinity chromatography, was used to immunize BALB/C mice, which generated a serum antibody titer of 1:160,000 against the immunogen. Three positive monoclonal isolates (2A5, 2A6, and 5B12) were screened and established. Western blot and enzyme-linked immunosorbent assay (ELISA) results of these monoclonal cells show that each could specifically recognize the recombinant protein. Antibodies 2A5 and 2A6 were developed into an ELISA sandwich antibody pair for the recombinant protein. The detection sensitivity of our developed ELISA was 1.6 ng/mL, with a linear range of 2.5-80 ng/mL (R 2  = 0.998). Serum NS3 ELISA results show that the average value in the healthy group, liver disease group, and hepatitis C group was 3.71, 7.28, and 13.11 ng/mL, respectively. The positive rates of HCV-NS3 protein in the liver disease group and hepatitis C group was 17.2% and 41.7%, respectively. Detection of HCV-NS3 antigen can be used as an auxiliary test for anti-HCV antibody detection, thus reducing leakage detection and providing a reliable basis for clinical practice.

  11. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalime, Erin N.; Pekosz, Andrew, E-mail: apekosz@jhsph.edu

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 inmore » addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function.« less

  12. The interdomain interface in bifunctional enzyme protein 3/4A (NS3/4A) regulates protease and helicase activities.

    PubMed

    Aydin, Cihan; Mukherjee, Sourav; Hanson, Alicia M; Frick, David N; Schiffer, Celia A

    2013-12-01

    Hepatitis C (HCV) protein 3/4A (NS3/4A) is a bifunctional enzyme comprising two separate domains with protease and helicase activities, which are essential for viral propagation. Both domains are stable and have enzymatic activity separately, and the relevance and implications of having protease and helicase together as a single protein remains to be explored. Altered in vitro activities of isolated domains compared with the full-length NS3/4A protein suggest the existence of interdomain communication. The molecular mechanism and extent of this communication was investigated by probing the domain-domain interface observed in HCV NS3/4A crystal structures. We found in molecular dynamics simulations that the two domains of NS3/4A are dynamically coupled through the interface. Interestingly, mutations designed to disrupt this interface did not hinder the catalytic activities of either domain. In contrast, substrate cleavage and DNA unwinding by these mutants were mostly enhanced compared with the wild-type protein. Disrupting the interface did not significantly alter RNA unwinding activity; however, the full-length protein was more efficient in RNA unwinding than the isolated protease domain, suggesting a more direct role in RNA processing independent of the interface. Our findings suggest that HCV NS3/4A adopts an "extended" catalytically active conformation, and interface formation acts as a switch to regulate activity. We propose a unifying model connecting HCV NS3/4A conformational states and protease and helicase function, where interface formation and the dynamic interplay between the two enzymatic domains of HCV NS3/4A potentially modulate the protease and helicase activities in vivo. © 2013 The Protein Society.

  13. Engineered Toxins “Zymoxins” Are Activated by the HCV NS3 Protease by Removal of an Inhibitory Protein Domain

    PubMed Central

    Shapira, Assaf; Gal-Tanamy, Meital; Nahary, Limor; Litvak-Greenfeld, Dana; Zemel, Romy; Tur-Kaspa, Ran; Benhar, Itai

    2011-01-01

    The synthesis of inactive enzyme precursors, also known as “zymogens,” serves as a mechanism for regulating the execution of selected catalytic activities in a desirable time and/or site. Zymogens are usually activated by proteolytic cleavage. Many viruses encode proteases that execute key proteolytic steps of the viral life cycle. Here, we describe a proof of concept for a therapeutic approach to fighting viral infections through eradication of virally infected cells exclusively, thus limiting virus production and spread. Using the hepatitis C virus (HCV) as a model, we designed two HCV NS3 protease-activated “zymogenized” chimeric toxins (which we denote “zymoxins”). In these recombinant constructs, the bacterial and plant toxins diphtheria toxin A (DTA) and Ricin A chain (RTA), respectively, were fused to rationally designed inhibitor peptides/domains via an HCV NS3 protease-cleavable linker. The above toxins were then fused to the binding and translocation domains of Pseudomonas exotoxin A in order to enable translocation into the mammalian cells cytoplasm. We show that these toxins exhibit NS3 cleavage dependent increase in enzymatic activity upon NS3 protease cleavage in vitro. Moreover, a higher level of cytotoxicity was observed when zymoxins were applied to NS3 expressing cells or to HCV infected cells, demonstrating a potential therapeutic window. The increase in toxin activity correlated with NS3 protease activity in the treated cells, thus the therapeutic window was larger in cells expressing recombinant NS3 than in HCV infected cells. This suggests that the “zymoxin” approach may be most appropriate for application to life-threatening acute infections where much higher levels of the activating protease would be expected. PMID:21264238

  14. Diagnostic Approach for Differentiating Infected from Vaccinated Poultry on the Basis of Antibodies to NS1, the Nonstructural Protein of Influenza A Virus

    PubMed Central

    Tumpey, Terrence M.; Alvarez, Rene; Swayne, David E.; Suarez, David L.

    2005-01-01

    Vaccination programs for the control of avian influenza (AI) in poultry have limitations due to the problem of differentiating between vaccinated and virus-infected birds. We have used NS1, the conserved nonstructural protein of influenza A virus, as a differential diagnostic marker for influenza virus infection. Experimentally infected poultry were evaluated for the ability to induce antibodies reactive to NS1 recombinant protein produced in Escherichia coli or to chemically synthesized NS1 peptides. Immune sera were obtained from chickens and turkeys inoculated with live AI virus, inactivated purified vaccines, or inactivated commercial vaccines. Seroconversion to positivity for antibodies to the NS1 protein was achieved in birds experimentally infected with multiple subtypes of influenza A virus, as determined by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. In contrast, animals inoculated with inactivated gradient-purified vaccines had no seroconversion to positivity for antibodies to the NS1 protein, and animals vaccinated with commercial vaccines had low, but detectable, levels of NS1 antibodies. The use of a second ELISA with diluted sera identified a diagnostic test that results in seropositivity for antibodies to the NS1 protein only in infected birds. For the field application phase of this study, serum samples were collected from vaccinated and infected poultry, diluted, and screened for anti-NS1 antibodies. Field sera from poultry that received commercial AI vaccines were found to possess antibodies against AI virus, as measured by the standard agar gel precipitin (AGP) test, but they were negative by the NS1 ELISA. Conversely, diluted field sera from AI-infected poultry were positive for both AGP and NS1 antibodies. These results demonstrate the potential benefit of a simple, specific ELISA for anti-NS1 antibodies that may have diagnostic value for the poultry industries. PMID:15695663

  15. The influence of medium conductivity on cells exposed to nsPEF

    NASA Astrophysics Data System (ADS)

    Moen, Erick K.; Ibey, Bennett L.; Roth, Caleb C.; Barnes, Ronald A.; Beier, Hope T.; Armani, Andrea M.

    2017-02-01

    Nanosecond pulsed electric fields (nsPEF) have proven useful for transporting cargo across cell membranes and selectively activating cellular pathways. The chemistry and biophysics governing this cellular response, however, are complex and not well understood. Recent studies have shown that the conductivity of the solution cells are exposed in could play a significant role in plasma membrane permeabilization and, thus, the overall cellular response. Unfortunately, the means of detecting this membrane perturbation has traditionally been limited to analyzing one possible consequence of the exposure - diffusion of molecules across the membrane. This method has led to contradictory results with respect to the relationship between permeabilization and conductivity. Diffusion experiments also suffer from "saturation conditions" making multi-pulse experiments difficult. As a result, this method has been identified as a key stumbling block to understanding the effects of nsPEF exposure. To overcome these limitations, we recently developed a nonlinear optical imaging technique based on second harmonic generation (SHG) that allows us to identify nanoporation in live cells during the pulse in a wide array of conditions. As a result, we are able to explore and fully test whether lower conductivity extracellular solutions could induce more efficient nanoporation. This hypothesis is based on membrane charging and the relative difference between the extracellular solution and the cytoplasm. The experiments also allow us to test the noise floor of our methodology against the effects of ion leakage. The results emphasize that the electric field, not ionic phenomenon, are the driving force behind nsPEF-induced membrane nanoporation.

  16. Utilization of Skills in the Care of the Parent Child System (NS 139): Competency-Based Course Syllabus.

    ERIC Educational Resources Information Center

    Brady, Marilyn H.; Hutsell, Deborah C.

    "Utilization of Skills in the Care of the Parent Child System" (NS 139) is an associate degree nursing course offered at Chattanooga State Technical Community College to provide essential theory and experience in caring for the parent-child system throughout various stages of development. The course syllabus for NS 139 begins with information on…

  17. Electro-optically cavity dumped 2 μm semiconductor disk laser emitting 3 ns pulses of 30 W peak power

    NASA Astrophysics Data System (ADS)

    Kaspar, Sebastian; Rattunde, Marcel; Töpper, Tino; Schwarz, Ulrich T.; Manz, Christian; Köhler, Klaus; Wagner, Joachim

    2012-10-01

    A 2 μm electro-optically cavity-dumped semiconductor disk laser (SDL) with a pulse full width at half maximum of 3 ns, a pulse peak power of 30 W, and repetition rates adjustable between 87 kHz and 1 MHz is reported. For ns-pulse cavity dumping the SDL was set up with a 35-cm long cavity into which an intra-cavity Brewster-angled polarizer prism and a Pockels cell for rotation of the linear polarization were inserted. By means of internal total reflection in the birefringent polarizer, pulses are coupled out of the cavity sideways. This variant of ns-pulse 2-μm SDL is well suited for applications such as high-precision light detection and ranging or ns-pulse laser materials processing after further power amplification.

  18. A system to measure isomeric state half-lives in the 10 ns to 10 μs range

    NASA Astrophysics Data System (ADS)

    Toufen, D. L.; Allegro, P. R. P.; Medina, N. H.; Oliveira, J. R. B.; Cybulska, E. W.; Seale, W. A.; Linares, R.; Silveira, M. A. G.; Ribas, R. V.

    2014-07-01

    The Isomeric State Measurement System (SISMEI) was developed to search for isomeric nuclear states produced by fusion-evaporation reactions. The SISMEI consists of 10 plastic phoswich telescopes, two lead shields, one NaI(Tl) scintillation detector, two Compton suppressed HPGe γ-ray detectors, and a cone with a recoil product catcher. The new system was tested at the 8 UD Pelletron tandem accelerator of the University of São Paulo with the measurement of two known isomeric states: 54Fe, 10+ state (E = 6527.1 (11) keV, T1/2 = 364(7) ns) and the 5/2+ state of 19F (E = 197.143 (4) keV, T1/2 = 89.3 (10) ns). The results indicate that the system is capable of identifying delayed transitions, of measuring isomeric state lifetimes, and of identifying the feeding transitions of the isomeric state through the delayed γ-γ coincidence method. The measured half-life for the 10+ state was T1/2 = 365(14) ns and for the 5/2+ state, 100(36) ns.

  19. A system to measure isomeric state half-lives in the 10 ns to 10 μs range.

    PubMed

    Toufen, D L; Allegro, P R P; Medina, N H; Oliveira, J R B; Cybulska, E W; Seale, W A; Linares, R; Silveira, M A G; Ribas, R V

    2014-07-01

    The Isomeric State Measurement System (SISMEI) was developed to search for isomeric nuclear states produced by fusion-evaporation reactions. The SISMEI consists of 10 plastic phoswich telescopes, two lead shields, one NaI(Tl) scintillation detector, two Compton suppressed HPGe γ-ray detectors, and a cone with a recoil product catcher. The new system was tested at the 8 UD Pelletron tandem accelerator of the University of São Paulo with the measurement of two known isomeric states: (54)Fe, 10(+) state (E = 6527.1 (11) keV, T(1/2) = 364(7) ns) and the 5/2(+) state of (19)F (E = 197.143 (4) keV, T(1/2) = 89.3 (10) ns). The results indicate that the system is capable of identifying delayed transitions, of measuring isomeric state lifetimes, and of identifying the feeding transitions of the isomeric state through the delayed γ-γ coincidence method. The measured half-life for the 10(+) state was T(1/2) = 365(14) ns and for the 5/2(+) state, 100(36) ns.

  20. 2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase

    PubMed Central

    Dong, Hongping; Chang, David C.; Hua, Maggie Ho Chia; Lim, Siew Pheng; Chionh, Yok Hian; Hia, Fabian; Lee, Yie Hou; Kukkaro, Petra; Lok, Shee-Mei; Dedon, Peter C.; Shi, Pei-Yong

    2012-01-01

    RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of

  1. The interaction between NOLC1 and IAV NS1 protein promotes host cell apoptosis and reduces virus replication.

    PubMed

    Zhu, Chunyu; Zheng, Fangliang; Zhu, Junfeng; Liu, Meichen; Liu, Na; Li, Xue; Zhang, Li; Deng, Zaidong; Zhao, Qi; Liu, Hongsheng

    2017-11-07

    NS1 of the influenza virus plays an important role in the infection ability of the influenza virus. Our previous research found that NS1 protein interacts with the NOLC1 protein of host cells, however, the function of the interaction is unknown. In the present study, the role of the interaction between the two proteins in infection was further studied. Several analyses, including the use of a pull-down assay, Co-IP, western blot analysis, overexpression, RNAi, flow cytometry, etc., were used to demonstrate that the NS1 protein of H3N2 influenza virus interacts with host protein NOLC1 and reduces the quantity of NOLC1. The interaction also promotes apoptosis in A549 host cells, while the suppression of NOLC1 protein reduces the proliferation of the H3N2 virus. Based on these data, it was concluded that during the process of infection, NS1 protein interacts with NOLC1 protein, reducing the level of NOLC1, and that the interaction between the two proteins promotes apoptosis of host cells, thus reducing the proliferation of the virus. These findings provide new information on the biological function of the interaction between NS1 and NOLC1.

  2. Absence of protection from West Nile virus disease and adverse effects in red legged partridges after non-structural NS1 protein administration.

    PubMed

    Rebollo, Belén; Llorente, Francisco; Pérez-Ramírez, Elisa; Sarraseca, Javier; Gallardo, Carmina; Risalde, María Ángeles; Höfle, Ursula; Figuerola, Jordi; Soriguer, Ramón C; Venteo, Ángel; Jiménez-Clavero, Miguel Ángel

    2018-02-01

    The red-legged partridge (Alectoris rufa) is a competent host for West Nile virus (WNV) replication and highly susceptible to WNV disease. With the aim to assess in this species whether the inoculation of non-structural protein NS1 from WNV elicits a protective immune response against WNV infection, groups of partridges were inoculated with recombinant NS1 (NS1 group) or an unrelated recombinant protein (mock group), and challenged with infectious WNV. A third group received no inoculation prior to challenge (challenge group). The NS1 group failed to elicit detectable antibodies to NS1 while in the mock group a specific antibody response was observed. Moreover, no protection against WNV disease was observed in the NS1 group, but rather, it showed significantly higher viral RNA load and delayed neutralizing antibody response, and suffered a more severe clinical disease, which resulted in higher mortality. This adverse effect has not been observed before and warrants further investigations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Polarization mechanism in a ns laser-induced plasma spectroscopy of Al alloy

    NASA Astrophysics Data System (ADS)

    Aghababaei Nejad, Mahboobeh; Soltanolkotabi, Mahmood; Eslami Majd, Abdollah

    2018-01-01

    Polarization emission from aluminum alloy by ns laser-induced breakdown spectroscopy (LIBS) is carefully investigated in air using a non-gated CCD camera at integration time of 100 ms. First, the analysis reveals that the small polarization degree is the same for both continuum and discrete line emission spectra which also increases slowly with wavelength growth; second, laser fluence in the range of 347.81-550.10 J/cm2 has no significant changes in plasma polarization; and third, larger polarization in comparison with polarization introduced by preferential reflection of emission from the target surface (Fresnel reflectivity) is observed. The residual fluctuations of the anisotropic recombining plasma and the dynamic polarization of an ion's core are suggested as the possible main sources for observed polarized radiation in ns-LIBS.

  4. Last 20 aa of the West Nile virus NS1' protein are responsible for its retention in cells and the formation of unique heat-stable dimers.

    PubMed

    Young, Lucy B; Melian, Ezequiel Balmori; Setoh, Yin Xiang; Young, Paul R; Khromykh, Alexander A

    2015-05-01

    West Nile virus (WNV), a mosquito-borne flavivirus, is the major cause of arboviral encephalitis in the USA. As with other members of the Japanese encephalitis virus serogroup, WNV produces an additional non-structural protein, NS1', a C-terminal extended product of NS1 generated as the result of a -1 programmed ribosomal frameshift (PRF). We have previously shown that mutations abolishing the PRF, and consequently NS1', resulted in reduced neuroinvasiveness. However, whether this was caused by the PRF event itself or by the lack of a PRF product, NS1', or a combination of both, remains undetermined. Here, we showed that WNV NS1' formed a unique subpopulation of heat- and low-pH-stable dimers. C-terminal truncations and mutational analysis employing an NS1'-expressing plasmid showed that stability of NS1' dimers was linked to the penultimate 10 aa. To examine the role of NS1' heat-stable dimers in virus replication and pathogenicity, a stop codon mutation was introduced into NS1' to create a WNV producing a truncated version of NS1' lacking the last 20 aa, but not affecting the PRF. NS1' protein produced by this mutant virus was secreted more efficiently than WT NS1', indicating that the sequence of the last 20 aa of NS1' was responsible for its cellular retention. Further analysis of this mutant showed growth kinetics in cells and virulence in weanling mice after peripheral infection similar to the WT WNVKUN, suggesting that full-length NS1' was not essential for virus replication in vitro and for virulence in mice. © 2015 The Authors.

  5. Turbulent Mixing Layer Control using Ns-DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Little, Jesse

    2016-11-01

    A low speed turbulent mixing layer (Reθo =1282, U1 /U2 = 0 . 28 and U2 = 11 . 8 m / s) is subject to nanosecond pulse driven dielectric barrier discharge (ns-DBD) plasma actuation. The forcing frequency corresponds to a Strouhal number (St) of 0.032 which is the most amplified frequency based on stability theory. Flow response is studied as a function of the pulse energy, the energy input time scale (carrier frequency) and the duration of actuation (duty cycle). It is found that successful actuation requires a combination of forcing parameters. An evaluation of the forcing efficacy is achieved by examining different flow quantities such as momentum thickness, vorticity and velocity fluctuations. In accordance with past work, a dependence is found between the initial shear layer thickness and the energy coupled to the flow. More complex relationships are also revealed such as a limitation on the maximum pulse energy which yields control. Also, the pulse energy and the carrier frequency (inverse of period between successive pulses) are interdependent whereby an optimum exists between them and extreme values of either parameter is inconsonant with the control desired. These observations establish a rich and complex process behind ns-DBD plasma actuation. Air Force Office of Scientific Research (FA9550-12-1-0044).

