Science.gov

Sample records for ntd germanium thermistors

  1. Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Itoh, K. M.; Beeman, J. W.

    1996-01-01

    Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.

  2. Neutron transmutation doped (Ntd) germanium thermistors for sub-Mm bolometer applications

    SciTech Connect

    Haller, E.E. |; Itoh, K.M.; Beeman, J.W.

    1996-09-01

    The authors report on recent advances in the development of Neutron Transmutation Doped (NTD) semiconductor thermistors fabricated from germanium of natural and controlled isotopic composition. The near ideal doping uniformity which can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor (FET) preamplifiers have led to the widespread acceptance of these thermal sensors in many radiotelescopes operating on the ground, on high altitude aircraft and on spaceborne satellites. These features also have made possible the development of efficient bolometer arrays which are beginning to produce exciting results.

  3. Microcalorimeters with NTD and Expitaxial Germanium Thermistors for High Resolution X-Ray Spectroscopy

    NASA Technical Reports Server (NTRS)

    Silver, Eric; Brinton, John C. (Technical Monitor)

    2004-01-01

    This is a progress report for the second year of a three year SR&T grant to continue the advancement of NTD-based microcalorimeters. We reported last year that we re-prioritized certain aspects of the statement of work and chose to emphasize issues of array development in the first year rather than wait until year two. Consequently, some of the projects scheduled for the first year were delayed to the second year and we report on those topics here. These include: a) Measurements that map out JFET , thermistor, l/f and feedback resistor noise; b) Investigations that evaluate the limits of the JFET preamplifier circuitry as it pertains to stability at the 2 eV level; The results of a) and b) have led to preliminary measurements that demonstrate 3.08 eV resolution at 6 keV. c) Calculations that can predict the current performance.

  4. Micro-Calorimeters with NTD and Epitaxial Germanium Thermistors for High Resolution X-Ray Spectroscopy. Revised

    NASA Technical Reports Server (NTRS)

    Brinton, John (Technical Monitor); Silver, Eric

    2005-01-01

    This is a progress report for the third year of a three year SR&T grant to continue the advancement of NTD-based microcalorimeters. We highlight our progress to date that allowed us to garner an additional three years of funding for this work.

  5. The Constellation-X Focal Plane Microcalorimeter Array: An NTD-Germanium Solution

    NASA Technical Reports Server (NTRS)

    Beeman, J.; Silver, E.; Bandler, S.; Schnopper, H.; Murray, S.; Madden, N.; Landis, D.; Haller, E. E.; Barbera, M.

    2001-01-01

    The hallmarks of Neutron Transmutation Doped (NTD) germanium cryogenic thermistors include high reliability, reproducibility, and long term stability of bulk carrier transport properties. Using micro-machined NTD Ge thermistors with integral 'flying' leads, we can now fabricate two-dimensional arrays that are built up from a series of stacked linear arrays. We believe that this modular approach of building, assembling, and perhaps replacing individual modules of detectors is essential to the successful fabrication and testing of large multi-element instruments. Details of construction are presented.

  6. X-Ray and Gamma-Ray Astronomy with NTD Germanium-based Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Silver, E.; Bandler, S.; Schnopper, H.; Murray, S.; Madden, N.; Landis, D.; Goulding, F.; Beeman, J.; Haller, E. E.; Barbera, M.

    2003-01-01

    We report on the performance of our NTD-Ge microcalorimeters. To date, the spectral resolution for x-ray and gamma-ray lines from radioactive sources and laboratory plasmas is 4.8 eV in the entire 1 - 6 keV band and 52 eV at 60 keV. Technical details responsible for this performance are presented as well as an innovative electro-thermal approach for enhancing count-rate capability.

  7. Microcalorimeters with Germanium Thermistors for High Resolution Soft and Hard X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Silver, Eric

    2005-01-01

    This is a progress report for the third year of a three year SR&T grant to continue the advancement of NTD-based microcalorimeters. We highlight our progress to date that allowed us to garner an additional three years of funding for this work.

  8. Development of Thin Film Germanium-Gold Thermistors for Calorimetric Detection of Nuclear Radiation.

    NASA Astrophysics Data System (ADS)

    Wang, Xunxie

    1995-01-01

    The present work is to produce thin film semiconductor thermistors which can be directly fabricated on radiation absorbers to act as ultra low-mass, highly sensitive cryogenic phonon sensors for detecting single nuclear radiation interaction invents. The specific application envisioned for these devices is in the search for galactic Dark Matter, which is proposed to exist in the form of weakly interacting massive particles in the galaxy. Thin film Au doped Ge thermistors were directly fabricated on single crystal silicon absorbers using vacuum filament evaporation and microfabrication techniques. The fabrication procedure developed in the present work gives micron-scale thin film GeAu thermistors with highly reproducible characteristics. Electrical and thermal properties of thin film Ge_{rm 1-x}Au _{rm x} for 0.019 < x < 0.17 were studied between room temperature and 0.019K and in magnetic fields up to 4.0T. Measurements indicated that variable-range-hopping dominates the conductivity of GeAu thin film at temperatures below 10K. Metal-insulator transition of the film is found to occur for x > 0.17. The observed magnetoresistance is explained by using a field-dependent hopping exponent proposed in the present work combined with Mott's hopping conductivity theory. A new treatment of electrical field-induced nonlinearity in variable-range-hopping is also given which quantitatively reproduced the observed nonlinear resistivity. Electrical heat pulse and particle detection measurements showed that the total effective heat capacity of the device was dominated by the silicon absorber substrate at a bath temperature of 1.5 K and by electron system of the thermistor itself of the device when the bath temperatures were below 100 mK. Excellent responsivity of GeAu thin film calorimeters has been demonstrated in AC electrical pulse and nuclear radiation detection experiments. At optimal bias power, the responsivity (|DeltaV/ DeltaE|) of the present devices reaches 10^8 V/J at

  9. Microcalorimeters with Germanium Thermistors for High Resolution Soft and Hard X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Silver, E.

    2003-01-01

    This is a progress report for the first year of a three year Space Research and Technology (SR&T) grant to continue the advancement of neutron transmutation doped (NTD-based) microcalorimeters. We have re-prioritized certain aspects of the statement of work and chose to emphasize issues of array development in the first year rather than wait until year two. Consequently, some of the projects scheduled for the first year were delayed to the second year. Here we report on our progress to: a) Build and test a 1 x 4 element array and to investigate electrical and thermal cross-talk; b) Build a multiplexed 4 channel analog pulse processor; c) Build a digital pulse processor that can accommodate 4 channels with independent triggers; d) Develop a proportional thermal baseline restoration system compatible with the constant voltage mode of microcalorimeter operation.

  10. NTD-GE Based Microcalorimeter Performance

    NASA Technical Reports Server (NTRS)

    Bandler, Simon; Silver, Eric; Schnopper, Herbert; Murray, Stephen; Barbera, Marco; Madden, Norm; Landis, Don; Beeman, Jeff; Haller, Eugene; Tucker, Greg

    2000-01-01

    Our group has been developing x-ray microcalorimeters consisting of neutron transmutation doped (NTD) germanium thermistors attached to superconducting tin absorbers. We discuss the performance of single pixel x-ray detectors, and describe an array technology. In this paper we describe the read-out circuit that allows us to measure fast signals in our detectors as this will be important in understanding the primary cause of resolution broadening. We describe briefly a multiplexing scheme that allows a number of different calorimeters to be read out using a single JFET. We list the possible causes of broadening and give a description of the experiment which best demonstrates the cause of the primary broadening source. We mention our strategy for finding a suitable solution to this problem and describe briefly a technology for building arrays of these calorimeters.

  11. Germanium

    SciTech Connect

    Major-Sosias, M.A.

    1996-01-01

    Germanium is an important semiconductor material, or metalloid which, by definition, is a material whose electrical properties are halfway between those of metallic conductors and electrical insulators. This paper describes the properties, sources, and market for germanium.

  12. Germanium: From Its Discovery to SiGe Devices

    SciTech Connect

    Haller, E.E.

    2006-06-14

    Germanium, element No.32, was discovered in 1886 by Clemens Winkler. Its first broad application was in the form of point contact Schottky diodes for radar reception during WWII. The addition of a closely spaced second contact led to the first all-solid-state electronic amplifier device, the transistor. The relatively low bandgap, the lack of a stable oxide and large surface state densities relegated germanium to the number 2 position behind silicon. The discovery of the lithium drift process, which made possible the formation of p-i-n diodes with fully depletable i-regions several centimeters thick, led germanium to new prominence as the premier gamma-ray detector. The development of ultra-pure germanium yielded highly stable detectors which have remained unsurpassed in their performance. New acceptors and donors were discovered and the electrically active role of hydrogen was clearly established several years before similar findings in silicon. Lightly doped germanium has found applications as far infrared detectors and heavily Neutron Transmutation Doped (NTD) germanium is used in thermistor devices operating at a few milliKelvin. Recently germanium has been rediscovered by the silicon device community because of its superior electron and hole mobility and its ability to induce strains when alloyed with silicon. Germanium is again a mainstream electronic material.

  13. Particle detection with semiconductor thermistors at low temperatures

    SciTech Connect

    Wang, N.; Beeman, J.; Cleland, A.N.; Cummings, A.; Lange, A.; Ross, R.; Sadoulet, B.; Steiner, H.; Shutt, T.; Wellstood, F.C.

    1988-11-01

    We have studied the use of neutron transmutation doped (NTD) Ge thermistors as phonon sensors at dilution refrigerator temperatures. In addition to measuring their thermal and electrical properties, we have observed pulses generated by X-rays incident on a thermistor thermally well-clamped to a heat sink. We find that during these pulses the lattice temperature of the thermistor apparently does not change. This surprising result is interpreted as evidence of a strong coupling between the high energy phonons generated by the interaction and the charge carriers in the thermistor. Additionally, these phonons appear to be absorbed within a fraction of a millimeter. We conclude that these thermistors have several desirable properties for a good high energy phonon sensor. It remains to be seen, however, if a composite detector consisting of a large crystal and attached phonon sensors can be developed. 15 refs., 9 figs.

  14. Thermistor Characteristics and Stability.

    ERIC Educational Resources Information Center

    Fricker, H. S.

    1987-01-01

    Discusses the uses of thermistors in teaching electronics and semiconductors. Describes how to experimentally measure and graph the characteristics of a thermistor. Suggests one possible approach to understand the shapes of the characteristics. (CW)

  15. Thermistor mount efficiency calibration

    SciTech Connect

    Cable, J.W.

    1980-05-01

    Thermistor mount efficiency calibration is accomplished by use of the power equation concept and by complex signal-ratio measurements. A comparison of thermistor mounts at microwave frequencies is made by mixing the reference and the reflected signals to produce a frequency at which the amplitude and phase difference may be readily measured.

  16. SSPX thermistor system

    SciTech Connect

    Thomassen, K I

    2000-11-29

    The SSPX Thermistor is a glass encapsulated bead thermistor made by Thermometrics, a BR 14 P A 103 J. The BR means ruggedized bead structure, 14 is the nominal bead diameter in mils, P refers to opposite end leads, A is the material system code letter, 103 refers to its 10 k{Omega} zero-power resistance at 25 C, and the tolerance letter J indicates {+-} 5% at 25 C. It is football shaped, with height ->, and is viewed through a slot of height h = 0.01 inches. The slot is perpendicular to the long axis of the bead, and is a distance s {approx} 0.775 cm in front of the thermistor. So plasma is viewed over a large angle along the slot, but over a small angle {alpha} perpendicular to the slot. The angle {alpha} is given by 2s tan{alpha} = -> + h.

  17. A Thermistor Interface.

    ERIC Educational Resources Information Center

    Kamin, Gary D.; Dowden, Edward

    1987-01-01

    Describes the use of a precalibrated stainless steel thermistor, interfaced with an Apple computer, in chemistry experiments. Discusses the advantages of "instant" temperature readings in experiments requiring that readings be taken at certain intervals. Outlines such an experiment which investigates freezing point depressions. (TW)

  18. X-ray microcalorimeters with germanium resistance thermometers

    SciTech Connect

    Labov, S.; Silver, E.; Pfafman, T.; Wai, Y. ); Beeman, J.; Goulding, F.; Landis, D.; Madden, N.; Haller, E. )

    1990-08-13

    We report on the current of our work on x-ray microcalorimeters for use as high resolution x-ray spectrometers. To maximize the x-ray collecting area and the signal to noise ratio, the total heat capacity of the device must be minimized. This is best achieved if the calorimeter is divided into two components, a thermal sensor and an x-ray absorber. The thermal sensor is a neutron transmutation doped (NTD) germanium resistor made as small as possible to minimize the heat capacity of the calorimeter. The thermistor can be attached to a thin x-ray absorber with large area and low heat capacity fabricated from superconducting materials such as niobium. We discuss results from our most recent studies of such superconducting absorbers and present the x-ray spectra obtained with these composite microcalorimeters at a temperature of 0.1 K. An energy resolution of 19 eV FWHM has been measured. 14 refs., 3 figs.

  19. The NTD Nanoscope: potential applications and implementations

    PubMed Central

    2011-01-01

    Background Nanopore transduction detection (NTD) offers prospects for a number of highly sensitive and discriminative applications, including: (i) single nucleotide polymorphism (SNP) detection; (ii) targeted DNA re-sequencing; (iii) protein isoform assaying; and (iv) biosensing via antibody or aptamer coupled molecules. Nanopore event transduction involves single-molecule biophysics, engineered information flows, and nanopore cheminformatics. The NTD Nanoscope has seen limited use in the scientific community, however, due to lack of information about potential applications, and lack of availability for the device itself. Meta Logos Inc. is developing both pre-packaged device platforms and component-level (unassembled) kit platforms (the latter described here). In both cases a lipid bi-layer workstation is first established, then augmentations and operational protocols are provided to have a nanopore transduction detector. In this paper we provide an overview of the NTD Nanoscope applications and implementations. The NTD Nanoscope Kit, in particular, is a component-level reproduction of the standard NTD device used in previous research papers. Results The NTD Nanoscope method is shown to functionalize a single nanopore with a channel current modulator that is designed to transduce events, such as binding to a specific target. To expedite set-up in new lab settings, the calibration and troubleshooting for the NTD Nanoscope kit components and signal processing software, the NTD Nanoscope Kit, is designed to include a set of test buffers and control molecules based on experiments described in previous NTD papers (the model systems briefly described in what follows). The description of the Server-interfacing for advanced signal processing support is also briefly mentioned. Conclusions SNP assaying, SNP discovery, DNA sequencing and RNA-seq methods are typically limited by the accuracy of the error rate of the enzymes involved, such as methods involving the polymerase

  20. Computed Tomography For Inspection Of Thermistors

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.

    1991-01-01

    Computed tomography (CT) enables identification of cracked thermistors without disassembly of equipment containing them. CT unit used to scan equipment and locate thermistors. Further scans made in various radial orientations perpendicular to plane of devices to find cracks. Cracks invisible in conventional x-radiographs seen.

  1. MEMS Flow Sensors Based on Self-Heated aGe-Thermistors in a Wheatstone Bridge

    PubMed Central

    Talic, Almir; Cerimovic, Samir; Beigelbeck, Roman; Kohl, Franz; Sauter, Thilo; Keplinger, Franz

    2015-01-01

    A thermal flow transduction method combining the advantages of calorimetric and hot-film transduction principles is developed and analyzed by Finite Element Method (FEM) simulations and confirmed experimentally. The analyses include electrothermal feedback effects of current driven NTC thermistors. Four thin-film germanium thermistors acting simultaneously as heat sources and as temperature sensors are embedded in a micromachined silicon-nitride membrane. These devices form a self-heated Wheatstone bridge that is unbalanced by convective cooling. The voltage across the bridge and the total dissipated power are exploited as output quantities. The used thin-film thermistors feature an extremely high temperature sensitivity. Combined with properly designed resistance values, a power demand in sub-1mW range enables efficient gas-flow transduction, as confirmed by measurements. Two sensor configurations with different arrangements of the membrane thermistors were examined experimentally. Moreover, we investigated the influence of different layouts on the rise time, the sensitivity, and the usable flow range by means of two-dimensional finite element simulations. The simulation results are in reasonable agreement with corresponding measurement data confirming the basic assumptions and modeling approach. PMID:25928062

  2. MEMS Flow Sensors Based on Self-Heated aGe-Thermistors in a Wheatstone Bridge.

    PubMed

    Talic, Almir; Cerimovic, Samir; Beigelbeck, Roman; Kohl, Franz; Sauter, Thilo; Keplinger, Franz

    2015-01-01

    A thermal flow transduction method combining the advantages of calorimetric and hot-film transduction principles is developed and analyzed by Finite Element Method (FEM) simulations and confirmed experimentally. The analyses include electrothermal feedback effects of current driven NTC thermistors. Four thin-film germanium thermistors acting simultaneously as heat sources and as temperature sensors are embedded in a micromachined silicon-nitride membrane. These devices form a self-heated Wheatstone bridge that is unbalanced by convective cooling. The voltage across the bridge and the total dissipated power are exploited as output quantities. The used thin-film thermistors feature an extremely high temperature sensitivity. Combined with properly designed resistance values, a power demand in sub-1mW range enables efficient gas-flow transduction, as confirmed by measurements. Two sensor configurations with different arrangements of the membrane thermistors were examined experimentally. Moreover, we investigated the influence of different layouts on the rise time, the sensitivity, and the usable flow range by means of two-dimensional finite element simulations. The simulation results are in reasonable agreement with corresponding measurement data confirming the basic assumptions and modeling approach. PMID:25928062

  3. Translational Activities to Enable NTD Vaccines.

    PubMed

    Gray, S A; Coler, R N; Carter, D; Siddiqui, A A

    2016-01-01

    There is an urgent need to develop new vaccines for tuberculosis, HIV/AIDS, and malaria, as well as for chronic and debilitating infections known as neglected tropical diseases (NTDs). The term "NTD" emerged at the beginning of the new millennium to describe a set of diseases that are characterized as (1) poverty related, (2) endemic to the tropics and subtropics, (3) lacking public health attention and inadequate industrial investment, (4) having poor research funding and a weak research and development (R&D) pipeline, (5) usually associated with high morbidity but low mortality, and (6) often having no safe and long-lasting treatment available. Many additional challenges to the current control and elimination programs for NTDs exist. These include inconsistent performance of diagnostic tests, regional differences in access to treatment and in treatment outcome, lack of integrated surveillance and vector/intermediate host control, and impact of ecological climatic changes particularly in regions where new cases are increasing in previously nonendemic areas. Moreover, the development of NTD vaccines, including those for schistosomiasis, leishmaniasis, leprosy, hookworm, and Chagas disease are being led by nonprofit product development partnerships (PDPs) working in partnership with academic and industrial partners, contract research organizations, and in some instances vaccine manufacturers in developing countries. In this review, we emphasize global efforts to fuel the development of NTD vaccines, the translational activities needed to effectively move promising vaccine candidates to Phase-I clinical trials and some of the hurdles to ensuring their availability to people in the poorest countries of Africa, Asia, Latin America, and the Caribbean. PMID:27571699

  4. Stretchable graphene thermistor with tunable thermal index.

    PubMed

    Yan, Chaoyi; Wang, Jiangxin; Lee, Pooi See

    2015-02-24

    Stretchable graphene thermistors with intrinsic high stretchability were fabricated through a lithographic filtration method. Three-dimensional crumpled graphene was used as the thermal detection channels, and silver nanowires were used as electrodes. Both the detection channel and electrodes were fully embedded in an elastomer matrix to achieve excellent stretchability. Detailed temperature sensing properties were characterized at different strains up to 50%. It is evident that the devices can maintain their functionalities even at high stretched states. The devices demonstrated strain-dependent thermal indices, and the sensitivity of the thermistors can be effectively tuned using strain. The unique tunable thermal index is advantageous over conventional rigid ceramic thermistors for diverse and adaptive applications in wearable electronics. PMID:25671368

  5. Thermistor holder for skin-temperature measurements

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Williams, B. A.

    1974-01-01

    Sensing head of thermistor probe is supported in center area of plastic ring which has tabs so that it can be anchored in place by rubber bands or adhesive tapes. Device attaches probes to human subjects practically, reliably, and without affecting characteristics of skin segment being measured.

  6. Development of NTD Ge Sensors for Superconducting Bolometer

    NASA Astrophysics Data System (ADS)

    Garai, A.; Mathimalar, S.; Singh, V.; Dokania, N.; Nanal, V.; Pillay, R. G.; Ramakrishnan, S.; Shrivastava, A.; Jagadeesan, K. C.; Thakare, S. V.

    2016-08-01

    Neutron transmutation-doped (NTD) Ge sensors have been prepared by irradiating device-grade Ge with thermal neutrons at Dhruva reactor, BARC, Mumbai. These sensors are intended to be used for the study of neutrinoless double beta decay in ^{124}Sn with a superconducting Tin bolometer. Resistance measurements are performed on NTD Ge sensors in the temperature range 100-350 mK. The observed temperature dependence is found to be consistent with the variable-range hopping mechanism.

  7. An Inexpensive Thermistor Thermometer for Beginning Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Srivastava, Shyam B.; Meloan, Clifton E.

    1984-01-01

    The design and use of an inexpensive thermistor thermometer is described. In addition to providing a rugged thermometer, using the instruments offers an opportunity to have students become familiar with new principles and techniques, such as principles of thermistors, the Wheatstone bridge, and the concept of calibration. (JN)

  8. Preliminary estimates of radiosonde thermistor errors

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Luers, J. K.; Huffman, P. D.

    1986-01-01

    Radiosonde temperature measurements are subject to errors, not the least of which is the effect of long- and short-wave radiation. Methods of adjusting the daytime temperatures to a nighttime equivalent are used by some analysis centers. Other than providing consistent observations for analysis this procedure does not provide a true correction. The literature discusses the problem of radiosonde temperature errors but it is not apparent what effort, if any, has been taken to quantify these errors. To accomplish the latter, radiosondes containing multiple thermistors with different coatings were flown at Goddard Space Flight Center/Wallops Flight Facility. The coatings employed had different spectral characteristics and, therefore, different adsorption and emissivity properties. Discrimination of the recorded temperatures enabled day and night correction values to be determined for the US standard white-coated rod thermistor. The correction magnitudes are given and a comparison of US measured temperatures before and after correction are compared with temperatures measured with the Vaisala radiosonde. The corrections are in the proper direction, day and night, and reduce day-night temperature differences to less than 0.5 C between surface and 30 hPa. The present uncorrected temperatures used with the Viz radiosonde have day-night differences that exceed 1 C at levels below 90 hPa. Additional measurements are planned to confirm these preliminary results and determine the solar elevation angle effect on the corrections. The technique used to obtain the corrections may also be used to recover a true absolute value and might be considered a valuable contribution to the meteorological community for use as a reference instrument.

  9. Used to Calibrate Thermistors on In Situ Permeable Flow Sensors

    Energy Science and Technology Software Center (ESTSC)

    1996-12-01

    The software package is comprised of three programs which together are used to calibrate thermistors in an In Situ Permable Flow Sensor. TBATH controls a temperature controlled bath/circulator. The code monitors the temperature of a set of previously calibrated thermistors located in a tank through which the fluid from the bath is circulated. After the temperature has reached and maintained thermal equilibrium for a specified period of time, the bath/circulator is instructed by the programmore » to change the temperature set point to the next specified temperature. An arbitrary number of temperature calibration points can be specified allowing thermistors to be calibrated on a continuous basis without human intervention. CALIB is used to merge two data files that are collected during a temperature calibration run. During calibration of the thermistors on an In Situ Permeable Flow Sensor, the known temperatures in the temperaure controlled tank are recorded in one computer file in one format while the electrical resistance of the thermistors being calibrated is collected in a different file with a different format. This software reads in the two files and writes out a third file with all of the data in it that is required to calculate the calibration coefficients of the thermistors on the probe. POLYFIT is used to calculate the calibration coefficients which permit the temperature of a thermistor to ba calculated from its electrical resistance. During calibration of a thermistor, the electrical resistance of the thermistor is measured at four or more known temperatures and the data sent to this software. The program calculates the coefficients of a fourth order polynomial relating the inverse of the absolute temperature to the natural log of the electrical resistance. Once these coefficients are known, the polynomial can be evaluated with any measured electrical resistance to calculate the equivalent temperature.« less

  10. Laboratory Astrophysics and Microanalysis with NTD-Germanium-Based X-Ray Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Silver, E.; Schnopper, H.; Bandler, S.; Murray, S.; Madden, N.; Landis, D.; Beeman, J.; Haller, E.; Barbera, M.; Tucker, G.

    2000-01-01

    With the ability to create cosmic plasma conditions in the laboratory it is possible to investigate the dependencies of key diagnostic X-ray lines on density, temperature, and excitation conditions that exist in astrophysical sources with X-ray optics and a high resolution x-ray microcalorimeter. The same instrumentation can be coupled to scanning electron microscopes or x-ray fluorescence probes to analyze the elemental and chemical composition of electronic, biological, geological and particulate materials. We describe how our microcalorimeter and x-ray optics provide significantly improved capabilities for laboratory astrophysics and microanalysis.

  11. Thermistors Used in Climatic Chamber at High Temperature and Humidity

    NASA Astrophysics Data System (ADS)

    van Geel, J. L. W. A.; Bosma, R.; van Wensveen, J.; Peruzzi, A.

    2015-03-01

    In 2011, VSL initiated the development of a facility for a relative humidity between and for calibrating high-temperature relative humidity sensors at pressures other than atmospheric. The setup for calculating the relative humidity uses the dew-point temperature, measured by a chilled mirror hygrometer, and the temperature distribution in the chamber, measured by a series of thermistors. This paper describes the results of thermal tests performed on the thermistors to ensure that they meet the requirements of the humidity calibration facility. Different types of thermistors were evaluated up to , and the selected type showed a short-term drift of less than 2 mK. Exposure of these thermistors to temperatures up to gave an initial hysteresis of 40 mK, but after this initial hysteresis, the hysteresis, over the range from up to , was less than 10 mK. Use of a digital multimeter, with a low-power option, limited the self-heating of the thermistors, over the range from up to , to less than 5 mK. During use in the new setup, the thermistors were exposed to changing humidities between 1 %Rh and 90 %Rh and temperatures up to , showing drifts of less than 10 mK.

