Science.gov

Sample records for nuclear astrophysical studies

  1. Studying Nuclear Astrophysics at NIF

    SciTech Connect

    Boyd, R; Bernstein, L; Brune, C

    2009-07-01

    The National Ignition Facility's primary goal is to generate fusion energy. But the starlike conditions that it creates will also enable NIF scientists to study astrophysically important nuclear reactions. When scientists at the stadium-sized National Ignition Facility attempt to initiate fusion next year, 192 powerful lasers will direct 1.2 MJ of light energy toward a two-mm-diameter pellet of deuterium ({sup 2}H, or D) and tritium ({sup 3}H, or T). Some of that material will be gaseous, but most will be in a frozen shell. The idea is to initiate 'inertial confinement fusion', in which the two hydrogen isotopes fuse to produce helium-4, a neutron, and 17.6 MeV of energy. The light energy will be delivered to the inside walls of a hohlraum, a heavy-metal, centimeter-sized cylinder that houses the pellet. The container's heated walls will produce x rays that impinge on the pellet and ablate its outer surface. The exiting particles push inward on the pellet and compresses the DT fuel. Ultimately a hot spot develops at the pellet's center, where fusion produces {sup 4}He nuclei that have sufficient energy to propagate outward, trigger successive reactions, and finally react the frozen shell. Ignition should last several tens of picoseconds and generate more than 10 MJ of energy and roughly 10{sup 19} neutrons. The temperature will exceed 10{sup 8} K and fuel will be compressed to a density of several hundred g/cm{sup 3}, both considerably greater than at the center of the Sun. The figure shows a cutaway view of NIF. The extreme conditions that will be produced there simulate those in nuclear weapons and inside stars. For that reason, the facility is an important part of the US stockpile stewardship program, designed to assess the nation's aging nuclear stockpile without doing nuclear tests. In this Quick Study we consider a third application of NIF - using the extraordinary conditions it will produce to perform experiments in basic science. We will focus on

  2. Analytic studies in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Pizzochero, Pierre

    Five studies are presented in nuclear astrophysics, which deal with different stages of stellar evolution and which use analytic techniques as opposed to numerical ones. Two problems are described in neutrino astrophysics: the solar-neutrino puzzle is analyzed in the framework of the MSW mechanism for the enhancement of neutrino oscillations in matter; and the cooling of neutron stars is studied by calculating the neutrino emissivity from strangeness condensation. Radiative transfer is then examined as applied to SN1987A: its early spectrum and bolometric corrections are calculated by developing an analytic model which can describe both the extended nature of the envelope and the non-LTE state of the radiation field in the scattering-dominated early atmosphere; and a model-independent relation is derived between mass and kinetic energy for the hydrogen envelope of SN1987A, using only direct observations of its luminosity and photospheric velocity. Finally, an analytic approach is presented to relate the softness of the EOS of dense nuclear matter in the core of a supernova, the hydrostatic structure of such core and the initial strength of the shock wave.

  3. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-12-31

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  4. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-01-01

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  5. Underground nuclear astrophysics studies with CASPAR

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel; Couder, Manoel; Greife, Uwe; Strieder, Frank; Wiescher, Michael

    2016-02-01

    The drive of low-energy nuclear astrophysics laboratories is to study the reactions of importance to stellar burning processes and elemental production through stellar nucleosynthesis, over the energy range of astrophysical interest. As laboratory measurements approach the stellar burning window, the rapid drop off of cross-sections is a significant barrier and drives the need to lower background interference. The natural background suppression of underground accelerator facilities enables the extension of current experimental data to lower energies. An example of such reactions of interest are those thought to be sources of neutrons for the s-process, the major production mechanism for elements above the iron peak. The reactions 13C(α,n)16O and 22Ne(α,n)25Mg are the proposed initial focus of the new nuclear astrophysics accelerator laboratory (CASPAR) currently under construction at the Sanford Underground Research Facility, Lead, South Dakota

  6. Trends in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Schatz, Hendrik

    2016-06-01

    Nuclear astrophysics is a vibrant field at the intersection of nuclear physics and astrophysics that encompasses research in nuclear physics, astrophysics, astronomy, and computational science. This paper is not a review. It is intended to provide an incomplete personal perspective on current trends in nuclear astrophysics and the specific role of nuclear physics in this field.

  7. Nuclear astrophysics studies by recoil mass separators.

    NASA Astrophysics Data System (ADS)

    Gialanella, L.; Brand, K.; Campajola, L.; D'Onofrio, A.; Greife, U.; Morone, M. C.; Oliviero, G.; Ordine, A.; Roca, V.; Rolfs, C.; Romano, M.; Romoli, M.; Schmidt, S.; Schulte, W. H.; Strieder, F.; Terrasi, F.; Trautvetter, H. P.; Zahnow, D.

    1997-11-01

    It has been recently demonstrated that an accelerator mass spectrometry (AMS) system, used as a recoil separator in conjunction with a windowless gas target, can yield the high suppression factor needed to dispersively analyze radiative capture residues, with the aim of measuring cross sections in the sub-microbarn range. An experiment is underway utilizing a radioactive 7Be beam for the measurement of the cross section of the astrophysically important reaction 7Be(p, γ)8B at a center of mass energy ECM = 1 MeV. Preliminary results of this experiment are presented. The extension of the method to another reaction playing a key role in stellar evolution, i.e. 12C(α, γ)16O, requires an improvement of the angle- and momentum-acceptance of the recoil separator, the use of a jet gas target and of a specially designed low-threshold detector. The solutions proposed by a joint Italian-German project are discussed.

  8. Nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    2010-08-01

    The International Year of Astronomy 2009 (IYA2009) was declared by the 62nd General Assembly of the United Nations and was also endorsed by UNESCO. Investigations in the realms of particle and nuclear physicsmake a large contribution in the development of our ideas of the properties of the Universe. The present article discusses some problems of the evolution of the Universe, nucleosyntheses, and cosmochronology from the point of view of nuclear and particle physics. Processes occurring in the Universe are compared with the mechanisms of the production and decay of nuclei, as well as with the mechanisms of their interaction at high energies. Examples that demonstrate the potential of nuclearphysics methods for studying cosmic objects and the properties of the Universe are given. The results that come from investigations into nuclear reactions induced by beams of radioactive nuclei and which make it possible to take a fresh look at the nucleosynthesis scenario in the range at light nuclei are presented.

  9. A New ECR Ion Source for Nuclear Astrophysics Studies

    NASA Astrophysics Data System (ADS)

    Cesaratto, John M.

    2008-10-01

    The Laboratory for Experimental Nuclear Astrophysics (LENA) is a low energy facility designed to study nuclear reactions of astrophysical interest at energies which are important for nucleosysthesis. In general, these reactions have extremely small cross sections, requiring intense beams and efficient detection systems. Recently, a new, high intensity electron-cyclotron-resonance (ECR) ion source has been constructed (based on a design by Wills et al.[1]), which represents a substantial improvement in the capabilities of LENA. Beam is extracted from an ECR plasma excited at 2.45 GHz and confined by an array of permanent magnets. It has produced H^+ beams in excess of 1 mA on target over the energy range 100 - 200 keV, which greatly increases our ability to measure small cross sections. Initial measurements will focus on the ^23Na(p,γ)^24Mg reaction, which is of interest in a variety of astrophysical scenarios. The present uncertainty in the rate of this reaction is the result of an unobserved resonance expected at Elab =144 keV, which should be detectable using beams from the new ECR source. In collaboration with Arthur E. Champagne and Thomas B. Clegg, University of North Carolina, Chapel Hill and TUNL. [3pt] [1] J. S. C. Wills et al., Rev. Sci. Instrum. 69, 65 (1999).

  10. Nuclear astrophysics studies by SAMURAI spectrometer in RIKEN RIBF

    SciTech Connect

    Yoneda, K.

    2012-11-12

    SAMURAI is a spectrometer which is now being constructed at RIKEN RI Beam Factory. This spectrometer is characterized by a large angular-and momentum-acceptance enabling, for example, multi-particle coincidence measurements. Here brief descriptions of SAMURAI spectrometer and physics topics relevant to nuclear astrophysics are presented.

  11. The Nuclear Astrophysics Explorer

    NASA Technical Reports Server (NTRS)

    Matteson, J. L.; Teegarden, B. J.; Gehrels, N.; Mahoney, W. A.

    1989-01-01

    The Nuclear Astrophysics Explorer was proposed in 1986 for NASA's Explorer Concept Study Program by an international collaboration of 25 scientists from nine institutions. The one-year feasibility study began in June 1988. The Nuclear Astrophysics Explorer would obtain high resolution observations of gamma-ray lines, E/Delta E about 1000, at a sensitivity of about 0.000003 ph/sq cm s, in order to study fundamental problems in astrophysics such as nucleosynthesis, supernovae, neutron star and black-hole physics, and particle acceleration and interactions. The instrument would operate from 15 keV to 10 Mev and use a heavily shielded array of nine cooled Ge spectrometers in a very low background configuration. Its 10 deg FWHM field of view would contain a versatile coded mask system which would provide two-dimensional imaging with 4 deg resolution, one-dimensional imaging with 2 deg resolution, and efficiendt measurements of diffuse emission. An unshielded Ge spectrometer would obtain wide-field measurements of transient gamma-ray sources. The earliest possible mission would begin in 1995.

  12. Nuclear Astrophysics with LUNA

    NASA Astrophysics Data System (ADS)

    Broggini, Carlo

    2016-04-01

    One of the main ingredients of nuclear astrophysics is the knowledge of the thermonuclear reactions which power the stars and synthesize the chemical elements. Deep underground in the Gran Sasso Laboratory the cross section of the key reactions of the proton-proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle have been measured right down to the energies of astrophysical interest. The main results obtained during the 'solar' phase of LUNA are reviewed and their influence on our understanding of the properties of the neutrino and of the Sun is discussed. We then describe the current LUNA program mainly devoted to the study of the nucleosynthesis of the light elements in AGB stars and Classical Novae. Finally, the future of LUNA towards the study of helium and carbon burning with a new 3.5 MV accelerator is outlined.

  13. CASPAR - Nuclear Astrophysics Underground

    NASA Astrophysics Data System (ADS)

    Strieder, Frank; Robertson, Daniel; Couder, Manoel; Greife, Uwe; Wells, Doug; Wiescher, Michael

    2015-10-01

    The work of the LUNA Collaboration at the Laboratori Nationali del Gran Sasso demonstrated the research potential of an underground accelerator for the field of nuclear astrophysics. Several key reactions could be studied at LUNA, some directly at the Gamow peak for solar hydrogen burning. The CASPAR (Compact Accelerator System for Performing Astrophysical Research) Collaboration will implement a high intensity 1 MV accelerator at the Sanford Underground Research Facility (SURF) and overcome the current limitation at LUNA. The installation of the accelerator in the recently rehabilitated underground cavity at SURF started in Summer 2015 and first beam should be delivered by the end of the year. This project will primarily focus on the neutron sources for the s-process, e.g. 13C(α , n) 16O and 22Ne(α , n) 25Mg , and lead to unprecedented measurements compared to previous studies. A detailed overview of the science goals of CASPAR will be presented.

  14. Low-energy nuclear reaction studies with RI beams in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Kubono, S.; Teranishi, T.; Kato, S.

    2003-07-01

    After a brief discussion on the recent development in nuclear astrophysics, two reaction studies of typical astrophysical reactions at low energies where nuclear reactions play the main contributions to the nucleosynthesis in the universe, are discussed. One is the proton capture reaction, 11C(p, γ)12N, studied by the direct method using a 11C beam produced with a new low-energy RIB separator CRIB at CNS, Japan. The second one is the 13C(α, n)16O rearrangement reaction, which is believed to be the main neutron source for the s-process at low temperatures, investigated by an indirect method using the direct α-transfer reaction 13C(6Li, d)17O. Detailed investigations are suggested on the nuclear reactions relevant.

  15. LUNA: Nuclear astrophysics underground

    SciTech Connect

    Best, A.

    2015-02-24

    Underground nuclear astrophysics with LUNA at the Laboratori Nazionali del Gran Sasso spans a history of 20 years. By using the rock overburden of the Gran Sasso mountain chain as a natural cosmic-ray shield very low signal rates compared to an experiment on the surface can be tolerated. The cross sectons of important astrophysical reactions directly in the stellar energy range have been successfully measured. In this proceeding we give an overview over the key accomplishments of the experiment and an outlook on its future with the expected addition of an additional accelerator to the underground facilities, enabling the coverage of a wider energy range and the measurement of previously inaccessible reactions.

  16. Nuclear Astrophysics and Structure Studies Using Low-energy RI Beams at CRIB

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Hashimoto, T.; Hayakawa, S.; Binh, D. N.; Kahl, D.; Kubono, S.

    2010-05-01

    CRIB (CNS Radioactive Ion Beam separator) is a low-energy RI beam separator at the Center for Nuclear Study (CNS) of the University of Tokyo. Using the RI beams at CRIB, Many measurements on proton and alpha resonance scatterings, (α,p) reactions, and others were peformed in recent years, mainly for studying astrophysical reactions and exotic nuclear structure. Among them, the results on the 7Be+p and 7Li+α resonance scatterings are presented.

  17. Nuclear and particle astrophysics

    SciTech Connect

    Glendenning, N.K.

    1990-10-31

    We discuss the physics of matter that is relevant to the structure of compact stars. This includes nuclear, neutron star matter and quark matter and phase transitions between them. Many aspects of neutron star structure and its dependance on a number of physical assumptions about nuclear matter properties and hyperon couplings are investigated. We also discuss the prospects for obtaining constraints on the equation of state from astrophysical sources. Neuron star masses although few are known at present, provide a very direct constraint in as much as the connection to the equation of state involves only the assumption that Einstein's general of theory of relativity is correct at the macroscopic scale. Supernovae simulations involve such a plethora of physical processes including those involved in the evolution of the precollapse configuration, not all of them known or understood, that they provide no constraint at the present time. Indeed the prompt explosion, from which a constraint had been thought to follow, is now believed not to be mechanism by which most, if any stars, explode. In any case the nuclear equation of state is but one of a multitude on uncertain factors, and possibly one of the least important. The rapid rotation of pulsars is also discussed. It is shown that for periods below a certain limit it becomes increasingly difficult to reconcile them with neutron stars. Strange stars are possible if strange matter is the absolute ground state. We discuss such stars and their compatibility with observation. 112 refs., 37 figs., 6 tabs.

  18. Nuclear Astrophysical studies using low-energy RI beams at CRIB

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Wakabayashi, Y.; Hayakawa, S.; Binh, D. N.; Kahl, D.; Kurihara, Y.; Kubono, S.; Teranishi, T.; He, J. J.; Kwon, Y. K.; Nishimura, S.; Togano, Y.; Iwasa, N.; Niikura, M.; Khiem, L. H.

    2009-05-01

    CRIB (CNS Radioactive Ion Beam separator) is a low-energy RI beam separator at the Center for Nuclear Study (CNS) of the University of Tokyo, used for various studies covering nuclear-astrophysical topics. An application of the RI beam at CRIB for the astrophysical studies is a new measurement of the proton resonance scattering on 7Be. The measurement was performed up to the excitation energy of 6.8 MeV, ans the excitation function above 3.5 MeV was successfully measured for the first time, providing important information about the reaction rate of 7Be(p,γ)8B, which is the key reaction in the solar 8B neutrino production. A preliminary result of the 7Be+p experiment is presented.

  19. Nuclear Astrophysical studies using low-energy RI beams at CRIB

    SciTech Connect

    Yamaguchi, H.; Wakabayashi, Y.; Hayakawa, S.; Binh, D. N.; Kahl, D.; Kurihara, Y.; Kubono, S.; Niikura, M.; Teranishi, T.; He, J. J.; Kwon, Y. K.; Nishimura, S.; Togano, Y.; Iwasa, N.; Khiem, L. H.

    2009-05-04

    CRIB (CNS Radioactive Ion Beam separator) is a low-energy RI beam separator at the Center for Nuclear Study (CNS) of the University of Tokyo, used for various studies covering nuclear-astrophysical topics. An application of the RI beam at CRIB for the astrophysical studies is a new measurement of the proton resonance scattering on {sup 7}Be. The measurement was performed up to the excitation energy of 6.8 MeV, ans the excitation function above 3.5 MeV was successfully measured for the first time, providing important information about the reaction rate of {sup 7}Be(p,{gamma}){sup 8}B, which is the key reaction in the solar {sup 8}B neutrino production. A preliminary result of the {sup 7}Be+p experiment is presented.

  20. Advances in instrumentation for nuclear astrophysics

    SciTech Connect

    Pain, S. D.

    2014-04-15

    The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentation necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.

  1. Underground nuclear astrophysics: Why and how

    NASA Astrophysics Data System (ADS)

    Best, A.; Caciolli, A.; Fülöp, Zs.; Gyürky, Gy.; Laubenstein, M.; Napolitani, E.; Rigato, V.; Roca, V.; Szücs, T.

    2016-04-01

    The goal of nuclear astrophysics is to measure cross-sections of nuclear physics reactions of interest in astrophysics. At stars temperatures, these cross-sections are very low due to the suppression of the Coulomb barrier. Cosmic-ray-induced background can seriously limit the determination of reaction cross-sections at energies relevant to astrophysical processes and experimental setups should be arranged in order to improve the signal-to-noise ratio. Placing experiments in underground sites, however, reduces this background opening the way towards ultra low cross-section determination. LUNA (Laboratory for Underground Nuclear Astrophysics) was pioneer in this sense. Two accelerators were mounted at the INFN National Laboratories of Gran Sasso (LNGS) allowing to study nuclear reactions close to stellar energies. A summary of the relevant technology used, including accelerators, target production and characterisation, and background treatment is given.

  2. Underground Nuclear Astrophysics at LUNA

    SciTech Connect

    Junker, Matthias

    2008-01-24

    Nuclear cross sections play a key role in understanding stellar evolution and elemental synthesis. Also in the field of astroparticle physics precise knowledge on thermonuclear cross sections is needed to extract the particle properties from the experimental data. While it is desirable to directly measure the relevant cross sections in the energy range of interest for the specific stellar environment this proves to be difficult, if not impossible, due to the effect of the Coulomb barrier, which causes an exponential drop of the cross sections at stellar energies. Consequently direct measurements are hampered by low counting rates and background caused by cosmic rays and environmental radioactivity. In addition background induced by the beam or the target itself can disturb the measurements.In this contribution I will discuss some of the reactions studied by LUNA in the past years to illustrate important aspects underground nuclear astrophysics.

  3. Nuclear astrophysics at DRAGON

    SciTech Connect

    Hager, U.

    2014-05-02

    The DRAGON recoil separator is located at the ISAC facility at TRIUMF, Vancouver. It is designed to measure radiative alpha and proton capture reactions of astrophysical importance. Over the last years, the DRAGON collaboration has measured several reactions using both radioactive and high-intensity stable beams. For example, the 160(a, g) cross section was recently measured. The reaction plays a role in steady-state helium burning in massive stars, where it follows the 12C(a, g) reaction. At astrophysically relevant energies, the reaction proceeds exclusively via direct capture, resulting in a low rate. In this measurement, the unique capabilities of DRAGON enabled determination not only of the total reaction rates, but also of decay branching ratios. In addition, results from other recent measurements will be presented.

  4. Computational Infrastructure for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Smith, M. S.; Lingerfelt, E. J.; Scott, J. P.; Nesaraja, C. D.; Hix, W. R.; Bardayan, D. W.; Blackmon, J. C.; Chae, K.; Guidry, M. W.; Hard, C. C.; Sharp, J. E.; Kozub, R. L.; Meyer, R. A.

    2004-12-01

    The Computational Infrastructure for Nuclear Astrophysics is a platform-independent, online suite of computer codes developed by the ORNL Nuclear Data Project that makes a rapid connection between laboratory nuclear physics results and astrophysical models. It enables users to evaluate cross sections, process them into thermonuclear reaction rates, and parameterize (with a few percent accuracy) these rates that vary by up to 30 orders of magnitude over the temperatures of interest. Users can then properly format these rates for input into astrophysical computer simulations, create and manipulate libraries of rates, as well as run and visualize sample post-processing nucleosynthesis calculations. For example, we have developed animated nuclide charts that show how predicted abundances (represented by a user-defined color scale) change in time. With this unique suite, users can within a very short time quantify the astrophysical impact of a newly measured or calculated cross section, or a newly created customized reaction rate library, and then document and share their results with the scientific community. The suite has a straightforward interface with a "Windows Wizard" motif whereby users progress through complicated calculations in a step-by-step fashion. Users can upload their own files for processing and save their work on our server, as well as work with files that other users wish to share. These tools are currently being used to investigate novae and X-ray bursts. The suite is available through nucastrodata.org, a website that also hyperlinks available nuclear data sets relevant for nuclear astrophysics research. New features are continually being added to this software, which is funded by the U.S. Department of Energy Low Energy Nuclear Physics and Nuclear Data Programs. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  5. Indirect methods in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.; Shubhchintak; Mukhamedzhanov, A.; Kadyrov, A. S.; Kruppa, A.; Pang, D. Y.

    2016-04-01

    We discuss recent developments in indirect methods used in nuclear astrophysics to determine the capture cross sections and subsequent rates of various stellar burning processes, when it is difficult to perform the corresponding direct measurements. We discuss in brief, the basic concepts of Asymptotic Normalization Coefficients, the Trojan Horse Method, the Coulomb Dissociation Method, (d,p), and charge-exchange reactions.

  6. Development of the GEM-MSTPC for studies of astrophysical nuclear reaction rates

    SciTech Connect

    Yamaguchi, K.; Arai, I.; Ishiyama, H.; Watanabe, Y. X.; Tanaka, M. H.; Miyatake, H.; Hirayama, Y.; Imai, N.; Fuchi, Y.; Jeong, S. C.; Nomura, T.; Mizoi, Y.; Das, S. K.; Fukuda, T.; Hashimoto, T.; Yamaguchi, H.; Kubono, S.; Hayakawa, S.; Makii, H.; Mitsuoka, S.

    2010-08-12

    We have developed an active-target type gas-detector, a Gas Electron Multiplier Multiple-Sampling and Tracking Proportional Chamber (GEM-MSTPC) operating with low-pressure He-base mixed gas, where He is used as a target for studies of astrophysical nuclear reaction rates. Different kinds of 400 {mu}m thick GEMs were examined. The gain stability was examined with a configuration of GEMs of 400 {mu}m in thickness fabricated in different ways, against the injection rate of low-energy heavy ions of 10{sup 5} particles per second. The gain of GEM with Cu electrodes coated by Au was observed to be stable up to the injection rate of 10{sup 5} particles per second.

  7. Transfer reactions in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bardayan, D. W.

    2016-08-01

    To a high degree many aspects of the large-scale behavior of objects in the Universe are governed by the underlying nuclear physics. In fact the shell structure of nuclear physics is directly imprinted into the chemical abundances of the elements. The tranquility of the night sky is a direct result of the relatively slow rate of nuclear reactions that control and determines a star’s fate. Understanding the nuclear structure and reaction rates between nuclei is vital to understanding our Universe. Nuclear-transfer reactions make accessible a wealth of knowledge from which we can extract much of the required nuclear physics information. A review of transfer reactions for nuclear astrophysics is presented with an emphasis on the experimental challenges and opportunities for future development.

  8. Nuclear Astrophysics at DANCE

    SciTech Connect

    Reifarth, R.; Bredeweg, T.A.; Esch, E.-I.; Haight, R.C.; Kronenberg, A.; O'Donnell, J.M.; Rundberg, R.S.; Schwantes, J.M.; Ullmann, J.L.; Vieira, D.J.; Wouters, J.M.; Alpizar-Vicente, A.; Hatarik, R.; Greife, U.

    2005-05-24

    One of the most interesting nuclear physics challenges is obtaining a detailed understanding of the nucleosynthesis processes of the elements. Knowledge about the stellar sites, and how they are governed by stellar evolution and cosmology are crucial in understanding the overall picture. Information on reaction rates for neutron- and charged-particle-induced reactions have a direct impact on existing stellar models. Except for the stable isotopes, very few neutron-induced reactions in the energy range of interest have been measured to date. DANCE measurements on stable and unstable isotopes will provide many of the missing key reactions that are needed to understand the nucleosynthesis of the heavy elements.

  9. Nuclear Astrophysics at DANCE

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Alpizar-Vicente, A.; Hatarik, R.; Bredeweg, T. A.; Esch, E.-I.; Greife, U.; Haight, R. C.; Kronenberg, A.; O'Donnell, J. M.; Rundberg, R. S.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.

    2005-05-01

    One of the most interesting nuclear physics challenges is obtaining a detailed understanding of the nucleosynthesis processes of the elements. Knowledge about the stellar sites, and how they are governed by stellar evolution and cosmology are crucial in understanding the overall picture. Information on reaction rates for neutron- and charged-particle-induced reactions have a direct impact on existing stellar models. Except for the stable isotopes, very few neutron-induced reactions in the energy range of interest have been measured to date. DANCE measurements on stable and unstable isotopes will provide many of the missing key reactions that are needed to understand the nucleosynthesis of the heavy elements.

  10. Nuclear Data on Unstable Nuclei for Astrophysics

    NASA Astrophysics Data System (ADS)

    Smith, Michael; Bardayan, Daniel; Blackmon, Jeffery; Nesaraja, Caroline; Lingerfelt, Eric; Scott, Jason; Hix, W. Raphael; Chae, Kyungyuk; Ma, Zhanwen; Guidry, Michael; Kozub, Raymond; Sharp, Jacob; Meyer, Richard

    2004-10-01

    The sequence of nuclear reactions occurring in supernova explosions is believed to involve thousands of neutron-rich nuclei, and a knowledge of the properties of these nuclei is essential to calculating the element synthesis in these cataclysmic events. Similarly, information on proton-rich nuclei is needed to understand nova explosions occurring on the surfaces of white dwarf stars and X-ray bursts occurring on the surfaces of neutron stars. Recent measurements with radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF) and elsewhere have prompted the evaluation of a number of reactions involving unstable nuclei needed for stellar explosion studies. Recent evaluation efforts will be presented. To ensure that the latest relevant experimental and theoretical nuclear physics results are rapidly incorporated into astrophysical models, we have created a new computational infrastructure for nuclear astrophysics data. Available on-line at www.nucastrodata.org, a simple point-and-click interface guides users to convert evaluated nuclear reaction and structure information as input into thermonuclear reaction rates in a variety of output formats. It also enables users to combine a new reaction rate with an existing library, as well as to create, merge, store, document, and share custom libraries. Future capabilities will include tools to carry out data evaluations and to calculate and visualize the synthesis of elements in astrophysical environments. The site www.nucastrodata.org also features a comprehensive set of links (over 60 so far) to nuclear datasets around the world which are important for nuclear astrophysics studies.

  11. Nuclear astrophysics of supernovae

    SciTech Connect

    Cooperstein, J.

    1988-01-01

    In this paper, I'll give a general introduction to Supernova Theory, beginning with the presupernova evolution and ending with the later stages of the explosion. This will be distilled from a colloquium type of talk. It is necessary to have the whole supernova picture in one's mind's eye when diving into some of its nooks and crannies, as it is quite a mess of contradictory ingredients. We will have some discussion of supernova 1987a, but will keep our discussion more general. Second, we'll look at the infall and bounce of the star, seeing why it goes unstable, what dynamics it follows as it collapses, and how and why it bounces back. From there, we will go on to look at the equation of state (EOS) in more detail. We'll consider the cases T = 0 and T > 0. We'll focus on /rho/ < /rho//sub 0/, and then /rho/ > /rho//sub 0/ and the EOS of neutron stars, and whether or not they contain cores of strange matter. There are many things we could discuss here and not enough time. If I had more lectures, the remaining time would focus on two more questions of special interest to nuclear physicists: the electron capture reactions and neutrino transport. If time permitted, we'd have some discussion of the nucleosynthetic reactions in the explosion's debris as well. However, we cannot cover such material adequately, and I have chosen these topics because they are analytically tractable, pedagogically useful, and rather important. 23 refs., 14 figs., 3 tabs.

  12. Colliding laser-produced plasmas: a new tool for nuclear astrophysics studies

    NASA Astrophysics Data System (ADS)

    Mascali, D.; Tudisco, S.; Bonanno, A.; Gambino, N.; Ivanovski, S.; Anzalone, A.; Gammino, S.; Miracoli, R.; Musumeci, F.

    2010-10-01

    Laser-generated plasmas, formed when a high power pulsed laser is focused onto a solid target, have been used since the 1960s. At higher power densities (>109-1010 W/cm2), such non-equilibrium plasmas expand in vacuum with supersonic velocities. Hydrodynamic simulations and experimental data show that at the beginning of the expansion the plasma temperature may reach several hundreds of eV, while the density is in the order of 1016 cm-3 or higher. Colliding laser-produced plasmas have constituted a largely unexplored and unexploited research domain until quite recent times, either for applications in materials or energy science. In this article, we propose the use of colliding laser-produced plasmas as an unique opportunity for nuclear astrophysics studies. We present a series of calculations about fusion reaction rates in laser-produced plasmas where the electron screening puzzle is taken into account. The numerical simulations have been carried out using the hydro code ZEUSMP2, while Monte Carlo codes have been used to simulate the fusion reaction rates according to the plume density and temperature evolution predicted by the simulations. We think that this type of investigation can be important in understanding the efficiency of nuclear reaction rates during the red giant phase of stellar evolution, as a significant part of the produced energy is dissipated in the low-density radiative envelope by shock waves.

  13. Reaction models in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Descouvemont, Pierre

    2016-05-01

    We present different reaction models commonly used in nuclear astrophysics, in particular for the nucleosynthesis of light elements. Pioneering works were performed within the potential model, where the internal structure of the colliding nuclei is completely ignored. Significant advances in microscopic cluster models provided the first microscopic description of the 3He(α,&gamma)7 Be reaction more than thirty years ago. In this approach, the calculations are based on an effective nucleon-nucleon interaction, but the cluster approximation should be made to simplify the calculations. Nowadays, modern microscopic calculations are able to go beyond the cluster approximation, and aim at finding exact solutions of the Schrödinger equation with realistic nucleon-nucleon interactions. We discuss recent examples on the d+d reactions at low energies.

  14. EMPIRE: A code for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Palumbo, A.

    2016-01-01

    The nuclear reaction code EMPIRE is presented as a useful tool for nuclear astrophysics. EMPIRE combines a variety of the reaction models with a comprehensive library of input parameters providing a diversity of options for the user. With exclusion of the direct- semidirect capture all reaction mechanisms relevant to the nuclear astrophysics energy range of interest are implemented in the code. Comparison to experimental data show consistent agreement for all relevant channels.