  6. Molecular Dynamics of the ZIKA Virus NS3 Helicase

    NASA Astrophysics Data System (ADS)

    Raubenolt, Bryan; Rick, Steven; The Rick Group Team

    The recent outbreaks of the ZIKA virus (ZIKV) and its connection to microcephaly in newborns has raised its awareness as a global threat and many scientific research efforts are currently underway in attempt to create a vaccine. Molecular Dynamics is a powerful method of investigating the physical behavior of protein complexes. ZIKV is comprised of 3 structural and 7 nonstructural proteins. The NS3 helicase protein appears to play a significant role in the replication complex and its inhibition could be a crucial source of antiviral drug design. This research primarily focuses on studying the structural dynamics, over the course of few hundred nanoseconds, of NS3 helicase in the free state, as well as in complex form with human ssRNA, ATP, and an analogue of GTP. RMSD and RMSF plots of each simulation will provide details on the forces involved in the overall stability of the active and inactive states. Furthermore, free energy calculations on a per residue level will reveal the most interactive residues between states and ultimately the primary driving force behind these interactions. Together these analyses will provide highly relevant information on the binding surface chemistry and thus serve as the basis for potential drug design.

  7. Tripeptide inhibitors of dengue and West Nile virus NS2B-NS3 protease.

    PubMed

    Schüller, Andreas; Yin, Zheng; Brian Chia, C S; Doan, Danny N P; Kim, Hyeong-Kyu; Shang, Luqing; Loh, Teck Peng; Hill, Jeffery; Vasudevan, Subhash G

    2011-10-01

    A series of tripeptide aldehyde inhibitors were synthesized and their inhibitory effect against dengue virus type 2 (DENV2) and West Nile virus (WNV) NS3 protease was evaluated side by side with the aim to discover potent flaviviral protease inhibitors and to examine differences in specificity of the two proteases. The synthesized inhibitors feature a varied N-terminal cap group and side chain modifications of a P2-lysine residue. In general a much stronger inhibitory effect of the tripeptide inhibitors was observed toward WNV protease. The inhibitory concentrations against DENV2 protease were in the micromolar range while they were submicromolar against WNV. The data suggest that a P2-arginine shifts the specificity toward DENV2 protease while WNV protease favors a lysine in the P2 position. Peptides with an extended P2-lysine failed to inhibit DENV2 protease suggesting a size-constrained S2 pocket. Our results generally encourage the investigation of di- and tripeptide aldehydes as inhibitors of DENV and WNV protease. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Downregulation of viral RNA translation by hepatitis C virus non-structural protein NS5A requires the poly(U/UC) sequence in the 3' UTR.

    PubMed

    Hoffman, Brett; Li, Zhubing; Liu, Qiang

    2015-08-01

    Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is essential for viral replication; however, its effect on HCV RNA translation remains controversial partially due to the use of reporters lacking the 3' UTR, where NS5A binds to the poly(U/UC) sequence. We investigated the role of NS5A in HCV translation using a monocistronic RNA containing a Renilla luciferase gene flanked by the HCV UTRs. We found that NS5A downregulated viral RNA translation in a dose-dependent manner. This downregulation required both the 5' and 3' UTRs of HCV because substitution of either sequence with the 5' and 3' UTRs of enterovirus 71 or a cap structure at the 5' end eliminated the effects of NS5A on translation. Translation of the HCV genomic RNA was also downregulated by NS5A. The inhibition of HCV translation by NS5A required the poly(U/UC) sequence in the 3' UTR as NS5A did not affect translation when it was deleted. In addition, we showed that, whilst the amphipathic α-helix of NS5A has no effect on viral translation, the three domains of NS5A can inhibit translation independently, also dependent on the presence of the poly(U/UC) sequence in the 3' UTR. These results suggested that NS5A downregulated HCV RNA translation through a mechanism involving the poly(U/UC) sequence in the 3' UTR.

  9. Early diagnosis of dengue in travelers: comparison of a novel real-time RT-PCR, NS1 antigen detection and serology.

    PubMed

    Huhtamo, Eili; Hasu, Essi; Uzcátegui, Nathalie Y; Erra, Elina; Nikkari, Simo; Kantele, Anu; Vapalahti, Olli; Piiparinen, Heli

    2010-01-01

    The increased traveling to dengue endemic regions and the numerous epidemics have led to a rise in imported dengue. The laboratory diagnosis of acute dengue requires several types of tests and often paired samples are needed for obtaining reliable results. Although several diagnostic methods are available, proper comparative data on their performance are lacking. To compare the performance of novel methods including a novel pan-DENV real-time RT-PCR and a commercially available NS1 capture-EIA in regard to IgM detection for optimizing the early diagnosis of DENV in travelers. A panel of 99 selected early phase serum samples of dengue patients was studied by real-time RT-PCR, NS1 antigen ELISA, IgM-EIA, IgG-IFA and cell culture virus isolation. The novel real-time RT-PCR was shown specific and sensitive for detection of DENV-1-4 RNA and suitable for diagnostic use. The diagnostic rate using combination of RNA and IgM detection was 99% and using NS1 and IgM detection 95.9%. The results of RNA and NS1 antigen detection disagreed in 15.5% of samples that had only RNA or NS1 antigen detected. The diagnostic rates of early samples are higher when either RNA or NS1 antigen detection is combined with IgM detection. Besides the differences in the RNA and NS1 detection assays, the observed discrepancy of results could suggest individual variation or differences in timing of these markers in patient serum. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  10. Zirconium catalyzed synthesis of 2-arylidene Indan-1,3-diones and evaluation of their inhibitory activity against NS2B-NS3 WNV protease.

    PubMed

    Oliveira, Ana Flávia C da S; de Souza, Ana Paula M; de Oliveira, André S; da Silva, Milene L; de Oliveira, Fabrício M; Santos, Edjon G; da Silva, Ítalo Esposti P; Ferreira, Rafaela S; Villela, Filipe S; Martins, Felipe T; Leal, Daniel H S; Vaz, Boniek G; Teixeira, Róbson R; de Paula, Sergio O

    2018-04-10

    A simple and efficient Knoevenagel procedure for the synthesis of 2-arylidene indan-1,3-diones is herein reported. These compounds were prepared via ZrOCl2·8H2O catalyzed reactions of indan-1,3-dione with several aromatic aldehydes and using water as the solvent. The 2-arylidene indan-1,3-diones were obtained with 53%-95% yield within 10-45 min. The synthesized compounds were evaluated as inhibitors of the NS2B-NS3 protease of West Nile Virus (WNV). It was found that hydroxylated derivatives impaired enzyme activity with varying degrees of effectiveness. The most active hydroxylated derivatives, namely 2-(4-hydroxybenzylidene)-1H-indene-1,3(2H)-dione (14) and 2-(3,4-dihydroxybenzylidene)-1H-indene-1,3(2H)-dione (17), were characterized as noncompetitive enzymes inhibitors, with IC 50 values of 11 μmol L -1 and 3 μmol L -1 , respectively. Docking and electrostatic potential surfaces investigations provided insight on the possible binding mode of the most active compounds within an allosteric site. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Discriminative-stimulus effects of NS9283, a nicotinic α4β2* positive allosteric modulator, in nicotine-discriminating rats.

    PubMed

    Mohler, Eric G; Franklin, Stanley R; Rueter, Lynne E

    2014-01-01

    Neuronal α4β2* nicotinic acetylcholine receptors mediate cognition, pain, and the discriminative and reinforcing effects of nicotine. In addition to traditional orthosteric agonists, α4β2* positive allosteric modulators (PAMs) have recently been identified. With increased subtype selectivity relative to agonists, PAMs administered alone or in combination with low-dose α4β2* agonists may be used as powerful tools for increasing our understanding of α4β2* pharmacology. The present experiments tested the nicotine discriminative-stimulus effects of the α4β2* PAM NS9283 (A-969933) in the presence and absence of low-dose nicotine or nicotinic subtype-selective agonist. Rats were trained to discriminate 0.4 mg/kg nicotine from saline in a two-lever drug discrimination paradigm. In subsequent generalization tests, rats were administered nicotine, the α4β2*-preferring agonist ABT-594, and NS9283, alone or in two-drug combinations. Nicotine and ABT-594 showed dose-dependent nicotine generalization. NS9283 alone resulted in a non-significant increase in nicotine-appropriate lever selection. Combination of non-effective doses of nicotine or ABT-594 with escalating doses of NS9283 resulted in a complete conversion to 100 % nicotine-appropriate choice in the case of nicotine combination and incomplete, though significant, generalization for ABT-594. The α4β2* PAM NS9283 alone did not produce nicotine-like discriminative effects, but did demonstrate dose-related increases in nicotine lever choice when combined with a non-effective dose of nicotine or the α4β2* agonist ABT-594. This finding provides confirmation of the positive allosteric modulating effect of NS9283 in a functional in vivo paradigm. NS9283 is a potentially valuable tool for studying the role of α4β2* receptors in various nicotinic acetylcholine receptor-related functions.

  12. Exploration of structural stability in deleterious nsSNPs of the XPA gene: A molecular dynamics approach.

    PubMed

    Nagasundaram, N; Priya Doss, C George

    2011-01-01

    Distinguishing the deleterious from the massive number of non-functional nsSNPs that occur within a single genome is a considerable challenge in mutation research. In this approach, we have used the existing in silico methods to explore the mutation-structure-function relationship in the XPAgene. We used the Sorting Intolerant From Tolerant (SIFT), Polymorphism Phenotyping (PolyPhen), I-Mutant 2.0, and the Protein Analysis THrough Evolutionary Relationships methods to predict the effects of deleterious nsSNPs on protein function and evaluated the impact of mutation on protein stability by Molecular Dynamics simulations. By comparing the scores of all the four in silico methods, nsSNP with an ID rs104894131 at position C108F was predicted to be highly deleterious. We extended our Molecular dynamics approach to gain insight into the impact of this non-synonymous polymorphism on structural changes that may affect the activity of the XPAgene. Based on the in silico methods score, potential energy, root-mean-square deviation, and root-mean-square fluctuation, we predict that deleterious nsSNP at position C108F would play a significant role in causing disease by the XPA gene. Our approach would present the application of in silicotools in understanding the functional variation from the perspective of structure, evolution, and phenotype.

  13. Exacerbating Effects of Human Parvovirus B19 NS1 on Liver Fibrosis in NZB/W F1 Mice

    PubMed Central

    Hsu, Tsai-Ching; Tsai, Chun-Chou; Chiu, Chun-Ching; Hsu, Jeng-Dong; Tzang, Bor-Show

    2013-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder with unknown etiology that impacts various organs including liver. Recently, human parvovirus B19 (B19) is recognized to exacerbate SLE. However, the effects of B19 on liver in SLE are still unclear. Herein we aimed to investigate the effects of B19 on liver in NZB/W F1 mice by injecting subcutaneously with PBS, recombinant B19 NS1, VP1u or VP2, respectively. Our experimental results revealed that B19 NS1 protein significantly enhanced the TGF-β/Smad fibrotic signaling by increasing the expressions of TGF-β, Smad2/3, phosphorylated Smad2/3, Smad4 and Sp1. The consequent fibrosis-related proteins, PAI-1 and α-SMA, were also significantly induced in livers of NZB/W F1 mice receiving B19 NS1 protein. Accordingly, markedly increased collagen deposition was also observed in livers of NZB/W F1 mice receiving B19 NS1 protein. However, no significant difference was observed in livers of NZB/W F1 mice receiving B19 VP1u or VP2 as compared to the controls. These findings indicate that B19 NS1 plays a crucial role in exacerbating liver fibrosis in NZB/W F1 mice through enhancing the TGF-â/Smad fibrotic signaling. PMID:23840852

  14. Efficacy of NS-018, a potent and selective JAK2/Src inhibitor, in primary cells and mouse models of myeloproliferative neoplasms.

    PubMed

    Nakaya, Y; Shide, K; Niwa, T; Homan, J; Sugahara, S; Horio, T; Kuramoto, K; Kotera, T; Shibayama, H; Hori, K; Naito, H; Shimoda, K

    2011-07-01

    Aberrant activation of Janus kinase 2 (JAK2) caused by somatic mutation of JAK2 (JAK2V617F) or the thrombopoietin receptor (MPLW515L) plays an essential role in the pathogenesis of myeloproliferative neoplasms (MPNs), suggesting that inhibition of aberrant JAK2 activation would have a therapeutic benefit. Our novel JAK2 inhibitor, NS-018, was highly active against JAK2 with a 50% inhibition (IC(50)) of <1 n, and had 30-50-fold greater selectivity for JAK2 over other JAK-family kinases, such as JAK1, JAK3 and tyrosine kinase 2. In addition to JAK2, NS-018 inhibited Src-family kinases. NS-018 showed potent antiproliferative activity against cell lines expressing a constitutively activated JAK2 (the JAK2V617F or MPLW515L mutations or the TEL-JAK2 fusion gene; IC(50)=11-120 n), but showed only minimal cytotoxicity against most other hematopoietic cell lines without a constitutively activated JAK2. Furthermore, NS-018 preferentially suppressed in vitro erythropoietin-independent endogenous colony formation from polycythemia vera patients. NS-018 also markedly reduced splenomegaly and prolonged the survival of mice inoculated with Ba/F3 cells harboring JAK2V617F. In addition, NS-018 significantly reduced leukocytosis, hepatosplenomegaly and extramedullary hematopoiesis, improved nutritional status, and prolonged survival in JAK2V617F transgenic mice. These results suggest that NS-018 will be a promising candidate for the treatment of MPNs.

  15. Naringenin and quercetin--potential anti-HCV agents for NS2 protease targets.

    PubMed

    Lulu, S Sajitha; Thabitha, A; Vino, S; Priya, A Mohana; Rout, Madhusmita

    2016-01-01

    Nonstructural proteins of hepatitis C virus had drawn much attention for the scientific fraternity in drug discovery due to its important role in the disease. 3D structure of the protein was predicted using molecular modelling protocol. Docking studies of 10 medicinal plant compounds and three drugs available in the market (control) with NS2 protease were employed by using rigid docking approach of AutoDock 4.2. Among the molecules tested for docking study, naringenin and quercetin revealed minimum binding energy of - 7.97 and - 7.95 kcal/mol with NS2 protease. All the ligands were docked deeply within the binding pocket region of the protein. The docking study results showed that these compounds are potential inhibitors of the target; and also all these docked compounds have good inhibition constant, vdW+Hbond+desolv energy with best RMSD value.

  16. A system to measure isomeric state half-lives in the 10 ns to 10 μs range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toufen, D. L., E-mail: dennis@if.usp.br; Federal Institute of Education, Science and Technology of São Paulo - IFSP, 07115-000 Guarulhos, São Paulo; Allegro, P. R. P.

    2014-07-15

    The Isomeric State Measurement System (SISMEI) was developed to search for isomeric nuclear states produced by fusion-evaporation reactions. The SISMEI consists of 10 plastic phoswich telescopes, two lead shields, one NaI(Tl) scintillation detector, two Compton suppressed HPGe γ-ray detectors, and a cone with a recoil product catcher. The new system was tested at the 8 UD Pelletron tandem accelerator of the University of São Paulo with the measurement of two known isomeric states: {sup 54}Fe, 10{sup +} state (E = 6527.1 (11) keV, T{sub 1/2} = 364(7) ns) and the 5/2{sup +} state of {sup 19}F (E = 197.143 (4)more » keV, T{sub 1/2} = 89.3 (10) ns). The results indicate that the system is capable of identifying delayed transitions, of measuring isomeric state lifetimes, and of identifying the feeding transitions of the isomeric state through the delayed γ-γ coincidence method. The measured half-life for the 10{sup +} state was T{sub 1/2} = 365(14) ns and for the 5/2{sup +} state, 100(36) ns.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei

    The algebra H of the dual -1 Hahn polynomials is derived and shown to arise in the Clebsch-Gordan problem of sl{sub -1}(2). The dual -1 Hahn polynomials are the bispectral polynomials of a discrete argument obtained from the q{yields}-1 limit of the dual q-Hahn polynomials. The Hopf algebra sl{sub -1}(2) has four generators including an involution, it is also a q{yields}-1 limit of the quantum algebra sl{sub q}(2) and furthermore, the dynamical algebra of the parabose oscillator. The algebra H, a two-parameter generalization of u(2) with an involution as additional generator, is first derived from the recurrence relation of themore » -1 Hahn polynomials. It is then shown that H can be realized in terms of the generators of two added sl{sub -1}(2) algebras, so that the Clebsch-Gordan coefficients of sl{sub -1}(2) are dual -1 Hahn polynomials. An irreducible representation of H involving five-diagonal matrices and connected to the difference equation of the dual -1 Hahn polynomials is constructed.« less

  18. Introduction to the Management Process (NS 222): Competency-Based Course Syllabus.

    ERIC Educational Resources Information Center

    Brady, Marilyn H.

    "Introduction to the Management Process" (NS 222) is an associate degree nursing course offered at Chattanooga State Technical Community College to introduce students to basic management concepts, methods of nursing care delivery, patient classification systems, and methods of enacting change and working as a change agent. Upon completion of the…

  19. Preclinical and Clinical Resistance Profile of EDP-239, a Novel Hepatitis C Virus NS5A Inhibitor.

    PubMed

    Owens, Christopher M; Brasher, Bradley B; Polemeropoulos, Alex; Rhodin, Michael H J; McAllister, Nicole; Wong, Kelly A; Jones, Christopher T; Jiang, Lijuan; Lin, Kai; Or, Yat Sun

    2016-10-01

    EDP-239, a potent and selective hepatitis C virus (HCV) nonstructural protein 5A (NS5A) inhibitor developed for the treatment of HCV infection, has been investigated in vitro and in vivo This study sought to characterize genotypic changes in the HCV NS5A sequence of genotype 1 (GT1) replicons and to compare those changes to GT1 viral RNA mutations isolated from clinical trial patients. Resistance selection experiments in vitro using a subgenomic replicon identified resistance-associated mutations (RAMs) at GT1a NS5A amino acid positions 24, 28, 30, 31, and 93 that confer various degrees of resistance to EDP-239. Key RAMs were similarly identified in GT1b NS5A at amino acid positions 31 and 93. Mutations F36L in GT1a and A92V in GT1b do not confer resistance to EDP-239 individually but were found to enhance the resistance of GT1a K24R and GT1b Y93H. RAMs were identified in GT1 patients at baseline or after dosing with EDP-239 that were similar to those detected in vitro Baseline RAMs identified at NS5A position 93 in GT1, or positions 28 or 30 in GT1a only, correlated with a reduced treatment response. RAMs at additional positions were also detected and may have contributed to reduced EDP-239 efficacy. The most common GT1a and GT1b RAMs found to persist up to weeks 12, 24, or 48 were those at NS5A positions 28, 30, 31, 58 (GT1a only), and 93. Those RAMs persisting at the highest frequencies up to weeks 24 or 48 were L31M and Q30H/R for GT1a and L31M and Y93H for GT1b. (This study has been registered at ClinicalTrials.gov under identifier NCT01856426.). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. NS3 from Hepatitis C Virus Strain JFH-1 Is an Unusually Robust Helicase That Is Primed To Bind and Unwind Viral RNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ting; Ren, Xiaoming; Adams, Rebecca L.