  12. Flexible miniaturized nickel oxide thermistor arrays via inkjet printing technology.

    PubMed

    Huang, Chun-Chih; Kao, Zhen-Kai; Liao, Ying-Chih

    2013-12-26

    In this study, an inkjet printing process was developed to produce thermistor arrays for temperature sensing applications. First, a formulation process was carefully performed to generate a stable nanoparticle ink for nickel oxide, a material with a large temperature coefficient of resistance. The thermistor was then fabricated by printing a square NiO thin film in between two parallel silver conductive tracks on either glass plates or polyimide films. The printed thermistor, which has an adjustable dimension with a sub-millimeter scale, can operate over a wide range from room temperature to 200 °C with great sensitivity (B values ~4300 K) without hysteretic effects. When printed on polyimide films, the thermistors can also be bent or attached to curved surfaces to provide accurate and reliable temperature measurements. Moreover, the thermistor responds quickly to small temperature changes and provides an effective tool for transient temperature measurements. Finally, a thermistor array was fabricated to show the flexibility of this inkjet printing process and to demonstrate the applicability of the printed devices for temperature sensing applications. PMID:24298996

  13. Development of NTD-Ge Cryogenic Sensors in LUMINEU

    NASA Astrophysics Data System (ADS)

    Navick, Xavier-Francois; Bachelet, Cyril; Bouville, David; Coron, Noel; Devoyon, Laurent; Giuliani, Andrea; Gray, David; Hervé, Serge; Humbert, Vincent; Lemaitre, Mathieu; Loidl, Martin; de Marcillac, Pierre; Nones, Claudia; Pénichot, Yves; Redon, Thierry; René, Alexis; Rodrigues, Matias

    2016-07-01

    One of the goals of LUMINEU is to develop NTD-Ge sensors for various applications. The steps are to produce NTD-Ge sensors first, then to study the dependence of their performance on the production parameters, and finally to optimize their electric contacts. In this paper, we present the different possibilities for estimating and measuring the real neutron fluence received by each Ge wafer irradiated in a thermal neutron reactor. Measurements of their resistivity at 300 K indicate a fluence discrepancy from the expected value and confirm the homogeneity of the doping throughout the volume. In addition, we present a method allowing an improved estimation of the impedance below 30 mK just by measuring the ratio of the NTDs' resistivity at 77 and 4 K.

  14. Construction and Characterization of NTC Thermistors at Low Temperature

    NASA Astrophysics Data System (ADS)

    Lan, Yuqi; Yu, Lihong; Chen, Guangming; Yang, Sifeng; Chang, Aimin

    2010-09-01

    Nano-powder of a negative temperature coefficient (NTC) ceramic with a spinel structure of Mn-Ni-Cu-Co-La-O composition was prepared by the Pechini method. A type of NTC thermistor sensor (3.0 mm diameter × 1.5 mm high) was designed by the in situ lead wire attachment method (ISAM) and made using the synthesized powder. NTC thermistors were packed in the glass-sealed package. Six independent NTC thermistors were calibrated using a cryostat, a standard platinum resistance thermometer, and a Fluke 1590 super thermometer meter over the temperature range from 18 K to 120 K. The data were interpolated to obtain calibration tables at 2 K intervals from 18 K to 30 K, and at 5 K intervals from 30 K to 120 K. These tables were fitted with the equation: 1/ T = A 0 + A 1 ln( R/ R ref) + A 2 ln( R/ R ref)2 + A 3 ln( R/ R ref)3 + A 4 ln( R/ R ref)4. Aging, thermometric characteristics, fitting of calibrated data, stability of NTC thermistors, and the effect of a magnetic field on NTC thermistors were investigated.

  15. Temperature Errors in Linearizing Resistance Networks for Thermistors

    NASA Astrophysics Data System (ADS)

    White, D. R.

    2015-12-01

    It is well known that a single negative-temperature-coefficient thermistor can be linearized over a narrow temperature range by connecting a single resistor in parallel with the thermistor. With the linearizing resistor properly chosen for the operating temperature, the residual errors are proportional to the cube of the temperature range and have a peak value of about 0.2° C for a 30° C range. A greater range of temperatures can be covered or greater linearity be achieved by cascading thermistor-resistor combinations. This paper investigates the limits of the linearity performance of such networks by using interpolation to model their behavior. A simple formula is derived for estimating the residual non-linearity as a function of the number of thermistors, the temperature range covered by the network, and the constant characterizing the exponential temperature dependence of the thermistors. Numerical simulations are used to demonstrate the validity of the formula. Guidelines are also given for circuit topologies for realizing the networks, for optimizing the design of the networks, and for calculating the sensitivities to relative errors in the component values.

  16. Additive chemistry and distributions in NTD photoresist thin films

    NASA Astrophysics Data System (ADS)

    Thackeray, James; Hong, Chang-Young; Clark, Michael B.

    2016-03-01

    The lithographic performance of photoresists is a function of the vertical distribution of formulation components, such as photoacid generator (PAG) molecules, in photoresist thin films and how these components undergo chemical modification and migrate within the film during the lithography processing steps. This paper will discuss how GCIB-SIMS depth profiles were used to monitor the PAG and quencher base distributions before and after exposure and post-exposure bake processing steps for different PAG/photoresist formulations. The authors show that the use of surface active quencher in an NTD photoresist leads to better resist profiles, superior DOF and better OPC performance.

  17. Mechanical Equivalent of Heat--Software for a Thermistor

    ERIC Educational Resources Information Center

    Boleman, Michael

    2008-01-01

    The Mechanical Equivalent of Heat Apparatus from PASCO scientific provides the means for doing a simple experiment to determine the mechanical equivalent of heat, "J." A necessary step of this experiment is to determine the temperature of an aluminum cylinder. By measuring the resistance of a thermistor embedded in the cylinder, one is able to…

  18. A Hydrazine Leak Sensor Based on Chemically Reactive Thermistors

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D.; Mast, Dion J.; Baker, David L.

    1999-01-01

    Leaks in the hydrazine supply system of the Shuttle APU can result in hydrazine ignition and fire in the aft compartment of the Shuttle. Indication of the location of a leak could provide valuable information required for operational decisions. WSTF has developed a small, single use sensor for detection of hydrazine leaks. The sensor is composed of a thermistor bead coated with copper(II) oxide (CuO) dispersed in a clay or alumina binder. The CuO-coated thermistor is one of a pair of closely located thermistors, the other being a reference. On exposure to hydrazine the CuO reacts exothermically with the hydrazine and increases the temperature of the coated-thermistor by several degrees. The temperature rise is sensed by a resistive bridge circuit and an alarm registered by data acquisition software. Responses of this sensor to humidity changes, hydrazine concentration, binder characteristics, distance from a liquid leak, and ambient pressure levels as well as application of this sensor concept to other fluids are presented.

  19. Conjugated polymer/graphene oxide nanocomposite as thermistor

    SciTech Connect

    Joshi, Girish M. Deshmukh, Kalim

    2015-06-24

    We demonstrated the synthesis and measurement of temperature dependent electrical resistivity of graphene oxide (GO) reinforced poly (3, 4 - ethylenedioxythiophene) - tetramethacrylate (PEDOTTMA)/Polymethylmethacrylate (PMMA) based nanocomposites. Negative temperature coefficient (NTC) was observed for 0.5, 1 % GO loading and the positive temperature coefficient (PTC) was observed for 1.5 and 2 % Go loading in the temperature (40 to 120 °C). The GO inducted nanocomposite perform as an excellent thermistor and suitable for electronic and sensor domain.

  20. Conjugated polymer/graphene oxide nanocomposite as thermistor

    NASA Astrophysics Data System (ADS)

    Joshi, Girish M.; Deshmukh, Kalim

    2015-06-01

    We demonstrated the synthesis and measurement of temperature dependent electrical resistivity of graphene oxide (GO) reinforced poly (3, 4 - ethylenedioxythiophene) - tetramethacrylate (PEDOTTMA)/Polymethylmethacrylate (PMMA) based nanocomposites. Negative temperature coefficient (NTC) was observed for 0.5, 1 % GO loading and the positive temperature coefficient (PTC) was observed for 1.5 and 2 % Go loading in the temperature (40 to 120 °C). The GO inducted nanocomposite perform as an excellent thermistor and suitable for electronic and sensor domain.

  1. Status of NTD Ge bolometer material and devices

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Haegel, N. M.; Park, I. S.

    1986-01-01

    The first IR Detector Technology Workshop took place at NASA Ames Research Center on July 12 and 13, 1983. The conclusions presented at that meeting are still valid. More was learned about the physics of hopping conduction at very low temperatures which will be important for bolometer design and operation at ever decreasing temperatures. Resistivity measurements were extended down to 50 mK. At such low temperatures, precise knowledge of the neutron capture cross sections sigma (sub n) of the various Ge isotopes is critical if one is to make an accurate prediction of the dopant concentrations and compensation, and therefore resistivity, that will result from a given irradiation. An empirical approach for obtaining the desired resistivity material is described and the process of conducting a set of experiments which will improve the knowledge of the effective sigma (sub n) values for a given location in a particular reactor is discussed. A wider range of NTD Ge samples is now available. Noise measurements on bolometers with ion implanted contacts show the no 1/f noise component appears down to 1 Hz and probably lower.

  2. Mechanistic insights into folate supplementation from Crooked tail and other NTD-prone mutant mice.

    PubMed

    Gray, Jason D; Ross, M Elizabeth

    2009-04-01

    Despite two decades of research since Smithells and colleagues began exploring its benefits, the mechanisms through which folic acid supplementation supports neural tube closure and early embryonic development are still unclear. The greatest progress toward a molecular-genetic understanding of folate effects on neural tube defect (NTD) pathogenesis has come from animal models. The number of NTD-associated mouse mutants accumulated and studied over the past decade has illuminated the complexity of both genetic factors contributing to NTDs and also NTD-gene interactions with folate metabolism. This article discusses insights gained from mouse models into how folate supplementation impacts neurulation. A case is made for renewed efforts to systematically screen the folate responsiveness of the scores of NTD-associated mouse mutations now identified. Designed after Crooked tail, supplementation studies of additional mouse mutants could build the molecular network maps that will ultimately enable tailoring of therapeutic regimens to individual families. PMID:19067399

  3. Unipolar memristive switching in bulk positive temperature coefficient ceramic thermistor

    NASA Astrophysics Data System (ADS)

    Wu, Hongya; Wang, Caihui; Fu, Hua; Zhou, Ji; Zheng, Shuzhi

    2016-01-01

    A memristive switching phenomena was investigated in macroscale bulk positive temperature coefficient (PTC) thermosensitive ceramics. (BaxSr1-x)TiO3, which is a well-known PTC thermistor, was taken as an example to analyze the memristive behavior of those macroscale bulk ceramics. Hysteretic current-voltage (I-V) characteristics, which are the features of memristor were obtained. The origin of the effect is attributed to the PTC thermosensitive characteristic of the bulk ceramics, and a switching mechanism driven by competing field-driven heat generation and heat dissipation was proposed.

  4. Investigation of electrical noise in selenium-immersed thermistor bolometers

    NASA Technical Reports Server (NTRS)

    Tarpley, J. L.; Sarmiento, P. D.

    1980-01-01

    The selenium immersed, thermistor bolometer, IR detector failed due to spurious and escalating electrical noise outburst as a function of time at elevated temperatures during routine ground based testing in a space simulated environment. Spectrographic analysis of failed bolometers revealed selenium pure zones in the insulating selenium arsenic (Se-As) glass film which surrounds the active sintered Mn, Ni, Co oxide flake. The selenium pure film was identified as a potentially serious failure mechanism. Significant changes were instituted in the manufacturing techniques along with more stringent process controls which eliminated the selenium pure film and successfully produced 22study bolometers.

  5. Novel DDR process and materials for front-edge NTD process

    NASA Astrophysics Data System (ADS)

    Shigaki, Shuhei; Takeda, Satoshi; Shibayama, Wataru; Onishi, Ryuji; Nakajima, Makoto; Sakamoto, Rikimaru

    2016-03-01

    We developed the novel process and material which can prevent the pattern collapse issue perfectly. The process was Dry Development Rinse (DDR) process, and the material used in this process was DDR Material (DDRM). DDRM was containing siloxane polymer which could be replaced the space area of the photo resist pattern. And finally, the reversed pattern would be created by dry etching process without any pattern collapse issue. This novel process was useful not only in positive tone development (PTD) process but also in negative tone development (NTD) process. We newly developed DDRM for NTD process. Novel DDRM consist of special polymer and it used organic solvent system. So, new DDRM showed no mixing property with NTD photo resist and it has enough etch selectivity against NTD photo resist. Image reversal was successfully achieved by combination of NTD process and DDR process keeping good pattern quality. Tone reverse pattern below hp 18nm was obtained without any pattern collapse issue, which couldn't be created by just using normal NTD process.

  6. Evaluation of lens heating effect in high transmission NTD processes at the 20nm technology node

    NASA Astrophysics Data System (ADS)

    Jeon, Bumhwan; Lee, Sam; Subramany, Lokesh; Li, Chen; Pal, Shyam; Meyers, Sheldon; Mehta, Sohan; Wei, Yayi; Cho, David R.

    2014-04-01

    The NTD (Negative Tone Developer) process has been embraced as a viable alternative to traditionally, more conventional, positive tone develop processes. Advanced technology nodes have necessitated the adopting of NTD processes to achieve such tight design specifications in critical dimensions. Dark field contact layers are prime candidates for NTD processing due to its high imaging contrast. However, reticles used in NTD processes are highly transparent. The transmission rate of those masks can be over 85%. Consequently, lens heating effects result in a non-trivial impact that can limit NTD usability in a high volume mass production environment. At the same time, Source Mask Optimized (SMO) freeform pupils have become popular. This can also result in untoward lens heating effects which are localized in the lens. This can result in a unique drift behavior with each Zernike throughout the exposing of wafers. In this paper, we present our experience and lessons learned from lens heating with NTD processes. The results of this study indicate that lens heating makes impact on drift behavior of each Zernike during exposure while source pupil shape make an impact on the amplitude of Zernike drift. Existing lens models should be finely tuned to establish the correct compensation for drift. Computational modeling for lens heating can be considered as one of these opportunities. Pattern shapes, such as dense and iso pattern, can have different drift behavior during lens heating.

  7. Mineral commodity profiles: Germanium

    USGS Publications Warehouse

    Butterman, W.C.; Jorgenson, John D.

    2005-01-01

    Overview -- Germanium is a hard, brittle semimetal that first came into use a half-century ago as a semiconductor material in radar units and as the material from which the first transistor was made. Today it is used principally as a component of the glass in telecommunications fiber optics; as a polymerization catalyst for polyethylene terephthalate (PET), a commercially important plastic; in infrared (IR) night vision devices; and as a semiconductor and substrate in electronics circuitry. Most germanium is recovered as a byproduct of zinc smelting, although it also has been recovered at some copper smelters and from the fly ash of coal-burning industrial powerplants. It is a highly dispersed element, associated primarily with base-metal sulfide ores. In the United States, germanium is recovered from zinc smelter residues and manufacturing scrap and is refined by two companies at four germanium refineries. One of the four refineries is dedicated to processing scrap. In 2000, producers sold zone-refined (high-purity) germanium at about $1,250 per kilogram and electronic-grade germanium dioxide (GeO2) at $800 per kilogram. Domestic refined production was valued at $22 million. Germanium is a critical component in highly technical devices and processes. It is likely to remain in demand in the future at levels at least as high as those of 2000. U.S. resources of germanium are probably adequate to meet domestic needs for several decades.

  8. Germanium detector passivated with hydrogenated amorphous germanium

    DOEpatents

    Hansen, William L.; Haller, Eugene E.

    1986-01-01

    Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.

  9. Thermistor based, low velocity isothermal, air flow sensor

    NASA Astrophysics Data System (ADS)

    Cabrita, Admésio A. C. M.; Mendes, Ricardo; Quintela, Divo A.

    2016-03-01

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms-1). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms-1 to 2 ms-1 with a standard uncertainty error less than 4%.

  10. Positive temperature coefficient thermistors based on carbon nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Zeng, You; Lu, Guixia; Wang, Han; Du, Jinhong; Ying, Zhe; Liu, Chang

    2014-10-01

    In order to explore availability of carbon nanotube (CNT)-based positive temperature coefficient (PTC) thermistors in practical application, we prepared carbon nanotube (CNT) filled high density polyethylene (HDPE) composites by using conventional melt-mixing methods, and investigated their PTC effects in details. The CNT-based thermistors exhibit much larger hold current and higher hold voltage, increasing by 129% in comparison with the commercial carbon black (CB) filled HDPE thermistors. Such high current-bearing and voltage-bearing capacity for the CNT/HDPE thermistors is mainly attributed to high thermal conductivity and heat dissipation of entangled CNT networks. Moreover, the CNT/HDPE thermistors exhibit rapid electrical response to applied voltages, comparable to commercial CB-based thermistors. In light of their high current-bearing capacity and quick response, the CNT-based thermistors have great potential to be used as high-performance thermistors in practical application, especially in some critical circumstances of high temperature, large applied currents, and high applied voltages.

  11. Effects of inositol supplementation in a cohort of mothers at risk of producing an NTD pregnancy.

    PubMed

    Cavalli, Pietro; Tonni, Gabriele; Grosso, Enrico; Poggiani, Carlo

    2011-11-01

    Neural tube defects (NTDs), most commonly spina bifida and anencephaly, can be prevented with periconceptional intake of folic acid in about 70% of cases. Recurrence of NTDs despite supplementation of high dose of folic acid further suggests that a proportion of NTD cases might be resistant to folic acid. Moreover, heterogeneity of NTDs has been suggested in animal studies, indicating that only some sub-type of NTDs should be considered sensitive to folate intake. Inositol isomers (particularly myo- and chiro-inositol) can prevent folate-resistant NTDs in the curly-tail mutant mouse, suggesting that some cases of human NTDs might benefit from inositol supplementation. In humans, lower inositol blood concentration was found in pregnant women carrying NTD fetuses, whereas a periconceptional combination therapy with folic acid associated with inositol has been linked to normal live births, despite high NTD recurrence risk. Fifteen pregnancies from 12 Caucasian women from different parts of Italy with at least one previous NTD-affected pregnancy underwent periconceptional combined myo-inositol and folic acid supplementation. Maternal serum α-feto-protein levels were found in the normal range, and normal results on ultrasound examination were found in all the pregnancies that followed. No collateral effects or intense uterine contractions were demonstrated in this pilot study in any of the pregnancies after inositol supplementation, and seventeen babies were born without any type of NTD. PMID:21956977

  12. Lithium drifted germanium system

    NASA Technical Reports Server (NTRS)

    Fjarlie, E. J.

    1969-01-01

    General characteristics of the lithium-drifted germanium photodiode-Dewar-preamplifier system and particular operating instructions for the device are given. Information is included on solving operational problems.

  13. Assessing female sexual arousal with the labial thermistor: response specificity and construct validity.

    PubMed

    Prause, N; Heiman, J R

    2009-05-01

    The labial thermistor offers several potential psychometric advantages over existing measures of female sexual response; however, the thermistor lacked data to support these presumed advantages, especially with respect to its discriminant validity. In this study, both the labial thermistor was worn simultaneously with the vaginal photoplethysmograph as women viewed films. They also indicated their level of subjective sexual arousal using a lever. The labial thermistor discriminated sexual from nonsexual arousing stimuli and was sensitive to different levels of sexual arousal. The correspondence of the instrument with subjective sexual arousal, measured using a continuous lever, was lower during the mildly arousing sexual film and higher during the maximally sexual arousing film. One woman reported that the labial thermistor was very uncomfortable, while others indicated no or mild discomfort from each instrument. The vaginal photoplethysmograph largely replicated the effects documented by the labial thermistor, although it did not discriminate sexual stimuli of different intensity nor correspond with women's continuous lever responses as closely during the more arousing stimulus. Difficulties recording simultaneously with these instruments are noted. The labial thermistor adequately discriminates between generally arousing and sexually arousing stimuli, increasing its utility as a measure for between-subject study designs. PMID:19041673

  14. Evaluation of insulated miniature thermistors for skin temperature measurement in the rat

    NASA Astrophysics Data System (ADS)

    Szlyk, Patricia C.; Sils, Ingrid V.; Ferguson, June D.; Matthew, William T.; Hubbard, Roger W.

    1986-08-01

    A miniature thermistor modified by covering its outer surface with insulating foam was evaluated as a temperature sensor at three skin sites in the adult male laboratory rat. A high precision thermistor was modified by covering the outer epoxy surface with about 1/4 inch of a commercially available insulating foam. Such foam thickness provided sufficient insulation to reduce the influence of ambient temperature on the thermistor reading yet contributed minimal additional probe weight. Results indicate that compared to the insulated thermistor, the uninsulated probe underestimated skin temperature measured at the midscapular region of the back, ventral surface of the foot, and dorsal base of the tail at cool ambient temperature (25c) and overestimated temperature at the back and tail skin sites at high ambient temperature (42c). The differences in temperature measured by the insulated and uninsulated thermistors were greastest at the back skin site, which was the only fur-covered and the least vascularized area of the rat that we studied. Using an insulated miniature thermistor to reduce the influence of environmental temperature on thermistor readings when measuring skin temperature in a furred laboratory animal is recommended.

  15. Fit for purpose: do we have the right tools to sustain NTD elimination?

    PubMed Central

    2015-01-01

    Priorities for NTD control programmes will shift over the next 10-20 years as the elimination phase reaches the ‘end game’ for some NTDs, and the recognition that the control of other NTDs is much more problematic. The current goal of scaling up programmes based on preventive chemotherapy (PCT) will alter to sustaining NTD prevention, through sensitive surveillance and rapid response to resurgence. A new suite of tools and approaches will be required for both PCT and Intensive Disease Management (IDM) diseases in this timeframe to enable disease endemic countries to: 1. Sensitively and sustainably survey NTD transmission and prevalence in order to identify and respond quickly to resurgence. 2. Set relevant control targets based not only on epidemiological indicators but also entomological and ecological metrics and use decision support technology to help meet those targets. 3. Implement verified and cost-effective tools to prevent transmission throughout the elimination phase. Liverpool School of Tropical Medicine (LSTM) and partners propose to evaluate and implement existing tools from other disease systems as well as new tools in the pipeline in order to support endemic country ownership in NTD decision-making during the elimination phase and beyond.

  16. Time-Separating Heating and Sensor Functions of Thermistors in Precision Thermal Control Applications

    NASA Technical Reports Server (NTRS)

    Cho, Hyung J.; Sukhatme, Kalyani G.; Mahoney, John C.; Penanen, Konstantin Penanen; Vargas, Rudolph, Jr.

    2010-01-01

    A method allows combining the functions of a heater and a thermometer in a single device, a thermistor, with minimal temperature read errors. Because thermistors typically have a much smaller thermal mass than the objects they monitor, the thermal time to equilibrate the thermometer to the temperature of the object is typically much shorter than the thermal time of the object to change its temperature in response to an external perturbation.

  17. Thin metal thermistors for shock temperature measurements of polymers

    NASA Astrophysics Data System (ADS)

    Taylor, N. E.; Williamson, D. M.; Picard, A.; Cunningham, L. K.; Jardine, A. P.

    2015-06-01

    Equations of state can be used to predict the relationship between pressure, volume and temperature. However, in shock physics, they are usually only constrained by experimental observations of pressure and volume. Direct observation of temperature in a shock is therefore valuable in constraining equations of state. Bloomquist and Sheffield (1980, 1981) and Rosenberg and Partom (1984) have attempted such observations in poly(methyl methacrylate) (PMMA). However, their results disagree strongly above 2 GPa shock pressure. The present authors previously presented an improved fabrication technique, to examine this outstanding issue. This technique made use of the fact that the electrical resistivity of most metals is a known function of both pressure and temperature. By fabricating a thin metal thermistor gauge and measuring its change in resistance during a shock experiment of known pressure, its temperature can be recovered. Heat transfer into the gauge depends strongly on the gauge dimensions and the thermal conductivity of the shocked PMMA. Here we present several improvements to the technique. By varying the gauge thickness over the range 100 nm to 10 μ m we assess the heat transfer into the gauge.

  18. Bridgman Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Cobb, S. D.; Motakef, S.

    1997-01-01

    The high-magnetic-field crystal growth facility at the Marshall Space Flight Center will be briefly described. This facility has been used to grow bulk germanium by the Bridgman technique in magnetic fields up to 5 Tesla. The results of investigations of ampoule material on the interface shape and thermal field applied to the melt on stability against convection will be discussed.

  19. Electrical properties of neutron-transmutation-doped germanium

    SciTech Connect

    Rodder, M.

    1982-08-01

    Electrical properties of neutron-transmutation-doped germanium (NTD Ge) and nearly uncompensated gallium-doped germanium have been measured as functions of net-impurity concentration (2 x 10/sup 15/cm/sup -3/ less than or equal to N/sub A/ - N/sub D/ less than or equal to 5 x 10/sup 16/cm/sup -3/) and temperature (0.3 K less than or equal to T less than or equal to 300 K). The method of impurity conduction as a function of carrier concentration and compensation was investigated in the low temperature hopping regime. For nearest neighbor hopping, the resistivity is expected to vary as rho = rho/sub 0/exp(..delta../T) while Mott's theory of variable range hopping predicts that rho = rho/sub 0/exp(..delta../T)/sup 1/4/ in the low temperature limit. In contrast, our results show that the resistivity can best be approximated by rho = rho/sub 0/exp(..delta../T)/sup 1/2/ in the hopping regime down to 0.3 K.