  15. Nuclear astrophysics at the east drip line

    NASA Astrophysics Data System (ADS)

    Kubono, S.; Teranishi, T.; Notani, M.; Yamaguchi, H.; Saito, A.; He, J. J.; Wakabayashi, Y.; Fujikawa, H.; Amadio, G.; Baba, H.; Fukuchi, T.; Shimoura, S.; Michimasa, S.; Nishimura, S.; Nishimura, M.; Gono, Y.; Odahara, A.; Kato, S.; Moon, J. Y.; Lee, J. H.; Kwon, Y. K.; Lee, C. S.; Hahn, K. I.; Fülöp, Zs.; Guimar Aes, V.; Lichtenthaler, R.

    2006-03-01

    In the first half of the paper, the nuclear astrophysics activities in Japan, especially in experimental studies are briefly overviewed. A variety of beams have been developed and used for nuclear astrophysics experiments in Japan. The activities include the RI beam facilities at low energies by the in-flight method at the Center for Nuclear Study (CNS), University of Tokyo and by the ISOL-based method at the JAERI tandem facility, and the RI beam facility at intermediate energies at RIKEN. Other activities include a study of the 12C(α,γ)16O reaction exclusively at the tandem accelerator at the Kyushu University, and studies at the neutron facility at Tokyo Institute of Technology and at the photon facility at AIST (Sanso-ken). Research opportunities in the future at RIBF, J-PARC, and SPRING8 are also discussed. A discussion on the research activities at CNS has been specifically extended in the latter half, including various possibilities in collaboration at the RI beam factory at RIKEN.

  16. Fundamental Interactions, Nuclear Masses, Astrophysics, and QCD

    NASA Astrophysics Data System (ADS)

    Gagliardi, C. A.

    2008-01-01

    During his long and varied career, Robert Tribble has made important contributions in many areas of nuclear physics. He has set new limits on the existence of second-class currents, lepton-flavor violation, and right-handed interactions. He optimized the use of the (4He,8He) reaction to determine nuclear masses and study charge-dependent effects in nuclei. He has developed a new indirect procedure to determine astrophysical reaction rates and applied it to study important nuclear reactions that occur in our sun, in massive stars, and in novae. He has explored anti-quark distributions in nucleons and nuclei, and the polarization of gluons in the nucleon. A brief overview of Bob Tribble's many accomplishments is presented.

  17. Comparison of two HPGe counting system used in activation studies for nuclear astrophysics

    SciTech Connect

    Szücs, T.; Kiss, G. G.; Fülöp, Zs.

    2014-05-09

    The activation method is a widely used technique to measure charged-particle induced cross sections for astrophys-ical applications. This two step technique is used for example to measure alpha-induced cross sections in γ-process related studies. The first step – in which a target is irradiated with a proton/alpha beam – is followed by the determination of the produced activity. Especially in p-process related studies in the heavier mass range, the produced radioactive nuclei decays mainly with electron-capture, resulting intense x-rays. The activity of the reaction products hence can be determine via the counting of these x-rays, and not only by counting the usually much weaker γ-rays. In this paper we compare the minimum detectable activity (MDA) of two High Purity Germanium (HPGe) detectors used for x- and γ-ray counting in activation experiments.

  18. Nuclear data on unstable nuclei for astrophysics

    NASA Astrophysics Data System (ADS)

    Smith, Michael S.; Meyer, Richard A.; Bardayan, Daniel W.; Blackmon, Jeffery C.; Chae, Kyungyuk; Guidry, Michael W.; Hix, W. Raphael; Kozub, R. L.; Lingerfelt, Eric J.; Ma, Zhanwen; Scott, Jason P.

    2004-12-01

    Recent measurements with radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF) have prompted the evaluation of a number of reactions involving unstable nuclei needed for stellar explosion studies. We discuss these evaluations, as well as the development of a new computational infrastructure to enable the rapid incorporation of the latest nuclear physics results in astrophysics models. This infrastructure includes programs that simplify the generation of reaction rates, manage rate databases, and visualize reaction rates, all hosted at a new website http://www.nucastrodata.org.

  19. Recent Nuclear Astrophysics Data Activities at ORNL

    NASA Astrophysics Data System (ADS)

    Smith, Michael S.; Bardayan, Daniel W.; Blackmon, Jeffery C.; Meyer, Richard A.; Chae, Kyungyuk; Guidry, Michael W.; Hix, W. Raphael; Lingerfelt, Eric J.; Ma, Zhanwen; Scott, Jason P.; Kozub, Raymond L.

    2005-12-01

    Recent measurements with radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF) have prompted the evaluation of a number of reactions involving unstable nuclei needed for stellar explosion studies. We discuss these evaluations, as well as the development of a new computational infrastructure to enable the rapid incorporation of the latest nuclear physics results in astrophysics models. This infrastructure includes programs that simplify the generation of reaction rates, manage rate databases, and visualize reaction rates, all hosted at a new website .

  20. Recoil Separators for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Blackmon, J. C.

    2004-10-01

    Hydrogen and helium capture reactions are important in many astrophysical environments. Measurements in inverse kinematics using recoil separators have demonstrated a particularly sensitive technique for studying low-yield capture reactions.(M. S. Smith, C. E. Rolfs, and C. A. Barnes, Nucl. Instrum. Meth. Phys. Res. A306) (1991) 233. This approach allows a low background rate to be achieved with a high detection efficiency (about 50%) for the particles of interest using a device with only modest acceptance. Recoil separators using a variety of ion-optic configurations have been installed at numerous accelerator facilities in the past decade and have been used to measure, for example, alpha capture reactions using stable beams(D. Rogalla et al.), Eur. Phys. J. 6 (1999) 471. and proton capture reactions using radioactive ion beams.(S. Bishop et al.), Phys. Rev. Lett. 90 (2003) 162501. Measurements in inverse kinematics are the only viable means for studying reactions on short-lived nuclei that are crucial for understanding stellar explosions, and a recoil separator optimized for the measurement of capture reactions with radioactive ion beams figures prominently into the design of the low energy experimental area at the Rare Isotope Accelerator (RIA). The operational requirements for such a device will be outlined, and recoil separator designs and characteristics will be presented.

  1. PREFACE: Nuclear Physics in Astrophysics III

    NASA Astrophysics Data System (ADS)

    Bemmerer, D.; Grosse, E.; Junghans, A. R.; Schwengner, R.; Wagner, A.

    2008-01-01

    The Europhysics Conference `Nuclear Physics in Astrophysics III' (NPA3) took place from 26 31 March 2007 in Dresden, Germany, hosted by Forschungszentrum Dresden-Rossendorf. The present special issue of Journal of Physics G: Nuclear and Particle Physics contains all peer-reviewed contributions to the proceedings of this conference. NPA3 is the third conference in the Nuclear Physics in Astrophysics series of conferences devoted to the interplay between nuclear physics and astrophysics. The first and second editions of the series were held in 2002 and 2005 in Debrecen, Hungary. NPA3 has been organized under the auspices of the Nuclear Physics Board of the European Physical Society as its XXI Divisional Conference. The conference marks the 50th anniversary of the landmark paper B2FH published in 1957 by E M Burbidge, G R Burbidge, W A Fowler and F Hoyle. A public lecture by Claus Rolfs (Ruhr-Universität Bochum, Germany) commemorated the progress achieved since 1957. NPA3 aimed to bring together experimental and theoretical nuclear physicists, astrophysicists and astronomers to address the important part played by nuclear physics in current astrophysical problems. A total of 130 participants from 71 institutions in 26 countries attended the conference, presenting 33 invited and 38 contributed talks and 25 posters on six subject areas. The astrophysical motivation and the nuclear tools employed to address it are highlighted by the titles of the subject areas: Big Bang Nucleosynthesis Stellar Nucleosynthesis and Low Cross Section Measurement Explosive Nucleosynthesis and Nuclear Astrophysics with Photons Nuclei far from Stability and Radioactive Ion Beams Dense Matter in Neutron Stars and Relativistic Nuclear Collisions Neutrinos in Nuclear Astrophysics The presentations and discussions proved that Nuclear Astrophysics is a truly interdisciplinary subject. The remarkable progress in astronomical observations achieved in recent years is matched by advances in

  2. The Trojan Horse Method in Nuclear Astrophysics

    SciTech Connect

    Spitaleri, C.

    2010-11-24

    The Trojan Horse Method allows for the measurements of cross section in nuclear reaction between charged particles at astrophysical energies. The basic features of the method are discussed in the non resonant reactions case. A review of applications aimed to extract the bare nucleus astrophysical S{sub b}(E) factor for two body processes are presented. The information on electron screening potential U{sub e} were obtained from comparison with direct experiments of fusion reactions.

  3. A laser application to nuclear astrophysics

    SciTech Connect

    Barbui, M.; Hagel, K.; Schmidt, K.; Zheng, H.; Burch, R.; Barbarino, M.; Natowitz, J. B.; Bang, W.; Dyer, G.; Quevedo, H. J.; Gaul, E.; Bernstein, A. C.; Donovan, M.; Bonasera, A.; Kimura, S.; Mazzocco, M.; Consoli, F.; De Angelis, R.; Andreoli, P.; Ditmire, T.

    2014-05-09

    In the last decade, the availability in high-intensity laser beams capable of producing plasmas with ion energies large enough to induce nuclear reactions has opened new research paths in nuclear physics. We studied the reactions {sup 3}He(d,p){sup 4}He and d(d,n){sup 3}He at temperatures of few keV in a plasma, generated by the interaction of intense ultrafast laser pulses with molecular deuterium or deuterated-methane clusters mixed with {sup 3}He atoms. The yield of 14.7 MeV protons from the {sup 3}He(d,p){sup 4}He reaction was used to extract the astrophysical S factor. Results of the experiment performed at the Center for High Energy Density Science at The University of Texas at Austin will be presented.

  4. Nuclear and High-Energy Astrophysics

    NASA Astrophysics Data System (ADS)

    Weber, Fridolin

    2003-10-01

    There has never been a more exciting time in the overlapping areas of nuclear physics, particle physics and relativistic astrophysics than today. Orbiting observatories such as the Hubble Space Telescope, Rossi X-ray Timing Explorer (RXTE), Chandra X-ray satellite, and the X-ray Multi Mirror Mission (XMM) have extended our vision tremendously, allowing us to see vistas with an unprecedented clarity and angular resolution that previously were only imagined, enabling astrophysicists for the first time ever to perform detailed studies of large samples of galactic and extragalactic objects. On the Earth, radio telescopes (e.g., Arecibo, Green Bank, Parkes, VLA) and instruments using adaptive optics and other revolutionary techniques have exceeded previous expectations of what can be accomplished from the ground. The gravitational wave detectors LIGO, LISA VIRGO, and Geo-600 are opening up a window for the detection of gravitational waves emitted from compact stellar objects such as neutron stars and black holes. Together with new experimental forefront facilities like ISAC, ORLAND and RIA, these detectors provide direct, quantitative physical insight into nucleosynthesis, supernova dynamics, accreting compact objects, cosmic-ray acceleration, and pairproduction in high energy sources which reinforce the urgent need for a strong and continuous feedback from nuclear and particle theory and theoretical astrophysics. In my lectures, I shall concentrate on three selected topics, which range from the behavior of superdense stellar matter, to general relativistic stellar models, to strange quark stars and possible signals of quark matter in neutron stars.

  5. FOREWORD: Nuclear Physics in Astrophysics V

    NASA Astrophysics Data System (ADS)

    Auerbach, Naftali; Hass, Michael; Paul, Michael

    2012-02-01

    the conference dinner banquet at the Dan hotel. An excursion to the 'Red Canyon' in the Eilat Mountains on Wednesday afternoon was one of the social highlights of the conference. A total number of 140 scientists attended NPA5 and about 30 accompanying persons; about 25% of these were young participants (less than 36 years old). 23 participants were from Israel, and 27 were from outside of Europe (including two from Africa). The subjects covered at the conference in Eilat concentrated mainly on the spirit of the original idea - to probe experimental and theoretical activity in nuclear structure and reactions that is directly related to the physics of the Universe. There were also sessions of general interest in astrophysics, as well as a poster session on Tuesday evening featuring 40 posters. The topics included: Nuclear Structure - Theory and Experiment Big-Bang Nucleosynthesis and Formation of First Stars Stellar Reactions and Solar Neutrinos Explosive Nucleosynthesis, Radioactive Beams and Exotic Nuclei-New Facilities and Future Possibilities for Astrophysics Neutrino Physics - the Low and High-Energy Frontiers Rare events, Dark Matter, Double beta-decay, Symmetries The conference started with an excellent exposé of the progress made in the discovery of super-heavy elements and the study of their properties. The progress in this field is enormous, and this subject should be communicated to more general audiences. The role of the nuclear equation of state and of the precise determination of nuclear masses in nucleosynthesis was emphasized in several talks. The role of neutrinos in astrophysics was discussed extensively in several sessions. One of the highlights of this was the presentation about the IceCube and DeepCore detectors operating deep in the Antarctic ice. These facilities are able to detect cosmogenic neutrinos in a wide energy range, from 10 GeV to 1010 GeV. The subject of solar neutrinos was discussed in a number of talks. Topics related to properties

  6. Current progress of nuclear astrophysics experiments at CIAE

    SciTech Connect

    Liu Weiping; Li Zhihong; Su Jun; Bai Xixiang; Wang Youbao; Lian Gang; Guo Bing; Zeng Sheng; Yan Shengquan; Wang Baoxiang; Shu Nengchuan; Chen Yongshou

    2006-07-12

    This paper described current progress of nuclear astrophysical studies using the unstable ion beam facility GIRAFFE. We measured the angular distributions for some low energy reactions, such as 11C(d,n)12N, 8Li(d,p)9Li and 17F(d,n)18Ne in inverse kinematics, and indirectly derived the astrophysical S-factors or reaction rates of 11C(p,{gamma})12N, 8Li(n,{gamma})9Li, 8B(p,{gamma})9C at astrophysically relevant energies.

  7. Nuclear astrophysics and the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Spitaleri, C.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A. M.; Pizzone, R. G.

    2016-04-01

    In this review, we discuss the new recent results of the Trojan Horse Method that is used to determine reaction rates for nuclear processes in several astrophysical scenarios. The theory behind this technique is shortly presented. This is followed by an overview of some new experiments that have been carried out using this indirect approach.

  8. Advancing Underground Nuclear Astrophysics with CASPAR

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel; Couder, Manoel; Greife, Uwe; Strieder, Frank; Wells, Doug; Wiescher, Michael

    2015-04-01

    The advancement of experimental nuclear astrophysics techniques and the requirement of astrophysical network models for further nuclear data over greater energy ranges, has led to the requirement for the better understanding of nuclear reactions in stellar burning regimes. For those reactions of importance to stellar burning processes and elemental production through stellar nucleosynthesis, the energy range of astrophysical interest is always problematic to probe. As reaction measurements approach the burning window of interest, the rapid drop off in cross-section hampers laboratory investigation. The natural background suppression of underground accelerator facilities enables the extension of current experimental data to lower energies. An example of such reactions of interest are those thought to be sources of neutrons for the s-process, the major production mechanism for elements above the iron peak. The reactions 13 C(α,n)16 O and 22 Ne(α,n)25 Mg are the proposed initial focus of the new nuclear astrophysics accelerator laboratory (CASPAR) currently under construction at the Sanford Underground Research Facility, Lead, SD. With thanks to funding provided by South Dakota Science and Technology Authority and the NSF under Grant Number PHY-1419765.

  9. Selected topics in nuclear astrophysics

    SciTech Connect

    Martinez-Pinedo, Gabriel

    2013-06-10

    In this lectures after a brief introduction to stellar reaction rates and its implementation in nuclear networks, I discuss the nuclear physics aspects of core collapse supernova and explosive nucleosynthesis and their significance for the production of heavy elements by the rapid neutron capture process and potentially also by the recently discovered {nu}p process.

  10. Nuclear Data for Astrophysics: Resources, Challenges, Strategies, and Software Solutions

    SciTech Connect

    Smith, Michael Scott; Lingerfelt, Eric J; Nesaraja, Caroline D; Hix, William Raphael; Roberts, Luke F; Koura, Hiroyuki; Fuller, George M; Tytler, David

    2008-01-01

    One of the most exciting utilizations of nuclear data is to help unlock the mysteries of the Cosmos -- the creation of the chemical elements, the evolution and explosion of stars, and the origin and fate of the Universe. There are now many nuclear data sets, tools, and other resources online to help address these important questions. However, numerous serious challenges make it important to develop strategies now to ensure a sustainable future for this work. A number of strategies are advocated, including: enlisting additional manpower to evaluate the newest data; devising ways to streamline evaluation activities; and improving communication and coordination between existing efforts. Software projects are central to some of these strategies. Examples include: creating a virtual ''pipeline'' leading from the nuclear laboratory to astrophysics simulations; improving data visualization and management to get the most science out of the existing datasets; and creating a nuclear astrophysics data virtual (online) community. Recent examples will be detailed, including the development of two first-generation software pipelines, the Computational Infrastructure for Nuclear Astrophysics for stellar astrophysics and the bigbangonline suite of codes for cosmology, and the coupling of nuclear data to sensitivity studies with astrophysical simulation codes to guide future research.

  11. The JINA Reaclib Database and Nuclear Astrophysics Applications.

    NASA Astrophysics Data System (ADS)

    Cyburt, Richard; Schatz, Hendrik; Smith, Karl; Warren, Scott

    2007-10-01

    Nuclear astrophysics is a rich and vital field of study, using experimental/theoretical input for calculations of processes that create the elements we are made from. In order to facilitate this research further, the Joint Institute for Nuclear Astrophysics (JINA) has created a public, web-based database for nuclear reaction rates. Data are stored in the standard Reaclib format and are continually updated as new data or new compilations become available. A versioning system has been adopted to keep track of new rates. Recommended rate libraries representing ``snap shots'' of the live database are stored for users wanting a fixed/unchanging set of rates. The database and its use will be presented with emphasis on its role in nuclear astrophysics calculations. For more information, see the JINA Reaclib website: http://www.nscl.msu.edu/˜nero/db.

  12. Nuclear Data Activities for Astrophysics at Oak Ridge National Laboratory

    NASA Astrophysics Data System (ADS)

    Nesaraja, C. D.; Lingerfelt, E. J.; Scott, J. P.; Smith, M. S.; Hix, W. R.; Bardayan, D. W.; Blackmon, J. C.; Chae, K.; Guidry, M. W.; Sharp, J. E.; Hard, C. C.; Kozub, R. L.; Meyer, R. A.

    2004-11-01

    Nuclear structure information on neutron and proton rich nuclei and the reactions involving these nuclei are vital in order to understand and simulate important astrophysical processes. The nuclear data evaluation program at ORNL is directed to selective nuclei and their properties that are synergistic with the current nuclear astrophysics research programs at ORNL's Holifield Radioactive Ion Beam Facility. ^14O(α ,p)^17F,^ 17F(p,γ )^18Ne, ^18F(p,γ )^19Ne, ^18F(p,α )^15O, and ^82Ge(n,γ )^83Ge reactions are among those being studied. A survey of evaluation results and plans for additional work will be presented. A new computational infrastructure with unique software tools hosted at www.nucastrodata.org has also been developed to enable the rapid incorporation of the latest nuclear data in astrophysics models. Features of the program suite, its utilization, and future development will be discussed.

  13. Neutron detection in nuclear astrophysics experiments: study of organic liquid scintillators

    NASA Astrophysics Data System (ADS)

    Ciani, Giovanni Francesco

    2016-02-01

    In order to study the nuclear reaction 13 C(α,n)16 O, crucial for the nucleosynthesis of heavy nuclei (A>58), the LUNA collaboration at Laboratori Nazionali del Gran Sasso, is looking for the best neutron detector to use in the set up. One of the possibilities is to use detectors based on cell filled with Organic Liquid Scintillator BC501A. These detectors are sensible to fast neutron, but also to gamma rays. A Pulse Shape Discrimination process using the Zero Crossing method has been performed to select only signals from neutrons. Comparing the neutron spectra after the Pulse Shape Discrimination and the spectrum from a GEANT4 simulations, the efficiency of the BC501A, in function of the neutron energy and varying the light threshold, has been evaluated.

  14. Nuclear properties for astrophysical applications

    SciTech Connect

    Moeller, P.; Nix, J.R.; Kratz, K.L.

    1994-09-23

    We tabulate the ground-state odd-proton and odd-neutron spins, proton and neutron pairing gaps, binding energies, neuton separation energies, quantities related to {beta}-delayed one, two and three neutron emission probabilities, {beta}-decay Q values and half-lives with respect to Gamow-Teller decay, proton separation energies, and {alpha}-decay Q values and half-lives. The starting point of the calculations is a calculation of nuclear ground-states and (information based on the finite-range droplet model and the folded-Yukawa single-particle model published in a previous issue of ATOMIC DATA AND NUCLEAR DATA TABLES. The {beta}-delayed neutron-emission probabilities and Gamow-Teller {beta}-decay rates are obtained from a QRPA model that uses single-particle levels and wave-functions at the calculated nuclear ground-state shape as the starting point.

  15. New Features in the Computational Infrastructure for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Smith, Michael S.; Lingerfelt, Eric J.; Hix, W. Raphael; Nesaraja, Caroline D.; Thomsen, Kyle

    2011-10-01

    The Computational Infrastructure for Nuclear Astrophysics (CINA) is a platform- independent suite of computer codes that are freely available online at http://nucastrodata.org. The system enhances the utilization of nuclear data by streamlining the process to include the latest data into astrophysics simulations. Users can upload measured or calculated cross sections, process them into reaction rates, incorporate rates into libraries, run simulations with these custom libraries, and store and visualize the results -- all with a simple graphical user interface. New features in CINA include: automated studies of the sensitivity of astrophysical predictions on nuclear input; calculation of thermonuclear reaction rates from resonance information; and the ability to extract information from several additional international databases. Several utilizations of, and future plans for, this software suite will be given.

  16. Nuclear Astrophysics with the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Spitaleri, Claudio

    2015-04-01

    In stars nuclear reactions take place at physical conditions that make very hard their measurements in terrestrial laboratories. Indeed in astrophysical environments nuclear reactions between charged nuclei occur at energies much lower than the Coulomb barrier and the corresponding cross section values lie in the nano or picobarn regime, that makes their experimental determination extremely difficult. This is due to the very small barrier Coulomb penetration factor, which produces an exponential fall off of the cross section as a function of energy. Additionally, the presence of the electron screening needs to be properly taken into account when dealing with cross section measurements at low-energies. The Trojan Horse Method (THM) represents an independent experimental technique, allowing one to measure astrophysical S(E)-factor bared from both Coulomb penetration and electron screening effects. The main advantages and the most recent results are here shown and discussed.

  17. Recent Discoveries in Nuclear Line Astrophysics

    NASA Astrophysics Data System (ADS)

    Boggs, Steven E.

    2016-06-01

    Nuclear gamma-ray lines provide a unique probe of supernovae and nuclear astrophysics. The potential for significant contributions to the understanding supernovae, as well as the large potential for new discoveries, has long been recognized. I will review several major discoveries in the past few years from the NuSTAR and INTEGRAL missions, including observations of SN 1987A, Cas A, and SN 2014J. In addition, I will look forward to the next generation of gamma-ray line instruments currently under development, including wide-field Compton telescopes and focusing lens telescopes.

  18. Nuclear Astrophysics Animations from the Nuclear Astrophysics Group at Clemson University

    DOE Data Explorer

    Meyer, Bradley; The, Lih-Sin

    The nuclear astrophysics group at Clemson University in South Carolina develops on-line tools and computer programs for astronomy, nuclear physics, and nuclear astrophysics. They have also done short animations that illustrate results from research with some of their tools. The animations are organized into three sections. The r-Process Movies demonstrate r-Process network calculations from the paper "Neutrino Capture and the R-Process" Meyer, McLaughlin, and Fuller, Phys. Rev. C, 58, 3696-3710 (1998). The Alpha-Rich Freezeout Movies are related to the reference: Standard alpha-rich freezeout calculation from The, Clayton, Jin, and Meyer 1998, Astrophysical Journal, "Reaction Rates Governing the Synthesis of 44Ti" At the current writing, the category for Low Metallicity s-Process Movies has only one item called n, p, 13C, 14N, 54Fe, and 88Sr Time evolution in convective zone.

  19. Nuclear astrophysics. Proceedings. Caltech Centennial Year Nuclear Astrophysics Symposium in Honor of William A. Fowler's 80th Birthday

    NASA Astrophysics Data System (ADS)

    Schramm, D. N.; Woosley, S. E.

    1993-05-01

    Contents: 1. The early universe. 2. Laboratory nuclear astrophysics. 3. Stellar evolution and supernovae. 4. Neutrino astrophysics. 5. Heavy-element nucleosynthesis, galactic chemical evolution. 6. Nucleosynthesis, isotopic anomalies, and gamma rays.

  20. A recoil separator for nuclear astrophysics SECAR

    NASA Astrophysics Data System (ADS)

    Berg, G. P. A.; Bardayan, D. W.; Blackmon, J. C.; Chipps, K. A.; Couder, M.; Greife, U.; Hager, U.; Montes, F.; Rehm, K. E.; Schatz, H.; Smith, M. S.; Wiescher, M.; Wrede, C.; Zeller, A.

    2016-06-01

    A recoil separator SECAR has been designed to study radiative capture reactions relevant for the astrophysical rp-process in inverse kinematics for the Facility for Rare Isotope Beams (FRIB). We describe the design, layout, and ion optics of the recoil separator and present the status of the project.

  1. Nuclear Data for Astrophysics Research: A New Online Paradigm

    SciTech Connect

    Smith, Michael Scott

    2011-01-01

    Our knowledge of a wide range of astrophysical processes depends crucially on nuclear physics data. While new nuclear information is being generated at an ever-increasing rate, the methods to process this information into astrophysical simulations have changed little over the decades and cannot keep pace. Working online, 'cloud computing', may be the methodology breakthrough needed to ensure that the latest nuclear data quickly gets into astrophysics codes. The successes of the first utilization of cloud computing for nuclear astrophysics will be described. The advantages of cloud computing for the broader nuclear data community are also discussed.

  2. Bubble chambers for experiments in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    DiGiovine, B.; Henderson, D.; Holt, R. J.; Raut, R.; Rehm, K. E.; Robinson, A.; Sonnenschein, A.; Rusev, G.; Tonchev, A. P.; Ugalde, C.

    2015-05-01

    A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with γ-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross-sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time-reversed processes. Such photodisintegrations allow us to compute the radiative capture cross-sections when transitions to excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross-sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas targets. Also, the detector is virtually insensitive to the γ-ray beam itself, thus allowing us to detect only the products of the nuclear reaction of interest. The development and the operation as well as the advantages and disadvantages of the bubble chamber are discussed.

  3. Art as a Vehicle for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Kilburn, Micha

    2013-04-01

    One aim of the The Joint Institute for Nuclear Astrophysics (JINA) is to teach K-12 students concepts and ideas related to nuclear astrophysics. For students who have not yet seen the periodic table, this can be daunting, and we often begin with astronomy concepts. The field of astronomy naturally lends itself to an art connection through its beautiful images. Our Art 2 Science programming adopts a hands-on approach by teaching astronomy through student created art projects. This approach engages the students, through tactile means, visually and spatially. For younger students, we also include physics based craft projects that facilitate the assimilation of problem solving skills. The arts can be useful for aural and kinetic learners as well. Our program also includes singing and dancing to songs with lyrics that teach physics and astronomy concepts. The Art 2 Science programming has been successfully used in after-school programs at schools, community centers, and art studios. We have even expanded the program into a popular week long summer camp. I will discuss our methods, projects, specific goals, and survey results for JINA's Art 2 Science programs.

  4. Applications of the Trojan Horse method in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Spitaleri, Claudio

    2015-02-01

    The study of the energy production in stars and related nucleosyntesis processes requires increasingly precise knowledge of the nuclear reaction cross section and reaction rates at interaction energy. In order to overcome the experimental difficulties, arising from small cross-sections involved in charge particle induced reactions at astrophysical energies, and from the presence of electron screening, it was necessary to introduce indirect methods. Trough these methods it is possible to measure cross sections at very small energies and retrieve information on electron screening effect when ultra-low energy direct measurements are available. The Trojan Horse Method (THM) represents the indirect technique to determine the bare nucleus astrophysical S-factor for reactions between charged particles at astrophysical energies. The basic theory of the THM is discussed in the case of non-resonant.

  5. Indirect measurements of nuclear astrophysics reactions at CIAE

    SciTech Connect

    Liu Weiping; Li Zhihong; Bai Xixiang; Wang Youbao; Lian Gang; Guo Bing; Zeng Sheng; Yan Shengquan; Wang Baoxiang; Su Jun; Shu Nengchuan; Chen Yongshou

    2006-11-02

    This paper described the nuclear astrophysical studies using the unstable ion beam facility GIRAFFE, by indirect measurements. We measured the angular distributions for some single proton or neutron transfer reactions, such as 7Be(d,n)8B, 11C(d,n)12N, 8Li(d,n)9Be, 8Li(d,p)9Li and 13N(d,n)14O in inverse kinematics, and derived the astrophysical S-factors or reaction rates of 7Be(p,{gamma})8B, 11C(p,{gamma})12N, 8Li(n,{gamma})9Li, 13N(p,{gamma})14O by asymptotic normalization coefficient, spectroscopic factor, and R-matrix approach at astrophysically relevant energies.

  6. Applications of the Trojan Horse method in nuclear astrophysics

    SciTech Connect

    Spitaleri, Claudio

    2015-02-24

    The study of the energy production in stars and related nucleosyntesis processes requires increasingly precise knowledge of the nuclear reaction cross section and reaction rates at interaction energy. In order to overcome the experimental difficulties, arising from small cross-sections involved in charge particle induced reactions at astrophysical energies, and from the presence of electron screening, it was necessary to introduce indirect methods. Trough these methods it is possible to measure cross sections at very small energies and retrieve information on electron screening effect when ultra-low energy direct measurements are available. The Trojan Horse Method (THM) represents the indirect technique to determine the bare nucleus astrophysical S-factor for reactions between charged particles at astrophysical energies. The basic theory of the THM is discussed in the case of non-resonant.

  7. Nuclear astrophysics in the laboratory and in the universe

    SciTech Connect

    Champagne, A. E. Iliadis, C.; Longland, R.

    2014-04-15

    Nuclear processes drive stellar evolution and so nuclear physics, stellar models and observations together allow us to describe the inner workings of stars and their life stories. This Information on nuclear reaction rates and nuclear properties are critical ingredients in addressing most questions in astrophysics and often the nuclear database is incomplete or lacking the needed precision. Direct measurements of astrophysically-interesting reactions are necessary and the experimental focus is on improving both sensitivity and precision. In the following, we review recent results and approaches taken at the Laboratory for Experimental Nuclear Astrophysics (LENA, http://research.physics.unc.edu/project/nuclearastro/Welcome.html )

  8. Nuclear Astrophysics at IFIN-HH

    NASA Astrophysics Data System (ADS)

    Livius, Trache

    2016-04-01

    I will present the possibilities and some results of doing nuclear astrophysics research in IFIN-HH Bucharest-Magurele. There are basically two lines of experimental activities: (1) direct measurements with beams from the local accelerators, in particular with the new 3 MV Tandetron accelerator. This facility turns out to be competitive for reactions induced by a-particles and light ions. Extra capabilities are given by the ultra-low background laboratory we have in a salt mine about 2.5 hrs. driving north of Bucharest; (2) indirect measurements done with beams at international facilities, in particular at those providing Rare Ion Beams. Completely new and unique opportunities will be provided by ELI-NP, under construction in our institute.