    Hepatitis C viruses (HCV) encode a helicase enzyme that is essential for viral replication and assembly (nonstructural protein 3 [NS3]). This helicase has become the focus of extensive basic research on the general helicase mechanism, and it is also of interest as a novel drug target. Despite the importance of this protein, mechanistic work on NS3 has been conducted almost exclusively on variants from HCV genotype 1. Our understanding of NS3 from the highly active HCV strains that are used to study HCV genetics and mechanism in cell culture (such as JFH-1) is lacking. We therefore set out to determinemore » whether NS3 from the replicatively efficient genotype 2a strain JFH-1 displays novel functional or structural properties. Using biochemical assays for RNA binding and duplex unwinding, we show that JFH-1 NS3 binds RNA much more rapidly than the previously studied NS3 variants from genotype 1b. Unlike NS3 variants from other genotypes, JFH-1 NS3 binds RNA with high affinity in a functionally active form that is capable of immediately unwinding RNA duplexes without undergoing rate-limiting conformational changes that precede activation. Unlike other superfamily 2 (SF2) helicases, JFH-1 NS3 does not require long 3' overhangs, and it unwinds duplexes that are flanked by only a few nucleotides, as in the folded HCV genome. To understand the physical basis for this, we solved the crystal structure of JFH-1 NS3, revealing a novel conformation that contains an open, positively charged RNA binding cleft that is primed for productive interaction with RNA targets, potentially explaining robust replication by HCV JFH-1. IMPORTANCEGenotypes of HCV are as divergent as different types of flavivirus, and yet mechanistic features of HCV variants are presumed to be held in common. One of the most well-studied components of the HCV replication complex is a helicase known as nonstructural protein 3 (NS3). We set out to determine whether this important mechanical component

  1. Antibodies generated by immunization with the NS1 protein of West Nile virus confer partial protection against lethal Japanese encephalitis virus challenge.

    PubMed

    Sun, EnCheng; Zhao, Jing; TaoYang; Xu, QingYuan; Qin, YongLi; Wang, WenShi; Wei, Peng; Wu, DongLai

    2013-09-27

    Japanese encephalitis virus (JEV) and West Nile virus (WNV) are two medically important flaviviruses that can cause severe hemorrhagic and encephalitic diseases in humans. Immune responses directed against the NS1 protein of flaviviruses can confer protection against lethal viral challenge. Previous studies have shown that the WNV NS1 protein harbors epitopes that elicit antibodies that cross react with JEV. Here we demonstrate that the WNV NS1 protein not only contains cross-reactive epitopes, but that the antibodies elicited by these cross-reactive epitopes provide partial protection against lethal JEV challenge in a mouse model. Mice immunized with WNV NS1 protein showed reduced morbidity and mortality following both intracerebral and intraperitoneal JEV challenge. WNV NS1 immunization attenuated the extent of lung pathology generated following JEV challenge, and delayed the appearance of other pathological findings including vascular cuffing. By screening and identifying the specific WNV NS1 protein-derived peptides recognized by serum antibodies elicited by immunization with WNV NS1 protein and by JEV challenge, we found after JEV challenge will induce several new epitopes, but which epitope primarily contribute to antibody-mediated cross protection need further evaluation. The knowledge and reagents generated in this study have potential applications in vaccine and subunit vaccine development for WNV and JEV. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Nanosecond pulsed electric field (nsPEF) enhance cytotoxicity of cisplatin to hepatocellular cells by microdomain disruption on plasma membrane.

    PubMed

    Yin, Shengyong; Chen, Xinhua; Xie, Haiyang; Zhou, Lin; Guo, Danjing; Xu, Yuning; Wu, Liming; Zheng, Shusen

    2016-08-15

    Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatin for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Generation of a variety of stable Influenza A reporter viruses by genetic engineering of the NS gene segment

    PubMed Central

    Reuther, Peter; Göpfert, Kristina; Dudek, Alexandra H.; Heiner, Monika; Herold, Susanne; Schwemmle, Martin

    2015-01-01

    Influenza A viruses (IAV) pose a constant threat to the human population and therefore a better understanding of their fundamental biology and identification of novel therapeutics is of upmost importance. Various reporter-encoding IAV were generated to achieve these goals, however, one recurring difficulty was the genetic instability especially of larger reporter genes. We employed the viral NS segment coding for the non-structural protein 1 (NS1) and nuclear export protein (NEP) for stable expression of diverse reporter proteins. This was achieved by converting the NS segment into a single open reading frame (ORF) coding for NS1, the respective reporter and NEP. To allow expression of individual proteins, the reporter genes were flanked by two porcine Teschovirus-1 2A peptide (PTV-1 2A)-coding sequences. The resulting viruses encoding luciferases, fluorescent proteins or a Cre recombinase are characterized by a high genetic stability in vitro and in mice and can be readily employed for antiviral compound screenings, visualization of infected cells or cells that survived acute infection. PMID:26068081

  4. Oxacilin-resistant Coagulase-negative staphylococci (CoNS) bacteremia in a general hospital at São Paulo city, Brasil

    PubMed Central

    d’Azevedo, P.A.; Secchi, C.; Antunes, A.L.S.; Sales, T.; Silva, F.M.; Tranchesi, R.; Pignatari, A.C.C.

    2008-01-01

    In the last decades, coagulase-negative staphylococci (CoNS), especially Staphylococcus epidermidis have become an important cause of bloodstream infections. In addition, rates of methicillin-resistance among CoNS have increased substantially, leading to the use of glicopeptides for therapy. The objective of this study was to evaluate eleven consecutives clinically relevant cases of oxacillin-resistant CoNS bacteremia in a general hospital localized in São Paulo city, Brazil. Five different species were identified by different phenotypic methods, including S. epidermidis (5), S. haemolyticus (3), S. hominis (1), S. warneri (1) and S. cohnii subsp urealyticus (1). A variety of Pulsed Field Gel Electrophoresis profiles was observed by macrorestriction DNA analysis in S. epidermidis isolates, but two of three S. haemolyticus isolates presented the same profile. These data indicated the heterogeneity of the CoNS isolates, suggesting that horizontal dissemination of these microorganisms in the investigated hospital was not frequent. One S. epidermidis and one S. haemolyticus isolates were resistant to teicoplanin and susceptible to vancomycin. The selective pressure due to the use of teicoplanin in this hospital is relevant. PMID:24031279

  5. Small-molecule inhibitors of hepatitis C virus (HCV) non-structural protein 5A (NS5A): a patent review (2010-2015).

    PubMed

    Ivanenkov, Yan A; Aladinskiy, Vladimir A; Bushkov, Nikolay A; Ayginin, Andrey A; Majouga, Alexander G; Ivachtchenko, Alexandre V

    2017-04-01

    Non-structural 5A (NS5A) protein has achieved a considerable attention as an attractive target for the treatment of hepatitis C (HCV). A number of novel NS5A inhibitors have been reported to date. Several drugs having favorable ADME properties and mild side effects were launched into the pharmaceutical market. For instance, daclatasvir was launched in 2014, elbasvir is currently undergoing registration, ledipasvir was launched in 2014 as a fixed-dose combination with sofosbuvir (NS5B inhibitor). Areas covered: Thomson integrity database and SciFinder database were used as a valuable source to collect the patents on small-molecule NS5A inhibitors. All the structures were ranked by the date of priority. Patent holder and antiviral activity for each scaffold claimed were summarized and presented in a convenient manner. A particular focus was placed on the best-in-class bis-pyrrolidine-containing NS5A inhibitors. Expert opinion: Several first generation NS5A inhibitors have recently progressed into advanced clinical trials and showed superior efficacy in reducing viral load in infected subjects. Therapy schemes of using these agents in combination with other established antiviral drugs with complementary mechanisms of action can address the emergence of resistance and poor therapeutic outcome frequently attributed to antiviral drugs.

  6. Avian reovirus microNS protein forms homo-oligomeric inclusions in a microtubule-independent fashion, which involves specific regions of its C-terminal domain.

    PubMed

    Brandariz-Nuñez, Alberto; Menaya-Vargas, Rebeca; Benavente, Javier; Martinez-Costas, Jose

    2010-05-01

    Members of the genus Orthoreovirus replicate in cytoplasmic inclusions termed viral factories. Compelling evidence suggests that the nonstructural protein microNS forms the matrix of the factories and recruits specific viral proteins to these structures. In the first part of this study, we analyzed the properties of avian reovirus factories and microNS-derived inclusions and found that they are nonaggresome cytoplasmic globular structures not associated with the cytoskeleton which do not require an intact microtubule network for formation and maturation. We next investigated the capacity of avian reovirus microNS to form inclusions in transfected and baculovirus-infected cells. Our results showed that microNS is the main component of the inclusions formed by recombinant baculovirus expression. This, and the fact that microNS is able to self-associate inside the cell, suggests that microNS monomers contain all the interacting domains required for inclusion formation. Examination of the inclusion-forming capacities of truncated microNS versions allowed us to identify the region spanning residues 448 to 635 of microNS as the smallest that was inclusion competent, although residues within the region 140 to 380 seem to be involved in inclusion maturation. Finally, we investigated the roles that four different motifs present in microNS(448-635) play in inclusion formation, and the results suggest that the C-terminal tail domain is a key determinant in dictating the initial orientation of monomer-to-monomer contacts to form basal oligomers that control inclusion shape and inclusion-forming efficiency. Our results contribute to an understanding of the generation of structured protein aggregates that escape the cellular mechanisms of protein recycling.

  7. The eukaryotic translation initiation factor 3 subunit L protein interacts with Flavivirus NS5 and may modulate yellow fever virus replication

    PubMed Central

    2013-01-01

    Background Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. Methods To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. Results In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L

  8. The eukaryotic translation initiation factor 3 subunit L protein interacts with Flavivirus NS5 and may modulate yellow fever virus replication.

    PubMed

    Morais, Ana Ts; Terzian, Ana Cb; Duarte, Danilo Vb; Bronzoni, Roberta Vm; Madrid, Maria Cfs; Gavioli, Arieli F; Gil, Laura Hvg; Oliveira, Amanda G; Zanelli, Cleslei F; Valentini, Sandro R; Rahal, Paula; Nogueira, Mauricio L

    2013-06-22

    Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L with YFV NS5 may play a role

  9. Exploration of structural stability in deleterious nsSNPs of the XPA gene: A molecular dynamics approach

    PubMed Central

    NagaSundaram, N; Priya Doss, C George

    2011-01-01

    Background: Distinguishing the deleterious from the massive number of non-functional nsSNPs that occur within a single genome is a considerable challenge in mutation research. In this approach, we have used the existing in silico methods to explore the mutation-structure-function relationship in the XPAgene. Materials and Methods: We used the Sorting Intolerant From Tolerant (SIFT), Polymorphism Phenotyping (PolyPhen), I-Mutant 2.0, and the Protein Analysis THrough Evolutionary Relationships methods to predict the effects of deleterious nsSNPs on protein function and evaluated the impact of mutation on protein stability by Molecular Dynamics simulations. Results: By comparing the scores of all the four in silico methods, nsSNP with an ID rs104894131 at position C108F was predicted to be highly deleterious. We extended our Molecular dynamics approach to gain insight into the impact of this non-synonymous polymorphism on structural changes that may affect the activity of the XPAgene. Conclusion: Based on the in silico methods score, potential energy, root-mean-square deviation, and root-mean-square fluctuation, we predict that deleterious nsSNP at position C108F would play a significant role in causing disease by the XPA gene. Our approach would present the application of in silicotools in understanding the functional variation from the perspective of structure, evolution, and phenotype. PMID:22190868

  10. Infectious Bovine Viral Diarrhea Virus (Strain NADL) RNA from Stable cDNA Clones: a Cellular Insert Determines NS3 Production and Viral Cytopathogenicity

    PubMed Central

    Mendez, Ernesto; Ruggli, Nicolas; Collett, Marc S.; Rice, Charles M.

    1998-01-01

    Bovine viral diarrhea virus (BVDV), strain NADL, was originally isolated from an animal with fatal mucosal disease. This isolate is cytopathic in cell culture and produces two forms of NS3-containing proteins: uncleaved NS2-3 and mature NS3. For BVDV NADL, the production of NS3, a characteristic of cytopathic BVDV strains, is believed to be a consequence of an in-frame insertion of a 270-nucleotide cellular mRNA sequence (called cIns) in the NS2 coding region. In this study, we constructed a stable full-length cDNA copy of BVDV NADL in a low-copy-number plasmid vector. As assayed by transfection of MDBK cells, uncapped RNAs transcribed from this template were highly infectious (>105 PFU/μg). The recovered virus was similar in plaque morphology, growth properties, polyprotein processing, and cytopathogenicity to the BVDV NADL parent. Deletion of cIns abolished processing at the NS2/NS3 site and produced a virus that was no longer cytopathic for MDBK cells. This deletion did not affect the efficiency of infectious virus production or viral protein production, but it reduced the level of virus-specific RNA synthesis and accumulation. Thus, cIns not only modulates NS3 production but also upregulates RNA replication relative to an isogenic noncytopathic derivative lacking the insert. These results raise the possibility of a linkage between enhanced BVDV NADL RNA replication and virus-induced cytopathogenicity. PMID:9573238

  11. Efficacy of Live-Attenuated H9N2 Influenza Vaccine Candidates Containing NS1 Truncations against H9N2 Avian Influenza Viruses.

    PubMed

    Chen, Sujuan; Zhu, Yinbiao; Yang, Da; Yang, Yang; Shi, Shaohua; Qin, Tao; Peng, Daxin; Liu, Xiufan

    2017-01-01

    H9N2 avian influenza virus is a zoonotic agent with a broad host range that can contribute genetic information to H5 or H7N9 subtype viruses, which are significant threats to both humans and birds. Thus, there is a great need for a vaccine to control H9N2 avian influenza. Three mutant viruses of an H9N2 virus A/chicken/Taixing/10/2010 (rTX-NS1-73, rTX-NS1-100, and rTX-NS1-128) were constructed with different NS1 gene truncations and confirmed by western blot analysis. The genetic stability, pathogenicity, transmissibility, and host immune responses toward these mutants were evaluated. The mutant virus rTX-NS1-128 exhibited the most attenuated phenotype and lost transmissibility. The expression levels of interleukin 12 in the nasal and tracheal tissues from chickens immunized with rTX-NS1-128 were significantly upregulated on day 3 post-immunization and the IgA and IgG antibody levels were significantly increased on days 7, 14, and 21 post-immunization when compared to chickens that received an inactivated vaccine. rTX-NS1-128 also protected chickens from challenge by homologous and heterologous H9N2 avian influenza viruses. The results indicate that rTX-NS1-128 can be used as a potential live-attenuated vaccine against H9N2 avian influenza.

  12. Efficacy of NS-018, a potent and selective JAK2/Src inhibitor, in primary cells and mouse models of myeloproliferative neoplasms

    PubMed Central

    Nakaya, Y; Shide, K; Niwa, T; Homan, J; Sugahara, S; Horio, T; Kuramoto, K; Kotera, T; Shibayama, H; Hori, K; Naito, H; Shimoda, K

    2011-01-01

    Aberrant activation of Janus kinase 2 (JAK2) caused by somatic mutation of JAK2 (JAK2V617F) or the thrombopoietin receptor (MPLW515L) plays an essential role in the pathogenesis of myeloproliferative neoplasms (MPNs), suggesting that inhibition of aberrant JAK2 activation would have a therapeutic benefit. Our novel JAK2 inhibitor, NS-018, was highly active against JAK2 with a 50% inhibition (IC50) of <1 n, and had 30–50-fold greater selectivity for JAK2 over other JAK-family kinases, such as JAK1, JAK3 and tyrosine kinase 2. In addition to JAK2, NS-018 inhibited Src-family kinases. NS-018 showed potent antiproliferative activity against cell lines expressing a constitutively activated JAK2 (the JAK2V617F or MPLW515L mutations or the TEL–JAK2 fusion gene; IC50=11–120 n), but showed only minimal cytotoxicity against most other hematopoietic cell lines without a constitutively activated JAK2. Furthermore, NS-018 preferentially suppressed in vitro erythropoietin-independent endogenous colony formation from polycythemia vera patients. NS-018 also markedly reduced splenomegaly and prolonged the survival of mice inoculated with Ba/F3 cells harboring JAK2V617F. In addition, NS-018 significantly reduced leukocytosis, hepatosplenomegaly and extramedullary hematopoiesis, improved nutritional status, and prolonged survival in JAK2V617F transgenic mice. These results suggest that NS-018 will be a promising candidate for the treatment of MPNs. PMID:22829185

  13. NS5A inhibitors unmask differences in functional replicase complex half-life between different hepatitis C virus strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benzine, Tiffany; Brandt, Ryan; Lovell, William C.

    We synthesized the Hepatitis C virus (HCV) RNA by the replicase complex (RC), a macromolecular assembly composed of viral non-structural proteins and cellular co-factors. Inhibitors of the HCV NS5A protein block formation of new RCs but do not affect RNA synthesis by preformed RCs. Without new RC formation, existing RCs turn over and are eventually lost from the cell. We aimed to use NS5A inhibitors to estimate the half-life of the functional RC of HCV. We compared different cell culture-infectious strains of HCV that may be grouped based on their sensitivity to lipid peroxidation: robustly replicating, lipid peroxidation resistant (LPOmore » R) viruses (e.g. JFH-1 or H77D) and more slowly replicating, lipid peroxidation sensitive (LPO S) viruses (e.g. H77S.3 and N.2). Furthermore, in luciferase assays, LPO S HCV strains declined under NS5A inhibitor therapy with much slower kinetics compared to LPO R HCV strains. This difference in rate of decline was not observed for inhibitors of the NS5B RNAdependent RNA polymerase suggesting that the difference was not simply a consequence of differences in RNA stability. In further analyses, we compared two isoclonal HCV variants: the LPO S H77S.3 and the LPO R H77D that differ only by 12 amino acids. Differences in rate of decline between H77S.3 and H77D following NS5A inhibitor addition were not due to amino acid sequences in NS5A but rather due to a combination of amino acid differences in the non-structural proteins that make up the HCV RC. The mathematical modeling of intracellular HCV RNA dynamics suggested that differences in RC stability (half-lives of 3.5 and 9.9 hours, for H77D and H77S.3, respectively) are responsible for the different kinetics of antiviral suppression between LPO S and LPO R viruses. In nascent RNA capture assays, the rate of RNA synthesis decline following NS5A inhibitor addition was significantly faster for H77D compared to H77S.3 indicating different half-lives of functional RCs.« less

  14. NS5A inhibitors unmask differences in functional replicase complex half-life between different hepatitis C virus strains

    DOE PAGES

    Benzine, Tiffany; Brandt, Ryan; Lovell, William C.; ...