  20. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  1. Attractive mechanical properties of a lightweight highly sensitive bi layer thermistor: polycarbonate/organic molecular conductor

    NASA Astrophysics Data System (ADS)

    Laukhina, E.; Lebedev, V.; Rovira, C.; Laukhin, V.; Veciana, J.

    2016-03-01

    The paper covers some of the basic mechanical characteristics of a recently developed bi layer thermistor: polycarbonate/(001) oriented layer of organic molecular conductor α’-(BEDT-TTF)2IxBr3-x, were BEDT-TTF=bis(ethylenedithio)tetrathiafulvalen. The nano and macro mechanical properties have been studied in order to use this flexible, low cost thermistor in sensing applications by proper way. The nano-mechanical properties of the temperature sensitive semiconducting layer of α’-(BEDT-TTF)2IxBr3-x were tested using nanoindentation method. The value of Young's modulus in direction being perpendicular to the layer plan was found as 9.0 ±1.4 GPa. The macro mechanical properties of the thermistor were studied using a 5848 MicroTester. The tensile tests showed that basic mechanical characteristics of the thermistor are close to those of polycarbonate films. This indicates a good mechanical strength of the developed sensor. Therefore, the thermistor can be used in technologies that need to be instrumented with highly robustness lightweight low cost temperature sensors. The paper also reports synthetic details on fabricating temperature sensing e-textile. As the temperature control is becoming more and more important in biomedical technologies like healthcare monitoring, this work strongly contributes on the ongoing research on engineering sensitive conducting materials for biomedical applications.

  2. Advanced patterning approaches based on negative-tone development (NTD) process for further extension of 193nm immersion lithography

    NASA Astrophysics Data System (ADS)

    Shirakawa, Michihiro; Inoue, Naoki; Furutani, Hajime; Yamamoto, Kei; Goto, Akiyoshi; Fujita, Mitsuhiro

    2015-03-01

    Two approaches which achieve the further evolution of NTD (Negative Tone Development) process are shown in this article. One is ACCEL (Advanced Chemical Contrast Enhancement Layer) process that can improve the lithography performance and the other is DTD (Dual Tone Development) process that can shrink patterning pitch below the limit of single exposure process. ACCEL is an additionally provided layer which is coated on a surface of NTD resist film before exposure and removed by NTD developer. ACCEL can enhance the acid distribution and dissolution contrast of the NTD resist. In fact, lithography performances such as exposure latitude (EL) and DOF improved dramatically by applying ACCEL compared to the NTD resist without ACCEL. We consider that suppression of excessive acid diffusion and material transfer between the resist layer and the ACCEL layer are the causes of the contrast enhancement. DTD process is one of the simplest pitch shrink method which is achieved by repeating PTD and NTD process. Feasibility study of DTD patterning has been demonstrated so far. However, Exposure latitude margin and CDU performance were not sufficient for applying DTD to HVM. We developed the novel DTD specific resist under a new concept, and 32 nm half pitch (hp) contact hole (CH) pattern was successfully formed with enough margins. DTD line and space (L/S) patterning are also demonstrated and 24 nm hp L/S pattern can be resolved. k1 factors of DTD CH and L/S patterns reach to 0.20 and 0.15, respectively.

  3. A Simple Experiment to Determine the Characteristics of an NTC Thermistor for Low-Temperature Measurement Applications

    ERIC Educational Resources Information Center

    Mawire, A.

    2012-01-01

    A simple low-cost experiment for undergraduate students to determine the characteristics of a negative temperature coefficient of resistance thermistor is presented. The experiment measures the resistance-temperature and voltage-temperature characteristics of the thermistor. Results of the resistance-temperature experiment are used to determine…

  4. Germanium-76 Sample Analysis

    SciTech Connect

    Kouzes, Richard T.; Engelhard, Mark H.; Zhu, Zihua

    2011-04-01

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). The DEMONSTRATOR will utilize 76Ge from Russia, and the first one gram sample was received from the supplier for analysis on April 24, 2011. The Environmental Molecular Sciences facility, a DOE user facility at PNNL, was used to make the required isotopic and chemical purity measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR. The results of this first analysis are reported here.

  5. Conceptual design of experimental equipment for large-diameter NTD-Si.

    PubMed

    Yagi, M; Watanabe, M; Ohyama, K; Yamamoto, K; Komeda, M; Kashima, Y; Yamashita, K

    2009-01-01

    An irradiation-experimental equipment for 12in neutron transmutation doping silicon (NTD-Si) was designed conceptually by using MCNP5 in order to improve the neutron flux distribution of the radial direction. As a result of the calculations, the neutron absorption reaction ratio of the circumference to the center could be limited within 1.09 using a thermal neutron filter that covers the surface of the silicon ingot. The uniformity of the (30)Si neutron absorption was less than 5.3%. PMID:19299158

  6. Design and Development of Thermistor based Power Meter at 140 GHz Frequency Band

    NASA Astrophysics Data System (ADS)

    Roy, Rajesh; Kush, Abhimanyue Kumar; Dixit, Rajendra Prasad

    2011-12-01

    Design and development of thermistor based power meter at 140 gigahertz (GHz) frequency band have been presented. Power meter comprises power sensor, amplifier circuit and dialog based graphical user interface in visual C++ for the average power measurement. The output power level of a component or system is very critical design factor. Thus there was a need of a power meter for the development of millimeter wave components at 140 GHz frequency band. Power sensor has been designed and developed using NTC (Negative Temperature Coefficient) thermistors. The design aims at developing a direct, simple and inexpensive power meter that can be used to measure absolute power at 140 GHz frequency band. Due to absorption of 140 GHz frequencies, resistance of thermistor changes to a new value. This change in resistance of thermistor can be converted to a dc voltage change and amplified voltage change can be fed to computer through data acquisition card. Dialog based graphical user interface (GUI) has been developed in visual C++ language for average power measurement in dBm. WR6 standard rectangular waveguide is the input port for the sensor of power meter. Temperature compensation has been achieved. Moderate sensor return loss greater than 20 dB has been found over the frequency range 110 to 170 GHz. The response time of the power sensor is 10 second. Average power accuracy is better than ±0.25 dB within the power range from -10 to 10 dBm at 140 GHz frequency band.

  7. The Influence of Thermistor Location on Temperature Measurement from a Photonic Package

    NASA Astrophysics Data System (ADS)

    Eason, Cormac; Rensing, Marc; Lee, Jun Su; O'Brien, Peter

    2014-07-01

    This paper begins by describing some commonly used photonic packages. The requirements for optical connections to these packages are then discussed. Photonic packages are different to most electronic packages in that the thermal management requirements usually include maintaining the Photonic Integrated Circuit (PIC) at a fixed, sometimes below ambient, operating temperature rather than with keeping the temperature of a package below an upper limit as with most electronic packages. This means that an active Thermoelectric Module (TEM) based cooling system is required. A thermistor is fitted within the package to provide thermal feedback to the TEM controller. This paper uses finite element modelling to investigate whether there is a good match between the target temperature for the PIC and the temperature registered by the thermistor. The results of the modelling show that the model results are quite stable even with large variations in convection and thermistor thermal properties. The thermistor location influences the temperature measured from the package and its thermal response time, but follows the device temperature well enough to provide the TEM controller with adequate feedback to maintain the PIC at a steady temperature in steady state running conditions.

  8. A Low-Cost Thermistor Device for Measurements of Metabolic Heat in Yeast Cells in Suspension.

    ERIC Educational Resources Information Center

    Keeling, Richard P.

    1980-01-01

    Provides illustrated directions for the construction and use of a low-cost thermistor device. Attached to a servo-type millivolt chart recorder, the device will record minute temperature changes and will simulate data obtained from an oxygen polarograph. Includes results of experiments with baker's yeast. (Author/CS)

  9. Germanium: An aqueous processing review

    SciTech Connect

    Lier, R.J.M. van; Dreisinger, D.B.

    1995-08-01

    In industrial aqueous solutions, germanium generally occurs in trace amounts amid high concentrations of other metals, such as zinc, copper and iron. Separation of germanium from these metals as well as its isolation from gallium and indium pose a real challenge to the hydrometallurgist. After a brief discussion of the aqueous chemistry of germanium, this paper reviews the flowsheet of the Apex Mine in Utah. The Apex property was the only mine in the world to be operated primarily for production of gallium and germanium, but apparently closed due to great operating difficulties. Several process variants proposed for the treatment of the Apex ore, including bioleaching methods, are addressed. Following a more general description of the behavior of germanium in hydrometallurgical zinc processing streams, available technology for its recovery from aqueous solutions is summarized. Precipitation, solvent extraction, ion exchange, electrowinning, ion flotation and liquid-membrane separation are all outlined in terms of the aqueous chemistry of germanium. Finally, the production of high purity germanium dioxide and metal is briefly discussed. 61 refs.

  10. Germanium geochemistry and mineralogy

    USGS Publications Warehouse

    Bernstein, L.R.

    1985-01-01

    Germanium is enriched in the following geologic environments: 1. (1) iron meteorites and terrestrial iron-nickel; 2. (2) sulfide ore deposits, particularly those hosted by sedimentary rocks; 3. (3) iron oxide deposits; 4. (4) oxidized zones of Ge-bearing sulfide deposits; 5. (5) pegmatites, greisens, and skarns; and 6. (6) coal and lignitized wood. In silicate melts, Ge is highly siderophile in the presence of native iron-nickel; otherwise, it is highly lithophile. Among silicate minerals, Ge is concentrated in those having less polymerized silicate tetrahedra such as olivine and topaz. In deposits formed from hydrothermal solutions, Ge tends to be enriched mostly in either sulfides or in fluorine-bearing phases; it is thus concentrated both in some hydrothermal sulfide deposits and in pegmatites, greisens, and skarns. In sulfide deposits that formed from solutions having low to moderate sulfur activity, Ge is concentrated in sphalerite in amounts up to 3000 ppm. Sulfide deposits that formed from solutions having higher sulfur activity allowed Ge to either form its own sulfides, particularly with Cu, or to substitute for As, Sn, or other metals in sulfosalts. The Ge in hydrothermal fluids probably derives from enrichment during the fractional crystallization of igneous fluids, or is due to the incorporation of Ge from the country rocks, particularly from those containing organic material. Germanium bonds to lignin-derivative organic compounds that are found in peat and lignite, accounting for its common concentration in coals and related organic material. Germanium is precipitated from water together with iron hydroxide, accounting for its concentration in some sedimentary and supergene iron oxide deposits. It also is able to substitute for Fe in magnetite in a variety of geologic environments. In the oxidized zone of Ge-bearing sulfide deposits, Ge is concentrated in oxides, hydroxides, and hydroxy-sulfates, sometimes forming its own minerals. It is particularly

  11. Slow Crack Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A=1.7), it is not as anisotropic as SiC, NiAl, or Cu, as evidence by consistent fracture toughness on the 100, 110, and 111 planes. Germanium does not exhibit significant slow crack growth in distilled water. (n=100). Practical values for engineering design are a fracture toughness of 0.7 MPam and a Weibull modulus of m=6+/-2. For well ground and reasonable handled coupons, fracture strength should be greater than 30 MPa.

  12. The Structure of NtdA, a Sugar Aminotransferase Involved in the Kanosamine Biosynthetic Pathway in Bacillus subtilis, Reveals a New Subclass of Aminotransferases*

    PubMed Central

    van Straaten, Karin E.; Ko, Jong Bum; Jagdhane, Rajendra; Anjum, Shazia; Palmer, David R. J.; Sanders, David A. R.

    2013-01-01

    NtdA from Bacillus subtilis is a sugar aminotransferase that catalyzes the pyridoxal phosphate-dependent equatorial transamination of 3-oxo-α-d-glucose 6-phosphate to form α-d-kanosamine 6-phosphate. The crystal structure of NtdA shows that NtdA shares the common aspartate aminotransferase fold (Type 1) with residues from both monomers forming the active site. The crystal structures of NtdA alone, co-crystallized with the product α-d-kanosamine 6-phosphate, and incubated with the amine donor glutamate reveal three key structures in the mechanistic pathway of NtdA. The structure of NtdA alone reveals the internal aldimine form of NtdA with the cofactor pyridoxal phosphate covalently attached to Lys-247. The addition of glutamate results in formation of pyridoxamine phosphate. Co-crystallization with kanosamine 6-phosphate results in the formation of the external aldimine. Only α-d-kanosamine 6-phosphate is observed in the active site of NtdA, not the β-anomer. A comparison of the structure and sequence of NtdA with other sugar aminotransferases enables us to propose that the VIβ family of aminotransferases should be divided into subfamilies based on the catalytic lysine motif. PMID:24097983

  13. Hafnium germanium telluride

    PubMed Central

    Jang, Gyung-Joo; Yun, Hoseop

    2008-01-01

    The title hafnium germanium telluride, HfGeTe4, has been synthesized by the use of a halide flux and structurally characterized by X-ray diffraction. HfGeTe4 is isostructural with stoichiometric ZrGeTe4 and the Hf site in this compound is also fully occupied. The crystal structure of HfGeTe4 adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetra­hedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps. PMID:21202163

  14. Nitrogen in germanium

    NASA Astrophysics Data System (ADS)

    Chambouleyron, I.; Zanatta, A. R.

    1998-07-01

    The known properties of nitrogen as an impurity in, and as an alloy element of, the germanium network are reviewed in this article. Amorphous and crystalline germanium-nitrogen alloys are interesting materials with potential applications for protective coatings and window layers for solar conversion devices. They may also act as effective diffusion masks for III-V electronic devices. The existing data are compared with similar properties of other group IV nitrides, in particular with silicon nitride. To a certain extent, the general picture mirrors the one found in Si-N systems, as expected from the similar valence structure of both elemental semiconductors. However, important differences appear in the deposition methods and alloy composition, the optical properties of as grown films, and the electrical behavior of nitrogen-doped amorphous layers. Structural studies are reviewed, including band structure calculations and the energies of nitrogen-related defects, which are compared with experimental data. Many important aspects of the electronic structure of Ge-N alloys are not yet completely understood and deserve a more careful investigation, in particular the structure of defects associated with N inclusion. The N doping of the a-Ge:H network appears to be very effective, the activation energy of the most effectively doped samples becoming around 120 meV. This is not the case with N-doped a-Si:H, the reasons for the difference remaining an open question. The lack of data on stoichiometric β-Ge3N4 prevents any reasonable assessment on the possible uses of the alloy in electronic and ceramic applications.

  15. Local structure of germanium-sulfur, germanium-selenium, and germanium-tellurium vitreous alloys

    SciTech Connect

    Bordovsky, G. A.; Terukov, E. I.; Anisimova, N. I.; Marchenko, A. V.; Seregin, P. P.

    2009-09-15

    {sup 119}Sn and {sup 129}Te ({sup 129}I) Moessbauer spectroscopy showed that chalcogen-enriched Ge{sub 100-y}X{sub y} (X = S, Se, Te) glasses are constructed of structural units including two-coordinated chalcogen atoms in chains such as Ge-X-Ge- and Ge-X-X-Ge-. Germanium in these glasses is only tetravalent and four-coordinated, and only chalcogen atoms are in the local environment of germanium atoms. Chalcogen-depleted glasses are constructed of structural units including two-coordinated (in Ge-X-Ge- chains) and three-coordinated chalcogen atoms (in -Ge-X-Ge- chains). Germanium in these glasses stabilizes in both the tetravalent four-coordinated and divalent three-coordinated states, and only chalcogen atoms are in the local environment of germanium atoms.

  16. Are infrared and thermistor thermometers interchangeable for measuring localized skin temperature?

    PubMed

    Kelechi, Teresa J; Michel, Yvonne; Wiseman, Jan

    2006-01-01

    Localized skin temperature must be measured by accurate and reliable thermometers to effectively evaluate treatment outcomes, monitor changes, and predict potential complications. This study compared localized skin temperature measurements with a contact thermistor thermometer used as a reference standard and a noncontact infrared (IR) skin thermometer to determine their interchangeability with calculated Bland-Altman limits of agreement. Fifty-five adults ages 50 to 89 participated in the study in which data were collected in a climate-controlled room over 3 measurement periods, 1 week apart. The thermistor and IR thermometers were interchangeable with a limit of agreement of +/- 1.5 degrees C. This limit of agreement is acceptable as a reference standard for IR thermometers to measure localized skin temperature in clinical settings. PMID:16764175

  17. Measurement of isotope separation factors in the palladium-hydrogen system using a thermistor technique

    SciTech Connect

    Ortiz, T.M.

    1998-05-01

    The range of available data on separation factors in the palladium-hydrogen/deuterium system has been extended. A matched pair of glass-coated bead thermistors was used to measure gas phase compositions. The compositions of the input gas--assumed also to be the solid phase composition--were measured independently be mass spectrometry as being within 0.5 mole% of the values used to calibrate the thermistors. This assumption is based on the fact that > 99% of the input gas is absorbed into the solid. Separation factors were measured for 175 K {le} T {le} 389 K and for 0.195 {le} x{sub H} {le} 0.785.

  18. Determination of the detection threshold for Polyethylene Terephthalate (PET) Nuclear Track Detector (NTD)

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, R.; Dey, S.; Ghosh, Sanjay K.; Maulik, A.; Raha, Sibaji; Syam, D.

    2016-03-01

    In this work we investigated the detection threshold of the polymer material Polyethylene Terephthalate (PET) intended to be used as Nuclear Track Detector (NTD) in the search for rare events (e.g. strangelets) in cosmic rays. 11 MeV 12C and 2 MeV proton beams from the accelerator at the Institute of Physics (IOP), Bhubaneswar were utilized for this study. The results show that the PET detector has a much higher detection threshold (Z / β ∼ 140) compared to many other commercially available and widely used detector materials like CR-39 (Z / β ∼ 6-20) or Makrofol (Z / β ∼ 57). This makes PET a particularly suitable detector material for testing certain phenomenological models which predict the presence of strangelets as low energy, heavily ionizing particles in cosmic radiation at high mountain altitudes.

  19. The ability to create NTD silicon technology in the IRT-T reactor in a horizontal experimental channel with one-side access

    NASA Astrophysics Data System (ADS)

    Varlachev, V. A.; Golovatsky, A. V.; Emets, E. G.; Butko, Ya A.

    2016-06-01

    The article shows the ability of creation of neutron transmutation doping (NTD) of monocrystalline silicon technology in the reactor's channel, which has a one-side access. In the article a distribution of thermal neutron flux through the length of channel and it's radius, neutron spectrum were obtained which confirmed that horizontal experimental channel HEC-1 is suitable for NTD.

  20. Resonant germanium nanoantenna photodetectors.

    PubMed

    Cao, Linyou; Park, Joon-Shik; Fan, Pengyu; Clemens, Bruce; Brongersma, Mark L

    2010-04-14

    On-chip optical interconnection is considered as a substitute for conventional electrical interconnects as microelectronic circuitry continues to shrink in size. Central to this effort is the development of ultracompact, silicon-compatible, and functional optoelectronic devices. Photodetectors play a key role as interfaces between photonics and electronics but are plagued by a fundamental efficiency-speed trade-off. Moreover, engineering of desired wavelength and polarization sensitivities typically requires construction of space-consuming components. Here, we demonstrate how to overcome these limitations in a nanoscale metal-semiconductor-metal germanium photodetector for the optical communications band. The detector capitalizes on antenna effects to dramatically enhance the photoresponse (>25-fold) and to enable wavelength and polarization selectivity. The electrical design featuring asymmetric metallic contacts also enables ultralow dark currents (approximately 20 pA), low power consumption, and high-speed operation (>100 GHz). The presented high-performance photodetection scheme represents a significant step toward realizing integrated on-chip communication and manifests a new paradigm for developing miniaturized optoelectronics components. PMID:20230043

  1. Investigation of the difficulties associated with the use of lead telluride and other II - IV compounds for thin film thermistors

    NASA Technical Reports Server (NTRS)

    Mclennan, W. D.

    1975-01-01

    The fabrication of thermistors was investigated for use as atmospheric temperature sensors in meteorological rocket soundings. The final configuration of the thin film thermistor is shown. The composition and primary functions of the six layers of the sensor are described. A digital controller for thin film deposition control is described which is capable of better than .1 A/sec rate control. The computer program modules for digital control of thin film deposition processing are included.

  2. [Expiratory ventilation and carbon dioxide production measured with a thermistor flow-through system].

    PubMed

    Nagashima, T

    1996-03-01

    A thermistor flow-through system for measuring expiratory volume without a mouthpiece and a nose clip was developed. First, a thermostat and a large syringe were connected to a box used to stimulate a subject's head. A carbon dioxide (CO2) gas mixture was driven through the box, while the output of a thermistor sensor of the thermistor flow-through system was recorded. The correlation between the area under the temperature-time curve and the actual volume of gas driven through the box was computed. Second, the effects of driving time, gas temperature, and room temperature on the area under the temperature-time curve were measured. Third, corrections for expiratory time and for the temperature of exhaled gas were derived from regression analysis of the relation between the time taken to drive the CO2 gas mixture and the area under the temperature-time curve, and between the temperature of the CO2 gas mixture and the area under the temperature-time curve, respectively. Fourth, CO2 production was computed from the area under the CO2 concentration-time curve (obtained at the same time as the temperature-time curve). To measure the temperature-time curve and the CO2-time curve for the simulator, the box was placed under the transparent hood of the thermistor flow-through system. To measure the temperature-time and CO2-time curves for a subject, the head was placed in the hood while the subject was supine. The subject breathed with the mouth held slightly open, and the mixture of room air and expired gas was continuously drawn at a constant flow through an outlet at the top of the hood. The outlet was connected to a flow meter and to a constant-speed blower. The CO2 concentration and the temperature in the hood exhaust were measured at the outlet, and were continuously recorded with a chart recorder. To measure the actual volume of CO2, a Douglas bag was also used, and was connected to the blower. Increases in the driving time and in gas temperature caused increases in

  3. Surface Passivation of Germanium Nanowires

    SciTech Connect

    Adhikari, Hemant; Sun, Shiyu; Pianetta, Piero; Chidsey, Chirstopher E.D.; McIntyre, Paul C.; /SLAC, SSRL

    2005-05-13

    The surface of single crystal, cold-wall CVD-grown germanium nanowires was studied by synchrotron radiation photoemission spectroscopy (SR-PES) and also by conventional XPS. The as-grown germanium nanowires seem to be hydrogen terminated. Exposure to laboratory atmosphere leads to germanium oxide growth with oxidation states of Ge{sup 1+}, Ge{sup 2+}, Ge{sup 3+}, while exposure to UV light leads to a predominance of the Ge{sup 4+} oxidation state. Most of the surface oxide could be removed readily by aqueous HF treatment which putatively leaves the nanowire surface hydrogen terminated with limited stability in air. Alternatively, chlorine termination could be achieved by aq. HCl treatment of the native oxide-coated nanowires. Chlorine termination was found to be relatively more stable than the HF-last hydrogen termination.

  4. The Germanium Dichotomy in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Humayun, M.; Yang, S.; Righter, K.; Zanda, B.; Hewins, R. H.

    2016-01-01

    Germanium is a moderately volatile and siderophile element that follows silicon in its compatibility during partial melting of planetary mantles. Despite its obvious usefulness in planetary geochemistry germanium is not analyzed routinely, with there being only three prior studies reporting germanium abundances in Martian meteorites. The broad range (1-3 ppm) observed in Martian igneous rocks is in stark contrast to the narrow range of germanium observed in terrestrial basalts (1.5 plus or minus 0.1 ppm). The germanium data from these studies indicates that nakhlites contain 2-3 ppm germanium, while shergottites contain approximately 1 ppm germanium, a dichotomy with important implications for core formation models. There have been no reliable germanium abundances on chassignites. The ancient meteoritic breccia, NWA 7533 (and paired meteorites) contains numerous clasts, some pristine and some impact melt rocks, that are being studied individually. Because germanium is depleted in the Martian crust relative to chondritic impactors, it has proven useful as an indicator of meteoritic contamination of impact melt clasts in NWA 7533. The germanium/silicon ratio can be applied to minerals that might not partition nickel and iridium, like feldspars. We report germanium in minerals from the 3 known chassignites, 2 nakhlites and 5 shergottites by LAICP- MS using a method optimized for precise germanium analysis.

  5. Layout optimization of DRAM cells using rigorous simulation model for NTD

    NASA Astrophysics Data System (ADS)

    Jeon, Jinhyuck; Kim, Shinyoung; Park, Chanha; Yang, Hyunjo; Yim, Donggyu; Kuechler, Bernd; Zimmermann, Rainer; Muelders, Thomas; Klostermann, Ulrich; Schmoeller, Thomas; Do, Mun-hoe; Choi, Jung-Hoe

    2014-03-01

    DRAM chip space is mainly determined by the size of the memory cell array patterns which consist of periodic memory cell features and edges of the periodic array. Resolution Enhancement Techniques (RET) are used to optimize the periodic pattern process performance. Computational Lithography such as source mask optimization (SMO) to find the optimal off axis illumination and optical proximity correction (OPC) combined with model based SRAF placement are applied to print patterns on target. For 20nm Memory Cell optimization we see challenges that demand additional tool competence for layout optimization. The first challenge is a memory core pattern of brick-wall type with a k1 of 0.28, so it allows only two spectral beams to interfere. We will show how to analytically derive the only valid geometrically limited source. Another consequence of two-beam interference limitation is a "super stable" core pattern, with the advantage of high depth of focus (DoF) but also low sensitivity to proximity corrections or changes of contact aspect ratio. This makes an array edge correction very difficult. The edge can be the most critical pattern since it forms the transition from the very stable regime of periodic patterns to non-periodic periphery, so it combines the most critical pitch and highest susceptibility to defocus. Above challenge makes the layout correction to a complex optimization task demanding a layout optimization that finds a solution with optimal process stability taking into account DoF, exposure dose latitude (EL), mask error enhancement factor (MEEF) and mask manufacturability constraints. This can only be achieved by simultaneously considering all criteria while placing and sizing SRAFs and main mask features. The second challenge is the use of a negative tone development (NTD) type resist, which has a strong resist effect and is difficult to characterize experimentally due to negative resist profile taper angles that perturb CD at bottom characterization by

  6. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    NASA Astrophysics Data System (ADS)

    Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Davila, Jesus; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio

    2015-07-01

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e'n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides 232Th, 238U and 237Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.