  9. Nuclear astrophysics with radioactive ions at FAIR

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Altstadt, S.; Göbel, K.; Heftrich, T.; Heil, M.; Koloczek, A.; Langer, C.; Plag, R.; Pohl, M.; Sonnabend, K.; Weigand, M.; Adachi, T.; Aksouh, F.; Al-Khalili, J.; AlGarawi, M.; AlGhamdi, S.; Alkhazov, G.; Alkhomashi, N.; Alvarez-Pol, H.; Alvarez-Rodriguez, R.; Andreev, V.; Andrei, B.; Atar, L.; Aumann, T.; Avdeichikov, V.; Bacri, C.; Bagchi, S.; Barbieri, C.; Beceiro, S.; Beck, C.; Beinrucker, C.; Belier, G.; Bemmerer, D.; Bendel, M.; Benlliure, J.; Benzoni, G.; Berjillos, R.; Bertini, D.; Bertulani, C.; Bishop, S.; Blasi, N.; Bloch, T.; Blumenfeld, Y.; Bonaccorso, A.; Boretzky, K.; Botvina, A.; Boudard, A.; Boutachkov, P.; Boztosun, I.; Bracco, A.; Brambilla, S.; Briz Monago, J.; Caamano, M.; Caesar, C.; Camera, F.; Casarejos, E.; Catford, W.; Cederkall, J.; Cederwall, B.; Chartier, M.; Chatillon, A.; Cherciu, M.; Chulkov, L.; Coleman-Smith, P.; Cortina-Gil, D.; Crespi, F.; Crespo, R.; Cresswell, J.; Csatlós, M.; Déchery, F.; Davids, B.; Davinson, T.; Derya, V.; Detistov, P.; Diaz Fernandez, P.; DiJulio, D.; Dmitry, S.; Doré, D.; Dueñas, J.; Dupont, E.; Egelhof, P.; Egorova, I.; Elekes, Z.; Enders, J.; Endres, J.; Ershov, S.; Ershova, O.; Fernandez-Dominguez, B.; Fetisov, A.; Fiori, E.; Fomichev, A.; Fonseca, M.; Fraile, L.; Freer, M.; Friese, J.; Borge, M. G.; Galaviz Redondo, D.; Gannon, S.; Garg, U.; Gasparic, I.; Gasques, L.; Gastineau, B.; Geissel, H.; Gernhäuser, R.; Ghosh, T.; Gilbert, M.; Glorius, J.; Golubev, P.; Gorshkov, A.; Gourishetty, A.; Grigorenko, L.; Gulyas, J.; Haiduc, M.; Hammache, F.; Harakeh, M.; Hass, M.; Heine, M.; Hennig, A.; Henriques, A.; Herzberg, R.; Holl, M.; Ignatov, A.; Ignatyuk, A.; Ilieva, S.; Ivanov, M.; Iwasa, N.; Jakobsson, B.; Johansson, H.; Jonson, B.; Joshi, P.; Junghans, A.; Jurado, B.; Körner, G.; Kalantar, N.; Kanungo, R.; Kelic-Heil, A.; Kezzar, K.; Khan, E.; Khanzadeev, A.; Kiselev, O.; Kogimtzis, M.; Körper, D.; Kräckmann, S.; Kröll, T.; Krücken, R.; Krasznahorkay, A.; Kratz, J.; Kresan, D.; Krings, T.; Krumbholz, A.; Krupko, S.; Kulessa, R.; Kumar, S.; Kurz, N.; Kuzmin, E.; Labiche, M.; Langanke, K.; Lazarus, I.; Le Bleis, T.; Lederer, C.; Lemasson, A.; Lemmon, R.; Liberati, V.; Litvinov, Y.; Löher, B.; Lopez Herraiz, J.; Münzenberg, G.; Machado, J.; Maev, E.; Mahata, K.; Mancusi, D.; Marganiec, J.; Martinez Perez, M.; Marusov, V.; Mengoni, D.; Million, B.; Morcelle, V.; Moreno, O.; Movsesyan, A.; Nacher, E.; Najafi, M.; Nakamura, T.; Naqvi, F.; Nikolski, E.; Nilsson, T.; Nociforo, C.; Nolan, P.; Novatsky, B.; Nyman, G.; Ornelas, A.; Palit, R.; Pandit, S.; Panin, V.; Paradela, C.; Parkar, V.; Paschalis, S.; Pawłowski, P.; Perea, A.; Pereira, J.; Petrache, C.; Petri, M.; Pickstone, S.; Pietralla, N.; Pietri, S.; Pivovarov, Y.; Potlog, P.; Prokofiev, A.; Rastrepina, G.; Rauscher, T.; Ribeiro, G.; Ricciardi, M.; Richter, A.; Rigollet, C.; Riisager, K.; Rios, A.; Ritter, C.; Rodriguez Frutos, T.; Rodriguez Vignote, J.; Röder, M.; Romig, C.; Rossi, D.; Roussel-Chomaz, P.; Rout, P.; Roy, S.; Söderström, P.; Saha Sarkar, M.; Sakuta, S.; Salsac, M.; Sampson, J.; Sanchez, J.; Rio Saez, del; Sanchez Rosado, J.; Sanjari, S.; Sarriguren, P.; Sauerwein, A.; Savran, D.; Scheidenberger, C.; Scheit, H.; Schmidt, S.; Schmitt, C.; Schnorrenberger, L.; Schrock, P.; Schwengner, R.; Seddon, D.; Sherrill, B.; Shrivastava, A.; Sidorchuk, S.; Silva, J.; Simon, H.; Simpson, E.; Singh, P.; Slobodan, D.; Sohler, D.; Spieker, M.; Stach, D.; Stan, E.; Stanoiu, M.; Stepantsov, S.; Stevenson, P.; Strieder, F.; Stuhl, L.; Suda, T.; Sümmerer, K.; Streicher, B.; Taieb, J.; Takechi, M.; Tanihata, I.; Taylor, J.; Tengblad, O.; Ter-Akopian, G.; Terashima, S.; Teubig, P.; Thies, R.; Thoennessen, M.; Thomas, T.; Thornhill, J.; Thungstrom, G.; Timar, J.; Togano, Y.; Tomohiro, U.; Tornyi, T.; Tostevin, J.; Townsley, C.; Trautmann, W.; Trivedi, T.; Typel, S.; Uberseder, E.; Udias, J.; Uesaka, T.; Uvarov, L.; Vajta, Z.; Velho, P.; Vikhrov, V.; Volknandt, M.; Volkov, V.; von Neumann-Cosel, P.; von Schmid, M.; Wagner, A.; Wamers, F.; Weick, H.; Wells, D.; Westerberg, L.; Wieland, O.; Wiescher, M.; Wimmer, C.; Wimmer, K.; Winfield, J. S.; Winkel, M.; Woods, P.; Wyss, R.; Yakorev, D.; Yavor, M.; Zamora Cardona, J.; Zartova, I.; Zerguerras, T.; Zgura, M.; Zhdanov, A.; Zhukov, M.; Zieblinski, M.; Zilges, A.; Zuber, K.

    2016-01-01

    The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.

  10. Recent Nuclear Astrophysics Data Activities in the US

    SciTech Connect

    Bardayan, D.W.; Blackmon, J.C.; Browne, E.; Firestone, R.B.; Hale, G.M.; Hoffman, R.D.; Ma, Z.; McLane, V.; Norman, E.B.; Shu, N.; Smith, D.L.; Smith, M.S.; Van Wormer, L.A.; Woosley, S.E.; Wu, S.-C.

    1999-08-30

    Measurements in nuclear physics laboratories form the empirical foundation for new, realistic, sophisticated theoretical models of a wide variety of astrophysical systems. The predictive power of these models has, in many instances, a strong dependence on the input nuclear data, and more extensive and accurate nuclear data is required for these models than ever before. Progress in astrophysics can be aided by providing scientists with more usable, accurate, and significant amounts of nuclear data in a timely fashion in formats that can be easily incorporated into their models. A number of recent data compilations, evaluations, calculations, and disseminations that address nuclear astrophysics data needs will be described.

  11. Neutron capture measurements for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Reifarth, Rene

    2005-04-01

    Almost all of the heavy elements are produced via neutron capture reactions in a multitude of stellar production sites. The predictive power of the underlying stellar models is currently limited because they contain poorly constrained physics components such as convection, rotation or magnetic fields. Neutron captures measurements on heavy radioactive isotopes provide a unique opportunity to largely improve these physics components, and thereby address important questions of nuclear astrophysics. Such species are branch-points in the otherwise uniquely defined path of subsequent n-captures along the s-process path in the valley of stability. These branch points reveal themselves through unmistakable signatures recovered from pre-solar meteoritic grains that originate in individual element producing stars. Measurements on radioactive isotopes for neutron energies in the keV region represent a stringent challenge for further improvements of experimental techniques. This holds true for the neutron sources, the detection systems and the technology to handle radioactive material. Though the activation method or accelerator mass spectroscopy of the reaction products could be applied in a limited number of cases, Experimental facilities like DANCE at LANL, USA and n-TOF at CERN, Switzerland are addressing the need for such measurements on the basis of the more universal method of detecting the prompt capture gamma-rays, which is required for the application of neutron time-of-flight (TOF) techniques. With a strongly optimized neutron facility at the Rare Isotope Accelerator (RIA) isotopes with half-lives down to tens of days could be investigated, while present facilities require half-lives of a few hundred days. Recent neutron capture experiments on radioactive isotopes with relevance for nuclear astrophysics and possibilities for future experimental setups will be discussed during the talk.

  12. Alpha resonant scattering for astrophysical reaction studies

    SciTech Connect

    Yamaguchi, H.; Kahl, D.; Nakao, T.; Wakabayashi, Y.; Kubano, S.; Hashimoto, T.; Hayakawa, S.; Kawabata, T.; Iwasa, N.; Teranishi, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. G.

    2014-05-02

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of {sup 7}Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the {sup 7}Be(α,γ) reaction, and proposed a new cluster band in {sup 11}C.

  13. Alpha resonant scattering for astrophysical reaction studies

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Kahl, D.; Nakao, T.; Wakabayashi, Y.; Kubano, S.; Hashimoto, T.; Hayakawa, S.; Kawabata, T.; Iwasa, N.; Teranishi, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. G.

    2014-05-01

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of 7Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the 7Be(α,γ) reaction, and proposed a new cluster band in 11C.

  14. Trojan horse particle invariance: The impact on nuclear astrophysics

    SciTech Connect

    Pizzone, R. G.; La Cognata, M.; Spitaleri, C.; Bertulani, C. A.; Mukhamedzhanov, A. M.; Blokhintsev, L. D.; Lamia, L.; Spartá, R.; Tumino, A.

    2014-05-02

    In the current picture of nuclear astrophysics indirect methods and, in particular, the Trojan Horse Method cover a crucial role for the measurement of charged particle induced reactions cross sections of astrophysical interest, in the energy range required by the astrophysical scenarios. To better understand its cornerstones and its applications to physical cases many tests were performed to verify all its properties and the possible future perspectives. The key to the method is the quasi-free break-up and some of its properties will be investigated in the present work. In particular, the Trojan Horse nucleus invariance will be studied and previous studies will be extended to the cases of the binary d(d, p)t and {sup 6}Li(d,α){sup 4}He reactions, which were tested using different quasi-free break-up's, namely {sup 6}Li and {sup 3}He. The astrophysical S(E)-factor were then extracted with the Trojan Horse formalism applied to the two different break-up schemes and compared with direct data as well as with previous indirect investigations. The very good agreement confirms the independence of binary indirect cross section on the chosen spectator particle also for these reactions.

  15. Trojan horse particle invariance: The impact on nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Pizzone, R. G.; Spitaleri, C.; Bertulani, C. A.; Mukhamedzhanov, A. M.; Blokhintsev, L. D.; La Cognata, M.; Lamia, L.; Spartá, R.; Tumino, A.

    2014-05-01

    In the current picture of nuclear astrophysics indirect methods and, in particular, the Trojan Horse Method cover a crucial role for the measurement of charged particle induced reactions cross sections of astrophysical interest, in the energy range required by the astrophysical scenarios. To better understand its cornerstones and its applications to physical cases many tests were performed to verify all its properties and the possible future perspectives. The key to the method is the quasi-free break-up and some of its properties will be investigated in the present work. In particular, the Trojan Horse nucleus invariance will be studied and previous studies will be extended to the cases of the binary d(d, p)t and 6Li(d,α)4He reactions, which were tested using different quasi-free break-up's, namely 6Li and 3He. The astrophysical S(E)-factor were then extracted with the Trojan Horse formalism applied to the two different break-up schemes and compared with direct data as well as with previous indirect investigations. The very good agreement confirms the independence of binary indirect cross section on the chosen spectator particle also for these reactions.

  16. Nuclear physics reactions of astrophysical importance

    NASA Astrophysics Data System (ADS)

    O'Malley, Patrick D.

    2012-05-01

    Understanding the origin of elements in the universe is one of the main goals of nuclear science and astrophysics today. Achieving this goal involves determining how the elements and their isotopes formed and being able to predict their abundances. At the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL), an experimental program has been established to use transfer reactions (such as (p,d) or (d,p)) to study the properties of many nuclei important to understanding the origins of various elements. Three measurements were done to aid in the determination of the origins of different light isotopes. Big Bang Nucleosynthesis calculations, constrained by the Wilkinson Microwave Anisotropy Probe results, produce primordial 7Li abundances almost a factor of four larger than those extrapolated from observations. Since primordial 7Li is believed to be mostly produced by the beta decay of 7Be, one proposed solution to this discrepancy is a resonant enhancement of the 7Be(d, p)2α reaction rate through the 5/2+ 16.7-MeV state in 9B. The 2H(7Be,d) 7Be reaction was used to search for such a resonance; none was observed. An upper limit on the width of the proposed resonance was deduced. 19F is believed to have formed in Asymptotic Giant Branch stars, but current models cannot reproduce the observed abundances of this nucleus. One of the key reactions responsible for the creation of 19F is 15N(α,γ). Therefore, it is important to understand reactions that might destroy 15N, such as 15N(n,γ). The magnitude of the 15N( n,γ) reaction rate depends directly on the neutron spectroscopic factors of low-lying 16N levels. Currently the measured spectroscopic factors differ from those expected from theory by a factor of 2. A study has been done to resolve this discrepancy using the d( 15N,p) reaction. The spectroscopic factors were all found to be

  17. Status of TACTIC: A detector for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Laird, A. M.; Amaudruz, P.; Buchmann, L.; Fox, S. P.; Fulton, B. R.; Gigliotti, D.; Kirchner, T.; Mumby-Croft, P. D.; Openshaw, R.; Pavan, M. M.; Pearson, J.; Ruprecht, G.; Sheffer, G.; Walden, P.

    2007-04-01

    A new detector for nuclear astrophysics studies is being designed and built by TRIUMF and the University of York. The TRIUMF Annular Chamber for Tracking and Identification of Charged particles (TACTIC) is designed to detect low-energy charged particles from inverse kinematics reaction studies performed at the relevant astrophysical energies. TACTIC is a cylindrical ionisation/time-projection chamber with segmented anode strips, which allow the dE/dx of the particle to be determined along with the total energy. Information from drift times allows the particle trajectory to be reconstructed. This in turn identifies the interaction point along the beam axis and hence the centre of mass energy of the reaction. To amplify the expected weak signals, a gas electron multiplier (GEM) will be used in place of the usual Frisch grid. Full digital readout of the charge and timing of each anode strip will be achieved with flash ADC cards allowing pulse shape analysis of the signals.

  18. Nuclear Astrophysics from View Point of Few-Body Problems

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Spitaleri, C.; Bertulani, C.; Mukhamedzhanov, A. M.

    2013-08-01

    Few-body systems provide very useful tools to solve different problems for nuclear astrophysics. This is the case of indirect techniques, developed to overcome some of the limits of direct measurements at astrophysical energies. Here the Coulomb dissociation, the asymptotic normalization coefficient and the Trojan Horse method are discussed.

  19. Nuclear Astrophysics with the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Spitaleri, C.; Lamia, L.; Pizzone, R. G.; Cherubini, S.; Gulino, M.; La Cognata, M.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartá, R.

    2016-01-01

    The Trojan Horse Method (THM) represents the indirect path to determine the bare nucleus astrophysical S(E) factor for reactions between charged particles at astrophysical energies. This is done by measuring the quasi free cross section of a suitable three body process. The basic features of the THM will be presented together with some applications to demonstrate its practical use.

  20. Nuclear Astrophysics in the Laboratory and In the Universe

    NASA Astrophysics Data System (ADS)

    Champagne, Arthur E.

    2014-06-01

    Nuclear processes drive stellar evolution and so nuclear physics, stellar models and observations together allow us to describe the inner workings of stars and their life stories. This information on nuclear reaction rates and nuclear properties are critical ingredients in addressing most questions in astrophysics and often the nuclear database is incomplete or lacking the needed precision. Direct measurements of astrophysically interesting reactions are necessary and the experimental focus is on improving both sensitivity and precision. In this talk, I will review recent results and approaches taken at the Laboratory for Experimental Nuclear Astrophysics (LENA, http://research.physics.unc.edu/project/nuclearastro/Welcome.html). [Supported in part by the U.S. Department of Energy and by the National Science Foundation.

  1. α-cluster asymptotic normalization coefficients for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Avila, M. L.; Rogachev, G. V.; Koshchiy, E.; Baby, L. T.; Belarge, J.; Kemper, K. W.; Kuchera, A. N.; Santiago-Gonzalez, D.

    2014-10-01

    Background: Many important α-particle induced reactions for nuclear astrophysics may only be measured using indirect techniques due to the small cross sections at the energy of interest. One such indirect technique is to determine the asymptotic normalization coefficients (ANCs) for near-threshold resonances extracted from sub-Coulomb α-transfer reactions. This approach provides a very valuable tool for studies of astrophysically important reaction rates since the results are practically model independent. However, the validity of the method has not been directly verified. Purpose: The aim of this Rapid Communication is to verify the technique using the O16(Li6,d)Ne20 reaction as a benchmark. The Ne20 nucleus has a well-known 1- state at an excitation energy of 5.79 MeV with a width of 28 eV. Reproducing the known value with this technique is an ideal opportunity to verify the method. Method: The 1- state at 5.79 MeV is studied using the α-transfer reaction O16(Li6,d)Ne20 at sub-Coulomb energies. Results: The partial α width for the 1- state at excitation energy of 5.79 MeV is extracted and compared with the known value, allowing the accuracy of the method to be evaluated. Conclusions: This study demonstrates that extracting the ANCs using sub-Coulomb α-transfer reactions is a powerful tool that can be used to determine the partial α width of near-threshold states that may dominate astrophysically important nuclear reaction rates.

  2. Experiences and prospects of nuclear astrophysics in underground laboratories

    SciTech Connect

    Junker, M.

    2014-05-09

    Impressive progress has been made in the course the last decades in understanding astrophysical objects. Increasing precision of nuclear physics data has contributed significantly to this success, but now a better understanding of several important findings is frequently limited by uncertainties related to the available nuclear physics data. Consequently it is desirable to improve significantly the quality of these data. An important step towards higher precision is an excellent signal to background ratio of the data. Placing an accelerator facility inside an underground laboratory reducing the cosmic ray induced background by six orders of magnitude is a powerful method to reach this goal, even though careful reduction of environmental and beam induced background must still be considered. Experience in the field of underground nuclear astrophysics has been gained since 20 years due to the pioneering work of the LUNA Collaboration (Laboratory for Underground Nuclear Astrophysics) operating inside the underground laboratories of the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. Based on the success of this work presently also several other projects for underground laboratories dedicated to nuclear astrophysics are being pursued worldwide. This contribution will give a survey of the past experience in underground nuclear astrophysics as well as an outlook on future developments.

  3. Experiences and prospects of nuclear astrophysics in underground laboratories

    NASA Astrophysics Data System (ADS)

    Junker, M.

    2014-05-01

    Impressive progress has been made in the course the last decades in understanding astrophysical objects. Increasing precision of nuclear physics data has contributed significantly to this success, but now a better understanding of several important findings is frequently limited by uncertainties related to the available nuclear physics data. Consequently it is desirable to improve significantly the quality of these data. An important step towards higher precision is an excellent signal to background ratio of the data. Placing an accelerator facility inside an underground laboratory reducing the cosmic ray induced background by six orders of magnitude is a powerful method to reach this goal, even though careful reduction of environmental and beam induced background must still be considered. Experience in the field of underground nuclear astrophysics has been gained since 20 years due to the pioneering work of the LUNA Collaboration (Laboratory for Underground Nuclear Astrophysics) operating inside the underground laboratories of the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. Based on the success of this work presently also several other projects for underground laboratories dedicated to nuclear astrophysics are being pursued worldwide. This contribution will give a survey of the past experience in underground nuclear astrophysics as well as an outlook on future developments.

  4. Experiences and Prospects of Nuclear Astrophysics in Underground Laboratories

    NASA Astrophysics Data System (ADS)

    Junker, M.

    2016-01-01

    Impressive progress has been made in the course the last decades in understanding astrophysical objects. Increasing precision of nuclear physics data has contributed significantly to this success, but now a better understanding of several important findings is frequently limited by uncertainties related to the available nuclear physics data. Consequently it is desirable to improve significantly the quality of these data. An important step towards higher precision is an excellent signal to background ratio of the data. Placing an accelerator facility inside an underground laboratory reducing the cosmic ray induced background by six orders of magnitude is a powerful method to reach this goal, even though careful reduction of environmental and beam induced background must still be considered. Experience in the field of underground nuclear astrophysics has been gained since 20 years due to the pioneering work of the LUNA Collaboration (Laboratory for Underground Nuclear Astrophysics) operating inside the underground laboratories of the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. Based on the success of this work presently also several other projects for underground laboratories dedicated to nuclear astrophysics are being pursued worldwide. This contribution will give a survey of the past experience in underground nuclear astrophysics as well as an outlook on future developments.

  5. VI European Summer School on Experimental Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    The European Summer School on Experimental Nuclear Astrophysics has reached the sixth edition, marking the tenth year's anniversary. The spirit of the school is to provide a very important occasion for a deep education of young researchers about the main topics of experimental nuclear astrophysics. Moreover, it should be regarded as a forum for the discussion of the last-decade research activity. Lectures are focused on various aspects of primordial and stellar nucleosynthesis, including novel experimental approaches and detectors, indirect methods and radioactive ion beams. Moreover, in order to give a wide educational offer, some lectures cover complementary subjects of nuclear astrophysics such as gamma ray astronomy, neutron-induced reactions, short-lived radionuclides, weak interaction and cutting-edge facilities used to investigate nuclear reactions of interest for astrophysics. Large room is also given to young researcher oral contributions. Traditionally, particular attention is devoted to the participation of students from less-favoured countries, especially from the southern coast of the Mediterranean Sea. The school is organised by the Catania Nuclear Astrophysics research group with the collaboration of Dipartimento di Fisica e Astromomia - Università di Catania and Laboratori Nazionali del Sud - Istituto Nazionale di Fisica Nucleare.

  6. Nuclear Astrophysics in Npi Ascr ŘEŽ

    NASA Astrophysics Data System (ADS)

    Mrazek, J.; Kroha, V.; Burjan, V.; Mukhamedzhanov, A. M.; Tribble, R. E.; Spitaleri, C.; Romano, S.; Tumino, A.; Pizzone, G.; Lacognata, M.; Lamia, L.

    2013-06-01

    The U120M cyclotron in NPI ASCR, Rez, delivers light particle beams that can be used for different indirect methods to reach experimentally the Gamow region. ANC Asymptotic Normalization Coefficient method and THM Trojan Horse method are used to extract information on astrophysical S-factors in the above mentioned region. Key parameters of the U120M cyclotron are presented, a review of recent experiments concerning problems of nuclear astrophysics is given.

  7. Influences of the astrophysical environment on nuclear decay rates

    SciTech Connect

    Norman, E.B.

    1987-09-01

    In many astronomical environments, physical conditions are so extreme that nuclear decay rates can be significantly altered from their laboratory values. Such effects are relevant to a number of current problems in nuclear astrophysics. Experiments related to these problems are now being pursued, and will be described in this talk. 19 refs., 5 figs.

  8. Direct reactions for nuclear structure and nuclear astrophysics

    SciTech Connect

    Jones, Katherine Louise

    2014-12-18

    Direct reactions are powerful probes for studying the atomic nucleus. Modern direct reaction studies are illuminating both the fundamental nature of the nucleus and its role in nucleosynthetic processes occurring in the cosmos. This report covers experiments using knockout reactions on neutron-deficient fragmentation beams, transfer reactions on fission fragment beams, and theoretical sensitivity studies relating to the astrophysical r-process. Results from experiments on 108,106Sn at the NSCL, and on 131Sn at HRIBF are presented as well as the results from the nucleosynthesis study.

  9. Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bemmerer, D.; Cowan, T. E.; Gohl, S.; Ilgner, C.; Junghans, A. R.; Reinhardt, T. P.; Rimarzig, B.; Reinicke, S.; Röder, M.; Schmidt, K.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M.; Wagner, A.; Wagner, L.; Zuber, K.

    2015-05-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, proteced from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise has been carried out using the same HPGe detector in a typical nuclear astrophysics setup at several sites, including the Dresden Felsenkeller underground laboratory. It was found that its rock overburden of 45m rock, together with an active veto against the remaining muon flux, reduces the background to a level that is similar to the deep underground scenario. Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.

  10. PREFACE: Nuclear Physics in Astrophysics VI (NPA6)

    NASA Astrophysics Data System (ADS)

    2016-01-01

    The Nuclear Physics in Astrophysics VI conference was the 6th event of the NPA biannual conference series. Previous events of this series were held at the Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, in 2002 and 2005; at the Forschungszentrum Dresden-Rossendorf, Dresden, Germany, in 2007; at the Laboratori Nazionali del Gran Sasso (LNGS), L'Aquila, Italy, in 2009; and in Eilat, Israel, in 2011. This edition of the NPA conference series was organized by the European Physical Society (EPS) through its Nuclear Physics Division, corresponding to the 26th edition of the Topical Conferences of the EPS. As in previous editions, the goal of the NPA conference was to bring together the specialists in the fields of Nuclear Physics (theory and experiment) and Nuclear Astrophysics (theory and observation), providing the appropriate forum for review and discussion of the status and prospects of the field of Nuclear Astrophysics. During the discussions, special attention was given to the Nuclear Physics aspects that have an impact in Astrophysics.

  11. Nuclear Theory for Astrophysics, Stockpile Stewardship, and Homeland Security

    NASA Astrophysics Data System (ADS)

    Hayes, Anna

    2004-10-01

    A large number of problems key to astrophysics, stockpile stewardship, and homeland defense rely on knowledge of nuclear physics in regimes inaccessible to experiment. In stellar and nuclear explosions unstable nuclei and nuclear isomers are produced in copious quantities and are used to diagnose the explosion. Similarly, analysis of the unstable nuclei from the debris will be key to attribution in the event of a terrorist domestic nuclear attack. In the case of nuclear non-proliferation a number of new schemes are being considered by the IAEA to address the ever greater needs, including neutrino monitoring of the plutonium content of reactors. For all of these problems detailed nuclear theory is required. In this talk I discuss the theoretical physics needs for the type of problems of overlapping interest to astrophysics and national security.

  12. Nuclear Astrophysics and Neutron Induced Reactions: Quasi-Free Reactions and RIBs

    SciTech Connect

    Cherubini, S.; Spitaleri, C.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Coc, A.; Kubono, S.; Binh, D. N.; Hayakawa, S.; Wakabayashi, Y.; Yamaguchi, H.; Burjan, V.; Kroha, V.; De Sereville, N.

    2010-08-12

    The use of quasi-free reactions in studying nuclear reactions between charged particles of astrophysical interest has received much attention over the last two decades. The Trojan Horse Method is based on this approach and it has been used to study a number of reactions relevant for Nuclear Astrophysics. Recently we applied this method to the study of nuclear reactions that involve radioactive species, namely to the study of the {sup 18}F+p{yields}{sup 15}O+{alpha} process at temperatures corresponding to the energies available in the classical novae scenario. Quasi-free reactions can also be exploited to study processes induced by neutrons. This technique is particularly interesting when applied to reaction induced by neutrons on unstable short-lived nuclei. Such processes are very important in the nucleosynthesis of elements in the sand r-processes scenarios and this technique can give hints for solving key questions in nuclear astrophysics where direct measurements are practically impossible.

  13. Storage ring mass spectrometry for nuclear structure and astrophysics research

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Litvinov, Yu A.; Uesaka, T.; Xu, H. S.

    2016-07-01

    In the last two and a half decades ion storage rings have proven to be powerful tools for precision experiments with unstable nuclides in the realm of nuclear structure and astrophysics. There are presently three storage ring facilities in the world at which experiments with stored radioactive ions are possible. These are the ESR in GSI, Darmstadt/Germany, the CSRe in IMP, Lanzhou/China, and the R3 storage ring in RIKEN, Saitama/Japan. In this work, an introduction to the facilities is given. Selected characteristic experimental results and their impact in nuclear physics and astrophysics are presented. Planned technical developments and the envisioned future experiments are outlined.

  14. The Trojan Horse Method in nuclear astrophysics

    SciTech Connect

    Spitaleri, C.; Mukhamedzhanov, A. M.; Blokhintsev, L. D.; Cognata, M. La; Pizzone, R. G.; Tumino, A.

    2011-12-15

    The study of energy production and nucleosynthesis in stars requires an increasingly precise knowledge of the nuclear reaction rates at the energies of interest. To overcome the experimental difficulties arising from the small cross sections at those energies and from the presence of the electron screening, the Trojan Horse Method has been introduced. The method provides a valid alternative path to measure unscreened low-energy cross sections of reactions between charged particles, and to retrieve information on the electron screening potential when ultra-low energy direct measurements are available.

  15. Studies of alpha-induced astrophysical reactions at CRIB

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Hashimoto, T.; Hayakawa, S.; Binh, D. N.; Kahl, D.; Kubono, S.

    2010-08-01

    CRIB (CNS Radioactive Ion Beam separator ) is a low-energy RI beam separator at the Center for Nuclear Study (CNS) of the University of Tokyo. Using the RI beams at CRIB, many measurements on proton alpha resonance scatterings, (α,p) reactions, and others were performed in recent years mainly for studying astrophysical reactions and exotic nuclear structure. Among them, the results on the 7Li+α resonance scatterings are presented.