    2017-06-08

    We synthesized the Hepatitis C virus (HCV) RNA by the replicase complex (RC), a macromolecular assembly composed of viral non-structural proteins and cellular co-factors. Inhibitors of the HCV NS5A protein block formation of new RCs but do not affect RNA synthesis by preformed RCs. Without new RC formation, existing RCs turn over and are eventually lost from the cell. We aimed to use NS5A inhibitors to estimate the half-life of the functional RC of HCV. We compared different cell culture-infectious strains of HCV that may be grouped based on their sensitivity to lipid peroxidation: robustly replicating, lipid peroxidation resistant (LPOmore » R) viruses (e.g. JFH-1 or H77D) and more slowly replicating, lipid peroxidation sensitive (LPO S) viruses (e.g. H77S.3 and N.2). Furthermore, in luciferase assays, LPO S HCV strains declined under NS5A inhibitor therapy with much slower kinetics compared to LPO R HCV strains. This difference in rate of decline was not observed for inhibitors of the NS5B RNAdependent RNA polymerase suggesting that the difference was not simply a consequence of differences in RNA stability. In further analyses, we compared two isoclonal HCV variants: the LPO S H77S.3 and the LPO R H77D that differ only by 12 amino acids. Differences in rate of decline between H77S.3 and H77D following NS5A inhibitor addition were not due to amino acid sequences in NS5A but rather due to a combination of amino acid differences in the non-structural proteins that make up the HCV RC. The mathematical modeling of intracellular HCV RNA dynamics suggested that differences in RC stability (half-lives of 3.5 and 9.9 hours, for H77D and H77S.3, respectively) are responsible for the different kinetics of antiviral suppression between LPO S and LPO R viruses. In nascent RNA capture assays, the rate of RNA synthesis decline following NS5A inhibitor addition was significantly faster for H77D compared to H77S.3 indicating different half-lives of functional RCs.« less

  15. Biodegradation of thermally treated low density polyethylene by fungus Rhizopus oryzae NS 5.

    PubMed

    Awasthi, Shraddha; Srivastava, Neha; Singh, Tripti; Tiwary, D; Mishra, Pradeep Kumar

    2017-05-01

    Polythene is considered as one of the important object used in daily life. Being versatile in nature and resistant to microbial attack, they effectively cause environmental pollution. In the present study, biodegradation of low-density polyethylene (LDPE) have been performed using fungal lab isolate Rhizopus oryzae NS5. Lab isolate fungal strain capable of adhering to LDPE surface was used for the biodegradation of LDPE. This strain was identified as Rhizopus oryzae NS5 (Accession No. KT160362). Fungal growth was observed on the surface of the polyethylene when cultured in potato dextrose broth at 30 °C and 120 rpm, for 1 month. LDPE film was characterized before and after incubation by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and universal tensile machine. About 8.4 ± 3% decrease (gravimetrically) in weight and 60% reduction in tensile strength of polyethylene was observed. Scanning electron microscope analysis showed hyphal penetration and degradation on the surface of polyethylene. Atomic force microscope analysis showed increased surface roughness after treatment with fungal isolate. A thick network of fungal hyphae forming a biofilm was also observed on the surface of the polyethylene pieces. Present study shows the potential of Rhizopus oryzae NS5 in polyethylene degradation in eco friendly and sustainable manner.

  16. High-frequency large-amplitude oscillations of a non-isothermal N/S boundary

    NASA Astrophysics Data System (ADS)

    Bezuglyj, A. I.; Shklovskij, V. A.

    2016-10-01

    Within the framework of a phenomenological approach based on the heat balance equation and the current dependence of the critical temperature of the superconductor, the effect of high-frequency current of large amplitude and arbitrary waveform on the non-isothermal balance of an oscillating N/S interface in a long superconductor was studied. Self-consistent average temperature field of the rapidly oscillating non-isothermal N/S boundary (heat kink) was introduced, which allowed us to go beyond the well-known concept of mean-square heating and consider the effect of the current waveform. With regard to experiments on the effects of high-power microwave radiation on the current-voltage (IV) characteristics of superconducting films, their classification was performed and the families of IV curves of inhomogeneous superconductors carrying a current containing a high-frequency component of large amplitude. Several IV curves exhibited a hysteresis of thermal nature.

  17. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulaeman, M. Y.; Widita, R.

    2014-09-30

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulsemore » than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.« less

  18. ExoMol molecular line lists - XXVI: spectra of SH and NS

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Bond, Wesley; Gorman, Maire N.; Lodi, Lorenzo; McKemmish, Laura K.; Nunn, William; Shah, Rohan; Tennyson, Jonathan

    2018-04-01

    Line lists for the sulphur-containing molecules SH (the mercapto radical) and NS are computed as part of the ExoMol project. These line lists consider transitions within the X 2Π ground state for 32SH, 33SH, 34SH and 32SD, and 14N32S, 14N33S, 14N34S, 14N36S and 15N32S. Ab initio potential energy (PEC) and spin-orbit coupling (SOC) curves are computed and then improved by fitting to experimentally observed transitions. Fully ab initio dipole moment curves (DMCs) computed at high level of theory are used to produce the final line lists. For SH, our fit gives a root-mean-square (rms) error of 0.03 cm-1 between the observed (vmax = 4, Jmax = 34.5) and calculated transitions wavenumbers; this is extrapolated such that all X 2Π rotational-vibrational-electronic (rovibronic) bound states are considered. For 32SH the resulting line list contains about 81 000 transitions and 2 300 rovibronic states, considering levels up to vmax = 14 and Jmax = 60.5. For NS the refinement used a combination of experimentally determined frequencies and energy levels and led to an rms fitting error of 0.002 cm-1. Each NS calculated line list includes around 2.8 million transitions and 31 000 rovibronic states with a vibrational range up to v = 53 and rotational range to J = 235.5, which covers up to 23 000 cm-1. Both line lists should be complete for temperatures up to 5000 K. Example spectra simulated using this line list are shown and comparisons made to the existing data in the CDMS database. The line lists are available from the CDS (http://cdsarc.u-strasbg.fr) and ExoMol (www.exomol.com) data bases.

  19. ExoMol molecular line lists - XXVI: spectra of SH and NS

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Bond, Wesley; Gorman, Maire N.; Lodi, Lorenzo; McKemmish, Laura K.; Nunn, William; Shah, Rohan; Tennyson, Jonathan

    2018-07-01

    Line lists for the sulphur-containing molecules SH (the mercapto radical) and NS are computed as part of the ExoMol project. These line lists consider transitions within the X2Π ground state for 32SH, 33SH, 34SH,36SH and, 32SD, and 14N32S, 14N33S, 14N34S, 14N36S, and 15N32S. Ab initio potential energy (PEC) and spin-orbit coupling (SOC) curves are computed and then improved by fitting to experimentally observed transitions. Fully ab initio dipole moment curves (DMCs) computed at high level of theory are used to produce the final line lists. For SH, our fit gives a root-mean-square (rms) error of 0.03 cm-1 between the observed (vmax = 4, Jmax = 34.5) and calculated transitions wavenumbers; this is extrapolated such that all X2Π rotational-vibrational-electronic (rovibronic) bound states are considered. For 32SH the resulting line list contains about 81 000 transitions and 2300 rovibronic states, considering levels up to vmax = 14 and Jmax = 60.5. For NS the refinement used a combination of experimentally determined frequencies and energy levels and led to an rms-fitting error of 0.002 cm-1. Each NS-calculated line list includes around 2.8 million transitions and 31 000 rovibronic states with a vibrational range up to v = 53 and rotational range up to J = 235.5, which covers up to 23 000 cm-1. Both line lists should be complete for temperatures up to 5000 K. Example spectra simulated using this line list are shown and comparisons made to the existing data in the CDMS data base. The line lists are available from the CDS (http://cdsarc.u-strasbg.fr) and ExoMol (www.exomol.com) data bases.

  20. Hepatitis C virus NS5A protein is a substrate for the peptidyl-prolyl cis/trans isomerase activity of cyclophilins A and B.

    PubMed

    Hanoulle, Xavier; Badillo, Aurélie; Wieruszeski, Jean-Michel; Verdegem, Dries; Landrieu, Isabelle; Bartenschlager, Ralf; Penin, François; Lippens, Guy

    2009-05-15

    We report here a biochemical and structural characterization of domain 2 of the nonstructural 5A protein (NS5A) from the JFH1 Hepatitis C virus strain and its interactions with cyclophilins A and B (CypA and CypB). Gel filtration chromatography, circular dichroism spectroscopy, and finally NMR spectroscopy all indicate the natively unfolded nature of this NS5A-D2 domain. Because mutations in this domain have been linked to cyclosporin A resistance, we used NMR spectroscopy to investigate potential interactions between NS5A-D2 and cellular CypA and CypB. We observed a direct molecular interaction between NS5A-D2 and both cyclophilins. The interaction surface on the cyclophilins corresponds to their active site, whereas on NS5A-D2, it proved to be distributed over the many proline residues of the domain. NMR heteronuclear exchange spectroscopy yielded direct evidence that many proline residues in NS5A-D2 form a valid substrate for the enzymatic peptidyl-prolyl cis/trans isomerase (PPIase) activity of CypA and CypB.

  1. ARC-2009-ACD09-0153-004

    NASA Image and Video Library

    2009-07-23

    Janice Hahn, Councilwoman, District 15, City of Los Angeles visits NASA Ames Research Center. Associate Director Steve Zornetzer and Center Director S. Pete Worden meet with .Janice Hahn, Councilwoman, District 15, City of Los Angeles, Jenny Chavez, Staffer for Councilwoman Hahn, Walter Zifkin, Commissioner, Los Angles International Airport, Michael Molina, Chief of External Affairs, LAWA, Jaideep Vaswani. Chief of Airport Planning, LAWA

  2. NS-398, a selective COX-2 inhibitor, inhibits proliferation of IL-1{beta}-stimulated vascular smooth muscle cells by induction of {eta}{omicron}-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hyoung Chul; Kim, Hee Sun; Lee, Kwang Youn

    2008-11-28

    We investigated whether NS-398, a selective inhibitor of COX-2, induces HO-1 in IL-1{beta}-stimulated vascular smooth muscle cells (VSMC). NS-398 reduced the production of PGE{sub 2} without modulation of expression of COX-2 in IL-1{beta}-stimulated VSMC. NS-398 increased HO-1 mRNA and protein in a dose-dependent manner, but inhibited proliferation of IL-1{beta}-stimulated VSMC. Furthermore, SnPPIX, a HO-1 inhibitor, reversed the effects of NS-398 on PGE{sub 2} production, suggesting that COX-2 activity can be affected by HO-1. Hemin, a HO-1 inducer, also reduced the production of PGE{sub 2} and proliferation of IL-1{beta}-stimulated VSMC. CORM-2, a CO-releasing molecule, but not bilirubin inhibited proliferation of IL-1{beta}-stimulatedmore » VSMC. NS-398 inhibited proliferation of IL-1{beta}-stimulated VSMC in a HbO{sub 2}-sensitive manner. In conclusion, NS-398 inhibits proliferation of IL-1{beta}-stimulated VSMC by HO-1-derived CO. Thus, NS-398 may facilitate the healing process of vessels in vascular inflammatory disorders such as atherosclerosis.« less

  3. Modeling plasma heating by ns laser pulse

    NASA Astrophysics Data System (ADS)

    Colonna, Gianpiero; Laricchiuta, Annarita; Pietanza, Lucia Daniela

    2018-03-01

    The transition to breakdown of a weakly ionized gas, considering inverse bremsstrahlung, has been investigated using a state-to-state self-consistent model for gas discharges, mimicking a ns laser pulse. The paper is focused on the role of the initial ionization on the plasma formation. The results give the hint that some anomalous behaviors, such as signal enhancement by metal nanoparticles, can be attributed to this feature. This approach has been applied to hydrogen gas regarded as a simplified model for LIBS plasmas, as a full kinetic scheme is available, including the collisional-radiative model for atoms and molecules. The model allows the influence of different parameters to be investigated, such as the initial electron molar fraction, on the ionization growth.

  4. Four Aromatic Sulfates with an Inhibitory Effect against HCV NS3 Helicase from the Crinoid Alloeocomatella polycladia.

    PubMed

    Hermawan, Idam; Furuta, Atsushi; Higashi, Masahiro; Fujita, Yoshihisa; Akimitsu, Nobuyoshi; Yamashita, Atsuya; Moriishi, Kohji; Tsuneda, Satoshi; Tani, Hidenori; Nakakoshi, Masamichi; Tsubuki, Masayoshi; Sekiguchi, Yuji; Noda, Naohiro; Tanaka, Junichi

    2017-04-11

    Bioassay-guided separation of a lipophilic extract of the crinoid Alloeocomatella polycladia , inhibiting the activity of HCV NS3 helicase, yielded two groups of molecules: cholesterol sulfate and four new aromatic sulfates 1 - 4 . The structures of the aromatics were elucidated by spectroscopic analysis in addition to theoretical studies. The aromatic sulfates 1 - 4 showed moderate inhibition against NS3 helicase with IC 50 values of 71, 95, 7, and 5 μM, respectively.

  5. A Sensitive and Robust High-Throughput Screening Assay for Inhibitors of the Chikungunya Virus nsP1 Capping Enzyme.

    PubMed

    Bullard-Feibelman, Kristen M; Fuller, Benjamin P; Geiss, Brian J

    2016-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne Alphavirus that causes severe and debilitating disease symptoms. Alarmingly, transmission rates of CHIKV have increased dramatically over the last decade resulting in 1.7 million suspected cases in the Western hemisphere alone. There are currently no antivirals for treatment of CHIKV infection and novel anti-alphaviral compounds are badly needed. nsP1 is the alphavirus protein responsible for the methyltransferase and guanylyltransferase activities necessary for formation of the 5' type 0 cap structure added to newly formed viral RNA. Formation of this cap depends on nsP1 binding GTP and transferring a methylated GMP to nascent viral RNA. We have developed a fluorescence polarization-based assay that monitors displacement of a fluorescently-labeled GTP analog in real time. Determining the relative affinities of 15 GTP analogs for nsP1 GTP revealed important structural aspects of GTP that will inform identification of inhibitors able to outcompete GTP for the nsP1 binding site. Validation of the assay for HTS was completed and a secondary orthogonal assay that measures guanylation activity was developed in order to evaluate hits from future drug screens. This platform provides an avenue for identification of potent nsP1 inhibitors, which would potentially provide compounds capable of treating disease caused by CHIKV infection.

  6. Remote detection of canopy water stress in coniferous forests using the NS001 Thematic Mapper Simulator and the thermal infrared multispectral scanner

    NASA Technical Reports Server (NTRS)

    Pierce, Lars L.; Running, Steven W.; Riggs, George A.

    1990-01-01

    Water stress was induced in two coniferous forest stands in West Germany by severing tree sapwood. Leaf water potential, Psi(L), measurements indicated that maximum, naturally occurring levels of water stress developed in the stressed plots while control plots exhibited natural diurnal trends. Images of each site were obtained with the Thematic Mapper Simulator (NS001) and the Thermal Infrared Multispectral Scanner (TIMS) 12 to 15 days after stress induction. NS001 bands 2 to 6, NS001 indices combining bands 4 and 6, and NS001 and TIMS thermal bands showed significant radiance differences between stressed and control plots when large differences in Psi(L) and relative water content (RWC) existed during the morning overflights at Munich. However, the NS001 and TIMS sensors could not detect the slightly smaller differences in Psi(L) and RWC during the Munich afternoon and Frankfurt overflights. The results suggest that routine detection of canopy water stress under operational conditions is difficult utilizing current sensor technology.

  7. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    PubMed

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.

  8. Development and Characterization of a High Sensitivity Segmented Fast Neutron Spectrometer (FaNS-2)

    PubMed Central

    Langford, T.J.; Beise, E.J.; Breuer, H.; Heimbach, C.R.; Ji, G.; Nico, J.S.

    2016-01-01

    We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2. PMID:27226807

  9. Conserved amino acids within the N-terminus of the West Nile virus NS4A protein contribute to virus replication, protein stability and membrane proliferation.

    PubMed

    Ambrose, R L; Mackenzie, J M

    2015-07-01

    The West Nile virus strain Kunjin virus (WNVKUN) NS4A protein is a multifunctional protein involved in many aspects of the virus life-cycle and is a major component of the WNVKUN replication complex (RC). Previously we identified a conserved region in the C-terminus of NS4A regulating proteolytic processing and RC assembly, and now investigate key conserved residues in the N-terminus of NS4A and their contribution to WNVKUN replication. Mutation of P13 completely ablated replication, whereas, mutation of P48 and D49, near the first transmembrane helix, and G66 within the helix, showed variable defects in replication, virion secretion and membrane proliferation. Intriguingly, the P48 and G66 NS4A mutants resulted in specific proteasome depletion of NS4A that could in part be rescued with a proteasome inhibitor. Our results suggest that the N-terminus of NS4A contributes to correct folding and stability, essential for facilitating the essential roles of NS4A during replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Genome-Wide Mutagenesis of Dengue Virus Reveals Plasticity of the NS1 Protein and Enables Generation of Infectious Tagged Reporter Viruses

    PubMed Central

    Johnson, Stephen M.; Eltahla, Auda A.; Aloi, Maria; Aloia, Amanda L.; McDevitt, Christopher A.; Bull, Rowena A.