  7. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    SciTech Connect

    Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio; Davila, Jesus

    2015-07-23

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e’n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides {sup 232}Th, {sup 238}U and {sup 237}Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.

  8. Thermistor guided radiofrequency ablation of atrial insertion sites in patients with accessory pathways.

    PubMed

    Tracy, C M; Moore, H J; Solomon, A J; Rodak, D J; Fletcher, R D

    1995-11-01

    Radiofrequency ablation has gained acceptance in the treatment of patients with symptomatic Wolff-Parkinson-White syndrome. The purpose of this study was to characterize the relation between temperature and other electroconductive parameters in patients undergoing atrial insertion accessory pathway ablation utilizing a thermistor equipped catheter. The mean temperature and power at sites of atrial insertion ablation are lower than has been previously associated with creation of radiofrequency lesions in the ventricle. While high cavitary blood flow in the atrium may result in cooling, the thinner atrial tissue may require less energy to achieve adequate heating than ventricular myocardium. PMID:8552513

  9. Germanium Nanocrystal Solar Cells

    NASA Astrophysics Data System (ADS)

    Holman, Zachary Charles

    Greenhouse gas concentrations in the atmosphere are approaching historically unprecedented levels from burning fossil fuels to meet the ever-increasing world energy demand. A rapid transition to clean energy sources is necessary to avoid the potentially catastrophic consequences of global warming. The sun provides more than enough energy to power the world, and solar cells that convert sunlight to electricity are commercially available. However, the high cost and low efficiency of current solar cells prevent their widespread implementation, and grid parity is not anticipated to be reached for at least 15 years without breakthrough technologies. Semiconductor nanocrystals (NCs) show promise for cheap multi-junction photovoltaic devices. To compete with photovoltaic materials that are currently commercially available, NCs need to be inexpensively cast into dense thin films with bulk-like electrical mobilities and absorption spectra that can be tuned by altering the NC size. The Group II-VI and IV-VI NC communities have had some success in achieving this goal by drying and then chemically treating colloidal particles, but the more abundant and less toxic Group IV NCs have proven more challenging. This thesis reports thin films of plasma-synthesized Ge NCs deposited using three different techniques, and preliminary solar cells based on these films. Germanium tetrachloride is dissociated in the presence of hydrogen in a nonthermal plasma to nucleate Ge NCs. Transmission electron microscopy and X-ray diffraction indicate that the particles are nearly monodisperse (standard deviations of 10-15% the mean particle diameter) and the mean diameter can be tuned from 4-15 nm by changing the residence time of the Ge NCs in the plasma. In the first deposition scheme, a Ge NC colloid is formed by reacting nanocrystalline powder with 1-dodecene and dispersing the functionalized NCs in a solvent. Films are then formed on substrates by drop-casting the colloid and allowing it to dry

  10. The NTD-CTD intersubunit interface plays a critical role in assembly and stabilization of the HIV-1 capsid

    PubMed Central

    2013-01-01

    Background Lentiviruses exhibit a cone-shaped capsid composed of subunits of the viral CA protein. The intrinsic stability of the capsid is critical for HIV-1 infection, since both stabilizing and destabilizing mutations compromise viral infectivity. Structural studies have identified three intersubunit interfaces in the HIV-1 capsid, two of which have been previously studied by mutational analysis. In this present study we analyzed the role of a third interface, that which is formed between the amino terminal domain (NTD) and carboxyl terminal domain (CTD) of adjacent subunits. Results We provided evidence for the presence of the NTD-CTD interface in HIV-1 particles by engineering intersubunit NTD-CTD disulfide crosslinks, resulting in accumulation of disulfide-linked oligomers up to hexamers. We also generated and characterized a panel of HIV-1 mutants containing substitutions at this interface. Some mutants showed processing defects and altered morphology from that of wild type, indicating that the interface is important for capsid assembly. Analysis of these mutants by transmission electron microscopy corroborated the importance of this interface in assembly. Other mutants exhibited quantitative changes in capsid stability, many with unstable capsids, and one mutant with a hyperstable capsid. Analysis of the mutants for their capacity to saturate TRIMCyp-mediated restriction in trans confirmed that the unstable mutants undergo premature uncoating in target cells. All but one of the mutants were markedly attenuated in replication owing to impaired reverse transcription in target cells. Conclusions Our results demonstrate that the NTD-CTD intersubunit interface is present in the mature HIV-1 capsid and is critical for proper capsid assembly and stability. PMID:23497318

  11. X-Ray Micro-Calorimeter Based on Si Thermistors for X-Ray Astronomy: Design and First Measurements

    NASA Astrophysics Data System (ADS)

    Aliane, A.; de Moro, F.; Pigot, C.; Agnese, P.; de La Broïse, X.; Gasse, A.; Navick, X.-F.; Karolak, M.; Ribot, H.; Sauvageot, J.-L.; Szeflinski, V.; Gobil, Y.; Renaud, D.; Rivallin, P.; Geoffray, H.

    2008-04-01

    X-ray Astronomy provides a unique window on a wide variety of astrophysical phenomena. The currently operating X-ray space observatories perform X-ray spectral imaging with the use of CCDs. When available, cryogenic X-ray microcalorimeter arrays will far outperform CCDs in terms of spectral resolution, energy bandwidth and count rate. Experience has been gained with Infra-Red bolometer arrays at CEA-LETI (Grenoble) in collaboration with the CEA-SAp (Saclay); taking advantage of this background, we are now developing an X-ray spectro-imaging camera for the next generation space astronomy missions, using silicon technology (implanted and high temperature diffused thermistors). Each pixel of this array detector is made of a tantalum absorber bound, by indium bump hybridization, to a silicon thermistor. The absorber array is bound to the thermistor array in a single automatic step. The thermo-mechanical link, provided by hybridization, is being improved in terms of thermal capacitance. Finally, our main effort is in developing arrays of silicon thermistors with negligible excess 1/ f noise. The thermistor has been simulated with the 2D simulator ATHENA (SILVACO International). We studied the effects of the implants and their thermal treatment on both vertical and lateral dopant distributions at the edges of the thermistor. Prototypes have been created following the procedure optimized by the ATHENA simulation. We present the status of the development and results of measurements performed on these four main building blocks required to create a detector array up to 32×32 pixels in size.

  12. Radiation damage of germanium detectors

    NASA Technical Reports Server (NTRS)

    Pehl, R. H.

    1978-01-01

    Energetic particles can produce interstitial-vacancy pairs in a crystal by knocking the atoms from their normal positions. Detectors are unique among semiconductor devices in depending on very low concentrations of electrically active impurities, and also on efficient transport of holes and electrons over relatively large distances. Because the dense regions of damage produced by energetic particles may result in donors and/or acceptors, and also provide trapping sites for holes and electrons, detectors are very sensitive to radiation damage. In addition to these effects occurring within the detector, radiation may also change the characteristics of the exposed surfaces causing unpredictable effects on the detector leakage current. Radiation-induced surface degradation has rarely, if ever, been observed for germanium detectors. The possibility of minimizing hole trapping in charge collection by the use of a high-purity germanium coaxial detector configured with the p (+) contact on the coaxial periphery is discussed.

  13. Calibration of Germanium Resistance Thermometers

    NASA Technical Reports Server (NTRS)

    Ladner, D.; Urban, E.; Mason, F. C.

    1987-01-01

    Largely completed thermometer-calibration cryostat and probe allows six germanium resistance thermometers to be calibrated at one time at superfluid-helium temperatures. In experiments involving several such thermometers, use of this calibration apparatus results in substantial cost savings. Cryostat maintains temperature less than 2.17 K through controlled evaporation and removal of liquid helium from Dewar. Probe holds thermometers to be calibrated and applies small amount of heat as needed to maintain precise temperature below 2.17 K.

  14. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  15. Mineral resource of the month: germanium

    USGS Publications Warehouse

    Guberman, David

    2010-01-01

    The article provides information on germanium, an element with electrical properties between those of a metal and an insulator. Applications of germanium include its use as a component of the glass in fiber-optic cable, in infrared optics devices and as a semiconductor and substrate used in electronic and solar applications. Germanium was first isolated by German chemist Clemens Winkler in 1886 and was named after Winkler's native country. In 2008, the leading sources of primary germanium from coal or zinc include Canada, China and Russia.

  16. Germanium recycling in the United States in 2000

    USGS Publications Warehouse

    Jorgenson, John D.

    2006-01-01

    This report describes the recycling flow of germanium in the United States in 2000, as well as other germanium material flow streams. Germanium was recycled mostly from new scrap that was generated during the manufacture of germanium-containing fiber optic cables and from new and old scrap products of germanium-containing infrared imaging devices. In 2000, about 11.5 metric tons of germanium was recycled, about 40 percent of which was derived from old scrap. The germanium recycling rate was estimated to be 50 percent, and germanium scrap recycling efficiency, 76 percent.

  17. High performance LWIR microbolometer with Si/SiGe quantum well thermistor and wafer level packaging

    NASA Astrophysics Data System (ADS)

    Roer, Audun; Lapadatu, Adriana; Bring, Martin; Wolla, Erik; Hohler, Erling; Kittilsland, Gjermund

    2011-11-01

    An uncooled microbolometer with peak responsivity in the long wave infrared region of the electromagnetic radiation is developed at Sensonor Technologies. It is a 384 x 288 focal plane array with a pixel pitch of 25μm, based on monocrystalline Si/SiGe quantum wells as IR sensitive material. The high sensitivity (TCR) and low 1/f noise are the main performance characteristics of the product. The frame rate is maximum 60Hz and the output interface is digital (LVDS). The quantum well thermistor material is transferred to the read-out integrated circuit (ROIC) by direct wafer bonding. The ROIC wafer containing the released pixels is bonded in vacuum with a silicon cap wafer, providing hermetic encapsulation at low cost. The resulting wafer stack is mounted in a standard ceramic package. In this paper the architecture of the pixels and the ROIC, the wafer packaging and the electro-optical measurement results are presented.

  18. Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors

    NASA Astrophysics Data System (ADS)

    Valvano, J. W.; Cochran, J. R.; Diller, K. R.

    1985-05-01

    This paper presents an experimental method to measure the thermal conductivity and thermal diffusivity of biomaterials. Self-heated thermistor probes, inserted into the tissue of interest, are used to deliver heat as well as to monitor the rate of heat removal. An empirical calibration procedure allows accurate thermal-property measurements over a wide range of tissue temperatures. Operation of the instrument in three media with known thermal properties shows the uncertainty of measurements to be about 2%. The reproducibility is 0.5% for the thermal-conductivity measurements and 2% for the thermal-diffusivity measurements. Thermal properties were measured in dog, pig, rabbit, and human tissues. The tissues included kidney, spleen, liver, brain, heart, lung, pancreas, colon cancer, and breast cancer. Thermal properties were measured for 65 separate tissue samples at 3, 10, 17, 23, 30, 37, and 45°C. The results show that the temperature coefficient of biomaterials approximates that of water.

  19. Mineral resource of the month: germanium

    USGS Publications Warehouse

    Jorgenson, John D.

    2003-01-01

    Germanium is a hard, brittle semimetal that first came into use over a half-century ago as a semiconductor material in radar units and in the first transistor ever made. Most germanium is recovered as a byproduct of zinc smelting, but it has also been recovered at some copper smelters and from the fly ash of coal-burning industrial power plants.

  20. APPLICATION OF GERMANIUM DETECTORS TO ENVIRONMENTAL MONITORING

    EPA Science Inventory

    Gamma-ray spectroscopy is one of the most economical and wide-ranging tools for monitoring the environment for radiological impact. This report examines the problems involved in applying germanium detectors to the analysis of environmental samples. All aspects of germanium spectr...

  1. Reactions of germanium tetrahalides with ketene acetals

    SciTech Connect

    Efimova, I.V.; Kazankova, M.A.; Lutsenko, I.F.

    1985-05-01

    Recently, the authors reported that alkyl vinyl ethers and terminal alkynes are readily germylated by germanium tetrahalides in the presence of a tertiary amine. To extend the range of applicability of this reaction and to obtain additional information on its mechanism, the authors study reactions of ketene acetals with germanium tetrachloride and tetrabromide in the presence of triethylamine.

  2. Study of the mask materials for PTD process and NTD process in practical ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Adachi, Takashi; Tani, Ayako; Hayano, Katsuya; Takamizawa, Hideyoshi

    2014-07-01

    In this report, we compared the lithographic performances between the conventional positive tone development (PTD) process and the negative tone development (NTD) process, using the lithography simulation. We selected the MoSi-binary mask and conventional 6% attenuated phase shift mask as mask materials. The lithographic performance was evaluated and compared after applying the optical proximity correction (OPC). The evaluation items of lithographic performance were the aerial image profile, the aerial image contrast, normalized image log slope (NILS), mask error enhancement factor (MEEF), and the bossung curves, etc. The designs for the evaluation were selected the simple contact hole and the metal layer sample design.

  3. Germanium multiphase equation of state

    SciTech Connect

    Crockett, Scott D.; Lorenzi-Venneri, Giulia De; Kress, Joel D.; Rudin, Sven P.

    2014-05-07

    A new SESAME multiphase germanium equation of state (EOS) has been developed using the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element

  4. MAJORANA Collaboration's experience with germanium detectors

    SciTech Connect

    Mertens, S.; Abgrall, N.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Meijer, S. J.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Shanks, B.; Shirchenko, M.; Snyder, N.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.

    2015-05-01

    The goal of the Majorana Demonstrator project is to search for 0νββ decay in 76Ge. Of all candidate isotopes for 0νββ, 76Ge has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0νββ, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the MAJORANA collaboration made with enriched germanium detectors manufactured by ORTEC®®. The process from production, to characterization and integration in MAJORANA mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.

  5. MAJORANA Collaboration's experience with germanium detectors

    DOE PAGESBeta

    Mertens, S.; Abgrall, N.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; et al

    2015-05-01

    The goal of the Majorana Demonstrator project is to search for 0νββ decay in 76Ge. Of all candidate isotopes for 0νββ, 76Ge has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0νββ, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the MAJORANA collaboration made with enriched germanium detectors manufactured by ORTEC®®. The process from production, to characterization and integration in MAJORANAmore » mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.« less

  6. Epstein-Barr virus nuclear protein 3C binds to the N-terminal (NTD) and beta trefoil domains (BTD) of RBP/CSL; Only the NTD interaction is essential for lymphoblastoid cell growth

    SciTech Connect

    Calderwood, Michael A.; Lee, Sungwook; Holthaus, Amy M.; Blacklow, Stephen C.; Kieff, Elliott; Johannsen, Eric

    2011-05-25

    Association of EBV nuclear proteins EBNA2, EBNA3A and EBNA3C with RBP/CSL, is essential for lymphoblastoid cell line (LCL) proliferation. Conserved residues in the EBNA3 homology domain, required for RBP/CSL interaction, lack the W{Phi}P motif that mediates EBNA2 and Notch binding to the RBP/CSL beta-trefoil domain (BTD). We map RBP/CSL interacting residues within EBNA3A(aa128-204) and EBNA3C(aa211-233). The EBNA3A results are consistent with an earlier report (aa125-222), but the EBNA3C domain is unexpectedly small and includes a 'WTP' sequence. This EBNA3C WTP motif confers RBP/CSL binding in vitro, in yeast, and in mammalian cells. Further, an EBNA3C WTP {yields} STP(W227S) mutation impaired BTD binding whereas EBNA3 homology domain mutations disrupted RBP/CSL N-terminal domain (NTD) binding. WTP was not essential for EBNA3C repression of EBNA2 in reporter assays or for maintenance of LCL growth. Our results indicate that EBNA3 proteins interact with multiple RBP/CSL domains, but only NTD interactions are required for LCL growth.

  7. Interfacial properties of germanium nitride dielectric layers in germanium

    NASA Astrophysics Data System (ADS)

    Meiners, L. G.

    The first year's effort on this project has been primarily devoted to the design and construction of a low-pressure chemical vapor deposition system for growth of the germanium nitride layers. The gas manifold layout is shown schematically, as is the reactor assembly, and the vacuum pumping assembly. The generator-cavity system is capable of delivering 0-600 W of microwave power at 2.45 GHz. The power generating section has been constructed from components contained in a portable home microwave oven and the cavity was assembled from easily machinable pieces. The cw magnetron source was mounted directly on a cylindrical microwave cavity. The plasma was contained in an on-axis 20-mm o.d. quartz tube. Design tradeoffs and operating information are discussed.

  8. Solution synthesis of germanium nanocrystals

    DOEpatents

    Gerung, Henry; Boyle, Timothy J.; Bunge, Scott D.

    2009-09-22

    A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.

  9. High Efficiency Germanium Immersion Gratings

    SciTech Connect

    Kuzmenko, P J; Davis, P J; Little, S L; Little, L M; Bixler, J V

    2006-05-01

    We have fabricated several germanium immersion gratings by single crystal, single point diamond flycutting on an ultra-precision lathe. Use of a dead sharp tool produces groove corners less than 0.1 micron in radius and consequently high diffraction efficiency. We measured first order efficiencies in immersion of over 80% at 10.6 micron wavelength. Wavefront error was low averaging 0.06 wave rms (at 633 nm) across the full aperture. The grating spectral response was free of ghosts down to our detection limit of 1 part in 10{sup 4}. Scatter should be low based upon the surface roughness. Measurement of the spectral line profile of a CO{sub 2} laser sets an upper bound on total integrated scatter of 0.5%.

  10. High efficiency germanium immersion gratings

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Paul J.; Davis, Pete J.; Little, Steve L.; Little, Liesl M.; Bixler, Jay V.

    2006-06-01

    We have fabricated several germanium immersion gratings by single crystal, single point diamond flycutting on an ultra-precision lathe. Use of a dead sharp tool produces groove corners less than 0.1 micron in radius and consequently high diffraction efficiency. We measured first order efficiencies in immersion of over 80% at 10.6 micron wavelength. Wavefront error was low averaging 0.06 wave rms (at 633 nm) across the full aperture. The grating spectral response was free of ghosts down to our detection limit of 1 part in 104. Scatter should be low based upon the surface roughness. Measurement of the spectral line profile of a CO II laser sets an upper bound on total integrated scatter of 0.5%.

  11. Germanium: giving microelectronics an efficiency boost

    USGS Publications Warehouse

    Mercer, Celestine N.

    2015-01-01

    Germanium is an essentially nontoxic element, with the exception of only a few compounds. However, if dissolved concentrations in drinking water are as high as one or more parts per million chronic diseases may occur.

  12. An instrument for measuring endometrial blood flow in the uterus, using two thermistor probes.

    PubMed

    Hansson, G A; Hauksson, A; Strömberg, P; Akerlund, M

    1987-01-01

    An instrument was developed for continuous measurement of thermal conductance reflecting blood flow locally in the endometrium. The probe consists of two small thermistors, one sensing the tissue temperature, and the other working at 5 degrees C elevated temperature, sensing the heat loss caused by thermal conduction mainly due to the blood flow. The power needed to keep this temperature difference was recorded as a measure of flow. When the instrument was tested in model experiments, for measurement of flows at temperatures of 35 to 40 degrees C, stable recordings with high sensitivity were obtained and no influence of the surrounding temperature was observed. Recordings were also made in vivo in non-pregnant women by applying the instrument to the endometrium of the uterine fundus. Intrauterine pressure was recorded simultaneously. The blood flow recordings were stable over long periods in spite of changes in body temperature, but with fluctuations of up to 0.1 mW concomitant with uterine contractions. Pulse-syncronous variations in flow were recorded, indicating a high sensitivity and a short time constant of the instrument. The blood flow effects of vasoactive substances, i.e. vasopressin and a vasopressin antagonist, could readily be distinguished. It is concluded that this instrument can be used for semi-quantitative recordings of blood flow in cavities of the body, for example the uterus, which can be reached by small probes and that changes of body temperature do not effect the measurements. PMID:3585951

  13. Thin film metal thermistors with microsecond time response for shock temperature measurements of polymers

    NASA Astrophysics Data System (ADS)

    Taylor, Nicholas; Williamson, David; Jardine, Andrew

    2013-06-01

    Equations of state can be used to predict the relationship between pressure, volume and temperature. However, in shock physics, they are usually only constrained by experimental observations of pressure and volume. Direct observation of temperature in a shock is therefore valuable in constraining equations of state. Bloomquist and Sheffield (1980, 1981) and Rosenberg and Partom (1984) have attempted such observations in PMMA. However, their results disagree strongly above 2 GPa shock pressure. Here we present an improved fabrication technique, to examine this outstanding issue. We make use of the fact that the electrical resistivity of most metals is a known function of both pressure and temperature. If the change in resistance of a thin metal thermistor gauge is measured during a shock experiment of known pressure, the temperature can be calculated directly. The time response is limited by the time taken for the gauge to reach thermal equilibrium with the medium in which it is embedded. Gold gauges of thickness up to 200 nm have been produced by evaporation, and fully embedded in PMMA. These reach thermal equilibrium with the host material in under 1 μs, allowing temperature measurement within the duration of a plate impact experiment.

  14. Steps toward thin film metal thermistors with microsecond time response for shock temperature measurements of polymers

    NASA Astrophysics Data System (ADS)

    Taylor, N. E.; Williamson, D. M.; Jardine, A. P.

    2014-05-01

    Equations of state can be used to predict the relationship between pressure, volume and temperature. However, in shock physics, they are usually only constrained by experimental observations of pressure and volume. Direct observation of temperature in a shock is therefore valuable in constraining equations of state. Bloomquist and Sheffield (1980, 1981) and Rosenberg and Partom (1984) have attempted such observations in poly(methyl methacrylate) (PMMA). However, their results disagree strongly above 2GPa shock pressure. Here we present an improved fabrication technique, to examine this outstanding issue. We make use of the fact that the electrical resistivity of most metals is a known function of both pressure and temperature. If the change in resistance of a thin metal thermistor gauge is measured during a shock experiment of known pressure, the temperature can be calculated directly. The time response is limited by the time taken for the gauge to reach thermal equilibrium with the medium in which it is embedded. Gold gauges of thickness up to 200 nm have been produced by thermal evaporation, and fully embedded in PMMA. These reach thermal equilibrium with the host material in under 1 us, allowing temperature measurement within the duration of a plate impact experiment.

  15. Germanium Resistance Thermometer For Subkelvin Temperatures

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.

    1993-01-01

    Improved germanium resistance thermometer measures temperatures as small as 0.01 K accurately. Design provides large area for electrical connections (to reduce electrical gradients and increase sensitivity to changes in temperatures) and large heat sink (to minimize resistance heating). Gold pads on top and bottom of germanium crystal distribute electrical current and flow of heat nearly uniformly across crystal. Less expensive than magnetic thermometers or superconducting quantum interference devices (SQUID's) otherwise used.

  16. Dangling bonds and vacancies in germanium

    NASA Astrophysics Data System (ADS)

    Weber, J. R.; Janotti, A.; Van de Walle, C. G.

    2013-01-01

    The quest for metal-oxide-semiconductor field-effect transistors (MOSFETs) with higher carrier mobility has triggered great interest in germanium-based MOSFETs. Still, the performance of germanium-based devices lags significantly behind that of their silicon counterparts, possibly due to the presence of defects such as dangling bonds (DBs) and vacancies. Using screened hybrid functional calculations we investigate the role of DBs and vacancies in germanium. We find that the DB defect in germanium has no levels in the band gap; it acts as a negatively charged acceptor with the (0/-1) transition level below the valence-band maximum (VBM). This explains the absence of electron-spin-resonance observations of DBs in germanium. The vacancy in germanium has a much lower formation energy than the vacancy in silicon and is stable in a number of charge states, depending on the position of the Fermi level. We find the (0/-1) and (-1/-2) transition levels at 0.16 and 0.38 eV above the VBM; the spacing of these levels is explained based on the strength of intraorbital repulsion. We compare these results with calculations for silicon, as well as with available experimental data.

  17. An enzyme thermistor-based assay for total and free cholesterol.

    PubMed

    Raghavan, V; Ramanathan, K; Sundaram, P V; Danielsson, B

    1999-11-01

    A method to evaluate the free (FC) and total cholesterol (TC) in human serum, bile and gallstone extract using an enzyme thermistor (ET)-based flow injection analysis (FIA) is presented. The cholesterol in high-density (HDL-C) and low density lipoprotein (LDL-C) have also been evaluated. A heparin functionalized Sepharose column was employed for the isolation of HDL and LDL fractions from serum. The estimation of cholesterol and its esters was based on their reaction with cholesterol oxidase (CO), cholesterol esterase (CE) and catalase (CAT). Three different enzyme columns, i.e. co-immobilized CO/CAT (column A), only CE (column B) and co-immobilized CO/CE/CAT (column C) were prepared by cross-linking the enzymes on glass beads using glutaraldehyde. Column A was used for estimating FC and column C was used for estimating total cholesterol (cholesterol plus esterified cholesterol). Column B was used as a pre-column which could be switched 'in' or 'out' in conjunction with column A for the estimation of TC or FC, respectively. A calibration between 1.0 and 8.0 mmol/l for FC and 0. 25 and 4.0 mmol/l for TC was obtained. For more than 2000 assays with the ET device a C.V. of less than 4% was obtained. The assay time was approximately 4 min per assay. The cholesterol estimations on the ET correlated well with similar estimations using a commercially available cholesterol diagnostic kit. PMID:10556661

  18. Recovery of germanium-68 from irradiated targets

    DOEpatents

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1993-01-01

    A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

  19. Recovery of germanium-68 from irradiated targets

    SciTech Connect

    Phillips, D.R.; Jamriska, D.J. Sr.; Hamilton, V.T.

    1992-12-31

    This invention is comprised of a process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium,vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

  20. Recovery of germanium-68 from irradiated targets

    SciTech Connect

    Phillips, D.R.; Jamriska, D.J. Sr.; Hamilton, V.T.