  16. Studies of alpha-induced astrophysical reactions at CRIB

    SciTech Connect

    Yamaguchi, H.; Hashimoto, T.; Hayakawa, S.; Binh, D. N.; Kahl, D.; Kubono, S.

    2010-08-12

    CRIB (CNS Radioactive Ion Beam separator) is a low-energy RI beam separator at the Center for Nuclear Study (CNS) of the University of Tokyo. Using the RI beams at CRIB, many measurements on proton alpha resonance scatterings, ({alpha},p) reactions, and others were performed in recent years mainly for studying astrophysical reactions and exotic nuclear structure. Among them, the results on the {sup 7}Li+{alpha} resonance scatterings are presented.

  17. Microscopic nuclear models for astrophysics: The Brussels BRUSLIB nuclear library and beyond

    NASA Astrophysics Data System (ADS)

    Arnould, M.; Goriely, S.

    2006-10-01

    Astrophysics is in need of a broad variety of nuclear data. This concerns static ground state properties, characteristics of excited nuclei, spontaneous decay properties, or interactions of nuclei with (mainly) nucleons, α-particles or photons. A strong theoretical activity complementing laboratory efforts is also mandatory. A large variety of highly ‘exotic’ laboratory-unreachable nuclei are indeed involved in the astrophysics modelling. Even when laboratory-studied nuclei are considered, theory has very often to be called for. Mastering the huge volume of nuclear information and making it available in an accurate and usable form for incorporation into astrophysics models is clearly of pivotal importance. The recognition of this necessity has been the driving motivation for the construction of the Brussels library (BRUSLIB) of computed data of astrophysics relevance. It provides an extended information in tabular form on masses, nuclear level densities and partition functions, fission barriers, and thermonuclear reaction rates. In addition of the unprecedented broadness of its scope, BRUSLIB has the unique and most important feature of relying to the largest possible extent on global and coherent microscopic nuclear models. The models of this sort that we have developed to predict the basic properties of the nuclei and of their interactions are briefly reviewed. The content of the BRUSLIB library that relies on these models is described, as well as a user-friendly nuclear network generator (NETGEN) complementing BRUSLIB. Finally, an application of BRUSLIB and NETGEN to the p-process nucleosynthesis during He detonation in sub-Chandrasekhar CO white dwarfs is proposed.

  18. Effective Field Theory in Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Chen, Jiunn-Wei

    2001-04-01

    I will discuss some basic ideas of effective field theory and its application to two nucleon systems. The theory allows a perturbative treatment of strongly interacting, bound state problems such that the calculations can be systematically improved and reliable error estimation performed. Also, the field theory formalism naturally allows manifest incorporation of symmetry properties such as gauge symmetry and Lorentz symmetry. Emphasis will be placed on some high precision calculations to low energy astrophysical problems: neutron radiative capture onto proton which is relevant to big-bang nucleosynthesis; neutrino deuteron inelastic scattering employed in the solar neutrino detection by Sudbury Neutrino Observatory (SNO) and the proton-proton solar fusion process which is an important process to fuel the sun. The last two classes of processes share the same two-body operator which is proposed to be measured at ORLAND and could serve to calibrate SNO and the solar fusion rate.

  19. Proton-Rich Nuclei in Nuclear Astrophysics

    SciTech Connect

    Rehm, K. E.

    2007-11-30

    The stable isotopes which we observe on Earth are to a large extent, produced in nature via a 'detour' through unstable nuclei. The reaction path leading through proton-rich nuclei is the so-called rapid proton capture process, where, starting from carbon, nitrogen and oxygen through successive capture or protons and alphas, followed by beta decays, nuclei up to the mass 100 region can be produced. In order to understand the reaction paths and the conditions at various astrophysical sites (e.g. Novae and X-ray bursts) cross sections, masses and half-lives of unstable nuclei have to be measured. In this contribution recent results involving proton-rich nuclei are discussed.

  20. Proton-rich nuclei in nuclear astrophysics.

    SciTech Connect

    Rehm, K. E.; Physics

    2007-01-01

    The stable isotopes which we observe on Earth are to a large extent, produced in nature via a 'detour' through unstable nuclei. The reaction path leading through proton-rich nuclei is the so-called rapid proton capture process, where, starting from carbon, nitrogen and oxygen through successive capture or protons and alphas, followed by beta decays, nuclei up to the mass 100 region can be produced. In order to understand the reaction paths and the conditions at various astrophysical sites (e.g. Novae and X-ray bursts) cross sections, masses and half-lives of unstable nuclei have to be measured. In this contribution recent results involving proton-rich nuclei are discussed.

  1. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA)

    NASA Astrophysics Data System (ADS)

    Liu, WeiPing; Li, ZhiHong; He, JiangJun; Tang, XiaoDong; Lian, Gang; An, Zhu; Chang, JianJun; Chen, Han; Chen, QingHao; Chen, XiongJun; Chen, ZhiJun; Cui, BaoQun; Du, XianChao; Fu, ChangBo; Gan, Lin; Guo, Bing; He, GuoZhu; Heger, Alexander; Hou, SuQing; Huang, HanXiong; Huang, Ning; Jia, BaoLu; Jiang, LiYang; Kubono, Shigeru; Li, JianMin; Li, KuoAng; Li, Tao; Li, YunJu; Lugaro, Maria; Luo, XiaoBing; Ma, HongYi; Ma, ShaoBo; Mei, DongMing; Qian, YongZhong; Qin, JiuChang; Ren, Jie; Shen, YangPing; Su, Jun; Sun, LiangTing; Tan, WanPeng; Tanihata, Isao; Wang, Shuo; Wang, Peng; Wang, YouBao; Wu, Qi; Xu, ShiWei; Yan, ShengQuan; Yang, LiTao; Yang, Yao; Yu, XiangQing; Yue, Qian; Zeng, Sheng; Zhang, HuanYu; Zhang, Hui; Zhang, LiYong; Zhang, NingTao; Zhang, QiWei; Zhang, Tao; Zhang, XiaoPeng; Zhang, XueZhen; Zhang, ZiMing; Zhao, Wei; Zhao, Zuo; Zhou, Chao

    2016-04-01

    Jinping Underground laboratory for Nuclear Astrophysics (JUNA) will take the advantage of the ultra-low background of CJPL lab and high current accelerator based on an ECR source and a highly sensitive detector to directly study for the first time a number of crucial reactions occurring at their relevant stellar energies during the evolution of hydrostatic stars. In its first phase, JUNA aims at the direct measurements of 25Mg(p, γ)26Al, 19F(p, α)16O, 13C(α, n)16O and 12C(α, γ)16O reactions. The experimental setup, which includes an accelerator system with high stability and high intensity, a detector system, and a shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  2. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA)

    NASA Astrophysics Data System (ADS)

    Liu, WeiPing; Li, ZhiHong; He, JiangJun; Tang, XiaoDong; Lian, Gang; An, Zhu; Chang, JianJun; Chen, Han; Chen, QingHao; Chen, XiongJun; Chen, ZhiJun; Cui, BaoQun; Du, XianChao; Fu, ChangBo; Gan, Lin; Guo, Bing; He, GuoZhu; Heger, Alexander; Hou, SuQing; Huang, HanXiong; Huang, Ning; Jia, BaoLu; Jiang, LiYang; Kubono, Shigeru; Li, JianMin; Li, KuoAng; Li, Tao; Li, YunJu; Lugaro, Maria; Luo, XiaoBing; Ma, HongYi; Ma, ShaoBo; Mei, DongMing; Qian, YongZhong; Qin, JiuChang; Ren, Jie; Shen, YangPing; Su, Jun; Sun, LiangTing; Tan, WanPeng; Tanihata, Isao; Wang, Shuo; Wang, Peng; Wang, YouBao; Wu, Qi; Xu, ShiWei; Yan, ShengQuan; Yang, LiTao; Yang, Yao; Yu, XiangQing; Yue, Qian; Zeng, Sheng; Zhang, HuanYu; Zhang, Hui; Zhang, LiYong; Zhang, NingTao; Zhang, QiWei; Zhang, Tao; Zhang, XiaoPeng; Zhang, XueZhen; Zhang, ZiMing; Zhao, Wei; Zhao, Zuo; Zhou, Chao

    2016-02-01

    Jinping Underground lab for Nuclear Astrophysics (JUNA) will take the advantage of the ultralow background in Jinping underground lab, high current accelerator based on an ECR source and highly sensitive detector to study directly a number of crucial reactions to the hydrostatic stellar evolution for the first time at their relevant stellar energies. In its first phase, JUNA aims at the direct measurements of 25Mg(p,γ)26Al, 19F(p,α)16O, 13C(α,n)16O and 12C(α,γ)16O. The experimental setup, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  3. Nuclear Reactions for Astrophysics and Other Applications

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Scielzo, N D; Ressler, J J

    2011-03-01

    Cross sections for compound-nuclear reactions are required for many applications. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  4. Indirect measurement of nuclear reactions of astrophysical interest

    SciTech Connect

    Liu, W. P.; Li, Z. H.; Bai, X. X.; Wang, Y. B.; Guo, B.; Lian, G.; Su, J.; Zeng, S.; Wang, B. X.; Yan, S. Q.; Li, Y. J.; Li, E. T.; Jin, S. J.

    2010-05-12

    Systematic indirect measurements of nuclear astrophysical reactions using the unstable ion beam facility GIRAFFE in CIAE were performed. We have measured the angular distributions of transfer reactions, such as {sup 8}Li(d,p){sup 9}Li, {sup 8}Li(d,n){sup 9}Be and {sup 8}Li(p,d){sup 7}Li in inverse kinematics, and derived the astrophysical S-factors or reaction rates for {sup 8}Li(n,gamma){sup 9}Li and {sup 8}Li(p,gamma){sup 9}Be by using asymptotic normalization coefficient (ANC) or spectroscopic factor methods.

  5. Accelerator Mass Spectrometry in Laboratory Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Nusair, O.; Bauder, W.; Gyürky, G.; Paul, M.; Collon, P.; Fülöp, Zs; Greene, J.; Kinoshita, N.; Palchan, T.; Pardo, R.; Rehm, K. E.; Scott, R.; Vondrasek, R.

    2016-01-01

    The extreme sensitivity and discrimination power of accelerator mass spectrometry (AMS) allows for the search and the detection of rare nuclides either in natural samples or produced in the laboratory. At Argonne National Laboratory, we are developing an AMS setup aimed in particular at the detection of medium and heavy nuclides, relying on the high ion energy achievable with the ATLAS superconducting linear accelerator and on gas-filled magnet isobaric separation. The setup was recently used for the detection of the 146Sm p-process nuclide and for a new determination of the 146Sm half-life (68.7 My). AMS plays an important role in the measurement of stellar nuclear reaction cross sections by the activation method, extending thus the technique to the study of production of long-lived radionuclides. Preliminary measurements of the 147Sm(γ,n)146Sm are described. A measurement of the 142Nd(α,γ)146Sm and 142Nd(α,n)145Sm reactions is in preparation. A new laser-ablation method for the feeding of the Electron Cyclotron Resonance (ECR) ion source is described.

  6. Cosmic Ray Observation for Nuclear Astrophysics:. Corona Program

    NASA Astrophysics Data System (ADS)

    Hasebe, Nobuyuki; Kobayashi, M. N.

    2003-04-01

    Cosmic Ray Observation for Nuclei Astrophysics (CORONA) program is a large-scaled spacecraft or space station approach for nuclear composition of relativistic cosmic rays 10 ≦ Z ≦ 92 and of low-energy isotopes 1 ≦ Z ≦ 58 in space. A large area Spectrometer for Ultraheavy Nuclear Composition (SUNC) and a Large Isotope Telescope Array (LITA) are proposed in this program. CORONA program focuses on the composition of elements beyond the iron-peak nuclei (Z > 60) and the isotopic composition of ultraheavy particles (Z > 30) in galactic cosmic rays as well as solar and interplanetary particles. The observation of nuclear composition covers a wide range of scientific themes including studies of nucleosynthesis of cosmic ray sources, chemical evolution of galactic material, the characteristic time of cosmic rays, heating and acceleration mechanism of cosmic ray particles. Observation of solar particle events also make clear the physical process of transient solar events emitting wide range of radio, X-ray/gamma-ray, plasma and energetic particle radiation, and particle acceleration mechanism driven by CME.

  7. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Spitaleri, C.; Cherubini, S.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Romano, S.; Tumino, A.

    2014-05-01

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  8. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    SciTech Connect

    Cognata, M. La; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Romano, S.; Gulino, M.; Tumino, A.; Lamia, L.

    2014-05-09

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  9. Recent Nuclear Astrophysics Measurements using the TwinSol Separator

    NASA Astrophysics Data System (ADS)

    Bardayan, D. W.; Ahn, T.; Allen, J.; Becchetti, F. D.; Blackmon, J. C.; Brodeur, M.; Frentz, B.; Gupta, Y. K.; Hall, M. R.; Hall, O.; Henderson, S.; Hu, J.; Kelly, J. M.; Kolata, J. J.; Long, A.; Long, J.; Macon, K.; Nicoloff, C.; O'Malley, P. D.; Ostdiek, K.; Pain, S. D.; Riggins, J.; Schultz, B. E.; Smith, M.; Strauss, S.; Torres-Isea, R. O.

    2016-07-01

    Many astrophysical events, such as novae and X-ray bursts, are powered by reactions with radioactive nuclei. Studying the properties of these nuclei in the laboratory can therefore further our understanding of these astrophysical explosions. The TwinSol separator at the University of Notre Dame has recently been used to produce intense (∼106 pps) beams of 17F. In this article, some of the first measurements with these beams are discussed.

  10. Nuclear astrophysics with intense photon beam

    SciTech Connect

    Shizuma, Toshiyuki

    2012-07-09

    Quasi-monochromatic photon beams generated by inverse Compton scattering of laser light with high energy electrons can be used for precise measurements of photoneutrons and resonant scattered {gamma} rays. Extremely high intensity and small energy spreading width of the photon beam expected at the ELI Nuclear Physics facility would increase the experimental sensitivities considerably. Possible photonuclear reaction measurements relevant to the p-process nucleosynthesis are discussed.

  11. EMPIRE: A Reaction Model Code for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Palumbo, A.; Herman, M.; Capote, R.

    2014-06-01

    The correct modeling of abundances requires knowledge of nuclear cross sections for a variety of neutron, charged particle and γ induced reactions. These involve targets far from stability and are therefore difficult (or currently impossible) to measure. Nuclear reaction theory provides the only way to estimate values of such cross sections. In this paper we present application of the EMPIRE reaction code to nuclear astrophysics. Recent measurements are compared to the calculated cross sections showing consistent agreement for n-, p- and α-induced reactions of strophysical relevance.

  12. EMPIRE: A Reaction Model Code for Nuclear Astrophysics

    SciTech Connect

    Palumbo, A.; Herman, M.; Capote, R.

    2014-06-15

    The correct modeling of abundances requires knowledge of nuclear cross sections for a variety of neutron, charged particle and γ induced reactions. These involve targets far from stability and are therefore difficult (or currently impossible) to measure. Nuclear reaction theory provides the only way to estimate values of such cross sections. In this paper we present application of the EMPIRE reaction code to nuclear astrophysics. Recent measurements are compared to the calculated cross sections showing consistent agreement for n-, p- and α-induced reactions of strophysical relevance.

  13. New Evaluations and Computational Infrastructure for Management and Visualization of Nuclear Astrophysics Data

    NASA Astrophysics Data System (ADS)

    Nesaraja, C. D.; Smith, M. S.; Bardayan, D. W.; Blackmon, J. C.; Chae, Kyungyuk; Guidry, M. W.; Hix, W. R.; Kozub, R. L.; Lingerfelt, E. J.; Mat, Zhanwen; Meyer, R. A.; Scott, J. P.; Thomas, J. S.

    2005-05-01

    Recent measurements with radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF) have prompted evaluations of the structure and reactions of unstable nuclei that play an important role in stellar explosions. The evaluation work focuses on reactions involving unstable nuclei and their associated level structures. To determine the astrophysical impact of these evaluations and other new nuclear physics results, it is vital to rapidly and accurately process and incorporate them into astrophysics models. We discuss the development of a new computational infrastructure that streamlines this process, and is available online at nucastrodata.org. This site also hyperlinks all available nuclear data sets relevant for nuclear astrophysics studies. Features of the suite and future developments are described.

  14. Nuclear astrophysics experiments with stored, highly-charged ions at FRS-ESR at GSI

    SciTech Connect

    Scheidenberger, Christoph

    2010-08-12

    At the FRS-ESR complex of GSI a nuclear physics program with exotic nuclei has been established in last 18 years, which also addresses key questions and nuclear properties relevant in nuclear astrophysics. The paper summarizes production of exotic nuclei, lifetime studies of highly-charged ions, direct mass measurements and reactions at internal targets. A few comments on the analysis of two-body weak decays are given.

  15. Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review

    SciTech Connect

    Redondo, Antonio

    2010-01-01

    The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

  16. Nuclear Halos and Borromeans in the Primordial Nucleosynthesis Process and in Astrophysical Nuclear Reactions

    SciTech Connect

    Yilmaz, M.; Oezer, O.

    2007-04-23

    Nuclear halo structures and Borromean nuclei have been intensely studied almost two decades. They have a cloud of neutrons and protons extended well beyond the surface of tightly bound core of neutrons and protons which is classically forbidden. Since the extended tail of the valance neutron wave-function of the neutron halos the cross-sections are much larger and their sizes become substantially much larger than the ordinary nuclei. Inferred expectations of halo and Borroeman nuclei in astrophysics due to their novel structures have been suggested to influence the astrophysical reactions, especially in the primordial furnace during the Standard Big Bang Nucleosynthesis (SBBN) process. It is seen that the large spatial extension directly implies that both elastic and absorption cross-sections are large for the reactions involving halo nuclei. The Trojan Horse Method (THM) and the Distorted Wave Born Approximation (DWBA) reaction cross-sections calculations are discussed for low energies.

  17. Exploring the Cosmos from the Ground: Nuclear Astrophysics at UNC/TUNL

    NASA Astrophysics Data System (ADS)

    Sallaska, A. L.

    2011-10-01

    Nuclear astrophysics is an inherently interdisciplinary field encompassing observational astronomy, astrophysical modeling, and measurements of thermonuclear reaction rates. In general, a group studies only one of these branches in depth; however, the unique nuclear astrophysics group at University of North Carolina--Chapel Hill and Triangle Universities Nuclear Laboratory (TUNL) incorporates both theoretical and experimental research. Currently focusing on nuclear reaction measurements involved in thermonuclear explosions and heavy-element synthesis, the Laboratory for Experimental Nuclear Astrophysics (LENA) utilizes two accelerators with an energy range of ˜50-1000 keV and current up to ˜1.5 mA to measure proton fusion with various targets. Recent and on-going measurements include ^23Na(p,γ)^24Mg, ^14N(p,γ)^15O, and ^17,18O(p,γ)^18,19F. Our group has also formulated a new Monte Carlo method for calculating thermonuclear reaction rates from experimental results (such as resonance strengths), in which a rigorous statistical definition of uncertainties arises naturally. These rates provide a backbone for a new type of stellar reaction rate library currently in preparation, STARLIB. This library attempts to bridge the gap between experimental nuclear physics data and stellar modelers by providing a convenient tabular format with reliable uncertainties for use in simulating astrophysical phenomena. We expect to submit STARLIB for publication by year's end, which will coincide with the unveiling of a webpage for ease of dissemination and updating. Finally, our group uses this library to run simplified models of astrophysical events, such as novae or AGB stars, via network calculations. The results from these models indicate which reactions significantly influence various isotopic abundances, thus providing motivation for new reactions to measure at LENA and other laboratories.

  18. Wanted! Nuclear Data for Dark Matter Astrophysics

    SciTech Connect

    Gondolo, P.

    2014-06-15

    Astronomical observations from small galaxies to the largest scales in the universe can be consistently explained by the simple idea of dark matter. The nature of dark matter is however still unknown. Empirically it cannot be any of the known particles, and many theories postulate it as a new elementary particle. Searches for dark matter particles are under way: production at high-energy accelerators, direct detection through dark matter-nucleus scattering, indirect detection through cosmic rays, gamma rays, or effects on stars. Particle dark matter searches rely on observing an excess of events above background, and a lot of controversies have arisen over the origin of observed excesses. With the new high-quality cosmic ray measurements from the AMS-02 experiment, the major uncertainty in modeling cosmic ray fluxes is in the nuclear physics cross sections for spallation and fragmentation of cosmic rays off interstellar hydrogen and helium. The understanding of direct detection backgrounds is limited by poor knowledge of cosmic ray activation in detector materials, with order of magnitude differences between simulation codes. A scarcity of data on nucleon spin densities blurs the connection between dark matter theory and experiments. What is needed, ideally, are more and better measurements of spallation cross sections relevant to cosmic rays and cosmogenic activation, and data on the nucleon spin densities in nuclei.

  19. Recent Efforts in Data Compilations for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Dillmann, Iris

    2008-05-01

    Some recent efforts in compiling data for astrophysical purposes are introduced, which were discussed during a JINA-CARINA Collaboration meeting on ``Nuclear Physics Data Compilation for Nucleosynthesis Modeling'' held at the ECT* in Trento/Italy from May 29th-June 3rd, 2007. The main goal of this collaboration is to develop an updated and unified nuclear reaction database for modeling a wide variety of stellar nucleosynthesis scenarios. Presently a large number of different reaction libraries (REACLIB) are used by the astrophysics community. The ``JINA Reaclib Database'' on http://www.nscl.msu.edu/~nero/db/ aims to merge and fit the latest experimental stellar cross sections and reaction rate data of various compilations, e.g. NACRE and its extension for Big Bang nucleosynthesis, Caughlan and Fowler, Iliadis et al., and KADoNiS. The KADoNiS (Karlsruhe Astrophysical Database of Nucleosynthesis in Stars, http://nuclear-astrophysics.fzk.de/kadonis) project is an online database for neutron capture cross sections relevant to the s process. The present version v0.2 is already included in a REACLIB file from Basel university (http://download.nucastro.org/astro/reaclib). The present status of experimental stellar (n,γ) cross sections in KADoNiS is shown. It contains recommended cross sections for 355 isotopes between 1H and 210Bi, over 80% of them deduced from experimental data. A ``high priority list'' for measurements and evaluations for light charged-particle reactions set up by the JINA-CARINA collaboration is presented. The central web access point to submit and evaluate new data is provided by the Oak Ridge group via the http://www.nucastrodata.org homepage. ``Workflow tools'' aim to make the evaluation process transparent and allow users to follow the progress.

  20. TACTIC: A new detector for Nuclear Astrophysics Experiments

    NASA Astrophysics Data System (ADS)

    Fox, S. P.; Amaudruz, P. A.; Bruskiewich, P.; Buchmann, L.; Chipps, K. A.; Hager, U.; Laird, A. M.; Martin, L.; Ruprecht, G.; Shotter, A. C.; Walden, P.

    2011-09-01

    Directly measuring nuclear astrophysics reactions presents unique challenges. Low energy reaction products and small reaction cross sections are just two of the issues that the TACTIC detector addresses. TACTIC is the "TRIUMF Annular Chamber for Tracking and Identification of Charged-particles" detector being developed by TRIUMF and the University of York, UK. TACTIC is a cylindrical, active-target TPC providing high detection efficiency; a "shielding" cathode traps the ionization created by the beam and allows for higher intensities than typical TPCs. The 480 anode signals are collected through custom preamplifiers, digital electronics and acquisition systems. Acquisition and analysis software is also undergoing extensive development. Amplification of the small signals is accomplished using a Gas Electron Multiplier (GEM). The fill gas, He-CO2, provides both particle detection and a homogeneous, variable-thickness target for studying reactions on αs, such as 8Li(α,n)11B. A preliminary study of this flagship reaction was carried out in June 2009 and the results are providing feedback into the development of the final detector and infrastructure.

  1. Nuclear structure far off stability --Implications for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Grawe, H.; Blazhev, A.; Górska, M.; Grzywacz, R.; Mach, H.; Mukha, I.

    2006-03-01

    The single-particle structure and shell gap of 100Sn as inferred from previous in-beam γ-ray spectroscopy has been confirmed in recent studies of seniority and spin-gap isomers by γγ, βγ, βpγ, pγ and 2pγ spectroscopy. The results for 94, 95Ag, 98Cd and its N = 50 isotones 96Pd and 94Ru stress the importance of large-scale shell model calculations employing realistic interactions for the isomerism, np-nh excitations, seniority mixing and E2 polarisation of the 100Sn core. The strong monopole interaction of the Δl = 0, 1 spin/isospin-flip partners πg 9/2- νg 7/2 along the N = 50 isotones and the πf 5/2- νg 9/2 pair of nucleons along the Z = 28 Ni isotopes are decisive for the evolution of the shell structure towards 100Sn and 78Ni. It can be traced back to the tensor force in the effective nucleon-nucleon interaction and provides a straightforward explanation for new shells in neutron-rich light nuclei, implying qualitative predictions for new N = 32, 34 subshells in Ca isotopes, persistence of the 78Ni proton and neutron shell gaps and non-equivalence of the g 9/2 valence mirror Ni isotopes and N = 50 isotones. This is corroborated by recent experimental data on 56, 58Cr and 70-76Ni. The implication of monopole driven shell evolution for apparent spin-orbit splitting towards N ≫ Z and structure along the astrophysical r-path between N = 50 and N = 82 is discussed.

  2. Trojan Horse technique to measure nuclear astrophysics rearrangement reactions

    NASA Astrophysics Data System (ADS)

    Spitaleri, Claudio

    2013-03-01

    The knowledge of nucleosynthesis and of energy production in stars requires an increasingly precise measurement of nuclear fusion reactions at the Gamow energy. Because of the Coulomb barrier reaction cross sections in astrophysics cannot be accessed directly at ultra -low energies, unless very favorable conditions are met. Moreover, the energies characterizing nuclear processes in several astrophysical contexts are so low that the presence of atomic electrons must be taken into account. Theoretical extrapolations of available data are then needed to derive astrophysical S(E)-factors. To overcome these experimental difficulties the Trojan Horse Method (THM) has been introduced. The method provides a valid alternative path to measure unscreened low-energy cross sections of reactions between charged particles, and to retrieve information on the electron screening potential when ultra-low energy direct measurements are available. While the theory has been discussed in detail in some theoretical works, present in the scientific literature, also in relation to different types of excitation functions (e.g. non-resonant and resonant), work on detailed methodology used to extract the events to be considered for the bare nucleus cross section measurements is still on going. In this work we will present some critical points in the application of THM that deserve to be discussed in more detail.

  3. Nuclear astrophysics with tagged photons: NEPTUN @ S-DALINAC, Darmstadt

    NASA Astrophysics Data System (ADS)

    Schnorrenberger, L.; Sonnabend, K.; Glorius, J.; Löher, B.; Pietralla, N.; Savran, D.; Simon, V.; Wälzlein, C.

    2010-01-01

    Tagged photons can be used to study astrophysically relevant cross sections with highest energy resolution. The tagging facility NEPTUN at the S-DALINAC, Darmstadt, Germany, is presented and it is demonstrated how NEPTUN can be used to study short-lived branching nuclei of s-process nucleosynthesis.

  4. Decay Spectroscopy for Nuclear Astrophysics: {beta}-delayed Proton Decay

    SciTech Connect

    Trache, L.; Simmons, E.; Spiridon, A.; McCleskey, M.; Roeder, B. T.; Tribble, R. E.; Saastamoinen, A.; Jokinen, A.; Aysto, J.; Davinson, T.; Woods, P. J.; Pollacco, E.; Kebbiri, M.

    2011-11-30

    Decay spectroscopy is one of the oldest indirect methods in nuclear astrophysics. We have developed at TAMU techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. These allowed us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measure gamma-rays up to 8 MeV with high resolution HPGe detectors. We have studied the decay of {sup 23}Al, {sup 27}P, {sup 31}Cl, all important for understanding explosive H-burning in novae. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and works even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions {sup 22}Na(p,{gamma}){sup 23}Mg(crucial for the depletion of {sup 22}Na in novae), {sup 26m}Al(p,{gamma}){sup 27}Si and {sup 30}P(p,{gamma}){sup 31}S(bottleneck in novae and XRB burning), respectively. More recently we have radically improved the technique using a gas based detector we call AstroBox.

  5. Investigating resonances above and below the threshold in nuclear reactions of astrophysical interest and beyond

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Kiss, G. G.; Mukhamedzhanov, A. M.; Spitaleri, C.; Trippella, O.

    2015-10-01

    Resonances in nuclear cross sections dramatically change their trends. Therefore, the presence of unexpected resonances might lead to unpredicted consequences on astrophysics and nuclear physics. In nuclear physics, resonances allow one to study states in the intermediate compound systems, to evaluate their cluster structure, for instance, especially in the energy regions approaching particle decay thresholds. In astrophysics, resonances might lead to changes in the nucleosynthesis flow, determining different isotopic compositions of the nuclear burning ashes. For these reasons, the Trojan Horse method has been modified to investigate resonant reactions. Thanks to this novel approach, for the first time normalization to direct data might be avoided. Moreover, in the case of sub threshold resonances, the Trojan Horse method modified to investigate resonances allows one to deduce the asymptotic normalization coefficient, showing the close connection between the two indirect approaches.

  6. Investigating resonances above and below the threshold in nuclear reactions of astrophysical interest and beyond

    SciTech Connect

    La Cognata, M.; Kiss, G. G.; Mukhamedzhanov, A. M.; Spitaleri, C.; Trippella, O.

    2015-10-15

    Resonances in nuclear cross sections dramatically change their trends. Therefore, the presence of unexpected resonances might lead to unpredicted consequences on astrophysics and nuclear physics. In nuclear physics, resonances allow one to study states in the intermediate compound systems, to evaluate their cluster structure, for instance, especially in the energy regions approaching particle decay thresholds. In astrophysics, resonances might lead to changes in the nucleosynthesis flow, determining different isotopic compositions of the nuclear burning ashes. For these reasons, the Trojan Horse method has been modified to investigate resonant reactions. Thanks to this novel approach, for the first time normalization to direct data might be avoided. Moreover, in the case of sub threshold resonances, the Trojan Horse method modified to investigate resonances allows one to deduce the asymptotic normalization coefficient, showing the close connection between the two indirect approaches.

  7. Recent astrophysical applications of the Trojan Horse Method to nuclear astrophysics

    SciTech Connect

    Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tumino, A.; Fu, C.; Tribble, R.; Banu, A.; Al-Abdullah, T.; Goldberg, V.; Mukhamedzhanov, A.; Tabacaru, G.; Trache, L.

    2008-05-21

    The Trojan Horse Method (THM) is an unique indirect technique allowing to measure astrophysical rearrangement reactions down to astrophysical relevant energies. The basic principle and a review of the recent applications of the Trojan Horse Method are presented. The applications aiming to the extraction of the bare astrophysical S{sub b}(E) for some two-body processes are discussed.