    2017-01-01

    ABSTRACT Dengue virus (DENV) is a major global pathogen that causes significant morbidity and mortality in tropical and subtropical areas worldwide. An improved understanding of the regions within the DENV genome and its encoded proteins that are required for the virus replication cycle will expedite the development of urgently required therapeutics and vaccines. We subjected an infectious DENV genome to unbiased insertional mutagenesis and used next-generation sequencing to identify sites that tolerate 15-nucleotide insertions during the virus replication cycle in hepatic cell culture. This revealed that the regions within capsid, NS1, and the 3′ untranslated region were the most tolerant of insertions. In contrast, prM- and NS2A-encoding regions were largely intolerant of insertions. Notably, the multifunctional NS1 protein readily tolerated insertions in regions within the Wing, connector, and β-ladder domains with minimal effects on viral RNA replication and infectious virus production. Using this information, we generated infectious reporter viruses, including a variant encoding the APEX2 electron microscopy tag in NS1 that uniquely enabled high-resolution imaging of its localization to the surface and interior of viral replication vesicles. In addition, we generated a tagged virus bearing an mScarlet fluorescent protein insertion in NS1 that, despite an impact on fitness, enabled live cell imaging of NS1 localization and traffic in infected cells. Overall, this genome-wide profile of DENV genome flexibility may be further dissected and exploited in reporter virus generation and antiviral strategies. IMPORTANCE Regions of genetic flexibility in viral genomes can be exploited in the generation of reporter virus tools and should arguably be avoided in antiviral drug and vaccine design. Here, we subjected the DENV genome to high-throughput insertional mutagenesis to identify regions of genetic flexibility and enable tagged reporter virus generation. In

  11. A Single-Amino-Acid Change in Murine Norovirus NS1/2 Is Sufficient for Colonic Tropism and Persistence

    PubMed Central

    Nice, Timothy J.; Strong, David W.; McCune, Broc T.; Pohl, Calvin S.

    2013-01-01

    Human norovirus (HuNoV) is the major cause of acute nonbacterial gastroenteritis worldwide but has no clear animal reservoir. HuNoV can persist after the resolution of symptoms, and this persistence may be essential for viral maintenance within the population. Many strains of the related murine norovirus (MNV) also persist, providing a tractable animal model for studying norovirus (NoV) persistence. We have used recombinant cDNA clones of representative persistent (CR6) and nonpersistent (CW3) strains to identify a domain within the nonstructural gene NS1/2 that is necessary and sufficient for persistence. Furthermore, we found that a single change of aspartic acid to glutamic acid in CW3 NS1/2 was sufficient for persistence. This same conservative change also caused increased growth of CW3 in the proximal colon, which we found to be a major tissue reservoir of MNV persistence, suggesting that NS1/2 determines viral tropism that is necessary for persistence. These findings represent the first identified function for NoV NS1/2 during infection and establish a novel model system for the study of enteric viral persistence. PMID:23077309

  12. Influenza A Virus NS1 Protein Promotes Efficient Nuclear Export of Unspliced Viral M1 mRNA.

    PubMed

    Pereira, Carina F; Read, Eliot K C; Wise, Helen M; Amorim, Maria J; Digard, Paul

    2017-08-01

    Influenza A virus mRNAs are transcribed by the viral RNA-dependent RNA polymerase in the cell nucleus before being exported to the cytoplasm for translation. Segment 7 produces two major transcripts: an unspliced mRNA that encodes the M1 matrix protein and a spliced transcript that encodes the M2 ion channel. Export of both mRNAs is dependent on the cellular NXF1/TAP pathway, but it is unclear how they are recruited to the export machinery or how the intron-containing but unspliced M1 mRNA bypasses the normal quality-control checkpoints. Using fluorescent in situ hybridization to monitor segment 7 mRNA localization, we found that cytoplasmic accumulation of unspliced M1 mRNA was inefficient in the absence of NS1, both in the context of segment 7 RNPs reconstituted by plasmid transfection and in mutant virus-infected cells. This effect was independent of any major effect on steady-state levels of segment 7 mRNA or splicing but corresponded to a ∼5-fold reduction in the accumulation of M1. A similar defect in intronless hemagglutinin (HA) mRNA nuclear export was seen with an NS1 mutant virus. Efficient export of M1 mRNA required both an intact NS1 RNA-binding domain and effector domain. Furthermore, while wild-type NS1 interacted with cellular NXF1 and also increased the interaction of segment 7 mRNA with NXF1, mutant NS1 polypeptides unable to promote mRNA export did neither. Thus, we propose that NS1 facilitates late viral gene expression by acting as an adaptor between viral mRNAs and the cellular nuclear export machinery to promote their nuclear export. IMPORTANCE Influenza A virus is a major pathogen of a wide variety of mammalian and avian species that threatens public health and food security. A fuller understanding of the virus life cycle is important to aid control strategies. The virus has a small genome that encodes relatively few proteins that are often multifunctional. Here, we characterize a new function for the NS1 protein, showing that, as well as

  13. Construction of recombinant Kluyveromyces marxianus UFV-3 to express dengue virus type 1 nonstructural protein 1 (NS1).

    PubMed

    Bragança, Caio Roberto Soares; Colombo, Lívia Tavares; Roberti, Alvaro Soares; Alvim, Mariana Caroline Tocantins; Cardoso, Silvia Almeida; Reis, Kledna Constancio Portes; de Paula, Sérgio Oliveira; da Silveira, Wendel Batista; Passos, Flavia Maria Lopes

    2015-02-01

    The yeast Kluyveromyces marxianus is a convenient host for industrial synthesis of biomolecules. However, despite its potential, there are few studies reporting the expression of heterologous proteins using this yeast. Here, we report expression of a dengue virus protein in K. marxianus for the first time. The dengue virus type 1 nonstructural protein 1 (NS1) was integrated into the K. marxianus UFV-3 genome at the LAC4 locus using an adapted integrative vector designed for high-level expression of recombinant protein in Kluyveromyces lactis. The NS1 gene sequence was codon-optimized to increase the level of protein expression in yeast. The synthetic gene was cloned in frame with K. lactis α-mating factor signal peptide, and the recombinant plasmid obtained was used to transform K. marxianus UFV-3 by electroporation. The transformed cells, selected in yeast extract peptone dextrose containing 200 μg mL(-1) Geneticin, were mitotically stable. Analysis of recombinant strains by RT-PCR and protein detection using blot analysis confirmed both transcription and expression of extracellular NS1 polypeptide. After induction with galactose, the NS1 protein was analyzed by sodium dodecyl sulfate-PAGE and immunogenic detection. Protein production was investigated under two conditions: with galactose and biotin pulses at 24-h intervals during 96 h of induction and without galactose and biotin supplementation. Protease activity was not detected in post-growth medium. Our results indicate that recombinant K. marxianus is a good host for the production of dengue virus NS1 protein, which has potential for diagnostic applications.

  14. In Vitro Antiviral Activity and Resistance Profile Characterization of the Hepatitis C Virus NS5A Inhibitor Ledipasvir

    PubMed Central

    Tian, Yang; Doehle, Brian; Peng, Betty; Corsa, Amoreena; Lee, Yu-Jen; Gong, Ruoyu; Yu, Mei; Han, Bin; Xu, Simin; Dvory-Sobol, Hadas; Perron, Michel; Xu, Yili; Mo, Hongmei; Pagratis, Nikos; Link, John O.; Delaney, William

    2016-01-01

    Ledipasvir (LDV; GS-5885), a component of Harvoni (a fixed-dose combination of LDV with sofosbuvir [SOF]), is approved to treat chronic hepatitis C virus (HCV) infection. Here, we report key preclinical antiviral properties of LDV, including in vitro potency, in vitro resistance profile, and activity in combination with other anti-HCV agents. LDV has picomolar antiviral activity against genotype 1a and genotype 1b replicons with 50% effective concentration (EC50) values of 0.031 nM and 0.004 nM, respectively. LDV is also active against HCV genotypes 4a, 4d, 5a, and 6a with EC50 values of 0.11 to 1.1 nM. LDV has relatively less in vitro antiviral activity against genotypes 2a, 2b, 3a, and 6e, with EC50 values of 16 to 530 nM. In vitro resistance selection with LDV identified the single Y93H and Q30E resistance-associated variants (RAVs) in the NS5A gene; these RAVs were also observed in patients after a 3-day monotherapy treatment. In vitro antiviral combination studies indicate that LDV has additive to moderately synergistic antiviral activity when combined with other classes of HCV direct-acting antiviral (DAA) agents, including NS3/4A protease inhibitors and the nucleotide NS5B polymerase inhibitor SOF. Furthermore, LDV is active against known NS3 protease and NS5B polymerase inhibitor RAVs with EC50 values equivalent to those for the wild type. PMID:26824950

  15. In Vitro Antiviral Activity and Resistance Profile Characterization of the Hepatitis C Virus NS5A Inhibitor Ledipasvir.

    PubMed

    Cheng, Guofeng; Tian, Yang; Doehle, Brian; Peng, Betty; Corsa, Amoreena; Lee, Yu-Jen; Gong, Ruoyu; Yu, Mei; Han, Bin; Xu, Simin; Dvory-Sobol, Hadas; Perron, Michel; Xu, Yili; Mo, Hongmei; Pagratis, Nikos; Link, John O; Delaney, William

    2016-01-11

    Ledipasvir (LDV; GS-5885), a component of Harvoni (a fixed-dose combination of LDV with sofosbuvir [SOF]), is approved to treat chronic hepatitis C virus (HCV) infection. Here, we report key preclinical antiviral properties of LDV, including in vitro potency, in vitro resistance profile, and activity in combination with other anti-HCV agents. LDV has picomolar antiviral activity against genotype 1a and genotype 1b replicons with 50% effective concentration (EC50) values of 0.031 nM and 0.004 nM, respectively. LDV is also active against HCV genotypes 4a, 4d, 5a, and 6a with EC50 values of 0.11 to 1.1 nM. LDV has relatively less in vitro antiviral activity against genotypes 2a, 2b, 3a, and 6e, with EC50 values of 16 to 530 nM. In vitro resistance selection with LDV identified the single Y93H and Q30E resistance-associated variants (RAVs) in the NS5A gene; these RAVs were also observed in patients after a 3-day monotherapy treatment. In vitro antiviral combination studies indicate that LDV has additive to moderately synergistic antiviral activity when combined with other classes of HCV direct-acting antiviral (DAA) agents, including NS3/4A protease inhibitors and the nucleotide NS5B polymerase inhibitor SOF. Furthermore, LDV is active against known NS3 protease and NS5B polymerase inhibitor RAVs with EC50 values equivalent to those for the wild type. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Tick-Borne Encephalitis Virus Nonstructural Protein NS5 Induces RANTES Expression Dependent on the RNA-Dependent RNA Polymerase Activity.

    PubMed

    Zheng, Zifeng; Yang, Jieyu; Jiang, Xuan; Liu, Yalan; Zhang, Xiaowei; Li, Mei; Zhang, Mudan; Fu, Ming; Hu, Kai; Wang, Hanzhong; Luo, Min-Hua; Gong, Peng; Hu, Qinxue

    2018-05-14

    Tick-borne encephalitis virus (TBEV) is one of the flaviviruses that targets the CNS and causes encephalitis in humans. The mechanism of TBEV that causes CNS destruction remains unclear. It has been reported that RANTES-mediated migration of human blood monocytes and T lymphocytes is specifically induced in the brain of mice infected with TBEV, which causes ensuing neuroinflammation and may contribute to brain destruction. However, the viral components responsible for RANTES induction and the underlying mechanisms remain to be fully addressed. In this study, we demonstrate that the NS5, but not other viral proteins of TBEV, induces RANTES production in human glioblastoma cell lines and primary astrocytes. TBEV NS5 appears to activate the IFN regulatory factor 3 (IRF-3) signaling pathway in a manner dependent on RIG-I/MDA5, which leads to the nuclear translocation of IRF-3 to bind with RANTES promoter. Further studies reveal that the activity of RNA-dependent RNA polymerase (RdRP) but not the RNA cap methyltransferase is critical for TBEV NS5-induced RANTES expression, and this is likely due to RdRP-mediated synthesis of dsRNA. Additional data indicate that the residues at K359, D361, and D664 of TBEV NS5 are critical for RdRP activity and RANTES induction. Of note, NS5s from other flaviviruses, including Japanese encephalitis virus, West Nile virus, Zika virus, and dengue virus, can also induce RANTES expression, suggesting the significance of NS5-induced RANTES expression in flavivirus pathogenesis. Our findings provide a foundation for further understanding how flaviviruses cause neuroinflammation and a potential viral target for intervention. Copyright © 2018 by The American Association of Immunologists, Inc.

  17. DNA sequence-specific dimeric bisbenzimidazoles DBP(n) and DBPA(n) as inhibitors of H-NS silencing in bacterial cells.

    PubMed

    Melkina, Olga E; Koval, Vasilii S; Ivanov, Alexander A; Zhuze, Alexei L; Zavilgelsky, Gennadii B

    2018-03-01

    DNA sequence-specific fluorescent dimeric bisbenzimidazoles DBP(n) and DBPA(n), noncovalently interacting with A-T pairs in the minor groove of double-stranded DNA were used for studying and monitoring the expression of histone-like H-NS-dependent promoters. Histone-like H-NS selectively binds to AT-rich segments of DNA and silences a large number of genes in bacterial chromosomes. The H-NS-dependent promoters of Quorum Sensing (QS)-regulated lux operons of the marine bacteria mesophilic Aliivibrio fischeri, psychrophilic Aliivibrio logei were used. Escherichia coli lux biosensors were constructed by cloning fragments bearing QS-regulated promoters into the vector, thereby placing each fragment upstream of the promoterless Photorhabdus luminescens luxCDABE genes. It was shown that the dimeric bisbenzimidazoles DBP(n) and DBPA(n) counteract the H-NS silencing activity. Thus, the presence of DBP(n) or DBPA(n) in the medium leads to an approximately 10-100-fold increase in the level of transcription of QS promoters in E. coli hns + . The largest decrease in the level of H-NS repression was observed using ligands containing a linker with a length of ca. 18Å, such as DBP(2) and DBPA(2). Ligands containing linkers with n=1 and 3 are an order of magnitude less active; ligands with n=4 are inactive. DBPA(2) exhibits activity starting with a concentration of 0.5μM; the minimum concentration of DBP(2) is 5-7 times higher. It is suggested that A-T pairs located at five nucleotide pair intervals, which correspond to the linker length in highly active ligands with n=2, play a key role in the structure of H-NS-binding sites in QS-regulated promoters. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Tumor Necrosis Factor Receptor-Associated Factor 5 Interacts with the NS3 Protein and Promotes Classical Swine Fever Virus Replication.

    PubMed

    Lv, Huifang; Dong, Wang; Guo, Kangkang; Jin, Mingxing; Li, Xiaomeng; Li, Cunfa; Zhang, Yanming

    2018-06-05

    Classical swine fever, caused by classical swine fever virus (CSFV), is a highly contagious and high-mortality viral disease, causing huge economic losses in the swine industry worldwide. CSFV non-structural protein 3 (NS3), a multifunctional protein, plays crucial roles in viral replication. However, how NS3 exactly exerts these functions is currently unknown. Here, we identified tumor necrosis factor receptor-associated factor 5 (TRAF5) as a novel binding partner of the NS3 protein via yeast two-hybrid, co-immunoprecipitation and glutathione S -transferase pull-down assays. Furthermore, we observed that TRAF5 promoted CSFV replication in porcine alveolar macrophages (PAMs). Additionally, CSFV infection or NS3 expression upregulated TRAF5 expression, implying that CSFV may exploit TRAF5 via NS3 for better growth. Moreover, CSFV infection and TRAF5 expression activated p38 mitogen activated protein kinase (MAPK) activity, and inhibition of p38 MAPK activation by the SB203580 inhibitor suppressed CSFV replication. Notably, TRAF5 overexpression did not promote CSFV replication following inhibition of p38 MAPK activation. Our findings reveal that TRAF5 promotes CSFV replication via p38 MAPK activation. This work provides a novel insight into the role of TRAF5 in CSFV replication capacity.

  19. Four Aromatic Sulfates with an Inhibitory Effect against HCV NS3 Helicase from the Crinoid Alloeocomatella polycladia

    PubMed Central

    Hermawan, Idam; Furuta, Atsushi; Higashi, Masahiro; Fujita, Yoshihisa; Akimitsu, Nobuyoshi; Yamashita, Atsuya; Moriishi, Kohji; Tsuneda, Satoshi; Tani, Hidenori; Nakakoshi, Masamichi; Tsubuki, Masayoshi; Sekiguchi, Yuji; Noda, Naohiro; Tanaka, Junichi

    2017-01-01

    Bioassay-guided separation of a lipophilic extract of the crinoid Alloeocomatella polycladia, inhibiting the activity of HCV NS3 helicase, yielded two groups of molecules: cholesterol sulfate and four new aromatic sulfates 1–4. The structures of the aromatics were elucidated by spectroscopic analysis in addition to theoretical studies. The aromatic sulfates 1–4 showed moderate inhibition against NS3 helicase with IC50 values of 71, 95, 7, and 5 μM, respectively. PMID:28398249

  20. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by RIG-I

    PubMed Central

    Gack, Michaela Ulrike; Albrecht, Randy Allen; Urano, Tomohiko; Inn, Kyung-Soo; Huang, I-Chueh; Carnero, Elena; Farzan, Michael; Inoue, Satoshi; Jung, Jae Ung; García-Sastre, Adolfo

    2009-01-01

    SUMMARY TRIM25 mediates Lys 63-linked ubiquitination of the N-terminal CARDs of the viral RNA sensor RIG-I, leading to type I interferon (IFN) production. Here, we report that the influenza A virus non-structural protein 1 (NS1) specifically inhibits TRIM25-mediated RIG-I CARD ubiquitination, thereby suppressing RIG-I signal transduction. A novel domain in NS1 comprising E96/E97 residues mediates its interaction with the coiled-coil domain of TRIM25, thus blocking TRIM25 multimerization and RIG-I CARD ubiquitination. Furthermore, a recombinant influenza A virus expressing an E96A/E97A NS1 mutant is defective in blocking TRIM25-mediated anti-viral IFN response and loses virulence in mice. Our findings reveal a novel mechanism of influenza virus to inhibit host IFN response and also emphasize the vital role of TRIM25 in modulating viral infections. PMID:19454348

  1. Binding of influenza A virus NS1 protein to the inter-SH2 domain of p85 suggests a novel mechanism for phosphoinositide 3-kinase activation.

    PubMed

    Hale, Benjamin G; Batty, Ian H; Downes, C Peter; Randall, Richard E

    2008-01-18

    Influenza A virus NS1 protein stimulates host-cell phosphoinositide 3-kinase (PI3K) signaling by binding to the p85beta regulatory subunit of PI3K. Here, in an attempt to establish a mechanism for this activation, we report further on the functional interaction between NS1 and p85beta. Complex formation was found to be independent of NS1 RNA binding activity and is mediated by the C-terminal effector domain of NS1. Intriguingly, the primary direct binding site for NS1 on p85beta is the inter-SH2 domain, a coiled-coil structure that acts as a scaffold for the p110 catalytic subunit of PI3K. In vitro kinase activity assays, together with protein binding competition studies, reveal that NS1 does not displace p110 from the inter-SH2 domain, and indicate that NS1 can form an active heterotrimeric complex with PI3K. In addition, it was established that residues at the C terminus of the inter-SH2 domain are essential for mediating the interaction between p85beta and NS1. Equivalent residues in p85alpha have previously been implicated in the basal inhibition of p110. However, such p85alpha residues were unable to substitute for those in p85beta with regards NS1 binding. Overall, these data suggest a model by which NS1 activates PI3K catalytic activity by masking a normal regulatory element specific to the p85beta inter-SH2 domain.