    1993-03-02

    A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

  1. Front End Spectroscopy ASIC for Germanium Detectors

    NASA Astrophysics Data System (ADS)

    Wulf, Eric

    Large-area, tracking, semiconductor detectors with excellent spatial and spectral resolution enable exciting new access to soft (0.2-5 MeV) gamma-ray astrophysics. The improvements from semiconductor tracking detectors come with the burden of high density of strips and/or pixels that require high-density, low-power, spectroscopy quality readout electronics. CMOS ASIC technologies are a natural fit to this requirement and have led to high-quality readout systems for all current semiconducting tracking detectors except for germanium detectors. The Compton Spectrometer and Imager (COSI), formerly NCT, at University of California Berkeley and the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) at Goddard Space Flight Center utilize germanium cross-strip detectors and are on the forefront of NASA's Compton telescope research with funded missions of long duration balloon flights. The development of a readout ASIC for germanium detectors would allow COSI to replace their discrete electronics readout and would enable the proposed Gamma-Ray Explorer (GRX) mission utilizing germanium strip-detectors. We propose a 3-year program to develop and test a germanium readout ASIC to TRL 5 and to integrate the ASIC readout onto a COSI detector allowing a TRL 6 demonstration for the following COSI balloon flight. Our group at NRL led a program, sponsored by another government agency, to produce and integrate a cross-strip silicon detector ASIC, designed and fabricated by Dr. De Geronimo at Brookhaven National Laboratory. The ASIC was designed to handle the large (>30 pF) capacitance of three 10 cm^2 detectors daisy-chained together. The front-end preamplifier, selectable inverter, shaping times, and gains make this ASIC compatible with a germanium cross-strip detector as well. We therefore have the opportunity and expertise to leverage the previous investment in the silicon ASIC for a new mission. A germanium strip detector ASIC will also require precise timing of the signals at

  2. Extrinsic germanium Blocked Impurity Bank (BIB) detectors

    NASA Technical Reports Server (NTRS)

    Krabach, Timothy N.; Huffman, James E.; Watson, Dan M.

    1989-01-01

    Ge:Ga blocked-impurity-band (BIB) detectors with long wavelength thresholds greater than 190 microns and peak quantum efficiencies of 4 percent, at an operating temperature of 1.8 K, have been fabricated. These proof of concept devices consist of a high purity germanium blocking layer epitaxially grown on a Ga-doped Ge substrate. This demonstration of BIB behavior in germanium enables the development of far infrared detector arrays similar to the current silicon-based devices. Present efforts are focussed on improving the chemical vapor deposition process used to create the blocking layer and on the lithographic processing required to produce monolithic detector arrays in germanium. Approaches to test the impurity levels in both the blocking and active layers are considered.

  3. Silicon and germanium nanocrystals: properties and characterization

    PubMed Central

    Carvalho, Alexandra; Coutinho, José

    2014-01-01

    Summary Group-IV nanocrystals have emerged as a promising group of materials that extends the realm of application of bulk diamond, silicon, germanium and related materials beyond their traditional boundaries. Over the last two decades of research, their potential for application in areas such as optoelectronic applications and memory devices has been progressively unraveled. Nevertheless, new challenges with no parallel in the respective bulk material counterparts have arisen. In this review, we consider what has been achieved and what are the current limitations with regard to growth, characterization and modeling of silicon and germanium nanocrystals and related materials. PMID:25383290

  4. Germanium-Based Nanomaterials for Rechargeable Batteries.

    PubMed

    Wu, Songping; Han, Cuiping; Iocozzia, James; Lu, Mingjia; Ge, Rongyun; Xu, Rui; Lin, Zhiqun

    2016-07-01

    Germanium-based nanomaterials have emerged as important candidates for next-generation energy-storage devices owing to their unique chemical and physical properties. In this Review, we provide a review of the current state-of-the-art in germanium-based materials design, synthesis, processing, and application in battery technology. The most recent advances in the area of Ge-based nanocomposite electrode materials and electrolytes for solid-state batteries are summarized. The limitations of Ge-based materials for energy-storage applications are discussed, and potential research directions are also presented with an emphasis on commercial products and theoretical investigations. PMID:27281435

  5. Neutron-transmutation-doped germanium bolometers

    NASA Technical Reports Server (NTRS)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  6. Germanium-overcoated niobium Dayem bridges

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.; Peters, P. N.

    1976-01-01

    Overcoating constriction microbridges with semiconducting germanium provides additional thermal conductivity at liquid-helium temperatures to reduce the effects of self-heating in these Josephson junctions. Microwave-induced steps were observed in the I-V characteristics of an overcoated Dayem bridge fabricated in a 15-nm-thick niobium film; at least 20 steps could be counted at 4.2 K. No steps were observed in the I-V characteristics of the bridge prior to overcoating. In addition, the germanium overcoat can protect against electrical disturbances at room temperature.

  7. Reliability and validity of skin temperature measurement by telemetry thermistors and a thermal camera during exercise in the heat.

    PubMed

    James, C A; Richardson, A J; Watt, P W; Maxwell, N S

    2014-10-01

    New technologies afford convenient modalities for skin temperature (TSKIN) measurement, notably involving wireless telemetry and non-contact infrared thermometry. The purpose of this study was to investigate the validity and reliability of skin temperature measurements using a telemetry thermistor system (TT) and thermal camera (TC) during exercise in a hot environment. Each system was compared against a certified thermocouple, measuring the surface temperature of a metal block in a thermostatically controlled waterbath. Fourteen recreational athletes completed two incremental running tests, separated by one week. Skin temperatures were measured simultaneously with TT and TC compared against a hard-wired thermistor system (HW) throughout rest and exercise. Post hoc calibration based on waterbath results displayed good validity for TT (mean bias [MB]=-0.18 °C, typical error [TE]=0.18 °C) and reliability (MB=-0.05 °C, TE=0.31 °C) throughout rest and exercise. Poor validity (MB=-1.4 °C, TE=0.35 °C) and reliability (MB=-0.65 °C, TE=0.52 °C) was observed for TC, suggesting it may be best suited to controlled, static situations. These findings indicate TT systems provide a convenient, valid and reliable alternative to HW, useful for measurements in the field where traditional methods may be impractical. PMID:25436963

  8. Hydrogenated amorphous silicon-germanium alloys

    SciTech Connect

    Luft, W.

    1988-02-01

    This report describes the effects of the germanium fraction in hydrogenated amorphous silicon-germanium alloys on various parameters, especially those that are indicators of film quality, and the impact of deposition methods, feedgas mixtures, and other deposition parameters on a SiGe:H and a-SiGe:H:F film characteristics and quality. Literature data show the relationship between germanium content, hydrogen content, deposition method (various glow discharges and CVD), feedgas lmixture, and other parameters and properties, such as optical band gap, dark and photoconductivities, photosensitivity, activation energy, Urbach parameter, and spin density. Some of these are convenient quality indicators; another is the absence of microstructure. Examining RF glow discharge with both a diode and triode geometry, DC proximity glow discharge, microwave glow discharge, and photo-CVD, using gas mixtures such as hydrogen-diluted and undiluted mixtures of silane/germane, disilane/germane, silane/germaniumtetrafluoride, and others, it was observed that hydrogen dilution (or inert gas dilution) is essential in achieving high photosensitivity in silicon-germanium alloys (in contradistinction to amorphous hydrogenated silicon). Hydrogen dilution results in a higher photosensitivity than do undiluted gas mixtures. 81 refs., 42 figs., 7 tabs.

  9. Dopant precipitation in silicon-germanium alloys.

    NASA Technical Reports Server (NTRS)

    Raag, V.

    1972-01-01

    The model commonly used to describe dopant precipitation in silicon-germanium alloys is discussed. The results of an experimental program are fit to the model in order to determine the long-term behavior of the thermoelectric properties of the n-type 80 at. % Si/20 at. % Ge alloy. Thermoelectric property projections to twelve years of operating time are given.

  10. Germanium JFET for Cryogenic Readout Electronics

    NASA Technical Reports Server (NTRS)

    Das, N. C.; Monroy, C.; Jhabvala, M.; Shu, P.

    1999-01-01

    The n-channel Germanium junction field effect transistor (Ge-JFET) was designed and fabricated for cryogenic applications. The Ge-JFET exhibits superior noise performance at liquid nitrogen temperature (77 K). From the device current voltage characteristics of n-channel JFETs, it is seen that transconductance increases monotonically with the lowering of temperature to 4.2 K (liquid helium temperature).

  11. Electron tunnelling into amorphous germanium and silicon.

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Clark, A. H.

    1972-01-01

    Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.

  12. Method for copper staining of germanium crystals

    NASA Technical Reports Server (NTRS)

    Rivet, E. J.

    1969-01-01

    Proper conditions for copper staining of germanium crystals include a low solution temperature of 3 degrees C, illumination of the sample by infrared light, and careful positioning of the light source relative to the sample so as to minimize absorption of the infrared light.

  13. The effect of sintering temperature on electrical characteristics of Fe2TiO5/Nb2O5 ceramics for NTC thermistor

    NASA Astrophysics Data System (ADS)

    Wiendartun, Risdiana, Fitrilawati, Siregar, R. E.

    2016-02-01

    A study on the fabrication of Iron Titanium Oxide (Fe2TiO5) ceramics for negative temperature coefficient (NTC) thermistors has been carried out, in order to know the effect of sintering temperature on the electrical characteristic of 1.0 % mole Nb2O5 doped Fe2TiO5 ceramics.These ceramics were made by mixing commercial powders of Fe2O3, TiO2 and Nb2O5 with proportional composition to produce Fe2TiO5 based ceramic. The raw pellet was sintered at 1000 °C, 1100 °C and 1200 °C temperature for 2 hours in air. Analysis of the microstructure and crystal structure were performed by using a scanning electron microscope (SEM) and x-ray diffraction (XRD) respectively. XRD spectra showed that the crystal structure of all ceramics of Fe2TiO5 made at various sintering temperatures are orthorhombic. The SEM images showed that the grain size of pellet ceramics increase with increasing sintering temperatures. From electrical resistances data that was measured at temperature 30-300 °C, it is found that the value of thermistor constant (B), activation energy (Ea), thermistor sensitivity (α) and room temperature resistance (RRT) decreases with respect to the increasing of sintering temperature. The fabricated Fe2TiO5 ceramics have thermistor constants (B = 6394-6959 K). This can be applied as temperature sensor, and will fulfill the market requirement.

  14. Constraining neutrino electromagnetic properties by germanium detectors

    NASA Astrophysics Data System (ADS)

    Chen, Jiunn-Wei; Chi, Hsin-Chang; Huang, Keh-Ning; Li, Hau-Bin; Liu, C.-P.; Singh, Lakhwinder; Wong, Henry T.; Wu, Chih-Liang; Wu, Chih-Pan

    2015-01-01

    The electromagnetic properties of neutrinos, which are either trivial or negligible in the context of the Standard Model, can probe new physics and have significant implications in astrophysics and cosmology. The current best direct limits on the neutrino millicharges and magnetic moments are both derived from data taken with germanium detectors with low thresholds at keV levels. In this paper, we discuss in detail a robust, ab initio method: the multiconfiguration relativistic random-phase approximation, that enables us to reliably understand the germanium detector response at the sub-keV level, where atomic many-body physics matters. By using existing data with sub-keV thresholds, limits on the reactor antineutrino's millicharge, magnetic moment, and charge radius squared are derived. The projected sensitivities for next-generation experiments are also given and discussed.

  15. A Germanium-Based, Coded Aperture Imager

    SciTech Connect

    Ziock, K P; Madden, N; Hull, E; William, C; Lavietes, T; Cork, C

    2001-10-31

    We describe a coded-aperture based, gamma-ray imager that uses a unique hybrid germanium detector system. A planar, germanium strip detector, eleven millimeters thick is followed by a coaxial detector. The 19 x 19 strip detector (2 mm pitch) is used to determine the location and energy of low energy events. The location of high energy events are determined from the location of the Compton scatter in the planar detector and the energy is determined from the sum of the coaxial and planar energies. With this geometry, we obtain useful quantum efficiency in a position-sensitive mode out to 500 keV. The detector is used with a 19 x 17 URA coded aperture to obtain spectrally resolved images in the gamma-ray band. We discuss the performance of the planar detector, the hybrid system and present images taken of laboratory sources.

  16. Spin transport in p-type germanium

    NASA Astrophysics Data System (ADS)

    Rortais, F.; Oyarzún, S.; Bottegoni, F.; Rojas-Sánchez, J.-C.; Laczkowski, P.; Ferrari, A.; Vergnaud, C.; Ducruet, C.; Beigné, C.; Reyren, N.; Marty, A.; Attané, J.-P.; Vila, L.; Gambarelli, S.; Widiez, J.; Ciccacci, F.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2016-04-01

    We report on the spin transport properties in p-doped germanium (Ge-p) using low temperature magnetoresistance measurements, electrical spin injection from a ferromagnetic metal and the spin pumping-inverse spin Hall effect method. Electrical spin injection is carried out using three-terminal measurements and the Hanle effect. In the 2-20 K temperature range, weak antilocalization and the Hanle effect provide the same spin lifetime in the germanium valence band (≈1 ps) in agreement with predicted values and previous optical measurements. These results, combined with dynamical spin injection by spin pumping and the inverse spin Hall effect, demonstrate successful spin accumulation in Ge. We also estimate the spin Hall angle {θ\\text{SHE}} in Ge-p (6-7× {{10}-4} ) at room temperature, pointing out the essential role of ionized impurities in spin dependent scattering.

  17. The first spectroscopic observation of germanium carbide

    NASA Astrophysics Data System (ADS)

    Ruiz, Jose I.

    Electronic spectroscopy was used to obtain gas phase spectrum of the germanium carbide molecule in emission from a corona excited supersonic expansion source. The (2) 3pi -- X 3pi electronic transition was observed around the 21250 cm-1 region. In this system, vibrational bands and the rotational lines of the O = 0, 1, and 2 components were obtained and analyzed. The equilibrium transition energy is found at 21120.3 cm-1 and the fundamental vibrational frequency for the lowest energy ground state O = 2 component is 795.3 cm -1. This is the first spectroscopic observation of germanium carbide. An unsuccessful attempt to obtain the first electronic emission spectrum of aluminum boride is also described.

  18. Spin transport in p-type germanium.

    PubMed

    Rortais, F; Oyarzún, S; Bottegoni, F; Rojas-Sánchez, J-C; Laczkowski, P; Ferrari, A; Vergnaud, C; Ducruet, C; Beigné, C; Reyren, N; Marty, A; Attané, J-P; Vila, L; Gambarelli, S; Widiez, J; Ciccacci, F; Jaffrès, H; George, J-M; Jamet, M

    2016-04-27

    We report on the spin transport properties in p-doped germanium (Ge-p) using low temperature magnetoresistance measurements, electrical spin injection from a ferromagnetic metal and the spin pumping-inverse spin Hall effect method. Electrical spin injection is carried out using three-terminal measurements and the Hanle effect. In the 2-20 K temperature range, weak antilocalization and the Hanle effect provide the same spin lifetime in the germanium valence band (≈1 ps) in agreement with predicted values and previous optical measurements. These results, combined with dynamical spin injection by spin pumping and the inverse spin Hall effect, demonstrate successful spin accumulation in Ge. We also estimate the spin Hall angle θ(SHE) in Ge-p (6-7 x 10(-4) at room temperature, pointing out the essential role of ionized impurities in spin dependent scattering. PMID:26988255

  19. High-performance LWIR microbolometer with Si/SiGe quantum well thermistor and wafer level packaging

    NASA Astrophysics Data System (ADS)

    Roer, Audun; Lapadatu, Adriana; Wolla, Erik; Kittilsland, Gjermund

    2013-06-01

    An uncooled microbolometer with peak responsivity in the long wave infrared region of the electromagnetic radiation is developed at Sensonor AS. It is a 384 x 288 focal plane array with a pixel pitch of 25µm, based on monocrystalline Si/SiGe quantum wells as IR sensitive material. The high sensitivity (TCR) and low 1/f-noise are the main performance characteristics of the product. The frame rate is maximum 60Hz and the output interface is digital (LVDS). The quantum well thermistor material is transferred to the read-out integrated circuit (ROIC) by direct wafer bonding. The ROIC wafer containing the released pixels is bonded in vacuum with a silicon cap wafer, providing hermetic encapsulation at low cost. The resulting wafer stack is mounted in a standard ceramic package. In this paper the architecture of the pixels and the ROIC, the wafer packaging and the electro-optical measurement results are presented.

  20. Energetic semiconductor bridge device incorporating Al/MoOx multilayer nanofilms and negative temperature coefficient thermistor chip

    NASA Astrophysics Data System (ADS)

    Zhu, Peng; Jiao, Jianshe; Shen, Ruiqi; Ye, Yinghua; Fu, Shuai; Li, Dongle

    2014-05-01

    The design, fabrication, and characterization of an energetic semiconductor bridge device are presented. The device consists of a semiconductor bridge heating element, which has been selectively coated with Al/MoOx multilayer nanofilms to enhance ignition of a conventional pyrotechnics. Integrated negative temperature coefficient thermistor chip provides protection against electromagnetic and electrostatic discharge events. The device was specifically configured to allow ease of interconnection by wire bonds and silver-filled conductive epoxy. Extensive design validation testing was performed. The device has demonstrated low, predictable firing energy and insensitivity. Al/MoOx multilayer nanofilms have no distinct influence on the electrical properties of semiconductor bridge. Nanothermite reaction provides reliable ignition by being able to ignite across a gap.

  1. Electronic structure of intrinsic defects in crystalline germanium telluride.

    SciTech Connect

    Thompson, Aidan Patrick; Pineda, Andrew C.; Umrigar, Cyrus J.; Hjalmarson, Harold Paul; Schultz, Peter Andrew; Edwards, Arthur H.; Martin, Marcus Gary

    2005-05-01

    Germanium telluride undergoes rapid transition between polycrystalline and amorphous states under either optical or electrical excitation. While the crystalline phases are predicted to be semiconductors, polycrystalline germanium telluride always exhibits p-type metallic conductivity. We present a study of the electronic structure and formation energies of the vacancy and antisite defects in both known crystalline phases. We show that these intrinsic defects determine the nature of free-carrier transport in crystalline germanium telluride. Germanium vacancies require roughly one-third the energy of the other three defects to form, making this by far the most favorable intrinsic defect. While the tellurium antisite and vacancy induce gap states, the germanium counterparts do not. A simple counting argument, reinforced by integration over the density of states, predicts that the germanium vacancy leads to empty states at the top of the valence band, thus giving a complete explanation of the observed p-type metallic conduction.

  2. Germanium films by polymer-assisted deposition

    SciTech Connect

    Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu

    2013-01-15

    Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.

  3. Large Cryogenic Germanium Detector. Final Report

    SciTech Connect

    Mandic, Vuk

    2013-02-13

    The goal of this project was to investigate possible ways of increasing the size of cryogenic Ge detectors. This project identified two possible approaches to increasing the individual cryogenic Ge detector size. The first approach relies on using the existing technology for growing detector-grade (high-purity) germanium crystals of dislocation density 100-7000 cm{sup -2}. The second approach is to consider dislocation-free Ge crystals.

  4. Xenon Filled Silicon Germanium Thermoelectric Generators

    NASA Technical Reports Server (NTRS)

    Dewinter, F.

    1972-01-01

    An analysis is presented that shows the desirability and feasibility of using a xenon fill in the initial stages of operation of a silicon-germanium radioisotope thermoelectric generator to be used in outer-planetary exploration. The xenon cover gas offers protection against oxidation and against material sublimation, and allows the generator to deliver required power throughout the prelaunch and launch phases. The protective mechanisms afforded by the xenon cover gas and the mechanization of a xenon supply system are also discussed.

  5. Bottom-up assembly of metallic germanium

    PubMed Central

    Scappucci, Giordano; Klesse, Wolfgang M.; Yeoh, LaReine A.; Carter, Damien J.; Warschkow, Oliver; Marks, Nigel A.; Jaeger, David L.; Capellini, Giovanni; Simmons, Michelle Y.; Hamilton, Alexander R.

    2015-01-01

    Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (1019 to 1020 cm−3) low-resistivity (10−4Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory. PMID:26256239

  6. On the geological availability of germanium

    NASA Astrophysics Data System (ADS)

    Frenzel, Max; Ketris, Marina P.; Gutzmer, Jens

    2014-04-01

    Based on a detailed statistical analysis of chemical data published in the scientific literature, estimates were made of the minimum amounts of recoverable Ge contained within sulphidic zinc ores and coals, given current processing technologies. It is expected that at least 119 kt (˜7 kt in zinc ores and ˜112 kt in coal) of recoverable germanium exist within proven reserves (at present stage of knowledge) at grades in excess of 100 ppm in sphalerite and 200 ppm in coal, while at least 440 kt (˜50 kt in zinc ores and ˜390 kt in coal) should become recoverable in the future, being associated to coal reserves at 8-200 ppm Ge and zinc resources containing in excess of 100 ppm Ge in sphalerite. Mississippi Valley Type (MVT) deposits are expected to be the most important hosts of germanium-rich sphalerite, while both brown and hard coals are expected to be equally important as hosts of germanium. The approach taken in this publication shows that reliable minimum estimates for the availability of by-product metals lacking suitable reserve/resource data may be attained by using robust statistical methods and geochemical data published in the scientific literature

  7. Germanium-76 Sample Analysis: Revision 3

    SciTech Connect

    Kouzes, Richard T.; Zhu, Zihua; Engelhard, Mark H.

    2011-09-19

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0{nu}{beta}{beta}). The DEMONSTRATOR will utilize 76Ge from Russia. The first one-gram sample was received from the supplier for analysis on April 24, 2011. The second one-gram sample was received from the supplier for analysis on July 12, 2011. The third sample, which came from the first large shipment of germanium from the vendor, was received from Oak Ridge National Laboratory (ORNL) on September 13, 2011. The Environmental Molecular Sciences facility, a DOE user facility at PNNL, was used to make the required isotopic and chemical purity measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR. The results of these analyses are reported here. The isotopic composition of a sample of natural germanium was also measured twice. Differences in the result between these two measurements led to a re-measurement of the second 76Ge sample.

  8. Bottom-up assembly of metallic germanium

    NASA Astrophysics Data System (ADS)

    Scappucci, Giordano; Klesse, Wolfgang M.; Yeoh, Lareine A.; Carter, Damien J.; Warschkow, Oliver; Marks, Nigel A.; Jaeger, David L.; Capellini, Giovanni; Simmons, Michelle Y.; Hamilton, Alexander R.

    2015-08-01

    Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (1019 to 1020 cm-3) low-resistivity (10-4Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory.

  9. Synthesis and characterization of germanium nanowires and germanium/silicon radially heterostructured nanowires

    NASA Astrophysics Data System (ADS)

    Goldthorpe, Irene Anne

    Semiconductor nanowires offer new opportunities to study physical phenomena in low-dimensional nanostructures. They also possess technologically useful properties for applications in electronics, optics, sensing, and thermoelectrics. Germanium nanowires are of particular interest, because of germanium's compatibility with standard silicon integrated circuit fabrication processes, its high electronic carrier mobilities, and the low temperature required for germanium nanowire growth. In this work, epitaxially-aligned germanium nanowires are grown on silicon substrates by chemical vapor deposition through the vapor-liquid-solid mechanism. Uniform nanowire diameters between 5 and 50 nm are obtained through the use of monodisperse gold colloids as catalysts. The crystallographic orientation of the nanowires, their strain, and their heteroepitaxial relationship with the substrate are characterized with transmission electron microscopy (TEM) and x-ray diffraction (XRD). A process for removing the gold catalysts from the tips of the germanium nanowires is demonstrated. Silicon shells are then heteroepitaxially deposited around the wires to fabricate radial heterostructures. These shells passivate the germanium nanowire surface, create electronic band offsets to confine holes away the surface where they can scatter or recombine, and induce strain which could allow for the engineering of properties such as band gap and carrier mobilities. However, analogous to planar heteroepitaxy, surface roughening and misfit dislocations can relax this strain. The effects of coaxial dimensions on strain relaxation in these structures are analyzed quantitatively by TEM and synchrotron XRD, and these results are related to continuum elasticity models. Lessons learned generated two successful strategies for synthesizing coherent core-shell nanowires with large misfit strain: chlorine surface passivation and growth of nanowires with low-energy sidewall facets. Both approaches avoid the strain

  10. Analog/Digital System for Germanium Thermometer

    NASA Technical Reports Server (NTRS)

    Woodhouse, Christopher

    1988-01-01

    Electronic system containing analog and digital circuits makes high-precision, four-wire measurements of resistance of each germanium resistance thermometer (GRT) in array of devices, using alternating current (ac) of 1 micro-A. At end measurement interval, contents of negative register subtracted from positive one, resulting in very-narrow-band synchronous demodulation of carrier wave and suppression of out-of-band noise. Microprocessor free to perform other duties after measurement complete. Useful in noisy terrestrial environments encountered in factories.

  11. Tensile strain mapping in flat germanium membranes

    SciTech Connect

    Rhead, S. D. Halpin, J. E.; Myronov, M.; Patchett, D. H.; Allred, P. S.; Wilson, N. R.; Leadley, D. R.; Shah, V. A.; Kachkanov, V.; Dolbnya, I. P.; Reparaz, J. S.; Sotomayor Torres, C. M.

    2014-04-28

    Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ∼4 μm spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge.

  12. The first spectroscopic observation of germanium carbide

    NASA Astrophysics Data System (ADS)

    Brazier, Christopher R.; Ruiz, José I.

    2011-11-01

    The gas phase spectrum of the germanium carbide radical has been observed at low temperature in emission from a corona excited supersonic expansion source. Many vibrational bands involving the Ω = 0, 1, and 2 components of the (2) 3Π-X 3Π system were recorded and analyzed. The equilibrium transition energy is found at 21120.3 cm -1, in good agreement with theoretical predictions. The fundamental vibrational frequency for the lowest energy ground state Ω = 2 component is 795.3 cm -1.