  8. Nuclear physics experiments for the astrophysical p process

    NASA Astrophysics Data System (ADS)

    Sauerwein, A.; Elvers, M.; Endres, J.; Hasper, J.; Hennig, A.; Netterdon, L.; Zilges, A.

    2011-04-01

    We studied the two astrophysically interesting reactions 141PrPm and 92MoTc with the activation method and with the in-beam method, respectively. The 141PrPm experiment was performed at the cyclotron of the ‘Physikalisch Technische Bundesanstalt (PTB)’ in Braunschweig, Germany, and the reaction was studied within and just above the so-called Gamow window. In this proceedings, we present the experimental details of this measurement. The proton-capture reaction on the neutron-magic nucleus 92Mo was studied at energies relevant for the astrophysical p process. The reaction was investigated by the in-beam technique using the γ-ray detector array HORUS (High efficient Observatory for γ-Ray Unique Spectroscopy) at the TANDEM ion accelerator at the University of Cologne. The preliminary experimental results are compared to data stemming from other measurements.

  9. Approximate penetration factors for nuclear reactions of astrophysical interest

    NASA Technical Reports Server (NTRS)

    Humblet, J.; Fowler, W. A.; Zimmerman, B. A.

    1987-01-01

    The ranges of validity of approximations of P(l), the penetration factor which appears in the parameterization of nuclear-reaction cross sections at low energies and is employed in the extrapolation of laboratory data to even lower energies of astrophysical interest, are investigated analytically. Consideration is given to the WKB approximation, P(l) at the energy of the total barrier, approximations derived from the asymptotic expansion of G(l) for large eta, approximations for small values of the parameter x, applications of P(l) to nuclear reactions, and the dependence of P(l) on channel radius. Numerical results are presented in tables and graphs, and parameter ranges where the danger of serious errors is high are identified.

  10. Research activities in nuclear astrophysics and related areas

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA/GRO grant NAG 5-2081, at the University of Chicago, has provided support for a broad program of theoretical research in nuclear astrophysics and related areas, with regard to gamma-ray and hard X-ray emission from classical nova explosions. This research emphasized the possible detection of 22Na gamma-ray line emission from nearby novae involving ONeMg white dwarfs, the detailed examination of 26Al production in novae, and the possible detection of the predicted early gamma ray emission from novae that arises from the decay of the short lived, positron emitting isotopes of CNO elements. Studies of nova related problems have consumed an increasing fraction of the Principal Investigator's research efforts over the past decade. Current research addresses problems associated with the standard model for the outbursts of the classical novae: the occurrence of thermonuclear runaways (TNR) in the accreted hydrogen rich envelopes on white dwarfs in close binary systems (see, e.g., the reviews by Truran 1982; and Shara 1989). Research in progress and planned for the next three years has three main objectives: (1) to gain an improved understanding of the early evolution of the light curves of, particularly, the fastest novae; (2) to gain an improved understanding of the relative importance of the various possible mechanisms of envelope hydrogen depletion (e.g. winds, common envelope driven mass loss, and nuclear burning) to the long term evolution of novae in outburst; and (3) to seek to provide a somewhat more definitive statement of the role of classical novae in nucleosynthesis. Our proposed 2-D studies of convection during the early phases of the TNR and our systematic attempt to incorporate an improved treatment of radiation hydrodynamics into the hydrodynamic code utilized in our calculations, are particularly relevant to the first of these objectives. Further 2-D studies of the effects of common envelope evolution are intended to provide more realistic constraints

  11. PREFACE: NUBA Conference Series 1: Nuclear Physics and Astrophysics

    NASA Astrophysics Data System (ADS)

    Boztosun, I.; Balantekin, A. B.; Kucuk, Y.

    2015-04-01

    The international conference series ''NUBA Conference Series 1: Nuclear Physics and Astrophysics'' was held on September 14-21 2014 in Antalya-Turkey. Akdeniz University hosted the conference and the Adrasan Training and Application Centre was chosen as a suitable venue to bring together scientists from all over the world as well as from different parts of Turkey. The conference was supported by the Scientific and Technological Research Council of Turkey (TÜBìTAK) and Akdeniz University Nuclear Sciences Application and Research Center (NUBA). Based on the highly positive remarks received from the participants both during and after the conference, we believe that the event has proven to be a fulfilling experience for all those who took part. The conference provided an opportunity for the participants to share their ideas and experiences in addition to exploring possibilities for future collaborations. Participants of the conference focused on: • Nuclear Structure and Interactions • Nuclear Reactions, • Photonuclear Reactions and Spectroscopy • Nuclear and Particle AstrophysicsNuclear Processes in Early Universe • Nuclear Applications • New Facilities and Instrumentation Participants included a number of distinguished invited speakers. There was significant interest from the international nuclear physics community and numerous abstracts and papers were submitted. The scientific committee conducted a careful and rigorous selection process, as a result of which 75 contributions were accepted. Of those, 65 of them were given as oral and 10 as poster presentations. The superb quality of the papers ensured fruitful discussion sessions. We thank all the participants for their efforts and also for promptly sending in their papers for publication. This issue of the Journal of Physics: Conference Series was peer-reviewed by expert referees and we also thank them for peer-reviewing the papers. The national and international advisory committee also deserve

  12. Development of the RAON Recoil Spectrometer (KOBRA) and Its Applications for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Moon, Jun Young; Park, Junesic; Cheoul Yun, Chong; Kwon, Young Kwan; Komatsubara, Tetsuro; Hashimoto, Takashi; Tshoo, Kyoungho; Lee, Kwangbok; Jung, In-IL; Kim, Yong Hak; Kim, Yong-Kyun

    KOBRA (KOrea Broad acceptance Recoil spectrometer and Apparatus), a new generation recoil spectrometer, has been designed at the Korean heavy-ion accelerator facility, so called RAON. It will allow many nuclear scientists to explore so-far hard but very interesting questions relevant to low-energy nuclear physics. Especially, in nuclear astrophysics where the unstable, short-lived nuclei are usually involved and the high background rejection power is required, its high performance will come into significantly important role. As a particular case to see its capability, in this article, calculational results of 12C(α, γ)16O reaction which was studied with the COSY-INFINITY is presented.

  13. Unscreened cross-sections for nuclear astrophysics via the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Sergi, M. L.

    2014-12-01

    The bare nucleus astrophysical S(E) factor is the Nuclear Physics parameter to determine the reaction rates in stellar plasmas. Whilst not being accessed in direct measurements, it can be easily determined using the Trojan Horse Method, successful indirect technique for nuclear astrophysics. The basic features of the method will be discussed and some recent results will be presented.

  14. New Advances in the Trojan Horse Method as an Indirect Approach to Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Spitaleri, C.; Cherubini, S.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartà, R.

    2013-05-01

    With the introduction of the Trojan Horse Method, nuclear cross sections between charged particles at astrophysical energies can now be measured. Here the basic features of the method are recalled together with recent results relevant for Nuclear Astrophysics. New applications in connection with plasma physics and industrial energy production are discussed.

  15. Nuclear astrophysics at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Smith, M.S.

    1994-12-31

    The potential for understanding spectacular stellar explosions such as novae, supernovae, and X-ray bursts will be greatly enhanced by the availability of the low-energy, high-intensity, accelerated beams of proton-rich radioactive nuclei currently being developed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. These beams will be utilized in absolute cross section measurements of crucial (p, {gamma}) capture reactions in efforts to resolve the substantial qualitative uncertainties in current models of explosive stellar hydrogen burning outbursts. Details of the nuclear astrophysics research program with the unique HRIBF radioactive beams and a dedicated experimental endstation--centered on the Daresbury Recoil Separator--will be presented.

  16. 2nd Iberian Nuclear Astrophysics Meeting on Compact Stars

    NASA Astrophysics Data System (ADS)

    Perez-Garcia, M. Angeles; Pons, Jose; Albertus, C.

    2012-02-01

    ORGANIZING COMMITTEE Dr M Ángeles Pérez-García (Área Física Teórica-Universidad de Salamanca & IUFFYM) Dr J A Miralles (Universidad de Alicante) Dr J Pons (Universidad de Alicante) Dr C Albertus (Área Física Nuclear-Universidad de Salamanca & IUFFYM) Dr F Atrio (Área Física Teórica-Universidad de Salamanca & IUFFYM) PREFACE The second Iberian Nuclear Astrophysics meeting was held at the University of Salamanca, Spain on 22-23 September 2011. This volume contains most of the presentations delivered at this international workshop. This meeting was the second in the series following the previous I Encuentro Ibérico de Compstar, held at the University of Coimbra, Portugal in 2010. The main purpose of this meeting was to strengthen the scientific collaboration between the participants of the Iberian and the rest of the southern European branches of the European Nuclear Astrophysics network, formerly, COMPSTAR. This ESF (European Science Foundation) supported network has been crucial in helping to make a broader audience for the the most interesting and relevant research lines being developed currently in Nuclear Astrophysics, especially related to the physics of neutron stars. It is indeed important to emphasize the need for a collaborative approach to the rest of the scientific communities so that we can reach possible new members in this interdisciplinary area and as outreach for the general public. The program of the meeting was tailored to theoretical descriptions of the physics of neutron stars although some input from experimental observers and other condensed matter and optics areas of interest was also included. The main scientific topics included: Magnetic fields in compact stars Nuclear structure and in-medium effects in nuclear interaction Equation of state: from nuclear matter to quarks Importance of crust in the evolution of neutron stars Computational simulations of collapsing dense objects Observational phenomenology In particular, leading

  17. Study of astrophysics at the ``Babeş-Bolyai'' University

    NASA Astrophysics Data System (ADS)

    Ureche, Vasile; Roman, Rodica

    2007-03-01

    This paper presents the history of the study of astrophysics at the ``Babeş-Bolyai'' University, from 1945 until now. Some special epochs are analyzed and the contributions of professors of astronomy at the study of astrophysics is put in evidence. The continuity of this study and the collaboration of the ``Babeş-Bolyai'' University with the ``Friedrich Wilhelms'' University of Germany, in the field of astrophysics is emphasized.

  18. Excitation of compound states in subsystems as an indirect tool in nuclear astrophysics. The theory of the Trojan Horse method

    SciTech Connect

    Mukhamedzhanov, A. M.

    2010-03-01

    Astrophysical reactions proceeding through compound states represent one of the crucial part of nuclear astrophysics. However, due to the presence of the Coulomb barrier, it is often very difficult or even impossible to obtain the astrophysical S(E) factor from measurements in the laboratory at astrophysically relevant energies. The Trojan Horse method (THM) provides a unique tool to obtain the information about resonant astrophysical reactions at astrophysical energies. Here the theory and application of the THM for the resonant reactions is addressed.

  19. Studies of High Energy Particle Astrophysics

    SciTech Connect

    Nitz, David F; Fick, Brian E

    2014-07-30

    This report covers the progress of the Michigan Technological University particle astrophysics group during the period April 15th, 2011 through April 30th, 2014. The principal investigator is Professor David Nitz. Professor Brian Fick is the Co-PI. The focus of the group is the study of the highest energy cosmic rays using the Pierre Auger Observatory. The major goals of the Pierre Auger Observatory are to discover and understand the source or sources of cosmic rays with energies exceeding 10**19 eV, to identify the particle type(s), and to investigate the interactions of those cosmic particles both in space and in the Earth's atmosphere. The Pierre Auger Observatory in Argentina was completed in June 2008 with 1660 surface detector stations and 24 fluorescence telescopes arranged in 4 stations. It has a collecting area of 3,000 square km, yielding an aperture of 7,000 km**2 sr.

  20. Level structure of {sup 21}Mg: Nuclear and astrophysical implications

    SciTech Connect

    St Murphy, A.J.; Aliotta, M.; Davinson, T.; Ruiz, C.; Woods, P.J.; D'Auria, J.M.; Buchmann, L.; Chen, A.A.; Laird, A.M.; Sarazin, F.; Walden, P.; Fulton, B.R.; Pearson, J.E.; Brown, B.A.

    2006-03-15

    Resonant elastic scattering of a radioactive {sup 20}Na beam incident upon protons in a polyethylene target has been used to probe the level structure of {sup 21}Mg above the proton decay threshold. Three states have been observed, and their properties deduced through analysis based on the R-matrix formalism. The results improve and extend previous studies of this nucleus. An estimate of the {sup 20}Na(p,{gamma}){sup 21}Mg reaction rate, including these new data, suggests this reaction will not play a significant role in explosive hydrogen burning in astrophysical sites such as novae and x-ray bursts.

  1. {alpha}-particle optical potentials for nuclear astrophysics (NA) and nuclear technology (NT)

    SciTech Connect

    Avrigeanu, V.; Avrigeanu, M.

    2012-11-20

    The high precision of recent measurements for low-energy {alpha}-particle elastic-scattering as well as induced-reaction data makes possible the understanding of actual limits and possible improvement of the global optical model potentials parameters. Involvement of recent optical potentials for reliable description of both the elastic scattering and emission of {alpha}-particles, of equal interest for nuclear astrophysics (NA) and nuclear technology (NT) for fusion devices, is discussed in the present work.

  2. 2nd Iberian Nuclear Astrophysics Meeting on Compact Stars

    NASA Astrophysics Data System (ADS)

    Perez-Garcia, M. Angeles; Pons, Jose; Albertus, C.

    2012-02-01

    ORGANIZING COMMITTEE Dr M Ángeles Pérez-García (Área Física Teórica-Universidad de Salamanca & IUFFYM) Dr J A Miralles (Universidad de Alicante) Dr J Pons (Universidad de Alicante) Dr C Albertus (Área Física Nuclear-Universidad de Salamanca & IUFFYM) Dr F Atrio (Área Física Teórica-Universidad de Salamanca & IUFFYM) PREFACE The second Iberian Nuclear Astrophysics meeting was held at the University of Salamanca, Spain on 22-23 September 2011. This volume contains most of the presentations delivered at this international workshop. This meeting was the second in the series following the previous I Encuentro Ibérico de Compstar, held at the University of Coimbra, Portugal in 2010. The main purpose of this meeting was to strengthen the scientific collaboration between the participants of the Iberian and the rest of the southern European branches of the European Nuclear Astrophysics network, formerly, COMPSTAR. This ESF (European Science Foundation) supported network has been crucial in helping to make a broader audience for the the most interesting and relevant research lines being developed currently in Nuclear Astrophysics, especially related to the physics of neutron stars. It is indeed important to emphasize the need for a collaborative approach to the rest of the scientific communities so that we can reach possible new members in this interdisciplinary area and as outreach for the general public. The program of the meeting was tailored to theoretical descriptions of the physics of neutron stars although some input from experimental observers and other condensed matter and optics areas of interest was also included. The main scientific topics included: Magnetic fields in compact stars Nuclear structure and in-medium effects in nuclear interaction Equation of state: from nuclear matter to quarks Importance of crust in the evolution of neutron stars Computational simulations of collapsing dense objects Observational phenomenology In particular, leading

  3. Looking at Low-Background Nuclear Astrophysics Measurements using CASPAR

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel; Couder, Manoel; Griefe, Uwe; Jung, Hyo Soon; Setoodehnia, Kiana; Wiescher, Michael; Wells, Doug; Caspar Collaboration

    2014-09-01

    An accelerator laboratory (CASPAR) to be installed at the Sanford Underground Research Facility (SURF) is being constructed by a collaboration lead by South Dakota School of Mines and Technology. The study of alpha induced reactions of astrophysical interest in a quasi-background free environment is the goal of the laboratory. Specifically, neutron producing reactions for the s-process will be investigated. This process is responsible for the nucleosynthesis of half of the elements heavier than iron. An outline of CASPAR, its timeline and scientific goals will be presented. An accelerator laboratory (CASPAR) to be installed at the Sanford Underground Research Facility (SURF) is being constructed by a collaboration lead by South Dakota School of Mines and Technology. The study of alpha induced reactions of astrophysical interest in a quasi-background free environment is the goal of the laboratory. Specifically, neutron producing reactions for the s-process will be investigated. This process is responsible for the nucleosynthesis of half of the elements heavier than iron. An outline of CASPAR, its timeline and scientific goals will be presented. Funding provided by SDSTA.

  4. Decay data of radionuclides along the valley of nuclear stability for astrophysical applications.

    PubMed

    Chechev, Valery P; Huang, Xiaolong

    2015-11-01

    Several directions of the demand for decay data in nuclear astrophysics are discussed for radionuclides near the valley of nuclear stability. The current half-life and gamma-ray intensity evaluation results are presented for some radionuclides of astrophysical interest. An extended list of such nuclides is offered for their nuclear characteristics to be further evaluated by the Decay Data Evaluation Project collaboration participants. PMID:26275948

  5. Laboratory Astrophysics: Study of Radiative Shocks

    NASA Astrophysics Data System (ADS)

    Leygnac, S.; Lanz, T.; Stehlé, C.; Michaut, C.

    2002-12-01

    Radiative shocks are high Mach number shocks with a strong coupling between radiation and hydrodynamics which leads to a structure governed by a radiative precursor. They might be encountered in various astrophysical systems: stellar accretion shocks, pulsating stars, interaction of supernovae with the intestellar medium etc. A numerical one dimensional (1D) stationary study of the coupling between hydrodynamics and radiative transfer is being performed. An estimate of the error made by the 1D approach in the radiative transfer treatment is done by an approximate short characteristics approach. It shows, for exemple, how much of the radiation escapes from the medium in the configuration of the experiment. The experimental study of these shocks has been performed with the high energy density laser of the LULI, at the École Polytechnique (France). We have observed several shocks identified as radiative shocks. The shock waves propagate at about 50 km/s in a tiny 10 mm3 shock tube filled with gaz. From the measurements, it is possible to infer several features of the shock such as the speed and the electronic density.

  6. The Lunar Occultation Observer (LOCO) - A Nuclear Astrophysics All-Sky Survey Mission Concept

    NASA Astrophysics Data System (ADS)

    Miller, R. S.; Bonamente, M.; Burgess, J. M.; Harmon, B. A.; Jenke, P.; Lawrence, D. J.; O'Brien, S.; Orr, M. R.; Paciesas, W. S.; Young, C. A.

    2008-07-01

    The Lunar Occultation Observer (LOCO) is a new lunar-based concept to probe the nuclear astrophysics regime. It will be a pioneering mission in high-energy astrophysics: the first to employ occultation as the principle detection and imaging method.

  7. Databases and tools for nuclear astrophysics applications. BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN)

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Goriely, S.; Jorissen, A.; Chen, G. L.; Arnould, M.

    2013-01-01

    An update of a previous description of the BRUSLIB + NACRE package of nuclear data for astrophysics and of the web-based nuclear network generator NETGEN is presented. The new version of BRUSLIB contains the latest predictions of a wide variety of nuclear data based on the most recent version of the Brussels-Montreal Skyrme-Hartree-Fock-Bogoliubov model. The nuclear masses, radii, spin/parities, deformations, single-particle schemes, matter densities, nuclear level densities, E1 strength functions, fission properties, and partition functions are provided for all nuclei lying between the proton and neutron drip lines over the 8 ≤ Z ≤ 110 range, whose evaluation is based on a unique microscopic model that ensures a good compromise between accuracy, reliability, and feasibility. In addition, these various ingredients are used to calculate about 100 000 Hauser-Feshbach neutron-, proton-, α-, and γ-induced reaction rates based on the reaction code TALYS. NACRE is superseded by the NACRE II compilation for 15 charged-particle transfer reactions and 19 charged-particle radiative captures on stable targets with mass numbers A < 16. NACRE II features the inclusion of experimental data made available after the publication of NACRE in 1999 and up to 2011. In addition, the extrapolation of the available data to the very low energies of astrophysical relevance is improved through the systematic use of phenomenological potential models. Uncertainties in the rates are also evaluated on this basis. Finally, the latest release v10.0 of the web-based tool NETGEN is presented. In addition to the data already used in the previous NETGEN package, it contains in a fully documented form the new BRUSLIB and NACRE II data, as well as new experiment-based radiative neutron capture cross sections. The full new versions of BRUSLIB, NACRE II, and NETGEN are available electronically from the nuclear database at http://www.astro.ulb.ac.be/NuclearData. The nuclear material is presented in

  8. Radioactive targets for nuclear astrophysics research at LANSCE

    SciTech Connect

    Koehler, P.E.; O'Brien, H.A.; Gursky, J.C.

    1990-01-01

    During the past few years we have made measurements of (n,p) and (n,{alpha}) cross sections on several radioactive nuclei of importance to nuclear astrophysics. The measurements were made at the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE) from thermal neutron energy to approximately 100 keV. Successful measurements have been completed on the radioisotopes {sup 7}Be, {sup 22}Na and {sup 36}Cl while preliminary data have been taken on targets of {sup 54}Mn and {sup 55}Fe. Similar measurements have also been made on the stable isotopes {sup 14}N, {sup 17}O and {sup 35}Cl. We are currently assembling a 4{pi} barium fluoride (BaF{sub 2}) detector which will allow us to expand our program to (n,{gamma}) measurements. The (n,{gamma}) (and in some cases future (n,p)) measurements will require targets with higher specific activity and greater chemical purity than we have so far been able to use. We discuss the fabrication techniques used for the samples produced so far, the requirements the future (n,{gamma}) targets must meet and our current plans for producing them, and the physics motivations for the measurements.

  9. Project Title: Nuclear Astrophysics Data from Radioactive Beam Facilities

    SciTech Connect

    Alan A. Chen

    2008-03-27

    The scientific aims of this project have been the evaluation and dissemination of key nuclear reactions in nuclear astrophysics, with a focus on ones to be studied at new radioactive beam facilities worldwide. These aims were maintained during the entire funding period from 2003 - 2006. In the following, a summary of the reactions evaluated during this period is provided. Year 1 (2003-04): {sup 21}Na(p,{gamma}){sup 22}Mg and {sup 18}Ne({alpha},p){sup 21}Na - The importance of the {sup 21}Na(p,{gamma}){sup 22}Mg and the {sup 18}Ne({alpha},p){sup 21}Na reactions in models of exploding stars has been well documented: the first is connected to the production of the radioisotope {sup 22}Na in nova nucleosynthesis, while the second is a key bridge between the Hot-CNO cycles and the rp-process in X-ray bursts. By the end of Summer 2004, our group had updated these reaction rates to include all published data up to September 2004, and cast the reaction rates into standard analytical and tabular formats with the assistance of Oak Ridge National Laboratory's computational infrastructure for reaction rates. Since September 2004, ongoing experiments on these two reactions have been completed, with our group's participation in both: {sup 21}Na(p,{gamma}){sup 22}Mg at the TRIUMF-ISAC laboratory (DRAGON collaboration), and 18Ne({alpha},p){sup 21}Na at Argonne National Laboratory (collaboration with Ernst Rehm, Argonne). The data from the former was subsequently published and included in our evaluation. Publication from the latter still awaits independent confirmation of the experimental results. Year 2 (2004-05): The 25Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma})14O reactions - For Year 2, we worked on evaluations of the {sup 25}Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma}){sup 14}O reactions, in accordance with our proposed deliverables and following similar standard procedures to those used in Year 1. The {sup 25}Al(p,{gamma}){sup 26}Si reaction is a key uncertainty in

  10. Study on astrophysical reactions using low-energy RI beams

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hidetoshi

    2009-10-01

    In recent years, low-energy RI beams can be produced in a good intensity and they have been used for studying many astrophysical reactions. One of the facilities producing low-energy RI beams is CRIB (CNS Radio-Isotope Beam separator) [1,2], an RI-beam separator of Center for Nuclear Study, University of Tokyo. Taking CRIB as an example, recent improvements on the RI-beam production and experimental results on astrophysical studies are presented. Several experimental approaches have been taken for the studies on astrophysical reactions.The feature of each method are discussed based on real measurements performed at CRIB. One is the direct method, applied for measurements of reactions such as (α,p) [3]. Another is the measurement of proton/alpha resonance scattering using the thick target method in inverse kinematics, by which we can obtain information on the resonances relevant in astrophysical reactions [4,5]. A recent fruitful result was from a measurement of proton resonance scattering using a ^7Be beam [5]. The energy level structure of ^8B, revealed by the experiment, is especially of interest as it is related with the ^7Be(p,γ) ^8B reaction, responsible for the production of ^8B neutrinos in the sun. We successfully determined parameters of resonances in ^8B below 6.7 MeV, which may affect the ^7Be(p,γ)^8B reaction rate at the solar temparature. Indirect methods, such as ANC and the Trojan Horse Method, were also used in some of the measurements.[4pt] [1] S. Kubono et al., Eur. Phys. J. A13 (2002) 217.[0pt] [2] Y. Yanagisawa et al., Nucl. Instrum. Meth. Phys. Res., Sect. A 539 (2005) 74.[0pt] [3] M. Notani et al., Nucl. Phys. A 764 (2004) 113c.[0pt] [4] T. Teranishi et al., Phys. Lett. B 650 (2007) 129.[0pt] [5] H. Yamaguchi et al., Phys. Lett. B 672 (2009) 230.

  11. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    SciTech Connect

    Uwe, Greife

    2014-08-12

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  12. The Lunar Occultation Observer (LOCO) -- A Nuclear Astrophysics All-Sky Survey Mission Concept

    NASA Astrophysics Data System (ADS)

    Miller, R. S.; Bonamente, M.; Burgess, J. M.; Jenke, P.; Lawrence, D. J.; O'Brien, S.; Orr, M. R.; Paciesas, W. S.; Young, C. A.

    2009-03-01

    The Lunar Occultation Observer (LOCO) is a new γ-ray astrophysics mission concept expected to have unprecedented sensitivity in the nuclear regime. Operating in lunar orbit, LOCO will utilize lunar occultation imaging to survey and probe the cosmos.

  13. Nuclear and Astrophysics Data from the T2 Group at Los Alamos National Laboratory (LANL)

    DOE Data Explorer

    The T-2 Nuclear Information Service provides access to a variety of nuclear data, including ENDF/B cross sections, radioactive decay data, astrophysics data, photoatomic data, charged particle data, thermal neutron data, and a Nuclear Data Viewer. The data are useful for both nuclear science and nuclear engineering. The codes area gives information on computer codes used in the T-2 Group's nuclear data work.

  14. Recent astrophysical studies with exotic beams at ORNL

    NASA Astrophysics Data System (ADS)

    Bardayan, D. W.

    2006-03-01

    The availability of exotic beams has produced great opportunities for advances in our understanding of the nucleosynthesis occurring in stellar burning and stellar explosions such as novae, X-ray bursts, and supernovae. In these extreme environments, synthesized radioactive nuclei can undergo subsequent nuclear processing before they decay, and thus to understand these events, we must understand reaction rates involving radioactive nuclei. At the ORNL Holifield Radioactive Ion Beam Facility (HRIBF), we have made a number of measurements using proton-rich beams such as 18F and 7Be and neutron-rich beams such as 82Ge and 84Se that help clarify the structure of astrophysically-important nuclei. We are also poised to begin studies with doubly-magic 132Sn. The experimental methods and results are discussed.

  15. Recent Astrophysical Studies with Exotic Beams at ORNL

    SciTech Connect

    Bardayan, Daniel W

    2006-02-01

    The availability of exotic beams has produced great opportunities for advances in our understanding of the nucleosynthesis occurring in stellar burning and stellar explosions such as novae, X-ray bursts, and supernovae. In these extreme environments, synthesized radioactive nuclei can undergo subsequent nuclear processing before they decay, and thus to understand these events, we must understand reaction rates involving radioactive nuclei. At the ORNL Holi led Radioactive Ion Beam Facility (HRIBF), we have made several recent measurements using proton-rich beams such as 18F and 7Be and neutron-rich beams such as 82Ge and 84Se that help clarify the structure of astrophysically-important nuclei. We are also poised to begin studies with doubly-magic 132Sn. The experimental methods and results are discussed.

  16. Relevance of β-delayed neutron data for reactor, nuclear physics and astrophysics applications

    SciTech Connect

    Kratz, Karl-Ludwig

    2015-02-24

    Initially, yields (or abundances) and branching ratios of β-delayed neutrons (βdn) from fission products (P{sub n}-values) have had their main importance in nuclear reactor control. At that time, the six-group mathematical approximation of the time-dependence of βdn-data in terms of the so-called 'Keepin groups' was generally accepted. Later, with the development of high-resolution neutron spectroscopy, βdn data have provided important information on nuclear-structure properties at intermediate excitation energy in nuclei far from stability, as well as in nuclear astrophysics. In this paper, I will present some examples of the βdn-studies performed by the Kernchemie Mainz group during the past three decades. This work has been recognized as an example of 'broad scientific diversity' which has led to my nomination for the 2014 Hans A. Bethe prize.

  17. Relevance of β-delayed neutron data for reactor, nuclear physics and astrophysics applications

    NASA Astrophysics Data System (ADS)

    Kratz, Karl-Ludwig

    2015-02-01

    Initially, yields (or abundances) and branching ratios of β-delayed neutrons (βdn) from fission products (Pn-values) have had their main importance in nuclear reactor control. At that time, the six-group mathematical approximation of the time-dependence of βdn-data in terms of the so-called "Keepin groups" was generally accepted. Later, with the development of high-resolution neutron spectroscopy, βdn data have provided important information on nuclear-structure properties at intermediate excitation energy in nuclei far from stability, as well as in nuclear astrophysics. In this paper, I will present some examples of the βdn-studies performed by the Kernchemie Mainz group during the past three decades. This work has been recognized as an example of "broad scientific diversity" which has led to my nomination for the 2014 Hans A. Bethe prize.

  18. Thermonuclear Reaction Rate Libraries and Software Tools for Nuclear Astrophysics Research

    NASA Astrophysics Data System (ADS)

    Smith, Michael S.; Cyburt, Richard; Schatz, Hendrik; Wiescher, Michael; Smith, Karl; Warren, Scott; Ferguson, Ryan; Lingerfelt, Eric; Buckner, Kim; Nesaraja, Caroline D.

    2008-05-01

    Thermonuclear reaction rates are a crucial input for simulating a wide variety of astrophysical environments. A new collaboration has been formed to ensure that astrophysical modelers have access to reaction rates based on the most recent experimental and theoretical nuclear physics information. To reach this goal, a new version of the REACLIB library has been created by the Joint Institute for Nuclear Astrophysics (JINA), now available online at http://www.nscl.msu.edu/~nero/db. A complementary effort is the development of software tools in the Computational Infrastructure for Nuclear Astrophysics, online at nucastrodata.org, to streamline, manage, and access the workflow of the reaction evaluations from their initiation to peer review to incorporation into the library. Details of these new projects will be described.

  19. Reactions Induced by Real Photons for Nuclear Structure and Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Enders, J.

    This contribution presents examples for recent experimental studies with real photons. Topics include the electric dipole response below the particle separation energy (pygmy resonance), the magnetic scissors mode in deformed nu, an analysis of low-lying electric quadrupole strength and astrophysical applications. Results of reactions induced by real photons are compared to those obtained from virtual photons (electron scattering, Coulomb excitation).