  2. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress.

    PubMed

    Liang, S; Wang, T; Hu, X; Luo, J; Li, W; Wu, X; Duan, Y; Jin, F

    2015-12-03

    Increasing numbers of studies have suggested that the gut microbiota is involved in the pathophysiology of stress-related disorders. Chronic stress can cause behavioral, cognitive, biochemical, and gut microbiota aberrations. Gut bacteria can communicate with the host through the microbiota-gut-brain axis (which mainly includes the immune, neuroendocrine, and neural pathways) to influence brain and behavior. It is hypothesized that administration of probiotics can improve chronic-stress-induced depression. In order to examine this hypothesis, the chronic restraint stress depression model was established in this study. Adult specific pathogen free (SPF) Sprague-Dawley rats were subjected to 21 days of restraint stress followed by behavioral testing (including the sucrose preference test (SPT), elevated-plus maze test, open-field test (OFT), object recognition test (ORT), and object placement test (OPT)) and biochemical analysis. Supplemental Lactobacillus helveticus NS8 was provided every day during stress until the end of experiment, and selective serotonin reuptake inhibitor (SSRI) citalopram (CIT) served as a positive control. Results showed that L. helveticus NS8 improved chronic restraint stress-induced behavioral (anxiety and depression) and cognitive dysfunction, showing an effect similar to and better than that of CIT. L. helveticus NS8 also resulted in lower plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels, higher plasma interleukin-10 (IL-10) levels, restored hippocampal serotonin (5-HT) and norepinephrine (NE) levels, and more hippocampal brain-derived neurotrophic factor (BDNF) mRNA expression than in chronic stress rats. Taken together, these results indicate an anti-depressant effect of L. helveticus NS8 in rats subjected to chronic restraint stress depression and that this effect could be due to the microbiota-gut-brain axis. They also suggest the therapeutic potential of L. helveticus NS8 in stress-related and possibly other

  3. Diffraction-assisted micropatterning of silicon surfaces by ns-laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro-Poniatowski, E., E-mail: haro@xanum.uam.mx; Acosta-Zepeda, C.; Mecalco, G.

    2014-06-14

    Single-pulse (532 nm, 8 ns) micropatterning of silicon with nanometric surface modulation is demonstrated by irradiating through a diffracting pinhole. The irradiation results obtained at fluences above the melting threshold are characterized by scanning electron and scanning force microscopy and reveal a good agreement with Fresnel diffraction theory. The physical mechanism is identified and discussed on basis of both thermocapillary and chemicapillary induced material transport during the molten state of the surface.

  4. HCV NS5A protein containing potential ligands for both Src homology 2 and 3 domains enhances autophosphorylation of Src family kinase Fyn in B cells.

    PubMed

    Nakashima, Kenji; Takeuchi, Kenji; Chihara, Kazuyasu; Horiguchi, Tomoko; Sun, Xuedong; Deng, Lin; Shoji, Ikuo; Hotta, Hak; Sada, Kiyonao

    2012-01-01

    Hepatitis C virus (HCV) infects B lymphocytes and induces mixed cryoglobulinemia and B cell non-Hodgkin's lymphoma. The molecular mechanism for the pathogenesis of HCV infection-mediated B cell disorders remains obscure. To identify the possible role for HCV nonstructural 5A (NS5A) protein in B cells, we generated the stable B cell lines expressing Myc-His tagged NS5A. Immunoprecipitation study in the presence or absence of pervanadate (PV) implied that NS5A was tyrosine phosphorylated by pervanadate (PV) treatment of the cells. Therefore we examined pull-down assay by using glutathione S-transferase (GST)-fusion proteins of various Src homology 2 (SH2) domains, which associates with phosphotyrosine within a specific amino acid sequence. The results showed that NS5A specifically bound to SH2 domain of Fyn from PV-treated B cells in addition to Src homology 3 (SH3) domain. Substitution of Arg(176) to Lys in the SH2 domain of Fyn abrogated this interaction. Deletion mutational analysis demonstrated that N-terminal region of NS5A was not required for the interaction with the SH2 domain of Fyn. Tyr(334) was identified as a tyrosine phosphorylation site in NS5A. Far-western analysis revealed that SH2 domain of Fyn directly bound to NS5A. Fyn and NS5A were colocalized in the lipid raft. These results suggest that NS5A directly binds to the SH2 domain of Fyn in a tyrosine phosphorylation-dependent manner. Lastly, we showed that the expression of NS5A in B cells increased phosphorylation of activation loop tyrosine in the kinase domain of Fyn. NS5A containing ligand for both SH2 and SH3 domains enhances an aberrant autophosphorylation and kinase activity of Fyn in B cells.

  5. Long implosion time (240 ns) Z-pinch experiments with a large diameter (12 cm) double-shell nozzle

    NASA Astrophysics Data System (ADS)

    Levine, J. S.; Banister, J. W.; Failor, B. H.; Qi, N.; Song, Y.; Sze, H. M.; Fisher, A.

    2004-05-01

    Recently, an 8 cm diameter double-shell nozzle has produced argon Z pinches with high K-shell yields with implosion time of 210 ns. To produce even longer implosion time Z pinches for facilities such as Decade Quad [D. Price, et al., "Electrical and Mechanical Design of the Decade Quad in PRS Mode," in Proceedings of the 12th IEEE Pulsed Power Conference, Monterey, CA, edited by C. Stallings and H. Kirbie (IEEE, New York, 1999), p. 489] (9 MA short circuit current at 300 ns), a larger nozzle (12 cm outer diameter) was designed and fabricated. During initial testing on Double-EAGLE [P. Sincerny et al., Proceedings of the 5th IEEE Pulsed Power Conference, Arlington, VA, edited by M. F. Rose and P. J. Turchi (IEEE, New York, 1985), p. 151], 9 kJ of argon K-shell radiation in a 6 ns full width at half maximum pulse was produced with a 240 ns implosion. The initial gas distributions produced by various nozzle configurations have been measured and their impact on the final radiative characteristics of the pinch are presented. The addition of a central jet to increase the initial gas density near the axis is observed to enhance the pinch quality, increasing K-shell yield by 17% and power by 40% in the best configuration tested.

  6. The inhibition of cAMP-dependent protein kinase by full-length hepatitis C virus NS3/4A complex is due to ATP hydrolysis.

    PubMed

    Aoubala, M; Holt, J; Clegg, R A; Rowlands, D J; Harris, M

    2001-07-01

    Hepatitis C virus (HCV) is an important cause of chronic liver disease, but the molecular mechanisms of viral pathogenesis remain to be established. The HCV non-structural protein NS3 complexes with NS4A and has three enzymatic activities: a proteinase and a helicase/NTPase. Recently, catalytically inactive NS3 fragments containing an arginine-rich motif have been reported to interact with, and inhibit, the catalytic subunit of cAMP-dependent protein kinase (PKA C-subunit). Here we demonstrate that full-length, catalytically active NS3/4A, purified from recombinant baculovirus-infected insect cells, is also able to inhibit PKA C-subunit in vitro. This inhibition was abrogated by mutation of either the arginine-rich motif or the conserved helicase motif II, both of which also abolished NTPase activity. As PKA C-subunit inhibition was also enhanced by poly(U) (an activator of NS3 NTPase activity), we hypothesized that PKA C-subunit inhibition could be due to NS3/4A-mediated ATP hydrolysis. This was confirmed by experiments in which a constant ATP concentration was maintained by addition of an ATP regeneration system--under these conditions PKA C-subunit inhibition was not observed. Interestingly, the mutations also abrogated the ability of wild-type NS3/4A to inhibit the PKA-regulated transcription factor CREB in transiently transfected hepatoma cells. Our data are thus not consistent with the previously proposed model in which the arginine-rich motif of NS3 was suggested to act as a pseudosubstrate inhibitor of PKA C-subunit. However, in vivo effects of NS3/4A suggest that ATPase activity may play a role in viral pathology in the infected liver.

  7. Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Hongping; Zhang Bo; Shi Peiyong

    2008-11-10

    Genome cyclization is essential for flavivirus replication. We used RNases to probe the structures formed by the 5'-terminal 190 nucleotides and the 3'-terminal 111 nucleotides of the West Nile virus (WNV) genomic RNA. When analyzed individually, the two RNAs adopt stem-loop structures as predicted by the thermodynamic-folding program. However, when mixed together, the two RNAs form a duplex that is mediated through base-pairings of two sets of RNA elements (5'CS/3'CSI and 5'UAR/3'UAR). Formation of the RNA duplex facilitates a conformational change that leaves the 3'-terminal nucleotides of the genome (position - 8 to - 16) to be single-stranded. Viral NS5more » binds specifically to the 5'-terminal stem-loop (SL1) of the genomic RNA. The 5'SL1 RNA structure is essential for WNV replication. The study has provided further evidence to suggest that flavivirus genome cyclization and NS5/5'SL1 RNA interaction facilitate NS5 binding to the 3' end of the genome for the initiation of viral minus-strand RNA synthesis.« less

  8. The NS segment of H5N1 avian influenza viruses (AIV) enhances the virulence of an H7N1 AIV in chickens.

    PubMed

    Vergara-Alert, Júlia; Busquets, Núria; Ballester, Maria; Chaves, Aida J; Rivas, Raquel; Dolz, Roser; Wang, Zhongfang; Pleschka, Stephan; Majó, Natàlia; Rodríguez, Fernando; Darji, Ayub

    2014-01-25

    Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5-types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7-virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens.

  9. Investigation on discharge characteristics of a coaxial dielectric barrier discharge reactor driven by AC and ns power sources

    NASA Astrophysics Data System (ADS)

    Qian, WANG; Feng, LIU; Chuanrun, MIAO; Bing, YAN; Zhi, FANG

    2018-03-01

    A coaxial dielectric barrier discharge (DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond (ns) pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 °C and 64.3 °C after 900 s operation, respectively. The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs, reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.

  10. Establishment and Comparison of Two Different Diagnostic Platforms for Detection of DENV1 NS1 Protein

    PubMed Central

    Tang, Yin-Liang; Chiu, Chien-Yu; Lin, Chun-Yu; Huang, Chung-Hao; Chen, Yen-Hsu; Destura, Raul V.; Chao, Day-Yu; Wu, Han-Chung

    2015-01-01

    Dengue virus (DENV) infection is currently at pandemic levels, with populations in tropical and subtropical regions at greatest risk of infection. Early diagnosis and management remain the cornerstone for good clinical outcomes, thus efficient and accurate diagnostic technology in the early stage of the disease is urgently needed. Serotype-specific monoclonal antibodies (mAbs) against the DENV1 nonstructural protein 1 (NS1), DA12-4, DA13-2, and DA15-3, which were recently generated using the hybridoma technique, are suitable for use in diagnostic platforms. Immunofluorescence assay (IFA), enzyme-linked immunosorbent assay (ELISA) and Western blot analysis further confirmed the serotype specificity of these three monoclonal antibodies. The ELISA-based diagnostic platform was established using the combination of two highly sensitive mAbs (DA15-3 and DB20-6). The same combination was also used for the flow cytometry-based diagnostic platform. We report here the detection limits of flow cytometry-based and ELISA-based diagnostic platforms using these mAbs to be 0.1 and 1 ng/mL, respectively. The collected clinical patient serum samples were also assayed by these two serotyping diagnostic platforms. The sensitivity and specificity for detecting NS1 protein of DENV1 are 90% and 96%, respectively. The accuracy of our platform for testing clinical samples is more advanced than that of the two commercial NS1 diagnostic platforms. In conclusion, our platforms are suitable for the early detection of NS1 protein in DENV1 infected patients. PMID:26610481

  11. Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses.

    PubMed

    Clark, Amelia M; Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L

    2017-09-01

    In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis. IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people then and up

  12. Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses

    PubMed Central

    Clark, Amelia M.; Nogales, Aitor; Martinez-Sobrido, Luis

    2017-01-01

    ABSTRACT In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis. IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people

  13. Highly thermostable and pH-stable cellulases from Aspergillus niger NS-2: properties and application for cellulose hydrolysis.

    PubMed

    Bansal, Namita; Janveja, Chetna; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2014-01-01

    Optimization of cultural conditions for enhanced cellulase production by Aspergillus niger NS-2 were studied under solid-state fermentation. Significant increase in yields (CMCase 463.9 ± 20.1 U/g, FPase 101.1 ± 3.5 U/g and β-glucosidase 99 ± 4.0 U/g) were obtained under optimized conditions. Effect of different nutritional parameters was studied to induce the maximum production of cellulase complex. Scale-up studies for enzyme production process were carried out. Characterization studies showed that enzymes produced by A. niger NS-2 were highly temperature- and pH stable. At 50 °C, the half life for CMCase, FPase, β-glucosidase were approximately 240 h. Cellulases from A. niger NS-2 were stable at 35 °C for 24 h over a broader pH range of 3.0-9.0. We examined the feasibility of using steam pretreatment to increase the saccharification yields from various lignocellulosic residues for sugar release which can potentially be used in bioethanol production. Saccharification of pretreated dry potato peels, carrot peels, composite waste mixture, orange peels, onion peels, banana peels, pineapple peels by crude enzyme extract from A. niger NS-2, resulted in very high cellulose conversion efficiencies of 92-98 %.

  14. Evaluation of two new commercial tests for the diagnosis of acute dengue virus infection using NS1 antigen detection in human serum.

    PubMed

    Dussart, Philippe; Petit, Laure; Labeau, Bhety; Bremand, Laetitia; Leduc, Alexandre; Moua, David; Matheus, Séverine; Baril, Laurence

    2008-08-20

    We compared the performance of two new commercial tests for the detection of dengue NS1 protein during the clinical phase of dengue virus (DENV) infection-an immunochromatographic test allowing rapid detection of the NS1 antigen, Dengue NS1 Ag STRIP (Bio-Rad Laboratories - Marnes La Coquette, France), and a two-step sandwich-format microplate enzyme-linked immunosorbent assay (ELISA), pan-E Dengue Early ELISA (Panbio - Brisbane, Australia)-with a one-step sandwich-format microplate ELISA, the Platelia Dengue NS1 Ag test (Bio-Rad). We tested 272 serum samples from patients with dengue disease. Of these, 222 were from patients with acute infection of one of the four dengue serotypes, detected by RT-PCR and/or virus isolation. Forty-eight acute-phase serum samples from patients not infected with dengue virus were also included. The sensitivity of the Platelia Dengue NS1 Ag test on acute serum samples (n = 222) was 87.4% (95% confidence interval: 82.3% to 91.5%); that of Dengue NS1 Ag STRIP was 81.5% (95% CI: 75.8% to 86.4%) after 15 minutes and 82.4% (95% CI: 76.8% to 87.2%) after 30 minutes. Both tests had a specificity of 100% (97.5% CI, one-sided test: 92.6% to 100.0%). The pan-E Dengue Early ELISA had a sensitivity of 60.4% (95% CI: 53.4% to 66.8%) and a specificity of 97.9% (95% CI: 88.9% to 99.9%). Our findings support the use of diagnostic tools based on the NS1 antigen detection for the diagnosis of acute DENV infection. The immunochromatographic test, Dengue NS1 Ag STRIP-the first rapid diagnostic test for DENV infection-was highly sensitive and specific, and would therefore be a suitable first-line test in the field. The pan-E Dengue Early ELISA was less sensitive than the Platelia test; this two-step ELISA should be combined with DENV IgM antibody detection for the diagnosis of DENV infection.

  15. The Bursting Behavior of 4U 1728-34: Parameters of a Neutron Star and Geometry of a NS-disk system

    NASA Technical Reports Server (NTRS)

    Shaposhnikov, Nickolai; Titarchuk, Lev; Haber, Frank

    2003-01-01

    We analyze a set of Type I X-ray bursts from the low mass X-ray binary 4U 1728-34, observed with Rossi X-ray Timing Explorer (RXTE). We infer the dependence of the neutron star (NS) mass and radius with respect to the assumed distance to the system using an analytical model of X-ray burst spectral formation. The model behavior clearly indicates that the burster atmosphere is helium-dominated. Our results strongly favor the soft equation of state (EOS) of NS for 4U 1728-34. We find that distance to the source should be within 4.5-5.0 kpc range. We obtain rather narrow constrains for the NS radius in 8.7-9.7 km range and interval 1.2-1.6 Ma for NS mass for this particular distance range. We uncover a temporal behavior of red-shift corrected burst flux for the radial expansion episodes and we put forth a dynamical evolution scenario for the NS accretion disk geometry during which an expanded envelope affects the accretion disk and increases the area of the neutron star exposed to the Earth observer. In the framework of this scenario we provide a new method for the estimation of the inclination angle which leads to the value of approximately 50 degrees for 4U 1728-34.

  16. NS1 Protein Mutation I64T Affects Interferon Responses and Virulence of Circulating H3N2 Human Influenza A Viruses

    PubMed Central

    DeDiego, Marta L.; Nogales, Aitor; Lambert-Emo, Kris; Martinez-Sobrido, Luis

    2016-01-01

    ABSTRACT Influenza NS1 protein is the main viral protein counteracting host innate immune responses, allowing the virus to efficiently replicate in interferon (IFN)-competent systems. In this study, we analyzed NS1 protein variability within influenza A (IAV) H3N2 viruses infecting humans during the 2012-2013 season. We also evaluated the impact of the mutations on the ability of NS1 proteins to inhibit host innate immune responses and general gene expression. Surprisingly, a previously unidentified mutation in the double-stranded RNA (dsRNA)-binding domain (I64T) decreased NS1-mediated general inhibition of host protein synthesis by decreasing its interaction with cleavage and polyadenylation specificity factor 30 (CPSF30), leading to increased innate immune responses after viral infection. Notably, a recombinant A/Puerto Rico/8/34 H1N1 virus encoding the H3N2 NS1-T64 protein was highly attenuated in mice, most likely because of its ability to induce higher antiviral IFN responses at early times after infection and because this virus is highly sensitive to the IFN-induced antiviral state. Interestingly, using peripheral blood mononuclear cells (PBMCs) collected at the acute visit (2 to 3 days after infection), we show that the subject infected with the NS1-T64 attenuated virus has diminished responses to interferon and to interferon induction, suggesting why this subject could be infected with this highly IFN-sensitive virus. These data demonstrate the importance of influenza virus surveillance in identifying new mutations in the NS1 protein, affecting its ability to inhibit innate immune responses and, as a consequence, the pathogenicity of the virus. IMPORTANCE Influenza A and B viruses are one of the most common causes of respiratory infections in humans, causing 1 billion infections and between 300,000 and 500,000 deaths annually. Influenza virus surveillance to identify new mutations in the NS1 protein affecting innate immune responses and, as a consequence

  17. Transactivation of a cellular promoter by the NS1 protein of the parvovirus minute virus of mice through a putative hormone-responsive element.