  13. Anisotropy-Driven Spin Relaxation in Germanium

    NASA Astrophysics Data System (ADS)

    Li, Pengke; Li, Jing; Qing, Lan; Dery, Hanan; Appelbaum, Ian

    2013-12-01

    A unique spin depolarization mechanism, induced by the presence of g-factor anisotropy and intervalley scattering, is revealed by spin-transport measurements on long-distance germanium devices in a magnetic field longitudinal to the initial spin orientation. The confluence of electron-phonon scattering (leading to Elliott-Yafet spin flips) and this previously unobserved physics enables the extraction of spin lifetime solely from spin-valve measurements, without spin precession, and in a regime of substantial electric-field-generated carrier heating. We find spin lifetimes in Ge up to several hundreds of nanoseconds at low temperature, far beyond any other available experimental results.

  14. All-Inorganic Germanium Nanocrystal Films by Cationic Ligand Exchange.

    PubMed

    Wheeler, Lance M; Nichols, Asa W; Chernomordik, Boris D; Anderson, Nicholas C; Beard, Matthew C; Neale, Nathan R

    2016-03-01

    We introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and (1)H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport in germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications. PMID:26796765

  15. All-inorganic Germanium nanocrystal films by cationic ligand exchange

    DOE PAGESBeta

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2016-01-21

    In this study, we introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport inmore » germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.« less

  16. Germanium resistance thermometer calibration at superfluid helium temperatures

    SciTech Connect

    Mason, F.C.

    1985-01-01

    The rapid increase in resistance of high purity semi-conducting germanium with decreasing temperature in the superfluid helium range of temperatures makes this material highly adaptable as a very sensitive thermometer. Also, a germanium thermometer exhibits a highly reproducible resistance versus temperature characteristic curve upon cycling between liquid helium temperatures and room temperature. These two factors combine to make germanium thermometers ideally suited for measuring temperatures in many cryogenic studies at superfluid helium temperatures. One disadvantage, however, is the relatively high cost of calibrated germanium thermometers. In space helium cryogenic systems, many such thermometers are often required, leading to a high cost for calibrated thermometers. The construction of a thermometer calibration cryostat and probe which will allow for calibrating six germanium thermometers at one time, thus effecting substantial savings in the purchase of thermometers is considered.

  17. Investigation of intrinsic gettering for germanium doped Czochralski silicon wafer

    NASA Astrophysics Data System (ADS)

    Chen, Jiahe; Yang, Deren; Ma, Xiangyang; Wang, Weiyan; Zeng, Yuheng; Que, Duanlin

    2007-06-01

    The intrinsic gettering (IG) effects in a germanium-doped Czochralski (GCz) silicon wafer have been investigated through a processing simulation of dynamic random access memory making and an evaluation on IG capability for copper contamination. It has been suggested that both the good quality defect-free denuded zones (DZs) and the high-density bulk microdefect (BMD) regions could be generated in GCz silicon wafer during device fabrication. Meanwhile, it was also indicated that the tiny oxygen precipitates were hardly presented in DZs of silicon wafer with the germanium doping. Furthermore, it was found in GCz silicon wafer that the BMDs were higher in density but smaller in size in contrast to that in conventional Cz silicon wafer. Promoted IG capability for metallic contamination was therefore induced in the germanium-doped Cz silicon wafer. A mechanism of the germanium doping on oxygen precipitation in Cz silicon was discussed, which was based on the hypothesis of germanium-related complexes.

  18. Experience from operating germanium detectors in GERDA

    NASA Astrophysics Data System (ADS)

    Palioselitis, Dimitrios; GERDA Collaboration

    2015-05-01

    Phase I of the Germanium Detector Array (GERDA) experiment, searching for the neutrinoless double beta (0νββ) decay of 76Ge, was completed in September 2013. The most competitive half-life lower limit for the 0νββ decay of 76Ge was set (T-0ν1/2 > 2.1 · 1025 yr at 90% C.L.). GERDA operates bare Ge diodes immersed in liquid argon. During Phase I, mainly refurbished semi-coaxial high purity Ge detectors from previous experiments were used. The experience gained with handling and operating bare Ge diodes in liquid argon, as well as the stability and performance of the detectors during GERDA Phase I are presented. Thirty additional new enriched BEGe-type detectors were produced and will be used in Phase II. A subgroup of these detectors has already been used successfully in GERDA Phase I. The present paper gives an overview of the production chain of the new germanium detectors, the steps taken to minimise the exposure to cosmic radiation during manufacturing, and the first results of characterisation measurements in vacuum cryostats.

  19. High-purity germanium crystal growing

    SciTech Connect

    Hansen, W.L.; Haller, E.E.

    1982-10-01

    The germanium crystals used for the fabrication of nuclear radiation detectors are required to have a purity and crystalline perfection which is unsurpassed by any other solid material. These crystals should not have a net electrically active impurity concentration greater than 10/sup 10/cm/sup -3/ and be essentially free of charge trapping defects. Such perfect crystals of germanium can be grown only because of the highly favorable chemical and physical properties of this element. However, ten years of laboratory scale and commercial experience has still not made the production of such crystals routine. The origin and control of many impurities and electrically active defect complexes is now fairly well understood but regular production is often interrupted for long periods due to the difficulty of achieving the required high purity or to charge trapping in detectors made from crystals seemingly grown under the required conditions. The compromises involved in the selection of zone refining and crystal grower parts and ambients is discussed and the difficulty in controlling the purity of key elements in the process is emphasized. The consequences of growing in a hydrogen ambient are discussed in detail and it is shown how complexes of neutral defects produce electrically active centers.

  20. Germanium avalanche receiver for low power interconnects

    NASA Astrophysics Data System (ADS)

    Virot, Léopold; Crozat, Paul; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Marris-Morini, Delphine; Cassan, Eric; Boeuf, Frédéric; Vivien, Laurent

    2014-09-01

    Recent advances in silicon photonics have aided the development of on-chip communications. Power consumption, however, remains an issue in almost all integrated devices. Here, we report a 10 Gbit per second waveguide avalanche germanium photodiode under low reverse bias. The avalanche photodiode scheme requires only simple technological steps that are fully compatible with complementary metal oxide semiconductor processes and do not need nanometre accuracy and/or complex epitaxial growth schemes. An intrinsic gain higher than 20 was demonstrated under a bias voltage as low as -7 V. The Q-factor relating to the signal-to-noise ratio at 10 Gbit per second was maintained over 20 dB without the use of a trans-impedance amplifier for an input optical power lower than -26 dBm thanks to an aggressive shrinkage of the germanium multiplication region. A maximum gain over 140 was also obtained for optical powers below -35 dBm. These results pave the way for low-power-consumption on-chip communication applications.

  1. Preparation and characterization of hydrogenated amorphous germanium and hydrogenated amorphous germanium carbide thin films

    NASA Astrophysics Data System (ADS)

    Wu, Hai-Sheng

    1989-02-01

    Hydrogenated amorphous germanium (a-Ge:H) and germanium carbide (a-Ge(1-x)Cx:H) films were prepared by rf sputtering of a polycrystalline Ge target in a vacuum approximately 4 x 10 to the 7th Torr at various rf power 50 less than or equal to P less than or equal to 600 W (0.27 to 3.3 W/sq cm), target-substrate distance 1 less than or equal to d less than or equal to 7 minutes, varying partial pressures of Ar, H2, and C3H8, and flow rates f. The vibrational and opto-electronic properties such as infrared (IR) absorption, optical gap, electron-spin-resonance (ESR) signals, and conductivities vary with deposition conditions. The photoconductivity sigma sub ph, in particular, was carefully monitored as a function of the deposition conditions to optimize it.

  2. Sputtered germanium/silicon devices for photonics applications

    NASA Astrophysics Data System (ADS)

    Nujhat, N.; Papouloute, J.-P.; DeBerry, M.; Jiang, L.; Korivi, N. S.

    2015-08-01

    We report on the ongoing investigation of magnetron sputtered germanium on silicon for photonics applications. Direct current (DC) magnetron sputtering has been used to deposit germanium layers on silicon at low growth temperatures and medium range vacuum levels. Standard photolithography has been used to make germanium photodetectors for the 1550 nm wavelength range. Electrical characterization, more specifically current-voltage measurements indicate that the devices function as intended. Sputtered silicon waveguides have also been fabricated and evaluated for possible applications in photonics integration. The sputtering-based developments in our present research are expected to provide for a flexible and economically viable manufacturing process for such devices.

  3. Ultra High-Rate Germanium (UHRGe) Modeling Status Report

    SciTech Connect

    Warren, Glen A.; Rodriguez, Douglas C.

    2012-06-07

    The Ultra-High Rate Germanium (UHRGe) project at Pacific Northwest National Laboratory (PNNL) is conducting research to develop a high-purity germanium (HPGe) detector that can provide both the high resolution typical of germanium and high signal throughput. Such detectors may be beneficial for a variety of potential applications ranging from safeguards measurements of used fuel to material detection and verification using active interrogation techniques. This report describes some of the initial radiation transport modeling efforts that have been conducted to help guide the design of the detector as well as a description of the process used to generate the source spectrum for the used fuel application evaluation.

  4. Oxygen defect processes in silicon and silicon germanium

    SciTech Connect

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlögl, U.

    2015-06-15

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  5. Oxygen defect processes in silicon and silicon germanium

    NASA Astrophysics Data System (ADS)

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlögl, U.

    2015-06-01

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  6. Interactions of germanium atoms with silica surfaces

    NASA Astrophysics Data System (ADS)

    Stanley, Scott K.; Coffee, Shawn S.; Ekerdt, John G.

    2005-11-01

    GeH 4 is thermally cracked over a hot filament depositing 0.7-15 ML Ge onto 2-7 nm SiO 2/Si(1 0 0) at substrate temperatures of 300-970 K. Ge bonding changes are analyzed during annealing with X-ray photoelectron spectroscopy. Ge, GeH x, GeO, and GeO 2 desorption is monitored through temperature programmed desorption in the temperature range 300-1000 K. Low temperature desorption features are attributed to GeO and GeH 4. No GeO 2 desorption is observed, but GeO 2 decomposition to Ge through high temperature pathways is seen above 750 K. Germanium oxidization results from Ge etching of the oxide substrate. With these results, explanations for the failure of conventional chemical vapor deposition to produce Ge nanocrystals on SiO 2 surfaces are proposed.

  7. Electron paramagnetic resonance at dislocations in germanium

    SciTech Connect

    Pakulis, E.J.

    1982-06-01

    The first observation of the paramagnetic resonance of electrons at dislocations in germanium single crystals is reported. Under subband gap optical excitation, two sets of lines are detected: four lines about the <111> axes with g/sub perpendicular to/ = 0.34 and g/sub parallel/ = 1.94, and 24 lines with g/sub perpendicular to/ = 0.73 and g/sub parallel/ = 1.89 about <111> axes with the six-fold 1.2/sup 0/ distortion. This represents the first measurement of the disortion angle of a dislocation dangling bond. The possibility that the distortion results from a Peierls transition along the dislocation line is discussed.

  8. Thermodynamic properties of germanium/carbon microclusters

    NASA Astrophysics Data System (ADS)

    Wielgus, Pawel; Roszak, Szczepan; Majumdar, Devashis; Leszczynski, Jerzy

    2005-12-01

    Theoretical studies on the GenCm (n =1,2; m =1-3) microclusters have been performed using the state of the art calculations. Several alternative structures of these clusters were studied to locate the lowest-energy isomers. It is observed that the structures of the complexes result from the competition between ionic Ge-C, conjugated covalent C-C, and metallic Ge-Ge bonds. The ionization of the molecules enhances the ionic character of the Ge-C bond and has significant structural consequences. Using theoretically determined partition functions, thermodynamic data are computed and experimental enthalpies are enhanced. The ab initio atomization energies of germanium carbides compare well with corrected experimental functions. The experimental appearance potentials are well reproduced by the theoretical ionization potentials.

  9. Germanium Detectors in Homeland Security at PNNL

    SciTech Connect

    Stave, Sean C.

    2015-05-01

    Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADES HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.

  10. Synthesis of silicon and germanium nanowires.

    SciTech Connect

    Clement, Teresa J.; Hsu, Julia W. P.

    2007-11-01

    The vapor-liquid-solid growth process for synthesis of group-IV semiconducting nanowires using silane, germane, disilane and digermane precursor gases has been investigated. The nanowire growth process combines in situ gold seed formation by vapor deposition on atomically clean silicon (111) surfaces, in situ growth from the gaseous precursor(s), and real-time monitoring of nanowire growth as a function of temperature and pressure by a novel optical reflectometry technique. A significant dependence on precursor pressure and growth temperature for the synthesis of silicon and germanium nanowires is observed, depending on the stability of the specific precursor used. Also, the presence of a nucleation time for the onset of nanowire growth has been found using our new in situ optical reflectometry technique.

  11. Germanium detectors in homeland security at PNNL

    SciTech Connect

    Stave, S.

    2015-05-01

    Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADES HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.

  12. Germanium detectors in homeland security at PNNL

    DOE PAGESBeta

    Stave, S.

    2015-05-01

    Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADESmore » HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.« less

  13. Tin impurity centers in glassy germanium chalcogenides

    SciTech Connect

    Bordovsky, G. A.; Gladkikh, P. V.; Kozhokar, M. Yu.; Marchenko, A. V.; Seregin, P. P.; Terukov, E. I.

    2011-10-15

    Tin atoms produced by radioactive decay of {sup 119mm}Sn and {sup 119}Sn impurity atoms in the structure of Ge{sub x}S{sub 1-x} and Ge{sub x}Se{sub 1-x} glasses are stabilized in the form of Sn{sup 2+} and Sn{sup 4+} ions and correspond to ionized states of the amphoteric two-electron center with negative correlation energy (Sn{sup 2+} is an ionized acceptor, and Sn{sup 4+} is an ionized donor), whereas the neutral state of the Sn{sup 3+} center appears to be unstable. {sup 119}Sn atoms produced by radioactive decay of {sup 119m}Te impurity atoms in the structure of Ge{sub x}S{sub 1-x} and Ge{sub x}Se{sub 1-x} glasses are stabilized at both chalcogen sites (they are electrically inactive) and germanium sites.

  14. Electromechanically cooled germanium radiation detector system

    NASA Astrophysics Data System (ADS)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-02-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++ [1], GAMANL [2], GRPANL [3]and MGAU [4], typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service [5]. The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted.

  15. Reduction of Defects in Germanium-Silicon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Crystals grown without contact with a container have far superior quality to otherwise similar crystals grown in direct contact with a container. In addition to float-zone processing, detached- Bridgman growth is a promising tool to improve crystal quality, without the limitations of float zoning or the defects introduced by normal Bridgman growth. Goals of this project include the development of the detached Bridgman process to be reproducible and well understood and to quantitatively compare the defect and impurity levels in crystals grown by these three methods. Germanium (Ge) and germanium-silicon (Ge-Si) alloys are being used. At MSFC, we are responsible for the detached Bridgman experiments intended to differentiate among proposed mechanisms of detachment, and to confirm or refine our understanding of detachment. Because the contact angle is critical to determining the conditions for detachment, the sessile drop method was used to measure the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. Etch pit density (EPD) measurements of normal and detached Bridgman-grown Ge samples show a two order of magnitude improvement in the detached-grown samples. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. We have investigated the effects on detachment of ampoule material, pressure difference above and below the melt, and Si concentration; samples that are nearly completely detached can be grown repeatedly in pBN. Current work is concentrated on developing a

  16. Spectral Characterizations of the Clouds and the Earth's Radiant Energy System (CERES) Thermistor Bolometers using Fourier Transform Spectrometer (FTS) Techniques

    NASA Technical Reports Server (NTRS)

    Thornhill, K. Lee; Bitting, Herbert; Lee, Robert B., III; Paden, Jack; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.

    1998-01-01

    Fourier Transform Spectrometer (FTS) techniques are being used to characterize the relative spectral response, or sensitivity, of scanning thermistor bolometers in the infrared (IR) region (2 - >= 100-micrometers). The bolometers are being used in the Clouds and the Earth's Radiant Energy System (CERES) program. The CERES measurements are designed to provide precise, long term monitoring of the Earth's atmospheric radiation energy budget. The CERES instrument houses three bolometric radiometers, a total wavelength (0.3- >= 150-micrometers) sensor, a shortwave (0.3-5-micrometers) sensor, and an atmospheric window (8-12-micrometers) sensor. Accurate spectral characterization is necessary for determining filtered radiances for longwave radiometric calibrations. The CERES bolometers spectral response's are measured in the TRW FTS Vacuum Chamber Facility (FTS - VCF), which uses a FTS as the source and a cavity pyroelectric trap detector as the reference. The CERES bolometers and the cavity detector are contained in a vacuum chamber, while the FTS source is housed in a GN2 purged chamber. Due to the thermal time constant of the CERES bolometers, the FTS must be operated in a step mode. Data are acquired in 6 IR spectral bands covering the entire longwave IR region. In this paper, the TRW spectral calibration facility design and data measurement techniques are described. Two approaches are presented which convert the total channel FTS data into the final CERES spectral characterizations, producing the same calibration coefficients (within 0.1 percent). The resulting spectral response curves are shown, along with error sources in the two procedures. Finally, the impact of each spectral response curve on CERES data validation will be examined through analysis of filtered radiance values from various typical scene types.

  17. Transport Phenomena in Liquid Phase Diffusion Growth of Silicon Germanium

    NASA Astrophysics Data System (ADS)

    Armour, Neil Alexander

    Silicon Germanium, SiGe, is an important emerging semiconductor material. In order to optimize growth techniques for SiGe production, such as Liquid Phase Diffusion, LPD, or Melt Replenishment Czochralski, a good understanding of the transport phenomena in the melt is required. In the context of the Liquid Phase Diffusion growth technique, the transport phenomena of silicon in a silicon-germanium melt has been explored. Experiments isolating the dissolution and transport of silicon into a germanium melt have been conducted under a variety of flow conditions. Preliminary modeling of these experiments has also been conducted and agreement with experiments has been shown. In addition, full LPD experiments have also been conducted under varying flow conditions. Altered flow conditions were achieved through the application of a variety of magnetic fields. Through the experimental and modeling work better understanding of the transport mechanisms at work in a silicon-germanium melt has been achieved.

  18. Synthesis and thermoluminescence of boron-doped germanium nanowires

    NASA Astrophysics Data System (ADS)

    Zahedifar, M.; Hosseinmardi, F.; Eshraghi, L.; Ganjipour, B.

    2011-03-01

    Boron doped germanium nanowires were synthesized using chemical vapor deposition (CVD) with Au nanoparticles as nucleating centers, germanium tetrachloride as the source of germanium and B 2H 6 gas as source of boron impurity. Au nanoparticles were deposited on Si using 3-aminopropyltriethylsilane (APTES). The single crystal Ge nanowires with diameters ranging from 19 to 200 nm were grown in a controllable manner. Effects of Au nanoparticle size, argon gas flow, temperature and duration of growth on diameter and length of nanowires were investigated. This is the first report on thermoluminescence (TL) properties of boron doped germanium nanowires. Glow curves were fitted using computerized glow curve deconvolution program and seven overlapped peaks were obtained. Further the response of synthesized nanowires to different dose levels of UV was studied and linear response regime was determined.

  19. Reaction studies of hot silicon, germanium and carbon atoms

    SciTech Connect

    Gaspar, P.P.

    1986-11-15

    Research has been continued on hot silicon, germanium and carbon atoms. Progress in the period November 16, 1985 to November 15, 1986 is reviewed in the following areas: (1) Recoil atom reaction studies. (2) Reactions of thermally generated free atoms.

  20. Near-infrared emission from mesoporous crystalline germanium

    SciTech Connect

    Boucherif, Abderraouf; Aimez, Vincent; Arès, Richard; Korinek, Andreas

    2014-10-15

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  1. Near-infrared emission from mesoporous crystalline germanium

    NASA Astrophysics Data System (ADS)

    Boucherif, Abderraouf; Korinek, Andreas; Aimez, Vincent; Arès, Richard

    2014-10-01

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  2. Modified silicon-germanium alloys with improved performance. [thermoelectric material

    NASA Technical Reports Server (NTRS)

    Pisharody, R. K.; Garvey, L. P.

    1978-01-01

    This paper discusses the results of a program on the modification of silicon-germanium alloys by means of small extraneous material additions in order to improve their figures-of-merit. A review of the properties that constitute the figure-of-merit indicates that it is the relatively high thermal conductivity of silicon-germanium alloys that is responsible for their low values of figure-of-merit. The intent of the effort discussed in this paper is therefore the reduction of the thermal conductivity of silicon-germanium alloys by minor alloy additions and/or changes in the basic structure of the material. Because Group III and V elements are compatible with silicon and germanium, the present effort in modifying silicon-germanium alloys has concentrated on additions of gallium phosphide. A significant reduction in thermal conductivity, approximately 40 to 50 percent, has been demonstrated while the electrical properties are only slightly affected as a result. The figure-of-merit of the resultant material is enhanced over that of silicon-germanium alloys and when fully optimized is potentially better than that of any other presently available thermoelectric material.

  3. Protective infrared antireflection coating based on sputtered germanium carbide

    NASA Astrophysics Data System (ADS)

    Gibson, Des; Waddell, Ewan; Placido, Frank

    2011-09-01

    This paper describes optical, durablility and environmental performance of a germanium carbide based durable antireflection coating. The coating has been demonstrated on germanium and zinc selenide infra-red material however is applicable to other materials such as zinc sulphide. The material is deposited using a novel reactive closed field magnetron sputtering technique, offering significant advantages over conventional evaporation processes for germanium carbide such as plasma enhanced chemical vapour deposition. The sputtering process is "cold", making it suitable for use on a wide range of substrates. Moreover, the drum format provide more efficient loading for high throughput production. The use of the closed field and unbalanced magnetrons creates a magnetic confinement that extends the electron mean free path leading to high ion current densities. The combination of high current densities with ion energies in the range ~30eV creates optimum thin film growth conditions. As a result the films are dense, spectrally stable, supersmooth and low stress. Films incorporate low hydrogen content resulting in minimal C-H absorption bands within critical infra-red passbands such as 3 to 5um and 8 to 12um. Tuning of germanium carbide (Ge(1-x)Cx) film refractive index from pure germanium (refractive index 4) to pure germanium carbide (refractive index 1.8) will be demonstrated. Use of film grading to achieve single and dual band anti-reflection performance will be shown. Environmental and durability levels are shown to be suitable for use in harsh external environments.

  4. Promoting Cell Proliferation Using Water Dispersible Germanium Nanowires

    PubMed Central

    Bezuidenhout, Michael; Liu, Pai; Singh, Shalini; Kiely, Maeve

    2014-01-01

    Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM), High resolution-TEM, and scanning electron microscope (SEM). Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence) which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth. PMID:25237816

  5. Method of fabricating germanium and gallium arsenide devices

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban (Inventor)

    1990-01-01

    A method of semiconductor diode fabrication is disclosed which relies on the epitaxial growth of a precisely doped thickness layer of gallium arsenide or germanium on a semi-insulating or intrinsic substrate, respectively, of gallium arsenide or germanium by either molecular beam epitaxy (MBE) or by metal-organic chemical vapor deposition (MOCVD). The method involves: depositing a layer of doped or undoped silicon dioxide on a germanium or gallium arsenide wafer or substrate, selectively removing the silicon dioxide layer to define one or more surface regions for a device to be fabricated thereon, growing a matched epitaxial layer of doped germanium or gallium arsenide of an appropriate thickness using MBE or MOCVD techniques on both the silicon dioxide layer and the defined one or more regions; and etching the silicon dioxide and the epitaxial material on top of the silicon dioxide to leave a matched epitaxial layer of germanium or gallium arsenide on the germanium or gallium arsenide substrate, respectively, and upon which a field effect device can thereafter be formed.

  6. Tunnel current across linear homocatenated germanium chains

    SciTech Connect

    Matsuura, Yukihito

    2014-01-28

    The electronic transport properties of germanium oligomers catenating into linear chains (linear Ge chains) have been theoretically studied using first principle methods. The conduction mechanism of a Ge chain sandwiched between gold electrodes was analyzed based on the density of states and the eigenstates of the molecule in a two-probe environment. Like that of silicon chains (Si chains), the highest occupied molecular orbital of Ge chains contains the extended σ-conjugation of Ge 4p orbitals at energy levels close to the Fermi level; this is in contrast to the electronic properties of linear carbon chains. Furthermore, the conductance of a Ge chain is expected to decrease exponentially with molecular length L. The decay constant β, which is defined as e{sup −βL}, of a Ge chain is similar to that of a Si chain, whereas the conductance of the Ge chains is higher than that of Si chains even though the Ge–Ge bond length is longer than the Si–Si bond length.

  7. Detached Growth of Germanium and Germaniumsilicon

    NASA Technical Reports Server (NTRS)

    Dold, P.; Schweizer, M.; Szofran, F.; Benz, K. W.

    1999-01-01

    Up to now, detached growth was observed mainly under microgravity, i.e. under the absence of hydrostatic pressure that hinders the formation of a free melt meniscus. the detached growth of germanium doped with gallium was obtained under 1 g conditions, the growth was performed in quartz-glass ampoule. Part of the crystal grew without wall contact, the detached growth was observed in-situ with a CCD-camera as well as after the growth process in form of growth lines and the formation of <111> facets on the crystal surface. GeSi crystal (oriientation: <111>, maximum silicon content: 4 at%, seed material: Ge) was grown in a pBN crucible (excluding the possibility of in-situ monitoring of the growth process). The grown crystal exhibits three growth facets, indicating also wall free growth. Surface analysis of the crystals (NDIC, SEM) and characterization of crystal segregation (EDAX, resistivity measurement) and defect structure (EPD, x-ray diffraction measurements) will be presented.

  8. Optical properties of colloidal germanium nanocrystals

    SciTech Connect

    WILCOXON,JESS P.; PROVENCIO,PAULA P.; SAMARA,GEORGE A.