  20. High Energy Studies of Astrophysical Dust

    NASA Astrophysics Data System (ADS)

    Corrales, Lia Racquel

    Astrophysical dust---any condensed matter ranging from tens of atoms to micron sized grains---accounts for about one third of the heavy elements produced in stars and disseminated into space. These tiny pollutants are responsible for producing the mottled appearance in the spray of light we call the "Milky Way." However these seemingly inert particles play a strong role in the physics of the interstellar medium, aiding star and planet formation, and perhaps helping to guide galaxy evolution. Most dust grains are transparent to X-ray light, leaving a signature of atomic absorption, but also scattering the light over small angles. Bright X-ray objects serendipitously situated behind large columns of dust and gas provide a unique opportunity to study the dust along the line of sight. I focus primarily on X-ray scattering through dust, which produces a diffuse halo image around a central point source. Such objects have been observed around X-ray bright Galactic binaries and extragalactic objects that happen to shine through the plane of the Milky Way. I use the Chandra X-ray Observatory, a space-based laboratory operated by NASA, which has imaging resolution ideal for studying X-ray scattering halos. I examine several bright X-ray objects with dust-free sight lines to test their viability as templates and develop a parametric model for the Chandra HETG point spread function (PSF). The PSF describes the instrument's imaging response to a point source, an understanding of which is necessary for properly measuring the surface brightness of X-ray scattering halos. I use an HETG observation of Cygnus X-3, one of the brightest objects available in the Chandra archive, to derive a dust grain size distribution. There exist degenerate solutions for the dust scattering halo, but with the aid of Bayesian analytics I am able to apply prior knowledge about the Cyg X-3 sight line to measure the relative abundance of dust in intervening Milky Way spiral arms. I also demonstrate how

  1. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    DOE PAGESBeta

    Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernandez Niello, J. O.; Henderson, D.; et al

    2015-06-02

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work.

  2. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernandez Niello, J. O.; Henderson, D.; Jiang, C. L.; Lai, J.; Marley, S. T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Ugalde, C.

    2015-06-01

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work.

  3. A relation between proton and neutron asymptotic normalization coefficients for light mirror nuclei and its relevance to nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Mukhamedzhanov, A.; Johnson, R. C.; Timofeyuk, N. K.

    2004-05-01

    The astrophysical S-factor associated with the peripheral proton capture reaction B(p,γ)A at stellar energies is related to the Asymptotic Normalization Coefficient (ANC) of the virtual decay A arrow B + p. The same ANCs play a crucial role in other peripheral processes such as transfer reactions whose cross sections are significantly higher and therefore more easily measurable than those of the direct capture processes at astrophysically relevant energies. The study of ANCs of astrophysical interest is a new and rapidly developing direction in modern experimental nuclear physics. However, in order to exploit these ideas to determine the ANCs for light proton-rich nuclei of importance to nuclear astrophysics the corresponding transfer reactions often require the use of weak radioactive beams, which generally involves more difficult and less accurate experiments than are possible with stable beams. In this talk we point out that the ANC of the virtual neutron decay of the nucleus mirror to A, which may be susceptible to study with stable beams, is related in a model independent way by the charge symmetry of nuclear forces to the ANC of the corresponding proton decay of A. Near the edge of stability, where neutron separation energies become very small, the corresponding mirror proton states manifest themselves as resonances.

  4. Lunar occultation imaging in nuclear astrophysics: A new paradigm for future investigations

    NASA Astrophysics Data System (ADS)

    Orr, Matthew R.

    Nuclear astrophysics (~10-10000 keV) is one of the last electromagnetic regimes without a sensitive all-sky survey, and therefore there is tremendous potential for future discoveries. A mission dedicated to such a survey will enable studies ranging from a survey of accreting black holes, to probing star formation rates by observing supernovae and novae, as well as investigating the underlying processes that power Active Galactic Nuclei. The Lunar Occultation Observer (LOCO) addresses these goals using the Lunar Occultation Technique (LOT), an innovative imaging approach to an all-sky survey. Occultation imaging eliminates the need for a pixelated, or high spatial resolution, detector. As a result, this technique is relatively simple to implement, maximizes active detector area, and is highly cost effective. This work characterizes the performance of the LOT in relation to the detection of astrophysical point sources. Sensitivity, position resolution, and issues of source confusion are all examined. The performance of LOCO, as demonstrated by this work, is an improvement over both previous and current instruments. The broadband sensitivity of LOCO in the range of 10-600 keV is <2 mCrab after 1 year of mission operation. The line sensitivity of LOCO is ~4 x 10 -5 photons cm -2 s -1 at 847 keV after 10 6 s of mission operation. A source localization accuracy of ~0.5 arcmin, and a 99% confidence region of ~0.6 square arcminutes, is also achievable with LOCO. Observing approximately 90% of the sky per orbit, LOCO is also able to identify sources separated by ~3 arcmin. This broad sky exposure, combined with its improved sensitivity and position resolution, give LOCO the potential to make significant contributions to nuclear astrophysics. These performance measures make the Lunar Occultation Observer a viable candidate for a survey mission.

  5. Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data.

    PubMed

    Rauscher, T; Dauphas, N; Dillmann, I; Fröhlich, C; Fülöp, Zs; Gyürky, Gy

    2013-06-01

    A small number of naturally occurring, proton-rich nuclides (the p-nuclei) cannot be made in the s- and r-processes. Their origin is not well understood. Massive stars can produce p-nuclei through photodisintegration of pre-existing intermediate and heavy nuclei. This so-called γ-process requires high stellar plasma temperatures and occurs mainly in explosive O/Ne burning during a core-collapse supernova. Although the γ-process in massive stars has been successful in producing a large range of p-nuclei, significant deficiencies remain. An increasing number of processes and sites has been studied in recent years in search of viable alternatives replacing or supplementing the massive star models. A large number of unstable nuclei, however, with only theoretically predicted reaction rates are included in the reaction network and thus the nuclear input may also bear considerable uncertainties. The current status of astrophysical models, nuclear input and observational constraints is reviewed. After an overview of currently discussed models, the focus is on the possibility to better constrain those models through different means. Meteoritic data not only provide the actual isotopic abundances of the p-nuclei but can also put constraints on the possible contribution of proton-rich nucleosynthesis. The main part of the review focuses on the nuclear uncertainties involved in the determination of the astrophysical reaction rates required for the extended reaction networks used in nucleosynthesis studies. Experimental approaches are discussed together with their necessary connection to theory, which is especially pronounced for reactions with intermediate and heavy nuclei in explosive nuclear burning, even close to stability. PMID:23660558

  6. Hans A. Bethe Prize: Astrophysical, observational and nuclear-physics aspects of r-process nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Kratz, Karl-Ludwig

    2014-03-01

    Guided by the Solar System (S.S.) abundance peaks at A ~= 130 and A ~= 195, the basic mechanisms for the rapid neutron-capture process (the r-process) have been known for over 50 years. However, even today, all proposed scenarios and sites face problems with astrophysical conditions as well as with the necessary nuclear-physics input. In my talk, I will describe efforts in experimental and theoretical nuclear-structure data for modeling today's three groups of r-process ``observables'', i.e. the bulk S.S. isotopic abundances, the elemental abundances in metal-poor halo stars, and peculiar isotopic patterns measured in certain cosmic stardust grains. To set a historical basis, I will briefly recall our site-independent ``waiting-point'' model, with superpositions of neutron-density components and the use of the first global, unified nuclear input based on the mass model FRDM(1992). This approach provided a considerable leap forward in the basic understanding of the required astrophysical conditions, as well as of specific shell-structure properties far from stability. Starting in the early millenium, the above simple model has been replaced by more realistic, dynamical parameter studies within the high-entropy wind scenario of core-collapse supernovae, now with superpositions of entropy (S) and electron-fraction (Ye) components. Furthermore, an improved, global set of nuclear-physics data is used today, based on the new mass model FRDM(2012). With this nuclear and astrophysics parameter combination, a new fit to the S.S. r-abundances will be shown, and its improvements and remaining deficiencies in terms of underlying shell structure will be discussed. Concerning the abundance patterns in metal-poor halo stars, an interpretation of the production of ``r-rich'' (e.g. CS 22892-052) and ``r-poor'' (e.g. HD 122563) stars in terms of different (Ye), S combinations will be presented. Finally, for the third group of ``r-observables'', a possible origin of the anomalous Xe

  7. Trojan Horse Method: recent results in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Spitaleri, C.; Lamia, L.; Gimenez Del Santo, M.; Burjan, V.; Carlin, N.; Li, Chengbo; Cherubini, S.; Crucilla, V.; Gulino, M.; Hons, Z.; Kroha, V.; Irgaziev, B.; La Cognata, M.; Mrazek, J.; Mukhamedzhanov, M.; Munhoz, M. G.; Palmerini, S.; Pizzone, R. G.; Puglia, M. R.; Rapisarda, G. G.; Romano, S.; Sergi, L.; Zhou, Shu-Hua; Somorjai, E.; Souza, F. A.; Tabacaru, G.; Szanto de Toledo, A.; Tumino, A.; Wen, Qungang; Wakabayashi, Y.; Yamaguchi, H.

    2015-07-01

    The accurate knowledge of thermonuclear reaction rates is important in understanding the energy generation, the neutrinos luminosity and the synthesis of elements in stars. The physical conditions under which the majority of astrophysical reactions proceed in stellar environments make it difficult or impossible to measure them under the same conditions in the laboratory. That is why different indirect techniques are being used along with direct measurements. The Trojan Horse Method (THM) is introduced as an independent technique to obtain the bare nucleus astrophysical S(E)-factor. As examples the results of recent the application of THM to the 2H(11B, σ08Be)n and 2H(10B, σ07Be)n reactions are presented.

  8. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2015-02-01

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as 12C and 16O . All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the 12C (α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  9. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    SciTech Connect

    Gai, Moshe

    2015-02-24

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  10. An optical readout TPC (O-TPC) for studies in nuclear astrophysics with gamma-ray beams at HIγS1

    NASA Astrophysics Data System (ADS)

    Gai, M.; Ahmed, M. W.; Stave, S. C.; Zimmerman, W. R.; Breskin, A.; Bromberger, B.; Chechik, R.; Dangendorf, V.; Delbar, Th; France, R. H., III; Henshaw, S. S.; Kading, T. J.; Martel, P. P.; McDonald, J. E. R.; Seo, P.-N.; Tittelmeier, K.; Weller, H. R.; Young, A. H.

    2010-12-01

    We report on the construction, tests, calibrations and commissioning of an Optical Readout Time Projection Chamber (O-TPC) detector operating with a CO2(80%) + N2(20%) gas mixture at 100 and 150 Torr. It was designed to measure the cross sections of several key nuclear reactions involved in stellar evolution. In particular, a study of the rate of formation of oxygen and carbon during the process of helium burning will be performed by exposing the chamber gas to intense nearly mono-energetic gamma-ray beams at the High Intensity Gamma Source (HIγS) facility. The O-TPC has a sensitive target-drift volume of 30x30x21 cm3. Ionization electrons drift towards a double parallel-grid avalanche multiplier, yielding charge multiplication and light emission. Avalanche-induced photons from N2 emission are collected, intensified and recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional track images. The event's time projection (third coordinate) and the deposited energy are recorded by photomultipliers and by the TPC charge-signal, respectively. A dedicated VME-based data acquisition system and associated data analysis tools were developed to record and analyze these data. The O-TPC has been tested and calibrated with 3.183 MeV alpha-particles emitted by a 148Gd source placed within its volume with a measured energy resolution of 3.0%. Tracks of alpha and 12C particles from the dissociation of 16O and of three alpha-particles from the dissociation of 12C have been measured during initial in-beam test experiments performed at the HIγS facility at Duke University. The full detection system and its performance are described and the results of the preliminary in-beam test experiments are reported.

  11. Imaging detector development for nuclear astrophysics using pixelated CdTe

    NASA Astrophysics Data System (ADS)

    Álvarez, J. M.; Gálvez, J. L.; Hernanz, M.; Isern, J.; Llopis, M.; Lozano, M.; Pellegrini, G.; Chmeissani, M.

    2010-11-01

    The concept of focusing telescopes in the energy range of lines of astrophysical interest (i.e., of energies around 1 MeV) should allow to reach unprecedented sensitivities, essential to perform detailed studies of cosmic explosions and cosmic accelerators. Our research and development activities aim to study a detector suited for the focal plane of a γ-ray telescope mission. A CdTe/CdZnTe detector operating at room temperature, that combines high detection efficiency with good spatial and spectral resolution is being studied in recent years as a focal plane detector, with the interesting option of also operating as a Compton telescope monitor. We present the current status of the design and development of a γ-ray imaging spectrometer in the MeV range, for nuclear astrophysics, consisting of a stack of CdTe pixel detectors with increasing thicknesses. We have developed an initial prototype based on CdTe ohmic detector. The detector has 11×11 pixels, with a pixel pitch of 1 mm and a thickness of 2 mm. Each pixel is stud bonded to a fanout board and routed to an front end ASIC to measure pulse height and rise time information for each incident γ-ray photon. First measurements of a 133Ba and 241Am source are reported here.

  12. Nuclear physics and astrophysics. Progress report for period June 15, 1992--June 14, 1993

    SciTech Connect

    Schramm, D.N.; Olinto, A.V.

    1993-06-01

    The authors report on recent progress of research at the interface of nuclear physics and astrophysics. During the past year, the authors continued to work on Big Bang and stellar nucleosynthesis, the solar neutrino problem, the equation of state for dense matter, the quark-hadron phase transition, and the origin of gamma-ray bursts; and began studying the consequences of nuclear reaction rates in the presence of strong magnetic fields. They have shown that the primordial production of B and Be cannot explain recent detections of these elements in halo stars and have looked at spallation as the likely source of these elements. By looking at nucleosynthesis with inhomogeneous initial conditions, they concluded that the Universe must have been very smooth before nucleosynthesis. They have also constrained neutrino oscillations and primordial magnetic fields by Big Bang nucleosynthesis. On the solar neutrino problem, they have analyzed the implications of the SAGE and GALLEX experiments. They also showed that the presence of dibaryons in neutron stars depends weakly on uncertainties of nuclear equations of state. They have started to investigate the consequences of strong magnetic fields on nuclear reactions and implications for neutron star cooling and supernova nucleosynthesis.

  13. Fundamental studies in X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.; Lightman, A. P.

    1982-01-01

    An analytical model calculation of the ionization structure of matter accreting onto a degenerate dwarf was carried out. Self-consistent values of the various parameters are used. The possibility of nuclear burning of the accreting matter is included. We find the blackbody radiation emitted from the stellar surface keeps hydrogen and helium ionized out to distances much larger than a typical binary separation. Except for low mass stars or high accretion rates, the assumption of complete ionization of the elements heavier than helium is a good first approximation. For low mass stars or high accretion rates the validity of assuming complete ionization depends sensitivity on the distribution of matter in the binary system.

  14. Constraints on CEMP-no progenitors from nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Choplin, Arthur; Maeder, André; Meynet, Georges; Chiappini, Cristina

    2016-09-01

    Context. The CEMP-no stars are long-lived small mass stars presenting a very low iron content and overabundances of carbon with no sign or only very weak signs of s- or r-elements. Although the origin of this abundance pattern is still a matter of debate, it was very likely inherited from a previous massive star, which we call the source star. Aims: We rely on a recent classification of CEMP-no stars arguing that some of them are made of a material processed by hydrogen burning that was enriched in products of helium burning during the nuclear life of the source star. We examine the possibility of forming CEMP-no stars with this material. Methods: We study the nucleosynthesis of the CNO cycle and the Ne-Na Mg-Al chains in a hydrogen burning single zone while injecting the helium burning products 12C, 16O, 22Ne, and 26Mg. We investigate the impact of changing density, temperature and the injection rate. The nuclear reaction rates involving the creation and destruction of 27Al are also examined. Results: 14N, 23Na, 24Mg, and 27Al are formed when injecting 12C, 16O, 22Ne, and 26Mg in the hydrogen burning zone. The 12C/13C ratio is constant under various conditions in the hydrogen burning zone. The predicted [Al/Fe] ratio varies up to ~ 2 dex depending on the prescription used for the reaction rates involving 27Al. Conclusions: The experiments we carried out support the view that some CEMP-no stars are made of a material processed by hydrogen burning that comes from a massive star experiencing mild to strong rotational mixing. During its burning, this material was likely enriched in helium burning products. No material coming from the carbon-oxygen rich core of the source star should be added to form the daughter star, otherwise the 12C/13C ratio would be largely above the observed range of values.

  15. Ex Luna Scientia! A New Paradigm for Nuclear Gamma-Ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Miller, Richard Scott; Bonamente, M.; Ebbets, D.; Freelove, R.; Harwit, A.; Lawrence, D. J.; O'Brien, S.; Paciesas, W. S.; Young, C. A.

    2010-03-01

    The Lunar Occultation Observer (LOCO) is a new gamma-ray astrophysics mission concept being developed to probe the nuclear regime (( 0.1-10 MeV). LOCO will perform an all-sky survey of the Cosmos at nuclear energies, and will the have capability to address multiple high-priority science goals. Placed into lunar orbit, LOCO will utilize the Moon's unique environment to maximize performance relative to terrestrial-orbit endeavors with similar science goals. Specifically, LOCO will use the Moon to occult astrophysical sources as they rise and set along the lunar limb. The encoded temporal modulation will then be used to image the sky thereby enabling spectroscopic, time-variability, point- & extended-source analyses. This Lunar Occultation Technique (LOT) enables the excellent flux sensitivity, position, and energy resolution required of the next-generation nuclear astrophysics mission. In addition, occultation imaging eliminates the need for complex, position sensitive detectors. The LOCO concept is cost-effective, competitive, and has a straightforward and scaleable implementation. I will review the top-level mission concept, simulations and performance estimates, detector development efforts, mission implementation strategies and tradeoffs, as well as the astrophysics and secondary lunar science goals. This work was supported in part by National Aeronautics and Space Administration grants NNG06GF74G and National Science Foundation grant ATM-0421267. One author (RSM) also acknowledges support of the National Space Science & Technology Center through cooperative agreement grants NCC8-200 and NNM05AA22A.

  16. NUCLEAR ASTROPHYSICS PROJECT WITH A NEW LOW-ENERGY RIB SEPARATOR CRIB:. Study of a Critical Stellar Reaction 15O(α,γ)19Ne

    NASA Astrophysics Data System (ADS)

    Kubono, S.; Michimasa, S.; Teranishi, T.; Yanagisawa, Y.; Fulop, Z.; Liu, X.; Kumagai, K.; Abe, K.; Yun, C. C.; Watanabe, S.; Yamazaki, N.; Ohshiro, Y.; Kurokawa, M.; Strasser, P.; Hahn, K. I.; Kishida, T.; Imai, N.; Kato, S.; Fuchi, Y.; Tanaka, M. H.

    2003-04-01

    One of the critical stellar reactions for the onset of explosive hydrogen burning, 15O(α,γ)19Ne, is discussed with our recent experimental effort and a new possibility in our new RIB project. This reaction was investigated experimentally by indirect methods. Single particle nature of the threshold states was studied by the analog reactions, (d,t) and (d,3He) on 20Ne. The α-branching ratios for some states were also measured by a coincidence measurement of a triton and α from 19F(3He,t)19Ne*(α)15O(g.s.). Experimental plan for the problem was also discussed that uses a new low-energy RIB facility at CNS, called CRIB, which will come into operation soon.

  17. Studying astrophysical reactions with low-energy RI beams at CRIB

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Kahl, D.; Hayakawa, S.; Sakaguchi, Y.; Wakabayashi, Y.; Hashimoto, T.; Cherubini, S.; Gulino, M.; Spitaleri, C.; Rapisarda, G. G.; La Cognata, M.; Lamia, L.; Romano, S.; Kubono, S.; Iwasa, N.; Teranishi, T.; Kawabata, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. N.; Kato, S.; Komatsubara, T.; Coc, A.; De Sereville, N.; Hammache, F.; Kiss, G.; Bishop, S.

    2016-05-01

    Studies on nuclear astrophysics, nuclear structure, and other interests have been performed using the radioactive-isotope (RI) beams at the low-energy RI beam separator CRIB, operated by Center for Nuclear Study (CNS), the University of Tokyo. A typical measurement performed at CRIB is the elastic resonant scattering with the inverse kinematics. One recent experiment was on the α resonant scattering with 7Li and 7Be beams. This study is related to the astrophysical 7Li/7Be(α,γ) reactions, important at hot p-p chain and νp-process in supernovae. There have also been measurements based on other experimental methods. The first THM measurement using an RI beam has been performed at CRIB, to study the 18F(p, α)15O reaction at astrophysical energies via the three body reaction 2H(18F, α15O)n. The 18F(p, α) 15O reaction rate is crucial to understand the 511-keV γ-ray production in nova explosion phenomena, and we successfully evaluated the reaction cross section at novae temperature and below experimentally for the first time.

  18. The γ-ray spectrometer HORUS and its applications for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Netterdon, L.; Derya, V.; Endres, J.; Fransen, C.; Hennig, A.; Mayer, J.; Müller-Gatermann, C.; Sauerwein, A.; Scholz, P.; Spieker, M.; Zilges, A.

    2014-08-01

    A dedicated setup for the in-beam measurement of absolute cross-sections of astrophysically relevant charged-particle induced reactions is presented. These, usually very low, cross-sections at energies of astrophysical interest are important to improve the modeling of the nucleosynthesis processes of heavy nuclei. Particular emphasis is put on the production of the p nuclei during the astrophysical γ process. The recently developed setup utilizes the high-efficiency γ-ray spectrometer HORUS, which is located at the 10 MV FN tandem ion accelerator of the Institute for Nuclear Physics in Cologne. The design of this setup will be presented and results of the recently measured 89Y(p,γ)90Zr reaction will be discussed. The excellent agreement with existing data shows that the HORUS spectrometer is a powerful tool to determine total and partial cross-sections using the in-beam method with high-purity germanium detectors.

  19. Nuclear interactions of high energy heavy ions and applications in astrophysics

    SciTech Connect

    Wefel, J.P.

    1992-01-23

    This program was established for the purpose of studying projectile fragmentation; (1) as a function of energy, focusing first on the intermediate energy region, < 1 GeV/nucleon, where there have been few previous measurements and no systematic studies, and (2) as a function of projectile mass, starting with light beams and proceeding to species as heavy as nickel (and possibly beyond). The intermediate energy region is important as the transition between the lower energy data, where the interaction appears to be dominated by collective effects and the decay of excited nuclei, and the highest energy results, where nucleon-nucleon interactions are fundamental, limiting fragmentation'' applies, and the nucleus may well break-up before any de-excitation. The mass dependence of projectile fragmentation is largely unknown since most detailed work has involved light ion beams. Nuclear structure effects, for example, may well be quite prominent for heavier beams. Furthermore, the nuclear excitation functions for the production of different fragment isotopes have immediate application to the astrophysical interpretation of existing isotopic datasets obtained from balloon and satellite measurements of galactic cosmic rays.

  20. The new worlds observer: The astrophysics strategic mission concept study

    NASA Astrophysics Data System (ADS)

    Cash, W.

    2011-07-01

    We present some results of the Astrophysics Strategic Mission Concept Study for the New Worlds Observer (NWO). We show that the use of starshades is the most effective and affordable path to mapping and understanding our neighboring planetary systems, to opening the search for life outside our solar system, while serving the needs of the greater astronomy community. A starshade-based mission can be implemented immediately with a near term program of technology demonstration.

  1. Developing a Laue Lens for Nuclear Astrophysics: The Challenge of Focusing Soft Gamma-rays

    NASA Astrophysics Data System (ADS)

    Barriere, Nicolas

    Soft gamma rays provide a unique window on the high-energy Universe, especially for studying nuclear astrophysics through nuclear line emission. However, the sensitivity of state-of-the-art gamma-ray telescopes is severely limited by the intense instrumental background when flown in space. A solution is to decouple the photon collection area from the photon detection area. Focusing source photons from a large collection area onto a small detector volume would dramatically improve the signal-to-noise ratio, and hence provide the long awaited sensitivity leap in this challenging energy band. Laue crystal diffraction can be utilized to focus soft gamma rays when configured in a Laue lens. While this technology has been demonstrated on balloon flights, the type of crystals used and the process of assembling many crystals into a lens have not been optimized yet. We propose to address all the technical aspects of the construction of a scientifically exploitable Laue lens in order to bring this technology to TRL-6. To this end, two small prototypes representative of the diversity of Laue lenses will be built and tested in relevant environments, leveraging the work accomplished under a previous APRA grant. This project will establish the real performances, the cost, and the construction duration of a full-scale lens, allowing us to propose a Laue lens telescope for suborbital or satellite missions.

  2. Astrophysically Relevant Dipole Studies at WiPAL

    NASA Astrophysics Data System (ADS)

    Endrizzi, Douglass; Forest, Cary; Wallace, John; WiPAL Team

    2015-11-01

    A novel terrella experiment is being developed to immerse a dipole magnetic field in the large, unmagnetized, and fully ionized background plasma of WiPAL (Wisconsin Plasma Astrophysics Lab). This allows for a series of related experiments motivated by astrophysical processes, including (1) inward transport of plasma into a magnetosphere with focus on development of Kelvin-Helmholtz instabilities from boundary shear flow; (2) helicity injection and simulation of solar eruptive events via electrical breakdown along dipole field lines; (3) interaction of Coronal Mass Ejection-like flows with a target magnetosphere and dependence on background plasma pressure; (4) production of a centrifugally driven wind to study how dipolar magnetic topology changes as closed field lines open. A prototype has been developed and preliminary results will be presented. An overview of the final design and construction progress will be given. This material is based upon work supported by the NSF Graduate Research Fellowship Program.

  3. Beta-decay studies of nickel-78 and other neutron-rich nuclei in the astrophysical r-process

    NASA Astrophysics Data System (ADS)

    Hosmer, Paul Thomas

    The β-decay properties of several neutron-rich nuclei including the doubly-magic 78Ni were studied. A low-energy neutron detector NERO was designed and calibrated for use in these measurements. β-decay measurements, especially those that combine both half-life and neutron-emission probability measurements, can offer first tests of nuclear theories of neutron-rich nuclei. In addition, 78Ni is an important waiting-point in the astrophysical r-process. The results of the measurements are compared to several nuclear models, and the astrophysical implications are explored.

  4. Nuclear Astrophysics Programs with Low-Energy RI Beams at CRIB

    SciTech Connect

    Kubono, S.; Binh, Dam N.; Hayakawa, S.; Hashimoto, T.; Kahl, D. M.; Yamaguchi, H.; Wakabayashi, Y.; Teranishi, T.; Iwasa, N.; Komatsubara, T.; Kato, S.; Khiem, Le H.

    2010-04-30

    Nuclear astrophysics activities with CNS RI beam separator (CRIB) are reported together with the present status of the CRIB facility which is supported by the AVF upgrade project for the total development of the low-energy RIB facility. The activities include direct and indirect measurements of stellar reactions especially relevant to explosive burning processes such as nova and supernovae. Some recent results are discussed together with a scope of the facility.

  5. Nuclear Astrophysics Programs with Low-Energy RI Beams at CRIB

    NASA Astrophysics Data System (ADS)

    Kubono, S.; Binh, Dam N.; Hayakawa, S.; Hashimoto, T.; Kahl, D. M.; Yamaguchi, H.; Wakabayashi, Y.; Teranishi, T.; Iwasa, N.; Komatsubara, T.; Kato, S.; Khiem, Le H.

    2010-04-01

    Nuclear astrophysics activities with CNS RI beam separator (CRIB) are reported together with the present status of the CRIB facility which is supported by the AVF upgrade project for the total development of the low-energy RIB facility. The activities include direct and indirect measurements of stellar reactions especially relevant to explosive burning processes such as nova and supernovae. Some recent results are discussed together with a scope of the facility.

  6. Nuclear Data for Astrophysics: Collections at NucAstroData.org

    DOE Data Explorer

    In May of 2003, Dr. Michael Smith, Physics Division, ORNL, published a paper announcing the launch of the new website NucAstroData.org and the rationale behind it. An excerpt from the abstract of that paper, found in volume 718, pages 339-346, of ScienceDirect - Nuclear Physics A, explains: "In order to address important astrophysics problems such as the origin of the chemical elements, the inner workings of our Sun, and the evolution of stars, crucial nuclear datasets are needed. Recent evaluation and dissemination efforts have produced a number of such datasets, many of which are online and readily available to the research community. Current international efforts in this field are, unfortunately, insufficient to keep pace with the latest nuclear physics measurements and model calculations. A dedicated effort is required to update and expand existing datasets. I discuss several strategies and new initiatives that would ensure a more effective utilization of nuclear data in astrophysics. These include launching a new web site, www.nucastrodata.org, to aid in locating available nuclear data sets, and an interactive online plotting program with an easy-to-use graphical user interface to over 8000 reaction rates." This website continues to be resource for the nuclear astrophysics community. NucAstroData provides both links to datasets around the world and a repository where researchers can upload their own data. Tools for generating and manipulating reaction rates, merging libraries of data, plotting data and performing other tasks are provided under the website's Infrastructure section and the menu selection for software leads to useful codes.

  7. Nuclear Structure and Astrophysics r-PROCESS with Covariant Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Meng, J.; Long, W. H.; Niu, Z. M.; Sun, B.; Zhou, S. G.

    2010-09-01

    The density functional theory (DFT) with a minimal number of parameters allows a very successful phenomenological description of ground state properties of nuclei all over the periodic table. Recent progresses on the application of the covariant density functional theory as well as its extensions by the group in Beijing for a series of interests and hot topics in nuclear astrophysics and nuclear structure are reviewed, including the rapid neutron-capture process, Th/U chronometer, halo and giant halo in density dependent relativistic Hartree-Fock-Bogoliubov, and neutron halo in deformed nuclei.

  8. A multidisciplinary study of planetary, solar and astrophysical radio emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Calvert, W.; Fielder, R.; Goertz, C.; Grabbe, C.; Kurth, W.; Mutel, R.; Sheerin, J.; Mellott, M.; Spangler, S.

    1986-01-01

    Combination of the related fields of planetary, solar, and astrophysical radio emissions was attempted in order to more fully understand the radio emission processes. Topics addressed include: remote sensing of astrophysical plasma turbulence; Alfven waves; astrophysical shock waves; surface waves; very long base interferometry results; very large array observations; solar magnetic flux; and magnetohydrodynamic waves as a tool for solar corona diagnostics.

  9. Design of an intense ion source and LEBT for Jinping Underground Nuclear Astrophysics experiments

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Sun, L. T.; Cui, B. Q.; Lian, G.; Yang, Y.; Ma, H. Y.; Tang, X. D.; Zhang, X. Z.; Zhang, Z. M.; Liu, W. P.