    PubMed Central

    Vanacker, J M; Corbau, R; Adelmant, G; Perros, M; Laudet, V; Rommelaere, J

    1996-01-01

    The promoter of the thyroid hormone receptor alpha gene (c-erbA-1) is activated by the nonstructural protein 1 (NS1) of parvovirus minute virus of mice (prototype strain [MVMp]) in ras-transformed FREJ4 cells that are permissive for lytic MVMp replication. This stimulation may be related to the sensitivity of host cells to MVMp, as it does not take place in parental FR3T3 cells, which are resistant to the parvovirus killing effect. The analysis of a series of deletion and point mutants of the c-erbA-1 promoter led to the identification of an upstream region that is necessary for NS1-driven transactivation. This sequence harbors a putative hormone-responsive element and is sufficient to render a minimal promoter NS1 inducible in FREJ4 but not in FR3T3 cells, and it is involved in distinct interactions with proteins from the respective cell lines. The NS1-responsive element of the c-erbA-1 promoter bears no homology with sequences that were previously reported to be necessary for NS1 DNA binding and transactivation. Altogether, our data point to a novel, cell-specific mechanism of promoter activation by NS1. PMID:8642664

  18. The NS segment of H5N1 avian influenza viruses (AIV) enhances the virulence of an H7N1 AIV in chickens

    PubMed Central

    2014-01-01

    Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5–types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7–virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens. PMID:24460592

  19. Indirect DNA Readout by an H-NS Related Protein: Structure of the DNA Complex of the C-Terminal Domain of Ler

    PubMed Central

    Cordeiro, Tiago N.; Schmidt, Holger; Madrid, Cristina; Juárez, Antonio; Bernadó, Pau; Griesinger, Christian; García, Jesús; Pons, Miquel

    2011-01-01

    Ler, a member of the H-NS protein family, is the master regulator of the LEE pathogenicity island in virulent Escherichia coli strains. Here, we determined the structure of a complex between the DNA-binding domain of Ler (CT-Ler) and a 15-mer DNA duplex. CT-Ler recognizes a preexisting structural pattern in the DNA minor groove formed by two consecutive regions which are narrower and wider, respectively, compared with standard B-DNA. The compressed region, associated with an AT-tract, is sensed by the side chain of Arg90, whose mutation abolishes the capacity of Ler to bind DNA. The expanded groove allows the approach of the loop in which Arg90 is located. This is the first report of an experimental structure of a DNA complex that includes a protein belonging to the H-NS family. The indirect readout mechanism not only explains the capacity of H-NS and other H-NS family members to modulate the expression of a large number of genes but also the origin of the specificity displayed by Ler. Our results point to a general mechanism by which horizontally acquired genes may be specifically recognized by members of the H-NS family. PMID:22114557

  20. Indirect DNA readout by an H-NS related protein: structure of the DNA complex of the C-terminal domain of Ler.

    PubMed

    Cordeiro, Tiago N; Schmidt, Holger; Madrid, Cristina; Juárez, Antonio; Bernadó, Pau; Griesinger, Christian; García, Jesús; Pons, Miquel

    2011-11-01

    Ler, a member of the H-NS protein family, is the master regulator of the LEE pathogenicity island in virulent Escherichia coli strains. Here, we determined the structure of a complex between the DNA-binding domain of Ler (CT-Ler) and a 15-mer DNA duplex. CT-Ler recognizes a preexisting structural pattern in the DNA minor groove formed by two consecutive regions which are narrower and wider, respectively, compared with standard B-DNA. The compressed region, associated with an AT-tract, is sensed by the side chain of Arg90, whose mutation abolishes the capacity of Ler to bind DNA. The expanded groove allows the approach of the loop in which Arg90 is located. This is the first report of an experimental structure of a DNA complex that includes a protein belonging to the H-NS family. The indirect readout mechanism not only explains the capacity of H-NS and other H-NS family members to modulate the expression of a large number of genes but also the origin of the specificity displayed by Ler. Our results point to a general mechanism by which horizontally acquired genes may be specifically recognized by members of the H-NS family.

  1. The Herschel Planetary Nebula Survey (HerPlaNS). I. Data overview and analysis demonstration with NGC 6781

    NASA Astrophysics Data System (ADS)

    Ueta, T.; Ladjal, D.; Exter, K. M.; Otsuka, M.; Szczerba, R.; Siódmiak, N.; Aleman, I.; van Hoof, P. A. M.; Kastner, J. H.; Montez, R.; McDonald, I.; Wittkowski, M.; Sandin, C.; Ramstedt, S.; De Marco, O.; Villaver, E.; Chu, Y.-H.; Vlemmings, W.; Izumiura, H.; Sahai, R.; Lopez, J. A.; Balick, B.; Zijlstra, A.; Tielens, A. G. G. M.; Rattray, R. E.; Behar, E.; Blackman, E. G.; Hebden, K.; Hora, J. L.; Murakawa, K.; Nordhaus, J.; Nordon, R.; Yamamura, I.

    2014-05-01

    Context. This is the first of a series of investigations into far-IR characteristics of 11 planetary nebulae (PNe) under the Herschel Space Observatory open time 1 program, Herschel Planetary Nebula Survey (HerPlaNS). Aims: Using the HerPlaNS data set, we look into the PN energetics and variations of the physical conditions within the target nebulae. In the present work, we provide an overview of the survey, data acquisition and processing, and resulting data products. Methods: We performed (1) PACS/SPIRE broadband imaging to determine the spatial distribution of the cold dust component in the target PNe and (2) PACS/SPIRE spectral-energy-distribution and line spectroscopy to determine the spatial distribution of the gas component in the target PNe. Results: For the case of NGC 6781, the broadband maps confirm the nearly pole-on barrel structure of the amorphous carbon-rich dust shell and the surrounding halo having temperatures of 26-40 K. The PACS/SPIRE multiposition spectra show spatial variations of far-IR lines that reflect the physical stratification of the nebula. We demonstrate that spatially resolved far-IR line diagnostics yield the (Te, ne) profiles, from which distributions of ionized, atomic, and molecular gases can be determined. Direct comparison of the dust and gas column mass maps constrained by the HerPlaNS data allows to construct an empirical gas-to-dust mass ratio map, which shows a range of ratios with the median of 195 ± 110. The present analysis yields estimates of the total mass of the shell to be 0.86 M⊙, consisting of 0.54 M⊙ of ionized gas, 0.12 M⊙ of atomic gas, 0.2 M⊙ of molecular gas, and 4 × 10-3 M⊙ of dust grains. These estimates also suggest that the central star of about 1.5 M⊙ initial mass is terminating its PN evolution onto the white dwarf cooling track. Conclusions: The HerPlaNS data provide various diagnostics for both the dust and gas components in a spatially resolved manner. In the forthcoming papers of the

  2. Inhibitor candidates's identification of HCV's RNA polymerase NS5B using virtual screening against iPPI-library

    NASA Astrophysics Data System (ADS)

    Sulistyawati, Indah; Sulistyo Dwi K., P.; Ichsan, Mochammad

    2016-03-01

    Hepatitis C is one of the major causes of chronic liver failure that caused by Hepatitis C Virus (HCV). Preventing the progression of HCV's replication through the inhibition of The RNA polymerase NS5B of Hepatitis C virus (NS5B) can be achieved via 4 binding regions: Site I (Thumb I), Site II (Thumb II), Site III (Palm I), and Site IV (Palm II). The aim of this research is to identify a candidate of NS5B inhibitor as an alternative for Hepatitis C treatment. An NS5B's 3D structure (PDB ID = 3D5M) used in this study has met some criteria of a good model to be used in virtual screening againts iPPI-lib using MTiOpenScreen webserver. The top two natural compounds resulted here then docked using Pyrix 0.8 and discovered trans-6-Benzamido-2-methyldecahydroisoquinoline (-9,1kcal/mol) and 2,4-dichloro-5-[4-(2 methoxyphenyl) piperazine-1-carbonyl]-N-[3-(trifluoromethyl)phenyl] benzenesulfonamide (9,4 kcal/mol) can bind to Tyr448 similar with all three established inhibitors, such as setrobuvir (-11,4 kcal/mol; site 3 inhibitor), CHEMBL379677 (-9,1 kcal/mol; site 1 inhibitor), and nesbuvir (-7,7 kcal/mol; site 4 inhibitor). The results of this study are relatively still needs to be tested, both in vitro and in vivo, in order to obtain more comprehensive knowledges as a follow-up of this predictive study.

  3. Multi-Country Evaluation of the Sensitivity and Specificity of Two Commercially-Available NS1 ELISA Assays for Dengue Diagnosis

    PubMed Central

    Guzman, Maria G.; Jaenisch, Thomas; Gaczkowski, Roger; Ty Hang, Vo Thi; Sekaran, Shamala Devi; Kroeger, Axel; Vazquez, Susana; Ruiz, Didye; Martinez, Eric; Mercado, Juan C.; Balmaseda, Angel; Harris, Eva; Dimano, Efren; Leano, Prisca Susan A.; Yoksan, Sutee; Villegas, Elci; Benduzu, Herminia; Villalobos, Iris; Farrar, Jeremy; Simmons, Cameron P.

    2010-01-01

    Background Early diagnosis of dengue can assist patient triage and management and prevent unnecessary treatments and interventions. Commercially available assays that detect the dengue virus protein NS1 in the plasma/serum of patients offers the possibility of early and rapid diagnosis. Methodology/Principal Findings The sensitivity and specificity of the Pan-E Dengue Early ELISA and the Platelia™ Dengue NS1 Ag assays were compared against a reference diagnosis in 1385 patients in 6 countries in Asia and the Americas. Platelia was more sensitive (66%) than Pan-E (52%) in confirmed dengue cases. Sensitivity varied by geographic region, with both assays generally being more sensitive in patients from SE Asia than the Americas. Both kits were more sensitive for specimens collected within the first few days of illness onset relative to later time points. Pan-E and Platelia were both 100% specific in febrile patients without evidence of acute dengue. In patients with other confirmed diagnoses and healthy blood donors, Platelia was more specific (100%) than Pan-E (90%). For Platelia, when either the NS1 test or the IgM test on the acute sample was positive, the sensitivity versus the reference result was 82% in samples collected in the first four days of fever. NS1 sensitivity was not associated to disease severity (DF or DHF) in the Platelia test, whereas a trend for higher sensitivity in DHF cases was seen in the Pan-E test (however combined with lower overall sensitivity). Conclusions/Significance Collectively, this multi-country study suggests that the best performing NS1 assay (Platelia) had moderate sensitivity (median 64%, range 34–76%) and high specificity (100%) for the diagnosis of dengue. The poor sensitivity of the evaluated assays in some geographical regions suggests further assessments are needed. The combination of NS1 and IgM detection in samples collected in the first few days of fever increased the overall dengue diagnostic sensitivity. PMID

  4. In Vitro and in Vivo Evaluation of Mutations in the NS Region of Lineage 2 West Nile Virus Associated with Neuroinvasiveness in a Mammalian Model

    PubMed Central

    Szentpáli-Gavallér, Katalin; Lim, Stephanie M.; Dencső, László; Bányai, Krisztián; Koraka, Penelope; Osterhaus, Albert D.M.E.; Martina, Byron E.E.; Bakonyi, Tamás; Bálint, Ádám

    2016-01-01

    West Nile virus (WNV) strains may differ significantly in neuroinvasiveness in vertebrate hosts. In contrast to genetic lineage 1 WNVs, molecular determinants of pathogenic lineage 2 strains have not been experimentally confirmed so far. A full-length infectious clone of a neurovirulent WNV lineage 2 strain (578/10; Central Europe) was generated and amino acid substitutions that have been shown to attenuate lineage 1 WNVs were introduced into the nonstructural proteins (NS1 (P250L), NS2A (A30P), NS3 (P249H) NS4B (P38G, C102S, E249G)). The mouse neuroinvasive phenotype of each mutant virus was examined following intraperitoneal inoculation of C57BL/6 mice. Only the NS1-P250L mutation was associated with a significant attenuation of virulence in mice compared to the wild-type. Multiplication kinetics in cell culture revealed significantly lower infectious virus titres for the NS1 mutant compared to the wild-type, as well as significantly lower amounts of positive and negative stranded RNA. PMID:26907325

  5. In Vitro and in Vivo Evaluation of Mutations in the NS Region of Lineage 2 West Nile Virus Associated with Neuroinvasiveness in a Mammalian Model.

    PubMed

    Szentpáli-Gavallér, Katalin; Lim, Stephanie M; Dencső, László; Bányai, Krisztián; Koraka, Penelope; Osterhaus, Albert D M E; Martina, Byron E E; Bakonyi, Tamás; Bálint, Ádám

    2016-02-19

    West Nile virus (WNV) strains may differ significantly in neuroinvasiveness in vertebrate hosts. In contrast to genetic lineage 1 WNVs, molecular determinants of pathogenic lineage 2 strains have not been experimentally confirmed so far. A full-length infectious clone of a neurovirulent WNV lineage 2 strain (578/10; Central Europe) was generated and amino acid substitutions that have been shown to attenuate lineage 1 WNVs were introduced into the nonstructural proteins (NS1 (P250L), NS2A (A30P), NS3 (P249H) NS4B (P38G, C102S, E249G)). The mouse neuroinvasive phenotype of each mutant virus was examined following intraperitoneal inoculation of C57BL/6 mice. Only the NS1-P250L mutation was associated with a significant attenuation of virulence in mice compared to the wild-type. Multiplication kinetics in cell culture revealed significantly lower infectious virus titres for the NS1 mutant compared to the wild-type, as well as significantly lower amounts of positive and negative stranded RNA.

  6. Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Tiwari, A K; Gandham, Ravi Kumar; Sahoo, A P

    2016-09-01

    The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.

  7. H-NS Nucleoid Protein Controls Virulence Features of Klebsiella pneumoniae by Regulating the Expression of Type 3 Pili and the Capsule Polysaccharide.

    PubMed

    Ares, Miguel A; Fernández-Vázquez, José L; Rosales-Reyes, Roberto; Jarillo-Quijada, Ma Dolores; von Bargen, Kristine; Torres, Javier; González-y-Merchand, Jorge A; Alcántar-Curiel, María D; De la Cruz, Miguel A

    2016-01-01

    Klebsiella pneumoniae is an opportunistic pathogen causing nosocomial infections. Main virulence determinants of K. pneumoniae are pili, capsular polysaccharide, lipopolysaccharide, and siderophores. The histone-like nucleoid-structuring protein (H-NS) is a pleiotropic regulator found in several gram-negative pathogens. It has functions both as an architectural component of the nucleoid and as a global regulator of gene expression. We generated a Δhns mutant and evaluated the role of the H-NS nucleoid protein on the virulence features of K. pneumoniae. A Δhns mutant down-regulated the mrkA pilin gene and biofilm formation was affected. In contrast, capsule expression was derepressed in the absence of H-NS conferring a hypermucoviscous phenotype. Moreover, H-NS deficiency affected the K. pneumoniae adherence to epithelial cells such as A549 and HeLa cells. In infection experiments using RAW264.7 and THP-1 differentiated macrophages, the Δhns mutant was less phagocytized than the wild-type strain. This phenotype was likely due to the low adherence to these phagocytic cells. Taken together, our data indicate that H-NS nucleoid protein is a crucial regulator of both T3P and CPS of K. pneumoniae.

  8. Ledipasvir plus sofosbuvir as salvage therapy for HCV genotype 1 failures to prior NS5A inhibitors regimens.

    PubMed

    Akuta, Norio; Sezaki, Hitomi; Suzuki, Fumitaka; Fujiyama, Shunichiro; Kawamura, Yusuke; Hosaka, Tetsuya; Kobayashi, Masahiro; Kobayashi, Mariko; Saitoh, Satoshi; Suzuki, Yoshiyuki; Arase, Yasuji; Ikeda, Kenji; Kumada, Hiromitsu

    2017-07-01

    There is little information on retreatment efficacy and predictors of the combination of ledipasvir and sofosbuvir (ledipasvir/sofosbuvir) for patients who fail to respond to NS5A inhibitors. NS5A resistance variants are known to persist for long periods after such treatment. Here, we evaluated 54 patients with chronic HCV genotype 1b infection, free of decompensated cirrhosis, and hepatocellular carcinoma, for sustained virological response after 12 weeks (SVR12) of once-daily treatment with 90 mg ledipasvir and 400 mg sofosbuvir. Intention-to-treat analysis showed SVR12 of 70%. Using ultra-deep sequencing, non-responder to ledipasvir/sofosbuvir showed no change in the rates of detection of NS5A and NS5B resistant-variants at re-elevation of viral loads, relative to baseline. According to response to prior treatment, SVR12 rates were 18, 69, 94, and 100% in non response, viral breakthrough, relapse, and discontinuation due to adverse events, respectively. SVR12 rates in non response were significantly lower than those of the others. Multivariate analysis identified response to previous treatment (failure except for non response) and FIB4 index (<3.25) as significant determinants of SVR12. The SVR12 rates were significantly lower in patients with FIB4 index of ≥3.25 and had not responded to prior treatment, relative to others. The specificity, and positive- and negative-predictive values were high for prediction of poor response based on the combination of two predictors. In conclusion, our study indicated that ledipasvir/sofosbuvir is a potentially useful salvage treatment for patients who fail prior NS5A inhibitors-based therapy. Response to prior treatment was an important predictor of retreatment efficacy. © 2017 Wiley Periodicals, Inc.

  9. Regulation of the Production of Infectious Genotype 1a Hepatitis C Virus by NS5A Domain III▿

    PubMed Central

    Kim, Seungtaek; Welsch, Christoph; Yi, MinKyung; Lemon, Stanley M.

    2011-01-01

    Although hepatitis C virus (HCV) assembly remains incompletely understood, recent studies with the genotype 2a JFH-1 strain suggest that it is dependent upon the phosphorylation of Ser residues near the C terminus of NS5A, a multifunctional nonstructural protein. Since genotype 1 viruses account for most HCV disease yet differ substantially in sequence from that of JFH-1, we studied the role of NS5A in the production of the H77S virus. While less efficient than JFH-1, genotype 1a H77S RNA produces infectious virus when transfected into permissive Huh-7 cells. The exchange of complete NS5A sequences between these viruses was highly detrimental to replication, while exchanges of the C-terminal domain III sequence (46% amino acid sequence identity) were well tolerated, with little effect on RNA synthesis. Surprisingly, the placement of the H77S domain III sequence into JFH-1 resulted in increased virus yields; conversely, H77S yields were reduced by the introduction of domain III from JFH-1. These changes in infectious virus yield correlated well with changes in the abundance of NS5A in RNA-transfected cells but not with RNA replication or core protein expression levels. Alanine replacement mutagenesis of selected Ser and Thr residues in the C-terminal domain III sequence revealed no single residue to be essential for infectious H77S virus production. However, virus production was eliminated by Ala substitutions at multiple residues and could be restored by phosphomimetic Asp substitutions at these sites. Thus, despite low overall sequence homology, the production of infectious virus is regulated similarly in JFH-1 and H77S viruses by a conserved function associated with a C-terminal Ser/Thr cluster in domain III of NS5A. PMID:21525356

  10. BOREAS Level-0 NS001 TMS Imagery: Digital Counts in BIL Format

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Newcomer, Jeffrey A.; Dominguez, Roseanne

    2000-01-01

    For BOREAS, the NS001 TMS imagery, along with the other remotely sensed images, was collected in order to provide spatially extensive information over the primary study areas. This information includes detailed land cover and biophysical parameter maps such as fPAR and LAI. Data collections occurred over the study areas during the 1994 field campaigns.