    2000-05-01

    Highly crystalline germanium (Ge) nanocrystals in the size range 2--10 nm were grown in inverse micelles and purified and size-separated by high pressure liquid chromatography with on-line optical and electrical diagnostics. The nanocrystals retain the diamond structure of bulk Ge down to at least 2.0 nm (containing about 150 Ge atoms). The background- and impurity-free extinction and photoluminescence (PL) spectra of these nanocrystals revealed rich structure which was interpreted in terms of the bandstructure of Ge shifted to higher energies by quantum confinement. The shifts ranged from {minus}0.1 eV to over 1 eV for the various transitions. PL in the range 350--700 nm was observed from nanocrystals 2--5 nm in size. The 2.0 nm nanocrystals yielded the most intense PL (at 420 nm) which is believed to be intrinsic and attributed to direct recombination at {Gamma}. Excitation at high energy (250 nm) populates most of the conduction bands resulting in competing recombination channels and the observed broad PL spectra.

  9. Preparation and characterization of hydrogenated amorphous germanium and hydrogenated amorphous germanium-carbide thin films

    SciTech Connect

    Wu, H.S.

    1988-01-01

    Hydrogenated amorphous germanium (a-Ge:H) and germanium carbide (a-Ge{sub 1{minus}x}C{sub x}:H) films were prepared by rf sputtering of a polycrystalline Ge target in a vacuum {approximately}4 {times} 10{sup {minus}7} Torr at various rf power, target-substrate distance, varying partial pressures of Ar, H{sub 2}, and C{sub 3}H{sub 8}, and flow rates. The vibrational and opto-electronic properties such as infrared (IR) absorption, optical gap, electron-spin-resonance (ESR) signals, and conductivities vary with deposition conditions. The photoconductivity, in particular, was carefully monitored as a function of the deposition conditions to optimize it. The concentration of Ge-H bonds and the optical gap generally decrease as P is increased. Results of annealing showed the enhanced segregation effect of Ge-C bonds {ge} 300{degree}C. The evolution of bonded hydrogen with temperature is studied. Deposition rates of a-Ge:H films are estimated and compared. The thermalization curve for a Ge target is constructed. Deposition rate was found to decrease exponentially with increasing target-substrate distances to decrease with increasing partial pressures of H{sub 2} and C{sub 3}H{sub 8} and increasing flow rates. Hydrogen incorporation markedly increased photoconductivity.

  10. Determination of the Wetting Angle of Germanium and Germanium-Silicon Melts on Different Substrate Materials

    NASA Technical Reports Server (NTRS)

    Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.

    1999-01-01

    During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.

  11. Preparation and characterization of hydrogenated amorphous germanium and hydrogenated amorphous germanium carbide thin films

    SciTech Connect

    Wu, Hai-Sheng

    1989-02-01

    Hydrogenated amorphous germanium (a-Ge:H) and germanium carbide (a-Ge/sub 1-x/C/sub x/:H) films were prepared by rf sputtering of a polycrystalline Ge target in a vacuum /approximately/ 4 /times/ 10/sup /minus/7/ Torr at various rf power 50 less than or equal to P less than or equal to 600 W (0. 27-3.3 W/cm/sup 2/), target-substrate distance 1 less than or equal to d less than or equal to 7'', varying partial pressures of Ar, H/sub 2/, and C/sub 3/H/sub 8/, and flow rates f. The vibrational and opto-electronic properties such as infrared (IR) absorption, optical gap, electron-spin-resonance (ESR) signals, and conductivities vary with deposition conditions. The photoconductivity sigma/sub ph/, in particular, was carefully monitored as a function of the deposition conditions to optimize it. 96 refs., 49 figs., 7 tabs.

  12. Reaction studies of hot silicon, germanium and carbon atoms

    SciTech Connect

    Gaspar, P.P.

    1990-11-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs.

  13. Single-molecule conductance in atomically precise germanium wires.

    PubMed

    Su, Timothy A; Li, Haixing; Zhang, Vivian; Neupane, Madhav; Batra, Arunabh; Klausen, Rebekka S; Kumar, Bharat; Steigerwald, Michael L; Venkataraman, Latha; Nuckolls, Colin

    2015-09-30

    While the electrical conductivity of bulk-scale group 14 materials such as diamond carbon, silicon, and germanium is well understood, there is a gap in knowledge regarding the conductivity of these materials at the nano and molecular scales. Filling this gap is important because integrated circuits have shrunk so far that their active regions, which rely so heavily on silicon and germanium, begin to resemble ornate molecules rather than extended solids. Here we unveil a new approach for synthesizing atomically discrete wires of germanium and present the first conductance measurements of molecular germanium using a scanning tunneling microscope-based break-junction (STM-BJ) technique. Our findings show that germanium and silicon wires are nearly identical in conductivity at the molecular scale, and that both are much more conductive than aliphatic carbon. We demonstrate that the strong donor ability of C-Ge σ-bonds can be used to raise the energy of the anchor lone pair and increase conductance. Furthermore, the oligogermane wires behave as conductance switches that function through stereoelectronic logic. These devices can be trained to operate with a higher switching factor by repeatedly compressing and elongating the molecular junction. PMID:26373928

  14. Application of germanium carbide in durable multilayer IR coatings

    NASA Astrophysics Data System (ADS)

    Kelly, Chris J.; Orr, James S.; Gordon, H.; Traub, Leonard T.; Lettington, Alan H.

    1990-08-01

    Infrared transparent amorphous hydrogenated alloys of germanium and carbon (germanium carbide) have been deposited by plasma assisted chemical vapour deposition (PACVD) using germane (GeH4 ) and butane (C 4Hid as the feedstocks and by reactive sputtering of germanium with a CH1g-Ar plasma. The effects of varying various deposition conditions have been assessed on a number of coating properties . Germanium Carbide has good environmental durability and can be deposited in thick layers. Using PACVD it can be deposited with any refractive index in the range 2 to 4 while the sputtering process is limited to indices in the range 3 to 4 . One advantage of the sputtering process is the high deposition rates achievable which can be up to '-lOum/h compared with lum/h for the PACVD process. When used in conjunction with "diamond-like" carbon (a-'C:H) , germanium carbide offers the prospect of rnultilayer antireflection coatings for 8 to 12 urn optics with durabilities which hitherto have been impossible to achieve. Antireflection coatings for zinc sulphide windows which are subject to hostile environmental conditions have been investigated and the performance of the coatings is presented. The factors affecting the practical realisation of these coatings on a production scale are discussed.

  15. First-principles calculations of multivacancies in germanium

    NASA Astrophysics Data System (ADS)

    Sholihun; Ishii, Fumiyuki; Saito, Mineo

    2016-01-01

    We carry out density-functional-theory calculations to study the stability of germanium multivacancies. We use supercells containing 216 atomic sites and simulate two configurations called the “part of hexagonal ring” (PHR) and fourfold configurations of the tri-, tetra-, and pentavacancies. We find that the fourfold configurations of the tetra- and pentavacancies are the most stable and these configurations are also the most stable in the case of silicon. However, we find that the PHR and fourfold configurations have similar energies in the case of the germanium trivacancy. These results are in contrast to those of the silicon trivacancy; the fourfold configuration has substantially lower energy than the PHR configuration. This difference between germanium and silicon is expected to originate from the fact that the four bonds in the fourfold configurations in the germanium trivacancy are weaker than those in the silicon one. By calculating dissociation energies, we find that the silicon tetravacancy is not easy to dissociate, whereas the germanium tetravacancy is not very stable compared with the silicon one.

  16. Investigation of germanium Raman lasers for the mid-infrared.

    PubMed

    De Leonardis, Francesco; Troia, Benedetto; Soref, Richard A; Passaro, Vittorio M N

    2015-06-29

    In this paper we present a detailed theoretical investigation of integrated racetrack Raman lasers based on the germanium material system operating in the mid-infrared beyond the germanium two-photon absorption cut-off wavelength of 3.17 μm. The effective Raman gain has been estimated in waveguides based on germanium-on-silicon, germanium-on-SOI and germanium-on-Si3N4 technology platforms as a function of their crystallographic orientations. Furthermore, general design guidelines have been determined by means of a comparative analysis of Raman laser performance, i.e. the threshold power, polarization and directionality of the excited Stokes signals as a function of racetrack cavity length and directional-coupler dimensions. Finally, the emitted Raman laser power has been evaluated as a function of overall propagation losses and operative wavelengths up to 3.8 μm, while the time dynamics of Raman lasers has been simulated assuming continuous and pulse waves as input pump signals. PMID:26191733

  17. Low temperature exfoliation process in hydrogen-implanted germanium layers

    NASA Astrophysics Data System (ADS)

    Ferain, I. P.; Byun, K. Y.; Colinge, C. A.; Brightup, S.; Goorsky, M. S.

    2010-03-01

    The feasibility of transferring hydrogen-implanted germanium to silicon with a reduced thermal budget is demonstrated. Germanium samples were implanted with a splitting dose of 5×1016 H2+ cm-2 at 180 keV and a two-step anneal was performed. Surface roughness and x-ray diffraction pattern measurements, combined with cross-sectional TEM analysis of hydrogen-implanted germanium samples were carried out in order to understand the exfoliation mechanism as a function of the thermal budget. It is shown that the first anneal performed at low temperature (≤150 °C for 22 h) enhances the nucleation of hydrogen platelets significantly. The second anneal is performed at 300 °C for 5 min and is shown to complete the exfoliation process by triggering the formation of extended platelets. Two key results are highlighted: (i) in a reduced thermal budget approach, the transfer of hydrogen-implanted germanium is found to follow a mechanism similar to the transfer of hydrogen-implanted InP and GaAs, (ii) such a low thermal budget (<300 °C) is found to be suitable for directly bonded heterogeneous substrates, such as germanium bonded to silicon, where different thermal expansion coefficients are involved.

  18. POSITION SENSITIVE GERMANIUM DETECTORS FOR GAMMA-RAY IMAGING AND SPECTROSCOPY

    EPA Science Inventory

    Gamma-ray imaging with position-sensitive germanium detectors offers the advantages of excellent energy resolution, high detection efficiency, and potentially good sptial resolution. The development of the amorphous-semiconductor electrical contact technology for germanium detec...

  19. Growth mode and properties of Mn-Co-Ni-O NTC thermistor thin films deposited on MgO (100) substrate by laser MBE

    NASA Astrophysics Data System (ADS)

    Xie, Yahong; Kong, Wenwen; Ji, Guang; Gao, Bo; Yao, Jincheng; Chang, Aimin

    2014-12-01

    Mn1.56Co0.96Ni0.48O4-δ thin films were deposited on MgO (100) substrate using laser molecular beam epitaxy (LMBE) technique at the temperature range of 300-600°C under oxygen partial pressure of 5 × 10-3 Pa. The effect of growth temperature on microstructure and electrical properties as well as the growth mode were studied using XRD, RHEED, AFM and resistance-temperature measurements. The results showed that all prepared thin films underwent epitaxial growth along the single-(100) orientation direction of the MgO substrate from 3D-island mode to 2D layer-by-layer mode, and exhibited good crystallinity and NTC thermistor behavior. Their resistance at room temperature can be in the range of 10-50 MΩ together with a B-value of about 3300 K, which are desirable for a wide range of practical applications of the NTC thermistors.

  20. Hydrogenated nanocrystalline silicon germanium thin films

    NASA Astrophysics Data System (ADS)

    Yusoff, A. R. M.; Syahrul, M. N.; Henkel, K.

    2007-08-01

    Hydrogenated nanocrystalline silicon germanium thin films (nc-SiGe:H) is an interesting alternative material to replace hydrogenated nanocrystalline silicon (nc-Si:H) as the narrow bandgap absorber in an a-Si/a-SiGe/nc-SiGe(nc-Si) triple-junction solar cell due to its higher optical absorption in the wavelength range of interest. In this paper, we present results of optical, structural investigations and electrical characterization of nc-SiGe:H thin films made by hot-wire chemical vapor deposition (HWCVD) with a coil-shaped tungsten filament and with a disilane/germane/hydrogen gas mixture. The optical band gaps of a-SiGe:H and nc-SiGe:H thin-films, which are deposited with the same disilane/germane/hydrogen gas mixture ratio of 3.4:1.7:7, are about 1.58 eV and 2.1 eV, respectively. The nc-SiGe:H thin film exhibits a larger optical absorption coefficient of about 2-4 in the 600-900 nm range when compared to nc-Si:H thin film. Therefore, a thinner nc-SiGe:H layer of sim500 nm thickness may be sufficient for the narrow bandgap absorber in an a-Si based multiple-junction solar cell. We enhanced the transport properties as measured by the photoconductivity frequency mixing technique. These improved alloys do not necessarily show an improvement in the degree of structural heterogeneity on the nanometer scale as measured by small-angle X-ray scattering. Decreasing both the filament temperature and substrate temperature produced a film with relatively low structural heterogeneity while photoluminescence showed an order of magnitude increase in defect density for a similar change in the process.

  1. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Vujisic, L.; Szofran, F. R.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years, especially under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 micrometers, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5 mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 micrometers. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  2. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years especially, under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 microns, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 microns. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  3. Next Generation Device Grade Silicon-Germanium on Insulator

    PubMed Central

    Littlejohns, Callum G.; Nedeljkovic, Milos; Mallinson, Christopher F.; Watts, John F.; Mashanovich, Goran Z.; Reed, Graham T.; Gardes, Frederic Y.

    2015-01-01

    High quality single crystal silicon-germanium-on-insulator has the potential to facilitate the next generation of photonic and electronic devices. Using a rapid melt growth technique we engineer tailored single crystal silicon-germanium-on-insulator structures with near constant composition over large areas. The proposed structures avoid the problem of laterally graded SiGe compositions, caused by preferential Si rich solid formation, encountered in straight SiGe wires by providing radiating elements distributed along the structures. This method enables the fabrication of multiple single crystal silicon-germanium-on-insulator layers of different compositions, on the same Si wafer, using only a single deposition process and a single anneal process, simply by modifying the structural design and/or the anneal temperature. This facilitates a host of device designs, within a relatively simple growth environment, as compared to the complexities of other methods, and also offers flexibility in device designs within that growth environment. PMID:25656076

  4. Silicon-germanium technology program of the Jet Propulsion Laboratory.

    NASA Technical Reports Server (NTRS)

    De Winter, F.; Stapfer, G.

    1972-01-01

    The outer planetary exploration missions studied by the Jet Propulsion Laboratory require silicon-germanium radioisotope thermoelectric generators (RTGs) in which the factors of safety are as low as is compatible with the reliable satisfaction of the power needs. Work on silicon germanium sublimation performed at the Jet Propulsion Laboratory is presented. Analytical modeling work on the solid-diffusion process involved in the steady-state (free) sublimation of silicon germanium is described. Analytical predictions are made of the sublimation suppression which can be achieved by using a cover gas. A series of accelerated (high-temperature) tests which were performed on simulated hardware (using four SiGe couples) to study long-term sublimation and reaction mechanisms are also discussed.

  5. Simulations for Tracking Cosmogenic Activation in Germanium and Copper

    SciTech Connect

    Aguayo, Estanislao; Kouzes, Richard T.; Orrell, John L.

    2011-11-01

    High-purity germanium (HPGe) detectors housed in copper cryostats and shielding materials are used in measurements of the extraordinarily rare nuclear decay process, neutrinoless double-beta decay (0νββ), and for dark matter searches. Cosmogenic production of 68Ge and 60Co in the germanium and copper represent an irreducible background to these experiments as the subsequent decays of these isotopes can mimic the signals of interest. These radioactive isotopes can be removed by chemical and/or isotopic separation, but begin to grow-in to the material after separation until the material is moved deep underground. This work is motivated by the need to have a reliable, experimentally benchmarked simulation tool for evaluating shielding materials used during transportation and near-surface manufacturing of experiment components. The resulting simulations tool has been used to enhance the effectiveness of an existing transport shield used to ship enriched germanium from the separations facility to the detector manufacturing facility.

  6. Moth's eye anti-reflection gratings on germanium freeform surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Shultz, Jason A.; Owen, Joseph D.; Davies, Matthew A.; Suleski, Thomas J.

    2014-09-01

    Germanium is commonly used for optical components in the infrared, but the high refractive index of germanium causes significant losses due to Fresnel reflections. Anti-reflection (AR) surfaces based on subwavelength "moth's eye" gratings provide one means to significantly increase optical transmission. As found in nature, these gratings are conformal to the curved surfaces of lenslets in the eye of the moth. Engineered optical systems inspired by biological examples offer possibilities for increased performance and system miniaturization, but also introduce significant challenges to both design and fabrication. In this paper, we consider the design and fabrication of conformal moth's eye AR structures on germanium freeform optical surfaces, including lens arrays and Alvarez lenses. Fabrication approaches and limitations based on both lithography and multi-axis diamond machining are considered. Rigorous simulations of grating performance and approaches for simulation of conformal, multi-scale optical systems are discussed.

  7. Germanium FCC structure from a colloidal crystal template

    SciTech Connect

    Miguez, H.; Meseguer, F.; Lopez, C.; Holgado, M.; Andreasen, G.; Mifsud, A.; Fornes, V.

    2000-05-16

    Here, the authors show a method to fabricate a macroporous structure in which the pores, essentially identical, arrange regularly in a face-centered cubic (FCC) lattice. The result is a network of air spheres in a germanium medium. This structure presents the highest dielectric contrast ({epsilon}{sub Ge}/{epsilon}{sub air} = 16) ever achieved in the optical regime in such periodic structures, which could result in important applications in photonics. The authors employ solid silica colloidal crystals (opals) as templates within which a cyclic germanium growth process is carried out. Thus, the three-dimensional periodicity of the host is inherited by the guest. Afterward, the silica is removed and a germanium opal replica is obtained.

  8. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  9. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  10. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  11. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  12. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  13. Deposition and characterizations of ultrasmooth silver thin films assisted with a germanium wetting layer

    NASA Astrophysics Data System (ADS)

    Zhang, Junce; Fryauf, David M.; Diaz Leon, Juan J.; Garrett, Matthew; VJ, Logeeswaran; Islam, Saif M.; Kobayashi, Nobuhiko P.

    2015-08-01

    In this paper, silver thin films deposited on SiO2 substrates with a germanium wetting layer fabricated by electron-beam evaporation were studied. The characterization methods of XTEM, FTIR, XRD and XRR were used to study the structural properties of silver thin films with various thicknesses of germanium layers. Silver films deposited with very thin (1-5nm) germanium wetting layers show about one half of improvement in the crystallite sizes comparing silver films without germanium layer. The surface roughness of silver thin films significantly decrease with a thin germanium wetting layer, reaching a roughness minimum around 1-5nm of germanium, but as the germanium layer thickness increases, the silver thin film surface roughness increases. The relatively higher surface energy of germanium and bond dissociation energy of silver-germanium were introduced to explain the effects the germanium layer made to the silver film deposition. However, due to the Stranski-Krastanov growth mode of germanium layer, germanium island formation started with increased thickness (5-15nm), which leads to a rougher surface of silver films. The demonstrated silver thin films are very promising for large-scale applications as molecular anchors, optical metamaterials, plasmonic devices, and several areas of nanophotonics.

  14. Characterisation of two AGATA asymmetric high purity germanium capsules

    NASA Astrophysics Data System (ADS)

    Colosimo, S. J.; Moon, S.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Harkness-Brennan, L.; Judson, D. S.; Lazarus, I. H.; Nolan, P. J.; Simpson, J.; Unsworth, C.

    2015-02-01

    The AGATA spectrometer is an array of highly segmented high purity germanium detectors. The spectrometer uses pulse shape analysis in order to track Compton scattered γ-rays to increase the efficiency of nuclear spectroscopy studies. The characterisation of two high purity germanium detector capsules for AGATA of the same A-type has been performed at the University of Liverpool. This work will examine the uniformity of performance of the two capsules, including a comparison of the resolution and efficiency as well as a study of charge collection. The performance of the capsules shows good agreement, which is essential for the efficient operation of the γ-ray tracking array.

  15. LETTER TO THE EDITOR: Structure of densified amorphous germanium dioxide

    NASA Astrophysics Data System (ADS)

    Micoulaut, Matthieu

    2004-03-01

    Classical molecular dynamics simulations are used to study the structure of densified germanium dioxide (GeO2). It is found that the coordination number of germanium changes with increasing density (pressure) while pressure released systems exhibit only a marked angular change in local structure as compared to the virgin system. The structural modification with pressure appears to be stepwise and gradually affects long-range (through the reduction of the long-range correlations as seen from the shift of the first sharp diffraction peak), intermediate-range (by angular reduction) and finally short-range structure (by tetrahedron distortion).

  16. The GALATEA test-facility for high purity germanium detectors

    NASA Astrophysics Data System (ADS)

    Abt, I.; Caldwell, A.; Dönmez, B.; Garbini, L.; Irlbeck, S.; Majorovits, B.; Palermo, M.; Schulz, O.; Seitz, H.; Stelzer, F.

    2015-05-01

    GALATEA is a test facility designed to investigate bulk and surface effects in high purity germanium detectors. A vacuum tank houses a cold volume with the detector inside. A system of three precision motorized stages allows an almost complete scan of the detector. The main feature of GALATEA is that there is no material between source and detector. This allows the usage of alpha and beta sources to study surface effects. A 19-fold segmented true-coaxial germanium detector was used for commissioning. A first analysis of data obtained with an alpha source is presented here.

  17. The Novel Synthesis of Silicon and Germanium Nanocrystallites

    SciTech Connect

    Kauzlarich, S M; Liu, Q; Yin, S C; Lee, W H; Taylor, B

    2001-04-03

    Interest in the synthesis of semiconductor nanoparticles has been generated by their unusual optical and electronic properties arising from quantum confinement effects. We have synthesized silicon and germanium nanoclusters by reacting Zintl phase precursors with either silicon or germanium tetrachloride in various solvents. Strategies have been investigated to stabilize the surface, including reactions with RLi and MgBrR (R = alkyl). This synthetic method produces group IV nanocrystals with passivated surfaces. These nanoparticle emit over a very large range in the visible region. These particles have been characterized using HRTEM, FTIR, UV-Vis, solid state NMR, and fluorescence. The synthesis and characterization of these nanoclusters will be presented.

  18. Silicon germanium semiconductive alloy and method of fabricating same

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)

    2008-01-01

    A silicon germanium (SiGe) semiconductive alloy is grown on a substrate of single crystalline Al.sub.2O.sub.3. A {111} crystal plane of a cubic diamond structure SiGe is grown on the substrate's {0001} C-plane such that a <110> orientation of the cubic diamond structure SiGe is aligned with a <1,0,-1,0> orientation of the {0001} C-plane. A lattice match between the substrate and the SiGe is achieved by using a SiGe composition that is 0.7223 atomic percent silicon and 0.2777 atomic percent germanium.

  19. Nanocrystal Inks without Ligands: Stable Colloids of Bare Germanium Nanocrystals

    SciTech Connect

    Holman, Zachary C.; Kortshagen, Uwe R.

    2011-05-11

    Colloidal semiconductor nanocrystals typically have ligands attached to their surfaces that afford solubility in common solvents but hinder charge transport in nanocrystal films. Here, an alternative route is explored in which bare germanium nanocrystals are solubilized by select solvents to form stable colloids without the use of ligands. A survey of candidate solvents shows that germanium nanocrystals are completely solubilized by benzonitrile, likely because of electrostatic stabilization. Films cast from these dispersions are uniform, dense, and smooth, making them suitable for device applications without postdeposition treatment.

  20. Tensile-strained germanium microdisks with circular Bragg reflectors

    NASA Astrophysics Data System (ADS)

    El Kurdi, M.; Prost, M.; Ghrib, A.; Elbaz, A.; Sauvage, S.; Checoury, X.; Beaudoin, G.; Sagnes, I.; Picardi, G.; Ossikovski, R.; Boeuf, F.; Boucaud, P.

    2016-02-01

    We demonstrate the combination of germanium microdisks tensily strained by silicon nitride layers and circular Bragg reflectors. The microdisks with suspended lateral Bragg reflectors form a cavity with quality factors up to 2000 around 2 μm. This represents a key feature to achieve a microlaser with a quasi-direct band gap germanium under a 1.6% biaxial tensile strain. We show that lowering the temperature significantly improves the quality factor of the quasi-radial modes. Linewidth narrowing is observed in a range of weak continuous wave excitation powers. We finally discuss the requirements to achieve lasing with these kind of structures.

  1. Large-size germanium crystal growth for rare event physics

    NASA Astrophysics Data System (ADS)

    Mei, Dongming; Wang, Guojian; Mei, Hao; Guan, Yutong; Yang, Gang; Govani, Jayesh; Cubed Collaboration

    2014-09-01

    Cosmogenic production in germanium crystals grown on the surface can limit the sensitivity for the next generation deep underground experiments in searching for rare event physics beyond the Standard Model. One of the best solutions to eliminate unwanted cosmogenics is to produce the germanium crystals and detectors in an underground environment. The goal of this project is to create state-of-the-art detectors to advance neutrinoless double-beta decay and dark matter exploration research and technology while simultaneously paving the way for infrastructure to support an underground laboratory for zone refining, crystal growth, and detector fabrication. The greatest challenge in the growth of germanium crystals is a lack of precise control of individual crystal properties such as the impurity distribution, the dislocation density, and the crystalline structure. With knowledge gained from the pioneers in the field of crystal growth, the researchers have developed a novel technique to grow detector-grade crystals. In this paper, we will report detector-grade large-size germanium crystal growth at the University of South Dakota. Cosmogenic production in germanium crystals grown on the surface can limit the sensitivity for the next generation deep underground experiments in searching for rare event physics beyond the Standard Model. One of the best solutions to eliminate unwanted cosmogenics is to produce the germanium crystals and detectors in an underground environment. The goal of this project is to create state-of-the-art detectors to advance neutrinoless double-beta decay and dark matter exploration research and technology while simultaneously paving the way for infrastructure to support an underground laboratory for zone refining, crystal growth, and detector fabrication. The greatest challenge in the growth of germanium crystals is a lack of precise control of individual crystal properties such as the impurity distribution, the dislocation density, and the

  2. Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Schweizer, M.; Cobb, S. D.; Motakef, S.; Croell, A.; Dold, P.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2 at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS). The purpose of the microgravity experiments includes differentiating among proposed mechanisms contributing to detachment, and confirming or refining our understanding of the detachment mechanism. Because large contact angle are critical to detachment, sessile drop measurements were used to determine the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases from 150 deg to an equilibrium value of 117 deg (Ge) or from 129 deg to an equilibrium value of 100 deg (GeSi) over the duration of the experiment. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. Results in this presentation will show that we have established the effects on detachment of ampoule material, pressure difference above and below the melt, and silicon concentration; samples that are nearly completely detached can be grown repeatedly in pBN.