    2016-09-01

    The ongoing Jinping Underground Nuclear Astrophysics experiment (JUNA) will take the advantage of the ultralow background in China Jinping Underground Laboratory (CJPL), high current accelerator driven by on an ECR source and highly sensitive detector to study directly a number of important reactions for the first time within their relevant stellar energy range. A 2.45 GHz ECR ion source is one of its key components to provide 10 emA H+, 10 emA He+ and 2.0 emA He2+ beams for the study of (p,γ), (p,α), (α,p) and (α,γ) reactions in the first phase of the JUNA project. Ion beam is extracted from the source with energies up to 50 kV/q. The following low energy beam transport (LEBT) system transports and matches the ion beam from the exit of ion source to the acceleration tube (AT). The design status of the ECR ion source and LEBT system for the JUNA project are presented. The potential risks of the ion source are also discussed and analysed.

  10. The Underground Nuclear Astrophysics in the Precision Era of BBN: Present Results and Future Perspectives

    NASA Astrophysics Data System (ADS)

    Gustavino, C.

    2016-01-01

    The abundance of light isotopes such as D, 3He, 4He, 6Li and 7Li produced during Big Bang Nucleosynthesis (BBN) only depends on particle physics, baryon density and relevant nuclear processes. At BBN energies (0.01 ÷ 1 MeV) the cross section of many BBN processes is very low because of the Coulomb repulsion between the interacting nuclei. As low-energy measurements on earth's surface are predominantly hampered by the effects of cosmic rays in the detectors, it is convenient to study the relevant reactions with facilities operating deep underground. Starting from the present uncertainty of the relevant parameters in BBN (i.e. baryon density, observed abundance of isotopes and nuclear cross-sections), it will be shown that the study of several reactions of the BBN chain, with existing or proposed underground accelerator facilities, can improve the accuracy of BBN calculations, providing a powerful tool to constrain astrophysics, cosmology and particle physics. In particular, a precise measurement of D(p, γ)3He reaction at BBN energies is of primary importance to calculate the baryon density of universe with an accuracy similar to the one obtained by Cosmic Microwave Background (CMB) experiments, and to constrain the number of active neutrino species. For what concern the so called ’’Lithium problems”, i.e. the disagreement between computed and observed abundances of the 7Li and 6Li isotopes, it will be also shown the importance of a renewed study of the D(α, γ) 6Li reaction.

  11. NanoSIMS and more: New tools in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Hoppe, P.

    2016-01-01

    Primitive Solar System materials contain nm- to μm-sized presolar grains that formed in the winds of evolved stars and in the ejecta of stellar explosions. These samples of stardust can be analysed in terrestrial laboratories with sophisticated analytical instrumentation in great detail. Of particular importance are coordinated studies of individual grains by Secondary Ion Mass Spectrometry (SIMS), Resonance Ionization Mass Spectrometry (RIMS) and Focused Ion Beam/Transmission Electron Microscopy (FIB/TEM) from which detailed information on isotopic compositions and mineralogies can be obtained. A key tool is the NanoSIMS 50 ion probe which permits to do isotope measurements of light and many intermediate-mass elements with spatial resolutions of <100 nm. A new type of RIMS instrument, “CHILI”, is currently under construction and is aimed to provide <100 nm resolution for isotope studies of intermediate-mass and heavy elements. Another promising analysis technique for future studies is Atom Probe Tomography (APT) which might be useful to create 3D-elemental and isotopic maps of presolar grains at the nanometer scale.

  12. Particle astrophysics

    SciTech Connect

    Sadoulet, B. |

    1992-12-31

    In the last few years, particle astrophysics has emerged as a new field at the frontier between high energy astrophysics, cosmology, and particle physics. Two spectacular achievements of this new field in the last decade have been the establishment of neutrino astronomy with the detection of solar neutrinos by two independent experiments and the spectacular observation of the neutrinos from the supernova SN1987A. In addition, the field has produced tantalizing hints of new physics beyond the standard models of astrophysics and particle physics, generating enthusiastic attempts to confirm these potential effects. This new field involves some two hundred experimentalists and a similar number of theorists, most of them coming from particle and nuclear physics, and as scientist will see, their effort is to a large extent complementary to accelerator based high energy physics. This review attempts, at the beginning of this workshop, to capture the excitement of this new field. Summary talks will describe in more detail some of the topics discussed in the study groups.

  13. Intermediate Energies for Nuclear Astrophysics and the Development of a Position Sensitive Microstrip Detector System

    SciTech Connect

    Sobotka, Lee G.; Blackmon, J.; Bertulani, C.

    2015-12-30

    The chemical elements are made at astrophysical sites through a sequence of nuclear reactions often involving unstable nuclei. The overarching aim of this project is to construct a system that allows for the inverse process of nucleosynthesis (i.e. breakup of heavier nuclei into lighter ones) to be studied in high efficiency. The specific problem to be overcome with this grant is inadequate dynamic range and (triggering) threshold to detect the products of the breakup which include both heavy ions (with large energy and large deposited energy in a detector system) and protons (with little energy and deposited energy.) Early on in the grant we provided both TAMU and RIKEN (the site of the eventual experiments) with working systems based on the existing technology. This technology could be used with either an external preamplifier that was to be designed and fabricated by our RIKEN collaborators or upgraded by replacing the existing chip with one we designed. The RIKEN external preamplifier project never can to completion but our revised chip was designed, fabricated, used in a test experiment and performs as required.

  14. Laue optics for nuclear astrophysics: New detector requirements for focused gamma-ray beams

    NASA Astrophysics Data System (ADS)

    Barrière, N.; von Ballmoos, P.; Abrosimov, N. V.; Bastie, P.; Camus, T.; Courtois, P.; Jentschel, M.; Knödlseder, J.; Natalucci, L.; Roudil, G.; Rousselle, J.; Wunderer, C. B.; Kurlov, V. N.

    2009-10-01

    Nuclear astrophysics presents an extraordinary scientific potential for the study of the most powerful sources and the most violent events in the Universe. But in order to take full advantage of this potential, telescopes should be at least an order of magnitude more sensitive than present technologies. Today, Laue lenses have demonstrated their capability of focusing gamma-rays in the 100 keV-1 MeV domain, enabling the possibility of building a new generation of instruments for which sensitive area is decoupled from collecting area. Thus we have now the opportunity of dramatically increase the signal/background ratio and hence improve significantly the sensitivity. With a lens, the best detector is no longer the largest possible within a mission envelope. The point spread function of a Laue lens measures a few centimeters in diameter, but the field of view is limited by the detector size. Requirements for a focal plane instrument are presented in the context of the Gamma-Ray Imager mission (proposed to European Space Agency, ESA in the framework of the first Cosmic Vision AO): a 15-20 cm a side finely pixellated detector capable of Compton events reconstruction seems to be optimal, giving polarization and background rejection capabilities and 30 arcsec of angular resolution within a field of view of 5 arc min.

  15. Trojan Horse method and radioactive ion beams: study of 18F(p,α)15O reaction at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Gulino, M.; Cherubini, S.; Rapisarda, G. G.; Kubono, S.; Lamia, L.; La Cognata, M.; Yamaguchi, H.; Hayakawa, S.; Wakabayashi, Y.; Iwasa, N.; Kato, S.; Komatsubara, H.; Teranishi, T.; Coc, A.; De Séréville, N.; Hammache, F.; Spitaleri, C.

    2013-03-01

    The Trojan Horse Method was applied for the first time to a Radioactive Ion Beam induced reaction to study the reaction 18F(p,α)15O via the three body reaction 18F(d,α 15O)n at the low energies relevant for astrophysics. The abundance of 18F in Nova explosions is an important issue for the understanding of this astrophysical phenomenon. For this reason it is necessary to study the nuclear reactions that produce or destroy 18F in Novae. 18F(p,α)15O is one of the main 18F destruction channels. Preliminary results are presented in this paper.

  16. Study of shock waves and related phenomena motivated by astrophysics

    NASA Astrophysics Data System (ADS)

    Drake, R. P.; Keiter, P. A.; Kuranz, C. C.; Malamud, G.; Manuel, M.; Di Stefano, C. A.; Gamboa, E. J.; Krauland, C. M.; MacDonald, M. J.; Wan, W. C.; Young, R. P.; Montgomery, D. S.; Stoeckl, C.; Froula, D. H.

    2016-03-01

    This paper discusses the recent research in High-Energy-Density Physics at our Center. Our work in complex hydrodynamics is now focused on mode coupling in the Richtmyer- Meshkov process and on the supersonic Kelvin-Helmholtz instability. These processes are believed to occur in a wide range of astrophysical circumstances. In radiation hydrodynamics, we are studying radiative reverse shocks relevant to cataclysmic variable stars. Our work on magnetized flows seeks to produce magnetized jets and study their interactions. We build the targets for all these experiments, and simulate them using our CRASH code. We also conduct diagnostic research, focused primarily on imaging x-ray spectroscopy and its applications to scattering and fluorescence.

  17. STARLIB: A Next-generation Reaction-rate Library for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Sallaska, A. L.; Iliadis, C.; Champange, A. E.; Goriely, S.; Starrfield, S.; Timmes, F. X.

    2013-07-01

    STARLIB is a next-generation, all-purpose nuclear reaction-rate library. For the first time, this library provides the rate probability density at all temperature grid points for convenient implementation in models of stellar phenomena. The recommended rate and its associated uncertainties are also included. Currently, uncertainties are absent from all other rate libraries, and, although estimates have been attempted in previous evaluations and compilations, these are generally not based on rigorous statistical definitions. A common standard for deriving uncertainties is clearly warranted. STARLIB represents a first step in addressing this deficiency by providing a tabular, up-to-date database that supplies not only the rate and its uncertainty but also its distribution. Because a majority of rates are lognormally distributed, this allows the construction of rate probability densities from the columns of STARLIB. This structure is based on a recently suggested Monte Carlo method to calculate reaction rates, where uncertainties are rigorously defined. In STARLIB, experimental rates are supplemented with: (1) theoretical TALYS rates for reactions for which no experimental input is available, and (2) laboratory and theoretical weak rates. STARLIB includes all types of reactions of astrophysical interest to Z = 83, such as (p, γ), (p, α), (α, n), and corresponding reverse rates. Strong rates account for thermal target excitations. Here, we summarize our Monte Carlo formalism, introduce the library, compare methods of correcting rates for stellar environments, and discuss how to implement our library in Monte Carlo nucleosynthesis studies. We also present a method for accessing STARLIB on the Internet and outline updated Monte Carlo-based rates.

  18. Microscopic description of large amplitude collective motion in the nuclear astrophysics context

    NASA Astrophysics Data System (ADS)

    Lacroix, Denis; Tanimura, Yusuke; Scamps, Guillaume; Simenel, Cédric

    2015-08-01

    In the last 10 years, we have observed an important increase of interest in the application of time-dependent energy density functional (TD-EDF) theory. This approach allows to treat nuclear structure and nuclear reaction from small to large amplitude dynamics in a unified framework. The possibility to perform unrestricted three-dimensional simulations using state-of-the-art effective interactions has opened new perspectives. In the present paper, an overview of applications where the predictive power of TD-EDF has been benchmarked is given. A special emphasize is made on processes that are of astrophysical interest. Illustrations discussed here include giant resonances, fission, binary and ternary collisions leading to fusion, transfer and deep inelastic processes.

  19. Future X-ray Missions to Study Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Takahashi, Tadayuki

    2011-09-01

    In order to revolutionize the current understanding of the high energy universe, a number of new X-ray missions are being developed and planned. Among them, e-ROSITA/SRG, NuSTAR, ASTROSAT, GEMS and ASTRO-H will be realized in the next decade. And then, much larger missions, such as IXO, have been proposed for the 2020's. NuSTAR and ASTRO-H will open up completely new field of spatial studies of non-thermal emission above 10 keV by hard X-ray telescopes. They will also uniquely allow mapping of the spatial extent of the hard X-ray emission in diffuse sources, thus tracing the sites of particle acceleration in structures ranging in size from clusters of galaxies down to supernova remnants. Multi-wavelength spectra by ASTROSAT and ASTRO-H are indispensable to understand physical processes in high energy phenomena, such as particle acceleration in the Universe. Imaging spectroscopy with an energy resolution <5-7 eV brought by the micro-calorimeter onboard ASTRO-H can reveal line broadening and Doppler shifts due to turbulent or bulk velocities in extended sources. GEMS will perform the first sensitive X-ray polarization survey of several classes of X-ray emitting sources characterized by strong gravitational or magnetic fields. Here we present the key science goals for future X-ray missions designed to address a number of fundamental questions in contemporary astrophysics.

  20. Report on the workshop "Decay spectroscopy at CARIBU: advanced fuel cycle applications, nuclear structure and astrophysics". 14-16 April 2011, Argonne National Laboratory, USA.

    SciTech Connect

    Kondev, F.; Carpenter, M.P.; Chowdhury, P.; Clark, J.A.; Lister, C.J.; Nichols, A.L.; Swewryniak, D.

    2011-10-06

    A workshop on 'Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics' will be held at Argonne National Laboratory on April 14-16, 2011. The aim of the workshop is to discuss opportunities for decay studies at the Californium Rare Isotope Breeder Upgrade (CARIBU) of the ATLAS facility with emphasis on advanced fuel cycle (AFC) applications, nuclear structure and astrophysics research. The workshop will consist of review and contributed talks. Presentations by members of the local groups, outlining the status of relevant in-house projects and availabile equipment, will also be organized. time will also be set aside to discuss and develop working collaborations for future decay studies at CARIBU. Topics of interest include: (1) Decay data of relevance to AFC applications with emphasis on reactor decay heat; (2) Discrete high-resolution gamma-ray spectroscopy following radioactive decya and related topics; (3) Calorimetric studies of neutron-rich fission framgents using Total ABsorption Gamma-Ray Spectrometry (TAGS) technique; (4) Beta-delayed neutron emissions and related topics; and (5) Decay data needs for nuclear astrophysics.

  1. Workshop Summary: Fundamental Neutron Physics in the United States: An Opportunity in Nuclear, Particle, and Astrophysics for the Next Decade

    SciTech Connect

    Greene, G.

    2001-08-24

    Low-energy neutrons from reactor and spallation neutron sources have been employed in a wide variety of investigations that shed light on important issues in nuclear, particle, and astrophysics; in the elucidation of quantum mechanics; in the determination of fundamental constants; and in the study of fundamental symmetry violation (Appendix A, Glossary). In many cases, these experiments provide important information that is not otherwise available from accelerator-based nuclear physics facilities or high energy accelerators. An energetic research community in the United States is engaged in ''fundamental'' neutron physics. With exciting recent results, the possibility of new and upgraded sources, and a number of new experimental ideas, there is an important opportunity for outstanding science in the next decade. ''Fundamental'' neutron physics experiments are usually intensity limited. Researchers require the highest flux neutron sources available, which are either high-flux reactors (continuous sources) or spallation neutron sources (pulsed sources). The primary mission of these major facilities is neutron scattering for materials science research. Notwithstanding this condensed matter focus, essentially all neutron scattering facilities have accepted the value of an on-site fundamental physics program and have typically allocated 5 to 10% of their capabilities (i.e., beam lines) toward nuclear and particle physics research activities.

  2. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.; Greife, U.; Bardayan, D. W.; Blackmon, J. C.; Kontos, A.; Linhardt, L. E.; Matos, M.; Pain, S. D.; Pittman, S. T.; Sachs, A.; Schatz, H.; Schmitt, K. T.; Smith, M. S.; Thompson, P.

    2014-11-01

    New radioactive ion beam (RIB) facilities will push further away from stability and enable the next generation of nuclear physics experiments. Of great importance to the future of RIB physics are scattering, transfer, and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure. Targets must also accommodate the use of large area silicon detector arrays, high-efficiency gamma arrays, and heavy ion detector systems to efficiently measure the reaction products. To address these issues, the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration has designed, built, and characterized a supersonic gas jet target, capable of providing gas areal densities on par with commonly used solid targets within a region of a few millimeters diameter. Densities of over 5×1018 atoms/cm2 of helium have been achieved, making the JENSA gas jet target the most dense helium jet achieved so far.

  3. Recent Results for the Effects of Distortion in the Inter-Cluster Motion in Light Nuclei and Application to Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Pizzone, R. G.; Lamia, L.; Mukhamedzhanov, A. M.; Blokhintsev, L. D.; Bertulani, C. A.; Irgaziev, B. F.; La Cognata, M.; Spitaleri, C.

    2013-08-01

    Deuteron induced quasi-free scattering and reactions have been extensively investigated in the past few decades. This was done not only for the study of the nuclear structure and processes but also for the important astrophysical implication (Trojan Horse Method, THM). In particular the width of the neutron momentum distribution in deuteron will be studied as a function of the transferred momentum. THM applications will also be discussed because the momentum distribution of the spectator particle inside the Trojan horse nucleus is a necessary input for this method. The impact of the width variation on the extraction of the astrophysical S(E)-factor is discussed as well as the relevance of the s and d wave component in the deuteron wave function.

  4. The evaluation of half-lives and other decay data used in nuclear astrophysics and cosmochronology

    SciTech Connect

    Chechev, V. P.

    2011-12-15

    The current status of some decay data used in nuclear astrophysics and cosmochronology is presented. The half-life of {sup 79}Se has been evaluated as 3.6(3) Multiplication-Sign 10{sup 5} yr. The total energy of non-neutrino radiation released in act of {sup 37}Ar decay has been obtained being 2.709 (16) keV per disintegration. The recommended half-life values of the long-lived radionuclides (T{sub 1/2} Greater-Than-Or-Equivalent-To 10{sup 6} yr) of {sup 26}Al, {sup 40}K, {sup 53}Mn, {sup 60}Fe, {sup 87}Rb, {sup 93}Zr, {sup 98}Tc, {sup 107}Pd, {sup 129}I, {sup 135}Cs, {sup 146}Sm, {sup 176}Lu, {sup 182}Hf, {sup 187}Re, {sup 205}Pb, {sup 232}Th, {sup 235}U, {sup 238}U, {sup 244}Pu, and {sup 247}Cm are given based on the evaluations published until 2010.

  5. Direct study of the α -nucleus optical potential at astrophysical energies using the 64Zn(p ,α )61Cu reaction

    NASA Astrophysics Data System (ADS)

    Gyürky, Gy.; Fülöp, Zs.; Halász, Z.; Kiss, G. G.; Szücs, T.

    2014-11-01

    In the model calculations of heavy element nucleosynthesis processes the nuclear reaction rates are taken from statistical model calculations which utilize various nuclear input parameters. It is found that in the case of reactions involving α particles the calculations bear a high uncertainty owing to the largely unknown low-energy α -nucleus optical potential. Experiments are typically restricted to higher energies and therefore no direct astrophysical consequences can be drawn. In the present work a (p ,α ) reaction is used for the first time to study the α -nucleus optical potential. The measured 64Zn (p ,α )61Cu cross section is uniquely sensitive to the α -nucleus potential and the measurement covers the whole astrophysically relevant energy range. By the comparison to model calculations, direct evidence is provided for the incorrectness of global optical potentials used in astrophysical models.

  6. Astrophysics studies relevant to stellar x-ray bursts

    SciTech Connect

    He, J. J.; Hu, J.; Zhang, L. Y.; Xu, S. W.; Ma, P.; Chen, S. Z.; Chen, R. F.; Parikh, A.; Yamaguchi, H.; Kahl, D.; Nakao, T.; Su, J.; Guo, B.; Wakabayashi, Y.; Togano, Y.; Hayakawa, S.; Wang, H. W.; Tian, W. D.; Teranishi, T.; Moon, J. Y.; and others

    2014-05-02

    Two reactions of {sup 14}O(α,p){sup 17}F and {sup 18}Ne(α,p){sup 21}Na provide the pathways for breakout from the hot CNO cycles to the rp-process in type I X-ray bursts. To better determine their astrophysical reaction rates, resonance parameters of the compound nuclei {sup 18}Ne and {sup 22}Mg have been investigated by the resonant elastic scattering of {sup 17}F+p and {sup 21}Na+p, respectively. The {sup 17}F and {sup 21}Na radioactive ion beams were produced at the CNS Radioactive Ion Beam Separator and impinged on the thick proton targets. The excitation functions were obtained with a thick-target method over a wide excitation energy range. The resonance parameters in the compound nuclei {sup 18}Ne and {sup 22}Mg have been determined through an R-matrix analysis. New reaction rates of these two (α,p) reactions are recalculated. The astrophysical impact for the {sup 18}Ne(α,p){sup 21}Na reaction has been investigated through one-zone postprocessing X-ray burst calculations.

  7. Astrophysics studies relevant to stellar x-ray bursts

    NASA Astrophysics Data System (ADS)

    He, J. J.; Hu, J.; Zhang, L. Y.; Xu, S. W.; Parikh, A.; Yamaguchi, H.; Kahl, D.; Ma, P.; Chen, S. Z.; Su, J.; Wakabayashi, Y.; Togano, Y.; Hayakawa, S.; Wang, H. W.; Tian, W. D.; Chen, R. F.; Guo, B.; Nakao, T.; Teranishi, T.; Moon, J. Y.; Jung, H. S.; Hashimoto, T.; Chen, A. A.; Irvine, D.; Hahn, K. I.; Iwasa, N.; Yamada, T.; Komatsubara, T.; Lee, C. S.; Kubono, S.

    2014-05-01

    Two reactions of 14O(α,p)17F and 18Ne(α,p)21Na provide the pathways for breakout from the hot CNO cycles to the rp-process in type I X-ray bursts. To better determine their astrophysical reaction rates, resonance parameters of the compound nuclei 18Ne and 22Mg have been investigated by the resonant elastic scattering of 17F+p and 21Na+p, respectively. The 17F and 21Na radioactive ion beams were produced at the CNS Radioactive Ion Beam Separator and impinged on the thick proton targets. The excitation functions were obtained with a thick-target method over a wide excitation energy range. The resonance parameters in the compound nuclei 18Ne and 22Mg have been determined through an R-matrix analysis. New reaction rates of these two (α,p) reactions are recalculated. The astrophysical impact for the 18Ne(α,p)21Na reaction has been investigated through one-zone postprocessing X-ray burst calculations.

  8. Heavy elements in astrophysical nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Sun, Bao-Hua; Niu, Zhong-Ming

    With the many successes of covariant density functional theory (CDFT) as seen in the previous chapters, there has been growing interest over the last years to examine directly their applicability in astrophysical nucleosynthesis simulations. This chapter thus concentrates on the very recent applications of CDFT in astrophysics nucleosynthesis, ranging from the calculations of nuclear physics inputs -- masses and beta-decay half-lives -- for rapid-neutron (r-) and rapid-proton (rp-) capture processes, to the nucleosynthesis studies that employed these inputs and to nuclear cosmochronology. The concepts of nucleosynthesis process and formulas on beta-decays are sketched briefly.

  9. Experimental results to study astrophysical plasma jets using Intense Lasers

    NASA Astrophysics Data System (ADS)

    Loupias, B.; Gregory, C. D.; Falize, E.; Waugh, J.; Seiichi, D.; Pikuz, S.; Kuramitsu, Y.; Ravasio, A.; Bouquet, S.; Michaut, C.; Barroso, P.; Rabec Le Gloahec, M.; Nazarov, W.; Takabe, H.; Sakawa, Y.; Woolsey, N.; Koenig, M.

    2009-08-01

    We present experimental results of plasma jet, interacted with an ambient medium, using intense lasers to investigate the complex features of astrophysical jets. This experiment was performed in France at the LULI facility, Ecole Polytechnique, using one long pulse laser to generate the jet and a short pulse laser to probe it by proton radiography. A foam filled cone target was used to generate high velocity plasma jet, and a gas jet nozzle produced the well known ambient medium. Using visible pyrometry and interferometry, we were able to measure the jet velocity and electronic density. We get a panel of measurements at various gas density and time delay. From these measurements, we could underline the growth of a perturbed shape of the jet interaction with the ambient medium. The reason of this last observation is still in debate and will be presented in the article.

  10. Astrophysics at RIA (ARIA) Working Group

    SciTech Connect

    Smith, Michael S.; Schatz, Hendrik; Timmes, Frank X.; Wiescher, Michael; Greife, Uwe

    2006-07-12

    The Astrophysics at RIA (ARIA) Working Group has been established to develop and promote the nuclear astrophysics research anticipated at the Rare Isotope Accelerator (RIA). RIA is a proposed next-generation nuclear science facility in the U.S. that will enable significant progress in studies of core collapse supernovae, thermonuclear supernovae, X-ray bursts, novae, and other astrophysical sites. Many of the topics addressed by the Working Group are relevant for the RIKEN RI Beam Factory, the planned GSI-Fair facility, and other advanced radioactive beam facilities.

  11. Astrophysics at RIA (ARIA) Working Group

    NASA Astrophysics Data System (ADS)

    Smith, Michael S.; Schatz, Hendrik; Timmes, Frank X.; Wiescher, Michael; Greife, Uwe

    2006-07-01

    The Astrophysics at RIA (ARIA) Working Group has been established to develop and promote the nuclear astrophysics research anticipated at the Rare Isotope Accelerator (RIA). RIA is a proposed next-generation nuclear science facility in the U.S. that will enable significant progress in studies of core collapse supernovae, thermonuclear supernovae, X-ray bursts, novae, and other astrophysical sites. Many of the topics addressed by the Working Group are relevant for the RIKEN RI Beam Factory, the planned GSI-Fair facility, and other advanced radioactive beam facilities.

  12. Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.; Gross, M.; Allinger, K.; Bin, J.; Henig, A.; Kiefer, D.; Ma, W.; Schreiber, J.

    2011-10-01

    We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH2 layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the `hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of 232Th with solid-state density can be generated from a Th target and a deuterated CD2 foil, both forming the production target assembly. Laser-accelerated Th ions with about 7 MeV/u will pass through a thin CH2 layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD2 layer of the production target will be accelerated as well, inducing the fission process of 232Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 1014 times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 103 ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.

  13. Indirect methods of determination of the asymptotic normalization coefficients and their application for nuclear astrophysics

    SciTech Connect

    Yarmukhamedov, R.

    2014-05-09

    The basic methods of the determination of asymptotic normalization coefficient for A+a→B of astrophysical interest are briefly presented. The results of the application of the specific asymptotic normalization coefficients derived within these methods for the extrapolation of the astrophysical S factors to experimentally inaccessible energy regions (E ≤ 25 keV) for the some specific radiative capture A(a,γ)B reactions of the pp-chain and the CNO cycle are presented.

  14. Theory and laboratory astrophysics

    NASA Technical Reports Server (NTRS)

    Schramm, David N.; Mckee, Christopher F.; Alcock, Charles; Allamandola, Lou; Chevalier, Roger A.; Cline, David B.; Dalgarno, Alexander; Elmegreen, Bruce G.; Fall, S. Michael; Ferland, Gary J.

    1991-01-01

    Science opportunities in the 1990's are discussed. Topics covered include the large scale structure of the universe, galaxies, stars, star formation and the interstellar medium, high energy astrophysics, and the solar system. Laboratory astrophysics in the 1990's is briefly surveyed, covering such topics as molecular, atomic, optical, nuclear and optical physics. Funding recommendations are given for the National Science Foundation, NASA, and the Department of Energy. Recommendations for laboratory astrophysics research are given.

  15. The Trojan Horse method for nuclear astrophysics: Recent results for direct reactions

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Spitaleri, C.; Cherubini, S.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Romano, S.

    2014-05-01

    The Trojan Horse method is a powerful indirect technique to determine the astrophysical factor for binary rearrangement processes A+x→b+B at astrophysical energies by measuring the cross section for the Trojan Horse (TH) reaction A+a→B+b+s in quasi free kinematics. The Trojan Horse Method has been successfully applied to many reactions of astrophysical interest, both direct and resonant. In this paper, we will focus on direct sub-processes. The theory of the THM for direct binary reactions will be shortly presented based on a few-body approach that takes into account the off-energy-shell effects and initial and final state interactions. Examples of recent results will be presented to demonstrate how THM works experimentally.

  16. The Trojan Horse method for nuclear astrophysics: Recent results for direct reactions

    SciTech Connect

    Tumino, A.; Gulino, M.; Spitaleri, C.; Cherubini, S.; Romano, S.; Cognata, M. La; Pizzone, R. G.; Rapisarda, G. G.; Lamia, L.

    2014-05-09

    The Trojan Horse method is a powerful indirect technique to determine the astrophysical factor for binary rearrangement processes A+x→b+B at astrophysical energies by measuring the cross section for the Trojan Horse (TH) reaction A+a→B+b+s in quasi free kinematics. The Trojan Horse Method has been successfully applied to many reactions of astrophysical interest, both direct and resonant. In this paper, we will focus on direct sub-processes. The theory of the THM for direct binary reactions will be shortly presented based on a few-body approach that takes into account the off-energy-shell effects and initial and final state interactions. Examples of recent results will be presented to demonstrate how THM works experimentally.

  17. Radiative shocks: an opportunity to study Laboratory Astrophysics.

    NASA Astrophysics Data System (ADS)

    Koenig, Michel

    2005-10-01

    A shock becomes radiative when it produces a significant upstream ionizing photons. This phenomenon occurs for shock velocities exceeding a given threshold which depend strongly on the medium. These velocities are typically or the order of 100 km/s and more, common value in astrophysics. Here we shall present a serie of experiments performed at LULI laboratory using the old 6 beams and the new LULI2000 facility. Scaling laws and hydrodynamic simulations allowed to design the target characteristics according to the available laser energy. A strong shock was driven in a layered solid target (CH-Ti-CH) which then accelerates into a gas cell ( 60km/s) filled with Xenon at low pressure (0.1-0.3bar) producing a radiative supercritical shock. A laser beam (8ns-532nm) probes the Xenon gas in the transverse direction and was injected into either a Mach-Zenhder or a VISAR interferometer. In this last case two additional optical framing cameras was used. On the rear side, self-emission and VISAR diagnostics were utilized. All these diagnostics allow to determine many relevant parameters linked to the shock or the radiative precursor. Indeed we shall present experimental data for the shock temperature and velocities, the precursor 2D time evolution, its electron density, density gradient and temperature. Data were obtained for different laser intensities and gas pressures. Comparisons with 1D (MULTI) and 2D (DUED) radiative hydrodynamic codes will be presented for all measured parameters (shock velocity, shape, radial expansion, and temperature as well as precursor velocity and precursor electron density).

  18. Nuclear astrophysics with real photons—the data acquisition system of the NEPTUN tagger setup

    NASA Astrophysics Data System (ADS)

    Elvers, M.; Hasper, J.; Müller, S.; Savran, D.; Schnorrenberger, L.; Sonnabend, K.; Zilges, A.

    2008-01-01

    Photodissociation reactions play an important role in p-process nucleosynthesis. A precise knowledge of the energy dependence of a cross section is mandatory to determine the reaction rates for astrophysical network calculations. The NEPTUN tagger setup constructed at the S-DALINAC will provide high resolution measurements of (γ,n), (γ,p) and (γ, α) reactions. Besides a general overview on this setup its data acquisition system will be explained in more detail.

  19. Indirect techniques for astrophysical reaction rates determinations

    NASA Astrophysics Data System (ADS)

    Hammache, F.; Oulebsir, N.; Benamara, S.; De Séréville, N.; Coc, A.; Laird, A.; Stefan, I.; Roussel, P.