  11. Porcine Mx1 Protein Inhibits Classical Swine Fever Virus Replication by Targeting Nonstructural Protein NS5B.

    PubMed

    Zhou, Jing; Chen, Jing; Zhang, Xiao-Min; Gao, Zhi-Can; Liu, Chun-Chun; Zhang, Yun-Na; Hou, Jin-Xiu; Li, Zhao-Yao; Kan, Lin; Li, Wen-Liang; Zhou, Bin

    2018-04-01

    Mx proteins are interferon (IFN)-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses; they belong to the dynamin superfamily of large GTPases. In this study, we confirmed the anti-classical swine fever virus (CSFV) activity of porcine Mx1 in vitro and showed that porcine Mx2 (poMx2), human MxA (huMxA), and mouse Mx1 (mmMx1) also have anti-CSFV activity in vitro Small interfering RNA (siRNA) experiments revealed that depletion of endogenous poMx1 or poMx2 enhanced CSFV replication, suggesting that porcine Mx proteins are responsible for the antiviral activity of interferon alpha (IFN-α) against CSFV infection. Confocal microscopy, immunoprecipitation, glutathione S -transferase (GST) pulldown, and bimolecular fluorescence complementation (BiFC) demonstrated that poMx1 associated with NS5B, the RNA-dependent RNA polymerase (RdRp) of CSFV. We used mutations in the poMx1 protein to elucidate the mechanism of their anti-CSFV activity and found that mutants that disrupted the association with NS5B lost all anti-CSV activity. Moreover, an RdRp activity assay further revealed that poMx1 undermined the RdRp activities of NS5B. Together, these results indicate that porcine Mx proteins exert their antiviral activity against CSFV by interacting with NS5B. IMPORTANCE Our previous studies have shown that porcine Mx1 (poMx1) inhibits classical swine fever virus (CSFV) replication in vitro and in vivo , but the molecular mechanism of action remains largely unknown. In this study, we dissect the molecular mechanism of porcine Mx1 and Mx2 against CSFV in vitro Our results show that poMx1 associates with NS5B, the RNA-dependent RNA polymerase of CSFV, resulting in the reduction of CSFV replication. Moreover, the mutants of poMx1 further elucidate the mechanism of their anti-CSFV activities. Copyright © 2018 American Society for Microbiology.

  12. Technical noise supplement : TeNS : a technical supplement to the Traffic Noise Analysis Protocol.

    DOT National Transportation Integrated Search

    1998-10-01

    The purpose of this Technical Noise Supplement (TeNS) is to provide technical background : information on transportation-related noise in general and highway traffic noise in : particular. It is designed to elaborate on technical concepts and procedu...

  13. Recruitment of DNA Replication and Damage Response Proteins to Viral Replication Centers during Infection with NS2 Mutants of Minute Virus of Mice (MVM)

    PubMed Central

    Ruiz, Zandra; Mihaylov, Ivailo S.; Cotmore, Susan F.; Tattersall, Peter

    2010-01-01

    MVM NS2 is essential for viral DNA amplification, but its mechanism of action is unknown. A classification scheme for autonomous parvovirus-associated replication (APAR) center development, based on NS1 distribution, was used to characterize abnormal APAR body maturation in NS2null mutant infections, and their organization examined for defects in host protein recruitment. Since acquisition of known replication factors appeared normal, we looked for differences in invoked DNA damage responses. We observed widespread association of H2AX/MDC1 damage response foci with viral replication centers, and sequestration and complex hyperphosphorylation of RPA32, which occurred in wildtype and mutant infections. Quantifying these responses by western transfer indicated that both wildtype and NS2 mutant MVM elicited ATM activation, while phosphorylation of ATR, already basally activated in asynchronous A9 cells, was downregulated. We conclude that MVM infection invokes multiple damage responses that influence the APAR environment, but that NS2 does not modify the recruitment of cellular proteins. PMID:21193212

  14. NS5A resistance-associated substitutions in patients with genotype 1 hepatitis C virus: Prevalence and effect on treatment outcome.

    PubMed

    Zeuzem, Stefan; Mizokami, Masashi; Pianko, Stephen; Mangia, Alessandra; Han, Kwang-Hyub; Martin, Ross; Svarovskaia, Evguenia; Dvory-Sobol, Hadas; Doehle, Brian; Hedskog, Charlotte; Yun, Chohee; Brainard, Diana M; Knox, Steven; McHutchison, John G; Miller, Michael D; Mo, Hongmei; Chuang, Wan-Long; Jacobson, Ira; Dore, Gregory J; Sulkowski, Mark

    2017-05-01

    The efficacy of NS5A inhibitors for the treatment of patients chronically infected with hepatitis C virus (HCV) can be affected by the presence of NS5A resistance-associated substitutions (RASs). We analyzed data from 35 phase I, II, and III studies in 22 countries to determine the pretreatment prevalence of various NS5A RASs, and their effect on outcomes of treatment with ledipasvir-sofosbuvir in patients with genotype 1 HCV. NS5A gene deep sequencing analysis was performed on samples from 5397 patients in Gilead clinical trials. The effect of baseline RASs on sustained virologic response (SVR) rates was assessed in the 1765 patients treated with regimens containing ledipasvir-sofosbuvir. Using a 15% cut-off, pretreatment NS5A and ledipasvir-specific RASs were detected in 13% and 8% of genotype 1a patients, respectively, and in 18% and 16% of patients with genotype 1b. Among genotype 1a treatment-naïve patients, SVR rates were 91% (42/46) vs. 99% (539/546) for those with and without ledipasvir-specific RASs, respectively. Among treatment-experienced genotype 1a patients, SVR rates were 76% (22/29) vs. 97% (409/420) for those with and without ledipasvir-specific RASs, respectively. Among treatment-naïve genotype 1b patients, SVR rates were 99% for both those with and without ledipasvir-specific RASs (71/72 vs. 331/334), and among treatment-experienced genotype 1b patients, SVR rates were 89% (41/46) vs. 98% (267/272) for those with and without ledipasvir-specific RASs, respectively. Pretreatment ledipasvir-specific RASs that were present in 8-16% of patients have an impact on treatment outcome in some patient groups, particularly treatment-experienced patients with genotype 1a HCV. The efficacy of treatments using NS5A inhibitors for patients with chronic hepatitis C virus (HCV) infection can be affected by the presence of NS5A resistance-associated substitutions (RASs). We reviewed results from 35 clinical trials where patients with genotype 1 HCV infection

  15. Interplay of PA-X and NS1 Proteins in Replication and Pathogenesis of a Temperature-Sensitive 2009 Pandemic H1N1 Influenza A Virus.

    PubMed

    Nogales, Aitor; Rodriguez, Laura; DeDiego, Marta L; Topham, David J; Martínez-Sobrido, Luis

    2017-09-01

    Influenza A viruses (IAVs) cause seasonal epidemics and occasional pandemics, representing a serious public health concern. It has been described that one mechanism used by some IAV strains to escape the host innate immune responses and modulate virus pathogenicity involves the ability of the PA-X and NS1 proteins to inhibit the host protein synthesis in infected cells. It was reported that for the 2009 pandemic H1N1 IAV (pH1N1) only the PA-X protein had this inhibiting capability, while the NS1 protein did not. In this work, we have evaluated, for the first time, the combined effect of PA-X- and NS1-mediated inhibition of general gene expression on virus pathogenesis, using a temperature-sensitive, live-attenuated 2009 pandemic H1N1 IAV (pH1N1 LAIV). We found that viruses containing PA-X and NS1 proteins that simultaneously have (PA WT + /NS1 MUT + ) or do not have (PA MUT - /NS1 WT - ) the ability to block host gene expression showed reduced pathogenicity in vivo However, a virus where the ability to inhibit host protein expression was switched between PA-X and NS1 (PA MUT - /NS1 MUT + ) presented pathogenicity similar to that of a virus containing both wild-type proteins (PA WT + /NS1 WT - ). Our findings suggest that inhibition of host protein expression is subject to a strict balance, which can determine the successful progression of IAV infection. Importantly, knowledge obtained from our studies could be used for the development of new and more effective vaccine approaches against IAV. IMPORTANCE Influenza A viruses (IAVs) are one of the most common causes of respiratory infections in humans, resulting in thousands of deaths annually. Furthermore, IAVs can cause unpredictable pandemics of great consequence when viruses not previously circulating in humans are introduced into humans. The defense machinery provided by the host innate immune system limits IAV replication; however, to counteract host antiviral activities, IAVs have developed different inhibition

  16. NS1 Protein Amino Acid Changes D189N and V194I Affect Interferon Responses, Thermosensitivity, and Virulence of Circulating H3N2 Human Influenza A Viruses

    PubMed Central

    Nogales, Aitor; Martinez-Sobrido, Luis

    2016-01-01

    ABSTRACT Influenza virus NS1 protein is a nonstructural, multifunctional protein that counteracts host innate immune responses, modulating virus pathogenesis. NS1 protein variability in subjects infected with H3N2 influenza A viruses (IAVs) during the 2010/2011 season was analyzed, and amino acid changes in residues 86, 189, and 194 were found. The consequences of these mutations for the NS1-mediated inhibition of IFN responses and the pathogenesis of the virus were evaluated, showing that NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, most probably because these mutations decreased the binding of NS1 to the cleavage and polyadenylation specificity factor 30 (CPSF30). A recombinant A/Puerto Rico/8/34 (PR8) H1N1 virus encoding the H3N2 NS1-D189N protein was slightly attenuated, whereas the virus encoding the H3N2 NS1-V194I protein was further attenuated in mice. The higher attenuation of this virus could not be explained by differences in the ability of the two NS1 proteins to counteract host innate immune responses, indicating that another factor must be responsible. In fact, we showed that the virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive (ts) phenotype, providing a most likely explanation for the stronger attenuation observed. As far as we know, this is the first description of a mutation in NS1 residue 194 conferring a ts phenotype. These studies are relevant in order to identify new residues important for NS1 functions and in human influenza virus surveillance to assess mutations affecting the pathogenicity of circulating viruses. IMPORTANCE Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease that is most effectively prevented through vaccination. The multifunctional nonstructural protein 1 (NS1) is the main viral factor counteracting the host antiviral response. Therefore, influenza virus

  17. NS1 Protein Amino Acid Changes D189N and V194I Affect Interferon Responses, Thermosensitivity, and Virulence of Circulating H3N2 Human Influenza A Viruses.

    PubMed

    Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L

    2017-03-01

    Influenza virus NS1 protein is a nonstructural, multifunctional protein that counteracts host innate immune responses, modulating virus pathogenesis. NS1 protein variability in subjects infected with H3N2 influenza A viruses (IAVs) during the 2010/2011 season was analyzed, and amino acid changes in residues 86, 189, and 194 were found. The consequences of these mutations for the NS1-mediated inhibition of IFN responses and the pathogenesis of the virus were evaluated, showing that NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, most probably because these mutations decreased the binding of NS1 to the cleavage and polyadenylation specificity factor 30 (CPSF30). A recombinant A/Puerto Rico/8/34 (PR8) H1N1 virus encoding the H3N2 NS1-D189N protein was slightly attenuated, whereas the virus encoding the H3N2 NS1-V194I protein was further attenuated in mice. The higher attenuation of this virus could not be explained by differences in the ability of the two NS1 proteins to counteract host innate immune responses, indicating that another factor must be responsible. In fact, we showed that the virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive (ts) phenotype, providing a most likely explanation for the stronger attenuation observed. As far as we know, this is the first description of a mutation in NS1 residue 194 conferring a ts phenotype. These studies are relevant in order to identify new residues important for NS1 functions and in human influenza virus surveillance to assess mutations affecting the pathogenicity of circulating viruses. IMPORTANCE Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease that is most effectively prevented through vaccination. The multifunctional nonstructural protein 1 (NS1) is the main viral factor counteracting the host antiviral response. Therefore, influenza virus

  18. The RNA- and TRIM25-Binding Domains of Influenza Virus NS1 Protein Are Essential for Suppression of NLRP3 Inflammasome-Mediated Interleukin-1β Secretion.

    PubMed

    Moriyama, Miyu; Chen, I-Yin; Kawaguchi, Atsushi; Koshiba, Takumi; Nagata, Kyosuke; Takeyama, Haruko; Hasegawa, Hideki; Ichinohe, Takeshi

    2016-04-01

    Inflammasomes are cytosolic multimolecular protein complexes that stimulate the activation of caspase-1 and the release of mature forms of interleukin-1β (IL-1β) and IL-18. We previously demonstrated that the influenza A virus M2 protein stimulates IL-1β secretion following activation of the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. The nonstructural protein 1 (NS1) of influenza virus inhibits caspase-1 activation and IL-1β secretion. However, the precise mechanism by which NS1 inhibits IL-1β secretion remains unknown. Here, we showed that J774A.1 macrophages stably expressing the NS1 protein inhibited IL-1β secretion after infection with recombinant influenza virus lacking the NS1 gene. Coimmunoprecipitation assay revealed that the NS1 protein interacts with NLRP3. Importantly, the NS1 protein inhibited the NLRP3/ASC-induced single-speck formation required for full activation of inflammasomes. The NS1 protein of other influenza virus strains, including a recent pandemic strain, also inhibited inflammasome-mediated IL-1β secretion. The NS1 RNA-binding domain (basic residues 38 and 41) and TRIM25-binding domain (acidic residues 96 and 97) were required for suppression of NLRP3 inflammasome-mediated IL-1β secretion. These results shed light on a mechanism by which the NS1 protein of influenza virus suppresses NLRP3 inflammasome-mediated IL-1β secretion. Innate immune sensing of influenza virus via pattern recognition receptors not only plays a key role in generating type I interferons but also triggers inflammatory responses. We previously demonstrated that the influenza A virus M2 protein activates the NLRP3 inflammasome, leading to the secretion of interleukin-1β (IL-1β) and IL-18 following the activation of caspase-1. Although the nonstructural protein 1 (NS1) of influenza virus inhibits IL-1β secretion, the precise mechanism by which it achieves this remains to be defined. Here

  19. The RNA- and TRIM25-Binding Domains of Influenza Virus NS1 Protein Are Essential for Suppression of NLRP3 Inflammasome-Mediated Interleukin-1β Secretion

    PubMed Central

    Moriyama, Miyu; Chen, I-Yin; Kawaguchi, Atsushi; Koshiba, Takumi; Nagata, Kyosuke; Takeyama, Haruko; Hasegawa, Hideki

    2016-01-01

    ABSTRACT Inflammasomes are cytosolic multimolecular protein complexes that stimulate the activation of caspase-1 and the release of mature forms of interleukin-1β (IL-1β) and IL-18. We previously demonstrated that the influenza A virus M2 protein stimulates IL-1β secretion following activation of the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. The nonstructural protein 1 (NS1) of influenza virus inhibits caspase-1 activation and IL-1β secretion. However, the precise mechanism by which NS1 inhibits IL-1β secretion remains unknown. Here, we showed that J774A.1 macrophages stably expressing the NS1 protein inhibited IL-1β secretion after infection with recombinant influenza virus lacking the NS1 gene. Coimmunoprecipitation assay revealed that the NS1 protein interacts with NLRP3. Importantly, the NS1 protein inhibited the NLRP3/ASC-induced single-speck formation required for full activation of inflammasomes. The NS1 protein of other influenza virus strains, including a recent pandemic strain, also inhibited inflammasome-mediated IL-1β secretion. The NS1 RNA-binding domain (basic residues 38 and 41) and TRIM25-binding domain (acidic residues 96 and 97) were required for suppression of NLRP3 inflammasome-mediated IL-1β secretion. These results shed light on a mechanism by which the NS1 protein of influenza virus suppresses NLRP3 inflammasome-mediated IL-1β secretion. IMPORTANCE Innate immune sensing of influenza virus via pattern recognition receptors not only plays a key role in generating type I interferons but also triggers inflammatory responses. We previously demonstrated that the influenza A virus M2 protein activates the NLRP3 inflammasome, leading to the secretion of interleukin-1β (IL-1β) and IL-18 following the activation of caspase-1. Although the nonstructural protein 1 (NS1) of influenza virus inhibits IL-1β secretion, the precise mechanism by which it achieves this remains

  20. Azadioxatriangulenium: exploring the effect of a 20 ns fluorescence lifetime in fluorescence anisotropy measurements

    NASA Astrophysics Data System (ADS)

    Bogh, Sidsel A.; Bora, Ilkay; Rosenberg, Martin; Thyrhaug, Erling; Laursen, Bo W.; Just Sørensen, Thomas

    2015-12-01

    Azaoxatriangulenium (ADOTA) has been shown to be highly emissive despite a moderate molar absorption coefficient of the primary electronic transition. As a result, the fluorescence lifetime is ~20 ns, longer than all commonly used red fluorescent organic probes. The electronic transitions in ADOTA are highly polarised (r 0  =  0.38), which in combination with the long fluorescence lifetime extents the size-range of biomolecular weights that can be detected in fluorescence polarisation-based experiments. Here, the rotational dynamics of bovine serum albumin (BSA) are monitored with three different ADOTA derivatives, differing only in constitution of the reactive linker. A detailed study of the degree of labelling, the steady-state anisotropy, and the time-resolved anisotropy of the three different ADOTA-BSA conjugates are reported. The fluorescence quantum yields (ϕ fl) of the free dyes in PBS solution are determined to be ~55%, which is reduced to ~20% in the ADOTA-BSA conjugates. Despite the reduction in ϕ fl, a ~20 ns intensity averaged lifetime is maintained, allowing for the rotational dynamics of BSA to be monitored for up to 100 ns. Thus, ADOTA can be used in fluorescence polarisation assays to fill the gap between commonly used organic dyes and the long luminescence lifetime transition metal complexes. This allows for efficient steady-state fluorescence polarisation assays for detecting binding of analytes with molecular weights of up to 100 kDa.