  3. Dark Matter Physics with SUB-keV Germanium Detectors

    NASA Astrophysics Data System (ADS)

    Wong, Henry T.

    2015-03-01

    Germanium detectors with sub-keV sensitivities open a window to study neutrino physics to search for light WIMP dark matter. We summarize the recent results on spin-independent couplings of light WIMPs from the TEXONO experiment at the Kuo-Sheng Reactor Neutrino Laboratory.

  4. Strained-layer epitaxy of germanium-silicon alloys.

    PubMed

    Bean, J C

    1985-10-11

    Despite the dominant position of silicon in semiconductor electronics, its use is ultimately limited by its incompatibility with other semiconducting materials. Strained-layer epitaxy overcomes problems of crystallographic compatibility and produces high-quality heterostructures of germanium-silicon layers on silicon. This opens the door to a range of electronic and photonic devices that are based on bandstructure physics. PMID:17842673

  5. Discovery of gallium, germanium, lutetium, and hafnium isotopes

    SciTech Connect

    Gross, J.L.; Thoennessen, M.

    2012-09-15

    Currently, twenty-eight gallium, thirty-one germanium, thirty-five lutetium, and thirty-six hafnium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  6. Solution-processable white-light-emitting germanium nanocrystals

    SciTech Connect

    Shirahata, Naoto

    2014-06-01

    This paper describes an efficient chemical route for the synthesis of visible light emitting nanocrystals of germanium (ncGe). The synthesis started by heating Ge(II) iodide at 300 °C in argon atmosphere. Spectroscopic characterizations confirmed the formation of diamond cubic lattice structures of ncGe. By grafting hydrophobic chains on the ncGe surface, the dispersions in nonpolar solvents of the ncGe became very stable. The as-synthesized ncGe showed the bluish white photoluminescence (PL) feature, but it was found that the PL spectrum is composed of many different emission spectra. Therefore, the color-tuning of white light emission is demonstrated through the witting removal of extra ncGe with unfavorable emission feature by making full use of column chromatographic techniques. - Highlights: • Visible light emitting nanocrystals of germanium was synthesized by chemical reduction of germanium iodide. • White light emission was achieved by control over size distribution of germanium nanocrystals. • Tuning the color of white light was achieved by separation of nanocrystals by emission.

  7. Active noise canceling system for mechanically cooled germanium radiation detectors

    SciTech Connect

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  8. Enhanced life ion source for germanium and carbon ion implantation

    SciTech Connect

    Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei

    2012-11-06

    Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

  9. Germanium accumulation-mode charge-injection-device process

    NASA Technical Reports Server (NTRS)

    Moore, T. G.

    1981-01-01

    Gallium doped germanium is suitable for applications in the detection of far infrared radiation. Measurements were made on experimental photoconductors (PCs), accumulation mode charge injection devices (AMCIDs), and the SSPC (a switched, sampled PC alternative to the AMCID). The results indicate that the SSPC, which had a responsivity near 1.5 amp/watt, is desirable for use in two dimensional detector arrays.

  10. Modified matrix volatilization setup for characterization of high purity germanium.

    PubMed

    Meruva, Adisesha Reddy; Raparthi, Shekhar; Kumar, Sunil Jai

    2016-01-01

    Modified matrix volatilization (MV) method has been described to characterize high purity germanium material of 7 N (99.99999%) purity. Transport of both, the chlorine gas generated in-situ in this method and the argon gas (carrier) is fine controlled by means of a mass flow controller. This enabled both uniform reaction of chlorine gas with the germanium matrix and smooth removal of germanium matrix as its chloride. This resulted in improvement in the reproducibility of the analytical results. The use of quartz reaction vessel has lead to the reduction in the process blank levels. The combined effect of these modifications in the MV setup has resulted in very consistent and low process blanks and hence improved detection limits of this method. Applicability of the method has been expanded to rare earth elements and other elements after examining their recoveries. The quantification is done by using inductively coupled plasma quadrupole mass spectrometer (ICP-QMS) and continuum source graphite furnace atomic absorption spectrometry (CS-GFAAS). In the absence of certified reference materials for high pure germanium, the accuracy of the method is established by spike recovery tests. The precision of the method has been found to vary from 1 to 30% for concentrations between 1 and 30 ng g(-1). The limits of detection (LOD) for the target analytes are found to be between 18 and 0.033 ng g(-1). PMID:26695261

  11. The 100 micron detector development program. [gallium doped germanium photoconductors

    NASA Technical Reports Server (NTRS)

    Moore, W. J.

    1976-01-01

    An effort to optimize gallium-doped germanium photoconductors (Ge:Ga) for use in space for sensitive detection of far infrared radiation in the 100 micron region is described as well as the development of cryogenic apparatus capable of calibrating detectors under low background conditions.

  12. Novel approach for n-type doping of HVPE gallium nitride with germanium

    NASA Astrophysics Data System (ADS)

    Hofmann, Patrick; Krupinski, Martin; Habel, Frank; Leibiger, Gunnar; Weinert, Berndt; Eichler, Stefan; Mikolajick, Thomas

    2016-09-01

    We present a novel method for germanium doping of gallium nitride by in-situ chlorination of solid germanium during the hydride vapour phase epitaxy (HVPE) process. Solid germanium pieces were placed in the doping line with a hydrogen chloride flow directed over them. We deduce a chlorination reaction taking place at 800 ° C , which leads to germanium chloroform (GeHCl3) or germanium tetrachloride (GeCl4). The reactor shows a germanium rich residue after in-situ chlorination experiments, which can be removed by hydrogen chloride etching. All gallium nitride crystals exhibit n-type conductivity, which shows the validity of the in-situ chlorination of germanium for doping. A complex doping profile is found for each crystal, which was assigned to a combination of localised supply of the dopant and sample rotation during growth and switch-off effects of the HVPE reactor.

  13. Broad Band Antireflection Coatings for Silicon and Germanium Substrates.

    NASA Astrophysics Data System (ADS)

    Bezuidenhout, Dirk Francois

    Infrared antireflection coatings for silicon and germanium substrates and some of the associated problems are addressed in this thesis. One of the first problems identified and investigated was that of the adhesion of ZnS films to germanium substrates. The cleaning of the Ge discs was evaluated by means of Auger spectroscopy. The main contaminant species found were carbon, oxygen and in the case of germanium substrates sulphur. No sulphur was found on silicon substrates. A wash in a series of organic solutions followed by a bake inside the vacuum chamber lead to much improved though still not acceptable adhesion of ZnS films to germanium substrates. The influence of a contact layer between the substrate and ZnS was investigated. Firstly, metal contact layers (Ni, Cr, Cu) were tried to improve the adhesion of the ZnS films. These samples (germanium-metal-zinc sulphide) were annealed in air in order to transfer the germanium -metal film to a germanide region and thus high optical transmission at long wave-lengths. Slight absorption still results even after the annealing of these samples. A dielectric material, Y_2O_3 , was therefore tested replacing the metal films. The system Ge-Y_2O_3 -ZnS in conjunction with an organic wash and vacuum bake lead to excellent adhesion of the ZnS layers to the germanium substrates. The next problem area addressed was that of a low refractive index material replacement for ThF _4. Four materials were investigated, i.e. ZnS, PbF_2, Y_2O _3 and YF_3. The refractive indices found for these compounds in thin film form at a wavelength of 10 μm is 2,18 for ZnS, 1,7 for PbF_2, 1,42 for Y_2O_3 and 1,3 for YF_3. From these results YF_3 was chosen as low refractive index material in the coating designs. Multi-layer coatings incorporating ZnS, Ge and YF_3 films were designed and evaporated. Measured reflectance values below 0,2% were obtained from 9 μm to 11 mum. These systems were stable and robust. Finally, a silicon ball lens was

  14. Respiratory monitoring system based on the nasal pressure technique for the analysis of sleep breathing disorders: Reduction of static and dynamic errors, and comparisons with thermistors and pneumotachographs

    NASA Astrophysics Data System (ADS)

    Alves de Mesquita, Jayme; Lopes de Melo, Pedro

    2004-03-01

    Thermally sensitive devices—thermistors—have usually been used to monitor sleep-breathing disorders. However, because of their long time constant, these devices are not able to provide a good characterization of fast events, like hypopneas. Nasal pressure recording technique (NPR) has recently been suggested to quantify airflow during sleep. It is claimed that the short time constants of the devices used to implement this technique would allow an accurate analysis of fast abnormal respiratory events. However, these devices present errors associated with nonlinearities and acoustic resonance that could reduce the diagnostic value of the NPR. Moreover, in spite of the high scientific and clinical potential, there is no detailed description of a complete instrumentation system to implement this promising technique in sleep studies. In this context, the purpose of this work was twofold: (1) describe the development of a flexible NPR device and (2) evaluate the performance of this device when compared to pneumotachographs (PNTs) and thermistors. After the design details are described, the system static accuracy is evaluated by a comparative analysis with a PNT. This analysis revealed a significant reduction (p<0.001) of the static error when system nonlinearities were reduced. The dynamic performance of the NPR system was investigated by frequency response analysis and time constant evaluations and the results showed that the developed device response was as good as PNT and around 100 times faster (τ=5,3 ms) than thermistors (τ=512 ms). Experimental results obtained in simulated clinical conditions and in a patient are presented as examples, and confirmed the good features achieved in engineering tests. These results are in close agreement with physiological fundamentals, supplying substantial evidence that the improved dynamic and static characteristics of this device can contribute to a more accurate implementation of medical research projects and to improve the

  15. Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Schweizer, M.; Kaiser, N.; Cobb, S. D.; Motakef, S.; Vujisic, L. J.; Croell, A.; Dold, P.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS) to differentiate among proposed mechanisms contributing to detachment. Sessile drop measurements were first carried out for a large number of substrates made of potential ampoule materials to determine the contact angles and the surface tension as a function of temperature and composition. The process atmosphere and duration of the experiment (for some cases) were also found to have significant influence on the wetting angle. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases to an equilibrium value with duration of measurement ranging from 150 to 117 deg (Ge), 129 to 100 deg (GeSi). Forming gas (Ar + 2% H2) and vacuum have been used in the growth ampoules. With gas in the ampoule, a variation of the temperature profile during growth has been used to control the pressure difference between the top of the melt and the volume below the melt caused by detachment of the growing crystal. The stability of detachment has been modeled and substantial insight has been gained into the reasons that detachment has most often been observed in reduced gravity but nonetheless has occurred randomly even there. An empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed and will be presented. Methods for determining the nature and extent of detachment include profilometry and optical and electron microscopy. This surface study is the subject of another presentation at this Congress. Results in this presentation will show that we have

  16. Low temperature carrier transport properties in isotopically controlled germanium

    SciTech Connect

    Itoh, K.

    1994-12-01

    Investigations of electronic and optical properties of semiconductors often require specimens with extremely homogeneous dopant distributions and precisely controlled net-carrier concentrations and compensation ratios. The previous difficulties in fabricating such samples are overcome as reported in this thesis by growing high-purity Ge single crystals of controlled {sup 75}Ge and {sup 70}Ge isotopic compositions, and doping these crystals by the neutron transmutation doping (NTD) technique. The resulting net-impurity concentrations and the compensation ratios are precisely determined by the thermal neutron fluence and the [{sup 74}Ge]/[{sup 70}Ge] ratios of the starting Ge materials, respectively. This method also guarantees unprecedented doping uniformity. Using such samples the authors have conducted four types of electron (hole) transport studies probing the nature of (1) free carrier scattering by neutral impurities, (2) free carrier scattering by ionized impurities, (3) low temperature hopping conduction, and (4) free carrier transport in samples close to the metal-insulator transition.

  17. Improving Memory Characteristics of Hydrogenated Nanocrystalline Silicon Germanium Nonvolatile Memory Devices by Controlling Germanium Contents.

    PubMed

    Kim, Jiwoong; Jang, Kyungsoo; Phu, Nguyen Thi Cam; Trinh, Thanh Thuy; Raja, Jayapal; Kim, Taeyong; Cho, Jaehyun; Kim, Sangho; Park, Jinjoo; Jung, Junhee; Lee, Youn-Jung; Yi, Junsin

    2016-05-01

    Nonvolatile memory (NVM) with silicon dioxide/silicon nitride/silicon oxynitride (ONO(n)) charge trap structure is a promising flash memory technology duo that will fulfill process compatibility for system-on-panel displays, down-scaling cell size and low operation voltage. In this research, charge trap flash devices were fabricated with ONO(n) stack gate insulators and an active layer using hydrogenated nanocrystalline silicon germanium (nc-SiGe:H) films at a low temperature. In this study, the effect of the interface trap density on the performance of devices, including memory window and retention, was investigated. The electrical characteristics of NVM devices were studied controlling Ge content from 0% to 28% in the nc-SiGe:H channel layer. The optimal Ge content in the channel layer was found to be around 16%. For nc-SiGe:H NVM with 16% Ge content, the memory window was 3.13 V and the retention data exceeded 77% after 10 years under the programming condition of 15 V for 1 msec. This showed that the memory window increased by 42% and the retention increased by 12% compared to the nc-Si:H NVM that does not contain Ge. However, when the Ge content was more than 16%, the memory window and retention property decreased. Finally, this research showed that the Ge content has an effect on the interface trap density and this enabled us to determine the optimal Ge content. PMID:27483856

  18. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash.

    PubMed

    Zhang, Lingen; Xu, Zhenming

    2016-07-15

    The demand for germanium in the field of semiconductor, electronics, and optical devices is growing rapidly; however, the resources of germanium are scarce worldwide. As a secondary material, coal fly ash could be further recycled to retrieve germanium. Up to now, the conventional processes to recover germanium have two problems as follows: on the one hand, it is difficult to be satisfactory for its economic and environmental effect; on the other hand, the recovery ratio of germanium is not all that could be desired. In this paper, an environmentally-friendly vacuum reduction metallurgical process (VRMP) was proposed to recover germanium from coal fly ash. The results of the laboratory scale experiments indicated that the appropriate parameters were 1173K and 10Pa with 10wt% coke addition for 40min, and recovery ratio germanium was 93.96%. On the basis of above condition, the pilot scale experiments were utilized to assess the actual effect of VRMP for recovery of germanium with parameter of 1473K, 1-10Pa and heating time 40min, the recovery ratio of germanium reached 94.64%. This process considerably enhances germanium recovery, meanwhile, eliminates much of the water usage and residue secondary pollution compared with other conventional processes. PMID:27015376

  19. P-type Modified Electrode Germanium Detector Impurity Profiles

    NASA Astrophysics Data System (ADS)

    Kephart, Jeremy

    2008-04-01

    Germanium detectors with unprecedented capabilities are needed for detecting ultra-rare events in future neutrinoless double-beta decay experiments, searches for dark matter, environmental monitoring programs, national security applications, and potentially neutrino astrophysics. An ideal detector would combine ultra-low background capabilities, minimal electronic instrumentation, extremely low energy threshold, and the ability to perform event reconstruction to determine the interaction type or the spatial distribution of ionization following an interaction. A germanium detector with a special, very low capacitance, contact geometry and presumably a deliberately contrived impurity profile could provide all these capabilities. We present an analysis of the detector impurity concentration profiles and their impact on the depletion voltage, capacitance and charge collection times for such detectors.

  20. Diffusion of n-type dopants in germanium

    SciTech Connect

    Chroneos, A.; Bracht, H.

    2014-03-15

    Germanium is being actively considered by the semiconductor community as a mainstream material for nanoelectronic applications. Germanium has advantageous materials properties; however, its dopant-defect interactions are less understood as compared to the mainstream material, silicon. The understanding of self- and dopant diffusion is essential to form well defined doped regions. Although p-type dopants such as boron exhibit limited diffusion, n-type dopants such as phosphorous, arsenic, and antimony diffuse quickly via vacancy-mediated diffusion mechanisms. In the present review, we mainly focus on the impact of intrinsic defects on the diffusion mechanisms of donor atoms and point defect engineering strategies to restrain donor atom diffusion and to enhance their electrical activation.

  1. Development of neutron-transmutation-doped germanium bolometer material

    SciTech Connect

    Palaio, N.P.

    1983-08-01

    The behavior of lattice defects generated as a result of the neutron-transmutation-doping of germanium was studied as a function of annealing conditions using deep level transient spectroscopy (DLTS) and mobility measurements. DLTS and variable temperature Hall effect were also used to measure the activation of dopant impurities formed during the transmutation process. In additioon, a semi-automated method of attaching wires on to small chips of germanium (< 1 mm/sup 3/) for the fabrication of infrared detecting bolometers was developed. Finally, several different types of junction field effect transistors were tested for noise at room and low temperature (approx. 80 K) in order to find the optimum device available for first stage electronics in the bolometer signal amplification circuit.

  2. Gamma Ray Interactions in Planar Germanium Strip Detectors

    NASA Astrophysics Data System (ADS)

    Jackson, E. G.; Lakshmi, S.; Chowdhury, P.; Deo, A. Y.; Guess, C. J.; Hota, S.; Lister, C. J.

    2011-10-01

    The position resolution of the interaction point of a gamma ray within the volume of a planar germanium crystal is under investigation. A 16x16 planar double-sided strip detector of high-purity germanium, measuring 92×92×20 mm, with 16 horizontal strips on one face and 16 vertical strips on the other, is used. Comparing the strongest strip signal from each side of the detector allows for a X-Y pixelation of the gamma ray interaction in the crystal. Energy and efficiency calibrations are performed with standard 152Eu and 133Ba sources placed at fixed distances from the detector face. The measured efficiency of each pixel is compared to calculated geometric efficiencies. Next steps involve the analysis of two-pixel events which pick out Compton scatters within the planar crystal. Results and status report will be presented. Work supported by the U.S. Department of Energy.

  3. Characterization of the impurities in tungsten/silicon-germanium contacts

    SciTech Connect

    Gregg, H.A. Sr.

    1986-03-26

    Secondary ion mass spectrometry and Auger electron spectrometry depth profiling were used to determine impurity distributions in sputter deposited tungsten films over N-type and P-type 80/20 silicon-germanium elements of thermoelectric devices. These analyses showed that silicon, oxygen, sodium, boron, and phosphorous were present as impurities in the tungsten film. All these impurities except oxygen and sodium came from the substrate. Oxygen was gettered by the tungsten films, while sodium was possibly the result of sample handling. Further, the results from this study indicate that an oxide build-up, primarily at the tungsten/silicon-germanium interface of the N-type materials, is the major contributor to contact resistance in thermoelectric devices.

  4. Synthesis and photoluminescence of ultra-pure germanium nanoparticles

    NASA Astrophysics Data System (ADS)

    Chivas, R.; Yerci, S.; Li, R.; Dal Negro, L.; Morse, T. F.

    2011-09-01

    We have used aerosol deposition to synthesize defect and micro-strain free, ultra-pure germanium nanoparticles. Transmission electron microscopy images show a core-shell configuration with highly crystalline core material. Powder X-ray diffraction measurements verify the presence of highly pure, nano-scale germanium with average crystallite size of 30 nm and micro-strain of 0.058%. X-ray photoelectron spectroscopy demonstrates that GeO x ( x ⩽ 2) shells cover the surfaces of the nanoparticles. Under optical excitation, these nanoparticles exhibit two separate emission bands at room temperature: a visible emission at 500 nm with 0.5-1 ns decay times and an intense near-infrared emission at 1575 nm with up to ˜20 μs lifetime.

  5. High temperature material interactions of thermoelectric systems using silicon germanium.

    NASA Technical Reports Server (NTRS)

    Stapfer, G.; Truscello, V. C.

    1973-01-01

    The efficient use of silicon germanium thermoelectric material for radioisotope thermoelectric generators (RTG) is achieved by operation at relatively high temperatures. The insulation technique which is most appropriate for this application uses multiple layers of molybdenum foil and astroquartz. Even so, the long term operation of these materials at elevated temperatures can cause material interaction to occur within the system. To investigate these material interactions, the Jet Propulsion Laboratory is currently testing a number of thermoelectric modules which use four silicon germanium thermoelectric couples in conjunction with the multifoil thermal insulation. The paper discusses the results of the ongoing four-couple module test program and correlates test results with those of a basic material test program.

  6. Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

    SciTech Connect

    Nathan Robert Classen

    2002-12-31

    The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular {beta} C-H insertion mechanism.

  7. Fabrication techniques for reverse electrode coaxial germanium nuclear radiation detectors

    SciTech Connect

    Hansen, W.L.; Haller, E.E.

    1980-11-01

    Germanium detectors with reverse polarity coaxial electrodes have been shown to exhibit improved resistance to radiation damage as compared with conventional electrode devices. However, the production of reverse electrode devices involves the development of new handling and fabrication techniques which has limited their wider application. We have developed novel techniques which lead to a device which is simple to fabricate, environmentally passivated and surface state adjusted.

  8. Environmental applications for an intrinsic germanium well detector

    SciTech Connect

    Stegnar, P.; Eldridge, J.S.; Teasley, N.A.; Oakes, T.W.

    1983-01-01

    The overall performance of an intrinsic germanium well detector for /sup 125/I measurements was investigated in a program of environmental surveillance. Concentrations of /sup 125/I and /sup 131/I were determined in thyroids of road-killed deer showing the highest activities of /sup 125/I in the animals from the near vicinity of Oak Ridge National Laboratory. This demonstrates the utility of road-killed deer as a bioindicator for radioiodine around nuclear facilities. 6 refs., 2 figs., 3 tabs.

  9. Electronic Structure of Germanium Nanocrystal Films Probed with Synchrotron Radiation

    SciTech Connect

    Bostedt, C

    2002-05-01

    The fundamental structure--property relationship of semiconductor quantum dots has been investigated. For deposited germanium nanocrystals strong quantum confinement effects have been determined with synchrotron radiation based x-ray absorption and photoemission techniques. The nanocrystals are condensed out of the gas phase with a narrow size distribution and subsequently deposited in situ onto various substrates. The particles are crystalline in the cubic phase with a structurally disordered surface shell and the resulting film morphology depends strongly on the substrate material and condition. The disordered surface region has an impact on the overall electronic structure of the particles. In a size-dependent study, the conduction and valence band edge of germanium nanocrystals have been measured for the first time and compared to the bulk crystal. The band edges move to higher energies as the particle size is decreased, consistent with quantum confinement theory. To obtain a more accurate analysis of confinement effects in the empty states, a novel analysis method utilizing an effective particle size for the x-ray absorption experiment, which allows a deconvolution of absorption edge broadening effects, has been introduced. Comparison of the present study to earlier studies on silicon reveals that germanium exhibits stronger quantum confinement effects than silicon. Below a critical particle size of 2.3 {+-} 0.7 nm, the band gap of germanium becomes larger than that of silicon--even if it is the opposite for bulk materials. This result agrees phenomenologically with effective mass and tight binding theories but contradicts the findings of recent pseudopotential calculations. The discrepancy between theory and experiments is attributed to the differences in the theoretical models and experimental systems. The experimentally observed structural disorder of the particle surface has to be included in the theoretical models.

  10. Preparation and Characterization of Hydrogenated Amorphous Germanium and Hydrogenated Amorphous Germanium - Thin Films.

    NASA Astrophysics Data System (ADS)

    Wu, Hai-Sheng

    Hydrogenated amorphous germanium (a-Ge:H) and germanium carbide (a-Ge_{rm 1 -x}C_{rm x} :H) films were prepared by rf sputtering of a polycrystalline Ge target in a vacuum ~4 times 10^{-7} Torr at various rf power 50 <=q P <=q 600 W (0.27-3.3 W/cm ^2), target-substrate distance 1 <=q d <=q 7 ^{''}, varying partial pressures of Ar, H_2, and C_3H_8, and flow rates f. The vibrational and opto-electronic properties such as infrared (IR) absorption, optical gap, electron -spin-resonance (ESR) signals, and conductivities vary with deposition conditions. The photoconductivity sigma_{rm ph}, in particular, was carefully monitored as a function of the deposition conditions to optimize it. The concentration of Ge-H bonds and the optical gap (E_{rm g}), generally decrease as P is increased. E_ {rm g} of the a-Ge_ {rm 1-x}C_{ rm x}:H films range from 0.85-2.3 eV. The ESR results range from 2 times 10 ^{17} to 2 times 10^{19}^ins/cm ^3. Results of annealing showed the enhanced segregation effect of Ge-C bonds >=q300^circC. The evolution of bonded hydrogen with temperature is studied. Deposition rates (R_{rm d}) of a-Ge:H films are estimated and compared. The thermalization curve for a Ge target is constructed. R _{rm d} was found to decrease exponentially with increasing d, to decrease with increasing partial pressures of H_2 and C_3H_8 and increasing flow rates. R_{ rm d} is maximal at some P_ {rm Ar} and is relatively insensitive to the substrate temperature T_{rm s}, and rises linearly with the rf power. Hydrogen incorporation markedly increased sigma_{rm ph}. The dark conductivity sigma_{rm d} and sigma_{rm ph} increase with increasing d, up to an optimal value at d ~ 6^ {''}, increase at f < 1 sccm, and increase with P and T _{rm s}. Incorporation of significant amounts of carbon sharply reduces sigma_{rm ph}. However, a small amount has little effect on sigma _{rm ph}. Although all increases in sigma_{rm ph} are significant relative to those of previously reported rf