    2016-05-01

    Direct measurements of nuclear reactions of astrophysical interest can be challenging. Alternative experimental techniques such as transfer reactions and inelastic scattering reactions offer the possibility to study these reactions by using stable beams. In this context, I will present recent results that were obtained in Orsay using indirect techniques. The examples will concern various astrophysical sites, from the Big-Bang nucleo synthesis to the production of radioisotopes in massive stars.

  20. Cognitive and Social Structure of the Elite Collaboration Network of Astrophysics: A Case Study on Shifting Network Structures

    ERIC Educational Resources Information Center

    Heidler, Richard

    2011-01-01

    Scientific collaboration can only be understood along the epistemic and cognitive grounding of scientific disciplines. New scientific discoveries in astrophysics led to a major restructuring of the elite network of astrophysics. To study the interplay of the epistemic grounding and the social network structure of a discipline, a mixed-methods…

  1. The Next Century Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Swanson, Paul N.

    1991-01-01

    The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of major and moderate missions that are presently under study for flight sometime within the next 20 years. These programs include the: Advanced X Ray Astrophysics Facility; X Ray Schmidt Telescope; Nuclear Astrophysics Experiment; Hard X Ray Imaging Facility; Very High Throughput Facility; Gamma Ray Spectroscopy Observatory; Hubble Space Telescope; Lunar Transit Telescope; Astrometric Interferometer Mission; Next Generation Space Telescope; Imaging Optical Interferometer; Far Ultraviolet Spectroscopic Explorer; Gravity Probe B; Laser Gravity Wave Observatory in Space; Stratospheric Observatory for Infrared Astronomy; Space Infrared Telescope Facility; Submillimeter Intermediate Mission; Large Deployable Reflector; Submillimeter Interferometer; and Next Generation Orbiting Very Long Baseline Interferometer.

  2. Laboratory infrared studies of molecules of atmospheric and astrophysical interest

    NASA Technical Reports Server (NTRS)

    Rao, N. N.

    1982-01-01

    Nineteen reprints on the molecular species are compiled. Much of the work was done by using the Doppler-limited resolution provided by diode lasers. The diode laser was used as a source to a grating spectrometer which has been used earlier for high resolution studies. This technique provided many advantages. Wherever possible, the studies have been directed to intensity determinations of infrared bands.

  3. Recent applications of the the Trojan Horse method to nuclear astrophysics

    SciTech Connect

    Spitaleri, Claudio

    2012-11-20

    Light elements lithium, beryllium and boron (LiBeB) have been used in the last years as possible probes for stellar structure. They are mainly destroyed by (p,a) reactions and cross section measurements for such channels are then needed. The Trojan Horse Method (THM) allows one to extract the astrophysical S(E)-factor without the experience of tunneling through the Coulomb barrier. In this work a resume of the recent new results about the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be and {sup 7}Li(p,{alpha}){sup 4}He reactions are shown.

  4. Three-body Effects for the p(pe^-, ν_e)d Reaction in Nuclear Astrophysics.

    NASA Astrophysics Data System (ADS)

    Kim, Yeong E.; Zubarev, Alexander L.

    1996-05-01

    We have investigated three-body effect for p(pe^-, ν_e)d reaction in nuclear astrophysics. Solutions of three-body equation for the initial pep state show that two-proton dynamics does not depend on the electron degrees of freedom and hence the conventional adiabatic approximation is valid for energy sector (E_ep/E_pp) > 10-3 where E_ep and E_pp are the relative kinetic energies between e and p, and between p and p, respectively. For the energy sector (E_ep/E_pp) ≈ 10-3, an exact solution of the three-body equation is required. For the energy sector (E_ep/E_pp) < 10-3, it is shown that a Gamow-factor cancellation (GFC) can occur between two protons. Our estimate of the GFC effect indicates that the previous conventional estimate of the pep solar neutrino flux may be an underestimate at least by a factor of two. Implications of our results for the solar neutrino problem are described. At lower temperatures, the GFC effect becomes more significant, and p(pe^-, ν_e)d may dominate over p(p,e^+ ν_e)d. The enhancement of the reaction rate for p(pe^-, νe )d at lower temperatures due to the GFC effect may offer possible explanations for some of long-standing anomalies in astrophysical and geophysical problems.

  5. Sensitivity studies for the main r process: nuclear masses

    SciTech Connect

    Aprahamian, A.; Mumpower, M.; Bentley, I.; Surman, R.

    2014-04-15

    The site of the rapid neutron capture process (r process) is one of the open challenges in all of physics today. The r process is thought to be responsible for the creation of more than half of all elements beyond iron. The scientific challenges to understanding the origin of the heavy elements beyond iron lie in both the uncertainties associated with astrophysical conditions that are needed to allow an r process to occur and a vast lack of knowledge about the properties of nuclei far from stability. One way is to disentangle the nuclear and astrophysical components of the question. On the nuclear physics side, there is great global competition to access and measure the most exotic nuclei that existing facilities can reach, while simultaneously building new, more powerful accelerators to make even more exotic nuclei. On the astrophysics side, various astrophysical scenarios for the production of the heaviest elements have been proposed but open questions remain. This paper reports on a sensitivity study of the r process to determine the most crucial nuclear masses to measure using an r-process simulation code, several mass models (FRDM, Duflo-Zuker, and HFB-21), and three potential astrophysical scenarios.

  6. Nuclear interactions in high energy heavy ions and applications in astrophysics. [Dept. of Physics and Astronomy, Louisiana State Univ. , Baton Rouge

    SciTech Connect

    Wefel, J.P.; Guzik, T.G.

    1993-01-11

    The overall objective is to study the mechanisms and the energy dependence of heavy ion fragmentation by studying the reactions of heavy ion projectiles (e.g. [sup 4]He, [sup 16]O, [sup 20]Ne, [sup 28]Si, [sup 56]Fe) in a variety of targets (H, He, C, Si, Cu, Pb) and at a number of beam energies exceeding 0.1 GeV/nucleon. The results have application to questions in high-energy nuclear astrophysics. Most of the discussion is on low-energy [sup 16]O,[sup 28]Si data analysis. The description includes analysis procedures and techniques, detector calibrations, data selections and normalizations. Cross section results for the analysis are also presented. 83 figs., 6 tabs., 73 refs.

  7. Nuclear interactions in high energy heavy ions and applications in astrophysics. Technical progress report, 1 April 1992--31 March 1993

    SciTech Connect

    Wefel, J.P.; Guzik, T.G.

    1993-01-11

    The overall objective is to study the mechanisms and the energy dependence of heavy ion fragmentation by studying the reactions of heavy ion projectiles (e.g. {sup 4}He, {sup 16}O, {sup 20}Ne, {sup 28}Si, {sup 56}Fe) in a variety of targets (H, He, C, Si, Cu, Pb) and at a number of beam energies exceeding 0.1 GeV/nucleon. The results have application to questions in high-energy nuclear astrophysics. Most of the discussion is on low-energy {sup 16}O,{sup 28}Si data analysis. The description includes analysis procedures and techniques, detector calibrations, data selections and normalizations. Cross section results for the analysis are also presented. 83 figs., 6 tabs., 73 refs.

  8. Photolysis of astrophysically relevant acrylonitrile: a matrix experimental study.

    PubMed

    Toumi, A; Couturier-Tamburelli, I; Chiavassa, T; Piétri, N

    2014-04-01

    This report documents the photochemical study of H2C ═ C(H)CN (acrylonitrile) trapped in low-temperature argon matrices and irradiated with a microwave-discharge hydrogen-flow lamp (λ > 120 nm). We succeeded in identifying H2C ═ C(H)NC (isoacrylonitrile) as a photoproduct. HC3N (cyanoacetylene), C2H2:HCN (acetylene:hydrogen cyanide), and C2H2:HNC (acetylene:hydrogen isocyanide) complexes, which are molecules detected in molecular clouds or in the Titan atmosphere, were also identified. No imine product was observed, but other compounds coming from the HC3N photolysis have been found. Fourier transform infrared measurements and (2)H substitution experiments coupled with density functional theory calculations (B3LYP/6-31G**) were performed to confirm the spectral assignments of the photochemical products and intermediate species. PMID:24621153

  9. A Model Study of the Thermal Evolution of Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Teolis, B. D.; Baragiola, R. A.

    2006-01-01

    We address the question of the evolution of ices that have been exposed to radiation from stellar sources and cosmic rays. We studied in the laboratory the thermal evolution of a model ice sample: a mixture of water, hydrogen peroxide, dioxygen, and ozone produced by irradiating solid H2O2 with 50 keV H(+) at 17 K. The changes in composition and release of volatiles during warming to 200 K were monitored by infrared spectroscopy, mass spectrometry, and microbalance techniques. We find evidence for voids in the water component from the infrared bands due to dangling H bonds. The absorption from these bands increases during heating and can be observed at temperatures as high as approx. 155 K. More O2 is stored in the radiolyzed film than can be retained by codeposition of O2 and H2O. This O2 remains trapped until approx. 155 K, where it desorbs in an outburst as water ice crystallizes. Warming of the ice also drastically decreases the intrinsic absorbance of O2 by annealing defects in the ice. We also observe loss of O3 in two stages during heating, which correlates with desorption and possibly chemical reactions with radicals stored in the ice, triggered by the temperature increase.

  10. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    1997-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department is dedicated to the study of atomic processes in low temperature plasmas. Our current program is directed to the study of charge transfer of multiply charged ions and neutrals that are of importance to astrophysics at energies less than 1 eV (about 10(exp 4) K). Specifically, we measure the charge transfer rate coefficient of ions such as N(2+), Si(3+), Si(3+), with helium and Fe(2+) with molecular and atomic hydrogen. All these ions are found in a variety of astrophysical plasmas. Their electron transfer reactions with neutral atoms can affect the ionization equilibrium of the plasma.

  11. Studies of high energy density physics and laboratory astrophysics driven by intense lasers

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Li, Y. T.; Chen, L. M.; Dong, Q. L.; Zhong, J. Y.; Wang, W. M.; Sheng, Z. M.; Zhao, G.

    2016-05-01

    Laser plasmas are capable of creating unique physical conditions with extreme high energy density, which are not only closely relevant to inertial fusion energy studies, but also to laboratory simulation of some astrophysical processes. In this paper, we highlight some recent progress made by our research teams. The first part is about directional hot electron beam generation and transport for fast ignition of inertial confinement fusion, as well as a new scheme of fast ignition by use of a strong external DC magnetic field. The second part concerns laboratory modeling of some astrophysical phenomena, including 1) studies of the topological structure of magnetic reconnection/annihilation that relates closely to geomagnetic substorms, loop-top X-ray source and mass ejection in solar flares, and 2) magnetic field generation and evolution in collisionless shock formation.

  12. Feasibility Study for a Plasma Dynamo Facility to Investigate Fundamental Processes in Plasma Astrophysics. Final report

    SciTech Connect

    Forest, Cary B.

    2013-09-19

    The scientific equipment purchased on this grant was used on the Plasma Dynamo Prototype Experiment as part of Professor Forest's feasibility study for determining if it would be worthwhile to propose building a larger plasma physics experiment to investigate various fundamental processes in plasma astrophysics. The initial research on the Plasma Dynamo Prototype Experiment was successful so Professor Forest and Professor Ellen Zweibel at UW-Madison submitted an NSF Major Research Instrumentation proposal titled "ARRA MRI: Development of a Plasma Dynamo Facility for Experimental Investigations of Fundamental Processes in Plasma Astrophysics." They received funding for this project and the Plasma Dynamo Facility also known as the "Madison Plasma Dynamo Experiment" was constructed. This experiment achieved its first plasma in the fall of 2012 and U.S. Dept. of Energy Grant No. DE-SC0008709 "Experimental Studies of Plasma Dynamos," now supports the research.

  13. Nuclear Structure Properties of Astrophysical Importance for 19Ne above the Proton Threshold Energy

    SciTech Connect

    Nesaraja, Caroline D; Shu, Nengchuan; Bardayan, Daniel W; Blackmon, Jeff C; Chen, Y. S.; Kozub, R. L.; Smith, Michael Scott

    2007-01-01

    Knowledge of the 18F(p,a)15O and 18F(p,g)19Ne astrophysical reaction rates are important to understand -ray emission from nova explosions and heavy-element production in x-ray bursts. The rates for these reactions have been uncertain, in part due to a lack of a comprehensive examination of the available structure information in the compound nucleus 19Ne. We have examined the latest experimental measurements with radioactive and stable beams, collected all the structure information in the nucleus 19Ne and its mirror 19F, and made estimates of unmeasured 19Ne nuclear-level parameters. These parameters will be useful for future reaction rate calculations.

  14. Reactions with 8Li at RIBRAS (Radioactive Ion Beams in Brasil): Astrophysical and nuclear structure applications

    NASA Astrophysics Data System (ADS)

    Mendes, D. R., Jr.; Lépine-Szily, A.; Descouvemont, P.

    2012-02-01

    We present the results of the 8Li(p, α) 5He reaction of astrophysical interest, measured at the RIBRAS system. It was realized in inverse kinematics and using a thick CH2 polyethylene target. Using the thick target method the complete excitation function could be measured between Ecm = 0.2-2.5 MeV, which includes the Gamow peak energy region. The contribution of contaminating 12C(8Li,4He) 16N and 12C(7Li, 4He) 15N reactions is still under analysis. However, if the cross section is expected to be somewhat reduced, the subtraction of the contamination will not change the general feature of the excitation function.

  15. Measurements and analysis of alpha-induced reactions of importance for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    de Messieres, Genevieve Escande

    2011-11-01

    Reactions during stellar helium burning are of primary importance for understanding nucleosynthesis. A detailed understanding of the critical reaction chain 4He(2alpha, gamma)12C( alpha, gamma)16O(alpha, gamma) 20Ne is necessary both because it is the primary energy source and because it determines the ratio of 12C to 16O produced, which in turn significantly effects subsequent nucleosynthesis. Also during Helium burning, the reactions 22Ne(alpha, n)25Mg and 22Ne(alpha, gamma )26Mg are crucial in determining the amount of neutrons available for the astrophysical s-process. This thesis presents new experimental results concerning the 16O(alpha, gamma) 20Ne, 22Ne(alpha, n)25Mg, and 22Ne(alpha, gamma)26Mg reaction rates. These results are then applied to the calculation of the associated stellar reaction rates in order to achieve better accuracy.

  16. Nucleosynthesis and its implications on nuclear and particle physics; Proceedings of the NATO Advanced Research Workshop (Fifth Moriond Astrophysics Meeting), Les Arcs, France, March 17-23, 1985

    NASA Astrophysics Data System (ADS)

    Audouze, J.; Mathieu, N.

    The chemical composition of the universe is discussed in detail as a function of evolutionary and nucleosynthetic processes and astrophysical and laboratory observations. Consideration is given to recent theoretical work on primordial nucleosynthesis and the events occurring at atomic levels in explosive objects such as supernovae, WR stars and pancake stars. Attempts to understand s-process nucleosynthetic species production and production rates on the bases of observational data, theoretical models and laboratory studies are reported. The relative values of various nucleocosmochronometric isotopic pairs for assessing the age of the Galaxy are assessed, noting the role of WR stars in the production of short-lived isotopes such as Al-26. Various nuclear physics problems which are relevant to nucleosynthesis and cosmology are discussed and current attempts to detect neutrinos and monopoles are described.

  17. Novel approaches to the study of particle dark matter in astrophysics

    SciTech Connect

    Argüelles, C. R.; Ruffini, R. Rueda, J. A.; Mavromatos, N. E.

    2015-12-17

    A deep understanding of the role of the dark matter in the different astrophysical scenarios of the local Universe such as galaxies, represent a crucial step to describe in a more consistent way the role of dark matter in cosmology. This kind of studies requires the interconnection between particle physics within and beyond the Standard Model, and fundamental physics such as thermodynamics and statistics, within a fully relativistic treatment of Gravity. After giving a comprehensive summary of the different types of dark matter and their role in astrophysics, we discuss the recent efforts in describing the distribution of dark matter in the center and halo of galaxies from first principles such as gravitational interactions, quantum statistics and particle physics; and its implications with the observations.

  18. Studying astrophysical collisionless shocks with counterstreaming plasmas from high power lasers

    NASA Astrophysics Data System (ADS)

    Park, Hye-Sook; Ryutov, D. D.; Ross, J. S.; Kugland, N. L.; Glenzer, S. H.; Plechaty, C.; Pollaine, S. M.; Remington, B. A.; Spitkovsky, A.; Gargate, L.; Gregori, G.; Bell, A.; Murphy, C.; Sakawa, Y.; Kuramitsu, Y.; Morita, T.; Takabe, H.; Froula, D. H.; Fiksel, G.; Miniati, F.; Koenig, M.; Ravasio, A.; Pelka, A.; Liang, E.; Woolsey, N.; Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.

    2012-03-01

    Collisions of high Mach number flows occur frequently in astrophysics, and the resulting shock waves are responsible for the properties of many astrophysical phenomena, such as supernova remnants, Gamma Ray Bursts and jets from Active Galactic Nuclei. Because of the low density of astrophysical plasmas, the mean free path due to Coulomb collisions is typically very large. Therefore, most shock waves in astrophysics are "collisionless", since they form due to plasma instabilities and self-generated magnetic fields. Laboratory experiments at the laser facilities can achieve the conditions necessary for the formation of collisionless shocks, and will provide a unique avenue for studying the nonlinear physics of collisionless shock waves. We are performing a series of experiments at the Omega and Omega-EP lasers, in Rochester, NY, with the goal of generating collisionless shock conditions by the collision of two high-speed plasma flows resulting from laser ablation of solid targets using ˜1016 W/cm2 laser irradiation. The experiments will aim to answer several questions of relevance to collisionless shock physics: the importance of the electromagnetic filamentation (Weibel) instabilities in shock formation, the self-generation of magnetic fields in shocks, the influence of external magnetic fields on shock formation, and the signatures of particle acceleration in shocks. Our first experiments using Thomson scattering diagnostics studied the plasma state from a single foil and from double foils whose flows collide "head-on". Our data showed that the flow velocity and electron density were 108 cm/s and 1019 cm-3, respectively, where the Coulomb mean free path is much larger than the size of the interaction region. Simulations of our experimental conditions show that weak Weibel mediated current filamentation and magnetic field generation were likely starting to occur. This paper presents the results from these first Omega experiments.

  19. New Opportunity for Improved Nuclear Forensics, Radiochemical Diagnostics, and Nuclear Astrophysics: Need for a Total-Cross-Section Apparatus at the LANSCE

    SciTech Connect

    Koehler, Paul E.; Hayes-Sterbenz, Anna C.; Bredeweg, Todd Allen; Couture, Aaron J.; Engle, Jonathan; Keksis, August L.; Nortier, Francois M.; Ullmann, John L.

    2014-03-12

    Total-cross-section measurements are feasible on a much wider range of radioactive samples than (n,γ) cross-section measurements, and information extracted from the former can be used to set tight constraints on the latter. There are many (n,γ) cross sections of great interest to radiochemical diagnostics, nuclear forensics, and nuclear astrophysics which are beyond the reach of current direct measurement, that could be obtained in this way. Our simulations indicate that measurements can be made at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center for samples as small as 10μg. There are at least 40 high-interest nuclides which should be measurable, including 88Y,167,168,170,171Tm, 173,174Lu, and189,190,192Ir.

  20. Theoretical Astrophysics - Volume 1, Astrophysical Processes

    NASA Astrophysics Data System (ADS)

    Padmanabhan, T.

    2000-12-01

    Preface; 1. Order-of-magnitude astrophysics; 2. Dynamics; 3. Special relativity, electrodynamics and optics; 4. Basics of electromagnetic radiation; 5. Statistical mechanics; 6. Radiative processes; 7. Spectra; 8. Neutral fluids; 9. Plasma physics; 10. Gravitational dynamics; 11. General theory of relativity; 12. Basics of nuclear physics; Notes and References; Index.

  1. Laboratory Studies of Thermal Energy Charge Transfer of Multiply Charged Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    2003-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department has been dedicated to the study of atomic and molecular processes in low temperature plasmas. Our program focuses on the charge transfer (electron capture) of multiply charged ions and neutrals important in astrophysics. The electron transfer reactions with atoms and molecules is crucial to the ionization condition of neutral rich photoionized plasmas. With the successful deployment of the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Chandra X-ray Observatory by NASA high resolution VUV and X-ray emission spectra fiom various astrophysical objects have been collected. These spectra will be analyzed to determine the source of the emission and the chemical and physical environment of the source. The proper interpretation of these spectra will require complete knowledge of all the atomic processes in these plasmas. In a neutral rich environment, charge transfer can be the dominant process. The rate coefficients need to be known accurately. We have also extended our charge transfer measurements to KeV region with a pulsed ion beam. The inclusion of this facility into our current program provides flexibility in extending the measurement to higher energies (KeV) if needed. This flexibility enables us to address issues of immediate interest to the astrophysical community as new observations are made by high resolution space based observatories.

  2. Astrophysics experiments with radioactive beams at ATLAS

    SciTech Connect

    Back, B. B.; Clark, J. A.; Pardo, R. C.; Rehm, K. E. Savard, G.

    2014-04-15

    Reactions involving short-lived nuclei play an important role in nuclear astrophysics, especially in explosive scenarios which occur in novae, supernovae or X-ray bursts. This article describes the nuclear astrophysics program with radioactive ion beams at the ATLAS accelerator at Argonne National Laboratory. The CARIBU facility as well as recent improvements for the in-flight technique are discussed. New detectors which are important for studies of the rapid proton or the rapid neutron-capture processes are described. At the end we briefly mention plans for future upgrades to enhance the intensity, purity and the range of in-flight and CARIBU beams.

  3. Photo-nuclear astrophysics in NewSUBARU {gamma}-ray source

    SciTech Connect

    Hayakawa, Takehito

    2010-08-12

    A laser Compton scattering (LCS){gamma}-ray source has been installed at an electron storage ring NewSUBARU at SPring-8. We have studied the nuclear physics using this LCS g-ray source. The half-lives of unstable isotopes, {sup 184}Re and {sup 164}Ho{sup m}, produced by photo-induced reactions have been measured. These half-lives are shorter than previous recommended values by 7% and 3%, respectively. These changes of the half-lives affects to evaluation of cross-sections using the activation method. We have discussed a problem of the residual ratio of an isomer in {sup 180}Ta in supernova explosions. The unstable ground state and the metastable isomer are linked by ({gamma}, {gamma}') reactions. We have developed a new time-dependent model to calculate the isomer ratio in supernovae. The solar abundance of {sup 180}Ta is reproduced by the supernova neutrino process with the present calculated isomer ratio.

  4. Computational Astrophysics

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Astsatryan, H. V.

    2015-07-01

    Present astronomical archives that contain billions of objects, both Galactic and extragalactic, and the vast amount of data on them allow new studies and discoveries. Astrophysical Virtual Observatories (VO) use available databases and current observing material as a collection of interoperating data archives and software tools to form a research environment in which complex research programs can be conducted. Most of the modern databases give at present VO access to the stored information, which makes possible also a fast analysis and managing of these data. Cross-correlations result in revealing new objects and new samples. Very often dozens of thousands of sources hide a few very interesting ones that are needed to be discovered by comparison of various physical characteristics. VO is a prototype of Grid technologies that allows distributed data computation, analysis and imaging. Particularly important are data reduction and analysis systems: spectral analysis, SED building and fitting, modelling, variability studies, cross correlations, etc. Computational astrophysics has become an indissoluble part of astronomy and most of modern research is being done by means of it.

  5. Astrophysics and Space Science

    NASA Astrophysics Data System (ADS)

    Mould, Jeremy; Brinks, Elias; Khanna, Ramon

    2015-08-01

    Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science, and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis, and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will not longer be considered.The journal also publishes topical collections consisting of invited reviews and original research papers selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers.Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.Astrophysics and Space Science has an Impact Factor of 2.4 and features short editorial turnaround times as well as short publication times after acceptance, and colour printing free of charge. Published by Springer the journal has a very wide online dissemination and can be accessed by researchers at a very large number of institutes worldwide.

  6. First application of the Trojan horse method with a radioactive ion beam: Study of the 18F (p,α ) 15O reaction at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Cherubini, S.; Gulino, M.; Spitaleri, C.; Rapisarda, G. G.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Romano, S.; Kubono, S.; Yamaguchi, H.; Hayakawa, S.; Wakabayashi, Y.; Iwasa, N.; Kato, S.; Komatsubara, T.; Teranishi, T.; Coc, A.; de Séréville, N.; Hammache, F.; Kiss, G.; Bishop, S.; Binh, D. N.

    2015-07-01

    Measurement of nuclear cross sections at astrophysical energies involving unstable species is one of the most challenging tasks in experimental nuclear physics. The use of indirect methods is often unavoidable in this scenario. In this paper the Trojan horse method is applied for the first time to a radioactive ion beam-induced reaction studying the 18F (p ,α )15O process at low energies relevant to astrophysics via the three-body reaction 2H (18F ,α15O ) n . The knowledge of the 18F (p,α ) 15O reaction rate is crucial to understand the nova explosion phenomena. The cross section of this reaction is characterized by the presence of several resonances in 19Ne and possibly interference effects among them. The results reported in literature are not satisfactory and new investigations of the 18F (p,α ) 15O reaction cross section will be useful. In the present work the spin-parity assignments of relevant levels have been discussed and the astrophysical S factor has been extracted considering also interference effects.

  7. Nuclear interactions of high energy heavy ions and applications in astrophysics. Final technical report

    SciTech Connect

    Wefel, J.P.; Guzik, T.G.

    1998-06-25

    Projectile fragmentation experiments have been conducted at the LBL Bevalac accelerator, utilizing both the B40 and the HISS facilities, to produce a dataset of 36 beam/energy combinations covering projectiles from {sup 4}He to {sup 58}Ni and various energies from 170--2100 MeV/nucleon. While some runs were subject to beam instabilities, magnet problems or low statistics, there remains a large dataset which is still being analyzed. The results will be used to investigate the physics of the intermediate energy fragmentation process and will find application in the astrophysics of cosmic ray propagation in the galaxy. An overview of the science goals and rationale is followed by presentation of the experimental techniques and apparatus that has been employed. Data analysis, including both detector subsystem and accelerator calibration, is discussed with emphasis on the unique features of the dataset and the analysis problems being addressed. Results from the experiments are presented throughout to illustrate the status of the analysis, e.g., momentum distribution widths. Total, Elemental and Isotopic cross sections from various beam/energy combinations are presented, including the first data on {sup 32}S fragmentation and the complete isotopic fragmentation cross sections for {sup 28}Si interacting in both Carbon and Hydrogen targets. The new results are compared to any existing data and to formulae used to predict unmeasured cross sections. The size and complexity of the dataset and the required detail of the analysis precluded finishing the full analysis under the subject grant. Plans for additional analysis are presented, and these will be carried out in coming years as time and resources permit.

  8. The Coulomb Dissociation of {sup 8}B: A New Tool in Nuclear Astrophysics

    SciTech Connect

    Gai, Moshe

    2008-01-24

    The GSI1, GSI2 (as well as the RIKEN2 and the corrected GSI2) measurements of the Coulomb Dissociation (CD) of {sup 8}B are in good agreement with the most recent Direct Capture (DC) {sup 7}Be(p,{gamma}){sup 8}B reaction measurement performed at Weizmann and in agreement with the Seattle result. Yet it was claimed that the CD and DC results are sufficiently different and need to be reconciled. We show that these statements arise from a misunderstanding (as well as misrepresentation) of CD experiments. We recall a similar strong statement questioning the validity of the CD method due to an invoked large E2 component that was also shown to arise from a misunderstanding of the CD method. In spite of the good agreement between DC and CD data the slope of the astrophysical cross section factor (S{sub 17}) can not be extracted with high accuracy due to discrepancies among the most recent DC data as well as a discrepancies among the three reports of the GSI CD data. The slope is directly related to the d-wave component that dominates at higher energies. This d-wave component must be subtracted from measured data to extrapolate to zero energy. Hence the uncertainty of the measured slope leads to an additional downward uncertainty ({sub -3.0}{sup +0.0} eV-b) of the extrapolated zero energy cross section factor, S{sub 17}(0). Such an uncertainty is also consistent with the smaller value of S{sub 17}(0) extracted using the ANC method. This uncertainty must be alleviated by future experiments to allow a precise determination of S{sub 17}(0), a goal that so far has not be achieved in spite of strong statement(s) that appeared in the literature.

  9. Constraints on Neutron Density and Temperature Conditions for Astrophysical r-PROCESS from Updated Nuclear Masses

    NASA Astrophysics Data System (ADS)

    Xu, X. D.; Sun, B.; Niu, Z. M.; Li, Z.; Meng, J.

    2013-11-01

    Based on the (n, γ) ⇌ (γ, n) equilibrium, the neutron density and temperature conditions required for the r-process are constrained with updated nuclear masses. It is found that the uncertainty of determined neutron density and temperature ranges can be greatly minimized when mass values tabulated in the latest Atomic Mass Evaluation AME2011-preview are employed.

  10. New Global Calculation of Nuclear Masses and Fission Barriers for Astrophysical Applications

    SciTech Connect

    Moeller, P.; Sierk, A. J.; Bengtsson, R.; Ichikawa, T.; Iwamoto, A.

    2008-05-21

    The FRDM(1992) mass model [1] has an accuracy of 0.669 MeV in the region where its parameters were determined. For the 529 masses that have been measured since, its accuracy is 0.46 MeV, which is encouraging for applications far from stability in astrophysics. We are developing an improved mass model, the FRDM(2008). The improvements in the calculations with respect to the FRDM(1992) are in two main areas. (1) The macroscopic model parameters are better optimized. By simulation (adjusting to a limited set of now known nuclei) we can show that this actually makes the results more reliable in new regions of nuclei. (2) The ground-state deformation parameters are more accurately calculated. We minimize the energy in a four-dimensional deformation space ({epsilon}{sub 2}, {epsilon}{sub 3}, {epsilon}{sub 4}, {epsilon}{sub 6},) using a grid interval of 0.01 in all 4 deformation variables. The (non-finalized) FRDM (2008-a) has an accuracy of 0.596 MeV with respect to the 2003 Audi mass evaluation before triaxial shape degrees of freedom are included (in progress). When triaxiality effects are incorporated preliminary results indicate that the model accuracy will improve further, to about 0.586 MeV.We also discuss very large-scale fission-barrier calculations in the related FRLDM (2002) model, which has been shown to reproduce very satisfactorily known fission properties, for example barrier heights from {sup 70}Se to the heaviest elements, multiple fission modes in the Ra region, asymmetry of mass division in fission and the triple-humped structure found in light actinides. In the superheavy region we find barriers consistent with the observed half-lives. We have completed production calculations and obtain barrier heights for 5254 nuclei heavier than A = 170 for all nuclei between the proton and neutron drip lines. The energy is calculated for 5009325 different shapes for each nucleus and the optimum barrier between ground state and separated fragments is determined by